
Joseph Albahari & Ben Albahari

C# 6.0
in a Nutshell

THE DEFINITIVE REFERENCE

6th Edition

Covers .NET 4.6 &

the Roslyn Compiler

www.EBooksWorld.ir

C#/MICROSOF T .NET

C# 6.0 in a Nutshell

ISBN: 978-1-491-92706-9

US $59.99 CAN $68.99

“	C# 6.0 in a Nutshell	is	
one	of	the	few	books		
I	keep	on	my	desk	as		
a	quick	reference.”

—Scott Guthrie
Microsoft

“	Novices	and	experts	
alike	will	find	the	latest	
techniques	in	C#	
programming	here.”

—Eric Lippert
C# MVP

Twitter: @oreillymedia
facebook.com/oreilly

When you have questions about C# 6.0 or the
.NET CLR and its core Framework assemblies, this
bestselling guide has the answers you need. C# has
become a language of unusual flexibility and breadth
since its premiere in 2000, but this continual growth
means there’s still much more to learn.

O r g a n i ze d a ro u n d c o n c e p t s a n d u s e c a s e s ,
this thoroughly updated sixth edition provides
intermediate and advanced programmers with a
concise map of C# and .NET knowledge. Dive in and
discover why this Nutshell guide is considered the
definitive reference on C#.

 ■ Get up to speed with all aspects of the
C# language, from the basics of syntax
and variables, to advanced topics such
as pointers and operator overloading

 ■ Dig deep into LINQ via three chapters
dedicated to the topic

 ■ Learn about dynamic, asynchronous, and
parallel programming

 ■ Work with .NET features, including XML,
networking, serialization, reflection,
security, application domains, and code
contracts

 ■ Explore the new C# 6.0 compiler-as-a-
service, Roslyn

Joseph Albahari, author of C#
5.0 in a Nutshell, C# 5.0 Pocket
Reference, and LINQ Pocket
Reference, also wrote LINQPad,
the popular code scratchpad and
LINQ querying utility..

Ben Albahari, a former program
manager at Microsoft, is cofounder
of Auditionist, a casting website
for actors in the UK.

www.EBooksWorld.ir

C# 6.0
IN A NUTSHELL

Joseph Albahari & Ben Albahari

www.EBooksWorld.ir

978-1-491-92706-9

[M]

C# 6.0 in a Nutshell
by Joseph Albahari and Ben Albahari

Copyright © 2016 Joseph Albahari and Ben Albahari. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safaribooksonline.com). For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian MacDonald
Production Editor: Kristen Brown
Proofreader: Amanda Kersey
Indexer: Angela Howard

Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2015: Sixth Edition

Revision History for the Sixth Edition
2015-11-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491927069 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C# 6.0 in a Nutshell, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the informa‐
tion and instructions contained in this work are accurate, the publisher and the authors dis‐
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technol‐
ogy this work contains or describes is subject to open source licenses or the intellectual prop‐
erty rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

www.EBooksWorld.ir

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491927069

Table of Contents

Preface. xi

1. Introducing C# and the .NET Framework. 1
Object Orientation 1
Type Safety 2
Memory Management 3
Platform Support 3
C#’s Relationship with the CLR 3
The CLR and .NET Framework 3
C# and Windows Runtime 5
What’s New in C# 6.0 6
What Was New in C# 5.0 8
What Was New in C# 4.0 8
What Was New in C# 3.0 9

2. C# Language Basics. 11
A First C# Program 11
Syntax 14
Type Basics 17
Numeric Types 26
Boolean Type and Operators 33
Strings and Characters 35
Arrays 38
Variables and Parameters 42
Expressions and Operators 51
Null Operators 55
Statements 56
Namespaces 65

3. Creating Types in C#. 73

iii

www.EBooksWorld.ir

Classes 73
Inheritance 88
The object Type 97
Structs 101
Access Modifiers 102
Interfaces 104
Enums 109
Nested Types 113
Generics 114

4. Advanced C#. 127
Delegates 127
Events 136
Lambda Expressions 143
Anonymous Methods 147
try Statements and Exceptions 148
Enumeration and Iterators 156
Nullable Types 162
Operator Overloading 168
Extension Methods 171
Anonymous Types 174
Dynamic Binding 175
Attributes 183
Caller Info Attributes (C# 5) 185
Unsafe Code and Pointers 187
Preprocessor Directives 190
XML Documentation 193

5. Framework Overview. 199
The CLR and Core Framework 202
Applied Technologies 206

6. Framework Fundamentals. 213
String and Text Handling 213
Dates and Times 226
Dates and Time Zones 234
Formatting and Parsing 240
Standard Format Strings and Parsing Flags 246
Other Conversion Mechanisms 253
Globalization 257
Working with Numbers 258
Enums 262

iv | Table of Contents

www.EBooksWorld.ir

Tuples 266
The Guid Struct 267
Equality Comparison 267
Order Comparison 278
Utility Classes 281

7. Collections. 285
Enumeration 285
The ICollection and IList Interfaces 293
The Array Class 297
Lists, Queues, Stacks, and Sets 305
Dictionaries 314
Customizable Collections and Proxies 321
Plugging in Equality and Order 327

8. LINQ Queries. 335
Getting Started 335
Fluent Syntax 337
Query Expressions 344
Deferred Execution 348
Subqueries 355
Composition Strategies 358
Projection Strategies 362
Interpreted Queries 364
LINQ to SQL and Entity Framework 371
Building Query Expressions 385

9. LINQ Operators. 391
Overview 393
Filtering 396
Projecting 400
Joining 412
Ordering 420
Grouping 423
Set Operators 426
Conversion Methods 427
Element Operators 430
Aggregation Methods 432
Quantifiers 437
Generation Methods 438

10. LINQ to XML. 441

Table of Contents | v

www.EBooksWorld.ir

Architectural Overview 441
X-DOM Overview 442
Instantiating an X-DOM 446
Navigating and Querying 448
Updating an X-DOM 453
Working with Values 456
Documents and Declarations 459
Names and Namespaces 463
Annotations 468
Projecting into an X-DOM 469

11. Other XML Technologies. 477
XmlReader 478
XmlWriter 487
Patterns for Using XmlReader/XmlWriter 489
XSD and Schema Validation 493
XSLT 496

12. Disposal and Garbage Collection. 499
IDisposable, Dispose, and Close 499
Automatic Garbage Collection 505
Finalizers 507
How the Garbage Collector Works 512
Managed Memory Leaks 516
Weak References 520

13. Diagnostics and Code Contracts. 525
Conditional Compilation 525
Debug and Trace Classes 529
Code Contracts Overview 532
Preconditions 537
Postconditions 541
Assertions and Object Invariants 543
Contracts on Interfaces and Abstract Methods 545
Dealing with Contract Failure 546
Selectively Enforcing Contracts 548
Static Contract Checking 549
Debugger Integration 551
Processes and Process Threads 552
StackTrace and StackFrame 553
Windows Event Logs 555
Performance Counters 557

vi | Table of Contents

www.EBooksWorld.ir

The Stopwatch Class 562

14. Concurrency and Asynchrony. 563
Introduction 563
Threading 564
Tasks 581
Principles of Asynchrony 589
Asynchronous Functions in C# 594
Asynchronous Patterns 610
Obsolete Patterns 618

15. Streams and I/O. 623
Stream Architecture 623
Using Streams 625
Stream Adapters 639
Compression Streams 647
Working with ZIP Files 649
File and Directory Operations 650
File I/O in Windows Runtime 661
Memory-Mapped Files 663
Isolated Storage 666

16. Networking. 673
Network Architecture 673
Addresses and Ports 675
URIs 676
Client-Side Classes 679
Working with HTTP 692
Writing an HTTP Server 698
Using FTP 701
Using DNS 703
Sending Mail with SmtpClient 703
Using TCP 704
Receiving POP3 Mail with TCP 708
TCP in Windows Runtime 709

17. Serialization. 713
Serialization Concepts 713
The Data Contract Serializer 717
Data Contracts and Collections 727
Extending Data Contracts 730
The Binary Serializer 733

Table of Contents | vii

www.EBooksWorld.ir

Binary Serialization Attributes 735
Binary Serialization with ISerializable 738
XML Serialization 742

18. Assemblies. 753
What’s in an Assembly 753
Strong Names and Assembly Signing 758
Assembly Names 761
Authenticode Signing 764
The Global Assembly Cache 768
Resources and Satellite Assemblies 770
Resolving and Loading Assemblies 779
Deploying Assemblies Outside the Base Folder 784
Packing a Single-File Executable 785
Working with Unreferenced Assemblies 787

19. Reflection and Metadata. 789
Reflecting and Activating Types 790
Reflecting and Invoking Members 797
Reflecting Assemblies 810
Working with Attributes 812
Dynamic Code Generation 818
Emitting Assemblies and Types 825
Emitting Type Members 828
Emitting Generic Methods and Types 834
Awkward Emission Targets 836
Parsing IL 840

20. Dynamic Programming. 847
The Dynamic Language Runtime 847
Numeric Type Unification 849
Dynamic Member Overload Resolution 850
Implementing Dynamic Objects 856
Interoperating with Dynamic Languages 859

21. Security. 863
Permissions 863
Code Access Security (CAS) 868
Allowing Partially Trusted Callers 871
The Transparency Model 873
Sandboxing Another Assembly 881
Operating System Security 885

viii | Table of Contents

www.EBooksWorld.ir

Identity and Role Security 888
Cryptography Overview 889
Windows Data Protection 890
Hashing 891
Symmetric Encryption 892
Public Key Encryption and Signing 897

22. Advanced Threading. 903
Synchronization Overview 904
Exclusive Locking 904
Locking and Thread Safety 912
Nonexclusive Locking 918
Signaling with Event Wait Handles 923
The Barrier Class 932
Lazy Initialization 933
Thread-Local Storage 936
Interrupt and Abort 938
Suspend and Resume 939
Timers 940

23. Parallel Programming. 945
Why PFX? 945
PLINQ 948
The Parallel Class 961
Task Parallelism 968
Working with AggregateException 978
Concurrent Collections 980
BlockingCollection<T> 983

24. Application Domains. 989
Application Domain Architecture 989
Creating and Destroying Application Domains 990
Using Multiple Application Domains 992
Using DoCallBack 994
Monitoring Application Domains 995
Domains and Threads 995
Sharing Data Between Domains 997

25. Interoperability. 1003
Calling into Native DLLs 1003
Type Marshaling 1004
Callbacks from Unmanaged Code 1007

Table of Contents | ix

www.EBooksWorld.ir

Simulating a C Union 1007
Shared Memory 1008
Mapping a Struct to Unmanaged Memory 1011
COM Interoperability 1015
Calling a COM Component from C# 1017
Embedding Interop Types 1020
Primary Interop Assemblies 1021
Exposing C# Objects to COM 1022

26. Regular Expressions. 1023
Regular Expression Basics 1024
Quantifiers 1028
Zero-Width Assertions 1029
Groups 1032
Replacing and Splitting Text 1033
Cookbook Regular Expressions 1035
Regular Expressions Language Reference 1038

27. The Roslyn Compiler. 1043
Roslyn Architecture 1044
Syntax Trees 1045
Compilations and Semantic Models 1060

Index. 1073

x | Table of Contents

www.EBooksWorld.ir

Preface

C# 6.0 represents the fifth major update to Microsoft’s flagship programming lan‐
guage, positioning C# as a language with unusual flexibility and breadth. At one
end, it offers high-level abstractions such as query expressions and asynchronous
continuations; while at the other end, it allows low-level efficiency through con‐
structs such as custom value types and the optional use of pointers.

The price of this growth is that there’s more than ever to learn. Although tools such
as Microsoft’s IntelliSense—and online references—are excellent in helping you on
the job, they presume an existing map of conceptual knowledge. This book provides
exactly that map of knowledge in a concise and unified style—free of clutter and
long introductions.

Like the past three editions, C# 6.0 in a Nutshell is organized around concepts and
use cases, making it friendly both to sequential reading and to random browsing. It
also plumbs significant depths while assuming only basic background knowledge—
making it accessible to intermediate as well as advanced readers.

This book covers C#, the CLR, and the core Framework assemblies. We’ve chosen
this focus to allow space for difficult topics such as concurrency, security, and appli‐
cation domains—without compromising depth or readability. Features new to C#
6.0 and the associated Framework are flagged so that you can also use this book as a
C# 5.0 reference.

Intended Audience
This book targets intermediate to advanced audiences. No prior knowledge of C# is
required, but some general programming experience is necessary. For the beginner,
this book complements, rather than replaces, a tutorial-style introduction to pro‐
gramming.

If you’re already familiar with C# 5.0, you’ll find updated language sections, and a
new chapter on “Roslyn,” the compiler-as-a-service.

xi

www.EBooksWorld.ir

This book is an ideal companion to any of the vast array of books that focus on an
applied technology such as WPF, ASP.NET, or WCF. The areas of the language
and .NET Framework that such books omit, C# 6.0 in a Nutshell covers in detail—
and vice versa.

If you’re looking for a book that skims every .NET Framework technology, this is
not for you. This book is also unsuitable if you want to learn about APIs specific to
tablet or Windows Phone development.

How This Book Is Organized
The first three chapters after the introduction concentrate purely on C#, starting
with the basics of syntax, types, and variables, and finishing with advanced topics
such as unsafe code and preprocessor directives. If you’re new to the language, you
should read these chapters sequentially.

The remaining chapters cover the core .NET Framework, including such topics as
LINQ, XML, collections, code contracts, concurrency, I/O and networking, memory
management, reflection, dynamic programming, attributes, security, application
domains, and native interoperability. You can read most of these chapters randomly,
except for Chapters 6 and 7, which lay a foundation for subsequent topics. The three
chapters on LINQ are also best read in sequence, and some chapters assume some
knowledge of concurrency, which we cover in Chapter 14.

What You Need to Use This Book
The examples in this book require a C# 6.0 compiler and Microsoft .NET Frame‐
work 4.6. You will also find Microsoft’s .NET documentation useful to look up indi‐
vidual types and members (which is available online).

While it’s possible to write source code in Notepad and invoke the compiler from
the command line, you’ll be much more productive with a code scratchpad for
instantly testing code snippets, plus an integrated development environment (IDE)
for producing executables and libraries.

For a code scratchpad, download LINQPad 5 or later from http://www.linqpad.net
(free). LINQPad fully supports C# 6.0 and is maintained by one of the authors.

For an IDE, download Microsoft Visual Studio 2015: any edition, except the free
express edition, is suitable for what’s taught in this book.

All code listings for Chapters 2 through 10, plus the chapters
on concurrency, parallel programming, and dynamic pro‐
gramming are available as interactive (editable) LINQPad
samples. You can download the whole lot in a single click: go
to LINQPad’s Sample Libraries page and choose “C# 6.0 in a
Nutshell.”

xii | Preface

www.EBooksWorld.ir

http://www.linqpad.net
http://www.linqpad.net/RichClient/SampleLibraries.aspx

Conventions Used in This Book
The book uses basic UML notation to illustrate relationships between types, as
shown in Figure P-1. A slanted rectangle means an abstract class; a circle means an
interface. A line with a hollow triangle denotes inheritance, with the triangle point‐
ing to the base type. A line with an arrow denotes a one-way association; a line
without an arrow denotes a two-way association.

Figure P-1. Sample diagram

The following typographical conventions are used in this book:

Italic
Indicates new terms, URIs, filenames, and directories

Constant width
Indicates C# code, keywords and identifiers, and program output

Constant width bold
Shows a highlighted section of code

Constant width italic
Shows text that should be replaced with user-supplied values

Preface | xiii

www.EBooksWorld.ir

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
LINQPad’s Sample Libraries page: choose “C# 6.0 in a Nutshell.”

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You do
not need to contact us for permission unless you’re reproducing a significant por‐
tion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporat‐
ing a significant amount of example code from this book into your product’s docu‐
mentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “C# 6.0 in a Nutshell by Joseph Alba‐
hari and Ben Albahari (O’Reilly). Copyright 2016 Joseph Albahari and Ben Alba‐
hari, 978-1-491-92706-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital
library that delivers expert content in both book
and video form from the world’s leading authors
in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

xiv | Preface

www.EBooksWorld.ir

http://www.linqpad.net/RichClient/SampleLibraries.aspx
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/c-sharp6_nutshell.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Joseph Albahari
First, I want to thank my brother, Ben Albahari, for persuading me to take on C# 3.0
in a Nutshell, whose success has spawned three subsequent editions. Ben shares my
willingness to question conventional wisdom and tenacity to pull things apart until
it becomes clear how they really work.

It’s been an honor to have superb technical reviewers on the team. In this edition,
we had invaluable and extensive feedback from Jared Parsons, Stephen Toub, Mat‐
thew Groves, Dixin Yan, Lee Coward, Bonnie DeWitt, Wonseok Chae, Lori Lalonde
and James Montemagno.

Preface | xv

www.EBooksWorld.ir

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/c-sharp6_nutshell
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

The book was built on previous editions, whose technical reviewers I owe a similar
honor: Eric Lippert, Jon Skeet, Stephen Toub, Nicholas Paldino, Chris Burrows,
Shawn Farkas, Brian Grunkemeyer, Maoni Stephens, David DeWinter, Mike Bar‐
nett, Melitta Andersen, Mitch Wheat, Brian Peek, Krzysztof Cwalina, Matt Warren,
Joel Pobar, Glyn Griffiths, Ion Vasilian, Brad Abrams, Sam Gentile, and Adam
Nathan.

I appreciate that many of the technical reviewers are accomplished individuals at
Microsoft, and I particularly thank you for taking out time to raise this book to the
next quality bar.

Finally, I want to thank the O’Reilly team, including my best ever editor, Brian Mac‐
Donald, and extend personal thanks to Miri and Sonia.

Ben Albahari
Because my brother wrote his acknowledgments first, you can infer most of what I
want to say. :) We’ve actually both been programming since we were kids (we shared
an Apple IIe; he was writing his own operating system while I was writing Hang‐
man), so it’s cool that we’re now writing books together. I hope the enriching experi‐
ence we had writing the book will translate into an enriching experience for you
reading the book.

I’d also like to thank my former colleagues at Microsoft. Many smart people work
there, not just in terms of intellect but also in a broader emotional sense, and I miss
working with them. In particular, I learned a lot from Brian Beckman, to whom I
am indebted.

xvi | Preface

www.EBooksWorld.ir

1
Introducing C# and

the .NET Framework

C# is a general-purpose, type-safe, object-oriented programming language. The goal
of the language is programmer productivity. To this end, the language balances sim‐
plicity, expressiveness, and performance. The chief architect of the language since
its first version is Anders Hejlsberg (creator of Turbo Pascal and architect of Del‐
phi). The C# language is platform-neutral, but it was written to work well with the
Microsoft .NET Framework.

Object Orientation
C# is a rich implementation of the object-orientation paradigm, which includes
encapsulation, inheritance, and polymorphism. Encapsulation means creating a
boundary around an object, to separate its external (public) behavior from its inter‐
nal (private) implementation details. The distinctive features of C# from an object-
oriented perspective are:

Unified type system
The fundamental building block in C# is an encapsulated unit of data and
functions called a type. C# has a unified type system, where all types ulti‐
mately share a common base type. This means that all types, whether they
represent business objects or are primitive types such as numbers, share the
same basic set of functionality. For example, an instance of any type can be
converted to a string by calling its ToString method.

Classes and interfaces
In a traditional object-oriented paradigm, the only kind of type is a class. In
C#, there are several other kinds of types, one of which is an interface. An
interface is like a class, except that it only describes members. The imple‐
mentation for those members comes from types that implement the inter‐
face. Interfaces are particularly useful in scenarios where multiple inheri‐

C
#

 and
the .N

E
T

Fram
ew

o
rk

1

www.EBooksWorld.ir

tance is required (unlike languages such as C++ and Eiffel, C# does not
support multiple inheritance of classes).

Properties, methods, and events
In the pure object-oriented paradigm, all functions are methods (this is the
case in Smalltalk). In C#, methods are only one kind of function member,
which also includes properties and events (there are others, too). Properties
are function members that encapsulate a piece of an object’s state, such as a
button’s color or a label’s text. Events are function members that simplify
acting on object state changes.

While C# is primarily an object-oriented language, it also borrows from the func‐
tional programming paradigm. Specifically:

Functions can be treated as values
Through the use of delegates, C# allows functions to be passed as values to
and from other functions.

C# supports patterns for purity
Core to functional programming is avoiding the use of variables whose val‐
ues change, in favor of declarative patterns. C# has key features to help with
those patterns, including the ability to write unnamed functions on the fly
that “capture” variables (lambda expressions) and the ability to perform list
or reactive programming via query expressions. C# 6.0 also includes read-
only auto-properties to help with writing immutable (read-only) types.

Type Safety
C# is primarily a type-safe language, meaning that instances of types can interact
only through protocols they define, thereby ensuring each type’s internal consis‐
tency. For instance, C# prevents you from interacting with a string type as though it
were an integer type.

More specifically, C# supports static typing, meaning that the language enforces type
safety at compile time. This is in addition to type safety being enforced at runtime.

Static typing eliminates a large class of errors before a program is even run. It shifts
the burden away from runtime unit tests onto the compiler to verify that all the
types in a program fit together correctly. This makes large programs much easier to
manage, more predictable, and more robust. Furthermore, static typing allows tools
such as IntelliSense in Visual Studio to help you write a program, since it knows for
a given variable what type it is, and hence what methods you can call on that vari‐
able.

C# also allows parts of your code to be dynamically typed via
the dynamic keyword (introduced in C# 4.0). However, C#
remains a predominantly statically typed language.

2 | Chapter 1: Introducing C# and the .NET Framework

www.EBooksWorld.ir

C# is also called a strongly typed language because its type rules (whether enforced
statically or at runtime) are very strict. For instance, you cannot call a function that’s
designed to accept an integer with a floating-point number, unless you first explicitly
convert the floating-point number to an integer. This helps prevent mistakes.

Strong typing also plays a role in enabling C# code to run in a sandbox—an envi‐
ronment where every aspect of security is controlled by the host. In a sandbox, it is
important that you cannot arbitrarily corrupt the state of an object by bypassing its
type rules.

Memory Management
C# relies on the runtime to perform automatic memory management. The Com‐
mon Language Runtime has a garbage collector that executes as part of your pro‐
gram, reclaiming memory for objects that are no longer referenced. This frees pro‐
grammers from explicitly deallocating the memory for an object, eliminating the
problem of incorrect pointers encountered in languages such as C++.

C# does not eliminate pointers: it merely makes them unnecessary for most pro‐
gramming tasks. For performance-critical hotspots and interoperability, pointers
may be used, but they are permitted only in blocks that are explicitly marked
unsafe.

Platform Support
Historically, C# was used almost entirely for writing code to run on Windows plat‐
forms. Recently, however, Microsoft and other companies have invested in other
platforms, including Mac OS X and iOS, and Android. Xamarin™ allows cross-
platform C# development for mobile applications, and Portable Class Libraries are
becoming increasingly widespread. Microsoft’s ASP.NET 5 is a new web hosting
framework that can run either on the .NET Framework or on .NET Core, a new
small, fast, open source, cross-platform runtime.

C#’s Relationship with the CLR
C# depends on a runtime equipped with a host of features such as automatic mem‐
ory management and exception handling. The design of C# closely maps to the
design of Microsoft’s Common Language Runtime (CLR), which provides these run‐
time features (although C# is technically independent of the CLR). Furthermore, the
C# type system maps closely to the CLR type system (e.g., both share the same defi‐
nitions for predefined types).

The CLR and .NET Framework
The .NET Framework consists of the CLR plus a vast set of libraries. The libraries
consist of core libraries (which this book is concerned with) and applied libraries,

C
#

 and
the .N

E
T

Fram
ew

o
rk

Memory Management | 3

www.EBooksWorld.ir

which depend on the core libraries. Figure 1-1 is a visual overview of those libraries
(and also serves as a navigational aid to the book).

Figure 1-1. Topics covered in this book and the chapters in which they are
found. Topics not covered are shown outside the large circle.

The CLR is the runtime for executing managed code. C# is one of several managed
languages that get compiled into managed code. Managed code is packaged into an
assembly, in the form of either an executable file (an .exe) or a library (a .dll), along
with type information, or metadata.

Managed code is represented in intermediate language or IL. When the CLR loads
an assembly, it converts the IL into the native code of the machine, such as x86. This
conversion is done by the CLR’s JIT (just-in-time) compiler. An assembly retains
almost all of the original source language constructs, which makes it easy to inspect
and even generate code dynamically.

You can examine and decompile the contents of an IL assem‐
bly with tools such as ILSpy, dotPeek (JetBrains) or Reflector
(Red Gate).

When writing Windows Store apps, you also now have the option of generating
native code directly (“.NET Native”). This improves startup performance and mem‐

4 | Chapter 1: Introducing C# and the .NET Framework

www.EBooksWorld.ir

ory usage (which is particularly beneficial on mobile devices) and also runtime per‐
formance through static linking and other optimizations.

The CLR performs as a host for numerous runtime services. Examples of these serv‐
ices include memory management, the loading of libraries, and security services.
The CLR is language-neutral, allowing developers to build applications in multiple
languages (e.g., C#, F#, Visual Basic .NET and Managed C++).

The .NET Framework contains libraries for writing just about any Windows- or
web-based application. Chapter 5 gives an overview of the .NET Framework libra‐
ries.

C# and Windows Runtime
C# also interoperates with Windows Runtime (WinRT) libraries. WinRT is an execu‐
tion interface and runtime environment for accessing libraries in a language-neutral
and object-oriented fashion. It ships with Windows 8 and newer and is (in part) an
enhanced version of Microsoft’s Component Object Model or COM (see Chapter 25).

Windows 8 and newer ship with a set of unmanaged WinRT libraries that serve as a
framework for touch-enabled applications delivered through Microsoft’s application
store. (The term WinRT also refers to these libraries.) Being WinRT, the libraries
can easily be consumed not only from C# and VB, but C++ and JavaScript.

Some WinRT libraries can also be consumed in normal non-
tablet applications. However, taking a dependency on WinRT
gives your application a minimum OS requirement of Win‐
dows 8.

The WinRT libraries support the new “modern” user interface (for writing immer‐
sive touch-first applications), mobile device-specific features (sensors, text messag‐
ing and so on), and a range of core functionality that overlaps with parts of
the .NET Framework. Because of this overlap, Visual Studio includes a reference pro‐
file (a set of .NET reference assemblies) for Windows Store projects that hides the
portions of the .NET Framework that overlap with WinRT. This profile also hides
large portions of the .NET Framework considered unnecessary for tablet apps (such
as accessing a database). Microsoft’s application store, which controls the distribu‐
tion of software to consumer devices, rejects any program that attempts to access a
hidden type.

A reference assembly exists purely to compile against and may
have a restricted set of types and members. This allows devel‐
opers to install the full .NET Framework on their machines
while coding certain projects as though they had only a subset.
The actual functionality comes at runtime from assemblies in
the global assembly cache (see Chapter 18) that may superset
the reference assemblies.

Hiding most of the .NET Framework eases the learning curve for developers new to
the Microsoft platform, although there are two more important goals:

C
#

 and
the .N

E
T

Fram
ew

o
rk

C# and Windows Runtime | 5

www.EBooksWorld.ir

• It sandboxes applications (restricts functionality to reduce the impact of mal‐
ware). For instance, arbitrary file access is forbidden, and there the ability to
start or communicate with other programs on the computer is extremely
restricted.

• It allows low-powered Windows RT-only tablets to ship with a reduced .NET
Framework, lowering the OS footprint.

What distinguishes WinRT from ordinary COM is that WinRT projects its libraries
into a multitude of languages, namely C#, VB, C++ and JavaScript, so that each lan‐
guage sees WinRT types (almost) as though they were written especially for it. For
example, WinRT will adapt capitalization rules to suit the standards of the target
language, and will even remap some functions and interfaces. WinRT assemblies
also ship with rich metadata in .winmd files, which have the same format as .NET
assembly files, allowing transparent consumption without special ritual. In fact, you
might even be unaware that you’re using WinRT rather than .NET types, aside of
namespace differences. Another clue is that WinRT types are subject to COM-style
restrictions; for instance, they offer limited support for inheritance and generics.

WinRT does not supersede the full .NET Framework. The lat‐
ter is still recommended (and necessary) for standard desktop
and server-side development, and has the following advan‐
tages:

• Programs are not restricted to running in a sandbox.
• Programs can use the entire .NET Framework and any

third-party library.
• Application distribution does not rely on the Windows

Store.
• Applications can target the latest Framework version

without requiring users to have the latest OS version.

What’s New in C# 6.0
C# 6.0’s biggest new feature is that the compiler has been completely rewritten in
C#. Known as project “Roslyn,” the new compiler exposes the entire compilation
pipeline via libraries, allowing you to perform code analysis on arbitrary source
code (see Chapter 27). The compiler itself is open source, and the source code is
available at github.com/dotnet/roslyn.

In addition, C# 6.0 features a number of minor but significant enhancements, aimed
primarily at reducing code clutter.

The null-conditional (“Elvis”) operator (see “Null Operators” on page 55, Chapter 2)
avoids having to explicitly check for null before calling a method or accessing a type
member. In the following example, result evaluates to null instead of throwing a
NullReferenceException:

6 | Chapter 1: Introducing C# and the .NET Framework

www.EBooksWorld.ir

http://github.com/dotnet/roslyn

System.Text.StringBuilder sb = null;
string result = sb?.ToString(); // result is null

Expression-bodied functions (see “Methods” on page 74, Chapter 3) allow methods,
properties, operators, and indexers that comprise a single expression to be written
more tersely, in the style of a lambda expression:

public int TimesTwo (int x) => x * 2;
public string SomeProperty => "Property value";

Property initializers (Chapter 3) let you assign an initial value to an automatic prop‐
erty:

public DateTime Created { get; set; } = DateTime.Now;

Initialized properties can also be read-only:

public DateTime Created { get; } = DateTime.Now;

Read-only properties can also be set in the constructor, making it easier to create
immutable (read-only) types.

Index initializers (Chapter 4) allow single-step initialization of any type that exposes
an indexer:

new Dictionary<int,string>()
{
 [3] = "three",
 [10] = "ten"
}

String interpolation (see “String Type” on page 36, Chapter 2) offers a succinct alter‐
native to string.Format:

string s = $"It is {DateTime.Now.DayOfWeek} today";

Exception filters (see “try Statements and Exceptions” on page 148, Chapter 4) let
you apply a condition to a catch block:

try
{
 new WebClient().DownloadString("http://asef");
}
catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{
 ...
}

The using static (see “Namespaces” on page 65, Chapter 2) directive lets you
import all the static members of a type, so that you can use those members unquali‐
fied:

using static System.Console;
...
WriteLine ("Hello, world"); // WriteLine instead of Console.WriteLine

C
#

 and
the .N

E
T

Fram
ew

o
rk

What’s New in C# 6.0 | 7

www.EBooksWorld.ir

The nameof (Chapter 3) operator returns the name of a variable, type or other sym‐
bol as a string. This avoids breaking code when you rename a symbol in Visual Stu‐
dio:

int capacity = 123;
string x = nameof (capacity); // x is "capacity"
string y = nameof (Uri.Host); // y is "Host"

And finally, you’re now allowed to await inside catch and finally blocks.

What Was New in C# 5.0
C# 5.0’s big new feature was support for asynchronous functions via two new key‐
words, async and await. Asynchronous functions enable asynchronous continua‐
tions, which make it easier to write responsive and thread-safe, rich-client applica‐
tions. They also make it easy to write highly concurrent and efficient I/O-bound
applications that don’t tie up a thread resource per operation.

We cover asynchronous functions in detail in Chapter 14.

What Was New in C# 4.0
The features new to C# 4.0 were:

• Dynamic binding
• Optional parameters and named arguments
• Type variance with generic interfaces and delegates
• COM interoperability improvements

Dynamic binding (Chapters 4 and 20) defers binding—the process of resolving types
and members—from compile time to runtime and is useful in scenarios that would
otherwise require complicated reflection code. Dynamic binding is also useful when
interoperating with dynamic languages and COM components.

Optional parameters (Chapter 2) allow functions to specify default parameter values
so that callers can omit arguments, and named arguments allow a function caller to
identify an argument by name rather than position.

Type variance rules were relaxed in C# 4.0 (Chapters 3 and 4), such that type param‐
eters in generic interfaces and generic delegates can be marked as covariant or con‐
travariant, allowing more natural type conversions.

COM interoperability (Chapter 25) was enhanced in C# 4.0 in three ways. First,
arguments can be passed by reference without the ref keyword (particularly useful
in conjunction with optional parameters). Second, assemblies that contain COM
interop types can be linked rather than referenced. Linked interop types support type
equivalence, avoiding the need for Primary Interop Assemblies and putting an end to
versioning and deployment headaches. Third, functions that return COM-Variant

8 | Chapter 1: Introducing C# and the .NET Framework

www.EBooksWorld.ir

types from linked interop types are mapped to dynamic rather than object, elimi‐
nating the need for casting.

What Was New in C# 3.0
The features added to C# 3.0 were mostly centered on Language Integrated Query
capabilities, or LINQ for short. LINQ enables queries to be written directly within a
C# program and checked statically for correctness, and to query both local collec‐
tions (such as lists or XML documents) or remote data sources (such as a database).
The C# 3.0 features added to support LINQ comprised implicitly typed local vari‐
ables, anonymous types, object initializers, lambda expressions, extension methods,
query expressions, and expression trees.

Implicitly typed local variables (var keyword, Chapter 2) let you omit the variable
type in a declaration statement, allowing the compiler to infer it. This reduces clut‐
ter as well as allowing anonymous types (Chapter 4), which are simple classes cre‐
ated on the fly that are commonly used in the final output of LINQ queries. Arrays
can also be implicitly typed (Chapter 2).

Object initializers (Chapter 3) simplify object construction by allowing properties to
be set inline after the constructor call. Object initializers work with both named and
anonymous types.

Lambda expressions (Chapter 4) are miniature functions created by the compiler on
the fly and are particularly useful in “fluent” LINQ queries (Chapter 8).

Extension methods (Chapter 4) extend an existing type with new methods (without
altering the type’s definition), making static methods feel like instance methods.
LINQ’s query operators are implemented as extension methods.

Query expressions (Chapter 8) provide a higher-level syntax for writing LINQ quer‐
ies that can be substantially simpler when working with multiple sequences or range
variables.

Expression trees (Chapter 8) are miniature code DOMs (Document Object Models)
that describe lambda expressions assigned to the special type Expression<TDele
gate>. Expression trees make it possible for LINQ queries to execute remotely (e.g.,
on a database server) because they can be introspected and translated at runtime
(e.g., into a SQL statement).

C# 3.0 also added automatic properties and partial methods.

Automatic properties (Chapter 3) cut the work in writing properties that simply
get/set a private backing field by having the compiler do that work automatically.
Partial methods (Chapter 3) let an auto-generated partial class provide customizable
hooks for manual authoring which “melt away” if unused.

C
#

 and
the .N

E
T

Fram
ew

o
rk

What Was New in C# 3.0 | 9

www.EBooksWorld.ir

www.EBooksWorld.ir

2
C# Language Basics

In this chapter, we introduce the basics of the C# language.

All programs and code snippets in this and the following two
chapters are available as interactive samples in LINQPad.
Working through these samples in conjunction with the book
accelerates learning in that you can edit the samples and
instantly see the results without needing to set up projects and
solutions in Visual Studio.
To download the samples, go to LINQPad’s Sample Libraries
page and choose “C# 6.0 in a Nutshell.” LINQPad is free—go
to http://www.linqpad.net.

A First C# Program
Here is a program that multiplies 12 by 30 and prints the result, 360, to the screen.
The double forward slash indicates that the remainder of a line is a comment:

using System; // Importing namespace

class Test // Class declaration
{
 static void Main() // Method declaration
 {
 int x = 12 * 30; // Statement 1
 Console.WriteLine (x); // Statement 2
 } // End of method
} // End of class

At the heart of this program lie two statements:

int x = 12 * 30;
Console.WriteLine (x);

Statements in C# execute sequentially and are terminated by a semicolon (or a code
block, as we’ll see later). The first statement computes the expression 12 * 30 and

C
#

Lang
uag

e
B

asics

C# Language Basics | 11

www.EBooksWorld.ir

http://www.linqpad.net/RichClient/SampleLibraries.aspx
http://www.linqpad.net/RichClient/SampleLibraries.aspx
http://www.linqpad.net

stores the result in a local variable, named x, which is an integer type. The second
statement calls the Console class’s WriteLine method, to print the variable x to a text
window on the screen.

A method performs an action in a series of statements, called a statement block—a
pair of braces containing zero or more statements. We defined a single method
named Main:

static void Main()
{
 ...
}

Writing higher-level functions that call upon lower-level functions simplifies a pro‐
gram. We can refactor our program with a reusable method that multiplies an inte‐
ger by 12 as follows:

using System;

class Test
{
 static void Main()
 {
 Console.WriteLine (FeetToInches (30)); // 360
 Console.WriteLine (FeetToInches (100)); // 1200
 }

 static int FeetToInches (int feet)
 {
 int inches = feet * 12;
 return inches;
 }
}

A method can receive input data from the caller by specifying parameters and output
data back to the caller by specifying a return type. We defined a method called Feet
ToInches that has a parameter for inputting feet, and a return type for outputting
inches:

static int FeetToInches (int feet) {...}

The literals 30 and 100 are the arguments passed to the FeetToInches method. The
Main method in our example has empty parentheses because it has no parameters,
and is void because it doesn’t return any value to its caller:

static void Main()

C# recognizes a method called Main as signaling the default entry point of execu‐
tion. The Main method may optionally return an integer (rather than void) in order
to return a value to the execution environment (where a nonzero value typically
indicates an error). The Main method can also optionally accept an array of strings

12 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

as a parameter (that will be populated with any arguments passed to the executable).
For example:

static int Main (string[] args) {...}

An array (such as string[]) represents a fixed number of ele‐
ments of a particular type. Arrays are specified by placing
square brackets after the element type and are described in
“Arrays” on page 38.

Methods are one of several kinds of functions in C#. Another kind of function we
used in our example program was the * operator, which performs multiplication.
There are also constructors, properties, events, indexers, and finalizers.

In our example, the two methods are grouped into a class. A class groups function
members and data members to form an object-oriented building block. The Con
sole class groups members that handle command-line input/output functionality,
such as the WriteLine method. Our Test class groups two methods—the Main
method and the FeetToInches method. A class is a kind of type, which we will
examine in “Type Basics” on page 17.

At the outermost level of a program, types are organized into namespaces. The
using directive was used to make the System namespace available to our applica‐
tion, to use the Console class. We could define all our classes within the TestPro
grams namespace, as follows:

using System;

namespace TestPrograms
{
 class Test {...}
 class Test2 {...}
}

The .NET Framework is organized into nested namespaces. For example, this is the
namespace that contains types for handling text:

using System.Text;

The using directive is there for convenience; you can also refer to a type by its fully
qualified name, which is the type name prefixed with its namespace, such as Sys
tem.Text.StringBuilder.

Compilation
The C# compiler compiles source code, specified as a set of files with the .cs exten‐
sion, into an assembly. An assembly is the unit of packaging and deployment
in .NET. An assembly can be either an application or a library. A normal console or
Windows application has a Main method and is an .exe file. A library is a .dll and is
equivalent to an .exe without an entry point. Its purpose is to be called upon (refer‐

C
#

Lang
uag

e
B

asics

A First C# Program | 13

www.EBooksWorld.ir

enced) by an application or by other libraries. The .NET Framework is a set of libra‐
ries.

The name of the C# compiler is csc.exe. You can either use an IDE such as Visual
Studio to compile, or call csc manually from the command line. (The compiler is
also available as a library; see Chapter 27.) To compile manually, first save a pro‐
gram to a file such as MyFirstProgram.cs, and then go to the command line and
invoke csc (located in %ProgramFiles(X86)%\msbuild\14.0\bin) as follows:

csc MyFirstProgram.cs

This produces an application named MyFirstProgram.exe.

Peculiarly, .NET Framework 4.6 ships with the C# 5 compiler.
To obtain the C# 6 command-line compiler, you must install
Visual Studio or MSBuild 14.

To produce a library (.dll), do the following:

csc /target:library MyFirstProgram.cs

We explain assemblies in detail in Chapter 18.

Syntax
C# syntax is inspired by C and C++ syntax. In this section, we will describe C#’s ele‐
ments of syntax, using the following program:

using System;

class Test
{
 static void Main()
 {
 int x = 12 * 30;
 Console.WriteLine (x);
 }
}

Identifiers and Keywords
Identifiers are names that programmers choose for their classes, methods, variables,
and so on. These are the identifiers in our example program, in the order they
appear:

System Test Main x Console WriteLine

An identifier must be a whole word, essentially made up of Unicode characters
starting with a letter or underscore. C# identifiers are case-sensitive. By convention,
parameters, local variables, and private fields should be in camel case (e.g., myVaria
ble), and all other identifiers should be in Pascal case (e.g., MyMethod).

14 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Keywords are names that mean something special to the compiler. These are the
keywords in our example program:

using class static void int

Most keywords are reserved, which means that you can’t use them as identifiers.
Here is the full list of C# reserved keywords:

abstract

as

base

bool

break

byte

case

catch

char

checked

class

const

continue

decimal

default

delegate

do

double

else

enum

event

explicit

extern

false

finally

fixed

float

for

foreach

goto

if

implicit

in

int

interface

internal

is

lock

longnamespace

new

null

object

operator

out

override

params

private

protected

public

readonly

ref

return

sbyte

sealed

short

sizeof

stackalloc

static

string

struct

switch

this

throw

true

try

typeof

uint

ulong

unchecked

unsafe

ushort

using

virtual

void

volatile

while

Avoiding conflicts
If you really want to use an identifier that clashes with a reserved keyword, you can
do so by qualifying it with the @ prefix. For instance:

class class {...} // Illegal
class @class {...} // Legal

The @ symbol doesn’t form part of the identifier itself. So @myVariable is the same as
myVariable.

The @ prefix can be useful when consuming libraries written
in other .NET languages that have different keywords.

Contextual keywords
Some keywords are contextual, meaning they can also be used as identifiers—
without an @ symbol. These are:

C
#

Lang
uag

e
B

asics

Syntax | 15

www.EBooksWorld.ir

add

ascending

async

await

by

descending

dynamic

equals

from

get

global

group

in

into

join

let

nameof

on

orderby

partial

remove

select

set

value

var

when

where

yield

With contextual keywords, ambiguity cannot arise within the context in which they
are used.

Literals, Punctuators, and Operators
Literals are primitive pieces of data lexically embedded into the program. The liter‐
als we used in our example program are 12 and 30.

Punctuators help demarcate the structure of the program. These are the punctuators
we used in our example program:

{ } ;

The braces group multiple statements into a statement block.

The semicolon terminates a statement. (Statement blocks, however, do not require a
semicolon.) Statements can wrap multiple lines:

Console.WriteLine
 (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

An operator transforms and combines expressions. Most operators in C# are deno‐
ted with a symbol, such as the multiplication operator, *. We will discuss operators
in more detail later in this chapter. These are the operators we used in our example
program:

. () * =

A period denotes a member of something (or a decimal point with numeric literals).
Parentheses are used when declaring or calling a method; empty parentheses are
used when the method accepts no arguments. (Parentheses also have other purposes
that we’ll see later in this chapter.) An equals sign performs assignment. (The double
equals sign, ==, performs equality comparison, as we’ll see later.)

Comments
C# offers two different styles of source-code documentation: single-line comments
and multiline comments. A single-line comment begins with a double forward slash
and continues until the end of the line. For example:

int x = 3; // Comment about assigning 3 to x

A multiline comment begins with /* and ends with */. For example:

16 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

int x = 3; /* This is a comment that
 spans two lines */

Comments may embed XML documentation tags, explained in “XML Documenta‐
tion” on page 193 in Chapter 4.

Type Basics
A type defines the blueprint for a value. In our example, we used two literals of type
int with values 12 and 30. We also declared a variable of type int whose name was
x:

static void Main()
{
 int x = 12 * 30;
 Console.WriteLine (x);
}

A variable denotes a storage location that can contain different values over time. In
contrast, a constant always represents the same value (more on this later):

const int y = 360;

All values in C# are instances of a type. The meaning of a value, and the set of possi‐
ble values a variable can have, is determined by its type.

Predefined Type Examples
Predefined types are types that are specially supported by the compiler. The int
type is a predefined type for representing the set of integers that fit into 32 bits of
memory, from −231 to 231−1, and is the default type for numeric literals within this
range. We can perform functions such as arithmetic with instances of the int type
as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type represents a sequence of
characters, such as “.NET” or “http://oreilly.com.” We can work with strings by call‐
ing functions on them as follows:

string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine (upperMessage); // HELLO WORLD

int x = 2015;
message = message + x.ToString();
Console.WriteLine (message); // Hello world2015

The predefined bool type has exactly two possible values: true and false. The bool
type is commonly used to conditionally branch execution flow based with an if
statement. For example:

bool simpleVar = false;
if (simpleVar)

C
#

Lang
uag

e
B

asics

Type Basics | 17

www.EBooksWorld.ir

http://oreilly.com

 Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
 Console.WriteLine ("This will print");

In C#, predefined types (also referred to as built-in types) are
recognized with a C# keyword. The System namespace in
the .NET Framework contains many important types that are
not predefined by C# (e.g., DateTime).

Custom Type Examples
Just as we can build complex functions from simple functions, we can build com‐
plex types from primitive types. In this example, we will define a custom type
named UnitConverter—a class that serves as a blueprint for unit conversions:

using System;

public class UnitConverter
{
 int ratio; // Field
 public UnitConverter (int unitRatio) {ratio = unitRatio; } // Constructor
 public int Convert (int unit) {return unit * ratio; } // Method
}

class Test
{
 static void Main()
 {
 UnitConverter feetToInchesConverter = new UnitConverter (12);
 UnitConverter milesToFeetConverter = new UnitConverter (5280);

 Console.WriteLine (feetToInchesConverter.Convert(30)); // 360
 Console.WriteLine (feetToInchesConverter.Convert(100)); // 1200
 Console.WriteLine (feetToInchesConverter.Convert(
 milesToFeetConverter.Convert(1))); // 63360
 }
}

Members of a type
A type contains data members and function members. The data member of
UnitConverter is the field called ratio. The function members of UnitConverter
are the Convert method and the UnitConverter’s constructor.

Symmetry of predefined types and custom types
A beautiful aspect of C# is that predefined types and custom types have few differ‐
ences. The predefined int type serves as a blueprint for integers. It holds data—32
bits—and provides function members that use that data, such as ToString. Simi‐

18 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

larly, our custom UnitConverter type acts as a blueprint for unit conversions. It
holds data—the ratio—and provides function members to use that data.

Constructors and instantiation
Data is created by instantiating a type. Predefined types can be instantiated simply
by using a literal such as 12 or "Hello world". The new operator creates instances of
a custom type. We created and declared an instance of the UnitConverter type with
this statement:

UnitConverter feetToInchesConverter = new UnitConverter (12);

Immediately after the new operator instantiates an object, the object’s constructor is
called to perform initialization. A constructor is defined like a method, except that
the method name and return type are reduced to the name of the enclosing type:

public class UnitConverter
{
 ...
 public UnitConverter (int unitRatio) { ratio = unitRatio; }
 ...
}

Instance versus static members
The data members and function members that operate on the instance of the type
are called instance members. The UnitConverter’s Convert method and the int’s
ToString method are examples of instance members. By default, members are
instance members.

Data members and function members that don’t operate on the instance of the type,
but rather on the type itself, must be marked as static. The Test.Main and Con
sole.WriteLine methods are static methods. The Console class is actually a static
class, which means all its members are static. You never actually create instances of a
Console—one console is shared across the whole application.

Let’s contrast instance from static members. In the following code, the instance field
Name pertains to an instance of a particular Panda, whereas Population pertains to
the set of all Panda instances:

public class Panda
{
 public string Name; // Instance field
 public static int Population; // Static field

 public Panda (string n) // Constructor
 {
 Name = n; // Assign the instance field
 Population = Population + 1; // Increment the static Population field
 }
}

C
#

Lang
uag

e
B

asics

Type Basics | 19

www.EBooksWorld.ir

The following code creates two instances of the Panda, prints their names, and then
prints the total population:

using System;

class Test
{
 static void Main()
 {
 Panda p1 = new Panda ("Pan Dee");
 Panda p2 = new Panda ("Pan Dah");

 Console.WriteLine (p1.Name); // Pan Dee
 Console.WriteLine (p2.Name); // Pan Dah

 Console.WriteLine (Panda.Population); // 2
 }
}

Attempting to evaluate p1.Population or Panda.Name will generate a compile-time
error.

The public keyword
The public keyword exposes members to other classes. In this example, if the Name
field in Panda was not marked as public, it would be private, and the Test class
could not access it. Marking a member public is how a type communicates: “Here
is what I want other types to see—everything else is my own private implementation
details.” In object-oriented terms, we say that the public members encapsulate the
private members of the class.

Conversions
C# can convert between instances of compatible types. A conversion always creates
a new value from an existing one. Conversions can be either implicit or explicit:
implicit conversions happen automatically, and explicit conversions require a cast.
In the following example, we implicitly convert an int to a long type (which has
twice the bitwise capacity of an int) and explicitly cast an int to a short type
(which has half the capacity of an int):

int x = 12345; // int is a 32-bit integer
long y = x; // Implicit conversion to 64-bit integer
short z = (short)x; // Explicit conversion to 16-bit integer

20 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

1 A minor caveat is that very large long values lose some precision when converted to double.

Implicit conversions are allowed when both of the following are true:

• The compiler can guarantee they will always succeed.
• No information is lost in conversion.1

Conversely, explicit conversions are required when one of the following is true:

• The compiler cannot guarantee they will always succeed.
• Information may be lost during conversion.

(If the compiler can determine that a conversion will always fail, both kinds of con‐
version are prohibited. Conversions that involve generics can also fail in certain
conditions—see “Type Parameters and Conversions” on page 121 in Chapter 3.)

The numeric conversions that we just saw are built into the lan‐
guage. C# also supports reference conversions and boxing con‐
versions (see Chapter 3) as well as custom conversions (see
“Operator Overloading” on page 168 in Chapter 4). The com‐
piler doesn’t enforce the aforementioned rules with custom
conversions, so it’s possible for badly designed types to behave
otherwise.

Value Types Versus Reference Types
All C# types fall into the following categories:

• Value types
• Reference types
• Generic type parameters
• Pointer types

In this section, we’ll describe value types and reference types.
We’ll cover generic type parameters in “Generics” on page 114
in Chapter 3, and pointer types in “Unsafe Code and Pointers”
on page 187 in Chapter 4.

Value types comprise most built-in types (specifically, all numeric types, the char
type, and the bool type), as well as custom struct and enum types.

Reference types comprise all class, array, delegate, and interface types. (This includes
the predefined string type.)

The fundamental difference between value types and reference types is how they are
handled in memory.

C
#

Lang
uag

e
B

asics

Type Basics | 21

www.EBooksWorld.ir

Value types
The content of a value type variable or constant is simply a value. For example, the
content of the built-in value type, int, is 32 bits of data.

You can define a custom value type with the struct keyword (see Figure 2-1):

public struct Point { public int X; public int Y; }

or more tersely:

public struct Point { public int X, Y; }

Figure 2-1. A value-type instance in memory

The assignment of a value-type instance always copies the instance. For example:

static void Main()
{
 Point p1 = new Point();
 p1.X = 7;

 Point p2 = p1; // Assignment causes copy

 Console.WriteLine (p1.X); // 7
 Console.WriteLine (p2.X); // 7

 p1.X = 9; // Change p1.X

 Console.WriteLine (p1.X); // 9
 Console.WriteLine (p2.X); // 7
}

Figure 2-2 shows that p1 and p2 have independent storage.

Figure 2-2. Assignment copies a value-type instance

Reference types
A reference type is more complex than a value type, having two parts: an object and
the reference to that object. The content of a reference-type variable or constant is a

22 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

reference to an object that contains the value. Here is the Point type from our previ‐
ous example rewritten as a class, rather than a struct (shown in Figure 2-3):

public class Point { public int X, Y; }

Figure 2-3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not the object instance.
This allows multiple variables to refer to the same object—something not ordinarily
possible with value types. If we repeat the previous example, but with Point now a
class, an operation to p1 affects p2:

static void Main()
{
 Point p1 = new Point();
 p1.X = 7;

 Point p2 = p1; // Copies p1 reference

 Console.WriteLine (p1.X); // 7
 Console.WriteLine (p2.X); // 7

 p1.X = 9; // Change p1.X

 Console.WriteLine (p1.X); // 9
 Console.WriteLine (p2.X); // 9
}

Figure 2-4 shows that p1 and p2 are two references that point to the same object.

Figure 2-4. Assignment copies a reference

C
#

Lang
uag

e
B

asics

Type Basics | 23

www.EBooksWorld.ir

Null
A reference can be assigned the literal null, indicating that the reference points to
no object:

class Point {...}
...

Point p = null;
Console.WriteLine (p == null); // True

// The following line generates a runtime error
// (a NullReferenceException is thrown):
Console.WriteLine (p.X);

In contrast, a value type cannot ordinarily have a null value:

struct Point {...}
...

Point p = null; // Compile-time error
int x = null; // Compile-time error

C# also has a construct called nullable types for representing
value-type nulls (see “Nullable Types” on page 162 in Chap‐
ter 4).

Storage overhead
Value-type instances occupy precisely the memory required to store their fields. In
this example, Point takes eight bytes of memory:

struct Point
{
 int x; // 4 bytes
 int y; // 4 bytes
}

Technically, the CLR positions fields within the type at an
address that’s a multiple of the fields’ size (up to a maximum
of eight bytes). Thus, the following actually consumes 16 bytes
of memory (with the seven bytes following the first field “was‐
ted”):

struct A { byte b; long l; }

You can override this behavior with the StructLayout

attribute (see “Mapping a Struct to Unmanaged Memory” on
page 1011 in Chapter 25).

24 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Reference types require separate allocations of memory for the reference and object.
The object consumes as many bytes as its fields, plus additional administrative over‐
head. The precise overhead is intrinsically private to the implementation of
the .NET runtime, but at minimum, the overhead is eight bytes, used to store a key
to the object’s type, as well as temporary information such as its lock state for multi‐
threading and a flag to indicate whether it has been fixed from movement by the
garbage collector. Each reference to an object requires an extra four or eight bytes,
depending on whether the .NET runtime is running on a 32- or 64-bit platform.

Predefined Type Taxonomy
The predefined types in C# are:

Value types
• Numeric

—Signed integer (sbyte, short, int, long)
—Unsigned integer (byte, ushort, uint, ulong)
—Real number (float, double, decimal)

• Logical (bool)

• Character (char)

Reference types
• String (string)

• Object (object)

Predefined types in C# alias Framework types in the System namespace. There is
only a syntactic difference between these two statements:

int i = 5;
System.Int32 i = 5;

The set of predefined value types, excluding decimal, are known as primitive types
in the CLR. Primitive types are so called because they are supported directly via
instructions in compiled code, and this usually translates to direct support on the
underlying processor. For example:

 // Underlying hexadecimal representation
int i = 7; // 0x7
bool b = true; // 0x1
char c = 'A'; // 0x41
float f = 0.5f; // uses IEEE floating-point encoding

The System.IntPtr and System.UIntPtr types are also primitive (see Chapter 25).

C
#

Lang
uag

e
B

asics

Type Basics | 25

www.EBooksWorld.ir

2 Technically, decimal is a floating-point type too, although it’s not referred to as such in the C#
language specification.

Numeric Types
C# has the predefined numeric types shown in Table 2-1.

Table 2-1. Predefined numeric types in C#

C# type System type Suffix Size Range

Integral—signed

sbyte SByte 8 bits –27 to 27–1

short Int16 16 bits –215 to 215–1

int Int32 32 bits –231 to 231–1

long Int64 L 64 bits –263 to 263–1

Integral—unsigned

byte Byte 8 bits 0 to 28–1

ushort UInt16 16 bits 0 to 216–1

uint UInt32 U 32 bits 0 to 232–1

ulong UInt64 UL 64 bits 0 to 264–1

Real

float Single F 32 bits ± (~10–45 to 1038)

double Double D 64 bits ± (~10–324 to 10308)

decimal Decimal M 128 bits ± (~10–28 to 1028)

Of the integral types, int and long are first-class citizens and are favored by both C#
and the runtime. The other integral types are typically used for interoperability or
when space efficiency is paramount.

Of the real number types, float and double are called floating-point types2 and are
typically used for scientific and graphical calculations. The decimal type is typically
used for financial calculations, where base-10-accurate arithmetic and high preci‐
sion are required.

Numeric Literals
Integral literals can use decimal or hexadecimal notation; hexadecimal is denoted
with the 0x prefix. For example:

int x = 127;
long y = 0x7F;

Real literals can use decimal and/or exponential notation. For example:

26 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

double d = 1.5;
double million = 1E06;

Numeric literal type inference
By default, the compiler infers a numeric literal to be either double or an integral
type:

• If the literal contains a decimal point or the exponential symbol (E), it is a
double.

• Otherwise, the literal’s type is the first type in this list that can fit the literal’s
value: int, uint, long, and ulong.

For example:

Console.WriteLine (1.0.GetType()); // Double (double)
Console.WriteLine (1E06.GetType()); // Double (double)
Console.WriteLine (1.GetType()); // Int32 (int)
Console.WriteLine (0xF0000000.GetType()); // UInt32 (uint)
Console.WriteLine (0x100000000.GetType()); // Int64 (long)

Numeric suffixes
Numeric suffixes explicitly define the type of a literal. Suffixes can be either lower- or
uppercase, and are as follows:

Category C# type Example

F float float f = 1.0F;

D double double d = 1D;

M decimal decimal d = 1.0M;

U uint uint i = 1U;

L long long i = 1L;

UL ulong ulong i = 1UL;

The suffixes U and L are rarely necessary, because the uint, long, and ulong types
can nearly always be either inferred or implicitly converted from int:

long i = 5; // Implicit lossless conversion from int literal to long

The D suffix is technically redundant, in that all literals with a decimal point are
inferred to be double. And you can always add a decimal point to a numeric literal:

double x = 4.0;

The F and M suffixes are the most useful and should always be applied when specify‐
ing float or decimal literals. Without the F suffix, the following line would not
compile, because 4.5 would be inferred to be of type double, which has no implicit
conversion to float:

C
#

Lang
uag

e
B

asics

Numeric Types | 27

www.EBooksWorld.ir

float f = 4.5F;

The same principle is true for a decimal literal:

decimal d = -1.23M; // Will not compile without the M suffix.

We describe the semantics of numeric conversions in detail in the following section.

Numeric Conversions

Integral to integral conversions
Integral conversions are implicit when the destination type can represent every pos‐
sible value of the source type. Otherwise, an explicit conversion is required. For
example:

int x = 12345; // int is a 32-bit integral
long y = x; // Implicit conversion to 64-bit integral
short z = (short)x; // Explicit conversion to 16-bit integral

Floating-point to floating-point conversions
A float can be implicitly converted to a double, since a double can represent every
possible value of a float. The reverse conversion must be explicit.

Floating-point to integral conversions
All integral types may be implicitly converted to all floating-point types:

int i = 1;
float f = i;

The reverse conversion must be explicit:

int i2 = (int)f;

When you cast from a floating-point number to an integral,
any fractional portion is truncated; no rounding is performed.
The static class System.Convert provides methods that round
while converting between various numeric types (see Chap‐
ter 6).

Implicitly converting a large integral type to a floating-point type preserves magni‐
tude but may occasionally lose precision. This is because floating-point types always
have more magnitude than integral types, but may have less precision. Rewriting
our example with a larger number demonstrates this:

int i1 = 100000001;
float f = i1; // Magnitude preserved, precision lost
int i2 = (int)f; // 100000000

28 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Decimal conversions
All integral types can be implicitly converted to the decimal type, since a decimal
can represent every possible C# integral value. All other numeric conversions to and
from a decimal type must be explicit.

Arithmetic Operators
The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8-
and 16-bit integral types:

+ Addition
- Subtraction
* Multiplication
/ Division
% Remainder after division

Increment and Decrement Operators
The increment and decrement operators (++, --) increment and decrement numeric
types by 1. The operator can either follow or precede the variable, depending on
whether you want its value before or after the increment/decrement. For example:

int x = 0, y = 0;
Console.WriteLine (x++); // Outputs 0; x is now 1
Console.WriteLine (++y); // Outputs 1; y is now 1

Specialized Integral Operations

Integral division
Division operations on integral types always truncate remainders (round toward
zero). Dividing by a variable whose value is zero generates a runtime error (a Divid
eByZeroException):

int a = 2 / 3; // 0

int b = 0;
int c = 5 / b; // throws DivideByZeroException

Dividing by the literal or constant 0 generates a compile-time error.

Integral overflow
At runtime, arithmetic operations on integral types can overflow. By default, this
happens silently—no exception is thrown, and the result exhibits “wraparound”
behavior, as though the computation was done on a larger integer type and the extra
significant bits discarded. For example, decrementing the minimum possible int
value results in the maximum possible int value:

int a = int.MinValue;
a--;
Console.WriteLine (a == int.MaxValue); // True

C
#

Lang
uag

e
B

asics

Numeric Types | 29

www.EBooksWorld.ir

Integral arithmetic overflow check operators
The checked operator tells the runtime to generate an OverflowException rather
than overflowing silently when an integral expression or statement exceeds the
arithmetic limits of that type. The checked operator affects expressions with the ++,
−−, +, − (binary and unary), *, /, and explicit conversion operators between integral
types.

The checked operator has no effect on the double and float
types (which overflow to special “infinite” values, as we’ll see
soon) and no effect on the decimal type (which is always
checked).

checked can be used around either an expression or a statement block. For example:

int a = 1000000;
int b = 1000000;

int c = checked (a * b); // Checks just the expression.

checked // Checks all expressions
{ // in statement block.
 ...
 c = a * b;
 ...
}

You can make arithmetic overflow checking the default for all expressions in a pro‐
gram by compiling with the /checked+ command-line switch (in Visual Studio, go
to Advanced Build Settings). If you then need to disable overflow checking just for
specific expressions or statements, you can do so with the unchecked operator. For
example, the following code will not throw exceptions—even if compiled
with /checked+:

int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions
Regardless of the /checked compiler switch, expressions evaluated at compile time
are always overflow-checked—unless you apply the unchecked operator:

int x = int.MaxValue + 1; // Compile-time error
int y = unchecked (int.MaxValue + 1); // No errors

Bitwise operators
C# supports the following bitwise operators:

30 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Operator Meaning Sample expression Result

~ Complement ~0xfU 0xfffffff0U

& And 0xf0 & 0x33 0x30

| Or 0xf0 | 0x33 0xf3

^ Exclusive Or 0xff00 ^ 0x0ff0 0xf0f0

<< Shift left 0x20 << 2 0x80

>> Shift right 0x20 >> 1 0x10

8- and 16-Bit Integrals
The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types
lack their own arithmetic operators, so C# implicitly converts them to larger types
as required. This can cause a compile-time error when trying to assign the result
back to a small integral type:

short x = 1, y = 1;
short z = x + y; // Compile-time error

In this case, x and y are implicitly converted to int so that the addition can be per‐
formed. This means the result is also an int, which cannot be implicitly cast back to
a short (because it could cause loss of data). To make this compile, we must add an
explicit cast:

short z = (short) (x + y); // OK

Special Float and Double Values
Unlike integral types, floating-point types have values that certain operations treat
specially. These special values are NaN (not a number), +∞, −∞, and −0. The float
and double classes have constants for NaN, +∞, and −∞, as well as other values (Max
Value, MinValue, and Epsilon). For example:

Console.WriteLine (double.NegativeInfinity); // -Infinity

The constants that represent special values for double and float are as follows:

Special value Double constant Float constant

NaN double.NaN float.NaN

+∞ double.PositiveInfinity float.PositiveInfinity

−∞ double.NegativeInfinity float.NegativeInfinity

−0 −0.0 −0.0f

Dividing a nonzero number by zero results in an infinite value. For example:

Console.WriteLine (1.0 / 0.0); // Infinity
Console.WriteLine (−1.0 / 0.0); // -Infinity

C
#

Lang
uag

e
B

asics

Numeric Types | 31

www.EBooksWorld.ir

Console.WriteLine (1.0 / −0.0); // -Infinity
Console.WriteLine (−1.0 / −0.0); // Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN. For
example:

Console.WriteLine (0.0 / 0.0); // NaN
Console.WriteLine ((1.0 / 0.0) − (1.0 / 0.0)); // NaN

When using ==, a NaN value is never equal to another value, even another NaN
value:

Console.WriteLine (0.0 / 0.0 == double.NaN); // False

To test whether a value is NaN, you must use the float.IsNaN or double.IsNaN
method:

Console.WriteLine (double.IsNaN (0.0 / 0.0)); // True

When using object.Equals, however, two NaN values are equal:

Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN)); // True

NaNs are sometimes useful in representing special values. In
WPF, double.NaN represents a measurement whose value is
“Automatic”. Another way to represent such a value is with a
nullable type (Chapter 4); another is with a custom struct that
wraps a numeric type and adds an additional field (Chapter 3).

float and double follow the specification of the IEEE 754 format types, supported
natively by almost all processors. You can find detailed information on the behavior
of these types at http://www.ieee.org.

double Versus decimal
double is useful for scientific computations (such as computing spatial coordinates).
decimal is useful for financial computations and values that are “man-made” rather
than the result of real-world measurements. Here’s a summary of the differences:

Category double decimal

Internal representation Base 2 Base 10

Decimal precision 15–16 significant figures 28–29 significant figures

Range ±(~10−324 to ~10308) ±(~10−28 to ~1028)

Special values +0, −0, +∞, −∞, and NaN None

Speed Native to processor Non-native to processor (about 10 times slower than
double)

Real-Number Rounding Errors
float and double internally represent numbers in base 2. For this reason, only
numbers expressible in base 2 are represented precisely. Practically, this means most

32 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

http://www.ieee.org

3 It’s possible to overload these operators (Chapter 4) such that they return a non-bool type, but
this is almost never done in practice.

literals with a fractional component (which are in base 10) will not be represented
precisely. For example:

float tenth = 0.1f; // Not quite 0.1
float one = 1f;
Console.WriteLine (one - tenth * 10f); // -1.490116E-08

This is why float and double are bad for financial calculations. In contrast, deci
mal works in base 10 and so can precisely represent numbers expressible in base 10
(as well as its factors, base 2 and base 5). Since real literals are in base 10, decimal
can precisely represent numbers such as 0.1. However, neither double nor decimal
can precisely represent a fractional number whose base 10 representation is recur‐
ring:

decimal m = 1M / 6M; // 0.1666666666666666666666666667M
double d = 1.0 / 6.0; // 0.16666666666666666

This leads to accumulated rounding errors:

decimal notQuiteWholeM = m+m+m+m+m+m; // 1.0000000000000000000000000002M
double notQuiteWholeD = d+d+d+d+d+d; // 0.99999999999999989

which breaks equality and comparison operations:

Console.WriteLine (notQuiteWholeM == 1M); // False
Console.WriteLine (notQuiteWholeD < 1.0); // True

Boolean Type and Operators
C#’s bool type (aliasing the System.Boolean type) is a logical value that can be
assigned the literal true or false.

Although a Boolean value requires only one bit of storage, the runtime will use one
byte of memory, since this is the minimum chunk that the runtime and processor
can efficiently work with. To avoid space inefficiency in the case of arrays, the
Framework provides a BitArray class in the System.Collections namespace that
is designed to use just one bit per Boolean value.

Bool Conversions
No casting conversions can be made from the bool type to numeric types or vice
versa.

Equality and Comparison Operators
== and != test for equality and inequality of any type, but always return a bool
value.3 Value types typically have a very simple notion of equality:

C
#

Lang
uag

e
B

asics

Boolean Type and Operators | 33

www.EBooksWorld.ir

int x = 1;
int y = 2;
int z = 1;
Console.WriteLine (x == y); // False
Console.WriteLine (x == z); // True

For reference types, equality, by default, is based on reference, as opposed to the
actual value of the underlying object (more on this in Chapter 6):

public class Dude
{
 public string Name;
 public Dude (string n) { Name = n; }
}
...
Dude d1 = new Dude ("John");
Dude d2 = new Dude ("John");
Console.WriteLine (d1 == d2); // False
Dude d3 = d1;
Console.WriteLine (d1 == d3); // True

The equality and comparison operators, ==, !=, <, >, >=, and <=, work for all numeric
types, but should be used with caution with real numbers (as we saw in “Real-
Number Rounding Errors” on page 32). The comparison operators also work on
enum type members, by comparing their underlying integral values. We describe this
in “Enums” on page 109 in Chapter 3.

We explain the equality and comparison operators in greater detail in “Operator
Overloading” on page 168 in Chapter 4, and in “Equality Comparison” on page 267
and “Order Comparison” on page 278 in Chapter 6.

Conditional Operators
The && and || operators test for and and or conditions. They are frequently used in
conjunction with the ! operator, which expresses not. In this example, the UseUm
brella method returns true if it’s rainy or sunny (to protect us from the rain or the
sun), as long as it’s not also windy (since umbrellas are useless in the wind):

static bool UseUmbrella (bool rainy, bool sunny, bool windy)
{
 return !windy && (rainy || sunny);
}

The && and || operators short-circuit evaluation when possible. In the preceding
example, if it is windy, the expression (rainy || sunny) is not even evaluated.
Short-circuiting is essential in allowing expressions such as the following to run
without throwing a NullReferenceException:

if (sb != null && sb.Length > 0) ...

The & and | operators also test for and and or conditions:

return !windy & (rainy | sunny);

34 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

The difference is that they do not short-circuit. For this reason, they are rarely used
in place of conditional operators.

Unlike in C and C++, the & and | operators perform (non-
short-circuiting) Boolean comparisons when applied to bool
expressions. The & and | operators perform bitwise operations
only when applied to numbers.

Conditional operator (ternary operator)
The conditional operator (more commonly called the ternary operator, as it’s the only
operator that takes three operands) has the form q ? a : b, where if condition q is
true, a is evaluated, else b is evaluated. For example:

static int Max (int a, int b)
{
 return (a > b) ? a : b;
}

The conditional operator is particularly useful in LINQ queries (Chapter 8).

Strings and Characters
C#’s char type (aliasing the System.Char type) represents a Unicode character and
occupies 2 bytes. A char literal is specified inside single quotes:

char c = 'A'; // Simple character

Escape sequences express characters that cannot be expressed or interpreted literally.
An escape sequence is a backslash followed by a character with a special meaning.
For example:

char newLine = '\n';
char backSlash = '\\';

The escape sequence characters are shown in Table 2-2.

Table 2-2. Escape sequence characters

Char Meaning Value

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

C
#

Lang
uag

e
B

asics

Strings and Characters | 35

www.EBooksWorld.ir

Char Meaning Value

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The \u (or \x) escape sequence lets you specify any Unicode character via its four-
digit hexadecimal code:

char copyrightSymbol = '\u00A9';
char omegaSymbol = '\u03A9';
char newLine = '\u000A';

Char Conversions
An implicit conversion from a char to a numeric type works for the numeric types
that can accommodate an unsigned short. For other numeric types, an explicit con‐
version is required.

String Type
C#’s string type (aliasing the System.String type, covered in depth in Chapter 6)
represents an immutable sequence of Unicode characters. A string literal is specified
inside double quotes:

string a = "Heat";

string is a reference type, rather than a value type. Its equality
operators, however, follow value-type semantics:

string a = "test";
string b = "test";
Console.Write (a == b); // True

The escape sequences that are valid for char literals also work inside strings:

string a = "Here's a tab:\t";

The cost of this is that whenever you need a literal backslash, you must write it
twice:

string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A verbatim string literal is
prefixed with @ and does not support escape sequences. The following verbatim
string is identical to the preceding one:

string a2 = @ "\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines:

string escaped = "First Line\r\nSecond Line";
string verbatim = @"First Line

36 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Second Line";

// True if your IDE uses CR-LF line separators:
Console.WriteLine (escaped == verbatim);

You can include the double-quote character in a verbatim literal by writing it twice:

string xml = @"<customer id=""123""></customer>";

String concatenation
The + operator concatenates two strings:

string s = "a" + "b";

One of the operands may be a nonstring value, in which case ToString is called on
that value. For example:

string s = "a" + 5; // a5

Using the + operator repeatedly to build up a string is inefficient: a better solution is
to use the System.Text.StringBuilder type (described in Chapter 6).

String interpolation (C# 6)
A string preceded with the $ character is called an interpolated string. Interpolated
strings can include expressions inside braces:

int x = 4;
Console.Write ($"A square has {x} sides"); // Prints: A square has 4 sides

Any valid C# expression of any type can appear within the braces, and C# will con‐
vert the expression to a string by calling its ToString method or equivalent. You can
change the formatting by appending the expression with a colon and a format string
(format strings are described in “Formatting and parsing” on page 233 in Chap‐
ter 6):

string s = $"255 in hex is {byte.MaxValue:X2}"; // X2 = 2-digit Hexadecimal
// Evaluates to "255 in hex is FF"

Interpolated strings must complete on a single line, unless you also specify the ver‐
batim string operator. Note that the $ operator must come before @:

int x = 2;
string s = $@"this spans {
x} lines";

To include a brace literal in an interpolated string, repeat the desired brace charac‐
ter.

String comparisons
string does not support < and > operators for comparisons. You must use the
string’s CompareTo method, described in Chapter 6.

C
#

Lang
uag

e
B

asics

Strings and Characters | 37

www.EBooksWorld.ir

Arrays
An array represents a fixed number of variables (called elements) of a particular
type. The elements in an array are always stored in a contiguous block of memory,
providing highly efficient access.

An array is denoted with square brackets after the element type. For example:

char[] vowels = new char[5]; // Declare an array of 5 characters

Square brackets also index the array, accessing a particular element by position:

vowels[0] = 'a';
vowels[1] = 'e';
vowels[2] = 'i';
vowels[3] = 'o';
vowels[4] = 'u';
Console.WriteLine (vowels[1]); // e

This prints “e” because array indexes start at 0. We can use a for loop statement to
iterate through each element in the array. The for loop in this example cycles the
integer i from 0 to 4:

for (int i = 0; i < vowels.Length; i++)
 Console.Write (vowels[i]); // aeiou

The Length property of an array returns the number of elements in the array. Once
an array has been created, its length cannot be changed. The System.Collection
namespace and subnamespaces provide higher-level data structures, such as
dynamically sized arrays and dictionaries.

An array initialization expression lets you declare and populate an array in a single
step:

char[] vowels = new char[] {'a','e','i','o','u'};

or simply:

char[] vowels = {'a','e','i','o','u'};

All arrays inherit from the System.Array class, providing common services for all
arrays. These members include methods to get and set elements regardless of the
array type, and are described in “The Array Class” on page 297 in Chapter 7.

Default Element Initialization
Creating an array always preinitializes the elements with default values. The default
value for a type is the result of a bitwise zeroing of memory. For example, consider
creating an array of integers. Since int is a value type, this allocates 1,000 integers in
one contiguous block of memory. The default value for each element will be 0:

int[] a = new int[1000];
Console.Write (a[123]); // 0

38 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Value types versus reference types
Whether an array element type is a value type or a reference type has important per‐
formance implications. When the element type is a value type, each element value is
allocated as part of the array. For example:

public struct Point { public int X, Y; }
...

Point[] a = new Point[1000];
int x = a[500].X; // 0

Had Point been a class, creating the array would have merely allocated 1,000 null
references:

public class Point { public int X, Y; }

...
Point[] a = new Point[1000];
int x = a[500].X; // Runtime error, NullReferenceException

To avoid this error, we must explicitly instantiate 1,000 Points after instantiating the
array:

Point[] a = new Point[1000];
for (int i = 0; i < a.Length; i++) // Iterate i from 0 to 999
 a[i] = new Point(); // Set array element i with new point

An array itself is always a reference type object, regardless of the element type. For
instance, the following is legal:

int[] a = null;

Multidimensional Arrays
Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular
arrays represent an n-dimensional block of memory, and jagged arrays are arrays of
arrays.

Rectangular arrays
Rectangular arrays are declared using commas to separate each dimension. The fol‐
lowing declares a rectangular two-dimensional array, where the dimensions are
3 x 3:

int[,] matrix = new int[3,3];

The GetLength method of an array returns the length for a given dimension (start‐
ing at 0):

for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++)
 matrix[i,j] = i * 3 + j;

C
#

Lang
uag

e
B

asics

Arrays | 39

www.EBooksWorld.ir

A rectangular array can be initialized as follows (to create an array identical to the
previous example):

int[,] matrix = new int[,]
{
 {0,1,2},
 {3,4,5},
 {6,7,8}
};

Jagged arrays
Jagged arrays are declared using successive square brackets to represent each
dimension. Here is an example of declaring a jagged two-dimensional array, where
the outermost dimension is 3:

int[][] matrix = new int[3][];

Interestingly, this is new int[3][] and not new int[][3].
Eric Lippert has written an excellent article on why this is so:
see http://albahari.com/jagged.

The inner dimensions aren’t specified in the declaration because, unlike a rectangu‐
lar array, each inner array can be an arbitrary length. Each inner array is implicitly
initialized to null rather than an empty array. Each inner array must be created
manually:

for (int i = 0; i < matrix.Length; i++)
{
 matrix[i] = new int[3]; // Create inner array
 for (int j = 0; j < matrix[i].Length; j++)
 matrix[i][j] = i * 3 + j;
}

A jagged array can be initialized as follows (to create an array identical to the previ‐
ous example with an additional element at the end):

int[][] matrix = new int[][]
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8,9}
};

Simplified Array Initialization Expressions
There are two ways to shorten array initialization expressions. The first is to omit
the new operator and type qualifications:

char[] vowels = {'a','e','i','o','u'};

int[,] rectangularMatrix =
{
 {0,1,2},
 {3,4,5},

40 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

http://albahari.com/jagged

 {6,7,8}
};

int[][] jaggedMatrix =
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8}
};

The second approach is to use the var keyword, which tells the compiler to implic‐
itly type a local variable:

var i = 3; // i is implicitly of type int
var s = "sausage"; // s is implicitly of type string

// Therefore:

var rectMatrix = new int[,] // rectMatrix is implicitly of type int[,]
{
 {0,1,2},
 {3,4,5},
 {6,7,8}
};

var jaggedMat = new int[][] // jaggedMat is implicitly of type int[][]
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8}
};

Implicit typing can be taken one stage further with arrays: you can omit the type
qualifier after the new keyword and have the compiler infer the array type:

var vowels = new[] {'a','e','i','o','u'}; // Compiler infers char[]

For this to work, the elements must all be implicitly convertible to a single type (and
at least one of the elements must be of that type, and there must be exactly one best
type). For example:

var x = new[] {1,10000000000}; // all convertible to long

Bounds Checking
All array indexing is bounds-checked by the runtime. An IndexOutOfRangeExcep
tion is thrown if you use an invalid index:

int[] arr = new int[3];
arr[3] = 1; // IndexOutOfRangeException thrown

As with Java, array bounds checking is necessary for type safety and simplifies
debugging.

C
#

Lang
uag

e
B

asics

Arrays | 41

www.EBooksWorld.ir

Generally, the performance hit from bounds checking is
minor, and the JIT (just-in-time) compiler can perform opti‐
mizations, such as determining in advance whether all indexes
will be safe before entering a loop, thus avoiding a check on
each iteration. In addition, C# provides “unsafe” code that can
explicitly bypass bounds checking (see “Unsafe Code and
Pointers” on page 187 in Chapter 4).

Variables and Parameters
A variable represents a storage location that has a modifiable value. A variable can
be a local variable, parameter (value, ref, or out), field (instance or static), or array
element.

The Stack and the Heap
The stack and the heap are the places where variables and constants reside. Each has
very different lifetime semantics.

Stack
The stack is a block of memory for storing local variables and parameters. The stack
logically grows and shrinks as a function is entered and exited. Consider the follow‐
ing method (to avoid distraction, input argument checking is ignored):

static int Factorial (int x)
{
 if (x == 0) return 1;
 return x * Factorial (x-1);
}

This method is recursive, meaning that it calls itself. Each time the method is
entered, a new int is allocated on the stack, and each time the method exits, the int
is deallocated.

Heap
The heap is a block of memory in which objects (i.e., reference-type instances)
reside. Whenever a new object is created, it is allocated on the heap, and a reference
to that object is returned. During a program’s execution, the heap starts filling up as
new objects are created. The runtime has a garbage collector that periodically deal‐
locates objects from the heap, so your program does not run out of memory. An
object is eligible for deallocation as soon as it’s not referenced by anything that’s
itself “alive.”

In the following example, we start by creating a StringBuilder object referenced by
the variable ref1, and then write out its content. That StringBuilder object is then
immediately eligible for garbage collection, because nothing subsequently uses it.

42 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Then, we create another StringBuilder referenced by variable ref2, and copy that
reference to ref3. Even though ref2 is not used after that point, ref3 keeps the
same StringBuilder object alive—ensuring that it doesn’t become eligible for col‐
lection until we’ve finished using ref3:

using System;
using System.Text;

class Test
{
 static void Main()
 {
 StringBuilder ref1 = new StringBuilder ("object1");
 Console.WriteLine (ref1);
 // The StringBuilder referenced by ref1 is now eligible for GC.

 StringBuilder ref2 = new StringBuilder ("object2");
 StringBuilder ref3 = ref2;
 // The StringBuilder referenced by ref2 is NOT yet eligible for GC.

 Console.WriteLine (ref3); // object2
 }
}

Value-type instances (and object references) live wherever the variable was declared.
If the instance was declared as a field within a class type, or as an array element, that
instance lives on the heap.

You can’t explicitly delete objects in C#, as you can in C++. An
unreferenced object is eventually collected by the garbage col‐
lector.

The heap also stores static fields. Unlike objects allocated on the heap (which can
get garbage-collected), these live until the application domain is torn down.

Definite Assignment
C# enforces a definite assignment policy. In practice, this means that outside of an
unsafe context, it’s impossible to access uninitialized memory. Definite assignment
has three implications:

• Local variables must be assigned a value before they can be read.
• Function arguments must be supplied when a method is called (unless marked

as optional—see “Optional parameters” on page 48).
• All other variables (such as fields and array elements) are automatically initial‐

ized by the runtime.

For example, the following code results in a compile-time error:

C
#

Lang
uag

e
B

asics

Variables and Parameters | 43

www.EBooksWorld.ir

static void Main()
{
 int x;
 Console.WriteLine (x); // Compile-time error
}

Fields and array elements are automatically initialized with the default values for
their type. The following code outputs 0, because array elements are implicitly
assigned to their default values:

static void Main()
{
 int[] ints = new int[2];
 Console.WriteLine (ints[0]); // 0
}

The following code outputs 0, because fields are implicitly assigned a default value:

class Test
{
 static int x;
 static void Main() { Console.WriteLine (x); } // 0
}

Default Values
All type instances have a default value. The default value for the predefined types is
the result of a bitwise zeroing of memory:

Type Default value

All reference types null

All numeric and enum types 0

char type '\0'

bool type false

You can obtain the default value for any type with the default keyword (in practice,
this is useful with generics which we’ll cover in Chapter 3):

decimal d = default (decimal);

The default value in a custom value type (i.e., struct) is the same as the default
value for each field defined by the custom type.

Parameters
A method has a sequence of parameters. Parameters define the set of arguments
that must be provided for that method. In this example, the method Foo has a single
parameter named p, of type int:

static void Foo (int p)
{
 p = p + 1; // Increment p by 1

44 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

 Console.WriteLine (p); // Write p to screen
}

static void Main()
{
 Foo (8); // Call Foo with an argument of 8
}

You can control how parameters are passed with the ref and out modifiers:

Parameter modifier Passed by Variable must be definitely assigned

(None) Value Going in

ref Reference Going in

out Reference Going out

Passing arguments by value
By default, arguments in C# are passed by value, which is by far the most common
case. This means a copy of the value is created when passed to the method:

class Test
{
 static void Foo (int p)
 {
 p = p + 1; // Increment p by 1
 Console.WriteLine (p); // Write p to screen
 }

 static void Main()
 {
 int x = 8;
 Foo (x); // Make a copy of x
 Console.WriteLine (x); // x will still be 8
 }
}

Assigning p a new value does not change the contents of x, since p and x reside in
different memory locations.

Passing a reference-type argument by value copies the reference, but not the object.
In the following example, Foo sees the same StringBuilder object that Main instan‐
tiated, but has an independent reference to it. In other words, sb and fooSB are sepa‐
rate variables that reference the same StringBuilder object:

class Test
{
 static void Foo (StringBuilder fooSB)
 {
 fooSB.Append ("test");
 fooSB = null;
 }

C
#

Lang
uag

e
B

asics

Variables and Parameters | 45

www.EBooksWorld.ir

4 An exception to this rule is when calling COM methods. We discuss this in Chapter 25.

 static void Main()
 {
 StringBuilder sb = new StringBuilder();
 Foo (sb);
 Console.WriteLine (sb.ToString()); // test
 }
}

Because fooSB is a copy of a reference, setting it to null doesn’t make sb null. (If,
however, fooSB was declared and called with the ref modifier, sb would become
null.)

The ref modifier
To pass by reference, C# provides the ref parameter modifier. In the following
example, p and x refer to the same memory locations:

class Test
{
 static void Foo (ref int p)
 {
 p = p + 1; // Increment p by 1
 Console.WriteLine (p); // Write p to screen
 }

 static void Main()
 {
 int x = 8;
 Foo (ref x); // Ask Foo to deal directly with x
 Console.WriteLine (x); // x is now 9
 }
}

Now assigning p a new value changes the contents of x. Notice how the ref modifier
is required both when writing and when calling the method.4 This makes it very
clear what’s going on.

The ref modifier is essential in implementing a swap method (later, in “Generics”
on page 114 in Chapter 3, we will show how to write a swap method that works with
any type):

class Test
{
 static void Swap (ref string a, ref string b)
 {
 string temp = a;
 a = b;
 b = temp;
 }

46 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

 static void Main()
 {
 string x = "Penn";
 string y = "Teller";
 Swap (ref x, ref y);
 Console.WriteLine (x); // Teller
 Console.WriteLine (y); // Penn
 }
}

A parameter can be passed by reference or by value, regardless
of whether the parameter type is a reference type or a value
type.

The out modifier
An out argument is like a ref argument, except it:

• Need not be assigned before going into the function
• Must be assigned before it comes out of the function

The out modifier is most commonly used to get multiple return values back from a
method. For example:

class Test
{
 static void Split (string name, out string firstNames,
 out string lastName)
 {
 int i = name.LastIndexOf (' ');
 firstNames = name.Substring (0, i);
 lastName = name.Substring (i + 1);
 }

 static void Main()
 {
 string a, b;
 Split ("Stevie Ray Vaughan", out a, out b);
 Console.WriteLine (a); // Stevie Ray
 Console.WriteLine (b); // Vaughan
 }
}

Like a ref parameter, an out parameter is passed by reference.

Implications of passing by reference
When you pass an argument by reference, you alias the storage location of an exist‐
ing variable rather than create a new storage location. In the following example, the
variables x and y represent the same instance:

class Test
{

C
#

Lang
uag

e
B

asics

Variables and Parameters | 47

www.EBooksWorld.ir

 static int x;

 static void Main() { Foo (out x); }

 static void Foo (out int y)
 {
 Console.WriteLine (x); // x is 0
 y = 1; // Mutate y
 Console.WriteLine (x); // x is 1
 }
}

The params modifier
The params parameter modifier may be specified on the last parameter of a method
so that the method accepts any number of arguments of a particular type. The
parameter type must be declared as an array. For example:

class Test
{
 static int Sum (params int[] ints)
 {
 int sum = 0;
 for (int i = 0; i < ints.Length; i++)
 sum += ints[i]; // Increase sum by ints[i]
 return sum;
 }

 static void Main()
 {
 int total = Sum (1, 2, 3, 4);
 Console.WriteLine (total); // 10
 }
}

You can also supply a params argument as an ordinary array. The first line in Main is
semantically equivalent to this:

int total = Sum (new int[] { 1, 2, 3, 4 });

Optional parameters
From C# 4.0, methods, constructors, and indexers (Chapter 3) can declare optional
parameters. A parameter is optional if it specifies a default value in its declaration:

void Foo (int x = 23) { Console.WriteLine (x); }

Optional parameters may be omitted when calling the method:

Foo(); // 23

The default argument of 23 is actually passed to the optional parameter x—the com‐
piler bakes the value 23 into the compiled code at the calling side. The preceding call
to Foo is semantically identical to:

Foo (23);

48 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

because the compiler simply substitutes the default value of an optional parameter
wherever it is used.

Adding an optional parameter to a public method that’s called
from another assembly requires recompilation of both assem‐
blies—just as though the parameter were mandatory.

The default value of an optional parameter must be specified by a constant expres‐
sion, or a parameterless constructor of a value type. Optional parameters cannot be
marked with ref or out.

Mandatory parameters must occur before optional parameters in both the method
declaration and the method call (the exception is with params arguments, which still
always come last). In the following example, the explicit value of 1 is passed to x,
and the default value of 0 is passed to y:

void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

void Test()
{
 Foo(1); // 1, 0
}

To do the converse (pass a default value to x and an explicit value to y), you must
combine optional parameters with named arguments.

Named arguments
Rather than identifying an argument by position, you can identify an argument by
name. For example:

void Foo (int x, int y) { Console.WriteLine (x + ", " + y); }

void Test()
{
 Foo (x:1, y:2); // 1, 2
}

Named arguments can occur in any order. The following calls to Foo are semanti‐
cally identical:

Foo (x:1, y:2);
Foo (y:2, x:1);

A subtle difference is that argument expressions are evaluated
in the order in which they appear at the calling site. In general,
this makes a difference only with interdependent side-
effecting expressions such as the following, which writes 0, 1:

int a = 0;
Foo (y: ++a, x: --a); // ++a is evaluated first

Of course, you would almost certainly avoid writing such code
in practice!

C
#

Lang
uag

e
B

asics

Variables and Parameters | 49

www.EBooksWorld.ir

You can mix named and positional arguments:

Foo (1, y:2);

However, there is a restriction: positional arguments must come before named
arguments. So we couldn’t call Foo like this:

Foo (x:1, 2); // Compile-time error

Named arguments are particularly useful in conjunction with optional parameters.
For instance, consider the following method:

void Bar (int a = 0, int b = 0, int c = 0, int d = 0) { ... }

We can call this supplying only a value for d as follows:

Bar (d:3);

This is particularly useful when calling COM APIs, and is discussed in detail in
Chapter 25.

var—Implicitly Typed Local Variables
It is often the case that you declare and initialize a variable in one step. If the com‐
piler is able to infer the type from the initialization expression, you can use the key‐
word var (introduced in C# 3.0) in place of the type declaration. For example:

var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

This is precisely equivalent to:

string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables are statically typed. For
example, the following generates a compile-time error:

var x = 5;
x = "hello"; // Compile-time error; x is of type int

var can decrease code readability in the case when you can’t
deduce the type purely by looking at the variable declaration.
For example:

Random r = new Random();
var x = r.Next();

What type is x?

In “Anonymous Types” on page 174 in Chapter 4, we will describe a scenario where
the use of var is mandatory.

50 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Expressions and Operators
An expression essentially denotes a value. The simplest kinds of expressions are con‐
stants and variables. Expressions can be transformed and combined using opera‐
tors. An operator takes one or more input operands to output a new expression.

Here is an example of a constant expression:

12

We can use the * operator to combine two operands (the literal expressions 12 and
30), as follows:

12 * 30

Complex expressions can be built because an operand may itself be an expression,
such as the operand (12 * 30) in the following example:

1 + (12 * 30)

Operators in C# can be classed as unary, binary, or ternary—depending on the
number of operands they work on (one, two, or three). The binary operators always
use infix notation, where the operator is placed between the two operands.

Primary Expressions
Primary expressions include expressions composed of operators that are intrinsic to
the basic plumbing of the language. Here is an example:

Math.Log (1)

This expression is composed of two primary expressions. The first expression per‐
forms a member-lookup (with the . operator), and the second expression performs
a method call (with the () operator).

Void Expressions
A void expression is an expression that has no value. For example:

Console.WriteLine (1)

A void expression, since it has no value, cannot be used as an operand to build more
complex expressions:

1 + Console.WriteLine (1) // Compile-time error

Assignment Expressions
An assignment expression uses the = operator to assign the result of another expres‐
sion to a variable. For example:

x = x * 5

C
#

Lang
uag

e
B

asics

Expressions and Operators | 51

www.EBooksWorld.ir

An assignment expression is not a void expression—it has a value of whatever was
assigned, and so can be incorporated into another expression. In the following
example, the expression assigns 2 to x and 10 to y:

y = 5 * (x = 2)

This style of expression can be used to initialize multiple values:

a = b = c = d = 0

The compound assignment operators are syntactic shortcuts that combine assign‐
ment with another operator. For example:

x *= 2 // equivalent to x = x * 2
x <<= 1 // equivalent to x = x << 1

(A subtle exception to this rule is with events, which we describe in Chapter 4: the
+= and -= operators here are treated specially and map to the event’s add and remove
accessors.)

Operator Precedence and Associativity
When an expression contains multiple operators, precedence and associativity deter‐
mine the order of their evaluation. Operators with higher precedence execute before
operators of lower precedence. If the operators have the same precedence, the oper‐
ator’s associativity determines the order of evaluation.

Precedence
The following expression:

1 + 2 * 3

is evaluated as follows because * has a higher precedence than +:

1 + (2 * 3)

Left-associative operators
Binary operators (except for assignment, lambda, and null-coalescing operators) are
left-associative; in other words, they are evaluated from left to right. For example,
the following expression:

8 / 4 / 2

is evaluated as follows due to left associativity:

(8 / 4) / 2 // 1

You can insert parentheses to change the actual order of evaluation:

8 / (4 / 2) // 4

52 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Right-associative operators
The assignment operators, lambda, null-coalescing, and conditional operator are
right-associative; in other words, they are evaluated from right to left. Right associa‐
tivity allows multiple assignments such as the following to compile:

x = y = 3;

This first assigns 3 to y, and then assigns the result of that expression (3) to x.

Operator Table
Table 2-3 lists C#’s operators in order of precedence. Operators in the same category
have the same precedence. We explain user-overloadable operators in “Operator
Overloading” on page 168 in Chapter 4.

Table 2-3. C# operators (categories in order of precedence)

Category Operator
symbol

Operator name Example User-
overloadable

Primary . Member access x.y No

 -> (unsafe) Pointer to struct x->y No

 () Function call x() No

 [] Array/index a[x] Via indexer

 ++ Post-increment x++ Yes

 −− Post-decrement x−− Yes

 new Create instance new Foo() No

 stackalloc Unsafe stack
allocation

stackalloc(10) No

 typeof Get type from
identifier

typeof(int) No

 nameof Get name of
identifier

nameof(x) No

 checked Integral overflow
check on

checked(x) No

 unchecked Integral overflow
check off

unchecked(x) No

 default Default value default(char) No

Unary await Await await myTask No

 sizeof Get size of struct sizeof(int) No

 ?. Null-conditional x?.y No

 + Positive value of +x Yes

 − Negative value of −x Yes

 ! Not !x Yes

C
#

Lang
uag

e
B

asics

Expressions and Operators | 53

www.EBooksWorld.ir

Category Operator
symbol

Operator name Example User-
overloadable

 ~ Bitwise complement ~x Yes

 ++ Pre-increment ++x Yes

 −− Pre-decrement −−x Yes

 () Cast (int)x No

 * (unsafe) Value at address *x No

 & (unsafe) Address of value &x No

Multiplicative * Multiply x * y Yes

 / Divide x / y Yes

 % Remainder x % y Yes

Additive + Add x + y Yes

 − Subtract x − y Yes

Shift << Shift left x << 1 Yes

 >> Shift right x >> 1 Yes

Relational < Less than x < y Yes

 > Greater than x > y Yes

 <= Less than or equal to x <= y Yes

 >= Greater than or equal
to

x >= y Yes

 is Type is or is subclass
of

x is y No

 as Type conversion x as y No

Equality == Equals x == y Yes

 != Not equals x != y Yes

Logical And & And x & y Yes

Logical Xor ^ Exclusive Or x ^ y Yes

Logical Or | Or x | y Yes

Conditional And && Conditional And x && y Via &

Conditional Or || Conditional Or x || y Via |

Null-coalescing ?? Null-coalescing x ?? y No

Conditional ?: Conditional isTrue ? thenThis

Value : elseThis

Value

No

Assignment &
Lambda

= Assign x = y No

 *= Multiply self by x *= 2 Via *

54 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Category Operator
symbol

Operator name Example User-
overloadable

 /= Divide self by x /= 2 Via /

 += Add to self x += 2 Via +

 −= Subtract from self x −= 2 Via −

 <<= Shift self left by x <<= 2 Via <<

 >>= Shift self right by x >>= 2 Via >>

 &= And self by x &= 2 Via &

 ^= Exclusive-Or self by x ^= 2 Via ^

 |= Or self by x |= 2 Via |

 => Lambda x => x + 1 No

Null Operators
C# provides two operators to make it easier to work with nulls: the null-coalescing
operator and the null-conditional operator.

Null-Coalescing Operator
The ?? operator is the null-coalescing operator. It says “If the operand is non-null,
give it to me; otherwise, give me a default value.” For example:

string s1 = null;
string s2 = s1 ?? "nothing"; // s2 evaluates to "nothing"

If the left-hand expression is non-null, the right-hand expression is never evaluated.
The null-coalescing operator also works with nullable value types (see “Nullable
Types” on page 162 in Chapter 4).

Null-conditional operator (C# 6)
The ?. operator is the null-conditional or “Elvis” operator, and is new to C# 6. It
allows you to call methods and access members just like the standard dot operator,
except that if the operand on the left is null, the expression evaluates to null instead
of throwing a NullReferenceException:

System.Text.StringBuilder sb = null;
string s = sb?.ToString(); // No error; s instead evaluates to null

The last line is equivalent to:

string s = (sb == null ? null : sb.ToString());

Upon encountering a null, the Elvis operator short-circuits the remainder of the
expression. In the following example, s evaluates to null, even with a standard dot
operator between ToString() and ToUpper():

C
#

Lang
uag

e
B

asics

Null Operators | 55

www.EBooksWorld.ir

System.Text.StringBuilder sb = null;
string s = sb?.ToString().ToUpper(); // s evaluates to null without error

Repeated use of Elvis is necessary only if the operand immediately to its left may be
null. The following expression is robust to both x being null and x.y being null:

x?.y?.z

and is equivalent to the following (except that x.y is evaluated only once):

x == null ? null
 : (x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The following is illegal:

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length; // Illegal : int cannot be null

We can fix this with the use of nullable value types (see “Nullable Types” on page
162 in Chapter 4): If you’re already familiar with nullable types, here’s a preview:

int? length = sb?.ToString().Length; // OK : int? can be null

You can also use the null-conditional operator to call a void method:

someObject?.SomeVoidMethod();

If someObject is null, this becomes a “no-operation” rather than throwing a NullRe
ferenceException.

The null-conditional operator can be used with the commonly used type members
that we describe in Chapter 3, including methods, fields, properties and indexers. It
also combines well with the null-coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing"; // s evaluates to "nothing"

The last line is equivalent to:

string s = (sb == null ? "nothing" : sb.ToString());

Statements
Functions comprise statements that execute sequentially in the textual order in
which they appear. A statement block is a series of statements appearing between
braces (the {} tokens).

Declaration Statements
A declaration statement declares a new variable, optionally initializing the variable
with an expression. A declaration statement ends in a semicolon. You may declare
multiple variables of the same type in a comma-separated list. For example:

string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;

56 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

A constant declaration is like a variable declaration, except that it cannot be
changed after it has been declared, and the initialization must occur with the decla‐
ration (see “Constants” on page 83 in Chapter 3):

const double c = 2.99792458E08;
c += 10; // Compile-time Error

Local variables
The scope of a local variable or local constant extends throughout the current block.
You cannot declare another local variable with the same name in the current block
or in any nested blocks. For example:

static void Main()
{
 int x;
 {
 int y;
 int x; // Error - x already defined
 }
 {
 int y; // OK - y not in scope
 }
 Console.Write (y); // Error - y is out of scope
}

A variable’s scope extends in both directions throughout its
code block. This means that if we moved the initial declara‐
tion of x in this example to the bottom of the method, we’d get
the same error. This is in contrast to C++ and is somewhat
peculiar, given that it’s not legal to refer to a variable or con‐
stant before it’s declared.

Expression Statements
Expression statements are expressions that are also valid statements. An expression
statement must either change state or call something that might change state.
Changing state essentially means changing a variable. The possible expression state‐
ments are:

• Assignment expressions (including increment and decrement expressions)
• Method call expressions (both void and nonvoid)
• Object instantiation expressions

Here are some examples:

// Declare variables with declaration statements:
string s;
int x, y;
System.Text.StringBuilder sb;

// Expression statements

C
#

Lang
uag

e
B

asics

Statements | 57

www.EBooksWorld.ir

x = 1 + 2; // Assignment expression
x++; // Increment expression
y = Math.Max (x, 5); // Assignment expression
Console.WriteLine (y); // Method call expression
sb = new StringBuilder(); // Assignment expression
new StringBuilder(); // Object instantiation expression

When you call a constructor or a method that returns a value, you’re not obliged to
use the result. However, unless the constructor or method changes state, the state‐
ment is completely useless:

new StringBuilder(); // Legal, but useless
new string ('c', 3); // Legal, but useless
x.Equals (y); // Legal, but useless

Selection Statements
C# has the following mechanisms to conditionally control the flow of program exe‐
cution:

• Selection statements (if, switch)

• Conditional operator (?:)

• Loop statements (while, do..while, for, foreach)

This section covers the simplest two constructs: the if-else statement and the
switch statement.

The if statement
An if statement executes a statement if a bool expression is true. For example:

if (5 < 2 * 3)
 Console.WriteLine ("true"); // true

The statement can be a code block:

if (5 < 2 * 3)
{
 Console.WriteLine ("true");
 Console.WriteLine ("Let's move on!");
}

The else clause
An if statement can optionally feature an else clause:

if (2 + 2 == 5)
 Console.WriteLine ("Does not compute");
else
 Console.WriteLine ("False"); // False

Within an else clause, you can nest another if statement:

58 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

if (2 + 2 == 5)
 Console.WriteLine ("Does not compute");
else
 if (2 + 2 == 4)
 Console.WriteLine ("Computes"); // Computes

Changing the flow of execution with braces
An else clause always applies to the immediately preceding if statement in the
statement block. For example:

if (true)
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine ("executes");

This is semantically identical to:

if (true)
{
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine ("executes");
}

We can change the execution flow by moving the braces:

if (true)
{
 if (false)
 Console.WriteLine();
}
else
 Console.WriteLine ("does not execute");

With braces, you explicitly state your intention. This can improve the readability of
nested if statements—even when not required by the compiler. A notable exception
is with the following pattern:

static void TellMeWhatICanDo (int age)
{
 if (age >= 35)
 Console.WriteLine ("You can be president!");
 else if (age >= 21)
 Console.WriteLine ("You can drink!");
 else if (age >= 18)
 Console.WriteLine ("You can vote!");
 else
 Console.WriteLine ("You can wait!");
}

Here, we’ve arranged the if and else statements to mimic the “elseif ” construct of
other languages (and C#’s #elif preprocessor directive). Visual Studio’s auto-
formatting recognizes this pattern and preserves the indentation. Semantically,

C
#

Lang
uag

e
B

asics

Statements | 59

www.EBooksWorld.ir

though, each if statement following an else statement is functionally nested within
the else clause.

The switch statement
switch statements let you branch program execution based on a selection of possi‐
ble values that a variable may have. switch statements may result in cleaner code
than multiple if statements, since switch statements require an expression to be
evaluated only once. For instance:

static void ShowCard(int cardNumber)
{
 switch (cardNumber)
 {
 case 13:
 Console.WriteLine ("King");
 break;
 case 12:
 Console.WriteLine ("Queen");
 break;
 case 11:
 Console.WriteLine ("Jack");
 break;
 case -1: // Joker is -1
 goto case 12; // In this game joker counts as queen
 default: // Executes for any other cardNumber
 Console.WriteLine (cardNumber);
 break;
 }
}

You can only switch on an expression of a type that can be statically evaluated,
which restricts it to the built-in integral types, bool, and enum types (and nullable
versions of these—see Chapter 4), and string type.

At the end of each case clause, you must say explicitly where execution is to go next,
with some kind of jump statement. Here are the options:

• break (jumps to the end of the switch statement)

• goto case x (jumps to another case clause)

• goto default (jumps to the default clause)

• Any other jump statement—namely, return, throw, continue, or goto label

When more than one value should execute the same code, you can list the common
cases sequentially:

switch (cardNumber)
{
 case 13:
 case 12:
 case 11:

60 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

 Console.WriteLine ("Face card");
 break;
 default:
 Console.WriteLine ("Plain card");
 break;
}

This feature of a switch statement can be pivotal in terms of producing cleaner
code than multiple if-else statements.

Iteration Statements
C# enables a sequence of statements to execute repeatedly with the while, do-while,
for, and foreach statements.

while and do-while loops
while loops repeatedly execute a body of code while a bool expression is true. The
expression is tested before the body of the loop is executed. For example:

int i = 0;
while (i < 3)
{
 Console.WriteLine (i);
 i++;
}

OUTPUT:
0
1
2

do-while loops differ in functionality from while loops only in that they test the
expression after the statement block has executed (ensuring that the block is always
executed at least once). Here’s the preceding example rewritten with a do-while
loop:

int i = 0;
do
{
 Console.WriteLine (i);
 i++;
}
while (i < 3);

for loops
for loops are like while loops with special clauses for initialization and iteration of a
loop variable. A for loop contains three clauses as follows:

for (initialization-clause; condition-clause; iteration-clause)
 statement-or-statement-block

C
#

Lang
uag

e
B

asics

Statements | 61

www.EBooksWorld.ir

Initialization clause
Executed before the loop begins; used to initialize one or more iteration
variables

Condition clause
The bool expression that, while true, will execute the body

Iteration clause
Executed after each iteration of the statement block; used typically to
update the iteration variable

For example, the following prints the numbers 0 through 2:

for (int i = 0; i < 3; i++)
 Console.WriteLine (i);

The following prints the first 10 Fibonacci numbers (where each number is the sum
of the previous two):

for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
 Console.WriteLine (prevFib);
 int newFib = prevFib + curFib;
 prevFib = curFib; curFib = newFib;
}

Any of the three parts of the for statement may be omitted. One can implement an
infinite loop such as the following (though while(true) may be used instead):

for (;;)
 Console.WriteLine ("interrupt me");

foreach loops
The foreach statement iterates over each element in an enumerable object. Most of
the types in C# and the .NET Framework that represent a set or list of elements are
enumerable. For example, both an array and a string are enumerable. Here is an
example of enumerating over the characters in a string, from the first character
through to the last:

foreach (char c in "beer") // c is the iteration variable
 Console.WriteLine (c);

OUTPUT:
b
e
e
r

We define enumerable objects in “Enumeration and Iterators” on page 156 in Chap‐
ter 4.

62 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Jump Statements
The C# jump statements are break, continue, goto, return, and throw.

Jump statements obey the reliability rules of try statements
(see “try Statements and Exceptions” on page 148 in Chap‐
ter 4). This means that:

• A jump out of a try block always executes the try’s
finally block before reaching the target of the jump.

• A jump cannot be made from the inside to the outside of
a finally block (except via throw).

The break statement
The break statement ends the execution of the body of an iteration or switch
statement:

int x = 0;
while (true)
{
 if (x++ > 5)
 break ; // break from the loop
}
// execution continues here after break
...

The continue statement
The continue statement forgoes the remaining statements in a loop and makes an
early start on the next iteration. The following loop skips even numbers:

for (int i = 0; i < 10; i++)
{
 if ((i % 2) == 0) // If i is even,
 continue; // continue with next iteration

 Console.Write (i + " ");
}
OUTPUT: 1 3 5 7 9

The goto statement
The goto statement transfers execution to another label within a statement block.
The form is as follows:

goto statement-label;

Or, when used within a switch statement:

goto case case-constant;

C
#

Lang
uag

e
B

asics

Statements | 63

www.EBooksWorld.ir

A label is a placeholder in a code block that precedes a statement, denoted with a
colon suffix. The following iterates the numbers 1 through 5, mimicking a for loop:

int i = 1;
startLoop:
if (i <= 5)
{
 Console.Write (i + " ");
 i++;
 goto startLoop;
}

OUTPUT: 1 2 3 4 5

The goto case case-constant transfers execution to another case in a switch
block (see “The switch statement” on page 60).

The return statement
The return statement exits the method and must return an expression of the meth‐
od’s return type if the method is nonvoid:

static decimal AsPercentage (decimal d)
{
 decimal p = d * 100m;
 return p; // Return to the calling method with value
}

A return statement can appear anywhere in a method (except in a finally block).

The throw statement
The throw statement throws an exception to indicate an error has occurred (see “try
Statements and Exceptions” on page 148 in Chapter 4):

if (w == null)
 throw new ArgumentNullException (...);

Miscellaneous Statements
The using statement provides an elegant syntax for calling Dispose on objects that
implement IDisposable, within a finally block (see “try Statements and Excep‐
tions” on page 148 in Chapter 4 and “IDisposable, Dispose, and Close” on page 499
in Chapter 12).

C# overloads the using keyword to have independent mean‐
ings in different contexts. Specifically, the using directive is
different from the using statement.

The lock statement is a shortcut for calling the Enter and Exit methods of the Moni
tor class (see Chapter 14 and Chapter 23).

64 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Namespaces
A namespace is a domain for type names. Types are typically organized into hier‐
archical namespaces, making them easier to find and avoiding conflicts. For exam‐
ple, the RSA type that handles public key encryption is defined within the following
namespace:

System.Security.Cryptography

A namespace forms an integral part of a type’s name. The following code calls RSA’s
Create method:

System.Security.Cryptography.RSA rsa =
 System.Security.Cryptography.RSA.Create();

Namespaces are independent of assemblies, which are units of
deployment such as an .exe or .dll (described in Chapter 18).

Namespaces also have no impact on member visibility—pub

lic, internal, private, and so on.

The namespace keyword defines a namespace for types within that block. For exam‐
ple:

namespace Outer.Middle.Inner
{
 class Class1 {}
 class Class2 {}
}

The dots in the namespace indicate a hierarchy of nested namespaces. The code that
follows is semantically identical to the preceding example:

namespace Outer
{
 namespace Middle
 {
 namespace Inner
 {
 class Class1 {}
 class Class2 {}
 }
 }
}

You can refer to a type with its fully qualified name, which includes all namespaces
from the outermost to the innermost. For example, we could refer to Class1 in the
preceding example as Outer.Middle.Inner.Class1.

Types not defined in any namespace are said to reside in the global namespace. The
global namespace also includes top-level namespaces, such as Outer in our example.

C
#

Lang
uag

e
B

asics

Namespaces | 65

www.EBooksWorld.ir

The using Directive
The using directive imports a namespace, allowing you to refer to types without
their fully qualified names. The following imports the previous example’s Outer.Mid
dle.Inner namespace:

using Outer.Middle.Inner;

class Test
{
 static void Main()
 {
 Class1 c; // Don't need fully qualified name
 }
}

It’s legal (and often desirable) to define the same type name in
different namespaces. However, you’d typically do so only if it
was unlikely for a consumer to want to import both namespa‐
ces at once. A good example, from the .NET Framework, is
the TextBox class which is defined both in System.Win
dows.Controls (WPF) and System.Web.UI.WebControls

(ASP.NET).

using static (C# 6)
From C# 6, you can import not just a namespace, but a specific type, with the using
static directive. All static members of that type can then be used without being
qualified with the type name. In the following example, we call the Console class’s
static WriteLine method:

using static System.Console;

class Test
{
 static void Main() { WriteLine ("Hello"); }
}

The using static directive imports all accessible static members of the type,
including fields, properties and nested types (Chapter 3). You can also apply this
directive to enum types (Chapter 3), in which case their members are imported. So,
if we import the following enum type:

using static System.Windows.Visibility;

we can specify Hidden instead of Visibility.Hidden:

var textBox = new TextBox { Visibility = Hidden }; // XAML-style

Should an ambiguity arise between multiple static imports, the C# compiler is not
smart enough to infer the correct type from the context, and will generate an error.

66 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

Rules Within a Namespace

Name scoping
Names declared in outer namespaces can be used unqualified within inner name‐
spaces. In this example, Class1 does not need qualification within Inner:

namespace Outer
{
 class Class1 {}

 namespace Inner
 {
 class Class2 : Class1 {}
 }
}

If you want to refer to a type in a different branch of your namespace hierarchy, you
can use a partially qualified name. In the following example, we base SalesReport
on Common.ReportBase:

namespace MyTradingCompany
{
 namespace Common
 {
 class ReportBase {}
 }
 namespace ManagementReporting
 {
 class SalesReport : Common.ReportBase {}
 }
}

Name hiding
If the same type name appears in both an inner and an outer namespace, the inner
name wins. To refer to the type in the outer namespace, you must qualify its name.
For example:

namespace Outer
{
 class Foo { }

 namespace Inner
 {
 class Foo { }

 class Test
 {
 Foo f1; // = Outer.Inner.Foo
 Outer.Foo f2; // = Outer.Foo
 }

C
#

Lang
uag

e
B

asics

Namespaces | 67

www.EBooksWorld.ir

 }
}

All type names are converted to fully qualified names at com‐
pile time. Intermediate language (IL) code contains no unqua‐
lified or partially qualified names.

Repeated namespaces
You can repeat a namespace declaration, as long as the type names within the name‐
spaces don’t conflict:

namespace Outer.Middle.Inner
{
 class Class1 {}
}

namespace Outer.Middle.Inner
{
 class Class2 {}
}

We can even break the example into two source files such that we could compile
each class into a different assembly.

Source file 1:

namespace Outer.Middle.Inner
{
 class Class1 {}
}

Source file 2:

namespace Outer.Middle.Inner
{
 class Class2 {}
}

Nested using directive
You can nest a using directive within a namespace. This allows you to scope the
using directive within a namespace declaration. In the following example, Class1 is
visible in one scope, but not in another:

namespace N1
{
 class Class1 {}
}

namespace N2
{
 using N1;

 class Class2 : Class1 {}

68 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

}

namespace N2
{
 class Class3 : Class1 {} // Compile-time error
}

Aliasing Types and Namespaces
Importing a namespace can result in type-name collision. Rather than importing
the whole namespace, you can import just the specific types you need, giving each
type an alias. For example:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:

using R = System.Reflection;
class Program { R.PropertyInfo p; }

Advanced Namespace Features

Extern
Extern aliases allow your program to reference two types with the same fully quali‐
fied name (i.e., the namespace and type name are identical). This is an unusual sce‐
nario and can occur only when the two types come from different assemblies. Con‐
sider the following example.

Library 1:

// csc target:library /out:Widgets1.dll widgetsv1.cs

namespace Widgets
{
 public class Widget {}
}

Library 2:

// csc target:library /out:Widgets2.dll widgetsv2.cs

namespace Widgets
{
 public class Widget {}
}

Application:

// csc /r:Widgets1.dll /r:Widgets2.dll application.cs

using Widgets;

class Test
{

C
#

Lang
uag

e
B

asics

Namespaces | 69

www.EBooksWorld.ir

 static void Main()
 {
 Widget w = new Widget();
 }
}

The application cannot compile, because Widget is ambiguous. Extern aliases can
resolve the ambiguity in our application:

// csc /r:W1=Widgets1.dll /r:W2=Widgets2.dll application.cs

extern alias W1;
extern alias W2;

class Test
{
 static void Main()
 {
 W1.Widgets.Widget w1 = new W1.Widgets.Widget();
 W2.Widgets.Widget w2 = new W2.Widgets.Widget();
 }
}

Namespace alias qualifiers
As we mentioned earlier, names in inner namespaces hide names in outer namespa‐
ces. However, sometimes even the use of a fully qualified type name does not resolve
the conflict. Consider the following example:

namespace N
{
 class A
 {
 public class B {} // Nested type
 static void Main() { new A.B(); } // Instantiate class B
 }
}

namespace A
{
 class B {}
}

The Main method could be instantiating either the nested class B, or the class B
within the namespace A. The compiler always gives higher precedence to identifiers
in the current namespace; in this case, the nested B class.

70 | Chapter 2: C# Language Basics

www.EBooksWorld.ir

To resolve such conflicts, a namespace name can be qualified, relative to one of the
following:

• The global namespace—the root of all namespaces (identified with the contex‐
tual keyword global)

• The set of extern aliases

The :: token is used for namespace alias qualification. In this example, we qualify
using the global namespace (this is most commonly seen in auto-generated code to
avoid name conflicts):

namespace N
{
 class A
 {
 static void Main()
 {
 System.Console.WriteLine (new A.B());
 System.Console.WriteLine (new global::A.B());
 }

 public class B {}
 }
}

namespace A
{
 class B {}
}

Here is an example of qualifying with an alias (adapted from the example in
“Extern” on page 69):

extern alias W1;
extern alias W2;
class Test
{
 static void Main()
 {
 W1::Widgets.Widget w1 = new W1::Widgets.Widget();
 W2::Widgets.Widget w2 = new W2::Widgets.Widget();
 }
}

C
#

Lang
uag

e
B

asics

Namespaces | 71

www.EBooksWorld.ir

www.EBooksWorld.ir

3
Creating Types in C#

In this chapter, we will delve into types and type members.

Classes
A class is the most common kind of reference type. The simplest possible class dec‐
laration is as follows:

class YourClassName
{
}

A more complex class optionally has the following:

Preceding the keyword class Attributes and class modifiers. The non-nested class modifiers are public,
internal, abstract, sealed, static, unsafe, and partial

Following YourClassName Generic type parameters, a base class, and interfaces

Within the braces Class members (these are methods, properties, indexers, events, fields,
constructors, overloaded operators, nested types, and a finalizer)

This chapter covers all of these constructs except attributes, operator functions, and
the unsafe keyword, which are covered in Chapter 4. The following sections enu‐
merate each of the class members.

C
reating

Typ
es in C

#

73

www.EBooksWorld.ir

Fields
A field is a variable that is a member of a class or struct. For example:

class Octopus
{
 string name;
 public int Age = 10;
}

Fields allow the following modifiers:

Static modifier static

Access modifiers public internal private protected

Inheritance modifier new

Unsafe code modifier unsafe

Read-only modifier readonly

Threading modifier volatile

The readonly modifier
The readonly modifier prevents a field from being modified after construction. A
read-only field can be assigned only in its declaration or within the enclosing type’s
constructor.

Field initialization
Field initialization is optional. An uninitialized field has a default value (0, \0, null,
false). Field initializers run before constructors:

public int Age = 10;

Declaring multiple fields together
For convenience, you may declare multiple fields of the same type in a comma-
separated list. This is a convenient way for all the fields to share the same attributes
and field modifiers. For example:

static readonly int legs = 8,
 eyes = 2;

Methods
A method performs an action in a series of statements. A method can receive input
data from the caller by specifying parameters and output data back to the caller by
specifying a return type. A method can specify a void return type, indicating that it

74 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

doesn’t return any value to its caller. A method can also output data back to the
caller via ref/out parameters.

A method’s signature must be unique within the type. A method’s signature compri‐
ses its name and parameter types (but not the parameter names, nor the return
type).

Methods allow the following modifiers:

Static modifier static

Access modifiers public internal private protected

Inheritance modifiers new virtual abstract override sealed

Partial method modifier partial

Unmanaged code modifiers unsafe extern

Asynchronous code modifier async

Expression-bodied methods (C# 6)
A method that comprises a single expression, such as the following:

int Foo (int x) { return x * 2; }

can be written more tersely as an expression-bodied method. A fat arrow replaces the
braces and return keyword:

int Foo (int x) => x * 2;

Expression-bodied functions can also have a void return type:

void Foo (int x) => Console.WriteLine (x);

Overloading methods
A type may overload methods (have multiple methods with the same name), as long
as the signatures are different. For example, the following methods can all coexist in
the same type:

void Foo (int x) {...}
void Foo (double x) {...}
void Foo (int x, float y) {...}
void Foo (float x, int y) {...}

However, the following pairs of methods cannot coexist in the same type, since the
return type and the params modifier are not part of a method’s signature:

void Foo (int x) {...}
float Foo (int x) {...} // Compile-time error

void Goo (int[] x) {...}
void Goo (params int[] x) {...} // Compile-time error

C
reating

Typ
es in C

#

Classes | 75

www.EBooksWorld.ir

Pass-by-value versus pass-by-reference
Whether a parameter is pass-by-value or pass-by-reference is also part of the signa‐
ture. For example, Foo(int) can coexist with either Foo(ref int) or Foo(out
int). However, Foo(ref int) and Foo(out int) cannot coexist:

void Foo (int x) {...}
void Foo (ref int x) {...} // OK so far
void Foo (out int x) {...} // Compile-time error

Instance Constructors
Constructors run initialization code on a class or struct. A constructor is defined
like a method, except that the method name and return type are reduced to the
name of the enclosing type:

public class Panda
{
 string name; // Define field
 public Panda (string n) // Define constructor
 {
 name = n; // Initialization code (set up field)
 }
}
...

Panda p = new Panda ("Petey"); // Call constructor

Instance constructors allow the following modifiers:

Access modifiers public internal private protected

Unmanaged code modifiers unsafe extern

Overloading constructors
A class or struct may overload constructors. To avoid code duplication, one con‐
structor may call another, using the this keyword:

using System;

public class Wine
{
 public decimal Price;
 public int Year;
 public Wine (decimal price) { Price = price; }
 public Wine (decimal price, int year) : this (price) { Year = year; }
}

When one constructor calls another, the called constructor executes first.

You can pass an expression into another constructor as follows:

public Wine (decimal price, DateTime year) : this (price, year.Year) { }

76 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

The expression itself cannot make use of the this reference, for example, to call an
instance method. (This is enforced because the object has not been initialized by the
constructor at this stage, so any methods that you call on it are likely to fail.) It can,
however, call static methods.

Implicit parameterless constructors
For classes, the C# compiler automatically generates a parameterless public con‐
structor if and only if you do not define any constructors. However, as soon as you
define at least one constructor, the parameterless constructor is no longer automati‐
cally generated.

Constructor and field initialization order
We saw previously that fields can be initialized with default values in their declara‐
tion:

class Player
{
 int shields = 50; // Initialized first
 int health = 100; // Initialized second
}

Field initializations occur before the constructor is executed and in the declaration
order of the fields.

Nonpublic constructors
Constructors do not need to be public. A common reason to have a nonpublic con‐
structor is to control instance creation via a static method call. The static method
could be used to return an object from a pool rather than necessarily creating a new
object, or return various subclasses based on input arguments:

public class Class1
{
 Class1() {} // Private constructor
 public static Class1 Create (...)
 {
 // Perform custom logic here to return an instance of Class1
 ...
 }
}

Object Initializers
To simplify object initialization, any accessible fields or properties of an object can
be set via an object initializer directly after construction. For example, consider the
following class:

public class Bunny
{
 public string Name;
 public bool LikesCarrots;

C
reating

Typ
es in C

#

Classes | 77

www.EBooksWorld.ir

 public bool LikesHumans;

 public Bunny () {}
 public Bunny (string n) { Name = n; }
}

Using object initializers, you can instantiate Bunny objects as follows:

// Note parameterless constructors can omit empty parentheses
Bunny b1 = new Bunny { Name="Bo", LikesCarrots=true, LikesHumans=false };
Bunny b2 = new Bunny ("Bo") { LikesCarrots=true, LikesHumans=false };

The code to construct b1 and b2 is precisely equivalent to:

Bunny temp1 = new Bunny(); // temp1 is a compiler-generated name
temp1.Name = "Bo";
temp1.LikesCarrots = true;
temp1.LikesHumans = false;
Bunny b1 = temp1;

Bunny temp2 = new Bunny ("Bo");
temp2.LikesCarrots = true;
temp2.LikesHumans = false;
Bunny b2 = temp2;

The temporary variables are to ensure that if an exception is thrown during initiali‐
zation, you can’t end up with a half-initialized object.

Object initializers were introduced in C# 3.0.

Object Initializers Versus Optional Parameters
Instead of using object initializers, we could make Bunny’s constructor accept
optional parameters:

public Bunny (string name,
 bool likesCarrots = false,
 bool likesHumans = false)
{
 Name = name;
 LikesCarrots = likesCarrots;
 LikesHumans = likesHumans;
}

This would allow us to construct a Bunny as follows:

Bunny b1 = new Bunny (name: "Bo",
 likesCarrots: true);

An advantage of this approach is that we could make Bunny’s fields (or properties, as
we’ll explain shortly) read-only if we choose. Making fields or properties read-only
is good practice when there’s no valid reason for them to change throughout the life
of the object.

78 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

The disadvantage in this approach is that each optional parameter value is baked
into the calling site. In other words, C# translates our constructor call into this:

Bunny b1 = new Bunny ("Bo", true, false);

This can be problematic if we instantiate the Bunny class from another assembly and
later modify Bunny by adding another optional parameter—such as likesCats.
Unless the referencing assembly is also recompiled, it will continue to call the (now
nonexistent) constructor with three parameters and fail at runtime. (A subtler prob‐
lem is that if we changed the value of one of the optional parameters, callers in other
assemblies would continue to use the old optional value until they were recom‐
piled.)

Hence, you should exercise caution with optional parameters in public functions if
you want to offer binary compatibility between assembly versions.

The this Reference
The this reference refers to the instance itself. In the following example, the Marry
method uses this to set the partner’s mate field:

public class Panda
{
 public Panda Mate;

 public void Marry (Panda partner)
 {
 Mate = partner;
 partner.Mate = this;
 }
}

The this reference also disambiguates a local variable or parameter from a field.
For example:

public class Test
{
 string name;
 public Test (string name) { this.name = name; }
}

The this reference is valid only within nonstatic members of a class or struct.

Properties
Properties look like fields from the outside, but internally they contain logic, like
methods do. For example, you can’t tell by looking at the following code whether
CurrentPrice is a field or a property:

C
reating

Typ
es in C

#

Classes | 79

www.EBooksWorld.ir

Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WriteLine (msft.CurrentPrice);

A property is declared like a field, but with a get/set block added. Here’s how to
implement CurrentPrice as a property:

public class Stock
{
 decimal currentPrice; // The private "backing" field

 public decimal CurrentPrice // The public property
 {
 get { return currentPrice; }
 set { currentPrice = value; }
 }
}

get and set denote property accessors. The get accessor runs when the property is
read. It must return a value of the property’s type. The set accessor runs when the
property is assigned. It has an implicit parameter named value of the property’s
type that you typically assign to a private field (in this case, currentPrice).

Although properties are accessed in the same way as fields, they differ in that they
give the implementer complete control over getting and setting its value. This con‐
trol enables the implementer to choose whatever internal representation is needed,
without exposing the internal details to the user of the property. In this example, the
set method could throw an exception if value was outside a valid range of values.

Throughout this book, we use public fields extensively to keep
the examples free of distraction. In a real application, you
would typically favor public properties over public fields, in
order to promote encapsulation.

Properties allow the following modifiers:

Static modifier static

Access modifiers public internal private protected

Inheritance modifiers new virtual abstract override sealed

Unmanaged code modifiers unsafe extern

Read-only and calculated properties
A property is read-only if it specifies only a get accessor, and it is write-only if it
specifies only a set accessor. Write-only properties are rarely used.

A property typically has a dedicated backing field to store the underlying data.
However, a property can also be computed from other data. For example:

80 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

decimal currentPrice, sharesOwned;

public decimal Worth
{
 get { return currentPrice * sharesOwned; }
}

Expression-bodied properties (C# 6)
From C# 6, you can declare a read-only property, such as the preceding one, more
tersely as an expression-bodied property. A fat arrow replaces all the braces and the
get and return keywords:

public decimal Worth => currentPrice * sharesOwned;

Automatic properties
The most common implementation for a property is a getter and/or setter that sim‐
ply reads and writes to a private field of the same type as the property. An automatic
property declaration instructs the compiler to provide this implementation. We can
improve the first example in this section by declaring CurrentPrice as an automatic
property:

public class Stock
{

 ...
 public decimal CurrentPrice { get; set; }
}

The compiler automatically generates a private backing field of a compiler-
generated name that cannot be referred to. The set accessor can be marked private
or protected if you want to expose the property as read-only to other types. Auto‐
matic properties were introduced in C# 3.0.

Property initializers (C# 6)
From C# 6, you can add a property initializer to automatic properties, just as with
fields:

public decimal CurrentPrice { get; set; } = 123;

This gives CurrentPrice an initial value of 123. Properties with an initializer can be
read-only:

public int Maximum { get; } = 999;

Just as with read-only fields, read-only automatic properties can also be assigned in
the type’s constructor. This is useful in creating immutable (read-only) types.

C
reating

Typ
es in C

#

Classes | 81

www.EBooksWorld.ir

get and set accessibility
The get and set accessors can have different access levels. The typical use case for
this is to have a public property with an internal or private access modifier on
the setter:

public class Foo
{
 private decimal x;
 public decimal X
 {
 get { return x; }
 private set { x = Math.Round (value, 2); }
 }
}

Notice that you declare the property itself with the more permissive access level
(public, in this case) and add the modifier to the accessor you want to be less acces‐
sible.

CLR property implementation
C# property accessors internally compile to methods called get_XXX and set_XXX:

public decimal get_CurrentPrice {...}
public void set_CurrentPrice (decimal value) {...}

Simple nonvirtual property accessors are inlined by the JIT (just-in-time) compiler,
eliminating any performance difference between accessing a property and a field.
Inlining is an optimization in which a method call is replaced with the body of that
method.

With WinRT properties, the compiler assumes the put_XXX naming convention
rather than set_XXX.

Indexers
Indexers provide a natural syntax for accessing elements in a class or struct that
encapsulate a list or dictionary of values. Indexers are similar to properties but are
accessed via an index argument rather than a property name. The string class has
an indexer that lets you access each of its char values via an int index:

string s = "hello";
Console.WriteLine (s[0]); // 'h'
Console.WriteLine (s[3]); // 'l'

The syntax for using indexers is like that for using arrays, except that the index
argument(s) can be of any type(s).

Indexers have the same modifiers as properties (see “Properties” on page 79) and
can be called null-conditionally by inserting a question mark before the square
bracket (see “Null Operators” on page 55 in Chapter 2):

82 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

string s = null;
Console.WriteLine (s?[0]); // Writes nothing; no error.

Implementing an indexer
To write an indexer, define a property called this, specifying the arguments in
square brackets. For instance:

class Sentence
{
 string[] words = "The quick brown fox".Split();

 public string this [int wordNum] // indexer
 {
 get { return words [wordNum]; }
 set { words [wordNum] = value; }
 }
}

Here’s how we could use this indexer:

Sentence s = new Sentence();
Console.WriteLine (s[3]); // fox
s[3] = "kangaroo";
Console.WriteLine (s[3]); // kangaroo

A type may declare multiple indexers, each with parameters of different types. An
indexer can also take more than one parameter:

public string this [int arg1, string arg2]
{
 get { ... } set { ... }
}

If you omit the set accessor, an indexer becomes read-only, and expression-bodied
syntax may be used in C# 6 to shorten its definition:

public string this [int wordNum] => words [wordNum];

CLR indexer implementation
Indexers internally compile to methods called get_Item and set_Item, as follows:

public string get_Item (int wordNum) {...}
public void set_Item (int wordNum, string value) {...}

Constants
A constant is a static field whose value can never change. A constant is evaluated
statically at compile time, and the compiler literally substitutes its value whenever
used (rather like a macro in C++). A constant can be any of the built-in numeric
types, bool, char, string, or an enum type.

C
reating

Typ
es in C

#

Classes | 83

www.EBooksWorld.ir

A constant is declared with the const keyword and must be initialized with a value.
For example:

public class Test
{
 public const string Message = "Hello World";
}

A constant is much more restrictive than a static readonly field—both in the
types you can use and in field initialization semantics. A constant also differs from a
static readonly field in that the evaluation of the constant occurs at compile time.
For example:

public static double Circumference (double radius)
{
 return 2 * System.Math.PI * radius;
}

is compiled to:

public static double Circumference (double radius)
{
 return 6.2831853071795862 * radius;
}

It makes sense for PI to be a constant, since it can never change. In contrast, a
static readonly field can have a different value per application.

A static readonly field is also advantageous when exposing
to other assemblies a value that might change in a later ver‐
sion. For instance, suppose assembly X exposes a constant as
follows:

public const decimal ProgramVersion = 2.3;

If assembly Y references X and uses this constant, the value 2.3
will be baked into assembly Y when compiled. This means that
if X is later recompiled with the constant set to 2.4, Y will still
use the old value of 2.3 until Y is recompiled. A static
readonly field avoids this problem.
Another way of looking at this is that any that value that might
change in the future is not constant by definition, and so
should not be represented as one.

Constants can also be declared local to a method. For example:

static void Main()
{
 const double twoPI = 2 * System.Math.PI;
 ...
}

84 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

Non-local constants allow the following modifiers:

Access modifiers public internal private protected

Inheritance modifier new

Static Constructors
A static constructor executes once per type, rather than once per instance. A type
can define only one static constructor, and it must be parameterless and have the
same name as the type:

class Test
{
 static Test() { Console.WriteLine ("Type Initialized"); }
}

The runtime automatically invokes a static constructor just prior to the type being
used. Two things trigger this:

• Instantiating the type
• Accessing a static member in the type

The only modifiers allowed by static constructors are unsafe and extern.

If a static constructor throws an unhandled exception (Chap‐
ter 4), that type becomes unusable for the life of the applica‐
tion.

Static constructors and field initialization order
Static field initializers run just before the static constructor is called. If a type has no
static constructor, field initializers will execute just prior to the type being used—or
anytime earlier at the whim of the runtime.

Static field initializers run in the order in which the fields are declared. The follow‐
ing example illustrates this—X is initialized to 0 and Y is initialized to 3:

class Foo
{
 public static int X = Y; // 0
 public static int Y = 3; // 3
}

If we swap the two field initializers around, both fields are initialized to 3. The next
example prints 0 followed by 3 because the field initializer that instantiates a Foo
executes before X is initialized to 3:

class Program
{
 static void Main() { Console.WriteLine (Foo.X); } // 3
}

C
reating

Typ
es in C

#

Classes | 85

www.EBooksWorld.ir

class Foo
{
 public static Foo Instance = new Foo();
 public static int X = 3;

 Foo() { Console.WriteLine (X); } // 0
}

If we swap the two lines in boldface, the example prints 3 followed by 3.

Static Classes
A class can be marked static, indicating that it must be composed solely of static
members and cannot be subclassed. The System.Console and System.Math classes
are good examples of static classes.

Finalizers
Finalizers are class-only methods that execute before the garbage collector reclaims
the memory for an unreferenced object. The syntax for a finalizer is the name of the
class prefixed with the ~ symbol:

class Class1
{
 ~Class1()
 {
 ...
 }
}

This is actually C# syntax for overriding Object’s Finalize method, and the com‐
piler expands it into the following method declaration:

protected override void Finalize()
{
 ...
 base.Finalize();
}

We discuss garbage collection and finalizers fully in Chapter 12.

Finalizers allow the following modifier:

Unmanaged code modifier unsafe

Partial Types and Methods
Partial types allow a type definition to be split—typically across multiple files. A
common scenario is for a partial class to be auto-generated from some other source
(such as a Visual Studio template or designer) and for that class to be augmented
with additional hand-authored methods. For example:

86 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

// PaymentFormGen.cs - auto-generated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }

Each participant must have the partial declaration; the following is illegal:

partial class PaymentForm {}
class PaymentForm {}

Participants cannot have conflicting members. A constructor with the same param‐
eters, for instance, cannot be repeated. Partial types are resolved entirely by the
compiler, which means that each participant must be available at compile time and
must reside in the same assembly.

You can specify a base class on one or more partial class declarations, as long as the
base class, if specified, is the same. In addition, each participant can independently
specify interfaces to implement. We cover base classes and interfaces in “Inheri‐
tance” on page 88 and “Interfaces” on page 104.

The compiler makes no guarantees with regard field initialization order between
partial type declarations.

Partial methods
A partial type may contain partial methods. These let an auto-generated partial type
provide customizable hooks for manual authoring. For example:

partial class PaymentForm // In auto-generated file
{
 ...
 partial void ValidatePayment (decimal amount);
}

partial class PaymentForm // In hand-authored file
{
 ...
 partial void ValidatePayment (decimal amount)
 {
 if (amount > 100)
 ...
 }
}

A partial method consists of two parts: a definition and an implementation. The defi‐
nition is typically written by a code generator, and the implementation is typically
manually authored. If an implementation is not provided, the definition of the par‐
tial method is compiled away (as is the code that calls it). This allows auto-generated
code to be liberal in providing hooks, without having to worry about bloat. Partial
methods must be void and are implicitly private.

Partial methods were introduced in C# 3.0.

C
reating

Typ
es in C

#

Classes | 87

www.EBooksWorld.ir

The nameof operator (C# 6)
The nameof operator returns the name of any symbol (type, member, variable, and
so on) as a string:

int count = 123;
string name = nameof (count); // name is "count"

Its advantage over simply specifying a string is that of static type checking. Tools
such as Visual Studio can understand the symbol reference, so if you rename the
symbol in question, all its references will be renamed, too.

To specify the name of a type member such as a field or property, include the type as
well. This works with both static and instance members:

string name = nameof (StringBuilder.Length);

This evaluates to “Length”. To return “StringBuilder.Length”, you would do this:

nameof (StringBuilder) + "." + nameof (StringBuilder.Length);

Inheritance
A class can inherit from another class to extend or customize the original class.
Inheriting from a class lets you reuse the functionality in that class instead of build‐
ing it from scratch. A class can inherit from only a single class but can itself be
inherited by many classes, thus forming a class hierarchy. In this example, we start
by defining a class called Asset:

public class Asset
{
 public string Name;
}

Next, we define classes called Stock and House, which will inherit from Asset.
Stock and House get everything an Asset has, plus any additional members that
they define:

public class Stock : Asset // inherits from Asset
{
 public long SharesOwned;
}

public class House : Asset // inherits from Asset
{
 public decimal Mortgage;
}

Here’s how we can use these classes:

Stock msft = new Stock { Name="MSFT",
 SharesOwned=1000 };

Console.WriteLine (msft.Name); // MSFT
Console.WriteLine (msft.SharesOwned); // 1000

88 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

House mansion = new House { Name="Mansion",
 Mortgage=250000 };

Console.WriteLine (mansion.Name); // Mansion
Console.WriteLine (mansion.Mortgage); // 250000

The derived classes, Stock and House, inherit the Name property from the base class,
Asset.

A derived class is also called a subclass.
A base class is also called a superclass.

Polymorphism
References are polymorphic. This means a variable of type x can refer to an object
that subclasses x. For instance, consider the following method:

public static void Display (Asset asset)
{
 System.Console.WriteLine (asset.Name);
}

This method can display both a Stock and a House, since they are both Assets:

Stock msft = new Stock ... ;
House mansion = new House ... ;

Display (msft);
Display (mansion);

Polymorphism works on the basis that subclasses (Stock and House) have all the
features of their base class (Asset). The converse, however, is not true. If Display
was modified to accept a House, you could not pass in an Asset:

static void Main() { Display (new Asset()); } // Compile-time error
public static void Display (House house) // Will not accept Asset
{
 System.Console.WriteLine (house.Mortgage);
}

Casting and Reference Conversions
An object reference can be:

• Implicitly upcast to a base class reference
• Explicitly downcast to a subclass reference

Upcasting and downcasting between compatible reference types performs reference
conversions: a new reference is (logically) created that points to the same object. An
upcast always succeeds; a downcast succeeds only if the object is suitably typed.

C
reating

Typ
es in C

#

Inheritance | 89

www.EBooksWorld.ir

Upcasting
An upcast operation creates a base class reference from a subclass reference. For
example:

Stock msft = new Stock();
Asset a = msft; // Upcast

After the upcast, variable a still references the same Stock object as variable msft.
The object being referenced is not itself altered or converted:

Console.WriteLine (a == msft); // True

Although a and msft refer to the identical object, a has a more restrictive view on
that object:

Console.WriteLine (a.Name); // OK
Console.WriteLine (a.SharesOwned); // Error: SharesOwned undefined

The last line generates a compile-time error because the variable a is of type Asset,
even though it refers to an object of type Stock. To get to its SharesOwned field, you
must downcast the Asset to a Stock.

Downcasting
A downcast operation creates a subclass reference from a base class reference. For
example:

Stock msft = new Stock();
Asset a = msft; // Upcast
Stock s = (Stock)a; // Downcast
Console.WriteLine (s.SharesOwned); // <No error>
Console.WriteLine (s == a); // True
Console.WriteLine (s == msft); // True

As with an upcast, only references are affected—not the underlying object. A down‐
cast requires an explicit cast because it can potentially fail at runtime:

House h = new House();
Asset a = h; // Upcast always succeeds
Stock s = (Stock)a; // Downcast fails: a is not a Stock

If a downcast fails, an InvalidCastException is thrown. This is an example of run‐
time type checking (we will elaborate on this concept in “Static and Runtime Type
Checking” on page 99).

The as operator
The as operator performs a downcast that evaluates to null (rather than throwing
an exception) if the downcast fails:

Asset a = new Asset();
Stock s = a as Stock; // s is null; no exception thrown

90 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

This is useful when you’re going to subsequently test whether the result is null:

if (s != null) Console.WriteLine (s.SharesOwned);

Without such a test, a cast is advantageous, because if it fails, a
more helpful exception is thrown. We can illustrate by com‐
paring the following two lines of code:

int shares = ((Stock)a).SharesOwned; // Approach #1
int shares = (a as Stock).SharesOwned; // Approach #2

If a is not a Stock, the first line throws an InvalidCastExcep
tion, which is an accurate description of what went wrong.
The second line throws a NullReferenceException, which is
ambiguous. Was a not a Stock or was a null?
Another way of looking at it is that with the cast operator,
you’re saying to the compiler: “I’m certain of a value’s type; if
I’m wrong, there’s a bug in my code, so throw an exception!”
Whereas with the as operator, you’re uncertain of its type and
want to branch according to the outcome at runtime.

The as operator cannot perform custom conversions (see “Operator Overloading” on
page 168 in Chapter 4) and it cannot do numeric conversions:

long x = 3 as long; // Compile-time error

The as and cast operators will also perform upcasts, although
this is not terribly useful because an implicit conversion will
do the job.

The is operator
The is operator tests whether a reference conversion would succeed; in other
words, whether an object derives from a specified class (or implements an inter‐
face). It is often used to test before downcasting:

if (a is Stock)
 Console.WriteLine (((Stock)a).SharesOwned);

The is operator also evaluates to true if an unboxing conversion would succeed (see
“The object Type” on page 97). However, it does not consider custom or numeric
conversions.

Virtual Function Members
A function marked as virtual can be overridden by subclasses wanting to provide a
specialized implementation. Methods, properties, indexers, and events can all be
declared virtual:

public class Asset
{
 public string Name;

C
reating

Typ
es in C

#

Inheritance | 91

www.EBooksWorld.ir

 public virtual decimal Liability => 0; // Expression-bodied property
}

(Liability => 0 is a shortcut for { get { return 0; } }. See “Expression-bodied
properties (C# 6)” on page 81 for more details on this syntax.)

A subclass overrides a virtual method by applying the override modifier:

public class Stock : Asset
{
 public long SharesOwned;
}

public class House : Asset
{
 public decimal Mortgage;
 public override decimal Liability => Mortgage;
}

By default, the Liability of an Asset is 0. A Stock does not need to specialize this
behavior. However, the House specializes the Liability property to return the value
of the Mortgage:

House mansion = new House { Name="McMansion", Mortgage=250000 };
Asset a = mansion;
Console.WriteLine (mansion.Liability); // 250000
Console.WriteLine (a.Liability); // 250000

The signatures, return types, and accessibility of the virtual and overridden methods
must be identical. An overridden method can call its base class implementation via
the base keyword (we will cover this in “The base Keyword” on page 94).

Calling virtual methods from a constructor is potentially dan‐
gerous because authors of subclasses are unlikely to know,
when overriding the method, that they are working with a
partially initialized object. In other words, the overriding
method may end up accessing methods or properties which
rely on fields not yet initialized by the constructor.

Abstract Classes and Abstract Members
A class declared as abstract can never be instantiated. Instead, only its concrete sub‐
classes can be instantiated.

Abstract classes are able to define abstract members. Abstract members are like vir‐
tual members, except they don’t provide a default implementation. That implemen‐
tation must be provided by the subclass, unless that subclass is also declared
abstract:

public abstract class Asset
{
 // Note empty implementation
 public abstract decimal NetValue { get; }
}

92 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

public class Stock : Asset
{
 public long SharesOwned;
 public decimal CurrentPrice;

 // Override like a virtual method.
 public override decimal NetValue => CurrentPrice * SharesOwned;
}

Hiding Inherited Members
A base class and a subclass may define identical members. For example:

public class A { public int Counter = 1; }
public class B : A { public int Counter = 2; }

The Counter field in class B is said to hide the Counter field in class A. Usually, this
happens by accident, when a member is added to the base type after an identical
member was added to the subtype. For this reason, the compiler generates a warn‐
ing, and then resolves the ambiguity as follows:

• References to A (at compile time) bind to A.Counter.

• References to B (at compile time) bind to B.Counter.

Occasionally, you want to hide a member deliberately, in which case you can apply
the new modifier to the member in the subclass. The new modifier does nothing more
than suppress the compiler warning that would otherwise result:

public class A { public int Counter = 1; }
public class B : A { public new int Counter = 2; }

The new modifier communicates your intent to the compiler—and other program‐
mers—that the duplicate member is not an accident.

C# overloads the new keyword to have independent meanings
in different contexts. Specifically, the new operator is different
from the new member modifier.

new versus override
Consider the following class hierarchy:

public class BaseClass
{
 public virtual void Foo() { Console.WriteLine ("BaseClass.Foo"); }
}

public class Overrider : BaseClass
{
 public override void Foo() { Console.WriteLine ("Overrider.Foo"); }
}

public class Hider : BaseClass

C
reating

Typ
es in C

#

Inheritance | 93

www.EBooksWorld.ir

{
 public new void Foo() { Console.WriteLine ("Hider.Foo"); }
}

The differences in behavior between Overrider and Hider are demonstrated in the
following code:

Overrider over = new Overrider();
BaseClass b1 = over;
over.Foo(); // Overrider.Foo
b1.Foo(); // Overrider.Foo

Hider h = new Hider();
BaseClass b2 = h;
h.Foo(); // Hider.Foo
b2.Foo(); // BaseClass.Foo

Sealing Functions and Classes
An overridden function member may seal its implementation with the sealed key‐
word to prevent it from being overridden by further subclasses. In our earlier vir‐
tual function member example, we could have sealed House’s implementation of Lia
bility, preventing a class that derives from House from overriding Liability, as
follows:

public sealed override decimal Liability { get { return Mortgage; } }

You can also seal the class itself, implicitly sealing all the virtual functions, by apply‐
ing the sealed modifier to the class itself. Sealing a class is more common than seal‐
ing a function member.

Although you can seal against overriding, you can’t seal a member against being
hidden.

The base Keyword
The base keyword is similar to the this keyword. It serves two essential purposes:

• Accessing an overridden function member from the subclass
• Calling a base-class constructor (see the next section)

In this example, House uses the base keyword to access Asset’s implementation of
Liability:

public class House : Asset
{
 ...
 public override decimal Liability => base.Liability + Mortgage;
}

94 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

With the base keyword, we access Asset’s Liability property nonvirtually. This
means we will always access Asset’s version of this property—regardless of the
instance’s actual runtime type.

The same approach works if Liability is hidden rather than overridden. (You can
also access hidden members by casting to the base class before invoking the func‐
tion.)

Constructors and Inheritance
A subclass must declare its own constructors. The base class’s constructors are acces‐
sible to the derived class but are never automatically inherited. For example, if we
define Baseclass and Subclass as follows:

public class Baseclass
{
 public int X;
 public Baseclass () { }
 public Baseclass (int x) { this.X = x; }
}

public class Subclass : Baseclass { }

the following is illegal:

Subclass s = new Subclass (123);

Subclass must hence “redefine” any constructors it wants to expose. In doing so,
however, it can call any of the base class’s constructors with the base keyword:

public class Subclass : Baseclass
{
 public Subclass (int x) : base (x) { }
}

The base keyword works rather like the this keyword, except that it calls a con‐
structor in the base class.

Base-class constructors always execute first; this ensures that base initialization
occurs before specialized initialization.

Implicit calling of the parameterless base-class constructor
If a constructor in a subclass omits the base keyword, the base type’s parameterless
constructor is implicitly called:

public class BaseClass
{
 public int X;
 public BaseClass() { X = 1; }
}

public class Subclass : BaseClass
{

C
reating

Typ
es in C

#

Inheritance | 95

www.EBooksWorld.ir

 public Subclass() { Console.WriteLine (X); } // 1
}

If the base class has no accessible parameterless constructor, subclasses are forced to
use the base keyword in their constructors.

Constructor and field initialization order
When an object is instantiated, initialization takes place in the following order:

1. From subclass to base class:
a. Fields are initialized.
b. Arguments to base-class constructor calls are evaluated.

2. From base class to subclass:
a. Constructor bodies execute.

The following code demonstrates:

public class B
{
 int x = 1; // Executes 3rd
 public B (int x)
 {
 ... // Executes 4th
 }
}
public class D : B
{
 int y = 1; // Executes 1st
 public D (int x)
 : base (x + 1) // Executes 2nd
 {
 ... // Executes 5th
 }
}

Overloading and Resolution
Inheritance has an interesting impact on method overloading. Consider the follow‐
ing two overloads:

static void Foo (Asset a) { }
static void Foo (House h) { }

When an overload is called, the most specific type has precedence:

House h = new House (...);
Foo(h); // Calls Foo(House)

96 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

The particular overload to call is determined statically (at compile time) rather than
at runtime. The following code calls Foo(Asset), even though the runtime type of a
is House:

Asset a = new House (...);
Foo(a); // Calls Foo(Asset)

If you cast Asset to dynamic (Chapter 4), the decision as to
which overload to call is deferred until runtime and is then
based on the object’s actual type:

Asset a = new House (...);
Foo ((dynamic)a); // Calls Foo(House)

The object Type
object (System.Object) is the ultimate base class for all types. Any type can be
upcast to object.

To illustrate how this is useful, consider a general-purpose stack. A stack is a data
structure based on the principle of LIFO—“last in, first out.” A stack has two opera‐
tions: push an object on the stack, and pop an object off the stack. Here is a simple
implementation that can hold up to 10 objects:

public class Stack
{
 int position;
 object[] data = new object[10];
 public void Push (object obj) { data[position++] = obj; }
 public object Pop() { return data[--position]; }
}

Because Stack works with the object type, we can Push and Pop instances of any
type to and from the Stack:

Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop(); // Downcast, so explicit cast is needed

Console.WriteLine (s); // sausage

object is a reference type, by virtue of being a class. Despite this, value types, such
as int, can also be cast to and from object, and so be added to our stack. This fea‐
ture of C# is called type unification and is demonstrated here:

stack.Push (3);
int three = (int) stack.Pop();

When you cast between a value type and object, the CLR must perform some spe‐
cial work to bridge the difference in semantics between value and reference types.
This process is called boxing and unboxing.

C
reating

Typ
es in C

#

The object Type | 97

www.EBooksWorld.ir

1 The reference type may also be System.ValueType or System.Enum (Chapter 6).

In “Generics” on page 114, we’ll describe how to improve our
Stack class to better handle stacks with same-typed elements.

Boxing and Unboxing
Boxing is the act of converting a value-type instance to a reference-type instance.
The reference type may be either the object class or an interface (which we will
visit later in the chapter).1 In this example, we box an int into an object:

int x = 9;
object obj = x; // Box the int

Unboxing reverses the operation by casting the object back to the original value
type:

int y = (int)obj; // Unbox the int

Unboxing requires an explicit cast. The runtime checks that the stated value type
matches the actual object type and throws an InvalidCastException if the check
fails. For instance, the following throws an exception, because long does not exactly
match int:

object obj = 9; // 9 is inferred to be of type int
long x = (long) obj; // InvalidCastException

The following succeeds, however:

object obj = 9;
long x = (int) obj;

As does this:

object obj = 3.5; // 3.5 is inferred to be of type double
int x = (int) (double) obj; // x is now 3

In the last example, (double) performs an unboxing, and then (int) performs a
numeric conversion.

Boxing conversions are crucial in providing a unified type sys‐
tem. The system is not perfect, however: we’ll see in “Gener‐
ics” on page 114 that variance with arrays and generics sup‐
ports only reference conversions and not boxing conversions:

object[] a1 = new string[3]; // Legal
object[] a2 = new int[3]; // Error

98 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

Copying semantics of boxing and unboxing
Boxing copies the value-type instance into the new object, and unboxing copies the
contents of the object back into a value-type instance. In the following example,
changing the value of i doesn’t change its previously boxed copy:

int i = 3;
object boxed = i;
i = 5;
Console.WriteLine (boxed); // 3

Static and Runtime Type Checking
C# programs are type-checked both statically (at compile time) and at runtime (by
the CLR).

Static type checking enables the compiler to verify the correctness of your program
without running it. The following code will fail because the compiler enforces static
typing:

int x = "5";

Runtime type checking is performed by the CLR when you downcast via a reference
conversion or unboxing. For example:

object y = "5";
int z = (int) y; // Runtime error, downcast failed

Runtime type checking is possible because each object on the heap internally stores
a little type token. This token can be retrieved by calling the GetType method of
object.

The GetType Method and typeof Operator
All types in C# are represented at runtime with an instance of System.Type. There
are two basic ways to get a System.Type object:

• Call GetType on the instance.

• Use the typeof operator on a type name.

GetType is evaluated at runtime; typeof is evaluated statically at compile time
(when generic type parameters are involved, it’s resolved by the just-in-time com‐
piler).

System.Type has properties for such things as the type’s name, assembly, base type,
and so on. For example:

using System;

public class Point { public int X, Y; }

class Test
{

C
reating

Typ
es in C

#

The object Type | 99

www.EBooksWorld.ir

 static void Main()
 {
 Point p = new Point();
 Console.WriteLine (p.GetType().Name); // Point
 Console.WriteLine (typeof (Point).Name); // Point
 Console.WriteLine (p.GetType() == typeof(Point)); // True
 Console.WriteLine (p.X.GetType().Name); // Int32
 Console.WriteLine (p.Y.GetType().FullName); // System.Int32
 }
}

System.Type also has methods that act as a gateway to the runtime’s reflection
model, described in Chapter 19.

The ToString Method
The ToString method returns the default textual representation of a type instance.
This method is overridden by all built-in types. Here is an example of using the int
type’s ToString method:

int x = 1;
string s = x.ToString(); // s is "1"

You can override the ToString method on custom types as follows:

public class Panda
{
 public string Name;
 public override string ToString() => Name;
}
...

Panda p = new Panda { Name = "Petey" };
Console.WriteLine (p); // Petey

If you don’t override ToString, the method returns the type name.

When you call an overridden object member such as
ToString directly on a value type, boxing doesn’t occur. Box‐
ing then occurs only if you cast:

int x = 1;
string s1 = x.ToString(); // Calling on nonboxed value
object box = x;
string s2 = box.ToString(); // Calling on boxed value

Object Member Listing
Here are all the members of object:

public class Object
{
 public Object();

 public extern Type GetType();

100 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

 public virtual bool Equals (object obj);
 public static bool Equals (object objA, object objB);
 public static bool ReferenceEquals (object objA, object objB);

 public virtual int GetHashCode();

 public virtual string ToString();

 protected virtual void Finalize();
 protected extern object MemberwiseClone();
}

We describe the Equals, ReferenceEquals, and GetHashCode methods in “Equality
Comparison” on page 267 in Chapter 6.

Structs
A struct is similar to a class, with the following key differences:

• A struct is a value type, whereas a class is a reference type.
• A struct does not support inheritance (other than implicitly deriving from
object, or more precisely, System.ValueType).

A struct can have all the members a class can, except the following:

• A parameterless constructor
• Field initializers
• A finalizer
• Virtual or protected members

A struct is appropriate when value-type semantics are desirable. Good examples of
structs are numeric types, where it is more natural for assignment to copy a value
rather than a reference. Because a struct is a value type, each instance does not
require instantiation of an object on the heap; this incurs a useful savings when cre‐
ating many instances of a type. For instance, creating an array of value type requires
only a single heap allocation.

Struct Construction Semantics
The construction semantics of a struct are as follows:

• A parameterless constructor that you can’t override implicitly exists. This per‐
forms a bitwise-zeroing of its fields.

• When you define a struct constructor, you must explicitly assign every field.

(And you can’t have field initializers.) Here is an example of declaring and calling
struct constructors:

C
reating

Typ
es in C

#

Structs | 101

www.EBooksWorld.ir

public struct Point
{
 int x, y;
 public Point (int x, int y) { this.x = x; this.y = y; }
}

...
Point p1 = new Point (); // p1.x and p1.y will be 0
Point p2 = new Point (1, 1); // p1.x and p1.y will be 1

The next example generates three compile-time errors:

public struct Point
{
 int x = 1; // Illegal: field initializer
 int y;
 public Point() {} // Illegal: parameterless constructor
 public Point (int x) {this.x = x;} // Illegal: must assign field y
}

Changing struct to class makes this example legal.

Access Modifiers
To promote encapsulation, a type or type member may limit its accessibility to other
types and other assemblies by adding one of five access modifiers to the declaration:

public

Fully accessible. This is the implicit accessibility for members of an enum
or interface.

internal

Accessible only within the containing assembly or friend assemblies. This is
the default accessibility for non-nested types.

private

Accessible only within the containing type. This is the default accessibility
for members of a class or struct.

protected

Accessible only within the containing type or subclasses.

protected internal

The union of protected and internal accessibility. Eric Lippert explains it
as follows: Everything is as private as possible by default, and each modifier
makes the thing more accessible. So something that is protected internal
is made more accessible in two ways.

The CLR has the concept of the intersection of protected and
internal accessibility, but C# does not support this.

102 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

Examples
Class2 is accessible from outside its assembly; Class1 is not:

class Class1 {} // Class1 is internal (default)
public class Class2 {}

ClassB exposes field x to other types in the same assembly; ClassA does not:

class ClassA { int x; } // x is private (default)
class ClassB { internal int x; }

Functions within Subclass can call Bar but not Foo:

class BaseClass
{
 void Foo() {} // Foo is private (default)
 protected void Bar() {}
}

class Subclass : BaseClass
{
 void Test1() { Foo(); } // Error - cannot access Foo
 void Test2() { Bar(); } // OK
}

Friend Assemblies
In advanced scenarios, you can expose internal members to other friend assem‐
blies by adding the System.Runtime.CompilerServices.InternalsVisibleTo

assembly attribute, specifying the name of the friend assembly as follows:

[assembly: InternalsVisibleTo ("Friend")]

If the friend assembly has a strong name (see Chapter 18), you must specify its full
160-byte public key:

[assembly: InternalsVisibleTo ("StrongFriend, PublicKey=0024f000048c...")]

You can extract the full public key from a strongly named assembly with a LINQ
query (we explain LINQ in detail in Chapter 8):

string key = string.Join ("",
 Assembly.GetExecutingAssembly().GetName().GetPublicKey()
 .Select (b => b.ToString ("x2")));

The companion sample in LINQPad invites you to browse to
an assembly and then copies the assembly’s full public key to
the clipboard.

Accessibility Capping
A type caps the accessibility of its declared members. The most common example of
capping is when you have an internal type with public members. For example:

class C { public void Foo() {} }

C
reating

Typ
es in C

#

Access Modifiers | 103

www.EBooksWorld.ir

C’s (default) internal accessibility caps Foo’s accessibility, effectively making Foo
internal. A common reason Foo would be marked public is to make for easier
refactoring, should C later be changed to public.

Restrictions on Access Modifiers
When overriding a base class function, accessibility must be identical on the over‐
ridden function. For example:

class BaseClass { protected virtual void Foo() {} }
class Subclass1 : BaseClass { protected override void Foo() {} } // OK
class Subclass2 : BaseClass { public override void Foo() {} } // Error

(An exception is when overriding a protected internal method in another assem‐
bly, in which case the override must simply be protected.)

The compiler prevents any inconsistent use of access modifiers. For example, a sub‐
class itself can be less accessible than a base class, but not more:

internal class A {}
public class B : A {} // Error

Interfaces
An interface is similar to a class, but it provides a specification rather than an imple‐
mentation for its members. An interface is special in the following ways:

• Interface members are all implicitly abstract. In contrast, a class can provide
both abstract members and concrete members with implementations.

• A class (or struct) can implement multiple interfaces. In contrast, a class can
inherit from only a single class, and a struct cannot inherit at all (aside from
deriving from System.ValueType).

An interface declaration is like a class declaration, but it provides no implementa‐
tion for its members, since all its members are implicitly abstract. These members
will be implemented by the classes and structs that implement the interface. An
interface can contain only methods, properties, events, and indexers, which non‐
coincidentally are precisely the members of a class that can be abstract.

Here is the definition of the IEnumerator interface, defined in System.Collec
tions:

public interface IEnumerator
{
 bool MoveNext();
 object Current { get; }
 void Reset();
}

104 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

Interface members are always implicitly public and cannot declare an access modi‐
fier. Implementing an interface means providing a public implementation for all its
members:

internal class Countdown : IEnumerator
{
 int count = 11;
 public bool MoveNext() => count-- > 0;
 public object Current => count;
 public void Reset() { throw new NotSupportedException(); }
}

You can implicitly cast an object to any interface that it implements. For example:

IEnumerator e = new Countdown();
while (e.MoveNext())
 Console.Write (e.Current); // 109876543210

Even though Countdown is an internal class, its members that
implement IEnumerator can be called publicly by casting an
instance of Countdown to IEnumerator. For instance, if a pub‐
lic type in the same assembly defined a method as follows:

public static class Util
{
 public static object GetCountDown() => new CountDown();
}

a caller from another assembly could do this:
IEnumerator e = (IEnumerator) Util.GetCountDown();
e.MoveNext();

If IEnumerator was itself defined as internal, this wouldn’t
be possible.

Extending an Interface
Interfaces may derive from other interfaces. For instance:

public interface IUndoable { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }

IRedoable “inherits” all the members of IUndoable. In other words, types that
implement IRedoable must also implement the members of IUndoable.

Explicit Interface Implementation
Implementing multiple interfaces can sometimes result in a collision between mem‐
ber signatures. You can resolve such collisions by explicitly implementing an inter‐
face member. Consider the following example:

interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : I1, I2
{
 public void Foo()

C
reating

Typ
es in C

#

Interfaces | 105

www.EBooksWorld.ir

 {
 Console.WriteLine ("Widget's implementation of I1.Foo");
 }

 int I2.Foo()
 {
 Console.WriteLine ("Widget's implementation of I2.Foo");
 return 42;
 }
}

Because both I1 and I2 have conflicting Foo signatures, Widget explicitly imple‐
ments I2’s Foo method. This lets the two methods coexist in one class. The only way
to call an explicitly implemented member is to cast to its interface:

Widget w = new Widget();
w.Foo(); // Widget's implementation of I1.Foo
((I1)w).Foo(); // Widget's implementation of I1.Foo
((I2)w).Foo(); // Widget's implementation of I2.Foo

Another reason to explicitly implement interface members is to hide members that
are highly specialized and distracting to a type’s normal use case. For example, a
type that implements ISerializable would typically want to avoid flaunting its
ISerializable members unless explicitly cast to that interface.

Implementing Interface Members Virtually
An implicitly implemented interface member is, by default, sealed. It must be
marked virtual or abstract in the base class in order to be overridden. For exam‐
ple:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
 public virtual void Undo() => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox
{
 public override void Undo() => Console.WriteLine ("RichTextBox.Undo");
}

Calling the interface member through either the base class or the interface calls the
subclass’s implementation:

RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo
((IUndoable)r).Undo(); // RichTextBox.Undo
((TextBox)r).Undo(); // RichTextBox.Undo

An explicitly implemented interface member cannot be marked virtual, nor can it
be overridden in the usual manner. It can, however, be reimplemented.

106 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

Reimplementing an Interface in a Subclass
A subclass can reimplement any interface member already implemented by a base
class. Reimplementation hijacks a member implementation (when called through
the interface) and works whether or not the member is virtual in the base class. It
also works whether a member is implemented implicitly or explicitly—although it
works best in the latter case, as we will demonstrate.

In the following example, TextBox implements IUndoable.Undo explicitly, and so it
cannot be marked as virtual. In order to “override” it, RichTextBox must re-
implement IUndoable’s Undo method:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
 void IUndoable.Undo() => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox, IUndoable
{
 public void Undo() => Console.WriteLine ("RichTextBox.Undo");
}

Calling the reimplemented member through the interface calls the subclass’s imple‐
mentation:

RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo Case 1
((IUndoable)r).Undo(); // RichTextBox.Undo Case 2

Assuming the same RichTextBox definition, suppose that TextBox implemented
Undo implicitly:

public class TextBox : IUndoable
{
 public void Undo() => Console.WriteLine ("TextBox.Undo");
}

This would give us another way to call Undo, which would “break” the system, as
shown in Case 3:

RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo Case 1
((IUndoable)r).Undo(); // RichTextBox.Undo Case 2
((TextBox)r).Undo(); // TextBox.Undo Case 3

Case 3 demonstrates that reimplementation hijacking is effective only when a mem‐
ber is called through the interface and not through the base class. This is usually
undesirable as it can mean inconsistent semantics. This makes reimplementation
most appropriate as a strategy for overriding explicitly implemented interface mem‐
bers.

C
reating

Typ
es in C

#

Interfaces | 107

www.EBooksWorld.ir

Alternatives to interface reimplementation
Even with explicit member implementation, interface reimplementation is problem‐
atic for a couple of reasons:

• The subclass has no way to call the base class method.
• The base class author may not anticipate that a method be reimplemented and

may not allow for the potential consequences.

Reimplementation can be a good last resort when subclassing hasn’t been anticipa‐
ted. A better option, however, is to design a base class such that reimplementation
will never be required. There are two ways to achieve this:

• When implicitly implementing a member, mark it virtual if appropriate.
• When explicitly implementing a member, use the following pattern if you

anticipate that subclasses might need to override any logic:

public class TextBox : IUndoable
{
 void IUndoable.Undo() => Undo(); // Calls method below
 protected virtual void Undo() => Console.WriteLine ("TextBox.Undo");
}

public class RichTextBox : TextBox
{
 protected override void Undo() => Console.WriteLine("RichTextBox.Undo");
}

If you don’t anticipate any subclassing, you can mark the class as sealed to preempt
interface reimplementation.

Interfaces and Boxing
Converting a struct to an interface causes boxing. Calling an implicitly implemented
member on a struct does not cause boxing:

interface I { void Foo(); }
struct S : I { public void Foo() {} }

...
S s = new S();
s.Foo(); // No boxing.

I i = s; // Box occurs when casting to interface.
i.Foo();

108 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

Writing a Class Versus an Interface
As a guideline:

• Use classes and subclasses for types that naturally share an implementation.
• Use interfaces for types that have independent implementations.

Consider the following classes:

abstract class Animal {}
abstract class Bird : Animal {}
abstract class Insect : Animal {}
abstract class FlyingCreature : Animal {}
abstract class Carnivore : Animal {}

// Concrete classes:

class Ostrich : Bird {}
class Eagle : Bird, FlyingCreature, Carnivore {} // Illegal
class Bee : Insect, FlyingCreature {} // Illegal
class Flea : Insect, Carnivore {} // Illegal

The Eagle, Bee, and Flea classes do not compile because inheriting from multiple
classes is prohibited. To resolve this, we must convert some of the types to inter‐
faces. The question then arises, which types? Following our general rule, we could
say that insects share an implementation, and birds share an implementation, so
they remain classes. In contrast, flying creatures have independent mechanisms for
flying, and carnivores have independent strategies for eating animals, so we would
convert FlyingCreature and Carnivore to interfaces:

interface IFlyingCreature {}
interface ICarnivore {}

In a typical scenario, Bird and Insect might correspond to a Windows control and a
web control; FlyingCreature and Carnivore might correspond to IPrintable and
IUndoable.

Enums
An enum is a special value type that lets you specify a group of named numeric con‐
stants. For example:

public enum BorderSide { Left, Right, Top, Bottom }

We can use this enum type as follows:

BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top); // true

C
reating

Typ
es in C

#

Enums | 109

www.EBooksWorld.ir

Each enum member has an underlying integral value. By default:

• Underlying values are of type int.

• The constants 0, 1, 2... are automatically assigned, in the declaration order of
the enum members.

You may specify an alternative integral type, as follows:

public enum BorderSide : byte { Left, Right, Top, Bottom }

You may also specify an explicit underlying value for each enum member:

public enum BorderSide : byte { Left=1, Right=2, Top=10, Bottom=11 }

The compiler also lets you explicitly assign some of the enum
members. The unassigned enum members keep incrementing
from the last explicit value. The preceding example is equiva‐
lent to the following:

public enum BorderSide : byte
 { Left=1, Right, Top=10, Bottom }

Enum Conversions
You can convert an enum instance to and from its underlying integral value with an
explicit cast:

int i = (int) BorderSide.Left;
BorderSide side = (BorderSide) i;
bool leftOrRight = (int) side <= 2;

You can also explicitly cast one enum type to another. Suppose HorizontalAlign
ment is defined as follows:

public enum HorizontalAlignment
{
 Left = BorderSide.Left,
 Right = BorderSide.Right,
 Center
}

A translation between the enum types uses the underlying integral values:

HorizontalAlignment h = (HorizontalAlignment) BorderSide.Right;
// same as:
HorizontalAlignment h = (HorizontalAlignment) (int) BorderSide.Right;

The numeric literal 0 is treated specially by the compiler in an enum expression and
does not require an explicit cast:

BorderSide b = 0; // No cast required
if (b == 0) ...

110 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

There are two reasons for the special treatment of 0:

• The first member of an enum is often used as the “default” value.

• For combined enum types, 0 means “no flags.”

Flags Enums
You can combine enum members. To prevent ambiguities, members of a combina‐
ble enum require explicitly assigned values, typically in powers of two. For example:

[Flags]
public enum BorderSides { None=0, Left=1, Right=2, Top=4, Bottom=8 }

To work with combined enum values, you use bitwise operators, such as | and &.
These operate on the underlying integral values:

BorderSides leftRight = BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
 Console.WriteLine ("Includes Left"); // Includes Left

string formatted = leftRight.ToString(); // "Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine (s == leftRight); // True

s ^= BorderSides.Right; // Toggles BorderSides.Right
Console.WriteLine (s); // Left

By convention, the Flags attribute should always be applied to an enum type when
its members are combinable. If you declare such an enum without the Flags
attribute, you can still combine members, but calling ToString on an enum instance
will emit a number rather than a series of names.

By convention, a combinable enum type is given a plural rather than singular name.

For convenience, you can include combination members within an enum declara‐
tion itself:

[Flags]
public enum BorderSides
{
 None=0,
 Left=1, Right=2, Top=4, Bottom=8,
 LeftRight = Left | Right,
 TopBottom = Top | Bottom,
 All = LeftRight | TopBottom
}

C
reating

Typ
es in C

#

Enums | 111

www.EBooksWorld.ir

Enum Operators
The operators that work with enums are:

= == != < > <= >= + - ^ & | ~
+= -= ++ -- sizeof

The bitwise, arithmetic, and comparison operators return the result of processing
the underlying integral values. Addition is permitted between an enum and an inte‐
gral type, but not between two enums.

Type-Safety Issues
Consider the following enum:

public enum BorderSide { Left, Right, Top, Bottom }

Since an enum can be cast to and from its underlying integral type, the actual value
it may have may fall outside the bounds of a legal enum member. For example:

BorderSide b = (BorderSide) 12345;
Console.WriteLine (b); // 12345

The bitwise and arithmetic operators can produce similarly invalid values:

BorderSide b = BorderSide.Bottom;
b++; // No errors

An invalid BorderSide would break the following code:

void Draw (BorderSide side)
{
 if (side == BorderSide.Left) {...}
 else if (side == BorderSide.Right) {...}
 else if (side == BorderSide.Top) {...}
 else {...} // Assume BorderSide.Bottom
}

One solution is to add another else clause:

...
else if (side == BorderSide.Bottom) ...
else throw new ArgumentException ("Invalid BorderSide: " + side, "side");

Another workaround is to explicitly check an enum value for validity. The static
Enum.IsDefined method does this job:

BorderSide side = (BorderSide) 12345;
Console.WriteLine (Enum.IsDefined (typeof (BorderSide), side)); // False

Unfortunately, Enum.IsDefined does not work for flagged enums. However, the fol‐
lowing helper method (a trick dependent on the behavior of Enum.ToString())
returns true if a given flagged enum is valid:

112 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

static bool IsFlagDefined (Enum e)
{
 decimal d;
 return !decimal.TryParse(e.ToString(), out d);
}

[Flags]
public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
static void Main()
{
 for (int i = 0; i <= 16; i++)
 {
 BorderSides side = (BorderSides)i;
 Console.WriteLine (IsFlagDefined (side) + " " + side);
 }
}

Nested Types
A nested type is declared within the scope of another type. For example:

public class TopLevel
{
 public class Nested { } // Nested class
 public enum Color { Red, Blue, Tan } // Nested enum
}

A nested type has the following features:

• It can access the enclosing type’s private members and everything else the
enclosing type can access.

• It can be declared with the full range of access modifiers, rather than just pub
lic and internal.

• The default accessibility for a nested type is private rather than internal.
• Accessing a nested type from outside the enclosing type requires qualification

with the enclosing type’s name (like when accessing static members).

For example, to access Color.Red from outside our TopLevel class, we’d have to do
this:

TopLevel.Color color = TopLevel.Color.Red;

All types (classes, structs, interfaces, delegates and enums) can be nested inside
either a class or a struct.

Here is an example of accessing a private member of a type from a nested type:

public class TopLevel
{
 static int x;
 class Nested
 {

C
reating

Typ
es in C

#

Nested Types | 113

www.EBooksWorld.ir

 static void Foo() { Console.WriteLine (TopLevel.x); }
 }
}

Here is an example of applying the protected access modifier to a nested type:

public class TopLevel
{
 protected class Nested { }
}

public class SubTopLevel : TopLevel
{
 static void Foo() { new TopLevel.Nested(); }
}

Here is an example of referring to a nested type from outside the enclosing type:

public class TopLevel
{
 public class Nested { }
}

class Test
{
 TopLevel.Nested n;
}

Nested types are used heavily by the compiler itself when it generates private classes
that capture state for constructs such as iterators and anonymous methods.

If the sole reason for using a nested type is to avoid cluttering
a namespace with too many types, consider using a nested
namespace instead. A nested type should be used because of
its stronger access control restrictions, or when the nested
class must access private members of the containing class.

Generics
C# has two separate mechanisms for writing code that is reusable across different
types: inheritance and generics. Whereas inheritance expresses reusability with a
base type, generics express reusability with a “template” that contains “placeholder”
types. Generics, when compared to inheritance, can increase type safety and reduce
casting and boxing.

C# generics and C++ templates are similar concepts, but they
work differently. We explain this difference in “C# Generics
Versus C++ Templates” on page 126.

Generic Types
A generic type declares type parameters—placeholder types to be filled in by the
consumer of the generic type, which supplies the type arguments. Here is a generic

114 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

type Stack<T>, designed to stack instances of type T. Stack<T> declares a single type
parameter T:

public class Stack<T>
{
 int position;
 T[] data = new T[100];
 public void Push (T obj) => data[position++] = obj;
 public T Pop() => data[--position];
}

We can use Stack<T> as follows:

var stack = new Stack<int>();
stack.Push (5);
stack.Push (10);
int x = stack.Pop(); // x is 10
int y = stack.Pop(); // y is 5

Stack<int> fills in the type parameter T with the type argument int, implicitly cre‐
ating a type on the fly (the synthesis occurs at runtime). Attempting to push a string
onto our Stack<int> would, however, produce a compile-time error. Stack<int>
effectively has the following definition (substitutions appear in bold, with the class
name hashed out to avoid confusion):

public class ###
{
 int position;
 int[] data;
 public void Push (int obj) => data[position++] = obj;
 public int Pop() => data[--position];
}

Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed
type. At runtime, all generic type instances are closed—with the placeholder types
filled in. This means that the following statement is illegal:

var stack = new Stack<T>(); // Illegal: What is T?

unless inside a class or method which itself defines T as a type parameter:

public class Stack<T>
{
 ...
 public Stack<T> Clone()
 {
 Stack<T> clone = new Stack<T>(); // Legal
 ...
 }
}

Why Generics Exist
Generics exist to write code that is reusable across different types. Suppose we
needed a stack of integers, but we didn’t have generic types. One solution would be

C
reating

Typ
es in C

#

Generics | 115

www.EBooksWorld.ir

to hardcode a separate version of the class for every required element type (e.g.,
IntStack, StringStack, etc.). Clearly, this would cause considerable code duplica‐
tion. Another solution would be to write a stack that is generalized by using object
as the element type:

public class ObjectStack
{
 int position;
 object[] data = new object[10];
 public void Push (object obj) => data[position++] = obj;
 public object Pop() => data[--position];
}

An ObjectStack, however, wouldn’t work as well as a hardcoded IntStack for
specifically stacking integers. Specifically, an ObjectStack would require boxing
and downcasting that could not be checked at compile time:

// Suppose we just want to store integers here:
ObjectStack stack = new ObjectStack();

stack.Push ("s"); // Wrong type, but no error!
int i = (int)stack.Pop(); // Downcast - runtime error

What we need is both a general implementation of a stack that works for all element
types, and a way to easily specialize that stack to a specific element type for
increased type safety and reduced casting and boxing. Generics give us precisely
this, by allowing us to parameterize the element type. Stack<T> has the benefits of
both ObjectStack and IntStack. Like ObjectStack, Stack<T> is written once to
work generally across all types. Like IntStack, Stack<T> is specialized for a particu‐
lar type—the beauty is that this type is T, which we substitute on the fly.

ObjectStack is functionally equivalent to Stack<object>.

Generic Methods
A generic method declares type parameters within the signature of a method.

With generic methods, many fundamental algorithms can be implemented in a
general-purpose way only. Here is a generic method that swaps the contents of two
variables of any type T:

static void Swap<T> (ref T a, ref T b)
{
 T temp = a;
 a = b;
 b = temp;
}

Swap<T> can be used as follows:

116 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

int x = 5;
int y = 10;
Swap (ref x, ref y);

Generally, there is no need to supply type arguments to a generic method, because
the compiler can implicitly infer the type. If there is ambiguity, generic methods can
be called with the type arguments as follows:

Swap<int> (ref x, ref y);

Within a generic type, a method is not classed as generic unless it introduces type
parameters (with the angle bracket syntax). The Pop method in our generic stack
merely uses the type’s existing type parameter, T, and is not classed as a generic
method.

Methods and types are the only constructs that can introduce type parameters.
Properties, indexers, events, fields, constructors, operators, and so on cannot
declare type parameters, although they can partake in any type parameters already
declared by their enclosing type. In our generic stack example, for instance, we
could write an indexer that returns a generic item:

public T this [int index] => data [index];

Similarly, constructors can partake in existing type parameters, but not introduce
them:

public Stack<T>() { } // Illegal

Declaring Type Parameters
Type parameters can be introduced in the declaration of classes, structs, interfaces,
delegates (covered in Chapter 4), and methods. Other constructs, such as proper‐
ties, cannot introduce a type parameter, but can use one. For example, the property
Value uses T:

public struct Nullable<T>
{
 public T Value { get; }
}

A generic type or method can have multiple parameters. For example:

class Dictionary<TKey, TValue> {...}

To instantiate:

Dictionary<int,string> myDic = new Dictionary<int,string>();

Or:

var myDic = new Dictionary<int,string>();

Generic type names and method names can be overloaded as long as the number of
type parameters is different. For example, the following three type names do not
conflict:

C
reating

Typ
es in C

#

Generics | 117

www.EBooksWorld.ir

class A {}
class A<T> {}
class A<T1,T2> {}

By convention, generic types and methods with a single type
parameter typically name their parameter T, as long as the
intent of the parameter is clear. When using multiple type
parameters, each parameter is prefixed with T, but has a more
descriptive name.

typeof and Unbound Generic Types
Open generic types do not exist at runtime: open generic types are closed as part of
compilation. However, it is possible for an unbound generic type to exist at runtime
—purely as a Type object. The only way to specify an unbound generic type in C# is
with the typeof operator:

class A<T> {}
class A<T1,T2> {}
...

Type a1 = typeof (A<>); // Unbound type (notice no type arguments).
Type a2 = typeof (A<,>); // Use commas to indicate multiple type args.

Open generic types are used in conjunction with the Reflection API (Chapter 19).

You can also use the typeof operator to specify a closed type:

Type a3 = typeof (A<int,int>);

or an open type (which is closed at runtime):

class B<T> { void X() { Type t = typeof (T); } }

The default Generic Value
The default keyword can be used to get the default value for a generic type param‐
eter. The default value for a reference type is null, and the default value for a value
type is the result of bitwise-zeroing the value type’s fields:

static void Zap<T> (T[] array)
{
 for (int i = 0; i < array.Length; i++)
 array[i] = default(T);
}

Generic Constraints
By default, a type parameter can be substituted with any type whatsoever. Con‐
straints can be applied to a type parameter to require more specific type arguments.
These are the possible constraints:

where T : base-class // Base-class constraint
where T : interface // Interface constraint
where T : class // Reference-type constraint

118 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

where T : struct // Value-type constraint (excludes Nullable types)
where T : new() // Parameterless constructor constraint
where U : T // Naked type constraint

In the following example, GenericClass<T,U> requires T to derive from (or be iden‐
tical to) SomeClass and implement Interface1, and requires U to provide a parame‐
terless constructor:

class SomeClass {}
interface Interface1 {}

class GenericClass<T,U> where T : SomeClass, Interface1
 where U : new()
{...}

Constraints can be applied wherever type parameters are defined, in both methods
and type definitions.

A base-class constraint specifies that the type parameter must subclass (or match) a
particular class; an interface constraint specifies that the type parameter must imple‐
ment that interface. These constraints allow instances of the type parameter to be
implicitly converted to that class or interface. For example, suppose we want to
write a generic Max method, which returns the maximum of two values. We can take
advantage of the generic interface defined in the framework called IComparable<T>:

public interface IComparable<T> // Simplified version of interface
{
 int CompareTo (T other);
}

CompareTo returns a positive number if this is greater than other. Using this inter‐
face as a constraint, we can write a Max method as follows (to avoid distraction, null
checking is omitted):

static T Max <T> (T a, T b) where T : IComparable<T>
{
 return a.CompareTo (b) > 0 ? a : b;
}

The Max method can accept arguments of any type implementing IComparable<T>
(which includes most built-in types such as int and string):

int z = Max (5, 10); // 10
string last = Max ("ant", "zoo"); // zoo

The class constraint and struct constraint specify that T must be a reference type or
(non-nullable) value type. A great example of the struct constraint is the Sys
tem.Nullable<T> struct (we will discuss this class in depth in “Nullable Types” on
page 162 in Chapter 4):

struct Nullable<T> where T : struct {...}

The parameterless constructor constraint requires T to have a public parameterless
constructor. If this constraint is defined, you can call new() on T:

C
reating

Typ
es in C

#

Generics | 119

www.EBooksWorld.ir

static void Initialize<T> (T[] array) where T : new()
{
 for (int i = 0; i < array.Length; i++)
 array[i] = new T();
}

The naked type constraint requires one type parameter to derive from (or match)
another type parameter. In this example, the method FilteredStack returns
another Stack, containing only the subset of elements where the type parameter U is
of the type parameter T:

class Stack<T>
{
 Stack<U> FilteredStack<U>() where U : T {...}
}

Subclassing Generic Types
A generic class can be subclassed just like a nongeneric class. The subclass can leave
the base class’s type parameters open, as in the following example:

class Stack<T> {...}
class SpecialStack<T> : Stack<T> {...}

Or the subclass can close the generic type parameters with a concrete type:

class IntStack : Stack<int> {...}

A subtype can also introduce fresh type arguments:

class List<T> {...}
class KeyedList<T,TKey> : List<T> {...}

Technically, all type arguments on a subtype are fresh: you
could say that a subtype closes and then reopens the base type
arguments. This means that a subclass can give new (and
potentially more meaningful) names to the type arguments it
reopens:

class List<T> {...}
class KeyedList<TElement,TKey> : List<TElement> {...}

Self-Referencing Generic Declarations
A type can name itself as the concrete type when closing a type argument:

public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>
{
 public string Color { get; set; }
 public int CC { get; set; }

 public bool Equals (Balloon b)
 {
 if (b == null) return false;
 return b.Color == Color && b.CC == CC;

120 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

 }
}

The following are also legal:

class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Static Data
Static data is unique for each closed type:

class Bob<T> { public static int Count; }

class Test
{
 static void Main()
 {
 Console.WriteLine (++Bob<int>.Count); // 1
 Console.WriteLine (++Bob<int>.Count); // 2
 Console.WriteLine (++Bob<string>.Count); // 1
 Console.WriteLine (++Bob<object>.Count); // 1
 }
}

Type Parameters and Conversions
C#’s cast operator can perform several kinds of conversion, including:

• Numeric conversion
• Reference conversion
• Boxing/unboxing conversion
• Custom conversion (via operator overloading; see Chapter 4)

The decision as to which kind of conversion will take place happens at compile time,
based on the known types of the operands. This creates an interesting scenario with
generic type parameters, because the precise operand types are unknown at compile
time. If this leads to ambiguity, the compiler generates an error.

The most common scenario is when you want to perform a reference conversion:

StringBuilder Foo<T> (T arg)
{
 if (arg is StringBuilder)
 return (StringBuilder) arg; // Will not compile
 ...
}

Without knowledge of T’s actual type, the compiler is concerned that you might
have intended this to be a custom conversion. The simplest solution is to instead use
the as operator, which is unambiguous because it cannot perform custom conver‐
sions:

C
reating

Typ
es in C

#

Generics | 121

www.EBooksWorld.ir

StringBuilder Foo<T> (T arg)
{
 StringBuilder sb = arg as StringBuilder;
 if (sb != null) return sb;
 ...
}

A more general solution is to first cast to object. This works because conversions
to/from object are assumed not to be custom conversions, but reference or boxing/
unboxing conversions. In this case, StringBuilder is a reference type, so it has to
be a reference conversion:

return (StringBuilder) (object) arg;

Unboxing conversions can also introduce ambiguities. The following could be an
unboxing, numeric, or custom conversion:

int Foo<T> (T x) => (int) x; // Compile-time error

The solution, again, is to first cast to object and then to int (which then unambig‐
uously signals an unboxing conversion in this case):

int Foo<T> (T x) => (int) (object) x;

Covariance
Assuming A is convertible to B, X has a covariant type parameter if X<A> is converti‐
ble to X.

With C#’s notion of covariance (and contravariance), “conver‐
tible” means convertible via an implicit reference conversion—
such as A subclassing B, or A implementing B. Numeric conver‐
sions, boxing conversions and custom conversions are not
included.

For instance, type IFoo<T> has a covariant T if the following is legal:

IFoo<string> s = ...;
IFoo<object> b = s;

From C# 4.0, interfaces permit covariant type parameters (as do delegates—see
Chapter 4), but classes do not. Arrays also allow covariance (A[] can be converted
to B[] if A has an implicit reference conversion to B), and are discussed here for
comparison.

Covariance and contravariance (or simply “variance”) are
advanced concepts. The motivation behind introducing and
enhancing variance in C# was to allow generic interface and
generic types (in particular, those defined in the Framework,
such as IEnumerable<T>) to work more as you’d expect. You
can benefit from this without understanding the details
behind covariance and contravariance.

122 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

Variance is not automatic
To ensure static type safety, type parameters are not automatically variant. Consider
the following:

class Animal {}
class Bear : Animal {}
class Camel : Animal {}

public class Stack<T> // A simple Stack implementation
{
 int position;
 T[] data = new T[100];
 public void Push (T obj) => data[position++] = obj;
 public T Pop() => data[--position];
}

The following fails to compile:

Stack<Bear> bears = new Stack<Bear>();
Stack<Animal> animals = bears; // Compile-time error

That restriction prevents the possibility of runtime failure with the following code:

animals.Push (new Camel()); // Trying to add Camel to bears

Lack of covariance, however, can hinder reusability. Suppose, for instance, we
wanted to write a method to Wash a stack of animals:

public class ZooCleaner
{
 public static void Wash (Stack<Animal> animals) {...}
}

Calling Wash with a stack of bears would generate a compile-time error. One work‐
around is to redefine the Wash method with a constraint:

class ZooCleaner
{
 public static void Wash<T> (Stack<T> animals) where T : Animal { ... }
}

We can now call Wash as follows:

Stack<Bear> bears = new Stack<Bear>();
ZooCleaner.Wash (bears);

Another solution is to have Stack<T> implement an interface with a covariant type
parameter, as we’ll see shortly.

Arrays
For historical reasons, array types support covariance. This means that B[] can be
cast to A[] if B subclasses A (and both are reference types). For example:

Bear[] bears = new Bear[3];
Animal[] animals = bears; // OK

C
reating

Typ
es in C

#

Generics | 123

www.EBooksWorld.ir

The downside of this reusability is that element assignments can fail at runtime:

animals[0] = new Camel(); // Runtime error

Declaring a covariant type parameter
As of C# 4.0, type parameters on interfaces and delegates can be declared covariant
by marking them with the out modifier. This modifier ensures that, unlike with
arrays, covariant type parameters are fully type-safe.

We can illustrate this with our Stack<T> class by having it implement the following
interface:

public interface IPoppable<out T> { T Pop(); }

The out modifier on T indicates that T is used only in output positions (e.g., return
types for methods). The out modifier flags the type parameter as covariant and
allows us to do this:

var bears = new Stack<Bear>();
bears.Push (new Bear());
// Bears implements IPoppable<Bear>. We can convert to IPoppable<Animal>:
IPoppable<Animal> animals = bears; // Legal
Animal a = animals.Pop();

The conversion from bears to animals is permitted by the compiler—by virtue of
the type parameter being covariant. This is type-safe because the case the compiler
is trying to avoid—pushing a Camel onto the stack—can’t occur as there’s no way to
feed a Camel into an interface where T can appear only in output positions.

Covariance (and contravariance) in interfaces is something
that you typically consume: it’s less common that you need to
write variant interfaces.

Curiously, method parameters marked as out are not eligible
for covariance, due to a limitation in the CLR.

We can leverage the ability to cast covariantly to solve the reusability problem
described earlier:

public class ZooCleaner
{
 public static void Wash (IPoppable<Animal> animals) { ... }
}

The IEnumerator<T> and IEnumerable<T> interfaces
described in Chapter 7 have a covariant T. This allows you to
cast IEnumerable<string> to IEnumerable<object>, for
instance.

The compiler will generate an error if you use a covariant type parameter in an
input position (e.g., a parameter to a method or a writable property).

124 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

Covariance (and contravariance) works only for elements with
reference conversions—not boxing conversions. (This applies
both to type parameter variance and array variance.) So, if you
wrote a method that accepted a parameter of type IPoppa
ble<object>, you could call it with IPoppable<string>, but
not IPoppable<int>.

Contravariance
We previously saw that, assuming that A allows an implicit reference conversion to
B, a type X has a covariant type parameter if X<A> allows a reference conversion to
X. Contravariance is when you can convert in the reverse direction—from X
to X<A>. This is supported if the type parameter appears only in input positions, and
is designated with the in modifier. Extending our previous example, if the Stack<T>
class implements the following interface:

public interface IPushable<in T> { void Push (T obj); }

we can legally do this:

IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals; // Legal
bears.Push (new Bear());

No member in IPushable outputs a T, so we can’t get into trouble by casting ani
mals to bears (there’s no way to Pop, for instance, through that interface).

Our Stack<T> class can implement both IPushable<T> and
IPoppable<T>—despite T having opposing variance annota‐
tions in the two interfaces! This works because you must exer‐
cise variance through the interface and not the class; therefore,
you must commit to the lens of either IPoppable or IPusha
ble before performing a variant conversion. This lens then
restricts you to the operations that are legal under the appro‐
priate variance rules.
This also illustrates why classes do not allow variant type
parameters: concrete implementations typically require data
to flow in both directions.

To give another example, consider the following interface, defined as part of
the .NET Framework:

public interface IComparer<in T>
{
 // Returns a value indicating the relative ordering of a and b
 int Compare (T a, T b);
}

Because the interface has a contravariant T, we can use an IComparer<object> to
compare two strings:

C
reating

Typ
es in C

#

Generics | 125

www.EBooksWorld.ir

var objectComparer = Comparer<object>.Default;
// objectComparer implements IComparer<object>
IComparer<string> stringComparer = objectComparer;
int result = stringComparer.Compare ("Brett", "Jemaine");

Mirroring covariance, the compiler will report an error if you try to use a contravar‐
iant type parameter in an output position (e.g., as a return value, or in a readable
property).

C# Generics Versus C++ Templates
C# generics are similar in application to C++ templates, but they work very differ‐
ently. In both cases, a synthesis between the producer and consumer must take
place, where the placeholder types of the producer are filled in by the consumer.
However, with C# generics, producer types (i.e., open types such as List<T>) can be
compiled into a library (such as mscorlib.dll). This works because the synthesis
between the producer and the consumer that produces closed types doesn’t actually
happen until runtime. With C++ templates, this synthesis is performed at compile
time. This means that in C++ you don’t deploy template libraries as .dlls—they exist
only as source code. It also makes it difficult to dynamically inspect, let alone create,
parameterized types on the fly.

To dig deeper into why this is the case, consider the Max method in C#, once more:

static T Max <T> (T a, T b) where T : IComparable<T>
 => a.CompareTo (b) > 0 ? a : b;

Why couldn’t we have implemented it like this?

static T Max <T> (T a, T b)
 => (a > b ? a : b); // Compile error

The reason is that Max needs to be compiled once and work for all possible values of
T. Compilation cannot succeed, because there is no single meaning for > across all
values of T—in fact, not every T even has a > operator. In contrast, the following
code shows the same Max method written with C++ templates. This code will be
compiled separately for each value of T, taking on whatever semantics > has for a
particular T, failing to compile if a particular T does not support the > operator:

template <class T> T Max (T a, T b)
{
 return a > b ? a : b;
}

126 | Chapter 3: Creating Types in C#

www.EBooksWorld.ir

4
Advanced C#

In this chapter, we cover advanced C# topics that build on concepts explored in
Chapters 2 and 3. You should read the first four sections sequentially; you can read
the remaining sections in any order.

Delegates
A delegate is an object that knows how to call a method.

A delegate type defines the kind of method that delegate instances can call. Specifi‐
cally, it defines the method’s return type and its parameter types. The following
defines a delegate type called Transformer:

delegate int Transformer (int x);

Transformer is compatible with any method with an int return type and a single
int parameter, such as this:

static int Square (int x) { return x * x; }

or more tersely:

static int Square (int x) => x * x;

Assigning a method to a delegate variable creates a delegate instance:

Transformer t = Square;

which can be invoked in the same way as a method:

int answer = t(3); // answer is 9

Here’s a complete example:

delegate int Transformer (int x);

class Test
{
 static void Main()

A
d

vanced
C

#

127

www.EBooksWorld.ir

 {
 Transformer t = Square; // Create delegate instance
 int result = t(3); // Invoke delegate
 Console.WriteLine (result); // 9
 }
 static int Square (int x) => x * x;
}

A delegate instance literally acts as a delegate for the caller: the caller invokes the
delegate, and then the delegate calls the target method. This indirection decouples
the caller from the target method.

The statement:

Transformer t = Square;

is shorthand for:

Transformer t = new Transformer (Square);

Technically, we are specifying a method group when we refer to
Square without brackets or arguments. If the method is over‐
loaded, C# will pick the correct overload based on the signa‐
ture of the delegate to which it’s being assigned.

The expression:

t(3)

is shorthand for:

t.Invoke(3)

A delegate is similar to a callback, a general term that captures
constructs such as C function pointers.

Writing Plug-in Methods with Delegates
A delegate variable is assigned a method at runtime. This is useful for writing plug-
in methods. In this example, we have a utility method named Transform that
applies a transform to each element in an integer array. The Transform method has
a delegate parameter, for specifying a plug-in transform.

public delegate int Transformer (int x);

class Util
{
 public static void Transform (int[] values, Transformer t)
 {
 for (int i = 0; i < values.Length; i++)
 values[i] = t (values[i]);
 }
}

class Test

128 | Chapter 4: Advanced C#

www.EBooksWorld.ir

{
 static void Main()
 {
 int[] values = { 1, 2, 3 };
 Util.Transform (values, Square); // Hook in the Square method
 foreach (int i in values)
 Console.Write (i + " "); // 1 4 9
 }

 static int Square (int x) => x * x;
}

Multicast Delegates
All delegate instances have multicast capability. This means that a delegate instance
can reference not just a single target method, but also a list of target methods. The +
and += operators combine delegate instances. For example:

SomeDelegate d = SomeMethod1;
d += SomeMethod2;

The last line is functionally the same as:

d = d + SomeMethod2;

Invoking d will now call both SomeMethod1 and SomeMethod2. Delegates are invoked
in the order they are added.

The - and -= operators remove the right delegate operand from the left delegate
operand. For example:

d -= SomeMethod1;

Invoking d will now cause only SomeMethod2 to be invoked.

Calling + or += on a delegate variable with a null value works, and it is equivalent to
assigning the variable to a new value:

SomeDelegate d = null;
d += SomeMethod1; // Equivalent (when d is null) to d = SomeMethod1;

Similarly, calling -= on a delegate variable with a single target is equivalent to
assigning null to that variable.

Delegates are immutable, so when you call += or -=, you’re in
fact creating a new delegate instance and assigning it to the
existing variable.

If a multicast delegate has a nonvoid return type, the caller receives the return value
from the last method to be invoked. The preceding methods are still called, but their
return values are discarded. In most scenarios in which multicast delegates are used,
they have void return types, so this subtlety does not arise.

A
d

vanced
C

#

Delegates | 129

www.EBooksWorld.ir

All delegate types implicitly derive from System.MulticastDe
legate, which inherits from System.Delegate. C# compiles +,
-, +=, and -= operations made on a delegate to the static Com
bine and Remove methods of the System.Delegate class.

Multicast delegate example
Suppose you wrote a method that took a long time to execute. That method could
regularly report progress to its caller by invoking a delegate. In this example, the
HardWork method has a ProgressReporter delegate parameter, which it invokes to
indicate progress:

public delegate void ProgressReporter (int percentComplete);

public class Util
{
 public static void HardWork (ProgressReporter p)
 {
 for (int i = 0; i < 10; i++)
 {
 p (i * 10); // Invoke delegate
 System.Threading.Thread.Sleep (100); // Simulate hard work
 }
 }
}

To monitor progress, the Main method creates a multicast delegate instance p, such
that progress is monitored by two independent methods:

class Test
{
 static void Main()
 {
 ProgressReporter p = WriteProgressToConsole;
 p += WriteProgressToFile;
 Util.HardWork (p);
 }

 static void WriteProgressToConsole (int percentComplete)
 => Console.WriteLine (percentComplete);

 static void WriteProgressToFile (int percentComplete)
 => System.IO.File.WriteAllText ("progress.txt",
 percentComplete.ToString());
}

Instance Versus Static Method Targets
When an instance method is assigned to a delegate object, the latter must maintain a
reference not only to the method, but also to the instance to which the method
belongs. The System.Delegate class’s Target property represents this instance (and
will be null for a delegate referencing a static method). For example:

130 | Chapter 4: Advanced C#

www.EBooksWorld.ir

public delegate void ProgressReporter (int percentComplete);

class Test
{
 static void Main()
 {
 X x = new X();
 ProgressReporter p = x.InstanceProgress;
 p(99); // 99
 Console.WriteLine (p.Target == x); // True
 Console.WriteLine (p.Method); // Void InstanceProgress(Int32)
 }
}

class X
{
 public void InstanceProgress (int percentComplete)
 => Console.WriteLine (percentComplete);
}

Generic Delegate Types
A delegate type may contain generic type parameters. For example:

public delegate T Transformer<T> (T arg);

With this definition, we can write a generalized Transform utility method that
works on any type:

public class Util
{
 public static void Transform<T> (T[] values, Transformer<T> t)
 {
 for (int i = 0; i < values.Length; i++)
 values[i] = t (values[i]);
 }
}

class Test
{
 static void Main()
 {
 int[] values = { 1, 2, 3 };
 Util.Transform (values, Square); // Hook in Square
 foreach (int i in values)
 Console.Write (i + " "); // 1 4 9
 }
 static int Square (int x) => x * x;
}

The Func and Action Delegates
With generic delegates, it becomes possible to write a small set of delegate types that
are so general they can work for methods of any return type and any (reasonable)
number of arguments. These delegates are the Func and Action delegates, defined in

A
d

vanced
C

#

Delegates | 131

www.EBooksWorld.ir

the System namespace (the in and out annotations indicate variance, which we will
cover shortly):

delegate TResult Func <out TResult> ();
delegate TResult Func <in T, out TResult> (T arg);
delegate TResult Func <in T1, in T2, out TResult> (T1 arg1, T2 arg2);
... and so on, up to T16
delegate void Action ();
delegate void Action <in T> (T arg);
delegate void Action <in T1, in T2> (T1 arg1, T2 arg2);
... and so on, up to T16

These delegates are extremely general. The Transformer delegate in our previous
example can be replaced with a Func delegate that takes a single argument of type T
and returns a same-typed value:

public static void Transform<T> (T[] values, Func<T,T> transformer)
{
 for (int i = 0; i < values.Length; i++)
 values[i] = transformer (values[i]);
}

The only practical scenarios not covered by these delegates are ref/out and pointer
parameters.

Prior to Framework 2.0, the Func and Action delegates did
not exist (because generics did not exist). It’s for this historical
reason that much of the Framework uses custom delegate
types rather than Func and Action.

Delegates Versus Interfaces
A problem that can be solved with a delegate can also be solved with an interface.
For instance, we can rewrite our original example with an interface called ITrans
former instead of a delegate:

public interface ITransformer
{
 int Transform (int x);
}

public class Util
{
 public static void TransformAll (int[] values, ITransformer t)
 {
 for (int i = 0; i < values.Length; i++)
 values[i] = t.Transform (values[i]);
 }
}

class Squarer : ITransformer
{
 public int Transform (int x) => x * x;
}

132 | Chapter 4: Advanced C#

www.EBooksWorld.ir

...

static void Main()
{
 int[] values = { 1, 2, 3 };
 Util.TransformAll (values, new Squarer());
 foreach (int i in values)
 Console.WriteLine (i);
}

A delegate design may be a better choice than an interface design if one or more of
these conditions are true:

• The interface defines only a single method.
• Multicast capability is needed.
• The subscriber needs to implement the interface multiple times.

In the ITransformer example, we don’t need to multicast. However, the interface
defines only a single method. Furthermore, our subscriber may need to implement
ITransformer multiple times, to support different transforms, such as square or
cube. With interfaces, we’re forced into writing a separate type per transform, since
Test can implement ITransformer only once. This is quite cumbersome:

class Squarer : ITransformer
{
 public int Transform (int x) => x * x;
}

class Cuber : ITransformer
{
 public int Transform (int x) => x * x * x;
}
...

static void Main()
{
 int[] values = { 1, 2, 3 };
 Util.TransformAll (values, new Cuber());
 foreach (int i in values)
 Console.WriteLine (i);
}

Delegate Compatibility

Type compatibility
Delegate types are all incompatible with one another, even if their signatures are the
same:

delegate void D1();
delegate void D2();
...

A
d

vanced
C

#

Delegates | 133

www.EBooksWorld.ir

D1 d1 = Method1;
D2 d2 = d1; // Compile-time error

The following, however, is permitted:
D2 d2 = new D2 (d1);

Delegate instances are considered equal if they have the same method targets:

delegate void D();
...

D d1 = Method1;
D d2 = Method1;
Console.WriteLine (d1 == d2); // True

Multicast delegates are considered equal if they reference the same methods in the
same order.

Parameter compatibility
When you call a method, you can supply arguments that have more specific types
than the parameters of that method. This is ordinary polymorphic behavior. For
exactly the same reason, a delegate can have more specific parameter types than its
method target. This is called contravariance.

Here’s an example:

delegate void StringAction (string s);

class Test
{
 static void Main()
 {
 StringAction sa = new StringAction (ActOnObject);
 sa ("hello");
 }

 static void ActOnObject (object o) => Console.WriteLine (o); // hello
}

(As with type parameter variance, delegates are variant only for reference conver‐
sions.)

A delegate merely calls a method on someone else’s behalf. In this case, the String
Action is invoked with an argument of type string. When the argument is then
relayed to the target method, the argument gets implicitly upcast to an object.

The standard event pattern is designed to help you leverage
contravariance through its use of the common EventArgs base
class. For example, you can have a single method invoked by
two different delegates, one passing a MouseEventArgs and the
other passing a KeyEventArgs.

134 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Return type compatibility
If you call a method, you may get back a type that is more specific than what you
asked for. This is ordinary polymorphic behavior. For exactly the same reason, a
delegate’s target method may return a more specific type than described by the dele‐
gate. This is called covariance. For example:

delegate object ObjectRetriever();

class Test
{
 static void Main()
 {
 ObjectRetriever o = new ObjectRetriever (RetrieveString);
 object result = o();
 Console.WriteLine (result); // hello
 }
 static string RetrieveString() => "hello";
}

ObjectRetriever expects to get back an object, but an object subclass will also do:
delegate return types are covariant.

Generic delegate type parameter variance
In Chapter 3, we saw how generic interfaces support covariant and contravariant
type parameters. The same capability exists for delegates too (from C# 4.0 onward).

If you’re defining a generic delegate type, it’s good practice to:

• Mark a type parameter used only on the return value as covariant (out).

• Mark any type parameters used only on parameters as contravariant (in).

Doing so allows conversions to work naturally by respecting inheritance relation‐
ships between types.

The following delegate (defined in the System namespace) has a covariant TResult:

delegate TResult Func<out TResult>();

allowing:

Func<string> x = ...;
Func<object> y = x;

The following delegate (defined in the System namespace) has a contravariant T:

delegate void Action<in T> (T arg);

allowing:

Action<object> x = ...;
Action<string> y = x;

A
d

vanced
C

#

Delegates | 135

www.EBooksWorld.ir

Events
When using delegates, two emergent roles commonly appear: broadcaster and sub‐
scriber.

The broadcaster is a type that contains a delegate field. The broadcaster decides
when to broadcast by invoking the delegate.

The subscribers are the method target recipients. A subscriber decides when to start
and stop listening by calling += and -= on the broadcaster’s delegate. A subscriber
does not know about, or interfere with, other subscribers.

Events are a language feature that formalizes this pattern. An event is a construct
that exposes just the subset of delegate features required for the broadcaster/
subscriber model. The main purpose of events is to prevent subscribers from interfer‐
ing with one another.

The easiest way to declare an event is to put the event keyword in front of a delegate
member:

// Delegate definition
public delegate void PriceChangedHandler (decimal oldPrice,
 decimal newPrice);
public class Broadcaster
{
 // Event declaration
 public event PriceChangedHandler PriceChanged;
}

Code within the Broadcaster type has full access to PriceChanged and can treat it
as a delegate. Code outside of Broadcaster can only perform += and -= operations
on the PriceChanged event.

How Do Events Work on the Inside?
Three things happen under the covers when you declare an event as follows:

public class Broadcaster
{
 public event PriceChangedHandler PriceChanged;
}

First, the compiler translates the event declaration into something close to the fol‐
lowing:

PriceChangedHandler priceChanged; // private delegate
public event PriceChangedHandler PriceChanged
{
 add { priceChanged += value; }
 remove { priceChanged -= value; }
}

The add and remove keywords denote explicit event accessors—which act rather like
property accessors. We’ll describe how to write these later.

136 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Second, the compiler looks within the Broadcaster class for references to Price
Changed that perform operations other than += or -= and redirects them to the
underlying priceChanged delegate field.

Third, the compiler translates += and -= operations on the event to calls to the
event’s add and remove accessors. Interestingly, this makes the behavior of += and -=
unique when applied to events: unlike in other scenarios, it’s not simply a shortcut
for + and - followed by an assignment.

Consider the following example. The Stock class fires its PriceChanged event every
time the Price of the Stock changes:

public delegate void PriceChangedHandler (decimal oldPrice,
 decimal newPrice);
public class Stock
{
 string symbol;
 decimal price;

 public Stock (string symbol) { this.symbol = symbol; }

 public event PriceChangedHandler PriceChanged;

 public decimal Price
 {
 get { return price; }
 set
 {
 if (price == value) return; // Exit if nothing has changed
 decimal oldPrice = price;
 price = value;
 if (PriceChanged != null) // If invocation list not
 PriceChanged (oldPrice, price); // empty, fire event.
 }
 }
}

If we remove the event keyword from our example so that PriceChanged becomes
an ordinary delegate field, our example would give the same results. However,
Stock would be less robust, in that subscribers could do the following things to
interfere with each other:

• Replace other subscribers by reassigning PriceChanged (instead of using the +=
operator).

• Clear all subscribers (by setting PriceChanged to null).
• Broadcast to other subscribers by invoking the delegate.

A
d

vanced
C

#

Events | 137

www.EBooksWorld.ir

WinRT events have slightly different semantics in that attach‐
ing to an event returns a token which is required to detach
from the event. The compiler transparently bridges this gap
(by maintaining an internal dictionary of tokens) so that you
can consume WinRT events as though they were ordinary
CLR events.

Standard Event Pattern
The .NET Framework defines a standard pattern for writing events. Its purpose is to
provide consistency across both Framework and user code. At the core of the stan‐
dard event pattern is System.EventArgs, a predefined Framework class with no
members (other than the static Empty property). EventArgs is a base class for con‐
veying information for an event. In our Stock example, we would subclass Even
tArgs to convey the old and new prices when a PriceChanged event is fired:

public class PriceChangedEventArgs : System.EventArgs
{
 public readonly decimal LastPrice;
 public readonly decimal NewPrice;

 public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)
 {
 LastPrice = lastPrice;
 NewPrice = newPrice;
 }
}

For reusability, the EventArgs subclass is named according to the information it
contains (rather than the event for which it will be used). It typically exposes data as
properties or as read-only fields.

With an EventArgs subclass in place, the next step is to choose or define a delegate
for the event. There are three rules:

• It must have a void return type.

• It must accept two arguments: the first of type object, and the second a sub‐
class of EventArgs. The first argument indicates the event broadcaster, and the
second argument contains the extra information to convey.

• Its name must end with EventHandler.

The Framework defines a generic delegate called System.EventHandler<> that sat‐
isfies these rules:

public delegate void EventHandler<TEventArgs>
 (object source, TEventArgs e) where TEventArgs : EventArgs;

138 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Before generics existed in the language (prior to C# 2.0), we
would have had to instead write a custom delegate as follows:

public delegate void PriceChangedHandler
 (object sender, PriceChangedEventArgs e);

For historical reasons, most events within the Framework use
delegates defined in this way.

The next step is to define an event of the chosen delegate type. Here, we use the
generic EventHandler delegate:

public class Stock
{
 ...
 public event EventHandler<PriceChangedEventArgs> PriceChanged;
}

Finally, the pattern requires that you write a protected virtual method that fires the
event. The name must match the name of the event, prefixed with the word On, and
then accept a single EventArgs argument:

public class Stock
{
 ...

 public event EventHandler<PriceChangedEventArgs> PriceChanged;

 protected virtual void OnPriceChanged (PriceChangedEventArgs e)
 {
 if (PriceChanged != null) PriceChanged (this, e);
 }
}

In multithreaded scenarios (Chapter 14), you need to assign
the delegate to a temporary variable before testing and invok‐
ing it to avoid a thread-safety error:

var temp = PriceChanged;
if (temp != null) temp (this, e);

We can achieve the same functionality without the temp vari‐
able from C# 6 with the null-conditional operator:

PriceChanged?.Invoke (this, e);

Being both thread-safe and succinct, this is now the best gen‐
eral way to invoke events.

This provides a central point from which subclasses can invoke or override the
event (assuming the class is not sealed).

Here’s the complete example:

using System;

public class PriceChangedEventArgs : EventArgs
{
 public readonly decimal LastPrice;

A
d

vanced
C

#

Events | 139

www.EBooksWorld.ir

 public readonly decimal NewPrice;

 public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)
 {
 LastPrice = lastPrice; NewPrice = newPrice;
 }
}

public class Stock
{
 string symbol;
 decimal price;

 public Stock (string symbol) {this.symbol = symbol;}

 public event EventHandler<PriceChangedEventArgs> PriceChanged;

 protected virtual void OnPriceChanged (PriceChangedEventArgs e)
 {
 PriceChanged?.Invoke (this, e);
 }

 public decimal Price
 {
 get { return price; }
 set
 {
 if (price == value) return;
 decimal oldPrice = price;
 price = value;
 OnPriceChanged (new PriceChangedEventArgs (oldPrice, price));
 }
 }
}

class Test
{
 static void Main()
 {
 Stock stock = new Stock ("THPW");
 stock.Price = 27.10M;
 // Register with the PriceChanged event
 stock.PriceChanged += stock_PriceChanged;
 stock.Price = 31.59M;
 }

 static void stock_PriceChanged (object sender, PriceChangedEventArgs e)
 {
 if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)
 Console.WriteLine ("Alert, 10% stock price increase!");
 }
}

140 | Chapter 4: Advanced C#

www.EBooksWorld.ir

The predefined nongeneric EventHandler delegate can be used when an event
doesn’t carry extra information. In this example, we rewrite Stock such that the Pri
ceChanged event is fired after the price changes, and no information about the event
is necessary, other than it happened. We also make use of the EventArgs.Empty
property in order to avoid unnecessarily instantiating an instance of EventArgs.

public class Stock
{
 string symbol;
 decimal price;

 public Stock (string symbol) { this.symbol = symbol; }

 public event EventHandler PriceChanged;

 protected virtual void OnPriceChanged (EventArgs e)
 {
 PriceChanged?.Invoke (this, e);
 }

 public decimal Price
 {
 get { return price; }
 set
 {
 if (price == value) return;
 price = value;
 OnPriceChanged (EventArgs.Empty);
 }
 }
}

Event Accessors
An event’s accessors are the implementations of its += and -= functions. By default,
accessors are implemented implicitly by the compiler. Consider this event declara‐
tion:

public event EventHandler PriceChanged;

The compiler converts this to the following:

• A private delegate field

• A public pair of event accessor functions (add_PriceChanged and remove_Pri
ceChanged), whose implementations forward the += and -= operations to the
private delegate field

You can take over this process by defining explicit event accessors. Here’s a manual
implementation of the PriceChanged event from our previous example:

private EventHandler priceChanged; // Declare a private delegate

public event EventHandler PriceChanged

A
d

vanced
C

#

Events | 141

www.EBooksWorld.ir

{
 add { priceChanged += value; }
 remove { priceChanged -= value; }
}

This example is functionally identical to C#’s default accessor implementation
(except that C# also ensures thread safety around updating the delegate via a lock-
free compare-and-swap algorithm—see http://albahari.com/threading). By defining
event accessors ourselves, we instruct C# not to generate default field and accessor
logic.

With explicit event accessors, you can apply more complex strategies to the storage
and access of the underlying delegate. There are three scenarios where this is useful:

• When the event accessors are merely relays for another class that is broadcast‐
ing the event.

• When the class exposes a large number of events, where most of the time very
few subscribers exist, such as a Windows control. In such cases, it is better to
store the subscriber’s delegate instances in a dictionary, since a dictionary will
contain less storage overhead than dozens of null delegate field references.

• When explicitly implementing an interface that declares an event.

Here is an example that illustrates the last point:

public interface IFoo { event EventHandler Ev; }

class Foo : IFoo
{
 private EventHandler ev;

 event EventHandler IFoo.Ev
 {
 add { ev += value; }
 remove { ev -= value; }
 }
}

The add and remove parts of an event are compiled to add_XXX
and remove_XXX methods.

Event Modifiers
Like methods, events can be virtual, overridden, abstract, or sealed. Events can also
be static:

public class Foo
{
 public static event EventHandler<EventArgs> StaticEvent;
 public virtual event EventHandler<EventArgs> VirtualEvent;
}

142 | Chapter 4: Advanced C#

www.EBooksWorld.ir

http://albahari.com/threading

Lambda Expressions
A lambda expression is an unnamed method written in place of a delegate instance.
The compiler immediately converts the lambda expression to either:

• A delegate instance.

• An expression tree, of type Expression<TDelegate>, representing the code
inside the lambda expression in a traversable object model. This allows the
lambda expression to be interpreted later at runtime (see “Building Query
Expressions” on page 385 in Chapter 8).

Given the following delegate type:

delegate int Transformer (int i);

we could assign and invoke the lambda expression x => x * x as follows:

Transformer sqr = x => x * x;
Console.WriteLine (sqr(3)); // 9

Internally, the compiler resolves lambda expressions of this
type by writing a private method, and moving the expression’s
code into that method.

A lambda expression has the following form:

(parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if there is exactly one
parameter of an inferable type.

In our example, there is a single parameter, x, and the expression is x * x:

x => x * x;

Each parameter of the lambda expression corresponds to a delegate parameter, and
the type of the expression (which may be void) corresponds to the return type of
the delegate.

In our example, x corresponds to parameter i, and the expression x * x corre‐
sponds to the return type int, therefore being compatible with the Transformer
delegate:

delegate int Transformer (int i);

A lambda expression’s code can be a statement block instead of an expression. We
can rewrite our example as follows:

x => { return x * x; };

Lambda expressions are used most commonly with the Func and Action delegates,
so you will most often see our earlier expression written as follows:

Func<int,int> sqr = x => x * x;

A
d

vanced
C

#

Lambda Expressions | 143

www.EBooksWorld.ir

Here’s an example of an expression that accepts two parameters:

Func<string,string,int> totalLength = (s1, s2) => s1.Length + s2.Length;
int total = totalLength ("hello", "world"); // total is 10;

Lambda expressions were introduced in C# 3.0.

Explicitly Specifying Lambda Parameter Types
The compiler can usually infer the type of lambda parameters. When this is not the
case, you must specify the type of each parameter explicitly. Consider the following
two methods:

void Foo<T> (T x) {}
void Bar<T> (Action<T> a) {}

The following code will fail to compile because the compiler cannot infer the type of
x:

Bar (x => Foo (x)); // What type is x?

We can fix this by explicitly specify x’s type as follows:

Bar ((int x) => Foo (x));

This particular example is simple enough that it can be fixed in two other ways:

Bar<int> (x => Foo (x)); // Specify type parameter for Bar
Bar<int> (Foo); // As above, but with method group

Capturing Outer Variables
A lambda expression can reference the local variables and parameters of the method
in which it’s defined (outer variables). For example:

static void Main()
{
 int factor = 2;
 Func<int, int> multiplier = n => n * factor;
 Console.WriteLine (multiplier (3)); // 6
}

Outer variables referenced by a lambda expression are called captured variables. A
lambda expression that captures variables is called a closure.

Captured variables are evaluated when the delegate is actually invoked, not when the
variables were captured:

int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine (multiplier (3)); // 30

144 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Lambda expressions can themselves update captured variables:

int seed = 0;
Func<int> natural = () => seed++;
Console.WriteLine (natural()); // 0
Console.WriteLine (natural()); // 1
Console.WriteLine (seed); // 2

Captured variables have their lifetimes extended to that of the delegate. In the fol‐
lowing example, the local variable seed would ordinarily disappear from scope
when Natural finished executing. But because seed has been captured, its lifetime is
extended to that of the capturing delegate, natural:

static Func<int> Natural()
{
 int seed = 0;
 return () => seed++; // Returns a closure
}

static void Main()
{
 Func<int> natural = Natural();
 Console.WriteLine (natural()); // 0
 Console.WriteLine (natural()); // 1
}

A local variable instantiated within a lambda expression is unique per invocation of
the delegate instance. If we refactor our previous example to instantiate seed within
the lambda expression, we get a different (in this case, undesirable) result:

static Func<int> Natural()
{
 return() => { int seed = 0; return seed++; };
}

static void Main()
{
 Func<int> natural = Natural();
 Console.WriteLine (natural()); // 0
 Console.WriteLine (natural()); // 0
}

Capturing is internally implemented by “hoisting” the cap‐
tured variables into fields of a private class. When the method
is called, the class is instantiated and lifetime-bound to the
delegate instance.

Capturing iteration variables
When you capture the iteration variable of a for loop, C# treats that variable as
though it was declared outside the loop. This means that the same variable is cap‐
tured in each iteration. The following program writes 333 instead of writing 012:

A
d

vanced
C

#

Lambda Expressions | 145

www.EBooksWorld.ir

Action[] actions = new Action[3];

for (int i = 0; i < 3; i++)
 actions [i] = () => Console.Write (i);

foreach (Action a in actions) a(); // 333

Each closure (shown in boldface) captures the same variable, i. (This actually makes
sense when you consider that i is a variable whose value persists between loop itera‐
tions; you can even explicitly change i within the loop body if you want.) The con‐
sequence is that when the delegates are later invoked, each delegate sees i’s value at
the time of invocation—which is 3. We can illustrate this better by expanding the
for loop as follows:

Action[] actions = new Action[3];
int i = 0;
actions[0] = () => Console.Write (i);
i = 1;
actions[1] = () => Console.Write (i);
i = 2;
actions[2] = () => Console.Write (i);
i = 3;
foreach (Action a in actions) a(); // 333

The solution, if we want to write 012, is to assign the iteration variable to a local
variable that’s scoped inside the loop:

Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
{
 int loopScopedi = i;
 actions [i] = () => Console.Write (loopScopedi);
}
foreach (Action a in actions) a(); // 012

Because loopScopedi is freshly created on every iteration, each closure captures a
different variable.

Prior to C# 5.0, foreach loops worked in the same way:
Action[] actions = new Action[3];
int i = 0;

foreach (char c in "abc")
 actions [i++] = () => Console.Write (c);

foreach (Action a in actions) a(); // ccc in C# 4.0

This caused considerable confusion: unlike with a for loop,
the iteration variable in a foreach loop is immutable, and so
one would expect it to be treated as local to the loop body. The
good news is that it’s been fixed since C# 5.0, and the example
above now writes “abc.”

146 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Technically, this is a breaking change because recompiling a
C# 4.0 program in C# 5.0 could create a different result. In
general, the C# team tries to avoid breaking changes; however
in this case, a “break” would almost certainly indicate an
undetected bug in the C# 4.0 program rather than intentional
reliance on the old behavior.

Anonymous Methods
Anonymous methods are a C# 2.0 feature that has been mostly subsumed by C# 3.0
lambda expressions. An anonymous method is like a lambda expression, but it lacks
the following features:

• Implicitly typed parameters.
• Expression syntax (an anonymous method must always be a statement block).

• The ability to compile to an expression tree by assigning to Expression<T>.

To write an anonymous method, you include the delegate keyword followed
(optionally) by a parameter declaration and then a method body. For example, given
this delegate:

delegate int Transformer (int i);

we could write and call an anonymous method as follows:

Transformer sqr = delegate (int x) {return x * x;};
Console.WriteLine (sqr(3)); // 9

The first line is semantically equivalent to the following lambda expression:

Transformer sqr = (int x) => {return x * x;};

or simply:

Transformer sqr = x => x * x;

Anonymous methods capture outer variables in the same way lambda expressions
do.

A unique feature of anonymous methods is that you can omit
the parameter declaration entirely—even if the delegate
expects it. This can be useful in declaring events with a default
empty handler:

public event EventHandler Clicked = delegate { };

This avoids the need for a null check before firing the event.
The following is also legal:

// Notice that we omit the parameters:
Clicked += delegate { Console.WriteLine ("clicked"); };

A
d

vanced
C

#

Anonymous Methods | 147

www.EBooksWorld.ir

try Statements and Exceptions
A try statement specifies a code block subject to error-handling or cleanup code.
The try block must be followed by a catch block, a finally block, or both. The
catch block executes when an error occurs in the try block. The finally block exe‐
cutes after execution leaves the try block (or if present, the catch block) to perform
cleanup code, whether or not an error occurred.

A catch block has access to an Exception object that contains information about
the error. You use a catch block to either compensate for the error or rethrow the
exception. You rethrow an exception if you merely want to log the problem or if you
want to rethrow a new, higher-level exception type.

A finally block adds determinism to your program: the CLR endeavors to always
execute it. It’s useful for cleanup tasks such as closing network connections.

A try statement looks like this:

try
{
 ... // exception may get thrown within execution of this block
}
catch (ExceptionA ex)
{
 ... // handle exception of type ExceptionA
}
catch (ExceptionB ex)
{
 ... // handle exception of type ExceptionB
}
finally
{
 ... // cleanup code
}

Consider the following program:

class Test
{
 static int Calc (int x) => 10 / x;

 static void Main()
 {
 int y = Calc (0);
 Console.WriteLine (y);
 }
}

Because x is zero, the runtime throws a DivideByZeroException, and our program
terminates. We can prevent this by catching the exception as follows:

148 | Chapter 4: Advanced C#

www.EBooksWorld.ir

class Test
{
 static int Calc (int x) => 10 / x;

 static void Main()
 {
 try
 {
 int y = Calc (0);
 Console.WriteLine (y);
 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine ("x cannot be zero");
 }
 Console.WriteLine ("program completed");
 }
}

OUTPUT:
x cannot be zero
program completed

This is a simple example to illustrate exception handling. We
could deal with this particular scenario better in practice by
checking explicitly for the divisor being zero before calling
Calc.
Checking for preventable errors is preferable to relying on
try/catch blocks because exceptions are relatively expensive
to handle, taking hundreds of clock cycles or more.

When an exception is thrown, the CLR performs a test: Is execution currently within
a try statement that can catch the exception?

• If so, execution is passed to the compatible catch block. If the catch block suc‐
cessfully finishes executing, execution moves to the next statement after the try
statement (if present, executing the finally block first).

• If not, execution jumps back to the caller of the function, and the test is
repeated (after executing any finally blocks that wrap the statement).

If no function takes responsibility for the exception, an error dialog box is displayed
to the user, and the program terminates.

The catch Clause
A catch clause specifies what type of exception to catch. This must either be Sys
tem.Exception or a subclass of System.Exception.

Catching System.Exception catches all possible errors. This is useful when:

A
d

vanced
C

#

try Statements and Exceptions | 149

www.EBooksWorld.ir

• Your program can potentially recover regardless of the specific exception type.
• You plan to rethrow the exception (perhaps after logging it).
• Your error handler is the last resort, prior to termination of the program.

More typically, though, you catch specific exception types, in order to avoid having to
deal with circumstances for which your handler wasn’t designed (e.g., an OutOfMe
moryException).

You can handle multiple exception types with multiple catch clauses (again, this
example could be written with explicit argument checking rather than exception
handling):

class Test
{
 static void Main (string[] args)
 {
 try
 {
 byte b = byte.Parse (args[0]);
 Console.WriteLine (b);
 }
 catch (IndexOutOfRangeException ex)
 {
 Console.WriteLine ("Please provide at least one argument");
 }
 catch (FormatException ex)
 {
 Console.WriteLine ("That's not a number!");
 }
 catch (OverflowException ex)
 {
 Console.WriteLine ("You've given me more than a byte!");
 }
 }
}

Only one catch clause executes for a given exception. If you want to include a safety
net to catch more general exceptions (such as System.Exception), you must put the
more specific handlers first.

An exception can be caught without specifying a variable if you don’t need to access
its properties:

catch (OverflowException) // no variable
{
 ...
}

Furthermore, you can omit both the variable and the type (meaning that all excep‐
tions will be caught):

catch { ... }

150 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Exception filters (C# 6)
From C# 6.0, you can specify an exception filter in a catch clause by adding a when
clause:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{
 ...
}

If a WebException is thrown in this example, the Boolean expression following the
when keyword is then evaluated. If the result is false, the catch block in question is
ignored, and any subsequent catch clauses are considered. With exception filters, it
can be meaningful to catch the same exception type again:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{ ... }
catch (WebException ex) when (ex.Status == WebExceptionStatus.SendFailure)
{ ... }

The Boolean expression in the when clause can be side-effecting, such as a method
that logs the exception for diagnostic purposes.

The finally Block
A finally block always executes—whether or not an exception is thrown and
whether or not the try block runs to completion. finally blocks are typically used
for cleanup code.

A finally block executes either:

• After a catch block finishes

• After control leaves the try block because of a jump statement (e.g., return or
goto)

• After the try block ends

The only things that can defeat a finally block are an infinite loop or the process
ending abruptly.

A finally block helps add determinism to a program. In the following example, the
file that we open always gets closed, regardless of whether:

• The try block finishes normally

• Execution returns early because the file is empty (EndOfStream)

• An IOException is thrown while reading the file

static void ReadFile()
{
 StreamReader reader = null; // In System.IO namespace
 try

A
d

vanced
C

#

try Statements and Exceptions | 151

www.EBooksWorld.ir

 {
 reader = File.OpenText ("file.txt");
 if (reader.EndOfStream) return;
 Console.WriteLine (reader.ReadToEnd());
 }
 finally
 {
 if (reader != null) reader.Dispose();
 }
}

In this example, we closed the file by calling Dispose on the StreamReader. Calling
Dispose on an object within a finally block is a standard convention throughout
the .NET Framework and is supported explicitly in C# through the using statement.

The using statement
Many classes encapsulate unmanaged resources, such as file handles, graphics han‐
dles, or database connections. These classes implement System.IDisposable, which
defines a single parameterless method named Dispose to clean up these resources.
The using statement provides an elegant syntax for calling Dispose on an IDisposa
ble object within a finally block.

The following:

using (StreamReader reader = File.OpenText ("file.txt"))
{
 ...
}

is precisely equivalent to:

{
 StreamReader reader = File.OpenText ("file.txt");
 try
 {
 ...
 }
 finally
 {
 if (reader != null)
 ((IDisposable)reader).Dispose();
 }
}

We cover the disposal pattern in more detail in Chapter 12.

Throwing Exceptions
Exceptions can be thrown either by the runtime or in user code. In this example,
Display throws a System.ArgumentNullException:

class Test
{
 static void Display (string name)

152 | Chapter 4: Advanced C#

www.EBooksWorld.ir

 {
 if (name == null)
 throw new ArgumentNullException (nameof (name));

 Console.WriteLine (name);
 }

 static void Main()
 {
 try { Display (null); }
 catch (ArgumentNullException ex)
 {
 Console.WriteLine ("Caught the exception");
 }
 }
}

Rethrowing an exception
You can capture and rethrow an exception as follows:

try { ... }
catch (Exception ex)
{
 // Log error
 ...
 throw; // Rethrow same exception
}

If we replaced throw with throw ex, the example would still
work, but the StackTrace property of the newly propagated
exception would no longer reflect the original error.

Rethrowing in this manner lets you log an error without swallowing it. It also lets
you back out of handling an exception should circumstances turn out to be outside
what you expected:

using System.Net; // (See Chapter 16)
...

string s = null;
using (WebClient wc = new WebClient())
 try { s = wc.DownloadString ("http://www.albahari.com/nutshell/"); }
 catch (WebException ex)
 {
 if (ex.Status == WebExceptionStatus.Timeout)
 Console.WriteLine ("Timeout");
 else
 throw; // Can't handle other sorts of WebException, so rethrow
 }

From C# 6.0, this can be written more tersely with an exception filter:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{

A
d

vanced
C

#

try Statements and Exceptions | 153

www.EBooksWorld.ir

 Console.WriteLine ("Timeout");
}

The other common scenario is to rethrow a more specific exception type. For
example:

try
{
 ... // Parse a DateTime from XML element data
}
catch (FormatException ex)
{
 throw new XmlException ("Invalid DateTime", ex);
}

Notice that when we constructed XmlException, we passed in the original excep‐
tion, ex, as the second argument. This argument populates the InnerException
property of the new exception and aids debugging. Nearly all types of exception
offer a similar constructor.

Rethrowing a less specific exception is something you might do when crossing a
trust boundary so as not to leak technical information to potential hackers.

Key Properties of System.Exception
The most important properties of System.Exception are the following:

StackTrace

A string representing all the methods that are called from the origin of the
exception to the catch block.

Message

A string with a description of the error.

InnerException

The inner exception (if any) that caused the outer exception. This, itself,
may have another InnerException.

All exceptions in C# are runtime exceptions—there is no
equivalent to Java’s compile-time checked exceptions.

Common Exception Types
The following exception types are used widely throughout the CLR and .NET
Framework. You can throw these yourself or use them as base classes for deriving
custom exception types.

System.ArgumentException

Thrown when a function is called with a bogus argument. This generally
indicates a program bug.

154 | Chapter 4: Advanced C#

www.EBooksWorld.ir

System.ArgumentNullException

Subclass of ArgumentException that’s thrown when a function argument is
(unexpectedly) null.

System.ArgumentOutOfRangeException

Subclass of ArgumentException that’s thrown when a (usually numeric)
argument is too big or too small. For example, this is thrown when passing
a negative number into a function that accepts only positive values.

System.InvalidOperationException

Thrown when the state of an object is unsuitable for a method to success‐
fully execute, regardless of any particular argument values. Examples
include reading an unopened file or getting the next element from an enu‐
merator where the underlying list has been modified partway through the
iteration.

System.NotSupportedException

Thrown to indicate that a particular functionality is not supported. A good
example is calling the Add method on a collection for which IsReadOnly
returns true.

System.NotImplementedException

Thrown to indicate that a function has not yet been implemented.

System.ObjectDisposedException

Thrown when the object upon which the function is called has been
disposed.

Another commonly encountered exception type is NullReferenceException. The
CLR throws this exception when you attempt to access a member of an object
whose value is null (indicating a bug in your code). You can throw a NullReferen
ceException directly (for testing purposes) as follows:

throw null;

The TryXXX Method Pattern
When writing a method, you have a choice, when something goes wrong, to return
some kind of failure code or throw an exception. In general, you throw an exception
when the error is outside the normal workflow—or if you expect that the immediate
caller won’t be able to cope with it. Occasionally, though, it can be best to offer both
choices to the consumer. An example of this is the int type, which defines two ver‐
sions of its Parse method:

public int Parse (string input);
public bool TryParse (string input, out int returnValue);

If parsing fails, Parse throws an exception; TryParse returns false.

A
d

vanced
C

#

try Statements and Exceptions | 155

www.EBooksWorld.ir

You can implement this pattern by having the XXX method call the TryXXX method
as follows:

public return-type XXX (input-type input)
{
 return-type returnValue;
 if (!TryXXX (input, out returnValue))
 throw new YYYException (...)
 return returnValue;
}

Alternatives to Exceptions
As with int.TryParse, a function can communicate failure by sending an error
code back to the calling function via a return type or parameter. Although this can
work with simple and predictable failures, it becomes clumsy when extended to all
errors, polluting method signatures and creating unnecessary complexity and clut‐
ter. It also cannot generalize to functions that are not methods, such as operators
(e.g., the division operator) or properties. An alternative is to place the error in a
common place where all functions in the call stack can see it (e.g., a static method
that stores the current error per thread). This, though, requires each function to
participate in an error-propagation pattern that is cumbersome and, ironically, itself
error-prone.

Enumeration and Iterators
Enumeration
An enumerator is a read-only, forward-only cursor over a sequence of values. An
enumerator is an object that implements either of the following interfaces:

• System.Collections.IEnumerator

• System.Collections.Generic.IEnumerator<T>

Technically, any object that has a method named MoveNext
and a property called Current is treated as an enumerator.
This relaxation was introduced in C# 1.0 to avoid the boxing/
unboxing overhead when enumerating value type elements
but was made redundant when generics were introduced in
C# 2.

The foreach statement iterates over an enumerable object. An enumerable object is
the logical representation of a sequence. It is not itself a cursor, but an object that
produces cursors over itself. An enumerable object either:

• Implements IEnumerable or IEnumerable<T>

• Has a method named GetEnumerator that returns an enumerator

156 | Chapter 4: Advanced C#

www.EBooksWorld.ir

IEnumerator and IEnumerable are defined in System.Collec
tions. IEnumerator<T> and IEnumerable<T> are defined in
System.Collections.Generic.

The enumeration pattern is as follows:

class Enumerator // Typically implements IEnumerator or IEnumerator<T>
{
 public IteratorVariableType Current { get {...} }
 public bool MoveNext() {...}
}

class Enumerable // Typically implements IEnumerable or IEnumerable<T>
{
 public Enumerator GetEnumerator() {...}
}

Here is the high-level way of iterating through the characters in the word beer using
a foreach statement:

foreach (char c in "beer")
 Console.WriteLine (c);

Here is the low-level way of iterating through the characters in beer without using a
foreach statement:

using (var enumerator = "beer".GetEnumerator())
 while (enumerator.MoveNext())
 {
 var element = enumerator.Current;
 Console.WriteLine (element);
 }

If the enumerator implements IDisposable, the foreach statement also acts as a
using statement, implicitly disposing the enumerator object.

Chapter 7 explains the enumeration interfaces in further detail.

Collection Initializers
You can instantiate and populate an enumerable object in a single step. For example:

using System.Collections.Generic;
...

List<int> list = new List<int> {1, 2, 3};

The compiler translates this to the following:

using System.Collections.Generic;
...

List<int> list = new List<int>();
list.Add (1);
list.Add (2);
list.Add (3);

A
d

vanced
C

#

Enumeration and Iterators | 157

www.EBooksWorld.ir

This requires that the enumerable object implements the System.Collec

tions.IEnumerable interface and that it has an Add method that has the appropriate
number of parameters for the call. You can similarly initialize dictionaries (see “Dic‐
tionaries” on page 314 in Chapter 4) as follows:

var dict = new Dictionary<int, string>()
{
 { 5, "five" },
 { 10, "ten" }
};

Or, as of C# 6:

var dict = new Dictionary<int, string>()
{
 [3] = "three",
 [10] = "ten"
};

The latter is valid not only with dictionaries, but with any type for which an indexer
exists.

Iterators
Whereas a foreach statement is a consumer of an enumerator, an iterator is a pro‐
ducer of an enumerator. In this example, we use an iterator to return a sequence of
Fibonacci numbers (where each number is the sum of the previous two):

using System;
using System.Collections.Generic;

class Test
{
 static void Main()
 {
 foreach (int fib in Fibs(6))
 Console.Write (fib + " ");
 }

 static IEnumerable<int> Fibs (int fibCount)
 {
 for (int i = 0, prevFib = 1, curFib = 1; i < fibCount; i++)
 {
 yield return prevFib;
 int newFib = prevFib+curFib;
 prevFib = curFib;
 curFib = newFib;
 }
 }
}

OUTPUT: 1 1 2 3 5 8

Whereas a return statement expresses “Here’s the value you asked me to return
from this method,” a yield return statement expresses “Here’s the next element

158 | Chapter 4: Advanced C#

www.EBooksWorld.ir

you asked me to yield from this enumerator.” On each yield statement, control is
returned to the caller, but the callee’s state is maintained so that the method can con‐
tinue executing as soon as the caller enumerates the next element. The lifetime of
this state is bound to the enumerator such that the state can be released when the
caller has finished enumerating.

The compiler converts iterator methods into private classes
that implement IEnumerable<T> and/or IEnumerator<T>. The
logic within the iterator block is “inverted” and spliced into
the MoveNext method and Current property on the compiler-
written enumerator class. This means that when you call an
iterator method, all you’re doing is instantiating the compiler-
written class; none of your code actually runs! Your code runs
only when you start enumerating over the resultant sequence,
typically with a foreach statement.

Iterator Semantics
An iterator is a method, property, or indexer that contains one or more yield state‐
ments. An iterator must return one of the following four interfaces (otherwise, the
compiler will generate an error):

// Enumerable interfaces
System.Collections.IEnumerable
System.Collections.Generic.IEnumerable<T>

// Enumerator interfaces
System.Collections.IEnumerator
System.Collections.Generic.IEnumerator<T>

An iterator has different semantics, depending on whether it returns an enumerable
interface or an enumerator interface. We describe this in Chapter 7.

Multiple yield statements are permitted. For example:

class Test
{
 static void Main()
 {
 foreach (string s in Foo())
 Console.WriteLine(s); // Prints "One","Two","Three"
 }

 static IEnumerable<string> Foo()
 {
 yield return "One";
 yield return "Two";
 yield return "Three";
 }
}

A
d

vanced
C

#

Enumeration and Iterators | 159

www.EBooksWorld.ir

yield break
The yield break statement indicates that the iterator block should exit early
without returning more elements. We can modify Foo as follows to demonstrate:

static IEnumerable<string> Foo (bool breakEarly)
{
 yield return "One";
 yield return "Two";

 if (breakEarly)
 yield break;

 yield return "Three";
}

A return statement is illegal in an iterator block—you must
use a yield break instead.

Iterators and try/catch/finally blocks
A yield return statement cannot appear in a try block that has a catch clause:

IEnumerable<string> Foo()
{
 try { yield return "One"; } // Illegal
 catch { ... }
}

Nor can yield return appear in a catch or finally block. These restrictions are
due to the fact that the compiler must translate iterators into ordinary classes with
MoveNext, Current, and Dispose members, and translating exception handling
blocks would create excessive complexity.

You can, however, yield within a try block that has (only) a finally block:

IEnumerable<string> Foo()
{
 try { yield return "One"; } // OK
 finally { ... }
}

The code in the finally block executes when the consuming enumerator reaches
the end of the sequence or is disposed. A foreach statement implicitly disposes the
enumerator if you break early, making this a safe way to consume enumerators.
When working with enumerators explicitly, a trap is to abandon enumeration early
without disposing it, circumventing the finally block. You can avoid this risk by
wrapping explicit use of enumerators in a using statement:

160 | Chapter 4: Advanced C#

www.EBooksWorld.ir

string firstElement = null;
var sequence = Foo();
using (var enumerator = sequence.GetEnumerator())
 if (enumerator.MoveNext())
 firstElement = enumerator.Current;

Composing Sequences
Iterators are highly composable. We can extend our example, this time to output
even Fibonacci numbers only:

using System;
using System.Collections.Generic;

class Test
{
 static void Main()
 {
 foreach (int fib in EvenNumbersOnly (Fibs(6)))
 Console.WriteLine (fib);
 }

 static IEnumerable<int> Fibs (int fibCount)
 {
 for (int i = 0, prevFib = 1, curFib = 1; i < fibCount; i++)
 {
 yield return prevFib;
 int newFib = prevFib+curFib;
 prevFib = curFib;
 curFib = newFib;
 }
 }

 static IEnumerable<int> EvenNumbersOnly (IEnumerable<int> sequence)
 {
 foreach (int x in sequence)
 if ((x % 2) == 0)
 yield return x;
 }
}

Each element is not calculated until the last moment—when requested by a Move
Next() operation. Figure 4-1 shows the data requests and data output over time.

A
d

vanced
C

#

Enumeration and Iterators | 161

www.EBooksWorld.ir

Figure 4-1. Composing sequences

The composability of the iterator pattern is extremely useful in LINQ; we discuss
the subject again in Chapter 8.

Nullable Types
Reference types can represent a nonexistent value with a null reference. Value types,
however, cannot ordinarily represent null values. For example:

string s = null; // OK, Reference Type
int i = null; // Compile Error, Value Type cannot be null

To represent null in a value type, you must use a special construct called a nullable
type. A nullable type is denoted with a value type followed by the ? symbol:

int? i = null; // OK, Nullable Type
Console.WriteLine (i == null); // True

Nullable<T> struct
T? translates into System.Nullable<T>, which is a lightweight immutable structure,
having only two fields, to represent Value and HasValue. The essence of System.Nul
lable<T> is very simple:

public struct Nullable<T> where T : struct
{
 public T Value {get;}
 public bool HasValue {get;}

162 | Chapter 4: Advanced C#

www.EBooksWorld.ir

 public T GetValueOrDefault();
 public T GetValueOrDefault (T defaultValue);
 ...
}

The code:

int? i = null;
Console.WriteLine (i == null); // True

translates to:

Nullable<int> i = new Nullable<int>();
Console.WriteLine (! i.HasValue); // True

Attempting to retrieve Value when HasValue is false throws an InvalidOperatio
nException. GetValueOrDefault() returns Value if HasValue is true; otherwise, it
returns new T() or a specified custom default value.

The default value of T? is null.

Implicit and explicit nullable conversions
The conversion from T to T? is implicit, and from T? to T is explicit. For example:

int? x = 5; // implicit
int y = (int)x; // explicit

The explicit cast is directly equivalent to calling the nullable object’s Value property.
Hence, an InvalidOperationException is thrown if HasValue is false.

Boxing and unboxing nullable values
When T? is boxed, the boxed value on the heap contains T, not T?. This optimiza‐
tion is possible because a boxed value is a reference type that can already express
null.

C# also permits the unboxing of nullable types with the as operator. The result will
be null if the cast fails:

object o = "string";
int? x = o as int?;
Console.WriteLine (x.HasValue); // False

Operator Lifting
The Nullable<T> struct does not define operators such as <, >, or even ==. Despite
this, the following code compiles and executes correctly:

int? x = 5;
int? y = 10;
bool b = x < y; // true

A
d

vanced
C

#

Nullable Types | 163

www.EBooksWorld.ir

This works because the compiler borrows, or “lifts,” the less-than operator from the
underlying value type. Semantically, it translates the preceding comparison expres‐
sion into this:

bool b = (x.HasValue && y.HasValue) ? (x.Value < y.Value) : false;

In other words, if both x and y have values, it compares via int’s less-than operator;
otherwise, it returns false.

Operator lifting means you can implicitly use T’s operators on T?. You can define
operators for T? in order to provide special-purpose null behavior, but in the vast
majority of cases, it’s best to rely on the compiler automatically applying systematic
nullable logic for you. Here are some examples:

int? x = 5;
int? y = null;

// Equality operator examples
Console.WriteLine (x == y); // False
Console.WriteLine (x == null); // False
Console.WriteLine (x == 5); // True
Console.WriteLine (y == null); // True
Console.WriteLine (y == 5); // False
Console.WriteLine (y != 5); // True

// Relational operator examples
Console.WriteLine (x < 6); // True
Console.WriteLine (y < 6); // False
Console.WriteLine (y > 6); // False

// All other operator examples
Console.WriteLine (x + 5); // 10
Console.WriteLine (x + y); // null (prints empty line)

The compiler performs null logic differently depending on the category of operator.
The following sections explain these different rules.

Equality operators (== and !=)
Lifted equality operators handle nulls just like reference types do. This means two
null values are equal:

Console.WriteLine (null == null); // True
Console.WriteLine ((bool?)null == (bool?)null); // True

Further:

• If exactly one operand is null, the operands are unequal.

• If both operands are non-null, their Values are compared.

164 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Relational operators (<, <=, >=, >)
The relational operators work on the principle that it is meaningless to compare null
operands. This means comparing a null value to either a null or a non-null value
returns false:

bool b = x < y; // Translation:

bool b = (x.HasValue && y.HasValue)
 ? (x.Value < y.Value)
 : false;

// b is false (assuming x is 5 and y is null)

All other operators (+, −, *, /, %, &, |, ^, <<, >>, +, ++, --, !, ~)
These operators return null when any of the operands are null. This pattern should
be familiar to SQL users:

int? c = x + y; // Translation:

int? c = (x.HasValue && y.HasValue)
 ? (int?) (x.Value + y.Value)
 : null;

// c is null (assuming x is 5 and y is null)

An exception is when the & and | operators are applied to bool?, which we will dis‐
cuss shortly.

Mixing nullable and non-nullable operators
You can mix and match nullable and non-nullable types (this works because there is
an implicit conversion from T to T?):

int? a = null;
int b = 2;
int? c = a + b; // c is null - equivalent to a + (int?)b

bool? with & and | Operators
When supplied operands of type bool? the & and | operators treat null as an
unknown value. So, null | true is true, because:

• If the unknown value is false, the result would be true.
• If the unknown value is true, the result would be true.

Similarly, null & false is false. This behavior would be familiar to SQL users. The
following example enumerates other combinations:

bool? n = null;
bool? f = false;
bool? t = true;

A
d

vanced
C

#

Nullable Types | 165

www.EBooksWorld.ir

Console.WriteLine (n | n); // (null)
Console.WriteLine (n | f); // (null)
Console.WriteLine (n | t); // True
Console.WriteLine (n & n); // (null)
Console.WriteLine (n & f); // False
Console.WriteLine (n & t); // (null)

Nullable Types & Null Operators
Nullable types work particularly well with the ?? operator (see “Null-Coalescing
Operator” on page 55) in Chapter 2. For example:

int? x = null;
int y = x ?? 5; // y is 5

int? a = null, b = 1, c = 2;
Console.WriteLine (a ?? b ?? c); // 1 (first non-null value)

Using ?? on a nullable value type is equivalent to calling GetValueOrDefault with
an explicit default value, except that the expression for the default value is never
evaluated if the variable is not null.

Nullable types also work well with the null-conditional operator (see “Null-
conditional operator (C# 6)” on page 55 in Chapter 2). In the following example,
length evaluates to null:

System.Text.StringBuilder sb = null;
int? length = sb?.ToString().Length;

We can combine this with the null-coalescing operator to evaluate to zero instead of
null:

int length = sb?.ToString().Length ?? 0; // Evaluates to 0 if sb is null

Scenarios for Nullable Types
One of the most common scenarios for nullable types is to represent unknown val‐
ues. This frequently occurs in database programming, where a class is mapped to a
table with nullable columns. If these columns are strings (e.g., an EmailAddress col‐
umn on a Customer table), there is no problem, as string is a reference type in the
CLR, which can be null. However, most other SQL column types map to CLR struct
types, making nullable types very useful when mapping SQL to the CLR. For exam‐
ple:

// Maps to a Customer table in a database
public class Customer
{
 ...
 public decimal? AccountBalance;
}

166 | Chapter 4: Advanced C#

www.EBooksWorld.ir

A nullable type can also be used to represent the backing field of what’s sometimes
called an ambient property. An ambient property, if null, returns the value of its par‐
ent. For example:

public class Row
{
 ...
 Grid parent;
 Color? color;

 public Color Color
 {
 get { return color ?? parent.Color; }
 set { color = value == parent.Color ? (Color?)null : value; }
 }
}

Alternatives to Nullable Types
Before nullable types were part of the C# language (i.e., before C# 2.0), there were
many strategies to deal with nullable value types, examples of which still appear in
the .NET Framework for historical reasons. One of these strategies is to designate a
particular non-null value as the “null value”; an example is in the string and array
classes. String.IndexOf returns the magic value of −1 when the character is not
found:

int i = "Pink".IndexOf ('b');
Console.WriteLine (i); // −1

However, Array.IndexOf returns −1 only if the index is 0-bounded. The more gen‐
eral formula is that IndexOf returns 1 less than the lower bound of the array. In the
next example, IndexOf returns 0 when an element is not found:

// Create an array whose lower bound is 1 instead of 0:

Array a = Array.CreateInstance (typeof (string),
 new int[] {2}, new int[] {1});
a.SetValue ("a", 1);
a.SetValue ("b", 2);
Console.WriteLine (Array.IndexOf (a, "c")); // 0

Nominating a “magic value” is problematic for several reasons:

• It means that each value type has a different representation of null. In contrast,
nullable types provide one common pattern that works for all value types.

• There may be no reasonable designated value. In the previous example, −1
could not always be used. The same is true for our earlier example representing
an unknown account balance.

A
d

vanced
C

#

Nullable Types | 167

www.EBooksWorld.ir

• Forgetting to test for the magic value results in an incorrect value that may go
unnoticed until later in execution—when it pulls an unintended magic trick.
Forgetting to test HasValue on a null value, however, throws an InvalidOpera
tionException on the spot.

• The ability for a value to be null is not captured in the type. Types communi‐
cate the intention of a program, allow the compiler to check for correctness,
and enable a consistent set of rules enforced by the compiler.

Operator Overloading
Operators can be overloaded to provide more natural syntax for custom types.
Operator overloading is most appropriately used for implementing custom structs
that represent fairly primitive data types. For example, a custom numeric type is an
excellent candidate for operator overloading.

The following symbolic operators can be overloaded:

+ (unary) - (unary) ! ~ ++

-- + - * /

% & | ^ <<

>> == != > <

>= <=

The following operators are also overloadable:

• Implicit and explicit conversions (with the implicit and explicit keywords)

• The true and false operators (not literals).

The following operators are indirectly overloaded:

• The compound assignment operators (e.g., +=, /=) are implicitly overridden by
overriding the noncompound operators (e.g., +, /).

• The conditional operators && and || are implicitly overridden by overriding
the bitwise operators & and |.

Operator Functions
An operator is overloaded by declaring an operator function. An operator function
has the following rules:

• The name of the function is specified with the operator keyword followed by
an operator symbol.

168 | Chapter 4: Advanced C#

www.EBooksWorld.ir

• The operator function must be marked static and public.
• The parameters of the operator function represent the operands.
• The return type of an operator function represents the result of an expression.
• At least one of the operands must be the type in which the operator function is

declared.

In the following example, we define a struct called Note representing a musical note
and then overload the + operator:

public struct Note
{
 int value;
 public Note (int semitonesFromA) { value = semitonesFromA; }
 public static Note operator + (Note x, int semitones)
 {
 return new Note (x.value + semitones);
 }
}

This overload allows us to add an int to a Note:

Note B = new Note (2);
Note CSharp = B + 2;

Overloading an operator automatically overloads the corresponding compound
assignment operator. In our example, since we overrode +, we can use += too:

CSharp += 2;

Just as with methods and properties, C# 6 allows operator functions comprising a
single expression to be written more tersely with expression-bodied syntax:

public static Note operator + (Note x, int semitones)
 => new Note (x.value + semitones);

Overloading Equality and Comparison Operators
Equality and comparison operators are sometimes overridden when writing structs
and in rare cases, when writing classes. Special rules and obligations come with
overloading the equality and comparison operators, which we explain in Chapter 6.
A summary of these rules is as follows:

Pairing
The C# compiler enforces operators that are logical pairs to both be
defined. These operators are (== !=), (< >), and (<= >=).

Equals and GetHashCode
In most cases, if you overload (==) and (!=), you will usually need to over‐
ride the Equals and GetHashCode methods defined on object in order to
get meaningful behavior. The C# compiler will give a warning if you do not

A
d

vanced
C

#

Operator Overloading | 169

www.EBooksWorld.ir

do this. (See “Equality Comparison” on page 267 in Chapter 6 for more
details.)

IComparable and IComparable<T>
If you overload (< >) and (<= >=), you should implement IComparable and
IComparable<T>.

Custom Implicit and Explicit Conversions
Implicit and explicit conversions are overloadable operators. These conversions are
typically overloaded to make converting between strongly related types (such as
numeric types) concise and natural.

To convert between weakly related types, the following strategies are more suitable:

• Write a constructor that has a parameter of the type to convert from.

• Write ToXXX and (static) FromXXX methods to convert between types.

As explained in the discussion on types, the rationale behind implicit conversions is
that they are guaranteed to succeed and not lose information during the conversion.
Conversely, an explicit conversion should be required either when runtime circum‐
stances will determine whether the conversion will succeed or if information may be
lost during the conversion.

In this example, we define conversions between our musical Note type and a double
(which represents the frequency in hertz of that note):

...
// Convert to hertz
public static implicit operator double (Note x)
 => 440 * Math.Pow (2, (double) x.value / 12);

// Convert from hertz (accurate to the nearest semitone)
public static explicit operator Note (double x)
 => new Note ((int) (0.5 + 12 * (Math.Log (x/440) / Math.Log(2))));
...

Note n = (Note)554.37; // explicit conversion
double x = n; // implicit conversion

Following our own guidelines, this example might be better
implemented with a ToFrequency method (and a static From
Frequency method) instead of implicit and explicit operators.

Custom conversions are ignored by the as and is operators:
Console.WriteLine (554.37 is Note); // False
Note n = 554.37 as Note; // Error

170 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Overloading true and false
The true and false operators are overloaded in the extremely rare case of types
that are Boolean “in spirit” but do not have a conversion to bool. An example is a
type that implements three-state logic: by overloading true and false, such a type
can work seamlessly with conditional statements and operators—namely, if, do,
while, for, &&, ||, and ?:. The System.Data.SqlTypes.SqlBoolean struct provides
this functionality. For example:

SqlBoolean a = SqlBoolean.Null;
if (a)
 Console.WriteLine ("True");
else if (!a)
 Console.WriteLine ("False");
else
 Console.WriteLine ("Null");

OUTPUT:
Null

The following code is a reimplementation of the parts of SqlBoolean necessary to
demonstrate the true and false operators:

public struct SqlBoolean
{
 public static bool operator true (SqlBoolean x)
 => x.m_value == True.m_value;

 public static bool operator false (SqlBoolean x)
 => x.m_value == False.m_value;

 public static SqlBoolean operator ! (SqlBoolean x)
 {
 if (x.m_value == Null.m_value) return Null;
 if (x.m_value == False.m_value) return True;
 return False;
 }

 public static readonly SqlBoolean Null = new SqlBoolean(0);
 public static readonly SqlBoolean False = new SqlBoolean(1);
 public static readonly SqlBoolean True = new SqlBoolean(2);

 private SqlBoolean (byte value) { m_value = value; }
 private byte m_value;
}

Extension Methods
Extension methods allow an existing type to be extended with new methods without
altering the definition of the original type. An extension method is a static method
of a static class, where the this modifier is applied to the first parameter. The type
of the first parameter will be the type that is extended. For example:

A
d

vanced
C

#

Extension Methods | 171

www.EBooksWorld.ir

public static class StringHelper
{
 public static bool IsCapitalized (this string s)
 {
 if (string.IsNullOrEmpty(s)) return false;
 return char.IsUpper (s[0]);
 }
}

The IsCapitalized extension method can be called as though it were an instance
method on a string, as follows:

Console.WriteLine ("Perth".IsCapitalized());

An extension method call, when compiled, is translated back into an ordinary static
method call:

Console.WriteLine (StringHelper.IsCapitalized ("Perth"));

The translation works as follows:

arg0.Method (arg1, arg2, ...); // Extension method call
StaticClass.Method (arg0, arg1, arg2, ...); // Static method call

Interfaces can be extended, too:

public static T First<T> (this IEnumerable<T> sequence)
{
 foreach (T element in sequence)
 return element;

 throw new InvalidOperationException ("No elements!");
}
...
Console.WriteLine ("Seattle".First()); // S

Extension methods were added in C# 3.0.

Extension Method Chaining
Extension methods, like instance methods, provide a tidy way to chain functions.
Consider the following two functions:

public static class StringHelper
{
 public static string Pluralize (this string s) {...}
 public static string Capitalize (this string s) {...}
}

x and y are equivalent and both evaluate to "Sausages", but x uses extension meth‐
ods, whereas y uses static methods:

string x = "sausage".Pluralize().Capitalize();
string y = StringHelper.Capitalize (StringHelper.Pluralize ("sausage"));

172 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Ambiguity and Resolution

Namespaces
An extension method cannot be accessed unless its class is in scope, typically by its
namespace being imported. Consider the extension method IsCapitalized in the
following example:

using System;

namespace Utils
{
 public static class StringHelper
 {
 public static bool IsCapitalized (this string s)
 {
 if (string.IsNullOrEmpty(s)) return false;
 return char.IsUpper (s[0]);
 }
 }
}

To use IsCapitalized, the following application must import Utils in order to
avoid a compile-time error:

namespace MyApp
{
 using Utils;

 class Test
 {
 static void Main() => Console.WriteLine ("Perth".IsCapitalized());
 }
}

Extension methods versus instance methods
Any compatible instance method will always take precedence over an extension
method. In the following example, Test’s Foo method will always take precedence—
even when called with an argument x of type int:

class Test
{
 public void Foo (object x) { } // This method always wins
}

static class Extensions
{
 public static void Foo (this Test t, int x) { }
}

The only way to call the extension method in this case is via normal static syntax; in
other words, Extensions.Foo(...).

A
d

vanced
C

#

Extension Methods | 173

www.EBooksWorld.ir

Extension methods versus extension methods
If two extension methods have the same signature, the extension method must be
called as an ordinary static method to disambiguate the method to call. If one exten‐
sion method has more specific arguments, however, the more specific method takes
precedence.

To illustrate, consider the following two classes:

static class StringHelper
{
 public static bool IsCapitalized (this string s) {...}
}
static class ObjectHelper
{
 public static bool IsCapitalized (this object s) {...}
}

The following code calls StringHelper’s IsCapitalized method:

bool test1 = "Perth".IsCapitalized();

Classes and structs are considered more specific than interfaces.

Anonymous Types
An anonymous type is a simple class created by the compiler on the fly to store a set
of values. To create an anonymous type, use the new keyword followed by an object
initializer, specifying the properties and values the type will contain. For example:

var dude = new { Name = "Bob", Age = 23 };

The compiler translates this to (approximately) the following:

internal class AnonymousGeneratedTypeName
{
 private string name; // Actual field name is irrelevant
 private int age; // Actual field name is irrelevant

 public AnonymousGeneratedTypeName (string name, int age)
 {
 this.name = name; this.age = age;
 }

 public string Name { get { return name; } }
 public int Age { get { return age; } }

 // The Equals and GetHashCode methods are overridden (see Chapter 6).
 // The ToString method is also overridden.
}
...

var dude = new AnonymousGeneratedTypeName ("Bob", 23);

174 | Chapter 4: Advanced C#

www.EBooksWorld.ir

You must use the var keyword to reference an anonymous type because it doesn’t
have a name.

The property name of an anonymous type can be inferred from an expression that
is itself an identifier (or ends with one). For example:

int Age = 23;
var dude = new { Name = "Bob", Age, Age.ToString().Length };

is equivalent to:

var dude = new { Name = "Bob", Age = Age, Length = Age.ToString().Length };

Two anonymous type instances declared within the same assembly will have the
same underlying type if their elements are named and typed identically:

var a1 = new { X = 2, Y = 4 };
var a2 = new { X = 2, Y = 4 };
Console.WriteLine (a1.GetType() == a2.GetType()); // True

Additionally, the Equals method is overridden to perform equality comparisons:

Console.WriteLine (a1 == a2); // False
Console.WriteLine (a1.Equals (a2)); // True

You can create arrays of anonymous types as follows:

var dudes = new[]
{
 new { Name = "Bob", Age = 30 },
 new { Name = "Tom", Age = 40 }
};

Anonymous types are used primarily when writing LINQ queries (see Chapter 8),
and were added in C# 3.0.

Dynamic Binding
Dynamic binding defers binding—the process of resolving types, members, and
operations—from compile time to runtime. Dynamic binding is useful when at
compile time you know that a certain function, member, or operation exists, but the
compiler does not. This commonly occurs when you are interoperating with
dynamic languages (such as IronPython) and COM and in scenarios when you
might otherwise use reflection.

A dynamic type is declared with the contextual keyword dynamic:

dynamic d = GetSomeObject();
d.Quack();

A dynamic type tells the compiler to relax. We expect the runtime type of d to have a
Quack method. We just can’t prove it statically. Since d is dynamic, the compiler
defers binding Quack to d until runtime. To understand what this means requires
distinguishing between static binding and dynamic binding.

A
d

vanced
C

#

Dynamic Binding | 175

www.EBooksWorld.ir

Static Binding Versus Dynamic Binding
The canonical binding example is mapping a name to a specific function when
compiling an expression. To compile the following expression, the compiler needs
to find the implementation of the method named Quack:

d.Quack();

Let’s suppose the static type of d is Duck:

Duck d = ...
d.Quack();

In the simplest case, the compiler does the binding by looking for a parameterless
method named Quack on Duck. Failing that, the compiler extends its search to meth‐
ods taking optional parameters, methods on base classes of Duck, and extension
methods that take Duck as its first parameter. If no match is found, you’ll get a com‐
pilation error. Regardless of what method gets bound, the bottom line is that the
binding is done by the compiler, and the binding utterly depends on statically
knowing the types of the operands (in this case, d). This makes it static binding.

Now let’s change the static type of d to object:

object d = ...
d.Quack();

Calling Quack gives us a compilation error, because although the value stored in d
can contain a method called Quack, the compiler cannot know it since the only
information it has is the type of the variable, which in this case is object. But let’s
now change the static type of d to dynamic:

dynamic d = ...
d.Quack();

A dynamic type is like object—it’s equally nondescriptive about a type. The differ‐
ence is that it lets you use it in ways that aren’t known at compile time. A dynamic
object binds at runtime based on its runtime type, not its compile-time type. When
the compiler sees a dynamically bound expression (which in general is an expres‐
sion that contains any value of type dynamic), it merely packages up the expression
such that the binding can be done later at runtime.

At runtime, if a dynamic object implements IDynamicMetaObjectProvider, that
interface is used to perform the binding. If not, binding occurs in almost the same
way as it would have had the compiler known the dynamic object’s runtime type.
These two alternatives are called custom binding and language binding.

COM interop can be considered to use a third kind of
dynamic binding (see Chapter 25).

176 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Custom Binding
Custom binding occurs when a dynamic object implements IDynamicMetaObject
Provider (IDMOP). Although you can implement IDMOP on types that you write
in C#, and that is useful to do, the more common case is that you have acquired an
IDMOP object from a dynamic language that is implemented in .NET on the DLR,
such as IronPython or IronRuby. Objects from those languages implicitly imple‐
ment IDMOP as a means by which to directly control the meanings of operations
performed on them.

We will discuss custom binders in greater detail in Chapter 20, but we will write a
simple one now to demonstrate the feature:

using System;
using System.Dynamic;

public class Test
{
 static void Main()
 {
 dynamic d = new Duck();
 d.Quack(); // Quack method was called
 d.Waddle(); // Waddle method was called
 }
}

public class Duck : DynamicObject
{
 public override bool TryInvokeMember (
 InvokeMemberBinder binder, object[] args, out object result)
 {
 Console.WriteLine (binder.Name + " method was called");
 result = null;
 return true;
 }
}

The Duck class doesn’t actually have a Quack method. Instead, it uses custom bind‐
ing to intercept and interpret all method calls.

Language Binding
Language binding occurs when a dynamic object does not implement IDynamicMe
taObjectProvider. Language binding is useful when working around imperfectly
designed types or inherent limitations in the .NET type system (we’ll explore more
scenarios in Chapter 20). A typical problem when using numeric types is that they
have no common interface. We have seen that methods can be bound dynamically;
the same is true for operators:

A
d

vanced
C

#

Dynamic Binding | 177

www.EBooksWorld.ir

static dynamic Mean (dynamic x, dynamic y) => (x + y) / 2;

static void Main()
{
 int x = 3, y = 4;
 Console.WriteLine (Mean (x, y));
}

The benefit is obvious—you don’t have to duplicate code for each numeric type.
However, you lose static type safety, risking runtime exceptions rather than
compile-time errors.

Dynamic binding circumvents static type safety, but not run‐
time type safety. Unlike with reflection (Chapter 19), you can’t
circumvent member accessibility rules with dynamic binding.

By design, language runtime binding behaves as similarly as possible to static bind‐
ing, had the runtime types of the dynamic objects been known at compile time. In
our previous example, the behavior of our program would be identical if we hardco‐
ded Mean to work with the int type. The most notable exception in parity between
static and dynamic binding is for extension methods, which we discuss in “Uncalla‐
ble Functions” on page 182.

Dynamic binding also incurs a performance hit. Because of
the DLR’s caching mechanisms, however, repeated calls to the
same dynamic expression are optimized—allowing you to effi‐
ciently call dynamic expressions in a loop. This optimization
brings the typical overhead for a simple dynamic expression
on today’s hardware down to less than 100 ns.

RuntimeBinderException
If a member fails to bind, a RuntimeBinderException is thrown. You can think of
this like a compile-time error at runtime:

dynamic d = 5;
d.Hello(); // throws RuntimeBinderException

The exception is thrown because the int type has no Hello method.

Runtime Representation of Dynamic
There is a deep equivalence between the dynamic and object types. The runtime
treats the following expression as true:

typeof (dynamic) == typeof (object)

This principle extends to constructed types and array types:

typeof (List<dynamic>) == typeof (List<object>)
typeof (dynamic[]) == typeof (object[])

Like an object reference, a dynamic reference can point to an object of any type
(except pointer types):

178 | Chapter 4: Advanced C#

www.EBooksWorld.ir

dynamic x = "hello";
Console.WriteLine (x.GetType().Name); // String
x = 123; // No error (despite same variable)
Console.WriteLine (x.GetType().Name); // Int32

Structurally, there is no difference between an object reference and a dynamic refer‐
ence. A dynamic reference simply enables dynamic operations on the object it
points to. You can convert from object to dynamic to perform any dynamic opera‐
tion you want on an object:

object o = new System.Text.StringBuilder();
dynamic d = o;
d.Append ("hello");
Console.WriteLine (o); // hello

Reflecting on a type exposing (public) dynamic members
reveals that those members are represented as annotated
objects. For example:

public class Test
{
 public dynamic Foo;
}

is equivalent to:
public class Test
{
 [System.Runtime.CompilerServices.DynamicAttribute]
 public object Foo;
}

This allows consumers of that type to know that Foo should be
treated as dynamic, while allowing languages that don’t sup‐
port dynamic binding to fall back to object.

Dynamic Conversions
The dynamic type has implicit conversions to and from all other types:

int i = 7;
dynamic d = i;
long j = d; // No cast required (implicit conversion)

For the conversion to succeed, the runtime type of the dynamic object must be
implicitly convertible to the target static type. The preceding example worked
because an int is implicitly convertible to a long.

The following example throws a RuntimeBinderException because an int is not
implicitly convertible to a short:

int i = 7;
dynamic d = i;
short j = d; // throws RuntimeBinderException

A
d

vanced
C

#

Dynamic Binding | 179

www.EBooksWorld.ir

var Versus dynamic
The var and dynamic types bear a superficial resemblance, but the difference is
deep:

• var says, “Let the compiler figure out the type.”

• dynamic says, “Let the runtime figure out the type.”

To illustrate:

dynamic x = "hello"; // Static type is dynamic, runtime type is string
var y = "hello"; // Static type is string, runtime type is string
int i = x; // Runtime error (cannot convert string to int)
int j = y; // Compile-time error (cannot convert string to int)

The static type of a variable declared with var can be dynamic:

dynamic x = "hello";
var y = x; // Static type of y is dynamic
int z = y; // Runtime error (cannot convert string to int)

Dynamic Expressions
Fields, properties, methods, events, constructors, indexers, operators, and conver‐
sions can all be called dynamically.

Trying to consume the result of a dynamic expression with a void return type is
prohibited—just as with a statically typed expression. The difference is that the
error occurs at runtime:

dynamic list = new List<int>();
var result = list.Add (5); // RuntimeBinderException thrown

Expressions involving dynamic operands are typically themselves dynamic, since
the effect of absent type information is cascading:

dynamic x = 2;
var y = x * 3; // Static type of y is dynamic

There are a couple of obvious exceptions to this rule. First, casting a dynamic
expression to a static type yields a static expression:

dynamic x = 2;
var y = (int)x; // Static type of y is int

Second, constructor invocations always yield static expressions—even when called
with dynamic arguments. In this example, x is statically typed to a StringBuilder:

dynamic capacity = 10;
var x = new System.Text.StringBuilder (capacity);

In addition, there are a few edge cases where an expression containing a dynamic
argument is static, including passing an index to an array and delegate creation
expressions.

180 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Dynamic Calls Without Dynamic Receivers
The canonical use case for dynamic involves a dynamic receiver. This means that a
dynamic object is the receiver of a dynamic function call:

dynamic x = ...;
x.Foo(); // x is the receiver

However, you can also call statically known functions with dynamic arguments.
Such calls are subject to dynamic overload resolution and can include:

• Static methods
• Instance constructors
• Instance methods on receivers with a statically known type

In the following example, the particular Foo that gets dynamically bound is depen‐
dent on the runtime type of the dynamic argument:

class Program
{
 static void Foo (int x) { Console.WriteLine ("1"); }
 static void Foo (string x) { Console.WriteLine ("2"); }

 static void Main()
 {
 dynamic x = 5;
 dynamic y = "watermelon";

 Foo (x); // 1
 Foo (y); // 2
 }
}

Because a dynamic receiver is not involved, the compiler can statically perform a
basic check to see whether the dynamic call will succeed. It checks that a function
with the right name and number of parameters exists. If no candidate is found, you
get a compile-time error. For example:

class Program
{
 static void Foo (int x) { Console.WriteLine ("1"); }
 static void Foo (string x) { Console.WriteLine ("2"); }

 static void Main()
 {
 dynamic x = 5;
 Foo (x, x); // Compiler error - wrong number of parameters
 Fook (x); // Compiler error - no such method name
 }
}

A
d

vanced
C

#

Dynamic Binding | 181

www.EBooksWorld.ir

Static Types in Dynamic Expressions
It’s obvious that dynamic types are used in dynamic binding. It’s not so obvious that
static types are also used—wherever possible—in dynamic binding. Consider the
following:

class Program
{
 static void Foo (object x, object y) { Console.WriteLine ("oo"); }
 static void Foo (object x, string y) { Console.WriteLine ("os"); }
 static void Foo (string x, object y) { Console.WriteLine ("so"); }
 static void Foo (string x, string y) { Console.WriteLine ("ss"); }

 static void Main()
 {
 object o = "hello";
 dynamic d = "goodbye";
 Foo (o, d); // os
 }
}

The call to Foo(o,d) is dynamically bound because one of its arguments, d, is
dynamic. But since o is statically known, the binding—even though it occurs
dynamically—will make use of that. In this case, overload resolution will pick the
second implementation of Foo due to the static type of o and the runtime type of d.
In other words, the compiler is “as static as it can possibly be.”

Uncallable Functions
Some functions cannot be called dynamically. You cannot call:

• Extension methods (via extension method syntax)
• Members of an interface, if you need to cast to that interface to do so
• Base members hidden by a subclass

Understanding why this is so is useful in understanding dynamic binding.

Dynamic binding requires two pieces of information: the name of the function to
call, and the object upon which to call the function. However, in each of the three
uncallable scenarios, an additional type is involved, which is known only at compile
time. As of C# 6, there’s no way to specify these additional types dynamically.

When calling extension methods, that additional type is implicit. It’s the static class
on which the extension method is defined. The compiler searches for it given the
using directives in your source code. This makes extension methods compile-time-
only concepts, since using directives melt away upon compilation (after they’ve
done their job in the binding process in mapping simple names to namespace-
qualified names).

182 | Chapter 4: Advanced C#

www.EBooksWorld.ir

When calling members via an interface, you specify that additional type via an
implicit or explicit cast. There are two scenarios where you might want to do this:
when calling explicitly implemented interface members and when calling interface
members implemented in a type internal to another assembly. We can illustrate the
former with the following two types:

interface IFoo { void Test(); }
class Foo : IFoo { void IFoo.Test() {} }

To call the Test method, we must cast to the IFoo interface. This is easy with static
typing:

IFoo f = new Foo(); // Implicit cast to interface
f.Test();

Now consider the situation with dynamic typing:

IFoo f = new Foo();
dynamic d = f;
d.Test(); // Exception thrown

The implicit cast shown in bold tells the compiler to bind subsequent member calls
on f to IFoo rather than Foo—in other words, to view that object through the lens
of the IFoo interface. However, that lens is lost at runtime, so the DLR cannot com‐
plete the binding. The loss is illustrated as follows:

Console.WriteLine (f.GetType().Name); // Foo

A similar situation arises when calling a hidden base member: you must specify an
additional type via either a cast or the base keyword—and that additional type is
lost at runtime.

Attributes
You’re already familiar with the notion of attributing code elements of a program
with modifiers, such as virtual or ref. These constructs are built into the language.
Attributes are an extensible mechanism for adding custom information to code ele‐
ments (assemblies, types, members, return values, parameters, and generic type
parameters). This extensibility is useful for services that integrate deeply into the
type system, without requiring special keywords or constructs in the C# language.

A good scenario for attributes is serialization—the process of converting arbitrary
objects to and from a particular format. In this scenario, an attribute on a field can
specify the translation between C#’s representation of the field and the format’s rep‐
resentation of the field.

Attribute Classes
An attribute is defined by a class that inherits (directly or indirectly) from the
abstract class System.Attribute. To attach an attribute to a code element, specify
the attribute’s type name in square brackets, before the code element. For example,
the following attaches the ObsoleteAttribute to the Foo class:

A
d

vanced
C

#

Attributes | 183

www.EBooksWorld.ir

[ObsoleteAttribute]
public class Foo {...}

This attribute is recognized by the compiler and will cause compiler warnings if a
type or member marked obsolete is referenced. By convention, all attribute types
end in the word Attribute. C# recognizes this and allows you to omit the suffix when
attaching an attribute:

[Obsolete]
public class Foo {...}

ObsoleteAttribute is a type declared in the System namespace as follows (simpli‐
fied for brevity):

public sealed class ObsoleteAttribute : Attribute {...}

The C# language and the .NET Framework include a number of predefined
attributes. We describe how to write your own attributes in Chapter 19.

Named and Positional Attribute Parameters
Attributes may have parameters. In the following example, we apply XmlElementAt
tribute to a class. This attribute tells XML serializer (in System.Xml.Serializa
tion) how an object is represented in XML and accepts several attribute parameters.
The following attribute maps the CustomerEntity class to an XML element named
Customer, belonging to the http://oreilly.com namespace:

[XmlElement ("Customer", Namespace="http://oreilly.com")]
public class CustomerEntity { ... }

Attribute parameters fall into one of two categories: positional or named. In the pre‐
ceding example, the first argument is a positional parameter; the second is a named
parameter. Positional parameters correspond to parameters of the attribute type’s
public constructors. Named parameters correspond to public fields or public prop‐
erties on the attribute type.

When specifying an attribute, you must include positional parameters that corre‐
spond to one of the attribute’s constructors. Named parameters are optional.

In Chapter 19, we describe the valid parameter types and rules for their evaluation.

Attribute Targets
Implicitly, the target of an attribute is the code element it immediately precedes,
which is typically a type or type member. You can also attach attributes, however, to
an assembly. This requires that you explicitly specify the attribute’s target.

Here is an example of using the CLSCompliant attribute to specify CLS compliance
for an entire assembly:

[assembly:CLSCompliant(true)]

184 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Specifying Multiple Attributes
Multiple attributes can be specified for a single code element. Each attribute can be
listed either within the same pair of square brackets (separated by a comma) or in
separate pairs of square brackets (or a combination of the two). The following three
examples are semantically identical:

[Serializable, Obsolete, CLSCompliant(false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant(false)]
public class Bar {...}

[Serializable, Obsolete]
[CLSCompliant(false)]
public class Bar {...}

Caller Info Attributes (C# 5)
From C# 5, you can tag optional parameters with one of three caller info attributes,
which instruct the compiler to feed information obtained from the caller’s source
code into the parameter’s default value:

• [CallerMemberName] applies the caller’s member name

• [CallerFilePath] applies the path to caller’s source code file

• [CallerLineNumber] applies the line number in caller’s source code file

The Foo method in the following program demonstrates all three:

using System;
using System.Runtime.CompilerServices;

class Program
{
 static void Main() => Foo();

 static void Foo (
 [CallerMemberName] string memberName = null,
 [CallerFilePath] string filePath = null,
 [CallerLineNumber] int lineNumber = 0)
 {
 Console.WriteLine (memberName);
 Console.WriteLine (filePath);
 Console.WriteLine (lineNumber);
 }
}

Assuming our program resides in c:\source\test\Program.cs, the output would
be:

A
d

vanced
C

#

Caller Info Attributes (C# 5) | 185

www.EBooksWorld.ir

Main
c:\source\test\Program.cs
6

As with standard optional parameters, the substitution is done at the calling site.
Hence, our Main method is syntactic sugar for this:

static void Main() => Foo ("Main", @"c:\source\test\Program.cs", 6);

Caller info attributes are useful for logging—and for implementing patterns such as
firing a single change notification event whenever any property on an object
changes. In fact, there’s a standard interface in the .NET Framework for this called
INotifyPropertyChanged (in System.ComponentModel):

public interface INotifyPropertyChanged
{
 event PropertyChangedEventHandler PropertyChanged;
}

public delegate void PropertyChangedEventHandler
 (object sender, PropertyChangedEventArgs e);

public class PropertyChangedEventArgs : EventArgs
{
 public PropertyChangedEventArgs (string propertyName);
 public virtual string PropertyName { get; }
}

Notice that PropertyChangedEventArgs requires the name of the property that
changed. By applying the [CallerMemberName] attribute, however, we can imple‐
ment this interface and invoke the event without ever specifying property names:

public class Foo : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged = delegate { };

 void RaisePropertyChanged ([CallerMemberName] string propertyName = null)
 {
 PropertyChanged (this, new PropertyChangedEventArgs (propertyName));
 }

 string customerName;
 public string CustomerName
 {
 get { return customerName; }
 set
 {
 if (value == customerName) return;
 customerName = value;
 RaisePropertyChanged();
 // The compiler converts the above line to:
 // RaisePropertyChanged ("CustomerName");
 }
 }
}

186 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Unsafe Code and Pointers
C# supports direct memory manipulation via pointers within blocks of code
marked unsafe and compiled with the /unsafe compiler option. Pointer types are
primarily useful for interoperability with C APIs but may also be used for accessing
memory outside the managed heap or for performance-critical hotspots.

Pointer Basics
For every value type or pointer type V, there is a corresponding pointer type V*. A
pointer instance holds the address of a variable. Pointer types can be (unsafely) cast
to any other pointer type. The main pointer operators are:

Operator Meaning

& The address-of operator returns a pointer to the address of a variable

* The dereference operator returns the variable at the address of a pointer

-> The pointer-to-member operator is a syntactic shortcut, in which x->y is equivalent to (*x).y

Unsafe Code
By marking a type, type member, or statement block with the unsafe keyword,
you’re permitted to use pointer types and perform C++ style pointer operations on
memory within that scope. Here is an example of using pointers to quickly process a
bitmap:

unsafe void BlueFilter (int[,] bitmap)
{
 int length = bitmap.Length;
 fixed (int* b = bitmap)
 {
 int* p = b;
 for (int i = 0; i < length; i++)
 *p++ &= 0xFF;
 }
}

Unsafe code can run faster than a corresponding safe implementation. In this case,
the code would have required a nested loop with array indexing and bounds check‐
ing. An unsafe C# method may also be faster than calling an external C function,
since there is no overhead associated with leaving the managed execution environ‐
ment.

The fixed Statement
The fixed statement is required to pin a managed object, such as the bitmap in the
previous example. During the execution of a program, many objects are allocated
and deallocated from the heap. In order to avoid unnecessary waste or fragmenta‐
tion of memory, the garbage collector moves objects around. Pointing to an object is

A
d

vanced
C

#

Unsafe Code and Pointers | 187

www.EBooksWorld.ir

futile if its address could change while referencing it, so the fixed statement tells
the garbage collector to “pin” the object and not move it around. This may have an
impact on the efficiency of the runtime, so fixed blocks should be used only briefly,
and heap allocation should be avoided within the fixed block.

Within a fixed statement, you can get a pointer to any value type, an array of value
types, or a string. In the case of arrays and strings, the pointer will actually point to
the first element, which is a value type.

Value types declared inline within reference types require the reference type to be
pinned, as follows:

class Test
{
 int x;
 static void Main()
 {
 Test test = new Test();
 unsafe
 {
 fixed (int* p = &test.x) // Pins test
 {
 *p = 9;
 }
 System.Console.WriteLine (test.x);
 }
 }
}

We describe the fixed statement further in “Mapping a Struct to Unmanaged Mem‐
ory” on page 1011 in Chapter 25.

The Pointer-to-Member Operator
In addition to the & and * operators, C# also provides the C++ style -> operator,
which can be used on structs:

struct Test
{
 int x;
 unsafe static void Main()
 {
 Test test = new Test();
 Test* p = &test;
 p->x = 9;
 System.Console.WriteLine (test.x);
 }
}

188 | Chapter 4: Advanced C#

www.EBooksWorld.ir

Arrays

The stackalloc keyword
Memory can be allocated in a block on the stack explicitly using the stackalloc
keyword. Since it is allocated on the stack, its lifetime is limited to the execution of
the method, just as with any other local variable (whose life hasn’t been extended by
virtue of being captured by a lambda expression, iterator block, or asynchronous
function). The block may use the [] operator to index into memory:

int* a = stackalloc int [10];
for (int i = 0; i < 10; ++i)
 Console.WriteLine (a[i]); // Print raw memory

Fixed-size buffers
The fixed keyword has another use, which is to create fixed-size buffers within
structs:

unsafe struct UnsafeUnicodeString
{
 public short Length;
 public fixed byte Buffer[30]; // Allocate block of 30 bytes
}

unsafe class UnsafeClass
{
 UnsafeUnicodeString uus;

 public UnsafeClass (string s)
 {
 uus.Length = (short)s.Length;
 fixed (byte* p = uus.Buffer)
 for (int i = 0; i < s.Length; i++)
 p[i] = (byte) s[i];
 }
}
class Test
{
 static void Main() { new UnsafeClass ("Christian Troy"); }
}

The fixed keyword is also used in this example to pin the object on the heap that
contains the buffer (which will be the instance of UnsafeClass). Hence, fixed
means two different things: fixed in size and fixed in place. The two are often used
together, in that a fixed-size buffer must be fixed in place to be used.

void*
A void pointer (void*) makes no assumptions about the type of the underlying data
and is useful for functions that deal with raw memory. An implicit conversion exists

A
d

vanced
C

#

Unsafe Code and Pointers | 189

www.EBooksWorld.ir

from any pointer type to void*. A void* cannot be dereferenced, and arithmetic
operations cannot be performed on void pointers. For example:

class Test
{
 unsafe static void Main()
 {
 short[] a = {1,1,2,3,5,8,13,21,34,55};
 fixed (short* p = a)
 {
 //sizeof returns size of value-type in bytes
 Zap (p, a.Length * sizeof (short));
 }
 foreach (short x in a)
 System.Console.WriteLine (x); // Prints all zeros
 }

 unsafe static void Zap (void* memory, int byteCount)
 {
 byte* b = (byte*) memory;
 for (int i = 0; i < byteCount; i++)
 *b++ = 0;
 }
}

Pointers to Unmanaged Code
Pointers are also useful for accessing data outside the managed heap (such as when
interacting with C DLLs or COM) or when dealing with data not in the main mem‐
ory (such as graphics memory or a storage medium on an embedded device).

Preprocessor Directives
Preprocessor directives supply the compiler with additional information about
regions of code. The most common preprocessor directives are the conditional
directives, which provide a way to include or exclude regions of code from compila‐
tion. For example:

#define DEBUG
class MyClass
{
 int x;
 void Foo()
 {
 #if DEBUG
 Console.WriteLine ("Testing: x = {0}", x);
 #endif
 }
 ...
}

In this class, the statement in Foo is compiled as conditionally dependent upon the
presence of the DEBUG symbol. If we remove the DEBUG symbol, the statement is not

190 | Chapter 4: Advanced C#

www.EBooksWorld.ir

compiled. Preprocessor symbols can be defined within a source file (as we have
done), and they can be passed to the compiler with the /define:symbol command-
line option.

With the #if and #elif directives, you can use the ||, &&, and ! operators to per‐
form or, and, and not operations on multiple symbols. The following directive
instructs the compiler to include the code that follows if the TESTMODE symbol is
defined and the DEBUG symbol is not defined:

#if TESTMODE && !DEBUG
 ...

Bear in mind, however, that you’re not building an ordinary C# expression, and the
symbols upon which you operate have absolutely no connection to variables—static
or otherwise.

The #error and #warning symbols prevent accidental misuse of conditional direc‐
tives by making the compiler generate a warning or error given an undesirable set of
compilation symbols. Table 4-1 lists the preprocessor directives.

Table 4-1. Preprocessor directives

Preprocessor directive Action

#define symbol Defines symbol

#undef symbol Undefines symbol

#if symbol [operator symbol2]... symbol to test

 operators are ==, !=, &&, and || followed by
#else, #elif, and #endif

#else Executes code to subsequent #endif

#elif symbol [operator symbol2] Combines #else branch and #if test

#endif Ends conditional directives

#warning text text of the warning to appear in compiler output

#error text text of the error to appear in compiler output

#pragma warning [disable | restore] Disables/restores compiler warning(s)

#line [number ["file"] | hidden] number specifies the line in source code; file is the
filename to appear in computer output; hidden
instructs debuggers to skip over code from this point
until the next #line directive

#region name Marks the beginning of an outline

#endregion Ends an outline region

Conditional Attributes
An attribute decorated with the Conditional attribute will be compiled only if a
given preprocessor symbol is present. For example:

A
d

vanced
C

#

Preprocessor Directives | 191

www.EBooksWorld.ir

// file1.cs
#define DEBUG
using System;
using System.Diagnostics;
[Conditional("DEBUG")]
public class TestAttribute : Attribute {}

// file2.cs
#define DEBUG
[Test]
class Foo
{
 [Test]
 string s;
}

The compiler will only incorporate the [Test] attributes if the DEBUG symbol is in
scope for file2.cs.

Pragma Warning
The compiler generates a warning when it spots something in your code that seems
unintentional. Unlike errors, warnings don’t ordinarily prevent your application
from compiling.

Compiler warnings can be extremely valuable in spotting bugs. Their usefulness,
however, is undermined when you get false warnings. In a large application, main‐
taining a good signal-to-noise ratio is essential if the “real” warnings are to get
noticed.

To this effect, the compiler allows you to selectively suppress warnings with the
#pragma warning directive. In this example, we instruct the compiler not to warn us
about the field Message not being used:

public class Foo
{
 static void Main() { }

 #pragma warning disable 414
 static string Message = "Hello";
 #pragma warning restore 414
}

Omitting the number in the #pragma warning directive disables or restores all
warning codes.

If you are thorough in applying this directive, you can compile with the /warnaser
ror switch—this tells the compiler to treat any residual warnings as errors.

192 | Chapter 4: Advanced C#

www.EBooksWorld.ir

XML Documentation
A documentation comment is a piece of embedded XML that documents a type or
member. A documentation comment comes immediately before a type or member
declaration and starts with three slashes:

/// <summary>Cancels a running query.</summary>
public void Cancel() { ... }

Multiline comments can be done either like this:

/// <summary>
/// Cancels a running query
/// </summary>
public void Cancel() { ... }

or like this (notice the extra star at the start):

/**
 <summary> Cancels a running query. </summary>
*/
public void Cancel() { ... }

If you compile with the /doc directive (in Visual Studio, go to the Build tab of
Project Properties), the compiler extracts and collates documentation comments into
a single XML file. This has two main uses:

• If placed in the same folder as the compiled assembly, Visual Studio (and
LINQPad) automatically read the XML file and use the information to provide
IntelliSense member listings to consumers of the assembly of the same name.

• Third-party tools (such as Sandcastle and NDoc) can transform the XML file
into an HTML help file.

Standard XML Documentation Tags
Here are the standard XML tags that Visual Studio and documentation generators
recognize:

<summary>
<summary>...</summary>

Indicates the tool tip that IntelliSense should display for the type or mem‐
ber; typically a single phrase or sentence.

<remarks>
<remarks>...</remarks>

Additional text that describes the type or member. Documentation genera‐
tors pick this up and merge it into the bulk of a type or member’s descrip‐
tion.

A
d

vanced
C

#

XML Documentation | 193

www.EBooksWorld.ir

<param>
<param name="name">...</param>

Explains a parameter on a method.

<returns>
<returns>...</returns>

Explains the return value for a method.

<exception>
<exception [cref="type"]>...</exception>

Lists an exception that a method may throw (cref refers to the exception
type).

<permission>
<permission [cref="type"]>...</permission>

Indicates an IPermission type required by the documented type or mem‐
ber.

<example>
<example>...</example>

Denotes an example (used by documentation generators). This usually
contains both description text and source code (source code is typically
within a <c> or <code> tag).

<c>
<c>...</c>

Indicates an inline code snippet. This tag is usually used inside an <exam
ple> block.

<code>
<code>...</code>

Indicates a multiline code sample. This tag is usually used inside an <exam
ple> block.

<see>
<see cref="member">...</see>

Inserts an inline cross-reference to another type or member. HTML docu‐
mentation generators typically convert this to a hyperlink. The compiler
emits a warning if the type or member name is invalid. To refer to generic
types, use curly braces; for example, cref="Foo{T,U}".

194 | Chapter 4: Advanced C#

www.EBooksWorld.ir

<seealso>
<seealso cref="member">...</seealso>

Cross-references another type or member. Documentation generators typi‐
cally write this into a separate “See Also” section at the bottom of the page.

<paramref>
<paramref name="name"/>

References a parameter from within a <summary> or <remarks> tag.

<list>
<list type=[bullet | number | table]>
 <listheader>
 <term>...</term>
 <description>...</description>
 </listheader>
 <item>
 <term>...</term>
 <description>...</description>
 </item>
</list>

Instructs documentation generators to emit a bulleted, numbered, or table-
style list.

<para>
<para>...</para>

Instructs documentation generators to format the contents into a separate
paragraph.

<include>
<include file='filename' path='tagpath[@name="id"]'>...</include>

Merges an external XML file that contains documentation. The path
attribute denotes an XPath query to a specific element in that file.

User-Defined Tags
Little is special about the predefined XML tags recognized by the C# compiler, and
you are free to define your own. The only special processing done by the compiler is
on the <param> tag (in which it verifies the parameter name and that all the parame‐
ters on the method are documented) and the cref attribute (in which it verifies that
the attribute refers to a real type or member and expands it to a fully qualified type
or member ID). The cref attribute can also be used in your own tags and is verified
and expanded just as it is in the predefined <exception>, <permission>, <see>, and
<seealso> tags.

A
d

vanced
C

#

XML Documentation | 195

www.EBooksWorld.ir

Type or Member Cross-References
Type names and type or member cross-references are translated into IDs that
uniquely define the type or member. These names are composed of a prefix that
defines what the ID represents and a signature of the type or member. The member
prefixes are:

XML type prefix ID prefixes applied to...

N Namespace

T Type (class, struct, enum, interface, delegate)

F Field

P Property (includes indexers)

M Method (includes special methods)

E Event

! Error

The rules describing how the signatures are generated are well documented,
although fairly complex.

Here is an example of a type and the IDs that are generated:

// Namespaces do not have independent signatures
namespace NS
{
 /// T:NS.MyClass
 class MyClass
 {
 /// F:NS.MyClass.aField
 string aField;

 /// P:NS.MyClass.aProperty
 short aProperty {get {...} set {...}}

 /// T:NS.MyClass.NestedType
 class NestedType {...};

 /// M:NS.MyClass.X()
 void X() {...}

 /// M:NS.MyClass.Y(System.Int32,System.Double@,System.Decimal@)
 void Y(int p1, ref double p2, out decimal p3) {...}

 /// M:NS.MyClass.Z(System.Char[],System.Single[0:,0:])
 void Z(char[] 1, float[,] p2) {...}

 /// M:NS.MyClass.op_Addition(NS.MyClass,NS.MyClass)
 public static MyClass operator+(MyClass c1, MyClass c2) {...}

 /// M:NS.MyClass.op_Implicit(NS.MyClass)~System.Int32
 public static implicit operator int(MyClass c) {...}

196 | Chapter 4: Advanced C#

www.EBooksWorld.ir

 /// M:NS.MyClass.#ctor
 MyClass() {...}

 /// M:NS.MyClass.Finalize
 ~MyClass() {...}

 /// M:NS.MyClass.#cctor
 static MyClass() {...}
 }
}

A
d

vanced
C

#

XML Documentation | 197

www.EBooksWorld.ir

www.EBooksWorld.ir

5
Framework Overview

Almost all the capabilities of the .NET Framework are exposed via a vast set of man‐
aged types. These types are organized into hierarchical namespaces and packaged
into a set of assemblies, which together with the CLR comprise the .NET platform.

Some of the .NET types are used directly by the CLR and are essential for the man‐
aged hosting environment. These types reside in an assembly called mscorlib.dll and
include C#’s built-in types, as well as the basic collection classes, types for stream
processing, serialization, reflection, threading, and native interoperability (“mscor‐
lib” is an abbreviation for Multi-language Standard Common Object Runtime
Library).

At a level above this are additional types that “flesh out” the CLR-level functionality,
providing features such as XML, networking, and LINQ. These reside in System.dll,
System.Xml.dll, and System.Core.dll, and together with mscorlib, they provide a rich
programming environment upon which the rest of the Framework is built. This
“core framework” largely defines the scope of the rest of this book.

The remainder of the .NET Framework consists of applied APIs, most of which
cover three areas of functionality:

• User interface technologies
• Backend technologies
• Distributed system technologies

Table 5-1 shows the history of compatibility between each version of C#, the CLR,
and the .NET Framework. C# 6.0 targets CLR 4.6, which is a “patched” version of
CLR 4.0 (an in-place update). This means that applications targeting CLR 4.0 will
actually run on CLR 4.6 after you install the latter; hence Microsoft has taken
extreme care to ensure backward compatibility.

Fram
ew

o
rk

O
verview

199

www.EBooksWorld.ir

Table 5-1. C#, CLR, and .NET Framework versions

C# version CLR version Framework versions

1.0 1.0 1.0

1.2 1.1 1.1

2.0 2.0 2.0, 3.0

3.0 2.0 (SP2) 3.5

4.0 4.0 4.0

5.0 4.5 (Patched CLR 4.0) 4.5

6.0 4.6 (Patched CLR 4.0) 4.6

This chapter skims all key areas of the .NET Framework—starting with the core
types covered in this book and finishing with an overview of the applied technolo‐
gies.

What’s New in .NET Framework 4.6
• The Garbage Collector offers more control over when (not) to collect via new

methods on the GC class. There are also more fine-tuning options when call‐
ing GC.Collect.

• There’s a brand-new faster 64-bit JIT compiler.
• The System.Numerics namespace now includes hardware-accelerated matrix

and vector types.
• There’s a new System.AppContext class, designed to give library authors a con‐

sistent mechanism for letting consumers switch new API features in or out.
• Tasks now pick up the current thread’s culture and UI culture when created.
• More collection types now implement IReadOnlyCollection<T>.
• WPF has further improvements, including better touch and high-DPI han‐

dling.
• ASP.NET now supports HTTP/2 and the Token Binding Protocol in Windows

10.

The release of Framework 4.6 is also timed with ASP.NET 5 and MVC 6, available
on NuGet. ASP.NET 5 features a lighter-weight modular architecture, with the abil‐
ity to self-host in a custom process, cross-platform interoperability, and an open-
source license. Unlike its predecessors, ASP.NET 5 is not dependent on System.Web
and its historical baggage.

200 | Chapter 5: Framework Overview

www.EBooksWorld.ir

Assemblies and namespaces in the .NET Framework cross-cut.
The most extreme examples are mscorlib.dll and Sys‐
tem.Core.dll, both defining types in dozens of namespaces,
none of which is prefixed with mscorlib or System.Core. The
less obvious cases are the more confusing ones, however, such
as the types in System.Security.Cryptography. Most types
in this namespace reside in System.dll, except for a handful,
which reside in System.Security.dll. The book’s companion
website contains a complete mapping of Framework namespa‐
ces to assemblies.

Many of the core types are defined in the following assemblies: mscorlib.dll, Sys‐
tem.dll, and System.Core.dll. The first of these, mscorlib.dll, comprises the types
required by the runtime environment itself; System.dll and System.Core.dll contain
additional core types required by you as a programmer. The reason the latter two
are separate is historical: when Microsoft introduced Framework 3.5, they made it
additive insofar as it ran as a layer over the existing CLR 2.0. Therefore, almost all
new core types (such as the classes supporting LINQ) went into a new assembly that
Microsoft called System.Core.dll.

What’s New in .NET Framework 4.5
New features of Framework 4.5 included:

• Extensive support for asynchrony through Task-returning methods
• Support for the ZIP compression protocol (Chapter 15)
• Improved HTTP support through the new HttpClient class (Chapter 16)
• Performance improvements to the garbage collector and assembly resource

retrieval
• Support for WinRT interoperability and APIs for building Windows Store

mobile apps

They also added a new TypeInfo class (Chapter 19) and the ability to specify time‐
outs when matching regular expression timeouts (Chapter 26).

In the Parallel Computing space, a specialized new library was added called Data‐
flow for building producer/consumer-style networks.

There were also improvements to the WPF, WCF, and WF (Workflow Foundation)
libraries.

Fram
ew

o
rk

O
verview

Framework Overview | 201

www.EBooksWorld.ir

http://www.albahari.com/nutshell/NamespaceReference.aspx
http://www.albahari.com/nutshell/NamespaceReference.aspx

The CLR and Core Framework
System Types
The most fundamental types live directly in the System namespace. These include
C#’s built-in types, the Exception base class, the Enum, Array, and Delegate base
classes, and Nullable, Type, DateTime, TimeSpan, and Guid. The System namespace
also includes types for performing mathematical functions (Math), generating ran‐
dom numbers (Random), and converting between various types (Convert and Bit
Converter).

Chapter 6 describes these types—as well as the interfaces that define standard pro‐
tocols used across the .NET Framework for such tasks as formatting (IFormatta
ble) and order comparison (IComparable).

The System namespace also defines the IDisposable interface and the GC class for
interacting with the garbage collector. These topics are saved for Chapter 12.

Text Processing
The System.Text namespace contains the StringBuilder class (the editable or
mutable cousin of string) and the types for working with text encodings, such as
UTF-8 (Encoding and its subtypes). We cover this in Chapter 6.

The System.Text.RegularExpressions namespace contains types that perform
advanced pattern-based search-and-replace operations; these are described in
Chapter 26.

Collections
The .NET Framework offers a variety of classes for managing collections of items.
These include both list- and dictionary-based structures, and work in conjunction
with a set of standard interfaces that unify their common characteristics. All collec‐
tion types are defined in the following namespaces, covered in Chapter 7:

System.Collections // Nongeneric collections
System.Collections.Generic // Generic collections
System.Collections.Specialized // Strongly typed collections
System.Collections.ObjectModel // Bases for your own collections
System.Collections.Concurrent // Thread-safe collection (Chapter 23)

Queries
Language Integrated Query (LINQ) was added in Framework 3.5. LINQ allows you
to perform type-safe queries over local and remote collections (e.g., SQL Server
tables) and is described in Chapters 8 through 10. A big advantage of LINQ is that it
presents a consistent querying API across a variety of domains. The types for
resolving LINQ queries reside in these namespaces:

202 | Chapter 5: Framework Overview

www.EBooksWorld.ir

System.Linq // LINQ to Objects and PLINQ
System.Linq.Expressions // For building expressions manually
System.Xml.Linq // LINQ to XML

The full .NET profile also includes the following:

System.Data.Linq // LINQ to SQL
System.Data.Entity // LINQ to Entities (Entity Framework)

(The Windows Store profile excludes the entire System.Data.* namespace.)

The LINQ to SQL and Entity Framework APIs leverage lower-level ADO.NET types
in the System.Data namespace.

XML
XML is used widely within the .NET Framework and so is supported extensively.
Chapter 10 focuses entirely on LINQ to XML—a lightweight XML document object
model that can be constructed and queried through LINQ. Chapter 11 describes the
older W3C DOM, as well as the performant low-level reader/writer classes and the
Framework’s support for XML schemas, stylesheets, and XPath. The XML namespa‐
ces are:

System.Xml // XmlReader, XmlWriter + the old W3C DOM
System.Xml.Linq // The LINQ to XML DOM
System.Xml.Schema // Support for XSD
System.Xml.Serialization // Declarative XML serialization for .NET types

The following namespaces are available in the desktop .NET profiles (not Windows
Store):

System.Xml.XPath // XPath query language
System.Xml.Xsl // Stylesheet support

Diagnostics and Code Contracts
In Chapter 13, we cover .NET’s logging and assertion facilities and the code con‐
tracts system that was introduced in Framework 4.0. We also describe how to inter‐
act with other processes, write to the Windows event log, and use performance
counters for monitoring. The types for this are defined in and under System.Diag
nostics.

Concurrency and Asynchrony
Most modern applications need to deal with more than one thing happening at a
time. Since C# 5.0, this has become easier through asynchronous functions and
high-level constructs such as tasks and task combinators. Chapter 14 explains all of
this in detail, after starting with the basics of multithreading. Types for working
with threads and asynchronous operations are in the System.Threading and Sys
tem.Threading.Tasks namespaces.

Fram
ew

o
rk

O
verview

The CLR and Core Framework | 203

www.EBooksWorld.ir

Streams and I/O
The Framework provides a stream-based model for low-level input/output. Streams
are typically used to read and write directly to files and network connections, and
can be chained or wrapped in decorator streams to add compression or encryption
functionality. Chapter 15 describes .NET’s stream architecture, as well as the specific
support for working with files and directories, compression, isolated storage, pipes,
and memory-mapped files. The .NET Stream and I/O types are defined in and
under the System.IO namespace, and the WinRT types for file I/O are in and under
Windows.Storage.

Networking
You can directly access standard network protocols such as HTTP, FTP, TCP/IP, and
SMTP via the types in System.Net. In Chapter 16, we demonstrate how to commu‐
nicate using each of these protocols, starting with simple tasks such as downloading
from a web page, and finishing with using TCP/IP directly to retrieve POP3 email.
Here are the namespaces we cover:

System.Net
System.Net.Http // HttpClient
System.Net.Mail // For sending mail via SMTP
System.Net.Sockets // TCP, UDP, and IP

The latter two namespaces are not available to Windows Store applications, which
must instead use third-party libraries for sending mail, and the WinRT types in Win
dows.Networking.Sockets for working with sockets.

Serialization
The Framework provides several systems for saving and restoring objects to a
binary or text representation. Such systems are required for distributed application
technologies, such as WCF, Web Services, and Remoting, and also to save and
restore objects to a file. In Chapter 17, we cover all three serialization engines: the
data contract serializer, the binary serializer, and the XML serializer. The types for
serialization reside in the following namespaces:

System.Runtime.Serialization
System.Xml.Serialization

The Windows Store profile excludes the binary serialization engine.

Assemblies, Reflection, and Attributes
The assemblies into which C# programs compile comprise executable instructions
(stored as intermediate language or IL) and metadata, which describes the program’s
types, members, and attributes. Through reflection, you can inspect this metadata at
runtime and do such things as dynamically invoke methods. With Reflec
tion.Emit, you can construct new code on the fly.

204 | Chapter 5: Framework Overview

www.EBooksWorld.ir

In Chapter 18, we describe the makeup of assemblies and how to sign them, use the
global assembly cache and resources, and resolve file references. In Chapter 19, we
cover reflection and attributes—describing how to inspect metadata, dynamically
invoke functions, write custom attributes, emit new types, and parse raw IL. The
types for using reflection and working with assemblies reside in the following
namespaces:

System
System.Reflection
System.Reflection.Emit (Desktop only)

Dynamic Programming
In Chapter 20, we look at some of the patterns for dynamic programming and lever‐
aging the Dynamic Language Runtime, which has been a part of the CLR since
Framework 4.0. We describe how to implement the Visitor pattern, write custom
dynamic objects, and interoperate with IronPython. The types for dynamic pro‐
gramming are in System.Dynamic.

Security
The .NET Framework provides its own security layer, allowing you to both sandbox
other assemblies and be sandboxed yourself. In Chapter 21, we cover code access,
role, and identity security, and the transparency model introduced in CLR 4.0. We
then describe cryptography in the Framework, covering encryption, hashing, and
data protection. The types for this are defined in:

System.Security
System.Security.Permissions
System.Security.Policy
System.Security.Cryptography

Only System.Security is available to Windows Store apps; cryptography is handled
instead in the WinRT types in Windows.Security.Cryptography.

Advanced Threading
C#’s asynchronous functions make concurrent programming significantly easier
because they lessen the need for lower-level techniques. However, there are still
times when you need signaling constructs, thread-local storage, reader/writer locks,
and so on. Chapter 22 explains this in depth. Threading types are in the Sys
tem.Threading namespace.

Parallel Programming
In Chapter 23, we cover in detail the libraries and types for leveraging multicore
processors, including APIs for task parallelism, imperative data parallelism, and
functional parallelism (PLINQ).

Fram
ew

o
rk

O
verview

The CLR and Core Framework | 205

www.EBooksWorld.ir

Application Domains
The CLR provides an additional level of isolation within a process, called an applica‐
tion domain. In Chapter 24, we examine the properties of an application domain
with which you can interact, and demonstrate how to create and use additional
application domains within the same process for such purposes as unit testing. We
also describe how to use Remoting to communicate with these application domains.
The AppDomain type defined in the System namespace is not applicable to Windows
Store apps.

Native and COM Interoperability
You can interoperate with both native and COM code. Native interoperability allows
you to call functions in unmanaged DLLs, register callbacks, map data structures,
and interoperate with native data types. COM interoperability allows you to call
COM types and expose .NET types to COM. The types that support these functions
are in System.Runtime.InteropServices, and we cover them in Chapter 25.

Applied Technologies
User Interface Technologies
User-interface-based applications can be divided into two categories: thin client,
which amounts to a website, and rich client, which is a program the end user must
download and install on a computer or mobile device.

For thin-client applications, .NET provides the ASP.NET library.

For rich-client applications that target Windows desktop, .NET provides the WPF
and Windows Forms APIs. For rich-client apps that target mobile devices, you have
the option of Windows RT (Windows Store apps only), or Xamarin™ for cross-
platform apps.

Finally, there’s a hybrid technology called Silverlight, which has been largely aban‐
doned since the rise of HTML5.

ASP.NET
Applications written using ASP.NET host under Windows IIS (or a custom process
with ASP.NET 5) and can be accessed from any web browser. Here are the advan‐
tages of ASP.NET over rich-client technologies:

• There is zero deployment at the client end.
• Clients can run a non-Windows platform.
• Updates are easily deployed.

Further, because most of what you write in an ASP.NET application runs on the
server, you design your data access layer to run in the same application domain—

206 | Chapter 5: Framework Overview

www.EBooksWorld.ir

without limiting security or scalability. In contrast, a rich client that does the same is
not generally as secure or scalable. (The solution, with the rich client, is to insert a
middle tier between the client and database. The middle tier runs on a remote appli‐
cation server [often alongside the database server] and communicates with the rich
clients via WCF, Web Services, or Remoting.)

In writing your web pages, you can choose between the traditional Web Forms and
the newer MVC (Model-View-Controller) API. Both build on the ASP.NET infra‐
structure. Web Forms has been part of the Framework since its inception; MVC was
written much later in response to the success of Ruby on Rails and MonoRail. It
provides, in general, a better programming abstraction than Web Forms; it also
allows more control over the generated HTML. What you lose over Web Forms is a
designer. This makes Web Forms still a good choice for web pages with predomi‐
nately static content.

The limitations of ASP.NET are largely a reflection of the limitations of thin-client
systems in general:

• While a web browser can offer a rich compelling interface with HTML5 and
AJAX, it’s still inferior to a native rich-client API such as WPF in capability and
performance.

• Maintaining state on the client—or on behalf of the client—can be cumber‐
some.

The types for writing ASP.NET applications are in the System.Web.UI namespace
and its subnamespaces and are in the System.Web.dll assembly. ASP.NET 5 is avail‐
able on NuGet.

Windows Presentation Foundation (WPF)
WPF was introduced in Framework 3.0 for writing rich-client applications. The
benefits of WPF over its predecessor, Windows Forms, are as follows:

• It supports sophisticated graphics, such as arbitrary transformations, 3D ren‐
dering, and true transparency.

• Its primary measurement unit is not pixel-based, so applications display cor‐
rectly at any DPI (dots per inch) setting.

• It has extensive dynamic layout support, which means you can localize an
application without danger of elements overlapping.

• Rendering uses DirectX and is fast, taking good advantage of graphics hard‐
ware acceleration.

• User interfaces can be described declaratively in XAML files that can be main‐
tained independently of the “code-behind” files—this helps to separate appear‐
ance from functionality.

WPF’s size and complexity, however, make for a steep learning curve.

Fram
ew

o
rk

O
verview

Applied Technologies | 207

www.EBooksWorld.ir

The types for writing WPF applications are in the System.Windows namespace and
all subnamespaces except for System.Windows.Forms.

Windows Forms
Windows Forms is a rich-client API that’s as old as the .NET Framework. Compared
to WPF, Windows Forms is a relatively simple technology that provides most of the
features you need in writing a typical Windows application. It also has significant
relevancy in maintaining legacy applications. It has a number of drawbacks, though,
compared to WPF:

• Controls are positioned and sized in pixels, making it easy to write applications
that break on clients whose DPI settings differ from the developer’s.

• The API for drawing nonstandard controls is GDI+, which, although reasona‐
bly flexible, is slow in rendering large areas (and without double buffering, may
flicker).

• Controls lack true transparency.
• Dynamic layout is difficult to get right reliably.

The last point is an excellent reason to favor WPF over Windows Forms—even if
you’re writing a business application that needs just a user interface and not a “user
experience.” The layout elements in WPF, such as Grid, make it easy to assemble
labels and text boxes such that they always align—even after language-changing
localization—without messy logic and without any flickering. Further, you don’t
have to bow to the lowest common denominator in screen resolution—WPF layout
elements have been designed from the outset to adapt properly to resizing.

On the positive side, Windows Forms is relatively simple to learn and still has a
wealth of support in third-party controls.

The Windows Forms types are in the System.Windows.Forms (in System.Win‐
dows.Forms.dll) and System.Drawing (in System.Drawing.dll) namespaces. The lat‐
ter also contains the GDI+ types for drawing custom controls.

Windows RT and Xamarin
Also not technically part of the .NET Framework, Windows 8 and higher includes
Windows Runtime for writing touch-first user interfaces aimed at mobile devices
(see “C# and Windows Runtime” on page 5 in Chapter 1). Its rich-client API was
inspired by WPF and uses XAML for layout, and applications that you write with
this API are deployed via the Window Store (hence “Windows Store” apps). The
namespaces are Windows.UI and Windows.UI.Xaml.

Another popular solution for mobile application development is Xamarin™. With
this third-party product, you can write mobile apps in C# that target iOS and
Android, as well as Windows Phone.

208 | Chapter 5: Framework Overview

www.EBooksWorld.ir

Silverlight
Silverlight is not part of the main .NET Framework: it’s a separate Framework that
includes a subset of the Framework’s core features—plus the ability to run as a web
browser plug-in. Its graphics model is essentially a subset of WPF, and this allows
you to leverage existing knowledge in developing Silverlight applications. Silverlight
is available as a small cross-platform download for web browsers—much like Mac‐
romedia’s Flash.

With the rise of HTML 5, Microsoft’s focus has shifted away from Silverlight.

Backend Technologies

ADO.NET
ADO.NET is the managed data access API. Although the name is derived from the
1990s-era ADO (ActiveX Data Objects), the technology is completely different.
ADO.NET contains two major low-level components:

Provider layer
The provider model defines common classes and interfaces for low-level
access to database providers. These interfaces comprise connections, com‐
mands, adapters, and readers (forward-only, read-only cursors over a data‐
base). The Framework ships with native support for Microsoft SQL Server,
and numerous third-party drivers are available for other databases.

DataSet model
A DataSet is a structured cache of data. It resembles a primitive in-memory
database, which defines SQL constructs such as tables, rows, columns, rela‐
tionships, constraints, and views. By programming against a cache of data,
you can reduce the number of trips to the server, increasing server scalabil‐
ity and the responsiveness of a rich-client user interface. DataSets are seri‐
alizable and are designed to be sent across the wire between client and
server applications.

Sitting above the provider layer are two APIs that offer the ability to query databases
via LINQ:

• Entity Framework (introduced in Framework 3.5 SP1)
• LINQ to SQL (introduced in Framework 3.5)

Both technologies include object/relational mappers (ORMs), meaning they auto‐
matically map objects (based on classes that you define) to rows in the database.
This allows you to query those objects via LINQ (instead of writing SQL select
statements)—and update them without manually writing SQL insert/delete/
update statements. This cuts the volume of code in an application’s data access layer
(particularly the “plumbing” code) and provides strong static type safety. These
technologies also avoid the need for DataSets as receptacles of data—although Data‐

Fram
ew

o
rk

O
verview

Applied Technologies | 209

www.EBooksWorld.ir

Sets still provide the unique ability to store and serialize state changes (something
particularly useful in multitier applications). You can use Entity Framework or
LINQ to SQL in conjunction with DataSets, although the process is somewhat
clumsy and DataSets are inherently ungainly. In other words, there’s no straightfor‐
ward out-of-the-box solution for writing n-tier applications with Microsoft’s ORMs
as yet.

LINQ to SQL is simpler and faster than Entity Framework, and has historically pro‐
duced better SQL (although Entity Framework has benefited from numerous
updates). Entity Framework is more flexible in that you can create elaborate map‐
pings between the database and the classes that you query, and offers a model that
allows third-party support for databases other than SQL Server.

Windows Workflow
Windows Workflow is a framework for modeling and managing potentially long-
running business processes. Workflow targets a standard runtime library, providing
consistency and interoperability. Workflow also helps reduce coding for dynami‐
cally controlled decision-making trees.

Windows Workflow is not strictly a backend technology—you can use it anywhere
(an example is page flow, in the UI).

Workflow came originally with .NET Framework 3.0, with its types defined in the
System.WorkFlow namespace. Workflow was substantially revised in Framework
4.0; the new types live in and under the System.Activities namespace.

COM+ and MSMQ
The Framework allows you to interoperate with COM+ for services such as dis‐
tributed transactions, via types in the System.EnterpriseServices namespace. It
also supports MSMQ (Microsoft Message Queuing) for asynchronous, one-way
messaging through types in System.Messaging.

Distributed System Technologies

Windows Communication Foundation (WCF)
WCF is a sophisticated communications infrastructure introduced in Framework
3.0. WCF is flexible and configurable enough to make both of its predecessors—
Remoting and (.ASMX) Web Services—mostly redundant.

WCF, Remoting, and Web Services are all alike in that they implement the following
basic model in allowing a client and server application to communicate:

• On the server, you indicate what methods you’d like remote client applications
to be able to call.

• On the client, you specify or infer the signatures of the server methods you’d
like to call.

210 | Chapter 5: Framework Overview

www.EBooksWorld.ir

• On both the server and the client, you choose a transport and communication
protocol (in WCF, this is done through a binding).

• The client establishes a connection to the server.
• The client calls a remote method, which executes transparently on the server.

WCF further decouples the client and server through service contracts and data
contracts. Conceptually, the client sends an (XML or binary) message to an end‐
point on a remote service, rather than directly invoking a remote method. One of the
benefits of this decoupling is that clients have no dependency on the .NET platform
or on any proprietary communication protocols.

WCF is highly configurable and provides the most extensive support for standar‐
dized messaging protocols, including WS-*. This lets you communicate with parties
running different software—possibly on different platforms—while still supporting
advanced features such as encryption. In practice however, the complexity of these
protocols has limited their adoption across other platforms, and the best option
right now for interoperable messaging is REST over HTTP, which Microsoft sup‐
ports through the Web API layer over ASP.NET.

For .NET-to-.NET communication, however, WCF offers richer serialization and
better tooling than with REST APIs. It’s also potentially faster as it’s not tied to
HTTP and can use binary serialization.

The types for communicating with WCF are in, and below, the System.ServiceMo
del namespace.

Web API
Web API runs over ASP.NET and is architecturally similar to Microsoft’s MVC API,
except that it’s designed to expose services and data instead of web pages. Its advan‐
tage over WCF is in allowing you to follow popular REST-over-HTTP conventions,
offering easy interoperability with the widest range of platforms.

REST implementations are internally simpler than the SOAP and WS- protocols
that WCF relies on for interoperability. REST APIs are also architecturally more ele‐
gant for loosely-coupled systems, building on de-facto standards and making excel‐
lent use of what HTTP already provides.

Remoting and .ASMX Web Services
Remoting and .ASMX Web Services are WCF’s predecessors. Remoting is almost
redundant in WCF’s wake, and .ASMX Web Services has become entirely redun‐
dant.

Remoting’s remaining niche is in communicating between application domains
within the same process (see Chapter 24). Remoting is geared toward tightly cou‐
pled applications. A typical example is when the client and server are both .NET
applications written by the same company (or companies sharing common assem‐
blies). Communication typically involves exchanging potentially complex cus‐

Fram
ew

o
rk

O
verview

Applied Technologies | 211

www.EBooksWorld.ir

tom .NET objects that the Remoting infrastructure serializes and deserializes
without needing intervention.

The types for Remoting are in or under System.Runtime.Remoting; the types for
Web Services are under System.Web.Services.

212 | Chapter 5: Framework Overview

www.EBooksWorld.ir

6
Framework Fundamentals

Many of the core facilities that you need when programming are provided not by
the C# language, but by types in the .NET Framework. In this chapter, we cover the
Framework’s role in fundamental programming tasks, such as virtual equality com‐
parison, order comparison, and type conversion. We also cover the basic Frame‐
work types, such as String, DateTime, and Enum.

The types in this section reside in the System namespace, with the following excep‐
tions:

• StringBuilder is defined in System.Text, as are the types for text encodings.
• CultureInfo and associated types are defined in System.Globalization.

• XmlConvert is defined in System.Xml.

String and Text Handling
Char
A C# char represents a single Unicode character and aliases the System.Char struct.
In Chapter 2, we described how to express char literals. For example:

char c = 'A';
char newLine = '\n';

System.Char defines a range of static methods for working with characters, such as
ToUpper, ToLower, and IsWhiteSpace. You can call these through either the Sys
tem.Char type or its char alias:

Console.WriteLine (System.Char.ToUpper ('c')); // C
Console.WriteLine (char.IsWhiteSpace ('\t')); // True

Fram
ew

o
rk

Fund
am

entals

213

www.EBooksWorld.ir

ToUpper and ToLower honor the end user’s locale, which can lead to subtle bugs.
The following expression evaluates to false in Turkey:

char.ToUpper ('i') == 'I'

because in Turkey, char.ToUpper ('i') is 'İ' (notice the dot on top!). To avoid
this problem, System.Char (and System.String) also provides culture-invariant
versions of ToUpper and ToLower ending with the word Invariant. These always
apply English culture rules:

Console.WriteLine (char.ToUpperInvariant ('i')); // I

This is a shortcut for:

Console.WriteLine (char.ToUpper ('i', CultureInfo.InvariantCulture))

For more on locales and culture, see “Formatting and parsing” on page 233.

Most of char’s remaining static methods are related to categorizing characters and
are listed in Table 6-1.

Table 6-1. Static methods for categorizing characters

Static method Characters included Unicode categories included

IsLetter A–Z, a–z, and letters of other alphabets UpperCaseLetter

LowerCaseLetter

TitleCaseLetter

ModifierLetter

OtherLetter

IsUpper Uppercase letters UpperCaseLetter

IsLower Lowercase letters LowerCaseLetter

IsDigit 0–9 plus digits of other alphabets DecimalDigitNumber

IsLetterOrDigit Letters plus digits (IsLetter, IsDigit)

IsNumber All digits plus Unicode fractions and
Roman numeral symbols

DecimalDigitNumber

LetterNumber

OtherNumber

IsSeparator Space plus all Unicode separator characters LineSeparator

ParagraphSeparator

IsWhiteSpace All separators plus \n, \r, \t, \f, and
\v

LineSeparator

ParagraphSeparator

IsPunctuation Symbols used for punctuation in Western
and other alphabets

DashPunctuation

ConnectorPunctuation

InitialQuotePunctuation

FinalQuotePunctuation

IsSymbol Most other printable symbols MathSymbol

ModifierSymbol

OtherSymbol

214 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

Static method Characters included Unicode categories included

IsControl Nonprintable “control” characters below
0x20, such as \r, \n, \t, \0, and
characters between 0x7F and 0x9A

(None)

For more granular categorization, char provides a static method called GetUnicode
Category; this returns a UnicodeCategory enumeration whose members are shown
in the rightmost column of Table 6-1.

By explicitly casting from an integer, it’s possible to produce a
char outside the allocated Unicode set. To test a character’s
validity, call char.GetUnicodeCategory: if the result is Unico
deCategory.OtherNotAssigned, the character is invalid.

A char is 16 bits wide—enough to represent any Unicode character in the Basic
Multilingual Plane. To go outside this, you must use surrogate pairs: we describe the
methods for doing this in “Text Encodings and Unicode” on page 223.

String
A C# string (== System.String) is an immutable (unchangeable) sequence of
characters. In Chapter 2, we described how to express string literals, perform equal‐
ity comparisons, and concatenate two strings. This section covers the remaining
functions for working with strings, exposed through the static and instance mem‐
bers of the System.String class.

Constructing strings
The simplest way to construct a string is to assign a literal, as we saw in Chapter 2:

string s1 = "Hello";
string s2 = "First Line\r\nSecond Line";
string s3 = @"\\server\fileshare\helloworld.cs";

To create a repeating sequence of characters, you can use string’s constructor:

Console.Write (new string ('*', 10)); // **********

You can also construct a string from a char array. The ToCharArray method does
the reverse:

char[] ca = "Hello".ToCharArray();
string s = new string (ca); // s = "Hello"

string’s constructor is also overloaded to accept various (unsafe) pointer types, in
order to create strings from types such as char*.

Fram
ew

o
rk

Fund
am

entals

String and Text Handling | 215

www.EBooksWorld.ir

Null and empty strings
An empty string has a length of zero. To create an empty string, you can use either a
literal or the static string.Empty field; to test for an empty string, you can either
perform an equality comparison or test its Length property:

string empty = "";
Console.WriteLine (empty == ""); // True
Console.WriteLine (empty == string.Empty); // True
Console.WriteLine (empty.Length == 0); // True

Because strings are reference types, they can also be null:

string nullString = null;
Console.WriteLine (nullString == null); // True
Console.WriteLine (nullString == ""); // False
Console.WriteLine (nullString.Length == 0); // NullReferenceException

The static string.IsNullOrEmpty method is a useful shortcut for testing whether a
given string is either null or empty.

Accessing characters within a string
A string’s indexer returns a single character at the given index. As with all functions
that operate on strings, this is zero-indexed:

string str = "abcde";
char letter = str[1]; // letter == 'b'

string also implements IEnumerable<char>, so you can foreach over its charac‐
ters:

foreach (char c in "123") Console.Write (c + ","); // 1,2,3,

Searching within strings
The simplest methods for searching within strings are StartsWith, EndsWith and
Contains. These all return true or false:

Console.WriteLine ("quick brown fox".EndsWith ("fox")); // True
Console.WriteLine ("quick brown fox".Contains ("brown")); // True

StartsWith and EndsWith are overloaded to let you specify a StringComparison
enum or a CultureInfo object to control case and culture sensitivity (see “Ordinal
versus culture comparison” on page 220). The default is to perform a case-sensitive
match using rules applicable to the current (localized) culture. The following
instead performs a case-insensitive search using the invariant culture’s rules:

"abcdef".StartsWith ("abc", StringComparison.InvariantCultureIgnoreCase)

The Contains method doesn’t offer the convenience of this overload, although you
can achieve the same result with the IndexOf method.

IndexOf is more powerful: it returns the first position of a given character or sub‐
string (or –1 if the substring isn’t found):

216 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

Console.WriteLine ("abcde".IndexOf ("cd")); // 2

IndexOf is also overloaded to accept a startPosition (an index from which to
begin searching), as well as a StringComparison enum:

Console.WriteLine ("abcde abcde".IndexOf ("CD", 6,
 StringComparison.CurrentCultureIgnoreCase)); // 8

LastIndexOf is like IndexOf but works backward through the string.

IndexOfAny returns the first matching position of any one of a set of characters:

Console.Write ("ab,cd ef".IndexOfAny (new char[] {' ', ','})); // 2
Console.Write ("pas5w0rd".IndexOfAny ("0123456789".ToCharArray())); // 3

LastIndexOfAny does the same in the reverse direction.

Manipulating strings
Because String is immutable, all the methods that “manipulate” a string return a
new one, leaving the original untouched (the same goes for when you reassign a
string variable).

Substring extracts a portion of a string:

string left3 = "12345".Substring (0, 3); // left3 = "123";
string mid3 = "12345".Substring (1, 3); // mid3 = "234";

If you omit the length, you get the remainder of the string:

string end3 = "12345".Substring (2); // end3 = "345";

Insert and Remove insert or remove characters at a specified position:

string s1 = "helloworld".Insert (5, ", "); // s1 = "hello, world"
string s2 = s1.Remove (5, 2); // s2 = "helloworld";

PadLeft and PadRight pad a string to a given length with a specified character (or a
space if unspecified):

Console.WriteLine ("12345".PadLeft (9, '*')); // ****12345
Console.WriteLine ("12345".PadLeft (9)); // 12345

If the input string is longer than the padding length, the original string is returned
unchanged.

TrimStart and TrimEnd remove specified characters from the beginning or end of a
string; Trim does both. By default, these functions remove whitespace characters
(including spaces, tabs, new lines, and Unicode variations of these):

Console.WriteLine (" abc \t\r\n ".Trim().Length); // 3

Replace replaces all (nonoverlapping) occurrences of a particular character or sub‐
string:

Console.WriteLine ("to be done".Replace (" ", " | ")); // to | be | done
Console.WriteLine ("to be done".Replace (" ", "")); // tobedone

Fram
ew

o
rk

Fund
am

entals

String and Text Handling | 217

www.EBooksWorld.ir

ToUpper and ToLower return upper- and lowercase versions of the input string. By
default, they honor the user’s current language settings; ToUpperInvariant and ToL
owerInvariant always apply English alphabet rules.

Splitting and joining strings
Split divides a string up into pieces:

string[] words = "The quick brown fox".Split();

foreach (string word in words)
 Console.Write (word + "|"); // The|quick|brown|fox|

By default, Split uses whitespace characters as delimiters; it’s also overloaded to
accept a params array of char or string delimiters. Split also optionally accepts a
StringSplitOptions enum, which has an option to remove empty entries: this is
useful when words are separated by several delimiters in a row.

The static Join method does the reverse of Split. It requires a delimiter and string
array:

string[] words = "The quick brown fox".Split();
string together = string.Join (" ", words); // The quick brown fox

The static Concat method is similar to Join but accepts only a params string array
and applies no separator. Concat is exactly equivalent to the + operator (the com‐
piler, in fact, translates + to Concat):

string sentence = string.Concat ("The", " quick", " brown", " fox");
string sameSentence = "The" + " quick" + " brown" + " fox";

String.Format and composite format strings
The static Format method provides a convenient way to build strings that embed
variables. The embedded variables (or values) can be of any type; the Format simply
calls ToString on them.

The master string that includes the embedded variables is called a composite format
string. When calling String.Format, you provide a composite format string fol‐
lowed by each of the embedded variables. For example:

string composite = "It's {0} degrees in {1} on this {2} morning";
string s = string.Format (composite, 35, "Perth", DateTime.Now.DayOfWeek);

// s == "It's 35 degrees in Perth on this Friday morning"

(And that’s Celsius!)

From C# 6, we can use interpolated string literals to the same effect (see “String
Type” on page 36 in Chapter 2). Just precede the string with the $ symbol and put
the expressions in braces:

string s = $"It's hot this {DateTime.Now.DayOfWeek} morning";

218 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

Each number in curly braces is called a format item. The number corresponds to the
argument position and is optionally followed by:

• A comma and a minimum width to apply
• A colon and a format string

The minimum width is useful for aligning columns. If the value is negative, the data
is left-aligned; otherwise, it’s right-aligned. For example:

string composite = "Name={0,-20} Credit Limit={1,15:C}";

Console.WriteLine (string.Format (composite, "Mary", 500));
Console.WriteLine (string.Format (composite, "Elizabeth", 20000));

Here’s the result:

Name=Mary Credit Limit= $500.00
Name=Elizabeth Credit Limit= $20,000.00

The equivalent without using string.Format is this:

string s = "Name=" + "Mary".PadRight (20) +
 " Credit Limit=" + 500.ToString ("C").PadLeft (15);

The credit limit is formatted as currency by virtue of the "C" format string. We
describe format strings in detail in “Formatting and parsing” on page 233.

Comparing Strings
In comparing two values, the .NET Framework differentiates the concepts of equal‐
ity comparison and order comparison. Equality comparison tests whether two instan‐
ces are semantically the same; order comparison tests which of two (if any) instan‐
ces comes first when arranging them in ascending or descending sequence.

Equality comparison is not a subset of order comparison; the
two systems have different purposes. It’s legal, for instance, to
have two unequal values in the same ordering position. We
resume this topic in “Equality Comparison” on page 267.

For string-equality comparison, you can use the == operator or one of string’s
Equals methods. The latter are more versatile because they allow you to specify
options such as case insensitivity.

Another difference is that == does not work reliably on strings
if the variables are cast to the object type. We explain why
this is so in “Equality Comparison” on page 267.

For string order comparison, you can use either the CompareTo instance method or
the static Compare and CompareOrdinal methods: these return a positive or negative
number—or zero—depending on whether the first value comes before, after, or
alongside the second.

Fram
ew

o
rk

Fund
am

entals

String and Text Handling | 219

www.EBooksWorld.ir

Before going into the details of each, we need to examine .NET’s underlying string-
comparison algorithms.

Ordinal versus culture comparison
There are two basic algorithms for string comparison: ordinal and culture-sensitive.
Ordinal comparisons interpret characters simply as numbers (according to their
numeric Unicode value); culture-sensitive comparisons interpret characters with
reference to a particular alphabet. There are two special cultures: the “current cul‐
ture,” which is based on settings picked up from the computer’s control panel; and
the “invariant culture,” which is the same on every computer (and closely matches
American culture).

For equality comparison, both ordinal and culture-specific algorithms are useful.
For ordering, however, culture-specific comparison is nearly always preferable: to
order strings alphabetically, you need an alphabet. Ordinal relies on the numeric
Unicode point values, which happen to put English characters in alphabetical order
—but even then not exactly as you might expect. For example, assuming case sensi‐
tivity, consider the strings “Atom”, “atom”, and “Zamia”. The invariant culture puts
them in the following order:

"Atom", "atom", "Zamia"

Ordinal arranges them instead as follows:

"Atom", "Zamia", "atom"

This is because the invariant culture encapsulates an alphabet, which considers
uppercase characters adjacent to their lowercase counterparts (aAbBcCdD...). The
ordinal algorithm, however, puts all the uppercase characters first, and then all low‐
ercase characters (A...Z, a...z). This is essentially a throwback to the ASCII character
set invented in the 1960s.

String equality comparison
Despite ordinal’s limitations, string’s == operator always performs ordinal case-
sensitive comparison. The same goes for the instance version of string.Equals
when called without arguments; this defines the “default” equality-comparison
behavior for the string type.

The ordinal algorithm was chosen for string’s == and Equals
functions because it’s both highly efficient and deterministic.
String-equality comparison is considered fundamental and is
performed far more frequently than order comparison.
A “strict” notion of equality is also consistent with the general
use of the == operator.

The following methods allow culture-aware or case-insensitive comparisons:

public bool Equals(string value, StringComparison comparisonType);

220 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

public static bool Equals (string a, string b,
 StringComparison comparisonType);

The static version is advantageous in that it still works if one or both of the strings
are null. StringComparison is an enum defined as follows:

public enum StringComparison
{
 CurrentCulture, // Case-sensitive
 CurrentCultureIgnoreCase,
 InvariantCulture, // Case-sensitive
 InvariantCultureIgnoreCase,
 Ordinal, // Case-sensitive
 OrdinalIgnoreCase
}

For example:

Console.WriteLine (string.Equals ("foo", "FOO",
 StringComparison.OrdinalIgnoreCase)); // True

Console.WriteLine ("ṻ" == "ǖ"); // False

Console.WriteLine (string.Equals ("ṻ", "ǖ",
 StringComparison.CurrentCulture)); // ?

(The result of the third example is determined by the computer’s current language
settings.)

String-order comparison
String’s CompareTo instance method performs culture-sensitive, case-sensitive order
comparison. Unlike the == operator, CompareTo does not use ordinal comparison:
for ordering, a culture-sensitive algorithm is much more useful.

Here’s the method’s definition:

public int CompareTo (string strB);

The CompareTo instance method implements the generic ICom
parable interface, a standard comparison protocol used
across the .NET Framework. This means string’s CompareTo
defines the default ordering behavior of strings, in such appli‐
cations as sorted collections, for instance. For more informa‐
tion on IComparable, see “Order Comparison” on page 278.

For other kinds of comparison, you can call the static Compare and CompareOrdinal
methods:

public static int Compare (string strA, string strB,
 StringComparison comparisonType);

public static int Compare (string strA, string strB, bool ignoreCase,
 CultureInfo culture);

Fram
ew

o
rk

Fund
am

entals

String and Text Handling | 221

www.EBooksWorld.ir

public static int Compare (string strA, string strB, bool ignoreCase);

public static int CompareOrdinal (string strA, string strB);

The last two methods are simply shortcuts for calling the first two methods.

All of the order-comparison methods return a positive number, a negative number,
or zero, depending on whether the first value comes after, before, or alongside the
second value:

Console.WriteLine ("Boston".CompareTo ("Austin")); // 1
Console.WriteLine ("Boston".CompareTo ("Boston")); // 0
Console.WriteLine ("Boston".CompareTo ("Chicago")); // -1
Console.WriteLine ("ṻ".CompareTo ("ǖ")); // 0
Console.WriteLine ("foo".CompareTo ("FOO")); // -1

The following performs a case-insensitive comparison using the current culture:

Console.WriteLine (string.Compare ("foo", "FOO", true)); // 0

By supplying a CultureInfo object, you can plug in any alphabet:

// CultureInfo is defined in the System.Globalization namespace

CultureInfo german = CultureInfo.GetCultureInfo ("de-DE");
int i = string.Compare ("Müller", "Muller", false, german);

StringBuilder
The StringBuilder class (System.Text namespace) represents a mutable (editable)
string. With a StringBuilder, you can Append, Insert, Remove, and Replace sub‐
strings without replacing the whole StringBuilder.

StringBuilder’s constructor optionally accepts an initial string value, as well as a
starting size for its internal capacity (default is 16 characters). If you go above this,
StringBuilder automatically resizes its internal structures to accommodate (at a
slight performance cost) up to its maximum capacity (default is int.MaxValue).

A popular use of StringBuilder is to build up a long string by repeatedly calling
Append. This approach is much more efficient than repeatedly concatenating ordi‐
nary string types:

StringBuilder sb = new StringBuilder();
for (int i = 0; i < 50; i++) sb.Append (i + ",");

To get the final result, call ToString():

Console.WriteLine (sb.ToString());

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

222 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

In our example, the expression i + "," means that we’re still
repeatedly concatenating strings. However, this incurs only a
small performance cost in that the strings in question are
small and don’t grow with each loop iteration. For maximum
performance, however, we could change the loop body to this:

{ sb.Append (i); sb.Append (","); }

AppendLine performs an Append that adds a new line sequence ("\r\n" in Win‐
dows). AppendFormat accepts a composite format string, just like String.Format.

As well as the Insert, Remove, and Replace methods (Replace works like string’s
Replace), StringBuilder defines a Length property and a writable indexer for get‐
ting/setting individual characters.

To clear the contents of a StringBuilder, either instantiate a new one or set its
Length to zero.

Setting a StringBuilder’s Length to zero doesn’t shrink its
internal capacity. So, if the StringBuilder previously con‐
tained one million characters, it will continue to occupy
around 2 MB of memory after zeroing its Length. If you want
to release the memory, you must create a new StringBuilder
and allow the old one to drop out of scope (and be garbage-
collected).

Text Encodings and Unicode
A character set is an allocation of characters, each with a numeric code or code point.
There are two character sets in common use: Unicode and ASCII. Unicode has an
address space of approximately one million characters, of which about 100,000 are
currently allocated. Unicode covers most spoken world languages, as well as some
historical languages and special symbols. The ASCII set is simply the first 128 char‐
acters of the Unicode set, which covers most of what you see on a US-style key‐
board. ASCII predates Unicode by 30 years and is still sometimes used for its sim‐
plicity and efficiency: each character is represented by one byte.

The .NET type system is designed to work with the Unicode character set. ASCII is
implicitly supported, though, by virtue of being a subset of Unicode.

A text encoding maps characters from their numeric code point to a binary repre‐
sentation. In .NET, text encodings come into play primarily when dealing with text
files or streams. When you read a text file into a string, a text encoder translates the
file data from binary into the internal Unicode representation that the char and
string types expect. A text encoding can restrict what characters can be repre‐
sented, as well as impacting storage efficiency.

There are two categories of text encoding in .NET:

Fram
ew

o
rk

Fund
am

entals

String and Text Handling | 223

www.EBooksWorld.ir

• Those that map Unicode characters to another character set
• Those that use standard Unicode encoding schemes

The first category contains legacy encodings such as IBM’s EBCDIC and 8-bit char‐
acter sets with extended characters in the upper-128 region that were popular prior
to Unicode (identified by a code page). The ASCII encoding is also in this category:
it encodes the first 128 characters and drops everything else. This category contains
the nonlegacy GB18030 as well, which is the mandatory standard for applications
written in China—or sold to China—since 2000.

In the second category are UTF-8, UTF-16, and UTF-32 (and the obsolete UTF-7).
Each differs in space efficiency. UTF-8 is the most space-efficient for most kinds of
text: it uses between 1 and 4 bytes to represent each character. The first 128 charac‐
ters require only a single byte, making it compatible with ASCII. UTF-8 is the most
popular encoding for text files and streams (particularly on the Internet), and it is
the default for stream I/O in .NET (in fact, it’s the default for almost everything that
implicitly uses an encoding).

UTF-16 uses one or two 16-bit words to represent each character and is what .NET
uses internally to represent characters and strings. Some programs also write files in
UTF-16.

UTF-32 is the least space-efficient: it maps each code point directly to 32 bits, so
every character consumes 4 bytes. UTF-32 is rarely used for this reason. It does,
however, make random access very easy because every character takes an equal
number of bytes.

Obtaining an Encoding object
The Encoding class in System.Text is the common base type for classes that encap‐
sulate text encodings. There are several subclasses—their purpose is to encapsulate
families of encodings with similar features. The easiest way to instantiate a correctly
configured class is to call Encoding.GetEncoding with a standard IANA (Internet
Assigned Numbers Authority) Character Set name:

Encoding utf8 = Encoding.GetEncoding ("utf-8");
Encoding chinese = Encoding.GetEncoding ("GB18030");

The most common encodings can also be obtained through dedicated static proper‐
ties on Encoding:

Encoding name Static property on Encoding

UTF-8 Encoding.UTF8

UTF-16 Encoding.Unicode (not UTF16)

UTF-32 Encoding.UTF32

ASCII Encoding.ASCII

224 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

The static GetEncodings method returns a list of all supported encodings, with their
standard IANA names:

foreach (EncodingInfo info in Encoding.GetEncodings())
 Console.WriteLine (info.Name);

The other way to obtain an encoding is to directly instantiate an encoding class.
Doing so allows you to set various options via constructor arguments, including:

• Whether to throw an exception if an invalid byte sequence is encountered
when decoding. The default is false.

• Whether to encode/decode UTF-16/UTF-32 with the most significant bytes
first (big endian) or the least significant bytes first (little endian). The default is
little endian, the standard on the Windows operating system.

• Whether to emit a byte-order mark (a prefix that indicates endianness).

Encoding for file and stream I/O
The most common application for an Encoding object is to control how text is read
and written to a file or stream. For example, the following writes “Testing...” to a file
called data.txt in UTF-16 encoding:

System.IO.File.WriteAllText ("data.txt", "Testing...", Encoding.Unicode);

If you omit the final argument, WriteAllText applies the ubiquitous UTF-8 encod‐
ing.

UTF-8 is the default text encoding for all file and stream I/O.

We resume this subject in Chapter 15, in “Stream Adapters” on page 639.

Encoding to byte arrays
You can also use an Encoding object to go to and from a byte array. The GetBytes
method converts from string to byte[] with the given encoding; GetString con‐
verts from byte[] to string:

byte[] utf8Bytes = System.Text.Encoding.UTF8.GetBytes ("0123456789");
byte[] utf16Bytes = System.Text.Encoding.Unicode.GetBytes ("0123456789");
byte[] utf32Bytes = System.Text.Encoding.UTF32.GetBytes ("0123456789");

Console.WriteLine (utf8Bytes.Length); // 10
Console.WriteLine (utf16Bytes.Length); // 20
Console.WriteLine (utf32Bytes.Length); // 40

string original1 = System.Text.Encoding.UTF8.GetString (utf8Bytes);
string original2 = System.Text.Encoding.Unicode.GetString (utf16Bytes);
string original3 = System.Text.Encoding.UTF32.GetString (utf32Bytes);

Fram
ew

o
rk

Fund
am

entals

String and Text Handling | 225

www.EBooksWorld.ir

Console.WriteLine (original1); // 0123456789
Console.WriteLine (original2); // 0123456789
Console.WriteLine (original3); // 0123456789

UTF-16 and surrogate pairs
Recall that .NET stores characters and strings in UTF-16. Because UTF-16 requires
one or two 16-bit words per character, and a char is only 16 bits in length, some
Unicode characters require two chars to represent. This has a couple of conse‐
quences:

• A string’s Length property may be greater than its real character count.

• A single char is not always enough to fully represent a Unicode character.

Most applications ignore this, because nearly all commonly used characters fit into a
section of Unicode called the Basic Multilingual Plane (BMP) which requires only
one 16-bit word in UTF-16. The BMP covers several dozen world languages and
includes more than 30,000 Chinese characters. Excluded are characters of some
ancient languages, symbols for musical notation, and some less common Chinese
characters.

If you need to support two-word characters, the following static methods in char
convert a 32-bit code point to a string of two chars, and back again:

string ConvertFromUtf32 (int utf32)
int ConvertToUtf32 (char highSurrogate, char lowSurrogate)

Two-word characters are called surrogates. They are easy to spot because each word
is in the range 0xD800 to 0xDFFF. You can use the following static methods in char
to assist:

bool IsSurrogate (char c)
bool IsHighSurrogate (char c)
bool IsLowSurrogate (char c)
bool IsSurrogatePair (char highSurrogate, char lowSurrogate)

The StringInfo class in the System.Globalization namespace also provides a
range of methods and properties for working with two-word characters.

Characters outside the BMP typically require special fonts and have limited operat‐
ing system support.

Dates and Times
Three immutable structs in the System namespace do the job of representing dates
and times: DateTime, DateTimeOffset, and TimeSpan. C# doesn’t define any special
keywords that map to these types.

226 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

TimeSpan
A TimeSpan represents an interval of time—or a time of the day. In the latter role, it’s
simply the “clock” time (without the date), which is equivalent to the time since
midnight, assuming no daylight saving transition. A TimeSpan has a resolution of
100 ns, has a maximum value of about 10 million days, and can be positive or nega‐
tive.

There are three ways to construct a TimeSpan:

• Through one of the constructors

• By calling one of the static From... methods

• By subtracting one DateTime from another

Here are the constructors:

public TimeSpan (int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds,
 int milliseconds);
public TimeSpan (long ticks); // Each tick = 100ns

The static From... methods are more convenient when you want to specify an inter‐
val in just a single unit, such as minutes, hours, and so on:

public static TimeSpan FromDays (double value);
public static TimeSpan FromHours (double value);
public static TimeSpan FromMinutes (double value);
public static TimeSpan FromSeconds (double value);
public static TimeSpan FromMilliseconds (double value);

For example:

Console.WriteLine (new TimeSpan (2, 30, 0)); // 02:30:00
Console.WriteLine (TimeSpan.FromHours (2.5)); // 02:30:00
Console.WriteLine (TimeSpan.FromHours (-2.5)); // -02:30:00

TimeSpan overloads the < and > operators, as well as the + and - operators. The fol‐
lowing expression evaluates to a TimeSpan of 2.5 hours:

TimeSpan.FromHours(2) + TimeSpan.FromMinutes(30);

The next expression evaluates to one second short of 10 days:

TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1); // 9.23:59:59

Using this expression, we can illustrate the integer properties Days, Hours, Minutes,
Seconds, and Milliseconds:

TimeSpan nearlyTenDays = TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1);

Console.WriteLine (nearlyTenDays.Days); // 9
Console.WriteLine (nearlyTenDays.Hours); // 23
Console.WriteLine (nearlyTenDays.Minutes); // 59

Fram
ew

o
rk

Fund
am

entals

Dates and Times | 227

www.EBooksWorld.ir

Console.WriteLine (nearlyTenDays.Seconds); // 59
Console.WriteLine (nearlyTenDays.Milliseconds); // 0

In contrast, the Total... properties return values of type double describing the entire
time span:

Console.WriteLine (nearlyTenDays.TotalDays); // 9.99998842592593
Console.WriteLine (nearlyTenDays.TotalHours); // 239.999722222222
Console.WriteLine (nearlyTenDays.TotalMinutes); // 14399.9833333333
Console.WriteLine (nearlyTenDays.TotalSeconds); // 863999
Console.WriteLine (nearlyTenDays.TotalMilliseconds); // 863999000

The static Parse method does the opposite of ToString, converting a string to a
TimeSpan. TryParse does the same but returns false rather than throwing an
exception if the conversion fails. The XmlConvert class also provides TimeSpan/
string-conversion methods that follow standard XML formatting protocols.

The default value for a TimeSpan is TimeSpan.Zero.

TimeSpan can also be used to represent the time of the day (the elapsed time since
midnight). To obtain the current time of day, call DateTime.Now.TimeOfDay.

DateTime and DateTimeOffset
DateTime and DateTimeOffset are immutable structs for representing a date, and
optionally, a time. They have a resolution of 100 ns and a range covering the years
0001 through 9999.

DateTimeOffset was added in Framework 3.5 and is functionally similar to Date
Time. Its distinguishing feature is that it also stores a UTC offset; this allows more
meaningful results when comparing values across different time zones.

An excellent article on the rationale behind the introduction
of DateTimeOffset is available on the MSDN BCL blogs. The
title is “A Brief History of DateTime,” by Anthony Moore.

Choosing between DateTime and DateTimeOffset
DateTime and DateTimeOffset differ in how they handle time zones. A DateTime
incorporates a three-state flag indicating whether the DateTime is relative to:

• The local time on the current computer
• UTC (the modern equivalent of Greenwich Mean Time)
• Unspecified

A DateTimeOffset is more specific—it stores the offset from UTC as a TimeSpan:

July 01 2007 03:00:00 -06:00

This influences equality comparisons, which is the main factor in choosing between
DateTime and DateTimeOffset. Specifically:

228 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

• DateTime ignores the three-state flag in comparisons and considers two values
equal if they have the same year, month, day, hour, minute, and so on.

• DateTimeOffset considers two values equal if they refer to the same point in
time.

Daylight saving time can make this distinction important even
if your application doesn’t need to handle multiple geographic
time zones.

So, DateTime considers the following two values different, whereas DateTimeOffset
considers them equal:

July 01 2007 09:00:00 +00:00 (GMT)
July 01 2007 03:00:00 -06:00 (local time, Central America)

In most cases, DateTimeOffset’s equality logic is preferable. For example, in calcu‐
lating which of two international events is more recent, a DateTimeOffset implicitly
gives the right answer. Similarly, a hacker plotting a distributed denial of service
attack would reach for a DateTimeOffset! To do the same with DateTime requires
standardizing on a single time zone (typically UTC) throughout your application.
This is problematic for two reasons:

• To be friendly to the end user, UTC DateTimes require explicit conversion to
local time prior to formatting.

• It’s easy to forget and incorporate a local DateTime.

DateTime is better, though, at specifying a value relative to the local computer at
runtime—for example, if you want to schedule an archive at each of your interna‐
tional offices for next Sunday, at 3 A.M. local time (when there’s least activity). Here,
DateTime would be more suitable because it would respect each site’s local time.

Internally, DateTimeOffset uses a short integer to store the
UTC offset in minutes. It doesn’t store any regional informa‐
tion, so there’s nothing present to indicate whether an offset of
+08:00, for instance, refers to Singapore time or Perth time.

We revisit time zones and equality comparison in more depth in “Dates and Time
Zones” on page 234.

SQL Server 2008 introduced direct support for DateTimeOff
set through a new data type of the same name.

Constructing a DateTime
DateTime defines constructors that accept integers for the year, month, and day—
and optionally, the hour, minute, second, and millisecond:

Fram
ew

o
rk

Fund
am

entals

Dates and Times | 229

www.EBooksWorld.ir

public DateTime (int year, int month, int day);

public DateTime (int year, int month, int day,
 int hour, int minute, int second, int millisecond);

If you specify only a date, the time is implicitly set to midnight (0:00).

The DateTime constructors also allow you to specify a DateTimeKind—an enum
with the following values:

Unspecified, Local, Utc

This corresponds to the three-state flag described in the preceding section. Unspeci
fied is the default, and it means that the DateTime is time-zone-agnostic. Local
means relative to the local time zone on the current computer. A local DateTime
does not include information about which particular time zone it refers to, nor,
unlike DateTimeOffset, the numeric offset from UTC.

A DateTime’s Kind property returns its DateTimeKind.

DateTime’s constructors are also overloaded to accept a Calendar object as well—
this allows you to specify a date using any of the Calendar subclasses defined in
System.Globalization. For example:

DateTime d = new DateTime (5767, 1, 1,
 new System.Globalization.HebrewCalendar());

Console.WriteLine (d); // 12/12/2006 12:00:00 AM

(The formatting of the date in this example depends on your computer’s control
panel settings.) A DateTime always uses the default Gregorian calendar—this exam‐
ple, a one-time conversion, takes place during construction. To perform computa‐
tions using another calendar, you must use the methods on the Calendar subclass
itself.

You can also construct a DateTime with a single ticks value of type long, where ticks
is the number of 100 ns intervals from midnight 01/01/0001.

For interoperability, DateTime provides the static FromFileTime and FromFileTi
meUtc methods for converting from a Windows file time (specified as a long) and
FromOADate for converting from an OLE automation date/time (specified as a dou
ble).

To construct a DateTime from a string, call the static Parse or ParseExact method.
Both methods accept optional flags and format providers; ParseExact also accepts a
format string. We discuss parsing in greater detail in “Formatting and parsing” on
page 233.

Constructing a DateTimeOffset
DateTimeOffset has a similar set of constructors. The difference is that you also
specify a UTC offset as a TimeSpan:

230 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

public DateTimeOffset (int year, int month, int day,
 int hour, int minute, int second,
 TimeSpan offset);

public DateTimeOffset (int year, int month, int day,
 int hour, int minute, int second, int millisecond,
 TimeSpan offset);

The TimeSpan must amount to a whole number of minutes, or an exception is
thrown.

DateTimeOffset also has constructors that accept a Calendar object, a long ticks
value, and static Parse and ParseExact methods that accept a string.

You can construct a DateTimeOffset from an existing DateTime either by using
these constructors:

public DateTimeOffset (DateTime dateTime);
public DateTimeOffset (DateTime dateTime, TimeSpan offset);

or with an implicit cast:

DateTimeOffset dt = new DateTime (2000, 2, 3);

The implicit cast from DateTime to DateTimeOffset is handy
because most of the .NET Framework supports DateTime—
not DateTimeOffset.

If you don’t specify an offset, it’s inferred from the DateTime value using these rules:

• If the DateTime has a DateTimeKind of Utc, the offset is zero.

• If the DateTime has a DateTimeKind of Local or Unspecified (the default), the
offset is taken from the current local time zone.

To convert in the other direction, DateTimeOffset provides three properties that
return values of type DateTime:

• The UtcDateTime property returns a DateTime in UTC time.

• The LocalDateTime property returns a DateTime in the current local time zone
(converting it if necessary).

• The DateTime property returns a DateTime in whatever zone it was specified,
with a Kind of Unspecified (i.e., it returns the UTC time plus the offset).

The current DateTime/DateTimeOffset
Both DateTime and DateTimeOffset have a static Now property that returns the cur‐
rent date and time:

Console.WriteLine (DateTime.Now); // 11/11/2015 1:23:45 PM
Console.WriteLine (DateTimeOffset.Now); // 11/11/2015 1:23:45 PM -06:00

Fram
ew

o
rk

Fund
am

entals

Dates and Times | 231

www.EBooksWorld.ir

DateTime also provides a Today property that returns just the date portion:

Console.WriteLine (DateTime.Today); // 11/11/2015 12:00:00 AM

The static UtcNow property returns the current date and time in UTC:

Console.WriteLine (DateTime.UtcNow); // 11/11/2015 7:23:45 AM
Console.WriteLine (DateTimeOffset.UtcNow); // 11/11/2015 7:23:45 AM +00:00

The precision of all these methods depends on the operating system and is typically
in the 10–20 ms region.

Working with dates and times
DateTime and DateTimeOffset provide a similar set of instance properties that
return various date/time elements:

DateTime dt = new DateTime (2000, 2, 3,
 10, 20, 30);

Console.WriteLine (dt.Year); // 2000
Console.WriteLine (dt.Month); // 2
Console.WriteLine (dt.Day); // 3
Console.WriteLine (dt.DayOfWeek); // Thursday
Console.WriteLine (dt.DayOfYear); // 34

Console.WriteLine (dt.Hour); // 10
Console.WriteLine (dt.Minute); // 20
Console.WriteLine (dt.Second); // 30
Console.WriteLine (dt.Millisecond); // 0
Console.WriteLine (dt.Ticks); // 630851700300000000
Console.WriteLine (dt.TimeOfDay); // 10:20:30 (returns a TimeSpan)

DateTimeOffset also has an Offset property of type TimeSpan.

Both types provide the following instance methods to perform computations (most
accept an argument of type double or int):

AddYears AddMonths AddDays
AddHours AddMinutes AddSeconds AddMilliseconds AddTicks

These all return a new DateTime or DateTimeOffset, and they take into account
such things as leap years. You can pass in a negative value to subtract.

The Add method adds a TimeSpan to a DateTime or DateTimeOffset. The + operator
is overloaded to do the same job:

TimeSpan ts = TimeSpan.FromMinutes (90);
Console.WriteLine (dt.Add (ts));
Console.WriteLine (dt + ts); // same as above

You can also subtract a TimeSpan from a DateTime/DateTimeOffset and subtract
one DateTime/DateTimeOffset from another. The latter gives you a TimeSpan:

232 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

DateTime thisYear = new DateTime (2015, 1, 1);
DateTime nextYear = thisYear.AddYears (1);
TimeSpan oneYear = nextYear - thisYear;

Formatting and parsing
Calling ToString on a DateTime formats the result as a short date (all numbers) fol‐
lowed by a long time (including seconds). For example:

11/11/2015 11:50:30 AM

The operating system’s control panel, by default, determines such things as whether
the day, month, or year comes first, the use of leading zeros, and whether 12- or 24-
hour time is used.

Calling ToString on a DateTimeOffset is the same, except that the offset is
returned also:

11/11/2015 11:50:30 AM -06:00

The ToShortDateString and ToLongDateString methods return just the date por‐
tion. The long date format is also determined by the control panel; an example is
“Wednesday, 11 November 2015”. ToShortTimeString and ToLongTimeString
return just the time portion, such as 17:10:10 (the former excludes seconds).

These four methods just described are actually shortcuts to four different format
strings. ToString is overloaded to accept a format string and provider, allowing you
to specify a wide range of options and control how regional settings are applied. We
describe this in “Formatting and parsing” on page 233.

DateTimes and DateTimeOffsets can be misparsed if the cul‐
ture settings differ from those in force when formatting takes
place. You can avoid this problem by using ToString in con‐
junction with a format string that ignores culture settings
(such as “o”):

DateTime dt1 = DateTime.Now;
string cannotBeMisparsed = dt1.ToString ("o");
DateTime dt2 = DateTime.Parse (cannotBeMisparsed);

The static Parse/TryParse and ParseExact/TryParseExact methods do the reverse
of ToString, converting a string to a DateTime or DateTimeOffset. These methods
are also overloaded to accept a format provider. The Try* methods return false
instead of throwing a FormatException.

Null DateTime and DateTimeOffset values
Because DateTime and DateTimeOffset are structs, they are not intrinsically nulla‐
ble. When you need nullability, there are two ways around this:

• Use a Nullable type (i.e., DateTime? or DateTimeOffset?).

Fram
ew

o
rk

Fund
am

entals

Dates and Times | 233

www.EBooksWorld.ir

• Use the static field DateTime.MinValue or DateTimeOffset.MinValue (the
default values for these types).

A nullable type is usually the best approach because the compiler helps to prevent
mistakes. DateTime.MinValue is useful for backward compatibility with code writ‐
ten prior to C# 2.0 (when nullable types were introduced).

Calling ToUniversalTime or ToLocalTime on a DateTime.Min
Value can result in it no longer being DateTime.MinValue
(depending on which side of GMT you are on). If you’re right
on GMT (England, outside daylight saving), the problem
won’t arise at all because local and UTC times are the same.
This is your compensation for the English winter!

Dates and Time Zones
In this section, we examine in more detail how time zones influence DateTime and
DateTimeOffset. We also look at the TimeZone and TimeZoneInfo types, which pro‐
vide information on time zone offsets and daylight saving time.

DateTime and Time Zones
DateTime is simplistic in its handling of time zones. Internally, it stores a DateTime
using two pieces of information:

• A 62-bit number, indicating the number of ticks since 1/1/0001

• A 2-bit enum, indicating the DateTimeKind (Unspecified, Local, or Utc)

When you compare two DateTime instances, only their ticks values are compared;
their DateTimeKinds are ignored:

DateTime dt1 = new DateTime (2015, 1, 1, 10, 20, 30, DateTimeKind.Local);
DateTime dt2 = new DateTime (2015, 1, 1, 10, 20, 30, DateTimeKind.Utc);
Console.WriteLine (dt1 == dt2); // True
DateTime local = DateTime.Now;
DateTime utc = local.ToUniversalTime();
Console.WriteLine (local == utc); // False

The instance methods ToUniversalTime/ToLocalTime convert to universal/local
time. These apply the computer’s current time zone settings and return a new Date
Time with a DateTimeKind of Utc or Local. No conversion happens if you call ToUni
versalTime on a DateTime that’s already Utc, or ToLocalTime on a DateTime that’s
already Local. You will get a conversion, however, if you call ToUniversalTime or
ToLocalTime on a DateTime that’s Unspecified.

You can construct a DateTime that differs from another only in Kind with the static
DateTime.SpecifyKind method:

234 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

DateTime d = new DateTime (2015, 12, 12); // Unspecified
DateTime utc = DateTime.SpecifyKind (d, DateTimeKind.Utc);
Console.WriteLine (utc); // 12/12/2015 12:00:00 AM

DateTimeOffset and Time Zones
Internally, DateTimeOffset comprises a DateTime field whose value is always in
UTC and a 16-bit integer field for the UTC offset in minutes. Comparisons look
only at the (UTC) DateTime; the Offset is used primarily for formatting.

The ToUniversalTime/ToLocalTime methods return a DateTimeOffset represent‐
ing the same point in time, but with a UTC or local offset. Unlike with DateTime,
these methods don’t affect the underlying date/time value, only the offset:

DateTimeOffset local = DateTimeOffset.Now;
DateTimeOffset utc = local.ToUniversalTime();

Console.WriteLine (local.Offset); // -06:00:00 (in Central America)
Console.WriteLine (utc.Offset); // 00:00:00

Console.WriteLine (local == utc); // True

To include the Offset in the comparison, you must use the EqualsExact method:

Console.WriteLine (local.EqualsExact (utc)); // False

TimeZone and TimeZoneInfo
The TimeZone and TimeZoneInfo classes provide information on time zone names,
UTC offsets, and daylight saving time rules. TimeZoneInfo is the more powerful of
the two and was introduced in Framework 3.5.

The biggest difference between the two types is that TimeZone lets you access only
the current local time zone, whereas TimeZoneInfo provides access to all the world’s
time zones. Further, TimeZoneInfo exposes a richer (although at times, more awk‐
ward) rules-based model for describing daylight saving time.

TimeZone
The static TimeZone.CurrentTimeZone method returns a TimeZone object based on
the current local settings. The following demonstrates the result if run in California:

TimeZone zone = TimeZone.CurrentTimeZone;
Console.WriteLine (zone.StandardName); // Pacific Standard Time
Console.WriteLine (zone.DaylightName); // Pacific Daylight Time

The IsDaylightSavingTime and GetUtcOffset methods work as follows:

DateTime dt1 = new DateTime (2015, 1, 1);
DateTime dt2 = new DateTime (2015, 6, 1);
Console.WriteLine (zone.IsDaylightSavingTime (dt1)); // True
Console.WriteLine (zone.IsDaylightSavingTime (dt2)); // False
Console.WriteLine (zone.GetUtcOffset (dt1)); // 08:00:00
Console.WriteLine (zone.GetUtcOffset (dt2)); // 09:00:00

Fram
ew

o
rk

Fund
am

entals

Dates and Time Zones | 235

www.EBooksWorld.ir

The GetDaylightChanges method returns specific daylight saving time information
for a given year:

DaylightTime day = zone.GetDaylightChanges (2015);
Console.WriteLine (day.Start.ToString ("M")); // 08 March
Console.WriteLine (day.End.ToString ("M")); // 01 November
Console.WriteLine (day.Delta); // 01:00:00

TimeZoneInfo
The TimeZoneInfo class works in a similar manner. TimeZoneInfo.Local returns
the current local time zone:

TimeZoneInfo zone = TimeZoneInfo.Local;
Console.WriteLine (zone.StandardName); // Pacific Standard Time
Console.WriteLine (zone.DaylightName); // Pacific Daylight Time

TimeZoneInfo also provides IsDaylightSavingTime and GetUtcOffset methods—
the difference is that they accept either a DateTime or a DateTimeOffset.

You can obtain a TimeZoneInfo for any of the world’s time zones by calling FindSys
temTimeZoneById with the zone ID. This feature is unique to TimeZoneInfo, as is
everything else that we demonstrate from this point on. We’ll switch to Western
Australia for reasons that will soon become clear:

TimeZoneInfo wa = TimeZoneInfo.FindSystemTimeZoneById
 ("W. Australia Standard Time");

Console.WriteLine (wa.Id); // W. Australia Standard Time
Console.WriteLine (wa.DisplayName); // (GMT+08:00) Perth
Console.WriteLine (wa.BaseUtcOffset); // 08:00:00
Console.WriteLine (wa.SupportsDaylightSavingTime); // True

The Id property corresponds to the value passed to FindSystemTimeZoneById. The
static GetSystemTimeZones method returns all world time zones; hence, you can list
all valid zone ID strings as follows:

foreach (TimeZoneInfo z in TimeZoneInfo.GetSystemTimeZones())
 Console.WriteLine (z.Id);

You can also create a custom time zone by calling TimeZo
neInfo.CreateCustomTimeZone. Because TimeZoneInfo is
immutable, you must pass in all the relevant data as method
arguments.
You can serialize a predefined or custom time zone to a (semi)
human-readable string by calling ToSerializedString—and
deserialize it by calling TimeZoneInfo.FromSerialized

String.

The static ConvertTime method converts a DateTime or DateTimeOffset from one
time zone to another. You can include either just a destination TimeZoneInfo, or
both source and destination TimeZoneInfo objects. You can also convert directly
from or to UTC with the methods ConvertTimeFromUtc and ConvertTimeToUtc.

236 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

For working with daylight saving time, TimeZoneInfo provides the following addi‐
tional methods:

• IsInvalidTime returns true if a DateTime is within the hour (or delta) that’s
skipped when the clocks move forward.

• IsAmbiguousTime returns true if a DateTime or DateTimeOffset is within the
hour (or delta) that’s repeated when the clocks move back.

• GetAmbiguousTimeOffsets returns an array of TimeSpans representing the
valid offset choices for an ambiguous DateTime or DateTimeOffset.

Unlike with TimeZone, you can’t obtain simple dates from a TimeZoneInfo indicat‐
ing the start and end of daylight saving time. Instead, you must call GetAdjustmen
tRules, which returns a declarative summary of all daylight saving rules that apply
to all years. Each rule has a DateStart and DateEnd indicating the date range within
which the rule is valid:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
 Console.WriteLine ("Rule: applies from " + rule.DateStart +
 " to " + rule.DateEnd);

Western Australia first introduced daylight saving time in 2006, midseason (and
then rescinded it in 2009). This required a special rule for the first year; hence, there
are two rules:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM

Each AdjustmentRule has a DaylightDelta property of type TimeSpan (this is one
hour in almost every case) and properties called DaylightTransitionStart and
DaylightTransitionEnd. The latter two are of type TimeZoneInfo.Transition
Time, which has the following properties:

public bool IsFixedDateRule { get; }
public DayOfWeek DayOfWeek { get; }
public int Week { get; }
public int Day { get; }
public int Month { get; }
public DateTime TimeOfDay { get; }

A transition time is somewhat complicated in that it needs to represent both fixed
and floating dates. An example of a floating date is “the last Sunday in March.” Here
are the rules for interpreting a transition time:

1. If, for an end transition, IsFixedDateRule is true, Day is 1, Month is 1, and
TimeOfDay is DateTime.MinValue, there is no end to daylight saving time in
that year (this can happen only in the southern hemisphere, upon the initial
introduction of daylight saving time to a region).

2. Otherwise, if IsFixedDateRule is true, the Month, Day, and TimeOfDay proper‐
ties determine the start or end of the adjustment rule.

Fram
ew

o
rk

Fund
am

entals

Dates and Time Zones | 237

www.EBooksWorld.ir

3. Otherwise, if IsFixedDateRule is false, the Month, DayOfWeek, Week, and Time
OfDay properties determine the start or end of the adjustment rule.

In the last case, Week refers to the week of the month, with “5” meaning the last
week. We can demonstrate this by enumerating the adjustment rules for our wa time
zone:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
{
 Console.WriteLine ("Rule: applies from " + rule.DateStart +
 " to " + rule.DateEnd);

 Console.WriteLine (" Delta: " + rule.DaylightDelta);

 Console.WriteLine (" Start: " + FormatTransitionTime
 (rule.DaylightTransitionStart, false));

 Console.WriteLine (" End: " + FormatTransitionTime
 (rule.DaylightTransitionEnd, true));
 Console.WriteLine();
}

In FormatTransitionTime, we honor the rules just described:

static string FormatTransitionTime (TimeZoneInfo.TransitionTime tt,
 bool endTime)
{
 if (endTime && tt.IsFixedDateRule
 && tt.Day == 1 && tt.Month == 1
 && tt.TimeOfDay == DateTime.MinValue)
 return "-";

 string s;
 if (tt.IsFixedDateRule)
 s = tt.Day.ToString();
 else
 s = "The " +
 "first second third fourth last".Split() [tt.Week - 1] +
 " " + tt.DayOfWeek + " in";

 return s + " " + DateTimeFormatInfo.CurrentInfo.MonthNames [tt.Month-1]
 + " at " + tt.TimeOfDay.TimeOfDay;
}

The result with Western Australia is interesting in that it demonstrates both fixed
and floating date rules—as well as an absent end date:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
 Delta: 01:00:00
 Start: 3 December at 02:00:00
 End: -

Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM
 Delta: 01:00:00

238 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

 Start: The last Sunday in October at 02:00:00
 End: The last Sunday in March at 03:00:00

Western Australia is actually unique in this regard. Here’s how
we found it:

from zone in TimeZoneInfo.GetSystemTimeZones()
let rules = zone.GetAdjustmentRules()
where
 rules.Any
 (r => r.DaylightTransitionEnd.IsFixedDateRule) &&
 rules.Any
 (r => !r.DaylightTransitionEnd.IsFixedDateRule)
select zone

Daylight Saving Time and DateTime
If you use a DateTimeOffset or a UTC DateTime, equality comparisons are unimpe‐
ded by the effects of daylight saving time. But with local DateTimes, daylight saving
can be problematic.

The rules can be summarized as follows:

• Daylight saving impacts local time but not UTC time.
• When the clocks turn back, comparisons that rely on time moving forward will

break if (and only if) they use local DateTimes.
• You can always reliably round-trip between UTC and local times (on the same

computer)—even as the clocks turn back.

The IsDaylightSavingTime tells you whether a given local DateTime is subject to
daylight saving time. UTC times always return false:

Console.Write (DateTime.Now.IsDaylightSavingTime()); // True or False
Console.Write (DateTime.UtcNow.IsDaylightSavingTime()); // Always False

Assuming dto is a DateTimeOffset, the following expression does the same:

dto.LocalDateTime.IsDaylightSavingTime

The end of daylight saving time presents a particular complication for algorithms
that use local time. When the clocks go back, the same hour (or more precisely,
Delta) repeats itself. We can demonstrate this by instantiating a DateTime right in
the “twilight zone” on your computer, and then subtracting Delta (this example
requires that you practice daylight saving time to be interesting!):

DaylightTime changes = TimeZone.CurrentTimeZone.GetDaylightChanges (2010);
TimeSpan halfDelta = new TimeSpan (changes.Delta.Ticks / 2);
DateTime utc1 = changes.End.ToUniversalTime() - halfDelta;
DateTime utc2 = utc1 - changes.Delta;

Converting these variables to local times demonstrates why you should use UTC
and not local time if your code relies on time moving forward:

DateTime loc1 = utc1.ToLocalTime(); // (Pacific Standard Time)
DateTime loc2 = utc2.ToLocalTime();

Fram
ew

o
rk

Fund
am

entals

Dates and Time Zones | 239

www.EBooksWorld.ir

Console.WriteLine (loc1); // 2/11/2010 1:30:00 AM
Console.WriteLine (loc2); // 2/11/2010 1:30:00 AM
Console.WriteLine (loc1 == loc2); // True

Despite loc1 and loc2 reporting as equal, they are different inside. DateTime
reserves a special bit for indicating on which side of the twilight zone an ambiguous
local date lies! This bit is ignored in comparison—as we just saw—but comes into
play when you format the DateTime unambiguously:

Console.Write (loc1.ToString ("o")); // 2010-11-02T02:30:00.0000000-08:00
Console.Write (loc2.ToString ("o")); // 2010-11-02T02:30:00.0000000-07:00

This bit also is read when you convert back to UTC, ensuring perfect round-
tripping between local and UTC times:

Console.WriteLine (loc1.ToUniversalTime() == utc1); // True
Console.WriteLine (loc2.ToUniversalTime() == utc2); // True

You can reliably compare any two DateTimes by first calling
ToUniversalTime on each. This strategy fails if (and only if)
exactly one of them has a DateTimeKind of Unspecified. This
potential for failure is another reason for favoring DateTi
meOffset.

Formatting and Parsing
Formatting means converting to a string; parsing means converting from a string.
The need to format or parse arises frequently in programming, in a variety of situa‐
tions. Hence, the .NET Framework provides a variety of mechanisms:

ToString and Parse
These methods provide default functionality for many types.

Format providers
These manifest as additional ToString (and Parse) methods that accept a
format string and/or a format provider. Format providers are highly flexible
and culture-aware. The .NET Framework includes format providers for the
numeric types and DateTime/DateTimeOffset.

XmlConvert

This is a static class with methods that format and parse while honoring
XML standards. XmlConvert is also useful for general-purpose conversion
when you need culture independence or you want to preempt misparsing.
XmlConvert supports the numeric types, bool, DateTime, DateTimeOffset,
TimeSpan, and Guid.

Type converters
These target designers and XAML parsers.

240 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

In this section, we discuss the first two mechanisms, focusing particularly on format
providers. In the section following, we describe XmlConvert and type converters, as
well as other conversion mechanisms.

ToString and Parse
The simplest formatting mechanism is the ToString method. It gives meaningful
output on all simple value types (bool, DateTime, DateTimeOffset, TimeSpan, Guid,
and all the numeric types). For the reverse operation, each of these types defines a
static Parse method. For example:

string s = true.ToString(); // s = "True"
bool b = bool.Parse (s); // b = true

If the parsing fails, a FormatException is thrown. Many types also define a Try
Parse method, which returns false if the conversion fails, rather than throwing an
exception:

int i;
bool failure = int.TryParse ("qwerty", out i);
bool success = int.TryParse ("123", out i);

If you anticipate an error, calling TryParse is faster and more elegant than calling
Parse in an exception handling block.

The Parse and TryParse methods on DateTime(Offset) and the numeric types
respect local culture settings; you can change this by specifying a CultureInfo
object. Specifying invariant culture is often a good idea. For instance, parsing
“1.234” into a double gives us 1234 in Germany:

Console.WriteLine (double.Parse ("1.234")); // 1234 (In Germany)

This is because in Germany, the period indicates a thousands separator rather than a
decimal point. Specifying invariant culture fixes this:

double x = double.Parse ("1.234", CultureInfo.InvariantCulture);

The same applies when calling ToString():

string x = 1.234.ToString (CultureInfo.InvariantCulture);

Format Providers
Sometimes you need more control over how formatting and parsing take place.
There are dozens of ways to format a DateTime(Offset), for instance. Format pro‐
viders allow extensive control over formatting and parsing, and are supported for
numeric types and date/times. Format providers are also used by user interface con‐
trols for formatting and parsing.

The gateway to using a format provider is IFormattable. All numeric types—and
DateTime(Offset)—implement this interface:

Fram
ew

o
rk

Fund
am

entals

Formatting and Parsing | 241

www.EBooksWorld.ir

public interface IFormattable
{
 string ToString (string format, IFormatProvider formatProvider);
}

The first argument is the format string; the second is the format provider. The format
string provides instructions; the format provider determines how the instructions
are translated. For example:

NumberFormatInfo f = new NumberFormatInfo();
f.CurrencySymbol = "$$";
Console.WriteLine (3.ToString ("C", f)); // $$ 3.00

Here, "C" is a format string that indicates currency, and the NumberFormatInfo
object is a format provider that determines how currency—and other numeric rep‐
resentations—are rendered. This mechanism allows for globalization.

All format strings for numbers and dates are listed in “Stan‐
dard Format Strings and Parsing Flags” on page 246.

If you specify a null format string or provider, a default is applied. The default for‐
mat provider is CultureInfo.CurrentCulture, which, unless reassigned, reflects
the computer’s runtime control panel settings. For example, on this computer:

Console.WriteLine (10.3.ToString ("C", null)); // $10.30

For convenience, most types overload ToString such that you can omit a null pro‐
vider:

Console.WriteLine (10.3.ToString ("C")); // $10.30
Console.WriteLine (10.3.ToString ("F4")); // 10.3000 (Fix to 4 D.P.)

Calling ToString on a DateTime(Offset) or a numeric type with no arguments is
equivalent to using a default format provider, with an empty format string.

The .NET Framework defines three format providers (all of which implement IFor
matProvider):

NumberFormatInfo
DateTimeFormatInfo
CultureInfo

All enum types are also formattable, though there’s no special
IFormatProvider class.

Format providers and CultureInfo
Within the context of format providers, CultureInfo acts as an indirection mecha‐
nism for the other two format providers, returning a NumberFormatInfo or DateTi
meFormatInfo object applicable to the culture’s regional settings.

242 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

In the following example, we request a specific culture (english language in Great
Britain):

CultureInfo uk = CultureInfo.GetCultureInfo ("en-GB");
Console.WriteLine (3.ToString ("C", uk)); // £3.00

This executes using the default NumberFormatInfo object applicable to the en-GB
culture.

The next example formats a DateTime with invariant culture. Invariant culture is
always the same, regardless of the computer’s settings:

DateTime dt = new DateTime (2000, 1, 2);
CultureInfo iv = CultureInfo.InvariantCulture;
Console.WriteLine (dt.ToString (iv)); // 01/02/2000 00:00:00
Console.WriteLine (dt.ToString ("d", iv)); // 01/02/2000

Invariant culture is based on American culture, with the fol‐
lowing differences:

• The currency symbol is ☼ instead of $.
• Dates and times are formatted with leading zeros

(though still with the month first).
• Time uses the 24-hour format rather than an AM/PM

designator.

Using NumberFormatInfo or DateTimeFormatInfo
In the next example, we instantiate a NumberFormatInfo and change the group sepa‐
rator from a comma to a space. We then use it to format a number to three decimal
places:

NumberFormatInfo f = new NumberFormatInfo ();
f.NumberGroupSeparator = " ";
Console.WriteLine (12345.6789.ToString ("N3", f)); // 12 345.679

The initial settings for a NumberFormatInfo or DateTimeFormatInfo are based on
the invariant culture. Sometimes, however, it’s more useful to choose a different
starting point. To do this, you can Clone an existing format provider:

NumberFormatInfo f = (NumberFormatInfo)
 CultureInfo.CurrentCulture.NumberFormat.Clone();

A cloned format provider is always writable—even if the original was read-only.

Composite formatting
Composite format strings allow you to combine variable substitution with format
strings. The static string.Format method accepts a composite format string—we
illustrated this in “String.Format and composite format strings” on page 218:

string composite = "Credit={0:C}";
Console.WriteLine (string.Format (composite, 500)); // Credit=$500.00

Fram
ew

o
rk

Fund
am

entals

Formatting and Parsing | 243

www.EBooksWorld.ir

The Console class itself overloads its Write and WriteLine methods to accept com‐
posite format strings, allowing us to shorten this example slightly:

Console.WriteLine ("Credit={0:C}", 500); // Credit=$500.00

You can also append a composite format string to a StringBuilder (via AppendFor
mat), and to a TextWriter for I/O (see Chapter 15).

string.Format accepts an optional format provider. A simple application for this is
to call ToString on an arbitrary object while passing in a format provider. For
example:

string s = string.Format (CultureInfo.InvariantCulture, "{0}", someObject);

This is equivalent to:

string s;
if (someObject is IFormattable)
 s = ((IFormattable)someObject).ToString (null,
 CultureInfo.InvariantCulture);
else if (someObject == null)
 s = "";
else
 s = someObject.ToString();

Parsing with format providers
There’s no standard interface for parsing through a format provider. Instead, each
participating type overloads its static Parse (and TryParse) method to accept a for‐
mat provider, and optionally, a NumberStyles or DateTimeStyles enum.

NumberStyles and DateTimeStyles control how parsing work: they let you specify
such things as whether parentheses or a currency symbol can appear in the input
string. (By default, the answer to both of these questions is no.) For example:

int error = int.Parse ("(2)"); // Exception thrown

int minusTwo = int.Parse ("(2)", NumberStyles.Integer |
 NumberStyles.AllowParentheses); // OK

decimal fivePointTwo = decimal.Parse ("£5.20", NumberStyles.Currency,
 CultureInfo.GetCultureInfo ("en-GB"));

The next section lists all NumberStyles and DateTimeStyles members—as well as
the default parsing rules for each type.

IFormatProvider and ICustomFormatter
All format providers implement IFormatProvider:

public interface IFormatProvider { object GetFormat (Type formatType); }

The purpose of this method is to provide indirection—this is what allows Cultur
eInfo to defer to an appropriate NumberFormatInfo or DateTimeInfo object to do
the work.

244 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

By implementing IFormatProvider—along with ICustomFormatter—you can also
write your own format provider that works in conjunction with existing types. ICus
tomFormatter defines a single method as follows:

string Format (string format, object arg, IFormatProvider formatProvider);

The following custom format provider writes numbers as words:

// Program can be downloaded from http://www.albahari.com/nutshell/

public class WordyFormatProvider : IFormatProvider, ICustomFormatter
{
 static readonly string[] _numberWords =
 "zero one two three four five six seven eight nine minus point".Split();

 IFormatProvider _parent; // Allows consumers to chain format providers

 public WordyFormatProvider () : this (CultureInfo.CurrentCulture) { }
 public WordyFormatProvider (IFormatProvider parent)
 {
 _parent = parent;
 }

 public object GetFormat (Type formatType)
 {
 if (formatType == typeof (ICustomFormatter)) return this;
 return null;
 }

 public string Format (string format, object arg, IFormatProvider prov)
 {
 // If it's not our format string, defer to the parent provider:
 if (arg == null || format != "W")
 return string.Format (_parent, "{0:" + format + "}", arg);

 StringBuilder result = new StringBuilder();
 string digitList = string.Format (CultureInfo.InvariantCulture,
 "{0}", arg);
 foreach (char digit in digitList)
 {
 int i = "0123456789-.".IndexOf (digit);
 if (i == -1) continue;
 if (result.Length > 0) result.Append (' ');
 result.Append (_numberWords[i]);
 }
 return result.ToString();
 }
}

Notice that in the Format method, we used string.Format to convert the input
number to a string—with InvariantCulture. It would have been much simpler just
to call ToString() on arg, but then CurrentCulture would have been used instead.
The reason for needing the invariant culture is evident a few lines later:

int i = "0123456789-.".IndexOf (digit);

Fram
ew

o
rk

Fund
am

entals

Formatting and Parsing | 245

www.EBooksWorld.ir

It’s critical here that the number string comprises only the characters 0123456789-.
and not any internationalized versions of these.

Here’s an example of using WordyFormatProvider:

double n = -123.45;
IFormatProvider fp = new WordyFormatProvider();
Console.WriteLine (string.Format (fp, "{0:C} in words is {0:W}", n));

// -$123.45 in words is minus one two three point four five

Custom format providers can be used only in composite format strings.

Standard Format Strings and Parsing Flags
The standard format strings control how a numeric type or DateTime/DateTimeOff
set is converted to a string. There are two kinds of format strings:

Standard format strings
With these, you provide general guidance. A standard format string con‐
sists of a single letter, followed, optionally, by a digit (whose meaning
depends on the letter). An example is "C" or "F2".

Custom format strings
With these, you micromanage every character with a template. An example
is "0:#.000E+00".

Custom format strings are unrelated to custom format providers.

Numeric Format Strings
Table 6-2 lists all standard numeric format strings.

Table 6-2. Standard numeric format strings

Letter Meaning Sample input Result Notes

G or g “General” 1.2345, "G"

0.00001, "G"

0.00001, "g"

1.2345, "G3"

12345, "G3"

1.2345

1E-05

1e-05

1.23

1.23E04

Switches to exponential notation for
small or large numbers
G3 limits precision to three digits in
total (before + after point)

F Fixed point 2345.678, "F2"

2345.6, "F2"

2345.68

2345.60

F2 rounds to two decimal places

N Fixed point with
group separator
(“Numeric”)

2345.678, "N2"

2345.6, "N2"

2,345.68

2,345.60

As above, with group (1,000s)
separator (details from format
provider)

D Pad with
leading zeros

123, "D5"

123, "D1"

00123

123

For integral types only
D5 pads left to five digits; does not
truncate

246 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

Letter Meaning Sample input Result Notes

E or e Force
exponential
notation

56789, "E"

56789, "e"

56789, "E2"

5.678900E+004

5.678900e+004

5.68E+004

Six-digit default precision

C Currency 1.2, "C"

1.2, "C4"

$1.20

$1.2000

C with no digit uses default number
of D.P. from format provider

P Percent .503, "P"

.503, "P0"

50.30 %

50 %

Uses symbol and layout from format
provider
Decimal places can optionally be
overridden

X or x Hexadecimal 47, "X"

47, "x"

47, "X4"

2F

2f

002F

X for uppercase hex digits; x for
lowercase hex digits
Integrals only

R Round-trip 1f / 3f, "R" 0.333333343 For the float and double types,
R or G17 squeeze out all digits to
ensure exact round-tripping

Supplying no numeric format string (or a null or blank string) is equivalent to using
the "G" standard format string followed by no digit. This exhibits the following
behavior:

• Numbers smaller than 10–4 or larger than the type’s precision are expressed in
exponential (scientific) notation.

• The two decimal places at the limit of float or double’s precision are rounded
away to mask the inaccuracies inherent in conversion to decimal from their
underlying binary form.

The automatic rounding just described is usually beneficial
and goes unnoticed. However, it can cause trouble if you need
to round-trip a number; in other words, convert it to a string
and back again (maybe repeatedly) while preserving value
equality. For this reason, the "R" and "G17" format strings
exist to circumvent this implicit rounding.

In Framework 4.6, "R" and "G17" do the same thing; in prior
Frameworks, "R" is essentially a buggy version of "G17" and
should not be used.

Table 6-3 lists custom numeric format strings.

Fram
ew

o
rk

Fund
am

entals

Standard Format Strings and Parsing Flags | 247

www.EBooksWorld.ir

Table 6-3. Custom numeric format strings

Specifier Meaning Sample input Result Notes

Digit
placeholder

12.345, ".##"

12.345, ".####"

12.35

12.345

Limits digits after D.P.

0 Zero
placeholder

12.345, ".00"

12.345, ".0000"

99, "000.00"

12.35

12.3450

099.00

As above, but also pads with
zeros before and after D.P.

. Decimal point Indicates D.P.
Actual symbol comes from
NumberFormatInfo

, Group
separator

1234,

"#,###,###"

1234,

"0,000,000"

1,234

0,001,234

Symbol comes from Number
FormatInfo

,

(as above)
Multiplier 1000000, "#,"

1000000, "#,,

1000

1

If comma is at end or before
D.P., it acts as a multiplier—
dividing result by 1,000,
1,000,000, etc.

% Percent
notation

0.6, "00%" 60% First multiplies by 100 and
then substitutes percent
symbol obtained from Num
berFormatInfo

E0, e0,

E+0, e+0

E-0, e-0

Exponent
notation

1234, "0E0"

1234, "0E+0"

1234, "0.00E00"

1234, "0.00e00"

1E3

1E+3

1.23E03

1.23e03

\ Literal
character quote

50, @"\#0" #50 Use in conjunction with an @
prefix on the string—or use
\\

'xx''xx' Literal string
quote

50, "0 '...'" 50 ...

; Section
separator

15, "#;(#);zero" 15 (If positive)

 -5, "#;(#);zero" (5) (If negative)

 0, "#;(#);zero" zero (If zero)

Any other char Literal 35.2, "$0 . 00c" $35 . 20c

NumberStyles
Each numeric type defines a static Parse method that accepts a NumberStyles argu‐
ment. NumberStyles is a flags enum that lets you determine how the string is read as
it’s converted to a numeric type. It has the following combinable members:

248 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

AllowLeadingWhite AllowTrailingWhite
AllowLeadingSign AllowTrailingSign
AllowParentheses AllowDecimalPoint
AllowThousands AllowExponent
AllowCurrencySymbol AllowHexSpecifier

NumberStyles also defines these composite members:

None Integer Float Number HexNumber Currency Any

Except for None, all composite values include AllowLeadingWhite and AllowTrai
lingWhite. Their remaining makeup is shown in Figure 6-1, with the most useful
three emphasized.

Figure 6-1. Composite NumberStyles

When you call Parse without specifying any flags, the defaults in Figure 6-2 are
applied.

Figure 6-2. Default parsing flags for numeric types

Fram
ew

o
rk

Fund
am

entals

Standard Format Strings and Parsing Flags | 249

www.EBooksWorld.ir

If you don’t want the defaults shown in Figure 6-2, you must explicitly specify Num
berStyles:

int thousand = int.Parse ("3E8", NumberStyles.HexNumber);
int minusTwo = int.Parse ("(2)", NumberStyles.Integer |
 NumberStyles.AllowParentheses);
double aMillion = double.Parse ("1,000,000", NumberStyles.Any);
decimal threeMillion = decimal.Parse ("3e6", NumberStyles.Any);
decimal fivePointTwo = decimal.Parse ("$5.20", NumberStyles.Currency);

Because we didn’t specify a format provider, this example works with your local cur‐
rency symbol, group separator, decimal point, and so on. The next example is hard‐
coded to work with the euro sign and a blank group separator for currencies:

NumberFormatInfo ni = new NumberFormatInfo();
ni.CurrencySymbol = "€";
ni.CurrencyGroupSeparator = " ";
double million = double.Parse ("€1 000 000", NumberStyles.Currency, ni);

Date/Time Format Strings
Format strings for DateTime/DateTimeOffset can be divided into two groups, based
on whether they honor culture and format provider settings. Those that do are lis‐
ted in Table 6-4; those that don’t are listed in Table 6-5. The sample output comes
from formatting the following DateTime (with invariant culture, in the case of
Table 6-4):

new DateTime (2000, 1, 2, 17, 18, 19);

Table 6-4. Culture-sensitive date/time format strings

Format string Meaning Sample output

d Short date 01/02/2000

D Long date Sunday, 02 January 2000

t Short time 17:18

T Long time 17:18:19

f Long date + short time Sunday, 02 January 2000 17:18

F Long date + long time Sunday, 02 January 2000 17:18:19

g Short date + short time 01/02/2000 17:18

G (default) Short date + long time 01/02/2000 17:18:19

m, M Month and day 02 January

y, Y Year and month January 2000

250 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

Table 6-5. Culture-insensitive date/time format strings

Format
string

Meaning Sample output Notes

o Round-
trippable

2000-01-02T17:18:19.0000000 Will append time zone information unless
DateTimeKind is Unspecified

r, R RFC 1123
standard

Sun, 02 Jan 2000 17:18:19

GMT

You must explicitly convert to UTC with
DateTime.ToUniversalTime

s Sortable;
ISO 8601

2000-01-02T17:18:19 Compatible with text-based sorting

u “Universal”
sortable

2000-01-02 17:18:19Z Similar to above; must explicitly convert to
UTC

U UTC Sunday, 02 January 2000

17:18:19

Long date + short time, converted to UTC

The format strings "r", "R", and "u" emit a suffix that implies UTC; yet they don’t
automatically convert a local to a UTC DateTime (so you must do the conversion
yourself). Ironically, "U" automatically converts to UTC but doesn’t write a time
zone suffix! In fact, "o" is the only format specifier in the group that can write an
unambiguous DateTime without intervention.

DateTimeFormatInfo also supports custom format strings: these are analogous to
numeric custom format strings. The list is fairly exhaustive, and you can find it in
the MSDN. An example of a custom format string is:

yyyy-MM-dd HH:mm:ss

Parsing and misparsing DateTimes
Strings that put the month or day first are ambiguous and can easily be misparsed—
particularly if you or any of your customers live outside the United States. This is
not a problem in user-interface controls because the same settings are in force when
parsing as when formatting. But when writing to a file, for instance, day/month
misparsing can be a real problem. There are two solutions:

• Always state the same explicit culture when formatting and parsing (e.g., invar‐
iant culture).

• Format DateTime and DateTimeOffsets in a manner independent of culture.

The second approach is more robust—particularly if you choose a format that puts
the four-digit year first: such strings are much harder to misparse by another party.
Further, strings formatted with a standards-compliant year-first format (such as "o")
can parse correctly alongside locally formatted strings—rather like a “universal
donor.” (Dates formatted with "s" or "u" have the further benefit of being sortable.)

To illustrate, suppose we generate a culture-insensitive DateTime string s as follows:

Fram
ew

o
rk

Fund
am

entals

Standard Format Strings and Parsing Flags | 251

www.EBooksWorld.ir

string s = DateTime.Now.ToString ("o");

The "o" format string includes milliseconds in the output.
The following custom format string gives the same result as
"o", but without milliseconds:

yyyy-MM-ddTHH:mm:ss K

We can reparse this in two ways. ParseExact demands strict compliance with the
specified format string:

DateTime dt1 = DateTime.ParseExact (s, "o", null);

(You can achieve a similar result with XmlConvert’s ToString and ToDateTime
methods.)

Parse, however, implicitly accepts both the "o" format and the CurrentCulture
format:

DateTime dt2 = DateTime.Parse (s);

This works with both DateTime and DateTimeOffset.

ParseExact is usually preferable if you know the format of the
string that you’re parsing. It means that if the string is incor‐
rectly formatted, an exception will be thrown—which is usu‐
ally better than risking a misparsed date.

DateTimeStyles
DateTimeStyles is a flags enum that provides additional instructions when calling
Parse on a DateTime(Offset). Here are its members:

None,
AllowLeadingWhite, AllowTrailingWhite, AllowInnerWhite,
AssumeLocal, AssumeUniversal, AdjustToUniversal,
NoCurrentDateDefault, RoundTripKind

There is also a composite member, AllowWhiteSpaces:

AllowWhiteSpaces = AllowLeadingWhite | AllowTrailingWhite | AllowInnerWhite

The default is None. This means that extra whitespace is normally prohibited (white‐
space that’s part of a standard DateTime pattern is exempt).

AssumeLocal and AssumeUniversal apply if the string doesn’t have a time zone suf‐
fix (such as Z or +9:00). AdjustToUniversal still honors time zone suffixes but then
converts to UTC using the current regional settings.

If you parse a string comprising a time but no date, today’s date is applied by
default. If you apply the NoCurrentDateDefault flag, however, it instead uses 1st
January 0001.

252 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

Enum Format Strings
In “Enums” in Chapter 3, we describe formatting and parsing enum values.
Table 6-6 lists each format string and the result of applying it to the following
expression:

Console.WriteLine (System.ConsoleColor.Red.ToString (formatString));

Table 6-6. Enum format strings

Format string Meaning Sample output Notes

G or g “General” Red Default

F or f Treat as though Flags
attribute were present

Red Works on combined members even if
enum has no Flags attribute

D or d Decimal value 12 Retrieves underlying integral value

X or x Hexadecimal value 0000000C Retrieves underlying integral value

Other Conversion Mechanisms
In the previous two sections, we covered format providers—.NET’s primary mecha‐
nism for formatting and parsing. Other important conversion mechanisms are scat‐
tered through various types and namespaces. Some convert to and from string,
and some do other kinds of conversions. In this section, we discuss the following
topics:

• The Convert class and its functions:
— Real to integral conversions that round rather than truncate
— Parsing numbers in base 2, 8, and 16
— Dynamic conversions
— Base 64 translations

• XmlConvert and its role in formatting and parsing for XML
• Type converters and their role in formatting and parsing for designers and

XAML
• BitConverter, for binary conversions

Convert
The .NET Framework calls the following types base types:

• bool, char, string, System.DateTime, and System.DateTimeOffset
• All of the C# numeric types

Fram
ew

o
rk

Fund
am

entals

Other Conversion Mechanisms | 253

www.EBooksWorld.ir

The static Convert class defines methods for converting every base type to every
other base type. Unfortunately, most of these methods are useless: either they throw
exceptions or they are redundant alongside implicit casts. Among the clutter, how‐
ever, are some useful methods, listed in the following sections.

All base types (explicitly) implement IConvertible, which
defines methods for converting to every other base type. In
most cases, the implementation of each of these methods sim‐
ply calls a method in Convert. On rare occasions, it can be
useful to write a method that accepts an argument of type
IConvertible.

Rounding real-to-integral conversions
In Chapter 2, we saw how implicit and explicit casts allow you to convert between
numeric types. In summary:

• Implicit casts work for nonlossy conversions (e.g., int to double).

• Explicit casts are required for lossy conversions (e.g., double to int).

Casts are optimized for efficiency; hence, they truncate data that won’t fit. This can
be a problem when converting from a real number to an integer, because often you
want to round rather than truncate. Convert’s numerical conversion methods
address just this issue; they always round:

double d = 3.9;
int i = Convert.ToInt32 (d); // i == 4

Convert uses banker’s rounding, which snaps midpoint values to even integers (this
avoids positive or negative bias). If banker’s rounding is a problem, first call
Math.Round on the real number: this accepts an additional argument that allows you
to control midpoint rounding.

Parsing numbers in base 2, 8, and 16
Hidden among the To(integral-type) methods are overloads that parse numbers
in another base:

int thirty = Convert.ToInt32 ("1E", 16); // Parse in hexadecimal
uint five = Convert.ToUInt32 ("101", 2); // Parse in binary

The second argument specifies the base. It can be any base you like—as long as it’s 2,
8, 10, or 16!

Dynamic conversions
Occasionally, you need to convert from one type to another—but you don’t know
what the types are until runtime. For this, the Convert class provides a ChangeType
method:

public static object ChangeType (object value, Type conversionType);

254 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

The source and target types must be one of the “base” types. ChangeType also
accepts an optional IFormatProvider argument. Here’s an example:

Type targetType = typeof (int);
object source = "42";

object result = Convert.ChangeType (source, targetType);

Console.WriteLine (result); // 42
Console.WriteLine (result.GetType()); // System.Int32

An example of when this might be useful is in writing a deserializer that can work
with multiple types. It can also convert any enum to its integral type (see “Enums”
on page 109 in Chapter 3).

A limitation of ChangeType is that you cannot specify a format string or parsing flag.

Base 64 conversions
Sometimes you need to include binary data such as a bitmap within a text docu‐
ment such as an XML file or email message. Base 64 is a ubiquitous means of
encoding binary data as readable characters, using 64 characters from the ASCII set.

Convert’s ToBase64String method converts from a byte array to base 64; From
Base64String does the reverse.

XmlConvert
If you’re dealing with data that’s originated from or destined for an XML file, XmlCon
vert (in the System.Xml namespace) provides the most suitable methods for for‐
matting and parsing. The methods in XmlConvert handle the nuances of XML for‐
matting without needing special format strings. For instance, true in XML is “true”
and not “True”. The .NET Framework internally uses XmlConvert extensively.
XmlConvert is also good for general-purpose, culture-independent serialization.

The formatting methods in XmlConvert are all provided as overloaded ToString
methods; the parsing methods are called ToBoolean, ToDateTime, and so on. For
example:

string s = XmlConvert.ToString (true); // s = "true"
bool isTrue = XmlConvert.ToBoolean (s);

The methods that convert to and from DateTime accept an XmlDateTimeSerializa
tionMode argument. This is an enum with the following values:

Unspecified, Local, Utc, RoundtripKind

Local and Utc cause a conversion to take place when formatting (if the DateTime is
not already in that time zone). The time zone is then appended to the string:

2010-02-22T14:08:30.9375 // Unspecified
2010-02-22T14:07:30.9375+09:00 // Local
2010-02-22T05:08:30.9375Z // Utc

Fram
ew

o
rk

Fund
am

entals

Other Conversion Mechanisms | 255

www.EBooksWorld.ir

Unspecified strips away any time zone information embedded in the DateTime
(i.e., DateTimeKind) before formatting. RoundtripKind honors the DateTime’s Date
TimeKind—so when it’s reparsed, the resultant DateTime struct will be exactly as it
was originally.

Type Converters
Type converters are designed to format and parse in design-time environments.
They also parse values in XAML (Extensible Application Markup Language) docu‐
ments—as used in Windows Presentation Foundation and Workflow Foundation.

In the .NET Framework, there are more than 100 type converters—covering such
things as colors, images, and URIs. In contrast, format providers are implemented
for only a handful of simple value types.

Type converters typically parse strings in a variety of ways—without needing hints.
For instance, in an ASP.NET application in Visual Studio, if you assign a control a
BackColor by typing "Beige" into the property window, Color’s type converter fig‐
ures out that you’re referring to a color name and not an RGB string or system
color. This flexibility can sometimes make type converters useful in contexts outside
of designers and XAML documents.

All type converters subclass TypeConverter in System.ComponentModel. To obtain a
TypeConverter, call TypeDescriptor.GetConverter. The following obtains a Type
Converter for the Color type (in the System.Drawing namespace, System.Draw‐
ing.dll):

TypeConverter cc = TypeDescriptor.GetConverter (typeof (Color));

Among many other methods, TypeConverter defines methods to ConvertToString
and ConvertFromString. We can call these as follows:

Color beige = (Color) cc.ConvertFromString ("Beige");
Color purple = (Color) cc.ConvertFromString ("#800080");
Color window = (Color) cc.ConvertFromString ("Window");

By convention, type converters have names ending in Converter and are usually in
the same namespace as the type they’re converting. A type links to its converter via a
TypeConverterAttribute, allowing designers to pick up converters automatically.

Type converters can also provide design-time services such as generating standard
value lists for populating a drop-down list in a designer or assisting with code serial‐
ization.

BitConverter
Most base types can be converted to a byte array by calling BitConverter.GetBytes:

foreach (byte b in BitConverter.GetBytes (3.5))
 Console.Write (b + " "); // 0 0 0 0 0 0 12 64

256 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

BitConverter also provides methods, such as ToDouble, for converting in the other
direction.

The decimal and DateTime(Offset) types are not supported by BitConverter. You
can, however, convert a decimal to an int array by calling decimal.GetBits. To go
the other way around, decimal provides a constructor that accepts an int array.

In the case of DateTime, you can call ToBinary on an instance—this returns a long
(upon which you can then use BitConverter). The static DateTime.FromBinary
method does the reverse.

Globalization
There are two aspects to internationalizing an application: globalization and localiza‐
tion.

Globalization is concerned with three tasks (in decreasing order of importance):

1. Making sure that your program doesn’t break when run in another culture
2. Respecting a local culture’s formatting rules—for instance, when displaying

dates
3. Designing your program so that it picks up culture-specific data and strings

from satellite assemblies that you can later write and deploy

Localization means concluding that last task by writing satellite assemblies for spe‐
cific cultures. This can be done after writing your program—we cover the details in
“Resources and Satellite Assemblies” on page 770 in Chapter 18.

The .NET Framework helps you with the second task by applying culture-specific
rules by default. We’ve already seen how calling ToString on a DateTime or number
respects local formatting rules. Unfortunately, this makes it easy to fail the first task
and have your program break because you’re expecting dates or numbers to be for‐
matted according to an assumed culture. The solution, as we’ve seen, is either to
specify a culture (such as the invariant culture) when formatting and parsing, or to
use culture-independent methods such as those in XmlConvert.

Globalization Checklist
We’ve already covered the important points in this chapter. Here’s a summary of the
essential work required:

• Understand Unicode and text encodings (see “Text Encodings and Unicode” on
page 223).

• Be mindful that methods such as ToUpper and ToLower on char and string are
culture-sensitive: use ToUpperInvariant/ToLowerInvariant unless you want
culture sensitivity.

Fram
ew

o
rk

Fund
am

entals

Globalization | 257

www.EBooksWorld.ir

• Favor culture-independent formatting and parsing mechanisms for DateTime
and DateTimeOffsets such as ToString("o") and XmlConvert.

• Otherwise, specify a culture when formatting/parsing numbers or date/times
(unless you want local-culture behavior).

Testing
You can test against different cultures by reassigning Thread’s CurrentCulture
property (in System.Threading). The following changes the current culture to
Turkey:

Thread.CurrentThread.CurrentCulture = CultureInfo.GetCultureInfo ("tr-TR");

Turkey is a particularly good test case because:

• "i".ToUpper() != "I" and "I".ToLower() != "i".
• Dates are formatted as day.month.year (note the period separator).
• The decimal-point indicator is a comma instead of a period.

You can also experiment by changing the number and date formatting settings in
the Windows Control Panel: these are reflected in the default culture (Cultur
eInfo.CurrentCulture).

CultureInfo.GetCultures() returns an array of all available cultures.

Thread and CultureInfo also support a CurrentUICulture
property. This is concerned more with localization: we cover
this in Chapter 18.

Working with Numbers
Conversions
We covered numeric conversions in previous chapters and sections; Table 6-7 sum‐
marizes all the options.

Table 6-7. Summary of numeric conversions

Task Functions Examples

Parsing base 10
numbers

Parse

TryParse

double d = double.Parse ("3.5");

int i;

bool ok = int.TryParse ("3", out i);

Parsing from base 2,
8, or 16

Convert.ToIntegral int i = Convert.ToInt32 ("1E", 16);

Formatting to
hexadecimal

ToString ("X") string hex = 45.ToString ("X");

258 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

Task Functions Examples

Lossless numeric
conversion

Implicit cast int i = 23;

double d = i;

Truncating numeric
conversion

Explicit cast double d = 23.5;

int i = (int) d;

Rounding numeric
conversion (real to
integral)

Convert.ToIntegral double d = 23.5;

int i = Convert.ToInt32 (d);

Math
Table 6-8 lists the members of the static Math class. The trigonometric functions
accept arguments of type double; other methods such as Max are overloaded to
operate on all numeric types. The Math class also defines the mathematical constants
E (e) and PI.

Table 6-8. Methods in the static Math class

Category Methods

Rounding Round, Truncate, Floor, Ceiling

Maximum/minimum Max, Min

Absolute value and sign Abs, Sign

Square root Sqrt

Raising to a power Pow, Exp

Logarithm Log, Log10

Trigonometric Sin, Cos, Tan
Sinh, Cosh, Tanh
Asin, Acos, Atan

The Round method lets you specify the number of decimal places with which to
round, as well as how to handle midpoints (away from zero, or with banker’s round‐
ing). Floor and Ceiling round to the nearest integer: Floor always rounds down,
and Ceiling always rounds up—even with negative numbers.

Max and Min accept only two arguments. If you have an array or sequence of num‐
bers, use the Max and Min extension methods in System.Linq.Enumerable.

BigInteger
The BigInteger struct is a specialized numeric type introduced in .NET Framework
4.0. It lives in the new System.Numerics namespace in System.Numerics.dll and
allows you to represent an arbitrarily large integer without any loss of precision.

Fram
ew

o
rk

Fund
am

entals

Working with Numbers | 259

www.EBooksWorld.ir

C# doesn’t provide native support for BigInteger, so there’s no way to represent
BigInteger literals. You can, however, implicitly convert from any other integral
type to a BigInteger. For instance:

BigInteger twentyFive = 25; // implicit conversion from integer

To represent a bigger number, such as one googol (10100), you can use one of BigIn
teger’s static methods, such as Pow (raise to the power):

BigInteger googol = BigInteger.Pow (10, 100);

Alternatively, you can Parse a string:

BigInteger googol = BigInteger.Parse ("1".PadRight (100, '0'));

Calling ToString() on this prints every digit:

Console.WriteLine (googol.ToString()); // 10000000000000000000000000000
000

You can perform potentially lossy conversions between BigInteger and the stan‐
dard numeric types with the explicit cast operator:

double g2 = (double) googol; // Explicit cast
BigInteger g3 = (BigInteger) g2; // Explicit cast
Console.WriteLine (g3);

The output from this demonstrates the loss of precision:

9999999999999999673361688041166912...

BigInteger overloads all the arithmetic operators including remainder (%), as well
as the comparison and equality operators.

You can also construct a BigInteger from a byte array. The following code gener‐
ates a 32-byte random number suitable for cryptography and then assigns it to a
BigInteger:

// This uses the System.Security.Cryptography namespace:
RandomNumberGenerator rand = RandomNumberGenerator.Create();
byte[] bytes = new byte [32];
rand.GetBytes (bytes);
var bigRandomNumber = new BigInteger (bytes); // Convert to BigInteger

The advantage of storing such a number in a BigInteger over a byte array is that
you get value-type semantics. Calling ToByteArray converts a BigInteger back to a
byte array.

Complex
The Complex struct is another specialized numeric type new to Framework 4.0 and
is for representing complex numbers with real and imaginary components of type
double. Complex resides in the System.Numerics.dll assembly (along with BigIn
teger).

260 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

To use Complex, instantiate the struct, specifying the real and imaginary values:

var c1 = new Complex (2, 3.5);
var c2 = new Complex (3, 0);

There are also implicit conversions from the standard numeric types.

The Complex struct exposes properties for the real and imaginary values, as well as
the phase and magnitude:

Console.WriteLine (c1.Real); // 2
Console.WriteLine (c1.Imaginary); // 3.5
Console.WriteLine (c1.Phase); // 1.05165021254837
Console.WriteLine (c1.Magnitude); // 4.03112887414927

You can also construct a Complex number by specifying magnitude and phase:

Complex c3 = Complex.FromPolarCoordinates (1.3, 5);

The standard arithmetic operators are overloaded to work on Complex numbers:

Console.WriteLine (c1 + c2); // (5, 3.5)
Console.WriteLine (c1 * c2); // (6, 10.5)

The Complex struct exposes static methods for more advanced functions, including:

• Trigonometric (Sin, Asin, Sinh, Tan, etc.)
• Logarithms and exponentiations

• Conjugate

Random
The Random class generates a pseudorandom sequence of random bytes, integers,
or doubles.

To use Random, you first instantiate it, optionally providing a seed to initiate the ran‐
dom number series. Using the same seed guarantees the same series of numbers (if
run under the same CLR version), which is sometimes useful when you want repro‐
ducibility:

Random r1 = new Random (1);
Random r2 = new Random (1);
Console.WriteLine (r1.Next (100) + ", " + r1.Next (100)); // 24, 11
Console.WriteLine (r2.Next (100) + ", " + r2.Next (100)); // 24, 11

If you don’t want reproducibility, you can construct Random with no seed—then it
uses the current system time to make one up.

Fram
ew

o
rk

Fund
am

entals

Working with Numbers | 261

www.EBooksWorld.ir

Because the system clock has limited granularity, two Random
instances created close together (typically within 10 ms) will
yield the same sequence of values. A common trap is to
instantiate a new Random object every time you need a random
number, rather than reusing the same object.

A good pattern is to declare a single static Random instance. In
multithreaded scenarios, however, this can cause trouble
because Random objects are not thread-safe. We describe a
workaround in “Thread-Local Storage” on page 936 in Chap‐
ter 22.

Calling Next(n) generates a random integer between 0 and n–1. NextDouble gener‐
ates a random double between 0 and 1. NextBytes fills a byte array with random
values.

Random is not considered random enough for high-security applications, such as
cryptography. For this, the .NET Framework provides a cryptographically strong ran‐
dom number generator, in the System.Security.Cryptography namespace. Here’s
how it’s used:

var rand = System.Security.Cryptography.RandomNumberGenerator.Create();
byte[] bytes = new byte [32];
rand.GetBytes (bytes); // Fill the byte array with random numbers.

The downside is that it’s less flexible: filling a byte array is the only means of obtain‐
ing random numbers. To obtain an integer, you must use BitConverter:

byte[] bytes = new byte [4];
rand.GetBytes (bytes);
int i = BitConverter.ToInt32 (bytes, 0);

Enums
In Chapter 3, we described C#’s enum type, and showed how to combine members,
test equality, use logical operators, and perform conversions. The Framework
extends C#’s support for enums through the System.Enum type. This type has two
roles:

• Providing type unification for all enum types
• Defining static utility methods

Type unification means you can implicitly cast any enum member to a System.Enum
instance:

enum Nut { Walnut, Hazelnut, Macadamia }
enum Size { Small, Medium, Large }

static void Main()
{
 Display (Nut.Macadamia); // Nut.Macadamia
 Display (Size.Large); // Size.Large

262 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

}

static void Display (Enum value)
{
 Console.WriteLine (value.GetType().Name + "." + value.ToString());
}

The static utility methods on System.Enum are primarily related to performing con‐
versions and obtaining lists of members.

Enum Conversions
There are three ways to represent an enum value:

• As an enum member
• As its underlying integral value
• As a string

In this section, we describe how to convert between each.

Enum to integral conversions
Recall that an explicit cast converts between an enum member and its integral value.
An explicit cast is the correct approach if you know the enum type at compile time:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
...
int i = (int) BorderSides.Top; // i == 4
BorderSides side = (BorderSides) i; // side == BorderSides.Top

You can cast a System.Enum instance to its integral type in the same way. The trick is
to first cast to an object, and then the integral type:

static int GetIntegralValue (Enum anyEnum)
{
 return (int) (object) anyEnum;
}

This relies on you knowing the integral type: the method we just wrote would crash
if passed an enum whose integral type was long. To write a method that works with
an enum of any integral type, you can take one of three approaches. The first is to call
Convert.ToDecimal:

static decimal GetAnyIntegralValue (Enum anyEnum)
{
 return Convert.ToDecimal (anyEnum);
}

This works because every integral type (including ulong) can be converted to deci‐
mal without loss of information. The second approach is to call Enum.GetUnder
lyingType in order to obtain the enum’s integral type, and then call Convert.Change
Type:

Fram
ew

o
rk

Fund
am

entals

Enums | 263

www.EBooksWorld.ir

static object GetBoxedIntegralValue (Enum anyEnum)
{
 Type integralType = Enum.GetUnderlyingType (anyEnum.GetType());
 return Convert.ChangeType (anyEnum, integralType);
}

This preserves the original integral type, as the following example shows:

object result = GetBoxedIntegralValue (BorderSides.Top);
Console.WriteLine (result); // 4
Console.WriteLine (result.GetType()); // System.Int32

Our GetBoxedIntegralType method in fact performs no value
conversion; rather, it reboxes the same value in another type. It
translates an integral value in enum-type clothing to an inte‐
gral value in integral-type clothing. We describe this further in
“How Enums Work” on page 265.

The third approach is to call Format or ToString specifying the "d" or "D" format
string. This gives you the enum’s integral value as a string, and it is useful when writ‐
ing custom serialization formatters:

static string GetIntegralValueAsString (Enum anyEnum)
{
 return anyEnum.ToString ("D"); // returns something like "4"
}

Integral-to-enum conversions
Enum.ToObject converts an integral value to an enum instance of the given type:

object bs = Enum.ToObject (typeof (BorderSides), 3);
Console.WriteLine (bs); // Left, Right

This is the dynamic equivalent of this:

BorderSides bs = (BorderSides) 3;

ToObject is overloaded to accept all integral types, as well as object. (The latter
works with any boxed integral type.)

String conversions
To convert an enum to a string, you can either call the static Enum.Format method or
call ToString on the instance. Each method accepts a format string, which can be
"G" for default formatting behavior, "D" to emit the underlying integral value as a
string, "X" for the same in hexadecimal, or "F" to format combined members of an
enum without the Flags attribute. We listed examples of these in “Standard Format
Strings and Parsing Flags” on page 246.

Enum.Parse converts a string to an enum. It accepts the enum type and a string that
can include multiple members:

BorderSides leftRight = (BorderSides) Enum.Parse (typeof (BorderSides),
 "Left, Right");

264 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

An optional third argument lets you perform case-insensitive parsing. An Argumen
tException is thrown if the member is not found.

Enumerating Enum Values
Enum.GetValues returns an array comprising all members of a particular enum type:

foreach (Enum value in Enum.GetValues (typeof (BorderSides)))
 Console.WriteLine (value);

Composite members such as LeftRight = Left | Right are included, too.

Enum.GetNames performs the same function but returns an array of strings.

Internally, the CLR implements GetValues and GetNames by
reflecting over the fields in the enum’s type. The results are
cached for efficiency.

How Enums Work
The semantics of enums are enforced largely by the compiler. In the CLR, there’s no
runtime difference between an enum instance (when unboxed) and its underlying
integral value. Further, an enum definition in the CLR is merely a subtype of Sys
tem.Enum with static integral-type fields for each member. This makes the ordinary
use of an enum highly efficient, with a runtime cost matching that of integral con‐
stants.

The downside of this strategy is that enums can provide static but not strong type
safety. We saw an example of this in Chapter 3:

public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
...
BorderSides b = BorderSides.Left;
b += 1234; // No error!

When the compiler is unable to perform validation (as in this example), there’s no
backup from the runtime to throw an exception.

What we said about there being no runtime difference between an enum instance
and its integral value might seem at odds with the following:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
...
Console.WriteLine (BorderSides.Right.ToString()); // Right
Console.WriteLine (BorderSides.Right.GetType().Name); // BorderSides

Given the nature of an enum instance at runtime, you’d expect this to print 2 and
Int32! The reason for its behavior is down to some more compile-time trickery. C#
explicitly boxes an enum instance before calling its virtual methods—such as
ToString or GetType. And when an enum instance is boxed, it gains a runtime wrap‐
ping that references its enum type.

Fram
ew

o
rk

Fund
am

entals

Enums | 265

www.EBooksWorld.ir

Tuples
Framework 4.0 introduced a new set of generic classes for holding a set of differ‐
ently typed elements. These are called tuples:

public class Tuple <T1>
public class Tuple <T1, T2>
public class Tuple <T1, T2, T3>
public class Tuple <T1, T2, T3, T4>
public class Tuple <T1, T2, T3, T4, T5>
public class Tuple <T1, T2, T3, T4, T5, T6>
public class Tuple <T1, T2, T3, T4, T5, T6, T7>
public class Tuple <T1, T2, T3, T4, T5, T6, T7, TRest>

Each has read-only properties called Item1, Item2, and so on (one for each type
parameter).

You can instantiate a tuple either via its constructor:

var t = new Tuple<int,string> (123, "Hello");

or via the static helper method Tuple.Create:

Tuple<int,string> t = Tuple.Create (123, "Hello");

The latter leverages generic type inference. You can combine this with implicit typ‐
ing:

var t = Tuple.Create (123, "Hello");

You can then access the properties as follows (notice that each is statically typed):

Console.WriteLine (t.Item1 * 2); // 246
Console.WriteLine (t.Item2.ToUpper()); // HELLO

Tuples are convenient in returning more than one value from a method—or creat‐
ing collections of value pairs (we’ll cover collections in the following chapter).

An alternative to tuples is to use an object array. However, you then lose static type
safety, incur the cost of boxing/unboxing for value types, and require clumsy casts
that cannot be validated by the compiler:

object[] items = { 123, "Hello" };
Console.WriteLine (((int) items[0]) * 2); // 246
Console.WriteLine (((string) items[1]).ToUpper()); // HELLO

Comparing Tuples
Tuples are classes (and therefore reference types). In keeping with this, comparing
two distinct instances with the equality operator returns false. However, the
Equals method is overridden to compare each individual element instead:

var t1 = Tuple.Create (123, "Hello");
var t2 = Tuple.Create (123, "Hello");
Console.WriteLine (t1 == t2); // False
Console.WriteLine (t1.Equals (t2)); // True

266 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

You can also pass in a custom equality comparer (by virtue of tuples implementing
IStructuralEquatable). We cover equality and order comparison later in this
chapter.

The Guid Struct
The Guid struct represents a globally unique identifier: a 16-byte value that, when
generated, is almost certainly unique in the world. Guids are often used for keys of
various sorts—in applications and databases. There are 2128 or 3.4 × 1038 unique
Guids.

The static Guid.NewGuid method generates a unique Guid:

Guid g = Guid.NewGuid ();
Console.WriteLine (g.ToString()); // 0d57629c-7d6e-4847-97cb-9e2fc25083fe

To instantiate an existing value, you use one of the constructors. The two most use‐
ful constructors are:

public Guid (byte[] b); // Accepts a 16-byte array
public Guid (string g); // Accepts a formatted string

When represented as a string, a Guid is formatted as a 32-digit hexadecimal number,
with optional hyphens after the 8th, 12th, 16th, and 20th digits. The whole string
can also be optionally wrapped in brackets or braces:

Guid g1 = new Guid ("{0d57629c-7d6e-4847-97cb-9e2fc25083fe}");
Guid g2 = new Guid ("0d57629c7d6e484797cb9e2fc25083fe");
Console.WriteLine (g1 == g2); // True

Being a struct, a Guid honors value-type semantics; hence, the equality operator
works in the preceding example.

The ToByteArray method converts a Guid to a byte array.

The static Guid.Empty property returns an empty Guid (all zeros). This is often used
in place of null.

Equality Comparison
Until now, we’ve assumed that the == and != operators are all there is to equality
comparison. The issue of equality, however, is more complex and subtler, sometimes
requiring the use of additional methods and interfaces. This section explores the
standard C# and .NET protocols for equality, focusing particularly on two ques‐
tions:

• When are == and != adequate—and inadequate—for equality comparison, and
what are the alternatives?

• How and when should you customize a type’s equality logic?

Fram
ew

o
rk

Fund
am

entals

The Guid Struct | 267

www.EBooksWorld.ir

But before exploring the details of equality protocols and how to customize them,
we must first look at the preliminary concept of value versus referential equality.

Value Versus Referential Equality
There are two kinds of equality:

Value equality
Two values are equivalent in some sense.

Referential equality
Two references refer to exactly the same object.

By default:

• Value types use value equality.
• Reference types use referential equality.

Value types, in fact, can only use value equality (unless boxed). A simple demonstra‐
tion of value equality is to compare two numbers:

int x = 5, y = 5;
Console.WriteLine (x == y); // True (by virtue of value equality)

A more elaborate demonstration is to compare two DateTimeOffset structs. The
following prints True because the two DateTimeOffsets refer to the same point in
time and so are considered equivalent:

var dt1 = new DateTimeOffset (2010, 1, 1, 1, 1, 1, TimeSpan.FromHours(8));
var dt2 = new DateTimeOffset (2010, 1, 1, 2, 1, 1, TimeSpan.FromHours(9));
Console.WriteLine (dt1 == dt2); // True

DateTimeOffset is a struct whose equality semantics have
been tweaked. By default, structs exhibit a special kind of
value equality called structural equality, where two values are
considered equal if all of their members are equal. (You can
see this by creating a struct and calling its Equals method;
more on this later.)

Reference types exhibit referential equality by default. In the following example, f1
and f2 are not equal—despite their objects having identical content:

class Foo { public int X; }
...
Foo f1 = new Foo { X = 5 };
Foo f2 = new Foo { X = 5 };
Console.WriteLine (f1 == f2); // False

In contrast, f3 and f1 are equal because they reference the same object:

Foo f3 = f1;
Console.WriteLine (f1 == f3); // True

268 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

We’ll explain later in this section how reference types can be customized to exhibit
value equality. An example of this is the Uri class in the System namespace:

Uri uri1 = new Uri ("http://www.linqpad.net");
Uri uri2 = new Uri ("http://www.linqpad.net");
Console.WriteLine (uri1 == uri2); // True

Standard Equality Protocols
There are three standard protocols that types can implement for equality compari‐
son:

• The == and != operators

• The virtual Equals method in object

• The IEquatable<T> interface

In addition, there are the pluggable protocols and the IStructuralEquatable inter‐
face that we describe in Chapter 7.

== and !=
We’ve already seen in many examples how the standard == and != operators per‐
form equality/inequality comparisons. The subtleties with == and != arise because
they are operators and so are statically resolved (in fact, they are implemented as
static functions). So, when you use == or !=, C# makes a compile-time decision as
to which type will perform the comparison, and no virtual behavior comes into
play. This is normally desirable. In the following example, the compiler hard-wires
== to the int type because x and y are both int:

int x = 5;
int y = 5;
Console.WriteLine (x == y); // True

But in the next example, the compiler wires the == operator to the object type:

object x = 5;
object y = 5;
Console.WriteLine (x == y); // False

Because object is a class (and so a reference type), object’s == operator uses refer‐
ential equality to compare x and y. The result is false, because x and y each refer to
different boxed objects on the heap.

The virtual Object.Equals method
To correctly equate x and y in the preceding example, we can use the virtual Equals
method. Equals is defined in System.Object and so is available to all types:

object x = 5;
object y = 5;
Console.WriteLine (x.Equals (y)); // True

Fram
ew

o
rk

Fund
am

entals

Equality Comparison | 269

www.EBooksWorld.ir

Equals is resolved at runtime—according to the object’s actual type. In this case, it
calls Int32’s Equals method, which applies value equality to the operands, returning
true. With reference types, Equals performs referential equality comparison by
default; with structs, Equals performs structural comparison by calling Equals on
each of its fields.

Why the Complexity?
You might wonder why the designers of C# didn’t avoid the problem by making ==
virtual, and so functionally identical to Equals. There are three reasons for this:

• If the first operand is null, Equals fails with a NullReferenceException; a static
operator does not.

• Because the == operator is statically resolved, it executes extremely quickly.
This means that you can write computationally intensive code without penalty
—and without needing to learn another language such as C++.

• Sometimes it can be useful to have == and Equals apply different definitions of
equality. We describe this scenario later in this section.

Essentially, the complexity of the design reflects the complexity of the situation: the
concept of equality covers a multitude of scenarios.

Hence, Equals is suitable for equating two objects in a type-agnostic fashion. The
following method equates two objects of any type:

public static bool AreEqual (object obj1, object obj2)
 => obj1.Equals (obj2);

There is one case, however, in which this fails. If the first argument is null, you get
a NullReferenceException. Here’s the fix:

public static bool AreEqual (object obj1, object obj2)
{
 if (obj1 == null) return obj2 == null;
 return obj1.Equals (obj2);
}

Or more succinctly:

public static bool AreEqual (object obj1, object obj2)
 => obj1 == null ? obj2 == null : obj1.Equals (obj2);

The static object.Equals method
The object class provides a static helper method that does the work of AreEqual in
the preceding example. Its name is Equals—just like the virtual method—but there’s
no conflict because it accepts two arguments:

public static bool Equals (object objA, object objB)

270 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

This provides a null-safe equality comparison algorithm for when the types are
unknown at compile time. For example:

object x = 3, y = 3;
Console.WriteLine (object.Equals (x, y)); // True
x = null;
Console.WriteLine (object.Equals (x, y)); // False
y = null;
Console.WriteLine (object.Equals (x, y)); // True

A useful application is when writing generic types. The following code will not com‐
pile if object.Equals is replaced with the == or != operator:

class Test <T>
{
 T _value;
 public void SetValue (T newValue)
 {
 if (!object.Equals (newValue, _value))
 {
 _value = newValue;
 OnValueChanged();
 }
 }
 protected virtual void OnValueChanged() { ... }
}

Operators are prohibited here because the compiler cannot bind to the static
method of an unknown type.

A more elaborate way to implement this comparison is with
the EqualityComparer<T> class. This has the advantage of
avoiding boxing:

if (!EqualityComparer<T>.Default.Equals (newValue, _value))

We discuss EqualityComparer<T> in more detail in Chapter 7
(see “Plugging in Equality and Order” on page 327).

The static object.ReferenceEquals method
Occasionally, you need to force referential equality comparison. The static
object.ReferenceEquals method does just this:

class Widget { ... }

class Test
{
 static void Main()
 {
 Widget w1 = new Widget();
 Widget w2 = new Widget();
 Console.WriteLine (object.ReferenceEquals (w1, w2)); // False
 }
}

Fram
ew

o
rk

Fund
am

entals

Equality Comparison | 271

www.EBooksWorld.ir

You might want to do this because it’s possible for Widget to override the virtual
Equals method, such that w1.Equals(w2) would return true. Further, it’s possible
for Widget to overload the == operator so that w1==w2 would also return true. In
such cases, calling object.ReferenceEquals guarantees normal referential equality
semantics.

Another way to force referential equality comparison is to cast
the values to object and then apply the == operator.

The IEquatable<T> interface
A consequence of calling object.Equals is that it forces boxing on value types. This
is undesirable in highly performance-sensitive scenarios because boxing is relatively
expensive compared to the actual comparison. A solution was introduced in C# 2.0,
with the IEquatable<T> interface:

public interface IEquatable<T>
{
 bool Equals (T other);
}

The idea is that IEquatable<T>, when implemented, gives the same result as calling
object’s virtual Equals method—but more quickly. Most basic .NET types imple‐
ment IEquatable<T>. You can use IEquatable<T> as a constraint in a generic type:

class Test<T> where T : IEquatable<T>
{
 public bool IsEqual (T a, T b)
 {
 return a.Equals (b); // No boxing with generic T
 }
}

If we remove the generic constraint, the class would still compile, but a.Equals(b)
would instead bind to the slower object.Equals (slower assuming T was a value
type).

When Equals and == are not equal
We said earlier that it’s sometimes useful for == and Equals to apply different defini‐
tions of equality. For example:

double x = double.NaN;
Console.WriteLine (x == x); // False
Console.WriteLine (x.Equals (x)); // True

The double type’s == operator enforces that one NaN can never equal anything else
—even another NaN. This is most natural from a mathematical perspective, and it
reflects the underlying CPU behavior. The Equals method, however, is obliged to
apply reflexive equality; in other words:

272 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

x.Equals (x) must always return true.

Collections and dictionaries rely on Equals behaving this way; otherwise, they
could not find an item they previously stored.

Having Equals and == apply different definitions of equality is actually quite rare
with value types. A more common scenario is with reference types and happens
when the author customizes Equals so that it performs value equality while leaving
== to perform (default) referential equality. The StringBuilder class does exactly
this:

var sb1 = new StringBuilder ("foo");
var sb2 = new StringBuilder ("foo");
Console.WriteLine (sb1 == sb2); // False (referential equality)
Console.WriteLine (sb1.Equals (sb2)); // True (value equality)

Let’s now look at how to customize equality.

Equality and Custom Types
Recall default equality comparison behavior:

• Value types use value equality.
• Reference types use referential equality.

Further:

• A struct’s Equals method applies structural value equality by default (i.e., it
compares each field in the struct).

Sometimes it makes sense to override this behavior when writing a type. There are
two cases for doing so:

• To change the meaning of equality
• To speed up equality comparisons for structs

Changing the meaning of equality
Changing the meaning of equality makes sense when the default behavior of == and
Equals is unnatural for your type and is not what a consumer would expect. An
example is DateTimeOffset, a struct with two private fields: a UTC DateTime and a
numeric integer offset. If you were writing this type, you’d probably want to ensure
that equality comparisons considered only the UTC DateTime field and not the off‐
set field. Another example is numeric types that support NaN values such as float
and double. If you were implementing such types yourself, you’d want to ensure
that NaN-comparison logic was supported in equality comparisons.

Fram
ew

o
rk

Fund
am

entals

Equality Comparison | 273

www.EBooksWorld.ir

With classes, it’s sometimes more natural to offer value equality as the default
instead of referential equality. This is often the case with small classes that hold a
simple piece of data—such as System.Uri (or System.String).

Speeding up equality comparisons with structs
The default structural equality comparison algorithm for structs is relatively slow.
Taking over this process by overriding Equals can improve performance by a factor
of five. Overloading the == operator and implementing IEquatable<T> allows
unboxed equality comparisons, and this can speed things up by a factor of five
again.

Overriding equality semantics for reference types doesn’t ben‐
efit performance. The default algorithm for referential equal‐
ity comparison is already very fast because it simply compares
two 32- or 64-bit references.

There’s actually another, rather peculiar case for customizing equality, and that’s to
improve a struct’s hashing algorithm for better performance in a hashtable. This
comes of the fact that equality comparison and hashing are joined at the hip. We’ll
examine hashing in a moment.

How to override equality semantics
Here is a summary of the steps:

1. Override GetHashCode() and Equals().

2. (Optionally) overload != and ==.

3. (Optionally) implement IEquatable<T>.

Overriding GetHashCode
It might seem odd that System.Object—with its small footprint of members—
defines a method with a specialized and narrow purpose. GetHashCode is a virtual
method in Object that fits this description—it exists primarily for the benefit of just
the following two types:

System.Collections.Hashtable
System.Collections.Generic.Dictionary<TKey,TValue>

These are hashtables—collections where each element has a key used for storage and
retrieval. A hashtable applies a very specific strategy for efficiently allocating ele‐
ments based on their key. This requires that each key have an Int32 number, or
hash code. The hash code need not be unique for each key but should be as varied as
possible for good hashtable performance. Hashtables are considered important
enough that GetHashCode is defined in System.Object—so that every type can emit
a hash code.

274 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

We describe hashtables in detail in “Dictionaries” on page 314
in Chapter 7.

Both reference and value types have default implementations of GetHashCode,
meaning you don’t need to override this method—unless you override Equals. (And
if you override GetHashCode, you will almost certainly want to also override
Equals.)

Here are the other rules for overriding object.GetHashCode:

• It must return the same value on two objects for which Equals returns true
(hence, GetHashCode and Equals are overridden together).

• It must not throw exceptions.
• It must return the same value if called repeatedly on the same object (unless the

object has changed).

For maximum performance in hashtables, GetHashCode should be written so as to
minimize the likelihood of two different values returning the same hashcode. This
gives rise to the third reason for overriding Equals and GetHashCode on structs,
which is to provide a more efficient hashing algorithm than the default. The default
implementation for structs is at the discretion of the runtime and may be based on
every field in the struct.

In contrast, the default GetHashCode implementation for classes is based on an inter‐
nal object token, which is unique for each instance in the CLR’s current implemen‐
tation.

If an object’s hashcode changes after it’s been added as a key to
a dictionary, the object will no longer be accessible in the dic‐
tionary. You can preempt this by basing hashcode calculations
on immutable fields.

A complete example illustrating how to override GetHashCode is listed shortly.

Overriding Equals
The axioms for object.Equals are as follows:

• An object cannot equal null (unless it’s a nullable type).
• Equality is reflexive (an object equals itself).

• Equality is commutative (if a.Equals(b), then b.Equals(a)).

• Equality is transitive (if a.Equals(b) and b.Equals(c), then a.Equals(c)).
• Equality operations are repeatable and reliable (they don’t throw exceptions).

Fram
ew

o
rk

Fund
am

entals

Equality Comparison | 275

www.EBooksWorld.ir

Overloading == and !=
In addition to overriding Equals, you can optionally overload the equality and
inequality operators. This is nearly always done with structs, because the conse‐
quence of not doing so is that the == and != operators will simply not work on your
type.

With classes, there are two ways to proceed:

• Leave == and != alone—so that they apply referential equality.

• Overload == and != in line with Equals.

The first approach is most common with custom types—especially mutable types. It
ensures that your type follows the expectation that == and != should exhibit referen‐
tial equality with reference types and this avoids confusing consumers. We saw an
example earlier:

var sb1 = new StringBuilder ("foo");
var sb2 = new StringBuilder ("foo");
Console.WriteLine (sb1 == sb2); // False (referential equality)
Console.WriteLine (sb1.Equals (sb2)); // True (value equality)

The second approach makes sense with types for which a consumer would never
want referential equality. These are typically immutable—such as the string and
System.Uri classes—and are sometimes good candidates for structs.

Although it’s possible to overload != such that it means some‐
thing other than !(==), this is almost never done in practice,
except in cases such as comparing float.NaN.

Implementing IEquatable<T>
For completeness, it’s also good to implement IEquatable<T> when overriding
Equals. Its results should always match those of the overridden object’s Equals
method. Implementing IEquatable<T> comes at no programming cost if you struc‐
ture your Equals method implementation, as in the following example.

An example: The Area struct
Imagine we need a struct to represent an area whose width and height are inter‐
changeable. In other words, 5 × 10 is equal to 10 × 5. (Such a type would be suitable
in an algorithm that arranges rectangular shapes.)

Here’s the complete code:

public struct Area : IEquatable <Area>
{
 public readonly int Measure1;
 public readonly int Measure2;

 public Area (int m1, int m2)

276 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

 {
 Measure1 = Math.Min (m1, m2);
 Measure2 = Math.Max (m1, m2);
 }

 public override bool Equals (object other)
 {
 if (!(other is Area)) return false;
 return Equals ((Area) other); // Calls method below
 }

 public bool Equals (Area other) // Implements IEquatable<Area>
 => Measure1 == other.Measure1 && Measure2 == other.Measure2;

 public override int GetHashCode()
 => Measure2 * 31 + Measure1; // 31 = some prime number

 public static bool operator == (Area a1, Area a2) => a1.Equals (a2);

 public static bool operator != (Area a1, Area a2) => !a1.Equals (a2);
}

Here’s another way to implement the Equals method, leverag‐
ing nullable types:

Area? otherArea = other as Area?;
return otherArea.HasValue && Equals (otherArea.Value);

In implementing GetHashCode, we’ve helped to improve the likelihood of unique‐
ness by multiplying the larger measure by some prime number (ignoring any over‐
flow) before adding the two together. When there are more than two fields, the fol‐
lowing pattern, suggested by Josh Bloch, gives good results while being performant:

int hash = 17; // 17 = some prime number
hash = hash * 31 + field1.GetHashCode(); // 31 = another prime number
hash = hash * 31 + field2.GetHashCode();
hash = hash * 31 + field3.GetHashCode();
...
return hash;

(See http://albahari.com/hashprimes for a link to a discussion on primes and
hashcodes.)

Here’s a demo of the Area struct:

Area a1 = new Area (5, 10);
Area a2 = new Area (10, 5);
Console.WriteLine (a1.Equals (a2)); // True
Console.WriteLine (a1 == a2); // True

Pluggable equality comparers
If you want a type to take on different equality semantics just for a particular sce‐
nario, you can use a pluggable IEqualityComparer. This is particularly useful in

Fram
ew

o
rk

Fund
am

entals

Equality Comparison | 277

www.EBooksWorld.ir

http://albahari.com/hashprimes

conjunction with the standard collection classes, and we describe it in the following
chapter, in “Plugging in Equality and Order” on page 327.

Order Comparison
As well as defining standard protocols for equality, C# and .NET define standard
protocols for determining the order of one object relative to another. The basic pro‐
tocols are:

• The IComparable interfaces (IComparable and IComparable<T>)

• The > and < operators

The IComparable interfaces are used by general-purpose sorting algorithms. In the
following example, the static Array.Sort method works because System.String
implements the IComparable interfaces:

string[] colors = { "Green", "Red", "Blue" };
Array.Sort (colors);
foreach (string c in colors) Console.Write (c + " "); // Blue Green Red

The < and > operators are more specialized, and they are intended mostly for
numeric types. Because they are statically resolved, they can translate to highly effi‐
cient bytecode, suitable for computationally intensive algorithms.

The .NET Framework also provides pluggable ordering protocols, via the ICom
parer interfaces. We describe these in the final section of Chapter 7.

IComparable
The IComparable interfaces are defined as follows:

public interface IComparable { int CompareTo (object other); }
public interface IComparable<in T> { int CompareTo (T other); }

The two interfaces represent the same functionality. With value types, the generic
type-safe interface is faster than the nongeneric interface. In both cases, the Compar
eTo method works as follows:

• If a comes after b, a.CompareTo(b) returns a positive number.

• If a is the same as b, a.CompareTo(b) returns 0.

• If a comes before b, a.CompareTo(b) returns a negative number.

For example:

Console.WriteLine ("Beck".CompareTo ("Anne")); // 1
Console.WriteLine ("Beck".CompareTo ("Beck")); // 0
Console.WriteLine ("Beck".CompareTo ("Chris")); // -1

278 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

Most of the base types implement both IComparable interfaces. These interfaces are
also sometimes implemented when writing custom types. An example is given
shortly.

IComparable versus Equals
Consider a type that both overrides Equals and implements the IComparable inter‐
faces. You’d expect that when Equals returns true, CompareTo should return 0. And
you’d be right. But here’s the catch:

• When Equals returns false, CompareTo can return what it likes (as long as it’s
internally consistent)!

In other words, equality can be “fussier” than comparison, but not vice versa (vio‐
late this and sorting algorithms will break). So, CompareTo can say “All objects are
equal” while Equals says “But some are more equal than others!”

A great example of this is System.String. String’s Equals method and == operator
use ordinal comparison, which compares the Unicode point values of each charac‐
ter. Its CompareTo method, however, uses a less fussy culture-dependent comparison.
On most computers, for instance, the strings “ṻ” and “ǖ” are different according to
Equals, but the same according to CompareTo.

In Chapter 7, we discuss the pluggable ordering protocol, IComparer, which allows
you to specify an alternative ordering algorithm when sorting or instantiating a sor‐
ted collection. A custom IComparer can further extend the gap between CompareTo
and Equals—a case-insensitive string comparer, for instance, will return 0 when
comparing "A" and "a". The reverse rule still applies, however: CompareTo can
never be fussier than Equals.

When implementing the IComparable interfaces in a custom
type, you can avoid running afoul of this rule by writing the
first line of CompareTo as follows:

if (Equals (other)) return 0;

After that, it can return what it likes, as long as it’s consistent!

< and >
Some types define < and > operators. For instance:

bool after2010 = DateTime.Now > new DateTime (2010, 1, 1);

You can expect the < and > operators, when implemented, to be functionally consis‐
tent with the IComparable interfaces. This is standard practice across the .NET
Framework.

It’s also standard practice to implement the IComparable interfaces whenever < and
> are overloaded, although the reverse is not true. In fact, most .NET types that

Fram
ew

o
rk

Fund
am

entals

Order Comparison | 279

www.EBooksWorld.ir

implement IComparable do not overload < and >. This differs from the situation
with equality, where it’s normal to overload == when overriding Equals.

Typically, > and < are overloaded only when:

• A type has a strong intrinsic concept of “greater than” and “less than” (versus
IComparable’s broader concepts of “comes before” and “comes after”).

• There is only one way or context in which to perform the comparison.
• The result is invariant across cultures.

System.String doesn’t satisfy the last point: the results of string comparisons can
vary according to language. Hence, string doesn’t support the > and < operators:

bool error = "Beck" > "Anne"; // Compile-time error

Implementing the IComparable Interfaces
In the following struct, representing a musical note, we implement the IComparable
interfaces, as well as overloading the < and > operators. For completeness, we also
override Equals/GetHashCode and overload == and !=:

public struct Note : IComparable<Note>, IEquatable<Note>, IComparable
{
 int _semitonesFromA;
 public int SemitonesFromA { get { return _semitonesFromA; } }

 public Note (int semitonesFromA)
 {
 _semitonesFromA = semitonesFromA;
 }

 public int CompareTo (Note other) // Generic IComparable<T>
 {
 if (Equals (other)) return 0; // Fail-safe check
 return _semitonesFromA.CompareTo (other._semitonesFromA);
 }

 int IComparable.CompareTo (object other) // Nongeneric IComparable
 {
 if (!(other is Note))
 throw new InvalidOperationException ("CompareTo: Not a note");
 return CompareTo ((Note) other);
 }

 public static bool operator < (Note n1, Note n2)
 => n1.CompareTo (n2) < 0;

 public static bool operator > (Note n1, Note n2)
 => n1.CompareTo (n2) > 0;

 public bool Equals (Note other) // for IEquatable<Note>
 => _semitonesFromA == other._semitonesFromA;

280 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

 public override bool Equals (object other)
 {
 if (!(other is Note)) return false;
 return Equals ((Note) other);
 }

 public override int GetHashCode() => _semitonesFromA.GetHashCode();

 public static bool operator == (Note n1, Note n2) => n1.Equals (n2);

 public static bool operator != (Note n1, Note n2) => !(n1 == n2);
}

Utility Classes
Console
The static Console class handles standard input/output for console-based applica‐
tions. In a command-line (console) application, the input comes from the keyboard
via Read, ReadKey, and ReadLine, and the output goes to the text window via Write
and WriteLine. You can control the window’s position and dimensions with the
properties WindowLeft, WindowTop, WindowHeight, and WindowWidth. You can also
change the BackgroundColor and ForegroundColor properties and manipulate the
cursor with the CursorLeft, CursorTop, and CursorSize properties:

Console.WindowWidth = Console.LargestWindowWidth;
Console.ForegroundColor = ConsoleColor.Green;
Console.Write ("test... 50%");
Console.CursorLeft -= 3;
Console.Write ("90%"); // test... 90%

The Write and WriteLine methods are overloaded to accept a composite format
string (see String.Format in “String and Text Handling” on page 213). However,
neither method accepts a format provider, so you’re stuck with CultureInfo.Cur
rentCulture. (The workaround, of course, is to explicitly call string.Format.)

The Console.Out property returns a TextWriter. Passing Console.Out to a method
that expects a TextWriter is a useful way to get that method to write to the Console
for diagnostic purposes.

You can also redirect the Console’s input and output streams via the SetIn and Set
Out methods:

// First save existing output writer:
System.IO.TextWriter oldOut = Console.Out;

// Redirect the console's output to a file:
using (System.IO.TextWriter w = System.IO.File.CreateText
 ("e:\\output.txt"))
{
 Console.SetOut (w);

Fram
ew

o
rk

Fund
am

entals

Utility Classes | 281

www.EBooksWorld.ir

 Console.WriteLine ("Hello world");
}

// Restore standard console output
Console.SetOut (oldOut);

// Open the output.txt file in Notepad:
System.Diagnostics.Process.Start ("e:\\output.txt");

In Chapter 15, we describe how streams and text writers work.

When running WPF or Windows Forms applications under
Visual Studio, the Console’s output is automatically redirected
to Visual Studio’s output window (in debug mode). This can
make Console.Write useful for diagnostic purposes; although
in most cases, the Debug and Trace classes in the System.Diag
nostics namespace are more appropriate (see Chapter 13).

Environment
The static System.Environment class provides a range of useful properties:

Files and folders
CurrentDirectory, SystemDirectory, CommandLine

Computer and operating system
MachineName, ProcessorCount, OSVersion, NewLine

User logon
UserName, UserInteractive, UserDomainName

Diagnostics
TickCount, StackTrace, WorkingSet, Version

You can obtain additional folders by calling GetFolderPath; we describe this in
“File and Directory Operations” on page 650 in Chapter 15.

You can access OS environment variables (what you see when you type “set” at the
command prompt) with the following three methods: GetEnvironmentVariable,
GetEnvironmentVariables, and SetEnvironmentVariable.

The ExitCode property lets you set the return code, for when your program is called
from a command or batch file, and the FailFast method terminates a program
immediately, without performing cleanup.

The Environment class available to Windows Store apps offers just a limited number
of members (ProcessorCount, NewLine, and FailFast).

Process
The Process class in System.Diagnostics allows you to launch a new process.

282 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

The static Process.Start method has a number of overloads; the simplest accepts a
simple filename with optional arguments:

Process.Start ("notepad.exe");
Process.Start ("notepad.exe", "e:\\file.txt");

You can also specify just a filename, and the registered program for its extension
will be launched:

Process.Start ("e:\\file.txt");

The most flexible overload accepts a ProcessStartInfo instance. With this, you can
capture and redirect the launched process’s input, output, and error output (if you
set UseShellExecute to false). The following captures the output of calling ipcon
fig:

ProcessStartInfo psi = new ProcessStartInfo
{
 FileName = "cmd.exe",
 Arguments = "/c ipconfig /all",
 RedirectStandardOutput = true,
 UseShellExecute = false
};
Process p = Process.Start (psi);
string result = p.StandardOutput.ReadToEnd();
Console.WriteLine (result);

You can do the same to invoke the csc compiler, if you set Filename to the follow‐
ing:

psi.FileName = System.IO.Path.Combine (
 System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirectory(),
 "csc.exe");

If you don’t redirect output, Process.Start executes the program in parallel to the
caller. If you want to wait for the new process to complete, you can call WaitForExit
on the Process object, with an optional timeout.

The Process class also allows you to query and interact with other processes run‐
ning on the computer (see Chapter 13).

For security reasons, the Process class is not available to Win‐
dows Store apps, and you cannot start arbitrary processes.
Instead, you must use the Windows.System.Launcher class to
“launch” a URI or file to which you have access, e.g.:

Launcher.LaunchUriAsync (new Uri ("http://albahari.com"));

var file = await KnownFolders.DocumentsLibrary
 .GetFileAsync ("foo.txt");
Launcher.LaunchFileAsync (file);

This opens the URI or file, using whatever program is associ‐
ated with the URI scheme or file extension. Your program
must be in the foreground for this to work.

Fram
ew

o
rk

Fund
am

entals

Utility Classes | 283

www.EBooksWorld.ir

AppContext
The System.AppContext class is new to Framework 4.6. It provides a global string-
keyed dictionary of Boolean values and is intended to offer library writers a stan‐
dard mechanism for allowing consumers to switch new features on or off. This
untyped approach makes sense with experimental features that you want to keep
undocumented to the majority of users.

The consumer of a library requests that a feature be enabled as follows:

AppContext.SetSwitch ("MyLibrary.SomeBreakingChange", true);

Code inside that library can then check for that switch as follows:

bool isDefined, switchValue;
isDefined = AppContext.TryGetSwitch ("MyLibrary.SomeBreakingChange",
 out switchValue);

TryGetSwitch returns false if the switch is undefined; this lets you distinguish an
undefined switch from one whose value is set to false, should this be necessary.

Ironically, the design of TryGetSwitch illustrates how not to
write APIs. The out parameter is unnecessary, and the method
should instead return a nullable bool whose value is true,
false, or null for undefined. This would then enable the fol‐
lowing use:

bool switchValue = AppContext.GetSwitch ("...") ?? false;

284 | Chapter 6: Framework Fundamentals

www.EBooksWorld.ir

7
Collections

The .NET Framework provides a standard set of types for storing and managing
collections of objects. These include resizable lists, linked lists, sorted and unsorted
dictionaries as well as arrays. Of these, only arrays form part of the C# language; the
remaining collections are just classes you instantiate like any other.

The types in the Framework for collections can be divided into the following
categories:

• Interfaces that define standard collection protocols
• Ready-to-use collection classes (lists, dictionaries, etc.)
• Base classes for writing application-specific collections

This chapter covers each of these categories, with an additional section on the types
used in determining element equality and order.

The collection namespaces are as follows:

Namespace Contains

System.Collections Nongeneric collection classes and interfaces

System.Collections.Specialized Strongly typed nongeneric collection classes

System.Collections.Generic Generic collection classes and interfaces

System.Collections.ObjectModel Proxies and bases for custom collections

System.Collections.Concurrent Thread-safe collections (see Chapter 23)

Enumeration
In computing, there are many different kinds of collections, ranging from simple
data structures, such as arrays or linked lists, to more complex ones, such as red/
black trees and hashtables. Although the internal implementation and external char‐

C
o

llectio
ns

285

www.EBooksWorld.ir

acteristics of these data structures vary widely, the ability to traverse the contents of
the collection is an almost universal need. The Framework supports this need via a
pair of interfaces (IEnumerable, IEnumerator, and their generic counterparts) that
allow different data structures to expose a common traversal API. These are part of
a larger set of collection interfaces, illustrated in Figure 7-1.

Figure 7-1. Collection interfaces

IEnumerable and IEnumerator
The IEnumerator interface defines the basic low-level protocol by which elements
in a collection are traversed—or enumerated—in a forward-only manner. Its decla‐
ration is as follows:

public interface IEnumerator
{
 bool MoveNext();
 object Current { get; }
 void Reset();
}

MoveNext advances the current element or “cursor” to the next position, returning
false if there are no more elements in the collection. Current returns the element
at the current position (usually cast from object to a more specific type). MoveNext
must be called before retrieving the first element—this is to allow for an empty col‐
lection. The Reset method, if implemented, moves back to the start, allowing the
collection to be enumerated again. Reset exists mainly for COM interop; calling it
directly is generally avoided because it’s not universally supported (and is unneces‐
sary in that it’s usually just as easy to instantiate a new enumerator.)

Collections do not usually implement enumerators; instead, they provide enumera‐
tors, via the interface IEnumerable:

286 | Chapter 7: Collections

www.EBooksWorld.ir

public interface IEnumerable
{
 IEnumerator GetEnumerator();
}

By defining a single method retuning an enumerator, IEnumerable provides flexibil‐
ity in that the iteration logic can be farmed off to another class. Moreover, it means
that several consumers can enumerate the collection at once without interfering
with each other. IEnumerable can be thought of as “IEnumeratorProvider,” and it is
the most basic interface that collection classes implement.

The following example illustrates low-level use of IEnumerable and IEnumerator:

string s = "Hello";

// Because string implements IEnumerable, we can call GetEnumerator():
IEnumerator rator = s.GetEnumerator();

while (rator.MoveNext())
{
 char c = (char) rator.Current;
 Console.Write (c + ".");
}

// Output: H.e.l.l.o.

However, it’s rare to call methods on enumerators directly in this manner, because
C# provides a syntactic shortcut: the foreach statement. Here’s the same example
rewritten using foreach:

string s = "Hello"; // The String class implements IEnumerable

foreach (char c in s)
 Console.Write (c + ".");

IEnumerable<T> and IEnumerator<T>
IEnumerator and IEnumerable are nearly always implemented in conjunction with
their extended generic versions:

public interface IEnumerator<T> : IEnumerator, IDisposable
{
 T Current { get; }
}

public interface IEnumerable<T> : IEnumerable
{
 IEnumerator<T> GetEnumerator();
}

By defining a typed version of Current and GetEnumerator, these interfaces
strengthen static type safety, avoid the overhead of boxing with value-type elements,
and are more convenient to the consumer. Arrays automatically implement IEnumer
able<T> (where T is the member type of the array).

C
o

llectio
ns

Enumeration | 287

www.EBooksWorld.ir

Thanks to the improved static type safety, calling the following method with an
array of characters will generate a compile-time error:

void Test (IEnumerable<int> numbers) { ... }

It’s a standard practice for collection classes to publicly expose IEnumerable<T>
while “hiding” the nongeneric IEnumerable through explicit interface implementa‐
tion. This is so that if you directly call GetEnumerator(), you get back the type-safe
generic IEnumerator<T>. There are times, though, when this rule is broken for rea‐
sons of backward compatibility (generics did not exist prior to C# 2.0). A good
example is arrays—these must return the nongeneric (the nice way of putting it is
“classic”) IEnumerator to avoid breaking earlier code. In order to get a generic
IEnumerator<T>, you must cast to expose the explicit interface:

int[] data = { 1, 2, 3 };
var rator = ((IEnumerable <int>)data).GetEnumerator();

Fortunately, you rarely need to write this sort of code, thanks to the foreach state‐
ment.

IEnumerable<T> and IDisposable
IEnumerator<T> inherits from IDisposable. This allows enumerators to hold refer‐
ences to resources such as database connections—and ensure that those resources
are released when enumeration is complete (or abandoned partway through). The
foreach statement recognizes this detail and translates this:

foreach (var element in somethingEnumerable) { ... }

into the logical equivalent of this:

using (var rator = somethingEnumerable.GetEnumerator())
 while (rator.MoveNext())
 {
 var element = rator.Current;
 ...
 }

The using block ensures disposal—more on IDisposable in Chapter 12.

When to Use the Nongeneric Interfaces
Given the extra type safety of the generic collection interfaces such as IEnumera
ble<T>, the question arises: do you ever need to use the nongeneric IEnumerable (or
ICollection or IList)?

In the case of IEnumerable, you must implement this interface in conjunction with
IEnumerable<T>—because the latter derives from the former. However, it’s very rare
that you actually implement these interfaces from scratch: in nearly all cases, you
can take the higher-level approach of using iterator methods, Collection<T>, and
LINQ.

288 | Chapter 7: Collections

www.EBooksWorld.ir

So, what about as a consumer? In nearly all cases, you can manage entirely with the
generic interfaces. The nongeneric interfaces are still occasionally useful, though, in
their ability to provide type unification for collections across all element types. The
following method, for instance, counts elements in any collection recursively:

public static int Count (IEnumerable e)
{
 int count = 0;
 foreach (object element in e)
 {
 var subCollection = element as IEnumerable;
 if (subCollection != null)
 count += Count (subCollection);
 else
 count++;
 }
 return count;
}

Because C# offers covariance with generic interfaces, it might seem valid to have
this method instead accept IEnumerable<object>. This, however, would fail with
value-type elements and with legacy collections that don’t implement IEnumera
ble<T>— an example is ControlCollection in Windows Forms.

(On a slight tangent, you might have noticed a potential bug in our example: cyclic
references will cause infinite recursion and crash the method. We could fix this most
easily with the use of a HashSet (see “HashSet<T> and SortedSet<T>” on page 312.)

Implementing the Enumeration Interfaces
You might want to implement IEnumerable or IEnumerable<T> for one or more of
the following reasons:

• To support the foreach statement
• To interoperate with anything expecting a standard collection
• To meet the requirements of a more sophisticated collection interface
• To support collection initializers

To implement IEnumerable/IEnumerable<T>, you must provide an enumerator. You
can do this in one of three ways:

• If the class is “wrapping” another collection, by returning the wrapped collec‐
tion’s enumerator

• Via an iterator using yield return

• By instantiating your own IEnumerator/IEnumerator<T> implementation

C
o

llectio
ns

Enumeration | 289

www.EBooksWorld.ir

You can also subclass an existing collection: Collection<T> is
designed just for this purpose (see “Customizable Collections
and Proxies” on page 321). Yet another approach is to use the
LINQ query operators that we’ll cover in the next chapter.

Returning another collection’s enumerator is just a matter of calling GetEnumerator
on the inner collection. However, this is viable only in the simplest scenarios, where
the items in the inner collection are exactly what are required. A more flexible
approach is to write an iterator, using C#’s yield return statement. An iterator is a
C# language feature that assists in writing collections, in the same way the foreach
statement assists in consuming collections. An iterator automatically handles the
implementation of IEnumerable and IEnumerator—or their generic versions. Here’s
a simple example:

public class MyCollection : IEnumerable
{
 int[] data = { 1, 2, 3 };

 public IEnumerator GetEnumerator()
 {
 foreach (int i in data)
 yield return i;
 }
}

Notice the “black magic”: GetEnumerator doesn’t appear to return an enumerator at
all! Upon parsing the yield return statement, the compiler writes a hidden nested
enumerator class behind the scenes and then refactors GetEnumerator to instantiate
and return that class. Iterators are powerful and simple (and are used extensively in
the implementation of LINQ-to-Object’s standard query operators).

Keeping with this approach, we can also implement the generic interface IEnumera
ble<T>:

public class MyGenCollection : IEnumerable<int>
{
 int[] data = { 1, 2, 3 };

 public IEnumerator<int> GetEnumerator()
 {
 foreach (int i in data)
 yield return i;
 }

 IEnumerator IEnumerable.GetEnumerator() // Explicit implementation
 { // keeps it hidden.
 return GetEnumerator();
 }
}

Because IEnumerable<T> inherits from IEnumerable, we must implement both the
generic and the nongeneric versions of GetEnumerator. In accordance with stan‐
dard practice, we’ve implemented the nongeneric version explicitly. It can simply

290 | Chapter 7: Collections

www.EBooksWorld.ir

call the generic GetEnumerator because IEnumerator<T> inherits from IEnumera
tor.

The class we’ve just written would be suitable as a basis from which to write a more
sophisticated collection. However, if we need nothing above a simple IEnumera
ble<T> implementation, the yield return statement allows for an easier variation.
Rather than writing a class, you can move the iteration logic into a method return‐
ing a generic IEnumerable<T> and let the compiler take care of the rest. Here’s an
example:

public class Test
{
 public static IEnumerable <int> GetSomeIntegers()
 {
 yield return 1;
 yield return 2;
 yield return 3;
 }
}

Here’s our method in use:

foreach (int i in Test.GetSomeIntegers())
 Console.WriteLine (i);

// Output
1
2
3

The final approach in writing GetEnumerator is to write a class that implements
IEnumerator directly. This is exactly what the compiler does behind the scenes, in
resolving iterators. (Fortunately, it’s rare that you’ll need to go this far yourself.) The
following example defines a collection that’s hardcoded to contain the integers 1, 2,
and 3:

public class MyIntList : IEnumerable
{
 int[] data = { 1, 2, 3 };

 public IEnumerator GetEnumerator()
 {
 return new Enumerator (this);
 }

 class Enumerator : IEnumerator // Define an inner class
 { // for the enumerator.
 MyIntList collection;
 int currentIndex = -1;

 public Enumerator (MyIntList collection)
 {
 this.collection = collection;
 }

C
o

llectio
ns

Enumeration | 291

www.EBooksWorld.ir

 public object Current
 {
 get
 {
 if (currentIndex == -1)
 throw new InvalidOperationException ("Enumeration not started!");
 if (currentIndex == collection.data.Length)
 throw new InvalidOperationException ("Past end of list!");
 return collection.data [currentIndex];
 }
 }

 public bool MoveNext()
 {
 if (currentIndex >= collection.data.Length - 1) return false;
 return ++currentIndex < collection.data.Length;
 }

 public void Reset() { currentIndex = -1; }
 }
}

Implementing Reset is optional—you can instead throw a Not
SupportedException.

Note that the first call to MoveNext should move to the first (and not the second)
item in the list.

To get on par with an iterator in functionality, we must also implement IEnumera
tor<T>. Here’s an example with bounds checking omitted for brevity:

class MyIntList : IEnumerable<int>
{
 int[] data = { 1, 2, 3 };

 // The generic enumerator is compatible with both IEnumerable and
 // IEnumerable<T>. We implement the nongeneric GetEnumerator method
 // explicitly to avoid a naming conflict.

 public IEnumerator<int> GetEnumerator() { return new Enumerator(this); }
 IEnumerator IEnumerable.GetEnumerator() { return new Enumerator(this); }

 class Enumerator : IEnumerator<int>
 {
 int currentIndex = -1;
 MyIntList collection;

 public Enumerator (MyIntList collection)
 {
 this.collection = collection;
 }

 public int Current => collection.data [currentIndex];

292 | Chapter 7: Collections

www.EBooksWorld.ir

 object IEnumerator.Current => Current;

 public bool MoveNext() => ++currentIndex < collection.data.Length;

 public void Reset() => currentIndex = -1;

 // Given we don't need a Dispose method, it's good practice to
 // implement it explicitly, so it's hidden from the public interface.
 void IDisposable.Dispose() {}
 }
}

The example with generics is faster because IEnumerator<int>.Current doesn’t
require casting from int to object, and so avoids the overhead of boxing.

The ICollection and IList Interfaces
Although the enumeration interfaces provide a protocol for forward-only iteration
over a collection, they don’t provide a mechanism to determine the size of the col‐
lection, access a member by index, search, or modify the collection. For such func‐
tionality, the .NET Framework defines the ICollection, IList, and IDictionary
interfaces. Each comes in both generic and nongeneric versions; however, the non‐
generic versions exist mostly for legacy support.

The inheritance hierarchy for these interfaces was shown in Figure 7-1. The easiest
way to summarize them is as follows:

IEnumerable<T> (and IEnumerable)
Provides minimum functionality (enumeration only)

ICollection<T> (and ICollection)
Provides medium functionality (e.g., the Count property)

IList <T>/IDictionary <K,V> and their nongeneric versions
Provide maximum functionality (including “random” access by index/key)

It’s rare that you’ll need to implement any of these interfaces.
In nearly all cases when you need to write a collection class,
you can instead subclass Collection<T> (see “Customizable
Collections and Proxies” on page 321). LINQ provides yet
another option that covers many scenarios.

The generic and nongeneric versions differ in ways over and above what you might
expect, particularly in the case of ICollection. The reasons for this are mostly his‐
torical: because generics came later, the generic interfaces were developed with the
benefit of hindsight, leading to a different (and better) choice of members. For this
reason, ICollection<T> does not extend ICollection, IList<T> does not extend
IList, and IDictionary<TKey, TValue> does not extend IDictionary. Of course,
a collection class itself is free to implement both versions of an interface if beneficial
(which it often is).

C
o

llectio
ns

The ICollection and IList Interfaces | 293

www.EBooksWorld.ir

Another, subtler reason for IList<T> not extending IList is
that casting to IList<T> would then return an interface with
both Add(T) and Add(object) members. This would effec‐
tively defeat static type safety, because you could call Add with
an object of any type.

This section covers ICollection<T>, IList<T>, and their nongeneric versions;
“Dictionaries” on page 314 covers the dictionary interfaces.

There is no consistent rationale in the way the words collection
and list are applied throughout the .NET Framework. For
instance, since IList<T> is a more functional version of ICol
lection<T>, you might expect the class List<T> to be corre‐
spondingly more functional than the class Collection<T>.
This is not the case. It’s best to consider the terms collection
and list as broadly synonymous, except when a specific type is
involved.

ICollection<T> and ICollection
ICollection<T> is the standard interface for countable collections of objects. It pro‐
vides the ability to determine the size of a collection (Count), determine whether an
item exists in the collection (Contains), copy the collection into an array (ToArray),
and determine whether the collection is read-only (IsReadOnly). For writable col‐
lections, you can also Add, Remove, and Clear items from the collection. And since it
extends IEnumerable<T>, it can also be traversed via the foreach statement:

public interface ICollection<T> : IEnumerable<T>, IEnumerable
{
 int Count { get; }

 bool Contains (T item);
 void CopyTo (T[] array, int arrayIndex);
 bool IsReadOnly { get; }

 void Add(T item);
 bool Remove (T item);
 void Clear();
}

The nongeneric ICollection is similar in providing a countable collection but
doesn’t provide functionality for altering the list or checking for element member‐
ship:

public interface ICollection : IEnumerable
{
 int Count { get; }
 bool IsSynchronized { get; }
 object SyncRoot { get; }
 void CopyTo (Array array, int index);
}

294 | Chapter 7: Collections

www.EBooksWorld.ir

The nongeneric interface also defines properties to assist with synchronization
(Chapter 14)—these were dumped in the generic version because thread safety is no
longer considered intrinsic to the collection.

Both interfaces are fairly straightforward to implement. If implementing a read-only
ICollection<T>, the Add, Remove, and Clear methods should throw a NotSupporte
dException.

These interfaces are usually implemented in conjunction with either the IList or
the IDictionary interface.

IList<T> and IList
IList<T> is the standard interface for collections indexable by position. In addition
to the functionality inherited from ICollection<T> and IEnumerable<T>, it pro‐
vides the ability to read or write an element by position (via an indexer) and insert/
remove by position:

public interface IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable
{
 T this [int index] { get; set; }
 int IndexOf (T item);
 void Insert (int index, T item);
 void RemoveAt (int index);
}

The IndexOf methods perform a linear search on the list, returning –1 if the speci‐
fied item is not found.

The nongeneric version of IList has more members because it inherits less from
ICollection:

public interface IList : ICollection, IEnumerable
{
 object this [int index] { get; set }
 bool IsFixedSize { get; }
 bool IsReadOnly { get; }
 int Add (object value);
 void Clear();
 bool Contains (object value);
 int IndexOf (object value);
 void Insert (int index, object value);
 void Remove (object value);
 void RemoveAt (int index);
}

The Add method on the nongeneric IList interface returns an integer—this is the
index of the newly added item. In contrast, the Add method on ICollection<T> has
a void return type.

The general-purpose List<T> class is the quintessential implementation of both
IList<T> and IList. C# arrays also implement both the generic and nongeneric

C
o

llectio
ns

The ICollection and IList Interfaces | 295

www.EBooksWorld.ir

ILists (although the methods that add or remove elements are hidden via explicit
interface implementation and throw a NotSupportedException if called).

An ArgumentException is thrown if you try to access a multi‐
dimensional array via IList’s indexer. This is a trap when
writing methods such as the following:

public object FirstOrNull (IList list)
{
 if (list == null || list.Count == 0) return null;
 return list[0];
}

This might appear bulletproof, but it will throw an exception
if called with a multidimensional array. You can test for a mul‐
tidimensional array at runtime with this expression (more on
this in Chapter 19):

list.GetType().IsArray && list.GetType().GetArrayRank()>1

IReadOnlyList<T>
In order to interoperate with read-only Windows Runtime collections, Framework
4.5 introduced a new collection interface called IReadOnlyList<T>. This interface is
useful in and of itself and can be considered a cut-down version of IList<T>, expos‐
ing just the members required for read-only operations on lists:

public interface IReadOnlyList<out T> : IEnumerable<T>, IEnumerable
{
 int Count { get; }
 T this[int index] { get; }
}

Because its type parameter is used only in output positions, it’s marked as covariant.
This allows a list of cats, for instance, to be treated as a read-only list of animals. In
contrast, T is not marked as covariant with IList<T>, because T is used in both
input and output positions.

IReadOnlyList<T> represents a read-only view of a list. It
doesn’t necessarily imply that the underlying implementation
is read-only.

It would be logical for IList<T> to derive from IReadOnlyList<T>. However,
Microsoft was unable to make this change because doing so would require moving
members from IList<T> to IReadOnlyList<T>, which would introduce a breaking
change into CLR 4.5 (consumers would need to recompile their programs to avoid
runtime errors). Instead, implementers of IList<T> need to manually add IReadOn
lyList<T> to their list of implemented interfaces.

IReadOnlyList<T> maps to the Windows Runtime type IVectorView<T>.

296 | Chapter 7: Collections

www.EBooksWorld.ir

The Array Class
The Array class is the implicit base class for all single and multidimensional arrays,
and it is one of the most fundamental types implementing the standard collection
interfaces. The Array class provides type unification, so a common set of methods is
available to all arrays, regardless of their declaration or underlying element type.

Since arrays are so fundamental, C# provides explicit syntax for their declaration
and initialization, described in Chapters 2 and 3. When an array is declared using
C#’s syntax, the CLR implicitly subtypes the Array class—synthesizing a pseudotype
appropriate to the array’s dimensions and element types. This pseudotype imple‐
ments the typed generic collection interfaces, such as IList<string>.

The CLR also treats array types specially upon construction, assigning them a con‐
tiguous space in memory. This makes indexing into arrays highly efficient but pre‐
vents them from being resized later on.

Array implements the collection interfaces up to IList<T> in both their generic and
nongeneric forms. IList<T> itself is implemented explicitly, though, to keep Array’s
public interface clean of methods such as Add or Remove, which throw an exception
on fixed-length collections such as arrays. The Array class does actually offer a static
Resize method, although this works by creating a new array and then copying over
each element. As well as being inefficient, references to the array elsewhere in the
program will still point to the original version. A better solution for resizable collec‐
tions is to use the List<T> class (described in the following section).

An array can contain value-type or reference-type elements. Value type elements are
stored in place in the array, so an array of three long integers (each 8 bytes) will
occupy 24 bytes of contiguous memory. A reference type element, however, occu‐
pies only as much space in the array as a reference (4 bytes in a 32-bit environment
or 8 bytes in a 64-bit environment). Figure 7-2 illustrates the effect, in memory, of
the following program:

StringBuilder[] builders = new StringBuilder [5];
builders [0] = new StringBuilder ("builder1");
builders [1] = new StringBuilder ("builder2");
builders [2] = new StringBuilder ("builder3");

long[] numbers = new long [3];
numbers [0] = 12345;
numbers [1] = 54321;

C
o

llectio
ns

The Array Class | 297

www.EBooksWorld.ir

Figure 7-2. Arrays in memory

Because Array is a class, arrays are always (themselves) reference types—regardless
of the array’s element type. This means that the statement arrayB = arrayA results
in two variables that reference the same array. Similarly, two distinct arrays will
always fail an equality test—unless you use a custom equality comparer. Framework
4.0 introduced one for the purpose of comparing elements in arrays or tuples which
you can access via the StructuralComparisons type:

object[] a1 = { "string", 123, true };
object[] a2 = { "string", 123, true };

Console.WriteLine (a1 == a2); // False
Console.WriteLine (a1.Equals (a2)); // False

IStructuralEquatable se1 = a1;
Console.WriteLine (se1.Equals (a2,
 StructuralComparisons.StructuralEqualityComparer)); // True

Arrays can be duplicated with the Clone method: arrayB = arrayA.Clone(). How‐
ever, this results in a shallow clone, meaning that only the memory represented by
the array itself is copied. If the array contains value type objects, the values them‐
selves are copied; if the array contains reference type objects, just the references are
copied (resulting in two arrays whose members reference the same objects).
Figure 7-3 demonstrates the effect of adding the following code to our example:

StringBuilder[] builders2 = builders;
StringBuilder[] shallowClone = (StringBuilder[]) builders.Clone();

298 | Chapter 7: Collections

www.EBooksWorld.ir

Figure 7-3. Shallow-cloning an array

To create a deep copy—where reference type subobjects are duplicated—you must
loop through the array and clone each element manually. The same rules apply to
other .NET collection types.

Although Array is designed primarily for use with 32-bit indexers, it also has limi‐
ted support for 64-bit indexers (allowing an array to theoretically address up to 264

elements) via several methods that accept both Int32 and Int64 parameters. These
overloads are useless in practice because the CLR does not permit any object—
including arrays—to exceed 2 GB in size (whether running on a 32- or 64-bit envi‐
ronment).

Many of the methods on the Array class that you expect to be
instance methods are in fact static methods. This is an odd
design decision and means you should check for both static
and instance methods when looking for a method on Array.

Construction and Indexing
The easiest way to create and index arrays is through C#’s language constructs:

int[] myArray = { 1, 2, 3 };
int first = myArray [0];
int last = myArray [myArray.Length - 1];

Alternatively, you can instantiate an array dynamically by calling Array.CreateIn
stance. This allows you to specify element type and rank (number of dimensions)
at runtime—as well as allowing nonzero-based arrays through specifying a lower
bound. Nonzero-based arrays are not CLS (Common Language Specification)-
compliant.

C
o

llectio
ns

The Array Class | 299

www.EBooksWorld.ir

The GetValue and SetValue methods let you access elements in a dynamically cre‐
ated array (they also work on ordinary arrays):

// Create a string array 2 elements in length:
Array a = Array.CreateInstance (typeof(string), 2);
a.SetValue ("hi", 0); // → a[0] = "hi";
a.SetValue ("there", 1); // → a[1] = "there";
string s = (string) a.GetValue (0); // → s = a[0];

// We can also cast to a C# array as follows:
string[] cSharpArray = (string[]) a;
string s2 = cSharpArray [0];

Zero-indexed arrays created dynamically can be cast to a C# array of a matching or
compatible type (compatible by standard array-variance rules). For example, if
Apple subclasses Fruit, Apple[] can be cast to Fruit[]. This leads to the issue of
why object[] was not used as the unifying array type rather the Array class. The
answer is that object[] is incompatible with both multidimensional and value-type
arrays (and non-zero-based arrays). An int[] array cannot be cast to object[].
Hence, we require the Array class for full type unification.

GetValue and SetValue also work on compiler-created arrays, and they are useful
when writing methods that can deal with an array of any type and rank. For multi‐
dimensional arrays, they accept an array of indexers:

public object GetValue (params int[] indices)
public void SetValue (object value, params int[] indices)

The following method prints the first element of any array, regardless of rank:

void WriteFirstValue (Array a)
{
 Console.Write (a.Rank + "-dimensional; ");

 // The indexers array will automatically initialize to all zeros, so
 // passing it into GetValue or SetValue will get/set the zero-based
 // (i.e., first) element in the array.

 int[] indexers = new int[a.Rank];
 Console.WriteLine ("First value is " + a.GetValue (indexers));
}

void Demo()
{
 int[] oneD = { 1, 2, 3 };
 int[,] twoD = { {5,6}, {8,9} };

 WriteFirstValue (oneD); // 1-dimensional; first value is 1
 WriteFirstValue (twoD); // 2-dimensional; first value is 5
}

300 | Chapter 7: Collections

www.EBooksWorld.ir

For working with arrays of unknown type but known rank,
generics provide an easier and more efficient solution:

void WriteFirstValue<T> (T[] array)
{
 Console.WriteLine (array[0]);
}

SetValue throws an exception if the element is of an incompatible type for the
array.

When an array is instantiated, whether via language syntax or Array.CreateIn
stance, its elements are automatically initialized. For arrays with reference type ele‐
ments, this means writing nulls; for arrays with value type elements, this means call‐
ing the value type’s default constructor (effectively “zeroing” the members). The
Array class also provides this functionality on demand via the Clear method:

public static void Clear (Array array, int index, int length);

This method doesn’t affect the size of the array. This is in contrast to the usual use of
Clear (such as in ICollection<T>.Clear), where the collection is reduced to zero
elements.

Enumeration
Arrays are easily enumerated with a foreach statement:

int[] myArray = { 1, 2, 3};
foreach (int val in myArray)
 Console.WriteLine (val);

You can also enumerate using the static Array.ForEach method, defined as follows:

public static void ForEach<T> (T[] array, Action<T> action);

This uses an Action delegate, with this signature:

public delegate void Action<T> (T obj);

Here’s the first example rewritten with Array.ForEach:

Array.ForEach (new[] { 1, 2, 3 }, Console.WriteLine);

Length and Rank
Array provides the following methods and properties for querying length and rank:

public int GetLength (int dimension);
public long GetLongLength (int dimension);

public int Length { get; }
public long LongLength { get; }

public int GetLowerBound (int dimension);
public int GetUpperBound (int dimension);

public int Rank { get; } // Returns number of dimensions in array

C
o

llectio
ns

The Array Class | 301

www.EBooksWorld.ir

GetLength and GetLongLength return the length for a given dimension (0 for a
single-dimensional array), and Length and LongLength return the total number of
elements in the array—all dimensions included.

GetLowerBound and GetUpperBound are useful with nonzero indexed arrays. GetUp
perBound returns the same result as adding GetLowerBound to GetLength for any
given dimension.

Searching
The Array class offers a range of methods for finding elements within a one-
dimensional array:

BinarySearch methods
For rapidly searching a sorted array for a particular item

IndexOf / LastIndex methods
For searching unsorted arrays for a particular item

Find / FindLast / FindIndex / FindLastIndex / FindAll / Exists / TrueForAll
For searching unsorted arrays for item(s) that satisfy a given Predicate<T>

None of the array searching methods throws an exception if the specified value is
not found. Instead, if an item is not found, methods returning an integer return –1
(assuming a zero-indexed array), and methods returning a generic type return the
type’s default value (e.g., 0 for an int, or null for a string).

The binary search methods are fast, but they work only on sorted arrays and require
that the elements be compared for order rather than simply equality. To this effect,
the binary search methods can accept an IComparer or IComparer<T> object to arbi‐
trate on ordering decisions (see the section “Plugging in Equality and Order” on
page 327 later in this chapter). This must be consistent with any comparer used in
originally sorting the array. If no comparer is provided, the type’s default ordering
algorithm will be applied, based on its implementation of IComparable / ICompara
ble<T>.

The IndexOf and LastIndexOf methods perform a simple enumeration over the
array, returning the position of the first (or last) element that matches the given
value.

The predicate-based searching methods allow a method delegate or lambda expres‐
sion to arbitrate on whether a given element is a “match.” A predicate is simply a
delegate accepting an object and returning true or false:

public delegate bool Predicate<T> (T object);

In the following example, we search an array of strings for a name containing the
letter “a”:

302 | Chapter 7: Collections

www.EBooksWorld.ir

static void Main()
{
 string[] names = { "Rodney", "Jack", "Jill" };
 string match = Array.Find (names, ContainsA);
 Console.WriteLine (match); // Jack
}
static bool ContainsA (string name) { return name.Contains ("a"); }

Here’s the same code shortened with an anonymous method:

string[] names = { "Rodney", "Jack", "Jill" };
string match = Array.Find (names, delegate (string name)
 { return name.Contains ("a"); });

A lambda expression shortens it further:

string[] names = { "Rodney", "Jack", "Jill" };
string match = Array.Find (names, n => n.Contains ("a")); // Jack

FindAll returns an array of all items satisfying the predicate. In fact, it’s equivalent
to Enumerable.Where in the System.Linq namespace, except that FindAll returns
an array of matching items rather than an IEnumerable<T> of the same.

Exists returns true if any array member satisfies the given predicate and is equiva‐
lent to Any in System.Linq.Enumerable.

TrueForAll returns true if all items satisfy the predicate, and is equivalent to All in
System.Linq.Enumerable.

Sorting
Array has the following built-in sorting methods:

// For sorting a single array:

public static void Sort<T> (T[] array);
public static void Sort (Array array);

// For sorting a pair of arrays:

public static void Sort<TKey,TValue> (TKey[] keys, TValue[] items);
public static void Sort (Array keys, Array items);

Each of these methods is additionally overloaded to also accept:

int index // Starting index at which to begin sorting
int length // Number of elements to sort
IComparer<T> comparer // Object making ordering decisions
Comparison<T> comparison // Delegate making ordering decisions

The following illustrates the simplest use of Sort:

int[] numbers = { 3, 2, 1 };
Array.Sort (numbers); // Array is now { 1, 2, 3 }

C
o

llectio
ns

The Array Class | 303

www.EBooksWorld.ir

The methods accepting a pair of arrays work by rearranging the items of each array
in tandem, basing the ordering decisions on the first array. In the next example,
both the numbers and their corresponding words are sorted into numerical order:

int[] numbers = { 3, 2, 1 };
string[] words = { "three", "two", "one" };
Array.Sort (numbers, words);

// numbers array is now { 1, 2, 3 }
// words array is now { "one", "two", "three" }

Array.Sort requires that the elements in the array implement IComparable (see the
section “Order Comparison” on page 278 in Chapter 6). This means that most built-
in C# types (such as integers, as in the preceding example) can be sorted. If the ele‐
ments are not intrinsically comparable, or you want to override the default order‐
ing, you must provide Sort with a custom comparison provider that reports on the
relative position of two elements. There are ways to do this:

• Via a helper object that implements IComparer /IComparer<T> (see the section
“Plugging in Equality and Order” on page 327 later in this chapter)

• Via a Comparison delegate:

public delegate int Comparison<T> (T x, T y);

The Comparison delegate follows the same semantics as IComparer<T>.CompareTo:
if x comes before y, a negative integer is returned; if x comes after y, a positive inte‐
ger is returned; if x and y have the same sorting position, 0 is returned.

In the following example, we sort an array of integers such that the odd numbers
come first:

int[] numbers = { 1, 2, 3, 4, 5 };
Array.Sort (numbers, (x, y) => x % 2 == y % 2 ? 0 : x % 2 == 1 ? -1 : 1);

// numbers array is now { 1, 3, 5, 2, 4 }

As an alternative to calling Sort, you can use LINQ’s OrderBy
and ThenBy operators. Unlike Array.Sort, the LINQ opera‐
tors don’t alter the original array, instead emitting the sorted
result in a fresh IEnumerable<T> sequence.

Reversing Elements
The following Array methods reverse the order of all—or a portion of—elements in
an array:

public static void Reverse (Array array);
public static void Reverse (Array array, int index, int length);

304 | Chapter 7: Collections

www.EBooksWorld.ir

Copying
Array provides four methods to perform shallow copying: Clone, CopyTo, Copy and
ConstrainedCopy. The former two are instance methods; the latter two are static
methods.

The Clone method returns a whole new (shallow-copied) array. The CopyTo and
Copy methods copy a contiguous subset of the array. Copying a multidimensional
rectangular array requires you to map the multidimensional index to a linear index.
For example, the middle square (position[1,1]) in a 3 × 3 array is represented
with the index 4, from the calculation: 1*3 + 1. The source and destination ranges
can overlap without causing a problem.

ConstrainedCopy performs an atomic operation: if all of the requested elements
cannot be successfully copied (due to a type error, for instance), the operation is rol‐
led back.

Array also provides a AsReadOnly method that returns a wrapper that prevents ele‐
ments from being reassigned.

Converting and Resizing
Array.ConvertAll creates and returns a new array of element type TOutput, calling
the supplied Converter delegate to copy over the elements. Converter is defined as
follows:

public delegate TOutput Converter<TInput,TOutput> (TInput input)

The following converts an array of floats to an array of integers:

float[] reals = { 1.3f, 1.5f, 1.8f };
int[] wholes = Array.ConvertAll (reals, r => Convert.ToInt32 (r));

// wholes array is { 1, 2, 2 }

The Resize method works by creating a new array and copying over the elements,
returning the new array via the reference parameter. However, any references to the
original array in other objects will remain unchanged.

The System.Linq namespace offers an additional buffet of
extension methods suitable for array conversion. These meth‐
ods return an IEnumerable<T>, which you can convert back to
an array via Enumerable ’s ToArray method.

Lists, Queues, Stacks, and Sets
The Framework provides a basic set of concrete collection classes that implement
the interfaces described in this chapter. This section concentrates on the list-like col‐
lections (versus the dictionary-like collections covered in “Dictionaries” on page
314). As with the interfaces we discussed previously, you usually have a choice of
generic or nongeneric versions of each type. In terms of flexibility and performance,

C
o

llectio
ns

Lists, Queues, Stacks, and Sets | 305

www.EBooksWorld.ir

the generic classes win, making their nongeneric counterparts redundant except for
backward compatibility. This differs from the situation with collection interfaces,
where the nongeneric versions are still occasionally useful.

Of the classes described in this section, the generic List class is the most commonly
used.

List<T> and ArrayList
The generic List and nongeneric ArrayList classes provide a dynamically sized
array of objects and are among the most commonly used of the collection classes.
ArrayList implements IList, whereas List<T> implements both IList and
IList<T> (and the new read-only version, IReadOnlyList<T>). Unlike with arrays,
all interfaces are implemented publicly, and methods such as Add and Remove are
exposed and work as you would expect.

Internally, List<T> and ArrayList work by maintaining an internal array of objects,
replaced with a larger array upon reaching capacity. Appending elements is efficient
(since there is usually a free slot at the end), but inserting elements can be slow
(since all elements after the insertion point have to be shifted to make a free slot). As
with arrays, searching is efficient if the BinarySearch method is used on a list that
has been sorted, but is otherwise inefficient because each item must be individually
checked.

List<T> is up to several times faster than ArrayList if T is a
value type because List<T> avoids the overhead of boxing and
unboxing elements.

List<T> and ArrayList provide constructors that accept an existing collection of
elements: these copy each element from the existing collection into the new List<T>
or ArrayList:

public class List<T> : IList<T>, IReadOnlyList<T>
{
 public List ();
 public List (IEnumerable<T> collection);
 public List (int capacity);

 // Add+Insert
 public void Add (T item);
 public void AddRange (IEnumerable<T> collection);
 public void Insert (int index, T item);
 public void InsertRange (int index, IEnumerable<T> collection);

 // Remove
 public bool Remove (T item);
 public void RemoveAt (int index);
 public void RemoveRange (int index, int count);
 public int RemoveAll (Predicate<T> match);

 // Indexing
 public T this [int index] { get; set; }

306 | Chapter 7: Collections

www.EBooksWorld.ir

 public List<T> GetRange (int index, int count);
 public Enumerator<T> GetEnumerator();

 // Exporting, copying and converting:
 public T[] ToArray();
 public void CopyTo (T[] array);
 public void CopyTo (T[] array, int arrayIndex);
 public void CopyTo (int index, T[] array, int arrayIndex, int count);
 public ReadOnlyCollection<T> AsReadOnly();
 public List<TOutput> ConvertAll<TOutput> (Converter <T,TOutput>
 converter);
 // Other:
 public void Reverse(); // Reverses order of elements in list.
 public int Capacity { get;set; } // Forces expansion of internal array.
 public void TrimExcess(); // Trims internal array back to size.
 public void Clear(); // Removes all elements, so Count=0.
}

public delegate TOutput Converter <TInput, TOutput> (TInput input);

In addition to these members, List<T> provides instance versions of all of Array’s
searching and sorting methods.

The following code demonstrates List’s properties and methods. See “The Array
Class” on page 297 for examples on searching and sorting:

List<string> words = new List<string>(); // New string-typed list

words.Add ("melon");
words.Add ("avocado");
words.AddRange (new[] { "banana", "plum" });
words.Insert (0, "lemon"); // Insert at start
words.InsertRange (0, new[] { "peach", "nashi" }); // Insert at start

words.Remove ("melon");
words.RemoveAt (3); // Remove the 4th element
words.RemoveRange (0, 2); // Remove first 2 elements

// Remove all strings starting in 'n':
words.RemoveAll (s => s.StartsWith ("n"));

Console.WriteLine (words [0]); // first word
Console.WriteLine (words [words.Count - 1]); // last word
foreach (string s in words) Console.WriteLine (s); // all words
List<string> subset = words.GetRange (1, 2); // 2nd->3rd words

string[] wordsArray = words.ToArray(); // Creates a new typed array

// Copy first two elements to the end of an existing array:
string[] existing = new string [1000];
words.CopyTo (0, existing, 998, 2);

List<string> upperCastWords = words.ConvertAll (s => s.ToUpper());
List<int> lengths = words.ConvertAll (s => s.Length);

C
o

llectio
ns

Lists, Queues, Stacks, and Sets | 307

www.EBooksWorld.ir

The nongeneric ArrayList class is used mainly for backward compatibility with
Framework 1.x code and requires clumsy casts—as the following example demon‐
strates:

ArrayList al = new ArrayList();
al.Add ("hello");
string first = (string) al [0];
string[] strArr = (string[]) al.ToArray (typeof (string));

Such casts cannot be verified by the compiler; the following compiles successfully
but then fails at runtime:

int first = (int) al [0]; // Runtime exception

An ArrayList is functionally similar to List<object>. Both
are useful when you need a list of mixed-type elements that
share no common base type (other than object). A possible
advantage of choosing an ArrayList, in this case, would be if
you need to deal with the list using reflection (Chapter 19).
Reflection is easier with a nongeneric ArrayList than a
List<object>.

If you import the System.Linq namespace, you can convert an ArrayList to a
generic List by calling Cast and then ToList:

ArrayList al = new ArrayList();
al.AddRange (new[] { 1, 5, 9 });
List<int> list = al.Cast<int>().ToList();

Cast and ToList are extension methods in the System.Linq.Enumerable class.

LinkedList<T>
LinkedList<T> is a generic doubly linked list (see Figure 7-4). A doubly linked list
is a chain of nodes in which each references the node before, the node after, and the
actual element. Its main benefit is that an element can always be inserted efficiently
anywhere in the list, since it just involves creating a new node and updating a few
references. However, finding where to insert the node in the first place can be slow,
as there’s no intrinsic mechanism to index directly into a linked list; each node must
be traversed, and binary-chop searches are not possible.

LinkedList<T> implements IEnumerable<T> and ICollection<T> (and their non‐
generic versions), but not IList<T>, since access by index is not supported. List
nodes are implemented via the following class:

public sealed class LinkedListNode<T>
{
 public LinkedList<T> List { get; }
 public LinkedListNode<T> Next { get; }
 public LinkedListNode<T> Previous { get; }
 public T Value { get; set; }
}

308 | Chapter 7: Collections

www.EBooksWorld.ir

Figure 7-4. LinkedList<T>

When adding a node, you can specify its position either relative to another node or
at the start/end of the list. LinkedList<T> provides the following methods for this:

public void AddFirst(LinkedListNode<T> node);
public LinkedListNode<T> AddFirst (T value);

public void AddLast (LinkedListNode<T> node);
public LinkedListNode<T> AddLast (T value);

public void AddAfter (LinkedListNode<T> node, LinkedListNode<T> newNode);
public LinkedListNode<T> AddAfter (LinkedListNode<T> node, T value);

public void AddBefore (LinkedListNode<T> node, LinkedListNode<T> newNode);
public LinkedListNode<T> AddBefore (LinkedListNode<T> node, T value);

Similar methods are provided to remove elements:

public void Clear();

public void RemoveFirst();
public void RemoveLast();

public bool Remove (T value);
public void Remove (LinkedListNode<T> node);

LinkedList<T> has internal fields to keep track of the number of elements in the
list, as well as the head and tail of the list. These are exposed in the following public
properties:

public int Count { get; } // Fast
public LinkedListNode<T> First { get; } // Fast
public LinkedListNode<T> Last { get; } // Fast

LinkedList<T> also supports the following searching methods (each requiring that
the list be internally enumerated):

C
o

llectio
ns

Lists, Queues, Stacks, and Sets | 309

www.EBooksWorld.ir

public bool Contains (T value);
public LinkedListNode<T> Find (T value);
public LinkedListNode<T> FindLast (T value);

Finally, LinkedList<T> supports copying to an array for indexed processing and
obtaining an enumerator to support the foreach statement:

public void CopyTo (T[] array, int index);
public Enumerator<T> GetEnumerator();

Here’s a demonstration on the use of LinkedList<string>:

var tune = new LinkedList<string>();
tune.AddFirst ("do"); // do
tune.AddLast ("so"); // do - so

tune.AddAfter (tune.First, "re"); // do - re- so
tune.AddAfter (tune.First.Next, "mi"); // do - re - mi- so
tune.AddBefore (tune.Last, "fa"); // do - re - mi - fa- so

tune.RemoveFirst(); // re - mi - fa - so
tune.RemoveLast(); // re - mi - fa

LinkedListNode<string> miNode = tune.Find ("mi");
tune.Remove (miNode); // re - fa
tune.AddFirst (miNode); // mi- re - fa

foreach (string s in tune) Console.WriteLine (s);

Queue<T> and Queue
Queue<T> and Queue are first-in, first-out (FIFO) data structures, providing meth‐
ods to Enqueue (add an item to the tail of the queue) and Dequeue (retrieve and
remove the item at the head of the queue). A Peek method is also provided to return
the element at the head of the queue without removing it, and a Count property
(useful in checking that elements are present before dequeuing).

Although queues are enumerable, they do not implement IList<T>/IList, since
members cannot be accessed directly by index. A ToArray method is provided,
however, for copying the elements to an array where they can be randomly accessed:

public class Queue<T> : IEnumerable<T>, ICollection, IEnumerable
{
 public Queue();
 public Queue (IEnumerable<T> collection); // Copies existing elements
 public Queue (int capacity); // To lessen auto-resizing
 public void Clear();
 public bool Contains (T item);
 public void CopyTo (T[] array, int arrayIndex);
 public int Count { get; }
 public T Dequeue();
 public void Enqueue (T item);
 public Enumerator<T> GetEnumerator(); // To support foreach
 public T Peek();

310 | Chapter 7: Collections

www.EBooksWorld.ir

 public T[] ToArray();
 public void TrimExcess();
}

The following is an example of using Queue<int>:

var q = new Queue<int>();
q.Enqueue (10);
q.Enqueue (20);
int[] data = q.ToArray(); // Exports to an array
Console.WriteLine (q.Count); // "2"
Console.WriteLine (q.Peek()); // "10"
Console.WriteLine (q.Dequeue()); // "10"
Console.WriteLine (q.Dequeue()); // "20"
Console.WriteLine (q.Dequeue()); // throws an exception (queue empty)

Queues are implemented internally using an array that’s resized as required—much
like the generic List class. The queue maintains indexes that point directly to the
head and tail elements; therefore, enqueuing and dequeuing are extremely quick
operations (except when an internal resize is required).

Stack<T> and Stack
Stack<T> and Stack are last-in, first-out (LIFO) data structures, providing methods
to Push (add an item to the top of the stack) and Pop (retrieve and remove an ele‐
ment from the top of the stack). A nondestructive Peek method is also provided, as
is a Count property and a ToArray method for exporting the data for random access:

public class Stack<T> : IEnumerable<T>, ICollection, IEnumerable
{
 public Stack();
 public Stack (IEnumerable<T> collection); // Copies existing elements
 public Stack (int capacity); // Lessens auto-resizing
 public void Clear();
 public bool Contains (T item);
 public void CopyTo (T[] array, int arrayIndex);
 public int Count { get; }
 public Enumerator<T> GetEnumerator(); // To support foreach
 public T Peek();
 public T Pop();
 public void Push (T item);
 public T[] ToArray();
 public void TrimExcess();
}

The following example demonstrates Stack<int>:

var s = new Stack<int>();
s.Push (1); // Stack = 1
s.Push (2); // Stack = 1,2
s.Push (3); // Stack = 1,2,3
Console.WriteLine (s.Count); // Prints 3
Console.WriteLine (s.Peek()); // Prints 3, Stack = 1,2,3
Console.WriteLine (s.Pop()); // Prints 3, Stack = 1,2

C
o

llectio
ns

Lists, Queues, Stacks, and Sets | 311

www.EBooksWorld.ir

Console.WriteLine (s.Pop()); // Prints 2, Stack = 1
Console.WriteLine (s.Pop()); // Prints 1, Stack = <empty>
Console.WriteLine (s.Pop()); // throws exception

Stacks are implemented internally with an array that’s resized as required, as with
Queue<T> and List<T>.

BitArray
A BitArray is a dynamically sized collection of compacted bool values. It is more
memory-efficient than both a simple array of bool and a generic List of bool,
because it uses only one bit for each value, whereas the bool type otherwise occu‐
pies one byte for each value.

BitArray’s indexer reads and writes individual bits:

var bits = new BitArray(2);
bits[1] = true;

There are four bitwise operator methods (And, Or, Xor and Not). All but the last
accept another BitArray:

bits.Xor (bits); // Bitwise exclusive-OR bits with itself
Console.WriteLine (bits[1]); // False

HashSet<T> and SortedSet<T>
HashSet<T> and SortedSet<T> are generic collections new to Framework 3.5 and
4.0, respectively. Both have the following distinguishing features:

• Their Contains methods execute quickly using a hash-based lookup.
• They do not store duplicate elements and silently ignore requests to add dupli‐

cates.
• You cannot access an element by position.

SortedSet<T> keeps elements in order, whereas HashSet<T> does not.

The commonality of these types is captured by the interface
ISet<T>.

For historical reasons, HashSet<T> lives in System.Core.dll
(whereas SortedSet<T> and ISet<T> live in System.dll).

HashSet<T> is implemented with a hashtable that stores just keys; SortedSet<T> is
implemented with a red/black tree.

Both collections implement ICollection<T> and offer methods that you would
expect, such as Contains, Add, and Remove. In addition, there’s a predicate-based
removal method called RemoveWhere.

312 | Chapter 7: Collections

www.EBooksWorld.ir

The following constructs a HashSet<char> from an existing collection, tests for
membership, and then enumerates the collection (notice the absence of duplicates):

var letters = new HashSet<char> ("the quick brown fox");

Console.WriteLine (letters.Contains ('t')); // true
Console.WriteLine (letters.Contains ('j')); // false

foreach (char c in letters) Console.Write (c); // the quickbrownfx

(The reason we can pass a string into HashSet<char>’s constructor is because
string implements IEnumerable<char>.)

The really interesting methods are the set operations. The following set operations
are destructive, in that they modify the set:

public void UnionWith (IEnumerable<T> other); // Adds
public void IntersectWith (IEnumerable<T> other); // Removes
public void ExceptWith (IEnumerable<T> other); // Removes
public void SymmetricExceptWith (IEnumerable<T> other); // Removes

whereas the following methods simply query the set and so are nondestructive:

public bool IsSubsetOf (IEnumerable<T> other);
public bool IsProperSubsetOf (IEnumerable<T> other);
public bool IsSupersetOf (IEnumerable<T> other);
public bool IsProperSupersetOf (IEnumerable<T> other);
public bool Overlaps (IEnumerable<T> other);
public bool SetEquals (IEnumerable<T> other);

UnionWith adds all the elements in the second set to the original set (excluding
duplicates). IntersectWith removes the elements that are not in both sets. We can
extract all the vowels from our set of characters as follows:

var letters = new HashSet<char> ("the quick brown fox");
letters.IntersectWith ("aeiou");
foreach (char c in letters) Console.Write (c); // euio

ExceptWith removes the specified elements from the source set. Here, we strip all
vowels from the set:

var letters = new HashSet<char> ("the quick brown fox");
letters.ExceptWith ("aeiou");
foreach (char c in letters) Console.Write (c); // th qckbrwnfx

SymmetricExceptWith removes all but the elements that are unique to one set or the
other:

var letters = new HashSet<char> ("the quick brown fox");
letters.SymmetricExceptWith ("the lazy brown fox");
foreach (char c in letters) Console.Write (c); // quicklazy

Note that because HashSet<T> and SortedSet<T> implement IEnumerable<T>, you
can use another type of set (or collection) as the argument to any of the set opera‐
tion methods.

C
o

llectio
ns

Lists, Queues, Stacks, and Sets | 313

www.EBooksWorld.ir

SortedSet<T> offers all the members of HashSet<T>, plus the following:

public virtual SortedSet<T> GetViewBetween (T lowerValue, T upperValue)
public IEnumerable<T> Reverse()
public T Min { get; }
public T Max { get; }

SortedSet<T> also accepts an optional IComparer<T> in its constructor (rather than
an equality comparer).

Here’s an example of loading the same letters into a SortedSet<char>:

var letters = new SortedSet<char> ("the quick brown fox");
foreach (char c in letters) Console.Write (c); // bcefhiknoqrtuwx

Following on from this, we can obtain the letters between f and j as follows:

foreach (char c in letters.GetViewBetween ('f', 'j'))
 Console.Write (c); // fhi

Dictionaries
A dictionary is a collection in which each element is a key/value pair. Dictionaries
are most commonly used for lookups and sorted lists.

The Framework defines a standard protocol for dictionaries, via the interfaces IDic
tionary and IDictionary <TKey, TValue>, as well as a set of general-purpose dic‐
tionary classes. The classes each differ in the following regard:

• Whether or not items are stored in sorted sequence
• Whether or not items can be accessed by position (index) as well as by key
• Whether generic or nongeneric
• Whether it’s fast or slow to retrieve items by key from a large dictionary

Table 7-1 summarizes each of the dictionary classes and how they differ in these
respects. The performance times are in milliseconds, to perform 50,000 operations
on a dictionary with integer keys and values, on a 1.5 GHz PC. (The differences in
performance between generic and nongeneric counterparts using the same underly‐
ing collection structure are due to boxing, and show up only with value-type ele‐
ments.)

314 | Chapter 7: Collections

www.EBooksWorld.ir

Table 7-1. Dictionary classes

Type Internal
structure

Retrieve
by
index?

Memory
overhead
(avg.
bytes per
item)

Speed:
random
insertion

Speed:
sequential
insertion

Speed:
retrieval
by key

Unsorted

Dictionary <K,V> Hashtable No 22 30 30 20

Hashtable Hashtable No 38 50 50 30

ListDictionary Linked list No 36 50,000 50,000 50,000

OrderedDictionary Hashtable
+ array

Yes 59 70 70 40

Sorted

SortedDictionary <K,V> Red/black
tree

No 20 130 100 120

SortedList <K,V> 2xArray Yes 2 3,300 30 40

SortedList 2xArray Yes 27 4,500 100 180

In big-O notation, retrieval time by key is:

• O(1) for Hashtable, Dictionary, and OrderedDictionary

• O(log n) for SortedDictionary and SortedList

• O(n) for ListDictionary (and nondictionary types such as List<T>)

where n is the number of elements in the collection.

IDictionary<TKey,TValue>
IDictionary<TKey,TValue> defines the standard protocol for all key/value-based
collections. It extends ICollection<T> by adding methods and properties to access
elements based on a key of arbitrary type:

public interface IDictionary <TKey, TValue> :
 ICollection <KeyValuePair <TKey, TValue>>, IEnumerable
{
 bool ContainsKey (TKey key);
 bool TryGetValue (TKey key, out TValue value);
 void Add (TKey key, TValue value);
 bool Remove (TKey key);

 TValue this [TKey key] { get; set; } // Main indexer - by key
 ICollection <TKey> Keys { get; } // Returns just keys
 ICollection <TValue> Values { get; } // Returns just values
}

C
o

llectio
ns

Dictionaries | 315

www.EBooksWorld.ir

From Framework 4.5, there’s also an interface called IReadOn
lyDictionary<TKey,TValue>, which defines the read-only
subset of dictionary members. This maps to the Windows
Runtime type IMapView<K,V> and was introduced primarily
for that reason.

To add an item to a dictionary, you either call Add or use the index’s set accessor—
the latter adds an item to the dictionary if the key is not already present (or updates
the item if it is present). Duplicate keys are forbidden in all dictionary implementa‐
tions, so calling Add twice with the same key throws an exception.

To retrieve an item from a dictionary, use either the indexer or the TryGetValue
method. If the key doesn’t exist, the indexer throws an exception, whereas TryGet
Value returns false. You can test for membership explicitly by calling Contain
sKey; however, this incurs the cost of two lookups if you then subsequently retrieve
the item.

Enumerating directly over an IDictionary<TKey,TValue> returns a sequence of
KeyValuePair structs:

public struct KeyValuePair <TKey, TValue>
{
 public TKey Key { get; }
 public TValue Value { get; }
}

You can enumerate over just the keys or values via the dictionary’s Keys/Values
properties.

We demonstrate the use of this interface with the generic Dictionary class in the
following section.

IDictionary
The nongeneric IDictionary interface is the same in principle as IDiction
ary<TKey,TValue>, apart from two important functional differences. It’s important
to be aware of these differences, since IDictionary appears in legacy code (includ‐
ing the .NET Framework itself in places):

• Retrieving a nonexistent key via the indexer returns null (rather than throwing
an exception).

• Contains tests for membership rather than ContainsKey.

Enumerating over a nongeneric IDictionary returns a sequence of DictionaryEn
try structs:

public struct DictionaryEntry
{
 public object Key { get; set; }
 public object Value { get; set; }
}

316 | Chapter 7: Collections

www.EBooksWorld.ir

Dictionary<TKey,TValue> and Hashtable
The generic Dictionary class is one of the most commonly used collections (along
with the List<T> collection). It uses a hashtable data structure to store keys and val‐
ues, and it is fast and efficient.

The nongeneric version of Dictionary<TKey,TValue> is
called Hashtable; there is no nongeneric class called Dictio
nary. When we refer simply to Dictionary, we mean the
generic Dictionary<TKey,TValue> class.

Dictionary implements both the generic and nongeneric IDictionary interfaces,
the generic IDictionary being exposed publicly. Dictionary is, in fact, a “textbook”
implementation of the generic IDictionary.

Here’s how to use it:

var d = new Dictionary<string, int>();

d.Add("One", 1);
d["Two"] = 2; // adds to dictionary because "two" not already present
d["Two"] = 22; // updates dictionary because "two" is now present
d["Three"] = 3;

Console.WriteLine (d["Two"]); // Prints "22"
Console.WriteLine (d.ContainsKey ("One")); // true (fast operation)
Console.WriteLine (d.ContainsValue (3)); // true (slow operation)
int val = 0;
if (!d.TryGetValue ("onE", out val))
 Console.WriteLine ("No val"); // "No val" (case sensitive)

// Three different ways to enumerate the dictionary:

foreach (KeyValuePair<string, int> kv in d) // One ; 1
 Console.WriteLine (kv.Key + "; " + kv.Value); // Two ; 22
 // Three ; 3

foreach (string s in d.Keys) Console.Write (s); // OneTwoThree
Console.WriteLine();
foreach (int i in d.Values) Console.Write (i); // 1223

Its underlying hashtable works by converting each element’s key into an integer
hashcode—a pseudounique value—and then applying an algorithm to convert the
hashcode into a hash key. This hash key is used internally to determine which
“bucket” an entry belongs to. If the bucket contains more than one value, a linear
search is performed on the bucket. A good hash function does not strive to return
strictly unique hashcodes (which would usually be impossible); it strives to return
hashcodes that are evenly distributed across the 32-bit integer space. This avoids the
scenario of ending up with a few very large (and inefficient) buckets.

A dictionary can work with keys of any type, providing it’s able to determine equal‐
ity between keys and obtain hashcodes. By default, equality is determined via the
key’s object.Equals method, and the pseudounique hashcode is obtained via the

C
o

llectio
ns

Dictionaries | 317

www.EBooksWorld.ir

key’s GetHashCode method. This behavior can be changed, either by overriding
these methods or by providing an IEqualityComparer object when constructing the
dictionary. A common application of this is to specify a case-insensitive equality
comparer when using string keys:

var d = new Dictionary<string, int> (StringComparer.OrdinalIgnoreCase);

We discuss this further in “Plugging in Equality and Order” on page 327.

As with many other types of collections, the performance of a dictionary can be
improved slightly by specifying the collection’s expected size in the constructor,
avoiding or lessening the need for internal resizing operations.

The nongeneric version is named Hashtable and is functionally similar apart from
differences stemming from it exposing the nongeneric IDictionary interface dis‐
cussed previously.

The downside to Dictionary and Hashtable is that the items are not sorted. Fur‐
thermore, the original order in which the items were added is not retained. As with
all dictionaries, duplicate keys are not allowed.

When the generic collections were introduced in Framework
2.0, the CLR team chose to name them according to what they
represent (Dictionary, List) rather than how they are inter‐
nally implemented (Hashtable, ArrayList). While this is
good because it gives them the freedom to later change the
implementation, it also means that the performance contract
(often the most important criteria in choosing one kind of col‐
lection over another) is no longer captured in the name.

OrderedDictionary
An OrderedDictionary is a nongeneric dictionary that maintains elements in the
same order that they were added. With an OrderedDictionary, you can access ele‐
ments both by index and by key.

An OrderedDictionary is not a sorted dictionary.

An OrderedDictionary is a combination of a Hashtable and an ArrayList. This
means it has all the functionality of a Hashtable, plus functions such as RemoveAt,
as well as an integer indexer. It also exposes Keys and Values properties that return
elements in their original order.

This class was introduced in .NET 2.0, yet peculiarly, there’s no generic version.

ListDictionary and HybridDictionary
ListDictionary uses a singly linked list to store the underlying data. It doesn’t pro‐
vide sorting, although it does preserve the original entry order of the items. ListDic

318 | Chapter 7: Collections

www.EBooksWorld.ir

1 There’s also a functionally identical nongeneric version of this called SortedList.

tionary is extremely slow with large lists. Its only real “claim to fame” is its effi‐
ciency with very small lists (fewer than 10 items).

HybridDictionary is a ListDictionary that automatically converts to a Hashtable
upon reaching a certain size, to address ListDictionary’s problems with perfor‐
mance. The idea is to get a low memory footprint when the dictionary is small, and
good performance when the dictionary is large. However, given the overhead in
converting from one to the other—and the fact that a Dictionary is not excessively
heavy or slow in either scenario—you wouldn’t suffer unreasonably by using a Dic
tionary to begin with.

Both classes come only in nongeneric form.

Sorted Dictionaries
The Framework provides two dictionary classes internally structured such that their
content is always sorted by key:

• SortedDictionary<TKey,TValue>

• SortedList<TKey,TValue>1

(In this section, we will abbreviate <TKey,TValue> to <,>.)

SortedDictionary<,> uses a red/black tree: a data structure designed to perform
consistently well in any insertion or retrieval scenario.

SortedList<,> is implemented internally with an ordered array pair, providing fast
retrieval (via a binary-chop search) but poor insertion performance (because exist‐
ing values have to be shifted to make room for a new entry).

SortedDictionary<,> is much faster than SortedList<,> at inserting elements in a
random sequence (particularly with large lists). SortedList<,>, however, has an
extra ability: to access items by index as well as by key. With a sorted list, you can go
directly to the nth element in the sorting sequence (via the indexer on the Keys/Val
ues properties). To do the same with a SortedDictionary<,>, you must manually
enumerate over n items. (Alternatively, you could write a class that combines a sor‐
ted dictionary with a list class.)

None of the three collections allows duplicate keys (as is the case with all dictionar‐
ies).

The following example uses reflection to load all the methods defined in Sys
tem.Object into a sorted list keyed by name, and then enumerates their keys and
values:

C
o

llectio
ns

Dictionaries | 319

www.EBooksWorld.ir

// MethodInfo is in the System.Reflection namespace

var sorted = new SortedList <string, MethodInfo>();

foreach (MethodInfo m in typeof (object).GetMethods())
 sorted [m.Name] = m;

foreach (string name in sorted.Keys)
 Console.WriteLine (name);

foreach (MethodInfo m in sorted.Values)
 Console.WriteLine (m.Name + " returns a " + m.ReturnType);

Here’s the result of the first enumeration:

Equals
GetHashCode
GetType
ReferenceEquals
ToString

Here’s the result of the second enumeration:

Equals returns a System.Boolean
GetHashCode returns a System.Int32
GetType returns a System.Type
ReferenceEquals returns a System.Boolean
ToString returns a System.String

Notice that we populated the dictionary through its indexer. If we instead used the
Add method, it would throw an exception because the object class upon which
we’re reflecting overloads the Equals method, and you can’t add the same key twice
to a dictionary. By using the indexer, the later entry overwrites the earlier entry, pre‐
venting this error.

You can store multiple members of the same key by making
each value element a list:

SortedList <string, List<MethodInfo>>

Extending our example, the following retrieves the MethodInfo whose key is
"GetHashCode", just as with an ordinary dictionary:

Console.WriteLine (sorted ["GetHashCode"]); // Int32 GetHashCode()

So far, everything we’ve done would also work with a SortedDictionary<,>. The
following two lines, however, which retrieve the last key and value, work only with a
sorted list:

Console.WriteLine (sorted.Keys [sorted.Count - 1]); // ToString
Console.WriteLine (sorted.Values[sorted.Count - 1].IsVirtual); // True

320 | Chapter 7: Collections

www.EBooksWorld.ir

Customizable Collections and Proxies
The collection classes discussed in previous sections are convenient in that they can
be directly instantiated, but they don’t allow you to control what happens when an
item is added to or removed from the collection. With strongly typed collections in
an application, you sometimes need this control—for instance:

• To fire an event when an item is added or removed
• To update properties because of the added or removed item
• To detect an “illegal” add/remove operation and throw an exception (for exam‐

ple, if the operation violates a business rule)

The .NET Framework provides collection classes for this exact purpose, in the Sys
tem.Collections.ObjectModel namespace. These are essentially proxies or wrap‐
pers that implement IList<T> or IDictionary<,> by forwarding the methods
through to an underlying collection. Each Add, Remove, or Clear operation is routed
via a virtual method that acts as a “gateway” when overridden.

Customizable collection classes are commonly used for publicly exposed collec‐
tions; for instance, a collection of controls exposed publicly on a System.Win
dows.Form class.

Collection<T> and CollectionBase
The Collection<T> class is a customizable wrapper for List<T>.

As well as implementing IList<T> and IList, it defines four additional virtual
methods and a protected property as follows:

public class Collection<T> :
 IList<T>, ICollection<T>, IEnumerable<T>, IList, ICollection, IEnumerable
{
 // ...

 protected virtual void ClearItems();
 protected virtual void InsertItem (int index, T item);
 protected virtual void RemoveItem (int index);
 protected virtual void SetItem (int index, T item);

 protected IList<T> Items { get; }
}

The virtual methods provide the gateway by which you can “hook in” to change or
enhance the list’s normal behavior. The protected Items property allows the imple‐
menter to directly access the “inner list”—this is used to make changes internally
without the virtual methods firing.

The virtual methods need not be overridden; they can be left alone until there’s a
requirement to alter the list’s default behavior. The following example demonstrates
the typical “skeleton” use of Collection<T>:

C
o

llectio
ns

Customizable Collections and Proxies | 321

www.EBooksWorld.ir

public class Animal
{
 public string Name;
 public int Popularity;

 public Animal (string name, int popularity)
 {
 Name = name; Popularity = popularity;
 }
}

public class AnimalCollection : Collection <Animal>
{
 // AnimalCollection is already a fully functioning list of animals.
 // No extra code is required.
}

public class Zoo // The class that will expose AnimalCollection.
{ // This would typically have additional members.

 public readonly AnimalCollection Animals = new AnimalCollection();
}

class Program
{
 static void Main()
 {
 Zoo zoo = new Zoo();
 zoo.Animals.Add (new Animal ("Kangaroo", 10));
 zoo.Animals.Add (new Animal ("Mr Sea Lion", 20));
 foreach (Animal a in zoo.Animals) Console.WriteLine (a.Name);
 }
}

As it stands, AnimalCollection is no more functional than a simple List<Animal> ;
its role is to provide a base for future extension. To illustrate, we’ll now add a Zoo
property to Animal so it can reference the Zoo in which it lives and override each of
the virtual methods in Collection<Animal> to maintain that property automati‐
cally:

public class Animal
{
 public string Name;
 public int Popularity;
 public Zoo Zoo { get; internal set; }
 public Animal(string name, int popularity)
 {
 Name = name; Popularity = popularity;
 }
}

public class AnimalCollection : Collection <Animal>
{
 Zoo zoo;
 public AnimalCollection (Zoo zoo) { this.zoo = zoo; }

322 | Chapter 7: Collections

www.EBooksWorld.ir

 protected override void InsertItem (int index, Animal item)
 {
 base.InsertItem (index, item);
 item.Zoo = zoo;
 }
 protected override void SetItem (int index, Animal item)
 {
 base.SetItem (index, item);
 item.Zoo = zoo;
 }
 protected override void RemoveItem (int index)
 {
 this [index].Zoo = null;
 base.RemoveItem (index);
 }
 protected override void ClearItems()
 {
 foreach (Animal a in this) a.Zoo = null;
 base.ClearItems();
 }
}

public class Zoo
{
 public readonly AnimalCollection Animals;
 public Zoo() { Animals = new AnimalCollection (this); }
}

Collection<T> also has a constructor accepting an existing IList<T>. Unlike with
other collection classes, the supplied list is proxied rather than copied, meaning that
subsequent changes will be reflected in the wrapping Collection<T> (although
without Collection<T>’s virtual methods firing). Conversely, changes made via the
Collection<T> will change the underlying list.

CollectionBase
CollectionBase is the nongeneric version of Collection<T> introduced in Frame‐
work 1.0. This provides most of the same features as Collection<T> but is clumsier
to use. Instead of the template methods InsertItem, RemoveItem SetItem, and
ClearItem, CollectionBase has “hook” methods that double the number of meth‐
ods required: OnInsert, OnInsertComplete, OnSet, OnSetComplete, OnRemove, OnRe
moveComplete, OnClear, and OnClearComplete. Because CollectionBase is nonge‐
neric, you must also implement typed methods when subclassing it—at a minimum,
a typed indexer and Add method.

KeyedCollection<TKey,TItem> and DictionaryBase
KeyedCollection<TKey,TItem> subclasses Collection<TItem>. It both adds and
subtracts functionality. What it adds is the ability to access items by key, much like
with a dictionary. What it subtracts is the ability to proxy your own inner list.

C
o

llectio
ns

Customizable Collections and Proxies | 323

www.EBooksWorld.ir

A keyed collection has some resemblance to an OrderedDictionary in that it com‐
bines a linear list with a hashtable. However, unlike OrderedDictionary, it doesn’t
implement IDictionary and doesn’t support the concept of a key/value pair. Keys
are obtained instead from the items themselves: via the abstract GetKeyForItem
method. This means enumerating a keyed collection is just like enumerating an
ordinary list.

KeyedCollection<TKey,TItem> is best thought of as Collection<TItem> plus fast
lookup by key.

Because it subclasses Collection<>, a keyed collection inherits all of Collec
tion<>’s functionality, except for the ability to specify an existing list in construc‐
tion. The additional members it defines are as follows:

public abstract class KeyedCollection <TKey, TItem> : Collection <TItem>

 // ...

 protected abstract TKey GetKeyForItem(TItem item);
 protected void ChangeItemKey(TItem item, TKey newKey);

 // Fast lookup by key - this is in addition to lookup by index.
 public TItem this[TKey key] { get; }

 protected IDictionary<TKey, TItem> Dictionary { get; }
}

GetKeyForItem is what the implementer overrides to obtain an item’s key from the
underlying object. The ChangeItemKey method must be called if the item’s key prop‐
erty changes in order to update the internal dictionary. The Dictionary property
returns the internal dictionary used to implement the lookup, which is created when
the first item is added. This behavior can be changed by specifying a creation
threshold in the constructor, delaying the internal dictionary from being created
until the threshold is reached (in the interim, a linear search is performed if an item
is requested by key). A good reason not to specify a creation threshold is that having
a valid dictionary can be useful in obtaining an ICollection<> of keys, via the Dic
tionary’s Keys property. This collection can then be passed on to a public property.

The most common use for KeyedCollection<,> is in providing a collection of
items accessible both by index and by name. To demonstrate this, we’ll revisit the
zoo, this time implementing AnimalCollection as a KeyedCollection<string,Ani
mal>:

public class Animal
{
 string name;
 public string Name
 {
 get { return name; }
 set {
 if (Zoo != null) Zoo.Animals.NotifyNameChange (this, value);
 name = value;

324 | Chapter 7: Collections

www.EBooksWorld.ir

 }
 }
 public int Popularity;
 public Zoo Zoo { get; internal set; }

 public Animal (string name, int popularity)
 {
 Name = name; Popularity = popularity;
 }
}

public class AnimalCollection : KeyedCollection <string, Animal>
{
 Zoo zoo;
 public AnimalCollection (Zoo zoo) { this.zoo = zoo; }

 internal void NotifyNameChange (Animal a, string newName)
 {
 this.ChangeItemKey (a, newName);
 }

 protected override string GetKeyForItem (Animal item)
 {
 return item.Name;
 }

 // The following methods would be implemented as in the previous example
 protected override void InsertItem (int index, Animal item)...
 protected override void SetItem (int index, Animal item)...
 protected override void RemoveItem (int index)...
 protected override void ClearItems()...
}

public class Zoo
{
 public readonly AnimalCollection Animals;
 public Zoo() { Animals = new AnimalCollection (this); }
}

class Program
{
 static void Main()
 {
 Zoo zoo = new Zoo();
 zoo.Animals.Add (new Animal ("Kangaroo", 10));
 zoo.Animals.Add (new Animal ("Mr Sea Lion", 20));
 Console.WriteLine (zoo.Animals [0].Popularity); // 10
 Console.WriteLine (zoo.Animals ["Mr Sea Lion"].Popularity); // 20
 zoo.Animals ["Kangaroo"].Name = "Mr Roo";
 Console.WriteLine (zoo.Animals ["Mr Roo"].Popularity); // 10
 }
}

C
o

llectio
ns

Customizable Collections and Proxies | 325

www.EBooksWorld.ir

DictionaryBase
The nongeneric version of KeyedCollection is called DictionaryBase. This legacy
class takes very different in its approach: it implements IDictionary and uses
clumsy hook methods like CollectionBase : OnInsert, OnInsertComplete, OnSet,
OnSetComplete, OnRemove, OnRemoveComplete, OnClear, and OnClearComplete (and
additionally, OnGet). The primary advantage of implementing IDictionary over
taking the KeyedCollection approach is that you don’t need to subclass it in order
to obtain keys. But since the very purpose of DictionaryBase is to be subclassed, it’s
no advantage at all. The improved model in KeyedCollection is almost certainly
due to the fact that it was written some years later, with the benefit of hindsight.
DictionaryBase is best considered useful for backward compatibility.

ReadOnlyCollection<T>
ReadOnlyCollection<T> is a wrapper, or proxy, that provides a read-only view of a
collection. This is useful in allowing a class to publicly expose read-only access to a
collection that the class can still update internally.

A read-only collection accepts the input collection in its constructor, to which it
maintains a permanent reference. It doesn’t take a static copy of the input collection,
so subsequent changes to the input collection are visible through the read-only
wrapper.

To illustrate, suppose your class wants to provide read-only public access to a list of
strings called Names:

public class Test
{
 public List<string> Names { get; private set; }
}

This does only half the job. Although other types cannot reassign the Names prop‐
erty, they can still call Add, Remove, or Clear on the list. The ReadOnlyCollec
tion<T> class resolves this:

public class Test
{
 List<string> names;
 public ReadOnlyCollection<string> Names { get; private set; }

 public Test()
 {
 names = new List<string>();
 Names = new ReadOnlyCollection<string> (names);
 }

 public void AddInternally() { names.Add ("test"); }
}

Now, only members within the Test class can alter the list of names:

326 | Chapter 7: Collections

www.EBooksWorld.ir

Test t = new Test();

Console.WriteLine (t.Names.Count); // 0
t.AddInternally();
Console.WriteLine (t.Names.Count); // 1

t.Names.Add ("test"); // Compiler error
((IList<string>) t.Names).Add ("test"); // NotSupportedException

Plugging in Equality and Order
In the sections “Equality Comparison” on page 267 and “Order Comparison” on
page 278 in Chapter 6, we described the standard .NET protocols that make a type
equatable, hashable, and comparable. A type that implements these protocols can
function correctly in a dictionary or sorted list “out of the box.” More specifically:

• A type for which Equals and GetHashCode return meaningful results can be
used as a key in a Dictionary or Hashtable.

• A type that implements IComparable /IComparable<T> can be used as a key in
any of the sorted dictionaries or lists.

A type’s default equating or comparison implementation typically reflects what is
most “natural” for that type. Sometimes, however, the default behavior is not what
you want. You might need a dictionary whose string -type key is treated case-
insensitively. Or you might want a sorted list of customers, sorted by each custom‐
er’s postcode. For this reason, the .NET Framework also defines a matching set of
“plug-in” protocols. The plug-in protocols achieve two things:

• They allow you to switch in alternative equating or comparison behavior.
• They allow you to use a dictionary or sorted collection with a key type that’s

not intrinsically equatable or comparable.

The plug-in protocols consist of the following interfaces:

IEqualityComparer and IEqualityComparer<T>
• Performs plug-in equality comparison and hashing
• Recognized by Hashtable and Dictionary

IComparer and IComparer<T>
• Performs plug-in order comparison
• Recognized by the sorted dictionaries and collections; also, Array.Sort

Each interface comes in both generic and nongeneric forms. The IEqualityCom
parer interfaces also have a default implementation in a class called EqualityCom
parer.

C
o

llectio
ns

Plugging in Equality and Order | 327

www.EBooksWorld.ir

In addition, in Framework 4.0 we got two new interfaces called IStructuralEquata
ble and IStructuralComparable that allow for the option of structural compari‐
sons on classes and arrays.

IEqualityComparer and EqualityComparer
An equality comparer switches in nondefault equality and hashing behavior, pri‐
marily for the Dictionary and Hashtable classes.

Recall the requirements of a hashtable-based dictionary. It needs answers to two
questions for any given key:

• Is it the same as another?
• What is its integer hashcode?

An equality comparer answers these questions by implementing the IEqualityCom
parer interfaces:

public interface IEqualityComparer<T>
{
 bool Equals (T x, T y);
 int GetHashCode (T obj);
}

public interface IEqualityComparer // Nongeneric version
{
 bool Equals (object x, object y);
 int GetHashCode (object obj);
}

To write a custom comparer, you implement one or both of these interfaces (imple‐
menting both gives maximum interoperability). As this is somewhat tedious, an
alternative is to subclass the abstract EqualityComparer class, defined as follows:

public abstract class EqualityComparer<T> : IEqualityComparer,
 IEqualityComparer<T>
{
 public abstract bool Equals (T x, T y);
 public abstract int GetHashCode (T obj);

 bool IEqualityComparer.Equals (object x, object y);
 int IEqualityComparer.GetHashCode (object obj);

 public static EqualityComparer<T> Default { get; }
}

EqualityComparer implements both interfaces; your job is simply to override the
two abstract methods.

The semantics for Equals and GetHashCode follow the same rules for
object.Equals and object.GetHashCode, described in Chapter 6. In the following

328 | Chapter 7: Collections

www.EBooksWorld.ir

example, we define a Customer class with two fields, and then write an equality
comparer that matches both the first and last names:

public class Customer
{
 public string LastName;
 public string FirstName;

 public Customer (string last, string first)
 {
 LastName = last;
 FirstName = first;
 }
}
public class LastFirstEqComparer : EqualityComparer <Customer>
{
 public override bool Equals (Customer x, Customer y)
 => x.LastName == y.LastName && x.FirstName == y.FirstName;

 public override int GetHashCode (Customer obj)
 => (obj.LastName + ";" + obj.FirstName).GetHashCode();
}

To illustrate how this works, we’ll create two customers:

Customer c1 = new Customer ("Bloggs", "Joe");
Customer c2 = new Customer ("Bloggs", "Joe");

Because we’ve not overridden object.Equals, normal reference type equality
semantics apply:

Console.WriteLine (c1 == c2); // False
Console.WriteLine (c1.Equals (c2)); // False

The same default equality semantics apply when using these customers in a Dictio
nary without specifying an equality comparer:

var d = new Dictionary<Customer, string>();
d [c1] = "Joe";
Console.WriteLine (d.ContainsKey (c2)); // False

Now with the custom equality comparer:

var eqComparer = new LastFirstEqComparer();
var d = new Dictionary<Customer, string> (eqComparer);
d [c1] = "Joe";
Console.WriteLine (d.ContainsKey (c2)); // True

In this example, we would have to be careful not to change the customer’s First
Name or LastName while it was in use in the dictionary. Otherwise, its hashcode
would change and the Dictionary would break.

EqualityComparer<T>.Default
Calling EqualityComparer<T>.Default returns a general-purpose equality com‐
parer that can be used as an alternative to the static object.Equals method. The

C
o

llectio
ns

Plugging in Equality and Order | 329

www.EBooksWorld.ir

advantage is that first checks if T implements IEquatable<T> and if so, calls that
implementation instead, avoiding the boxing overhead. This is particularly useful in
generic methods:

static bool Foo<T> (T x, T y)
{
 bool same = EqualityComparer<T>.Default.Equals (x, y);
 ...

IComparer and Comparer
Comparers are used to switch in custom ordering logic for sorted dictionaries and
collections.

Note that a comparer is useless to the unsorted dictionaries such as Dictionary and
Hashtable—these require an IEqualityComparer to get hashcodes. Similarly, an
equality comparer is useless for sorted dictionaries and collections.

Here are the IComparer interface definitions:

public interface IComparer
{
 int Compare(object x, object y);
}
public interface IComparer <in T>
{
 int Compare(T x, T y);
}

As with equality comparers, there’s an abstract class you can subtype instead of
implementing the interfaces:

public abstract class Comparer<T> : IComparer, IComparer<T>
{
 public static Comparer<T> Default { get; }

 public abstract int Compare (T x, T y); // Implemented by you
 int IComparer.Compare (object x, object y); // Implemented for you
}

The following example illustrates a class that describes a wish and a comparer that
sorts wishes by priority:

class Wish
{
 public string Name;
 public int Priority;

 public Wish (string name, int priority)
 {
 Name = name;
 Priority = priority;
 }
}

330 | Chapter 7: Collections

www.EBooksWorld.ir

class PriorityComparer : Comparer <Wish>
{
 public override int Compare (Wish x, Wish y)
 {
 if (object.Equals (x, y)) return 0; // Fail-safe check
 return x.Priority.CompareTo (y.Priority);
 }
}

The object.Equals check ensures that we can never contradict the Equals method.
Calling the static object.Equals method in this case is better than calling x.Equals
because it still works if x is null!

Here’s how our PriorityComparer is used to sort a List:

var wishList = new List<Wish>();
wishList.Add (new Wish ("Peace", 2));
wishList.Add (new Wish ("Wealth", 3));
wishList.Add (new Wish ("Love", 2));
wishList.Add (new Wish ("3 more wishes", 1));

wishList.Sort (new PriorityComparer());
foreach (Wish w in wishList) Console.Write (w.Name + " | ");

// OUTPUT: 3 more wishes | Love | Peace | Wealth |

In the next example, SurnameComparer allows you to sort surname strings in an
order suitable for a phonebook listing:

class SurnameComparer : Comparer <string>
{
 string Normalize (string s)
 {
 s = s.Trim().ToUpper();
 if (s.StartsWith ("MC")) s = "MAC" + s.Substring (2);
 return s;
 }

 public override int Compare (string x, string y)
 => Normalize (x).CompareTo (Normalize (y));
}

Here’s SurnameComparer in use in a sorted dictionary:

var dic = new SortedDictionary<string,string> (new SurnameComparer());
dic.Add ("MacPhail", "second!");
dic.Add ("MacWilliam", "third!");
dic.Add ("McDonald", "first!");

foreach (string s in dic.Values)
 Console.Write (s + " "); // first! second! third!

C
o

llectio
ns

Plugging in Equality and Order | 331

www.EBooksWorld.ir

StringComparer
StringComparer is a predefined plug-in class for equating and comparing strings,
allowing you to specify language and case sensitivity. StringComparer implements
both IEqualityComparer and IComparer (and their generic versions), so it can be
used with any type of dictionary or sorted collection:

// CultureInfo is defined in System.Globalization

public abstract class StringComparer : IComparer, IComparer <string>,
 IEqualityComparer,
 IEqualityComparer <string>
{
 public abstract int Compare (string x, string y);
 public abstract bool Equals (string x, string y);
 public abstract int GetHashCode (string obj);

 public static StringComparer Create (CultureInfo culture,
 bool ignoreCase);
 public static StringComparer CurrentCulture { get; }
 public static StringComparer CurrentCultureIgnoreCase { get; }
 public static StringComparer InvariantCulture { get; }
 public static StringComparer InvariantCultureIgnoreCase { get; }
 public static StringComparer Ordinal { get; }
 public static StringComparer OrdinalIgnoreCase { get; }
}

Because StringComparer is abstract, you obtain instances via its static methods and
properties. StringComparer.Ordinal mirrors the default behavior for string-
equality comparison and StringComparer.CurrentCulture for order comparison.

In the following example, an ordinal case-insensitive dictionary is created, such that
dict["Joe"] and dict["JOE"] mean the same thing:

var dict = new Dictionary<string, int> (StringComparer.OrdinalIgnoreCase);

In the next example, an array of names is sorted, using Australian English:

string[] names = { "Tom", "HARRY", "sheila" };
CultureInfo ci = new CultureInfo ("en-AU");
Array.Sort<string> (names, StringComparer.Create (ci, false));

The final example is a culture-aware version of the SurnameComparer we wrote in
the previous section (to compare names suitable for a phonebook listing):

class SurnameComparer : Comparer <string>
{
 StringComparer strCmp;

 public SurnameComparer (CultureInfo ci)
 {
 // Create a case-sensitive, culture-sensitive string comparer
 strCmp = StringComparer.Create (ci, false);
 }

332 | Chapter 7: Collections

www.EBooksWorld.ir

 string Normalize (string s)
 {
 s = s.Trim();
 if (s.ToUpper().StartsWith ("MC")) s = "MAC" + s.Substring (2);
 return s;
 }

 public override int Compare (string x, string y)
 {
 // Directly call Compare on our culture-aware StringComparer
 return strCmp.Compare (Normalize (x), Normalize (y));
 }
}

IStructuralEquatable and IStructuralComparable
As we said in the previous chapter, structs implement structural comparison by
default: two structs are equal if all of their fields are equal. Sometimes, however,
structural equality and order comparison are useful as plug-in options on other
types as well—such as arrays and tuples. Framework 4.0 introduced two new inter‐
faces to help with this:

public interface IStructuralEquatable
{
 bool Equals (object other, IEqualityComparer comparer);
 int GetHashCode (IEqualityComparer comparer);
}

public interface IStructuralComparable
{
 int CompareTo (object other, IComparer comparer);
}

The IEqualityComparer/IComparer that you pass in are applied to each individual
element in the composite object. We can demonstrate this using arrays and tuples,
both of which implement these interfaces. In the following example, we compare
two arrays for equality, first using the default Equals method, then using IStructur
alEquatable’s version:

int[] a1 = { 1, 2, 3 };
int[] a2 = { 1, 2, 3 };
IStructuralEquatable se1 = a1;
Console.Write (a1.Equals (a2)); // False
Console.Write (se1.Equals (a2, EqualityComparer<int>.Default)); // True

Here’s another example:

string[] a1 = "the quick brown fox".Split();
string[] a2 = "THE QUICK BROWN FOX".Split();
IStructuralEquatable se1 = a1;
bool isTrue = se1.Equals (a2, StringComparer.InvariantCultureIgnoreCase);

C
o

llectio
ns

Plugging in Equality and Order | 333

www.EBooksWorld.ir

Tuples work in the same way:

var t1 = Tuple.Create (1, "foo");
var t2 = Tuple.Create (1, "FOO");
IStructuralEquatable se1 = t1;
bool isTrue = se1.Equals (t2, StringComparer.InvariantCultureIgnoreCase);
IStructuralComparable sc1 = t1;
int zero = sc1.CompareTo (t2, StringComparer.InvariantCultureIgnoreCase);

The difference with tuples, though, is that their default equality and order compari‐
son implementations also apply structural comparisons:

var t1 = Tuple.Create (1, "FOO");
var t2 = Tuple.Create (1, "FOO");
Console.WriteLine (t1.Equals (t2)); // True

334 | Chapter 7: Collections

www.EBooksWorld.ir

8
LINQ Queries

LINQ, or Language Integrated Query, is a set of language and framework features
for writing structured type-safe queries over local object collections and remote data
sources. LINQ was introduced in C# 3.0 and Framework 3.5.

LINQ enables you to query any collection implementing IEnumerable<T>, whether
an array, list, or XML DOM, as well as remote data sources, such as tables in a SQL
Server database. LINQ offers the benefits of both compile-time type checking and
dynamic query composition.

This chapter describes the LINQ architecture and the fundamentals of writing quer‐
ies. All core types are defined in the System.Linq and System.Linq.Expressions
namespaces.

The examples in this and the following two chapters are pre‐
loaded into an interactive querying tool called LINQPad. You
can download LINQPad from www.linqpad.net.

Getting Started
The basic units of data in LINQ are sequences and elements. A sequence is any object
that implements IEnumerable<T> and an element is each item in the sequence. In
the following example, names is a sequence, and "Tom", "Dick", and "Harry" are ele‐
ments:

string[] names = { "Tom", "Dick", "Harry" };

We call this a local sequence because it represents a local collection of objects in
memory.

A query operator is a method that transforms a sequence. A typical query operator
accepts an input sequence and emits a transformed output sequence. In the Enumera
ble class in System.Linq, there are around 40 query operators—all implemented as
static extension methods. These are called standard query operators.

LIN
Q

Q
ueries

335

www.EBooksWorld.ir

http://www.linqpad.net

Queries that operate over local sequences are called local quer‐
ies or LINQ-to-objects queries.
LINQ also supports sequences that can be dynamically fed
from a remote data source, such as a SQL Server database.
These sequences additionally implement the IQueryable<T>
interface and are supported through a matching set of stan‐
dard query operators in the Queryable class. We discuss this
further in the section “Interpreted Queries” on page 364 later
in this chapter.

A query is an expression that, when enumerated, transforms sequences with query
operators. The simplest query comprises one input sequence and one operator. For
instance, we can apply the Where operator on a simple array to extract those whose
length is at least four characters as follows:

string[] names = { "Tom", "Dick", "Harry" };
IEnumerable<string> filteredNames = System.Linq.Enumerable.Where
 (names, n => n.Length >= 4);
foreach (string n in filteredNames)
 Console.WriteLine (n);

Dick
Harry

Because the standard query operators are implemented as extension methods, we
can call Where directly on names—as though it were an instance method:

IEnumerable<string> filteredNames = names.Where (n => n.Length >= 4);

For this to compile, you must import the System.Linq namespace. Here’s a com‐
plete example:

using System;
usign System.Collections.Generic;
using System.Linq;

class LinqDemo
{
 static void Main()
 {
 string[] names = { "Tom", "Dick", "Harry" };

 IEnumerable<string> filteredNames = names.Where (n => n.Length >= 4);
 foreach (string name in filteredNames) Console.WriteLine (name);
 }
}

Dick
Harry

336 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

1 The term is based on Eric Evans & Martin Fowler’s work on fluent interfaces.

We could further shorten our code by implicitly typing filter
edNames:

var filteredNames = names.Where (n => n.Length >= 4);

This can hinder readability, however, particularly outside of
an IDE, where there are no tool tips to help.
In this chapter, we avoid implicitly typing query results except
when it’s mandatory (as we’ll see later, in the section “Projec‐
tion Strategies” on page 362.), or when a query’s type is irrele‐
vant to an example.

Most query operators accept a lambda expression as an argument. The lambda
expression helps guide and shape the query. In our example, the lambda expression
is as follows:

n => n.Length >= 4

The input argument corresponds to an input element. In this case, the input argu‐
ment n represents each name in the array and is of type string. The Where operator
requires that the lambda expression return a bool value, which if true, indicates
that the element should be included in the output sequence. Here’s its signature:

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource,bool> predicate)

The following query extracts all names that contain the letter “a”:

IEnumerable<string> filteredNames = names.Where (n => n.Contains ("a"));

foreach (string name in filteredNames)
 Console.WriteLine (name); // Harry

So far, we’ve built queries using extension methods and lambda expressions. As we’ll
see shortly, this strategy is highly composable in that it allows the chaining of query
operators. In the book, we refer to this as fluent syntax.1 C# also provides another
syntax for writing queries, called query expression syntax. Here’s our preceding
query written as a query expression:

IEnumerable<string> filteredNames = from n in names
 where n.Contains ("a")
 select n;

Fluent syntax and query syntax are complementary. In the following two sections,
we explore each in more detail.

Fluent Syntax
Fluent syntax is the most flexible and fundamental. In this section, we describe how
to chain query operators to form more complex queries—and show why extension

LIN
Q

Q
ueries

Fluent Syntax | 337

www.EBooksWorld.ir

methods are important to this process. We also describe how to formulate lambda
expressions for a query operator and introduce several new query operators.

Chaining Query Operators
In the preceding section, we showed two simple queries, each comprising a single
query operator. To build more complex queries, you append additional query oper‐
ators to the expression, creating a chain. To illustrate, the following query extracts
all strings containing the letter “a”, sorts them by length, and then converts the
results to uppercase:

using System;
using System.Collections.Generic;
using System.Linq;

class LinqDemo
{
 static void Main()
 {
 string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

 IEnumerable<string> query = names
 .Where (n => n.Contains ("a"))
 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper());

 foreach (string name in query) Console.WriteLine (name);
 }
}

JAY
MARY
HARRY

The variable, n, in our example, is privately scoped to each of
the lambda expressions. We can reuse the identifier n for the
same reason we can reuse the identifier c in the following
method:

void Test()
{
 foreach (char c in "string1") Console.Write (c);
 foreach (char c in "string2") Console.Write (c);
 foreach (char c in "string3") Console.Write (c);
}

Where, OrderBy, and Select are standard query operators that resolve to extension
methods in the Enumerable class (if you import the System.Linq namespace).

We already introduced the Where operator, which emits a filtered version of the
input sequence. The OrderBy operator emits a sorted version of its input sequence;
the Select method emits a sequence where each input element is transformed or
projected with a given lambda expression (n.ToUpper(), in this case). Data flows

338 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

from left to right through the chain of operators, so the data is first filtered, then
sorted, then projected.

A query operator never alters the input sequence; instead, it
returns a new sequence. This is consistent with the functional
programming paradigm, from which LINQ was inspired.

Here are the signatures of each of these extension methods (with the OrderBy signa‐
ture simplified slightly):

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource,bool> predicate)

public static IEnumerable<TSource> OrderBy<TSource,TKey>
 (this IEnumerable<TSource> source, Func<TSource,TKey> keySelector)

public static IEnumerable<TResult> Select<TSource,TResult>
 (this IEnumerable<TSource> source, Func<TSource,TResult> selector)

When query operators are chained as in this example, the output sequence of one
operator is the input sequence of the next. The complete query resembles a produc‐
tion line of conveyor belts, as illustrated in Figure 8-1.

Figure 8-1. Chaining query operators

We can construct the identical query progressively, as follows:

// You must import the System.Linq namespace for this to compile:

IEnumerable<string> filtered = names .Where (n => n.Contains ("a"));
IEnumerable<string> sorted = filtered.OrderBy (n => n.Length);
IEnumerable<string> finalQuery = sorted .Select (n => n.ToUpper());

finalQuery is compositionally identical to the query we had constructed previously.
Further, each intermediate step also comprises a valid query that we can execute:

foreach (string name in filtered)
 Console.Write (name + "|"); // Harry|Mary|Jay|

Console.WriteLine();
foreach (string name in sorted)
 Console.Write (name + "|"); // Jay|Mary|Harry|

LIN
Q

Q
ueries

Fluent Syntax | 339

www.EBooksWorld.ir

Console.WriteLine();
foreach (string name in finalQuery)
 Console.Write (name + "|"); // JAY|MARY|HARRY|

Why extension methods are important
Instead of using extension method syntax, you can use conventional static method
syntax to call the query operators. For example:

IEnumerable<string> filtered = Enumerable.Where (names,
 n => n.Contains ("a"));
IEnumerable<string> sorted = Enumerable.OrderBy (filtered, n => n.Length);
IEnumerable<string> finalQuery = Enumerable.Select (sorted,
 n => n.ToUpper());

This is, in fact, how the compiler translates extension method calls. Shunning exten‐
sion methods comes at a cost, however, if you want to write a query in a single state‐
ment as we did earlier. Let’s revisit the single-statement query—first in extension
method syntax:

IEnumerable<string> query = names.Where (n => n.Contains ("a"))
 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper());

Its natural linear shape reflects the left-to-right flow of data, as well as keeping
lambda expressions alongside their query operators (infix notation). Without exten‐
sion methods, the query loses its fluency:

IEnumerable<string> query =
 Enumerable.Select (
 Enumerable.OrderBy (
 Enumerable.Where (
 names, n => n.Contains ("a")
), n => n.Length
), n => n.ToUpper()
);

Composing Lambda Expressions
In previous examples, we fed the following lambda expression to the Where opera‐
tor:

n => n.Contains ("a") // Input type=string, return type=bool.

A lambda expression that takes a value and returns a bool is
called a predicate.

The purpose of the lambda expression depends on the particular query operator.
With the Where operator, it indicates whether an element should be included in the
output sequence. In the case of the OrderBy operator, the lambda expression maps
each element in the input sequence to its sorting key. With the Select operator, the
lambda expression determines how each element in the input sequence is trans‐
formed before being fed to the output sequence.

340 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

A lambda expression in a query operator always works on
individual elements in the input sequence—not the sequence
as a whole.

The query operator evaluates your lambda expression upon demand—typically
once per element in the input sequence. Lambda expressions allow you to feed your
own logic into the query operators. This makes the query operators versatile—as
well as being simple under the hood. Here’s a complete implementation of Enumera
ble.Where, exception handling aside:

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource,bool> predicate)
{
 foreach (TSource element in source)
 if (predicate (element))
 yield return element;
}

Lambda expressions and Func signatures
The standard query operators utilize generic Func delegates. Func is a family of
general-purpose generic delegates in the System namespace, defined with the fol‐
lowing intent:

The type arguments in Func appear in the same order they do in lambda
expressions.

Hence, Func<TSource,bool> matches a TSource=>bool lambda expression: one that
accepts a TSource argument and returns a bool value.

Similarly, Func<TSource,TResult> matches a TSource=>TResult lambda expres‐
sion.

The Func delegates are listed in the section “Lambda Expressions” on page 143 in
Chapter 4.

Lambda expressions and element typing
The standard query operators use the following type parameter names:

Generic type letter Meaning

TSource Element type for the input sequence

TResult Element type for the output sequence—if different from TSource

TKey Element type for the key used in sorting, grouping, or joining

TSource is determined by the input sequence. TResult and TKey are typically infer‐
red from your lambda expression.

For example, consider the signature of the Select query operator:

LIN
Q

Q
ueries

Fluent Syntax | 341

www.EBooksWorld.ir

public static IEnumerable<TResult> Select<TSource,TResult>
 (this IEnumerable<TSource> source, Func<TSource,TResult> selector)

Func<TSource,TResult> matches a TSource=>TResult lambda expression: one that
maps an input element to an output element. TSource and TResult can be different
types, so the lambda expression can change the type of each element. Further, the
lambda expression determines the output sequence type. The following query uses
Select to transform string type elements to integer type elements:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<int> query = names.Select (n => n.Length);

foreach (int length in query)
 Console.Write (length + "|"); // 3|4|5|4|3|

The compiler can infer the type of TResult from the return value of the lambda
expression. In this case, n.Length returns an int value, so TResultis inferred to be
of type int.

The Where query operator is simpler and requires no type inference for the output,
since input and output elements are of the same type. This makes sense because the
operator merely filters elements; it does not transform them:

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource,bool> predicate)

Finally, consider the signature of the OrderBy operator:

// Slightly simplified:
public static IEnumerable<TSource> OrderBy<TSource,TKey>
 (this IEnumerable<TSource> source, Func<TSource,TKey> keySelector)

Func<TSource,TKey> maps an input element to a sorting key. TKey is inferred from
your lambda expression and is separate from the input and output element types.
For instance, we could choose to sort a list of names by length (int key) or alpha‐
betically (string key):

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> sortedByLength, sortedAlphabetically;
sortedByLength = names.OrderBy (n => n.Length); // int key
sortedAlphabetically = names.OrderBy (n => n); // string key

You can call the query operators in Enumerable with tradi‐
tional delegates that refer to methods instead of lambda
expressions. This approach is effective in simplifying certain
kinds of local queries—particularly with LINQ to XML—and
is demonstrated in Chapter 10. It doesn’t work with
IQueryable<T>-based sequences, however (e.g., when query‐
ing a database), because the operators in Queryable require
lambda expressions in order to emit expression trees. We dis‐
cuss this later in the section “Interpreted Queries” on page
364.

342 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

Natural Ordering
The original ordering of elements within an input sequence is significant in LINQ.
Some query operators rely on this ordering, such as Take, Skip, and Reverse.

The Take operator outputs the first x elements, discarding the rest:

int[] numbers = { 10, 9, 8, 7, 6 };
IEnumerable<int> firstThree = numbers.Take (3); // { 10, 9, 8 }

The Skip operator ignores the first x elements and outputs the rest:

IEnumerable<int> lastTwo = numbers.Skip (3); // { 7, 6 }

Reverse does exactly as it says:

IEnumerable<int> reversed = numbers.Reverse(); // { 6, 7, 8, 9, 10 }

With local queries (LINQ-to-objects), operators such as Where and Select preserve
the original ordering of the input sequence (as do all other query operators, except
for those that specifically change the ordering).

Other Operators
Not all query operators return a sequence. The element operators extract one ele‐
ment from the input sequence; examples are First, Last, and ElementAt:

int[] numbers = { 10, 9, 8, 7, 6 };
int firstNumber = numbers.First(); // 10
int lastNumber = numbers.Last(); // 6
int secondNumber = numbers.ElementAt(1); // 9
int secondLowest = numbers.OrderBy(n=>n).Skip(1).First(); // 7

The aggregation operators return a scalar value; usually of numeric type:

int count = numbers.Count(); // 5;
int min = numbers.Min(); // 6;

The quantifiers return a bool value:

bool hasTheNumberNine = numbers.Contains (9); // true
bool hasMoreThanZeroElements = numbers.Any(); // true
bool hasAnOddElement = numbers.Any (n => n % 2 != 0); // true

Because these operators return a single element, you don’t usually call further query
operators on their result unless that element itself is a collection.

Some query operators accept two input sequences. Examples are Concat, which
appends one sequence to another, and Union, which does the same but with dupli‐
cates removed:

int[] seq1 = { 1, 2, 3 };
int[] seq2 = { 3, 4, 5 };
IEnumerable<int> concat = seq1.Concat (seq2); // { 1, 2, 3, 3, 4, 5 }
IEnumerable<int> union = seq1.Union (seq2); // { 1, 2, 3, 4, 5 }

LIN
Q

Q
ueries

Fluent Syntax | 343

www.EBooksWorld.ir

The joining operators also fall into this category. Chapter 9 covers all the query
operators in detail.

Query Expressions
C# provides a syntactic shortcut for writing LINQ queries, called query expressions.
Contrary to popular belief, a query expression is not a means of embedding SQL
into C#. In fact, the design of query expressions was inspired primarily by list com‐
prehensions from functional programming languages such as LISP and Haskell,
although SQL had a cosmetic influence.

In this book, we refer to query expression syntax simply as
“query syntax.”

In the preceding section, we wrote a fluent-syntax query to extract strings contain‐
ing the letter “a”, sorted by length and converted to uppercase. Here’s the same thing
in query syntax:

using System;
using System.Collections.Generic;
using System.Linq;

class LinqDemo
{
 static void Main()
 {
 string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

 IEnumerable<string> query =
 from n in names
 where n.Contains ("a") // Filter elements
 orderby n.Length // Sort elements
 select n.ToUpper(); // Translate each element (project)

 foreach (string name in query) Console.WriteLine (name);
 }
}

JAY
MARY
HARRY

Query expressions always start with a from clause and end with either a select or
group clause. The from clause declares a range variable (in this case, n), which you
can think of as traversing the input sequence—rather like foreach. Figure 8-2 illus‐
trates the complete syntax as a railroad diagram.

344 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

To read this diagram, start at the left and then proceed along
the track as if you were a train. For instance, after the manda‐
tory from clause, you can optionally include an orderby,
where, let or join clause. After that, you can either continue
with a select or group clause, or go back and include another
from, orderby, where, let or join clause.

Figure 8-2. Query syntax

The compiler processes a query expression by translating it into fluent syntax. It
does this in a fairly mechanical fashion—much like it translates foreach statements
into calls to GetEnumerator and MoveNext. This means that anything you can write
in query syntax you can also write in fluent syntax. The compiler (initially) trans‐
lates our example query into the following:

IEnumerable<string> query = names.Where (n => n.Contains ("a"))
 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper());

LIN
Q

Q
ueries

Query Expressions | 345

www.EBooksWorld.ir

The Where, OrderBy, and Select operators then resolve using the same rules that
would apply if the query were written in fluent syntax. In this case, they bind to
extension methods in the Enumerable class, since the System.Linq namespace is
imported and names implements IEnumerable<string>. The compiler doesn’t
specifically favor the Enumerable class, however, when translating query expres‐
sions. You can think of the compiler as mechanically injecting the words “Where,”
“OrderBy,” and “Select” into the statement, and then compiling it as though you’d
typed the method names yourself. This offers flexibility in how they resolve. The
operators in the database queries that we’ll write in later sections, for instance, will
bind instead to extension methods in Queryable.

If we remove the using System.Linq directive from our pro‐
gram, the query would not compile, since the Where, OrderBy,
and Select methods would have nowhere to bind. Query
expressions cannot compile unless you import System.Linq or
another namespace with an implementation of these query
methods.

Range Variables
The identifier immediately following the from keyword syntax is called the range
variable. A range variable refers to the current element in the sequence that the
operation is to be performed on.

In our examples, the range variable n appears in every clause in the query. And yet,
the variable actually enumerates over a different sequence with each clause:

from n in names // n is our range variable
where n.Contains ("a") // n = directly from the array
orderby n.Length // n = subsequent to being filtered
select n.ToUpper() // n = subsequent to being sorted

This becomes clear when we examine the compiler’s mechanical translation to flu‐
ent syntax:

names.Where (n => n.Contains ("a")) // Locally scoped n
 .OrderBy (n => n.Length) // Locally scoped n
 .Select (n => n.ToUpper()) // Locally scoped n

As you can see, each instance of n is scoped privately to its own lambda expression.

Query expressions also let you introduce new range variables, via the following
clauses:

• let

• into

• An additional from clause

• join

346 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

We cover these later in this chapter in the section “Composition Strategies” on page
358, and also in Chapter 9, in the sections “Projecting” on page 394 and “Joining”
on page 394.

Query Syntax Versus SQL Syntax
Query expressions look superficially like SQL, yet the two are very different. A
LINQ query boils down to a C# expression, and so follows standard C# rules. For
example, with LINQ, you cannot use a variable before you declare it. In SQL, you
can reference a table alias in the SELECT clause before defining it in a FROM clause.

A subquery in LINQ is just another C# expression and so requires no special syntax.
Subqueries in SQL are subject to special rules.

With LINQ, data logically flows from left to right through the query. With SQL, the
order is less well-structured with regard data flow.

A LINQ query comprises a conveyor belt, or pipeline, of operators that accept and
emit sequences whose element order can matter. A SQL query comprises a network
of clauses that work mostly with unordered sets.

Query Syntax Versus Fluent Syntax
Query and fluent syntax each have advantages.

Query syntax is simpler for queries that involve any of the following:

• A let clause for introducing a new variable alongside the range variable

• SelectMany, Join, or GroupJoin, followed by an outer range variable reference

(We describe the let clause in the later section, “Composition Strategies” on page
358; we describe SelectMany, Join, and GroupJoin in Chapter 9.)

The middle ground is queries that involve the simple use of Where, OrderBy, and
Select. Either syntax works well; the choice here is largely personal.

For queries that comprise a single operator, fluent syntax is shorter and less clut‐
tered.

Finally, there are many operators that have no keyword in query syntax. These
require that you use fluent syntax—at least in part. This means any operator outside
of the following:

Where, Select, SelectMany
OrderBy, ThenBy, OrderByDescending, ThenByDescending
GroupBy, Join, GroupJoin

LIN
Q

Q
ueries

Query Expressions | 347

www.EBooksWorld.ir

Mixed-Syntax Queries
If a query operator has no query-syntax support, you can mix query syntax and flu‐
ent syntax. The only restriction is that each query-syntax component must be com‐
plete (i.e., start with a from clause and end with a select or group clause).

Assuming this array declaration:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

the following example counts the number of names containing the letter “a”:

int matches = (from n in names where n.Contains ("a") select n).Count();
// 3

The next query obtains the first name in alphabetical order:

string first = (from n in names orderby n select n).First(); // Dick

The mixed-syntax approach is sometimes beneficial in more complex queries. With
these simple examples, however, we could stick to fluent syntax throughout without
penalty:

int matches = names.Where (n => n.Contains ("a")).Count(); // 3
string first = names.OrderBy (n => n).First(); // Dick

There are times when mixed-syntax queries offer by far the
highest “bang for the buck” in terms of function and simplic‐
ity. It’s important not to unilaterally favor either query or flu‐
ent syntax; otherwise, you’ll be unable to write mixed-syntax
queries without feeling a sense of failure!

Where applicable, the remainder of this chapter will show key concepts in both flu‐
ent and query syntax.

Deferred Execution
An important feature of most query operators is that they execute not when con‐
structed, but when enumerated (in other words, when MoveNext is called on its enu‐
merator). Consider the following query:

var numbers = new List<int>();
numbers.Add (1);

IEnumerable<int> query = numbers.Select (n => n * 10); // Build query

numbers.Add (2); // Sneak in an extra element

foreach (int n in query)
 Console.Write (n + "|"); // 10|20|

The extra number that we sneaked into the list after constructing the query is
included in the result, since it’s not until the foreach statement runs that any filter‐
ing or sorting takes place. This is called deferred or lazy execution and is the same as
what happens with delegates:

348 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

Action a = () => Console.WriteLine ("Foo");
// We've not written anything to the Console yet. Now let's run it:
a(); // Deferred execution!

All standard query operators provide deferred execution, with the following excep‐
tions:

• Operators that return a single element or scalar value, such as First or Count
• The following conversion operators:

ToArray, ToList, ToDictionary, ToLookup

These operators cause immediate query execution because their result types have no
mechanism for providing deferred execution. The Count method, for instance,
returns a simple integer, which doesn’t then get enumerated. The following query is
executed immediately:

int matches = numbers.Where (n => n < 2).Count(); // 1

Deferred execution is important because it decouples query construction from query
execution. This allows you to construct a query in several steps, as well as making
database queries possible.

Subqueries provide another level of indirection. Everything in
a subquery is subject to deferred execution—including aggre‐
gation and conversion methods. We describe this in the sec‐
tion “Subqueries” on page 355 later in this chapter.

Reevaluation
Deferred execution has another consequence: a deferred execution query is reevalu‐
ated when you re-enumerate:

var numbers = new List<int>() { 1, 2 };

IEnumerable<int> query = numbers.Select (n => n * 10);
foreach (int n in query) Console.Write (n + "|"); // 10|20|

numbers.Clear();
foreach (int n in query) Console.Write (n + "|"); // <nothing>

There are a couple of reasons why reevaluation is sometimes disadvantageous:

• Sometimes you want to “freeze” or cache the results at a certain point in time.
• Some queries are computationally intensive (or rely on querying a remote data‐

base), so you don’t want to unnecessarily repeat them.

You can defeat reevaluation by calling a conversion operator, such as ToArray or
ToList. ToArray copies the output of a query to an array; ToList copies to a generic
List<T>:

LIN
Q

Q
ueries

Deferred Execution | 349

www.EBooksWorld.ir

var numbers = new List<int>() { 1, 2 };

List<int> timesTen = numbers
 .Select (n => n * 10)

 .ToList(); // Executes immediately into a List<int>

numbers.Clear();
Console.WriteLine (timesTen.Count); // Still 2

Captured Variables
If your query’s lambda expressions capture outer variables, the query will honor the
value of those variables at the time the query runs:

int[] numbers = { 1, 2 };

int factor = 10;
IEnumerable<int> query = numbers.Select (n => n * factor);
factor = 20;
foreach (int n in query) Console.Write (n + "|"); // 20|40|

This can be a trap when building up a query within a for loop. For example, sup‐
pose we wanted to remove all vowels from a string. The following, although ineffi‐
cient, gives the correct result:

IEnumerable<char> query = "Not what you might expect";

query = query.Where (c => c != 'a');
query = query.Where (c => c != 'e');
query = query.Where (c => c != 'i');
query = query.Where (c => c != 'o');
query = query.Where (c => c != 'u');

foreach (char c in query) Console.Write (c); // Nt wht y mght xpct

Now watch what happens when we refactor this with a for loop:

IEnumerable<char> query = "Not what you might expect";
string vowels = "aeiou";

for (int i = 0; i < vowels.Length; i++)
 query = query.Where (c => c != vowels[i]);

foreach (char c in query) Console.Write (c);

An IndexOutOfRangeException is thrown upon enumerating the query, because as
we saw in Chapter 4 (see “Capturing Outer Variables” on page 144), the compiler
scopes the iteration variable in the for loop as if it was declared outside the loop.
Hence each closure captures the same variable (i) whose value is 5 when the query
is actually enumerated. To solve this, you must assign the loop variable to another
variable declared inside the statement block:

350 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

for (int i = 0; i < vowels.Length; i++)
{
 char vowel = vowels[i];
 query = query.Where (c => c != vowel);
}

This forces a fresh local variable to be captured on each loop iteration.

From C# 5.0, another way to solve the problem is to replace
the for loop with a foreach loop:

foreach (char vowel in vowels)
 query = query.Where (c => c != vowel);

This works in C# 5.0 but fails in earlier versions of C# for the
reasons we described in Chapter 4.

How Deferred Execution Works
Query operators provide deferred execution by returning decorator sequences.

Unlike a traditional collection class, such as an array or linked list, a decorator
sequence (in general) has no backing structure of its own to store elements. Instead,
it wraps another sequence that you supply at runtime, to which it maintains a per‐
manent dependency. Whenever you request data from a decorator, it in turn must
request data from the wrapped input sequence.

The query operator’s transformation constitutes the “decora‐
tion.” If the output sequence performed no transformation, it
would be a proxy rather than a decorator.

Calling Where merely constructs the decorator wrapper sequence, holding a refer‐
ence to the input sequence, the lambda expression, and any other arguments sup‐
plied. The input sequence is enumerated only when the decorator is enumerated.

Figure 8-3 illustrates the composition of the following query:

IEnumerable<int> lessThanTen = new int[] { 5, 12, 3 }.Where (n => n < 10);

Figure 8-3. Decorator sequence

LIN
Q

Q
ueries

Deferred Execution | 351

www.EBooksWorld.ir

When you enumerate lessThanTen, you’re, in effect, querying the array through the
Where decorator.

The good news—if you ever want to write your own query operator—is that imple‐
menting a decorator sequence is easy with a C# iterator. Here’s how you can write
your own Select method:

public static IEnumerable<TResult> Select<TSource,TResult>
 (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
{
 foreach (TSource element in source)
 yield return selector (element);
}

This method is an iterator by virtue of the yield return statement. Functionally,
it’s a shortcut for the following:

public static IEnumerable<TResult> Select<TSource,TResult>
 (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
{
 return new SelectSequence (source, selector);
}

where SelectSequence is a (compiler-written) class whose enumerator encapsulates
the logic in the iterator method.

Hence, when you call an operator such as Select or Where, you’re doing nothing
more than instantiating an enumerable class that decorates the input sequence.

Chaining Decorators
Chaining query operators creates a layering of decorators. Consider the following
query:

IEnumerable<int> query = new int[] { 5, 12, 3 }.Where (n => n < 10)
 .OrderBy (n => n)
 .Select (n => n * 10);

Each query operator instantiates a new decorator that wraps the previous sequence
(rather like a Russian nesting doll). The object model of this query is illustrated in
Figure 8-4. Note that this object model is fully constructed prior to any enumera‐
tion.

When you enumerate query, you’re querying the original array, transformed
through a layering or chain of decorators.

Adding ToList onto the end of this query would cause the
preceding operators to execute right away, collapsing the
whole object model into a single list.

352 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

Figure 8-4. Layered decorator sequences

Figure 8-5 shows the same object composition in UML syntax. Select’s decorator
references the OrderBy decorator, which references Where’s decorator, which refer‐
ences the array. A feature of deferred execution is that you build the identical object
model if you compose the query progressively:

IEnumerable<int>
 source = new int[] { 5, 12, 3 },
 filtered = source .Where (n => n < 10),
 sorted = filtered .OrderBy (n => n),
 query = sorted .Select (n => n * 10);

Figure 8-5. UML decorator composition

LIN
Q

Q
ueries

Deferred Execution | 353

www.EBooksWorld.ir

How Queries Are Executed
Here are the results of enumerating the preceding query:

foreach (int n in query) Console.WriteLine (n);

30
50

Behind the scenes, the foreach calls GetEnumerator on Select’s decorator (the last
or outermost operator), which kicks everything off. The result is a chain of enumer‐
ators that structurally mirrors the chain of decorator sequences. Figure 8-6 illus‐
trates the flow of execution as enumeration proceeds.

Figure 8-6. Execution of a local query

In the first section of this chapter, we depicted a query as a production line of con‐
veyor belts. Extending this analogy, we can say a LINQ query is a lazy production
line where the conveyor belts roll elements only upon demand. Constructing a
query constructs a production line—with everything in place—but with nothing
rolling. Then when the consumer requests an element (enumerates over the query),
the rightmost conveyor belt activates; this in turn triggers the others to roll—as and
when input sequence elements are needed. LINQ follows a demand-driven pull
model, rather than a supply-driven push model. This is important—as we’ll see later
—in allowing LINQ to scale to querying SQL databases.

354 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

Subqueries
A subquery is a query contained within another query’s lambda expression. The fol‐
lowing example uses a subquery to sort musicians by their last name:

string[] musos =
 { "David Gilmour", "Roger Waters", "Rick Wright", "Nick Mason" };

IEnumerable<string> query = musos.OrderBy (m => m.Split().Last());

m.Split converts each string into a collection of words, upon which we then call the
Last query operator. m.Split().Last is the subquery; query references the outer
query.

Subqueries are permitted because you can put any valid C# expression on the right-
hand side of a lambda. A subquery is simply another C# expression. This means
that the rules for subqueries are a consequence of the rules for lambda expressions
(and the behavior of query operators in general).

The term subquery, in the general sense, has a broader mean‐
ing. For the purpose of describing LINQ, we use the term only
for a query referenced from within the lambda expression of
another query. In a query expression, a subquery amounts to a
query referenced from an expression in any clause except the
from clause.

A subquery is privately scoped to the enclosing expression and is able to reference
parameters in the outer lambda expression (or range variables in a query expres‐
sion).

m.Split().Last is a very simple subquery. The next query retrieves all strings in an
array whose length matches that of the shortest string:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> outerQuery = names
 .Where (n => n.Length == names.OrderBy (n2 => n2.Length)
 .Select (n2 => n2.Length).First());

Tom, Jay

Here’s the same thing as a query expression:

IEnumerable<string> outerQuery =
 from n in names
 where n.Length ==
 (from n2 in names orderby n2.Length select n2.Length).First()
 select n;

Because the outer range variable (n) is in scope for a subquery, we cannot reuse n as
the subquery’s range variable.

LIN
Q

Q
ueries

Subqueries | 355

www.EBooksWorld.ir

A subquery is executed whenever the enclosing lambda expression is evaluated.
This means a subquery is executed upon demand, at the discretion of the outer
query. You could say that execution proceeds from the outside in. Local queries fol‐
low this model literally; interpreted queries (e.g., database queries) follow this
model conceptually.

The subquery executes as and when required, to feed the outer query. In our exam‐
ple, the subquery (the top conveyor belt in Figure 8-7) executes once for every outer
loop iteration. This is illustrated in Figures 8-7 and 8-8.

Figure 8-7. Subquery composition

356 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

Figure 8-8. UML subquery composition

We can express our preceding subquery more succinctly as follows:

IEnumerable<string> query =
 from n in names
 where n.Length == names.OrderBy (n2 => n2.Length).First().Length
 select n;

With the Min aggregation function, we can simplify the query further:

IEnumerable<string> query =
 from n in names
 where n.Length == names.Min (n2 => n2.Length)
 select n;

In “Interpreted Queries” on page 364, we’ll describe how remote sources such as
SQL tables can be queried. Our example makes an ideal database query, since it
would be processed as a unit, requiring only one round trip to the database server.
This query, however, is inefficient for a local collection because the subquery is

LIN
Q

Q
ueries

Subqueries | 357

www.EBooksWorld.ir

recalculated on each outer loop iteration. We can avoid this inefficiency by running
the subquery separately (so that it’s no longer a subquery):

int shortest = names.Min (n => n.Length);

IEnumerable<string> query = from n in names
 where n.Length == shortest
 select n;

Factoring out subqueries in this manner is nearly always
desirable when querying local collections. An exception is
when the subquery is correlated, meaning that it references the
outer range variable. We explore correlated subqueries in
“Projecting” on page 394 in Chapter 9.

Subqueries and Deferred Execution
An element or aggregation operator such as First or Count in a subquery doesn’t
force the outer query into immediate execution—deferred execution still holds for
the outer query. This is because subqueries are called indirectly—through a delegate
in the case of a local query, or through an expression tree in the case of an inter‐
preted query.

An interesting case arises when you include a subquery within a Select expression.
In the case of a local query, you’re actually projecting a sequence of queries—each
itself subject to deferred execution. The effect is generally transparent, and it serves
to further improve efficiency. We revisit Select subqueries in some detail in Chap‐
ter 9.

Composition Strategies
In this section, we describe three strategies for building more complex queries:

• Progressive query construction

• Using the into keyword
• Wrapping queries

All are chaining strategies and produce identical runtime queries.

Progressive Query Building
At the start of the chapter, we demonstrated how you could build a fluent query
progressively:

var filtered = names .Where (n => n.Contains ("a"));
var sorted = filtered .OrderBy (n => n);
var query = sorted .Select (n => n.ToUpper());

Because each of the participating query operators returns a decorator sequence, the
resultant query is the same chain or layering of decorators that you would get from

358 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

a single-expression query. There are a couple of potential benefits, however, to
building queries progressively:

• It can make queries easier to write.
• You can add query operators conditionally. For example:

if (includeFilter) query = query.Where (...)

This is more efficient than:

query = query.Where (n => !includeFilter || <expression>)

because it avoids adding an extra query operator if includeFilter is false.

A progressive approach is often useful in query comprehensions. To illustrate,
imagine we want to remove all vowels from a list of names and then present in
alphabetical order those whose length is still more than two characters. In fluent
syntax, we could write this query as a single expression—by projecting before we
filter:

IEnumerable<string> query = names
 .Select (n => n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", ""))
 .Where (n => n.Length > 2)
 .OrderBy (n => n);

RESULT: { "Dck", "Hrry", "Mry" }

Rather than calling string’s Replace method five times, we
could remove vowels from a string more efficiently with a reg‐
ular expression:

n => Regex.Replace (n, "[aeiou]", "")

string’s Replace method has the advantage, though, of also
working in database queries.

Translating this directly into a query expression is troublesome because the select
clause must come after the where and orderby clauses. And if we rearrange the
query so as to project last, the result would be different:

IEnumerable<string> query =
 from n in names
 where n.Length > 2
 orderby n
 select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", "");

RESULT: { "Dck", "Hrry", "Jy", "Mry", "Tm" }

Fortunately, there are a number of ways to get the original result in query syntax.
The first is by querying progressively:

IEnumerable<string> query =
 from n in names

LIN
Q

Q
ueries

Composition Strategies | 359

www.EBooksWorld.ir

 select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", "");

query = from n in query where n.Length > 2 orderby n select n;

RESULT: { "Dck", "Hrry", "Mry" }

The into Keyword
The into keyword is interpreted in two very different ways by
query expressions, depending on context. The meaning we’re
describing now is for signaling query continuation (the other is
for signaling a GroupJoin).

The into keyword lets you “continue” a query after a projection and is a shortcut for
progressively querying. With into, we can rewrite the preceding query as:

IEnumerable<string> query =
 from n in names
 select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", "")
 into noVowel
 where noVowel.Length > 2 orderby noVowel select noVowel;

The only place you can use into is after a select or group clause. into “restarts” a
query, allowing you to introduce fresh where, orderby, and select clauses.

Although it’s easiest to think of into as restarting a query
from the perspective of a query expression, it’s all one query
when translated to its final fluent form. Hence, there’s no
intrinsic performance hit with into. Nor do you lose any
points for its use!

The equivalent of into in fluent syntax is simply a longer chain of operators.

Scoping rules
All range variables are out of scope following an into keyword. The following will
not compile:

var query =
 from n1 in names
 select n1.ToUpper()
 into n2 // Only n2 is visible from here on.
 where n1.Contains ("x") // Illegal: n1 is not in scope.
 select n2;

To see why, consider how this maps to fluent syntax:

var query = names
 .Select (n1 => n1.ToUpper())
 .Where (n2 => n1.Contains ("x")); // Error: n1 no longer in scope

360 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

The original name (n1) is lost by the time the Where filter runs. Where’s input
sequence contains only uppercase names, so it cannot filter based on n1.

Wrapping Queries
A query built progressively can be formulated into a single statement by wrapping
one query around another. In general terms:

var tempQuery = tempQueryExpr
var finalQuery = from ... in tempQuery ...

can be reformulated as:

var finalQuery = from ... in (tempQueryExpr)

Wrapping is semantically identical to progressive query building or using the into
keyword (without the intermediate variable). The end result in all cases is a linear
chain of query operators. For example, consider the following query:

IEnumerable<string> query =
 from n in names
 select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", "");

query = from n in query where n.Length > 2 orderby n select n;

Reformulated in wrapped form, it’s the following:

IEnumerable<string> query =
 from n1 in
 (
 from n2 in names
 select n2.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", "")
)
 where n1.Length > 2 orderby n1 select n1;

When converted to fluent syntax, the result is the same linear chain of operators as
in previous examples:

IEnumerable<string> query = names
 .Select (n => n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", ""))
 .Where (n => n.Length > 2)
 .OrderBy (n => n);

(The compiler does not emit the final .Select (n => n) because it’s redundant.)

Wrapped queries can be confusing because they resemble the subqueries we wrote
earlier. Both have the concept of an inner and outer query. When converted to flu‐
ent syntax, however, you can see that wrapping is simply a strategy for sequentially
chaining operators. The end result bears no resemblance to a subquery, which
embeds an inner query within the lambda expression of another.

LIN
Q

Q
ueries

Composition Strategies | 361

www.EBooksWorld.ir

Returning to a previous analogy: when wrapping, the “inner” query amounts to the
preceding conveyor belts. In contrast, a subquery rides above a conveyor belt and is
activated upon demand through the conveyor belt’s lambda worker (as illustrated in
Figure 8-7).

Projection Strategies
Object Initializers
So far, all our select clauses have projected scalar element types. With C# object
initializers, you can project into more complex types. For example, suppose, as a
first step in a query, we want to strip vowels from a list of names while still retaining
the original versions alongside, for the benefit of subsequent queries. We can write
the following class to assist:

class TempProjectionItem
{
 public string Original; // Original name
 public string Vowelless; // Vowel-stripped name
}

and then project into it with object initializers:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<TempProjectionItem> temp =
 from n in names
 select new TempProjectionItem
 {
 Original = n,
 Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", "")
 };

The result is of type IEnumerable<TempProjectionItem>, which we can subse‐
quently query:

IEnumerable<string> query = from item in temp
 where item.Vowelless.Length > 2
 select item.Original;
Dick
Harry
Mary

Anonymous Types
Anonymous types allow you to structure your intermediate results without writing
special classes. We can eliminate the TempProjectionItem class in our previous
example with anonymous types:

var intermediate = from n in names

 select new

362 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

 {
 Original = n,
 Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", "")
 };

IEnumerable<string> query = from item in intermediate
 where item.Vowelless.Length > 2
 select item.Original;

This gives the same result as the previous example, but without needing to write a
one-off class. The compiler does the job instead, generating a temporary class with
fields that match the structure of our projection. This means, however, that the
intermediate query has the following type:

IEnumerable <random-compiler-generated-name>

The only way we can declare a variable of this type is with the var keyword. In this
case, var is more than just a clutter reduction device; it’s a necessity.

We can write the whole query more succinctly with the into keyword:

var query = from n in names
 select new
 {
 Original = n,
 Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", "")
 }
 into temp
 where temp.Vowelless.Length > 2
 select temp.Original;

Query expressions provide a shortcut for writing this kind of query: the let key‐
word.

The let Keyword
The let keyword introduces a new variable alongside the range variable.

With let, we can write a query extracting strings whose length, excluding vowels,
exceeds two characters, as follows:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query =
 from n in names
 let vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
 .Replace ("o", "").Replace ("u", "")
 where vowelless.Length > 2
 orderby vowelless
 select n; // Thanks to let, n is still in scope.

LIN
Q

Q
ueries

Projection Strategies | 363

www.EBooksWorld.ir

The compiler resolves a let clause by projecting into a temporary anonymous type
that contains both the range variable and the new expression variable. In other
words, the compiler translates this query into the preceding example.

let accomplishes two things:

• It projects new elements alongside existing elements.
• It allows an expression to be used repeatedly in a query without being rewrit‐

ten.

The let approach is particularly advantageous in this example because it allows the
select clause to project either the original name (n) or its vowel-removed version
(vowelless).

You can have any number of let statements, before or after a where statement (see
Figure 8-2). A let statement can reference variables introduced in earlier let state‐
ments (subject to the boundaries imposed by an into clause). let reprojects all exist‐
ing variables transparently.

A let expression need not evaluate to a scalar type: sometimes it’s useful to have it
evaluate to a subsequence, for instance.

Interpreted Queries
LINQ provides two parallel architectures: local queries for local object collections,
and interpreted queries for remote data sources. So far, we’ve examined the architec‐
ture of local queries, which operate over collections implementing IEnumerable<T>.
Local queries resolve to query operators in the Enumerable class (by default), which
in turn resolve to chains of decorator sequences. The delegates that they accept—
whether expressed in query syntax, fluent syntax, or traditional delegates—are fully
local to Intermediate Language (IL) code, just like any other C# method.

By contrast, interpreted queries are descriptive. They operate over sequences that
implement IQueryable<T>, and they resolve to the query operators in the Querya
ble class, which emit expression trees that are interpreted at runtime.

The query operators in Enumerable can actually work with
IQueryable<T> sequences. The difficulty is that the resultant
queries always execute locally on the client—this is why a sec‐
ond set of query operators is provided in the Queryable class.

There are two IQueryable<T> implementations in the .NET Framework:

• LINQ to SQL
• Entity Framework (EF)

364 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

These LINQ-to-db technologies are very similar in their LINQ support: the LINQ-
to-db queries in this book will work with both LINQ to SQL and EF unless other‐
wise specified.

It’s also possible to generate an IQueryable<T> wrapper around an ordinary enu‐
merable collection by calling the AsQueryable method. We describe AsQueryable in
the section “Building Query Expressions” on page 385 later in this chapter.

In this section, we’ll use LINQ to SQL to illustrate interpreted query architecture
because LINQ to SQL lets us query without having to first write an Entity Data
Model. The queries that we write, however, work equally well with Entity Frame‐
work (and also many third-party products).

IQueryable<T> is an extension of IEnumerable<T> with addi‐
tional methods for constructing expression trees. Most of the
time, you can ignore the details of these methods; they’re
called indirectly by the Framework. “Building Query Expres‐
sions” on page 385 covers IQueryable<T> in more detail.

Suppose we create a simple customer table in SQL Server and populate it with a few
names using the following SQL script:

create table Customer
(
 ID int not null primary key,
 Name varchar(30)
)
insert Customer values (1, 'Tom')
insert Customer values (2, 'Dick')
insert Customer values (3, 'Harry')
insert Customer values (4, 'Mary')
insert Customer values (5, 'Jay')

With this table in place, we can write an interpreted LINQ query in C# to retrieve
customers whose name contains the letter “a” as follows:

using System;
using System.Linq;
using System.Data.Linq; // in System.Data.Linq.dll
using System.Data.Linq.Mapping;

[Table] public class Customer
{
 [Column(IsPrimaryKey=true)] public int ID;
 [Column] public string Name;
}

class Test
{
 static void Main()
 {
 DataContext dataContext = new DataContext ("connection string");
 Table<Customer> customers = dataContext.GetTable <Customer>();

LIN
Q

Q
ueries

Interpreted Queries | 365

www.EBooksWorld.ir

 IQueryable<string> query = from c in customers
 where c.Name.Contains ("a")
 orderby c.Name.Length
 select c.Name.ToUpper();

 foreach (string name in query) Console.WriteLine (name);
 }
}

LINQ to SQL translates this query into the following SQL:

SELECT UPPER([t0].[Name]) AS [value]
FROM [Customer] AS [t0]
WHERE [t0].[Name] LIKE @p0
ORDER BY LEN([t0].[Name])

with the following end result:

JAY
MARY
HARRY

How Interpreted Queries Work
Let’s examine how the preceding query is processed.

First, the compiler converts query syntax to fluent syntax. This is done exactly as
with local queries:

IQueryable<string> query = customers.Where (n => n.Name.Contains ("a"))
 .OrderBy (n => n.Name.Length)
 .Select (n => n.Name.ToUpper());

Next, the compiler resolves the query operator methods. Here’s where local and
interpreted queries differ—interpreted queries resolve to query operators in the
Queryable class instead of the Enumerable class.

To see why, we need to look at the customers variable, the source upon which the
whole query builds. customers is of type Table<T>, which implements IQuerya
ble<T> (a subtype of IEnumerable<T>). This means the compiler has a choice in
resolving Where: it could call the extension method in Enumerable or the following
extension method in Queryable:

public static IQueryable<TSource> Where<TSource> (this
 IQueryable<TSource> source, Expression <Func<TSource,bool>> predicate)

The compiler chooses Queryable.Where because its signature is a more specific
match.

Queryable.Where accepts a predicate wrapped in an Expression<TDelegate> type.
This instructs the compiler to translate the supplied lambda expression—in other
words, n=>n.Name.Contains("a")—to an expression tree rather than a compiled
delegate. An expression tree is an object model based on the types in Sys
tem.Linq.Expressions that can be inspected at runtime (so that LINQ to SQL or
EF can later translate it to a SQL statement).

366 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

Because Queryable.Where also returns IQueryable<T>, the same process follows
with the OrderBy and Select operators. The end result is illustrated in Figure 8-9.
In the shaded box, there is an expression tree describing the entire query that can be
traversed at runtime.

Figure 8-9. Interpreted query composition

Execution
Interpreted queries follow a deferred execution model—just like local queries. This
means that the SQL statement is not generated until you start enumerating the
query. Further, enumerating the same query twice results in the database being
queried twice.

Under the covers, interpreted queries differ from local queries in how they execute.
When you enumerate over an interpreted query, the outermost sequence runs a
program that traverses the entire expression tree, processing it as a unit. In our
example, LINQ to SQL translates the expression tree to a SQL statement, which it
then executes, yielding the results as a sequence. LIN

Q
Q

ueries

Interpreted Queries | 367

www.EBooksWorld.ir

To work, LINQ to SQL needs some clues as to the schema of
the database. The Table and Column attributes that we applied
to the Customer class serve just this function. The section
“LINQ to SQL and Entity Framework” on page 371, later in
this chapter, describes these attributes in more detail. Entity
Framework is similar except that it also requires an Entity
Data Model (EDM)—an XML file describing the mapping
between database and entities.

We said previously that a LINQ query is like a production line. When you enumer‐
ate an IQueryable conveyor belt, though, it doesn’t start up the whole production
line, like with a local query. Instead, just the IQueryable belt starts up, with a special
enumerator that calls upon a production manager. The manager reviews the entire
production line—which consists not of compiled code, but of dummies (method call
expressions) with instructions pasted to their foreheads (expression trees). The man‐
ager then traverses all the expressions, in this case transcribing them to a single
piece of paper (a SQL statement), which it then executes, feeding the results back to
the consumer. Only one belt turns; the rest of the production line is a network of
empty shells, existing just to describe what has to be done.

This has some practical implications. For instance, with local queries, you can write
your own query methods (fairly easily, with iterators) and then use them to supple‐
ment the predefined set. With remote queries, this is difficult, and even undesirable.
If you wrote a MyWhere extension method accepting IQueryable<T>, it would be like
putting your own dummy into the production line. The production manager
wouldn’t know what to do with your dummy. Even if you intervened at this stage,
your solution would be hard-wired to a particular provider, such as LINQ to SQL,
and would not work with other IQueryable implementations. Part of the benefit of
having a standard set of methods in Queryable is that they define a standard
vocabulary for querying any remote collection. As soon as you try to extend the
vocabulary, you’re no longer interoperable.

Another consequence of this model is that an IQueryable provider may be unable
to cope with some queries—even if you stick to the standard methods. LINQ to SQL
and EF are both limited by the capabilities of the database server; some LINQ quer‐
ies have no SQL translation. If you’re familiar with SQL, you’ll have a good intuition
for what these are, although at times you have to experiment to see what causes a
runtime error; it can be surprising what does work!

Combining Interpreted and Local Queries
A query can include both interpreted and local operators. A typical pattern is to
have the local operators on the outside and the interpreted components on the
inside; in other words, the interpreted queries feed the local queries. This pattern
works well with LINQ-to-database queries.

For instance, suppose we write a custom extension method to pair up strings in a
collection:

368 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

public static IEnumerable<string> Pair (this IEnumerable<string> source)
{
 string firstHalf = null;
 foreach (string element in source)
 if (firstHalf == null)
 firstHalf = element;
 else
 {
 yield return firstHalf + ", " + element;
 firstHalf = null;
 }
}

We can use this extension method in a query that mixes LINQ to SQL and local
operators:

DataContext dataContext = new DataContext ("connection string");
Table<Customer> customers = dataContext.GetTable <Customer>();

IEnumerable<string> q = customers
 .Select (c => c.Name.ToUpper())
 .OrderBy (n => n)
 .Pair() // Local from this point on.
 .Select ((n, i) => "Pair " + i.ToString() + " = " + n);

foreach (string element in q) Console.WriteLine (element);

Pair 0 = HARRY, MARY
Pair 1 = TOM, DICK

Because customers is of a type implementing IQueryable<T>, the Select operator
resolves to Queryable.Select. This returns an output sequence also of type IQuery
able<T>, so the OrderBy operator similarly resolves to Queryable.OrderBy. But the
next query operator, Pair, has no overload accepting IQueryable<T>—only the less
specific IEnumerable<T>. So, it resolves to our local Pair method—wrapping the
interpreted query in a local query. Pair also returns IEnumerable, so the Select
that follows resolves to another local operator.

On the LINQ to SQL side, the resulting SQL statement is equivalent to:

SELECT UPPER (Name) FROM Customer ORDER BY UPPER (Name)

The remaining work is done locally. In effect, we end up with a local query (on the
outside), whose source is an interpreted query (the inside).

AsEnumerable
Enumerable.AsEnumerable is the simplest of all query operators. Here’s its complete
definition:

public static IEnumerable<TSource> AsEnumerable<TSource>
 (this IEnumerable<TSource> source)
{
 return source;
}

LIN
Q

Q
ueries

Interpreted Queries | 369

www.EBooksWorld.ir

Its purpose is to cast an IQueryable<T> sequence to IEnumerable<T>, forcing subse‐
quent query operators to bind to Enumerable operators instead of Queryable opera‐
tors. This causes the remainder of the query to execute locally.

To illustrate, suppose we had a MedicalArticles table in SQL Server and wanted to
use LINQ to SQL or EF to retrieve all articles on influenza whose abstract contained
less than 100 words. For the latter predicate, we need a regular expression:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

var query = dataContext.MedicalArticles
 .Where (article => article.Topic == "influenza" &&
 wordCounter.Matches (article.Abstract).Count < 100);

The problem is that SQL Server doesn’t support regular expressions, so the LINQ-
to-db providers will throw an exception, complaining that the query cannot be
translated to SQL. We can solve this by querying in two steps: first retrieving all arti‐
cles on influenza through a LINQ to SQL query, and then filtering locally for
abstracts of less than 100 words:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

IEnumerable<MedicalArticle> sqlQuery = dataContext.MedicalArticles
 .Where (article => article.Topic == "influenza");

IEnumerable<MedicalArticle> localQuery = sqlQuery
 .Where (article => wordCounter.Matches (article.Abstract).Count < 100);

Because sqlQuery is of type IEnumerable<MedicalArticle>, the second query
binds to the local query operators, forcing that part of the filtering to run on the
client.

With AsEnumerable, we can do the same in a single query:

Regex wordCounter = new Regex (@"\b(\w|[-'])+\b");

var query = dataContext.MedicalArticles
 .Where (article => article.Topic == "influenza")

 .AsEnumerable()
 .Where (article => wordCounter.Matches (article.Abstract).Count < 100);

An alternative to calling AsEnumerable is to call ToArray or ToList. The advantage
of AsEnumerable is that it doesn’t force immediate query execution, nor does it cre‐
ate any storage structure.

Moving query processing from the database server to the cli‐
ent can hurt performance, especially if it means retrieving
more rows. A more efficient (though more complex) way to
solve our example would be to use SQL CLR integration to
expose a function on the database that implemented the regu‐
lar expression.

We demonstrate combined interpreted and local queries further in Chapter 10.

370 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

LINQ to SQL and Entity Framework
Throughout this and the following chapter, we use LINQ to SQL (L2S) and Entity
Framework (EF) to demonstrate interpreted queries. We’ll now examine the key fea‐
tures of these technologies.

If you’re already familiar with L2S, take an advance look at
Table 8-1 (at the end of this section) for a summary of the API
differences with respect to querying.

LINQ to SQL Versus Entity Framework
Both LINQ to SQL and Entity Framework are LINQ-enabled object-relational map‐
pers. The essential difference is that EF allows for stronger decoupling between the
database schema and the classes that you query. Instead of querying classes that
closely represent the database schema, you query a higher-level abstraction
described by an Entity Data Model. This offers extra flexibility but incurs a cost in
both performance and simplicity.

L2S was written by the C# team and was released with Framework 3.5; EF was writ‐
ten by the ADO.NET team and was released later as part of Service Pack 1. L2S has
since been taken over by the ADO.NET team. This has resulted in the product
receiving only minor subsequent improvements, with the team concentrating more
on EF.

EF has improved considerably in later versions, although each technology still has
unique strengths. L2S’s strengths are ease of use, simplicity, performance, and the
quality of its SQL translations. EF’s strength is its flexibility in creating sophisticated
mappings between the database and entity classes. EF also allows for databases other
than SQL Server via a provider model (L2S also features a provider model, but this
was made internal to encourage third parties to focus on EF instead).

L2S is excellent for learning how to query databases in LINQ—because it keeps the
object-relational side of things simple while you learn querying principles that also
work with EF.

LINQ to SQL Entity Classes
L2S allows you to use any class to represent data, as long as you decorate it with
appropriate attributes. Here’s a simple example:

[Table]
public class Customer
{
 [Column(IsPrimaryKey=true)]
 public int ID;

 [Column]
 public string Name;
}

LIN
Q

Q
ueries

LINQ to SQL and Entity Framework | 371

www.EBooksWorld.ir

The [Table] attribute, in the System.Data.Linq.Mapping namespace, tells L2S that
an object of this type represents a row in a database table. By default, it assumes the
table name matches the class name; if this is not the case, you can specify the table
name as follows:

[Table (Name="Customers")]

A class decorated with the [Table] attribute is called an entity in L2S. To be useful,
its structure must closely—or exactly—match that of a database table, making it a
low-level construct.

The [Column] attribute flags a field or property that maps to a column in a table. If
the column name differs from the field or property name, you can specify the col‐
umn name as follows:

[Column (Name="FullName")]
public string Name;

The IsPrimaryKey property in the [Column] attribute indicates that the column
partakes in the table’s primary key and is required for maintaining object identity, as
well as allowing updates to be written back to the database.

Instead of defining public fields, you can define public properties in conjunction
with private fields. This allows you to write validation logic into the property acces‐
sors. If you take this route, you can optionally instruct L2S to bypass your property
accessors and write to the field directly when populating from the database:

string _name;

[Column (Storage="_name")]
public string Name { get { return _name; } set { _name = value; } }

Column(Storage="_name") tells L2S to write directly to the _name field (rather than
the Name property) when populating the entity. L2S’s use of reflection allows the field
to be private—as in this example.

You can generate entity classes automatically from a database
using either Visual Studio (add a new “LINQ to SQL Classes”
project item) or with the SqlMetal command-line tool.

Entity Framework Entity Classes
As with L2S, EF lets you use any class to represent data (although you have to
implement special interfaces if you want functionality such as navigation proper‐
ties).

The following entity class, for instance, represents a customer that ultimately maps
to a customer table in the database:

// You'll need to reference System.Data.Entity.dll

[EdmEntityType (NamespaceName = "NutshellModel", Name = "Customer")]
public partial class Customer

372 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

{
 [EdmScalarPropertyAttribute (EntityKeyProperty=true, IsNullable=false)]
 public int ID { get; set; }

 [EdmScalarProperty (EntityKeyProperty = false, IsNullable = false)]
 public string Name { get; set; }
}

Unlike with L2S, however, a class such as this is not enough on its own. Remember
that with EF, you’re not querying the database directly—you’re querying a higher-
level model called the Entity Data Model (EDM). There needs to be some way to
describe the EDM, and this is most commonly done via an XML file with an .edmx
extension, which contains three parts:

• The conceptual model, which describes the EDM in isolation of the database
• The store model, which describes the database schema
• The mapping, which describes how the conceptual model maps to the store

The easiest way to create an .edmx file is to add an “ADO.NET Entity Data Model”
project item in Visual Studio and then follow the wizard for generating entities from
a database. This creates not only the .edmx file, but the entity classes as well.

The entity classes in EF map to the conceptual model. The
types that support querying and updating the conceptual
model are collectively called Object Services.

The designer assumes that you initially want a simple 1:1 mapping between tables
and entities. You can enrich this, however, by tweaking the EDM either with the
designer or by editing the underlying .edmx file that it creates for you. Here are
some of the things you can do:

• Map several tables into one entity.
• Map one table into several entities.
• Map inherited types to tables using the three standard kinds of strategies popu‐

lar in the ORM world.

The three kinds of inheritance strategies are:

Table per hierarchy
A single table maps to a whole class hierarchy. The table contains a dis‐
criminator column to indicate which type each row should map to.

Table per type
A single table maps to one type, meaning that an inherited type maps to
several tables. EF generates a SQL JOIN when you query an entity, to
merge all its base types together.

LIN
Q

Q
ueries

LINQ to SQL and Entity Framework | 373

www.EBooksWorld.ir

Table per concrete type
A separate table maps to each concrete type. This means that a base type
maps to several tables and EF generates a SQL UNION when you query for
entities of a base type.

(In contrast, L2S supports only table per hierarchy.)

The EDM is complex: a thorough discussion can fill hundreds
of pages! A good book that describes this in detail is Julia Ler‐
man’s Programming Entity Framework.

EF also lets you query through the EDM without LINQ—using a textual language
called Entity SQL (ESQL). This can be useful for dynamically constructed queries.

DataContext and ObjectContext
Once you’ve defined entity classes (and an EDM in the case of EF), you can start
querying. The first step is to instantiate a DataContext (L2S) or ObjectContext
(EF), specifying a connection string:

var l2sContext = new DataContext ("database connection string");
var efContext = new ObjectContext ("entity connection string");

Instantiating a DataContext/ObjectContext directly is a low-
level approach and is good for demonstrating how the classes
work. More typically, though, you instantiate a typed context
(a subclassed version of these classes), a process we’ll describe
shortly.

With L2S, you pass in the database connection string; with EF, you must pass an
entity connection string, which incorporates the database connection string plus
information on how to find the EDM. (If you’ve created an EDM in Visual Studio,
you can find the entity connection string for your EDM in the app.config file.)

You can then obtain a queryable object by calling GetTable (L2S) or CreateObject
Set (EF). The following example uses the Customer class that we defined earlier:

var context = new DataContext ("database connection string");
Table<Customer> customers = context.GetTable <Customer>();

Console.WriteLine (customers.Count()); // # of rows in table.

Customer cust = customers.Single (c => c.ID == 2); // Retrieves Customer
 // with ID of 2.

Here’s the same thing with EF:

var context = new ObjectContext ("entity connection string");
context.DefaultContainerName = "NutshellEntities";
ObjectSet<Customer> customers = context.CreateObjectSet<Customer>();

Console.WriteLine (customers.Count()); // # of rows in table.

374 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

http://oreilly.com/catalog/9780596520298/

Customer cust = customers.Single (c => c.ID == 2); // Retrieves Customer
 // with ID of 2.

The Single operator is ideal for retrieving a row by primary
key. Unlike First, it throws an exception if more than one ele‐
ment is returned.

A DataContext/ObjectContext object does two things. First, it acts as a factory for
generating objects that you can query. Second, it keeps track of any changes that you
make to your entities so that you can write them back. We can continue our previ‐
ous example to update a customer with L2S as follows:

Customer cust = customers.OrderBy (c => c.Name).First();
cust.Name = "Updated Name";
context.SubmitChanges();

With EF, the only difference is that you call SaveChanges instead:

Customer cust = customers.OrderBy (c => c.Name).First();
cust.Name = "Updated Name";
context.SaveChanges();

Typed contexts
Having to call GetTable<Customer>() or CreateObjectSet<Customer>() all the
time is awkward. A better approach is to subclass DataContext/ObjectContext for a
particular database, adding properties that do this for each entity. This is called a
typed context:

class NutshellContext : DataContext // For LINQ to SQL
{
 public Table<Customer> Customers => GetTable<Customer>();
 // ... and so on, for each table in the database
}

Here’s the same thing for EF:

class NutshellContext : ObjectContext // For Entity Framework
{
 public ObjectSet<Customer> Customers => CreateObjectSet<Customer>();
 // ... and so on, for each entity in the conceptual model
}

You can then simply do this:

var context = new NutshellContext ("connection string");
Console.WriteLine (context.Customers.Count());

If you use Visual Studio to create a “LINQ to SQL Classes” or “ADO.NET Entity
Data Model” project item, it builds a typed context for you automatically. The
designers can also do additional work such as pluralizing identifiers—in this exam‐
ple, it’s context.Customers and not context.Customer, even though the SQL table
and entity class are both called Customer.

LIN
Q

Q
ueries

LINQ to SQL and Entity Framework | 375

www.EBooksWorld.ir

Disposing DataContext/ObjectContext
Although DataContext/ObjectContext implement IDisposable, you can (in general)
get away without disposing instances. Disposing forces the context’s connection to
dispose—but this is usually unnecessary because L2S and EF close connections
automatically whenever you finish retrieving results from a query.

Disposing a context can actually be problematic because of lazy evaluation. Con‐
sider the following:

IQueryable<Customer> GetCustomers (string prefix)
{
 using (var dc = new NutshellContext ("connection string"))
 return dc.GetTable<Customer>()
 .Where (c => c.Name.StartsWith (prefix));
}
...
foreach (Customer c in GetCustomers ("a"))
 Console.WriteLine (c.Name);

This will fail because the query is evaluated when we enumerate it—which is after
disposing its DataContext.

There are some caveats, though, on not disposing contexts:

• It relies on the connection object releasing all unmanaged resources on the
Close method. While this holds true with SqlConnection, it’s theoretically pos‐
sible for a third-party connection to keep resources open if you call Close but
not Dispose (though this would arguably violate the contract defined by IDbCon
nection.Close).

• If you manually call GetEnumerator on a query (instead of using foreach) and
then fail to either dispose the enumerator or consume the sequence, the con‐
nection will remain open. Disposing the DataContext/ObjectContext provides
a backup in such scenarios.

• Some people feel that it’s tidier to dispose contexts (and all objects that imple‐
ment IDisposable).

If you want to explicitly dispose contexts, you must pass a DataContext/ObjectCon
text instance into methods such as GetCustomers to avoid the problem described.

Object tracking
A DataContext/ObjectContext instance keeps track of all the entities it instantiates,
so it can feed the same ones back to you whenever you request the same rows in a
table. In other words, a context in its lifetime will never emit two separate entities
that refer to the same row in a table (where a row is identified by primary key).

376 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

You can disable this behavior in L2S by setting ObjectTrackin
gEnabled to false on the DataContext object. In EF, you can
disable change tracking on a per-type basis:

context.Customers.MergeOption = MergeOption.NoTracking;

Disabling object tracking also prevents you from submitting
updates to the data.

To illustrate object tracking, suppose the customer whose name is alphabetically
first also has the lowest ID. In the following example, a and b will reference the same
object:

var context = new NutshellContext ("connection string");

Customer a = context.Customers.OrderBy (c => c.Name).First();
Customer b = context.Customers.OrderBy (c => c.ID).First();

This has a couple of interesting consequences. First, consider what happens when
L2S or EF encounters the second query. It starts by querying the database—and
obtaining a single row. It then reads the primary key of this row and performs a
lookup in the context’s entity cache. Seeing a match, it returns the existing object
without updating any values. So, if another user had just updated that customer’s
Name in the database, the new value would be ignored. This is essential for avoiding
unexpected side effects (the Customer object could be in use elsewhere) and also for
managing concurrency. If you had altered properties on the Customer object and
not yet called SubmitChanges/SaveChanges, you wouldn’t want your properties
automatically overwritten.

To get fresh information from the database, you must either
instantiate a new context or call its Refresh method, passing
in the entity or entities that you want refreshed.

The second consequence is that you cannot explicitly project into an entity type—to
select a subset of the row’s columns—without causing trouble. For example, if you
want to retrieve only a customer’s name, any of the following approaches is valid:

customers.Select (c => c.Name);
customers.Select (c => new { Name = c.Name });
customers.Select (c => new MyCustomType { Name = c.Name });

The following, however, is not:

customers.Select (c => new Customer { Name = c.Name });

This is because the Customer entities will end up partially populated. So, the next
time you perform a query that requests all customer columns, you get the same
cached Customer objects with only the Name property populated.

LIN
Q

Q
ueries

LINQ to SQL and Entity Framework | 377

www.EBooksWorld.ir

In a multitier application, you cannot use a single static
instance of a DataContext or ObjectContext in the middle
tier to handle all requests, because contexts are not thread-
safe. Instead, middle-tier methods must create a fresh context
per client request. This is actually beneficial because it shifts
the burden in handling simultaneous updates to the database
server, which is properly equipped for the job. A database
server, for instance, will apply transaction isolation-level
semantics.

Associations
The entity generation tools perform another useful job. For each relationship
defined in your database, they generate properties on each side that allow you to
query that relationship. For example, suppose we define customer and purchase
tables in a one-to-many relationship:

create table Customer
(
 ID int not null primary key,
 Name varchar(30) not null
)

create table Purchase
(
 ID int not null primary key,
 CustomerID int references Customer (ID),
 Description varchar(30) not null,
 Price decimal not null
)

With automatically generated entity classes, we can write queries such as this:

var context = new NutshellContext ("connection string");

// Retrieve all purchases made by the first customer (alphabetically):

Customer cust1 = context.Customers.OrderBy (c => c.Name).First();
foreach (Purchase p in cust1.Purchases)
 Console.WriteLine (p.Price);

// Retrieve the customer who made the lowest value purchase:

Purchase cheapest = context.Purchases.OrderBy (p => p.Price).First();
Customer cust2 = cheapest.Customer;

Further, if cust1 and cust2 happened to refer to the same customer, c1 and c2
would refer to the same object: cust1==cust2 would return true.

Let’s examine the signature of the automatically generated Purchases property on
the Customer entity. With L2S:

[Association (Storage="_Purchases", OtherKey="CustomerID")]
public EntitySet <Purchase> Purchases { get {...} set {...} }

378 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

With EF:

[EdmRelationshipNavigationProperty ("NutshellModel", "FK...", "Purchase")]
public EntityCollection<Purchase> Purchases { get {...} set {...} }

An EntitySet or EntityCollection is like a predefined query, with a built-in
Where clause that extracts related entities. The [Association] attribute gives L2S
the information it needs to formulate the SQL query; the [EdmRelationshipNaviga
tionProperty] attribute tells EF where to look in the EDM for information about
that relationship.

As with any other type of query, you get deferred execution. With L2S, an Entity
Set is populated when you enumerate over it; with EF, an EntityCollection is
populated when you explicitly call its Load method.

Here’s the Purchases.Customer property, on the other side of the relationship, with
L2S:

[Association (Storage="_Customer",ThisKey="CustomerID",IsForeignKey=true)]
public Customer Customer { get {...} set {...} }

Although the property is of type Customer, its underlying field (_Customer) is of
type EntityRef. The EntityRef type implements deferred loading, so the related
Customer is not retrieved from the database until you actually ask for it.

EF works in the same way, except that it doesn’t populate the property simply by you
accessing it: you must call Load on its EntityReference object. This means EF con‐
texts must expose properties for both the actual parent object and its EntityRefer
ence wrapper:

[EdmRelationshipNavigationProperty ("NutshellModel", "FK..., "Customer")]
public Customer Customer { get {...} set {...} }

public EntityReference<Customer> CustomerReference { get; set; }

You can make EF behave like L2S and have it populate Entity
Collections and EntityReferences simply by virtue of their
properties being accessed as follows:

context.ContextOptions.DeferredLoadingEnabled = true;

Deferred Execution with L2S and EF
L2S and EF queries are subject to deferred execution, just like local queries. This
allows you to build queries progressively. There is one aspect, however, in which
L2S/EF have special deferred execution semantics, and that is when a subquery
appears inside a Select expression:

• With local queries, you get double deferred execution, because from a func‐
tional perspective, you’re selecting a sequence of queries. So, if you enumerate
the outer result sequence, but never enumerate the inner sequences, the sub‐
query will never execute.

LIN
Q

Q
ueries

LINQ to SQL and Entity Framework | 379

www.EBooksWorld.ir

• With L2S/EF, the subquery is executed at the same time as the main outer
query. This avoids excessive round-tripping.

For example, the following query executes in a single round trip upon reaching the
first foreach statement:

var context = new NutshellContext ("connection string");

var query = from c in context.Customers
 select
 from p in c.Purchases
 select new { c.Name, p.Price };

foreach (var customerPurchaseResults in query)
 foreach (var namePrice in customerPurchaseResults)
 Console.WriteLine (namePrice.Name + " spent " + namePrice.Price);

Any EntitySets/EntityCollections that you explicitly project are fully populated
in a single round trip:

var query = from c in context.Customers
 select new { c.Name, c.Purchases };

foreach (var row in query)
 foreach (Purchase p in row.Purchases) // No extra round-tripping
 Console.WriteLine (row.Name + " spent " + p.Price);

But if we enumerate EntitySet/EntityCollection properties without first having
projected, deferred execution rules apply. In the following example, L2S and EF exe‐
cute another Purchases query on each loop iteration:

context.ContextOptions.DeferredLoadingEnabled = true; // For EF only.

foreach (Customer c in context.Customers)
 foreach (Purchase p in c.Purchases) // Another SQL round-trip
 Console.WriteLine (c.Name + " spent " + p.Price);

This model is advantageous when you want to selectively execute the inner loop,
based on a test that can be performed only on the client:

foreach (Customer c in context.Customers)
 if (myWebService.HasBadCreditHistory (c.ID))
 foreach (Purchase p in c.Purchases) // Another SQL round trip
 Console.WriteLine (...);

(In Chapter 9, we explore Select subqueries in more detail, in “Projecting” on page
394.)

We’ve seen that you can avoid round-tripping by explicitly projecting associations.
L2S and EF offer other mechanisms for this, too, which we cover in the following
two sections.

380 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

DataLoadOptions
The DataLoadOptions class is specific to L2S. It has two distinct uses:

• It lets you specify, in advance, a filter for EntitySet associations (Associate
With).

• It lets you request that certain EntitySets be eagerly loaded, to lessen round-
tripping (LoadWith).

Specifying a filter in advance
Let’s refactor our previous example as follows:

foreach (Customer c in context.Customers)
 if (myWebService.HasBadCreditHistory (c.ID))
 ProcessCustomer (c);

We’ll define ProcessCustomer like this:

void ProcessCustomer (Customer c)
{
 Console.WriteLine (c.ID + " " + c.Name);
 foreach (Purchase p in c.Purchases)
 Console.WriteLine (" - purchased a " + p.Description);
}

Now suppose we want to feed ProcessCustomer only a subset of each customer’s
purchases; say, the high-value ones. Here’s one solution:

foreach (Customer c in context.Customers)
 if (myWebService.HasBadCreditHistory (c.ID))
 ProcessCustomer (c.ID,
 c.Name,
 c.Purchases.Where (p => p.Price > 1000));
...
void ProcessCustomer (int custID, string custName,
 IEnumerable<Purchase> purchases)
{
 Console.WriteLine (custID + " " + custName);
 foreach (Purchase p in purchases)
 Console.WriteLine (" - purchased a " + p.Description);
}

This is messy. It would get messier still if ProcessCustomer required more Customer
fields. A better solution is to use DataLoadOptions’s AssociateWith method:

DataLoadOptions options = new DataLoadOptions();
options.AssociateWith <Customer>
 (c => c.Purchases.Where (p => p.Price > 1000));
context.LoadOptions = options;

LIN
Q

Q
ueries

LINQ to SQL and Entity Framework | 381

www.EBooksWorld.ir

This instructs our DataContext instance always to filter a Customer’s Purchases
using the given predicate. We can now use the original version of ProcessCustomer.

AssociateWith doesn’t change deferred execution semantics. When a particular
relationship is used, it simply instructs to implicitly add a particular filter to the
equation.

Eager loading
The second use for a DataLoadOptions is to request that certain EntitySets be
eagerly loaded with their parent. For instance, suppose you want to load all custom‐
ers and their purchases in a single SQL round trip. The following does exactly this:

DataLoadOptions options = new DataLoadOptions();
options.LoadWith <Customer> (c => c.Purchases);
context.LoadOptions = options;

foreach (Customer c in context.Customers) // One round trip:
 foreach (Purchase p in c.Purchases)
 Console.WriteLine (c.Name + " bought a " + p.Description);

This instructs that whenever a Customer is retrieved, its Purchases should also be
retrieved at the same time. You can combine LoadWith with AssociateWith. The
following instructs that whenever a customer is retrieved, its high-value purchases
should be retrieved in the same round trip:

options.LoadWith <Customer> (c => c.Purchases);
options.AssociateWith <Customer>
 (c => c.Purchases.Where (p => p.Price > 1000));

Eager Loading in Entity Framework
You can request in EF that associations be eagerly loaded with the Include method.
The following enumerates over each customer’s purchases—while generating just
one SQL query:

foreach (Customer c in context.Customers.Include ("Purchases"))
 foreach (Purchase p in c.Purchases)
 Console.WriteLine (p.Description);

Include can be used with arbitrary breadth and depth. For example, if each Pur
chase also had PurchaseDetails and SalesPersons navigation properties, the
entire nested structure could be eagerly loaded as follows:

context.Customers.Include ("Purchases.PurchaseDetails")
 .Include ("Purchases.SalesPersons")

Updates
L2S and EF also keep track of changes that you make to your entities and allow you
to write them back to the database by calling SubmitChanges on the DataContext
object, or SaveChanges on the ObjectContext object.

382 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

L2S’s Table<T> class provides InsertOnSubmit and DeleteOnSubmit methods for
inserting and deleting rows in a table; EF’s ObjectSet<T> class provides AddObject
and DeleteObject methods to do the same thing. Here’s how to insert a row:

var context = new NutshellContext ("connection string");

Customer cust = new Customer { ID=1000, Name="Bloggs" };
context.Customers.InsertOnSubmit (cust); // AddObject with EF
context.SubmitChanges(); // SaveChanges with EF

We can later retrieve that row, update it, and then delete it:

var context = new NutshellContext ("connection string");

Customer cust = context.Customers.Single (c => c.ID == 1000);
cust.Name = "Bloggs2";
context.SubmitChanges(); // Updates the customer

context.Customers.DeleteOnSubmit (cust); // DeleteObject with EF
context.SubmitChanges(); // Deletes the customer

SubmitChanges/SaveChanges gathers all the changes that were made to its entities
since the context’s creation (or the last save) and then executes a SQL statement to
write them to the database. Any TransactionScope is honored; if none is present, it
wraps all statements in a new transaction.

You can also add new or existing rows to an EntitySet/EntityCollection by call‐
ing Add. L2S and EF automatically populate the foreign keys when you do this (after
calling SubmitChanges or SaveChanges):

Purchase p1 = new Purchase { ID=100, Description="Bike", Price=500 };
Purchase p2 = new Purchase { ID=101, Description="Tools", Price=100 };

Customer cust = context.Customers.Single (c => c.ID == 1);

cust.Purchases.Add (p1);
cust.Purchases.Add (p2);

context.SubmitChanges(); // (or SaveChanges with EF)

If you don’t want the burden of allocating unique keys, you
can use either an auto-incrementing field (IDENTITY in SQL
Server) or a Guid for the primary key.

In this example, L2S/EF automatically writes 1 into the CustomerID column of each
of the new purchases (L2S knows to do this because of the association attribute that
we defined on the Purchases property; EF knows to do this because of information
in the EDM):

[Association (Storage="_Purchases", OtherKey="CustomerID")]
public EntitySet <Purchase> Purchases { get {...} set {...} }

If the Customer and Purchase entities were generated by the Visual Studio designer
or the SqlMetal command-line tool, the generated classes would include further

LIN
Q

Q
ueries

LINQ to SQL and Entity Framework | 383

www.EBooksWorld.ir

code to keep the two sides of each relationship in sync. In other words, assigning
the Purchase.Customer property would automatically add the new customer to the
Customer.Purchases entity set—and vice versa. We can illustrate this by rewriting
the preceding example as follows:

var context = new NutshellContext ("connection string");

Customer cust = context.Customers.Single (c => c.ID == 1);
new Purchase { ID=100, Description="Bike", Price=500, Customer=cust };
new Purchase { ID=101, Description="Tools", Price=100, Customer=cust };

context.SubmitChanges(); // (SaveChanges with EF)

When you remove a row from an EntitySet/EntityCollection, its foreign key
field is automatically set to null. The following disassociates our two recently added
purchases from their customer:

var context = new NutshellContext ("connection string");

Customer cust = context.Customers.Single (c => c.ID == 1);

cust.Purchases.Remove (cust.Purchases.Single (p => p.ID == 100));
cust.Purchases.Remove (cust.Purchases.Single (p => p.ID == 101));

context.SubmitChanges(); // Submit SQL to database (SaveChanges in EF)

Because this tries to set each purchase’s CustomerID field to null, Purchase.Custom
erID must be nullable in the database; otherwise, an exception is thrown. (Further,
the CustomerID field or property in the entity class must be a nullable type.)

To delete child entities entirely, remove them from the Table<T> or ObjectSet<T>
instead (this means you much retrieve them first). With L2S:

var c = context;
c.Purchases.DeleteOnSubmit (c.Purchases.Single (p => p.ID == 100));
c.Purchases.DeleteOnSubmit (c.Purchases.Single (p => p.ID == 101));
c.SubmitChanges(); // Submit SQL to database

With EF:

var c = context;
c.Purchases.DeleteObject (c.Purchases.Single (p => p.ID == 100));
c.Purchases.DeleteObject (c.Purchases.Single (p => p.ID == 101));
c.SaveChanges(); // Submit SQL to database

API Differences Between L2S and EF
As we’ve seen, L2S and EF are similar in the aspect of querying with LINQ and per‐
forming updates. Table 8-1 summarizes the API differences.

384 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

Table 8-1. API differences between L2S and EF

Purpose LINQ to SQL Entity Framework

Gatekeeper class for all CRUD operations DataContext ObjectContext

Method to (lazily) retrieve all entities of a given
type from the store

GetTable CreateObjectSet

Type returned by the above method Table<T> ObjectSet<T>

Method to update the store with any additions,
modifications, or deletions to entity objects

SubmitChanges SaveChanges

Method to add a new entity to the store when
the context is updated

InsertOnSubmit AddObject

Method to delete an entity from the store when
the context is updated

DeleteOnSubmit DeleteObject

Type to represent one side of a relationship
property, when that side has a multiplicity of
many

EntitySet<T> EntityCollection<T>

Type to represent one side of a relationship
property, when that side has a multiplicity of
one

EntityRef<T> EntityReference<T>

Default strategy for loading relationship
properties

Lazy Explicit

Construct that enables eager loading DataLoadOptions .Include()

Building Query Expressions
So far in this chapter, when we’ve needed to dynamically compose queries, we’ve
done so by conditionally chaining query operators. Although this is adequate in
many scenarios, sometimes you need to work at a more granular level and dynami‐
cally compose the lambda expressions that feed the operators.

In this section, we’ll assume the following Product class:

[Table] public partial class Product
{
 [Column(IsPrimaryKey=true)] public int ID;
 [Column] public string Description;
 [Column] public bool Discontinued;
 [Column] public DateTime LastSale;
}

LIN
Q

Q
ueries

Building Query Expressions | 385

www.EBooksWorld.ir

Delegates Versus Expression Trees
Recall that:

• Local queries, which use Enumerable operators, take delegates.

• Interpreted queries, which use Queryable operators, take expression trees.

We can see this by comparing the signature of the Where operator in Enumerable
and Queryable:

public static IEnumerable<TSource> Where<TSource> (this
 IEnumerable<TSource> source, Func<TSource,bool> predicate)

public static IQueryable<TSource> Where<TSource> (this
 IQueryable<TSource> source, Expression<Func<TSource,bool>> predicate)

When embedded within a query, a lambda expression looks identical whether it
binds to Enumerable’s operators or Queryable’s operators:

IEnumerable<Product> q1 = localProducts.Where (p => !p.Discontinued);
IQueryable<Product> q2 = sqlProducts.Where (p => !p.Discontinued);

When you assign a lambda expression to an intermediate variable, however, you
must be explicit on whether to resolve to a delegate (i.e., Func<>) or an expression
tree (i.e., Expression<Func<>>). In the following example, predicate1 and predi
cate2 are not interchangeable:

Func <Product, bool> predicate1 = p => !p.Discontinued;
IEnumerable<Product> q1 = localProducts.Where (predicate1);

Expression <Func <Product, bool>> predicate2 = p => !p.Discontinued;
IQueryable<Product> q2 = sqlProducts.Where (predicate2);

Compiling expression trees
You can convert an expression tree to a delegate by calling Compile. This is of par‐
ticular value when writing methods that return reusable expressions. To illustrate,
we’ll add a static method to the Product class that returns a predicate evaluating to
true if a product is not discontinued and has sold in the past 30 days:

public partial class Product
{
 public static Expression<Func<Product, bool>> IsSelling()
 {
 return p => !p.Discontinued && p.LastSale > DateTime.Now.AddDays (-30);
 }
}

(We’ve defined this in a separate partial class to avoid being overwritten by an auto‐
matic DataContext generator such as Visual Studio’s code generator.)

386 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

The method just written can be used both in interpreted and in local queries as fol‐
lows:

void Test()
{
 var dataContext = new NutshellContext ("connection string");
 Product[] localProducts = dataContext.Products.ToArray();

 IQueryable<Product> sqlQuery =
 dataContext.Products.Where (Product.IsSelling());

 IEnumerable<Product> localQuery =
 localProducts.Where (Product.IsSelling.Compile());
}

NET does not provide an API to convert in the reverse direc‐
tion, from a delegate to an expression tree. This makes expres‐
sion trees more versatile.

AsQueryable
The AsQueryable operator lets you write whole queries that can run over either local
or remote sequences:

IQueryable<Product> FilterSortProducts (IQueryable<Product> input)
{
 return from p in input
 where ...
 order by ...
 select p;
}

void Test()
{
 var dataContext = new NutshellContext ("connection string");
 Product[] localProducts = dataContext.Products.ToArray();

 var sqlQuery = FilterSortProducts (dataContext.Products);
 var localQuery = FilterSortProducts (localProducts.AsQueryable());
 ...
}

AsQueryable wraps IQueryable<T> clothing around a local sequence so that subse‐
quent query operators resolve to expression trees. When you later enumerate over
the result, the expression trees are implicitly compiled (at a small performance cost),
and the local sequence enumerates as it would ordinarily.

Expression Trees
We said previously that an implicit conversion from a lambda expression to Expres
sion<TDelegate> causes the C# compiler to emit code that builds an expression
tree. With some programming effort, you can do the same thing manually at run‐
time—in other words, dynamically build an expression tree from scratch. The result

LIN
Q

Q
ueries

Building Query Expressions | 387

www.EBooksWorld.ir

can be cast to an Expression<TDelegate> and used in LINQ-to-db queries or com‐
piled into an ordinary delegate by calling Compile.

The Expression DOM
An expression tree is a miniature code DOM. Each node in the tree is represented
by a type in the System.Linq.Expressions namespace; these types are illustrated in
Figure 8-10.

From Framework 4.0, this namespace features additional
expression types and methods to support language constructs
that can appear in code blocks. These are for the benefit of the
DLR and not lambda expressions. In other words, code-block-
style lambdas still cannot be converted to expression trees:

Expression<Func<Customer,bool>> invalid =
 c => { return true; } // Code blocks not permitted

The base class for all nodes is the (nongeneric) Expression class. The generic
Expression<TDelegate> class actually means “typed lambda expression” and might
have been named LambdaExpression<TDelegate> if it wasn’t for the clumsiness of
this:

LambdaExpression<Func<Customer,bool>> f = ...

Expression<T>’s base type is the (nongeneric) LambdaExpression class. LamdbaEx
pression provides type unification for lambda expression trees: any typed Expres
sion<T> can be cast to a LambdaExpression.

The thing that distinguishes LambdaExpressions from ordinary Expressions is that
lambda expressions have parameters.

Figure 8-10. Expression types

To create an expression tree, don’t instantiate node types directly; rather, call static
methods provided on the Expression class. Here are all the methods:

388 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

Add

AddChecked

And

AndAlso

ArrayIndex

ArrayLength

Bind

Call

Coalesce

Condition

Constant

Convert

ConvertChecked

Divide

ElementInit

Equal

ExclusiveOr

Field

GreaterThan

GreaterThanOrEqual

Invoke

Lambda

LeftShift

LessThan

LessThanOrEqual

ListBind

ListInit

MakeBinary

MakeMemberAccess

MakeUnary

MemberBind

MemberInit

Modulo

Multiply

MultiplyChecked

Negate

NegateChecked

New

NewArrayBounds

NewArrayInit

Not

NotEqual

Or

OrElse

Parameter

Power

Property

PropertyOrField

Quote

RightShift

Subtract

SubtractChecked

TypeAs

TypeIs

UnaryPlus

Figure 8-11 shows the expression tree that the following assignment creates:

Expression<Func<string, bool>> f = s => s.Length < 5;

Figure 8-11. Expression tree

We can demonstrate this as follows:

Console.WriteLine (f.Body.NodeType); // LessThan
Console.WriteLine (((BinaryExpression) f.Body).Right); // 5

Let’s now build this expression from scratch. The principle is that you start from the
bottom of the tree and work your way up. The bottommost thing in our tree is a
ParameterExpression, the lambda expression parameter called “s” of type string:

ParameterExpression p = Expression.Parameter (typeof (string), "s");

LIN
Q

Q
ueries

Building Query Expressions | 389

www.EBooksWorld.ir

The next step is to build the MemberExpression and ConstantExpression. In the
former case, we need to access the Length property of our parameter, “s”:

MemberExpression stringLength = Expression.Property (p, "Length");
ConstantExpression five = Expression.Constant (5);

Next is the LessThan comparison:

BinaryExpression comparison = Expression.LessThan (stringLength, five);

The final step is to construct the lambda expression, which links an expression Body
to a collection of parameters:

Expression<Func<string, bool>> lambda
 = Expression.Lambda<Func<string, bool>> (comparison, p);

A convenient way to test our lambda is by compiling it to a delegate:

Func<string, bool> runnable = lambda.Compile();

Console.WriteLine (runnable ("kangaroo")); // False
Console.WriteLine (runnable ("dog")); // True

The easiest way to figure out which expression type to use is to
examine an existing lambda expression in the Visual Studio
debugger.

We continue this discussion online, at http://www.albahari.com/expressions/.

390 | Chapter 8: LINQ Queries

www.EBooksWorld.ir

http://www.albahari.com/expressions/

9
LINQ Operators

This chapter describes each of the LINQ query operators. As well as serving as a ref‐
erence, two of the sections, “Projecting” on page 394 and “Joining” on page 394,
cover a number of conceptual areas:

• Projecting object hierarchies

• Joining with Select, SelectMany, Join, and GroupJoin
• Query expressions with multiple range variables

All of the examples in this chapter assume that a names array is defined as follows:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

Examples that query a database assume that a variable called dataContext is instan‐
tiated as follows:

var dataContext = new NutshellContext ("connection string...");

...

public class NutshellContext : DataContext
{
 public NutshellContext (string cxString) : base (cxString) {}

 public Table<Customer> Customers { get { return GetTable<Customer>(); } }
 public Table<Purchase> Purchases { get { return GetTable<Purchase>(); } }
}

[Table] public class Customer
{
 [Column(IsPrimaryKey=true)] public int ID;
 [Column] public string Name;

 [Association (OtherKey="CustomerID")]
 public EntitySet<Purchase> Purchases = new EntitySet<Purchase>();

LIN
Q

O
p

erato
rs

391

www.EBooksWorld.ir

}

[Table] public class Purchase
{
 [Column(IsPrimaryKey=true)] public int ID;
 [Column] public int? CustomerID;
 [Column] public string Description;
 [Column] public decimal Price;
 [Column] public DateTime Date;

 EntityRef<Customer> custRef;

 [Association (Storage="custRef",ThisKey="CustomerID",IsForeignKey=true)]
 public Customer Customer
 {
 get { return custRef.Entity; } set { custRef.Entity = value; }
 }
}

All the examples in this chapter are preloaded into LINQPad,
along with a sample database with a matching schema. You
can download LINQPad from http://www.linqpad.net.

The entity classes shown are a simplified version of what LINQ to SQL tools typi‐
cally produce and do not include code to update the opposing side in a relationship
when their entities have been reassigned.

Here are the corresponding SQL table definitions:

create table Customer
(
 ID int not null primary key,
 Name varchar(30) not null
)
create table Purchase
(
 ID int not null primary key,
 CustomerID int references Customer (ID),
 Description varchar(30) not null,
 Price decimal not null
)

All examples will also work with Entity Framework, except
where otherwise indicated. You can build an Entity Frame‐
work ObjectContext from these tables by creating a new
Entity Data Model in Visual Studio, and then dragging the
tables on to the designer surface.

392 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

http://www.linqpad.net

Overview
In this section, we provide an overview of the standard query operators.

The standard query operators fall into three categories:

• Sequence in, sequence out (sequence-to-sequence)
• Sequence in, single element or scalar value out
• Nothing in, sequence out (generation methods)

We first present each of the three categories and the query operators they include,
and then we take up each individual query operator in detail.

Sequence→Sequence
Most query operators fall into this category—accepting one or more sequences as
input and emitting a single output sequence. Figure 9-1 illustrates those operators
that restructure the shape of the sequences.

Figure 9-1. Shape-changing operators

Filtering
IEnumerable<TSource> →IEnumerable<TSource>

Returns a subset of the original elements:

Where, Take, TakeWhile, Skip, SkipWhile, Distinct

LIN
Q

O
p

erato
rs

Overview | 393

www.EBooksWorld.ir

Projecting
IEnumerable<TSource> →IEnumerable<TResult>

Transforms each element with a lambda function. SelectMany flattens nested
sequences; Select and SelectMany perform inner joins, left outer joins, cross joins,
and non-equi joins with LINQ to SQL and EF:

Select, SelectMany

Joining
IEnumerable<TOuter>, IEnumerable<TInner>→ IEnumerable<TResult>

Meshes elements of one sequence with another. Join and GroupJoin operators are
designed to be efficient with local queries and support inner and left outer joins.
The Zip operator enumerates two sequences in step, applying a function over each
element pair. Rather than naming the type arguments TOuter and TInner, the Zip
operator names them TFirst and TSecond:

IEnumerable<TFirst>, IEnumerable<TSecond>→ IEnumerable<TResult>

Join, GroupJoin, Zip

Ordering
IEnumerable<TSource> →IOrderedEnumerable<TSource>

Returns a reordering of a sequence:

OrderBy, ThenBy, Reverse

Grouping
IEnumerable<TSource> →IEnumerable<IGrouping<TKey,TElement>>

Groups a sequence into subsequences:

GroupBy

Set operators
IEnumerable<TSource>, IEnumerable<TSource>→ IEnumerable<TSource>

Takes two same-typed sequences and returns their commonality, sum, or difference:

Concat, Union, Intersect, Except

Conversion methods: Import
IEnumerable→IEnumerable<TResult>

OfType, Cast

394 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Conversion methods: Export
IEnumerable<TSource> →An array, list, dictionary, lookup, or sequence:

ToArray, ToList, ToDictionary, ToLookup, AsEnumerable, AsQueryable

Sequence→Element or Value
The following query operators accept an input sequence and emit a single element
or value.

Element operators
IEnumerable<TSource> →TSource

Picks a single element from a sequence:

First, FirstOrDefault, Last, LastOrDefault, Single, SingleOrDefault,
ElementAt, ElementAtOrDefault, DefaultIfEmpty

Aggregation methods
IEnumerable<TSource> →scalar

Performs a computation across a sequence, returning a scalar value (typically a
number):

Aggregate, Average, Count, LongCount, Sum, Max, Min

Quantifiers
IEnumerable<TSource> →bool

An aggregation returning true or false:

All, Any, Contains, SequenceEqual

Void→Sequence
In the third and final category are query operators that produce an output sequence
from scratch.

Generation methods
void→IEnumerable<TResult>

Manufactures a simple sequence:

Empty, Range, Repeat

LIN
Q

O
p

erato
rs

Overview | 395

www.EBooksWorld.ir

Filtering
IEnumerable<TSource>→ IEnumerable<TSource>

Method Description SQL equivalents

Where Returns a subset of elements that satisfy a
given condition

WHERE

Take Returns the first count elements and
discards the rest

WHERE ROW_NUMBER()...

or TOP n subquery

Skip Ignores the first count elements and
returns the rest

WHERE ROW_NUMBER()...

or NOT IN (SELECT TOP n...)

TakeWhile Emits elements from the input sequence
until the predicate is false

Exception thrown

SkipWhile Ignores elements from the input sequence
until the predicate is false, and then emits
the rest

Exception thrown

Distinct Returns a sequence that excludes
duplicates

SELECT DISTINCT...

The “SQL equivalents” column in the reference tables in this
chapter do not necessarily correspond to what an IQueryable
implementation such as LINQ to SQL will produce. Rather, it
indicates what you’d typically use to do the same job if you
were writing the SQL query yourself. Where there is no simple
translation, the column is left blank. Where there is no trans‐
lation at all, the column reads “Exception thrown”.

Enumerable implementation code, when shown, excludes
checking for null arguments and indexing predicates.

With each of the filtering methods, you always end up with either the same number
or fewer elements than you started with. You can never get more! The elements are
also identical when they come out; they are not transformed in any way.

Where

Argument Type

Source sequence IEnumerable<TSource>

Predicate TSource => bool or (TSource,int) => bool

Query syntax
where bool-expression

396 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Enumerable.Where implementation
The internal implementation of Enumerable.Where, null checking aside, is function‐
ally equivalent to the following:

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func <TSource, bool> predicate)
{
 foreach (TSource element in source)
 if (predicate (element))
 yield return element;
}

Overview
Where returns the elements from the input sequence that satisfy the given predicate.

For instance:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> query = names.Where (name => name.EndsWith ("y"));

// Result: { "Harry", "Mary", "Jay" }

In query syntax:

IEnumerable<string> query = from n in names
 where n.EndsWith ("y")
 select n;

A where clause can appear more than once in a query and be interspersed with let,
orderby and join clauses:

from n in names
where n.Length > 3
let u = n.ToUpper()
where u.EndsWith ("Y")
select u; // Result: { "HARRY", "MARY" }

Standard C# scoping rules apply to such queries. In other words, you cannot refer
to a variable prior to declaring it with a range variable or a let clause.

Indexed filtering
Where’s predicate optionally accepts a second argument, of type int. This is fed with
the position of each element within the input sequence, allowing the predicate to
use this information in its filtering decision. For example, the following skips every
second element:

IEnumerable<string> query = names.Where ((n, i) => i % 2 == 0);

// Result: { "Tom", "Harry", "Jay" }

An exception is thrown if you use indexed filtering in LINQ to SQL or EF. LIN
Q

O
p

erato
rs

Filtering | 397

www.EBooksWorld.ir

SQL LIKE comparisons in LINQ to SQL and EF
The following methods on string translate to SQL’s LIKE operator:

Contains, StartsWith, EndsWith

For instance, c.Name.Contains ("abc") translates to customer.Name LIKE '%abc
%' (or more accurately, a parameterized version of this). Contains lets you compare
only against a locally evaluated expression; to compare against another column, you
must use the SqlMethods.Like method:

... where SqlMethods.Like (c.Description, "%" + c.Name + "%")

SqlMethods.Like also lets you perform more complex comparisons (e.g., LIKE
'abc%def%').

< and > string comparisons in LINQ to SQL and EF
You can perform order comparison on strings with string’s CompareTo method; this
maps to SQL’s < and > operators:

dataContext.Purchases.Where (p => p.Description.CompareTo ("C") < 0)

WHERE x IN (..., ..., ...) in LINQ to SQL and EF
With LINQ to SQL and EF, you can apply the Contains operator to a local collec‐
tion within a filter predicate. For instance:

string[] chosenOnes = { "Tom", "Jay" };

from c in dataContext.Customers
where chosenOnes.Contains (c.Name)
...

This maps to SQL’s IN operator—in other words:

WHERE customer.Name IN ("Tom", "Jay")

If the local collection is an array of entities or nonscalar types, LINQ to SQL or EF
may instead emit an EXISTS clause.

Take and Skip

Argument Type

Source sequence IEnumerable<TSource>

Number of elements to take or skip int

Take emits the first n elements and discards the rest; Skip discards the first n ele‐
ments and emits the rest. The two methods are useful together when implementing
a web page allowing a user to navigate through a large set of matching records. For
instance, suppose a user searches a book database for the term “mercury,” and there
are 100 matches. The following returns the first 20:

398 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

IQueryable<Book> query = dataContext.Books
 .Where (b => b.Title.Contains ("mercury"))
 .OrderBy (b => b.Title)
 .Take (20);

The next query returns books 21 to 40:

IQueryable<Book> query = dataContext.Books
 .Where (b => b.Title.Contains ("mercury"))
 .OrderBy (b => b.Title)
 .Skip (20).Take (20);

LINQ to SQL and EF translate Take and Skip to the ROW_NUMBER function in SQL
Server 2005, or a TOP n subquery in earlier versions of SQL Server.

TakeWhile and SkipWhile

Argument Type

Source sequence IEnumerable<TSource>

Predicate TSource => bool or (TSource,int) => bool

TakeWhile enumerates the input sequence, emitting each item, until the given pred‐
icate is false. It then ignores the remaining elements:

int[] numbers = { 3, 5, 2, 234, 4, 1 };
var takeWhileSmall = numbers.TakeWhile (n => n < 100); // { 3, 5, 2 }

SkipWhile enumerates the input sequence, ignoring each item until the given predi‐
cate is false. It then emits the remaining elements:

int[] numbers = { 3, 5, 2, 234, 4, 1 };
var skipWhileSmall = numbers.SkipWhile (n => n < 100); // { 234, 4, 1 }

TakeWhile and SkipWhile have no translation to SQL and throws an exception if
used in a LINQ-to-db query.

Distinct
Distinct returns the input sequence, stripped of duplicates. You can optionally pass
in a custom equality comparer. The following returns distinct letters in a string:

char[] distinctLetters = "HelloWorld".Distinct().ToArray();
string s = new string (distinctLetters); // HeloWrd

We can call LINQ methods directly on a string, because string implements IEnu
merable<char>.

LIN
Q

O
p

erato
rs

Filtering | 399

www.EBooksWorld.ir

Projecting
IEnumerable<TSource>→ IEnumerable<TResult>

Method Description SQL equivalents

Select Transforms each input element with the
given lambda expression

SELECT

SelectMany Transforms each input element and then
flattens and concatenates the resultant
subsequences

INNER JOIN,
LEFT OUTER JOIN,
CROSS JOIN

When querying a database, Select and SelectMany are the
most versatile joining constructs; for local queries, Join and
GroupJoin are the most efficient joining constructs.

Select

Argument Type

Source sequence IEnumerable<TSource>

Result selector TSource => TResult or (TSource,int) => TResult

Query syntax
select projection-expression

Enumerable implementation
public static IEnumerable<TResult> Select<TSource,TResult>
 (this IEnumerable<TSource> source, Func<TSource,TResult> selector)
{
 foreach (TSource element in source)
 yield return selector (element);
}

Overview
With Select, you always get the same number of elements that you started with.
Each element, however, can be transformed in any manner by the lambda function.

The following selects the names of all fonts installed on the computer (from Sys
tem.Drawing):

IEnumerable<string> query = from f in FontFamily.Families
 select f.Name;

foreach (string name in query) Console.WriteLine (name);

400 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

In this example, the select clause converts a FontFamily object to its name. Here’s
the lambda equivalent:

IEnumerable<string> query = FontFamily.Families.Select (f => f.Name);

Select statements are often used to project into anonymous types:

var query =
 from f in FontFamily.Families
 select new { f.Name, LineSpacing = f.GetLineSpacing (FontStyle.Bold) };

A projection with no transformation is sometimes used with query syntax, in order
to satisfy the requirement that the query end in a select or group clause. The fol‐
lowing selects fonts supporting strikeout:

IEnumerable<FontFamily> query =
 from f in FontFamily.Families
 where f.IsStyleAvailable (FontStyle.Strikeout)
 select f;

foreach (FontFamily ff in query) Console.WriteLine (ff.Name);

In such cases, the compiler omits the projection when translating to fluent syntax.

Indexed projection
The selector expression can optionally accept an integer argument, which acts as
an indexer, providing the expression with the position of each input in the input
sequence. This works only with local queries:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query = names
 .Select ((s,i) => i + "=" + s); // { "0=Tom", "1=Dick", ... }

Select subqueries and object hierarchies
You can nest a subquery in a select clause to build an object hierarchy. The follow‐
ing example returns a collection describing each directory under D:\source, with a
subcollection of files under each directory:

DirectoryInfo[] dirs = new DirectoryInfo (@"d:\source").GetDirectories();

var query =
 from d in dirs
 where (d.Attributes & FileAttributes.System) == 0
 select new
 {
 DirectoryName = d.FullName,
 Created = d.CreationTime,

 Files = from f in d.GetFiles()
 where (f.Attributes & FileAttributes.Hidden) == 0
 select new { FileName = f.Name, f.Length, }
 };

LIN
Q

O
p

erato
rs

Projecting | 401

www.EBooksWorld.ir

foreach (var dirFiles in query)
{
 Console.WriteLine ("Directory: " + dirFiles.DirectoryName);
 foreach (var file in dirFiles.Files)
 Console.WriteLine (" " + file.FileName + " Len: " + file.Length);
}

The inner portion of this query can be called a correlated subquery. A subquery is
correlated if it references an object in the outer query—in this case, it references d,
the directory being enumerated.

A subquery inside a Select allows you to map one object
hierarchy to another, or map a relational object model to a
hierarchical object model.

With local queries, a subquery within a Select causes double-deferred execution. In
our example, the files don’t get filtered or projected until the inner foreach state‐
ment enumerates.

Subqueries and joins in LINQ to SQL and EF
Subquery projections work well in LINQ to SQL and EF and can be used to do the
work of SQL-style joins. Here’s how we retrieve each customer’s name along with
their high-value purchases:

var query =
 from c in dataContext.Customers
 select new {
 c.Name,
 Purchases = from p in dataContext.Purchases
 where p.CustomerID == c.ID && p.Price > 1000
 select new { p.Description, p.Price }
 };

foreach (var namePurchases in query)
{
 Console.WriteLine ("Customer: " + namePurchases.Name);
 foreach (var purchaseDetail in namePurchases.Purchases)
 Console.WriteLine (" - $$$: " + purchaseDetail.Price);
}

This style of query is ideally suited to interpreted queries. The
outer query and subquery are processed as a unit, avoiding
unnecessary round-tripping. With local queries, however, it’s
inefficient because every combination of outer and inner ele‐
ments must be enumerated to get the few matching combina‐
tions. A better choice for local queries is Join or GroupJoin,
described in the following sections.

This query matches up objects from two disparate collections, and it can be thought
of as a “Join”. The difference between this and a conventional database join (or sub‐

402 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

query) is that we’re not flattening the output into a single two-dimensional result
set. We’re mapping the relational data to hierarchical data, rather than to flat data.

Here’s the same query simplified by using the Purchases association property on
the Customer entity:

from c in dataContext.Customers
select new
{
 c.Name,
 Purchases = from p in c.Purchases // Purchases is EntitySet<Purchase>
 where p.Price > 1000
 select new { p.Description, p.Price }
};

Both queries are analogous to a left outer join in SQL in the sense that we get all
customers in the outer enumeration, regardless of whether they have any purchases.
To emulate an inner join—where customers without high-value purchases are
excluded—we would need to add a filter condition on the purchases collection:

from c in dataContext.Customers
where c.Purchases.Any (p => p.Price > 1000)
select new {
 c.Name,
 Purchases = from p in c.Purchases
 where p.Price > 1000
 select new { p.Description, p.Price }
 };

This is slightly untidy, however, in that we’ve written the same predicate (Price >
1000) twice. We can avoid this duplication with a let clause:

from c in dataContext.Customers
let highValueP = from p in c.Purchases
 where p.Price > 1000
 select new { p.Description, p.Price }
where highValueP.Any()
select new { c.Name, Purchases = highValueP };

This style of query is flexible. By changing Any to Count, for instance, we can modify
the query to retrieve only customers with at least two high-value purchases:

...
where highValueP.Count() >= 2
select new { c.Name, Purchases = highValueP };

Projecting into concrete types
Projecting into anonymous types is useful in obtaining intermediate results, but not
so useful if you want to send a result set back to a client, for instance, because
anonymous types can exist only as local variables within a method. An alternative is
to use concrete types for projections, such as DataSets or custom business entity
classes. A custom business entity is simply a class that you write with some proper‐
ties, similar to a LINQ to SQL [Table] annotated class or an EF Entity, but designed

LIN
Q

O
p

erato
rs

Projecting | 403

www.EBooksWorld.ir

to hide lower-level (database-related) details. You might exclude foreign key fields
from business entity classes, for instance. Assuming we wrote custom entity classes
called CustomerEntity and PurchaseEntity, here’s how we could project into them:

IQueryable<CustomerEntity> query =
 from c in dataContext.Customers
 select new CustomerEntity
 {
 Name = c.Name,
 Purchases =
 (from p in c.Purchases
 where p.Price > 1000
 select new PurchaseEntity {
 Description = p.Description,
 Value = p.Price
 }
).ToList()
 };

// Force query execution, converting output to a more convenient List:
List<CustomerEntity> result = query.ToList();

Notice that so far, we’ve not had to use a Join or SelectMany statement. This is
because we’re maintaining the hierarchical shape of the data, as illustrated in
Figure 9-2. With LINQ, you can often avoid the traditional SQL approach of flatten‐
ing tables into a two-dimensional result set.

Figure 9-2. Projecting an object hierarchy

SelectMany

Argument Type

Source sequence IEnumerable<TSource>

Result selector TSource => IEnumerable<TResult>

or (TSource,int) => IEnumerable<TResult>

404 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Query syntax
from identifier1 in enumerable-expression1
from identifier2 in enumerable-expression2
...

Enumerable implementation
public static IEnumerable<TResult> SelectMany<TSource,TResult>
 (IEnumerable<TSource> source,
 Func <TSource,IEnumerable<TResult>> selector)
{
 foreach (TSource element in source)
 foreach (TResult subElement in selector (element))
 yield return subElement;
}

Overview
SelectMany concatenates subsequences into a single, flat output sequence.

Recall that for each input element, Select yields exactly one output element. In
contrast, SelectMany yields 0..n output elements. The 0..n elements come from a
subsequence or child sequence that the lambda expression must emit.

SelectMany can be used to expand child sequences, flatten nested collections, and
join two collections into a flat output sequence. Using the conveyor belt analogy,
SelectMany funnels fresh material onto a conveyor belt. With SelectMany, each
input element is the trigger for the introduction of fresh material. The fresh material
is emitted by the selector lambda expression and must be a sequence. In other
words, the lambda expression must emit a child sequence per input element. The
final result is a concatenation of the child sequences emitted for each input element.

Starting with a simple example, suppose we have an array of names as follows:

string[] fullNames = { "Anne Williams", "John Fred Smith", "Sue Green" };

which we wish to convert to a single flat collection of words—in other words:

"Anne", "Williams", "John", "Fred", "Smith", "Sue", Green"

SelectMany is ideal for this task, because we’re mapping each input element to a
variable number of output elements. All we must do is come up with a selector
expression that converts each input element to a child sequence. string.Split does
the job nicely: it takes a string and splits it into words, emitting the result as an
array:

string testInputElement = "Anne Williams";
string[] childSequence = testInputElement.Split();

// childSequence is { "Anne", "Williams" };

So, here’s our SelectMany query and the result:

LIN
Q

O
p

erato
rs

Projecting | 405

www.EBooksWorld.ir

IEnumerable<string> query = fullNames.SelectMany (name => name.Split());

foreach (string name in query)
 Console.Write (name + "|"); // Anne|Williams|John|Fred|Smith|Sue|Green|

If you replace SelectMany with Select, you get the same
results in hierarchical form. The following emits a sequence of
string arrays, requiring nested foreach statements to enumer‐
ate:

IEnumerable<string[]> query =
 fullNames.Select (name => name.Split());

foreach (string[] stringArray in query)
 foreach (string name in stringArray)
 Console.Write (name + "|");

The benefit of SelectMany is that it yields a single flat result
sequence.

SelectMany is supported in query syntax and is invoked by having an additional
generator—in other words, an extra from clause in the query. The from keyword has
two meanings in query syntax. At the start of a query, it introduces the original
range variable and input sequence. Anywhere else in the query, it translates to
SelectMany. Here’s our query in query syntax:

IEnumerable<string> query =
 from fullName in fullNames
 from name in fullName.Split() // Translates to SelectMany
 select name;

Note that the additional generator introduces a new range variable—in this case,
name. The old range variable stays in scope, however, and we can subsequently
access both.

Multiple range variables
In the preceding example, both name and fullName remain in scope until the query
either ends or reaches an into clause. The extended scope of these variables is the
killer scenario for query syntax over fluent syntax.

To illustrate, we can take the preceding query and include fullName in the final
projection:

IEnumerable<string> query =
 from fullName in fullNames
 from name in fullName.Split()
 select name + " came from " + fullName;

Anne came from Anne Williams
Williams came from Anne Williams
John came from John Fred Smith
...

406 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Behind the scenes, the compiler must pull some tricks to let you access both vari‐
ables. A good way to appreciate this is to try writing the same query in fluent syntax.
It’s tricky! It gets harder still if you insert a where or orderby clause before projec‐
ting:

from fullName in fullNames
from name in fullName.Split()
orderby fullName, name
select name + " came from " + fullName;

The problem is that SelectMany emits a flat sequence of child elements—in our
case, a flat collection of words. The original “outer” element from which it came
(fullName) is lost. The solution is to “carry” the outer element with each child, in a
temporary anonymous type:

from fullName in fullNames
from x in fullName.Split().Select (name => new { name, fullName })
orderby x.fullName, x.name
select x.name + " came from " + x.fullName;

The only change here is that we’re wrapping each child element (name) in an anony‐
mous type that also contains its fullName. This is similar to how a let clause is
resolved. Here’s the final conversion to fluent syntax:

IEnumerable<string> query = fullNames
 .SelectMany (fName => fName.Split()
 .Select (name => new { name, fName }))
 .OrderBy (x => x.fName)
 .ThenBy (x => x.name)
 .Select (x => x.name + " came from " + x.fName);

Thinking in query syntax
As we just demonstrated, there are good reasons to use query syntax if you need
multiple range variables. In such cases, it helps not only to use query syntax, but
also to think directly in its terms.

There are two basic patterns when writing additional generators. The first is
expanding and flattening subsequences. To do this, you call a property or method on
an existing range variable in your additional generator. We did this in the previous
example:

from fullName in fullNames
from name in fullName.Split()

Here, we’ve expanded from enumerating full names to enumerating words. An anal‐
ogous LINQ-to-db query is when you expand child association properties. The fol‐
lowing query lists all customers along with their purchases:

IEnumerable<string> query = from c in dataContext.Customers
 from p in c.Purchases
 select c.Name + " bought a " + p.Description;

Tom bought a Bike

LIN
Q

O
p

erato
rs

Projecting | 407

www.EBooksWorld.ir

Tom bought a Holiday
Dick bought a Phone
Harry bought a Car
...

Here, we’ve expanded each customer into a subsequence of purchases.

The second pattern is performing a cartesian product or cross join—where every ele‐
ment of one sequence is matched with every element of another. To do this, intro‐
duce a generator whose selector expression returns a sequence unrelated to a
range variable:

int[] numbers = { 1, 2, 3 }; string[] letters = { "a", "b" };

IEnumerable<string> query = from n in numbers
 from l in letters
 select n.ToString() + l;

RESULT: { "1a", "1b", "2a", "2b", "3a", "3b" }

This style of query is the basis of SelectMany-style joins.

Joining with SelectMany
You can use SelectMany to join two sequences, simply by filtering the results of a
cross product. For instance, suppose we wanted to match players for a game. We
could start as follows:

string[] players = { "Tom", "Jay", "Mary" };

IEnumerable<string> query = from name1 in players
 from name2 in players
 select name1 + " vs " + name2;

RESULT: { "Tom vs Tom", "Tom vs Jay", "Tom vs Mary",
 "Jay vs Tom", "Jay vs Jay", "Jay vs Mary",
 "Mary vs Tom", "Mary vs "Jay", "Mary vs Mary" }

The query reads: “For every player, reiterate every player, selecting player 1 versus
player 2.” Although we got what we asked for (a cross join), the results are not useful
until we add a filter:

IEnumerable<string> query = from name1 in players
 from name2 in players
 where name1.CompareTo (name2) < 0
 orderby name1, name2
 select name1 + " vs " + name2;

RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

The filter predicate constitutes the join condition. Our query can be called a non-
equi join, because the join condition doesn’t use an equality operator.

We’ll demonstrate the remaining types of joins with LINQ to SQL (they’ll also work
with EF except where we explicitly use a foreign key field).

408 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

SelectMany in LINQ to SQL and EF
SelectMany in LINQ to SQL and EF can perform cross joins, non-equi joins, inner
joins, and left outer joins. You can use SelectMany with both predefined associa‐
tions and ad hoc relationships—just as with Select. The difference is that Select
Many returns a flat rather than a hierarchical result set.

A LINQ-to-db cross join is written just as in the preceding section. The following
query matches every customer to every purchase (a cross join):

var query = from c in dataContext.Customers
 from p in dataContext.Purchases
 select c.Name + " might have bought a " + p.Description;

More typically, though, you’d want to match customers to their own purchases only.
You achieve this by adding a where clause with a joining predicate. This results in a
standard SQL-style equi-join:

var query = from c in dataContext.Customers
 from p in dataContext.Purchases
 where c.ID == p.CustomerID
 select c.Name + " bought a " + p.Description;

This translates well to SQL. In the next section, we’ll see how it
extends to support outer joins. Reformulating such queries
with LINQ’s Join operator actually makes them less extensible
—LINQ is opposite to SQL in this sense.

If you have association properties for relationships in your entities, you can express
the same query by expanding the subcollection instead of filtering the cross prod‐
uct:

from c in dataContext.Customers
from p in c.Purchases
select new { c.Name, p.Description };

Entity Framework doesn’t expose foreign keys in the entities,
so for recognized relationships, you must use its association
properties rather than joining manually as we did previously.

The advantage is that we’ve eliminated the joining predicate. We’ve gone from filter‐
ing a cross product to expanding and flattening. Both queries, however, will result
in the same SQL.

You can add where clauses to such a query for additional filtering. For instance, if
we wanted only customers whose names started with “T”, we could filter as follows:

from c in dataContext.Customers
where c.Name.StartsWith ("T")
from p in c.Purchases
select new { c.Name, p.Description };

LIN
Q

O
p

erato
rs

Projecting | 409

www.EBooksWorld.ir

This LINQ-to-db query would work equally well if the where clause is moved one
line down. If it is a local query, however, moving the where clause down would
make it less efficient. With local queries, you should filter before joining.

You can introduce new tables into the mix with additional from clauses. For
instance, if each purchase had purchase item child rows, you could produce a flat
result set of customers with their purchases, each with their purchase detail lines as
follows:

from c in dataContext.Customers
from p in c.Purchases
from pi in p.PurchaseItems
select new { c.Name, p.Description, pi.DetailLine };

Each from clause introduces a new child table. To include data from a parent table
(via an association property), you don’t add a from clause—you simply navigate to
the property. For example, if each customer has a salesperson whose name you want
to query, just do this:

from c in dataContext.Customers
select new { Name = c.Name, SalesPerson = c.SalesPerson.Name };

You don’t use SelectMany in this case because there’s no subcollection to flatten.
Parent association properties return a single item.

Outer joins with SelectMany
We saw previously that a Select subquery yields a result analogous to a left outer
join.

from c in dataContext.Customers
select new {
 c.Name,
 Purchases = from p in c.Purchases
 where p.Price > 1000
 select new { p.Description, p.Price }
 };

In this example, every outer element (customer) is included, regardless of whether
the customer has any purchases. But suppose we rewrite this query with Select
Many so we can obtain a single flat collection rather than a hierarchical result set:

from c in dataContext.Customers
from p in c.Purchases
where p.Price > 1000
select new { c.Name, p.Description, p.Price };

In the process of flattening the query, we’ve switched to an inner join: customers are
now included only for whom one or more high-value purchases exist. To get a left
outer join with a flat result set, we must apply the DefaultIfEmpty query operator
on the inner sequence. This method returns a sequence with a single null element if
its input sequence has no elements.

410 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Here’s such a query, price predicate aside:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new { c.Name, p.Description, Price = (decimal?) p.Price };

This works perfectly with LINQ to SQL and EF, returning all customers, even if they
have no purchases. But if we were to run this as a local query, it would crash,
because when p is null, p.Description and p.Price throw a NullReferenceExcep
tion. We can make our query robust in either scenario as follows:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new {
 c.Name,
 Descript = p == null ? null : p.Description,
 Price = p == null ? (decimal?) null : p.Price
 };

Let’s now reintroduce the price filter. We cannot use a where clause as we did before,
because it would execute after DefaultIfEmpty:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
where p.Price > 1000...

The correct solution is to splice the Where clause before DefaultIfEmpty with a sub‐
query:

from c in dataContext.Customers
from p in c.Purchases.Where (p => p.Price > 1000).DefaultIfEmpty()
select new {
 c.Name,
 Descript = p == null ? null : p.Description,
 Price = p == null ? (decimal?) null : p.Price
 };

LINQ to SQL and EF translate this to a left outer join. This is an effective pattern for
writing such queries.

If you’re used to writing outer joins in SQL, you might be
tempted to overlook the simpler option of a Select subquery
for this style of query, in favor of the awkward but familiar
SQL-centric flat approach. The hierarchical result set from a
Select subquery is often better suited to outer join-style quer‐
ies because there are no additional nulls to deal with.

LIN
Q

O
p

erato
rs

Projecting | 411

www.EBooksWorld.ir

Joining

Method Description SQL equivalents

Join Applies a lookup strategy to match
elements from two collections,
emitting a flat result set

INNER JOIN

GroupJoin As above, but emits a hierarchical
result set

INNER JOIN,
LEFT OUTER JOIN

Zip Enumerates two sequences in step
(like a zipper), applying a function
over each element pair.

Exception thrown

Join and GroupJoin
IEnumerable<TOuter>, IEnumerable<TInner>→IEnumerable<TResult>

Join arguments

Argument Type

Outer sequence IEnumerable<TOuter>

Inner sequence IEnumerable<TInner>

Outer key selector TOuter => TKey

Inner key selector TInner => TKey

Result selector (TOuter,TInner) => TResult

GroupJoin arguments

Argument Type

Outer sequence IEnumerable<TOuter>

Inner sequence IEnumerable<TInner>

Outer key selector TOuter => TKey

Inner key selector TInner => TKey

Result selector (TOuter,IEnumerable<TInner>) => TResult

Query syntax
from outer-var in outer-enumerable
join inner-var in inner-enumerable on outer-key-expr equals inner-key-expr
 [into identifier]

412 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Overview
Join and GroupJoin mesh two input sequences into a single output sequence. Join
emits flat output; GroupJoin emits hierarchical output.

Join and GroupJoin provide an alternative strategy to Select and SelectMany. The
advantage of Join and GroupJoin is that they execute efficiently over local in-
memory collections, since they first load the inner sequence into a keyed lookup,
avoiding the need to repeatedly enumerate over every inner element. The disadvan‐
tage is that they offer the equivalent of inner and left outer joins only; cross joins
and non-equi joins must still be done with Select/SelectMany. With LINQ to SQL
and Entity Framework queries, Join and GroupJoin offer no real benefits over
Select and SelectMany.

Table 9-1 summarizes the differences between each of the joining strategies.

Table 9-1. Joining strategies

Strategy Result
shape

Local query
efficiency

Inner
joins

Left outer
joins

Cross
joins

Non-
equi
joins

Select + SelectMany Flat Bad Yes Yes Yes Yes

Select + Select Nested Bad Yes Yes Yes Yes

Join Flat Good Yes - - -

GroupJoin Nested Good Yes Yes - -

GroupJoin + SelectMany Flat Good Yes Yes - -

Join
The Join operator performs an inner join, emitting a flat output sequence.

Entity Framework hides foreign key fields, so you can’t man‐
ually join across natural relationships (instead, you can query
across association properties, as we described in the previous
two sections).

The simplest way to demonstrate Join is with LINQ to SQL. The following query
lists all customers alongside their purchases, without using an association property:

IQueryable<string> query =
 from c in dataContext.Customers
 join p in dataContext.Purchases on c.ID equals p.CustomerID
 select c.Name + " bought a " + p.Description;

The results match what we would get from a SelectMany-style query:

Tom bought a Bike
Tom bought a Holiday
Dick bought a Phone
Harry bought a Car

LIN
Q

O
p

erato
rs

Joining | 413

www.EBooksWorld.ir

To see the benefit of Join over SelectMany, we must convert this to a local query.
We can demonstrate this by first copying all customers and purchases to arrays and
then querying the arrays:

Customer[] customers = dataContext.Customers.ToArray();
Purchase[] purchases = dataContext.Purchases.ToArray();
var slowQuery = from c in customers
 from p in purchases where c.ID == p.CustomerID
 select c.Name + " bought a " + p.Description;

var fastQuery = from c in customers
 join p in purchases on c.ID equals p.CustomerID
 select c.Name + " bought a " + p.Description;

Although both queries yield the same results, the Join query is considerably faster
because its implementation in Enumerable preloads the inner collection (purcha
ses) into a keyed lookup.

The query syntax for join can be written in general terms as follows:

join inner-var in inner-sequence on outer-key-expr equals inner-key-expr

Join operators in LINQ differentiate between the outer sequence and inner sequence.
Syntactically:

• The outer sequence is the input sequence (in this case, customers).

• The inner sequence is the new collection you introduce (in this case, purcha
ses).

Join performs inner joins, meaning customers without purchases are excluded
from the output. With inner joins, you can swap the inner and outer sequences in
the query and still get the same results:

from p in purchases // p is now outer
join c in customers on p.CustomerID equals c.ID // c is now inner
...

You can add further join clauses to the same query. If each purchase, for instance,
has one or more purchase items, you could join the purchase items as follows:

from c in customers
join p in purchases on c.ID equals p.CustomerID // first join
join pi in purchaseItems on p.ID equals pi.PurchaseID // second join
...

purchases acts as the inner sequence in the first join and as the outer sequence in
the second join. You could obtain the same results (inefficiently) using nested fore
ach statements as follows:

foreach (Customer c in customers)
 foreach (Purchase p in purchases)
 if (c.ID == p.CustomerID)
 foreach (PurchaseItem pi in purchaseItems)

414 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

 if (p.ID == pi.PurchaseID)
 Console.WriteLine (c.Name + "," + p.Price + "," + pi.Detail);

In query syntax, variables from earlier joins remain in scope—just as they do with
SelectMany-style queries. You’re also permitted to insert where and let clauses in
between join clauses.

Joining on multiple keys
You can join on multiple keys with anonymous types as follows:

from x in sequenceX
join y in sequenceY on new { K1 = x.Prop1, K2 = x.Prop2 }
 equals new { K1 = y.Prop3, K2 = y.Prop4 }
...

For this to work, the two anonymous types must be structured identically. The com‐
piler then implements each with the same internal type, making the joining keys
compatible.

Joining in fluent syntax
The following query syntax join:

from c in customers
join p in purchases on c.ID equals p.CustomerID
select new { c.Name, p.Description, p.Price };

in fluent syntax is as follows:

customers.Join (// outer collection
 purchases, // inner collection
 c => c.ID, // outer key selector
 p => p.CustomerID, // inner key selector
 (c, p) => new
 { c.Name, p.Description, p.Price } // result selector
);

The result selector expression at the end creates each element in the output
sequence. If you have additional clauses prior to projecting, such as orderby in this
example:

from c in customers
join p in purchases on c.ID equals p.CustomerID
orderby p.Price
select c.Name + " bought a " + p.Description;

you must manufacture a temporary anonymous type in the result selector in fluent
syntax. This keeps both c and p in scope following the join:

customers.Join (// outer collection
 purchases, // inner collection
 c => c.ID, // outer key selector
 p => p.CustomerID, // inner key selector
 (c, p) => new { c, p }) // result selector

LIN
Q

O
p

erato
rs

Joining | 415

www.EBooksWorld.ir

 .OrderBy (x => x.p.Price)
 .Select (x => x.c.Name + " bought a " + x.p.Description);

Query syntax is usually preferable when joining; it’s less fiddly.

GroupJoin
GroupJoin does the same work as Join, but instead of yielding a flat result, it yields
a hierarchical result, grouped by each outer element. It also allows left outer joins.

The query syntax for GroupJoin is the same as for Join but is followed by the into
keyword.

Here’s the most basic example:

IEnumerable<IEnumerable<Purchase>> query =
 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 into custPurchases
 select custPurchases; // custPurchases is a sequence

An into clause translates to GroupJoin only when it appears
directly after a join clause. After a select or group clause, it
means query continuation. The two uses of the into keyword
are quite different, although they have one feature in com‐
mon: they both introduce a new range variable.

The result is a sequence of sequences, which we could enumerate as follows:

foreach (IEnumerable<Purchase> purchaseSequence in query)
 foreach (Purchase p in purchaseSequence)
 Console.WriteLine (p.Description);

This isn’t very useful, however, because purchaseSequence has no reference to the
customer. More commonly, you’d do this:

from c in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select new { CustName = c.Name, custPurchases };

This gives the same results as the following (inefficient) Select subquery:

from c in customers
select new
{
 CustName = c.Name,
 custPurchases = purchases.Where (p => c.ID == p.CustomerID)
};

By default, GroupJoin does the equivalent of a left outer join. To get an inner join—
where customers without purchases are excluded—you need to filter on custPurcha
ses:

from c in customers join p in purchases on c.ID equals p.CustomerID
into custPurchases

416 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

where custPurchases.Any()
select ...

Clauses after a group-join into operate on subsequences of inner child elements, not
individual child elements. This means that to filter individual purchases, you’d have
to call Where before joining:

from c in customers
join p in purchases.Where (p2 => p2.Price > 1000)
 on c.ID equals p.CustomerID
into custPurchases ...

You can construct lambda queries with GroupJoin as you would with Join.

Flat outer joins
You run into a dilemma if you want both an outer join and a flat result set. Group
Join gives you the outer join; Join gives you the flat result set. The solution is to
first call GroupJoin, and then DefaultIfEmpty on each child sequence, and then
finally SelectMany on the result:

from c in customers
join p in purchases on c.ID equals p.CustomerID into custPurchases
from cp in custPurchases.DefaultIfEmpty()
select new
{
 CustName = c.Name,
 Price = cp == null ? (decimal?) null : cp.Price
};

DefaultIfEmpty emits a sequence with a single null value if a subsequence of pur‐
chases is empty. The second from clause translates to SelectMany. In this role, it
expands and flattens all the purchase subsequences, concatenating them into a single
sequence of purchase elements.

Joining with lookups
The Join and GroupJoin methods in Enumerable work in two steps. First, they load
the inner sequence into a lookup. Second, they query the outer sequence in combi‐
nation with the lookup.

A lookup is a sequence of groupings that can be accessed directly by key. Another
way to think of it is as a dictionary of sequences—a dictionary that can accept many
elements under each key (sometimes called a multidictionary). Lookups are read-
only and defined by the following interface:

public interface ILookup<TKey,TElement> :
 IEnumerable<IGrouping<TKey,TElement>>, IEnumerable
{
 int Count { get; }
 bool Contains (TKey key);
 IEnumerable<TElement> this [TKey key] { get; }
}

LIN
Q

O
p

erato
rs

Joining | 417

www.EBooksWorld.ir

The joining operators—like other sequence-emitting opera‐
tors—honor deferred or lazy execution semantics. This means
the lookup is not built until you begin enumerating the output
sequence (and then the entire lookup is built right then).

You can create and query lookups manually as an alternative strategy to using the
joining operators, when dealing with local collections. There are a couple of benefits
in doing so:

• You can reuse the same lookup over multiple queries—as well as in ordinary
imperative code.

• Querying a lookup is an excellent way of understanding how Join and Group
Join work.

The ToLookup extension method creates a lookup. The following loads all purchases
into a lookup—keyed by their CustomerID:

ILookup<int?,Purchase> purchLookup =
 purchases.ToLookup (p => p.CustomerID, p => p);

The first argument selects the key; the second argument selects the objects that are
to be loaded as values into the lookup.

Reading a lookup is rather like reading a dictionary, except that the indexer returns
a sequence of matching items, rather than a single matching item. The following
enumerates all purchases made by the customer whose ID is 1:

foreach (Purchase p in purchLookup [1])
 Console.WriteLine (p.Description);

With a lookup in place, you can write SelectMany/Select queries that execute as
efficiently as Join/GroupJoin queries. Join is equivalent to using SelectMany on a
lookup:

from c in customers
from p in purchLookup [c.ID]
select new { c.Name, p.Description, p.Price };

Tom Bike 500
Tom Holiday 2000
Dick Bike 600
Dick Phone 300
...

Adding a call to DefaultIfEmpty makes this into an outer join:

from c in customers
from p in purchLookup [c.ID].DefaultIfEmpty()
 select new {
 c.Name,
 Descript = p == null ? null : p.Description,
 Price = p == null ? (decimal?) null : p.Price
 };

418 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

GroupJoin is equivalent to reading the lookup inside a projection:

from c in customers
select new {
 CustName = c.Name,
 CustPurchases = purchLookup [c.ID]
 };

Enumerable implementations
Here’s the simplest valid implementation of Enumerable.Join, null checking aside:

public static IEnumerable <TResult> Join
 <TOuter,TInner,TKey,TResult> (
 this IEnumerable <TOuter> outer,
 IEnumerable <TInner> inner,
 Func <TOuter,TKey> outerKeySelector,
 Func <TInner,TKey> innerKeySelector,
 Func <TOuter,TInner,TResult> resultSelector)
{
 ILookup <TKey, TInner> lookup = inner.ToLookup (innerKeySelector);
 return
 from outerItem in outer
 from innerItem in lookup [outerKeySelector (outerItem)]
 select resultSelector (outerItem, innerItem);
}

GroupJoin’s implementation is like that of Join, but simpler:

public static IEnumerable <TResult> GroupJoin
 <TOuter,TInner,TKey,TResult> (
 this IEnumerable <TOuter> outer,
 IEnumerable <TInner> inner,
 Func <TOuter,TKey> outerKeySelector,
 Func <TInner,TKey> innerKeySelector,
 Func <TOuter,IEnumerable<TInner>,TResult> resultSelector)
{
 ILookup <TKey, TInner> lookup = inner.ToLookup (innerKeySelector);
 return
 from outerItem in outer
 select resultSelector
 (outerItem, lookup [outerKeySelector (outerItem)]);
}

The Zip Operator
IEnumerable<TFirst>, IEnumerable<TSecond>→ IEnumerable<TResult>

The Zip operator was added in Framework 4.0. It enumerates two sequences in step
(like a zipper), returning a sequence based on applying a function over each element
pair. For instance, the following:

int[] numbers = { 3, 5, 7 };
string[] words = { "three", "five", "seven", "ignored" };
IEnumerable<string> zip = numbers.Zip (words, (n, w) => n + "=" + w);

LIN
Q

O
p

erato
rs

Joining | 419

www.EBooksWorld.ir

produces a sequence with the following elements:

3=three
5=five
7=seven

Extra elements in either input sequence are ignored. Zip is not supported by EF and
L2S.

Ordering
IEnumerable<TSource>→ IOrderedEnumerable<TSource>

Method Description SQL equivalents

OrderBy, ThenBy Sorts a sequence in ascending order ORDER BY ...

OrderByDescending,

ThenByDescending

Sorts a sequence in descending order ORDER BY ... DESC

Reverse Returns a sequence in reverse order Exception thrown

Ordering operators return the same elements in a different order.

OrderBy, OrderByDescending, ThenBy, and ThenByDescending

OrderBy and OrderByDescending arguments

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Return type = IOrderedEnumerable<TSource>

ThenBy and ThenByDescending arguments

Argument Type

Input sequence IOrderedEnumerable<TSource>

Key selector TSource => TKey

Query syntax
orderby expression1 [descending] [, expression2 [descending] ...]

420 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Overview
OrderBy returns a sorted version of the input sequence, using the keySelector
expression to make comparisons. The following query emits a sequence of names in
alphabetical order:

IEnumerable<string> query = names.OrderBy (s => s);

The following sorts names by length:

IEnumerable<string> query = names.OrderBy (s => s.Length);

// Result: { "Jay", "Tom", "Mary", "Dick", "Harry" };

The relative order of elements with the same sorting key (in this case, Jay/Tom and
Mary/Dick) is indeterminate—unless you append a ThenBy operator:

IEnumerable<string> query = names.OrderBy (s => s.Length).ThenBy (s => s);

// Result: { "Jay", "Tom", "Dick", "Mary", "Harry" };

ThenBy reorders only elements that had the same sorting key in the preceding sort.
You can chain any number of ThenBy operators. The following sorts first by length,
then by the second character, and finally by the first character:

names.OrderBy (s => s.Length).ThenBy (s => s[1]).ThenBy (s => s[0]);

The equivalent in query syntax is this:

from s in names
orderby s.Length, s[1], s[0]
select s;

The following variation is incorrect—it will actually order first
by s[1] and then by s.Length (or in the case of a database
query, it will order only by s[1] and discard the former order‐
ing):

from s in names
orderby s.Length
orderby s[1]
...

LINQ also provides OrderByDescending and ThenByDescending operators, which
do the same things, emitting the results in reverse order. The following LINQ-to-db
query retrieves purchases in descending order of price, with those of the same price
listed alphabetically:

dataContext.Purchases.OrderByDescending (p => p.Price)
 .ThenBy (p => p.Description);

In query syntax:

from p in dataContext.Purchases
orderby p.Price descending, p.Description
select p;

LIN
Q

O
p

erato
rs

Ordering | 421

www.EBooksWorld.ir

Comparers and collations
In a local query, the key selector objects themselves determine the ordering algo‐
rithm via their default IComparable implementation (see Chapter 7). You can over‐
ride the sorting algorithm by passing in an IComparer object. The following per‐
forms a case-insensitive sort:

names.OrderBy (n => n, StringComparer.CurrentCultureIgnoreCase);

Passing in a comparer is not supported in query syntax, nor in any way by LINQ to
SQL or EF. When querying a database, the comparison algorithm is determined by
the participating column’s collation. If the collation is case-sensitive, you can request
a case-insensitive sort by calling ToUpper in the key selector:

from p in dataContext.Purchases
orderby p.Description.ToUpper()
select p;

IOrderedEnumerable and IOrderedQueryable
The ordering operators return special subtypes of IEnumerable<T>. Those in Enu
merable return IOrderedEnumerable<TSource>; those in Queryable return IOrder
edQueryable<TSource>. These subtypes allow a subsequent ThenBy operator to
refine rather than replace the existing ordering.

The additional members that these subtypes define are not publicly exposed, so they
present like ordinary sequences. The fact that they are different types comes into
play when building queries progressively:

IOrderedEnumerable<string> query1 = names.OrderBy (s => s.Length);
IOrderedEnumerable<string> query2 = query1.ThenBy (s => s);

If we instead declare query1 of type IEnumerable<string>, the second line would
not compile—ThenBy requires an input of type IOrderedEnumerable<string>. You
can avoid worrying about this by implicitly typing range variables:

var query1 = names.OrderBy (s => s.Length);
var query2 = query1.ThenBy (s => s);

Implicit typing can create problems of its own, though. The following will not com‐
pile:

var query = names.OrderBy (s => s.Length);
query = query.Where (n => n.Length > 3); // Compile-time error

The compiler infers query to be of type IOrderedEnumerable<string>, based on
OrderBy’s output sequence type. However, the Where on the next line returns an
ordinary IEnumerable<string>, which cannot be assigned back to query. You can
work around this either with explicit typing or by calling AsEnumerable() after
OrderBy:

var query = names.OrderBy (s => s.Length).AsEnumerable();
query = query.Where (n => n.Length > 3); // OK

422 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

The equivalent in interpreted queries is to call AsQueryable.

Grouping
IEnumerable<TSource>→ IEnumerable<IGrouping<TKey,TElement>>

Method Description SQL equivalents

GroupBy Groups a sequence into subsequences GROUP BY

GroupBy

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>

Query syntax
group element-expression by key-expression

Overview
GroupBy organizes a flat input sequence into sequences of groups. For example, the
following organizes all the files in c:\temp by extension:

string[] files = Directory.GetFiles ("c:\\temp");

IEnumerable<IGrouping<string,string>> query =
 files.GroupBy (file => Path.GetExtension (file));

Or if you’re comfortable with implicit typing:

var query = files.GroupBy (file => Path.GetExtension (file));

Here’s how to enumerate the result:

foreach (IGrouping<string,string> grouping in query)
{
 Console.WriteLine ("Extension: " + grouping.Key);
 foreach (string filename in grouping)
 Console.WriteLine (" - " + filename);
}

Extension: .pdf
 -- chapter03.pdf
 -- chapter04.pdf
Extension: .doc
 -- todo.doc
 -- menu.doc

LIN
Q

O
p

erato
rs

Grouping | 423

www.EBooksWorld.ir

 -- Copy of menu.doc
...

Enumerable.GroupBy works by reading the input elements into a temporary dictio‐
nary of lists so that all elements with the same key end up in the same sublist. It then
emits a sequence of groupings. A grouping is a sequence with a Key property:

public interface IGrouping <TKey,TElement> : IEnumerable<TElement>,
 IEnumerable
{
 TKey Key { get; } // Key applies to the subsequence as a whole
}

By default, the elements in each grouping are untransformed input elements, unless
you specify an elementSelector argument. The following projects each input ele‐
ment to uppercase:

files.GroupBy (file => Path.GetExtension (file), file => file.ToUpper());

An elementSelector is independent of the keySelector. In our case, this means
that the Key on each grouping is still in its original case:

Extension: .pdf
 -- CHAPTER03.PDF
 -- CHAPTER04.PDF
Extension: .doc
 -- TODO.DOC

Note that the subcollections are not emitted in alphabetical order of key. GroupBy
groups only; it does not sort; in fact, it preserves the original ordering. To sort, you
must add an OrderBy operator:

files.GroupBy (file => Path.GetExtension (file), file => file.ToUpper())
 .OrderBy (grouping => grouping.Key);

GroupBy has a simple and direct translation in query syntax:

group element-expr by key-expr

Here’s our example in query syntax:

from file in files
group file.ToUpper() by Path.GetExtension (file);

As with select, group “ends” a query—unless you add a query continuation clause:

from file in files
group file.ToUpper() by Path.GetExtension (file) into grouping
orderby grouping.Key
select grouping;

Query continuations are often useful in a group by query. The next query filters out
groups that have fewer than five files in them:

from file in files
group file.ToUpper() by Path.GetExtension (file) into grouping

424 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

where grouping.Count() >= 5
select grouping;

A where after a group by is equivalent to HAVING in SQL. It
applies to each subsequence or grouping as a whole, rather
than the individual elements.

Sometimes you’re interested purely in the result of an aggregation on a grouping
and so can abandon the subsequences:

string[] votes = { "Bush", "Gore", "Gore", "Bush", "Bush" };

IEnumerable<string> query = from vote in votes
 group vote by vote into g
 orderby g.Count() descending
 select g.Key;

string winner = query.First(); // Bush

GroupBy in LINQ to SQL and EF
Grouping works in the same way when querying a database. If you have association
properties set up, you’ll find, however, that the need to group arises less frequently
than with standard SQL. For instance, to select customers with at least two purcha‐
ses, you don’t need to group; the following query does the job nicely:

from c in dataContext.Customers
where c.Purchases.Count >= 2
select c.Name + " has made " + c.Purchases.Count + " purchases";

An example of when you might use grouping is to list total sales by year:

from p in dataContext.Purchases
group p.Price by p.Date.Year into salesByYear
select new {
 Year = salesByYear.Key,
 TotalValue = salesByYear.Sum()
 };

LINQ’s grouping is more powerful than SQL’s “GROUP BY”. For instance, it’s legal
to fetch all detail rows without any aggregation:

from p in dataContext.Purchases
group p by p.Date.Year

This works well in EF, but in L2S it causes excessive round-tripping. An easy work‐
around is to call .AsEnumerable() just before grouping, so that the grouping hap‐
pens on the client. This is no less efficient, as long as you perform any filtering
before grouping, so that you only fetch the data you need from the server.

Another departure from traditional SQL comes in there being no obligation to
project the variables or expressions used in grouping or sorting.

LIN
Q

O
p

erato
rs

Grouping | 425

www.EBooksWorld.ir

Grouping by multiple keys
You can group by a composite key, using an anonymous type:

from n in names
group n by new { FirstLetter = n[0], Length = n.Length };

Custom equality comparers
You can pass a custom equality comparer into GroupBy, in a local query, to change
the algorithm for key comparison. Rarely is this required, though, because changing
the key selector expression is usually sufficient. For instance, the following creates a
case-insensitive grouping:

group name by name.ToUpper()

Set Operators
IEnumerable<TSource>, IEnumerable<TSource>→IEnumerable<TSource>

Method Description SQL equivalents

Concat Returns a concatenation of elements in each of the two
sequences

UNION ALL

Union Returns a concatenation of elements in each of the two
sequences, excluding duplicates

UNION

Intersect Returns elements present in both sequences WHERE ... IN

(...)

Except Returns elements present in the first, but not the second
sequence

EXCEPT

or
WHERE ... NOT IN

(...)

Concat and Union
Concat returns all the elements of the first sequence, followed by all the elements of
the second. Union does the same, but removes any duplicates:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
 concat = seq1.Concat (seq2), // { 1, 2, 3, 3, 4, 5 }
 union = seq1.Union (seq2); // { 1, 2, 3, 4, 5 }

Specifying the type argument explicitly is useful when the sequences are differently
typed, but the elements have a common base type. For instance, with the reflection
API (Chapter 19), methods and properties are represented with MethodInfo and
PropertyInfo classes, which have a common base class called MemberInfo. We can
concatenate methods and properties by stating that base class explicitly when calling
Concat:

426 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

MethodInfo[] methods = typeof (string).GetMethods();
PropertyInfo[] props = typeof (string).GetProperties();
IEnumerable<MemberInfo> both = methods.Concat<MemberInfo> (props);

In the next example, we filter the methods before concatenating:

var methods = typeof (string).GetMethods().Where (m => !m.IsSpecialName);
var props = typeof (string).GetProperties();
var both = methods.Concat<MemberInfo> (props);

This example relies on interface type parameter variance: methods is of type IEnu
merable<MethodInfo>, which requires a covariant conversion to IEnumerable<Mem
berInfo>. It’s a good illustration of how variance makes things work more as you’d
expect.

Intersect and Except
Intersect returns the elements that two sequences have in common. Except
returns the elements in the first input sequence that are not present in the second:

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
 commonality = seq1.Intersect (seq2), // { 3 }
 difference1 = seq1.Except (seq2), // { 1, 2 }
 difference2 = seq2.Except (seq1); // { 4, 5 }

Enumerable.Except works internally by loading all of the elements in the first col‐
lection into a dictionary, then removing from the dictionary all elements present in
the second sequence. The equivalent in SQL is a NOT EXISTS or NOT IN subquery:

SELECT number FROM numbers1Table
WHERE number NOT IN (SELECT number FROM numbers2Table)

Conversion Methods
LINQ deals primarily in sequences—in other words, collections of type IEnumera
ble<T>. The conversion methods convert to and from other types of collections:

Method Description

OfType Converts IEnumerable to IEnumerable<T>, discarding wrongly typed elements

Cast Converts IEnumerable to IEnumerable<T>, throwing an exception if there are any
wrongly typed elements

ToArray Converts IEnumerable<T> to T[]

ToList Converts IEnumerable<T> to List<T>

ToDictionary Converts IEnumerable<T> to Dictionary<TKey,TValue>

ToLookup Converts IEnumerable<T> to ILookup<TKey,TElement>

AsEnumerable Downcasts to IEnumerable<T>

AsQueryable Casts or converts to IQueryable<T>

LIN
Q

O
p

erato
rs

Conversion Methods | 427

www.EBooksWorld.ir

OfType and Cast
OfType and Cast accept a nongeneric IEnumerable collection and emit a generic
IEnumerable<T> sequence that you can subsequently query:

ArrayList classicList = new ArrayList(); // in System.Collections
classicList.AddRange (new int[] { 3, 4, 5 });
IEnumerable<int> sequence1 = classicList.Cast<int>();

Cast and OfType differ in their behavior when encountering an input element that’s
of an incompatible type. Cast throws an exception; OfType ignores the incompatible
element. Continuing the preceding example:

DateTime offender = DateTime.Now;
classicList.Add (offender);
IEnumerable<int>
 sequence2 = classicList.OfType<int>(), // OK - ignores offending DateTime
 sequence3 = classicList.Cast<int>(); // Throws exception

The rules for element compatibility exactly follow those of C#’s is operator, and
therefore consider only reference conversions and unboxing conversions. We can
see this by examining the internal implementation of OfType:

public static IEnumerable<TSource> OfType <TSource> (IEnumerable source)
{
 foreach (object element in source)
 if (element is TSource)
 yield return (TSource)element;
}

Cast has an identical implementation, except that it omits the type compatibility
test:

public static IEnumerable<TSource> Cast <TSource> (IEnumerable source)
{
 foreach (object element in source)
 yield return (TSource)element;
}

A consequence of these implementations is that you cannot use Cast to perform
numeric or custom conversions (for these, you must perform a Select operation
instead). In other words, Cast is not as flexible as C#’s cast operator:

int i = 3;
long l = i; // Implicit numeric conversion int->long
int i2 = (int) l; // Explicit numeric conversion long->int

We can demonstrate this by attempting to use OfType or Cast to convert a sequence
of ints to a sequence of longs:

int[] integers = { 1, 2, 3 };

IEnumerable<long> test1 = integers.OfType<long>();
IEnumerable<long> test2 = integers.Cast<long>();

428 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

When enumerated, test1 emits zero elements and test2 throws an exception.
Examining OfType’s implementation, it’s fairly clear why. After substituting TSource,
we get the following expression:

(element is long)

which returns false for an int element, due to the lack of an inheritance relation‐
ship.

The reason for test2 throwing an exception, when enumer‐
ated, is subtler. Notice in Cast’s implementation that element
is of type object. When TSource is a value type, the CLR
assumes this is an unboxing conversion and synthesizes a
method that reproduces the scenario described in the section
“Boxing and Unboxing” on page 98 in Chapter 3:

int value = 123;
object element = value;
long result = (long) element; // exception

Because the element variable is declared of type object, an
object-to-long cast is performed (an unboxing) rather than
an int-to-long numeric conversion. Unboxing operations
require an exact type match, so the object-to-long unbox
fails when given an int.

As we suggested previously, the solution is to use an ordinary Select:

IEnumerable<long> castLong = integers.Select (s => (long) s);

OfType and Cast are also useful in downcasting elements in a generic input
sequence. For instance, if you have an input sequence of type IEnumerable<Fruit>,
OfType<Apple> would return just the apples. This is particularly useful in LINQ to
XML (see Chapter 10).

Cast has query syntax support: simply precede the range variable with a type:

from TreeNode node in myTreeView.Nodes
...

ToArray, ToList, ToDictionary, and ToLookup
ToArray and ToList emit the results into an array or generic list. These operators
force the immediate enumeration of the input sequence (unless indirected via a sub‐
query or expression tree). For examples, refer to the section “Deferred Execution”
on page 348 in Chapter 8.

ToDictionary and ToLookup accept the following arguments:

LIN
Q

O
p

erato
rs

Conversion Methods | 429

www.EBooksWorld.ir

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>

ToDictionary also forces immediate execution of a sequence, writing the results to
a generic Dictionary. The keySelector expression you provide must evaluate to a
unique value for each element in the input sequence; otherwise, an exception is
thrown. In contrast, ToLookup allows many elements of the same key. We describe
lookups in the earlier section “Joining with lookups” on page 417.

AsEnumerable and AsQueryable
AsEnumerable upcasts a sequence to IEnumerable<T>, forcing the compiler to bind
subsequent query operators to methods in Enumerable, instead of Queryable. For
an example, see the section “Combining Interpreted and Local Queries” on page 368
in Chapter 8.

AsQueryable downcasts a sequence to IQueryable<T> if it implements that inter‐
face. Otherwise, it instantiates an IQueryable<T> wrapper over the local query.

Element Operators
IEnumerable<TSource>→ TSource

Method Description SQL equivalents

First,

FirstOrDefault

Returns the first element in the sequence, optionally
satisfying a predicate

SELECT TOP 1 ...
ORDER BY ...

Last,
LastOrDefault

Returns the last element in the sequence, optionally
satisfying a predicate

SELECT TOP 1 ...
ORDER BY ... DESC

Single,

SingleOrDefault

Equivalent to First/FirstOrDefault, but
throws an exception if there is more than one match

ElementAt,

ElementAtOrDefault

Returns the element at the specified position Exception thrown

DefaultIfEmpty Returns a single-element sequence whose value is
default(TSource) if the sequence has no
elements

OUTER JOIN

Methods ending in “OrDefault” return default(TSource) rather than throwing an
exception if the input sequence is empty or if no elements match the supplied predi‐
cate.

430 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

default(TSource) is null for reference type elements, false for the bool type and
zero for numeric types.

First, Last, and Single

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

The following example demonstrates First and Last:

int[] numbers = { 1, 2, 3, 4, 5 };
int first = numbers.First(); // 1
int last = numbers.Last(); // 5
int firstEven = numbers.First (n => n % 2 == 0); // 2
int lastEven = numbers.Last (n => n % 2 == 0); // 4

The following demonstrates First versus FirstOrDefault:

int firstBigError = numbers.First (n => n > 10); // Exception
int firstBigNumber = numbers.FirstOrDefault (n => n > 10); // 0

To avoid an exception, Single requires exactly one matching element; SingleOrDe
fault requires one or zero matching elements:

int onlyDivBy3 = numbers.Single (n => n % 3 == 0); // 3
int divBy2Err = numbers.Single (n => n % 2 == 0); // Error: 2 & 4 match

int singleError = numbers.Single (n => n > 10); // Error
int noMatches = numbers.SingleOrDefault (n => n > 10); // 0
int divBy2Error = numbers.SingleOrDefault (n => n % 2 == 0); // Error

Single is the “fussiest” in this family of element operators. FirstOrDefault and Las
tOrDefault are the most tolerant.

In LINQ to SQL and EF, Single is often used to retrieve a row from a table by pri‐
mary key:

Customer cust = dataContext.Customers.Single (c => c.ID == 3);

ElementAt

Argument Type

Source sequence IEnumerable<TSource>

Index of element to return int

ElementAt picks the nth element from the sequence:

int[] numbers = { 1, 2, 3, 4, 5 };
int third = numbers.ElementAt (2); // 3

LIN
Q

O
p

erato
rs

Element Operators | 431

www.EBooksWorld.ir

int tenthError = numbers.ElementAt (9); // Exception
int tenth = numbers.ElementAtOrDefault (9); // 0

Enumerable.ElementAt is written such that if the input sequence happens to imple‐
ment IList<T>, it calls IList<T>’s indexer. Otherwise, it enumerates n times and
then returns the next element. ElementAt is not supported in LINQ to SQL or EF.

DefaultIfEmpty
DefaultIfEmpty returns a sequence containing a single element whose value is
default(TSource) if the input sequence has no elements. Otherwise it returns the
input sequence unchanged. This is used in writing flat outer joins: see the earlier
sections “Outer joins with SelectMany” on page 410 and “Flat outer joins” on page
417.

Aggregation Methods
IEnumerable<TSource>→ scalar

Method Description SQL equivalents

Count, LongCount Returns the number of elements in the input
sequence, optionally satisfying a predicate

COUNT (...)

Min, Max Returns the smallest or largest element in the
sequence

MIN (...), MAX (...)

Sum, Average Calculates a numeric sum or average over
elements in the sequence

SUM (...), AVG (...)

Aggregate Performs a custom aggregation Exception thrown

Count and LongCount

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

Count simply enumerates over a sequence, returning the number of items:

int fullCount = new int[] { 5, 6, 7 }.Count(); // 3

The internal implementation of Enumerable.Count tests the input sequence to see
whether it happens to implement ICollection<T>. If it does, it simply calls ICollec
tion<T>.Count. Otherwise, it enumerates over every item, incrementing a counter.

You can optionally supply a predicate:

int digitCount = "pa55w0rd".Count (c => char.IsDigit (c)); // 3

432 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

LongCount does the same job as Count, but returns a 64-bit integer, allowing for
sequences of greater than 2 billion elements.

Min and Max

Argument Type

Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult

Min and Max return the smallest or largest element from a sequence:

int[] numbers = { 28, 32, 14 };
int smallest = numbers.Min(); // 14;
int largest = numbers.Max(); // 32;

If you include a selector expression, each element is first projected:

int smallest = numbers.Max (n => n % 10); // 8;

A selector expression is mandatory if the items themselves are not intrinsically
comparable—in other words, if they do not implement IComparable<T>:

Purchase runtimeError = dataContext.Purchases.Min (); // Error
decimal? lowestPrice = dataContext.Purchases.Min (p => p.Price); // OK

A selector expression determines not only how elements are compared, but also
the final result. In the preceding example, the final result is a decimal value, not a
purchase object. To get the cheapest purchase, you need a subquery:

Purchase cheapest = dataContext.Purchases
 .Where (p => p.Price == dataContext.Purchases.Min (p2 => p2.Price))
 .FirstOrDefault();

In this case, you could also formulate the query without an aggregation—using an
OrderBy followed by FirstOrDefault.

Sum and Average

Argument Type

Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult

Sum and Average are aggregation operators that are used in a similar manner to Min
and Max:

decimal[] numbers = { 3, 4, 8 };
decimal sumTotal = numbers.Sum(); // 15
decimal average = numbers.Average(); // 5 (mean value)

The following returns the total length of each of the strings in the names array:

LIN
Q

O
p

erato
rs

Aggregation Methods | 433

www.EBooksWorld.ir

int combinedLength = names.Sum (s => s.Length); // 19

Sum and Average are fairly restrictive in their typing. Their definitions are hard-
wired to each of the numeric types (int, long, float, double, decimal, and their
nullable versions). In contrast, Min and Max can operate directly on anything that
implements IComparable<T>—such as a string, for instance.

Further, Average always returns either decimal, float or double, according to the
following table:

Selector type Result type

decimal decimal

float float

int, long, double double

This means the following does not compile (“cannot convert double to int”):

int avg = new int[] { 3, 4 }.Average();

But this will compile:

double avg = new int[] { 3, 4 }.Average(); // 3.5

Average implicitly upscales the input values to avoid loss of precision. In this exam‐
ple, we averaged integers and got 3.5, without needing to resort to an input element
cast:

double avg = numbers.Average (n => (double) n);

When querying a database, Sum and Average translate to the standard SQL aggrega‐
tions. The following query returns customers whose average purchase was more
than $500:

from c in dataContext.Customers
where c.Purchases.Average (p => p.Price) > 500
select c.Name;

Aggregate
Aggregate allows you to specify a custom accumulation algorithm for implement‐
ing unusual aggregations. Aggregate is not supported in LINQ to SQL or Entity
Framework and is somewhat specialized in its use cases. The following demon‐
strates how Aggregate can do the work of Sum:

int[] numbers = { 2, 3, 4 };
int sum = numbers.Aggregate (0, (total, n) => total + n); // 9

The first argument to Aggregate is the seed, from which accumulation starts. The
second argument is an expression to update the accumulated value, given a fresh
element. You can optionally supply a third argument to project the final result value
from the accumulated value.

434 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Most problems for which Aggregate has been designed can be
solved as easily with a foreach loop—and with more familiar
syntax. The advantage of using Aggregate is that with large or
complex aggregations, you can automatically parallelize the
operation with PLINQ (see Chapter 23).

Unseeded aggregations
You can omit the seed value when calling Aggregate, in which case the first element
becomes the implicit seed, and aggregation proceeds from the second element.
Here’s the preceding example, unseeded:

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate ((total, n) => total + n); // 6

This gives the same result as before, but we’re actually doing a different calculation.
Before, we were calculating 0+1+2+3; now we’re calculating 1+2+3. We can better
illustrate the difference by multiplying instead of adding:

int[] numbers = { 1, 2, 3 };
int x = numbers.Aggregate (0, (prod, n) => prod * n); // 0*1*2*3 = 0
int y = numbers.Aggregate ((prod, n) => prod * n); // 1*2*3 = 6

As we’ll see in Chapter 23, unseeded aggregations have the advantage of being paral‐
lelizable without requiring the use of special overloads. However, there are some
traps with unseeded aggregations.

Traps with unseeded aggregations
The unseeded aggregation methods are intended for use with delegates that are
commutative and associative. If used otherwise, the result is either unintuitive (with
ordinary queries) or nondeterministic (in the case that you parallelize the query with
PLINQ). For example, consider the following function:

(total, n) => total + n * n

This is neither commutative nor associative. (For example, 1+2*2 != 2+1*1). Let’s
see what happens when we use it to sum the square of the numbers 2, 3, and 4:

int[] numbers = { 2, 3, 4 };
int sum = numbers.Aggregate ((total, n) => total + n * n); // 27

Instead of calculating:

2*2 + 3*3 + 4*4 // 29

it calculates:

2 + 3*3 + 4*4 // 27

We can fix this in a number of ways. First, we could include 0 as the first element:

int[] numbers = { 0, 2, 3, 4 }; LIN
Q

O
p

erato
rs

Aggregation Methods | 435

www.EBooksWorld.ir

Not only is this inelegant, but it will still give incorrect results if parallelized—
because PLINQ leverages the function’s assumed associativity by selecting multiple
elements as seeds. To illustrate, if we denote our aggregation function as follows:

f(total, n) => total + n * n

then LINQ to Objects would calculate this:

f(f(f(0, 2),3),4)

whereas PLINQ may do this:

f(f(0,2),f(3,4))

with the following result:

First partition: a = 0 + 2*2 (= 4)
Second partition: b = 3 + 4*4 (= 19)
Final result: a + b*b (= 365)
OR EVEN: b + a*a (= 35)

There are two good solutions. The first is to turn this into a seeded aggregation—
with zero as the seed. The only complication is that with PLINQ, we’d need to use a
special overload in order for the query not to execute sequentially (see “Optimizing
PLINQ” on page 956 in Chapter 23).

The second solution is to restructure the query such that the aggregation function is
commutative and associative:

int sum = numbers.Select (n => n * n).Aggregate ((total, n) => total + n);

Of course, in such simple scenarios, you can (and should) use
the Sum operator instead of Aggregate:

int sum = numbers.Sum (n => n * n);

You can actually go quite far just with Sum and Average. For
instance, you can use Average to calculate a root-mean-
square:

Math.Sqrt (numbers.Average (n => n * n))

and even standard deviation:
double mean = numbers.Average();
double sdev = Math.Sqrt (numbers.Average (n =>
 {
 double dif = n - mean;
 return dif * dif;
 }));

Both are safe, efficient and fully parallelizable. In Chapter 23,
we’ll give a practical example of a custom aggregation that
can’t be reduced to Sum or Average.

436 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Quantifiers
IEnumerable<TSource>→ bool

Method Description SQL equivalents

Contains Returns true if the input sequence contains the given
element

WHERE ... IN (...)

Any Returns true if any elements satisfy the given predicate WHERE ... IN (...)

All Returns true if all elements satisfy the given predicate WHERE (...)

SequenceEqual Returns true if the second sequence has identical
elements to the input sequence

Contains and Any
The Contains method accepts an argument of type TSource; Any accepts an
optional predicate.

Contains returns true if the given element is present:

bool hasAThree = new int[] { 2, 3, 4 }.Contains (3); // true;

Any returns true if the given expression is true for at least one element. We can
rewrite the preceding query with Any as follows:

bool hasAThree = new int[] { 2, 3, 4 }.Any (n => n == 3); // true;

Any can do everything that Contains can do, and more:

bool hasABigNumber = new int[] { 2, 3, 4 }.Any (n => n > 10); // false;

Calling Any without a predicate returns true if the sequence has one or more ele‐
ments. Here’s another way to write the preceding query:

bool hasABigNumber = new int[] { 2, 3, 4 }.Where (n => n > 10).Any();

Any is particularly useful in subqueries and is used often when querying databases,
for example:

from c in dataContext.Customers
where c.Purchases.Any (p => p.Price > 1000)
select c

All and SequenceEqual
All returns true if all elements satisfy a predicate. The following returns customers
whose purchases are less than $100:

dataContext.Customers.Where (c => c.Purchases.All (p => p.Price < 100));

LIN
Q

O
p

erato
rs

Quantifiers | 437

www.EBooksWorld.ir

SequenceEqual compares two sequences. To return true, each sequence must have
identical elements, in the identical order. You can optionally provide an equality
comparer; the default is EqualityComparer<T>.Default.

Generation Methods
void→IEnumerable<TResult>

Method Description

Empty Creates an empty sequence

Repeat Creates a sequence of repeating elements

Range Creates a sequence of integers

Empty, Repeat, and Range are static (nonextension) methods that manufacture sim‐
ple local sequences.

Empty
Empty manufactures an empty sequence and requires just a type argument:

foreach (string s in Enumerable.Empty<string>())
 Console.Write (s); // <nothing>

In conjunction with the ?? operator, Empty does the reverse of DefaultIfEmpty. For
example, suppose we have a jagged array of integers, and we want to get all the inte‐
gers into a single flat list. The following SelectMany query fails if any of the inner
arrays is null:

int[][] numbers =
{
 new int[] { 1, 2, 3 },
 new int[] { 4, 5, 6 },
 null // this null makes the query below fail.
};

IEnumerable<int> flat = numbers.SelectMany (innerArray => innerArray);

Empty in conjunction with ?? fixes the problem:

IEnumerable<int> flat = numbers
 .SelectMany (innerArray => innerArray ?? Enumerable.Empty <int>());

foreach (int i in flat)
 Console.Write (i + " "); // 1 2 3 4 5 6

Range and Repeat
Range accepts a starting index and count (both integers):

foreach (int i in Enumerable.Range (5, 3))
 Console.Write (i + " "); // 5 6 7

438 | Chapter 9: LINQ Operators

www.EBooksWorld.ir

Repeat accepts an element to repeat, and the number of repetitions:

foreach (bool x in Enumerable.Repeat (true, 3))
 Console.Write (x + " "); // True True True

LIN
Q

O
p

erato
rs

Generation Methods | 439

www.EBooksWorld.ir

www.EBooksWorld.ir

10
LINQ to XML

The .NET Framework provides a number of APIs for working with XML data.
From .NET Framework 3.5, the primary choice for general-purpose XML docu‐
ment processing is LINQ to XML. LINQ to XML comprises a lightweight LINQ-
friendly XML document object model, plus a set of supplementary query operators.

In this chapter, we concentrate entirely on LINQ to XML. In Chapter 11, we cover
the more specialized XML types and APIs, including the forward-only reader/
writer, the types for working with schemas, stylesheets and XPaths, and the legacy
XmlDocument-based DOM.

The LINQ to XML DOM is extremely well designed and
highly performant. Even without LINQ, the LINQ to XML
DOM is valuable as a lightweight façade over the low-level
XmlReader and XmlWriter classes.

All LINQ to XML types are defined in the System.Xml.Linq namespace.

Architectural Overview
This section starts with a very brief introduction to the concept of a DOM and then
explains the rationale behind LINQ to XML’s DOM.

What Is a DOM?
Consider the following XML file:

<?xml version="1.0" encoding="utf-8"?>
<customer id="123" status="archived">
 <firstname>Joe</firstname>
 <lastname>Bloggs</lastname>
</customer>

LIN
Q

 to
X

M
L

441

www.EBooksWorld.ir

As with all XML files, we start with a declaration, and then a root element, whose
name is customer. The customer element has two attributes, each with a name (id
and status) and value ("123" and "archived"). Within customer, there are two
child elements, firstname and lastname, each having simple text content ("Joe"
and "Bloggs").

Each of these constructs—declaration, element, attribute, value, and text content—
can be represented with a class. And if such classes have collection properties for
storing child content, we can assemble a tree of objects to fully describe a document.
This is called a document object model, or DOM.

The LINQ to XML DOM
LINQ to XML comprises two things:

• An XML DOM, which we call the X-DOM
• A set of about 10 supplementary query operators

As you might expect, the X-DOM consists of types such as XDocument, XElement,
and XAttribute. Interestingly, the X-DOM types are not tied to LINQ—you can
load, instantiate, update, and save an X-DOM without ever writing a LINQ query.

Conversely, you could use LINQ to query a DOM created of the older W3C-
compliant types. However, this would be frustrating and limiting. The distinguish‐
ing feature of the X-DOM is that it’s LINQ-friendly. This means:

• It has methods that emit useful IEnumerable sequences, upon which you can
query.

• Its constructors are designed such that you can build an X-DOM tree through a
LINQ projection.

X-DOM Overview
Figure 10-1 shows the core X-DOM types. The most frequently used of these types
is XElement. XObject is the root of the inheritance hierarchy; XElement and XDocu
ment are roots of the containership hierarchy.

442 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

Figure 10-1. Core X-DOM types

Figure 10-2 shows the X-DOM tree created from the following code:

string xml = @"<customer id='123' status='archived'>
 <firstname>Joe</firstname>
 <lastname>Bloggs<!--nice name--></lastname>
 </customer>";

XElement customer = XElement.Parse (xml);

Figure 10-2. A simple X-DOM tree

LIN
Q

 to
X

M
L

X-DOM Overview | 443

www.EBooksWorld.ir

XObject is the abstract base class for all XML content. It defines a link to the Parent
element in the containership tree as well as an optional XDocument.

XNode is the base class for most XML content excluding attributes. The distinguish‐
ing feature of XNode is that it can sit in an ordered collection of mixed-type XNodes.
For instance, consider the following XML:

<data>
 Hello world
 <subelement1/>
 <!--comment-->
 <subelement2/>
</data>

Within the parent element <data>, there’s first an XText node (Hello world), then
an XElement node, then an XComment node, and then a second XElement node. In
contrast, an XAttribute will tolerate only other XAttributes as peers.

Although an XNode can access its parent XElement, it has no concept of child nodes:
this is the job of its subclass XContainer. XContainer defines members for dealing
with children and is the abstract base class for XElement and XDocument.

XElement introduces members for managing attributes—as well as a Name and
Value. In the (fairly common) case of an element having a single XText child node,
the Value property on XElement encapsulates this child’s content for both get and
set operations, cutting unnecessary navigation. Thanks to Value, you can mostly
avoid working directly with XText nodes.

XDocument represents the root of an XML tree. More precisely, it wraps the root
XElement, adding an XDeclaration, processing instructions, and other root-level
“fluff.” Unlike with the W3C DOM, its use is optional: you can load, manipulate,
and save an X-DOM without ever creating an XDocument! The nonreliance on XDocu
ment also means you can efficiently and easily move a node subtree to another X-
DOM hierarchy.

Loading and Parsing
Both XElement and XDocument provide static Load and Parse methods to build an
X-DOM tree from an existing source:

• Load builds an X-DOM from a file, URI, Stream, TextReader, or XmlReader.

• Parse builds an X-DOM from a string.

For example:

XDocument fromWeb = XDocument.Load ("http://albahari.com/sample.xml");

XElement fromFile = XElement.Load (@"e:\media\somefile.xml");

XElement config = XElement.Parse (
@"<configuration>

444 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

 <client enabled='true'>
 <timeout>30</timeout>
 </client>
 </configuration>");

In later sections, we describe how to traverse and update an X-DOM. As a quick
preview, here’s how to manipulate the config element we just populated:

foreach (XElement child in config.Elements())
 Console.WriteLine (child.Name); // client

XElement client = config.Element ("client");

bool enabled = (bool) client.Attribute ("enabled"); // Read attribute
Console.WriteLine (enabled); // True
client.Attribute ("enabled").SetValue (!enabled); // Update attribute

int timeout = (int) client.Element ("timeout"); // Read element
Console.WriteLine (timeout); // 30
client.Element ("timeout").SetValue (timeout * 2); // Update element

client.Add (new XElement ("retries", 3)); // Add new elememt

Console.WriteLine (config); // Implicitly call config.ToString()

Here’s the result of that last Console.WriteLine:

<configuration>
 <client enabled="false">
 <timeout>60</timeout>
 <retries>3</retries>
 </client>
</configuration>

XNode also provides a static ReadFrom method that instantiates
and populates any type of node from an XmlReader. Unlike
Load, it stops after reading one (complete) node, so you can
continue to read manually from the XmlReader afterward.

You can also do the reverse and use an XmlReader or
XmlWriter to read or write an XNode, via its CreateReader and
CreateWriter methods.
We describe XML readers and writers and how to use them
with the X-DOM in Chapter 11.

Saving and Serializing
Calling ToString on any node converts its content to an XML string—formatted
with line breaks and indentation as we just saw. (You can disable the line breaks and
indentation by specifying SaveOptions.DisableFormatting when calling
ToString.)

XElement and XDocument also provide a Save method that writes an X-DOM to a
file, Stream, TextWriter, or XmlWriter. If you specify a file, an XML declaration is

LIN
Q

 to
X

M
L

X-DOM Overview | 445

www.EBooksWorld.ir

automatically written. There is also a WriteTo method defined in the XNode class,
which accepts just an XmlWriter.

We describe the handling of XML declarations when saving in more detail in the
section “Documents and Declarations” on page 459 later in this chapter.

Instantiating an X-DOM
Rather than using the Load or Parse methods, you can build an X-DOM tree by
manually instantiating objects and adding them to a parent via XContainer’s Add
method.

To construct an XElement and XAttribute, simply provide a name and value:

XElement lastName = new XElement ("lastname", "Bloggs");
lastName.Add (new XComment ("nice name"));

XElement customer = new XElement ("customer");
customer.Add (new XAttribute ("id", 123));
customer.Add (new XElement ("firstname", "Joe"));
customer.Add (lastName);

Console.WriteLine (customer.ToString());

The result:

<customer id="123">
 <firstname>Joe</firstname>
 <lastname>Bloggs<!--nice name--></lastname>
</customer>

A value is optional when constructing an XElement—you can provide just the ele‐
ment name and add content later. Notice that when we did provide a value, a simple
string sufficed—we didn’t need to explicitly create and add an XText child node. The
X-DOM does this work automatically, so you can deal simply with “values.”

Functional Construction
In our preceding example, it’s hard to glean the XML structure from the code. X-
DOM supports another mode of instantiation, called functional construction (from
functional programming). With functional construction, you build an entire tree in
a single expression:

XElement customer =
 new XElement ("customer", new XAttribute ("id", 123),
 new XElement ("firstname", "joe"),
 new XElement ("lastname", "bloggs",
 new XComment ("nice name")
)
);

446 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

1 The X-DOM actually optimizes this step internally by storing simple text content in a string. The
XTEXT node is not actually created until you call Nodes() on the XContainer.

2 See footnote 1.

This has two benefits. First, the code resembles the shape of the XML. Second, it can
be incorporated into the select clause of a LINQ query. For example, the following
LINQ to SQL query projects directly into an X-DOM:

XElement query =
 new XElement ("customers",
 from c in dataContext.Customers
 select
 new XElement ("customer", new XAttribute ("id", c.ID),
 new XElement ("firstname", c.FirstName),
 new XElement ("lastname", c.LastName,
 new XComment ("nice name")
)
)
);

More on this later in this chapter, in “Projecting into an X-DOM” on page 469.

Specifying Content
Functional construction is possible because the constructors for XElement (and XDo
cument) are overloaded to accept a params object array:

public XElement (XName name, params object[] content)

The same holds true for the Add method in XContainer:

public void Add (params object[] content)

Hence, you can specify any number of child objects of any type when building or
appending an X-DOM. This works because anything counts as legal content. To see
how, we need to examine how each content object is processed internally. Here are
the decisions made by XContainer, in order:

1. If the object is null, it’s ignored.

2. If the object is based on XNode or XStreamingElement, it’s added as is to the
Nodes collection.

3. If the object is an XAttribute, it’s added to the Attributes collection.

4. If the object is a string, it gets wrapped in an XText node and added to Nodes.1

5. If the object implements IEnumerable, it’s enumerated, and the same rules are
applied to each element.

6. Otherwise, the object is converted to a string, wrapped in an XText node, and
then added to Nodes.2

LIN
Q

 to
X

M
L

Instantiating an X-DOM | 447

www.EBooksWorld.ir

Everything ends up in one of two buckets: Nodes or Attributes. Furthermore, any
object is valid content because it can always ultimately call ToString on it and treat
it as an XText node.

Before calling ToString on an arbitrary type, XContainer first
tests whether it is one of the following types:

float, double, decimal, bool,
DateTime, DateTimeOffset, TimeSpan

If so, it calls an appropriate typed ToString method on the
XmlConvert helper class instead of calling ToString on the
object itself. This ensures that the data is round-trippable and
compliant with standard XML formatting rules.

Automatic Deep Cloning
When a node or attribute is added to an element (whether via functional construc‐
tion or an Add method), the node or attribute’s Parent property is set to that ele‐
ment. A node can have only one parent element: if you add an already parented
node to a second parent, the node is automatically deep-cloned. In the following
example, each customer has a separate copy of address:

var address = new XElement ("address",
 new XElement ("street", "Lawley St"),
 new XElement ("town", "North Beach")
);
var customer1 = new XElement ("customer1", address);
var customer2 = new XElement ("customer2", address);

customer1.Element ("address").Element ("street").Value = "Another St";
Console.WriteLine (
 customer2.Element ("address").Element ("street").Value); // Lawley St

This automatic duplication keeps X-DOM object instantiation free of side effects—
another hallmark of functional programming.

Navigating and Querying
As you might expect, the XNode and XContainer classes define methods and proper‐
ties for traversing the X-DOM tree. Unlike a conventional DOM, however, these
functions don’t return a collection that implements IList<T>. Instead, they return
either a single value or a sequence that implements IEnumerable<T>—upon which
you are then expected to execute a LINQ query (or enumerate with a foreach). This
allows for advanced queries as well as simple navigation tasks—using familiar LINQ
query syntax.

Element and attribute names are case-sensitive in the X-DOM
—just as they are in XML.

448 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

Child Node Navigation

Return type Members Works on

XNode FirstNode { get; } XContainer

 LastNode { get; } XContainer

IEnumerable<XNode> Nodes() XContainer*

 DescendantNodes() XContainer*

 DescendantNodesAndSelf() XElement*

XElement Element (XName) XContainer

IEnumerable<XElement> Elements() XContainer*

 Elements (XName) XContainer*

 Descendants() XContainer*

 Descendants (XName) XContainer*

 DescendantsAndSelf() XElement*

 DescendantsAndSelf (XName) XElement*

bool HasElements { get; } XElement

Functions marked with an asterisk in the third column of this
and other tables also operate on sequences of the same type.
For instance, you can call Nodes on either an XContainer or a
sequence of XContainer objects. This is possible because of
extension methods defined in System.Xml.Linq—the supple‐
mentary query operators we talked about in the overview.

FirstNode, LastNode, and Nodes
FirstNode and LastNode give you direct access to the first or last child node; Nodes
returns all children as a sequence. All three functions consider only direct descend‐
ants. For example:

var bench = new XElement ("bench",
 new XElement ("toolbox",
 new XElement ("handtool", "Hammer"),
 new XElement ("handtool", "Rasp")
),
 new XElement ("toolbox",
 new XElement ("handtool", "Saw"),
 new XElement ("powertool", "Nailgun")
),
 new XComment ("Be careful with the nailgun")
);
foreach (XNode node in bench.Nodes())
 Console.WriteLine (node.ToString (SaveOptions.DisableFormatting) + ".");

This is the output:

LIN
Q

 to
X

M
L

Navigating and Querying | 449

www.EBooksWorld.ir

<toolbox><handtool>Hammer</handtool><handtool>Rasp</handtool></toolbox>.
<toolbox><handtool>Saw</handtool><powertool>Nailgun</powertool></toolbox>.
<!--Be careful with the nailgun-->.

Retrieving elements
The Elements method returns just the child nodes of type XElement:

foreach (XElement e in bench.Elements())
 Console.WriteLine (e.Name + "=" + e.Value); // toolbox=HammerRasp
 // toolbox=SawNailgun

The following LINQ query finds the toolbox with the nail gun:

IEnumerable<string> query =
 from toolbox in bench.Elements()
 where toolbox.Elements().Any (tool => tool.Value == "Nailgun")
 select toolbox.Value;

RESULT: { "SawNailgun" }

The next example uses a SelectMany query to retrieve the hand tools in all tool‐
boxes:

IEnumerable<string> query =
 from toolbox in bench.Elements()
 from tool in toolbox.Elements()
 where tool.Name == "handtool"
 select tool.Value;

RESULT: { "Hammer", "Rasp", "Saw" }

Elements itself is equivalent to a LINQ query on Nodes. Our
preceding query could be started as follows:

from toolbox in bench.Nodes().OfType<XElement>()
where ...

Elements can also return just the elements of a given name. For example:

int x = bench.Elements ("toolbox").Count(); // 2

This is equivalent to:

int x = bench.Elements().Where (e => e.Name == "toolbox").Count(); // 2

Elements is also defined as an extension method accepting IEnumerable<XCon
tainer> or, more precisely, it accepts an argument of this type:

IEnumerable<T> where T : XContainer

This allows it to work with sequences of elements, too. Using this method, we can
rewrite the query that finds the hand tools in all toolboxes as follows:

from tool in bench.Elements ("toolbox").Elements ("handtool")
select tool.Value.ToUpper();

450 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

The first call to Elements binds to XContainer’s instance method; the second call to
Elements binds to the extension method.

Retrieving a single element
The method Element (singular) returns the first matching element of the given
name. Element is useful for simple navigation, as follows:

XElement settings = XElement.Load ("databaseSettings.xml");
string cx = settings.Element ("database").Element ("connectString").Value;

Element is equivalent to calling Elements() and then applying LINQ’s FirstOrDe
fault query operator with a name-matching predicate. Element returns null if the
requested element doesn’t exist.

Element("xyz").Value will throw a NullReferenceExcep
tion if element xyz does not exist. If you’d prefer a null rather
than an exception, cast the XElement to a string instead of
querying its Value property. In other words:

string xyz = (string) settings.Element ("xyz");

This works because XElement defines an explicit string con‐
version—just for this purpose!
From C# 6, an alternative is to use the null-conditioner opera‐
tor, i.e., Element {"xyz"}?.Value.

Retrieving descendants
XContainer also provides Descendants and DescendantNodes methods that return
child elements or nodes plus all of their children, and so on (the entire tree).
Descendants accepts an optional element name. Returning to our earlier example,
we can use Descendants to find all the hand tools as follows:

Console.WriteLine (bench.Descendants ("handtool").Count()); // 3

Both parent and leaf nodes are included, as the following example demonstrates:

foreach (XNode node in bench.DescendantNodes())
 Console.WriteLine (node.ToString (SaveOptions.DisableFormatting));

<toolbox><handtool>Hammer</handtool><handtool>Rasp</handtool></toolbox>
<handtool>Hammer</handtool>
Hammer
<handtool>Rasp</handtool>
Rasp
<toolbox><handtool>Saw</handtool><powertool>Nailgun</powertool></toolbox>
<handtool>Saw</handtool>
Saw
<powertool>Nailgun</powertool>
Nailgun
<!--Be careful with the nailgun-->

LIN
Q

 to
X

M
L

Navigating and Querying | 451

www.EBooksWorld.ir

The next query extracts all comments anywhere within the X-DOM that contain the
word “careful”:

IEnumerable<string> query =
 from c in bench.DescendantNodes().OfType<XComment>()
 where c.Value.Contains ("careful")
 orderby c.Value
 select c.Value;

Parent Navigation
All XNodes have a Parent property and AncestorXXX methods for parent navigation.
A parent is always an XElement:

Return type Members Works on

XElement Parent { get; } XNode*

Enumerable<XElement> Ancestors() XNode*

 Ancestors (XName) XNode*

 AncestorsAndSelf() XElement*

 AncestorsAndSelf (XName) XElement*

If x is an XElement, the following always prints true:

foreach (XNode child in x.Nodes())
 Console.WriteLine (child.Parent == x);

The same is not the case, however, if x is an XDocument. XDocument is peculiar: it can
have children, but can never be anyone’s parent! To access the XDocument, you
instead use the Document property—this works on any object in the X-DOM tree.

Ancestors returns a sequence whose first element is Parent and whose next ele‐
ment is Parent.Parent, and so on, until the root element.

You can navigate to the root element with the LINQ query
AncestorsAndSelf().Last().

Another way to achieve the same thing is to call Docu
ment.Root—although this works only if an XDocument is
present.

Peer Node Navigation

Return type Members Defined in

bool IsBefore (XNode node) XNode

 IsAfter (XNode node) XNode

XNode PreviousNode { get; } XNode

 NextNode { get; } XNode

452 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

Return type Members Defined in

IEnumerable<XNode> NodesBeforeSelf() XNode

 NodesAfterSelf() XNode

IEnumerable<XElement> ElementsBeforeSelf() XNode

 ElementsBeforeSelf (XName name) XNode

 ElementsAfterSelf() XNode

 ElementsAfterSelf (XName name) XNode

With PreviousNode and NextNode (and FirstNode/LastNode), you can traverse
nodes with the feel of a linked list. This is noncoincidental: internally, nodes are
stored in a linked list.

XNode internally uses a singly linked list, so PreviousNode is
not performant.

Attribute Navigation

Return type Members Defined in

bool HasAttributes { get; } XElement

XAttribute Attribute (XName name) XElement

 FirstAttribute { get; } XElement

 LastAttribute { get; } XElement

IEnumerable<XAttribute> Attributes() XElement

 Attributes (XName name) XElement

In In addition, XAttribute defines PreviousAttribute and NextAttribute proper‐
ties, as well as Parent.

The Attributes method that accepts a name returns a sequence with either zero or
one element; an element cannot have duplicate attribute names in XML.

Updating an X-DOM
You can update elements and attributes in the following ways:

• Call SetValue or reassign the Value property.

• Call SetElementValue or SetAttributeValue.

• Call one of the RemoveXXX methods.

• Call one of the AddXXX or ReplaceXXX methods, specifying fresh content.

LIN
Q

 to
X

M
L

Updating an X-DOM | 453

www.EBooksWorld.ir

You can also reassign the Name property on XElement objects.

Simple Value Updates

Members Works on

SetValue (object value) XElement, XAttribute

Value { get; set } XElement, XAttribute

The SetValue method replaces an element or attribute’s content with a simple value.
Setting the Value property does the same, but accepts string data only. We describe
both of these functions in detail later in this chapter (see the section “Working with
Values” on page 456).

An effect of calling SetValue (or reassigning Value) is that it replaces all child
nodes:

XElement settings = new XElement ("settings",
 new XElement ("timeout", 30)
);
settings.SetValue ("blah");
Console.WriteLine (settings.ToString()); // <settings>blah</settings>

Updating Child Nodes and Attributes

Category Members Works on

Add Add (params object[] content) XContainer

 AddFirst (params object[] content) XContainer

Remove RemoveNodes() XContainer

 RemoveAttributes() XElement

 RemoveAll() XElement

Update ReplaceNodes (params object[] content) XContainer

 ReplaceAttributes (params object[] content) XElement

 ReplaceAll (params object[] content XElement

 SetElementValue (XName name, object value) XElement

 SetAttributeValue (XName name, object value) XElement

The most convenient methods in this group are the last two: SetElementValue and
SetAttributeValue. They serve as shortcuts for instantiating an XElement or XAt
tribute and then Adding it to a parent, replacing any existing element or attribute
of that name:

XElement settings = new XElement ("settings");
settings.SetElementValue ("timeout", 30); // Adds child node
settings.SetElementValue ("timeout", 60); // Update it to 60

454 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

Add appends a child node to an element or document. AddFirst does the same
thing, but inserts at the beginning of the collection rather than the end.

You can remove all child nodes or attributes in one hit with RemoveNodes or Remov
eAttributes. RemoveAll is equivalent to calling both of these methods.

The ReplaceXXX methods are equivalent to Removing and then Adding. They take a
snapshot of the input, so e.ReplaceNodes(e.Nodes()) works as expected.

Updating Through the Parent

Members Works on

AddBeforeSelf (params object[] content) XNode

AddAfterSelf (params object[] content) XNode

Remove() XNode*, XAttribute*

ReplaceWith (params object[] content) XNode

The methods AddBeforeSelf, AddAfterSelf, Remove, and ReplaceWith don’t oper‐
ate on the node’s children. Instead, they operate on the collection in which the node
itself is in. This requires that the node have a parent element—otherwise, an excep‐
tion is thrown. AddBeforeSelf and AddAfterSelf are useful for inserting a node
into an arbitrary position:

XElement items = new XElement ("items",
 new XElement ("one"),
 new XElement ("three")
);
items.FirstNode.AddAfterSelf (new XElement ("two"));

Here’s the result:

<items><one /><two /><three /></items>

Inserting into an arbitrary position within a long sequence of elements is actually
quite efficient, because nodes are stored internally in a linked list.

The Remove method removes the current node from its parent. ReplaceWith does
the same—and then inserts some other content at the same position. For instance:

XElement items = XElement.Parse ("<items><one/><two/><three/></items>");
items.FirstNode.ReplaceWith (new XComment ("One was here"));

Here’s the result:

<items><!--one was here--><two /><three /></items>

Removing a sequence of nodes or attributes
Thanks to extension methods in System.Xml.Linq, you can also call Remove on a
sequence of nodes or attributes. Consider this X-DOM:

LIN
Q

 to
X

M
L

Updating an X-DOM | 455

www.EBooksWorld.ir

XElement contacts = XElement.Parse (
@"<contacts>
 <customer name='Mary'/>
 <customer name='Chris' archived='true'/>
 <supplier name='Susan'>
 <phone archived='true'>012345678<!--confidential--></phone>
 </supplier>
 </contacts>");

The following removes all customers:

contacts.Elements ("customer").Remove();

The next statement removes all archived contacts (so Chris disappears):

contacts.Elements().Where (e => (bool?) e.Attribute ("archived") == true)
 .Remove();

If we replaced Elements() with Descendants(), all archived elements throughout
the DOM would disappear, with this result:

<contacts>
 <customer name="Mary" />
 <supplier name="Susan" />
</contacts>

The next example removes all contacts that feature the comment “confidential” any‐
where in their tree:

contacts.Elements().Where (e => e.DescendantNodes()
 .OfType<XComment>()
 .Any (c => c.Value == "confidential")
).Remove();

This is the result:

<contacts>
 <customer name="Mary" />
 <customer name="Chris" archived="true" />
</contacts>

Contrast this with the following simpler query, which strips all comment nodes
from the tree:

contacts.DescendantNodes().OfType<XComment>().Remove();

Internally, the Remove methods first read all matching ele‐
ments into a temporary list, and then enumerate over the tem‐
porary list to perform the deletions. This avoids errors that
could otherwise result from deleting and querying at the same
time.

Working with Values
XElement and XAttribute both have a Value property of type string. If an element
has a single XText child node, XElement’s Value property acts as a convenient short‐

456 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

cut to the content of that node. With XAttribute, the Value property is simply the
attribute’s value.

Despite the storage differences, the X-DOM provides a consistent set of operations
for working with element and attribute values.

Setting Values
There are two ways to assign a value: call SetValue or assign the Value property.
SetValue is more flexible because it accepts not just strings, but other simple data
types, too:

var e = new XElement ("date", DateTime.Now);
e.SetValue (DateTime.Now.AddDays(1));
Console.Write (e.Value); // 2007-03-02T16:39:10.734375+09:00

We could have instead just set the element’s Value property, but this would mean
manually converting the DateTime to a string. This is more complicated than calling
ToString—it requires the use of XmlConvert for an XML-compliant result.

When you pass a value into XElement or XAttribute’s constructor, the same auto‐
matic conversion takes place for nonstring types. This ensures that DateTimes are
correctly formatted; true is written in lowercase, and double.NegativeInfinity is
written as “-INF”.

Getting Values
To go the other way around and parse a Value back to a base type, you simply cast
the XElement or XAttribute to the desired type. It sounds like it shouldn’t work—
but it does! For instance:

XElement e = new XElement ("now", DateTime.Now);
DateTime dt = (DateTime) e;

XAttribute a = new XAttribute ("resolution", 1.234);
double res = (double) a;

An element or attribute doesn’t store DateTimes or numbers natively—they’re
always stored as text and then parsed as needed. It also doesn’t “remember” the orig‐
inal type, so you must cast it correctly to avoid a runtime error. To make your code
robust, you can put the cast in a try/catch block, catching a FormatException.

Explicit casts on XElement and XAttribute can parse to the following types:

• All standard numeric types

• string, bool, DateTime, DateTimeOffset, TimeSpan, and Guid

• Nullable<> versions of the aforementioned value types

Casting to a nullable type is useful in conjunction with the Element and Attribute
methods, because if the requested name doesn’t exist, the cast still works. For

LIN
Q

 to
X

M
L

Working with Values | 457

www.EBooksWorld.ir

instance, if x has no timeout element, the first line generates a runtime error, and
the second line does not:

int timeout = (int) x.Element ("timeout"); // Error
int? timeout = (int?) x.Element ("timeout"); // OK; timeout is null.

You can factor away the nullable type in the final result with the ?? operator. The
following evaluates to 1.0 if the resolution attribute doesn’t exist:

double resolution = (double?) x.Attribute ("resolution") ?? 1.0;

Casting to a nullable type won’t get you out of trouble, though, if the element or
attribute exists and has an empty (or improperly formatted) value. For this, you
must catch a FormatException.

You can also use casts in LINQ queries. The following returns “John”:

var data = XElement.Parse (
 @"<data>
 <customer id='1' name='Mary' credit='100' />
 <customer id='2' name='John' credit='150' />
 <customer id='3' name='Anne' />
 </data>");

IEnumerable<string> query = from cust in data.Elements()
 where (int?) cust.Attribute ("credit") > 100
 select cust.Attribute ("name").Value;

Casting to a nullable int avoids a NullReferenceException in the case of Anne,
who has no credit attribute. Another solution would be to add a predicate to the
where clause:

where cust.Attributes ("credit").Any() && (int) cust.Attribute...

The same principles apply in querying element values.

Values and Mixed Content Nodes
Given the value of Value, you might wonder when you’d ever need to deal directly
with XText nodes. The answer is when you have mixed content. For example:

<summary>An XAttribute is <bold>not</bold> an XNode</summary>

A simple Value property is not enough to capture summary’s content. The summary
element contains three children: an XText node followed by an XElement, followed
by another XText node. Here’s how to construct it:

XElement summary = new XElement ("summary",
 new XText ("An XAttribute is "),
 new XElement ("bold", "not"),
 new XText (" an XNode")
);

Interestingly, we can still query summary’s Value—without getting an exception.
Instead, we get a concatenation of each child’s value:

458 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

An XAttribute is not an XNode

It’s also legal to reassign summary’s Value, at the cost of replacing all previous chil‐
dren with a single new XText node.

Automatic XText Concatenation
When you add simple content to an XElement, the X-DOM appends to the existing
XText child rather than creating a new one. In the following examples, e1 and e2
end up with just one child XText element whose value is HelloWorld:

var e1 = new XElement ("test", "Hello"); e1.Add ("World");
var e2 = new XElement ("test", "Hello", "World");

If you specifically create XText nodes, however, you end up with multiple children:

var e = new XElement ("test", new XText ("Hello"), new XText ("World"));
Console.WriteLine (e.Value); // HelloWorld
Console.WriteLine (e.Nodes().Count()); // 2

XElement doesn’t concatenate the two XText nodes, so the nodes’ object identities
are preserved.

Documents and Declarations
XDocument
As we said previously, an XDocument wraps a root XElement and allows you to add
an XDeclaration, processing instructions, a document type, and root-level com‐
ments. An XDocument is optional and can be ignored or omitted: unlike with the
W3C DOM, it does not serve as glue to keep everything together.

An XDocument provides the same functional constructors as XElement. And because
it’s based on XContainer, it also supports the AddXXX, RemoveXXX, and ReplaceXXX
methods. Unlike XElement, however, an XDocument can accept only limited content:

• A single XElement object (the “root”)

• A single XDeclaration object

• A single XDocumentType object (to reference a DTD)

• Any number of XProcessingInstruction objects

• Any number of XComment objects

Of these, only the root XElement is mandatory in order to
have a valid XDocument. The XDeclaration is optional—if
omitted, default settings are applied during serialization.

LIN
Q

 to
X

M
L

Documents and Declarations | 459

www.EBooksWorld.ir

The simplest valid XDocument has just a root element:

var doc = new XDocument (
 new XElement ("test", "data")
);

Notice that we didn’t include an XDeclaration object. The file generated by calling
doc.Save would still contain an XML declaration, however, because one is gener‐
ated by default.

The next example produces a simple but correct XHTML file, illustrating all the
constructs that an XDocument can accept:

var styleInstruction = new XProcessingInstruction (
 "xml-stylesheet", "href='styles.css' type='text/css'");

var docType = new XDocumentType ("html",
 "-//W3C//DTD XHTML 1.0 Strict//EN",
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd", null);

XNamespace ns = "http://www.w3.org/1999/xhtml";
var root =
 new XElement (ns + "html",
 new XElement (ns + "head",
 new XElement (ns + "title", "An XHTML page")),
 new XElement (ns + "body",
 new XElement (ns + "p", "This is the content"))
);

var doc =
 new XDocument (
 new XDeclaration ("1.0", "utf-8", "no"),
 new XComment ("Reference a stylesheet"),
 styleInstruction,
 docType,
 root);

doc.Save ("test.html");

The resultant test.html reads as follows:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!--Reference a stylesheet-->
<?xml-stylesheet href='styles.css' type='text/css'?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>An XHTML page</title>
 </head>
 <body>
 <p>This is the content</p>
 </body>
</html>

460 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

XDocument has a Root property that serves as a shortcut for accessing a document’s
single XElement. The reverse link is provided by XObject’s Document property,
which works for all objects in the tree:

Console.WriteLine (doc.Root.Name.LocalName); // html
XElement bodyNode = doc.Root.Element (ns + "body");
Console.WriteLine (bodyNode.Document == doc); // True

Recall that a document’s children have no Parent:

Console.WriteLine (doc.Root.Parent == null); // True
foreach (XNode node in doc.Nodes())
 Console.Write (node.Parent == null); // TrueTrueTrueTrue

An XDeclaration is not an XNode and does not appear in the
document’s Nodes collection—unlike comments, processing
instructions, and the root element. Instead, it gets assigned to
a dedicated property called Declaration. This is why “True” is
repeated four and not five times in the last example.

XML Declarations
A standard XML file starts with a declaration such as the following:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

An XML declaration ensures that the file will be correctly parsed and understood by
a reader. XElement and XDocument follow these rules in emitting XML declarations:

• Calling Save with a filename always writes a declaration.

• Calling Save with an XmlWriter writes a declaration unless the XmlWriter is
instructed otherwise.

• The ToString method never emits an XML declaration.

You can instruct an XmlWriter not to produce a declaration by
setting the OmitXmlDeclaration and ConformanceLevel

properties of an XmlWriterSettings object when constructing
the XmlWriter. We describe this in Chapter 11.

The presence or absence of an XDeclaration object has no effect on whether an
XML declaration gets written. The purpose of an XDeclaration is instead to hint the
XML serialization—in two ways:

• What text encoding to use

• What to put in the XML declaration’s encoding and standalone attributes
(should a declaration be written)

LIN
Q

 to
X

M
L

Documents and Declarations | 461

www.EBooksWorld.ir

XDeclaration’s constructor accepts three arguments, which correspond to the
attributes version, encoding, and standalone. In the following example, test.xml is
encoded in UTF-16:

var doc = new XDocument (
 new XDeclaration ("1.0", "utf-16", "yes"),
 new XElement ("test", "data")
);
doc.Save ("test.xml");

Whatever you specify for the XML version is ignored by the
XML writer: it always writes "1.0".

The encoding must use an IETF code such as "utf-16"—just as it would appear in
the XML declaration.

Writing a declaration to a string
Suppose we want to serialize an XDocument to a string—including the XML decla‐
ration. Because ToString doesn’t write a declaration, we’d have to use an XmlWriter
instead:

var doc = new XDocument (
 new XDeclaration ("1.0", "utf-8", "yes"),
 new XElement ("test", "data")
);
var output = new StringBuilder();
var settings = new XmlWriterSettings { Indent = true };
using (XmlWriter xw = XmlWriter.Create (output, settings))
 doc.Save (xw);
Console.WriteLine (output.ToString());

This is the result:

<?xml version="1.0" encoding="utf-16" standalone="yes"?>
<test>data</test>

Notice that we got UTF-16 in the output—even though we explicitly requested
UTF-8 in an XDeclaration! This might look like a bug, but in fact, XmlWriter is
being remarkably smart. Because we’re writing to a string and not a file or stream,
it’s impossible to apply any encoding other than UTF-16—the format in which
strings are internally stored. Hence, XmlWriter writes "utf-16"—so as not to lie.

This also explains why the ToString method doesn’t emit an XML declaration.
Imagine that instead of calling Save, you did the following to write an XDocument to
a file:

File.WriteAllText ("data.xml", doc.ToString());

As it stands, data.xml would lack an XML declaration, making it incomplete but still
parsable (you can infer the text encoding). But if ToString() emitted an XML dec‐
laration, data.xml would actually contain an incorrect declaration

462 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

(encoding="utf-16"), which might prevent it from being read at all, because Write
AllText encodes using UTF-8.

Names and Namespaces
Just as .NET types can have namespaces, so too can XML elements and attributes.

XML namespaces achieve two things. First, rather like namespaces in C#, they help
avoid naming collisions. This can become an issue when you merge data from one
XML file into another. Second, namespaces assign absolute meaning to a name. The
name “nil,” for instance, could mean anything. Within the http://www.w3.org/2001/
xmlschema-instance namespace, however, “nil” means something equivalent to null
in C# and comes with specific rules on how it can be applied.

Because XML namespaces are a significant source of confusion, we’ll cover the topic
first in general and then move on to how they’re used in LINQ to XML.

Namespaces in XML
Suppose we want to define a customer element in the namespace OReilly.Nut
shell.CSharp. There are two ways to proceed. The first is to use the xmlns attribute
as follows:

<customer xmlns="OReilly.Nutshell.CSharp"/>

xmlns is a special reserved attribute. When used in this manner, it performs two
functions:

• It specifies a namespace for the element in question.
• It specifies a default namespace for all descendant elements.

This means that in the following example, address and postcode implicitly live in
the OReilly.Nutshell.CSharp namespace:

<customer xmlns="OReilly.Nutshell.CSharp">
 <address>
 <postcode>02138</postcode>
 </address>
</customer>

If we want address and postcode to have no namespace, we’d have to do this:

<customer xmlns="OReilly.Nutshell.CSharp">
 <address xmlns="">
 <postcode>02138</postcode> <!-- postcode now inherits empty ns -->
 </address>
</customer>

LIN
Q

 to
X

M
L

Names and Namespaces | 463

www.EBooksWorld.ir

http://www.w3.org/2001/xmlschema-instance
http://www.w3.org/2001/xmlschema-instance

Prefixes
The other way to specify a namespace is with a prefix. A prefix is an alias that you
assign to a namespace to save typing. There are two steps in using a prefix—defining
the prefix and using it. You can do both together as follows:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp"/>

Two distinct things are happening here. On the right, xmlns:nut="..." defines a
prefix called nut and makes it available to this element and all its descendants. On
the left, nut:customer assigns the newly allocated prefix to the customer element.

A prefixed element does not define a default namespace for descendants. In the fol‐
lowing XML, firstname has an empty namespace:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp">
 <firstname>Joe</firstname>
</customer>

To give firstname the OReilly.Nutshell.CSharp prefix, we must do this:

<nut:customer xmlns:nut="OReilly.Nutshell.CSharp">
 <nut:firstname>Joe</firstname>
</customer>

You can also define a prefix—or prefixes—for the convenience of your descendants,
without assigning any of them to the parent element itself. The following defines
two prefixes, i and z, while leaving the customer element itself with an empty
namespace:

<customer xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">
 ...
</customer>

If this was the root node, the whole document would have i and z at its fingertips.
Prefixes are convenient when elements need to draw from a number of namespaces.

Notice that both namespaces in this example are URIs. Using URIs (that you own) is
standard practice: it ensures namespace uniqueness. So, in real life, our customer
element would more likely be:

<customer xmlns="http://oreilly.com/schemas/nutshell/csharp"/>

or:

<nut:customer xmlns:nut="http://oreilly.com/schemas/nutshell/csharp"/>

Attributes
You can assign namespaces to attributes too. The main difference is that it always
requires a prefix. For instance:

<customer xmlns:nut="OReilly.Nutshell.CSharp" nut:id="123" />

464 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

Another difference is that an unqualified attribute always has an empty namespace:
it never inherits a default namespace from a parent element.

Attributes tend not to need namespaces because their meaning is usually local to the
element. An exception is with general-purpose or metadata attributes, such as the
nil attribute defined by W3C:

<customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <firstname>Joe</firstname>
 <lastname xsi:nil="true"/>
</customer>

This indicates unambiguously that lastname is nil (null in C#) and not an empty
string. Because we’ve used the standard namespace, a general-purpose parsing util‐
ity could know with certainty our intention.

Specifying Namespaces in the X-DOM
So far in this chapter, we’ve used just simple strings for XElement and XAttribute
names. A simple string corresponds to an XML name with an empty namespace—
rather like a .NET type defined in the global namespace.

There are a couple of ways to specify an XML namespace. The first is to enclose it in
braces, before the local name. For example:

var e = new XElement ("{http://domain.com/xmlspace}customer", "Bloggs");
Console.WriteLine (e.ToString());

Here’s the resulting XML:

<customer xmlns="http://domain.com/xmlspace">Bloggs</customer>

The second (and more performant) approach is to use the XNamespace and XName
types. Here are their definitions:

public sealed class XNamespace
{
 public string NamespaceName { get; }
}

public sealed class XName // A local name with optional namespace
{
 public string LocalName { get; }
 public XNamespace Namespace { get; } // Optional
}

Both types define implicit casts from string, so the following is legal:

XNamespace ns = "http://domain.com/xmlspace";
XName localName = "customer";
XName fullName = "{http://domain.com/xmlspace}customer";

XNamespace also overloads the + operator, allowing you to combine a namespace
and name into an XName without using braces:

LIN
Q

 to
X

M
L

Names and Namespaces | 465

www.EBooksWorld.ir

XNamespace ns = "http://domain.com/xmlspace";
XName fullName = ns + "customer";
Console.WriteLine (fullName); // {http://domain.com/xmlspace}customer

All constructors and methods in the X-DOM that accept an element or attribute
name actually accept an XName object rather than a string. The reason you can sub‐
stitute a string—as in all our examples to date—is because of the implicit cast.

Specifying a namespace is the same whether for an element or an attribute:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
 new XAttribute (ns + "id", 123)
);

The X-DOM and Default Namespaces
The X-DOM ignores the concept of default namespaces until it comes time to
actually output XML. This means that when you construct a child XElement, you
must give it a namespace explicitly if needed: it will not inherit from the parent:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
 new XElement (ns + "customer", "Bloggs"),
 new XElement (ns + "purchase", "Bicycle")
);

The X-DOM does, however, apply default namespaces when reading and outputting
XML:

Console.WriteLine (data.ToString());

OUTPUT:
 <data xmlns="http://domain.com/xmlspace">
 <customer>Bloggs</customer>
 <purchase>Bicycle</purchase>
 </data>

Console.WriteLine (data.Element (ns + "customer").ToString());

OUTPUT:
 <customer xmlns="http://domain.com/xmlspace">Bloggs</customer>

If you construct XElement children without specifying namespaces—in other words:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
 new XElement ("customer", "Bloggs"),
 new XElement ("purchase", "Bicycle")
);
Console.WriteLine (data.ToString());

you get this result instead:

<data xmlns="http://domain.com/xmlspace">
 <customer xmlns="">Bloggs</customer>

466 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

 <purchase xmlns="">Bicycle</purchase>
</data>

Another trap is failing to include a namespace when navigating an X-DOM:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
 new XElement (ns + "customer", "Bloggs"),
 new XElement (ns + "purchase", "Bicycle")
);
XElement x = data.Element (ns + "customer"); // ok
XElement y = data.Element ("customer"); // null

If you build an X-DOM tree without specifying namespaces, you can subsequently
assign every element to a single namespace as follows:

foreach (XElement e in data.DescendantsAndSelf())
 if (e.Name.Namespace == "")
 e.Name = ns + e.Name.LocalName;

Prefixes
The X-DOM treats prefixes just as it treats namespaces: purely as a serialization
function. This means you can choose to completely ignore the issue of prefixes—
and get by! The only reason you might want to do otherwise is for efficiency when
outputting to an XML file. For example, consider this:

XNamespace ns1 = "http://domain.com/space1";
XNamespace ns2 = "http://domain.com/space2";

var mix = new XElement (ns1 + "data",
 new XElement (ns2 + "element", "value"),
 new XElement (ns2 + "element", "value"),
 new XElement (ns2 + "element", "value")
);

By default, XElement will serialize this as follows:

<data xmlns="http://domain.com/space1">
 <element xmlns="http://domain.com/space2">value</element>
 <element xmlns="http://domain.com/space2">value</element>
 <element xmlns="http://domain.com/space2">value</element>
</data>

As you can see, there’s a bit of unnecessary duplication. The solution is not to
change the way you construct the X-DOM, but instead to hint the serializer prior to
writing the XML. Do this by adding attributes defining prefixes that you want to see
applied. This is typically done on the root element:

mix.SetAttributeValue (XNamespace.Xmlns + "ns1", ns1);
mix.SetAttributeValue (XNamespace.Xmlns + "ns2", ns2);

This assigns the prefix “ns1” to our XNamespace variable ns1, and “ns2” to ns2. The
X-DOM automatically picks up these attributes when serializing and uses them to
condense the resulting XML. Here’s the result now of calling ToString on mix:

LIN
Q

 to
X

M
L

Names and Namespaces | 467

www.EBooksWorld.ir

<ns1:data xmlns:ns1="http://domain.com/space1"
 xmlns:ns2="http://domain.com/space2">
 <ns2:element>value</ns2:element>
 <ns2:element>value</ns2:element>
 <ns2:element>value</ns2:element>
</ns1:data>

Prefixes don’t change the way you construct, query, or update the X-DOM—for
these activities, you ignore the presence of prefixes and continue to use full names.
Prefixes come into play only when converting to and from XML files or streams.

Prefixes are also honored in serializing attributes. In the following example, we
record a customer’s date of birth and credit as "nil" using the W3C-standard
attribute. The highlighted line ensures that the prefix is serialized without unneces‐
sary namespace repetition:

XNamespace xsi = "http://www.w3.org/2001/XMLSchema-instance";
var nil = new XAttribute (xsi + "nil", true);

var cust = new XElement ("customers",
 new XAttribute (XNamespace.Xmlns + "xsi", xsi),
 new XElement ("customer",
 new XElement ("lastname", "Bloggs"),
 new XElement ("dob", nil),
 new XElement ("credit", nil)
)
);

This is its XML:

<customers xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <customer>
 <lastname>Bloggs</lastname>
 <dob xsi:nil="true" />
 <credit xsi:nil="true" />
 </customer>
</customers>

For brevity, we predeclared the nil XAttribute so that we could use it twice in
building the DOM. You’re allowed to reference the same attribute twice because it’s
automatically duplicated as required.

Annotations
You can attach custom data to any XObject with an annotation. Annotations are
intended for your own private use and are treated as black boxes by X-DOM. If
you’ve ever used the Tag property on a Windows Forms or WPF control, you’ll be
familiar with the concept—the difference is that you have multiple annotations, and
your annotations can be privately scoped. You can create an annotation that other
types cannot even see—let alone overwrite.

468 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

The following methods on XObject add and remove annotations:

public void AddAnnotation (object annotation)
public void RemoveAnnotations<T>() where T : class

The following methods retrieve annotations:

public T Annotation<T>() where T : class
public IEnumerable<T> Annotations<T>() where T : class

Each annotation is keyed by its type, which must be a reference type. The following
adds and then retrieves a string annotation:

XElement e = new XElement ("test");
e.AddAnnotation ("Hello");
Console.WriteLine (e.Annotation<string>()); // Hello

You can add multiple annotations of the same type, and then use the Annotations
method to retrieve a sequence of matches.

A public type such as string doesn’t make a great key, however, because code in
other types can interfere with your annotations. A better approach is to use an inter‐
nal or (nested) private class:

class X
{
 class CustomData { internal string Message; } // Private nested type

 static void Test()
 {
 XElement e = new XElement ("test");
 e.AddAnnotation (new CustomData { Message = "Hello" });
 Console.Write (e.Annotations<CustomData>().First().Message); // Hello
 }
}

To remove annotations, you must also have access to the key’s type:

e.RemoveAnnotations<CustomData>();

Projecting into an X-DOM
So far, we’ve shown how to use LINQ to get data out of an X-DOM. You can also use
LINQ queries to project into an X-DOM. The source can be anything over which
LINQ can query, such as:

• LINQ to SQL or Entity Framework queries
• A local collection
• Another X-DOM

Regardless of the source, the strategy is the same in using LINQ to emit an X-DOM:
first write a functional construction expression that produces the desired X-DOM
shape, and then build a LINQ query around the expression.

LIN
Q

 to
X

M
L

Projecting into an X-DOM | 469

www.EBooksWorld.ir

For instance, suppose we want to retrieve customers from a database into the fol‐
lowing XML:

<customers>
 <customer id="1">
 <name>Sue</name>
 <buys>3</buys>
 </customer>
 ...
</customers>

We start by writing a functional construction expression for the X-DOM using sim‐
ple literals:

var customers =
 new XElement ("customers",
 new XElement ("customer", new XAttribute ("id", 1),
 new XElement ("name", "Sue"),
 new XElement ("buys", 3)
)
);

We then turn this into a projection and build a LINQ query around it:

var customers =
 new XElement ("customers",
 from c in dataContext.Customers
 select
 new XElement ("customer", new XAttribute ("id", c.ID),
 new XElement ("name", c.Name),
 new XElement ("buys", c.Purchases.Count)
)
);

In Entity Framework, you must call .ToList() after retrieving
customers, so that the third line reads:

from c in objectContext.Customers.ToList()

Here’s the result:

<customers>
 <customer id="1">
 <name>Tom</name>
 <buys>3</buys>
 </customer>
 <customer id="2">
 <name>Harry</name>
 <buys>2</buys>
 </customer>
 ...
</customers>

We can see how this works more clearly by constructing the same query in two
steps. First:

470 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

IEnumerable<XElement> sqlQuery =
 from c in dataContext.Customers
 select
 new XElement ("customer", new XAttribute ("id", c.ID),
 new XElement ("name", c.Name),
 new XElement ("buys", c.Purchases.Count)
);

This inner portion is a normal LINQ to SQL query that projects into custom types
(from LINQ to SQL’s perspective). Here’s the second step:

var customers = new XElement ("customers", sqlQuery);

This constructs the root XElement. The only thing unusual is that the content,
sqlQuery, is not a single XElement but an IQueryable<XElement>—which imple‐
ments IEnumerable<XElement>. Remember that in the processing of XML content,
collections are automatically enumerated. So, each XElement gets added as a child
node.

This outer query also defines the line at which the query transitions from being a
database query to a local LINQ to enumerable query. XElement’s constructor doesn’t
know about IQueryable<>, so it forces enumeration of the database query—and
execution of the SQL statement.

Eliminating Empty Elements
Suppose in the preceding example that we also wanted to include details of the cus‐
tomer’s most recent high-value purchase. We could do this as follows:

var customers =
 new XElement ("customers",
 from c in dataContext.Customers
 let lastBigBuy = (from p in c.Purchases
 where p.Price > 1000
 orderby p.Date descending
 select p).FirstOrDefault()
 select
 new XElement ("customer", new XAttribute ("id", c.ID),
 new XElement ("name", c.Name),
 new XElement ("buys", c.Purchases.Count),
 new XElement ("lastBigBuy",
 new XElement ("description", lastBigBuy?.Description,
 new XElement ("price", lastBigBuy?.Price ?? Om)
)
)
);

This emits empty elements, though, for customers with no high-value purchases. (If
it was a local query rather than a database query, it would throw a NullReferenceEx
ception.) In such cases, it would be better to omit the lastBigBuy node entirely. We
can achieve this by wrapping the constructor for the lastBigBuy element in a con‐
ditional operator:

LIN
Q

 to
X

M
L

Projecting into an X-DOM | 471

www.EBooksWorld.ir

select
 new XElement ("customer", new XAttribute ("id", c.ID),
 new XElement ("name", c.Name),
 new XElement ("buys", c.Purchases.Count),
 lastBigBuy == null ? null :
 new XElement ("lastBigBuy",
 new XElement ("description", lastBigBuy.Description),
 new XElement ("price", lastBigBuy.Price)

For customers with no lastBigBuy, a null is emitted instead of an empty XElement.
This is what we want, because null content is simply ignored.

Streaming a Projection
If you’re projecting into an X-DOM only to Save it (or call ToString on it), you can
improve memory efficiency through an XStreamingElement. An XStreamingEle
ment is a cut-down version of XElement that applies deferred loading semantics to its
child content. To use it, you simply replace the outer XElements with XStreamin
gElements:

var customers =
 new XStreamingElement ("customers",
 from c in dataContext.Customers
 select
 new XStreamingElement ("customer", new XAttribute ("id", c.ID),
 new XElement ("name", c.Name),
 new XElement ("buys", c.Purchases.Count)
)
);
customers.Save ("data.xml");

The queries passed into an XStreamingElement’s constructor are not enumerated
until you call Save, ToString, or WriteTo on the element; this avoids loading the
whole X-DOM into memory at once. The flipside is that the queries are reevaluated,
should you re-Save. Also, you cannot traverse an XStreamingElement’s child con‐
tent—it does not expose methods such as Elements or Attributes.

XStreamingElement is not based on XObject—or any other class—because it has
such a limited set of members. The only members it has, besides Save, ToString,
and WriteTo, are:

• An Add method, which accepts content like the constructor

• A Name property

XStreamingElement does not allow you to read content in a streamed fashion—for
this, you must use an XmlReader in conjunction with the X-DOM. We describe how
to do this in the section “Patterns for Using XmlReader/XmlWriter” on page 489 in
Chapter 11.

472 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

Transforming an X-DOM
You can transform an X-DOM by reprojecting it. For instance, suppose we want to
transform an msbuild XML file, used by the C# compiler and Visual Studio to
describe a project, into a simple format suitable for generating a report. An msbuild
file looks like this:

<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/dev...>
 <PropertyGroup>
 <Platform Condition=" '$(Platform)' == '' ">AnyCPU</Platform>
 <ProductVersion>9.0.11209</ProductVersion>
 ...
 </PropertyGroup>
 <ItemGroup>
 <Compile Include="ObjectGraph.cs" />
 <Compile Include="Program.cs" />
 <Compile Include="Properties\AssemblyInfo.cs" />
 <Compile Include="Tests\Aggregation.cs" />
 <Compile Include="Tests\Advanced\RecursiveXml.cs" />
 </ItemGroup>
 <ItemGroup>
 ...
 </ItemGroup>
 ...
</Project>

Let’s say we want to include only files, as follows:

<ProjectReport>
 <File>ObjectGraph.cs</File>
 <File>Program.cs</File>
 <File>Properties\AssemblyInfo.cs</File>
 <File>Tests\Aggregation.cs</File>
 <File>Tests\Advanced\RecursiveXml.cs</File>
</ProjectReport>

The following query performs this transformation:

XElement project = XElement.Load ("myProjectFile.csproj");
XNamespace ns = project.Name.Namespace;
var query =
 new XElement ("ProjectReport",
 from compileItem in
 project.Elements (ns + "ItemGroup").Elements (ns + "Compile")
 let include = compileItem.Attribute ("Include")
 where include != null
 select new XElement ("File", include.Value)
);

The query first extracts all ItemGroup elements and then uses the Elements exten‐
sion method to obtain a flat sequence of all their Compile subelements. Notice that
we had to specify an XML namespace—everything in the original file inherits the
namespace defined by the Project element—so a local element name such as Item
Group won’t work on its own. Then, we extracted the Include attribute value and
projected its value as an element.

LIN
Q

 to
X

M
L

Projecting into an X-DOM | 473

www.EBooksWorld.ir

Advanced transformations
When querying a local collection such as an X-DOM, you’re free to write custom
query operators to assist with more complex queries.

Suppose in the preceding example that we instead wanted a hierarchical output,
based on folders:

<Project>
 <File>ObjectGraph.cs</File>
 <File>Program.cs</File>
 <Folder name="Properties">
 <File>AssemblyInfo.cs</File>
 </Folder>
 <Folder name="Tests">
 <File>Aggregation.cs</File>
 <Folder name="Advanced">
 <File>RecursiveXml.cs</File>
 </Folder>
 </Folder>
</Project>

To produce this, we need to process path strings such as Tests\Advanced\Recursi‐
veXml.cs recursively. The following method does just this: it accepts a sequence of
path strings and emits an X-DOM hierarchy consistent with our desired output:

static IEnumerable<XElement> ExpandPaths (IEnumerable<string> paths)
{
 var brokenUp = from path in paths
 let split = path.Split (new char[] { '\\' }, 2)
 orderby split[0]
 select new
 {
 name = split[0],
 remainder = split.ElementAtOrDefault (1)
 };

 IEnumerable<XElement> files = from b in brokenUp
 where b.remainder == null
 select new XElement ("file", b.name);

 IEnumerable<XElement> folders = from b in brokenUp
 where b.remainder != null
 group b.remainder by b.name into grp
 select new XElement ("folder",
 new XAttribute ("name", grp.Key),
 ExpandPaths (grp)
);
 return files.Concat (folders);
}

The first query splits each path string at the first backslash, into a name + remainder:

Tests\Advanced\RecursiveXml.cs -> Tests + Advanced\RecursiveXml.cs

474 | Chapter 10: LINQ to XML

www.EBooksWorld.ir

If remainder is null, we’re dealing with a straight filename. The files query
extracts these cases.

If remainder is not null, we’ve got a folder. The folders query handles these cases.
Because other files can be in the same folder, it must group by folder name to bring
them all together. For each group, it then executes the same function for the subele‐
ments.

The final result is a concatenation of files and folders. The Concat operator pre‐
serves order, so all the files come first, alphabetically, then all the folders, alphabeti‐
cally.

With this method in place, we can complete the query in two steps. First, we extract
a simple sequence of path strings:

IEnumerable<string> paths =
 from compileItem in
 project.Elements (ns + "ItemGroup").Elements (ns + "Compile")
 let include = compileItem.Attribute ("Include")
 where include != null
 select include.Value;

Then, we feed this into our ExpandPaths method for the final result:

var query = new XElement ("Project", ExpandPaths (paths));

LIN
Q

 to
X

M
L

Projecting into an X-DOM | 475

www.EBooksWorld.ir

www.EBooksWorld.ir

11
Other XML Technologies

The System.Xml namespace comprises the following namespaces and core classes:

System.Xml.*

XmlReader and XmlWriter
High-performance, forward-only cursors for reading or writing an
XML stream

XmlDocument

Represents an XML document in a W3C-style DOM (obsolete)

System.Xml.XLinq

Modern LINQ-centric DOM for working with XML (see Chapter 10)

System.Xml.XmlSchema

Infrastructure and API for (W3C) XSD schemas

System.Xml.Xsl

Infrastructure and API (XslCompiledTransform) for performing (W3C)
XSLT transformations of XML

System.Xml.Serialization

Supports the serialization of classes to and from XML (see Chapter 17)

W3C is an abbreviation for World Wide Web Consortium, where the XML stand‐
ards are defined.

XmlConvert, the static class for parsing and formatting XML strings, is covered in
Chapter 6.

O
ther X

M
L

Techno
lo

g
ies

477

www.EBooksWorld.ir

XmlReader
XmlReader is a high-performance class for reading an XML stream in a low-level,
forward-only manner.

Consider the following XML file:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<customer id="123" status="archived">
 <firstname>Jim</firstname>
 <lastname>Bo</lastname>
</customer>

To instantiate an XmlReader, you call the static XmlReader.Create method, passing
in a Stream, a TextReader, or a URI string. For example:

using (XmlReader reader = XmlReader.Create ("customer.xml"))
 ...

Because XmlReader lets you read from potentially slow sources
(Streams and URIs), it offers asynchronous versions of most
of its methods so that you can easily write nonblocking code.
We’ll cover asynchrony in detail in Chapter 14.

To construct an XmlReader that reads from a string:

XmlReader reader = XmlReader.Create (
 new System.IO.StringReader (myString));

You can also pass in an XmlReaderSettings object to control parsing and validation
options. The following three properties on XmlReaderSettings are particularly use‐
ful for skipping over superfluous content:

bool IgnoreComments // Skip over comment nodes?
bool IgnoreProcessingInstructions // Skip over processing instructions?
bool IgnoreWhitespace // Skip over whitespace?

In the following example, we instruct the reader not to emit whitespace nodes,
which are a distraction in typical scenarios:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader reader = XmlReader.Create ("customer.xml", settings))
 ...

Another useful property on XmlReaderSettings is ConformanceLevel. Its default
value of Document instructs the reader to assume a valid XML document with a sin‐
gle root node. This is a problem if you want to read just an inner portion of XML
containing multiple nodes:

<firstname>Jim</firstname>
<lastname>Bo</lastname>

478 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

To read this without throwing an exception, you must set ConformanceLevel to
Fragment.

XmlReaderSettings also has a property called CloseInput, which indicates whether
to close the underlying stream when the reader is closed (there’s an analogous prop‐
erty on XmlWriterSettings called CloseOutput). The default value for CloseInput
and CloseOutput is false.

Reading Nodes
The units of an XML stream are XML nodes. The reader traverses the stream in tex‐
tual (depth-first) order. The Depth property of the reader returns the current depth
of the cursor.

The most primitive way to read from an XmlReader is to call Read. It advances to the
next node in the XML stream, rather like MoveNext in IEnumerator. The first call to
Read positions the cursor at the first node. When Read returns false, it means the
cursor has advanced past the last node, at which point the XmlReader should be
closed and abandoned.

In this example, we read every node in the XML stream, outputting each node type
as we go:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader reader = XmlReader.Create ("customer.xml", settings))
 while (reader.Read())
 {
 Console.Write (new string (' ',reader.Depth*2)); // Write indentation
 Console.WriteLine (reader.NodeType);
 }

The output is as follows:

XmlDeclaration
Element
 Element
 Text
 EndElement
 Element
 Text
 EndElement
EndElement

Attributes are not included in Read-based traversal (see the
section “Reading Attributes” on page 485 later in this chapter).

NodeType is of type XmlNodeType, which is an enum with these members:

O
ther X

M
L

Techno
lo

g
ies

XmlReader | 479

www.EBooksWorld.ir

None

XmlDeclaration

Element

EndElement

Text

Attribute

Comment

Entity

EndEntity

EntityReference

ProcessingInstruction

CDATA

Document

DocumentType

DocumentFragment

Notation

Whitespace

SignificantWhitespace

Two string properties on XmlReader provide access to a node’s content: Name and
Value. Depending on the node type, either Name or Value (or both) is populated:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;
settings.DtdProcessing = DtdProcessing.Parse; // Required to read DTDs

using (XmlReader r = XmlReader.Create ("customer.xml", settings))
 while (r.Read())
 {
 Console.Write (r.NodeType.ToString().PadRight (17, '-'));
 Console.Write ("> ".PadRight (r.Depth * 3));

 switch (r.NodeType)
 {
 case XmlNodeType.Element:
 case XmlNodeType.EndElement:
 Console.WriteLine (r.Name); break;

 case XmlNodeType.Text:
 case XmlNodeType.CDATA:
 case XmlNodeType.Comment:
 case XmlNodeType.XmlDeclaration:
 Console.WriteLine (r.Value); break;

 case XmlNodeType.DocumentType:
 Console.WriteLine (r.Name + " - " + r.Value); break;

 default: break;
 }
 }

To demonstrate this, we’ll expand our XML file to include a document type, entity,
CDATA, and comment:

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE customer [<!ENTITY tc "Top Customer">]>
<customer id="123" status="archived">
 <firstname>Jim</firstname>
 <lastname>Bo</lastname>
 <quote><![CDATA[C#'s operators include: < > &]]></quote>
 <notes>Jim Bo is a &tc;</notes>
 <!-- That wasn't so bad! -->
</customer>

An entity is like a macro; a CDATA is like a verbatim string (@"...") in C#. Here’s
the result:

480 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

XmlDeclaration---> version="1.0" encoding="utf-8"
DocumentType-----> customer - <!ENTITY tc "Top Customer">
Element----------> customer
Element----------> firstname
Text-------------> Jim
EndElement-------> firstname
Element----------> lastname
Text-------------> Bo
EndElement-------> lastname
Element----------> quote
CDATA------------> C#'s operators include: < > &
EndElement-------> quote
Element----------> notes
Text-------------> Jim Bo is a Top Customer
EndElement-------> notes
Comment----------> That wasn't so bad!
EndElement-------> customer

XmlReader automatically resolves entities, so in our example, the entity reference
&tc; expands into Top Customer.

Reading Elements
Often, you already know the structure of the XML document that you’re reading. To
help with this, XmlReader provides a range of methods that read while presuming a
particular structure. This simplifies your code, as well as performing some valida‐
tion at the same time.

XmlReader throws an XmlException if any validation fails.
XmlException has LineNumber and LinePosition properties
indicating where the error occurred—logging this information
is essential if the XML file is large!

ReadStartElement verifies that the current NodeType is Element, and then calls
Read. If you specify a name, it verifies that it matches that of the current element.

ReadEndElement verifies that the current NodeType is EndElement, and then calls
Read.

For instance, we could read this:

<firstname>Jim</firstname>

as follows:

reader.ReadStartElement ("firstname");
Console.WriteLine (reader.Value);
reader.Read();
reader.ReadEndElement();

The ReadElementContentAsString method does all of this in one hit. It reads a start
element, a text node, and an end element, returning the content as a string:

string firstName = reader.ReadElementContentAsString ("firstname", "");

O
ther X

M
L

Techno
lo

g
ies

XmlReader | 481

www.EBooksWorld.ir

The second argument refers to the namespace, which is blank in this example.
There are also typed versions of this method, such as ReadElementContentAsInt,
which parse the result. Returning to our original XML document:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<customer id="123" status="archived">
 <firstname>Jim</firstname>
 <lastname>Bo</lastname>
 <creditlimit>500.00</creditlimit> <!-- OK, we sneaked this in! -->
</customer>

We could read it in as follows:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader r = XmlReader.Create ("customer.xml", settings))
{
 r.MoveToContent(); // Skip over the XML declaration
 r.ReadStartElement ("customer");
 string firstName = r.ReadElementContentAsString ("firstname", "");
 string lastName = r.ReadElementContentAsString ("lastname", "");
 decimal creditLimit = r.ReadElementContentAsDecimal ("creditlimit", "");

 r.MoveToContent(); // Skip over that pesky comment
 r.ReadEndElement(); // Read the closing customer tag
}

The MoveToContent method is really useful. It skips over all
the fluff: XML declarations, whitespace, comments, and pro‐
cessing instructions. You can also instruct the reader to do
most of this automatically through the properties on XmlRea
derSettings.

Optional elements
In the previous example, suppose that <lastname> was optional. The solution to
this is straightforward:

r.ReadStartElement ("customer");
string firstName = r. ReadElementContentAsString ("firstname", "");
string lastName = r.Name == "lastname"
 ? r.ReadElementContentAsString() : null;
decimal creditLimit = r.ReadElementContentAsDecimal ("creditlimit", "");

Random element order
The examples in this section rely on elements appearing in the XML file in a set
order. If you need to cope with elements appearing in any order, the easiest solution
is to read that section of the XML into an X-DOM. We describe how to do this later
in the section “Patterns for Using XmlReader/XmlWriter” on page 489.

482 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

Empty elements
The way that XmlReader handles empty elements presents a horrible trap. Consider
the following element:

<customerList></customerList>

In XML, this is equivalent to:

<customerList/>

And yet, XmlReader treats the two differently. In the first case, the following code
works as expected:

reader.ReadStartElement ("customerList");
reader.ReadEndElement();

In the second case, ReadEndElement throws an exception, because there is no sepa‐
rate “end element” as far as XmlReader is concerned. The workaround is to check for
an empty element as follows:

bool isEmpty = reader.IsEmptyElement;
reader.ReadStartElement ("customerList");
if (!isEmpty) reader.ReadEndElement();

In reality, this is a nuisance only when the element in question may contain child
elements (such as a customer list). With elements that wrap simple text (such as
firstname), you can avoid the whole issue by calling a method such as ReadElement
ContentAsString. The ReadElementXXX methods handle both kinds of empty ele‐
ments correctly.

Other ReadXXX methods
Table 11-1 summarizes all ReadXXX methods in XmlReader. Most of these are
designed to work with elements. The sample XML fragment shown in bold is the
section read by the method described.

Table 11-1. Read methods

Members Works on
NodeType

Sample XML fragment Input
parameters

Data
returned

ReadContentAsXXX Text <a>x x

ReadString Text <a>x x

ReadElementString Element <a>x x

ReadElementContentAsXXX Element <a>x x

ReadInnerXml Element <a>x x

ReadOuterXml Element <a>x <a>x

ReadStartElement Element <a>x

ReadEndElement Element <a>x

O
ther X

M
L

Techno
lo

g
ies

XmlReader | 483

www.EBooksWorld.ir

Members Works on
NodeType

Sample XML fragment Input
parameters

Data
returned

ReadSubtree Element <a>x <a>x

ReadToDescendant Element <a>x "b"

ReadToFollowing Element <a>x "b"

ReadToNextSibling Element <a>x "b"

ReadAttributeValue Attribute See “Reading Attributes”
on page 485

The ReadContentAsXXX methods parse a text node into type XXX. Internally, the
XmlConvert class performs the string-to-type conversion. The text node can be
within an element or an attribute.

The ReadElementContentAsXXX methods are wrappers around corresponding Read
ContentAsXXX methods. They apply to the element node, rather than the text node
enclosed by the element.

The typed ReadXXX methods also include versions that read
base 64 and BinHex formatted data into a byte array.

ReadInnerXml is typically applied to an element, and it reads and returns an element
and all its descendants. When applied to an attribute, it returns the value of the
attribute.

ReadOuterXml is the same as ReadInnerXml, except it includes rather than excludes
the element at the cursor position.

ReadSubtree returns a proxy reader that provides a view over just the current ele‐
ment (and its descendants). The proxy reader must be closed before the original
reader can be safely read again. At the point the proxy reader is closed, the cursor
position of the original reader moves to the end of the subtree.

ReadToDescendant moves the cursor to the start of the first descendant node with
the specified name/namespace.

ReadToFollowing moves the cursor to the start of the first node—regardless of
depth—with the specified name/namespace.

ReadToNextSibling moves the cursor to the start of the first sibling node with the
specified name/namespace.

ReadString and ReadElementString behave like ReadContentAsString and ReadE
lementContentAsString, except that they throw an exception if there’s more than a
single text node within the element. In general, these methods should be avoided
because they throw an exception if an element contains a comment.

484 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

Reading Attributes
XmlReader provides an indexer giving you direct (random) access to an element’s
attributes—by name or position. Using the indexer is equivalent to calling GetAttri
bute.

Given the following XML fragment:

<customer id="123" status="archived"/>

we could read its attributes as follows:

Console.WriteLine (reader ["id"]); // 123
Console.WriteLine (reader ["status"]); // archived
Console.WriteLine (reader ["bogus"] == null); // True

The XmlReader must be positioned on a start element in order
to read attributes. After calling ReadStartElement, the
attributes are gone forever!

Although attribute order is semantically irrelevant, you can access attributes by
their ordinal position. We could rewrite the preceding example as follows:

Console.WriteLine (reader [0]); // 123
Console.WriteLine (reader [1]); // archived

The indexer also lets you specify the attribute’s namespace—if it has one.

AttributeCount returns the number of attributes for the current node.

Attribute nodes
To explicitly traverse attribute nodes, you must make a special diversion from the
normal path of just calling Read. A good reason to do so is if you want to parse
attribute values into other types, via the ReadContentAsXXX methods.

The diversion must begin from a start element. To make the job easier, the forward-
only rule is relaxed during attribute traversal: you can jump to any attribute (for‐
ward or backward) by calling MoveToAttribute.

MoveToElement returns you to the start element from any‐
place within the attribute node diversion.

Returning to our previous example:

<customer id="123" status="archived"/>

we can do this:

reader.MoveToAttribute ("status");
string status = reader.ReadContentAsString();

reader.MoveToAttribute ("id");
int id = reader.ReadContentAsInt();

O
ther X

M
L

Techno
lo

g
ies

XmlReader | 485

www.EBooksWorld.ir

MoveToAttribute returns false if the specified attribute doesn’t exist.

You can also traverse each attribute in sequence by calling the MoveToFirstAttri
bute and then the MoveToNextAttribute methods:

if (reader.MoveToFirstAttribute())
 do
 {
 Console.WriteLine (reader.Name + "=" + reader.Value);
 }
 while (reader.MoveToNextAttribute());

// OUTPUT:
id=123
status=archived

Namespaces and Prefixes
XmlReader provides two parallel systems for referring to element and attribute
names:

• Name

• NamespaceURI and LocalName

Whenever you read an element’s Name property or call a method that accepts a single
name argument, you’re using the first system. This works well if no namespaces or
prefixes are present; otherwise, it acts in a crude and literal manner. Namespaces are
ignored, and prefixes are included exactly as they were written. For example:

Sample fragment Name

<customer ...> customer

<customer xmlns='blah' ...> customer

<x:customer ...> x:customer

The following code works with the first two cases:

reader.ReadStartElement ("customer");

The following is required to handle the third case:

reader.ReadStartElement ("x:customer");

The second system works through two namespace-aware properties: NamespaceURI
and LocalName. These properties take into account prefixes and default namespaces
defined by parent elements. Prefixes are automatically expanded. This means that
NamespaceURI always reflects the semantically correct namespace for the current
element, and LocalName is always free of prefixes.

When you pass two name arguments into a method such as ReadStartElement,
you’re using this same system. For example, consider the following XML:

486 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

<customer xmlns="DefaultNamespace" xmlns:other="OtherNamespace">
 <address>
 <other:city>
 ...

We could read this as follows:

reader.ReadStartElement ("customer", "DefaultNamespace");
reader.ReadStartElement ("address", "DefaultNamespace");
reader.ReadStartElement ("city", "OtherNamespace");

Abstracting away prefixes is usually exactly what you want. If necessary, you can see
what prefix was used through the Prefix property and convert it into a namespace
by calling LookupNamespace.

XmlWriter
XmlWriter is a forward-only writer of an XML stream. The design of XmlWriter is
symmetrical to XmlReader.

As with XmlTextReader, you construct an XmlWriter by calling Create with an
optional settings object. In the following example, we enable indenting to make
the output more human-readable, and then write a simple XML file:

XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;

using (XmlWriter writer = XmlWriter.Create ("..\\..\\foo.xml", settings))
{
 writer.WriteStartElement ("customer");
 writer.WriteElementString ("firstname", "Jim");
 writer.WriteElementString ("lastname"," Bo");
 writer.WriteEndElement();
}

This produces the following document (the same as the file we read in the first
example of XmlReader):

<?xml version="1.0" encoding="utf-8" ?>
<customer>
 <firstname>Jim</firstname>
 <lastname>Bo</lastname>
</customer>

XmlWriter automatically writes the declaration at the top unless you indicate other‐
wise in XmlWriterSettings, by setting OmitXmlDeclaration to true or Conforman
ceLevel to Fragment. The latter also permits writing multiple root nodes—some‐
thing that otherwise throws an exception.

The WriteValue method writes a single text node. It accepts both string and non‐
string types such as bool and DateTime, internally calling XmlConvert to perform
XML-compliant string conversions:

O
ther X

M
L

Techno
lo

g
ies

XmlWriter | 487

www.EBooksWorld.ir

writer.WriteStartElement ("birthdate");
writer.WriteValue (DateTime.Now);
writer.WriteEndElement();

In contrast, if we call:

WriteElementString ("birthdate", DateTime.Now.ToString());

the result would be both non-XML-compliant and vulnerable to incorrect parsing.

WriteString is equivalent to calling WriteValue with a string. XmlWriter automati‐
cally escapes characters that would otherwise be illegal within an attribute or ele‐
ment, such as & < >, and extended Unicode characters.

Writing Attributes
You can write attributes immediately after writing a start element:

writer.WriteStartElement ("customer");
writer.WriteAttributeString ("id", "1");
writer.WriteAttributeString ("status", "archived");

To write nonstring values, call WriteStartAttribute, WriteValue, and then Write
EndAttribute.

Writing Other Node Types
XmlWriter also defines the following methods for writing other kinds of nodes:

WriteBase64 // for binary data
WriteBinHex // for binary data
WriteCData
WriteComment
WriteDocType
WriteEntityRef
WriteProcessingInstruction
WriteRaw
WriteWhitespace

WriteRaw directly injects a string into the output stream. There is also a WriteNode
method that accepts an XmlReader, echoing everything from the given XmlReader.

Namespaces and Prefixes
The overloads for the Write* methods allow you to associate an element or attribute
with a namespace. Let’s rewrite the contents of the XML file in our previous exam‐
ple. This time we will associate all the elements with the http://oreilly.com name‐
space, declaring the prefix o at the customer element:

writer.WriteStartElement ("o", "customer", "http://oreilly.com");
writer.WriteElementString ("o", "firstname", "http://oreilly.com", "Jim");
writer.WriteElementString ("o", "lastname", "http://oreilly.com", "Bo");
writer.WriteEndElement();

The output is now as follows:

488 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<o:customer xmlns:o='http://oreilly.com'>
 <o:firstname>Jim</o:firstname>
 <o:lastname>Bo</o:lastname>
</o:customer>

Notice how for brevity XmlWriter omits the child element’s namespace declarations
when they are already declared by the parent element.

Patterns for Using XmlReader/XmlWriter
Working with Hierarchical Data
Consider the following classes:

public class Contacts
{
 public IList<Customer> Customers = new List<Customer>();
 public IList<Supplier> Suppliers = new List<Supplier>();
}

public class Customer { public string FirstName, LastName; }
public class Supplier { public string Name; }

Suppose you want to use XmlReader and XmlWriter to serialize a Contacts object to
XML as in the following:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<contacts>
 <customer id="1">
 <firstname>Jay</firstname>
 <lastname>Dee</lastname>
 </customer>
 <customer> <!-- we'll assume id is optional -->
 <firstname>Kay</firstname>
 <lastname>Gee</lastname>
 </customer>
 <supplier>
 <name>X Technologies Ltd</name>
 </supplier>
</contacts>

The best approach is not to write one big method, but to encapsulate XML func‐
tionality in the Customer and Supplier types themselves by writing ReadXml and
WriteXml methods on these types. The pattern in doing so is straightforward:

• ReadXml and WriteXml leave the reader/writer at the same depth when they
exit.

• ReadXml reads the outer element, whereas WriteXml writes only its inner con‐
tent.

Here’s how we would write the Customer type:

O
ther X

M
L

Techno
lo

g
ies

Patterns for Using XmlReader/XmlWriter | 489

www.EBooksWorld.ir

public class Customer
{
 public const string XmlName = "customer";
 public int? ID;
 public string FirstName, LastName;

 public Customer () { }
 public Customer (XmlReader r) { ReadXml (r); }

 public void ReadXml (XmlReader r)
 {
 if (r.MoveToAttribute ("id")) ID = r.ReadContentAsInt();
 r.ReadStartElement();
 FirstName = r.ReadElementContentAsString ("firstname", "");
 LastName = r.ReadElementContentAsString ("lastname", "");
 r.ReadEndElement();
 }

 public void WriteXml (XmlWriter w)
 {
 if (ID.HasValue) w.WriteAttributeString ("id", "", ID.ToString());
 w.WriteElementString ("firstname", FirstName);
 w.WriteElementString ("lastname", LastName);
 }
}

Notice that ReadXml reads the outer start and end element nodes. If its caller did this
job instead, Customer couldn’t read its own attributes. The reason for not making
WriteXml symmetrical in this regard is twofold:

• The caller might need to choose how the outer element is named.
• The caller might need to write extra XML attributes, such as the element’s sub‐

type (which could then be used to decide which class to instantiate when read‐
ing back the element).

Another benefit of following this pattern is that it makes your implementation com‐
patible with IXmlSerializable (see Chapter 17).

The Supplier class is analogous:

public class Supplier
{
 public const string XmlName = "supplier";
 public string Name;

 public Supplier () { }
 public Supplier (XmlReader r) { ReadXml (r); }

 public void ReadXml (XmlReader r)
 {
 r.ReadStartElement();
 Name = r.ReadElementContentAsString ("name", "");
 r.ReadEndElement();

490 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

 }

 public void WriteXml (XmlWriter w)
 {
 w.WriteElementString ("name", Name);
 }
}

With the Contacts class, we must enumerate the customers element in ReadXml,
checking whether each subelement is a customer or a supplier. We also have to code
around the empty element trap:

public void ReadXml (XmlReader r)
{
 bool isEmpty = r.IsEmptyElement; // This ensures we don't get
 r.ReadStartElement(); // snookered by an empty
 if (isEmpty) return; // <contacts/> element!
 while (r.NodeType == XmlNodeType.Element)
 {
 if (r.Name == Customer.XmlName) Customers.Add (new Customer (r));
 else if (r.Name == Supplier.XmlName) Suppliers.Add (new Supplier (r));
 else
 throw new XmlException ("Unexpected node: " + r.Name);
 }
 r.ReadEndElement();
}

public void WriteXml (XmlWriter w)
{
 foreach (Customer c in Customers)
 {
 w.WriteStartElement (Customer.XmlName);
 c.WriteXml (w);
 w.WriteEndElement();
 }
 foreach (Supplier s in Suppliers)
 {
 w.WriteStartElement (Supplier.XmlName);
 s.WriteXml (w);
 w.WriteEndElement();
 }
}

Mixing XmlReader/XmlWriter with an X-DOM
You can fly in an X-DOM at any point in the XML tree where XmlReader or
XmlWriter becomes too cumbersome. Using the X-DOM to handle inner elements
is an excellent way to combine X-DOM’s ease of use with the low-memory footprint
of XmlReader and XmlWriter.

O
ther X

M
L

Techno
lo

g
ies

Patterns for Using XmlReader/XmlWriter | 491

www.EBooksWorld.ir

Using XmlReader with XElement
To read the current element into an X-DOM, you call XNode.ReadFrom, passing in
the XmlReader. Unlike XElement.Load, this method is not “greedy” in that it doesn’t
expect to see a whole document. Instead, it reads just the end of the current subtree.

For instance, suppose we have an XML logfile structured as follows:

<log>
 <logentry id="1">
 <date>...</date>
 <source>...</source>
 ...
 </logentry>
 ...
</log>

If there were a million logentry elements, reading the whole thing into an X-DOM
would waste memory. A better solution is to traverse each logentry with an
XmlReader, and then use XElement to process the elements individually:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader r = XmlReader.Create ("logfile.xml", settings))
{
 r.ReadStartElement ("log");
 while (r.Name == "logentry")
 {
 XElement logEntry = (XElement) XNode.ReadFrom (r);
 int id = (int) logEntry.Attribute ("id");
 DateTime date = (DateTime) logEntry.Element ("date");
 string source = (string) logEntry.Element ("source");
 ...
 }
 r.ReadEndElement();
}

If you follow the pattern described in the previous section, you can slot an XElement
into a custom type’s ReadXml or WriteXml method without the caller ever knowing
you’ve cheated! For instance, we could rewrite Customer’s ReadXml method as fol‐
lows:

public void ReadXml (XmlReader r)
{
 XElement x = (XElement) XNode.ReadFrom (r);
 FirstName = (string) x.Element ("firstname");
 LastName = (string) x.Element ("lastname");
}

XElement collaborates with XmlReader to ensure that namespaces are kept intact
and prefixes are properly expanded—even if defined at an outer level. So, if our
XML file read like this:

492 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

<log xmlns="http://loggingspace">
 <logentry id="1">
 ...

the XElements we constructed at the logentry level would correctly inherit the
outer namespace.

Using XmlWriter with XElement
You can use an XElement just to write inner elements to an XmlWriter. The follow‐
ing code writes a million logentry elements to an XML file using XElement—
without storing the whole thing in memory:

using (XmlWriter w = XmlWriter.Create ("log.xml"))
{
 w.WriteStartElement ("log");
 for (int i = 0; i < 1000000; i++)
 {
 XElement e = new XElement ("logentry",
 new XAttribute ("id", i),
 new XElement ("date", DateTime.Today.AddDays (-1)),
 new XElement ("source", "test"));
 e.WriteTo (w);
 }
 w.WriteEndElement ();
}

Using an XElement incurs minimal execution overhead. If we amend this example
to use XmlWriter throughout, there’s no measurable difference in execution time.

XSD and Schema Validation
The content of a particular XML document is nearly always domain-specific, such
as a Microsoft Word document, an application configuration document, or a web
service. For each domain, the XML file conforms to a particular pattern. There are
several standards for describing the schema of such a pattern, to standardize and
automate the interpretation and validation of XML documents. The most widely
accepted standard is XSD, short for XML Schema Definition. Its precursors, DTD
and XDR, are also supported by System.Xml.

Consider the following XML document:

<?xml version="1.0"?>
<customers>
 <customer id="1" status="active">
 <firstname>Jim</firstname>
 <lastname>Bo</lastname>
 </customer>
 <customer id="1" status="archived">
 <firstname>Thomas</firstname>
 <lastname>Jefferson</lastname>
 </customer>
</customers>

O
ther X

M
L

Techno
lo

g
ies

XSD and Schema Validation | 493

www.EBooksWorld.ir

We can write an XSD for this document as follows:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="customers">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="customer">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string" />
 <xs:element name="lastname" type="xs:string" />
 </xs:sequence>
 <xs:attribute name="id" type="xs:int" use="required" />
 <xs:attribute name="status" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

As you can see, XSD documents are themselves written in XML. Furthermore, an
XSD document is describable with XSD—you can find that definition at http://
www.w3.org/2001/xmlschema.xsd.

Performing Schema Validation
You can validate an XML file or document against one or more schemas before
reading or processing it. There are a number of reasons to do so:

• You can get away with less error checking and exception handling.
• Schema validation picks up errors you might otherwise overlook.
• Error messages are detailed and informative.

To perform validation, plug a schema into an XmlReader, an XmlDocument, or an X-
DOM object, and then read or load the XML as you would normally. Schema vali‐
dation happens automatically as content is read, so the input stream is not read
twice.

Validating with an XmlReader
Here’s how to plug a schema from the file customers.xsd into an XmlReader:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;
settings.Schemas.Add (null, "customers.xsd");

using (XmlReader r = XmlReader.Create ("customers.xml", settings))
 ...

494 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

http://www.w3.org/2001/xmlschema.xsd
http://www.w3.org/2001/xmlschema.xsd

If the schema is inline, set the following flag instead of adding to Schemas:

settings.ValidationFlags |= XmlSchemaValidationFlags.ProcessInlineSchema;

You then Read as you would normally. If schema validation fails at any point, an
XmlSchemaValidationException is thrown.

Calling Read on its own validates both elements and attributes:
you don’t need to navigate to each individual attribute for it to
be validated.

If you want only to validate the document, you can do this:

using (XmlReader r = XmlReader.Create ("customers.xml", settings))
 try { while (r.Read()) ; }
 catch (XmlSchemaValidationException ex)
 {
 ...
 }

XmlSchemaValidationException has properties for the error Message, LineNumber,
and LinePosition. In this case, it only tells you about the first error in the docu‐
ment. If you want to report on all errors in the document, you instead must handle
the ValidationEventHandler event:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;
settings.Schemas.Add (null, "customers.xsd");
settings.ValidationEventHandler += ValidationHandler;
using (XmlReader r = XmlReader.Create ("customers.xml", settings))
 while (r.Read()) ;

When you handle this event, schema errors no longer throw exceptions. Instead,
they fire your event handler:

static void ValidationHandler (object sender, ValidationEventArgs e)
{
 Console.WriteLine ("Error: " + e.Exception.Message);
}

The Exception property of ValidationEventArgs contains the XmlSchemaValida
tionException that would have otherwise been thrown.

The System.Xml namespace also contains a class called XmlVa
lidatingReader. This was used to perform schema validation
prior to Framework 2.0, and it is now deprecated.

Validating an X-DOM
To validate an XML file or stream while reading into an X-DOM, you create an
XmlReader, plug in the schemas, and then use the reader to load the DOM:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;
settings.Schemas.Add (null, "customers.xsd");

O
ther X

M
L

Techno
lo

g
ies

XSD and Schema Validation | 495

www.EBooksWorld.ir

XDocument doc;
using (XmlReader r = XmlReader.Create ("customers.xml", settings))
 try { doc = XDocument.Load (r); }
 catch (XmlSchemaValidationException ex) { ... }

You can also validate an XDocument or XElement that’s already in memory by calling
extension methods in System.Xml.Schema. These methods accept an XmlSchemaSet
(a collection of schemas) and a validation event handler:

XDocument doc = XDocument.Load (@"customers.xml");
XmlSchemaSet set = new XmlSchemaSet ();
set.Add (null, @"customers.xsd");
StringBuilder errors = new StringBuilder ();
doc.Validate (set, (sender, args) => { errors.AppendLine
 (args.Exception.Message); }
);
Console.WriteLine (errors.ToString());

XSLT
XSLT stands for Extensible Stylesheet Language Transformations. It is an XML lan‐
guage that describes how to transform one XML language into another. The
quintessential example of such a transformation is transforming an XML document
(that typically describes data) into an XHTML document (that describes a formatted
document).

Consider the following XML file:

<customer>
 <firstname>Jim</firstname>
 <lastname>Bo</lastname>
</customer>

The following XSLT file describes such a transformation:

<?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:template match="/">
 <html>
 <p><xsl:value-of select="//firstname"/></p>
 <p><xsl:value-of select="//lastname"/></p>
 </html>
 </xsl:template>
</xsl:stylesheet>

The output is as follows:

<html>
 <p>Jim</p>
 <p>Bo</p>
</html>

496 | Chapter 11: Other XML Technologies

www.EBooksWorld.ir

The System.Xml.Xsl.XslCompiledTransform transform class efficiently performs
XSLT transforms. It renders XmlTransform obsolete. XslCompiledTransform works
very simply:

XslCompiledTransform transform = new XslCompiledTransform();
transform.Load ("test.xslt");
transform.Transform ("input.xml", "output.xml");

Generally, it’s more useful to use the overload of Transform that accepts an
XmlWriter rather than an output file, so you can control the formatting.

O
ther X

M
L

Techno
lo

g
ies

XSLT | 497

www.EBooksWorld.ir

www.EBooksWorld.ir

12
Disposal and Garbage Collection

Some objects require explicit teardown code to release resources such as open files,
locks, operating system handles, and unmanaged objects. In .NET parlance, this is
called disposal, and it is supported through the IDisposable interface. The managed
memory occupied by unused objects must also be reclaimed at some point; this
function is known as garbage collection and is performed by the CLR.

Disposal differs from garbage collection in that disposal is usually explicitly instiga‐
ted; garbage collection is totally automatic. In other words, the programmer takes
care of such things as releasing file handles, locks, and operating system resources
while the CLR takes care of releasing memory.

This chapter discusses both disposal and garbage collection, also describing C#
finalizers and the pattern by which they can provide a backup for disposal. Lastly,
we discuss the intricacies of the garbage collector and other memory management
options.

IDisposable, Dispose, and Close
The .NET Framework defines a special interface for types requiring a tear-down
method:

public interface IDisposable
{
 void Dispose();
}

C#’s using statement provides a syntactic shortcut for calling Dispose on objects
that implement IDisposable, using a try/finally block. For example:

using (FileStream fs = new FileStream ("myFile.txt", FileMode.Open))
{
 // ... Write to the file ...
}

G
arb

ag
e

C
o

llectio
n

499

www.EBooksWorld.ir

1 In “Interrupt and Abort” in Chapter 22, we describe how aborting a thread can violate the safety
of this pattern. This is rarely an issue in practice because aborting threads is widely discouraged
for precisely this (and other) reasons.

The compiler converts this to:

FileStream fs = new FileStream ("myFile.txt", FileMode.Open);
try
{
 // ... Write to the file ...
}
finally
{
 if (fs != null) ((IDisposable)fs).Dispose();
}

The finally block ensures that the Dispose method is called even when an excep‐
tion is thrown1 or the code exits the block early.

In simple scenarios, writing your own disposable type is just a matter of implement‐
ing IDisposable and writing the Dispose method:

sealed class Demo : IDisposable
{
 public void Dispose()
 {
 // Perform cleanup / tear-down.
 ...
 }
}

This pattern works well in simple cases and is appropriate for
sealed classes. In “Calling Dispose from a Finalizer” on page
508, we’ll describe a more elaborate pattern that can provide a
backup for consumers that forget to call Dispose. With
unsealed types, there’s a strong case for following this latter
pattern from the outset—otherwise, it becomes very messy if
the subtype wants to add such functionality itself.

Standard Disposal Semantics
The Framework follows a de facto set of rules in its disposal logic. These rules are
not hard-wired to the Framework or C# language in any way; their purpose is to
define a consistent protocol to consumers. Here they are:

1. Once disposed, an object is beyond redemption. It cannot be reactivated, and
calling its methods or properties (other than Dispose) throws an ObjectDispo
sedException.

2. Calling an object’s Dispose method repeatedly causes no error.

500 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

3. If disposable object x “owns” disposable object y, x’s Dispose method automati‐
cally calls y’s Dispose method—unless instructed otherwise.

These rules are also helpful when writing your own types, though not mandatory.
Nothing prevents you from writing an “Undispose” method, other than, perhaps,
the flak you might cop from colleagues!

According to rule 3, a container object automatically disposes its child objects. A
good example is a Windows container control such as a Form or Panel. The con‐
tainer may host many child controls, yet you don’t dispose every one of them explic‐
itly: closing or disposing the parent control or form takes care of the whole lot.
Another example is when you wrap a FileStream in a DeflateStream. Disposing
the DeflateStream also disposes the FileStream—unless you instructed otherwise
in the constructor.

Close and Stop
Some types define a method called Close in addition to Dispose. The Framework is
not completely consistent on the semantics of a Close method, although in nearly
all cases it’s either:

• Functionally identical to Dispose

• A functional subset of Dispose

An example of the latter is IDbConnection: a Closed connection can be re-Opened; a
Disposed connection cannot. Another example is a Windows Form activated with
ShowDialog: Close hides it; Dispose releases its resources.

Some classes define a Stop method (e.g., Timer or HttpListener). A Stop method
may release unmanaged resources, like Dispose, but unlike Dispose, it allows for
re-Starting.

With WinRT, Close is considered identical to Dispose—in fact, the runtime projects
methods called Close into methods called Dispose to make their types friendly to
using statements.

When to Dispose
A safe rule to follow (in nearly all cases) is “if in doubt, dispose.” A disposable object
—if it could talk—would say the following:

When you’ve finished with me, let me know. If simply abandoned, I might cause
trouble for other object instances, the application domain, the computer, the net‐

work, or the database!

Objects wrapping an unmanaged resource handle will nearly always require dis‐
posal in order to free the handle. Examples include Windows Forms controls, file or
network streams, network sockets, GDI+ pens, brushes, and bitmaps. Conversely, if

G
arb

ag
e

C
o

llectio
n

IDisposable, Dispose, and Close | 501

www.EBooksWorld.ir

a type is disposable, it will often (but not always) reference an unmanaged handle,
directly or indirectly. This is because unmanaged handles provide the gateway to the
“outside world” of operating system resources, network connections, database locks
—the primary means by which objects can create trouble outside of themselves if
improperly abandoned.

There are, however, three scenarios for not disposing:

• When you don’t “own” the object e.g., when obtaining a shared object via a
static field or property

• When an object’s Dispose method does something that you don’t want

• When an object’s Dispose method is unnecessary by design, and disposing that
object would add complexity to your program

The first category is rare. The main cases are in the System.Drawing namespace: the
GDI+ objects obtained through static fields or properties (such as Brushes.Blue)
must never be disposed because the same instance is used throughout the life of the
application. Instances that you obtain through constructors, however (such as new
SolidBrush), should be disposed, as should instances obtained through static meth‐
ods (such as Font.FromHdc).

The second category is more common. There are some good examples in the Sys
tem.IO and System.Data namespaces:

Type Disposal function When not to dispose

MemoryStream Prevents further I/O When you later need to read/write the
stream

StreamReader, StreamWriter Flushes the reader/
writer and closes the
underlying stream

When you want to keep the underlying
stream open (you must instead call
Flush on a StreamWriter when
you’re done)

IDbConnection Releases a database
connection and clears
the connection string

If you need to re-Open it, you should call
Close instead of Dispose

DataContext (LINQ to SQL) Prevents further use When you might have lazily evaluated
queries connected to that context

MemoryStream’s Dispose method disables only the object; it doesn’t perform any
critical cleanup because a MemoryStream holds no unmanaged handles or other such
resources.

The third category includes the following classes: WebClient, StringReader, String
Writer, and BackgroundWorker (in System.ComponentModel). These types are dis‐
posable under the duress of their base class rather than through a genuine need to
perform essential cleanup. If you happen to instantiate and work with such an

502 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

object entirely in one method, wrapping it in a using block adds little inconven‐
ience. But if the object is longer-lasting, keeping track of when it’s no longer used so
that you can dispose of it adds unnecessary complexity. In such cases, you can sim‐
ply ignore object disposal.

Ignoring disposal can sometimes incur a performance cost
(see “Calling Dispose from a Finalizer” on page 508).

Opt-in Disposal
Because IDisposable makes a type tractable with C#’s using construct, there’s a
temptation to extend the reach of IDisposable to nonessential activities. For
instance:

public sealed class HouseManager : IDisposable
{
 public void Dispose()
 {
 CheckTheMail();
 }
 ...
}

The idea is that a consumer of this class can choose to circumvent the nonessential
cleanup—simply by not calling Dispose. This, however, relies on the consumer
knowing what’s inside HouseManager’s Dispose method. It also breaks if essential
cleanup activity is later added:

public void Dispose()
{
 CheckTheMail(); // Nonessential
 LockTheHouse(); // Essential
}

The solution to this problem is the opt-in disposal pattern:

public sealed class HouseManager : IDisposable
{
 public readonly bool CheckMailOnDispose;

 public HouseManager (bool checkMailOnDispose)
 {
 CheckMailOnDispose = checkMailOnDispose;
 }

 public void Dispose()
 {
 if (CheckMailOnDispose) CheckTheMail();
 LockTheHouse();
 }
 ...
}

G
arb

ag
e

C
o

llectio
n

IDisposable, Dispose, and Close | 503

www.EBooksWorld.ir

The consumer can then always call Dispose—providing simplicity and avoiding the
need for special documentation or reflection. An example of where this pattern is
implemented is in the DeflateStream class, in System.IO.Compression. Here’s its
constructor:

public DeflateStream (Stream stream, CompressionMode mode, bool leaveOpen)

The nonessential activity is closing the inner stream (the first parameter) upon dis‐
posal. There are times when you want to leave the inner stream open and yet still
dispose the DeflateStream to perform its essential tear-down activity (flushing buf‐
fered data).

This pattern might look simple, yet until Framework 4.5, it escaped StreamReader
and StreamWriter (in the System.IO namespace). The result is messy: Stream
Writer must expose another method (Flush) to perform essential cleanup for con‐
sumers not calling Dispose. (Framework 4.5 now exposes a constructor on these
classes that lets you keep the stream open.) The CryptoStream class in Sys
tem.Security.Cryptography suffers a similar problem and requires that you call
FlushFinalBlock to tear it down while keeping the inner stream open.

You could describe this as an ownership issue. The question
for a disposable object is: do I really own the underlying
resource that I’m using? Or am I just renting it from someone
else who manages both the underlying resource lifetime and,
by some undocumented contract, my lifetime?
Following the opt-in pattern avoids this problem by making
the ownership contract documented and explicit.

Clearing Fields in Disposal
In general, you don’t need to clear an object’s fields in its Dispose method. However,
it is good practice to unsubscribe from events that the object has subscribed to
internally over its lifetime (see “Managed Memory Leaks” on page 516 for an exam‐
ple). Unsubscribing from such events avoids receiving unwanted event notifications
—and avoids unintentionally keeping the object alive in the eyes of the garbage col‐
lector (GC).

A Dispose method itself does not cause (managed) memory
to be released—this can happen only in garbage collection.

It’s also worth setting a field to indicate that the object is disposed so that you can
throw an ObjectDisposedException if a consumer later tries to call members on
the object. A good pattern is to use a publicly readable automatic property for this:

public bool IsDisposed { get; private set; }

Although technically unnecessary, it can also be good to clear an object’s own event
handlers (by setting them to null) in the Dispose method. This eliminates the pos‐
sibility of those events firing during or after disposal.

504 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

Occasionally, an object holds high-value secrets, such as encryption keys. In these
cases, it can make sense to clear such data from fields during disposal (to avoid dis‐
covery by less privileged assemblies or malware). The SymmetricAlgorithm class in
System.Security.Cryptography does exactly this, by calling Array.Clear on the
byte array holding the encryption key.

Automatic Garbage Collection
Regardless of whether an object requires a Dispose method for custom tear-down
logic, at some point, the memory it occupies on the heap must be freed. The CLR
handles this side of it entirely automatically, via an automatic GC. You never deallo‐
cate managed memory yourself. For example, consider the following method:

public void Test()
{
 byte[] myArray = new byte[1000];
 ...
}

When Test executes, an array to hold 1,000 bytes is allocated on the memory heap.
The array is referenced by the variable myArray, stored on the local variable stack.
When the method exits, this local variable myArray pops out of scope, meaning that
nothing is left to reference the array on the memory heap. The orphaned array then
becomes eligible to be reclaimed in garbage collection.

In debug mode with optimizations disabled, the lifetime of an
object referenced by a local variable extends to the end of the
code block to ease debugging. Otherwise, it becomes eligible
for collection at the earliest point at which it’s no longer used.

Garbage collection does not happen immediately after an object is orphaned. Rather
like garbage collection on the street, it happens periodically, although (unlike
garbage collection on the street) not to a fixed schedule. The CLR bases its decision
on when to collect upon a number of factors, such as the available memory, the
amount of memory allocation, and the time since the last collection. This means
that there’s an indeterminate delay between an object being orphaned and being
released from memory. This delay can range from nanoseconds to days.

The GC doesn’t collect all garbage with every collection.
Instead, the memory manager divides objects into generations,
and the GC collects new generations (recently allocated
objects) more frequently than old generations (long-lived
objects). We’ll discuss this in more detail in “How the Garbage
Collector Works” on page 512.

G
arb

ag
e

C
o

llectio
n

Automatic Garbage Collection | 505

www.EBooksWorld.ir

Garbage Collection and Memory Consumption
The GC tries to strike a balance between the time it spends doing garbage collection
and the application’s memory consumption (working set). Consequently, applica‐
tions can consume more memory than they need, particularly if large temporary
arrays are constructed.

You can monitor a process’s memory consumption via the Windows Task Manager
or Resource Monitor—or programmatically by querying a performance counter:

// These types are in System.Diagnostics:
string procName = Process.GetCurrentProcess().ProcessName;
using (PerformanceCounter pc = new PerformanceCounter
 ("Process", "Private Bytes", procName))
 Console.WriteLine (pc.NextValue());

This queries the private working set, which gives the best overall indication of your
program’s memory consumption. Specifically, it excludes memory that the CLR has
internally deallocated and is willing to rescind to the operating system should
another process need it.

Roots
A root is something that keeps an object alive. If an object is not directly or indi‐
rectly referenced by a root, it will be eligible for garbage collection.

A root is one of the following:

• A local variable or parameter in an executing method (or in any method in its
call stack)

• A static variable
• An object on the queue that stores objects ready for finalization (see next sec‐

tion)

It’s impossible for code to execute in a deleted object, so if there’s any possibility of
an (instance) method executing, its object must somehow be referenced in one of
these ways.

Note that a group of objects that reference each other cyclically are considered dead
without a root referee (see Figure 12-1). To put it in another way, objects that can‐
not be accessed by following the arrows (references) from a root object are unreach‐
able—and therefore subject to collection.

506 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

Figure 12-1. Roots

Garbage Collection and WinRT
Windows Runtime relies on COM’s reference-counting mechanism to release mem‐
ory instead of depending on an automatic garbage collector. Despite this, WinRT
objects that you instantiate from C# have their lifetime managed by the CLR’s
garbage collector, because the CLR mediates access to the COM object through an
object that it creates behind the scenes called a runtime callable wrapper (Chap‐
ter 24).

Finalizers
Prior to an object being released from memory, its finalizer runs, if it has one. A
finalizer is declared like a constructor, but it is prefixed by the ~ symbol:

class Test
{
 ~Test()
 {
 // Finalizer logic...
 }
}

(Although similar in declaration to a constructor, finalizers cannot be declared as
public or static, cannot have parameters, and cannot call the base class.)

Finalizers are possible because garbage collection works in distinct phases. First, the
GC identifies the unused objects ripe for deletion. Those without finalizers are
deleted right away. Those with pending (unrun) finalizers are kept alive (for now)
and are put onto a special queue.

G
arb

ag
e

C
o

llectio
n

Finalizers | 507

www.EBooksWorld.ir

At that point, garbage collection is complete, and your program continues execut‐
ing. The finalizer thread then kicks in and starts running in parallel to your pro‐
gram, picking objects off that special queue and running their finalization methods.
Prior to each object’s finalizer running, it’s still very much alive—that queue acts as a
root object. Once it’s been dequeued and the finalizer executed, the object becomes
orphaned and will get deleted in the next collection (for that object’s generation).

Finalizers can be useful, but they come with some provisos:

• Finalizers slow the allocation and collection of memory (the GC needs to keep
track of which finalizers have run).

• Finalizers prolong the life of the object and any referred objects (they must all
await the next garbage truck for actual deletion).

• It’s impossible to predict in what order the finalizers for a set of objects will be
called.

• You have limited control over when the finalizer for an object will be called.
• If code in a finalizer blocks, other objects cannot get finalized.
• Finalizers may be circumvented altogether if an application fails to unload

cleanly.

In summary, finalizers are somewhat like lawyers—although there are cases in
which you really need them, in general you don’t want to use them unless absolutely
necessary. If you do use them, you need to be 100% sure you understand what they
are doing for you.

Here are some guidelines for implementing finalizers:

• Ensure that your finalizer executes quickly.
• Never block in your finalizer (Chapter 14).
• Don’t reference other finalizable objects.
• Don’t throw exceptions.

An object’s finalizer can get called even if an exception is
thrown during construction. For this reason, it pays not to
assume that fields are correctly initialized when writing a
finalizer.

Calling Dispose from a Finalizer
A popular pattern is to have the finalizer call Dispose. This makes sense when
cleanup is not urgent and hastening it by calling Dispose is more of an optimization
than a necessity.

508 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

Bear in mind that with this pattern, you couple memory deal‐
location to resource deallocation—two things with potentially
divergent interests (unless the resource is itself memory). You
also increase the burden on the finalization thread.
This pattern can also be used as a backup for cases when a
consumer simply forgets to call Dispose. However, it’s then a
good idea to log the failure so that you can fix the bug.

There’s a standard pattern for implementing this, as follows:

class Test : IDisposable
{
 public void Dispose() // NOT virtual
 {
 Dispose (true);
 GC.SuppressFinalize (this); // Prevent finalizer from running.
 }

 protected virtual void Dispose (bool disposing)
 {
 if (disposing)
 {
 // Call Dispose() on other objects owned by this instance.
 // You can reference other finalizable objects here.
 // ...
 }

 // Release unmanaged resources owned by (just) this object.
 // ...
 }

 ~Test()
 {
 Dispose (false);
 }
}

Dispose is overloaded to accept a bool disposing flag. The parameterless version
is not declared as virtual and simply calls the enhanced version with true.

The enhanced version contains the actual disposal logic and is protected and vir
tual; this provides a safe point for subclasses to add their own disposal logic. The
disposing flag means it’s being called “properly” from the Dispose method rather
than in “last-resort mode” from the finalizer. The idea is that when called with dis
posing set to false, this method should not, in general, reference other objects with
finalizers (because such objects may themselves have been finalized and so be in an
unpredictable state). This rules out quite a lot! Here are a couple of tasks it can still
perform in last-resort mode when disposing is false:

• Releasing any direct references to operating system resources (obtained, per‐
haps, via a P/Invoke call to the Win32 API)

G
arb

ag
e

C
o

llectio
n

Finalizers | 509

www.EBooksWorld.ir

• Deleting a temporary file created on construction

To make this robust, any code capable of throwing an exception should be wrapped
in a try/catch block, and the exception, ideally, logged. Any logging should be as
simple and robust as possible.

Notice that we call GC.SuppressFinalize in the parameterless Dispose method—
this prevents the finalizer from running when the GC later catches up with it. Tech‐
nically, this is unnecessary, as Dispose methods must tolerate repeated calls. How‐
ever, doing so improves performance because it allows the object (and its referenced
objects) to be garbage-collected in a single cycle.

Resurrection
Suppose a finalizer modifies a living object such that it refers back to the dying
object. When the next garbage collection happens (for the object’s generation), the
CLR will see the previously dying object as no longer orphaned—and so it will
evade garbage collection. This is an advanced scenario and is called resurrection.

To illustrate, suppose we want to write a class that manages a temporary file. When
an instance of that class is garbage-collected, we’d like the finalizer to delete the tem‐
porary file. It sounds easy:

public class TempFileRef
{
 public readonly string FilePath;
 public TempFileRef (string filePath) { FilePath = filePath; }

 ~TempFileRef() { File.Delete (FilePath); }
}

Unfortunately, this has a bug: File.Delete might throw an exception (due to a lack
of permissions, perhaps, or the file being in use, or having already been deleted).
Such an exception would take down the whole application (as well as preventing
other finalizers from running). We could simply “swallow” the exception with an
empty catch block, but then we’d never know that anything went wrong. Calling
some elaborate error reporting API would also be undesirable because it would bur‐
den the finalizer thread, hindering garbage collection for other objects. We want to
restrict finalization actions to those that are simple, reliable, and quick.

A better option is to record the failure to a static collection as follows:

public class TempFileRef
{
 static ConcurrentQueue<TempFileRef> _failedDeletions
 = new ConcurrentQueue<TempFileRef>();

 public readonly string FilePath;
 public Exception DeletionError { get; private set; }

 public TempFileRef (string filePath) { FilePath = filePath; }

510 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

 ~TempFileRef()
 {
 try { File.Delete (FilePath); }
 catch (Exception ex)
 {
 DeletionError = ex;
 _failedDeletions.Enqueue (this); // Resurrection
 }
 }
}

Enqueuing the object to the static _failedDeletions collection gives the object
another referee, ensuring that it remains alive until the object is eventually
dequeued.

ConcurrentQueue<T> is a thread-safe version of Queue<T> and
is defined in System.Collections.Concurrent (see Chap‐
ter 23). There are a couple of reasons for using a thread-safe
collection. First, the CLR reserves the right to execute finaliz‐
ers on more than one thread in parallel. This means that when
accessing shared state such as a static collection, we must con‐
sider the possibility of two objects being finalized at once. Sec‐
ond, at some point we’re going to want to dequeue items from
_failedDeletions so that we can do something about them.
This also has to be done in a thread-safe fashion, because it
could happen while the finalizer is concurrently enqueuing
another object.

GC.ReRegisterForFinalize
A resurrected object’s finalizer will not run a second time—unless you call GC.ReRe
gisterForFinalize.

In the following example, we try to delete a temporary file in a finalizer (as in the
last example). But if the deletion fails, we reregister the object so as to try again in
the next garbage collection:

public class TempFileRef
{
 public readonly string FilePath;
 int _deleteAttempt;

 public TempFileRef (string filePath) { FilePath = filePath; }

 ~TempFileRef()
 {
 try { File.Delete (FilePath); }
 catch
 {
 if (_deleteAttempt++ < 3) GC.ReRegisterForFinalize (this);
 }
 }
}

G
arb

ag
e

C
o

llectio
n

Finalizers | 511

www.EBooksWorld.ir

After the third failed attempt, our finalizer will silently give up trying to delete the
file. We could enhance this by combining it with the previous example—in other
words, adding it to the _failedDeletions queue after the third failure.

Be careful to call ReRegisterForFinalize just once in the
finalizer method. If you call it twice, the object will be reregis‐
tered twice and will have to undergo two more finalizations!

How the Garbage Collector Works
The standard CLR uses a generational mark-and-compact GC that performs auto‐
matic memory management for objects stored on the managed heap. The GC is
considered to be a tracing garbage collector in that it doesn’t interfere with every
access to an object, but rather wakes up intermittently and traces the graph of
objects stored on the managed heap to determine which objects can be considered
garbage and therefore collected.

The GC initiates a garbage collection upon performing a memory allocation (via the
new keyword) either after a certain threshold of memory has been allocated, or at
other times to reduce the application’s memory footprint. This process can also be
initiated manually by calling System.GC.Collect. During a garbage collection, all
threads may by frozen (more on this in the next section).

The GC begins with its root object references and walks the object graph, marking
all the objects it touches as reachable. Once this process is complete, all objects that
have not been marked are considered unused and are subject to garbage collection.

Unused objects without finalizers are immediately discarded; unused objects with
finalizers are enqueued for processing on the finalizer thread after the GC is com‐
plete. These objects then become eligible for collection in the next GC for the
object’s generation (unless resurrected).

The remaining “live” objects are then shifted to the start of the heap (compacted),
freeing space for more objects. This compaction serves two purposes: it avoids
memory fragmentation, and it allows the GC to employ a very simple strategy when
allocating new objects, which is to always allocate memory at the end of the heap.
This avoids the potentially time-consuming task of maintaining a list of free mem‐
ory segments.

If there is insufficient space to allocate memory for a new object after garbage col‐
lection, and the operating system is unable to grant further memory, an OutOfMemor
yException is thrown.

Optimization Techniques
The GC incorporates various optimization techniques to reduce the garbage collec‐
tion time.

512 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

Generational collection
The most important optimization is that the GC is generational. This takes advan‐
tage of the fact that although many objects are allocated and discarded rapidly, cer‐
tain objects are long-lived and thus don’t need to be traced during every collection.

Basically, the GC divides the managed heap into three generations. Objects that
have just been allocated are in Gen0, and objects that have survived one collection
cycle are in Gen1; all other objects are in Gen2. Gen0 and Gen1 are known as
ephemeral (short-lived) generations.

The CLR keeps the Gen0 section relatively small (a maximum of 256 MB on the 64-
bit workstation CLR, with a typical size of a few hundred KB to a few MB). When
the Gen0 section fills up, the GC instigates a Gen0 collection—which happens rela‐
tively often. The GC applies a similar memory threshold to Gen1 (which acts as a
buffer to Gen2), and so Gen1 collections are relatively quick and frequent, too. Full
collections that include Gen2, however, take much longer and so happen infre‐
quently. Figure 12-2 shows the effect of a full collection.

Figure 12-2. Heap generations

To give some very rough ballpark figures, a Gen0 collection might take less than 1
ms, which is not enough to be noticed in a typical application. A full collection,
however, might take as long as 100 ms on a program with large object graphs. These
figures depend on numerous factors and so may vary considerably—particularly in
the case of Gen2, whose size is unbounded (unlike Gen0 and Gen1).

G
arb

ag
e

C
o

llectio
n

How the Garbage Collector Works | 513

www.EBooksWorld.ir

2 The same thing may occur occasionally in the generational heap due to pinning (see “The fixed
Statement” on page 187 in Chapter 4).

The upshot is that short-lived objects are very efficient in their use of the GC. The
StringBuilders created in the following method would almost certainly be collec‐
ted in a fast Gen0:

string Foo()
{
 var sb1 = new StringBuilder ("test");
 sb1.Append ("...");
 var sb2 = new StringBuilder ("test");
 sb2.Append (sb1.ToString());
 return sb2.ToString();
}

The large object heap
The GC uses a separate heap called the large object heap (LOH) for objects larger
than a certain threshold (currently 85,000 bytes). This avoids excessive Gen0 collec‐
tions—without the LOH, allocating a series of 16 MB objects might trigger a Gen0
collection after every allocation.

By default, the LOH is not subject to compaction, because moving large blocks of
memory during garbage collection would be prohibitively expensive. This has two
consequences:

• Allocations can be slower, because the GC can’t always simply allocate objects
at the end of the heap—it must also look in the middle for gaps, and this
requires maintaining a linked list of free memory blocks.2

• The LOH is subject to fragmentation. This means that the freeing of an object
can create a hole in the LOH that may be hard to fill later. For instance, a hole
left by an 86,000-byte object can be filled only by an object of between 85,000
bytes and 86,000 bytes (unless adjoined by another hole).

In cases where this might cause problems, you can instruct the GC to compact the
LOH in the next collection as follows:

GCSettings.LargeObjectHeapCompactionMode =
 GCLargeObjectHeapCompactionMode.CompactOnce;

The large object heap is also nongenerational: all objects are treated as Gen2.

Concurrent and background collection
The GC must freeze (block) your execution threads for periods during a collection.
This includes the entire period during which a Gen0 or Gen1 collection takes place.

The GC makes a special attempt, though, at allowing threads to run during a Gen2
collection as it’s undesirable to freeze an application for a potentially long period.

514 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

This optimization applies to the workstation version of the CLR only, which is used
on desktop versions of Windows (and on all versions of Windows with standalone
applications). The rationale is that the latency from a blocking collection is less
likely to be a problem for server applications that don’t have a user interface.

A mitigating factor is that the server CLR leverages all avail‐
able cores to perform GCs, so an eight-core server will per‐
form a full GC many times faster. In effect, the server GC is
tuned to maximize throughput rather than minimize latency.

The workstation optimization has historically been called concurrent collection.
From CLR 4.0, it’s been revamped and renamed to background collection. Back‐
ground collection removes a limitation whereby a concurrent collection would
cease to be concurrent if the Gen0 section filled up while a Gen2 collection was run‐
ning. This means that from CLR 4.0, applications that continually allocate memory
will be more responsive.

GC notifications (server CLR)
The server version of the CLR can notify you just before a full GC will occur. This is
intended for server farm configurations: the idea is that you divert requests to
another server just before a collection. You then instigate the collection immediately
and wait for it to complete before rerouting requests back to that server.

To start notification, call GC.RegisterForFullGCNotification. Then start up
another thread (see Chapter 14) that first calls GC.WaitForFullGCApproach. When
this method returns a GCNotificationStatus indicating that a collection is near,
you can reroute requests to other servers and force a manual collection (see the fol‐
lowing section). You then call GC.WaitForFullGCComplete: when this method
returns, GC is complete, and you can again accept requests. You then repeat the
whole cycle.

Forcing Garbage Collection
You can manually force a GC at any time by calling GC.Collect. Calling GC.Col
lect without an argument instigates a full collection. If you pass in an integer value,
only generations to that value are collected, so GC.Collect(0) performs only a fast
Gen0 collection.

In general, you get the best performance by allowing the GC to decide when to col‐
lect: forcing collection can hurt performance by unnecessarily promoting Gen0
objects to Gen1 (and Gen1 objects to Gen2). It can also upset the GC’s self-tuning
ability, whereby the GC dynamically tweaks the thresholds for each generation to
maximize performance as the application executes.

There are exceptions, however. The most common case for intervention is when an
application goes to sleep for a while: a good example is a Windows Service that per‐
forms a daily activity (checking for updates, perhaps). Such an application might
use a System.Timers.Timer to initiate the activity every 24 hours. After completing

G
arb

ag
e

C
o

llectio
n

How the Garbage Collector Works | 515

www.EBooksWorld.ir

the activity, no further code executes for 24 hours, which means that for this period,
no memory allocations are made and so the GC has no opportunity to activate.
Whatever memory the service consumed in performing its activity, it will continue
to consume for the following 24 hours—even with an empty object graph! The solu‐
tion is to call GC.Collect right after the daily activity completes.

To ensure the collection of objects for which collection is delayed by finalizers, you
can take the additional step of calling WaitForPendingFinalizers and re-
collecting:

GC.Collect();
GC.WaitForPendingFinalizers();
GC.Collect();

Often this is done in a loop: the act of running finalizers can free up more objects
that themselves have finalizers.

Another case for calling GC.Collect is when you’re testing a class that has a final‐
izer.

Tuning Garbage Collection
The static GCSettings.LatencyMode property determines how the GC balances
latency with overall efficiency. Changing this from its default value of Interactive
to LowLatency instructs the CLR to favor quicker (but more frequent) collections.
This is useful if your application needs to respond very quickly to real-time events.

From Framework 4.6, you can also tell the GC to temporarily suspend GC by calling
GC.TryStartNoGCRegion, and resume it with GC.EndNoGCRegion.

Memory Pressure
The runtime decides when to initiate collections based on a number of factors,
including the total memory load on the machine. If your program allocates unman‐
aged memory (Chapter 25), the runtime will get an unrealistically optimistic per‐
ception of its memory usage, because the CLR knows only about managed memory.
You can mitigate this by telling the CLR to assume a specified quantity of unman‐
aged memory has been allocated by calling GC.AddMemoryPressure. To undo this
(when the unmanaged memory is released), call GC.RemoveMemoryPressure.

Managed Memory Leaks
In unmanaged languages such as C++, you must remember to manually deallocate
memory when an object is no longer required; otherwise, a memory leak will result.
In the managed world, this kind of error is impossible due to the CLR’s automatic
garbage collection system.

Nonetheless, large and complex .NET applications can exhibit a milder form of the
same syndrome with the same end result: the application consumes more and more

516 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

memory over its lifetime until it eventually has to be restarted. The good news is
that managed memory leaks are usually easier to diagnose and prevent.

Managed memory leaks are caused by unused objects remaining alive by virtue of
unused or forgotten references. A common candidate is event handlers—these hold
a reference to the target object (unless the target is a static method). For instance,
consider the following classes:

class Host
{
 public event EventHandler Click;
}

class Client
{
 Host _host;
 public Client (Host host)
 {
 _host = host;
 _host.Click += HostClicked;
 }

 void HostClicked (object sender, EventArgs e) { ... }
}

The following test class contains a method that instantiates 1,000 clients:

class Test
{
 static Host _host = new Host();

 public static void CreateClients()
 {
 Client[] clients = Enumerable.Range (0, 1000)
 .Select (i => new Client (_host))
 .ToArray();

 // Do something with clients ...
 }
}

You might expect that after CreateClients finishes executing, the 1,000 Client
objects will become eligible for collection. Unfortunately, each client has another
referee: the _host object whose Click event now references each Client instance.
This may go unnoticed if the Click event doesn’t fire—or if the HostClicked
method doesn’t do anything to attract attention.

One way to solve this is to make Client implement IDisposable, and in the Dis
pose method, unhook the event handler:

public void Dispose() { _host.Click -= HostClicked; }

Consumers of Client then dispose of the instances when they’re done with them:

Array.ForEach (clients, c => c.Dispose());

G
arb

ag
e

C
o

llectio
n

Managed Memory Leaks | 517

www.EBooksWorld.ir

In “Weak References” on page 520 we’ll describe another solu‐
tion to this problem, which can be useful in environments
which tend not to use disposable objects (an example is WPF).
In fact, the WPF framework offers a class called WeakEventMan
ager that leverages a pattern employing weak references.
On the topic of WPF, data binding is another common cause
for memory leaks: the issue is described at http://support.micro
soft.com/kb/938416.

Timers
Forgotten timers can also cause memory leaks (we discuss timers in Chapter 22).
There are two distinct scenarios, depending on the kind of timer. Let’s first look at
the timer in the System.Timers namespace. In the following example, the Foo class
(when instantiated) calls the tmr_Elapsed method once every second:

using System.Timers;

class Foo
{
 Timer _timer;

 Foo()
 {
 _timer = new System.Timers.Timer { Interval = 1000 };
 _timer.Elapsed += tmr_Elapsed;
 _timer.Start();
 }

 void tmr_Elapsed (object sender, ElapsedEventArgs e) { ... }
}

Unfortunately, instances of Foo can never be garbage-collected! The problem is
the .NET Framework itself holds references to active timers so that it can fire their
Elapsed events. Hence:

• The .NET Framework will keep _timer alive.

• _timer will keep the Foo instance alive, via the tmr_Elapsed event handler.

The solution is obvious when you realize that Timer implements IDisposable. Dis‐
posing of the timer stops it and ensures that the .NET Framework no longer refer‐
ences the object:

class Foo : IDisposable
{
 ...
 public void Dispose() { _timer.Dispose(); }
}

518 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

http://support.microsoft.com/kb/938416
http://support.microsoft.com/kb/938416

A good guideline is to implement IDisposable yourself if any
field in your class is assigned an object that implements IDis
posable.

The WPF and Windows Forms timers behave in exactly the same way, with respect
to what’s just been discussed.

The timer in the System.Threading namespace, however, is special. The .NET
Framework doesn’t hold references to active threading timers; it instead references
the callback delegates directly. This means that if you forget to dispose of a thread‐
ing timer, a finalizer can fire which will automatically stop and dispose the timer.
For example:

static void Main()
{
 var tmr = new System.Threading.Timer (TimerTick, null, 1000, 1000);
 GC.Collect();
 System.Threading.Thread.Sleep (10000); // Wait 10 seconds
}

static void TimerTick (object notUsed) { Console.WriteLine ("tick"); }

If this example is compiled in “release” mode (debugging disabled and optimiza‐
tions enabled), the timer will be collected and finalized before it has a chance to fire
even once! Again, we can fix this by disposing of the timer when we’re done with it:

using (var tmr = new System.Threading.Timer (TimerTick, null, 1000, 1000))
{
 GC.Collect();
 System.Threading.Thread.Sleep (10000); // Wait 10 seconds
}

The implicit call to tmr.Dispose at the end of the using block ensures that the tmr
variable is “used” and so not considered dead by the GC until the end of the block.
Ironically, this call to Dispose actually keeps the object alive longer!

Diagnosing Memory Leaks
The easiest way to avoid managed memory leaks is to proactively monitor memory
consumption as an application is written. You can obtain the current memory con‐
sumption of a program’s objects as follows (the true argument tells the GC to per‐
form a collection first):

long memoryUsed = GC.GetTotalMemory (true);

If you’re practicing test-driven development, one possibility is to use unit tests to
assert that memory is reclaimed as expected. If such an assertion fails, you then
have to examine only the changes that you’ve made recently.

If you already have a large application with a managed memory leak, the windbg.exe
tool can assist in finding it. There are also friendlier graphical tools such as Micro‐
soft’s CLR Profiler, SciTech’s Memory Profiler, and Red Gate’s ANTS Memory Pro‐
filer.

G
arb

ag
e

C
o

llectio
n

Managed Memory Leaks | 519

www.EBooksWorld.ir

The CLR also exposes numerous Windows WMI counters to assist with resource
monitoring.

Weak References
Occasionally, it’s useful to hold a reference to an object that’s “invisible” to the GC in
terms of keeping the object alive. This is called a weak reference and is implemented
by the System.WeakReference class.

To use WeakReference, construct it with a target object as follows:

var sb = new StringBuilder ("this is a test");
var weak = new WeakReference (sb);
Console.WriteLine (weak.Target); // This is a test

If a target is referenced only by one or more weak references, the GC will consider
the target eligible for collection. When the target gets collected, the Target property
of the WeakReference will be null:

var weak = new WeakReference (new StringBuilder ("weak"));
Console.WriteLine (weak.Target); // weak
GC.Collect();
Console.WriteLine (weak.Target); // (nothing)

To avoid the target being collected in between testing for it being null and consum‐
ing it, assign the target to a local variable:

var weak = new WeakReference (new StringBuilder ("weak"));
var sb = (StringBuilder) weak.Target;
if (sb != null) { /* Do something with sb */ }

Once a target’s been assigned to a local variable, it has a strong root and so cannot
be collected while that variable’s in use.

The following class uses weak references to keep track of all Widget objects that
have been instantiated, without preventing those objects from being collected:

class Widget
{
 static List<WeakReference> _allWidgets = new List<WeakReference>();

 public readonly string Name;

 public Widget (string name)
 {
 Name = name;
 _allWidgets.Add (new WeakReference (this));
 }

 public static void ListAllWidgets()
 {
 foreach (WeakReference weak in _allWidgets)
 {
 Widget w = (Widget)weak.Target;
 if (w != null) Console.WriteLine (w.Name);

520 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

 }
 }
}

The only proviso with such a system is that the static list will grow over time, accu‐
mulating weak references with null targets. So you need to implement some cleanup
strategy.

Weak References and Caching
One use for WeakReference is to cache large object graphs. This allows memory-
intensive data to be cached briefly without causing excessive memory consumption:

_weakCache = new WeakReference (...); // _weakCache is a field
...
var cache = _weakCache.Target;
if (cache == null) { /* Re-create cache & assign it to _weakCache */ }

This strategy may be only mildly effective in practice, because you have little control
over when the GC fires and what generation it chooses to collect. In particular, if
your cache remains in Gen0, it may be collected within microseconds (and remem‐
ber that the GC doesn’t collect only when memory is low—it collects regularly
under normal memory conditions). So at a minimum, you should employ a two-
level cache whereby you start out by holding strong references that you convert to
weak references over time.

Weak References and Events
We saw earlier how events can cause managed memory leaks. The simplest solution
is to either avoid subscribing in such conditions, or implement a Dispose method to
unsubscribe. Weak references offer another solution.

Imagine a delegate that holds only weak references to its targets. Such a delegate
would not keep its targets alive—unless those targets had independent referees. Of
course, this wouldn’t prevent a firing delegate from hitting an unreferenced target—
in the time between the target being eligible for collection and the GC catching up
with it. For such a solution to be effective, your code must be robust in that sce‐
nario. Assuming that is the case, a weak delegate class can be implemented as fol‐
lows:

public class WeakDelegate<TDelegate> where TDelegate : class
{
 class MethodTarget
 {
 public readonly WeakReference Reference;
 public readonly MethodInfo Method;

 public MethodTarget (Delegate d)
 {
 Reference = new WeakReference (d.Target);
 Method = d.Method;
 }
 }

G
arb

ag
e

C
o

llectio
n

Weak References | 521

www.EBooksWorld.ir

 List<MethodTarget> _targets = new List<MethodTarget>();

 public WeakDelegate()
 {
 if (!typeof (TDelegate).IsSubclassOf (typeof (Delegate)))
 throw new InvalidOperationException
 ("TDelegate must be a delegate type");
 }

 public void Combine (TDelegate target)
 {
 if (target == null) return;

 foreach (Delegate d in (target as Delegate).GetInvocationList())
 _targets.Add (new MethodTarget (d));
 }

 public void Remove (TDelegate target)
 {
 if (target == null) return;
 foreach (Delegate d in (target as Delegate).GetInvocationList())
 {
 MethodTarget mt = _targets.Find (w =>
 Equals (d.Target, (w.Reference?.Target) &&
 Equals (d.Method.MethodHandle, w.Method.MethodHandle));

 if (mt != null) _targets.Remove (mt);
 }
 }

 public TDelegate Target
 {
 get
 {
 var deadRefs = new List<MethodTarget>();

 foreach (MethodTarget mt in _targets.ToArray())
 {
 WeakReference wr = mt.Reference;

 // Static target || alive instance target
 if (wr == null || wr.Target != null)
 {
 var newDelegate = Delegate.CreateDelegate (
 typeof(TDelegate), wr?.Target, mt.Method);
 combinedTarget = Delegate.Combine (combinedTarget, newDelegate);
 }
 else
 _targets.Remove (mt);
 }

 return combinedTarget as TDelegate;
 }
 set

522 | Chapter 12: Disposal and Garbage Collection

www.EBooksWorld.ir

 {
 _targets.Clear();
 Combine (value);
 }
 }
}

This code illustrates a number of interesting points in C# and the CLR. First, note
that we check that TDelegate is a delegate type in the constructor. This is because of
a limitation in C#—the following type constraint is illegal because C# considers Sys
tem.Delegate a special type for which constraints are not supported:

... where TDelegate : Delegate // Compiler doesn't allow this

Instead, we must choose a class constraint and perform a runtime check in the con‐
structor.

In the Combine and Remove methods, we perform the reference conversion from tar
get to Delegate via the as operator rather than the more usual cast operator. This is
because C# disallows the cast operator with this type parameter—because of a
potential ambiguity between a custom conversion and a reference conversion.

We then call GetInvocationList because these methods might be called with multi‐
cast delegates—delegates with more than one method recipient.

In the Target property, we build up a multicast delegate that combines all the dele‐
gates referenced by weak references whose targets are alive, removing the remaining
(dead) references from the list to avoid the _targets list endlessly growing. (We
could improve our class by doing the same in the Combine method; yet another
improvement would be to add locks for thread safety [Chapter 22]).

The following illustrates how to consume this delegate in implementing an event:

We also allow delegates without a weak reference at all; these represent delegates
whose target is a static method.

public class Foo
{
 WeakDelegate<EventHandler> _click = new WeakDelegate<EventHandler>();

 public event EventHandler Click
 {
 add { _click.Combine (value); } remove { _click.Remove (value); }
 }

 protected virtual void OnClick (EventArgs e)
 => _click.Target?.Invoke (this, e);
}

G
arb

ag
e

C
o

llectio
n

Weak References | 523

www.EBooksWorld.ir

www.EBooksWorld.ir

13
Diagnostics and Code Contracts

When things go wrong, it’s important that information is available to aid in diagnos‐
ing the problem. An IDE or debugger can assist greatly to this effect—but it is usu‐
ally available only during development. Once an application ships, the application
itself must gather and record diagnostic information. To meet this requirement,
the .NET Framework provides a set of facilities to log diagnostic information, moni‐
tor application behavior, detect runtime errors, and integrate with debugging tools if
available.

The .NET Framework also allows you to enforce code contracts. Introduced in
Framework 4.0, code contracts allow methods to interact through a set of mutual
obligations and fail early if those obligations are violated.

The types in this chapter are defined primarily in the System.Diagnostics and Sys
tem.Diagnostics.Contracts namespaces.

Conditional Compilation
You can conditionally compile any section of code in C# with preprocessor directives.
Preprocessor directives are special instructions to the compiler that begin with the #
symbol (and, unlike other C# constructs, must appear on a line of their own). Logi‐
cally, they execute before the main compilation takes place (although in practice, the
compiler processes them during the lexical parsing phase). The preprocessor direc‐
tives for conditional compilation are #if, #else, #endif, and #elif.

The #if directive instructs the compiler to ignore a section of code unless a speci‐
fied symbol has been defined. You can define a symbol with either the #define
directive or a compilation switch. #define applies to a particular file; a compilation
switch applies to a whole assembly:

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

525

www.EBooksWorld.ir

#define TESTMODE // #define directives must be at top of file
 // Symbol names are uppercase by convention.
using System;

class Program
{
 static void Main()
 {
#if TESTMODE
 Console.WriteLine ("in test mode!"); // OUTPUT: in test mode!
#endif
 }
}

If we deleted the first line, the program would compile with the Console.WriteLine
statement completely eliminated from the executable, as though it was commented
out.

The #else statement is analogous to C#’s else statement, and #elif is equivalent to
#else followed by #if. The ||, &&, and ! operators can be used to perform or, and,
and not operations:

#if TESTMODE && !PLAYMODE // if TESTMODE and not PLAYMODE
 ...

Bear in mind, however, that you’re not building an ordinary C# expression, and the
symbols upon which you operate have absolutely no connection to variables—static
or otherwise.

To define a symbol assembly-wide, specify the /define switch when compiling:

csc Program.cs /define:TESTMODE,PLAYMODE

Visual Studio provides an option to enter conditional compilation symbols under
Project Properties.

If you’ve defined a symbol at the assembly level and then want to “undefine” it for a
particular file, you can do so with the #undef directive.

Conditional Compilation Versus Static Variable Flags
The preceding example could instead be implemented with a simple static field:

static internal bool TestMode = true;

static void Main()
{
 if (TestMode) Console.WriteLine ("in test mode!");
}

This has the advantage of allowing runtime configuration. So, why choose condi‐
tional compilation? The reason is that conditional compilation can take you places
variable flags cannot, such as:

526 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

• Conditionally including an attribute
• Changing the declared type of variable

• Switching between different namespaces or type aliases in a using directive—
for example:

using TestType =
 #if V2
 MyCompany.Widgets.GadgetV2;
 #else
 MyCompany.Widgets.Gadget;
 #endif

You can even perform major refactoring under a conditional compilation directive
so you can instantly switch between old and new versions and write libraries that
can compile against multiple Framework versions, leveraging the latest Framework
features where available.

Another advantage of conditional compilation is that debugging code can refer to
types in assemblies that are not included in deployment.

The Conditional Attribute
The Conditional attribute instructs the compiler to ignore any calls to a particular
class or method, if the specified symbol has not been defined.

To see how this is useful, suppose you write a method for logging status information
as follows:

static void LogStatus (string msg)
{
 string logFilePath = ...
 System.IO.File.AppendAllText (logFilePath, msg + "\r\n");
}

Now imagine you wanted this to execute only if the LOGGINGMODE symbol is defined.
The first solution is to wrap all calls to LogStatus around an #if directive:

#if LOGGINGMODE
LogStatus ("Message Headers: " + GetMsgHeaders());
#endif

This gives an ideal result, but it is tedious. The second solution is to put the #if
directive inside the LogStatus method. This, however, is problematic should LogSta
tus be called as follows:

LogStatus ("Message Headers: " + GetComplexMessageHeaders());

GetComplexMessageHeaders would always get called—which might incur a perfor‐
mance hit.

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Conditional Compilation | 527

www.EBooksWorld.ir

We can combine the functionality of the first solution with the convenience of the
second by attaching the Conditional attribute (defined in System.Diagnostics) to
the LogStatus method:

[Conditional ("LOGGINGMODE")]
static void LogStatus (string msg)
{
 ...
}

This instructs the compiler to treat calls to LogStatus as though they were wrapped
in an #if LOGGINGMODE directive. If the symbol is not defined, any calls to LogSta
tus get eliminated entirely in compilation—including their argument evaluation
expressions. (Hence any side-effecting expressions will be bypassed.) This works
even if LogStatus and the caller are in different assemblies.

Another benefit of [Conditional] is that the conditionality
check is performed when the caller is compiled, rather than
when the called method is compiled. This is beneficial because
it allows you to write a library containing methods such as Log
Status—and build just one version of that library.

The Conditional attribute is ignored at runtime—it’s purely an instruction to the
compiler.

Alternatives to the Conditional attribute
The Conditional attribute is useless if you need to dynamically enable or disable
functionality at runtime: instead, you must use a variable-based approach. This
leaves the question of how to elegantly circumvent the evaluation of arguments
when calling conditional logging methods. A functional approach solves this:

using System;
using System.Linq;

class Program
{
 public static bool EnableLogging;

 static void LogStatus (Func<string> message)
 {
 string logFilePath = ...
 if (EnableLogging)
 System.IO.File.AppendAllText (logFilePath, message() + "\r\n");
 }
}

A lambda expression lets you call this method without syntax bloat:

LogStatus (() => "Message Headers: " + GetComplexMessageHeaders());

If EnableLogging is false, GetComplexMessageHeaders is never evaluated.

528 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

Debug and Trace Classes
Debug and Trace are static classes that provide basic logging and assertion capabili‐
ties. The two classes are very similar; the main differentiator is their intended use.
The Debug class is intended for debug builds; the Trace class is intended for both
debug and release builds. To this effect:

• All methods of the Debug class are defined with [Conditional("DEBUG")].

• All methods of the Trace class are defined with [Conditional("TRACE")].

This means that all calls that you make to Debug or Trace are eliminated by the
compiler unless you define DEBUG or TRACE symbols. By default, Visual Studio
defines both DEBUG and TRACE symbols in a project’s debug configuration—and just
the TRACE symbol in the release configuration.

Both the Debug and Trace classes provide Write, WriteLine, and WriteIf methods.
By default, these send messages to the debugger’s output window:

Debug.Write ("Data");
Debug.WriteLine (23 * 34);
int x = 5, y = 3;
Debug.WriteIf (x > y, "x is greater than y");

The Trace class also provides the methods TraceInformation, TraceWarning, and
TraceError. The difference in behavior between these and the Write methods
depends on the active TraceListeners (we’ll cover this in “TraceListener” on page
530).

Fail and Assert
The Debug and Trace classes both provide Fail and Assert methods. Fail sends
the message to each TraceListener in the Debug or Trace class’s Listeners collec‐
tion (see the following section), which by default writes the message to the debug
output as well as displaying it in a dialog:

Debug.Fail ("File data.txt does not exist!");

The dialog that appears asks you whether to ignore, abort, or retry. The latter then
lets you attach a debugger, which is useful in instantly diagnosing the problem.

Assert simply calls Fail if the bool argument is false—this is called making an
assertion and indicates a bug in the code if violated. Specifying a failure message is
optional:

Debug.Assert (File.Exists ("data.txt"), "File data.txt does not exist!");
var result = ...
Debug.Assert (result != null);

The Write, Fail, and Assert methods are also overloaded to accept a string cate‐
gory in addition to the message, which can be useful in processing the output.

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Debug and Trace Classes | 529

www.EBooksWorld.ir

An alternative to assertion is to throw an exception if the opposite condition is true.
This is a common practice when validating method arguments:

public void ShowMessage (string message)
{
 if (message == null) throw new ArgumentNullException ("message");
 ...
}

Such “assertions” are compiled unconditionally and are less flexible in that you can’t
control the outcome of a failed assertion via TraceListeners. And technically,
they’re not assertions. An assertion is something that, if violated, indicates a bug in
the current method’s code. Throwing an exception based on argument validation
indicates a bug in the caller’s code.

We’ll see soon how code contracts extend the principles of
Fail and Assert, providing more power and flexibility.

TraceListener
The Debug and Trace classes each have a Listeners property, comprising a static
collection of TraceListener instances. These are responsible for processing the
content emitted by the Write, Fail, and Trace methods.

By default, the Listeners collection of each includes a single listener (DefaultTra
ceListener). The default listener has two key features:

• When connected to a debugger such as Visual Studio, messages are written to
the debug output window; otherwise, message content is ignored.

• When the Fail method is called (or an assertion fails), a dialog appears asking
the user whether to continue, abort, or retry (attach/debug)—regardless of
whether a debugger is attached.

You can change this behavior by (optionally) removing the default listener and then
adding one or more of your own. You can write trace listeners from scratch (by sub‐
classing TraceListener) or use one of the predefined types:

• TextWriterTraceListener writes to a Stream or TextWriter or appends to a
file.

• EventLogTraceListener writes to the Windows event log.

• EventProviderTraceListener writes to the Event Tracing for Windows
(ETW) subsystem in Windows Vista and later.

• WebPageTraceListener writes to an ASP.NET web page.

TextWriterTraceListener is further subclassed to ConsoleTraceListener, Delimi
tedListTraceListener, XmlWriterTraceListener, and EventSchemaTraceLis

tener.

530 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

None of these listeners display a dialog when Fail is called—
only DefaultTraceListener has this behavior.

The following example clears Trace’s default listener, then adds three listeners—one
that appends to a file, one that writes to the console, and one that writes to the Win‐
dows event log:

// Clear the default listener:
Trace.Listeners.Clear();

// Add a writer that appends to the trace.txt file:
Trace.Listeners.Add (new TextWriterTraceListener ("trace.txt"));

// Obtain the Console's output stream, then add that as a listener:
System.IO.TextWriter tw = Console.Out;
Trace.Listeners.Add (new TextWriterTraceListener (tw));

// Set up a Windows Event log source and then create/add listener.
// CreateEventSource requires administrative elevation, so this would
// typically be done in application setup.
if (!EventLog.SourceExists ("DemoApp"))
 EventLog.CreateEventSource ("DemoApp", "Application");

Trace.Listeners.Add (new EventLogTraceListener ("DemoApp"));

(It’s also possible to add listeners via the application configuration file; this is handy
in allowing testers to configure tracing after an application has been built—go to
http://albahari.com/traceconfig for the MSDN article.)

In the case of the Windows event log, messages that you write with the Write, Fail,
or Assert method always display as “Information” messages in the Windows event
viewer. Messages that you write via the TraceWarning and TraceError methods,
however, show up as warnings or errors.

TraceListener also has a Filter of type TraceFilter that you can set to control
whether a message gets written to that listener. To do this, you either instantiate one
of the predefined subclasses (EventTypeFilter or SourceFilter), or subclass Trace
Filter and override the ShouldTrace method. You could use this to filter by cate‐
gory, for instance.

TraceListener also defines IndentLevel and IndentSize properties for controlling
indentation and the TraceOutputOptions property for writing extra data:

TextWriterTraceListener tl = new TextWriterTraceListener (Console.Out);
tl.TraceOutputOptions = TraceOptions.DateTime | TraceOptions.Callstack;

TraceOutputOptions are applied when using the Trace methods:

Trace.TraceWarning ("Orange alert");

DiagTest.vshost.exe Warning: 0 : Orange alert
 DateTime=2007-03-08T05:57:13.6250000Z
 Callstack= at System.Environment.GetStackTrace(Exception e, Boolean

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Debug and Trace Classes | 531

www.EBooksWorld.ir

http://albahari.com/traceconfig

needFileInfo)
 at System.Environment.get_StackTrace() at ...

Flushing and Closing Listeners
Some listeners, such as TextWriterTraceListener, ultimately write to a stream that
is subject to caching. This has two implications:

• A message may not appear in the output stream or file immediately.
• You must close—or at least flush—the listener before your application ends;

otherwise, you lose what’s in the cache (up to 4 KB, by default, if you’re writing
to a file).

The Trace and Debug classes provide static Close and Flush methods that call Close
or Flush on all listeners (which in turn calls Close or Flush on any underlying writ‐
ers and streams). Close implicitly calls Flush, closes file handles, and prevents fur‐
ther data from being written.

As a general rule, call Close before an application ends and call Flush anytime you
want to ensure that current message data is written. This applies if you’re using
stream- or file-based listeners.

Trace and Debug also provide an AutoFlush property, which, if true, forces a Flush
after every message.

It’s a good policy to set AutoFlush to true on Debug and Trace
if you’re using any file- or stream-based listeners. Otherwise,
if an unhandled exception or critical error occurs, the last 4
KB of diagnostic information may be lost.

Code Contracts Overview
We mentioned previously the concept of an assertion, whereby you check that cer‐
tain conditions are met throughout your program. If a condition fails, it indicates a
bug, which is typically handled by invoking a debugger (in debug builds) or throw‐
ing an exception (in release builds).

Assertions follow the principle that if something goes wrong, it’s best to fail early
and close to the source of the error. This is usually better than trying to continue
with invalid data—which can result in incorrect results, undesired side-effects, or an
exception later on in the program (all of which are harder to diagnose).

Historically, there have been two ways to enforce assertions:

• By calling the Assert method on Debug or Trace

• By throwing exceptions (such as ArgumentNullException)

532 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

Framework 4.0 introduced a new feature called code contracts, which replaces both
of these approaches with a unified system. That system allows you to make not only
simple assertions but also more powerful contract-based assertions.

Code contracts derive from the principle of “Design by Contract” from the Eiffel
programming language, where functions interact with each other through a system
of mutual obligations and benefits. Essentially, a function specifies preconditions that
must be met by the client (caller) and in return guarantees postconditions that the
client can depend on when the function returns.

The types for code contracts live in the System.Diagnostics.Contracts name‐
space.

Although the types that support code contracts are built into
the .NET Framework, the binary rewriter and the static check‐
ing tools are available as a separate download at the Microsoft
DevLabs site. You must install these tools before you can use
code contracts in Visual Studio.

Why Use Code Contracts?
To illustrate, we’ll write a method that adds an item to a list only if it’s not already
present—with two preconditions and a postcondition:

public static bool AddIfNotPresent<T> (IList<T> list, T item)
{
 Contract.Requires (list != null); // Precondition
 Contract.Requires (!list.IsReadOnly); // Precondition
 Contract.Ensures (list.Contains (item)); // Postcondition
 if (list.Contains(item)) return false;
 list.Add (item);
 return true;
}

The preconditions are defined by Contract.Requires and are verified when the
method starts. The postcondition is defined by Contract.Ensures and is verified
not where it appears in the code, but when the method exits.

Preconditions and postconditions act like assertions and, in this case, detect the fol‐
lowing errors:

• Calling the method with a null or read-only list
• A bug in the method whereby we forgot to add the item to the list

Preconditions and postconditions must appear at the start of
the method. This is conducive to good design: if you fail to
fulfill the contract in subsequently writing the method, the
error will be detected.

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Code Contracts Overview | 533

www.EBooksWorld.ir

http://msdn.microsoft.com/devlabs
http://msdn.microsoft.com/devlabs

Moreover, these conditions form a discoverable contract for that method. AddIfNot
Present advertises to consumers:

• “You must call me with a non-null writable list.”
• “When I return, that list will contain the item you specified.”

These facts can be emitted into the assembly’s XML documentation file (you can do
this in Visual Studio by going to the Code Contracts tab of the Project Properties
window, enabling the building of a contracts reference assembly, and checking
“Emit Contracts into XML doc file”). Tools such as SandCastle can then incorporate
contract details into documentation files.

Contracts also enable your program to be analyzed for correctness by static contract
validation tools. If you try to call AddIfNotPresent with a list whose value might
be null, for example, a static validation tool could warn you before you even run the
program.

Another benefit of contracts is ease of use. In our example, it’s easier to code the
postcondition upfront than at both exit points. Contracts also support object invari‐
ants—which further reduce repetitive coding and make for more reliable enforce‐
ment.

Conditions can also be placed on interface members and abstract methods, some‐
thing that is impossible with standard validation approaches. And conditions on
virtual methods cannot be accidentally circumvented by subclasses.

Yet another benefit of code contracts is that contract violation behavior can be cus‐
tomized easily and in more ways than if you rely on calling Debug.Assert or throw‐
ing exceptions. And it’s possible to ensure that contract violations are always recor‐
ded—even if contract violation exceptions are swallowed by exception handlers
higher in the call stack.

The disadvantage of using code contracts is that the .NET implementation relies on
a binary rewriter—a tool that mutates the assembly after compilation. This slows the
build process, as well as complicating services that rely on calling the C# compiler
(whether explicitly or via the CSharpCodeProvider class).

The enforcing of code contracts may also incur a runtime performance hit, although
this is easily mitigated by scaling back contract checking in release builds.

Another limitation of code contracts is that you can’t use them
to enforce security-sensitive checks, because they can be cir‐
cumvented at runtime (by handling the ContractFailed
event).

Contract Principles
Code contracts comprise preconditions, postconditions, assertions, and object invari‐
ants. These are all discoverable assertions. They differ based on when they are veri‐
fied:

534 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

• Preconditions are verified when a function starts.
• Postconditions are verified before a function exits.
• Assertions are verified wherever they appear in the code.
• Object invariants are verified after every public function in a class.

Code contracts are defined entirely by calling (static) methods in the Contract class.
This makes contracts language-independent.

Contracts can appear not only in methods, but in other functions as well, such as
constructors, properties, indexers, and operators.

Compilation
Almost all methods in the Contract class are defined with the [Conditional("CON
TRACTS_FULL")] attribute. This means that unless you define the CONTRACTS_FULL
symbol, (most) contract code is stripped out. Visual Studio defines the CON
TRACTS_FULL symbol automatically if you enable contract checking in the Code
Contracts tab of the Project Properties page. (For this tab to appear, you must
download and install the Contracts tools from the Microsoft DevLabs site.)

Removing the CONTRACTS_FULL symbol might seem like an
easy way to disable all contract checking. However, it doesn’t
apply to Requires<TException> conditions (which we’ll
describe in detail soon).
The only way to disable contracts in code that uses
Requires<TException> is to enable the CONTRACTS_FULL sym‐
bol and then get the binary rewriter to strip out contract code
by choosing an enforcement level of “none.”

The binary rewriter
After compiling code that contains contracts, you must call the binary rewriter tool,
ccrewrite.exe (Visual Studio does this automatically if contract checking is enabled).
The binary rewriter moves postconditions (and object invariants) into the right
place, calls any conditions and object invariants in overridden methods, and repla‐
ces calls to Contract with calls to a contracts runtime class. Here’s a (simplified) ver‐
sion of what our earlier example would look like after rewriting:

static bool AddIfNotPresent<T> (IList<T> list, T item)
{
 __ContractsRuntime.Requires (list != null);
 __ContractsRuntime.Requires (!list.IsReadOnly);
 bool result;
 if (list.Contains (item))
 result = false;
 else
 {
 list.Add (item);
 result = true;

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Code Contracts Overview | 535

www.EBooksWorld.ir

 }
 __ContractsRuntime.Ensures (list.Contains (item)); // Postcondition
 return result;
}

If you fail to call the binary rewriter, Contract won’t get replaced with __Contrac
tsRuntime and the former will end up throwing exceptions.

The __ContractsRuntime type is the default contracts runtime
class. In advanced scenarios, you can specify your own con‐
tracts runtime class via the /rw switch or Visual Studio’s Code
Contracts tab in Project Properties.

Because __ContractsRuntime is shipped with the binary
rewriter (which is not a standard part of the .NET Frame‐
work), the binary rewriter actually injects the __ContractsRun
time class into your compiled assembly. You can examine its
code by disassembling any assembly that enables code con‐
tracts.

The binary rewriter also offers switches to strip away some or all contract checking:
we describe these in “Selectively Enforcing Contracts.” You typically enable full con‐
tract checking in debug build configurations and a subset of contract checking in
release configurations.

Asserting versus throwing on failure
The binary rewriter also lets you choose between displaying a dialog and throwing a
ContractException upon contract failure. The former is typically used for debug
builds; the latter for release builds. To enable the latter, specify /throwonfailure
when calling the binary rewriter, or uncheck the “Assert on contract failure” check‐
box in Visual Studio’s Code Contracts tab in Project Properties.

We’ll revisit this topic in more detail in “Dealing with Contract Failure” on page
546.

Purity
All functions that you call from arguments passed to contract methods (Requires,
Assumes, Assert, etc.) must be pure—that is, side-effect-free (they must not alter the
values of fields). You must signal to the binary rewriter that any functions you call
are pure by applying the [Pure] attribute:

[Pure]
public static bool IsValidUri (string uri) { ... }

This makes the following legal:

Contract.Requires (IsValidUri (uri));

The contract tools implicitly assume that all property get accessors are pure, as are
all C# operators (+, *, %, etc.) and members on selected Framework types, including
string, Contract, Type, System.IO.Path, and LINQ’s query operators. It also

536 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

assumes that methods invoked via delegates marked with the [Pure] attribute are
pure (the Comparison<T> and Predicate<T> attributes are marked with this
attribute).

Preconditions
You can define code contract preconditions by calling Contract.Requires, Con
tract.Requires<TException> or Contract.EndContractBlock.

Contract.Requires
Calling Contract.Requires at the start of a function enforces a precondition:

static string ToProperCase (string s)
{
 Contract.Requires (!string.IsNullOrEmpty(s));
 ...
}

This is like making an assertion, except that the precondition forms a discoverable
fact about your function that can be extracted from the compiled code and con‐
sumed by documentation or static checking tools (so that they can warn you should
they see some code elsewhere in your program that tries to call ToProperCase with a
null or empty string).

A further benefit of preconditions is that subclasses that override virtual methods
with preconditions cannot prevent the base class method’s preconditions from
being checked. And preconditions defined on interface members will be implicitly
woven into the concrete implementations (see “Contracts on Interfaces and Abstract
Methods” on page 545).

Preconditions should access only members that are at least as
accessible as the function itself—this ensures that callers can
make sense of the contract. If you need to read or call less
accessible members, it’s likely that you’re validating internal
state rather than enforcing the calling contract, in which case
you should make an assertion instead.

You can call Contract.Requires as many times as necessary at the start of the
method to enforce different conditions.

What Should You Put in Preconditions?
The guideline from the Code Contracts team is that preconditions should:

• Be possible for the client (caller) to easily validate.
• Rely only on data & functions at least as accessible as the method itself.
• Always indicate a bug if violated.

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Preconditions | 537

www.EBooksWorld.ir

A consequence of the last point is that a client should never specifically “catch” a
contract failure (the ContractException type, in fact, is internal to help enforce that
principle). Instead, the client should call the target properly; if it fails, this indicates
a bug that should be handled via your general exception backstop (which may
include terminating the application). In other words, if you decide control-flow or
do other things based on a precondition failure, it’s not really a contract because you
can continue executing if it fails.

This leads to the following advice when choosing between preconditions and
throwing ordinary exceptions:

• If failure always indicates a bug in the client, favor a precondition.
• If failure indicates an abnormal condition, which may mean a bug in the client,

throw a (catchable) exception instead.

To illustrate, suppose we’re writing the Int32.Parse function. It’s reasonable to
assume that a null input string always indicates a bug in the caller, so we’d enforce
this with a precondition:

public static int Parse (string s)
{
 Contract.Requires (s != null);
 ...
}

Next, we need to check that the string contains only digits and symbols such as +
and – (in the right place). It would place an unreasonable burden on the caller to
validate this, and so we’d enforce it not as a precondition, but a manual check that
throws a (catchable) FormatException if violated.

To illustrate the member accessibility issue, consider the following code, which
often appears in types implementing the IDisposable interface:

public void Foo()
{
 if (_isDisposed) // _isDisposed is a private field
 throw new ObjectDisposedException ("...");
 ...
}

This check should not be made into a precondition unless we make _isDisposed
accessible to the caller (by refactoring it into a publicly readable property, for
instance).

Finally, consider the File.ReadAllText method. The following would be inappropri‐
ate use of a precondition:

public static string ReadAllText (string path)
{
 Contract.Requires (File.Exists (path));
 ...
}

538 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

The caller cannot reliably know that the file exists before calling this method (it
could be deleted between making that check and calling the method). So, we’d
enforce this in the old-fashioned way—by throwing a catchable FileNotFoundExcep
tion instead.

Contract.Requires<TException>
The introduction of code contracts challenges the following deeply entrenched pat‐
tern established in the .NET Framework from version 1.0:

static void SetProgress (string message, int percent) // Classic approach
{
 if (message == null)
 throw new ArgumentNullException ("message");

 if (percent < 0 || percent > 100)
 throw new ArgumentOutOfRangeException ("percent");
 ...
}

static void SetProgress (string message, int percent) // Modern approach
{
 Contract.Requires (message != null);
 Contract.Requires (percent >= 0 && percent <= 100);
 ...
}

If you have a large assembly that enforces classic argument checking, writing new
methods with preconditions will create an inconsistent library: some methods will
throw argument exceptions whereas others will throw a ContractException. One
solution is to update all existing methods to use contracts, but this has two prob‐
lems:

• It’s time-consuming.

• Callers may have come to depend on an exception type such as ArgumentNul
lException being thrown. (This almost certainly indicates bad design, but may
be the reality nonetheless.)

The solution is to call the generic version of Contract.Requires. This lets you spec‐
ify an exception type to throw upon failure:

Contract.Requires<ArgumentNullException> (message != null, "message");
Contract.Requires<ArgumentOutOfRangeException>
 (percent >= 0 && percent <= 100, "percent");

(The second argument gets passed to the constructor of the exception class).

This results in the same behavior as with old-fashioned argument checking, while
delivering the benefits of contracts (conciseness, support for interfaces, implicit
documentation, static checking, and runtime customization).

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Preconditions | 539

www.EBooksWorld.ir

The specified exception is thrown only if you specify /thro
wonfailure when rewriting the assembly (or uncheck the
Assert on Contract Failure checkbox in Visual Studio). Other‐
wise, a dialog box appears.

It’s also possible to specify a contract-checking level of ReleaseRequires in the binary
rewriter (see “Selectively Enforcing Contracts” on page 548). Calls to the generic
Contract.Requires<TException> then remain in place while all other checks are
stripped away: this results in an assembly that behaves just as in the past.

Contract.EndContractBlock
The Contract.EndContractBlock method lets you get the benefit of code contracts
with traditional argument-checking code—avoiding the need to refactor code writ‐
ten prior to Framework 4.0. All you do is call this method after performing manual
argument checks:

static void Foo (string name)
{
 if (name == null) throw new ArgumentNullException ("name");
 Contract.EndContractBlock();
 ...
}

The binary rewriter then converts this code into something equivalent to:

static void Foo (string name)
{
 Contract.Requires<ArgumentNullException> (name != null, "name");
 ...
}

The code that precedes EndContractBlock must comprise simple statements of the
form:

if <condition> throw <expression>;

You can mix traditional argument checking with code contract calls: simply put the
latter after the former:

static void Foo (string name)
{
 if (name == null) throw new ArgumentNullException ("name");
 Contract.Requires (name.Length >= 2);
 ...
}

Calling any of the contract-enforcing methods implicitly ends the contract block.

The point is to define a region at the beginning of the method where the contract
rewriter knows that every if statement is part of a contract. Calling any of the
contract-enforcing methods implicitly extends the contract block, so you don’t need
to use EndContractBlock if you use another method such as Contract.Ensures.

540 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

Preconditions and Overridden Methods
When overriding a virtual method, you cannot add preconditions, because doing so
would change the contract (by making it more restrictive)—breaking the principles
of polymorphism.

(Technically, the designers could have allowed overridden methods to weaken pre‐
conditions; they decided against this because the scenarios weren’t sufficiently com‐
pelling to justify adding this complexity).

The binary rewriter ensures that a base method’s precondi‐
tions are always enforced in subclasses—whether or not the
overridden method calls the base method.

Postconditions
Contract.Ensures
Contract.Ensures enforces a postcondition: something which must be true when
the method exits. We saw an example earlier:

static bool AddIfNotPresent<T> (IList<T> list, T item)
{
 Contract.Requires (list != null); // Precondition
 Contract.Ensures (list.Contains (item)); // Postcondition
 if (list.Contains(item)) return false;
 list.Add (item);
 return true;
}

The binary rewriter moves postconditions to the exit points of the method. Post‐
conditions are checked if you return early from a method (as in this example)—but
not if you return early via an unhandled exception.

Unlike preconditions, which detect misuse by the caller, postconditions detect an
error in the function itself (rather like assertions). Therefore, postconditions may
access private state (subject to the caveat stated shortly, in “Postconditions and
Overridden Methods” on page 543).

Postconditions and Thread Safety
Multithreaded scenarios (Chapter 14) challenge the usefulness of postconditions.
For instance, suppose we wrote a thread-safe wrapper for a List<T> with a method
as follows:

public class ThreadSafeList<T>
{
 List<T> _list = new List<T>();
 object _locker = new object();

 public bool AddIfNotPresent (T item)
 {

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Postconditions | 541

www.EBooksWorld.ir

 Contract.Ensures (_list.Contains (item));
 lock (_locker)
 {
 if (_list.Contains(item)) return false;
 _list.Add (item);
 return true;
 }
 }

 public void Remove (T item)
 {
 lock (_locker)
 _list.Remove (item);
 }
}

The postcondition in the AddIfNotPresent method is checked after the lock is
released—at which point the item may no longer exist in the list if another thread
called Remove right then. There is currently no workaround for this problem, other
than to enforce such conditions as assertions (see “Assertions and Object Invariants”
on page 543) rather than postconditions.

Contract.EnsuresOnThrow<TException>
Occasionally, it’s useful to ensure that a certain condition is true should a particular
type of exception be thrown. The EnsuresOnThrow method does exactly this:

Contract.EnsuresOnThrow<WebException> (this.ErrorMessage != null);

Contract.Result<T> and Contract.ValueAtReturn<T>
Because postconditions are not evaluated until a function ends, it’s reasonable to
want to access the return value of a method. The Contract.Result<T> method does
exactly that:

Random _random = new Random();
int GetOddRandomNumber()
{
 Contract.Ensures (Contract.Result<int>() % 2 == 1);
 return _random.Next (100) * 2 + 1;
}

The Contract.ValueAtReturn<T> method fulfills the same function—but for ref
and out parameters.

Contract.OldValue<T>
Contract.OldValue<T> returns the original value of a method parameter. This is
useful with postconditions because the latter are checked at the end of a function.
Therefore, any expressions in postconditions that incorporate parameters will read
the modified parameter values.

For example, the postcondition in the following method will always fail:

542 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

static string Middle (string s)
{
 Contract.Requires (s != null && s.Length >= 2);
 Contract.Ensures (Contract.Result<string>().Length < s.Length);
 s = s.Substring (1, s.Length - 2);
 return s.Trim();
}

Here’s how we can correct it:

static string Middle (string s)
{
 Contract.Requires (s != null && s.Length >= 2);
 Contract.Ensures (Contract.Result<string>().Length <
 Contract.OldValue (s).Length);
 s = s.Substring (1, s.Length - 2);
 return s.Trim();
}

Postconditions and Overridden Methods
An overridden method cannot circumvent postconditions defined by its base, but it
can add new ones. The binary rewriter ensures that a base method’s postconditions
are always checked—even if the overridden method doesn’t call the base implemen‐
tation.

For the reason just stated, postconditions on virtual methods
should not access private members. Doing so will result in the
binary rewriter weaving code into the subclass that will try to
access private members in the base class—causing a runtime
error.

Assertions and Object Invariants
In addition to preconditions and postconditions, the code contracts API lets you
make assertions and define object invariants.

Assertions

Contract.Assert
You can make assertions anywhere in a function by calling Contract.Assert. You
can optionally specify an error message if the assertion fails:

...
int x = 3;
...
Contract.Assert (x == 3); // Fail unless x is 3
Contract.Assert (x == 3, "x must be 3");
...

The binary rewriter doesn’t move assertions around. There are two reasons for
favoring Contract.Assert over Debug.Assert:

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Assertions and Object Invariants | 543

www.EBooksWorld.ir

• You can leverage the more flexible failure-handling mechanisms offered by
code contracts.

• Static checking tools can attempt to validate Contract.Asserts.

Contract.Assume
Contract.Assume behaves exactly like Contract.Assert at run-time but has slightly
different implications for static checking tools. Essentially, static checking tools
won’t challenge an assumption, whereas they may challenge an assertion. This is
useful in that there will always be things a static checker is unable to prove, and this
may lead to it “crying wolf ” over a valid assertion. Changing the assertion to an
assumption keeps the static checker quiet.

Object Invariants
For a class, you can specify one or more object invariant methods. These methods
run automatically after every public function in the class and allow you to assert that
the object is in an internally consistent state.

Support for multiple object invariant methods was included to
make object invariants work well with partial classes.

To define an object invariant method, write a parameterless void method and anno‐
tate it with the [ContractInvariantMethod] attribute. In that method, call Con
tract.Invariant to enforce each condition that should hold true:

class Test
{
 int _x, _y;

 [ContractInvariantMethod]
 void ObjectInvariant()
 {
 Contract.Invariant (_x >= 0);
 Contract.Invariant (_y >= _x);
 }

 public int X { get { return _x; } set { _x = value; } }
 public void Test1() { _x = -3; }
 void Test2() { _x = -3; }
}

The binary rewriter translates the X property, Test1 method and Test2 method to
something equivalent to this:

public void X { get { return _x; } set { _x = value; ObjectInvariant(); } }
public void Test1() { _x = -3; ObjectInvariant(); }
void Test2() { _x = -3; } // No change because it's private

544 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

Object invariants don’t prevent an object from entering an
invalid state: they merely detect when that condition has
occurred.

Contract.Invariant is rather like Contract.Assert, except that it can appear only
in a method marked with the [ContractInvariantMethod] attribute. And con‐
versely, a contract invariant method can only contain calls to Contract.Invariant.

A subclass can introduce its own object invariant method, too, and this will be
checked in addition to the base class’s invariant method. The caveat, of course, is
that the check will take place only after a public method is called.

Contracts on Interfaces and Abstract Methods
A powerful feature of code contracts is that you can attach conditions to interface
members and abstract methods. The binary rewriter then automatically weaves
these conditions into the members’ concrete implementations.

A special mechanism lets specify a separate contract class for interfaces and abstract
methods, so that you can write method bodies to house the contract conditions.
Here’s how it works:

[ContractClass (typeof (ContractForITest))]
interface ITest
{
 int Process (string s);
}

[ContractClassFor (typeof (ITest))]
sealed class ContractForITest : ITest
{
 int ITest.Process (string s) // Must use explicit implementation.
 {
 Contract.Requires (s != null);
 return 0; // Dummy value to satisfy compiler.
 }
}

Notice that we had to return a value when implementing ITest.Process to satisfy
the compiler. The code that returns 0 will not run, however. Instead, the binary
rewriter extracts just the conditions from that method and weaves them into the
real implementations of ITest.Process. This means that the contract class is never
actually instantiated (and any constructors that you write will not execute).

You can assign a temporary variable within the contract block to make it easier to
reference other members of the interface. For instance, if our ITest interface also
defined a Message property of type string, we could write the following in
ITest.Process:

int ITest.Process (string s)
{
 ITest test = this;

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Contracts on Interfaces and Abstract Methods | 545

www.EBooksWorld.ir

 Contract.Requires (s != test.Message);
 ...
}

This is easier than:

Contract.Requires (s != ((ITest)this).Message);

(Simply using this.Message won’t work because Message must be explicitly imple‐
mented.) The process of defining contract classes for abstract classes is exactly the
same, except that the contract class should be marked abstract instead of sealed.

Dealing with Contract Failure
The binary rewriter lets you specify what happens when a contract condition fails,
via the /throwonfailure switch (or the Assert on Contract Failure checkbox in Vis‐
ual Studio’s Contracts tab in Project Properties).

If you don’t specify /throwonfailure—or check Assert on Contract Failure—a dia‐
log appears upon contract failure, allowing you to abort, debug or ignore the error.

There are a couple of nuances to be aware of:

• If the CLR is hosted (i.e., in SQL Server or Exchange),
the host’s escalation policy is triggered instead of a dialog
appearing.

• Otherwise, if the current process can’t pop up a dialog
box to the user, Environment.FailFast is called.

The dialog is useful in debug builds for a couple of reasons:

• It makes it easy to diagnose and debug contract failures on the spot—without
having to re-run the program. This works regardless of whether Visual Studio
is configured to break on first-chance exceptions. And unlike with exceptions
in general, contract failure almost certainly means a bug in your code.

• It lets you know about contract failure—even if a caller higher up in the stack
“swallows” exceptions as follows:

try
{
 // Call some method whose contract fails
}
catch { }

The code above is considered an antipattern in most scenarios
because it masks failures, including conditions that the author
never anticipated.

546 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

If you specify the /throwonfailure switch and uncheck Assert on Contract Failure
in Visual Studio—a ContractException is thrown upon failure. This is desirable
for:

• Release builds—where you would let the exception bubble up the stack and be
treated like any other unexpected exception (perhaps by having a top-level
exception handler log the error or invite the user to report it).

• Unit-testing environments— where the process of logging errors is automated.

ContractException cannot appear in a catch block because
this type is not public. The rationale is that there’s no reason
that you’d want to specifically catch a ContractException—
you’d want to catch it only as part of a general exception back‐
stop.

The ContractFailed Event
When a contract fails the static Contract.ContractFailed event fires before any
further action is taken. If you handle this event, you can query the event arguments
object for details of the error. You can also call SetHandled to prevent a ContractEx
ception from being subsequently thrown (or a dialog appearing).

Handling this event is particularly useful when /throwonfailure is specified,
because it lets you log all contract failures—even if code higher in the call stack
swallows exceptions as we described just before. A great example is with automated
unit testing:

Contract.ContractFailed += (sender, args) =>
{
 string failureMessage = args.FailureKind + ": " + args.Message;
 // Log failureMessage with unit testing framework:
 // ...
 args.SetUnwind();
};

This handler logs all contract failures while allowing the normal ContractExcep
tion (or contract failure dialog) to run its course after the event handler has fin‐
ished. Notice that we also call SetUnwind: this neutralizes the effect of any calls to
SetHandled from other event subscribers. In other words, it ensures that a Contrac
tException (or dialog) will always follow after all event handlers have run.

If you throw an exception from within this handler, any other event handlers will
still execute. The exception that you threw then populates the InnerException
property of the ContractException that’s eventually thrown.

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Dealing with Contract Failure | 547

www.EBooksWorld.ir

Exceptions Within Contract Conditions
If an exception is thrown within a contract condition itself, then that exception
propagates like any other—regardless of whether /throwonfailure is specified. The
following method throws a NullReferenceException if called with a null string:

string Test (string s)
{
 Contract.Requires (s.Length > 0);
 ...
}

This precondition is essentially faulty. It should instead be:

Contract.Requires (!string.IsNullOrEmpty (s));

Selectively Enforcing Contracts
The binary rewriter offers two switches that strip away some or all contract check‐
ing: /publicsurface and /level. You can control these from Visual Studio via the
Code Contracts tab of Project Properties. The /publicsurface switch tells the
rewriter to check contracts only on public members. The /level switch has the fol‐
lowing options:

None (level 0)
Strips out all contract verification

ReleaseRequires (level 1)
Enables only calls to the generic version of Contract.Requires<TExcep
tion>

Preconditions (level 2)
Enables all preconditions (level 1 plus normal preconditions)

Pre and Post (level 3)
Enables level 2 checking plus postconditions

Full (level 4)
Enables level 3 checking plus object invariants and assertions (i.e., every‐
thing)

You typically enable full contract checking in debug build configurations.

Contracts in Release Builds
When it comes to making release builds, there are two general philosophies:

• Favor safety and enable full contract checking
• Favor performance and disable all contract checking

548 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

If you’re building a library for public consumption, though, the second approach
creates a problem. Imagine that you compile and distribute library L in release
mode with contract checking disabled. A client then builds project C in debug mode
that references library L. Assembly C can then call members of L incorrectly
without contract violations! In this situation, you actually want to enforce the parts
of L’s contract that ensure correct usage of L—in other words, the preconditions in L’s
public members.

The simplest way to resolve this is to enable /publicsurface checking in L with a
level of Preconditions or ReleaseRequires. This ensures that the essential precondi‐
tions are enforced for the benefit of consumers, while incurring the performance
cost of only those preconditions.

In extreme cases, you might not want to pay even this small performance price—in
which case you can take the more elaborate approach of call-site checking.

Call-Site Checking
Call-site checking moves precondition validation from called methods into calling
methods (call sites). This solves the problem just described—by enabling consumers
of library L to perform L’s precondition validation themselves in debug configura‐
tions.

To enable call-site checking, you must first build a separate contracts reference
assembly—a supplementary assembly that contains just the preconditions for the
referenced assembly. To do this, you can either use the ccrefgen command-line tool,
or proceed in Visual Studio as follows:

1. In the release configuration of the referenced library (L), go to the Code Con‐
tracts tab of Project Properties and disable runtime contract checking while
ticking “Build a Contract Reference Assembly”. This then generates a supple‐
mentary contracts reference assembly (with the suffix .contracts.dll).

2. In the release configuration of the referencing assemblies, disable all contract
checking.

3. In the debug configuration of the referencing assemblies, tick “Call-site Requires
Checking.”

The third step is equivalent to calling ccrewrite with the /callsiterequires switch.
It reads the preconditions from the contracts reference assembly and weaves them
into the calling sites in the referencing assembly.

Static Contract Checking
Code contracts make static contract checking possible, whereby a tool analyzes con‐
tract conditions to find potential bugs in your program before it’s run. For example,
statically checking the following code generates a warning:

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Static Contract Checking | 549

www.EBooksWorld.ir

static void Main()
{
 string message = null;
 WriteLine (message); // Static checking tool will generate warning
}

static void WriteLine (string s)
{
 Contract.Requires (s != null);
 Console.WriteLine (s);
}

You can run Microsoft’s static contracts tool from the command line via cccheck or
by enabling static contract checking in Visual Studio’s project properties dialog.

For static checking to work, you may need to add preconditions and postconditions
to your methods. To give a simple example, the following will generate a warning:

static void WriteLine (string s, bool b)
{
 if (b)
 WriteLine (s); // Warning: requires unproven
}

static void WriteLine (string s)
{
 Contract.Requires (s != null);
 Console.WriteLine (s);
}

Because we’re calling a method that requires the parameter to be non-null, we must
prove that the argument is non-null. To do this, we can add a precondition to the
first method as follows:

static void WriteLine (string s, bool b)
{
 Contract.Requires (s != null);
 if (b)
 WriteLine (s); // OK
}

The ContractVerification Attribute
Static checking is easiest if instigated from the beginning of a project’s lifecycle—
otherwise you’re likely to get overwhelmed with warnings.

If you do want to apply static contract checking to an existing codebase, it can help
by initially applying it just to selective parts of a program—via the ContractVerifi
cation attribute (in System.Diagnostics.Contracts). This attribute can be applied
at the assembly, type, and member level. If you apply it at multiple levels, the more
granular wins. Therefore, to enable static contract verification just for a particular
class, start by disabling verification at the assembly-level as follows:

[assembly: ContractVerification (false)]

550 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

and then enable it just for the desired class:

[ContractVerification (true)]
class Foo { ... }

Baselines
Another tactic in applying static contract verification to an existing codebase is to
run the static checker with the Baseline option checked in Visual Studio. All the
warnings that are produced are then written to a specified XML file. Next time you
run static verification, all the warnings in that that file are ignored—so you see only
messages generated as a result of new code that you’ve written.

The SuppressMessage Attribute
You can also tell the static checker to ignore certain types of warnings via the Sup
pressMessage attribute (in System.Diagnostics.CodeAnalysis):

[SuppressMessage ("Microsoft.Contracts", warningFamily)]

where warningFamily is one of the following values:

Requires Ensures Invariant NonNull DivByZero MinValueNegation
ArrayCreation ArrayLowerBound ArrayUpperBound

You can apply this attribute at an assembly or type level.

Debugger Integration
Sometimes it’s useful for an application to interact with a debugger if one is avail‐
able. During development, the debugger is usually your IDE (e.g., Visual Studio); in
deployment, the debugger is more likely to be:

• DbgCLR
• One of the lower-level debugging tools, such as WinDbg, Cordbg, or Mdbg

DbgCLR is Visual Studio stripped of everything but the debugger, and it is a free
download with the .NET Framework SDK. It’s the easiest debugging option when
an IDE is not available, although it requires that you download the whole SDK.

Attaching and Breaking
The static Debugger class in System.Diagnostics provides basic functions for inter‐
acting with a debugger—namely Break, Launch, Log, and IsAttached.

A debugger must first attach to an application in order to debug it. If you start an
application from within an IDE, this happens automatically, unless you request
otherwise (by choosing “Start without debugging”). Sometimes, though, it’s incon‐
venient or impossible to start an application in debug mode within the IDE. An
example is a Windows Service application or (ironically) a Visual Studio designer.
One solution is to start the application normally, and then choose Debug Process in

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Debugger Integration | 551

www.EBooksWorld.ir

your IDE. This doesn’t allow you to set breakpoints early in the program’s execution,
however.

The workaround is to call Debugger.Break from within your application. This
method launches a debugger, attaches to it, and suspends execution at that point.
(Launch does the same, but without suspending execution.) Once attached, you can
log messages directly to the debugger’s output window with the Log method. You
can tell whether you’re attached to a debugger with the IsAttached property.

Debugger Attributes
The DebuggerStepThrough and DebuggerHidden attributes provide suggestions to
the debugger on how to handle single-stepping for a particular method, constructor,
or class.

DebuggerStepThrough requests that the debugger step through a function without
any user interaction. This attribute is useful in automatically generated methods and
in proxy methods that forward the real work to a method somewhere else. In the
latter case, the debugger will still show the proxy method in the call stack if a break‐
point is set within the “real” method—unless you also add the DebuggerHidden
attribute. These two attributes can be combined on proxies to help the user focus on
debugging the application logic rather than the plumbing:

[DebuggerStepThrough, DebuggerHidden]
void DoWorkProxy()
{
 // setup...
 DoWork();
 // teardown...
}

void DoWork() {...} // Real method...

Processes and Process Threads
We described in the last section of Chapter 6 how to launch a new process with
Process.Start. The Process class also allows you to query and interact with other
processes running on the same, or another, computer. Note that the Process class is
unavailable to Windows Store apps.

Examining Running Processes
The Process.GetProcessXXX methods retrieve a specific process by name or pro‐
cess ID, or all processes running on the current or nominated computer. This
includes both managed and unmanaged processes. Each Process instance has a
wealth of properties mapping statistics such as name, ID, priority, memory and pro‐
cessor utilization, window handles, and so on. The following sample enumerates all
the running processes on the current computer:

552 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

foreach (Process p in Process.GetProcesses())
using (p)
{
 Console.WriteLine (p.ProcessName);
 Console.WriteLine (" PID: " + p.Id);
 Console.WriteLine (" Memory: " + p.WorkingSet64);
 Console.WriteLine (" Threads: " + p.Threads.Count);
}

Process.GetCurrentProcess returns the current process. If you’ve created addi‐
tional application domains, all will share the same process.

You can terminate a process by calling its Kill method.

Examining Threads in a Process
You can also enumerate over the threads of other processes, with the Pro
cess.Threads property. The objects that you get, however, are not System.Thread
ing.Thread objects, but rather ProcessThread objects and are intended for admin‐
istrative rather than synchronization tasks. A ProcessThread object provides diag‐
nostic information about the underlying thread and allows you to control some
aspects of it, such as its priority and processor affinity:

public void EnumerateThreads (Process p)
{
 foreach (ProcessThread pt in p.Threads)
 {
 Console.WriteLine (pt.Id);
 Console.WriteLine (" State: " + pt.ThreadState);
 Console.WriteLine (" Priority: " + pt.PriorityLevel);
 Console.WriteLine (" Started: " + pt.StartTime);
 Console.WriteLine (" CPU time: " + pt.TotalProcessorTime);
 }
}

StackTrace and StackFrame
The StackTrace and StackFrame classes provide a read-only view of an execution
call stack and are part of the standard desktop .NET Framework. You can obtain
stack traces for the current thread, another thread in the same process, or an Excep
tion object. Such information is useful mostly for diagnostic purposes, though it
can also be used in programming (hacks). StackTrace represents a complete call
stack; StackFrame represents a single method call within that stack.

If you instantiate a StackTrace object with no arguments—or with a bool argument
—you get a snapshot of the current thread’s call stack. The bool argument, if true,
instructs StackTrace to read the assembly .pdb (project debug) files if they are
present, giving you access to filename, line number, and column offset data. Project
debug files are generated when you compile with the /debug switch. (Visual Studio
compiles with this switch unless you request otherwise via Advanced Build Settings.)

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

StackTrace and StackFrame | 553

www.EBooksWorld.ir

Once you’ve obtained a StackTrace, you can examine a particular frame by calling
GetFrame—or obtain the whole lot with GetFrames:

static void Main() { A (); }
static void A() { B (); }
static void B() { C (); }
static void C()
{
 StackTrace s = new StackTrace (true);

 Console.WriteLine ("Total frames: " + s.FrameCount);
 Console.WriteLine ("Current method: " + s.GetFrame(0).GetMethod().Name);
 Console.WriteLine ("Calling method: " + s.GetFrame(1).GetMethod().Name);
 Console.WriteLine ("Entry method: " + s.GetFrame
 (s.FrameCount-1).GetMethod().Name);
 Console.WriteLine ("Call Stack:");
 foreach (StackFrame f in s.GetFrames())
 Console.WriteLine (
 " File: " + f.GetFileName() +
 " Line: " + f.GetFileLineNumber() +
 " Col: " + f.GetFileColumnNumber() +
 " Offset: " + f.GetILOffset() +
 " Method: " + f.GetMethod().Name);
}

Here’s the output:

Total frames: 4
Current method: C
Calling method: B
Entry method: Main
Call stack:
 File: C:\Test\Program.cs Line: 15 Col: 4 Offset: 7 Method: C
 File: C:\Test\Program.cs Line: 12 Col: 22 Offset: 6 Method: B
 File: C:\Test\Program.cs Line: 11 Col: 22 Offset: 6 Method: A
 File: C:\Test\Program.cs Line: 10 Col: 25 Offset: 6 Method: Main

The IL offset indicates the offset of the instruction that will
execute next —not the instruction that’s currently executing.
Peculiarly, though, the line and column number (if a .pdb file
is present) usually indicate the actual execution point.
This happens because the CLR does its best to infer the actual
execution point when calculating the line and column from
the IL offset. The compiler emits IL in such a way as to make
this possible—including inserting nop (no-operation) instruc‐
tions into the IL stream.
Compiling with optimizations enabled, however, disables the
insertion of nop instructions, and so the stack trace may show
the line and column number of the next statement to execute.
Obtaining a useful stack trace is further hampered by the fact
that optimization can pull other tricks, including collapsing
entire methods.

554 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

A shortcut to obtaining the essential information for an entire StackTrace is to call
ToString on it. Here’s what the result looks like:

at DebugTest.Program.C() in C:\Test\Program.cs:line 16
at DebugTest.Program.B() in C:\Test\Program.cs:line 12
at DebugTest.Program.A() in C:\Test\Program.cs:line 11
at DebugTest.Program.Main() in C:\Test\Program.cs:line 10

To obtain the stack trace for another thread, pass the other Thread into Stack
Trace’s constructor. This can be a useful strategy for profiling a program, although
you must suspend the thread while obtaining the stack trace. This is actually quite
tricky to do without risking a deadlock—we illustrate a reliable approach in “Sus‐
pend and Resume” on page 939 in Chapter 22.

You can also get the stack trace for an Exception object (showing what led up to the
exception being thrown) by passing the Exception into StackTrace’s constructor.

Exception already has a StackTrace property; however, this
property returns a simple string—not a StackTrace object. A
StackTrace object is far more useful in logging exceptions
that occur after deployment—where no .pdb files are available
—because you can log the IL offset in lieu of line and column
numbers. With an IL offset and ildasm, you can pinpoint
where within a method an error occurred.

Windows Event Logs
The Win32 platform provides a centralized logging mechanism, in the form of the
Windows event logs.

The Debug and Trace classes we used earlier write to a Windows event log if you
register an EventLogTraceListener. With the EventLog class, however, you can
write directly to a Windows event log without using Trace or Debug. You can also
use this class to read and monitor event data.

Writing to the Windows event log makes sense in a Windows
Service application, because if something goes wrong, you
can’t pop up a user interface directing the user to some special
file where diagnostic information has been written. Also,
because it’s common practice for services to write to the Win‐
dows event log, this is the first place an administrator is likely
to look if your service falls over.

The EventLog class is not available to Windows Store apps.

There are three standard Windows event logs, identified by these names:

• Application
• System
• Security

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Windows Event Logs | 555

www.EBooksWorld.ir

The Application log is where most applications normally write.

Writing to the Event Log
To write to a Windows event log:

1. Choose one of the three event logs (usually Application).
2. Decide on a source name and create it if necessary.

3. Call EventLog.WriteEntry with the log name, source name, and message data.

The source name is an easily identifiable name for your application. You must regis‐
ter a source name before you use it—the CreateEventSource method performs this
function. You can then call WriteEntry:

const string SourceName = "MyCompany.WidgetServer";

// CreateEventSource requires administrative permissions, so this would
// typically be done in application setup.
if (!EventLog.SourceExists (SourceName))
 EventLog.CreateEventSource (SourceName, "Application");

EventLog.WriteEntry (SourceName,
 "Service started; using configuration file=...",
 EventLogEntryType.Information);

EventLogEntryType can be Information, Warning, Error, SuccessAudit, or Failur
eAudit. Each displays with a different icon in the Windows event viewer. You can
also optionally specify a category and event ID (each is a number of your own
choosing) and provide optional binary data.

CreateEventSource also allows you to specify a machine name: this is to write to
another computer’s event log, if you have sufficient permissions.

Reading the Event Log
To read an event log, instantiate the EventLog class with the name of the log you
wish to access and optionally the name of another computer on which the log
resides. Each log entry can then be read via the Entries collection property:

EventLog log = new EventLog ("Application");

Console.WriteLine ("Total entries: " + log.Entries.Count);

EventLogEntry last = log.Entries [log.Entries.Count - 1];
Console.WriteLine ("Index: " + last.Index);
Console.WriteLine ("Source: " + last.Source);
Console.WriteLine ("Type: " + last.EntryType);
Console.WriteLine ("Time: " + last.TimeWritten);
Console.WriteLine ("Message: " + last.Message);

You can enumerate over all logs for the current (or another) computer with the
static method EventLog.GetEventLogs (this requires administrative privileges):

556 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

foreach (EventLog log in EventLog.GetEventLogs())
 Console.WriteLine (log.LogDisplayName);

This normally prints, at a minimum, Application, Security, and System.

Monitoring the Event Log
You can be alerted whenever an entry is written to a Windows event log, via the
EntryWritten event. This works for event logs on the local computer, and it fires
regardless of what application logged the event.

To enable log monitoring:

1. Instantiate an EventLog and set its EnableRaisingEvents property to true.

2. Handle the EntryWritten event.

For example:

static void Main()
{
 using (var log = new EventLog ("Application"))
 {
 log.EnableRaisingEvents = true;
 log.EntryWritten += DisplayEntry;
 Console.ReadLine();
 }
}

static void DisplayEntry (object sender, EntryWrittenEventArgs e)
{
 EventLogEntry entry = e.Entry;
 Console.WriteLine (entry.Message);
}

Performance Counters
The logging mechanisms we’ve discussed to date are useful for capturing informa‐
tion for future analysis. However, to gain insight into the current state of an applica‐
tion (or the system as a whole), a more real-time approach is needed. The Win32
solution to this need is the performance-monitoring infrastructure, which consists
of a set of performance counters that the system and applications expose, and the
Microsoft Management Console (MMC) snap-ins used to monitor these counters in
real time.

Performance counters are grouped into categories such as “System,” “Processor,”
“.NET CLR Memory,” and so on. These categories are sometimes also referred to as
“performance objects” by the GUI tools. Each category groups a related set of per‐
formance counters that monitor one aspect of the system or application. Examples
of performance counters in the “.NET CLR Memory” category include “% Time in
GC,” “# Bytes in All Heaps,” and “Allocated bytes/sec.”

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Performance Counters | 557

www.EBooksWorld.ir

Each category may optionally have one or more instances that can be monitored
independently. For example, this is useful in the “% Processor Time” performance
counter in the “Processor” category, which allows one to monitor CPU utilization.
On a multiprocessor machine, this counter supports an instance for each CPU,
allowing one to monitor the utilization of each CPU independently.

The following sections illustrate how to perform commonly needed tasks, such as
determining which counters are exposed, monitoring a counter, and creating your
own counters to expose application status information.

Reading performance counters or categories may require
administrator privileges on the local or target computer,
depending on what is accessed.

Enumerating the Available Counters
The following example enumerates over all of the available performance counters
on the computer. For those that have instances, it enumerates the counters for each
instance:

PerformanceCounterCategory[] cats =
 PerformanceCounterCategory.GetCategories();

foreach (PerformanceCounterCategory cat in cats)
{
 Console.WriteLine ("Category: " + cat.CategoryName);

 string[] instances = cat.GetInstanceNames();
 if (instances.Length == 0)
 {
 foreach (PerformanceCounter ctr in cat.GetCounters())
 Console.WriteLine (" Counter: " + ctr.CounterName);
 }
 else // Dump counters with instances
 {
 foreach (string instance in instances)
 {
 Console.WriteLine (" Instance: " + instance);
 if (cat.InstanceExists (instance))
 foreach (PerformanceCounter ctr in cat.GetCounters (instance))
 Console.WriteLine (" Counter: " + ctr.CounterName);
 }
 }
}

The result is more than 10,000 lines long! It also takes a while
to execute because PerformanceCounterCategory.Instan

ceExists has an inefficient implementation. In a real system,
you’d want to retrieve the more detailed information only on
demand.

The next example uses a LINQ query to retrieve just .NET performance counters,
writing the result to an XML file:

558 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

var x =
 new XElement ("counters",
 from PerformanceCounterCategory cat in
 PerformanceCounterCategory.GetCategories()
 where cat.CategoryName.StartsWith (".NET")
 let instances = cat.GetInstanceNames()
 select new XElement ("category",
 new XAttribute ("name", cat.CategoryName),
 instances.Length == 0
 ?
 from c in cat.GetCounters()
 select new XElement ("counter",
 new XAttribute ("name", c.CounterName))
 :
 from i in instances
 select new XElement ("instance", new XAttribute ("name", i),
 !cat.InstanceExists (i)
 ?
 null
 :
 from c in cat.GetCounters (i)
 select new XElement ("counter",
 new XAttribute ("name", c.CounterName))
)
)
);
x.Save ("counters.xml");

Reading Performance Counter Data
To retrieve the value of a performance counter, instantiate a PerformanceCounter
object and then call the NextValue or NextSample method. NextValue returns a
simple float value; NextSample returns a CounterSample object that exposes a
more advanced set of properties, such as CounterFrequency, TimeStamp, BaseValue,
and RawValue.

PerformanceCounter’s constructor takes a category name, counter name, and
optional instance. So, to display the current processor utilization for all CPUs, you
would do the following:

using (PerformanceCounter pc = new PerformanceCounter ("Processor",
 "% Processor Time",
 "_Total"))
 Console.WriteLine (pc.NextValue());

Or to display the “real” (i.e., private) memory consumption of the current process:

string procName = Process.GetCurrentProcess().ProcessName;
using (PerformanceCounter pc = new PerformanceCounter ("Process",
 "Private Bytes",
 procName))
 Console.WriteLine (pc.NextValue());

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Performance Counters | 559

www.EBooksWorld.ir

PerformanceCounter doesn’t expose a ValueChanged event, so if you want to moni‐
tor for changes, you must poll. In the next example, we poll every 200 ms—until
signaled to quit by an EventWaitHandle:

// need to import System.Threading as well as System.Diagnostics

static void Monitor (string category, string counter, string instance,
 EventWaitHandle stopper)
{
 if (!PerformanceCounterCategory.Exists (category))
 throw new InvalidOperationException ("Category does not exist");

 if (!PerformanceCounterCategory.CounterExists (counter, category))
 throw new InvalidOperationException ("Counter does not exist");

 if (instance == null) instance = ""; // "" == no instance (not null!)
 if (instance != "" &&
 !PerformanceCounterCategory.InstanceExists (instance, category))
 throw new InvalidOperationException ("Instance does not exist");

 float lastValue = 0f;
 using (PerformanceCounter pc = new PerformanceCounter (category,
 counter, instance))
 while (!stopper.WaitOne (200, false))
 {
 float value = pc.NextValue();
 if (value != lastValue) // Only write out the value
 { // if it has changed.
 Console.WriteLine (value);
 lastValue = value;
 }
 }
}

Here’s how we can use this method to simultaneously monitor processor and hard-
disk activity:

static void Main()
{
 EventWaitHandle stopper = new ManualResetEvent (false);

 new Thread (() =>
 Monitor ("Processor", "% Processor Time", "_Total", stopper)
).Start();

 new Thread (() =>
 Monitor ("LogicalDisk", "% Idle Time", "C:", stopper)
).Start();

 Console.WriteLine ("Monitoring - press any key to quit");
 Console.ReadKey();
 stopper.Set();
}

560 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

Creating Counters and Writing Performance Data
Before writing performance counter data, you need to create a performance cate‐
gory and counter. You must create the performance category along with all the
counters that belong to it in one step, as follows:

string category = "Nutshell Monitoring";

// We'll create two counters in this category:
string eatenPerMin = "Macadamias eaten so far";
string tooHard = "Macadamias deemed too hard";

if (!PerformanceCounterCategory.Exists (category))
{
 CounterCreationDataCollection cd = new CounterCreationDataCollection();

 cd.Add (new CounterCreationData (eatenPerMin,
 "Number of macadamias consumed, including shelling time",
 PerformanceCounterType.NumberOfItems32));

 cd.Add (new CounterCreationData (tooHard,
 "Number of macadamias that will not crack, despite much effort",
 PerformanceCounterType.NumberOfItems32));

 PerformanceCounterCategory.Create (category, "Test Category",
 PerformanceCounterCategoryType.SingleInstance, cd);
}

The new counters then show up in the Windows performance-monitoring tool
when you choose Add Counters, as shown in Figure 13-1.

Figure 13-1. Custom performance counter

D
iag

no
stics

and
 C

o
d

e
C

o
ntracts

Performance Counters | 561

www.EBooksWorld.ir

If you later want to define more counters in the same category, you must first delete
the old category by calling PerformanceCounterCategory.Delete.

Creating and deleting performance counters requires admin‐
istrative privileges. For this reason, it’s usually done as part of
the application setup.

Once a counter is created, you can update its value by instantiating a Performance
Counter, setting ReadOnly to false, and setting RawValue. You can also use the
Increment and IncrementBy methods to update the existing value:

string category = "Nutshell Monitoring";
string eatenPerMin = "Macadamias eaten so far";

using (PerformanceCounter pc = new PerformanceCounter (category,
 eatenPerMin, ""))
{
 pc.ReadOnly = false;
 pc.RawValue = 1000;
 pc.Increment();
 pc.IncrementBy (10);
 Console.WriteLine (pc.NextValue()); // 1011
}

The Stopwatch Class
The Stopwatch class provides a convenient mechanism for measuring execution
times. Stopwatch uses the highest-resolution mechanism that the operating system
and hardware provide, which is typically less than a microsecond. (In contrast, Date
Time.Now and Environment.TickCount have a resolution of about 15ms).

To use Stopwatch, call StartNew—this instantiates a Stopwatch and starts it ticking.
(Alternatively, you can instantiate it manually and then call Start.) The Elapsed
property returns the elapsed interval as a TimeSpan:

Stopwatch s = Stopwatch.StartNew();
System.IO.File.WriteAllText ("test.txt", new string ('*', 30000000));
Console.WriteLine (s.Elapsed); // 00:00:01.4322661

Stopwatch also exposes an ElapsedTicks property, which returns the number of
elapsed “ticks” as a long. To convert from ticks to seconds, divide by StopWatch.Fre
quency. There’s also an ElapsedMilliseconds property, which is often the most
convenient.

Calling Stop freezes Elapsed and ElapsedTicks. There’s no background activity
incurred by a “running” Stopwatch, so calling Stop is optional.

562 | Chapter 13: Diagnostics and Code Contracts

www.EBooksWorld.ir

14
Concurrency and Asynchrony

Most applications need to deal with more than one thing happening at a time (con‐
currency). In this chapter, we start with the essential prerequisites, namely the basics
of threading and tasks, and then describe the principles of asynchrony and C#’s
asynchronous functions in detail.

In Chapter 22, we’ll revisit multithreading in greater detail, and in Chapter 23, we’ll
cover the related topic of parallel programming.

Introduction
The most common concurrency scenarios are:

Writing a responsive user interface
In WPF, mobile, and Windows Forms applications, you must run time-
consuming tasks concurrently with the code that runs your user interface
to maintain responsiveness.

Allowing requests to process simultaneously
On a server, client requests can arrive concurrently and so must be handled
in parallel to maintain scalability. If you use ASP.NET, WCF, or Web Serv‐
ices, the .NET Framework does this for you automatically. However, you
still need to be aware of shared state (for instance, the effect of using static
variables for caching.)

Parallel programming
Code that performs intensive calculations can execute faster on multicore/
multiprocessor computers if the workload is divided between cores (Chap‐
ter 23 is dedicated to this).

C
o

ncurrency
and

A
synchro

ny

563

www.EBooksWorld.ir

1 The CLR creates other threads behind the scenes for garbage collection and finalization.

Speculative execution
On multicore machines, you can sometimes improve performance by pre‐
dicting something that might need to be done, and then doing it ahead of
time. LINQPad uses this technique to speed up the creation of new queries.
A variation is to run a number of different algorithms in parallel that all
solve the same task. Whichever one finishes first “wins”—this is effective
when you can’t know ahead of time which algorithm will execute fastest.

The general mechanism by which a program can simultaneously execute code is
called multithreading. Multithreading is supported by both the CLR and operating
system and is a fundamental concept in concurrency. Understanding the basics of
threading, and in particular, the effects of threads on shared state, is therefore essen‐
tial.

Threading
A thread is an execution path that can proceed independently of others.

Each thread runs within an operating system process, which provides an isolated
environment in which a program runs. With a single-threaded program, just one
thread runs in the process’s isolated environment, and so that thread has exclusive
access to it. With a multithreaded program, multiple threads run in a single process,
sharing the same execution environment (memory, in particular). This, in part, is
why multithreading is useful: one thread can fetch data in the background, for
instance, while another thread displays the data as it arrives. This data is referred to
as shared state.

Creating a Thread
In Windows Store apps, you cannot create and start threads
directly; instead you must do this via tasks (see “Tasks” on
page 581). Tasks add a layer of indirection that complicates
learning, so the best way to start is with Console applications
(or LINQPad) and create threads directly until you’re com‐
fortable with how they work.

A client program (Console, WPF, Windows Store, or Windows Forms) starts in a
single thread that’s created automatically by the operating system (the “main”
thread). Here it lives out its life as a single-threaded application, unless you do
otherwise by creating more threads (directly or indirectly).1

You can create and start a new thread by instantiating a Thread object and calling its
Start method. The simplest constructor for Thread takes a ThreadStart delegate: a
parameterless method indicating where execution should begin. For example:

564 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

// NB: All samples in this chapter assume the following namespace imports:
using System;
using System.Threading;

class ThreadTest
{
 static void Main()
 {
 Thread t = new Thread (WriteY); // Kick off a new thread
 t.Start(); // running WriteY()

 // Simultaneously, do something on the main thread.
 for (int i = 0; i < 1000; i++) Console.Write ("x");
 }

 static void WriteY()
 {
 for (int i = 0; i < 1000; i++) Console.Write ("y");
 }
}

// Typical Output:
xxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
xxyyyyyyyyyyyyy
yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
yyyyyyyyyyyyyxx
...

The main thread creates a new thread t on which it runs a method that repeatedly
prints the character y. Simultaneously, the main thread repeatedly prints the charac‐
ter x, as shown in Figure 14-1. On a single-core computer, the operating system
must allocate “slices” of time to each thread (typically 20 ms in Windows) to simu‐
late concurrency, resulting in repeated blocks of x and y. On a multicore or multi‐
processor machine, the two threads can genuinely execute in parallel (subject to
competition by other active processes on the computer), although you still get
repeated blocks of x and y in this example because of subtleties in the mechanism by
which Console handles concurrent requests.

Figure 14-1. Starting a new thread

C
o

ncurrency
and

A
synchro

ny

Threading | 565

www.EBooksWorld.ir

A thread is said to be preempted at the points where its execu‐
tion is interspersed with the execution of code on another
thread. The term often crops up in explaining why something
has gone wrong!

Once started, a thread’s IsAlive property returns true, until the point where the
thread ends. A thread ends when the delegate passed to the Thread’s constructor
finishes executing. Once ended, a thread cannot restart.

Each thread has a Name property that you can set for the benefit of debugging. This
is particularly useful in Visual Studio, since the thread’s name is displayed in the
Threads Window and Debug Location toolbar. You can set a thread’s name just
once; attempts to change it later will throw an exception.

The static Thread.CurrentThread property gives you the currently executing
thread:

Console.WriteLine (Thread.CurrentThread.Name);

Join and Sleep
You can wait for another thread to end by calling its Join method:

static void Main()
{
 Thread t = new Thread (Go);
 t.Start();
 t.Join();
 Console.WriteLine ("Thread t has ended!");
}

static void Go() { for (int i = 0; i < 1000; i++) Console.Write ("y"); }

This prints “y” 1,000 times, followed by “Thread t has ended!” immediately after‐
ward. You can include a timeout when calling Join, either in milliseconds or as a
TimeSpan. It then returns true if the thread ended or false if it timed out.

Thread.Sleep pauses the current thread for a specified period:

Thread.Sleep (TimeSpan.FromHours (1)); // Sleep for 1 hour
Thread.Sleep (500); // Sleep for 500 milliseconds

Thread.Sleep(0) relinquishes the thread’s current time slice immediately, voluntar‐
ily handing over the CPU to other threads. Thread.Yield() does the same thing—
except that it relinquishes only to threads running on the same processor.

Sleep(0) or Yield is occasionally useful in production code
for advanced performance tweaks. It’s also an excellent diag‐
nostic tool for helping to uncover thread safety issues: if
inserting Thread.Yield() anywhere in your code breaks the
program, you almost certainly have a bug.

While waiting on a Sleep or Join, a thread is blocked.

566 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

Blocking
A thread is deemed blocked when its execution is paused for some reason, such as
when Sleeping or waiting for another to end via Join. A blocked thread immedi‐
ately yields its processor time slice, and from then on consumes no processor time
until its blocking condition is satisfied. You can test for a thread being blocked via
its ThreadState property:

bool blocked = (someThread.ThreadState & ThreadState.WaitSleepJoin) != 0;

ThreadState is a flags enum, combining three “layers” of data
in a bitwise fashion. Most values, however, are redundant,
unused, or deprecated. The following extension method strips
a ThreadState to one of four useful values: Unstarted, Run
ning, WaitSleepJoin, and Stopped:

public static ThreadState Simplify (this ThreadState ts)
{
 return ts & (ThreadState.Unstarted |
 ThreadState.WaitSleepJoin |
 ThreadState.Stopped);
}

The ThreadState property is useful for diagnostic purposes,
but unsuitable for synchronization because a thread’s state
may change in between testing ThreadState and acting on
that information.

When a thread blocks or unblocks, the operating system performs a context switch.
This incurs a small overhead, typically one or two microseconds.

I/O-bound versus compute-bound
An operation that spends most of its time waiting for something to happen is called
I/O-bound—an example is downloading a web page or calling Console.ReadLine.
(I/O-bound operations typically involve input or output, but this is not a hard
requirement: Thread.Sleep is also deemed I/O-bound.) In contrast, an operation
that spends most of its time performing CPU-intensive work is called compute-
bound.

Blocking versus spinning
An I/O-bound operation works in one of two ways: it either waits synchronously on
the current thread until the operation is complete (such as Console.ReadLine,
Thread.Sleep, or Thread.Join), or operates asynchronously, firing a callback when
the operation finishes some time later (more on this later).

I/O-bound operations that wait synchronously spend most of their time blocking a
thread. They may also “spin” in a loop periodically:

while (DateTime.Now < nextStartTime)
 Thread.Sleep (100);

C
o

ncurrency
and

A
synchro

ny

Threading | 567

www.EBooksWorld.ir

Leaving aside that there are better ways to do this (such as timers or signaling con‐
structs), another option is that a thread may spin continuously:

while (DateTime.Now < nextStartTime);

In general, this is very wasteful on processor time: as far as the CLR and operating
system are concerned, the thread is performing an important calculation and so gets
allocated resources accordingly. In effect, we’ve turned what should be an I/O-
bound operation into a compute-bound operation.

There are a couple of nuances with regard spinning versus
blocking. First, spinning very briefly can be effective when you
expect a condition to be satisfied soon (perhaps within a few
microseconds) because it avoids the overhead and latency of a
context switch. The .NET Framework provides special meth‐
ods and classes to assist—see “SpinLock and SpinWait” in
http://albahari.com/threading/.
Second, blocking does not incur a zero cost. This is because
each thread ties up around 1MB of memory for as long as it
lives and causes an ongoing administrative overhead for the
CLR and operating system. For this reason, blocking can be
troublesome in the context of heavily I/O-bound programs
that need to handle hundreds or thousands of concurrent
operations. Instead, such programs need to use a callback-
based approach, rescinding their thread entirely while waiting.
This is (in part) the purpose of the asynchronous patterns that
we’ll discuss later.

Local Versus Shared State
The CLR assigns each thread its own memory stack so that local variables are kept
separate. In the next example, we define a method with a local variable, then call the
method simultaneously on the main thread and a newly created thread:

static void Main()
{
 new Thread (Go).Start(); // Call Go() on a new thread
 Go(); // Call Go() on the main thread
}

static void Go()
{
 // Declare and use a local variable - 'cycles'
 for (int cycles = 0; cycles < 5; cycles++) Console.Write ('?');
}

A separate copy of the cycles variable is created on each thread’s memory stack,
and so the output is, predictably, 10 question marks.

Threads share data if they have a common reference to the same object instance:

class ThreadTest
{

568 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

http://albahari.com/threading/

 bool _done;

 static void Main()
 {
 ThreadTest tt = new ThreadTest(); // Create a common instance
 new Thread (tt.Go).Start();
 tt.Go();
 }

 void Go() // Note that this is an instance method
 {
 if (!_done) { _done = true; Console.WriteLine ("Done"); }
 }
}

Because both threads call Go() on the same ThreadTest instance, they share the
_done field. This results in “Done” being printed once instead of twice.

Local variables captured by a lambda expression or anonymous delegate are con‐
verted by the compiler into fields, and so can also be shared:

class ThreadTest
{
 static void Main()
 {
 bool done = false;
 ThreadStart action = () =>
 {
 if (!done) { done = true; Console.WriteLine ("Done"); }
 };
 new Thread (action).Start();
 action();
 }
}

Static fields offer another way to share data between threads:

class ThreadTest
{
 static bool _done; // Static fields are shared between all threads
 // in the same application domain.
 static void Main()
 {
 new Thread (Go).Start();
 Go();
 }

 static void Go()
 {
 if (!_done) { _done = true; Console.WriteLine ("Done"); }
 }
}

All three examples illustrate another key concept: that of thread safety (or rather,
lack of it!) The output is actually indeterminate: it’s possible (though unlikely) that

C
o

ncurrency
and

A
synchro

ny

Threading | 569

www.EBooksWorld.ir

“Done” could be printed twice. If, however, we swap the order of statements in the
Go method, the odds of “Done” being printed twice go up dramatically:

static void Go()
{
 if (!_done) { Console.WriteLine ("Done"); _done = true; }
}

The problem is that one thread can be evaluating the if statement right as the other
thread is executing the WriteLine statement—before it’s had a chance to set done to
true.

Our example illustrates one of many ways that shared writable
state can introduce the kind of intermittent errors for which
multithreading is notorious. We’ll see next how to fix our pro‐
gram with locking; however it’s better to avoid shared state
altogether where possible. We’ll see later how asynchronous
programming patterns help with this.

Locking and Thread Safety
Locking and thread safety are large topics. For a full discus‐
sion, see “Exclusive Locking” on page 904 and “Locking and
Thread Safety” on page 570 in Chapter 22.

We can fix the previous example by obtaining an exclusive lock while reading and
writing to the shared field. C# provides the lock statement for just this purpose:

class ThreadSafe
{
 static bool _done;
 static readonly object _locker = new object();

 static void Main()
 {
 new Thread (Go).Start();
 Go();
 }

 static void Go()
 {
 lock (_locker)
 {
 if (!_done) { Console.WriteLine ("Done"); _done = true; }
 }
 }
}

When two threads simultaneously contend a lock (which can be upon any
reference-type object, in this case, _locker), one thread waits, or blocks, until the
lock becomes available. In this case, it ensures only one thread can enter its code
block at a time, and “Done” will be printed just once. Code that’s protected in such a
manner—from indeterminacy in a multithreaded context—is called thread-safe.

570 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

Even the act of autoincrementing a variable is not thread-safe:
the expression x++ executes on the underlying processor as
distinct read-increment-write operations. So, if two threads
execute x++ at once outside a lock, the variable may end up
getting incremented once rather than twice (or worse, x could
be torn, ending up with a bitwise-mixture of old and new con‐
tent, under certain conditions).

Locking is not a silver bullet for thread safety—it’s easy to forget to lock around
accessing a field, and locking can create problems of its own (such as deadlocking).

A good example of when you might use locking is around accessing a shared in-
memory cache for frequently accessed database objects in an ASP.NET application.
This kind of application is simple to get right, and there’s no chance of deadlocking.
We give an example in “Thread Safety in Application Servers” on page 916 in Chap‐
ter 22.

Passing Data to a Thread
Sometimes you’ll want to pass arguments to the thread’s startup method. The easiest
way to do this is with a lambda expression that calls the method with the desired
arguments:

static void Main()
{
 Thread t = new Thread (() => Print ("Hello from t!"));
 t.Start();
}

static void Print (string message) { Console.WriteLine (message); }

With this approach, you can pass in any number of arguments to the method. You
can even wrap the entire implementation in a multistatement lambda:

new Thread (() =>
{
 Console.WriteLine ("I'm running on another thread!");
 Console.WriteLine ("This is so easy!");
}).Start();

Lambda expressions didn’t exist prior to C# 3.0. So you might also come across an
old-school technique, which is to pass an argument into Thread’s Start method:

static void Main()
{
 Thread t = new Thread (Print);
 t.Start ("Hello from t!");
}

static void Print (object messageObj)
{
 string message = (string) messageObj; // We need to cast here
 Console.WriteLine (message);
}

C
o

ncurrency
and

A
synchro

ny

Threading | 571

www.EBooksWorld.ir

This works because Thread’s constructor is overloaded to accept either of two dele‐
gates:

public delegate void ThreadStart();
public delegate void ParameterizedThreadStart (object obj);

The limitation of ParameterizedThreadStart is that it accepts only one argument.
And because it’s of type object, it usually needs to be cast.

Lambda expressions and captured variables
As we saw, a lambda expression is the most convenient and powerful way to pass
data to a thread. However, you must be careful about accidentally modifying cap‐
tured variables after starting the thread. For instance, consider the following:

for (int i = 0; i < 10; i++)
 new Thread (() => Console.Write (i)).Start();

The output is nondeterministic! Here’s a typical result:

0223557799

The problem is that the i variable refers to the same memory location throughout
the loop’s lifetime. Therefore, each thread calls Console.Write on a variable whose
value may change as it is running! The solution is to use a temporary variable as
follows:

for (int i = 0; i < 10; i++)
{
 int temp = i;
 new Thread (() => Console.Write (temp)).Start();
}

Each of the digits 0 to 9 is then written exactly once. (The ordering is still undefined
because threads may start at indeterminate times.)

This is analogous to the problem we described in “Captured
Variables” on page 350 in Chapter 8. The problem is just as
much about C#’s rules for capturing variables in for loops as it
is about multithreading.

This problem also applies to foreach loops prior to C# 5.

Variable temp is now local to each loop iteration. Therefore, each thread captures a
different memory location and there’s no problem. We can illustrate the problem in
the earlier code more simply with the following example:

string text = "t1";
Thread t1 = new Thread (() => Console.WriteLine (text));

text = "t2";
Thread t2 = new Thread (() => Console.WriteLine (text));

t1.Start(); t2.Start();

572 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

Because both lambda expressions capture the same text variable, t2 is printed twice.

Exception Handling
Any try/catch/finally blocks in effect when a thread is created are of no relevance
to the thread when it starts executing. Consider the following program:

public static void Main()
{
 try
 {
 new Thread (Go).Start();
 }
 catch (Exception ex)
 {
 // We'll never get here!
 Console.WriteLine ("Exception!");
 }
}

static void Go() { throw null; } // Throws a NullReferenceException

The try/catch statement in this example is ineffective, and the newly created thread
will be encumbered with an unhandled NullReferenceException. This behavior
makes sense when you consider that each thread has an independent execution
path.

The remedy is to move the exception handler into the Go method:

public static void Main()
{
 new Thread (Go).Start();
}

static void Go()
{
 try
 {
 ...
 throw null; // The NullReferenceException will get caught below
 ...
 }
 catch (Exception ex)
 {
 Typically log the exception, and/or signal another thread
 that we've come unstuck
 ...
 }
}

You need an exception handler on all thread entry methods in production applica‐
tions—just as you do (usually at a higher level, in the execution stack) on your main

C
o

ncurrency
and

A
synchro

ny

Threading | 573

www.EBooksWorld.ir

thread. An unhandled exception causes the whole application to shut down. With
an ugly dialog box!

In writing such exception handling blocks, rarely would you
ignore the error: typically, you’d log the details of the excep‐
tion, and then perhaps display a dialog box allowing the user
to automatically submit those details to your web server. You
then might choose to restart the application, because it’s possi‐
ble that an unexpected exception might leave your program in
an invalid state.

Centralized exception handling
In WPF, Windows Store, and Windows Forms applications, you can subscribe to
“global” exception handling events, Application.DispatcherUnhandledException
and Application.ThreadException, respectively. These fire after an unhandled
exception in any part of your program that’s called via the message loop (this
amounts to all code that runs on the main thread while the Application is active).
This is useful as a backstop for logging and reporting bugs (although it won’t fire for
unhandled exceptions on non-UI threads that you create). Handling these events
prevents the program from shutting down, although you may choose to restart the
application to avoid the potential corruption of state that can follow from (or that
led to) the unhandled exception.

AppDomain.CurrentDomain.UnhandledException fires on any unhandled exception
on any thread, but since CLR 2.0, the CLR forces application shutdown after your
event handler completes. However, you can prevent shutdown by adding the follow‐
ing to your application configuration file:

<configuration>
 <runtime>
 <legacyUnhandledExceptionPolicy enabled="1" />
 </runtime>
</configuration>

This can be useful in programs that host multiple application domains (Chapter 24):
if an unhandled exception occurs in a nondefault application domain, you can
destroy and recreate the offending domain rather than restarting the whole applica‐
tion.

Foreground Versus Background Threads
By default, threads you create explicitly are foreground threads. Foreground threads
keep the application alive for as long as any one of them is running, whereas back‐
ground threads do not. Once all foreground threads finish, the application ends, and
any background threads still running abruptly terminate.

A thread’s foreground/background status has no relation to its
priority (allocation of execution time).

574 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

You can query or change a thread’s background status using its IsBackground prop‐
erty:

static void Main (string[] args)
{
 Thread worker = new Thread (() => Console.ReadLine());
 if (args.Length > 0) worker.IsBackground = true;
 worker.Start();
}

If this program is called with no arguments, the worker thread assumes foreground
status and will wait on the ReadLine statement for the user to press Enter. Mean‐
while, the main thread exits, but the application keeps running because a fore‐
ground thread is still alive. On the other hand, if an argument is passed to Main(),
the worker is assigned background status, and the program exits almost immedi‐
ately as the main thread ends (terminating the ReadLine).

When a process terminates in this manner, any finally blocks in the execution
stack of background threads are circumvented. If your program employs finally
(or using) blocks to perform cleanup work such as deleting temporary files, you can
avoid this by explicitly waiting out such background threads upon exiting an appli‐
cation, either by joining the thread, or with a signaling construct (see “Signaling” on
page 576). In either case, you should specify a timeout so you can abandon a rene‐
gade thread should it refuse to finish; otherwise your application will fail to close
without the user having to enlist help from the Task Manager.

Foreground threads don’t require this treatment, but you must take care to avoid
bugs that could cause the thread not to end. A common cause for applications fail‐
ing to exit properly is the presence of active foreground threads.

Thread Priority
A thread’s Priority property determines how much execution time it gets relative
to other active threads in the operating system, on the following scale:

enum ThreadPriority { Lowest, BelowNormal, Normal, AboveNormal, Highest }

This becomes relevant when multiple threads are simultaneously active. Elevating a
thread’s priority should be done with care as it can starve other threads. If you want
a thread to have higher priority than threads in other processes, you must also ele‐
vate the process priority using the Process class in System.Diagnostics:

using (Process p = Process.GetCurrentProcess())
 p.PriorityClass = ProcessPriorityClass.High;

This can work well for non-UI processes that do minimal work and need low
latency (the ability to respond very quickly) in the work they do. With compute-
hungry applications (particularly those with a user interface), elevating process pri‐
ority can starve other processes, slowing down the entire computer.

C
o

ncurrency
and

A
synchro

ny

Threading | 575

www.EBooksWorld.ir

Signaling
Sometimes you need a thread to wait until receiving notification(s) from other
thread(s). This is called signaling. The simplest signaling construct is ManualResetE
vent. Calling WaitOne on a ManualResetEvent blocks the current thread until
another thread “opens” the signal by calling Set. In the following example, we start
up a thread that waits on a ManualResetEvent. It remains blocked for two seconds
until the main thread signals it:

var signal = new ManualResetEvent (false);

new Thread (() =>
{
 Console.WriteLine ("Waiting for signal...");
 signal.WaitOne();
 signal.Dispose();
 Console.WriteLine ("Got signal!");
}).Start();

Thread.Sleep(2000);
signal.Set(); // "Open" the signal

After calling Set, the signal remains open; it may be closed again by calling Reset.

ManualResetEvent is one of several signaling constructs provided by the CLR; we
cover all of them in detail in Chapter 22.

Threading in Rich-Client Applications
In WPF, Windows Store, and Windows Forms applications, executing long-running
operations on the main thread makes the application unresponsive, because the
main thread also processes the message loop which performs rendering and handles
keyboard and mouse events.

A popular approach is to start up “worker” threads for time-consuming operations.
The code on a worker thread runs a time-consuming operation and then updates
the UI when complete. However, all rich-client applications have a threading model
whereby UI elements and controls can be accessed only from the thread that created
them (typically the main UI thread). Violating this causes either unpredictable
behavior or an exception to be thrown.

Hence when you want to update the UI from a worker thread, you must forward the
request to the UI thread (the technical term is marshal). The low-level way to do
this is as follows (later, we’ll discuss other solutions which build on these):

• In WPF, call BeginInvoke or Invoke on the element’s Dispatcher object.

• In Windows Store apps, call RunAsync or Invoke on the Dispatcher object.

• In Windows Forms, call BeginInvoke or Invoke on the control.

576 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

All of these methods accept a delegate referencing the method you want to run.
BeginInvoke/RunAsync work by enqueuing the delegate to the UI thread’s message
queue (the same queue that handles keyboard, mouse, and timer events). Invoke
does the same thing, but then blocks until the message has been read and processed
by the UI thread. Because of this, Invoke lets you get a return value back from the
method. If you don’t need a return value, BeginInvoke/RunAsync are preferable in
that they don’t block the caller and don’t introduce the possibility of deadlock (see
“Deadlocks” on page 910 in Chapter 22).

You can imagine that when you call Application.Run, the fol‐
lowing pseudocode executes:

while (!thisApplication.Ended)
{
 wait for something to appear in message queue
 Got something: what kind of message is it?
 Keyboard/mouse message -> fire an event handler
 User BeginInvoke message -> execute delegate
 User Invoke message -> execute delegate & post result
}

It’s this kind of loop that enables a worker thread to marshal a
delegate for execution onto the UI thread.

To demonstrate, suppose that we have a WPF window that contains a text box called
txtMessage, whose content we wish a worker thread to update after performing a
time-consuming task (which we will simulate by calling Thread.Sleep). Here’s how
we’d do it:

partial class MyWindow : Window
{
 public MyWindow()
 {
 InitializeComponent();
 new Thread (Work).Start();
 }

 void Work()
 {
 Thread.Sleep (5000); // Simulate time-consuming task
 UpdateMessage ("The answer");
 }

 void UpdateMessage (string message)
 {
 Action action = () => txtMessage.Text = message;
 Dispatcher.BeginInvoke (action);
 }
}

Running this results in a responsive window appearing immediately. Five seconds
later, it updates the textbox. The code is similar for Windows Forms, except that we
call the (Form’s) BeginInvoke method instead:

C
o

ncurrency
and

A
synchro

ny

Threading | 577

www.EBooksWorld.ir

void UpdateMessage (string message)
{
 Action action = () => txtMessage.Text = message;
 this.BeginInvoke (action);
}

Multiple UI Threads
It’s possible to have multiple UI threads if they each own different windows. The
main scenario is when you have an application with multiple top-level windows,
often called a Single Document Interface (SDI) application, such as Microsoft Word.
Each SDI window typically shows itself as a separate “application” on the taskbar
and is mostly isolated, functionally, from other SDI windows. By giving each such
window its own UI thread, each window can be made more responsive with respect
to the others.

Synchronization Contexts
In the System.ComponentModel namespace, there’s an abstract class called Synchro
nizationContext that enables the generalization of thread marshaling.

The rich-client APIs for mobile and desktop (Windows Store, WPF, and Windows
Forms) each define and instantiate SynchronizationContext subclasses which you
can obtain via the static property SynchronizationContext.Current (while run‐
ning on a UI thread). Capturing this property let you later “post” to UI controls
from a worker thread:

partial class MyWindow : Window
{
 SynchronizationContext _uiSyncContext;

 public MyWindow()
 {
 InitializeComponent();
 // Capture the synchronization context for the current UI thread:
 _uiSyncContext = SynchronizationContext.Current;
 new Thread (Work).Start();
 }

 void Work()
 {
 Thread.Sleep (5000); // Simulate time-consuming task
 UpdateMessage ("The answer");
 }

 void UpdateMessage (string message)
 {
 // Marshal the delegate to the UI thread:
 uiSyncContext.Post (=> txtMessage.Text = message, null);
 }
}

578 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

This is useful because the same technique works with all rich-client User Interface
APIs (SynchronizationContext also has a ASP.NET specialization where it serves a
more subtle role, ensuring that page processing events are processed sequentially
following asynchronous operations, and to preserve the HttpContext.)

Calling Post is equivalent to calling BeginInvoke on a Dispatcher or Control;
there’s also a Send method which is equivalent to Invoke.

Framework 2.0 introduced the BackgroundWorker class which
used the SynchronizationContext class to make the job of
managing worker threads in rich-client applications a little
easier. BackgroundWorker has since been made redundant by
the Tasks and asynchronous functions, which as we’ll see, also
leverage SynchronizationContext.

The Thread Pool
Whenever you start a thread, a few hundred microseconds are spent organizing
such things as a fresh local variable stack. The thread pool cuts this overhead by hav‐
ing a pool of pre-created recyclable threads. Thread pooling is essential for efficient
parallel programming and fine-grained concurrency; it allows short operations to
run without being overwhelmed with the overhead of thread startup.

There are a few things to be wary of when using pooled threads:

• You cannot set the Name of a pooled thread, making debugging more difficult
(although you can attach a description when debugging in Visual Studio’s
Threads window).

• Pooled threads are always background threads.
• Blocking pooled threads can degrade performance (see “Hygiene in the thread

pool” on page 580).

You are free to change the priority of a pooled thread—it will be restored to normal
when released back to the pool.

You can query if you’re currently executing on a pooled thread via the property
Thread.CurrentThread.IsThreadPoolThread.

Entering the thread pool
The easiest way to explicitly run something on a pooled thread is to use Task.Run
(we’ll cover this in more detail in the following section):

// Task is in System.Threading.Tasks
Task.Run (() => Console.WriteLine ("Hello from the thread pool"));

As tasks didn’t exist prior to Framework 4.0, a common alternative is to call Thread
Pool.QueueUserWorkItem:

ThreadPool.QueueUserWorkItem (notUsed => Console.WriteLine ("Hello"));

C
o

ncurrency
and

A
synchro

ny

Threading | 579

www.EBooksWorld.ir

The following use the thread pool implicitly:

• WCF, Remoting, ASP.NET, and ASMX Web Services
application servers

• System.Timers.Timer and System.Threading.Timer
• The parallel programming constructs that we describe in

Chapter 23

• The (now redundant) BackgroundWorker class
• Asynchronous delegates (also now redundant)

Hygiene in the thread pool
The thread pool serves another function, which is to ensure that a temporary excess
of compute-bound work does not cause CPU oversubscription. Oversubscription is
the condition of there being more active threads than CPU cores, with the operating
system having to time-slice threads. Oversubscription hurts performance because
time-slicing requires expensive context switches and can invalidate the CPU caches
that have become essential in delivering performance to modern processors.

The CLR avoids oversubscription in the thread pool by queuing tasks and throttling
their startup. It begins by running as many concurrent tasks as there are hardware
cores, and then tunes the level of concurrency via a hill-climbing algorithm, contin‐
ually adjusting the workload in a particular direction. If throughput improves, it
continues in the same direction (otherwise it reverses). This ensures that it always
tracks the optimal performance curve—even in the face of competing process activ‐
ity on the computer.

The CLR’s strategy works best if two conditions are met:

• Work items are mostly short-running (<250 ms, or ideally <100 ms), so that the
CLR has plenty of opportunities to measure and adjust.

• Jobs that spend most of their time blocked do not dominate the pool.

Blocking is troublesome because it gives the CLR the false idea that it’s loading up
the CPU. The CLR is smart enough to detect and compensate (by injecting more
threads into the pool), although this can make the pool vulnerable to subsequent
oversubscription. It also may introduce latency, as the CLR throttles the rate at
which it injects new threads, particularly early in an application’s life (more so on
client operating systems where it favors lower resource consumption).

Maintaining good hygiene in the thread pool is particularly relevant when you want
to fully utilize the CPU (e.g., via the parallel programming APIs in Chapter 23).

580 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

Tasks
A thread is a low-level tool for creating concurrency, and as such it has limitations.
In particular:

• While it’s easy to pass data into a thread that you start, there’s no easy way to
get a “return value” back from a thread that you Join. You have to set up some
kind of shared field. And if the operation throws an exception, catching and
propagating that exception is equally painful.

• You can’t tell a thread to start something else when it’s finished; instead you
must Join it (blocking your own thread in the process).

These limitations discourage fine-grained concurrency; in other words, they make it
hard to compose larger concurrent operations by combining smaller ones (some‐
thing essential for the asynchronous programming that we’ll look at in following
sections). This in turn leads to greater reliance on manual synchronization (locking,
signaling, and so on) and the problems that go with it.

The direct use of threads also has performance implications that we discussed in
“The Thread Pool” on page 579. And should you need to run hundreds or thou‐
sands of concurrent I/O-bound operations, a thread-based approach consumes
hundreds or thousands of MB of memory purely in thread overhead.

The Task class helps with all of these problems. Compared to a thread, a Task is
higher-level abstraction—it represents a concurrent operation that may or may not
be backed by a thread. Tasks are compositional (you can chain them together
through the use of continuations). They can use the thread pool to lessen startup
latency, and with a TaskCompletionSource, they can leverage a callback approach
that avoids threads altogether while waiting on I/O-bound operations.

The Task types were introduced in Framework 4.0 as part of the parallel program‐
ming library. However they have since been enhanced (through the use of awaiters)
to play equally well in more general concurrency scenarios and are backing types
for C#’s asynchronous functions.

In this section, we’ll ignore the features of tasks that are aimed
specifically at parallel programming and cover them instead in
Chapter 23.

Starting a Task
From Framework 4.5, the easiest way to start a Task backed by a thread is with the
static method Task.Run (the Task class is in the System.Threading.Tasks name‐
space). Simply pass in an Action delegate:

Task.Run (() => Console.WriteLine ("Foo"));

C
o

ncurrency
and

A
synchro

ny

Tasks | 581

www.EBooksWorld.ir

The Task.Run method was introduced in Framework 4.5. In Framework 4.0, you
can accomplish the same thing by calling Task.Factory.StartNew. (The former is
mostly a shortcut for the latter.)

Tasks use pooled threads by default, which are background
threads. This means that when the main thread ends, so do
any tasks that you create. Hence, to run these examples from a
Console application, you must block the main thread after
starting the task (for instance, by Waiting the task or by call‐
ing Console.ReadLine):

static void Main()
{
 Task.Run (() => Console.WriteLine ("Foo"));
 Console.ReadLine();
}

In the book’s LINQPad companion samples, Console.Read
Line is omitted because the LINQPad process keeps back‐
ground threads alive.

Calling Task.Run in this manner is similar to starting a thread as follows (except for
the thread pooling implications that we’ll discuss shortly):

new Thread (() => Console.WriteLine ("Foo")).Start();

Task.Run returns a Task object that we can use to monitor its progress, rather like a
Thread object. (Notice, however, that we didn’t call Start after calling Task.Run
because this method creates “hot” tasks; you can instead use Task’s constructor to
create “cold” tasks, although this is rarely done in practice.)

You can track a task’s execution status via its Status property.

Wait
Calling Wait on a task blocks until it completes and is the equivalent of calling Join
on a thread:

Task task = Task.Run (() =>
{
 Thread.Sleep (2000);
 Console.WriteLine ("Foo");
});
Console.WriteLine (task.IsCompleted); // False
task.Wait(); // Blocks until task is complete

Wait lets you optionally specify a timeout and a cancellation token to end the wait
early (see “Cancellation” on page 610).

Long-running tasks
By default, the CLR runs tasks on pooled threads, which is ideal for short-running
compute-bound work. For longer-running and blocking operations (such as our
preceding example), you can prevent use of a pooled thread as follows:

582 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

Task task = Task.Factory.StartNew (() => ...,
 TaskCreationOptions.LongRunning);

Running one long-running task on a pooled thread won’t
cause trouble; it’s when you run multiple long-running tasks
in parallel (particularly ones that block) that performance can
suffer. And in that case, there are usually better solutions than
TaskCreationOptions.LongRunning:

• If the tasks are I/O-bound, TaskCompletionSource and
asynchronous functions let you implement concurrency
with callbacks (continuations) instead of threads.

• If the tasks are compute-bound, a producer/consumer
queue lets you throttle the concurrency for those tasks,
avoiding starvation for other threads and processes (see
“Writing a Producer/Consumer Queue” on page 984 in
Chapter 23).

Returning values
Task has a generic subclass called Task<TResult> that allows a task to emit a return
value. You can obtain a Task<TResult> by calling Task.Run with a Func<TResult>
delegate (or a compatible lambda expression) instead of an Action:

Task<int> task = Task.Run (() => { Console.WriteLine ("Foo"); return 3; });
// ...

You can obtain the result later by querying the Result property. If the task hasn’t yet
finished, accessing this property will block the current thread until the task finishes:

int result = task.Result; // Blocks if not already finished
Console.WriteLine (result); // 3

In the following example, we create a task that uses LINQ to count the number of
prime numbers in the first three million (+2) integers:

Task<int> primeNumberTask = Task.Run (() =>
 Enumerable.Range (2, 3000000).Count (n =>
 Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));

Console.WriteLine ("Task running...");
Console.WriteLine ("The answer is " + primeNumberTask.Result);

This writes “Task running...”, and then a few seconds later, writes the answer of
216815.

Task<TResult> can be thought of as a “future,” in that it
encapsulates a Result that becomes available later in time.

Interestingly, when Task and Task<TResult> first debuted in
an early CTP, the latter was actually called Future<TResult>.

C
o

ncurrency
and

A
synchro

ny

Tasks | 583

www.EBooksWorld.ir

Exceptions
Unlike with threads, tasks conveniently propagate exceptions. So, if the code in your
task throws an unhandled exception (in other words, if your task faults), that excep‐
tion is automatically rethrown to whoever calls Wait()—or accesses the Result
property of a Task<TResult>:

// Start a Task that throws a NullReferenceException:
Task task = Task.Run (() => { throw null; });
try
{
 task.Wait();
}
catch (AggregateException aex)
{
 if (aex.InnerException is NullReferenceException)
 Console.WriteLine ("Null!");
 else
 throw;
}

(The CLR wraps the exception in an AggregateException in order to play well with
parallel programming scenarios; we discuss this in Chapter 23.)

You can test for a faulted task without rethrowing the exception via the IsFaulted
and IsCanceled properties of the Task. If both properties return false, no error
occurred; if IsCanceled is true, an OperationCanceledException was thrown for
that task (see “Cancellation” on page 610); if IsFaulted is true, another type of
exception was thrown, and the Exception property will indicate the error.

Exceptions and autonomous tasks
With autonomous “set-and-forget” tasks (those for which you don’t rendezvous via
Wait() or Result or a continuation that does the same), it’s good practice to explic‐
itly exception-handle the task code to avoid silent failure, just as you would with a
thread.

Unhandled exceptions on autonomous tasks are called unobserved exceptions, and
in CLR 4.0, they would actually terminate your program (the CLR would rethrow
the exception on the finalizer thread when the task dropped out of scope and was
garbage collected). This was helpful in indicating that a problem had occurred that
you might not have been aware of; however the timing of the error could be decep‐
tive in that the garbage collector can lag significantly behind the offending task.
Hence, when it was discovered that this behavior complicated certain patterns of
asynchrony (see “Parallelism” on page 604 and “WhenAll” on page 615), it was
dropped in CLR 4.5.

584 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

Ignoring exceptions is fine when an exception solely indicates
a failure to obtain a result that you’re no longer interested in.
For example, if a user cancels a request to download a web
page, we wouldn’t care if turns out that the web page didn’t
exist.
Ignoring exceptions is problematic when an exception indi‐
cates a bug in your program, for two reasons:

• The bug may have left your program in an invalid state.
• More exceptions may occur later as a result of the bug,

and failure to log the initial error can make diagnosis dif‐
ficult.

You can subscribe to unobserved exceptions at a global level via the static event Task
Scheduler.UnobservedTaskException; handling this event and logging the error
can make good sense.

There are a couple of interesting nuances on what counts as unobserved:

• Tasks waited upon with a timeout will generate an unobserved exception if the
faults occurs after the timeout interval.

• The act of checking a task’s Exception property after it has faulted makes the
exception “observed.”

Continuations
A continuation says to a task, “When you’ve finished, continue by doing something
else.” A continuation is usually implemented by a callback that executes once upon
completion of an operation. There are two ways to attach a continuation to a task.
The first was introduced in Framework 4.5 and is particularly significant because it’s
used by C#’s asynchronous functions, as we’ll see soon. We can demonstrate it with
the prime number counting task that we wrote a short while ago in “Returning val‐
ues” on page 583:

Task<int> primeNumberTask = Task.Run (() =>
 Enumerable.Range (2, 3000000).Count (n =>
 Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));

var awaiter = primeNumberTask.GetAwaiter();
awaiter.OnCompleted (() =>
{
 int result = awaiter.GetResult();
 Console.WriteLine (result); // Writes result
});

Calling GetAwaiter on the task returns an awaiter object whose OnCompleted
method tells the antecedent task (primeNumberTask) to execute a delegate when it

C
o

ncurrency
and

A
synchro

ny

Tasks | 585

www.EBooksWorld.ir

finishes (or faults). It’s valid to attach a continuation to an already-completed task,
in which case the continuation will be scheduled to execute right away.

An awaiter is any object that exposes the two methods that
we’ve just seen (OnCompleted and GetResult), and a Boolean
property called IsCompleted. There’s no interface or base class
to unify all of these members (although OnCompleted is part of
the interface INotifyCompletion). We’ll explain the signifi‐
cance of the pattern in “Asynchronous Functions in C#” on
page 594.

If an antecedent task faults, the exception is rethrown when the continuation code
calls awaiter.GetResult(). Rather than calling GetResult, we could simply access
the Result property of the antecedent. The benefit of calling GetResult is that if the
antecedent faults, the exception is thrown directly without being wrapped in Aggre
gateException, allowing for simpler and cleaner catch blocks.

For nongeneric tasks, GetResult() has a void return value. Its useful function is
then solely to rethrow exceptions.

If a synchronization context is present, OnCompleted automatically captures it and
posts the continuation to that context. This is very useful in rich-client applications,
as it bounces the continuation back to the UI thread. In writing libraries, however,
it’s not usually desirable because the relatively expensive UI-thread-bounce should
occur just once upon leaving the library, rather than between method calls. Hence
you can defeat it the ConfigureAwait method:

var awaiter = primeNumberTask.ConfigureAwait (false).GetAwaiter();

If no synchronization context is present—or you use ConfigureAwait(false)—the
continuation will (in general) execute on the same thread as the antecedent, avoid‐
ing unnecessary overhead.

The other way to attach a continuation is by calling the task’s ContinueWith
method:

primeNumberTask.ContinueWith (antecedent =>
{
 int result = antecedent.Result;
 Console.WriteLine (result); // Writes 123
});

ContinueWith itself returns a Task, which is useful if you want to attach further
continuations. However, you must deal directly with AggregateException if the
task faults and write extra code to marshal the continuation in UI applications (see
“Task Schedulers” on page 977 in Chapter 23). And in non-UI contexts, you must
specify TaskContinuationOptions.ExecuteSynchronously if you want the contin‐
uation to execute on the same thread; otherwise it will bounce to the thread pool.
ContinueWith is particularly useful in parallel programming scenarios; we cover it
in detail in “Continuations” on page 585 in Chapter 23.

586 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

TaskCompletionSource
We’ve seen how Task.Run creates a task that runs a delegate on a pooled (or non-
pooled) thread. Another way to create a task is with TaskCompletionSource.

TaskCompletionSource lets you create a task out of any operation that starts and
finishes some time later. It works by giving you a “slave” task that you manually
drive—by indicating when the operation finishes or faults. This is ideal for I/O-
bound work: you get all the benefits of tasks (with their ability to propagate return
values, exceptions, and continuations) without blocking a thread for the duration of
the operation.

To use TaskCompletionSource, you simply instantiate the class. It exposes a Task
property that returns a task upon which you can wait and attach continuations—
just as with any other task. The task, however, is controlled entirely by the TaskCom
pletionSource object via the following methods:

public class TaskCompletionSource<TResult>
{
 public void SetResult (TResult result);
 public void SetException (Exception exception);
 public void SetCanceled();

 public bool TrySetResult (TResult result);
 public bool TrySetException (Exception exception);
 public bool TrySetCanceled();
 public bool TrysetCanceled (CancellationToken cancellationToken);
 ...
}

Calling any of these methods signals the task, putting it into a completed, faulted, or
canceled state (we’ll cover the latter in the section “Cancellation” on page 610).
You’re supposed to call one of these methods exactly once: if called again, SetRe
sult, SetException, or SetCanceled will throw an exception, whereas the Try*
methods return false.

The following example prints 42 after waiting for five seconds:

var tcs = new TaskCompletionSource<int>();

new Thread (() => { Thread.Sleep (5000); tcs.SetResult (42); })
 { IsBackground = true }
 .Start();

Task<int> task = tcs.Task; // Our "slave" task.
Console.WriteLine (task.Result); // 42

With TaskCompletionSource, we can write our own Run method:

Task<TResult> Run<TResult> (Func<TResult> function)
{
 var tcs = new TaskCompletionSource<TResult>();
 new Thread (() =>
 {

C
o

ncurrency
and

A
synchro

ny

Tasks | 587

www.EBooksWorld.ir

 try { tcs.SetResult (function()); }
 catch (Exception ex) { tcs.SetException (ex); }
 }).Start();
 return tcs.Task;
}
...
Task<int> task = Run (() => { Thread.Sleep (5000); return 42; });

Calling this method is equivalent to calling Task.Factory.StartNew with the Task
CreationOptions.LongRunning option to request a nonpooled thread.

The real power of TaskCompletionSource is in creating tasks that don’t tie up
threads. For instance, consider a task that waits for five seconds and then returns
the number 42. We can write this without a thread by using the Timer class, which
with the help of the CLR (and in turn, the operating system) fires an event in x mil‐
liseconds (we revisit timers in Chapter 22):

Task<int> GetAnswerToLife()
{
 var tcs = new TaskCompletionSource<int>();
 // Create a timer that fires once in 5000 ms:
 var timer = new System.Timers.Timer (5000) { AutoReset = false };
 timer.Elapsed += delegate { timer.Dispose(); tcs.SetResult (42); };
 timer.Start();
 return tcs.Task;
}

Hence our method returns a task that completes five seconds later, with a result of
42. By attaching a continuation to the task, we can write its result without blocking
any thread:

var awaiter = GetAnswerToLife().GetAwaiter();
awaiter.OnCompleted (() => Console.WriteLine (awaiter.GetResult()));

We could make this more useful and turn it into a general-purpose Delay method
by parameterizing the delay time and getting rid of the return value. This means
having it return a Task instead of a Task<int>. However, there’s no nongeneric ver‐
sion of TaskCompletionSource, which means we can’t directly create a nongeneric
Task. The workaround is simple: since Task<TResult> derives from Task, we create
a TaskCompletionSource<anything> and then implicitly convert the Task<any
thing> that it gives you into a Task, like this:

var tcs = new TaskCompletionSource<object>();
Task task = tcs.Task;

Now we can write our general-purpose Delay method:

Task Delay (int milliseconds)
{
 var tcs = new TaskCompletionSource<object>();
 var timer = new System.Timers.Timer (milliseconds) { AutoReset = false };
 timer.Elapsed += delegate { timer.Dispose(); tcs.SetResult (null); };
 timer.Start();

588 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

 return tcs.Task;
}

Here’s how we can use it to write “42” after five seconds:

Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

Our use of TaskCompletionSource without a thread means that a thread is engaged
only when the continuation starts, five seconds later. We can demonstrate this by
starting 10,000 of these operations at once without error or excessive resource con‐
sumption:

for (int i = 0; i < 10000; i++)
 Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

Timers fire their callbacks on pooled threads, so after 5 sec‐
onds, the thread pool will receive 10,000 requests to call SetRe
sult(null) on a TaskCompletionSource. If the requests
arrive faster than they can be processed, the thread pool will
respond by enqueuing and then processing them at the opti‐
mum level of parallelism for the CPU. This is ideal if the
thread-bound jobs are short-running, which is true in this
case: the thread-bound job is merely the call to SetResult
plus either the action of posting the continuation to the syn‐
chronization context (in a UI application) or otherwise the
continuation itself (Console.WriteLine(42)).

Task.Delay
The Delay method that we just wrote is sufficiently useful that it’s available as a
static method on the Task class:

Task.Delay (5000).GetAwaiter().OnCompleted (() => Console.WriteLine (42));

or:

Task.Delay (5000).ContinueWith (ant => Console.WriteLine (42));

Task.Delay is the asynchronous equivalent of Thread.Sleep.

Principles of Asynchrony
In demonstrating TaskCompletionSource, we ended up writing asynchronous meth‐
ods. In this section, we’ll define exactly what asynchronous operations are and
explain how this leads to asynchronous programming.

Synchronous Versus Asynchronous Operations
A synchronous operation does its work before returning to the caller.

An asynchronous operation does (most or all of) its work after returning to the
caller.

C
o

ncurrency
and

A
synchro

ny

Principles of Asynchrony | 589

www.EBooksWorld.ir

The majority of methods that you write and call are synchronous. An example is
List<T>.Add , or Console.WriteLine, or Thread.Sleep. Asynchronous methods
are less common and initiate concurrency because work continues in parallel to the
caller. Asynchronous methods typically return quickly (or immediately) to the
caller; hence they are also called nonblocking methods.

Most of the asynchronous methods that we’ve seen so far can be described as
general-purpose methods:

• Thread.Start

• Task.Run

• Methods that attach continuations to tasks

In addition, some of the methods that we discussed in “Synchronization Contexts”
on page 578 (Dispatcher.BeginInvoke, Control.BeginInvoke and Synchroniza
tionContext.Post) are asynchronous, as are the methods that we wrote in the sec‐
tion, “TaskCompletionSource” on page 587, including Delay.

What is Asynchronous Programming?
The principle of asynchronous programming is that you write long-running (or
potentially long-running) functions asynchronously. This is in contrast to the con‐
ventional approach of writing long-running functions synchronously and then call‐
ing those functions from a new thread or task to introduce concurrency as required.

The difference with the asynchronous approach is that concurrency is initiated
inside the long-running function, rather than from outside the function. This has
two benefits:

• I/O-bound concurrency can be implemented without tying up threads (as we
demonstrated in “TaskCompletionSource” on page 587), improving scalability
and efficiency.

• Rich-client applications end up with less code on worker threads, simplifying
thread safety.

This, in turn, leads to two distinct uses for asynchronous programming. The first is
writing (typically server-side) applications that deal efficiently with a lot of concur‐
rent I/O. The challenge here is not thread-safety (as there’s usually minimal shared
state) but thread efficiency; in particular, not consuming a thread per network
request. Hence in this context, it’s only I/O-bound operations that benefit from
asynchrony.

The second use is to simplify thread-safety in rich-client applications. This is partic‐
ularly relevant as a program grows in size, because to deal with complexity, we typi‐
cally refactor larger methods into smaller ones, resulting in chains of methods that
call one another (call graphs).

590 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

With a traditional synchronous call graph, if any operation within the graph is long-
running, we must run the entire call graph on a worker thread to maintain a respon‐
sive UI. Hence, we end up with a single concurrent operation that spans many
methods (course-grained concurrency), and this requires considering thread-safety
for every method in the graph.

With an asynchronous call graph, we need not start a thread until it’s actually
needed, typically low in the graph (or not at all in the case of I/O-bound opera‐
tions). All other methods can run entirely on the UI thread, with much-simplified
thread-safety. This results in fine-grained concurrency—a sequence of small concur‐
rent operations, in between which execution bounces to the UI thread.

To benefit from this, both I/O- and compute-bound opera‐
tions need to be written asynchronously; a good rule of thumb
is to include anything that might take longer than 50 ms.
(On the flipside, excessively fine-grained asynchrony can hurt
performance, because asynchronous operations incur an over‐
head—see “Optimizations” on page 607.)

In this chapter, we’ll focus mostly on the rich-client scenario, which is the more
complex of the two. In Chapter 16, we give two examples that illustrate the I/O-
bound scenario (see “Concurrency with TCP” on page 707 and “Writing an HTTP
Server” on page 698).

The Windows store (and Silverlight) .NET profiles encourage
asynchronous programming to the point where synchronous
versions of some long-running methods are not even exposed.
Instead, you get asynchronous methods that return tasks (or
objects that can be converted into tasks via the AsTask exten‐
sion method).

Asynchronous Programming and Continuations
Tasks are ideally suited to asynchronous programming because they support contin‐
uations which are essential for asynchrony (consider the Delay method that we
wrote previously in “TaskCompletionSource” on page 587). In writing Delay, we
used TaskCompletionSource, which is a standard way to implement “bottom-level”
I/O-bound asynchronous methods.

For compute-bound methods, we use Task.Run to initiate thread-bound concur‐
rency. Simply by returning the task to the caller, we create an asynchronous method.
What distinguishes asynchronous programming is that we aim to do so lower in the
call graph, so that in rich-client applications, higher-level methods can remain on
the UI thread and access controls and shared state without thread-safety issues. To
illustrate, consider the following method which computes and counts prime num‐
bers, using all available cores (we discuss ParallelEnumerable in Chapter 23):

int GetPrimesCount (int start, int count)
{
 return

C
o

ncurrency
and

A
synchro

ny

Principles of Asynchrony | 591

www.EBooksWorld.ir

 ParallelEnumerable.Range (start, count).Count (n =>
 Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0));
}

The details of how this works are unimportant; what matters is that it can take a
while to run. We can demonstrate this by writing another method to call it:

void DisplayPrimeCounts()
{
 for (int i = 0; i < 10; i++)
 Console.WriteLine (GetPrimesCount (i*1000000 + 2, 1000000) +
 " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1));
 Console.WriteLine ("Done!");
}

with the following output:

78498 primes between 0 and 999999
70435 primes between 1000000 and 1999999
67883 primes between 2000000 and 2999999
66330 primes between 3000000 and 3999999
65367 primes between 4000000 and 4999999
64336 primes between 5000000 and 5999999
63799 primes between 6000000 and 6999999
63129 primes between 7000000 and 7999999
62712 primes between 8000000 and 8999999
62090 primes between 9000000 and 9999999

Now we have a call graph, with DisplayPrimeCounts calling GetPrimesCount. The
former uses Console.WriteLine for simplicity, although in reality, it would more
likely be updating UI controls in a rich-client application, as we’ll demonstrate later.
We can initiate course-grained concurrency for this call graph as follows:

Task.Run (() => DisplayPrimeCounts());

With a fine-grained asynchronous approach, we instead start by writing an asyn‐
chronous version of GetPrimesCount:

Task<int> GetPrimesCountAsync (int start, int count)
{
 return Task.Run (() =>
 ParallelEnumerable.Range (start, count).Count (n =>
 Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0)));
}

Why Language Support Is Important
Now we must modify DisplayPrimeCounts so that it calls GetPrimesCountAsync.
This is where C#’s new await and async keywords come into play, because to do so
otherwise is trickier than it sounds. If we simply modify the loop as follows:

for (int i = 0; i < 10; i++)
{
 var awaiter = GetPrimesCountAsync (i*1000000 + 2, 1000000).GetAwaiter();
 awaiter.OnCompleted (() =>
 Console.WriteLine (awaiter.GetResult() + " primes between... "));

592 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

}
Console.WriteLine ("Done");

then the loop will rapidly spin through 10 iterations (the methods being nonblock‐
ing), and all 10 operations will execute in parallel (followed by a premature “Done”).

Executing these tasks in parallel is undesirable in this case
because their internal implementations are already parallel‐
ized; it will only make us wait longer to see the first results
(and muck up the ordering).
There is a much more common reason, however, for needing
to serialize the execution of tasks, which is that Task B
depends on the result of Task A. For example, in fetching a
web page, a DNS lookup must precede the HTTP request.

To get them running sequentially, we must trigger the next loop iteration from the
continuation itself. This means eliminating the for loop and resorting to a recursive
call in the continuation:

void DisplayPrimeCounts()
{
 DisplayPrimeCountsFrom (0);
}

void DisplayPrimeCountsFrom (int i)
{
 var awaiter = GetPrimesCountAsync (i*1000000 + 2, 1000000).GetAwaiter();
 awaiter.OnCompleted (() =>
 {
 Console.WriteLine (awaiter.GetResult() + " primes between...");
 if (i++ < 10) DisplayPrimeCountsFrom (i);
 else Console.WriteLine ("Done");
 });
}

It gets even worse if we want to make DisplayPrimesCount itself asynchronous,
returning a task that it signals upon completion. To accomplish this requires creat‐
ing a TaskCompletionSource:

Task DisplayPrimeCountsAsync()
{
 var machine = new PrimesStateMachine();
 machine.DisplayPrimeCountsFrom (0);
 return machine.Task;
}

class PrimesStateMachine
{
 TaskCompletionSource<object> _tcs = new TaskCompletionSource<object>();
 public Task Task { get { return _tcs.Task; } }

 public void DisplayPrimeCountsFrom (int i)
 {
 var awaiter = GetPrimesCountAsync (i*1000000+2, 1000000).GetAwaiter();

C
o

ncurrency
and

A
synchro

ny

Principles of Asynchrony | 593

www.EBooksWorld.ir

 awaiter.OnCompleted (() =>
 {
 Console.WriteLine (awaiter.GetResult());
 if (i++ < 10) DisplayPrimeCountsFrom (i);
 else { Console.WriteLine ("Done"); _tcs.SetResult (null); }
 });
 }
}

Fortunately, C#’s asynchronous functions do all of this work for us. With the async
and await keywords, we need only write this:

async Task DisplayPrimeCountsAsync()
{
 for (int i = 0; i < 10; i++)
 Console.WriteLine (await GetPrimesCountAsync (i*1000000 + 2, 1000000) +
 " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1));
 Console.WriteLine ("Done!");
}

Hence async and await are essential for implementing asynchrony without exces‐
sive complexity. Let’s now see how these keywords work.

Another way of looking at the problem is that imperative
looping constructs (for, foreach and so on), do not mix well
with continuations because they rely on the current local state
of the method (“How many more times is this loop going to
run?”).

While the async and await keywords offer one solution, it’s
sometimes possible to solve it in another way by replacing the
imperative looping constructs with the functional equivalent
(in other words, LINQ queries). This is the basis of Reactive
Framework (Rx) and can be a good option when you want to
execute query operators over the result—or combine multiple
sequences. The price to pay is that to avoid blocking, Rx oper‐
ates over push-based sequences, which can be conceptually
tricky.

Asynchronous Functions in C#
C# 5.0 introduced the async and await keywords. These keywords let you write
asynchronous code that has the same structure and simplicity as synchronous code
and eliminates the “plumbing” of asynchronous programming.

Awaiting
The await keyword simplifies the attaching of continuations. Starting with a basic
scenario, the compiler expands:

var result = await expression;
statement(s);

into something functionally similar to:

594 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

var awaiter = expression.GetAwaiter();
awaiter.OnCompleted (() =>
{
 var result = awaiter.GetResult();
 statement(s);
});

The compiler also emits code to short-circuit the continuation
in case of synchronous completion (see “Optimizations” on
page 607) and to handle various nuances that we’ll pick up in
later sections.

To demonstrate, let’s revisit the asynchronous method that we wrote previously that
computes and counts prime numbers:

Task<int> GetPrimesCountAsync (int start, int count)
{
 return Task.Run (() =>
 ParallelEnumerable.Range (start, count).Count (n =>
 Enumerable.Range (2, (int)Math.Sqrt(n)-1).All (i => n % i > 0)));
}

With the await keyword, we can call it as follows:

int result = await GetPrimesCountAsync (2, 1000000);
Console.WriteLine (result);

In order to compile, we need to add the async modifier to the containing method:

async void DisplayPrimesCount()
{
 int result = await GetPrimesCountAsync (2, 1000000);
 Console.WriteLine (result);
}

The async modifier tells the compiler to treat await as a keyword rather than an
identifier should an ambiguity arise within that method (this ensures that code writ‐
ten prior to C# 5 that might use await as an identifier will still compile without
error). The async modifier can be applied only to methods (and lambda expres‐
sions) that return void or (as we’ll see later) a Task or Task<TResult>.

The async modifier is similar to the unsafe modifier in that it
has no effect on a method’s signature or public metadata; it
affects only what happens inside the method. For this reason,
it makes no sense to use async in an interface. However it is
legal, for instance, to introduce async when overriding a non-
async virtual method, as long as you keep the signature the
same.

Methods with the async modifier are called asynchronous functions, because they
themselves are typically asynchronous. To see why, let’s look at how execution pro‐
ceeds through an asynchronous function.

C
o

ncurrency
and

A
synchro

ny

Asynchronous Functions in C# | 595

www.EBooksWorld.ir

Upon encountering an await expression, execution (normally) returns to the caller
—rather like with yield return in an iterator. But before returning, the runtime
attaches a continuation to the awaited task, ensuring that when the task completes,
execution jumps back into the method and continues where it left off. If the task
faults, its exception is rethrown, otherwise its return value is assigned to the await
expression. We can summarize everything we just said by looking at the logical
expansion of the preceding asynchronous method:

void DisplayPrimesCount()
{
 var awaiter = GetPrimesCountAsync (2, 1000000).GetAwaiter();
 awaiter.OnCompleted (() =>
 {
 int result = awaiter.GetResult();
 Console.WriteLine (result);
 });
}

The expression upon which you await is typically a task; however any object with a
GetAwaiter method that returns an awaitable object (implementing INotifyComple
tion.OnCompleted and with an appropriately typed GetResult method and a bool
IsCompleted property) will satisfy the compiler.

Notice that our await expression evaluates to an int type; this is because the expres‐
sion that we awaited was a Task<int> (whose GetAwaiter().GetResult() method
returns an int).

Awaiting a nongeneric task is legal and generates a void expression:

await Task.Delay (5000);
Console.WriteLine ("Five seconds passed!");

Capturing local state
The real power of await expressions is that they can appear almost anywhere in
code. Specifically, an await expression can appear in place of any expression (within
an asynchronous function) except for inside a lock expression, unsafe context or
an executable’s entry point (main method).

In the following example, we await inside a loop:

async void DisplayPrimeCounts()
{
 for (int i = 0; i < 10; i++)
 Console.WriteLine (await GetPrimesCountAsync (i*1000000+2, 1000000));
}

Upon first executing GetPrimesCount, execution returns to the caller by virtue of
the await expression. When the method completes (or faults), execution resumes
where it left off, with the values of local variables and loop counters preserved.

Without the await keyword, the simplest equivalent might be the example we wrote
in “Why Language Support Is Important” on page 592. The compiler, however, takes

596 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

the more general strategy of refactoring such methods into state machines (rather
like it does with iterators).

The compiler relies on continuations (via the awaiter pattern) to resume execution
after an await expression. This means that if running on the UI thread of a rich-
client application, the synchronization context ensures execution resumes on the
same thread. Otherwise, execution resumes on whatever thread the task finished on.
The change of thread does not affect the order of execution and is of little conse‐
quence unless you’re somehow relying on thread affinity, perhaps through the use of
thread-local storage (see “Thread-Local Storage” on page 936 in Chapter 22). It’s
rather like touring a city and hailing taxis to get from one destination to another.
With a synchronization context, you’ll always get the same taxi; with no synchroni‐
zation context, you’ll usually get a different taxi each time. In either case, though,
the journey is the same.

Awaiting in a UI
We can demonstrate asynchronous functions in a more practical context by writing
a simple UI that remains responsive while calling a compute-bound method. Let’s
start with a synchronous solution:

class TestUI : Window
{
 Button _button = new Button { Content = "Go" };
 TextBlock _results = new TextBlock();

 public TestUI()
 {
 var panel = new StackPanel();
 panel.Children.Add (_button);
 panel.Children.Add (_results);
 Content = panel;
 _button.Click += (sender, args) => Go();
 }

 void Go()
 {
 for (int i = 1; i < 5; i++)
 _results.Text += GetPrimesCount (i * 1000000, 1000000) +
 " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1) +
 Environment.NewLine;
 }

 int GetPrimesCount (int start, int count)
 {
 return ParallelEnumerable.Range (start, count).Count (n =>
 Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0));
 }
}

Upon pressing the “Go” button, the application becomes unresponsive for the time
it takes to execute the compute-bound code. There are two steps in asynchronizing

C
o

ncurrency
and

A
synchro

ny

Asynchronous Functions in C# | 597

www.EBooksWorld.ir

this; the first is to switch to the asynchronous version of GetPrimesCount that we
used in previous examples:

Task<int> GetPrimesCountAsync (int start, int count)
{
 return Task.Run (() =>
 ParallelEnumerable.Range (start, count).Count (n =>
 Enumerable.Range (2, (int) Math.Sqrt(n)-1).All (i => n % i > 0)));
}

The second step is to modify Go to call GetPrimesCountAsync:

async void Go()
{
 _button.IsEnabled = false;
 for (int i = 1; i < 5; i++)
 _results.Text += await GetPrimesCountAsync (i * 1000000, 1000000) +
 " primes between " + (i*1000000) + " and " + ((i+1)*1000000-1) +
 Environment.NewLine;
 _button.IsEnabled = true;
}

This illustrates the simplicity of programming with asynchronous functions: you
program as you would synchronously but call asynchronous functions instead of
blocking functions and await them. Only the code within GetPrimesCountAsync
runs on a worker thread; the code in Go “leases” time on the UI thread. We could say
that Go executes pseudoconcurrently to the message loop (in that its execution is
interspersed with other events that the UI thread processes). With this pseudocon‐
currency, the only point at which preemption can occur is during an await. This
simplifies thread-safety: in our case, the only problem that this could cause is reen‐
trancy (clicking the button again while it’s running, which we avoid by disabling the
button). True concurrency occurs lower in the call stack, inside code called by
Task.Run. To benefit from this model, truly concurrent code avoids accessing
shared state or UI controls.

To give another example, suppose that instead of calculating prime numbers, we
want to download several web pages and sum their lengths. Framework 4.5 (and
later) exposes numerous task-returning asynchronous methods, one of which is the
WebClient class in System.Net. The DownloadDataTaskAsync method asynchro‐
nously downloads a URI to a byte array, returning a Task<byte[]>, so by awaiting
it, we get a byte[]. Let’s now rewrite our Go method:

async void Go()
{
 _button.IsEnabled = false;
 string[] urls = "www.albahari.com www.oreilly.com www.linqpad.net".Split();
 int totalLength = 0;
 try
 {
 foreach (string url in urls)
 {
 var uri = new Uri ("http://" + url);
 byte[] data = await new WebClient().DownloadDataTaskAsync (uri);

598 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

 _results.Text += "Length of " + url + " is " + data.Length +
 Environment.NewLine;
 totalLength += data.Length;
 }
 _results.Text += "Total length: " + totalLength;
 }
 catch (WebException ex)
 {
 _results.Text += "Error: " + ex.Message;
 }
 finally { _button.IsEnabled = true; }
}

Again, this mirrors how we’d write it synchronously—including the use of catch
and finally blocks. Even though execution returns to the caller after the first
await, the finally block does not execute until the method has logically completed
(by virtue of all its code executing—or an early return or unhandled exception).

It can be helpful to consider exactly what’s happening underneath. First, we need to
revisit the pseudocode that runs the message loop on the UI thread:

Set synchronization context for this thread to WPF sync context
while (!thisApplication.Ended)
{
 wait for something to appear in message queue
 Got something: what kind of message is it?
 Keyboard/mouse message -> fire an event handler
 User BeginInvoke/Invoke message -> execute delegate
}

Event handlers that we attach to UI elements execute via this message loop. When
our Go method runs, execution proceeds as far as the await expression and then
returns to the message loop (freeing the UI to respond to further events). The com‐
piler’s expansion of await ensures that before returning, however, a continuation is
set up such that execution resumes where it left off upon completion of the task.
And because we awaited on a UI thread, the continuation posts to the synchroniza‐
tion context which executes it via the message loop, keeping our entire Go method
executing pseudoconcurrently on the UI thread. True (I/O-bound) concurrency
occurs within the implementation of DownloadDataTaskAsync.

Comparison to coarse-grained concurrency
Asynchronous programming was difficult prior to C# 5, not only because there was
no language support, but because the .NET Framework exposed asynchronous
functionality through clumsy patterns called the EAP and the APM (see “Obsolete
Patterns” on page 618), rather than task-returning methods.

The popular workaround was course-grained concurrency (in fact, there was even a
type called BackgroundWorker to help with that). Returning to our original synchro‐
nous example with GetPrimesCount, we can demonstrate course-grained asyn‐
chrony by modifying the button’s event handler as follows:

C
o

ncurrency
and

A
synchro

ny

Asynchronous Functions in C# | 599

www.EBooksWorld.ir

...
_button.Click += (sender, args) =>
{
 _button.IsEnabled = false;
 Task.Run (() => Go());
};

(We’ve chosen to use Task.Run rather than BackgroundWorker because the latter
would do nothing to simplify our particular example.) In either case, the end result
is that our entire synchronous call graph (Go plus GetPrimesCount) runs on a
worker thread. And because Go updates UI elements, we must now litter our code
with Dispatcher.BeginInvoke:

void Go()
{
 for (int i = 1; i < 5; i++)
 {
 int result = GetPrimesCount (i * 1000000, 1000000);
 Dispatcher.BeginInvoke (new Action (() =>
 _results.Text += result + " primes between " + (i*1000000) +
 " and " + ((i+1)*1000000-1) + Environment.NewLine));
 }
 Dispatcher.BeginInvoke (new Action (() => _button.IsEnabled = true));
}

Unlike with the asynchronous version, the loop itself runs on a worker thread. This
might seem innocuous, and yet, even in this simple case, our use of multithreading
has introduced a race condition. (Can you spot it? If not, try running the program:
it will almost certainly become apparent.)

Implementing cancellation and progress reporting creates more possibilities for
thread-safety errors, as does any additional code in the method. For instance, sup‐
pose the upper limit for the loop is not hardcoded but comes from a method call:

for (int i = 1; i < GetUpperBound(); i++)

Now suppose GetUpperBound() reads the value from a lazily loaded configuration
file, which loads from disk upon first call. All of this code now runs on your worker
thread, code that’s most likely not thread-safe. This is the danger of starting worker
threads high in the call graph.

Writing Asynchronous Functions
With any asynchronous function, you can replace the void return type with a Task
to make the method itself usefully asynchronous (and awaitable). No further
changes are required:

async Task PrintAnswerToLife() // We can return Task instead of void
{
 await Task.Delay (5000);
 int answer = 21 * 2;
 Console.WriteLine (answer);
}

600 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

Notice that we don’t explicitly return a task in the method body. The compiler man‐
ufactures the task, which it signals upon completion of the method (or upon an
unhandled exception). This makes it easy to create asynchronous call chains:

async Task Go()
{
 await PrintAnswerToLife();
 Console.WriteLine ("Done");
}

And because we’ve declared Go with a Task return type, Go itself is awaitable.

The compiler expands asynchronous functions that return tasks into code that lev‐
erages TaskCompletionSource to create a task that it then signals or faults.

The compiler actually calls TaskCompletionSource indirectly,
via types named Async*MethodBuilder in the System.Compi
lerServices namespace. These types handle edge cases such
as putting the task into a canceled state upon an Operation
CanceledException and implementing the nuances we
describe in “Asynchrony and Synchronization Contexts” on
page 606.

Nuances aside, we can expand PrintAnswerToLife into the following functional
equivalent:

Task PrintAnswerToLife()
{
 var tcs = new TaskCompletionSource<object>();
 var awaiter = Task.Delay (5000).GetAwaiter();
 awaiter.OnCompleted (() =>
 {
 try
 {
 awaiter.GetResult(); // Rethrow any exceptions
 int answer = 21 * 2;
 Console.WriteLine (answer);
 tcs.SetResult (null);
 }
 catch (Exception ex) { tcs.SetException (ex); }
 });
 return tcs.Task;
}

Hence, whenever a task-returning asynchronous method finishes, execution jumps
back to whoever awaited it (by virtue of a continuation).

In a rich-client scenario, execution bounces at this point back
to the UI thread (if it’s not already on the UI thread). Other‐
wise, it continues on whatever thread the continuation came
back on. This means that there’s no latency cost in bubbling
up asynchronous call graphs, other than the first “bounce” if it
was UI-thread-initiated.

C
o

ncurrency
and

A
synchro

ny

Asynchronous Functions in C# | 601

www.EBooksWorld.ir

Returning Task<TResult>
You can return a Task<TResult> if the method body returns TResult:

async Task<int> GetAnswerToLife()
{
 await Task.Delay (5000);
 int answer = 21 * 2;
 return answer; // Method has return type Task<int> we return int
}

Internally, this results in the TaskCompletionSource being signaled with a value
rather than null. We can demonstrate GetAnswerToLife by calling it from PrintAns
werToLife (which is turn, called from Go):

async Task Go()
{
 await PrintAnswerToLife();
 Console.WriteLine ("Done");
}

async Task PrintAnswerToLife()
{
 int answer = await GetAnswerToLife();
 Console.WriteLine (answer);
}

async Task<int> GetAnswerToLife()
{
 await Task.Delay (5000);
 int answer = 21 * 2;
 return answer;
}

In effect, we’ve refactored our original PrintAnswerToLife into two methods—with
the same ease as if we were programming synchronously. The similarity to synchro‐
nous programming is intentional; here’s the synchronous equivalent of our call
graph, for which calling Go() gives the same result after blocking for five seconds:

void Go()
{
 PrintAnswerToLife();
 Console.WriteLine ("Done");
}

void PrintAnswerToLife()
{
 int answer = GetAnswerToLife();
 Console.WriteLine (answer);
}

int GetAnswerToLife()
{
 Thread.Sleep (5000);
 int answer = 21 * 2;

602 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

 return answer;
}

This also illustrates the basic principle of how to design with
asynchronous functions in C#:

1. Write your methods synchronously.
2. Replace synchronous method calls with asynchronous

method calls, and await them.
3. Except for “top-level” methods (typically event handlers

for UI controls), upgrade your asynchronous methods’
return types to Task or Task<TResult> so that they’re
awaitable.

The compiler’s ability to manufacture tasks for asynchronous functions means that
for the most part, you need to explicitly instantiate a TaskCompletionSource only in
bottom-level methods that initiate I/O-bound concurrency. (And for methods that
initiate compute-bound currency, you create the task with Task.Run.)

Asynchronous call graph execution
To see exactly how this executes, it’s helpful to rearrange our code as follows:

async Task Go()
{
 var task = PrintAnswerToLife();
 await task; Console.WriteLine ("Done");
}

async Task PrintAnswerToLife()
{
 var task = GetAnswerToLife();
 int answer = await task; Console.WriteLine (answer);
}

async Task<int> GetAnswerToLife()
{
 var task = Task.Delay (5000);
 await task; int answer = 21 * 2; return answer;
}

Go calls PrintAnswerToLife, which calls GetAnswerToLife, which calls Delay and
then awaits. The await causes execution to return to PrintAnswerToLife, which
itself awaits, returning to Go, which also awaits and returns to the caller. All of this
happens synchronously, on the thread that called Go; this is the brief synchronous
phase of execution.

Five seconds later, the continuation on Delay fires and execution returns to GetAns
werToLife on a pooled thread. (If we started on a UI thread, execution now boun‐
ces to that thread). The remaining statements in GetAnswerToLife then run, after
which the method’s Task<int> completes with a result of 42 and executes the con‐

C
o

ncurrency
and

A
synchro

ny

Asynchronous Functions in C# | 603

www.EBooksWorld.ir

tinuation in PrintAnswerToLife, which executes the remaining statements in that
method. The process continues until Go’s task is signaled as complete.

Execution flow matches the synchronous call graph that we showed earlier because
we’re following a pattern whereby we await every asynchronous method right after
calling it. This creates a sequential flow with no parallelism or overlapping execu‐
tion within the call graph. Each await expression creates a “gap” in execution, after
which the program resumes where it left off.

Parallelism
Calling an asynchronous method without awaiting it allows the code that follows to
execute in parallel. You might have noticed in earlier examples that we had a button
whose event handler called Go as follows:

_button.Click += (sender, args) => Go();

Despite Go being an asynchronous method, we didn’t await it, and this is indeed
what facilitates the concurrency needed to maintain a responsive UI.

We can use this same principle to run two asynchronous operations in parallel:

var task1 = PrintAnswerToLife();
var task2 = PrintAnswerToLife();
await task1; await task2;

(By awaiting both operations afterward, we “end” the parallelism at that point. Later,
we’ll describe how the WhenAll task combinator helps with this pattern.)

Concurrency created in this manner occurs whether or not the operations are initi‐
ated on a UI thread, although there’s a difference in how it occurs. In both cases, we
get the same “true” concurrency occurring in the bottom-level operations that ini‐
tiate it (such as Task.Delay, or code farmed to Task.Run). Methods above this in
the call stack will be subject to true concurrency only if the operation was initiated
without a synchronization context present; otherwise they will be subject to the
pseudoconcurrency (and simplified thread-safety) that we talked about earlier,
whereby the only places at which we can be preempted is at an await statement.
This lets us, for instance, define a shared field, _x, and increment it in GetAnswerTo
Life without locking:

async Task<int> GetAnswerToLife()
{
 _x++;
 await Task.Delay (5000);
 return 21 * 2;
}

(We would, though, be unable to assume that _x had the same value before and after
the await.)

604 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

Asynchronous Lambda Expressions
Just as ordinary named methods can be asynchronous:

async Task NamedMethod()
{
 await Task.Delay (1000);
 Console.WriteLine ("Foo");
}

so can unnamed methods (lambda expressions and anonymous methods), if pre‐
ceded by the async keyword:

Func<Task> unnamed = async () =>
{
 await Task.Delay (1000);
 Console.WriteLine ("Foo");
};

We can call and await these in the same way:

await NamedMethod();
await unnamed();

Asynchronous lambda expressions can be used when attaching event handlers:

myButton.Click += async (sender, args) =>
{
 await Task.Delay (1000);
 myButton.Content = "Done";
};

This is more succinct than the following, which has the same effect:

myButton.Click += ButtonHandler;
...
async void ButtonHander (object sender, EventArgs args)
{
 await Task.Delay (1000);
 myButton.Content = "Done";
};

Asynchronous lambda expressions can also return Task<TResult>:

Func<Task<int>> unnamed = async () =>
{
 await Task.Delay (1000);
 return 123;
};
int answer = await unnamed();

Asynchronous Methods in WinRT
In WinRT, the equivalent of Task is IAsyncAction and the equivalent of Task<TRe
sult> is IAsyncOperation<TResult> (defined in the Windows.Foundation name‐
space).

C
o

ncurrency
and

A
synchro

ny

Asynchronous Functions in C# | 605

www.EBooksWorld.ir

You can convert from either into a Task or Task<TResult> via the AsTask extension
method in the System.Runtime.WindowsRuntime.dll assembly. This assembly also
defines a GetAwaiter method that operates on IAsyncAction and IAsyncOpera
tion<TResult> types, which allows you to await them directly. For instance:

Task<StorageFile> fileTask = KnownFolders.DocumentsLibrary.CreateFileAsync
 ("test.txt").AsTask();

or:

StorageFile file = await KnownFolders.DocumentsLibrary.CreateFileAsync
 ("test.txt");

Due to limitations in the COM type system, IAsyncOpera
tion<TResult> is not based on IAsyncAction as you might
expect. Instead, both inherit from a common base type called
IAsyncInfo.

The AsTask method is also overloaded to accept a cancellation token (see “Cancella‐
tion” on page 610) and an IProgress<T> object (see “Progress Reporting” on page
612).

Asynchrony and Synchronization Contexts
We’ve already seen how the presence of a synchronization context is significant in
terms of posting continuations. There are a couple of other more subtle ways in
which such synchronization contexts come into play with void-returning asynchro‐
nous functions. These are not a direct result of C# compiler expansions, but a func‐
tion of the Async*MethodBuilder types in the System.CompilerServices name‐
space that the compiler uses in expanding asynchronous functions.

Exception posting
It’s common practice in rich-client applications to rely on the central exception-
handling event (Application.DispatcherUnhandledException in WPF) to process
unhandled exceptions thrown on the UI thread. And in ASP.NET applications, the
Application_Error in global.asax does a similar job. Internally, they work by
invoking UI events (or in ASP.NET, the pipeline of page processing methods) in
their own try/catch block.

Top-level asynchronous functions complicate this. Consider the following event
handler for a button click:

async void ButtonClick (object sender, RoutedEventArgs args)
{
 await Task.Delay(1000);
 throw new Exception ("Will this be ignored?");
}

When the button is clicked and the event handler runs, execution returns normally
to the message loop after the await statement, and the exception that’s thrown a sec‐
ond later cannot be caught by the catch block in the message loop.

606 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

To mitigate this problem, AsyncVoidMethodBuilder catches unhandled exceptions
(in void-returning asynchronous functions) and posts them to the synchronization
context if present, ensuring that global exception-handling events still fire.

The compiler applies this logic only to void-returning asyn‐
chronous functions. So if we changed ButtonClick to return a
Task instead of void, the unhandled exception would fault the
resultant Task, which would then have nowhere to go (result‐
ing in an unobserved exception).

An interesting nuance is that it makes no difference whether you throw before or
after an await. So in the following example, the exception is posted to the synchro‐
nization context (if present) and never to the caller:

async void Foo() { throw null; await Task.Delay(1000); }

If no synchronization context is present, the exception will go unobserved. It might
seem odd that the exception isn’t thrown right back to the caller, although it’s not
entirely different to what happens with iterators:

IEnumerable<int> Foo() { throw null; yield return 123; }

In this example, an exception is never thrown straight back to the caller: not until
the sequence is enumerated is the exception thrown.

OperationStarted and OperationCompleted
If a synchronization context is present, void-returning asynchronous functions also
call its OperationStarted method upon entering the function and its OperationCom
pleted method when the function finishes. These methods are leveraged by
ASP.NET’s synchronization context to ensure sequential execution in the page-
processing pipeline.

Overriding these methods is useful if writing a custom synchronization context for
unit testing void-returning asynchronous methods. This is discussed on Microsoft’s
Parallel Programming blog at http://blogs.msdn.com/b/pfxteam.

Optimizations

Completing synchronously
An asynchronous function may return before awaiting. Consider the following
method that caches the downloading of web pages:

static Dictionary<string,string> _cache = new Dictionary<string,string>();

async Task<string> GetWebPageAsync (string uri)
{
 string html;
 if (_cache.TryGetValue (uri, out html)) return html;
 return _cache [uri] =

C
o

ncurrency
and

A
synchro

ny

Asynchronous Functions in C# | 607

www.EBooksWorld.ir

http://blogs.msdn.com/b/pfxteam

 await new WebClient().DownloadStringTaskAsync (uri);
}

Should a URI already exist in the cache, execution returns to the caller with no
awaiting having occurred, and the method returns an already-signaled task. This is
referred to as synchronous completion.

When you await a synchronously completed task, execution does not return to the
caller and bounce back via a continuation—instead, it proceeds immediately to the
next statement. The compiler implements this optimization by checking the IsCom
pleted property on the awaiter; in other words, whenever you await:

Console.WriteLine (await GetWebPageAsync ("http://oreilly.com"));

the compiler emits code to short-circuit the continuation in case of synchronization
completion:

var awaiter = GetWebPageAsync().GetAwaiter();
if (awaiter.IsCompleted)
 Console.WriteLine (awaiter.GetResult());
else
 awaiter.OnCompleted (() => Console.WriteLine (awaiter.GetResult());

Awaiting an asynchronous function that returns synchro‐
nously still incurs a small overhead—maybe 50-100 nanosec‐
onds on a 2015-era PC.
In contrast, bouncing to the thread pool introduces the cost of
a context switch—perhaps one or two microseconds, and
bouncing to a UI message loop, at least 10 times that (much
longer if the UI thread is busy).

It’s even legal to write asynchronous methods that never await, although the com‐
piler will generate a warning:

async Task<string> Foo() { return "abc"; }

Such methods can be useful when overriding virtual/abstract methods if your
implementation doesn’t happen to need asynchrony. (An example is MemoryStream’s
ReadAsync/WriteAsync methods—see Chapter 15.) Another way to achieve the
same result is to use Task.FromResult, which returns an already-signaled task:

Task<string> Foo() { return Task.FromResult ("abc"); }

Our GetWebPageAsync method is implicitly thread-safe if called from a UI thread, in
that you could invoke it several times in succession (thereby initiating multiple con‐
current downloads), and no locking is required to protect the cache. If the series of
calls were to the same URI, though, we’d end up initiating multiple redundant
downloads, all of which would eventually update the same cache entry (the last one
winning). While not erroneous, it would be more efficient if subsequent calls to the
same URI could instead (asynchronously) wait upon the result of the in-progress
request.

608 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

There’s an easy way to accomplish this—without resorting to locks or signaling con‐
structs. Instead of a cache of strings, we create a cache of “futures” (Task<string>):

static Dictionary<string,Task<string>> _cache =
 new Dictionary<string,Task<string>>();

Task<string> GetWebPageAsync (string uri)
{
 Task<string> downloadTask;
 if (_cache.TryGetValue (uri, out downloadTask)) return downloadTask;
 return _cache [uri] = new WebClient().DownloadStringTaskAsync (uri);
}

(Notice that we don’t mark the method as async, because we’re directly returning
the task we obtain from calling WebClient’s method).

If we call GetWebPageAsync repeatedly with the same URI, we’re now guaranteed to
get the same Task<string> object back. (This has the additional benefit of minimiz‐
ing GC load.) And if the task is complete, awaiting it is cheap, thanks to the com‐
piler optimization that we just discussed.

We could further extend our example to make it thread-safe without the protection
of a synchronization context, by locking around the entire method body:

lock (_cache)
{
 Task<string> downloadTask;
 if (_cache.TryGetValue (uri, out downloadTask)) return downloadTask;
 return _cache [uri] = new WebClient().DownloadStringTaskAsync (uri);
}

This works because we’re not locking for the duration of downloading a page
(which would hurt concurrency); we’re locking for the small duration of checking
the cache, starting a new task if necessary, and updating the cache with that task.

Avoiding excessive bouncing
For methods that are called many times in a loop, you can avoid the cost of repeat‐
edly bouncing to a UI message loop by calling ConfigureAwait. This forces a task
not to bounce continuations to the synchronization context, cutting the overhead
closer to the cost of a context switch (or much less if the method that you’re await‐
ing completes synchronously):

async void A() { ... await B(); ... }

async Task B()
{
 for (int i = 0; i < 1000; i++)
 await C().ConfigureAwait (false);
}

async Task C() { ... }

C
o

ncurrency
and

A
synchro

ny

Asynchronous Functions in C# | 609

www.EBooksWorld.ir

This means that for the B and C methods, we rescind the simple thread-safety model
in UI apps whereby code runs on the UI thread and can be preempted only during
an await statement. Method A, however, is unaffected and will remain on a UI
thread if it started on one.

This optimization is particularly relevant when writing libraries: you don’t need the
benefit of simplified thread-safety because your code typically does not share state
with the caller—and does not access UI controls. (It would also make sense, in our
example, for method C to complete synchronously if it knew the operation was
likely to be short-running.)

Asynchronous Patterns
Cancellation
It’s often important to be able to cancel a concurrent operation after it’s started, per‐
haps in response to a user request. A simple way to implement this is with a cancel‐
lation flag, which we could encapsulate by writing a class like this:

class CancellationToken
{
 public bool IsCancellationRequested { get; private set; }
 public void Cancel() { IsCancellationRequested = true; }
 public void ThrowIfCancellationRequested()
 {
 if (IsCancellationRequested)
 throw new OperationCanceledException();
 }
}

We could then write a cancellable asynchronous method as follows:

async Task Foo (CancellationToken cancellationToken)
{
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine (i);
 await Task.Delay (1000);
 cancellationToken.ThrowIfCancellationRequested();
 }
}

When the caller wants to cancel, it calls Cancel on the cancellation token that it
passed into Foo. This sets IsCancellationRequested to true which causes Foo to
fault a short time later with an OperationCanceledException (a predefined excep‐
tion in the System namespace designed for this purpose).

Thread-safety aside (we should be locking around reading/writing IsCancellation
Requested), this pattern is effective and the CLR provides a type called Cancella
tionToken which is very similar to what we’ve just shown. However, it lacks a Can
cel method; this method is instead exposed on another type called CancellationTo

610 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

kenSource. This separation provides some security: a method which has access only
to a CancellationToken object can check for but not initiate cancellation.

To get a cancellation token, we first instantiate a CancellationTokenSource:

var cancelSource = new CancellationTokenSource();

This exposes a Token property which returns a CancellationToken. Hence, we
could call our Foo method as follows:

var cancelSource = new CancellationTokenSource();
Task foo = Foo (cancelSource.Token);
...
... (some time later)
cancelSource.Cancel();

Most asynchronous methods in the CLR support cancellation tokens, including
Delay. If we modify Foo such that it passes its token into the Delay method, the task
will end immediately upon request (rather than up to a second later):

async Task Foo (CancellationToken cancellationToken)
{
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine (i);
 await Task.Delay (1000, cancellationToken);
 }
}

Notice that we no longer need to call ThrowIfCancellationRequested because
Task.Delay is doing that for us. Cancellation tokens propagate nicely down the call
stack (just as cancellation requests cascade up the call stack, by virtue of being
exceptions).

Asynchronous methods in WinRT follow an inferior protocol
for cancellation whereby instead of accepting a Cancella
tionToken, the IAsyncInfo type exposes a Cancel method.
The AsTask extension method is overloaded to accept a can‐
cellation token, however, bridging the gap.

Synchronous methods can support cancellation, too (such as Task’s Wait method).
In such cases, the instruction to cancel will have to come asynchronously (e.g., from
another task). For example:

var cancelSource = new CancellationTokenSource();
Task.Delay (5000).ContinueWith (ant => cancelSource.Cancel());
...

In fact, from Framework 4.5, you can specify a time interval when constructing Can
cellationTokenSource to initiate cancellation after a set period of time (just as we
demonstrated). It’s useful for implementing timeouts, whether synchronous or
asynchronous:

C
o

ncurrency
and

A
synchro

ny

Asynchronous Patterns | 611

www.EBooksWorld.ir

var cancelSource = new CancellationTokenSource (5000);
try { await Foo (cancelSource.Token); }
catch (OperationCanceledException ex) { Console.WriteLine ("Cancelled"); }

The CancellationToken struct provides a Register method which lets you register
a callback delegate that will be fired upon cancellation; it returns an object that can
be disposed to undo the registration.

Tasks generated by the compiler’s asynchronous functions automatically enter a
“Canceled” state upon an unhandled OperationCanceledException (IsCanceled
returns true and IsFaulted returns false). The same goes for tasks created with
Task.Run for which you pass the (same) CancellationToken to the constructor.
The distinction between a faulted and a canceled task is unimportant in asynchro‐
nous scenarios, in that both throw an OperationCanceledException when awaited;
it matters in advanced parallel programming scenarios (specifically conditional
continuations). We pick up this topic in “Canceling Tasks” on page 971 in Chap‐
ter 23.

Progress Reporting
Sometimes you’ll want an asynchronous operation to report back progress as it’s
running. A simple solution is to pass an Action delegate to the asynchronous
method, which the method fires whenever progress changes:

Task Foo (Action<int> onProgressPercentChanged)
{
 return Task.Run (() =>
 {
 for (int i = 0; i < 1000; i++)
 {
 if (i % 10 == 0) onProgressPercentChanged (i / 10);
 // Do something compute-bound...
 }
 });
}

Here’s how we could call it:

Action<int> progress = i => Console.WriteLine (i + " %");
await Foo (progress);

While this works well in a Console application, it’s not ideal in rich-client scenarios
because it reports progress from a worker thread, causing potential thread-safety
issues for the consumer. (In effect, we’ve allowed a side-effect of concurrency to
“leak” to the outside world, which is unfortunate as the method is otherwise isolated
if called from a UI thread.)

IProgress<T> and Progress<T>
The CLR provides a pair of types to solve this problem: an interface called IPro
gress<T> and a class that implements this interface called Progress<T>. Their pur‐

612 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

pose, in effect, is to “wrap” a delegate, so that UI applications can report progress
safely through the synchronization context.

The interface defines just one method:

public interface IProgress<in T>
{
 void Report (T value);
}

Using IProgress<T> is easy: our method hardly changes:

Task Foo (IProgress<int> onProgressPercentChanged)
{
 return Task.Run (() =>
 {
 for (int i = 0; i < 1000; i++)
 {
 if (i % 10 == 0) onProgressPercentChanged.Report (i / 10);
 // Do something compute-bound...
 }
 });
}

The Progress<T> class has a constructor that accepts a delegate of type Action<T>
that it wraps:

var progress = new Progress<int> (i => Console.WriteLine (i + " %"));
await Foo (progress);

(Progress<T> also has a ProgressChanged event that you can subscribe to instead of
[or in addition to] passing an action delegate to the constructor.) Upon instantiating
Progress<int>, the class captures the synchronization context, if present. When
Foo then calls Report, the delegate is invoked through that context.

Asynchronous methods can implement more elaborate progress reporting by
replacing int with a custom type that exposes a range of properties.

If you’re familiar with Reactive Framework, you’ll notice that
IProgress<T> together with the task returned by the asyn‐
chronous function provide a feature set similar to IOb
server<T>. The difference is that a task can expose a “final”
return value in addition to (and differently typed to) the values
emitted by IProgress<T>.

Values emitted by IProgress<T> are typically “throwaway”
values (e.g., percent complete or bytes downloaded so far)
whereas values pushed by IObserver<T>’s OnNext typically
comprise the result itself and are the very reason for calling it.

Asynchronous methods in WinRT also offer progress reporting, although the pro‐
tocol is complicated by COM’s (relatively) retarded type system. Instead of accept‐
ing an IProgress<T> object, asynchronous WinRT methods that report progress

C
o

ncurrency
and

A
synchro

ny

Asynchronous Patterns | 613

www.EBooksWorld.ir

return one of the following interfaces, in place of IAsyncAction and IAsyncOpera
tion<TResult>:

IAsyncActionWithProgress<TProgress>
IAsyncOperationWithProgress<TResult, TProgress>

Interestingly, both and are based on IAsyncInfo (and not IAsyncAction and IAsyn
cOperation<TResult>).

The good news is that the AsTask extension method is also overloaded to accept
IProgress<T> for the above interfaces, so as a .NET consumer, you can ignore the
COM interfaces and do this:

var progress = new Progress<int> (i => Console.WriteLine (i + " %"));
CancellationToken cancelToken = ...
var task = someWinRTobject.FooAsync().AsTask (cancelToken, progress);

The Task-based Asynchronous Pattern (TAP)
Framework 4.5 and later exposes hundreds of task-returning asynchronous meth‐
ods that you can await (mainly related to I/O). Most of these methods (at least
partly) follow a pattern called the Task-based Asynchronous Pattern (TAP) which is a
sensible formalization of what we have described to date. A TAP method:

• Returns a “hot” (running) Task or Task<TResult>
• Has a “Async” suffix (except for special cases such as task combinators)

• Is overloaded to accept a cancellation token and/or IProgress<T> if it supports
cancellation and/or progress reporting

• Returns quickly to the caller (has only a small initial synchronous phase)
• Does not tie up a thread if I/O-bound

As we’ve seen, TAP methods are easy to write with C#’s asynchronous functions.

Task Combinators
A nice consequence of there being a consistent protocol for asynchronous functions
(whereby they consistently return tasks) is that it’s possible to use and write task
combinators—functions that usefully combine tasks, without regard for what those
specific tasks do.

The CLR includes two task combinators: Task.WhenAny and Task.WhenAll. In
describing them, we’ll assume the following methods are defined:

async Task<int> Delay1() { await Task.Delay (1000); return 1; }
async Task<int> Delay2() { await Task.Delay (2000); return 2; }
async Task<int> Delay3() { await Task.Delay (3000); return 3; }

614 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

WhenAny
Task.WhenAny returns a task that completes when any one of a set of tasks complete.
The following completes in one second:

Task<int> winningTask = await Task.WhenAny (Delay1(), Delay2(), Delay3());
Console.WriteLine ("Done");
Console.WriteLine (winningTask.Result); // 1

Because Task.WhenAny itself returns a task, we await it, which returns the task that
finished first. Our example is entirely nonblocking—including the last line when we
access the Result property (because winningTask will already have finished). None‐
theless, it’s usually better to await the winningTask:

Console.WriteLine (await winningTask); // 1

because any exceptions are then rethrown without an AggregateException wrap‐
ping. In fact, we can perform both awaits in one step:

int answer = await await Task.WhenAny (Delay1(), Delay2(), Delay3());

If a non-winning task subsequently faults, the exception will go unobserved unless
you subsequently await the task (or query its Exception property).

WhenAny is useful for applying timeouts or cancellation to operations that don’t
otherwise support it:

Task<string> task = SomeAsyncFunc();
Task winner = await (Task.WhenAny (task, Task.Delay(5000)));
if (winner != task) throw new TimeoutException();
string result = await task; // Unwrap result/rethrow

Notice that because in this case we’re calling WhenAny with differently typed tasks,
the winner is reported as a plain Task (rather than a Task<string>).

WhenAll
Task.WhenAll returns a task that completes when all of the tasks that you pass to it
complete. The following completes after three seconds (and demonstrates the fork/
join pattern):

await Task.WhenAll (Delay1(), Delay2(), Delay3());

We could get a similar result by awaiting task1, task2 and task3 in turn rather
than using WhenAll:

Task task1 = Delay1(), task2 = Delay2(), task3 = Delay3();
await task1; await task2; await task3;

The difference (apart from it being less efficient by virtue of requiring three awaits
rather than one), is that should task1 fault, we’ll never get to await task2/task3,
and any of their exceptions will go unobserved. In fact, this is why they relaxed the
unobserved task exception behavior from CLR 4.5: it would be confusing if, despite
an exception handling block around the entire code block above, an exception from
task2 or task3 could crash your application sometime later when garbage collected.

C
o

ncurrency
and

A
synchro

ny

Asynchronous Patterns | 615

www.EBooksWorld.ir

In contrast, Task.WhenAll doesn’t complete until all tasks have completed—even
when there’s a fault. And if there are multiple faults, their exceptions are combined
into the task’s AggregateException (this is when AggregateException actually
becomes useful—should you be interested in all the exceptions, that is). Awaiting
the combined task, however, throws only the first exception, so to see all the excep‐
tions you need to do this:

Task task1 = Task.Run (() => { throw null; });
Task task2 = Task.Run (() => { throw null; });
Task all = Task.WhenAll (task1, task2);
try { await all; }
catch
{
 Console.WriteLine (all.Exception.InnerExceptions.Count); // 2
}

Calling WhenAll with tasks of type Task<TResult> returns a Task<TResult[]>, giv‐
ing the combined results of all the tasks. This reduces to a TResult[] when awaited:

Task<int> task1 = Task.Run (() => 1);
Task<int> task2 = Task.Run (() => 2);
int[] results = await Task.WhenAll (task1, task2); // { 1, 2 }

To give a practical example, the following downloads URIs in parallel and sums
their total length:

async Task<int> GetTotalSize (string[] uris)
{
 IEnumerable<Task<byte[]>> downloadTasks = uris.Select (uri =>
 new WebClient().DownloadDataTaskAsync (uri));

 byte[][] contents = await Task.WhenAll (downloadTasks);
 return contents.Sum (c => c.Length);
}

There’s a slight inefficiency here, though, in that we’re unnecessarily hanging onto
the byte arrays that we download until every task is complete. It would be more effi‐
cient if we collapsed byte arrays into their lengths right after downloading them.
This is where an asynchronous lambda comes in handy, because we need to feed an
await expression into LINQ’s Select query operator:

async Task<int> GetTotalSize (string[] uris)
{
 IEnumerable<Task<int>> downloadTasks = uris.Select (async uri =>
 (await new WebClient().DownloadDataTaskAsync (uri)).Length);

 int[] contentLengths = await Task.WhenAll (downloadTasks);
 return contentLengths.Sum();
}

616 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

Custom combinators
It can be useful to write your own task combinators. The simplest “combinator”
accepts a single task, such as the following, which lets you await any task with a
timeout:

async static Task<TResult> WithTimeout<TResult> (this Task<TResult> task,
 TimeSpan timeout)
{
 Task winner = await (Task.WhenAny (task, Task.Delay (timeout)));
 if (winner != task) throw new TimeoutException();
 return await task; // Unwrap result/rethrow
}

The following lets you “abandon” a task via a CancellationToken:

static Task<TResult> WithCancellation<TResult> (this Task<TResult> task,
 CancellationToken cancelToken)
{
 var tcs = new TaskCompletionSource<TResult>();
 var reg = cancelToken.Register (() => tcs.TrySetCanceled ());
 task.ContinueWith (ant =>
 {
 reg.Dispose();
 if (ant.IsCanceled)
 tcs.TrySetCanceled();
 else if (ant.IsFaulted)
 tcs.TrySetException (ant.Exception.InnerException);
 else
 tcs.TrySetResult (ant.Result);
 });
 return tcs.Task;
}

Task combinators can be complex to write, sometimes requiring the use of signaling
constructs that we cover in Chapter 22. This is actually a good thing, because it
keeps concurrency-related complexity out of your business logic and into reusable
methods that can be tested in isolation.

The next combinator works like WhenAll, except that if any of the tasks fault, the
resultant task faults immediately:

async Task<TResult[]> WhenAllOrError<TResult>
 (params Task<TResult>[] tasks)
{
 var killJoy = new TaskCompletionSource<TResult[]>();
 foreach (var task in tasks)
 task.ContinueWith (ant =>
 {
 if (ant.IsCanceled)
 killJoy.TrySetCanceled();
 else if (ant.IsFaulted)
 killJoy.TrySetException (ant.Exception.InnerException);
 });
 return await await Task.WhenAny (killJoy.Task, Task.WhenAll (tasks));
}

C
o

ncurrency
and

A
synchro

ny

Asynchronous Patterns | 617

www.EBooksWorld.ir

We start by creating a TaskCompletionSource whose sole job is to end the party if a
task faults. Hence, we never call its SetResult method; only its TrySetCanceled and
TrySetException methods. In this case, ContinueWith is more convenient than
GetAwaiter().OnCompleted because we’re not accessing the tasks’ results and
wouldn’t want to bounce to a UI thread at that point.

Obsolete Patterns
The Framework employs other patterns for asynchrony which precede tasks and
asynchronous functions. These are now rarely required, since task-based asyn‐
chrony has become the dominant pattern as of Framework 4.5.

Asynchronous Programming Model (APM)
The oldest pattern is called the APM (“Asynchronous Programming Model”) and
uses a pair of methods starting in “Begin” and “End,” and an interface called IAsyn
cResult. To illustrate, we’ll take the Stream class in System.IO, and look at its Read
method. First, the synchronous version:

public int Read (byte[] buffer, int offset, int size);

You can probably predict what the task-based asynchronous version looks like:

public Task<int> ReadAsync (byte[] buffer, int offset, int size);

Now let’s examine the APM version:

public IAsyncResult BeginRead (byte[] buffer, int offset, int size,
 AsyncCallback callback, object state);
public int EndRead (IAsyncResult asyncResult);

Calling the Begin* method initiates the operation, returning an IAsyncResult
object which acts as a token for the asynchronous operation. When the operation
completes (or faults), the AsyncCallback delegate fires:

public delegate void AsyncCallback (IAsyncResult ar);

Whoever handles this delegate then calls the End* method which provides the oper‐
ation’s return value, as well as rethrowing an exception if the operation faulted.

The APM is not only awkward to use, but surprisingly difficult to implement cor‐
rectly. The easiest way to deal with APM methods is to call the Task.Factory.FromA
sync adapter method, which converts an APM method pair into a Task. Internally,
it uses a TaskCompletionSource to give you a task that’s signaled when an APM
operation completes or faults.

618 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

The FromAsync method requires the following parameters:

• A delegate specifying a BeginXXX method

• A delegate specifying a EndXXX method
• Additional arguments that will get passed to these methods

FromAsync is overloaded to accept delegate types and arguments that match nearly
all the asynchronous method signatures found in the .NET Framework. For
instance, assuming stream is a Stream and buffer is a byte[], we could do this:

Task<int> readChunk = Task<int>.Factory.FromAsync (
 stream.BeginRead, stream.EndRead, buffer, 0, 1000, null);

Asynchronous delegates
The CLR still supports asynchronous delegates, a feature whereby you can call any
delegate asynchronously using APM-style BeginInvoke/EndInvoke methods:

Func<string> foo = () => { Thread.Sleep(1000); return "foo"; };
foo.BeginInvoke (asyncResult =>
 Console.WriteLine (foo.EndInvoke (asyncResult)), null);

Asynchronous delegates incur a surprising overhead—and are painfully redundant
with tasks:

Func<string> foo = () => { Thread.Sleep(1000); return "foo"; };
Task.Run (foo).ContinueWith (ant => Console.WriteLine (ant.Result));

Event-Based Asynchronous Pattern (EAP)
The Event-based Asynchronous Pattern (EAP) was introduced in Framework 2.0 to
provide a simpler alternative to the APM, particularly in UI scenarios. It was imple‐
mented in only a handful of types, however, most notably WebClient in Sys
tem.Net. The EAP is just a pattern; no types are provided to assist. Essentially the
pattern is this: a class offers a family of members that internally manage concur‐
rency, similar to the following.

// These members are from the WebClient class:

public byte[] DownloadData (Uri address); // Synchronous version
public void DownloadDataAsync (Uri address);
public void DownloadDataAsync (Uri address, object userToken);
public event DownloadDataCompletedEventHandler DownloadDataCompleted;

public void CancelAsync (object userState); // Cancels an operation
public bool IsBusy { get; } // Indicates if still running

C
o

ncurrency
and

A
synchro

ny

Obsolete Patterns | 619

www.EBooksWorld.ir

The *Async methods initiate an operation asynchronously. When the operation
completes, the *Completed event fires (automatically posting to the captured syn‐
chronization context if present). This event passes back an event arguments object
that contains:

• A flag indicating whether the operation was canceled (by the consumer calling
CancelAsync)

• An Error object indicating an exception that was thrown (if any)

• The userToken object if supplied when calling the Async method

EAP types may also expose a progress reporting event, which fires whenever pro‐
gress changes (also posted through the synchronization context):

public event DownloadProgressChangedEventHandler DownloadProgressChanged;

Implementing the EAP requires a large amount of boilerplate code, making the pat‐
tern poorly compositional.

BackgroundWorker
BackgroundWorker in System.ComponentModel is a general-purpose implementa‐
tion of the EAP. It allows rich-client apps to start a worker thread and report com‐
pletion and percentage-based progress without needing to explicitly capture syn‐
chronization context. For instance:

var worker = new BackgroundWorker { WorkerSupportsCancellation = true };
worker.DoWork += (sender, args) =>
{ // This runs on a worker thread
 if (args.Cancel) return;
 Thread.Sleep(1000);
 args.Result = 123;
};
worker.RunWorkerCompleted += (sender, args) =>
{ // Runs on UI thread
 // We can safely update UI controls here...
 if (args.Cancelled)
 Console.WriteLine ("Cancelled");
 else if (args.Error != null)
 Console.WriteLine ("Error: " + args.Error.Message);
 else
 Console.WriteLine ("Result is: " + args.Result);
};
worker.RunWorkerAsync(); // Captures sync context and starts operation

RunWorkerAsync starts the operation, firing the DoWork event on a pooled worker
thread. It also captures the synchronization context, and when the operation com‐
pletes (or faults), the RunWorkerCompleted event is invoked through that synchroni‐
zation context (like a continuation).

BackgroundWorker creates course-grained concurrency, in that the DoWork event
runs entirely on a worker thread. If you need to update UI controls in that event

620 | Chapter 14: Concurrency and Asynchrony

www.EBooksWorld.ir

handler (other than posting a percentage-complete message), you must use Dis
patcher.BeginInvoke or similar).

We describe BackgroundWorker in more detail at http://albahari.com/threading.

C
o

ncurrency
and

A
synchro

ny

Obsolete Patterns | 621

www.EBooksWorld.ir

http://albahari.com/threading

www.EBooksWorld.ir

15
Streams and I/O

This chapter describes the fundamental types for input and output in .NET, with
emphasis on the following topics:

• The .NET stream architecture and how it provides a consistent programming
interface for reading and writing across a variety of I/O types

• Classes for manipulating files and directories on disk
• Specialized streams for compression, named pipes, and memory-mapped files.

This chapter concentrates on the types in the System.IO namespace, the home of
lower-level I/O functionality. The .NET Framework also provides higher-level I/O
functionality in the form of SQL connections and commands, LINQ to SQL and
LINQ to XML, Windows Communication Foundation, Web Services, and Remot‐
ing.

Stream Architecture
The .NET stream architecture centers on three concepts: backing stores, decorators,
and adapters, as shown in Figure 15-1.

A backing store is the endpoint that makes input and output useful, such as a file or
network connection. Precisely, it is either or both of the following:

• A source from which bytes can be sequentially read
• A destination to which bytes can be sequentially written

Stream
s and

I/O

623

www.EBooksWorld.ir

Figure 15-1. Stream architecture

A backing store is of no use, though, unless exposed to the programmer. A Stream is
the standard .NET class for this purpose; it exposes a standard set of methods for
reading, writing, and positioning. Unlike an array, where all the backing data exists
in memory at once, a stream deals with data serially—either one byte at a time or in
blocks of a manageable size. Hence, a stream can use little memory regardless of the
size of its backing store.

Streams fall into two categories:

Backing store streams
These are hard-wired to a particular type of backing store, such as File
Stream or NetworkStream

Decorator streams
These feed off another stream, transforming the data in some way, such as
DeflateStream or CryptoStream

Decorator streams have the following architectural benefits:

• They liberate backing store streams from needing to implement such features
as compression and encryption themselves.

• Streams don’t suffer a change of interface when decorated.
• You connect decorators at runtime.

624 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

• You can chain decorators together (e.g., a compressor followed by an encryp‐
tor).

Both backing store and decorator streams deal exclusively in bytes. Although this is
flexible and efficient, applications often work at higher levels such as text or XML.
Adapters bridge this gap by wrapping a stream in a class with specialized methods
typed to a particular format. For example, a text reader exposes a ReadLine method;
an XML writer exposes a WriteAttributes method.

An adapter wraps a stream, just like a decorator. Unlike a dec‐
orator, however, an adapter is not itself a stream; it typically
hides the byte-oriented methods completely.

To summarize, backing store streams provide the raw data; decorator streams pro‐
vide transparent binary transformations such as encryption; adapters offer typed
methods for dealing in higher-level types such as strings and XML. Figure 15-1
illustrates their associations. To compose a chain, you simply pass one object into
another’s constructor.

Using Streams
The abstract Stream class is the base for all streams. It defines methods and proper‐
ties for three fundamental operations: reading, writing, and seeking, as well as for
administrative tasks such as closing, flushing, and configuring timeouts (see
Table 15-1).

Table 15-1. Stream class members

Category Members

Reading public abstract bool CanRead { get; }

 public abstract int Read (byte[] buffer, int offset, int

count)

 public virtual int ReadByte();

Writing public abstract bool CanWrite { get; }

 public abstract void Write (byte[] buffer, int offset, int

count);

 public virtual void WriteByte (byte value);

Seeking public abstract bool CanSeek { get; }

 public abstract long Position { get; set; }

 public abstract void SetLength (long value);

 public abstract long Length { get; }

 public abstract long Seek (long offset, SeekOrigin origin);

Stream
s and

I/O

Using Streams | 625

www.EBooksWorld.ir

Category Members

Closing/flushing public virtual void Close();

 public void Dispose();

 public abstract void Flush();

Timeouts public virtual bool CanTimeout { get; }

 public virtual int ReadTimeout { get; set; }

 public virtual int WriteTimeout { get; set; }

Other public static readonly Stream Null; // "Null" stream

 public static Stream Synchronized (Stream stream);

From Framework 4.5, there are also asynchronous versions of the Read and Write
methods, both of which return Tasks and optionally accept a cancellation token.

In the following example, we use a file stream to read, write, and seek:

using System;
using System.IO;

class Program
{
 static void Main()
 {
 // Create a file called test.txt in the current directory:
 using (Stream s = new FileStream ("test.txt", FileMode.Create))
 {
 Console.WriteLine (s.CanRead); // True
 Console.WriteLine (s.CanWrite); // True
 Console.WriteLine (s.CanSeek); // True

 s.WriteByte (101);
 s.WriteByte (102);
 byte[] block = { 1, 2, 3, 4, 5 };
 s.Write (block, 0, block.Length); // Write block of 5 bytes

 Console.WriteLine (s.Length); // 7
 Console.WriteLine (s.Position); // 7
 s.Position = 0; // Move back to the start

 Console.WriteLine (s.ReadByte()); // 101
 Console.WriteLine (s.ReadByte()); // 102

 // Read from the stream back into the block array:
 Console.WriteLine (s.Read (block, 0, block.Length)); // 5

 // Assuming the last Read returned 5, we'll be at
 // the end of the file, so Read will now return 0:
 Console.WriteLine (s.Read (block, 0, block.Length)); // 0
 }
 }
}

626 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

Reading or writing asynchronously is simply a question of calling ReadAsync/Write
Async instead of Read/Write, and awaiting the expression. (We must also add the
async keyword to the calling method, as we described in Chapter 14.)

async static void AsyncDemo()
{
 using (Stream s = new FileStream ("test.txt", FileMode.Create))
 {
 byte[] block = { 1, 2, 3, 4, 5 };
 await s.WriteAsync (block, 0, block.Length); // Write asychronously

 s.Position = 0; // Move back to the start

 // Read from the stream back into the block array:
 Console.WriteLine (await s.ReadAsync (block, 0, block.Length)); // 5
 }
}

The asynchronous methods make it easy to write responsive and scalable applica‐
tions that work with potentially slow streams (particularly network streams),
without tying up a thread.

For the sake of brevity, we’ll continue to use synchronous
methods for most of the examples in this chapter; however we
recommend the asynchronous Read/Write operations as pref‐
erable in most scenarios involving network I/O.

Reading and Writing
A stream may support reading, writing, or both. If CanWrite returns false, the
stream is read-only; if CanRead returns false, the stream is write-only.

Read receives a block of data from the stream into an array. It returns the number of
bytes received, which is always either less than or equal to the count argument. If it’s
less than count, it means either that the end of the stream has been reached or the
stream is giving you the data in smaller chunks (as is often the case with network
streams). In either case, the balance of bytes in the array will remain unwritten, their
previous values preserved.

With Read, you can be certain you’ve reached the end of the
stream only when the method returns 0. So, if you have a
1,000-byte stream, the following code may fail to read it all
into memory:

// Assuming s is a stream:
byte[] data = new byte [1000];
s.Read (data, 0, data.Length);

The Read method could read anywhere from 1 to 1,000 bytes,
leaving the balance of the stream unread.

Here’s the correct way to read a 1,000-byte stream:

Stream
s and

I/O

Using Streams | 627

www.EBooksWorld.ir

byte[] data = new byte [1000];

// bytesRead will always end up at 1000, unless the stream is
// itself smaller in length:

int bytesRead = 0;
int chunkSize = 1;
while (bytesRead < data.Length && chunkSize > 0)
 bytesRead +=
 chunkSize = s.Read (data, bytesRead, data.Length - bytesRead);

Fortunately, the BinaryReader type provides a simpler way to
achieve the same result:

byte[] data = new BinaryReader (s).ReadBytes (1000);

If the stream is less than 1,000 bytes long, the byte array
returned reflects the actual stream size. If the stream is seeka‐
ble, you can read its entire contents by replacing 1000 with
(int)s.Length.

We describe the BinaryReader type further in the section
“Stream Adapters” on page 639, later in this chapter.

The ReadByte method is simpler: it reads just a single byte, returning –1 to indicate
the end of the stream. ReadByte actually returns an int rather than a byte, as the
latter cannot return –1.

The Write and WriteByte methods send data to the stream. If they are unable to
send the specified bytes, an exception is thrown.

In the Read and Write methods, the offset argument refers
to the index in the buffer array at which reading or writing
begins, not the position within the stream.

Seeking
A stream is seekable if CanSeek returns true. With a seekable stream (such as a file
stream), you can query or modify its Length (by calling SetLength) and at any time
change the Position at which you’re reading or writing. The Position property is
relative to the beginning of the stream; the Seek method, however, allows you to
move relative to the current position or the end of the stream.

Changing the Position on a FileStream typically takes a few
microseconds. If you’re doing this millions of times in a loop,
the MemoryMappedFile class may be a better choice than a
FileStream (see “Memory-Mapped Files” on page 663, later in
this chapter).

With a nonseekable stream (such as an encryption stream), the only way to deter‐
mine its length is to read it right through. Furthermore, if you need to reread a pre‐
vious section, you must close the stream and start afresh with a new one.

628 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

Closing and Flushing
Streams must be disposed after use to release underlying resources such as file and
socket handles. A simple way to guarantee this is by instantiating streams within
using blocks. In general, streams follow standard disposal semantics:

• Dispose and Close are identical in function.
• Disposing or closing a stream repeatedly causes no error.

Closing a decorator stream closes both the decorator and its backing store stream.
With a chain of decorators, closing the outermost decorator (at the head of the
chain) closes the whole lot.

Some streams internally buffer data to and from the backing store to lessen round-
tripping and so improve performance (file streams are a good example of this). This
means data you write to a stream may not hit the backing store immediately; it can
be delayed as the buffer fills up. The Flush method forces any internally buffered
data to be written immediately. Flush is called automatically when a stream is
closed, so you never need to do the following:

s.Flush(); s.Close();

Timeouts
A stream supports read and write timeouts if CanTimeout returns true. Network
streams support timeouts; file and memory streams do not. For streams that sup‐
port timeouts, the ReadTimeout and WriteTimeout properties determine the desired
timeout in milliseconds, where 0 means no timeout. The Read and Write methods
indicate that a timeout has occurred by throwing an exception.

Thread Safety
As a rule, streams are not thread-safe, meaning that two threads cannot concur‐
rently read or write to the same stream without possible error. The Stream class
offers a simple workaround via the static Synchronized method. This method
accepts a stream of any type and returns a thread-safe wrapper. The wrapper works
by obtaining an exclusive lock around each read, write, or seek, ensuring that only
one thread can perform such an operation at a time. In practice, this allows multiple
threads to simultaneously append data to the same stream—other kinds of activities
(such as concurrent reading) require additional locking to ensure that each thread
accesses the desired portion of the stream. We discuss thread safety fully in Chap‐
ter 22.

Backing Store Streams
Figure 15-2 shows the key backing store streams provided by the .NET Framework.
A “null stream” is also available, via the Stream’s static Null field.

Stream
s and

I/O

Using Streams | 629

www.EBooksWorld.ir

In the following sections, we describe FileStream and MemoryStream; in the final
section in this chapter, we describe IsolatedStorageStream. In Chapter 16, we
cover NetworkStream.

Figure 15-2. Backing store streams

FileStream
Earlier in this section, we demonstrated the basic use of a FileStream to read and
write bytes of data. We’ll now examine the special features of this class.

FileStream is unavailable to Windows Store applications.
Instead, use the Windows Runtime types in Windows.Storage
(see “File I/O in Windows Runtime” on page 661).

Constructing a FileStream
The simplest way to instantiate a FileStream is to use one of the following static
façade methods on the File class:

FileStream fs1 = File.OpenRead ("readme.bin"); // Read-only
FileStream fs2 = File.OpenWrite (@"c:\temp\writeme.tmp"); // Write-only
FileStream fs3 = File.Create (@"c:\temp\writeme.tmp"); // Read/write

OpenWrite and Create differ in behavior if the file already exists. Create truncates
any existing content; OpenWrite leaves existing content intact with the stream posi‐
tioned at zero. If you write fewer bytes than were previously in the file, OpenWrite
leaves you with a mixture of old and new content.

You can also instantiate a FileStream directly. Its constructors provide access to
every feature, allowing you to specify a filename or low-level file handle, file cre‐
ation and access modes, and options for sharing, buffering, and security. The fol‐
lowing opens an existing file for read/write access without overwriting it:

var fs = new FileStream ("readwrite.tmp", FileMode.Open); // Read/write

630 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

More on FileMode shortly.

Shortcut Methods on the File Class
The following static methods read an entire file into memory in one step:

• File.ReadAllText (returns a string)
• File.ReadAllLines (returns an array of strings)
• File.ReadAllBytes (returns a byte array)

The following static methods write an entire file in one step:

• File.WriteAllText

• File.WriteAllLines

• File.WriteAllBytes

• File.AppendAllText (great for appending to a log file)

There’s also a static method called File.ReadLines: this is like ReadAllLines except
that it returns a lazily-evaluated IEnumerable<string>. This is more efficient because
it doesn’t load the entire file into memory at once. LINQ is ideal for consuming the
results: the following calculates the number of lines greater than 80 characters in
length:

int longLines = File.ReadLines ("filePath")
 .Count (l => l.Length > 80);

Specifying a filename
A filename can be either absolute (e.g., c:\temp\test.txt) or relative to the current
directory (e.g., test.txt or temp\test.txt). You can access or change the current direc‐
tory via the static Environment.CurrentDirectory property.

When a program starts, the current directory may or may not
coincide with that of the program’s executable. For this reason,
you should never rely on the current directory for locating
additional runtime files packaged along with your executable.

AppDomain.CurrentDomain.BaseDirectory returns the application base directory,
which in normal cases is the folder containing the program’s executable. To specify a
filename relative to this directory, you can call Path.Combine:

string baseFolder = AppDomain.CurrentDomain.BaseDirectory;
string logoPath = Path.Combine (baseFolder, "logo.jpg");
Console.WriteLine (File.Exists (logoPath));

You can read and write across a network via a UNC path, such as \\JoesPC\PicShare
\pic.jpg or \\10.1.1.2\PicShare\pic.jpg.

Stream
s and

I/O

Using Streams | 631

www.EBooksWorld.ir

Specifying a FileMode
All of FileStream’s constructors that accept a filename also require a FileMode
enum argument. Figure 15-3 shows how to choose a FileMode, and the choices yield
results akin to calling a static method on the File class.

Figure 15-3. Choosing a FileMode

File.Create and FileMode.Create will throw an exception if
used on hidden files. To overwrite a hidden file, you must
delete and re-create it:

if (File.Exists ("hidden.txt")) File.Delete ("hidden.txt");

Constructing a FileStream with just a filename and FileMode gives you (with just
one exception) a readable writable stream. You can request a downgrade if you also
supply a FileAccess argument:

[Flags]
public enum FileAccess { Read = 1, Write = 2, ReadWrite = 3 }

The following returns a read-only stream, equivalent to calling File.OpenRead:

using (var fs = new FileStream ("x.bin", FileMode.Open, FileAccess.Read))
 ...

FileMode.Append is the odd one out: with this mode, you get a write-only stream.
To append with read-write support, you must instead use FileMode.Open or File
Mode.OpenOrCreate and then seek the end of the stream:

632 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

using (var fs = new FileStream ("myFile.bin", FileMode.Open))
{
 fs.Seek (0, SeekOrigin.End);
 ...

Advanced FileStream features
Here are other optional arguments you can include when constructing a File
Stream:

• A FileShare enum describing how much access to grant other processes want‐
ing to dip into the same file before you’ve finished (None, Read [default], Read
Write, or Write).

• The size, in bytes, of the internal buffer (default is currently 4 KB).
• A flag indicating whether to defer to the operating system for asynchronous

I/O.
• A FileSecurity object describing what user and role permissions to assign a

new file.
• A FileOptions flags enum for requesting operating system encryption (Encryp
ted), automatic deletion upon closure for temporary files (DeleteOnClose),
and optimization hints (RandomAccess and SequentialScan). There is also a
WriteThrough flag that requests that the operating system disable write-behind
caching; this is for transactional files or logs.

Opening a file with FileShare.ReadWrite allows other processes or users to simul‐
taneously read and write to the same file. To avoid chaos, you can all agree to lock
specified portions of the file before reading or writing, using these methods:

// Defined on the FileStream class:
public virtual void Lock (long position, long length);
public virtual void Unlock (long position, long length);

Lock throws an exception if part or all of the requested file section has already been
locked. This is the system used in file-based databases such as Access and FoxPro.

MemoryStream
MemoryStream uses an array as a backing store. This partly defeats the purpose of
having a stream, because the entire backing store must reside in memory at once.
MemoryStream still has uses, however; an example is when you need random access
to a nonseekable stream. If you know the source stream will be of a manageable size,
you can copy it into a MemoryStream as follows:

var ms = new MemoryStream();
sourceStream.CopyTo (ms);

You can convert a MemoryStream to a byte array by calling ToArray. The GetBuffer
method does the same job more efficiently by returning a direct reference to the

Stream
s and

I/O

Using Streams | 633

www.EBooksWorld.ir

underlying storage array; unfortunately, this array is usually longer than the stream’s
real length.

Closing and flushing a MemoryStream is optional. If you close
a MemoryStream, you can no longer read or write to it, but you
are still permitted to call ToArray to obtain the underlying
data. Flush does absolutely nothing on a memory stream.

You can find further MemoryStream examples in the section “Compression Streams”
on page 647 later in this chapter, and in the section “Cryptography Overview” on
page 889 in Chapter 21.

PipeStream
PipeStream was introduced in Framework 3.5. It provides a simple means by which
one process can communicate with another through the Windows pipes protocol.
There are two kinds of pipe:

Anonymous pipe
Allows one-way communication between a parent and child process on the
same computer

Named pipe
Allows two-way communication between arbitrary processes on the same
computer—or different computers across a Windows network

A pipe is good for interprocess communication (IPC) on a single computer: it
doesn’t rely on a network transport, which equates to good performance and no
issues with firewalls. Pipes are not supported in Windows Store applications.

Pipes are stream-based, so one process waits to receive a series
of bytes while another process sends them. An alternative is
for processes to communicate via a block of shared memory—
we describe how to do this later, in the section “Memory-
Mapped Files” on page 663.

PipeStream is an abstract class with four concrete subtypes. Two are used for
anonymous pipes and the other two for named pipes:

Anonymous pipes
AnonymousPipeServerStream and AnonymousPipeClientStream

Named pipes
NamedPipeServerStream and NamedPipeClientStream

Named pipes are simpler to use, so we’ll describe them first.

634 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

A pipe is a low-level construct that allows just the sending and
receiving of bytes (or messages, which are groups of bytes).
The WCF and Remoting APIs offer higher-level messaging
frameworks with the option of using an IPC channel for com‐
munication.

Named pipes
With named pipes, the parties communicate through a pipe of the same name. The
protocol defines two distinct roles: the client and server. Communication happens
between the client and server as follows:

• The server instantiates a NamedPipeServerStream and then calls WaitForCon
nection.

• The client instantiates a NamedPipeClientStream and then calls Connect (with
an optional timeout).

The two parties then read and write the streams to communicate.

The following example demonstrates a server that sends a single byte (100) and then
waits to receive a single byte:

using (var s = new NamedPipeServerStream ("pipedream"))
{
 s.WaitForConnection();
 s.WriteByte (100);
 Console.WriteLine (s.ReadByte());
}

Here’s the corresponding client code:

using (var s = new NamedPipeClientStream ("pipedream"))
{
 s.Connect();
 Console.WriteLine (s.ReadByte());
 s.WriteByte (200); // Send the value 200 back.
}

Named pipe streams are bidirectional by default, so either party can read or write
their stream. This means the client and server must agree on some protocol to coor‐
dinate their actions so both parties don’t end up sending or receiving at once.

There also needs to be agreement on the length of each transmission. Our example
was trivial in this regard, because we bounced just a single byte in each direction. To
help with messages longer than one byte, pipes provide a message transmission
mode. If this is enabled, a party calling Read can know when a message is complete
by checking the IsMessageComplete property. To demonstrate, we’ll start by writing
a helper method that reads a whole message from a message-enabled PipeStream—
in other words, reads until IsMessageComplete is true:

static byte[] ReadMessage (PipeStream s)
{

Stream
s and

I/O

Using Streams | 635

www.EBooksWorld.ir

 MemoryStream ms = new MemoryStream();
 byte[] buffer = new byte [0x1000]; // Read in 4 KB blocks

 do { ms.Write (buffer, 0, s.Read (buffer, 0, buffer.Length)); }
 while (!s.IsMessageComplete);

 return ms.ToArray();
}

(To make this asynchronous, replace “s.Read” with “await s.ReadAsync”.)

You cannot determine whether a PipeStream has finished
reading a message simply by waiting for Read to return 0. This
is because, unlike most other stream types, pipe streams and
network streams have no definite end. Instead, they temporar‐
ily “dry up” between message transmissions.

Now we can activate message transmission mode. On the server, this is done by
specifying PipeTransmissionMode.Message when constructing the stream:

using (var s = new NamedPipeServerStream ("pipedream", PipeDirection.InOut,
 1, PipeTransmissionMode.Message))
{
 s.WaitForConnection();

 byte[] msg = Encoding.UTF8.GetBytes ("Hello");
 s.Write (msg, 0, msg.Length);

 Console.WriteLine (Encoding.UTF8.GetString (ReadMessage (s)));
}

On the client, we activate message transmission mode by setting ReadMode after call‐
ing Connect:

using (var s = new NamedPipeClientStream ("pipedream"))
{
 s.Connect();
 s.ReadMode = PipeTransmissionMode.Message;

 Console.WriteLine (Encoding.UTF8.GetString (ReadMessage (s)));

 byte[] msg = Encoding.UTF8.GetBytes ("Hello right back!");
 s.Write (msg, 0, msg.Length);
}

Anonymous pipes
An anonymous pipe provides a one-way communication stream between a parent
and child process. Instead of using a system-wide name, anonymous pipes tune in
through a private handle.

As with named pipes, there are distinct client and server roles. The system of com‐
munication is a little different, however, and proceeds as follows:

636 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

1. The server instantiates an AnonymousPipeServerStream, committing to a Pipe
Direction of In or Out.

2. The server calls GetClientHandleAsString to obtain an identifier for the pipe,
which it then passes to the client (typically as an argument when starting the
child process).

3. The child process instantiates an AnonymousPipeClientStream, specifying the
opposite PipeDirection.

4. The server releases the local handle that was generated in Step 2, by calling Dis
poseLocalCopyOfClientHandle.

5. The parent and child processes communicate by reading/writing the stream.

Because anonymous pipes are unidirectional, a server must create two pipes for
bidirectional communication. The following demonstrates a server that sends a sin‐
gle byte to the child process and then receives a single byte back from that process:

string clientExe = @"d:\PipeDemo\ClientDemo.exe";

HandleInheritability inherit = HandleInheritability.Inheritable;

using (var tx = new AnonymousPipeServerStream (PipeDirection.Out, inherit))
using (var rx = new AnonymousPipeServerStream (PipeDirection.In, inherit))
{
 string txID = tx.GetClientHandleAsString();
 string rxID = rx.GetClientHandleAsString();

 var startInfo = new ProcessStartInfo (clientExe, txID + " " + rxID);
 startInfo.UseShellExecute = false; // Required for child process
 Process p = Process.Start (startInfo);

 tx.DisposeLocalCopyOfClientHandle(); // Release unmanaged
 rx.DisposeLocalCopyOfClientHandle(); // handle resources.

 tx.WriteByte (100);
 Console.WriteLine ("Server received: " + rx.ReadByte());

 p.WaitForExit();
}

Here’s the corresponding client code that would be compiled to d:\PipeDemo\Client‐
Demo.exe:

string rxID = args[0]; // Note we're reversing the
string txID = args[1]; // receive and transmit roles.

using (var rx = new AnonymousPipeClientStream (PipeDirection.In, rxID))
using (var tx = new AnonymousPipeClientStream (PipeDirection.Out, txID))
{
 Console.WriteLine ("Client received: " + rx.ReadByte());
 tx.WriteByte (200);
}

Stream
s and

I/O

Using Streams | 637

www.EBooksWorld.ir

As with named pipes, the client and server must coordinate their sending and
receiving and agree on the length of each transmission. Anonymous pipes don’t,
unfortunately, support message mode, so you must implement your own protocol
for message length agreement. One solution is to send, in the first 4 bytes of each
transmission, an integer value defining the length of the message to follow. The Bit
Converter class provides methods for converting between an integer and an array
of 4 bytes.

BufferedStream
BufferedStream decorates, or wraps, another stream with buffering capability, and
it is one of a number of decorator stream types in the core .NET Framework, all of
which are illustrated in Figure 15-4.

Buffering improves performance by reducing round trips to the backing store.
Here’s how we wrap a FileStream in a 20 KB BufferedStream:

// Write 100K to a file:
File.WriteAllBytes ("myFile.bin", new byte [100000]);

using (FileStream fs = File.OpenRead ("myFile.bin"))
using (BufferedStream bs = new BufferedStream (fs, 20000)) //20K buffer
{
 bs.ReadByte();
 Console.WriteLine (fs.Position); // 20000
}

Figure 15-4. Decorator streams

In this example, the underlying stream advances 20,000 bytes after reading just 1
byte, thanks to the read-ahead buffering. We could call ReadByte another 19,999
times before the FileStream would be hit again.

Coupling a BufferedStream to a FileStream, as in this example, is of limited value
because FileStream already has built-in buffering. Its only use might be in enlarg‐
ing the buffer on an already constructed FileStream.

638 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

Closing a BufferedStream automatically closes the underlying backing store
stream.

Stream Adapters
A Stream deals only in bytes; to read or write data types such as strings, integers, or
XML elements, you must plug in an adapter. Here’s what the Framework provides:

Text adapters (for string and character data)
TextReader, TextWriter
StreamReader, StreamWriter
StringReader, StringWriter

Binary adapters (for primitive types such as int, bool, string, and float)
BinaryReader, BinaryWriter

XML adapters (covered in Chapter 11)
XmlReader, XmlWriter

The relationships between these types are illustrated in Figure 15-5.

Figure 15-5. Readers and writers

Text Adapters
TextReader and TextWriter are the abstract base classes for adapters that deal
exclusively with characters and strings. Each has two general-purpose implementa‐
tions in the framework:

StreamReader/StreamWriter
Uses a Stream for its raw data store, translating the stream’s bytes into char‐
acters or strings

Stream
s and

I/O

Stream Adapters | 639

www.EBooksWorld.ir

StringReader/StringWriter
Implements TextReader/TextWriter using in-memory strings

Table 15-2 lists TextReader’s members by category. Peek returns the next character
in the stream without advancing the position. Both Peek and the zero-argument
version of Read return –1 if at the end of the stream; otherwise, they return an inte‐
ger that can be cast directly to a char. The overload of Read that accepts a char[]
buffer is identical in functionality to the ReadBlock method. ReadLine reads until
reaching either a CR (character 13) or LF (character 10), or a CR+LF pair in
sequence. It then returns a string, discarding the CR/LF characters.

Table 15-2. TextReader members

Category Members

Reading one char public virtual int Peek(); // Cast the result to a char

 public virtual int Read(); // Cast the result to a char

Reading many
chars

public virtual int Read (char[] buffer, int index, int

count);

 public virtual int ReadBlock (char[] buffer, int index,

int count);

 public virtual string ReadLine();

 public virtual string ReadToEnd();

Closing public virtual void Close();

 public void Dispose(); // Same as Close

Other public static readonly TextReader Null;

 public static TextReader Synchronized (TextReader reader);

The new line sequence in Windows is loosely modeled on a
mechanical typewriter: a carriage return (character 13) fol‐
lowed by a line feed (character 10). The C# string is "\r\n"
(think “ReturN”). Reverse the order and you’ll get either two
new lines or none!

TextWriter has analogous methods for writing, as shown in Table 15-3. The Write
and WriteLine methods are additionally overloaded to accept every primitive type,
plus the object type. These methods simply call the ToString method on whatever
is passed in (optionally through an IFormatProvider specified either when calling
the method or when constructing the TextWriter).

640 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

Table 15-3. TextWriter members

Category Members

Writing one char public virtual void Write (char value);

Writing many chars public virtual void Write (string value);

 public virtual void Write (char[] buffer, int

index, int count);

 public virtual void Write (string format, params

object[] arg);

 public virtual void WriteLine (string value);

Closing and flushing public virtual void Close();

 public void Dispose(); // Same as Close

 public virtual void Flush();

Formatting and encoding public virtual IFormatProvider FormatProvider

{ get; }

 public virtual string NewLine { get; set; }

 public abstract Encoding Encoding { get; }

Other public static readonly TextWriter Null;

 public static TextWriter Synchronized (TextWriter

writer);

WriteLine simply appends the given text with CR+LF. You can change this via the
NewLine property (this can be useful for interoperability with Unix file formats).

As with Stream, TextReader and TextWriter offer task-based
asynchronous versions of their read/write methods.

StreamReader and StreamWriter
In the following example, a StreamWriter writes two lines of text to a file, and then
a StreamReader reads the file back:

using (FileStream fs = File.Create ("test.txt"))
using (TextWriter writer = new StreamWriter (fs))
{
 writer.WriteLine ("Line1");
 writer.WriteLine ("Line2");
}

using (FileStream fs = File.OpenRead ("test.txt"))
using (TextReader reader = new StreamReader (fs))
{
 Console.WriteLine (reader.ReadLine()); // Line1

Stream
s and

I/O

Stream Adapters | 641

www.EBooksWorld.ir

 Console.WriteLine (reader.ReadLine()); // Line2
}

Because text adapters are so often coupled with files, the File class provides the
static methods CreateText, AppendText, and OpenText to shortcut the process:

using (TextWriter writer = File.CreateText ("test.txt"))
{
 writer.WriteLine ("Line1");
 writer.WriteLine ("Line2");
}

using (TextWriter writer = File.AppendText ("test.txt"))
 writer.WriteLine ("Line3");

using (TextReader reader = File.OpenText ("test.txt"))
 while (reader.Peek() > -1)
 Console.WriteLine (reader.ReadLine()); // Line1
 // Line2
 // Line3

This also illustrates how to test for the end of a file (viz. reader.Peek()). Another
option is to read until reader.ReadLine returns null.

You can also read and write other types such as integers, but because TextWriter
invokes ToString on your type, you must parse a string when reading it back:

using (TextWriter w = File.CreateText ("data.txt"))
{
 w.WriteLine (123); // Writes "123"
 w.WriteLine (true); // Writes the word "true"
}

using (TextReader r = File.OpenText ("data.txt"))
{
 int myInt = int.Parse (r.ReadLine()); // myInt == 123
 bool yes = bool.Parse (r.ReadLine()); // yes == true
}

Character encodings
TextReader and TextWriter are by themselves just abstract classes with no connec‐
tion to a stream or backing store. The StreamReader and StreamWriter types, how‐
ever, are connected to an underlying byte-oriented stream, so they must convert
between characters and bytes. They do so through an Encoding class from the Sys
tem.Text namespace, which you choose when constructing the StreamReader or
StreamWriter. If you choose none, the default UTF-8 encoding is used.

642 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

If you explicitly specify an encoding, StreamWriter will, by
default, write a prefix to the start of the stream to identity the
encoding. This is usually undesirable, and you can prevent it
by constructing the encoding as follows:

var encoding = new UTF8Encoding (
 encoderShouldEmitUTF8Identifier:false,
 throwOnInvalidBytes:true);

The second argument tells the StreamWriter (or Stream
Reader) to throw an exception if it encounters bytes that do
not have a valid string translation for their encoding, which
matches its default behavior if you do not specify an encoding.

The simplest of the encodings is ASCII, because each character is represented by
one byte. The ASCII encoding maps the first 127 characters of the Unicode set into
its single byte, covering what you see on a US-style keyboard. Most other characters,
including specialized symbols and non-English characters, cannot be represented
and are converted to the □ character. The default UTF-8 encoding can map all allo‐
cated Unicode characters, but it is more complex. The first 127 characters encode to
a single byte, for ASCII compatibility; the remaining characters encode to a variable
number of bytes (most commonly two or three). Consider this:

using (TextWriter w = File.CreateText ("but.txt")) // Use default UTF-8
 w.WriteLine ("but-"); // encoding.

using (Stream s = File.OpenRead ("but.txt"))
 for (int b; (b = s.ReadByte()) > -1;)
 Console.WriteLine (b);

The word “but” is followed not by a stock-standard hyphen, but by the longer em
dash (—) character, U+2014. This is the one that won’t get you into trouble with
your book editor! Let’s examine the output:

98 // b
117 // u
116 // t
226 // em dash byte 1 Note that the byte values
128 // em dash byte 2 are >= 128 for each part
148 // em dash byte 3 of the multibyte sequence.
13 // <CR>
10 // <LF>

Because the em dash is outside the first 127 characters of the Unicode set, it requires
more than a single byte to encode in UTF-8 (in this case, three). UTF-8 is efficient
with the Western alphabet as most popular characters consume just one byte. It also
downgrades easily to ASCII simply by ignoring all bytes above 127. Its disadvantage
is that seeking within a stream is troublesome, since a character’s position does not
correspond to its byte position in the stream. An alternative is UTF-16 (labeled just
“Unicode” in the Encoding class). Here’s how we write the same string with UTF-16:

Stream
s and

I/O

Stream Adapters | 643

www.EBooksWorld.ir

using (Stream s = File.Create ("but.txt"))
using (TextWriter w = new StreamWriter (s, Encoding.Unicode))
 w.WriteLine ("but-");

foreach (byte b in File.ReadAllBytes ("but.txt"))
 Console.WriteLine (b);

The output is then:

255 // Byte-order mark 1
254 // Byte-order mark 2
98 // 'b' byte 1
0 // 'b' byte 2
117 // 'u' byte 1
0 // 'u' byte 2
116 // 't' byte 1
0 // 't' byte 2
20 // '--' byte 1
32 // '--' byte 2
13 // <CR> byte 1
0 // <CR> byte 2
10 // <LF> byte 1
0 // <LF> byte 2

Technically, UTF-16 uses either 2 or 4 bytes per character (there are close to a mil‐
lion Unicode characters allocated or reserved, so 2 bytes is not always enough).
However, because the C# char type is itself only 16 bits wide, a UTF-16 encoding
will always use exactly 2 bytes per .NET char. This makes it easy to jump to a partic‐
ular character index within a stream.

UTF-16 uses a 2-byte prefix to identify whether the byte pairs are written in a
“little-endian” or “big-endian” order (the least significant byte first or the most sig‐
nificant byte first). The default little-endian order is standard for Windows-based
systems.

StringReader and StringWriter
The StringReader and StringWriter adapters don’t wrap a stream at all; instead,
they use a string or StringBuilder as the underlying data source. This means no
byte translation is required—in fact, the classes do nothing you couldn’t easily ach‐
ieve with a string or StringBuilder coupled with an index variable. Their advan‐
tage, though, is that they share a base class with StreamReader/StreamWriter. For
instance, suppose we have a string containing XML and want to parse it with an
XmlReader. The XmlReader.Create method accepts one of the following:

• A URI

• A Stream

• A TextReader

So, how do we XML-parse our string? Because StringReader is a subclass of Tex
tReader, we’re in luck. We can instantiate and pass in a StringReader as follows:

644 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

XmlReader r = XmlReader.Create (new StringReader (myString));

Binary Adapters
BinaryReader and BinaryWriter read and write native data types: bool, byte, char,
decimal, float, double, short, int, long, sbyte, ushort, uint, and ulong, as well
as strings and arrays of the primitive data types.

Unlike StreamReader and StreamWriter, binary adapters store primitive data types
efficiently, as they are represented in memory. So, an int uses 4 bytes; a double 8
bytes. Strings are written through a text encoding (as with StreamReader and
StreamWriter) but are length-prefixed in order to make it possible to read back a
series of strings without needing special delimiters.

Imagine we have a simple type, defined as follows:

public class Person
{
 public string Name;
 public int Age;
 public double Height;
}

We can add the following methods to Person to save/load its data to/from a stream
using binary adapters:

public void SaveData (Stream s)
{
 var w = new BinaryWriter (s);
 w.Write (Name);
 w.Write (Age);
 w.Write (Height);
 w.Flush(); // Ensure the BinaryWriter buffer is cleared.
 // We won't dispose/close it, so more data
} // can be written to the stream.

public void LoadData (Stream s)
{
 var r = new BinaryReader (s);
 Name = r.ReadString();
 Age = r.ReadInt32();
 Height = r.ReadDouble();
}

BinaryReader can also read into byte arrays. The following reads the entire contents
of a seekable stream:

byte[] data = new BinaryReader (s).ReadBytes ((int) s.Length);

This is more convenient than reading directly from a stream, because it doesn’t
require a loop to ensure that all data has been read.

Stream
s and

I/O

Stream Adapters | 645

www.EBooksWorld.ir

Closing and Disposing Stream Adapters
You have four choices in tearing down stream adapters:

1. Close the adapter only.
2. Close the adapter, and then close the stream.
3. (For writers) Flush the adapter, and then close the stream.
4. (For readers) Close just the stream.

Close and Dispose are synonymous with adapters, just as they
are with streams.

Options 1 and 2 are semantically identical, because closing an adapter automatically
closes the underlying stream. Whenever you nest using statements, you’re implicitly
taking option 2:

using (FileStream fs = File.Create ("test.txt"))
using (TextWriter writer = new StreamWriter (fs))
 writer.WriteLine ("Line");

Because the nest disposes from the inside out, the adapter is first closed, and then
the stream. Furthermore, if an exception is thrown within the adapter’s constructor,
the stream still closes. It’s hard to go wrong with nested using statements!

Never close a stream before closing or flushing its writer—
you’ll amputate any data that’s buffered in the adapter.

Options 3 and 4 work because adapters are in the unusual category of optionally
disposable objects. An example of when you might choose not to dispose an adapter
is when you’ve finished with the adapter but you want to leave the underlying
stream open for subsequent use:

using (FileStream fs = new FileStream ("test.txt", FileMode.Create))
{
 StreamWriter writer = new StreamWriter (fs);
 writer.WriteLine ("Hello");
 writer.Flush();

 fs.Position = 0;
 Console.WriteLine (fs.ReadByte());
}

Here we write to a file, reposition the stream, and then read the first byte before
closing the stream. If we disposed the StreamWriter, it would also close the under‐
lying FileStream, causing the subsequent read to fail. The proviso is that we call
Flush to ensure that the StreamWriter’s buffer is written to the underlying stream.

646 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

Stream adapters—with their optional disposal semantics—do
not implement the extended disposal pattern where the final‐
izer calls Dispose. This allows an abandoned adapter to evade
automatic disposal when the garbage collector catches up with
it.

From Framework 4.5, there’s a new constructor on StreamReader/StreamWriter
that instructs it to keep the stream open after disposal. Hence we can rewrite the
preceding example as follows:

using (var fs = new FileStream ("test.txt", FileMode.Create))
{
 using (var writer = new StreamWriter (fs, new UTF8Encoding (false, true),
 0x400, true))
 writer.WriteLine ("Hello");

 fs.Position = 0;
 Console.WriteLine (fs.ReadByte());
 Console.WriteLine (fs.Length);
}

Compression Streams
Two general-purpose compression streams are provided in the System.IO.Compres
sion namespace: DeflateStream and GZipStream. Both use a popular compression
algorithm similar to that of the ZIP format. They differ in that GZipStream writes an
additional protocol at the start and end—including a CRC to detect errors. GZip
Stream also conforms to a standard recognized by other software.

Both streams allow reading and writing, with the following provisos:

• You always write to the stream when compressing.
• You always read from the stream when decompressing.

DeflateStream and GZipStream are decorators; they compress or decompress data
from another stream that you supply in construction. In the following example, we
compress and decompress a series of bytes, using a FileStream as the backing store:

using (Stream s = File.Create ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Compress))
 for (byte i = 0; i < 100; i++)
 ds.WriteByte (i);

using (Stream s = File.OpenRead ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Decompress))
 for (byte i = 0; i < 100; i++)
 Console.WriteLine (ds.ReadByte()); // Writes 0 to 99

Even with the smaller of the two algorithms, the compressed file is 241 bytes long:
more than double the original! Compression works poorly with “dense,” nonrepeti‐
tive binary data (and worst of all with encrypted data, which lacks regularity by

Stream
s and

I/O

Compression Streams | 647

www.EBooksWorld.ir

design). It works well with most text files; in the next example, we compress and
decompress a text stream composed of 1,000 words chosen randomly from a small
sentence. This also demonstrates chaining a backing store stream, a decorator
stream, and an adapter (as depicted at the start of the chapter in Figure 15-1), as
well as the use of asynchronous methods:

string[] words = "The quick brown fox jumps over the lazy dog".Split();
Random rand = new Random();

using (Stream s = File.Create ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Compress))
using (TextWriter w = new StreamWriter (ds))
 for (int i = 0; i < 1000; i++)
 await w.WriteAsync (words [rand.Next (words.Length)] + " ");

Console.WriteLine (new FileInfo ("compressed.bin").Length); // 1073

using (Stream s = File.OpenRead ("compressed.bin"))
using (Stream ds = new DeflateStream (s, CompressionMode.Decompress))
using (TextReader r = new StreamReader (ds))
 Console.Write (await r.ReadToEndAsync()); // Output below:

lazy lazy the fox the quick The brown fox jumps over fox over fox The
brown brown brown over brown quick fox brown dog dog lazy fox dog brown
over fox jumps lazy lazy quick The jumps fox jumps The over jumps dog...

In this case, DeflateStream compresses efficiently to 1,073 bytes—slightly more
than 1 byte per word.

Compressing in Memory
Sometimes you need to compress entirely in memory. Here’s how to use a Memory
Stream for this purpose:

byte[] data = new byte[1000]; // We can expect a good compression
 // ratio from an empty array!
var ms = new MemoryStream();
using (Stream ds = new DeflateStream (ms, CompressionMode.Compress))
 ds.Write (data, 0, data.Length);

byte[] compressed = ms.ToArray();
Console.WriteLine (compressed.Length); // 11

// Decompress back to the data array:
ms = new MemoryStream (compressed);
using (Stream ds = new DeflateStream (ms, CompressionMode.Decompress))
 for (int i = 0; i < 1000; i += ds.Read (data, i, 1000 - i));

The using statement around the DeflateStream closes it in a textbook fashion,
flushing any unwritten buffers in the process. This also closes the MemoryStream it
wraps—meaning we must then call ToArray to extract its data.

Here’s an alternative that avoids closing the MemoryStream and uses the asynchro‐
nous read and write methods:

648 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

byte[] data = new byte[1000];

MemoryStream ms = new MemoryStream();
using (Stream ds = new DeflateStream (ms, CompressionMode.Compress, true))
 await ds.WriteAsync (data, 0, data.Length);

Console.WriteLine (ms.Length); // 113
ms.Position = 0;
using (Stream ds = new DeflateStream (ms, CompressionMode.Decompress))
 for (int i = 0; i < 1000; i += await ds.ReadAsync (data, i, 1000 - i));

The additional flag sent to DeflateStream’s constructor tells it not to follow the
usual protocol of taking the underlying stream with it in disposal. In other words,
the MemoryStream is left open, allowing us to position it back to zero and reread it.

Working with ZIP Files
Support for the popular zip-file compression format was introduced in Framework
4.5, via the new ZipArchive and ZipFile classes in System.IO.Compression (in an
assembly called System.IO.Compression.FileSystem.dll). The advantage of this format
over DeflateStream and GZipStream is that it acts as a container for multiple files
and is compatible with ZIP files created with Windows Explorer or other compres‐
sion utilities.

ZipArchive works with streams, whereas ZipFile addresses the more common sce‐
nario of working with files. (ZipFile is a static helper class for ZipArchive).

ZipFile’s CreateFromDirectory method adds all the files in a specified directory
into a ZIP file:

ZipFile.CreateFromDirectory (@"d:\MyFolder", @"d:\compressed.zip");

whereas ExtractToDirectory does the opposite and extracts a ZIP file to a direc‐
tory:

ZipFile.ExtractToDirectory (@"d:\compressed.zip", @"d:\MyFolder");

When compressing, you can specify whether to optimize for file size or speed, and
whether to include the name of the source directory in the archive. Enabling the lat‐
ter option in our example would create a subdirectory in the archive called
MyFolder into which the compressed files would go.

ZipFile has an Open method for reading/writing individual entries. This returns a
ZipArchive object (which you can also obtain by instantiating ZipArchive with a
Stream object). When calling Open, you must specify a filename and indicate
whether you want to Read, Create or Update the archive. You can then enumerate
existing entries via the Entries property or find a particular file with GetEntry:

using (ZipArchive zip = ZipFile.Open (@"d:\zz.zip", ZipArchiveMode.Read))
 foreach (ZipArchiveEntry entry in zip.Entries)
 Console.WriteLine (entry.FullName + " " + entry.Length);

Stream
s and

I/O

Working with ZIP Files | 649

www.EBooksWorld.ir

ZipArchiveEntry also has a Delete method, an ExtractToFile method (this is
actually an extension method in the ZipFileExtensions class), and an Open method
that returns a readable/writable Stream. You can create new entries by calling Crea
teEntry (or the CreateEntryFromFile extension method) on the ZipArchive. The
following creates the archive d:\zz.zip, to which it adds foo.dll, under a directory
structure within the archive called bin\X86:

byte[] data = File.ReadAllBytes (@"d:\foo.dll");
using (ZipArchive zip = ZipFile.Open (@"d:\zz.zip", ZipArchiveMode.Update))
 zip.CreateEntry (@"bin\X64\foo.dll").Open().Write (data, 0, data.Length);

You could do the same thing entirely in memory by constructing ZipArchive with a
MemoryStream.

File and Directory Operations
The System.IO namespace provides a set of types for performing “utility” file and
directory operations, such as copying and moving, creating directories, and setting
file attributes and permissions. For most features, you can choose between either of
two classes, one offering static methods and the other instance methods:

Static classes
File and Directory

Instance method classes (constructed with a file or directory name)
FileInfo and DirectoryInfo

Additionally, there’s a static class called Path. This does nothing to files or directo‐
ries; instead, it provides string manipulation methods for filenames and directory
paths. Path also assists with temporary files.

All three classes are unavailable to Windows Store applications (see “File I/O in
Windows Runtime” on page 661).

The File Class
File is a static class whose methods all accept a filename. The filename can be either
relative to the current directory or fully qualified with a directory. Here are its meth‐
ods (all public and static):

bool Exists (string path); // Returns true if the file is present

void Delete (string path);
void Copy (string sourceFileName, string destFileName);
void Move (string sourceFileName, string destFileName);
void Replace (string sourceFileName, string destinationFileName,
 string destinationBackupFileName);

FileAttributes GetAttributes (string path);
void SetAttributes (string path, FileAttributes fileAttributes);

650 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

void Decrypt (string path);
void Encrypt (string path);

DateTime GetCreationTime (string path); // UTC versions are
DateTime GetLastAccessTime (string path); // also provided.
DateTime GetLastWriteTime (string path);

void SetCreationTime (string path, DateTime creationTime);
void SetLastAccessTime (string path, DateTime lastAccessTime);
void SetLastWriteTime (string path, DateTime lastWriteTime);

FileSecurity GetAccessControl (string path);
FileSecurity GetAccessControl (string path,
 AccessControlSections includeSections);
void SetAccessControl (string path, FileSecurity fileSecurity);

Move throws an exception if the destination file already exists; Replace does not.
Both methods allow the file to be renamed as well as moved to another directory.

Delete throws an UnauthorizedAccessException if the file is marked read-only;
you can tell this in advance by calling GetAttributes. Here are all the members of
the FileAttribute enum that GetAttributes returns:

Archive, Compressed, Device, Directory, Encrypted,
Hidden, Normal, NotContentIndexed, Offline, ReadOnly,
ReparsePoint, SparseFile, System, Temporary

Members in this enum are combinable. Here’s how to toggle a single file attribute
without upsetting the rest:

string filePath = @"c:\temp\test.txt";

FileAttributes fa = File.GetAttributes (filePath);
if ((fa & FileAttributes.ReadOnly) != 0)
{
 fa ^= FileAttributes.ReadOnly;
 File.SetAttributes (filePath, fa);
}

// Now we can delete the file, for instance:
File.Delete (filePath);

FileInfo offers an easier way to change a file’s read-only flag:
new FileInfo (@"c:\temp\test.txt").IsReadOnly = false;

Compression and encryption attributes
The Compressed and Encrypted file attributes correspond to the compression and
encryption checkboxes on a file or directory’s properties dialog box in Windows
Explorer. This type of compression and encryption is transparent in that the operat‐
ing system does all the work behind the scenes, allowing you to read and write plain
data.

Stream
s and

I/O

File and Directory Operations | 651

www.EBooksWorld.ir

You cannot use SetAttributes to change a file’s Compressed or Encrypted
attributes—it fails silently if you try! The workaround is simple in the latter case:
you instead call the Encrypt() and Decrypt() methods in the File class. With
compression, it’s more complicated; one solution is to use the Windows Manage‐
ment Instrumentation (WMI) API in System.Management. The following method
compresses a directory, returning 0 if successful (or a WMI error code if not):

static uint CompressFolder (string folder, bool recursive)
{
 string path = "Win32_Directory.Name='" + folder + "'";
 using (ManagementObject dir = new ManagementObject (path))
 using (ManagementBaseObject p = dir.GetMethodParameters ("CompressEx"))
 {
 p ["Recursive"] = recursive;
 using (ManagementBaseObject result = dir.InvokeMethod ("CompressEx",
 p, null))
 return (uint) result.Properties ["ReturnValue"].Value;
 }
}

To uncompress, replace CompressEx with UncompressEx.

Transparent encryption relies on a key seeded from the logged-in user’s password.
The system is robust to password changes performed by the authenticated user, but
if a password is reset via an administrator, data in encrypted files is unrecoverable.

Transparent encryption and compression require special file‐
system support. NTFS (used most commonly on hard drives)
supports these features; CDFS (on CD-ROMs) and FAT (on
removable media cards) do not.

You can determine whether a volume supports compression and encryption with
Win32 interop:

using System;
using System.IO;
using System.Text;
using System.ComponentModel;
using System.Runtime.InteropServices;

class SupportsCompressionEncryption
{
 const int SupportsCompression = 0×10;
 const int SupportsEncryption = 0×20000;

 [DllImport ("Kernel32.dll", SetLastError = true)]
 extern static bool GetVolumeInformation (string vol, StringBuilder name,
 int nameSize, out uint serialNum, out uint maxNameLen, out uint flags,
 StringBuilder fileSysName, int fileSysNameSize);

 static void Main()
 {
 uint serialNum, maxNameLen, flags;
 bool ok = GetVolumeInformation (@"C:\", null, 0, out serialNum,

652 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

 out maxNameLen, out flags, null, 0);
 if (!ok)
 throw new Win32Exception();

 bool canCompress = (flags & SupportsCompression) != 0;
 bool canEncrypt = (flags & SupportsEncryption) != 0;
 }
}

File security
The GetAccessControl and SetAccessControl methods allow you to query and
change the operating system permissions assigned to users and roles via a FileSe
curity object (namespace System.Security.AccessControl). You can also pass a
FileSecurity object to a FileStream’s constructor to specify permissions when
creating a new file.

In this example, we list a file’s existing permissions and then assign execution per‐
mission to the “Users” group:

using System;
using System.IO;
using System.Security.AccessControl;
using System.Security.Principal;

...

FileSecurity sec = File.GetAccessControl (@"d:\test.txt");
AuthorizationRuleCollection rules = sec.GetAccessRules (true, true,
 typeof (NTAccount));
foreach (FileSystemAccessRule rule in rules)
{
 Console.WriteLine (rule.AccessControlType); // Allow or Deny
 Console.WriteLine (rule.FileSystemRights); // e.g., FullControl
 Console.WriteLine (rule.IdentityReference.Value); // e.g., MyDomain/Joe
}

var sid = new SecurityIdentifier (WellKnownSidType.BuiltinUsersSid, null);
string usersAccount = sid.Translate (typeof (NTAccount)).ToString();

FileSystemAccessRule newRule = new FileSystemAccessRule
 (usersAccount, FileSystemRights.ExecuteFile, AccessControlType.Allow);

sec.AddAccessRule (newRule);
File.SetAccessControl (@"d:\test.txt", sec);

We give another example, later, in “Special Folders” on page 657.

The Directory Class
The static Directory class provides a set of methods analogous to those in the File
class—for checking whether a directory exists (Exists), moving a directory (Move),
deleting a directory (Delete), getting/setting times of creation or last access, and

Stream
s and

I/O

File and Directory Operations | 653

www.EBooksWorld.ir

getting/setting security permissions. Furthermore, Directory exposes the following
static methods:

string GetCurrentDirectory ();
void SetCurrentDirectory (string path);

DirectoryInfo CreateDirectory (string path);
DirectoryInfo GetParent (string path);
string GetDirectoryRoot (string path);

string[] GetLogicalDrives();

// The following methods all return full paths:

string[] GetFiles (string path);
string[] GetDirectories (string path);
string[] GetFileSystemEntries (string path);

IEnumerable<string> EnumerateFiles (string path);
IEnumerable<string> EnumerateDirectories (string path);
IEnumerable<string> EnumerateFileSystemEntries (string path);

The last three methods were added in Framework 4.0. They’re
potentially more efficient than the Get* variants because
they’re lazily evaluated—fetching data from the file system as
you enumerate the sequence. They’re particularly well-suited
to LINQ queries.

The Enumerate* and Get* methods are overloaded to also accept searchPattern
(string) and searchOption (enum) parameters. If you specify SearchOp

tion.SearchAllSubDirectories, a recursive subdirectory search is performed. The
*FileSystemEntries methods combine the results of *Files with *Directories.

Here’s how to create a directory if it doesn’t already exist:

if (!Directory.Exists (@"d:\test"))
 Directory.CreateDirectory (@"d:\test");

FileInfo and DirectoryInfo
The static methods on File and Directory are convenient for executing a single file
or directory operation. If you need to call a series of methods in a row, the FileInfo
and DirectoryInfo classes provide an object model that makes the job easier.

FileInfo offers most of the File’s static methods in instance form—with some
additional properties such as Extension, Length, IsReadOnly, and Directory—for
returning a DirectoryInfo object. For example:

FileInfo fi = new FileInfo (@"c:\temp\FileInfo.txt");
Console.WriteLine (fi.Exists); // false

using (TextWriter w = fi.CreateText())
 w.Write ("Some text");

654 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

Console.WriteLine (fi.Exists); // false (still)
fi.Refresh();
Console.WriteLine (fi.Exists); // true

Console.WriteLine (fi.Name); // FileInfo.txt
Console.WriteLine (fi.FullName); // c:\temp\FileInfo.txt
Console.WriteLine (fi.DirectoryName); // c:\temp
Console.WriteLine (fi.Directory.Name); // temp
Console.WriteLine (fi.Extension); // .txt
Console.WriteLine (fi.Length); // 9

fi.Encrypt();
fi.Attributes ^= FileAttributes.Hidden; // (Toggle hidden flag)
fi.IsReadOnly = true;

Console.WriteLine (fi.Attributes); // ReadOnly,Archive,Hidden,Encrypted
Console.WriteLine (fi.CreationTime);

fi.MoveTo (@"c:\temp\FileInfoX.txt");

DirectoryInfo di = fi.Directory;
Console.WriteLine (di.Name); // temp
Console.WriteLine (di.FullName); // c:\temp
Console.WriteLine (di.Parent.FullName); // c:\
di.CreateSubdirectory ("SubFolder");

Here’s how to use DirectoryInfo to enumerate files and subdirectories:

DirectoryInfo di = new DirectoryInfo (@"e:\photos");

foreach (FileInfo fi in di.GetFiles ("*.jpg"))
 Console.WriteLine (fi.Name);

foreach (DirectoryInfo subDir in di.GetDirectories())
 Console.WriteLine (subDir.FullName);

Path
The static Path class defines methods and fields for working with paths and file‐
names. Assuming this setup code:

string dir = @"c:\mydir";
string file = "myfile.txt";
string path = @"c:\mydir\myfile.txt";

Directory.SetCurrentDirectory (@"k:\demo");

we can demonstrate Path’s methods and fields with the following expressions:

Expression Result

Directory.GetCurrentDirectory() k:\demo\

Path.IsPathRooted (file) False

Path.IsPathRooted (path) True

Stream
s and

I/O

File and Directory Operations | 655

www.EBooksWorld.ir

Expression Result

Path.GetPathRoot (path) c:\

Path.GetDirectoryName (path) c:\mydir

Path.GetFileName (path) myfile.txt

Path.GetFullPath (file) k:\demo\myfile.txt

Path.Combine (dir, file) c:\mydir\myfile.txt

File extensions:

Path.HasExtension (file) True

Path.GetExtension (file) .txt

Path.GetFileNameWithoutExtension (file) myfile

Path.ChangeExtension (file, ".log") myfile.log

Separators and characters:

Path.AltDirectorySeparatorChar /

Path.PathSeparator ;

Path.VolumeSeparatorChar :

Path.GetInvalidPathChars() chars 0 to 31 and "<>|

Path.GetInvalidFileNameChars() chars 0 to 31 and "<>|:*?\/

Temporary files:

Path.GetTempPath() <local user folder>\Temp

Path.GetRandomFileName() d2dwuzjf.dnp

Path.GetTempFileName() <local user folder>\Temp\tmp14B.tmp

Combine is particularly useful: it allows you to combine a directory and filename—
or two directories—without first having to check whether a trailing backslash is
present.

GetFullPath converts a path relative to the current directory to an absolute path. It
accepts values such as ..\..\file.txt.

GetRandomFileName returns a genuinely unique 8.3 character filename, without
actually creating any file. GetTempFileName generates a temporary filename using
an auto-incrementing counter that repeats every 65,000 files. It then creates a zero-
byte file of this name in the local temporary directory.

You must delete the file generated by GetTempFileName when
you’re done; otherwise, it will eventually throw an exception
(after your 65,000th call to GetTempFileName). If this is a
problem, you can instead Combine GetTempPath with GetRan
domFileName. Just be careful not to fill up the user’s hard
drive!

656 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

Special Folders
One thing missing from Path and Directory is a means to locate folders such as My
Documents, Program Files, Application Data, and so on. This is provided instead by
the GetFolderPath method in the System.Environment class:

string myDocPath = Environment.GetFolderPath
 (Environment.SpecialFolder.MyDocuments);

Environment.SpecialFolder is an enum whose values encompass all special direc‐
tories in Windows:

AdminTools CommonVideos Personal

ApplicationData Cookies PrinterShortcuts

CDBurning Desktop ProgramFiles

CommonAdminTools DesktopDirectory ProgramFilesX86

CommonApplicationData Favorites Programs

CommonDesktopDirectory Fonts Recent

CommonDocuments History Resources

CommonMusic InternetCache SendTo

CommonOemLinks LocalApplicationData StartMenu

CommonPictures LocalizedResources Startup

CommonProgramFiles MyComputer System

CommonProgramFilesX86 MyDocuments SystemX86

CommonPrograms MyMusic Templates

CommonStartMenu MyPictures UserProfile

CommonStartup MyVideos Windows

CommonTemplates NetworkShortcuts

Everything is covered here, except the .NET Framework direc‐
tory, which you can obtain as follows:

System.Runtime.InteropServices.
RuntimeEnvironment.GetRuntimeDirectory()

Of particular value is ApplicationData: this is where you can store settings that
travel with a user across a network (if roaming profiles are enabled on the network
domain); and LocalApplicationData, which is for non-roaming data (specific to
the logged-in user); and CommonApplicationData, which is shared by every user of
the computer. Writing application data to these folders is considered preferable to
using the Windows Registry. The standard protocol for storing data in these folders
is to create a subdirectory with the name of your application:

Stream
s and

I/O

File and Directory Operations | 657

www.EBooksWorld.ir

string localAppDataPath = Path.Combine (
 Environment.GetFolderPath (Environment.SpecialFolder.ApplicationData),
 "MyCoolApplication");

if (!Directory.Exists (localAppDataPath))
 Directory.CreateDirectory (localAppDataPath);

Programs that run in the most restrictive sandboxes, such as
Silverlight applications, cannot access these folders. Instead,
use isolated storage (see the final section in this chapter) or for
Windows Store apps, use the WinRT libraries (see “File I/O in
Windows Runtime” on page 661).

There’s a horrible trap when using CommonApplicationData: if a user starts your
program with administrative elevation and your program then creates folders and
files in CommonApplicationData, that user might lack permissions to replace those
files later, when run under a restricted Windows login. (A similar problem exists
when switching between restricted-permission accounts.) You can work around it
by creating the desired folder (with permissions assigned to everyone) as part of
your setup. Alternatively, if you run the following code immediately after creating a
folder under CommonApplicationData (before writing any files), it will ensure that
everyone in the “users” group is given unrestricted access:

public void AssignUsersFullControlToFolder (string path)
{
 try
 {
 var sec = Directory.GetAccessControl (path);
 if (UsersHaveFullControl (sec)) return;

 var rule = new FileSystemAccessRule (
 GetUsersAccount().ToString(),
 FileSystemRights.FullControl,
 InheritanceFlags.ContainerInherit | InheritanceFlags.ObjectInherit,
 PropagationFlags.None,
 AccessControlType.Allow);

 sec.AddAccessRule (rule);
 Directory.SetAccessControl (path, sec);
 }
 catch (UnauthorizedAccessException)
 {
 // Folder was already created by another user
 }
}

bool UsersHaveFullControl (FileSystemSecurity sec)
{
 var usersAccount = GetUsersAccount();
 var rules = sec.GetAccessRules (true, true, typeof (NTAccount))
 .OfType<FileSystemAccessRule>();

 return rules.Any (r =>
 r.FileSystemRights == FileSystemRights.FullControl &&

658 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

 r.AccessControlType == AccessControlType.Allow &&
 r.InheritanceFlags == (InheritanceFlags.ContainerInherit |
 InheritanceFlags.ObjectInherit) &&
 r.IdentityReference == usersAccount);
}

NTAccount GetUsersAccount()
{
 var sid = new SecurityIdentifier (WellKnownSidType.BuiltinUsersSid, null);
 return (NTAccount)sid.Translate (typeof (NTAccount));
}

Another place to write configuration and log files is to the application’s base direc‐
tory, which you can obtain with AppDomain.CurrentDomain.BaseDirectory. This is
not recommended, however, because the operating system is likely to deny your
application permissions to write to this folder after initial installation (without
administrative elevation).

Querying Volume Information
You can query the drives on a computer with the DriveInfo class:

DriveInfo c = new DriveInfo ("C"); // Query the C: drive.

long totalSize = c.TotalSize; // Size in bytes.
long freeBytes = c.TotalFreeSpace; // Ignores disk quotas.
long freeToMe = c.AvailableFreeSpace; // Takes quotas into account.

foreach (DriveInfo d in DriveInfo.GetDrives()) // All defined drives.
{
 Console.WriteLine (d.Name); // C:\
 Console.WriteLine (d.DriveType); // Fixed
 Console.WriteLine (d.RootDirectory); // C:\

 if (d.IsReady) // If the drive is not ready, the following two
 // properties will throw exceptions:
 {
 Console.WriteLine (d.VolumeLabel); // The Sea Drive
 Console.WriteLine (d.DriveFormat); // NTFS
 }
}

The static GetDrives method returns all mapped drives, including CD-ROMs,
media cards, and network connections. DriveType is an enum with the following
values:

Unknown, NoRootDirectory, Removable, Fixed, Network, CDRom, Ram

Catching Filesystem Events
The FileSystemWatcher class lets you monitor a directory (and optionally, subdir‐
ectories) for activity. FileSystemWatcher has events that fire when files or subdirec‐
tories are created, modified, renamed, and deleted, as well as when their attributes

Stream
s and

I/O

File and Directory Operations | 659

www.EBooksWorld.ir

change. These events fire regardless of the user or process performing the change.
Here’s an example:

static void Main() { Watch (@"c:\temp", "*.txt", true); }

static void Watch (string path, string filter, bool includeSubDirs)
{
 using (var watcher = new FileSystemWatcher (path, filter))
 {
 watcher.Created += FileCreatedChangedDeleted;
 watcher.Changed += FileCreatedChangedDeleted;
 watcher.Deleted += FileCreatedChangedDeleted;
 watcher.Renamed += FileRenamed;
 watcher.Error += FileError;

 watcher.IncludeSubdirectories = includeSubDirs;
 watcher.EnableRaisingEvents = true;

 Console.WriteLine ("Listening for events - press <enter> to end");
 Console.ReadLine();
 }
 // Disposing the FileSystemWatcher stops further events from firing.
}

static void FileCreatedChangedDeleted (object o, FileSystemEventArgs e)
 => Console.WriteLine ("File {0} has been {1}", e.FullPath, e.ChangeType);

static void FileRenamed (object o, RenamedEventArgs e)
 => Console.WriteLine ("Renamed: {0}->{1}", e.OldFullPath, e.FullPath);

static void FileError (object o, ErrorEventArgs e)
 => Console.WriteLine ("Error: " + e.GetException().Message);

Because FileSystemWatcher raises events on a separate
thread, you must exception-handle the event-handling code to
prevent an error from taking down the application. See
“Exception Handling” on page 573 in Chapter 14 for more
information.

The Error event does not inform you of filesystem errors; instead, it indicates that
the FileSystemWatcher’s event buffer overflowed because it was overwhelmed by
Changed, Created, Deleted, or Renamed events. You can change the buffer size via
the InternalBufferSize property.

IncludeSubdirectories applies recursively. So, if you create a FileSystemWatcher
on C:\ with IncludeSubdirectories true, its events will fire when a file or direc‐
tory changes anywhere on the hard drive.

660 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

A trap in using FileSystemWatcher is to open and read newly
created or updated files before the file has been fully popula‐
ted or updated. If you’re working in conjunction with some
other software that’s creating files, you might need to consider
some strategy to mitigate this, such as creating files with an
unwatched extension and then renaming them once fully
written.

File I/O in Windows Runtime
The FileStream and Directory/File classes are unavailable to Windows Store
applications. Instead, there are WinRT types in the Windows.Storage namespace for
this purpose, the two primary classes being StorageFolder and StorageFile.

Working with Directories
The StorageFolder class represents a directory. You can obtain a StorageFolder
via its static method GetFolderFromPathAsync, giving it a full path to the folder.
However, given that WinRT lets you access files only in certain locations, an easier
approach is to obtain a StorageFolder via the KnownFolders class, which exposes a
static property for each of the (potentially) permitted locations:

public static StorageFolder DocumentsLibrary { get; }
public static StorageFolder PicturesLibrary { get; }
public static StorageFolder MusicLibrary { get; }
public static StorageFolder VideosLibrary { get; }

File access is further restricted by what’s declared in the pack‐
age manifest. In particular, Windows Store applications can
access only those files whose extensions match their declared
file type associations.

In addition, Package.Current.InstalledLocation returns the StorageFolder of
your current application (to which you have read-only access).

KnownFolders also has properties for accessing removable devices and home group
folders.

StorageFolder has the properties you’d expect (Name, Path, DateCreated, DateModi
fied, Attributes, and so on), methods to delete/rename the folder (DeleteAsync/
RenameAsync), and methods to list files and subfolders (GetFilesAsync and GetFol
dersAsync).

As is evident from their names, the methods are asynchronous, returning an object
that you can convert into a task with the AsTask extension method or directly await.
The following obtains a directory listing of all files in the documents folder:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;
IReadOnlyList<StorageFile> files = await docsFolder.GetFilesAsync();
foreach (IStorageFile file in files)
 Debug.WriteLine (file.Name);

Stream
s and

I/O

File I/O in Windows Runtime | 661

www.EBooksWorld.ir

The CreateFileQueryWithOptions method lets you filter to a specific extension:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;
var queryOptions = new QueryOptions (CommonFileQuery.DefaultQuery,
 new[] { ".txt" });
var txtFiles = await docsFolder.CreateFileQueryWithOptions (queryOptions)
 .GetFilesAsync();
foreach (StorageFile file in txtFiles)
 Debug.WriteLine (file.Name);

The QueryOptions class exposes properties to further control the search. For exam‐
ple, the FolderDepth property requests a recursive directory listing:

queryOptions.FolderDepth = FolderDepth.Deep;

Working with Files
StorageFile is the primary class for working with files. You can obtain an instance
from a full path (to which you have permission) with the static StorageFile.GetFi
leFromPathAsync method or from a relative path by calling GetFileAsync method
on a StorageFolder (or IStorageFolder) object:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;
StorageFile file = await docsFolder.GetFileAsync ("foo.txt");

If the file does not exist, a FileNotFoundException is thrown at that point.

StorageFile has properties such as Name, Path, etc., and methods for working with
files, such as Move, Rename, Copy, and Delete (all Async). The CopyAsync method
returns a StorageFile corresponding to the new file. There’s also a CopyAndRepla
ceAsync that accepts a target StorageFile object rather than a target name and
folder.

StorageFile also exposes methods to open the file for reading/writing via .NET
streams (OpenStreamForReadAsync and OpenStreamForWriteAsync). For example,
the following creates and writes to a file called test.txt in the documents folder:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;

StorageFile file = await docsFolder.CreateFileAsync
 ("test.txt", CreationCollisionOption.ReplaceExisting);

using (Stream stream = await file.OpenStreamForWriteAsync())
using (StreamWriter writer = new StreamWriter (stream))
 await writer.WriteLineAsync ("This is a test");

If you don’t specify CreationCollisionOption.ReplaceExist
ing and the file already exists, it will automatically append a
number to the filename to make it unique.

The following reads the file back:

StorageFolder docsFolder = KnownFolders.DocumentsLibrary;
StorageFile file = await docsFolder.GetFileAsync ("test.txt");

662 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

using (var stream = await file.OpenStreamForReadAsync ())
using (StreamReader reader = new StreamReader (stream))
 Debug.WriteLine (await reader.ReadToEndAsync());

Isolated Storage in Windows Store Apps
Windows Store apps also have access to private folders that are isolated from other
applications and can be used to store application-specific data:

Windows.Storage.ApplicationData.Current.LocalFolder
Windows.Storage.ApplicationData.Current.RoamingFolder
Windows.Storage.ApplicationData.Current.TemporaryFolder

Each of these static properties returns a StorageFolder object that can be used to
read/write and list files as we described previously.

Memory-Mapped Files
Memory-mapped files provide two key features:

• Efficient random access to file data
• The ability to share memory between different processes on the same computer

The types for memory-mapped files reside in the System.IO.MemoryMappedFiles
namespace and were introduced in Framework 4.0. Internally, they work by wrap‐
ping the Win32 API for memory-mapped files and are unavailable in Windows
Store apps.

Memory-Mapped Files and Random File I/O
Although an ordinary FileStream allows random file I/O (by setting the stream’s
Position property), it’s optimized for sequential I/O. As a rough rule of thumb:

• FileStreams are 10 times faster than memory-mapped files for sequential I/O.

• Memory-mapped files are 10 times faster than FileStreams for random I/O.

Changing a FileStream’s Position can cost several microseconds—which adds up
if done within a loop. A FileStream is also unsuitable for multithreaded access—
because its position changes as it is read or written.

To create a memory-mapped file:

1. Obtain a FileStream as you would ordinarily.

2. Instantiate a MemoryMappedFile, passing in the file stream.

3. Call CreateViewAccessor on the memory-mapped file object.

Stream
s and

I/O

Memory-Mapped Files | 663

www.EBooksWorld.ir

The last step gives you a MemoryMappedViewAccessor object that provides methods
for randomly reading and writing simple types, structures, and arrays (more on this
in “Working with View Accessors” on page 665).

The following creates a one million-byte file and then uses the memory-mapped file
API to read and then write a byte at position 500,000:

File.WriteAllBytes ("long.bin", new byte [1000000]);

using (MemoryMappedFile mmf = MemoryMappedFile.CreateFromFile ("long.bin"))
using (MemoryMappedViewAccessor accessor = mmf.CreateViewAccessor())
{
 accessor.Write (500000, (byte) 77);
 Console.WriteLine (accessor.ReadByte (500000)); // 77
}

You can also specify a map name and capacity when calling CreateFromFile. Speci‐
fying a non-null map name allows the memory block to be shared with other pro‐
cesses (see the following section); specifying a capacity automatically enlarges the
file to that value. The following creates a 1,000-byte file:

using (var mmf = MemoryMappedFile.CreateFromFile
 ("long.bin", FileMode.Create, null, 1000))
 ...

Memory-Mapped Files and Shared Memory
You can also use memory-mapped files as a means of sharing memory between pro‐
cesses on the same computer. One process creates a shared memory block by calling
MemoryMappedFile.CreateNew, while other processes subscribe to that same mem‐
ory block by calling MemoryMappedFile.OpenExisting with the same name.
Although it’s still referred to as a memory-mapped “file,” it lives entirely in memory
and has no disk presence.

The following creates a 500-byte shared memory-mapped file and writes the integer
12345 at position 0:

using (MemoryMappedFile mmFile = MemoryMappedFile.CreateNew ("Demo", 500))
using (MemoryMappedViewAccessor accessor = mmFile.CreateViewAccessor())
{
 accessor.Write (0, 12345);
 Console.ReadLine(); // Keep shared memory alive until user hits Enter.
}

while the following opens that same memory-mapped file and reads that integer:

// This can run in a separate EXE:
using (MemoryMappedFile mmFile = MemoryMappedFile.OpenExisting ("Demo"))
using (MemoryMappedViewAccessor accessor = mmFile.CreateViewAccessor())
 Console.WriteLine (accessor.ReadInt32 (0)); // 12345

664 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

Working with View Accessors
Calling CreateViewAccessor on a MemoryMappedFile gives you a view accessor that
lets you read/write values at random positions.

The Read*/Write* methods accept numeric types, bool, and char, as well as arrays
and structs that contain value-type elements or fields. Reference types—and arrays
or structs that contain reference types—are prohibited because they cannot map
into unmanaged memory. So if you want to write a string, you must encode it into
an array of bytes:

byte[] data = Encoding.UTF8.GetBytes ("This is a test");
accessor.Write (0, data.Length);
accessor.WriteArray (4, data, 0, data.Length);

Notice that we wrote the length first. This means we know how many bytes to read
back later:

byte[] data = new byte [accessor.ReadInt32 (0)];
accessor.ReadArray (4, data, 0, data.Length);
Console.WriteLine (Encoding.UTF8.GetString (data)); // This is a test

Here’s an example of reading/writing a struct:

struct Data { public int X, Y; }
...
var data = new Data { X = 123, Y = 456 };
accessor.Write (0, ref data);
accessor.Read (0, out data);
Console.WriteLine (data.X + " " + data.Y); // 123 456

The Read and Write methods are surprisingly slow. You can get much better perfor‐
mance by directly accessing the underlying unmanaged memory via a pointer. Fol‐
lowing on from the previous example:

unsafe
{
 byte* pointer = null;
 try
 {
 accessor.SafeMemoryMappedViewHandle.AcquirePointer (ref pointer);
 int* intPointer = (int*) pointer;
 Console.WriteLine (*intPointer); // 123
 }
 finally
 {
 if (pointer != null)
 accessor.SafeMemoryMappedViewHandle.ReleasePointer();
 }
}

The performance advantage of pointers is even more pronounced when working
with large structures because they let you work directly with the raw data rather
than using Read/Write to copy data between managed and unmanaged memory. We
explore this further in Chapter 25.

Stream
s and

I/O

Memory-Mapped Files | 665

www.EBooksWorld.ir

Isolated Storage
Each .NET program has access to a local storage area unique to that program, called
isolated storage. Isolated storage is useful when your program can’t access the stan‐
dard file system, and so cannot write to ApplicationData, LocalApplicationData,
CommonApplicationData, MyDocuments, and so on (see “Special Folders” on page
657). This is the case with Silverlight applications and ClickOnce applications
deployed with restricted “Internet” permissions.

Isolated storage has the following disadvantages:

• The API is awkward to use.

• You can read/write only via an IsolatedStorageStream—you cannot obtain a
file or directory path and then use ordinary file I/O.

• The machines stores (equivalent to CommonApplicationData) won’t let users
with restricted OS permissions delete or overwrite files if they were created by
another user (although they can modify them). This is effectively a bug.

In terms of security, isolated storage is a fence designed more to keep you in than to
keep other applications out. Data in isolated storage is strongly protected against
intrusion from other .NET applications running under the most restricted permis‐
sion set (i.e., the “Internet” zone). In other cases, there’s no hard security preventing
another application from accessing your isolated storage if it really wants to. The
benefit of isolated storage is that applications must go out of their way to interfere
with each other—it cannot happen through carelessness or by accident.

Applications running in a sandbox typically have their quota of isolated storage
limited via permissions. The default is 1 MB for Internet and Silverlight applica‐
tions.

A hosted UI-based application (e.g., Silverlight) can ask the
user for permission to increase the isolated storage quota by
calling the IncreaseQuotaTo method on an IsolatedStorage
File object. This must be called from a user-initiated event,
such as a button click. If the user agrees, the method returns
true.

You can query the current allowance via the Quota property.

Isolation Types
Isolated storage can separate by both program and user. This results in three basic
types of compartments:

Local user compartments
One per user, per program, per computer

Roaming user compartments
One per user, per program

666 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

Machine compartments
One per program, per computer (shared by all users of a program)

The data in a roaming user compartment follows the user across a network—with
appropriate operating system and domain support. If this support is unavailable, it
behaves like a local user compartment.

So far, we’ve talked about how isolated storage separates by “program.” Isolated stor‐
age considers a program to be one of two things, depending on which mode you
choose:

• An assembly
• An assembly running within the context of a particular application

The latter is called domain isolation and is more commonly used than assembly iso‐
lation. Domain isolation segregates according to two things: the currently executing
assembly and the executable or web application that originally started it. Assembly
isolation segregates only according to the currently executing assembly—so differ‐
ent applications calling the same assembly will share the same store.

Assemblies and applications are identified by their strong
name. If no strong name is present, the assembly’s full file
path or URI is used instead. This means that if you move or
rename a weakly named assembly, its isolated storage is reset.

In total, then, there are six kinds of isolated storage compartments. Table 15-4 com‐
pares the isolation provided by each.

Table 15-4. Isolated storage containers

Type Computer? Application? Assembly? User? Method to obtain store

Domain User
(default)

✓ ✓ ✓ ✓ GetUserStoreForDomain

Domain Roaming ✓ ✓ ✓

Domain Machine ✓ ✓ ✓ GetMachineStoreForDomain

Assembly User ✓ ✓ ✓ GetUserStoreForAssembly

Assembly
Roaming

 ✓ ✓

Assembly
Machine

✓ ✓ GetMachineStoreForAssembly

There is no such thing as domain-only isolation. If you want to share an isolated
store across all assemblies within an application, there’s a simple workaround, how‐
ever. Just expose a public method in one of the assemblies that instantiates and
returns an IsolatedStorageFileStream object. Any assembly can access any iso‐
lated store if given an IsolatedStorageFile object—isolation restrictions are
imposed upon construction, not subsequent use.

Stream
s and

I/O

Isolated Storage | 667

www.EBooksWorld.ir

Similarly, there’s no such thing as machine-only isolation. If you want to share an
isolated store across a variety of applications, the workaround is to write a common
assembly that all applications reference and then expose a method on the common
assembly that creates and returns an assembly-isolated IsolatedStorageFile
Stream. The common assembly must be strongly named for this to work.

Reading and Writing Isolated Storage
Isolated storage uses streams that work much like ordinary file streams. To obtain
an isolated storage stream, you first specify the kind of isolation you want by calling
one of the static methods on IsolatedStorageFile—as shown previously in
Table 15-4. You then use it to construct an IsolatedStorageFileStream, along with
a filename and FileMode:

// IsolatedStorage classes live in System.IO.IsolatedStorage

using (IsolatedStorageFile f =
 IsolatedStorageFile.GetMachineStoreForDomain())
using (var s = new IsolatedStorageFileStream ("hi.txt",FileMode.Create,f))
using (var writer = new StreamWriter (s))
 writer.WriteLine ("Hello, World");

// Read it back:

using (IsolatedStorageFile f =
 IsolatedStorageFile.GetMachineStoreForDomain())
using (var s = new IsolatedStorageFileStream ("hi.txt", FileMode.Open, f))
using (var reader = new StreamReader (s))
 Console.WriteLine (reader.ReadToEnd()); // Hello, world

IsolatedStorageFile is poorly named in that it doesn’t rep‐
resent a file, but rather a container for files (basically, a direc‐
tory).

A better (though more verbose) way to obtain an IsolatedStorageFile is to call
IsolatedStorageFile.GetStore, passing in the right combination of Isolated
StorageScope flags (as shown in Figure 15-6):

var flags = IsolatedStorageScope.Machine
 | IsolatedStorageScope.Application
 | IsolatedStorageScope.Assembly;

using (IsolatedStorageFile f = IsolatedStorageFile.GetStore (flags,
 typeof (StrongName), typeof (StrongName)))
{
 ...

The advantage of doing it this way is that we can tell GetStore what kind of evidence
to consider when identifying our program, rather than letting it choose automati‐
cally. Most commonly, you’ll want to use the strong names of your program’s assem‐
blies (as we have done in this example) because a strong name is unique and easy to
keep consistent across versions.

668 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

The danger of letting the CLR choose evidence automatically
is that also considers Authenticode signatures (Chapter 18).
This is usually undesirable because it means that an
Authenticode-related change will trigger a change of identity.
In particular, if you start out without Authenticode and then
later decide to add it, the CLR will see your application as dif‐
ferent from the perspective of isolated storage, and this can
mean users losing data between versions.

IsolatedStorageScope is a flags enum whose members you must combine in
exactly the right way to get a valid store. Figure 15-6 lists all the valid combinations.
Note that they let you access the roaming stores (these are like local stores but with
the capability to “roam” via Windows Roaming Profiles).

Figure 15-6. Valid IsolatedStorageScope combinations

Here’s how to write to a store isolated by assembly and roaming user:

var flags = IsolatedStorageScope.Assembly
 | IsolatedStorageScope.User
 | IsolatedStorageScope.Roaming;

using (IsolatedStorageFile f = IsolatedStorageFile.GetStore (flags,
 null, null))
using (var s = new IsolatedStorageFileStream ("a.txt", FileMode.Create, f))
using (var writer = new StreamWriter (s))
 writer.WriteLine ("Hello, World");

Store Location
Here’s where .NET writes isolated storage files:

Scope Location

Local user [LocalApplicationData]\IsolatedStorage

Roaming user [ApplicationData]\IsolatedStorage

Machine [CommonApplicationData]\IsolatedStorage

You can obtain the locations of each of the folders in square brackets by calling the
Environment.GetFolderPath method. Here are the defaults for Windows Vista and
above:

Stream
s and

I/O

Isolated Storage | 669

www.EBooksWorld.ir

Scope Location

Local user \Users\<user>\AppData\Local\IsolatedStorage

Roaming user \Users\<user>\AppData\Roaming\IsolatedStorage

Machine \ProgramData\IsolatedStorage

For Windows XP:

Scope Location

Local user \Documents and Settings\<user>\Local Settings\Application Data\IsolatedStorage

Roaming user \Documents and Settings\<user>\Application Data\IsolatedStorage

Machine \Documents and Settings\All Users\Application Data\IsolatedStorage

These are merely the base folders; the data files themselves are buried deep in a lab‐
yrinth of subdirectories whose names derive from hashed assembly names. This is
both a reason to use—and not to use—isolated storage. On the one hand, it makes
isolation possible: a permission-restricted application wanting to interfere with
another can be stumped by being denied a directory listing—despite having the
same filesystem rights as its peers. On the other hand, it makes administration
impractical from outside the application. Sometimes it’s handy—or essential—to
edit an XML configuration file in Notepad so that an application can start up prop‐
erly. Isolated storage makes this impractical.

Enumerating Isolated Storage
An IsolatedStorageFile object also provides methods for listing files in the store:

using (IsolatedStorageFile f = IsolatedStorageFile.GetUserStoreForDomain())
{
 using (var s = new IsolatedStorageFileStream ("f1.x",FileMode.Create,f))
 s.WriteByte (123);

 using (var s = new IsolatedStorageFileStream ("f2.x",FileMode.Create,f))
 s.WriteByte (123);

 foreach (string s in f.GetFileNames ("*.*"))
 Console.Write (s + " "); // f1.x f2.x
}

You can also create and remove subdirectories, as well as files:

using (IsolatedStorageFile f = IsolatedStorageFile.GetUserStoreForDomain())
{
 f.CreateDirectory ("subfolder");

 foreach (string s in f.GetDirectoryNames ("*.*"))
 Console.WriteLine (s); // subfolder

 using (var s = new IsolatedStorageFileStream (@"subfolder\sub1.txt",
 FileMode.Create, f))

670 | Chapter 15: Streams and I/O

www.EBooksWorld.ir

 s.WriteByte (100);

 f.DeleteFile (@"subfolder\sub1.txt");
 f.DeleteDirectory ("subfolder");
}

With sufficient permissions, you can also enumerate over all isolated stores created
by the current user, as well as all machine stores. This function can violate program
privacy, but not user privacy. Here’s an example:

System.Collections.IEnumerator rator =
 IsolatedStorageFile.GetEnumerator (IsolatedStorageScope.User);

while (rator.MoveNext())
{
 var isf = (IsolatedStorageFile) rator.Current;

 Console.WriteLine (isf.AssemblyIdentity); // Strong name or URI
 Console.WriteLine (isf.CurrentSize);
 Console.WriteLine (isf.Scope); // User + ...
}

The GetEnumerator method is unusual in accepting an argument (this makes its
containing class foreach-unfriendly). GetEnumerator accepts one of three values:

IsolatedStorageScope.User

Enumerates all local stores belonging to the current user

IsolatedStorageScope.User | IsolatedStorageScope.Roaming

Enumerates all roaming stores belonging to the current user

IsolatedStorageScope.Machine

Enumerates all machine stores on the computer

Once you have the IsolatedStorageFile object, you can list its content by calling
GetFiles and GetDirectories.

Stream
s and

I/O

Isolated Storage | 671

www.EBooksWorld.ir

www.EBooksWorld.ir

16
Networking

The Framework offers a variety of classes in the System.Net.* namespaces for com‐
municating via standard network protocols, such as HTTP, TCP/IP, and FTP. Here’s
a summary of the key components:

• A WebClient façade class for simple download/upload operations via HTTP or
FTP

• WebRequest and WebResponse classes for low-level control over client-side
HTTP or FTP operations

• HttpClient for consuming HTTP web APIs and RESTful services

• HttpListener for writing an HTTP server

• SmtpClient for constructing and sending mail messages via SMTP

• Dns for converting between domain names and addresses

• TcpClient, UdpClient, TcpListener, and Socket classes for direct access to the
transport and network layers

Window Store applications can access only a subset of these types, namely WebRe
quest/WebResponse, and HttpClient. However, they can also use WinRT types for
TCP and UDP communication in Windows.Networking.Sockets, which we
demonstrate in the final section in this chapter.

The .NET types in this chapter are in the System.Net.* and System.IO namespaces.

Network Architecture
Figure 16-1 illustrates the .NET networking types and the communication layers in
which they reside. Most types reside in the transport layer or application layer. The
transport layer defines basic protocols for sending and receiving bytes (TCP and
UDP); the application layer defines higher-level protocols designed for specific

N
etw

o
rking

673

www.EBooksWorld.ir

applications such as retrieving web pages (HTTP), transferring files (FTP), sending
mail (SMTP), and converting between domain names and IP addresses (DNS).

Figure 16-1. Network architecture

It’s usually most convenient to program at the application layer; however, there are a
couple of reasons you might want to work directly at the transport layer. One is if
you need an application protocol not provided in the Framework, such as POP3 for
retrieving mail. Another is if you want to invent a custom protocol for a special
application such as a peer-to-peer client.

Of the application protocols, HTTP is special in its applicability to general-purpose
communication. Its basic mode of operation—“Give me the web page with this
URL”—adapts nicely to, “Get me the result of calling this endpoint with these argu‐
ments.” (In addition to the “get” verb, there is “put,” “post,” and “delete,” allowing for
REST-based services.)

HTTP also has a rich set of features that are useful in multitier business applications
and service-oriented architectures, such as protocols for authentication and encryp‐
tion, message chunking, extensible headers and cookies, and the ability to have

674 | Chapter 16: Networking

www.EBooksWorld.ir

many server applications share a single port and IP address. For these reasons,
HTTP is well supported in the Framework—both directly, as described in this chap‐
ter, and at a higher level, through such technologies as WCF, Web Services, and
ASP.NET.

The Framework provides client-side support for FTP, the popular Internet protocol
for sending and receiving files. Server-side support comes in the form of IIS or
Unix-based server software.

As the preceding discussion makes clear, networking is a field that is awash in acro‐
nyms. We list the most common in Table 16-1.

Table 16-1. Network acronyms

Acronym Expansion Notes

DNS Domain Name Service Converts between domain names (e.g., ebay.com) and IP
addresses (e.g., 199.54.213.2)

FTP File Transfer Protocol Internet-based protocol for sending and receiving files

HTTP Hypertext Transfer Protocol Retrieves web pages and runs web services

IIS Internet Information Services Microsoft’s web server software

IP Internet Protocol Network-layer protocol below TCP and UDP

LAN Local Area Network Most LANs use Internet-based protocols such as TCP/IP

POP Post Office Protocol Retrieves Internet mail

REST REpresentational State
Transfer

A popular alternative to Web Services that leverages machine-
followable links in responses and that can operate over basic HTTP

SMTP Simple Mail Transfer Protocol Sends Internet mail

TCP Transmission and Control
Protocol

Transport-layer Internet protocol on top of which most higher-
layer services are built

UDP Universal Datagram Protocol Transport-layer Internet protocol used for low-overhead services
such as VoIP

UNC Universal Naming Convention \\computer\sharename\filename

URI Uniform Resource Identifier Ubiquitous resource naming system (e.g., http://
www.amazon.com or mailto:joe@bloggs.org)

URL Uniform Resource Locator Technical meaning (fading from use): subset of URI; popular
meaning: synonym of URI

Addresses and Ports
For communication to work, a computer or device requires an address. The Internet
uses two addressing systems:

IPv4
Currently the dominant addressing system; IPv4 addresses are 32 bits wide.
When string-formatted, IPv4 addresses are written as four dot-separated

N
etw

o
rking

Addresses and Ports | 675

www.EBooksWorld.ir

decimals (e.g., 101.102.103.104). An address can be unique in the world—
or unique within a particular subnet (such as on a corporate network).

IPv6
The newer 128-bit addressing system. Addresses are string-formatted in
hexadecimal with a colon separator (e.g., [3EA0:FFFF:198A:E4A3:
4FF2:54fA:41BC:8D31]). The .NET Framework requires that you add
square brackets around the address.

The IPAddress class in the System.Net namespace represents an address in either
protocol. It has a constructor accepting a byte array, and a static Parse method
accepting a correctly formatted string:

IPAddress a1 = new IPAddress (new byte[] { 101, 102, 103, 104 });
IPAddress a2 = IPAddress.Parse ("101.102.103.104");
Console.WriteLine (a1.Equals (a2)); // True
Console.WriteLine (a1.AddressFamily); // InterNetwork

IPAddress a3 = IPAddress.Parse
 ("[3EA0:FFFF:198A:E4A3:4FF2:54fA:41BC:8D31]");
Console.WriteLine (a3.AddressFamily); // InterNetworkV6

The TCP and UDP protocols break out each IP address into 65,535 ports, allowing a
computer on a single address to run multiple applications, each on its own port.
Many applications have standard port assignments; for instance, HTTP uses port
80; SMTP uses port 25.

The TCP and UDP ports from 49152 to 65535 are officially
unassigned, so they are good for testing and small-scale
deployments.

An IP address and port combination is represented in the .NET Framework by the
IPEndPoint class:

IPAddress a = IPAddress.Parse ("101.102.103.104");
IPEndPoint ep = new IPEndPoint (a, 222); // Port 222
Console.WriteLine (ep.ToString()); // 101.102.103.104:222

Firewalls block ports. In many corporate environments, only a
few ports are open—typically, port 80 (for unencrypted
HTTP) and port 443 (for secure HTTP).

URIs
A URI is a specially formatted string that describes a resource on the Internet or a
LAN, such as a web page, file, or email address. Examples include http://
www.ietf.org, ftp://myisp/doc.txt, and mailto:joe@bloggs.com. The exact formatting is
defined by the Internet Engineering Task Force.

676 | Chapter 16: Networking

www.EBooksWorld.ir

http://www.ietf.org/

A URI can be broken up into a series of elements—typically, scheme, authority, and
path. The Uri class in the System namespace performs just this division, exposing a
property for each element. This is illustrated in Figure 16-2.

Figure 16-2. URI properties

The Uri class is useful when you need to validate the format of
a URI string or to split a URI into its component parts. Other‐
wise, you can treat a URI simply as a string—most networking
methods are overloaded to accept either a Uri object or a
string.

You can construct a Uri object by passing any of the following strings into its con‐
structor:

• A URI string, such as http://www.ebay.com or file://janespc/sharedpics/
dolphin.jpg

• An absolute path to a file on your hard disk, such as c:\myfiles\data.xls
• A UNC path to a file on the LAN, such as \\janespc\sharedpics\dolphin.jpg

File and UNC paths are automatically converted to URIs: the “file:” protocol is
added, and backslashes are converted to forward slashes. The Uri constructors also
perform some basic cleanup on your string before creating the Uri, including con‐
verting the scheme and hostname to lowercase and removing default and blank port
numbers. If you supply a URI string without the scheme, such as “www.test.com”, a
UriFormatException is thrown.

Uri has an IsLoopback property, which indicates whether the Uri references the
local host (IP address 127.0.0.1), and an IsFile property, which indicates whether
the Uri references a local or UNC (IsUnc) path. If IsFile returns true, the Local
Path property returns a version of AbsolutePath that is friendly to the local operat‐
ing system (with backslashes), on which you can call File.Open.

N
etw

o
rking

URIs | 677

www.EBooksWorld.ir

http://www.ebay.com

Instances of Uri have read-only properties. To modify an existing Uri, instantiate a
UriBuilder object—this has writable properties and can be converted back via its
Uri property.

Uri also provides methods for comparing and subtracting paths:

Uri info = new Uri ("http://www.domain.com:80/info/");
Uri page = new Uri ("http://www.domain.com/info/page.html");

Console.WriteLine (info.Host); // www.domain.com
Console.WriteLine (info.Port); // 80
Console.WriteLine (page.Port); // 80 (Uri knows the default HTTP port)

Console.WriteLine (info.IsBaseOf (page)); // True
Uri relative = info.MakeRelativeUri (page);
Console.WriteLine (relative.IsAbsoluteUri); // False
Console.WriteLine (relative.ToString()); // page.html

A relative Uri, such as page.html in this example, will throw an exception if you call
almost any property or method other than IsAbsoluteUri and ToString(). You
can instantiate a relative Uri directly as follows:

Uri u = new Uri ("page.html", UriKind.Relative);

A trailing slash is significant in a URI and makes a difference
as to how a server processes a request if a path component is
present.
For instance, given the URI http://www.albahari.com/nutshell/,
you can expect an HTTP web server to look in the nutshell
subdirectory in the site’s web folder and return the default
document (usually index.html).
Without the trailing slash, the web server will instead look for
a file called nutshell (without an extension) directly in the site’s
root folder—which is usually not what you want. If no such
file exists, most web servers will assume the user mistyped and
will return a 301 Permanent Redirect error, suggesting the cli‐
ent retries with the trailing slash. A .NET HTTP client, by
default, will respond transparently to a 301 in the same way as
a web browser—by retrying with the suggested URI. This
means that if you omit a trailing slash when it should have
been included, your request will still work—but will suffer an
unnecessary extra round trip.

The Uri class also provides static helper methods such as EscapeUriString(),
which converts a string to a valid URL by converting all characters with an ASCII
value greater than 127 to hexadecimal representation. The CheckHostName() and
CheckSchemeName() methods accept a string and check whether it is syntactically
valid for the given property (although they do not attempt to determine whether a
host or URI exists).

678 | Chapter 16: Networking

www.EBooksWorld.ir

Client-Side Classes
WebRequest and WebResponse are the common base classes for managing both
HTTP and FTP client-side activity, as well as the “file:” protocol. They encapsulate
the “request/response” model that these protocols all share: the client makes a
request and then awaits a response from a server.

WebClient is a convenient façade class that does the work of calling WebRequest and
WebResponse, saving you some coding. WebClient gives you a choice of dealing in
strings, byte arrays, files, or streams; WebRequest and WebResponse support just
streams. Unfortunately, you cannot rely entirely on WebClient because it doesn’t
support some features (such as cookies).

HttpClient is another class that builds on WebRequest and WebResponse (or more
specifically, HttpWebRequest and HttpWebResponse) and was introduced in Frame‐
work 4.5. Whereas WebClient acts mostly as a thin layer over the request/response
classes, HttpClient adds functionality to help you work with HTTP-based web
APIs, REST-based services, and custom authentication schemes.

For simply downloading/uploading a file, string or byte array, both WebClient and
HttpClient are suitable. Both have asynchronous methods, although only Web
Client offers progress reporting.

WinRT applications can’t use WebClient at all and must use either WebRequest/
WebResponse or HttpClient (for HTTP).

By default, the CLR throttles HTTP concurrency. If you plan
to use asynchronous methods or multithreading to make
more than two requests at once (whether via WebRequest, Web
Client or HttpClient), you’ll need to first increase the con‐
currency limit via the static property ServicePointMan

ager.DefaultConnectionLimit. There’s a good MSDN blog
article on this topic at http://tinyurl.com/44axxby.

WebClient
Here are the steps in using WebClient:

1. Instantiate a WebClient object.

2. Assign the Proxy property.

3. Assign the Credentials property if authentication is required.

4. Call a DownloadXXX or UploadXXX method with the desired URI.

Its download methods are as follows:

public void DownloadFile (string address, string fileName);
public string DownloadString (string address);
public byte[] DownloadData (string address);
public Stream OpenRead (string address);

N
etw

o
rking

Client-Side Classes | 679

www.EBooksWorld.ir

http://tinyurl.com/44axxby

Each is overloaded to accept a Uri object instead of a string address. The upload
methods are similar; their return values contain the response (if any) from the
server:

public byte[] UploadFile (string address, string fileName);
public byte[] UploadFile (string address, string method, string fileName);
public string UploadString(string address, string data);
public string UploadString(string address, string method, string data);
public byte[] UploadData (string address, byte[] data);
public byte[] UploadData (string address, string method, byte[] data);
public byte[] UploadValues(string address, NameValueCollection data);
public byte[] UploadValues(string address, string method,
 NameValueCollection data);
public Stream OpenWrite (string address);
public Stream OpenWrite (string address, string method);

The UploadValues methods can be used to post values to an HTTP form, with a
method argument of “POST”. WebClient also has a BaseAddress property; this
allows you to specify a string to be prefixed to all addresses, such as http://
www.mysite.com/data/.

Here’s how to download the code samples page for this book to a file in the current
folder and then display it in the default web browser:

WebClient wc = new WebClient { Proxy = null };
wc.DownloadFile ("http://www.albahari.com/nutshell/code.aspx", "code.htm");
System.Diagnostics.Process.Start ("code.htm");

WebClient implements IDisposable under duress—by virtue
of deriving from Component (this allows it to be sited in the
Visual Studio’s Designer’s component tray). Its Dispose

method does nothing useful at runtime, however, so you don’t
need to dispose WebClient instances.

From Framework 4.5, WebClient provides asynchronous versions of its long-
running methods (Chapter 14) that return tasks that you can await:

await wc.DownloadFileTaskAsync ("http://oreilly.com", "webpage.htm");

(The “TaskAsync” suffix disambiguates these methods from the old EAP-based
asynchronous methods which use the “Async” suffix). Unfortunately, the new meth‐
ods don’t support the standard “TAP” pattern for cancellation and progress report‐
ing. Instead, for cancellation, you must call the CancelAsync method on the Web
Client object, and for progress reporting, handle the DownloadProgressChanged/
UploadProgressChanged event. The following downloads a web page with progress
reporting, canceling the download if it takes longer than five seconds:

var wc = new WebClient();

wc.DownloadProgressChanged += (sender, args) =>
 Console.WriteLine (args.ProgressPercentage + "% complete");

Task.Delay (5000).ContinueWith (ant => wc.CancelAsync());

680 | Chapter 16: Networking

www.EBooksWorld.ir

await wc.DownloadFileTaskAsync ("http://oreilly.com", "webpage.htm");

When a request is canceled, a WebException is thrown whose
Status property is WebExceptionStatus.RequestCanceled.
(For historical reasons, an OperationCanceledException is
not thrown.)

The progress-related events capture and post to the active synchronization context,
so their handlers can update UI controls without needing Dispatcher.BeginIn
voke.

Using the same WebClient object to perform more than one
operation in sequence should be avoided if you’re relying on
cancellation or progress reporting, as it can result in race con‐
ditions.

WebRequest and WebResponse
WebRequest and WebResponse are more complex to use than WebClient but also
more flexible. Here’s how to get started:

1. Call WebRequest.Create with a URI to instantiate a web request.

2. Assign the Proxy property.

3. Assign the Credentials property if authentication is required.

To upload data:

4. Call GetRequestStream on the request object, and then write to the stream. Go
to step 5 if a response is expected.

To download data:

5. Call GetResponse on the request object to instantiate a web response.

6. Call GetResponseStream on the response object, and then read the stream (a
StreamReader can help!).

The following downloads and displays the code samples web page (a rewrite of the
preceding example):

WebRequest req = WebRequest.Create
 ("http://www.albahari.com/nutshell/code.html");
req.Proxy = null;
using (WebResponse res = req.GetResponse())
using (Stream rs = res.GetResponseStream())
using (FileStream fs = File.Create ("code.html"))
 rs.CopyTo (fs);

Here’s the asynchronous equivalent:

N
etw

o
rking

Client-Side Classes | 681

www.EBooksWorld.ir

WebRequest req = WebRequest.Create
 ("http://www.albahari.com/nutshell/code.html");
req.Proxy = null;
using (WebResponse res = await req.GetResponseAsync())
using (Stream rs = res.GetResponseStream())
using (FileStream fs = File.Create ("code.html"))
 await rs.CopyToAsync (fs);

The web response object has a ContentLength property, indi‐
cating the length of the response stream in bytes, as reported
by the server. This value comes from the response headers and
may be missing or incorrect. In particular, if an HTTP server
chooses the “chunked” mode to break up a large response, the
ContentLength value is usually -1. The same can apply with
dynamically generated pages.

The static Create method instantiates a subclass of the WebRequest type, such as
HttpWebRequest or FtpWebRequest. Its choice of subclass depends on the URI’s pre‐
fix, and is shown in Table 16-2.

Table 16-2. URI prefixes and web request types

Prefix Web request type

http: or https: HttpWebRequest

ftp: FtpWebRequest

file: FileWebRequest

Casting a web request object to its concrete type (HttpWebRe
quest or FtpWebRequest) allows you to access its protocol-
specific features.

You can also register your own prefixes by calling WebRequest.RegisterPrefix.
This requires a prefix along with a factory object with a Create method that instan‐
tiates an appropriate web request object.

The “https:” protocol is for secure (encrypted) HTTP, via Secure Sockets Layer, or
SSL. Both WebClient and WebRequest activate SSL transparently upon seeing this
prefix (see “SSL” on page 697 under “Working with HTTP” on page 692 later in this
chapter). The “file:” protocol simply forwards requests to a FileStream object. Its
purpose is in meeting a consistent protocol for reading a URI, whether it be a web
page, FTP site, or file path.

WebRequest has a Timeout property, in milliseconds. If a timeout occurs, a WebExcep
tion is thrown with a Status property of WebExceptionStatus.Timeout. The
default timeout is 100 seconds for HTTP and infinite for FTP.

You cannot recycle a WebRequest object for multiple requests—each instance is
good for one job only.

682 | Chapter 16: Networking

www.EBooksWorld.ir

HttpClient
HttpClient is new to Framework 4.5 and provides another layer on top of HttpWe
bRequest and HttpWebResponse. It was written in response to the growth of HTTP-
based web APIs and REST services, to provide a better experience than WebClient
when dealing with protocols more elaborate than simply fetching a web page.
Specifically:

• A single HttpClient instance supports concurrent requests. To get concur‐
rency with WebClient, you need to create a fresh instance per concurrent
request, which can get awkward when you introduce custom headers, cookies,
and authentication schemes.

• HttpClient lets you write and plug in custom message handlers. This enables
mocking in unit tests and the creation of custom pipelines (for logging, com‐
pression, encryption, and so on). Unit testing code that calls WebClient is a
pain.

• HttpClient has a richer and extensible type system for headers and content.

HttpClient is not a complete replacement for WebClient
because it doesn’t support progress reporting. WebClient also
has the advantage of supporting FTP, file:// and custom URI
schemes. It’s also available in older Framework versions.

The simplest way to use HttpClient is to instantiate it and then call one of its Get*
methods, passing in a URI:

string html = await new HttpClient().GetStringAsync ("http://linqpad.net");

(There’s also GetByteArrayAsync and GetStreamAsync.) All I/O-bound methods in
HttpClient are asynchronous (there are no synchronous equivalents).

Unlike with WebClient, to get the best performance with HttpClient, you must re-
use same instance (otherwise things such as DNS resolution may be unnecessarily
repeated.) HttpClient permits concurrent operations, so the following is legal and
downloads two web pages at once:

var client = new HttpClient();
var task1 = client.GetStringAsync ("http://www.linqpad.net");
var task2 = client.GetStringAsync ("http://www.albahari.com");
Console.WriteLine (await task1);
Console.WriteLine (await task2);

HttpClient has a Timeout property and a BaseAddress property, which prefixes a
URI to every request. HttpClient is somewhat of a thin shell: most of the other
properties that you might expect to find here are defined in another classed called
HttpClientHandler. To access this class, you instantiate it and then pass the
instance into HttpClient’s constructor:

N
etw

o
rking

Client-Side Classes | 683

www.EBooksWorld.ir

var handler = new HttpClientHandler { UseProxy = false };
var client = new HttpClient (handler);
...

In this example, we told the handler to disable proxy support. There are also prop‐
erties to control cookies, automatic redirection, authentication, and so on (we’ll
describe these in the following sections, and in “Working with HTTP” on page 692).

GetAsync and response messages
The GetStringAsync, GetByteArrayAsync, and GetStreamAsync methods are con‐
venient shortcuts for calling the more general GetAsync method, which returns a
response message:

var client = new HttpClient();
// The GetAsync method also accepts a CancellationToken.
HttpResponseMessage response = await client.GetAsync ("http://...");
response.EnsureSuccessStatusCode();
string html = await response.Content.ReadAsStringAsync();

HttpResponseMessage exposes properties for accessing the headers (see “Working
with HTTP” on page 692) and the HTTP StatusCode. Unlike with WebClient, an
unsuccessful status code such as 404 (not found) doesn’t cause an exception to be
thrown unless you explicitly call EnsureSuccessStatusCode. Communication or
DNS errors, however, do throw exceptions (see “Exception Handling” on page 573).

HttpContent has a CopyToAsync method for writing to another stream, which is
useful in writing the output to a file:

using (var fileStream = File.Create ("linqpad.html"))
 await response.Content.CopyToAsync (fileStream);

GetAsync is one of four methods corresponding to HTTP’s four verbs (the others
are PostAsync, PutAsync and DeleteAsync). We demonstrate PostAsync later in
“Uploading Form Data” on page 693.

SendAsync and request messages
The four methods just described are all shortcuts for calling SendAsync, the single
low-level method into which everything else feeds. To use this, you first construct
an HttpRequestMessage:

var client = new HttpClient();
var request = new HttpRequestMessage (HttpMethod.Get, "http://...");
HttpResponseMessage response = await client.SendAsync (request);
response.EnsureSuccessStatusCode();
...

Instantiating a HttpRequestMessage object means you can customize properties of
the request, such as the headers (see “Headers” on page 692) and the content itself,
allowing you to upload data.

684 | Chapter 16: Networking

www.EBooksWorld.ir

Uploading data and HttpContent
After instantiating a HttpRequestMessage object, you can upload content by assign‐
ing its Content property. The type for this property is an abstract class called
HttpContent. The Framework includes the following concrete subclasses for differ‐
ent kinds of content (you can also write your own):

• ByteArrayContent

• StringContent

• FormUrlEncodedContent (see “Uploading Form Data” on page 693)

• StreamContent

For example:

var client = new HttpClient (new HttpClientHandler { UseProxy = false });
var request = new HttpRequestMessage (
 HttpMethod.Post, "http://www.albahari.com/EchoPost.aspx");
request.Content = new StringContent ("This is a test");
HttpResponseMessage response = await client.SendAsync (request);
response.EnsureSuccessStatusCode();
Console.WriteLine (await response.Content.ReadAsStringAsync());

HttpMessageHandler
We said previously that most of the properties for customizing requests are defined
not in HttpClient but in HttpClientHandler. The latter is actually a subclass of the
abstract HttpMessageHandler class, defined as follows:

public abstract class HttpMessageHandler : IDisposable
{
 protected internal abstract Task<HttpResponseMessage> SendAsync
 (HttpRequestMessage request, CancellationToken cancellationToken);

 public void Dispose();
 protected virtual void Dispose (bool disposing);
}

The SendAsync method is called from HttpClient’s SendAsync method.

HttpMessageHandler is simple enough to subclass easily and offers an extensibility
point into HttpClient.

Unit testing and mocking
We can subclass HttpMessageHandler to create a mocking handler to assist with unit
testing:

class MockHandler : HttpMessageHandler
{
 Func <HttpRequestMessage, HttpResponseMessage> _responseGenerator;

 public MockHandler

N
etw

o
rking

Client-Side Classes | 685

www.EBooksWorld.ir

 (Func <HttpRequestMessage, HttpResponseMessage> responseGenerator)
 {
 _responseGenerator = responseGenerator;
 }

 protected override Task <HttpResponseMessage> SendAsync
 (HttpRequestMessage request, CancellationToken cancellationToken)
 {
 cancellationToken.ThrowIfCancellationRequested();
 var response = _responseGenerator (request);
 response.RequestMessage = request;
 return Task.FromResult (response);
 }
}

Its constructor accepts a function that tells the mocker how to generate a response
from a request. This is the most versatile approach, as the same handler can test
multiple requests.

SendAsynch is synchronous by virtue of Task.FromResult. We could have main‐
tained asynchrony by having our response generator return a Task<HttpResponse
Message>, but this is pointless given that we can expect a mocking function to be
short-running. Here’s how to use our mocking handler:

var mocker = new MockHandler (request =>
 new HttpResponseMessage (HttpStatusCode.OK)
 {
 Content = new StringContent ("You asked for " + request.RequestUri)
 });

var client = new HttpClient (mocker);
var response = await client.GetAsync ("http://www.linqpad.net");
string result = await response.Content.ReadAsStringAsync();
Assert.AreEqual ("You asked for http://www.linqpad.net/", result);

(Assert.AreEqual is a method you’d expect to find in a unit-testing framework
such as NUnit.)

Chaining handlers with DelegatingHandler
You can create a message handler that calls another (resulting in a chain of han‐
dlers) by subclassing DelegatingHandler. This can be used to implement custom
authentication, compression, and encryption protocols. The following demonstrates
a simple logging handler:

class LoggingHandler : DelegatingHandler
{
 public LoggingHandler (HttpMessageHandler nextHandler)
 {
 InnerHandler = nextHandler;
 }

 protected async override Task <HttpResponseMessage> SendAsync
 (HttpRequestMessage request, CancellationToken cancellationToken)

686 | Chapter 16: Networking

www.EBooksWorld.ir

 {
 Console.WriteLine ("Requesting: " + request.RequestUri);
 var response = await base.SendAsync (request, cancellationToken);
 Console.WriteLine ("Got response: " + response.StatusCode);
 return response;
 }
}

Notice that we’ve maintained asynchrony in overriding SendAsync. Introducing the
async modifier when overriding a task-returning method is perfectly legal—and
desirable in this case.

A better solution than writing to the Console would be to have the constructor
accept some kind of logging object. Better still would be to accept a couple of
Action<T> delegates which tell it how to log the request and response objects.

Proxies
A proxy server is an intermediary through which HTTP and FTP requests can be
routed. Organizations sometimes set up a proxy server as the only means by which
employees can access the Internet—primarily because it simplifies security. A proxy
has an address of its own and can demand authentication so that only selected users
on the local area network can access the Internet.

You can instruct a WebClient or WebRequest object to route requests through a
proxy server with a WebProxy object:

// Create a WebProxy with the proxy's IP address and port. You can
// optionally set Credentials if the proxy needs a username/password.

WebProxy p = new WebProxy ("192.178.10.49", 808);
p.Credentials = new NetworkCredential ("username", "password");
// or:
p.Credentials = new NetworkCredential ("username", "password", "domain");

WebClient wc = new WebClient();
wc.Proxy = p;
 ...

// Same procedure with a WebRequest object:
WebRequest req = WebRequest.Create ("...");
req.Proxy = p;

To use a proxy with HttpClient, first create an HttpClientHandler, assign its Proxy
property, and then feed that into HttpClient’s constructor:

WebProxy p = new WebProxy ("192.178.10.49", 808);
p.Credentials = new NetworkCredential ("username", "password", "domain");

var handler = new HttpClientHandler { Proxy = p };
var client = new HttpClient (handler);
...

N
etw

o
rking

Client-Side Classes | 687

www.EBooksWorld.ir

If you know there’s no proxy, it’s worth setting the Proxy prop‐
erty to null on WebClient and WebRequest objects. Other‐
wise, the Framework may attempt to “auto-detect” your proxy
settings, adding up to 30 seconds to your request. If you’re
wondering why your web requests execute slowly, this is prob‐
ably it!

HttpClientHandler also has a UseProxy property that you can assign to false
instead of nulling out the Proxy property to defeat auto-detection.

If you supply a domain when constructing the NetworkCredential, Windows-based
authentication protocols are used. To use the currently authenticated Windows user,
assign the static CredentialCache.DefaultNetworkCredentials value to the
proxy’s Credentials property.

As an alternative to repeatedly setting the Proxy, you can set the global default as
follows:

WebRequest.DefaultWebProxy = myWebProxy;

or:

WebRequest.DefaultWebProxy = null;

Whatever you set applies for the life of the application domain (unless some other
code changes it!).

Authentication
You can supply a username and password to an HTTP or FTP site by creating a
NetworkCredential object and assigning it to the Credentials property of Web
Client or WebRequest:

WebClient wc = new WebClient { Proxy = null };
wc.BaseAddress = "ftp://ftp.albahari.com";

// Authenticate, then upload and download a file to the FTP server.
// The same approach also works for HTTP and HTTPS.

string username = "nutshell";
string password = "oreilly";
wc.Credentials = new NetworkCredential (username, password);

wc.DownloadFile ("guestbook.txt", "guestbook.txt");

string data = "Hello from " + Environment.UserName + "!\r\n";
File.AppendAllText ("guestbook.txt", data);

wc.UploadFile ("guestbook.txt", "guestbook.txt");

HttpClient exposes the same Credentials property through HttpClientHandler:

var handler = new HttpClientHandler();
handler.Credentials = new NetworkCredential (username, password);

688 | Chapter 16: Networking

www.EBooksWorld.ir

var client = new HttpClient (handler);
...

This works with dialog-based authentication protocols, such as Basic and Digest,
and is extensible through the AuthenticationManager class. It also supports Win‐
dows NTLM and Kerberos (if you include a domain name when constructing the
NetworkCredential object). If you want to use the currently authenticated Win‐
dows user, you can leave the Credentials property null and instead set UseDe
faultCredentials true.

Assigning Credentials is useless for getting through forms-
based authentication. We discuss forms-based authentication
separately (see “Forms Authentication” on page 696).

The authentication is ultimately handled by a WebRequest subtype (in this case,
FtpWebRequest), which automatically negotiates a compatible protocol. In the case
of HTTP, there can be a choice: if you examine the initial response from a Microsoft
Exchange server web mail page, for instance, it might contain the following headers:

HTTP/1.1 401 Unauthorized
Content-Length: 83
Content-Type: text/html
Server: Microsoft-IIS/6.0
WWW-Authenticate: Negotiate
WWW-Authenticate: NTLM
WWW-Authenticate: Basic realm="exchange.somedomain.com"
X-Powered-By: ASP.NET
Date: Sat, 05 Aug 2006 12:37:23 GMT

The 401 code signals that authorization is required; the “WWW-Authenticate”
headers indicate what authentication protocols are understood. If you configure a
WebClient or WebRequest object with the correct username and password, however,
this message will be hidden from you because the Framework responds automati‐
cally by choosing a compatible authentication protocol and then resubmitting the
original request with an extra header. For example:

Authorization: Negotiate TlRMTVNTUAAABAAAt5II2gjACDArAAACAwACACgAAAAQ
ATmKAAAAD0lVDRdPUksHUq9VUA==

This mechanism provides transparency but generates an extra round trip with each
request. You can avoid the extra round trips on subsequent requests to the same
URI by setting the PreAuthenticate property to true. This property is defined on
the WebRequest class (and works only in the case of HttpWebRequest). WebClient
doesn’t support this feature at all.

CredentialCache
You can force a particular authentication protocol with a CredentialCache object.
A credential cache contains one or more NetworkCredential objects, each keyed to
a particular protocol and URI prefix. For example, you might want to avoid the

N
etw

o
rking

Client-Side Classes | 689

www.EBooksWorld.ir

Basic protocol when logging into an Exchange Server, as it transmits passwords in
plain text:

CredentialCache cache = new CredentialCache();
Uri prefix = new Uri ("http://exchange.somedomain.com");
cache.Add (prefix, "Digest", new NetworkCredential ("joe", "passwd"));
cache.Add (prefix, "Negotiate", new NetworkCredential ("joe", "passwd"));

WebClient wc = new WebClient();
wc.Credentials = cache;
...

An authentication protocol is specified as a string. The valid values are as follows:

Basic, Digest, NTLM, Kerberos, Negotiate

In this particular example, WebClient will choose Negotiate, because the server
didn’t indicate that it supported Digest in its authentication headers. Negotiate is a
Windows protocol that boils down to either Kerberos or NTLM, depending on the
capabilities of the server.

The static CredentialCache.DefaultNetworkCredentials property allows you to
add the currently authenticated Windows user to the credential cache without hav‐
ing to specify a password:

cache.Add (prefix, "Negotiate", CredentialCache.DefaultNetworkCredentials);

Authenticating via headers with HttpClient
If you’re using HttpClient, another way to authenticate is to set the authentication
header directly:

var client = new HttpClient();
client.DefaultRequestHeaders.Authorization =
 new AuthenticationHeaderValue ("Basic",
 Convert.ToBase64String (Encoding.UTF8.GetBytes ("username:password")));
...

This strategy also works with custom authentication systems such as OAuth. We
discuss headers in more detail soon.

Exception Handling
WebRequest, WebResponse, WebClient, and their streams all throw a WebException
in the case of a network or protocol error. HttpClient does the same but then wraps
the WebException in an HttpRequestException. You can determine the specific
error via the WebException’s Status property; this returns a WebExceptionStatus
enum that has the following members:

690 | Chapter 16: Networking

www.EBooksWorld.ir

CacheEntryNotFound

ConnectFailure

ConnectionClosed

KeepAliveFailure

MessageLengthLimitExceeded

NameResolutionFailure

Pending

PipelineFailure

ProtocolError

ProxyNameResolutionFailure

ReceiveFailure

RequestCanceled

RequestProhibitedByCachePolicy

RequestProhibitedByProxy

SecureChannelFailure

SendFailure

ServerProtocolViolation

Success

Timeout

TrustFailure

UnknownError

An invalid domain name causes a NameResolutionFailure; a dead network causes a
ConnectFailure; a request exceeding WebRequest.Timeout milliseconds causes a
Timeout.

Errors such as “Page not found,” “Moved Permanently,” and “Not Logged In” are
specific to the HTTP or FTP protocols, and so are all lumped together under the
ProtocolError status. With HttpClient, these errors are not thrown unless you call
EnsureSuccessStatusCode on the response object. Prior to doing so, you can get
the specific status code by querying the StatusCode property:

var client = new HttpClient();
var response = await client.GetAsync ("http://linqpad.net/foo");
HttpStatusCode responseStatus = response.StatusCode;

With WebClient and WebRequest/WebResponse, you must actually catch the WebEx
ception and then:

1. Cast the WebException’s Response property to HttpWebResponse or FtpWebRes
ponse.

2. Examine the response object’s Status property (an HttpStatusCode or FtpSta
tusCode enum) and/or its StatusDescription property (string).

For example:

WebClient wc = new WebClient { Proxy = null };
try
{
 string s = wc.DownloadString ("http://www.albahari.com/notthere");
}
catch (WebException ex)
{
 if (ex.Status == WebExceptionStatus.NameResolutionFailure)
 Console.WriteLine ("Bad domain name");
 else if (ex.Status == WebExceptionStatus.ProtocolError)
 {
 HttpWebResponse response = (HttpWebResponse) ex.Response;
 Console.WriteLine (response.StatusDescription); // "Not Found"
 if (response.StatusCode == HttpStatusCode.NotFound)

N
etw

o
rking

Client-Side Classes | 691

www.EBooksWorld.ir

 Console.WriteLine ("Not there!"); // "Not there!"
 }
 else throw;
}

If you want the three-digit status code, such as 401 or 404,
simply cast the HttpStatusCode or FtpStatusCode enum to
an integer.

By default, you’ll never get a redirection error because Web
Client and WebRequest automatically follow redirection
responses. You can switch off this behavior in a WebRequest
object by setting AllowAutoRedirect to false.
The redirection errors are 301 (Moved Permanently), 302
(Found/Redirect), and 307 (Temporary Redirect).

If an exception is thrown because you’ve incorrectly used the WebClient or WebRe
quest classes, it will more likely be an InvalidOperationException or Protocol
ViolationException than a WebException.

Working with HTTP
This section describes HTTP-specific request and response features of WebClient,
HttpWebRequest/HttpWebResponse, and the HttpClient class.

Headers
WebClient, WebRequest, and HttpClient all let you add custom HTTP headers, as
well as enumerate the headers in a response. A header is simply a key/value pair
containing metadata, such as the message content type or server software. Here’s
how to add a custom header to a request, then list all headers in a response message
in a WebClient:

WebClient wc = new WebClient { Proxy = null };
wc.Headers.Add ("CustomHeader", "JustPlaying/1.0");
wc.DownloadString ("http://www.oreilly.com");

foreach (string name in wc.ResponseHeaders.Keys)
 Console.WriteLine (name + "=" + wc.ResponseHeaders [name]);

Age=51
X-Cache=HIT from oregano.bp
X-Cache-Lookup=HIT from oregano.bp:3128
Connection=keep-alive
Accept-Ranges=bytes
Content-Length=95433
Content-Type=text/html
...

HttpClient instead exposes strongly typed collections with properties for standard
HTTP headers. The DefaultRequestHeaders property is for headers which apply to
every request:

692 | Chapter 16: Networking

www.EBooksWorld.ir

var client = new HttpClient (handler);

client.DefaultRequestHeaders.UserAgent.Add (
 new ProductInfoHeaderValue ("VisualStudio", "2015"));

client.DefaultRequestHeaders.Add ("CustomHeader", "VisualStudio/2015");

whereas the Headers property on the HttpRequestMessage class is for headers spe‐
cific to a request.

Query Strings
A query string is simply a string appended to a URI with a question mark, used to
send simple data to the server. You can specify multiple key/value pairs in a query
string with the following syntax:

?key1=value1&key2=value2&key3=value3...

WebClient provides an easy way to add query strings through a dictionary-style
property. The following searches Google for the word “WebClient” on page 679, dis‐
playing the result page in French:

WebClient wc = new WebClient { Proxy = null };
wc.QueryString.Add ("q", "WebClient"); // Search for "WebClient"
wc.QueryString.Add ("hl", "fr"); // Display page in French
wc.DownloadFile ("http://www.google.com/search", "results.html");
System.Diagnostics.Process.Start ("results.html");

To achieve the same result with WebRequest or with HttpClient, you must man‐
ually append a correctly formatted string to the request URI:

string requestURI = "http://www.google.com/search?q=WebClient&hl=fr";

If there’s a possibility of your query including symbols or spaces, you can leverage
Uri’s EscapeDataString method to create a legal URI:

string search = Uri.EscapeDataString ("(WebClient OR HttpClient)");
string language = Uri.EscapeDataString ("fr");
string requestURI = "http://www.google.com/search?q=" + search +
 "&hl=" + language;

This resultant URI is:

http://www.google.com/search?q=(WebClient%20OR%20HttpClient)&hl=fr

(EscapeDataString is similar to EscapeUriString except that it also encodes char‐
acters such as & and = which would otherwise mess up the query string.)

Microsoft’s Web Protection library offers another encoding/
decoding solution which takes into account cross-site script‐
ing vulnerabilities.

Uploading Form Data
WebClient provides UploadValues methods for posting data to an HTML form:

N
etw

o
rking

Working with HTTP | 693

www.EBooksWorld.ir

http://wpl.codeplex.com

WebClient wc = new WebClient { Proxy = null };

var data = new System.Collections.Specialized.NameValueCollection();
data.Add ("Name", "Joe Albahari");
data.Add ("Company", "O'Reilly");

byte[] result = wc.UploadValues ("http://www.albahari.com/EchoPost.aspx",
 "POST", data);

Console.WriteLine (Encoding.UTF8.GetString (result));

The keys in the NameValueCollection, such as searchtextbox and searchMode,
correspond to the names of input boxes on the HTML form.

Uploading form data is more work via WebRequest. (You’ll need to take this route if
you need to use features such as cookies.) Here’s the procedure:

1. Set the request’s ContentType to “application/x-www-form-urlencoded” and its
Method to “POST”.

2. Build a string containing the data to upload, encoded as follows:
name1=value1&name2=value2&name3=value3...

3. Convert the string to a byte array, with Encoding.UTF8.GetBytes.

4. Set the web request’s ContentLength property to the byte array length.

5. Call GetRequestStream on the web request and write the data array.

6. Call GetResponse to read the server’s response.

Here’s the previous example written with WebRequest:

var req = WebRequest.Create ("http://www.albahari.com/EchoPost.aspx");
req.Proxy = null;
req.Method = "POST";
req.ContentType = "application/x-www-form-urlencoded";

string reqString = "Name=Joe+Albahari&Company=O'Reilly";
byte[] reqData = Encoding.UTF8.GetBytes (reqString);
req.ContentLength = reqData.Length;

using (Stream reqStream = req.GetRequestStream())
 reqStream.Write (reqData, 0, reqData.Length);

using (WebResponse res = req.GetResponse())
using (Stream resSteam = res.GetResponseStream())
using (StreamReader sr = new StreamReader (resSteam))
 Console.WriteLine (sr.ReadToEnd());

With HttpClient, you instead create and populate FormUrlEncodedContent object,
which you can then either pass into the PostAsync method, or assign to a request’s
Content property:

694 | Chapter 16: Networking

www.EBooksWorld.ir

string uri = "http://www.albahari.com/EchoPost.aspx";
var client = new HttpClient();
var dict = new Dictionary<string,string>
{
 { "Name", "Joe Albahari" },
 { "Company", "O'Reilly" }
};
var values = new FormUrlEncodedContent (dict);
var response = await client.PostAsync (uri, values);
response.EnsureSuccessStatusCode();
Console.WriteLine (await response.Content.ReadAsStringAsync());

Cookies
A cookie is a name/value string pair that an HTTP server sends to a client in a
response header. A web browser client typically remembers cookies and replays
them to the server in each subsequent request (to the same address) until their
expiry. A cookie allows a server to know whether it’s talking to the same client it was
a minute ago—or yesterday—without needing a messy query string in the URI.

By default, HttpWebRequest ignores any cookies received from the server. To accept
cookies, create a CookieContainer object and assign it to the WebRequest. The
cookies received in a response can then be enumerated:

var cc = new CookieContainer();

var request = (HttpWebRequest) WebRequest.Create ("http://www.google.com");
request.Proxy = null;
request.CookieContainer = cc;
using (var response = (HttpWebResponse) request.GetResponse())
{
 foreach (Cookie c in response.Cookies)
 {
 Console.WriteLine (" Name: " + c.Name);
 Console.WriteLine (" Value: " + c.Value);
 Console.WriteLine (" Path: " + c.Path);
 Console.WriteLine (" Domain: " + c.Domain);
 }
 // Read response stream...
}

 Name: PREF
 Value: ID=6b10df1da493a9c4:TM=1179025486:LM=1179025486:S=EJCZri0aWEHlk4tt
 Path: /
 Domain: .google.com

To do the same with HttpClient, first instantiate a HttpClientHandler:

var cc = new CookieContainer();
var handler = new HttpClientHandler();
handler.CookieContainer = cc;
var client = new HttpClient (handler);
...

The WebClient façade class does not support cookies.

N
etw

o
rking

Working with HTTP | 695

www.EBooksWorld.ir

To replay the received cookies in future requests, simply assign the same CookieCon
tainer object to each new WebRequest object; or with HttpClient, keep using the
same object to make requests. CookieContainer is serializable, so it can be written
to disk—see Chapter 17. Alternatively, you can start with a fresh CookieContainer
and then add cookies manually as follows:

Cookie c = new Cookie ("PREF",
 "ID=6b10df1da493a9c4:TM=1179...",
 "/",
 ".google.com");
freshCookieContainer.Add (c);

The third and fourth arguments indicate the path and domain of the originator. A
CookieContainer on the client can house cookies from many different places; WebRe
quest sends only those cookies whose path and domain match those of the server.

Forms Authentication
We saw in the previous section how a NetworkCredentials object can satisfy
authentication systems such as Basic or NTLM (that pop up a dialog box in a web
browser). Most websites requiring authentication, however, use some type of forms-
based approach. Enter your username and password into text boxes that are part of
an HTML form decorated in appropriate corporate graphics, press a button to post
the data, and then receive a cookie upon successful authentication. The cookie
allows you greater privileges in browsing pages in the website. With WebRequest or
HttpClient, you can do all this programmatically, with the features discussed in the
preceding two sections. This can be useful for testing, or for automation in cases
where there’s not a proper API.

A typical website that implements forms authentication will contain HTML like
this:

<form action="http://www.somesite.com/login" method="post">
 <input type="text" id="user" name="username">
 <input type="password" id="pass" name="password">
 <button type="submit" id="login-btn">Log In</button>
</form>

Here’s how to log into such a site with WebRequest/WebResponse:

string loginUri = "http://www.somesite.com/login";
string username = "username"; // (Your username)
string password = "password"; // (Your password)
string reqString = "username=" + username + "&password=" + password;
byte[] requestData = Encoding.UTF8.GetBytes (reqString);

CookieContainer cc = new CookieContainer();
var request = (HttpWebRequest)WebRequest.Create (loginUri);
request.Proxy = null;
request.CookieContainer = cc;
request.Method = "POST";

request.ContentType = "application/x-www-form-urlencoded";

696 | Chapter 16: Networking

www.EBooksWorld.ir

request.ContentLength = requestData.Length;

using (Stream s = request.GetRequestStream())
 s.Write (requestData, 0, requestData.Length);

using (var response = (HttpWebResponse) request.GetResponse())
 foreach (Cookie c in response.Cookies)
 Console.WriteLine (c.Name + " = " + c.Value);

// We're now logged in. As long as we assign cc to subsequent WebRequest
// objects, we'll be treated as an authenticated user.

And with HttpClient:

string loginUri = "http://www.somesite.com/login";
string username = "username";
string password = "password";

CookieContainer cc = new CookieContainer();
var handler = new HttpClientHandler { CookieContainer = cc };

var request = new HttpRequestMessage (HttpMethod.Post, loginUri);
request.Content = new FormUrlEncodedContent (new Dictionary<string,string>
{
 { "username", username },
 { "password", password }
});

var client = new HttpClient (handler);
var response = await client.SendAsync (request);
response.EnsureSuccessStatusCode();
...

SSL
WebClient, HttpClient, and WebRequest all use SSL automatically when you specify
an “https:” prefix. The only complication that can arise relates to bad X.509 certifi‐
cates. If the server’s site certificate is invalid in any way (for instance, if it’s a test cer‐
tificate), an exception is thrown when you attempt to communicate. To work
around this, you can attach a custom certificate validator to the static ServicePoint
Manager class:

using System.Net;
using System.Net.Security;
using System.Security.Cryptography.X509Certificates;
...
static void ConfigureSSL()
{
 ServicePointManager.ServerCertificateValidationCallback = CertChecker;
}

ServerCertificateValidationCallback is a delegate. If it returns true, the certifi‐
cate is accepted:

N
etw

o
rking

Working with HTTP | 697

www.EBooksWorld.ir

static bool CertChecker (object sender, X509Certificate certificate,
 X509Chain chain, SslPolicyErrors errors)
{
 // Return true if you're happy with the certificate
 ...
}

Writing an HTTP Server
You can write your own .NET HTTP server with the HttpListener class. The fol‐
lowing is a simple server that listens on port 51111, waits for a single client request,
and then returns a one-line reply.

static void Main()
{
 ListenAsync(); // Start server
 WebClient wc = new WebClient(); // Make a client request.
 Console.WriteLine (wc.DownloadString
 ("http://localhost:51111/MyApp/Request.txt"));
}

async static void ListenAsync()
{
 HttpListener listener = new HttpListener();
 listener.Prefixes.Add ("http://localhost:51111/MyApp/"); // Listen on
 listener.Start(); // port 51111.

 // Await a client request:
 HttpListenerContext context = await listener.GetContextAsync();

 // Respond to the request:
 string msg = "You asked for: " + context.Request.RawUrl;
 context.Response.ContentLength64 = Encoding.UTF8.GetByteCount (msg);
 context.Response.StatusCode = (int) HttpStatusCode.OK;

 using (Stream s = context.Response.OutputStream)
 using (StreamWriter writer = new StreamWriter (s))
 await writer.WriteAsync (msg);

 listener.Stop();
}

OUTPUT: You asked for: /MyApp/Request.txt

HttpListener does not internally use .NET Socket objects; it instead calls the Win‐
dows HTTP Server API. This allows many applications on a computer to listen on
the same IP address and port—as long as each registers different address prefixes. In
our example, we registered the prefix http://localhost/myapp, so another application
would be free to listen on the same IP and port on another prefix such as http://
localhost/anotherapp. This is of value because opening new ports on corporate fire‐
walls can be politically arduous.

698 | Chapter 16: Networking

www.EBooksWorld.ir

HttpListener waits for the next client request when you call GetContext, returning
an object with Request and Response properties. Each is analogous to a WebRequest
and WebResponse object, but from the server’s perspective. You can read and write
headers and cookies, for instance, to the request and response objects, much as you
would at the client end.

You can choose how fully to support features of the HTTP protocol, based on your
anticipated client audience. At a bare minimum, you should set the content length
and status code on each request.

Here’s a very simple web page server, written asynchronously:

using System;
using System.IO;
using System.Net;
using System.Text;
using System.Threading.Tasks;

class WebServer
{
 HttpListener _listener;
 string _baseFolder; // Your web page folder.

 public WebServer (string uriPrefix, string baseFolder)
 {
 _listener = new HttpListener();
 _listener.Prefixes.Add (uriPrefix);
 _baseFolder = baseFolder;
 }

 public async void Start()
 {
 _listener.Start();
 while (true)
 try
 {
 var context = await _listener.GetContextAsync();
 Task.Run (() => ProcessRequestAsync (context));
 }
 catch (HttpListenerException) { break; } // Listener stopped.
 catch (InvalidOperationException) { break; } // Listener stopped.
 }

 public void Stop() { _listener.Stop(); }

 async void ProcessRequestAsync (HttpListenerContext context)
 {
 try
 {
 string filename = Path.GetFileName (context.Request.RawUrl);
 string path = Path.Combine (_baseFolder, filename);
 byte[] msg;
 if (!File.Exists (path))
 {

N
etw

o
rking

Writing an HTTP Server | 699

www.EBooksWorld.ir

 Console.WriteLine ("Resource not found: " + path);
 context.Response.StatusCode = (int) HttpStatusCode.NotFound;
 msg = Encoding.UTF8.GetBytes ("Sorry, that page does not exist");
 }
 else
 {
 context.Response.StatusCode = (int) HttpStatusCode.OK;
 msg = File.ReadAllBytes (path);
 }
 context.Response.ContentLength64 = msg.Length;
 using (Stream s = context.Response.OutputStream)
 await s.WriteAsync (msg, 0, msg.Length);
 }
 catch (Exception ex) { Console.WriteLine ("Request error: " + ex); }
 }
}

Here’s a main method to set things in motion:

static void Main()
{
 // Listen on port 51111, serving files in d:\webroot:
 var server = new WebServer ("http://localhost:51111/", @"d:\webroot");
 try
 {
 server.Start();
 Console.WriteLine ("Server running... press Enter to stop");
 Console.ReadLine();
 }
 finally { server.Stop(); }
}

You can test this at the client end with any web browser; the URI in this case will be
http://localhost:51111/ plus the name of the web page.

HttpListener will not start if other software is competing for
the same port (unless that software also uses the Windows
HTTP Server API). Examples of applications that might listen
on the default port 80 include a web server or a peer-to-peer
program such as Skype.

Our use of asynchronous functions makes this server scalable and efficient. Starting
this from a UI thread, however, would hinder scalability because for each request,
execution would bounce back to the UI thread after each await. Incurring such
overhead is particularly pointless given that we don’t have shared state, so in a UI
scenario we’d get off the UI thread, either like this:

Task.Run (Start);

or by calling ConfigureAwait(false) after calling GetContextAsync.

Note that we used Task.Run to call ProcessRequestAsync, even though the method
was already asynchronous. This allows the caller to process another request immedi‐
ately, rather than having to first wait out the synchronous phase of the method (up
until the first await).

700 | Chapter 16: Networking

www.EBooksWorld.ir

Using FTP
For simple FTP upload and download operations, you can use WebClient as we did
previously:

WebClient wc = new WebClient { Proxy = null };
wc.Credentials = new NetworkCredential ("nutshell", "oreilly");
wc.BaseAddress = "ftp://ftp.albahari.com";
wc.UploadString ("tempfile.txt", "hello!");
Console.WriteLine (wc.DownloadString ("tempfile.txt")); // hello!

There’s more to FTP, however, than just uploading and downloading files. The pro‐
tocol also lists a set of commands or “methods,” defined as string constants in WebRe
questMethods.Ftp:

AppendFile

DeleteFile

DownloadFile

GetDateTimestamp

GetFileSize

ListDirectory

ListDirectoryDetails

MakeDirectory

PrintWorkingDirectory

RemoveDirectory

Rename

UploadFile

UploadFileWithUniqueName

To run one of these commands, you assign its string constant to the web request’s
Method property and then call GetResponse(). Here’s how to get a directory listing:

var req = (FtpWebRequest) WebRequest.Create ("ftp://ftp.albahari.com");
req.Proxy = null;
req.Credentials = new NetworkCredential ("nutshell", "oreilly");
req.Method = WebRequestMethods.Ftp.ListDirectory;

using (WebResponse resp = req.GetResponse())
using (StreamReader reader = new StreamReader (resp.GetResponseStream()))
 Console.WriteLine (reader.ReadToEnd());

RESULT:
.
..
guestbook.txt
tempfile.txt
test.doc

In the case of getting a directory listing, we needed to read the response stream to
get the result. Most other commands, however, don’t require this step. For instance,
to get the result of the GetFileSize command, just query the response’s Conten
tLength property:

var req = (FtpWebRequest) WebRequest.Create (
 "ftp://ftp.albahari.com/tempfile.txt");
req.Proxy = null;
req.Credentials = new NetworkCredential ("nutshell", "oreilly");

req.Method = WebRequestMethods.Ftp.GetFileSize;

N
etw

o
rking

Using FTP | 701

www.EBooksWorld.ir

using (WebResponse resp = req.GetResponse())
 Console.WriteLine (resp.ContentLength); // 6

The GetDateTimestamp command works in a similar way, except that you query the
response’s LastModified property. This requires that you cast to FtpWebResponse:

...
req.Method = WebRequestMethods.Ftp.GetDateTimestamp;

using (var resp = (FtpWebResponse) req.GetResponse())
 Console.WriteLine (resp.LastModified);

To use the Rename command, you must populate the request’s RenameTo property
with the new filename (without a directory prefix). For example, to rename a file in
the incoming directory from tempfile.txt to deleteme.txt:

var req = (FtpWebRequest) WebRequest.Create (
 "ftp://ftp.albahari.com/tempfile.txt");
req.Proxy = null;
req.Credentials = new NetworkCredential ("nutshell", "oreilly");

req.Method = WebRequestMethods.Ftp.Rename;
req.RenameTo = "deleteme.txt";

req.GetResponse().Close(); // Perform the rename

Here’s how to delete a file:

var req = (FtpWebRequest) WebRequest.Create (
 "ftp://ftp.albahari.com/deleteme.txt");
req.Proxy = null;
req.Credentials = new NetworkCredential ("nutshell", "oreilly");

req.Method = WebRequestMethods.Ftp.DeleteFile;

req.GetResponse().Close(); // Perform the deletion

In all these examples, you would typically use an exception
handling block to catch network and protocol errors. A typical
catch block looks like this:

catch (WebException ex)
{
 if (ex.Status == WebExceptionStatus.ProtocolError)
 {
 // Obtain more detail on error:
 var response = (FtpWebResponse) ex.Response;
 FtpStatusCode errorCode = response.StatusCode;
 string errorMessage = response.StatusDescription;
 ...
 }
 ...
 }

702 | Chapter 16: Networking

www.EBooksWorld.ir

Using DNS
The static Dns class encapsulates the Domain Name Service, which converts
between a raw IP address, such as 66.135.192.87, and a human-friendly domain
name, such as ebay.com.

The GetHostAddresses method converts from domain name to IP address (or
addresses):

foreach (IPAddress a in Dns.GetHostAddresses ("albahari.com"))
 Console.WriteLine (a.ToString()); // 205.210.42.167

The GetHostEntry method goes the other way around, converting from address to
domain name:

IPHostEntry entry = Dns.GetHostEntry ("205.210.42.167");
Console.WriteLine (entry.HostName); // albahari.com

GetHostEntry also accepts an IPAddress object, so you can specify an IP address as
a byte array:

IPAddress address = new IPAddress (new byte[] { 205, 210, 42, 167 });
IPHostEntry entry = Dns.GetHostEntry (address);
Console.WriteLine (entry.HostName); // albahari.com

Domain names are automatically resolved to IP addresses when you use a class such
as WebRequest or TcpClient. If you plan to make many network requests to the
same address over the life of an application, however, you can sometimes improve
performance by first using Dns to explicitly convert the domain name into an IP
address and then communicating directly with the IP address from that point on.
This avoids repeated round-tripping to resolve the same domain name, and it can
be of benefit when dealing at the transport layer (via TcpClient, UdpClient, or
Socket).

The DNS class also provides awaitable task-based asynchronous methods:

foreach (IPAddress a in await Dns.GetHostAddressesAsync ("albahari.com"))
 Console.WriteLine (a.ToString());

Sending Mail with SmtpClient
The SmtpClient class in the System.Net.Mail namespace allows you to send mail
messages through the ubiquitous Simple Mail Transfer Protocol. To send a simple
text message, instantiate SmtpClient, set its Host property to your SMTP server
address, and then call Send:

SmtpClient client = new SmtpClient();
client.Host = "mail.myisp.net";
client.Send ("from@adomain.com", "to@adomain.com", "subject", "body");

To frustrate spammers, most SMTP servers on the Internet will accept connections
only from the ISP’s subscribers, so you need the SMTP address appropriate to the
current connection for this to work.

N
etw

o
rking

Using DNS | 703

www.EBooksWorld.ir

Constructing a MailMessage object exposes further options, including the ability to
add attachments:

SmtpClient client = new SmtpClient();
client.Host = "mail.myisp.net";
MailMessage mm = new MailMessage();

mm.Sender = new MailAddress ("kay@domain.com", "Kay");
mm.From = new MailAddress ("kay@domain.com", "Kay");
mm.To.Add (new MailAddress ("bob@domain.com", "Bob"));
mm.CC.Add (new MailAddress ("dan@domain.com", "Dan"));
mm.Subject = "Hello!";
mm.Body = "Hi there. Here's the photo!";
mm.IsBodyHtml = false;
mm.Priority = MailPriority.High;

Attachment a = new Attachment ("photo.jpg",
 System.Net.Mime.MediaTypeNames.Image.Jpeg);
mm.Attachments.Add (a);
client.Send (mm);

SmtpClient allows you to specify Credentials for servers requiring authentication,
EnableSsl if supported, and change the TCP Port to a nondefault value. By chang‐
ing the DeliveryMethod property, you can instruct the SmtpClient to instead use
IIS to send mail messages or simply to write each message to an .eml file in a speci‐
fied directory:

SmtpClient client = new SmtpClient();
client.DeliveryMethod = SmtpDeliveryMethod.SpecifiedPickupDirectory;
client.PickupDirectoryLocation = @"c:\mail";

Using TCP
TCP and UDP constitute the transport layer protocols on top of which most Inter‐
net—and local area network—services are built. HTTP, FTP, and SMTP use TCP;
DNS uses UDP. TCP is connection-oriented and includes reliability mechanisms;
UDP is connectionless, has a lower overhead, and supports broadcasting. BitTorrent
uses UDP, as does Voice over IP.

The transport layer offers greater flexibility—and potentially improved performance
—over the higher layers, but it requires that you handle such tasks as authentication
and encryption yourself.

With TCP in .NET, you have a choice of either the easier-to-use TcpClient and
TcpListener façade classes, or the feature-rich Socket class. (In fact, you can mix
and match, because TcpClient exposes the underlying Socket object through the
Client property.) The Socket class exposes more configuration options and allows
direct access to the network layer (IP) and non-Internet-based protocols such as
Novell’s SPX/IPX.

(TCP and UDP communication is also possible in WinRT: see “TCP in Windows
Runtime” on page 709.)

704 | Chapter 16: Networking

www.EBooksWorld.ir

As with other protocols, TCP differentiates a client and server: the client initiates a
request, while the server waits for a request. Here’s the basic structure for a synchro‐
nous TCP client request:

using (TcpClient client = new TcpClient())
{
 client.Connect ("address", port);
 using (NetworkStream n = client.GetStream())
 {
 // Read and write to the network stream...
 }
}

TcpClient’s Connect method blocks until a connection is established (ConnectA
sync is the asynchronous equivalent). The NetworkStream then provides a means of
two-way communication for both transmitting and receiving bytes of data from a
server.

A simple TCP server looks like this:

TcpListener listener = new TcpListener (<ip address>, port);
listener.Start();

while (keepProcessingRequests)
 using (TcpClient c = listener.AcceptTcpClient())
 using (NetworkStream n = c.GetStream())
 {
 // Read and write to the network stream...
 }

listener.Stop();

TcpListener requires the local IP address on which to listen (a computer with two
network cards, for instance, may have two addresses). You can use IPAddress.Any
to tell it to listen on all (or the only) local IP addresses. AcceptTcpClient blocks
until a client request is received (again, there’s also an asynchronous version), at
which point we call GetStream, just as on the client side.

When working at the transport layer, you need to decide on a protocol for who talks
when, and for how long—rather like with a walkie-talkie. If both parties talk or lis‐
ten at the same time, communication breaks down!

Let’s invent a protocol where the client speaks first, saying “Hello,” and then the
server responds by saying “Hello right back!” Here’s the code:

using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;

class TcpDemo
{
 static void Main()

N
etw

o
rking

Using TCP | 705

www.EBooksWorld.ir

 {
 new Thread (Server).Start(); // Run server method concurrently.
 Thread.Sleep (500); // Give server time to start.
 Client();
 }

 static void Client()
 {
 using (TcpClient client = new TcpClient ("localhost", 51111))
 using (NetworkStream n = client.GetStream())
 {
 BinaryWriter w = new BinaryWriter (n);
 w.Write ("Hello");
 w.Flush();
 Console.WriteLine (new BinaryReader (n).ReadString());
 }
 }

 static void Server() // Handles a single client request, then exits.
 {
 TcpListener listener = new TcpListener (IPAddress.Any, 51111);
 listener.Start();
 using (TcpClient c = listener.AcceptTcpClient())
 using (NetworkStream n = c.GetStream())
 {
 string msg = new BinaryReader (n).ReadString();
 BinaryWriter w = new BinaryWriter (n);
 w.Write (msg + " right back!");
 w.Flush(); // Must call Flush because we're not
 } // disposing the writer.
 listener.Stop();
 }
}

// OUTPUT: Hello right back!

In this example, we’re using the localhost loopback to run the client and server on
the same machine. We’ve arbitrarily chosen a port in the unallocated range (above
49152) and used a BinaryWriter and BinaryReader to encode the text messages.
We’ve avoided closing or disposing the readers and writers in order to keep the
underlying NetworkStream open until our conversation completes.

BinaryReader and BinaryWriter might seem like odd choices for reading and writ‐
ing strings. However, they have a major advantage over StreamReader and Stream
Writer: they prefix strings with an integer indicating the length, so a BinaryReader
always knows exactly how many bytes to read. If you call StreamReader.ReadToEnd,
you might block indefinitely—because a NetworkStream doesn’t have an end! As
long as the connection is open, the network stream can never be sure that the client
isn’t going to send more data.

706 | Chapter 16: Networking

www.EBooksWorld.ir

StreamReader is in fact completely out of bounds with Net
workStream, even if you plan only to call ReadLine. This is
because StreamReader has a read-ahead buffer, which can
result in it reading more bytes than are currently available,
blocking indefinitely (or until the socket times out). Other
streams such as FileStream don’t suffer this incompatibility
with StreamReader because they have a definite end—at which
point Read returns immediately with a value of 0.

Concurrency with TCP
TcpClient and TcpListener offer task-based asynchronous methods for scalable
concurrency. Using these is simply a question of replacing blocking method calls
with their *Async versions and awaiting the task that’s returned.

In the following example, we write an asynchronous TCP server that accepts
requests of 5,000 bytes in length, reverses the bytes, and then sends them back to the
client:

async void RunServerAsync ()
{
 var listener = new TcpListener (IPAddress.Any, 51111);
 listener.Start ();
 try
 {
 while (true)
 Accept (await listener.AcceptTcpClientAsync ());
 }
 finally { listener.Stop(); }
}

async Task Accept (TcpClient client)
{
 await Task.Yield ();
 try
 {
 using (client)
 using (NetworkStream n = client.GetStream ())
 {
 byte[] data = new byte [5000];

 int bytesRead = 0; int chunkSize = 1;
 while (bytesRead < data.Length && chunkSize > 0)
 bytesRead += chunkSize =
 await n.ReadAsync (data, bytesRead, data.Length - bytesRead);

 Array.Reverse (data); // Reverse the byte sequence
 await n.WriteAsync (data, 0, data.Length);
 }
 }
 catch (Exception ex) { Console.WriteLine (ex.Message); }
}

N
etw

o
rking

Using TCP | 707

www.EBooksWorld.ir

Such a program is scalable in that it does not block a thread for the duration of a
request. So, if a thousand clients were to connect at once over a slow network con‐
nections (so that each request took several seconds from start to finish, for exam‐
ple), this program would not require 1,000 threads for that time (unlike with a syn‐
chronous solution). Instead, it leases threads only for the small periods of time
required to execute code before and after the await expressions.

Receiving POP3 Mail with TCP
The .NET Framework provides no application-layer support for POP3, so you have
to write at the TCP layer in order to receive mail from a POP3 server. Fortunately,
this is a simple protocol; a POP3 conversation goes like this:

Client Mail server Notes

Client connects... +OK Hello there. Welcome message

USER joe +OK Password required.

PASS password +OK Logged in.

LIST +OK

1 1876

2 5412

3 845

.

Lists the ID and file size of each message on the
server

RETR 1 +OK 1876 octets

Content of message #1...
.

Retrieves the message with the specified ID

DELE 1 +OK Deleted. Deletes a message from the server

QUIT +OK Bye-bye.

Each command and response is terminated by a new line (CR + LF), except for the
multiline LIST and RETR commands, which are terminated by a single dot on a
separate line. Because we can’t use StreamReader with NetworkStream, we can start
by writing a helper method to read a line of text in a nonbuffered fashion:

static string ReadLine (Stream s)
{
 List<byte> lineBuffer = new List<byte>();
 while (true)
 {
 int b = s.ReadByte();
 if (b == 10 || b < 0) break;
 if (b != 13) lineBuffer.Add ((byte)b);
 }
 return Encoding.UTF8.GetString (lineBuffer.ToArray());
}

708 | Chapter 16: Networking

www.EBooksWorld.ir

We also need a helper method to send a command. Because we always expect to
receive a response starting with “+OK,” we can read and validate the response at the
same time:

static void SendCommand (Stream stream, string line)
{
 byte[] data = Encoding.UTF8.GetBytes (line + "\r\n");
 stream.Write (data, 0, data.Length);
 string response = ReadLine (stream);
 if (!response.StartsWith ("+OK"))
 throw new Exception ("POP Error: " + response);
}

With these methods written, the job of retrieving mail is easy. We establish a TCP
connection on port 110 (the default POP3 port) and then start talking to the server.
In this example, we write each mail message to a randomly named file with an .eml
extension before deleting the message off the server:

using (TcpClient client = new TcpClient ("mail.isp.com", 110))
using (NetworkStream n = client.GetStream())
{
 ReadLine (n); // Read the welcome message.
 SendCommand (n, "USER username");
 SendCommand (n, "PASS password");
 SendCommand (n, "LIST"); // Retrieve message IDs
 List<int> messageIDs = new List<int>();
 while (true)
 {
 string line = ReadLine (n); // e.g., "1 1876"
 if (line == ".") break;
 messageIDs.Add (int.Parse (line.Split (' ')[0])); // Message ID
 }

 foreach (int id in messageIDs) // Retrieve each message.
 {
 SendCommand (n, "RETR " + id);
 string randomFile = Guid.NewGuid().ToString() + ".eml";
 using (StreamWriter writer = File.CreateText (randomFile))
 while (true)
 {
 string line = ReadLine (n); // Read next line of message.
 if (line == ".") break; // Single dot = end of message.
 if (line == "..") line = "."; // "Escape out" double dot.
 writer.WriteLine (line); // Write to output file.
 }
 SendCommand (n, "DELE " + id); // Delete message off server.
 }
 SendCommand (n, "QUIT");
}

TCP in Windows Runtime
Windows Runtime exposes TCP functionality through the Windows.Network
ing.Sockets namespace. As with the .NET implementation, there are two primary

N
etw

o
rking

TCP in Windows Runtime | 709

www.EBooksWorld.ir

classes to handle server and client roles. In WinRT, these are StreamSocketLis
tener and StreamSocket.

The following method starts a server on port 51111 and waits for a client to con‐
nect. It then reads a single message comprising a length-prefixed string:

async void Server()
{
 var listener = new StreamSocketListener();
 listener.ConnectionReceived += async (sender, args) =>
 {
 using (StreamSocket socket = args.Socket)
 {
 var reader = new DataReader (socket.InputStream);
 await reader.LoadAsync (4);
 uint length = reader.ReadUInt32();
 await reader.LoadAsync (length);
 Debug.WriteLine (reader.ReadString (length));
 }
 listener.Dispose(); // Close listener after one message.
 };
 await listener.BindServiceNameAsync ("51111");
}

In this example, we used a WinRT type called DataReader (in Windows.Networking)
to read from the input stream, rather than converting to a .NET Stream object and
using a BinaryReader. DataReader is rather like BinaryReader except that it sup‐
ports asynchrony. The LoadAsync method asynchronously reads a specified number
of bytes into an internal buffer, which then allows you to call methods such as Read
UInt32 or ReadString. The idea is that if you wanted to, say, read 1,000 integers in a
row, you’d first call LoadAsync with a value of 4000, and then ReadInt32 1,000 times
in a loop. This avoids the overhead of calling asynchronous operations in a loop (as
each asynchronous operation incurs a small overhead).

DataReader/DataWriter have a ByteOrder property to control
whether numbers are encoding in big- or little-endian format.
Big-endian is the default.

The StreamSocket object that we obtained from awaiting AcceptAsync has separate
input and output streams. So, to write a message back, we’d use the socket’s Output
Stream. We can illustrate the use of OutputStream and DataWriter with the corre‐
sponding client code:

async void Client()
{
 using (var socket = new StreamSocket())
 {
 await socket.ConnectAsync (new HostName ("localhost"), "51111",
 SocketProtectionLevel.PlainSocket);
 var writer = new DataWriter (socket.OutputStream);
 string message = "Hello!";
 uint length = (uint) Encoding.UTF8.GetByteCount (message);
 writer.WriteUInt32 (length);

710 | Chapter 16: Networking

www.EBooksWorld.ir

 writer.WriteString (message);
 await writer.StoreAsync();
 }
}

We start by instantiating a StreamSocket directly and then call ConnectAsync with
the host name and port. (You can pass either a DNS name or an IP address string
into HostName’s constructor.) By specifying SocketProtectionLevel.Ssl, you can
request SSL encryption (if configured on the server).

Again, we used a WinRT DataWriter rather than a .NET BinaryWriter and wrote
the length of the string (measured in bytes rather than characters), followed by the
string itself which is UTF-8 encoded. Finally, we called StoreAsync, which writes
the buffer to the backing stream, and closed the socket.

N
etw

o
rking

TCP in Windows Runtime | 711

www.EBooksWorld.ir

www.EBooksWorld.ir

17
Serialization

This chapter introduces serialization and deserialization, the mechanism by which
objects can be represented in a flat text or binary form. Unless otherwise stated, the
types in this chapter all exist in the following namespaces:

System.Runtime.Serialization
System.Xml.Serialization

Serialization Concepts
Serialization is the act of taking an in-memory object or object graph (set of objects
that reference each other) and flattening it into a stream of bytes or XML nodes that
can be stored or transmitted. Deserialization works in reverse, taking a data stream
and reconstituting it into an in-memory object or object graph.

Serialization and deserialization are typically used to:

• Transmit objects across a network or application boundary
• Store representations of objects within a file or database

Another, less common use is to deep-clone objects. The data contract and XML
serialization engines can also be used as general-purpose tools for loading and sav‐
ing XML files of a known structure.

The .NET Framework supports serialization and deserialization both from the per‐
spective of clients wanting to serialize and deserialize objects, and from the perspec‐
tive of types wanting some control over how they are serialized.

Serializatio
n

713

www.EBooksWorld.ir

Serialization Engines
There are four serialization mechanisms in the .NET Framework:

• The data contract serializer
• The binary serializer (in desktop apps)

• The (attribute-based) XML serializer (XmlSerializer)

• The IXmlSerializable interface

Of these, the first three are serialization “engines” that do most or all of the serializa‐
tion work for you. The last is just a hook for doing the serialization yourself, using
XmlReader and XmlWriter. IXmlSerializable can work in conjunction with the
data contract serializer or XmlSerializer to handle the more complicated XML
serialization tasks.

Table 17-1 compares each of the engines. More stars equate to a better score.

Table 17-1. Serialization engine comparison

Feature Data contract
serializer

Binary
serializer

XmlSerializer IXmlSerializable

Level of automation *** ***** **** *

Type coupling Choice Tight Loose Loose

Version tolerance ***** *** ***** *****

Preserves object references Choice Yes No Choice

Can serialize nonpublic fields Yes Yes No Yes

Suitability for interoperable
messaging

***** ** **** ****

Flexibility in reading/writing XML
files

** - **** *****

Compact output ** **** ** **

Performance *** **** * to *** ***

The scores for IXmlSerializable assume you’ve (hand)coded optimally using
XmlReader and XmlWriter. The XML serialization engine requires that you recycle
the same XmlSerializer object for good performance.

Why three engines?
The reason for there being three engines is partly historical. The Framework started
out with two distinct goals in serialization:

714 | Chapter 17: Serialization

www.EBooksWorld.ir

• Serializing .NET object graphs with type and reference fidelity
• Interoperating with XML and SOAP messaging standards

The first was led by the requirements of Remoting; the second, by Web Services.
The job of writing one serialization engine to do both was too daunting, so Micro‐
soft wrote two engines: the binary serializer and the XML serializer.

When Windows Communication Foundation (WCF) was later written, as part of
Framework 3.0, part of the goal was to unify Remoting and Web Services. This
required a new serialization engine—hence, the data contract serializer. The data
contract serializer unifies the features of the older two engines relevant to (interoper‐
able) messaging. Outside of this context, however, the two older engines are still
important.

The data contract serializer
The data contract serializer is the newest and the most versatile of the three seriali‐
zation engines and is used by WCF. The serializer is particularly strong in two sce‐
narios:

• When exchanging information through standards-compliant messaging proto‐
cols

• When you need good version tolerance, plus the option of preserving object
references

The data contract serializer supports a data contract model that helps you decouple
the low-level details of the types you want to serialize from the structure of the seri‐
alized data. This provides excellent version tolerance, meaning you can deserialize
data that was serialized from an earlier or later version of a type. You can even dese‐
rialize types that have been renamed or moved to a different assembly.

The data contract serializer can cope with most object graphs, although it can
require more assistance than the binary serializer. It can also be used as a general-
purpose tool for reading/writing XML files, if you’re flexible on how the XML is
structured. (If you need to store data in attributes or cope with XML elements pre‐
senting in a random order, you cannot use the data contract serializer.)

The binary serializer
The binary serialization engine is easy to use, highly automatic, and well supported
throughout the .NET Framework. Remoting uses binary serialization—including
when communicating between two application domains in the same process (see
Chapter 24).

The binary serializer is highly automated: quite often, a single attribute is all that’s
required to make a complex type fully serializable. The binary serializer is also faster
than the data contract serializer when full type fidelity is needed. However, it tightly
couples a type’s internal structure to the format of the serialized data, resulting in

Serializatio
n

Serialization Concepts | 715

www.EBooksWorld.ir

poor version tolerance. (Prior to Framework 2.0, even adding a simple field was a
version-breaking change.) The binary engine is also not really designed to produce
XML, although it offers a formatter for SOAP-based messaging that provides limi‐
ted interoperability with simple types.

XmlSerializer
The XML serialization engine can only produce XML, and it is less powerful than
other engines in saving and restoring a complex object graph (it cannot restore
shared object references). It’s the most flexible of the three, however, in following an
arbitrary XML structure. For instance, you can choose whether properties are seri‐
alized to elements or attributes and the handling of a collection’s outer element. The
XML engine also provides excellent version tolerance.

XmlSerializer is used by ASMX Web Services.

IXmlSerializable
Implementing IXmlSerializable means to do the serialization yourself with an
XmlReader and XmlWriter. The IXmlSerializable interface is recognized both by
XmlSerializer and by the data contract serializer, so it can be used selectively to
handle the more complicated types. (It also can be used directly by WCF and ASMX
Web Services.) We describe XmlReader and XmlWriter in detail in Chapter 11.

Formatters
The output of the data contract and binary serializers is shaped by a pluggable for‐
matter. The role of a formatter is the same with both serialization engines, although
they use completely different classes to do the job.

A formatter shapes the final presentation to suit a particular medium or context of
serialization. In general, you can choose between XML and binary formatters. An
XML formatter is designed to work within the context of an XML reader/writer, text
file/stream, or SOAP messaging packet. A binary formatter is designed to work in a
context where an arbitrary stream of bytes will do—typically a file/stream or propri‐
etary messaging packet. Binary output is usually smaller than XML—sometimes
radically so.

The term “binary” in the context of a formatter is unrelated to
the “binary” serialization engine. Each of the two engines
ships with both XML and binary formatters!

In theory, the engines are decoupled from their formatters. In practice, the design of
each engine is geared toward one kind of formatter. The data contract serializer is
geared toward the interoperability requirements of XML messaging. This is good
for the XML formatter but means its binary formatter doesn’t always achieve the
gains you might hope. In contrast, the binary engine provides a relatively good
binary formatter, but its XML formatter is highly limited, offering only crude SOAP
interoperability.

716 | Chapter 17: Serialization

www.EBooksWorld.ir

Explicit Versus Implicit Serialization
Serialization and deserialization can be initiated in two ways.

The first is explicitly, by requesting that a particular object be serialized or deserial‐
ized. When you serialize or deserialize explicitly, you choose both the serialization
engine and the formatter.

In contrast, implicit serialization is initiated by the Framework. This happens when:

• A serializer recursively serializes a child object.
• You use a feature that relies on serialization, such as WCF, Remoting, or Web

Services.

WCF always uses the data contract serializer, although it can interoperate with the
attributes and interfaces of the other engines.

Remoting always uses the binary serialization engine.

Web Services always uses XmlSerializer.

The Data Contract Serializer
Here are the basic steps in using the data contract serializer:

1. Decide whether to use the DataContractSerializer or the NetDataContract
Serializer.

2. Decorate the types and members you want to serialize with [DataContract]
and [DataMember] attributes, respectively.

3. Instantiate the serializer and call WriteObject or ReadObject.

If you chose the DataContractSerializer, you will also need to register “known
types” (subtypes that can also be serialized), and decide whether to preserve object
references.

You may also need to take special action to ensure that collections are properly seri‐
alized.

Types for the data contract serializer are defined in the Sys
tem.Runtime.Serialization namespace, in an assembly of
the same name.

Serializatio
n

The Data Contract Serializer | 717

www.EBooksWorld.ir

DataContractSerializer Versus NetDataContractSerializer
There are two data contract serializers:

DataContractSerializer

Loosely couples .NET types to data contract types

NetDataContractSerializer

Tightly couples .NET types to data contract types

The DataContractSerializer can produce interoperable standards-compliant
XML such as this:

<Person xmlns="...">
 ...
</Person>

It requires, however, that you explicitly register serializable subtypes in advance so
that it can map a data contract name such as “Person” to the correct .NET type. The
NetDataContractSerializer requires no such assistance because it writes the full
type and assembly names of the types it serializes, rather like the binary serialization
engine:

<Person z:Type="SerialTest.Person" z:Assembly=
 "SerialTest, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
 ...
</Person>

Such output, however, is proprietary. It also relies on the presence of a specific.NET
type in a specific namespace and assembly in order to deserialize.

If you’re saving an object graph to a “black box,” you can choose either serializer,
depending on what benefits are more important to you. If you’re communicating
through WCF, or reading/writing an XML file, you’ll most likely want the DataCon
tractSerializer.

Another difference between the two serializers is that NetDataContractSerializer
always preserves referential equality; DataContractSerializer does so only upon
request.

We’ll go into each of these topics in more detail in the following sections.

Using the Serializers
After choosing a serializer, the next step is to attach attributes to the types and
members you want to serialize. At a minimum:

• Add the [DataContract] attribute to each type.

• Add the [DataMember] attribute to each member that you want to include.

718 | Chapter 17: Serialization

www.EBooksWorld.ir

Here’s an example:

namespace SerialTest
{
 [DataContract] public class Person
 {
 [DataMember] public string Name;
 [DataMember] public int Age;
 }
}

These attributes are enough to make a type implicitly serializable through the data
contract engine.

You can then explicitly serialize or deserialize an object instance by instantiating a
DataContractSerializer or NetDataContractSerializer and calling WriteOb
ject or ReadObject:

Person p = new Person { Name = "Stacey", Age = 30 };

var ds = new DataContractSerializer (typeof (Person));

using (Stream s = File.Create ("person.xml"))
 ds.WriteObject (s, p); // Serialize

Person p2;
using (Stream s = File.OpenRead ("person.xml"))
 p2 = (Person) ds.ReadObject (s); // Deserialize

Console.WriteLine (p2.Name + " " + p2.Age); // Stacey 30

DataContractSerializer’s constructor requires the root object type (the type of the
object you’re explicitly serializing). In contrast, NetDataContractSerializer does
not:

var ns = new NetDataContractSerializer();

// NetDataContractSerializer is otherwise the same to use
// as DataContractSerializer.
...

Both types of serializer use the XML formatter by default. With an XmlWriter, you
can request that the output be indented for readability:

Person p = new Person { Name = "Stacey", Age = 30 };
var ds = new DataContractSerializer (typeof (Person));

XmlWriterSettings settings = new XmlWriterSettings() { Indent = true };
using (XmlWriter w = XmlWriter.Create ("person.xml", settings))
 ds.WriteObject (w, p);

System.Diagnostics.Process.Start ("person.xml");

Here’s the result:

Serializatio
n

The Data Contract Serializer | 719

www.EBooksWorld.ir

<Person xmlns="http://schemas.datacontract.org/2004/07/SerialTest"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <Age>30</Age>
 <Name>Stacey</Name>
</Person>

The XML element name <Person> reflects the data contract name, which, by
default, is the .NET type name. You can override this and explicitly state a data con‐
tract name as follows:

[DataContract (Name="Candidate")]
public class Person { ... }

The XML namespace reflects the data contract namespace, which, by default, is
http://schemas.datacontract.org/2004/07/, plus the .NET type namespace. You can
override this in a similar fashion:

[DataContract (Namespace="http://oreilly.com/nutshell")]
public class Person { ... }

Specifying a name and namespace decouples the contract
identity from the .NET type name. It ensures that, should you
later refactor and change the type’s name or namespace, serial‐
ization is unaffected.

You can also override names for data members:

[DataContract (Name="Candidate", Namespace="http://oreilly.com/nutshell")]
public class Person
{
 [DataMember (Name="FirstName")] public string Name;
 [DataMember (Name="ClaimedAge")] public int Age;
}

Here’s the output:

<?xml version="1.0" encoding="utf-8"?>
<Candidate xmlns="http://oreilly.com/nutshell"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance" >
 <ClaimedAge>30</ClaimedAge>
 <FirstName>Stacey</FirstName>
</Candidate>

[DataMember] supports both fields and properties—public and private. The field or
property’s data type can be any of the following:

• Any primitive type

• DateTime, TimeSpan, Guid, Uri, or an Enum value
• Nullable versions of the above

• byte[] (serializes in XML to base 64)

• Any “known” type decorated with DataContract

720 | Chapter 17: Serialization

www.EBooksWorld.ir

• Any IEnumerable type (see the section “Serializing Collections” on page 747
later in this chapter)

• Any type with the [Serializable] attribute or implementing ISerializable
(see the section “Extending Data Contracts” on page 730 later in this chapter)

• Any type implementing IXmlSerializable

Specifying a binary formatter
You can use a binary formatter with DataContractSerializer or NetDataContract
Serializer. The process is the same:

Person p = new Person { Name = "Stacey", Age = 30 };
var ds = new DataContractSerializer (typeof (Person));

var s = new MemoryStream();
using (XmlDictionaryWriter w = XmlDictionaryWriter.CreateBinaryWriter (s))
 ds.WriteObject (w, p);

var s2 = new MemoryStream (s.ToArray());
Person p2;
using (XmlDictionaryReader r = XmlDictionaryReader.CreateBinaryReader (s2,
 XmlDictionaryReaderQuotas.Max))
 p2 = (Person) ds.ReadObject (r);

The output varies between being slightly smaller than that of the XML formatter,
and radically smaller if your types contain large arrays.

Serializing Subclasses
You don’t need to do anything special to handle the serializing of subclasses with the
NetDataContractSerializer. The only requirement is that subclasses have the
DataContract attribute. The serializer will write the fully qualified names of the
actual types that it serializes as follows:

<Person ... z:Type="SerialTest.Person" z:Assembly=
 "SerialTest, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">

A DataContractSerializer, however, must be informed about all subtypes that it
may have to serialize or deserialize. To illustrate, suppose we subclass Person as fol‐
lows:

[DataContract] public class Person
{
 [DataMember] public string Name;
 [DataMember] public int Age;
}
[DataContract] public class Student : Person { }
[DataContract] public class Teacher : Person { }

and then write a method to clone a Person:

Serializatio
n

The Data Contract Serializer | 721

www.EBooksWorld.ir

static Person DeepClone (Person p)
{
 var ds = new DataContractSerializer (typeof (Person));
 MemoryStream stream = new MemoryStream();
 ds.WriteObject (stream, p);
 stream.Position = 0;
 return (Person) ds.ReadObject (stream);
}

which we call as follows:

Person person = new Person { Name = "Stacey", Age = 30 };
Student student = new Student { Name = "Stacey", Age = 30 };
Teacher teacher = new Teacher { Name = "Stacey", Age = 30 };

Person p2 = DeepClone (person); // OK
Student s2 = (Student) DeepClone (student); // SerializationException
Teacher t2 = (Teacher) DeepClone (teacher); // SerializationException

DeepClone works if called with a Person but throws an exception with a Student or
Teacher, because the deserializer has no way of knowing what .NET type (or assem‐
bly) a “Student” or “Teacher” should resolve to. This also helps with security, in that
it prevents the deserialization of unexpected types.

The solution is to specify all permitted or “known” subtypes. You can do this either
when constructing the DataContractSerializer:

var ds = new DataContractSerializer (typeof (Person),
 new Type[] { typeof (Student), typeof (Teacher) });

or in the type itself, with the KnownType attribute:

[DataContract, KnownType (typeof (Student)), KnownType (typeof (Teacher))]
public class Person
...

Here’s what a serialized Student now looks like:

<Person xmlns="..."
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 i:type="Student" >
 ...
<Person>

Because we specified Person as the root type, the root element still has that name.
The actual subclass is described separately—in the type attribute.

The NetDataContractSerializer suffers a performance hit
when serializing subtypes—with either formatter. It seems that
when it encounters a subtype, it has to stop and think for a
while!
Serialization performance matters on an application server
that’s handling many concurrent requests.

722 | Chapter 17: Serialization

www.EBooksWorld.ir

Object References
References to other objects are serialized, too. Consider the following classes:

[DataContract] public class Person
{
 [DataMember] public string Name;
 [DataMember] public int Age;
 [DataMember] public Address HomeAddress;
}

[DataContract] public class Address
{
 [DataMember] public string Street, Postcode;
}

Here’s the result of serializing this to XML using the DataContractSerializer:

<Person...>
 <Age>...</Age>
 <HomeAddress>
 <Street>...</Street>
 <Postcode>...</Postcode>
 </HomeAddress>
 <Name>...</Name>
</Person>

The DeepClone method we wrote in the preceding section
would clone HomeAddress, too—distinguishing it from a sim‐
ple MemberwiseClone.

If you’re using a DataContractSerializer, the same rules apply when subclassing
Address as when subclassing the root type. So, if we define a USAddress class, for
instance:

[DataContract]
public class USAddress : Address { }

and assign an instance of it to a Person:

Person p = new Person { Name = "John", Age = 30 };
p.HomeAddress = new USAddress { Street="Fawcett St", Postcode="02138" };

p could not be serialized. The solution is either to apply the KnownType attribute to
Address:

[DataContract, KnownType (typeof (USAddress))]
public class Address
{
 [DataMember] public string Street, Postcode;
}

or to tell DataContractSerializer about USAddress in construction:

var ds = new DataContractSerializer (typeof (Person),
 new Type[] { typeof (USAddress) });

Serializatio
n

The Data Contract Serializer | 723

www.EBooksWorld.ir

(We don’t need to tell it about Address because it’s the declared type of the HomeAd
dress data member.)

Preserving object references
The NetDataContractSerializer always preserves referential equality. The Data
ContractSerializer does not, unless you specifically ask it to.

This means that if the same object is referenced in two different places, a DataCon
tractSerializer ordinarily writes it twice. So, if we modify the preceding example
so that Person also stores a work address:

[DataContract] public class Person
{
 ...
 [DataMember] public Address HomeAddress, WorkAddress;
}

and then serialize an instance as follows:

Person p = new Person { Name = "Stacey", Age = 30 };
p.HomeAddress = new Address { Street = "Odo St", Postcode = "6020" };
p.WorkAddress = p.HomeAddress;

we would see the same address details twice in the XML:

...
<HomeAddress>
 <Postcode>6020</Postcode>
 <Street>Odo St</Street>
</HomeAddress>
...
<WorkAddress>
 <Postcode>6020</Postcode>
 <Street>Odo St</Street>
</WorkAddress>

When this was later deserialized, WorkAddress and HomeAddress would be different
objects. The advantage of this system is that it keeps the XML simple and standards-
compliant. The disadvantages of this system include larger XML, loss of referential
integrity, and the inability to cope with cyclical references.

You can request referential integrity by specifying true for preserveObjectReferen
ces when constructing a DataContractSerializer:

var ds = new DataContractSerializer (typeof (Person),
 null, 1000, false, true, null);

The third argument is mandatory when preserveObjectReferences is true: it
indicates the maximum number of object references that the serializer should keep
track of. The serializer throws an exception if this number is exceeded (this prevents
a denial of service attack through a maliciously constructed stream).

724 | Chapter 17: Serialization

www.EBooksWorld.ir

Here’s what the XML then looks like for a Person with the same home and work
addresses:

<Person xmlns="http://schemas.datacontract.org/2004/07/SerialTest"
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/"
 z:Id="1">
 <Age>30</Age>
 <HomeAddress z:Id="2">
 <Postcode z:Id="3">6020</Postcode>
 <Street z:Id="4">Odo St</Street>
 </HomeAddress>
 <Name z:Id="5">Stacey</Name>
 <WorkAddress z:Ref="2" i:nil="true" />
</Person>

The cost of this is in reduced interoperability (notice the proprietary namespace of
the Id and Ref attributes).

Version Tolerance
You can add and remove data members without breaking forward or backward
compatibility. By default, the data contract deserializers do the following:

• Skip over data for which there is no [DataMember] in the type.

• Don’t complain if any [DataMember] is missing in the serialization stream.

Rather than skipping over unrecognized data, you can instruct the deserializer to
store unrecognized data members in a black box and then replay them should the
type later be reserialized. This allows you to correctly round-trip data that’s been
serialized by a later version of your type. To activate this feature, implement IExten
sibleDataObject. This interface really means “IBlackBoxProvider.” It requires that
you implement a single property, to get/set the black box:

[DataContract] public class Person : IExtensibleDataObject{
 [DataMember] public string Name;
 [DataMember] public int Age;

 ExtensionDataObject IExtensibleDataObject.ExtensionData { get; set; }
}

Required members
If a member is essential for a type, you can demand that it be present with IsRe
quired:

[DataMember (IsRequired=true)] public int ID;

If that member is not present, an exception is then thrown upon deserialization.

Serializatio
n

The Data Contract Serializer | 725

www.EBooksWorld.ir

Member Ordering
The data contract serializers are extremely fussy about the ordering of data mem‐
bers. The deserializers, in fact, skip over any members considered out of sequence.

Members are written in the following order when serializing:

1. Base class to subclass

2. Low Order to high Order (for data members whose Order is set)
3. Alphabetical order (using ordinal string comparison)

So, in the preceding examples, Age comes before Name. In the following example,
Name comes before Age:

[DataContract] public class Person
{
 [DataMember (Order=0)] public string Name;
 [DataMember (Order=1)] public int Age;
}

If Person has a base class, the base class’s data members would all serialize first.

The main reason to specify an order is to comply with a particular XML schema.
XML element order equates to data member order.

If you don’t need to interoperate with anything else, the easiest approach is not to
specify a member Order and rely purely on alphabetical ordering. A discrepancy
will then never arise between serialization and deserialization as members are added
and removed. The only time you’ll come unstuck is if you move a member between
a base class and a subclass.

Null and Empty Values
There are two ways to deal with a data member whose value is null or empty:

1. Explicitly write the null or empty value (the default).
2. Omit the data member from the serialization output.

In XML, an explicit null value looks like this:

<Person xmlns="..."
 xmlns:i="http://www.w3.org/2001/XMLSchema-instance">
 <Name i:nil="true" />
</Person>

Writing null or empty members can waste space, particularly on a type with lots of
fields or properties that are usually left empty. More importantly, you may need to
follow an XML schema that expects the use of optional elements (e.g., minOc
curs="0") rather than nil values.

726 | Chapter 17: Serialization

www.EBooksWorld.ir

You can instruct the serializer not to emit data members for null/empty values as
follows:

[DataContract] public class Person
{
 [DataMember (EmitDefaultValue=false)] public string Name;
 [DataMember (EmitDefaultValue=false)] public int Age;
}

Name is omitted if its value is null; Age is omitted if its value is 0 (the default value
for the int type). If we were to make Age a nullable int, then it would be omitted if
(and only if) its value was null.

The data contract deserializer, in rehydrating an object,
bypasses the type’s constructors and field initializers. This
allows you to omit data members as described without break‐
ing fields that are assigned nondefault values through an ini‐
tializer or constructor. To illustrate, suppose we set the default
Age for a Person to 30 as follows:

[DataMember (EmitDefaultValue=false)]
public int Age = 30;

Now suppose that we instantiate Person, explicitly set its Age
from 30 to 0, and then serialize it. The output won’t include
Age, because 0 is the default value for the int type. This means
that in deserialization, Age will be ignored and the field will
remain at its default value—which fortunately is 0, given that
field initializers and constructors were bypassed.

Data Contracts and Collections
The data contract serializers can save and repopulate any enumerable collection. For
instance, suppose we define Person to have a List<> of addresses:

[DataContract] public class Person
{
 ...
 [DataMember] public List<Address> Addresses;
}

[DataContract] public class Address
{
 [DataMember] public string Street, Postcode;
}

Here’s the result of serializing a Person with two addresses:

<Person ...>
 ...
 <Addresses>
 <Address>
 <Postcode>6020</Postcode>
 <Street>Odo St</Street>
 </Address>

Serializatio
n

Data Contracts and Collections | 727

www.EBooksWorld.ir

 <Address>
 <Postcode>6152</Postcode>
 <Street>Comer St</Street>
 </Address>
 </Addresses>
 ...
</Person>

Notice that the serializer doesn’t encode any information about the particular type of
collection it serialized. If the Addresses field was instead of type Address[], the
output would be identical. This allows the collection type to change between seriali‐
zation and deserialization without causing an error.

Sometimes, though, you need your collection to be of a more specific type than you
expose. An extreme example is with interfaces:

[DataMember] public IList<Address> Addresses;

This serializes correctly (as before), but a problem arises in deserialization. There’s
no way the deserializer can know which concrete type to instantiate, so it chooses
the simplest option—an array. The deserializer sticks to this strategy even if you ini‐
tialize the field with a different concrete type:

[DataMember] public IList<Address> Addresses = new List<Address>();

(Remember that the deserializer bypasses field initializers.) The workaround is to
make the data member a private field and add a public property to access it:

[DataMember (Name="Addresses")] List<Address> _addresses;

public IList<Address> Addresses { get { return _addresses; } }

In a nontrivial application, you would probably use properties in this manner any‐
way. The only unusual thing here is that we’ve marked the private field as the data
member, rather than the public property.

Subclassed Collection Elements
The serializer handles subclassed collection elements transparently. You must
declare the valid subtypes just as you would if they were used anywhere else:

[DataContract, KnownType (typeof (USAddress))]
public class Address
{
 [DataMember] public string Street, Postcode;
}

public class USAddress : Address { }

Adding a USAddress to a Person’s address list then generates XML like this:

...
 <Addresses>
 <Address i:type="USAddress">
 <Postcode>02138</Postcode>
 <Street>Fawcett St</Street>

728 | Chapter 17: Serialization

www.EBooksWorld.ir

 </Address>
 </Addresses>

Customizing Collection and Element Names
If you subclass a collection class itself, you can customize the XML name used to
describe each element by attaching a CollectionDataContract attribute:

[CollectionDataContract (ItemName="Residence")]
public class AddressList : Collection<Address> { }

[DataContract] public class Person
{
 ...
 [DataMember] public AddressList Addresses;
}

Here’s the result:

...
 <Addresses>
 <Residence>
 <Postcode>6020</Postcode
 <Street>Odo St</Street>
 </Residence>
 ...

CollectionDataContract also lets you specify a Namespace and Name. The latter is
not used when the collection is serialized as a property of another object (such as in
this example), but it is when the collection is serialized as the root object.

You can also use CollectionDataContract to control the serialization of dictionar‐
ies:

[CollectionDataContract (ItemName="Entry",
 KeyName="Kind",
 ValueName="Number")]
public class PhoneNumberList : Dictionary <string, string> { }

[DataContract] public class Person
{
 ...
 [DataMember] public PhoneNumberList PhoneNumbers;
}

Here’s how this formats:

...
 <PhoneNumbers>
 <Entry>
 <Kind>Home</Kind>
 <Number>08 1234 5678</Number>
 </Entry>
 <Entry>
 <Kind>Mobile</Kind>
 <Number>040 8765 4321</Number>

Serializatio
n

Data Contracts and Collections | 729

www.EBooksWorld.ir

 </Entry>
 </PhoneNumbers>

Extending Data Contracts
This section describes how you can extend the capabilities of the data contract seri‐
alizer through serialization hooks, [Serializable] and IXmlSerializable.

Serialization and Deserialization Hooks
You can request that a custom method be executed before or after serialization by
flagging the method with one of the following attributes:

[OnSerializing]

Indicates a method to be called just before serialization

[OnSerialized]

Indicates a method to be called just after serialization

Similar attributes are supported for deserialization:

[OnDeserializing]

Indicates a method to be called just before deserialization

[OnDeserialized]

Indicates a method to be called just after deserialization

The custom method must have a single parameter of type StreamingContext. This
parameter is required for consistency with the binary engine, and it is not used by
the data contract serializer.

[OnSerializing] and [OnDeserialized] are useful in handling members that are
outside the capabilities of the data contract engine, such as a collection that has an
extra payload or that does not implement standard interfaces. Here’s the basic
approach:

[DataContract] public class Person
{
 public SerializationUnfriendlyType Addresses;

 [DataMember (Name="Addresses")]
 SerializationFriendlyType _serializationFriendlyAddresses;

 [OnSerializing]
 void PrepareForSerialization (StreamingContext sc)
 {
 // Copy Addresses—> _serializationFriendlyAddresses
 // ...
 }

 [OnDeserialized]
 void CompleteDeserialization (StreamingContext sc)

730 | Chapter 17: Serialization

www.EBooksWorld.ir

 {
 // Copy _serializationFriendlyAddresses—> Addresses
 // ...
 }
}

An [OnSerializing] method can also be used to conditionally serialize fields:

public DateTime DateOfBirth;

[DataMember] public bool Confidential;

[DataMember (Name="DateOfBirth", EmitDefaultValue=false)]
DateTime? _tempDateOfBirth;

[OnSerializing]
void PrepareForSerialization (StreamingContext sc)
{
 if (Confidential)
 _tempDateOfBirth = DateOfBirth;
 else
 _tempDateOfBirth = null;
}

Recall that the data contract deserializers bypass field initializers and constructors.
An [OnDeserializing] method acts as a pseudoconstructor for deserialization, and
it is useful for initializing fields excluded from serialization:

[DataContract] public class Test
{
 bool _editable = true;

 public Test() { _editable = true; }

 [OnDeserializing]
 void Init (StreamingContext sc)
 {
 _editable = true;
 }
}

If it wasn’t for the Init method, _editable would be false in a deserialized instance
of Test—despite the other two attempts at making it true.

Methods decorated with these four attributes can be private. If subtypes need to
participate, they can define their own methods with the same attributes, and they
will get executed, too.

Interoperating with [Serializable]
The data contract serializer can also serialize types marked with the binary serializa‐
tion engine’s attributes and interfaces. This ability is important, since support for the
binary engine has been woven into much of what was written prior to Framework
3.0—including the .NET Framework itself!

Serializatio
n

Extending Data Contracts | 731

www.EBooksWorld.ir

The following things flag a type as being serializable for the
binary engine:

• The [Serializable] attribute

• Implementing ISerializable

Binary interoperability is useful in serializing existing types as well as new types that
need to support both engines. It also provides another means of extending the capa‐
bility of the data contract serializer, because the binary engine’s ISerializable is
more flexible than the data contract attributes. Unfortunately, the data contract seri‐
alizer is inefficient in how it formats data added via ISerializable.

A type wanting the best of both worlds cannot define attributes for both engines.
This creates a problem for types such as string and DateTime, which for historical
reasons cannot divorce the binary engine attributes. The data contract serializer
works around this by filtering out these basic types and processing them specially.
For all other types marked for binary serialization, the data contract serializer
applies similar rules to what the binary engine would use. This means it honors
attributes such as NonSerialized or calls ISerializable if implemented. It does
not thunk to the binary engine itself—this ensures that output is formatted in the
same style as if data contract attributes were used.

Types designed to be serialized with the binary engine expect
object references to be preserved. You can enable this option
through the DataContractSerializer (or by using the NetDa
taContractSerializer).

The rules for registering known types also apply to objects and subobjects serialized
through the binary interfaces.

The following example illustrates a class with a [Serializable] data member:

[DataContract] public class Person
{
 ...
 [DataMember] public Address MailingAddress;
}
[Serializable] public class Address
{
 public string Postcode, Street;
}

Here’s the result of serializing it:

<Person ...>
 ...
 <MailingAddress>
 <Postcode>6020</Postcode>
 <Street>Odo St</Street>
 </MailingAddress>
 ...

732 | Chapter 17: Serialization

www.EBooksWorld.ir

Had Address implemented ISerializable, the result would be less efficiently for‐
matted:

<MailingAddress>
 <Street xmlns:d3p1="http://www.w3.org/2001/XMLSchema"
 i:type="d3p1:string" xmlns="">str</Street>
 <Postcode xmlns:d3p1="http://www.w3.org/2001/XMLSchema"
 i:type="d3p1:string" xmlns="">pcode</Postcode>
</MailingAddress>

Interoperating with IXmlSerializable
A limitation of the data contract serializer is that it gives you little control over the
structure of the XML. In a WCF application, this can actually be beneficial, in that it
makes it easier for the infrastructure to comply with standard messaging protocols.

If you do need precise control over the XML, you can implement IXmlSerializa
ble and then use XmlReader and XmlWriter to manually read and write the XML.
The data contract serializer allows you to do this just on the types for which this
level of control is required. We describe the IXmlSerializable interface further in
the final section of this chapter.

The Binary Serializer
The binary serialization engine is used implicitly by Remoting. It can also be used to
perform such tasks as saving and restoring objects to disk. The binary serialization
is highly automated and can handle complex object graphs with minimum interven‐
tion. It’s not available, however, in Windows Store apps.

There are two ways to make a type support binary serialization. The first is
attribute-based; the second involves implementing ISerializable. Adding
attributes is simpler; implementing ISerializable is more flexible. You typically
implement ISerializable to:

• Dynamically control what gets serialized.
• Make your serializable type friendly to being subclassed by other parties.

Getting Started
A type can be made serializable with a single attribute:

[Serializable] public sealed class Person
{
 public string Name;
 public int Age;
}

The [Serializable] attribute instructs the serializer to include all fields in the type.
This includes both private and public fields (but not properties). Every field must

Serializatio
n

The Binary Serializer | 733

www.EBooksWorld.ir

itself be serializable; otherwise, an exception is thrown. Primitive .NET types such
as string and int support serialization (as do many other .NET types).

The Serializable attribute is not inherited, so subclasses are
not automatically serializable unless also marked with this
attribute.
With automatic properties, the binary serialization engine
serializes the underlying compiler-generated field. The name
of this field, unfortunately, can change when its type is recom‐
piled, breaking compatibility with existing serialized data. The
workaround is either to avoid automatic properties in [Serial
izable] types or to implement ISerializable.

To serialize an instance of Person, you instantiate a formatter and call Serialize.
There are two formatters for use with the binary engine:

BinaryFormatter

This is the more efficient of the two, producing smaller output in less time.
Its namespace is System.Runtime.Serialization.Formatters.Binary.

SoapFormatter

This supports basic SOAP-style messaging when used with Remoting. Its
namespace is System.Runtime.Serialization.Formatters.Soap.

BinaryFormatter is contained in mscorlib; SoapFormatter is contained in Sys‐
tem.Runtime.Serialization.Formatters.Soap.dll.

The SoapFormatter is less functional than the BinaryFormat
ter. The SoapFormatter doesn’t support generic types or the
filtering of extraneous data necessary for version tolerant seri‐
alization.

The two formatters are otherwise exactly the same to use. The following serializes a
Person with a BinaryFormatter:

Person p = new Person() { Name = "George", Age = 25 };

IFormatter formatter = new BinaryFormatter();

using (FileStream s = File.Create ("serialized.bin"))
 formatter.Serialize (s, p);

All the data necessary to reconstruct the Person object is written to the file serial‐
ized.bin. The Deserialize method restores the object:

using (FileStream s = File.OpenRead ("serialized.bin"))
{
 Person p2 = (Person) formatter.Deserialize (s);
 Console.WriteLine (p2.Name + " " + p.Age); // George 25
}

734 | Chapter 17: Serialization

www.EBooksWorld.ir

The deserializer bypasses all constructors when re-creating
objects. Behind the scenes, it calls FormatterServices.GetU
ninitializedObject to do this job. You can call this method
yourself to implement some very grubby design patterns!

The serialized data includes full type and assembly information, so if we try to cast
the result of deserialization to a matching Person type in a different assembly, an
error would result. The deserializer fully restores object references to their original
state upon deserialization. This includes collections, which are just treated as serial‐
izable objects like any other (all collection types in System.Collections.* are
marked as serializable).

The binary engine can handle large, complex object graphs
without special assistance (other than ensuring that all partici‐
pating members are serializable). One thing to be wary of is
that the serializer’s performance degrades in proportion to the
number of references in your object graph. This can become
an issue in a Remoting server that has to process many con‐
current requests.

Binary Serialization Attributes
[NonSerialized]
Unlike data contracts, which have an opt-in policy in serializing fields, the binary
engine has an opt-out policy. Fields that you don’t want serialized, such as those used
for temporary calculations, or for storing file or window handles, you must mark
explicitly with the [NonSerialized] attribute:

[Serializable] public sealed class Person
{
 public string Name;
 public DateTime DateOfBirth;

 // Age can be calculated, so there's no need to serialize it.
 [NonSerialized] public int Age;
}

This instructs the serializer to ignore the Age member.

Nonserialized members are always empty or null when dese‐
rialized—even if field initializers or constructors set them
otherwise.

[OnDeserializing] and [OnDeserialized]
Deserialization bypasses all your normal constructors as well as field initializers.
This is of little consequence if every field partakes in serialization, but it can be
problematic if some fields are excluded via [NonSerialized]. We can illustrate this
by adding a bool field called Valid:

Serializatio
n

Binary Serialization Attributes | 735

www.EBooksWorld.ir

public sealed class Person
{
 public string Name;
 public DateTime DateOfBirth;

 [NonSerialized] public int Age;
 [NonSerialized] public bool Valid = true;

 public Person() { Valid = true; }
}

A deserialized Person will not be Valid—despite the constructor and field initial‐
izer.

The solution is the same as with the data contract serializer: to define a special
deserialization “constructor” with the [OnDeserializing] attribute. A method that
you flag with this attribute gets called just prior to deserialization:

[OnDeserializing]
void OnDeserializing (StreamingContext context)
{
 Valid = true;
}

We could also write an [OnDeserialized] method to update the calculated Age field
(this fires just after deserialization):

[OnDeserialized]
void OnDeserialized (StreamingContext context)
{
 TimeSpan ts = DateTime.Now - DateOfBirth;
 Age = ts.Days / 365; // Rough age in years
}

[OnSerializing] and [OnSerialized]
The binary engine also supports the [OnSerializing] and [OnSerialized]
attributes. These flag a method for execution before or after serialization. To see
how they can be useful, we’ll define a Team class that contains a generic List of play‐
ers:

[Serializable] public sealed class Team
{
 public string Name;
 public List<Person> Players = new List<Person>();
}

This class serializes and deserializes correctly with the binary formatter but not the
SOAP formatter. This is because of an obscure limitation: the SOAP formatter
refuses to serialize generic types! An easy solution is to convert Players to an array
just prior to serialization, then convert it back to a generic List upon deserializa‐
tion. To make this work, we can add another field for storing the array, mark the
original Players field as [NonSerialized], and then write the conversion code in as
follows:

736 | Chapter 17: Serialization

www.EBooksWorld.ir

[Serializable] public sealed class Team
{
 public string Name;
 Person[] _playersToSerialize;

 [NonSerialized] public List<Person> Players = new List<Person>();

 [OnSerializing]
 void OnSerializing (StreamingContext context)
 {
 _playersToSerialize = Players.ToArray();
 }

 [OnSerialized]
 void OnSerialized (StreamingContext context)
 {
 _playersToSerialize = null; // Allow it to be freed from memory
 }

 [OnDeserialized]
 void OnDeserialized (StreamingContext context)
 {
 Players = new List<Person> (_playersToSerialize);
 }
}

[OptionalField] and Versioning
By default, adding a field breaks compatibility with data that’s already serialized,
unless you attach the [OptionalField] attribute to the new field.

To illustrate, suppose we start with a Person class that has just one field. Let’s call it
Version 1:

[Serializable] public sealed class Person // Version 1
{
 public string Name;
}

Later, we realize we need a second field, so we create Version 2 as follows:

[Serializable] public sealed class Person // Version 2
{
 public string Name;
 public DateTime DateOfBirth;
}

If two computers were exchanging Person objects via Remoting, deserialization
would go wrong unless they both updated to Version 2 at exactly the same time. The
OptionalField attribute gets around this problem:

[Serializable] public sealed class Person // Version 2 Robust
{
 public string Name;

Serializatio
n

Binary Serialization Attributes | 737

www.EBooksWorld.ir

 [OptionalField (VersionAdded = 2)] public DateTime DateOfBirth;
}

This tells the deserializer not to panic if it sees no DateOfBirth in the data stream,
and instead to treat the missing field as nonserialized. This means you end up with
an empty DateTime (you can assign a different value in an [OnDeserializing]
method).

The VersionAdded argument is an integer that you increment each time you aug‐
ment a type’s fields. This serves as documentation, and it has no effect on serializa‐
tion semantics.

If versioning robustness is important, avoid renaming and
deleting fields and avoid retrospectively adding the NonSerial
ized attribute. Never change a field’s type.

So far we’ve focused on the backward-compatibility problem: the deserializer failing
to find an expected field in the serialization stream. But with two-way communica‐
tion, a forward-compatibility problem can also arise whereby the deserializer
encounters an extraneous field with no knowledge of how to process it. The binary
formatter is programmed to automatically cope with this by throwing away the
extraneous data; the SOAP formatter instead throws an exception! Hence, you must
use the binary formatter if two-way versioning robustness is required; otherwise,
manually control the serialization by implementing ISerializable.

Binary Serialization with ISerializable
Implementing ISerializable gives a type complete control over its binary seriali‐
zation and deserialization.

Here’s the ISerializable interface definition:

public interface ISerializable
{
 void GetObjectData (SerializationInfo info, StreamingContext context);
}

GetObjectData fires upon serialization; its job is to populate the Serializatio
nInfo object (a name-value dictionary) with data from all fields that you want seri‐
alized. Here’s how we would write a GetObjectData method that serializes two
fields, called Name and DateOfBirth:

public virtual void GetObjectData (SerializationInfo info,
 StreamingContext context)
 {
 info.AddValue ("Name", Name);
 info.AddValue ("DateOfBirth", DateOfBirth);
 }

In this example, we’ve chosen to name each item according to its corresponding
field. This is not required; any name can be used, as long as the same name is used
upon deserialization. The values themselves can be of any serializable type; the

738 | Chapter 17: Serialization

www.EBooksWorld.ir

Framework will recursively serialize as necessary. It’s legal to store null values in the
dictionary.

It’s a good idea to make the GetObjectData method virtual
—unless your class is sealed. This allows subclasses to extend
serialization without having to reimplement the interface.

SerializationInfo also contains properties that you can use to control the type
and assembly that the instance should deserialize as. The StreamingContext param‐
eter is a structure that contains, among other things, an enumeration value indicat‐
ing to where the serialized instance is heading (disk, Remoting, etc., although this
value is not always populated).

In addition to implementing ISerializable, a type controlling its own serialization
needs to provide a deserialization constructor that takes the same two parameters as
GetObjectData. The constructor can be declared with any accessibility and the run‐
time will still find it. Typically, though, you would declare it protected so that sub‐
classes can call it.

In the following example, we implement ISerializable in the Team class. When it
comes to handling the List of players, we serialize the data as an array rather than a
generic list, so as to offer compatibility with the SOAP formatter:

[Serializable] public class Team : ISerializable
{
 public string Name;
 public List<Person> Players;

 public virtual void GetObjectData (SerializationInfo si,
 StreamingContext sc)
 {
 si.AddValue ("Name", Name);
 si.AddValue ("PlayerData", Players.ToArray());
 }

 public Team() {}

 protected Team (SerializationInfo si, StreamingContext sc)
 {
 Name = si.GetString ("Name");

 // Deserialize Players to an array to match our serialization:
 Person[] a = (Person[]) si.GetValue ("PlayerData", typeof (Person[]));

 // Construct a new List using this array:
 Players = new List<Person> (a);
 }
}

For commonly used types, the SerializationInfo class has typed “Get” methods
such as GetString in order to make writing deserialization constructors easier. If
you specify a name for which no data exists, an exception is thrown. This happens

Serializatio
n

Binary Serialization with ISerializable | 739

www.EBooksWorld.ir

most often when there’s a version mismatch between the code doing the serializa‐
tion and deserialization. You’ve added an extra field, for instance, and then forgot‐
ten about the implications of deserializing an old instance. To work around this
problem, you can either:

• Add exception handling around code that retrieves a data member added in a
later version.

• Implement your own version numbering system. For example:

public string MyNewField;

public virtual void GetObjectData (SerializationInfo si,
 StreamingContext sc)
{
 si.AddValue ("_version", 2);
 si.AddValue ("MyNewField", MyNewField);
 ...
}

protected Team (SerializationInfo si, StreamingContext sc)
{
 int version = si.GetInt32 ("_version");
 if (version >= 2) MyNewField = si.GetString ("MyNewField");
 ...
}

Subclassing Serializable Classes
In the preceding examples, we sealed the classes that relied on attributes for seriali‐
zation. To see why, consider the following class hierarchy:

[Serializable] public class Person
{
 public string Name;
 public int Age;
}

[Serializable] public sealed class Student : Person
{
 public string Course;
}

In this example, both Person and Student are serializable, and both classes use the
default runtime serialization behavior since neither class implements ISerializa
ble.

Now imagine that the developer of Person decides for some reason to implement
ISerializable and provide a deserialization constructor to control Person seriali‐
zation. The new version of Person might look like this:

[Serializable] public class Person : ISerializable
{
 public string Name;

740 | Chapter 17: Serialization

www.EBooksWorld.ir

 public int Age;

 public virtual void GetObjectData (SerializationInfo si,
 StreamingContext sc)
 {
 si.AddValue ("Name", Name);
 si.AddValue ("Age", Age);
 }

 protected Person (SerializationInfo si, StreamingContext sc)
 {
 Name = si.GetString ("Name");
 Age = si.GetInt32 ("Age");
 }

 public Person() {}
}

Although this works for instances of Person, this change breaks serialization of Stu
dent instances. Serializing a Student instance would appear to succeed, but the
Course field in the Student type isn’t saved to the stream because the implementa‐
tion of ISerializable.GetObjectData on Person has no knowledge of the mem‐
bers of the Student-derived type. Additionally, deserialization of Student instances
throws an exception since the runtime is looking (unsuccessfully) for a deserializa‐
tion constructor on Student.

The solution to this problem is to implement ISerializable from the outset for
serializable classes that are public and nonsealed. (With internal classes, it’s not so
important because you can easily modify the subclasses later if required.)

If we started out by writing Person as in the preceding example, Student would
then be written as follows:

[Serializable]
public class Student : Person
{
 public string Course;

 public override void GetObjectData (SerializationInfo si,
 StreamingContext sc)
 {
 base.GetObjectData (si, sc);
 si.AddValue ("Course", Course);
 }

 protected Student (SerializationInfo si, StreamingContext sc)
 : base (si, sc)
 {
 Course = si.GetString ("Course");
 }

 public Student() {}
}

Serializatio
n

Binary Serialization with ISerializable | 741

www.EBooksWorld.ir

XML Serialization
The Framework provides a dedicated XML serialization engine called XmlSerial
izer in the System.Xml.Serialization namespace. It’s suitable for serializing .NET
types to XML files and is also used implicitly by ASMX Web Services.

As with the binary engine, there are two approaches you can take:

• Sprinkle attributes throughout your types (defined in System.Xml.Serializa
tion).

• Implement IXmlSerializable.

Unlike with the binary engine, however, implementing the interface (i.e., IXmlSeria
lizable) eschews the engine completely, leaving you to code the serialization your‐
self with XmlReader and XmlWriter.

Getting Started with Attribute-Based Serialization
To use XmlSerializer, you instantiate it and call Serialize or Deserialize with a
Stream and object instance. To illustrate, suppose we define the following class:

public class Person
{
 public string Name;
 public int Age;
}

The following saves a Person to an XML file and then restores it:

Person p = new Person();
p.Name = "Stacey"; p.Age = 30;

XmlSerializer xs = new XmlSerializer (typeof (Person));

using (Stream s = File.Create ("person.xml"))
 xs.Serialize (s, p);

Person p2;
using (Stream s = File.OpenRead ("person.xml"))
 p2 = (Person) xs.Deserialize (s);

Console.WriteLine (p2.Name + " " + p2.Age); // Stacey 30

Serialize and Deserialize can work with a Stream, XmlWriter/XmlReader, or
TextWriter/TextReader. Here’s the resultant XML:

<?xml version="1.0"?>
<Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Name>Stacey</Name>
 <Age>30</Age>
</Person>

742 | Chapter 17: Serialization

www.EBooksWorld.ir

XmlSerializer can serialize types without any attributes—such as our Person type.
By default, it serializes all public fields and properties on a type. You can exclude
members you don’t want serialized with the XmlIgnore attribute:

public class Person
{
 ...
 [XmlIgnore] public DateTime DateOfBirth;
}

Unlike the other two engines, XmlSerializer does not recognize the [OnDeserial
izing] attribute and relies instead on a parameterless constructor for deserializa‐
tion, throwing an exception if one is not present. (In our example, Person has an
implicit parameterless constructor.) This also means field initializers execute prior
to deserialization:

public class Person
{
 public bool Valid = true; // Executes before deserialization
}

Although XmlSerializer can serialize almost any type, it recognizes the following
types and treats them specially:

• The primitive types, DateTime, TimeSpan, Guid, and nullable versions

• byte[] (which is converted to base 64)

• An XmlAttribute or XmlElement (whose contents are injected into the stream)

• Any type implementing IXmlSerializable
• Any collection type

The deserializer is version tolerant: it doesn’t complain if elements or attributes are
missing or if superfluous data is present.

Attributes, names, and namespaces
By default, fields and properties serialize to an XML element. You can request an
XML attribute be used instead as follows:

[XmlAttribute] public int Age;

You can control an element or attribute’s name as follows:

public class Person
{
 [XmlElement ("FirstName")] public string Name;
 [XmlAttribute ("RoughAge")] public int Age;
}

Here’s the result:

Serializatio
n

XML Serialization | 743

www.EBooksWorld.ir

<Person RoughAge="30" ...>
 <FirstName>Stacey</FirstName>
</Person>

The default XML namespace is blank (unlike the data contract serializer, which uses
the type’s namespace). To specify an XML namespace, [XmlElement] and [XmlAttri
bute] both accept a Namespace argument. You can also assign a name and name‐
space to the type itself with [XmlRoot]:

[XmlRoot ("Candidate", Namespace = "http://mynamespace/test/")]
public class Person { ... }

This names the person element “Candidate” as well as assigning a namespace to this
element and its children.

XML element order
XmlSerializer writes elements in the order that they’re defined in the class. You
can change this by specifying an Order in the XmlElement attribute:

public class Person
{
 [XmlElement (Order = 2)] public string Name;
 [XmlElement (Order = 1)] public int Age;
}

If you use Order at all, you must use it throughout.

The deserializer is not fussy about the order of elements—they can appear in any
sequence and the type will properly deserialize.

Subclasses and Child Objects

Subclassing the root type
Suppose your root type has two subclasses as follows:

public class Person { public string Name; }

public class Student : Person { }
public class Teacher : Person { }

and you write a reusable method to serialize the root type:

public void SerializePerson (Person p, string path)
{
 XmlSerializer xs = new XmlSerializer (typeof (Person));
 using (Stream s = File.Create (path))
 xs.Serialize (s, p);
}

To make this method work with a Student or Teacher, you must inform XmlSerial
izer about the subclasses. There are two ways to do this. The first is to register each
subclass with the XmlInclude attribute:

744 | Chapter 17: Serialization

www.EBooksWorld.ir

[XmlInclude (typeof (Student))]
[XmlInclude (typeof (Teacher))]
public class Person { public string Name; }

The second is to specify each of the subtypes when constructing XmlSerializer:

XmlSerializer xs = new XmlSerializer (typeof (Person),
 new Type[] { typeof (Student), typeof (Teacher) });

In either case, the serializer responds by recording the subtype in the type attribute
(just like with the data contract serializer):

<Person xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="Student">
 <Name>Stacey</Name>
</Person>

This deserializer then knows from this attribute to instantiate a Student and not a
Person.

You can control the name that appears in the XML type
attribute by applying [XmlType] to the subclass:

[XmlType ("Candidate")]
public class Student : Person { }

Here’s the result:
<Person xmlns:xsi="..."
 xsi:type="Candidate">

Serializing child objects
XmlSerializer automatically recurses object references such as the HomeAddress
field in Person:

public class Person
{
 public string Name;
 public Address HomeAddress = new Address();
}

public class Address { public string Street, PostCode; }

To demonstrate:

Person p = new Person(); p.Name = "Stacey";
p.HomeAddress.Street = "Odo St";
p.HomeAddress.PostCode = "6020";

Here’s the XML to which this serializes:

<Person ... >
 <Name>Stacey</Name>
 <HomeAddress>
 <Street>Odo St</Street>
 <PostCode>6020</PostCode>
 </HomeAddress>
</Person>

Serializatio
n

XML Serialization | 745

www.EBooksWorld.ir

If you have two fields or properties that refer to the same
object, that object is serialized twice. If you need to preserve
referential equality, you must use another serialization engine.

Subclassing child objects
Suppose you need to serialize a Person that can reference subclasses of Address as
follows:

public class Address { public string Street, PostCode; }
public class USAddress : Address { }
public class AUAddress : Address { }

public class Person
{
 public string Name;
 public Address HomeAddress = new USAddress();
}

There are two distinct ways to proceed, depending on how you want the XML
structured. If you want the element name always to match the field or property
name with the subtype recorded in a type attribute:

<Person ...>
 ...
 <HomeAddress xsi:type="USAddress">
 ...
 </HomeAddress>
</Person>

you use [XmlInclude] to register each of the subclasses with Address as follows:

[XmlInclude (typeof (AUAddress))]
[XmlInclude (typeof (USAddress))]
public class Address
{
 public string Street, PostCode;
}

If, on the other hand, you want the element name to reflect the name of the subtype,
to the following effect:

<Person ...>
 ...
 <USAddress>
 ...
 </USAddress>
</Person>

you instead stack multiple [XmlElement] attributes onto the field or property in the
parent type:

public class Person
{
 public string Name;

746 | Chapter 17: Serialization

www.EBooksWorld.ir

 [XmlElement ("Address", typeof (Address))]
 [XmlElement ("AUAddress", typeof (AUAddress))]
 [XmlElement ("USAddress", typeof (USAddress))]
 public Address HomeAddress = new USAddress();
}

Each XmlElement maps an element name to a type. If you take this approach, you
don’t require the [XmlInclude] attributes on the Address type (although their pres‐
ence doesn’t break serialization).

If you omit the element name in [XmlElement] (and specify
just a type), the type’s default name is used (which is influ‐
enced by [XmlType] but not [XmlRoot]).

Serializing Collections
XmlSerializer recognizes and serializes concrete collection types without interven‐
tion:

public class Person
{
 public string Name;
 public List<Address> Addresses = new List<Address>();
}

public class Address { public string Street, PostCode; }

Here’s the XML to which this serializes:

<Person ... >
 <Name>...</Name>
 <Addresses>
 <Address>
 <Street>...</Street>
 <Postcode>...</Postcode>
 </Address>
 <Address>
 <Street>...</Street>
 <Postcode>...</Postcode>
 </Address>
 ...
 </Addresses>
</Person>

The [XmlArray] attribute lets you rename the outer element (i.e., Addresses).

The [XmlArrayItem] attribute lets you rename the inner elements (i.e., the Address
elements).

For instance, the following class:

public class Person
{
 public string Name;

Serializatio
n

XML Serialization | 747

www.EBooksWorld.ir

 [XmlArray ("PreviousAddresses")]
 [XmlArrayItem ("Location")]
 public List<Address> Addresses = new List<Address>();
}

serializes to this:

<Person ... >
 <Name>...</Name>
 <PreviousAddresses>
 <Location>
 <Street>...</Street>
 <Postcode>...</Postcode>
 </Location>
 <Location>
 <Street>...</Street>
 <Postcode>...</Postcode>
 </Location>
 ...
 </PreviousAddresses>
</Person>

The XmlArray and XmlArrayItem attributes also allow you to specify XML name‐
spaces.

To serialize collections without the outer element, for example:

<Person ... >
 <Name>...</Name>
 <Address>
 <Street>...</Street>
 <Postcode>...</Postcode>
 </Address>
 <Address>
 <Street>...</Street>
 <Postcode>...</Postcode>
 </Address>
</Person>

instead add [XmlElement] to the collection field or property:

public class Person
{
 ...
 [XmlElement ("Address")]
 public List<Address> Addresses = new List<Address>();
}

Working with subclassed collection elements
The rules for subclassing collection elements follow naturally from the other sub‐
classing rules. To encode subclassed elements with the type attribute, for example:

<Person ... >
 <Name>...</Name>
 <Addresses>

748 | Chapter 17: Serialization

www.EBooksWorld.ir

 <Address xsi:type="AUAddress">
 ...

add [XmlInclude] attributes to the base (Address) type as we did before. This
works whether or not you suppress serialization of the outer element.

If you want subclassed elements to be named according to their type, for example:

<Person ... >
 <Name>...</Name>
 <!—start of optional outer element—>
 <AUAddress>
 <Street>...</Street>
 <Postcode>...</Postcode>
 </AUAddress>
 <USAddress>
 <Street>...</Street>
 <Postcode>...</Postcode>
 </USAddress>
 <!—end of optional outer element—>
</Person>

you must stack multiple [XmlArrayItem] or [XmlElement] attributes onto the col‐
lection field or property.

Stack multiple [XmlArrayItem] attributes if you want to include the outer collection
element:

[XmlArrayItem ("Address", typeof (Address))]
[XmlArrayItem ("AUAddress", typeof (AUAddress))]
[XmlArrayItem ("USAddress", typeof (USAddress))]
public List<Address> Addresses = new List<Address>();

Stack multiple [XmlElement] attributes if you want to exclude the outer collection
element:

[XmlElement ("Address", typeof (Address))]
[XmlElement ("AUAddress", typeof (AUAddress))]
[XmlElement ("USAddress", typeof (USAddress))]
public List<Address> Addresses = new List<Address>();

IXmlSerializable
Although attribute-based XML serialization is flexible, it has limitations. For
instance, you cannot add serialization hooks—nor can you serialize nonpublic
members. It’s also awkward to use if the XML might present the same element or
attribute in a number of different ways.

On that last issue, you can push the boundaries somewhat by passing an XmlAttri
buteOverrides object into XmlSerializer’s constructor. There comes a point, how‐
ever, when it’s easier to take an imperative approach. This is the job of IXmlSeria
lizable:

public interface IXmlSerializable
{

Serializatio
n

XML Serialization | 749

www.EBooksWorld.ir

 XmlSchema GetSchema();
 void ReadXml (XmlReader reader);
 void WriteXml (XmlWriter writer);
}

Implementing this interface gives you total control over the XML that’s read or writ‐
ten.

A collection class that implements IXmlSerializable

bypasses XmlSerializer’s rules for serializing collections. This
can be useful if you need to serialize a collection with a pay‐
load—in other words, additional fields or properties that
would otherwise be ignored.

The rules for implementing IXmlSerializable are as follows:

• ReadXml should read the outer start element, then the content, and then the
outer end element.

• WriteXml should write just the content.

For example:

using System;
using System.Xml;
using System.Xml.Schema;
using System.Xml.Serialization;

public class Address : IXmlSerializable
{
 public string Street, PostCode;

 public XmlSchema GetSchema() { return null; }

 public void ReadXml(XmlReader reader)
 {
 reader.ReadStartElement();
 Street = reader.ReadElementContentAsString ("Street", "");
 PostCode = reader.ReadElementContentAsString ("PostCode", "");
 reader.ReadEndElement();
 }

 public void WriteXml (XmlWriter writer)
 {
 writer.WriteElementString ("Street", Street);
 writer.WriteElementString ("PostCode", PostCode);
 }
}

Serializing and deserializing an instance of Address via XmlSerializer automati‐
cally calls the WriteXml and ReadXml methods. Further, if Person was defined as fol‐
lows:

public class Person
{

750 | Chapter 17: Serialization

www.EBooksWorld.ir

 public string Name;
 public Address HomeAddress;
}

IXmlSerializable would be called upon selectively to serialize the HomeAddress
field.

We describe XmlReader and XmlWriter at length in the first section of Chapter 11.
Also in Chapter 11, in “Patterns for Using XmlReader/XmlWriter” on page 489, we
provide examples of IXmlSerializable-ready classes.

Serializatio
n

XML Serialization | 751

www.EBooksWorld.ir

www.EBooksWorld.ir

18
Assemblies

An assembly is the basic unit of deployment in .NET and is also the container for all
types. An assembly contains compiled types with their IL (Intermediate Language)
code, runtime resources, and information to assist with versioning, security, and
referencing other assemblies. An assembly also defines a boundary for type resolu‐
tion and security permissioning. In general, an assembly comprises a single Win‐
dows Portable Executable (PE) file—with an .exe extension in the case of an applica‐
tion or a .dll extension in the case of a reusable library. A WinRT library has
a .winmd extension and is similar to a .dll, except that it contains only metadata and
no IL code.

Most of the types in this chapter come from the following namespaces:

System.Reflection
System.Resources
System.Globalization

What’s in an Assembly
An assembly contains four kinds of things:

An assembly manifest
Provides information to the .NET runtime, such as the assembly’s name,
version, requested permissions, and other assemblies that it references

An application manifest
Provides information to the operating system, such as how the assembly
should be deployed and whether administrative elevation is required

Compiled types
The compiled IL code and metadata of the types defined within the assem‐
bly

A
ssem

b
lies

753

www.EBooksWorld.ir

Resources
Other data embedded within the assembly, such as images and localizable
text

Of these, only the assembly manifest is mandatory, although an assembly nearly
always contains compiled types (unless it’s a WinRT reference assembly).

Assemblies are structured similarly whether they’re executables or libraries. The
main difference with an executable is that it defines an entry point.

The Assembly Manifest
The assembly manifest serves two purposes:

• It describes the assembly to the managed hosting environment.
• It acts as a directory to the modules, types, and resources in the assembly.

Assemblies are hence self-describing. A consumer can discover all of an assembly’s
data, types, and functions—without needing additional files.

An assembly manifest is not something you add explicitly to
an assembly—it’s automatically embedded into an assembly as
part of compilation.

Here’s a summary of the functionally significant data stored in the manifest:

• The simple name of the assembly

• A version number (AssemblyVersion)
• A public key and signed hash of the assembly, if strongly named
• A list of referenced assemblies, including their version and public key
• A list of modules that comprise the assembly
• A list of types defined in the assembly and the module containing each type
• An optional set of security permissions requested or refused by the assembly

(SecurityPermission)
• The culture it targets, if a satellite assembly (AssemblyCulture)

The manifest can also store the following informational data:

• A full title and description (AssemblyTitle and AssemblyDescription)

• Company and copyright information (AssemblyCompany and AssemblyCopy
right)

• A display version (AssemblyInformationalVersion)
• Additional attributes for custom data

754 | Chapter 18: Assemblies

www.EBooksWorld.ir

Some of this data is derived from arguments given to the compiler, such as the list of
referenced assemblies or the public key with which to sign the assembly. The rest
comes from assembly attributes, indicated in parentheses.

You can view the contents of an assembly’s manifest with
the .NET tool ildasm.exe. In Chapter 19, we describe how to
use reflection to do the same programmatically.

Specifying assembly attributes
You can control much of the manifest’s content with assembly attributes. For exam‐
ple:

[assembly: AssemblyCopyright ("\x00a9 Corp Ltd. All rights reserved.")]
[assembly: AssemblyVersion ("2.3.2.1")]

These declarations are usually all defined in one file in your project. Visual Studio
automatically creates a file called AssemblyInfo.cs in the Properties folder with every
new C# project for this purpose, prepopulated with a default set of assembly
attributes that provide a starting point for further customization.

The Application Manifest
An application manifest is an XML file that communicates information about the
assembly to the operating system. An application manifest, if present, is read and
processed before the .NET-managed hosting environment loads the assembly—and
can influence how the operating system launches an application’s process.

A .NET application manifest has a root element called assembly in the XML name‐
space urn:schemas-microsoft-com:asm.v1:

<?xml version="1.0" encoding="utf-8"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">
 <!-- contents of manifest -->
</assembly>

The following manifest instructs the OS to request administrative elevation:

<?xml version="1.0" encoding="utf-8"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges>
 <requestedExecutionLevel level="requireAdministrator" />
 </requestedPrivileges>
 </security>
 </trustInfo>
</assembly>

We describe the consequences of requesting administrative elevation in Chapter 21.

Windows Store applications have a far more elaborate manifest, described in the
Package.appxmanifest file. This includes a declaration of the program’s capabilities,
which determine permissions granted by the operating system. The easiest way to

A
ssem

b
lies

What’s in an Assembly | 755

www.EBooksWorld.ir

edit this file is with Visual Studio, which presents a UI when you double-click the
manifest file.

Deploying a .NET application manifest
You can deploy a .NET application manifest in two ways:

• As a specially named file located in the same folder as the assembly
• Embedded within the assembly itself

As a separate file, its name must match that of the assembly’s, plus .manifest. So, if
an assembly was named MyApp.exe, its manifest would be named MyApp.exe.mani‐
fest.

To embed an application manifest file into an assembly, first build the assembly and
then call the .NET mt tool as follows:

mt -manifest MyApp.exe.manifest -outputresource:MyApp.exe;#1

The .NET tool ildasm.exe is blind to the presence of an
embedded application manifest. Visual Studio, however, indi‐
cates whether an embedded application manifest is present if
you double-click the assembly in Solution Explorer.

Modules
The contents of an assembly are actually packaged within one or more intermediate
containers, called modules. A module corresponds to a file containing the contents
of an assembly. The reason for this extra layer of containership is to allow an assem‐
bly to span multiple files—a feature that’s useful when building an assembly con‐
taining code compiled in a mixture of programming languages.

Figure 18-1 shows the normal case of an assembly with a single module. Figure 18-2
shows a multifile assembly. In a multifile assembly, the “main” module always con‐
tains the manifest; additional modules can contain IL and/or resources. The mani‐
fest describes the relative location of all the other modules that make up the assem‐
bly.

Multifile assemblies have to be compiled from the command line: there’s no support
in Visual Studio. To do this, you invoke the csc compiler with the /t switch to cre‐
ate each module and then link them with the assembly linker tool, al.exe.

Although the need for multifile assemblies is rare, at times you need to be aware of
the extra level of containership that modules impose—even when dealing just with
single-module assemblies. The main scenario is with reflection (see “Reflecting
Assemblies” on page 810 and “Emitting Assemblies and Types” on page 825 in
Chapter 19).

756 | Chapter 18: Assemblies

www.EBooksWorld.ir

Figure 18-1. Single-file assembly

Figure 18-2. Multifile assembly

The Assembly Class
The Assembly class in System.Reflection is a gateway to accessing assembly meta‐
data at runtime. There are a number of ways to obtain an assembly object: the sim‐
plest is via a Type’s Assembly property:

Assembly a = typeof (Program).Assembly;

or, in Windows Store applications:

Assembly a = typeof (Program).GetTypeInfo().Assembly;

A
ssem

b
lies

What’s in an Assembly | 757

www.EBooksWorld.ir

In desktop apps, you can also obtain an Assembly object by calling one of Assem
bly’s static methods:

GetExecutingAssembly

Returns the assembly of the type that defines the currently executing func‐
tion

GetCallingAssembly

Does the same as GetExecutingAssembly, but for the function that called
the currently executing function

GetEntryAssembly

Returns the assembly defining the application’s original entry method

Once you have an Assembly object, you can use its properties and methods to query
the assembly’s metadata and reflect upon its types. Table 18-1 shows a summary of
these functions.

Table 18-1. Assembly members

Functions Purpose See the section...

FullName, GetName Returns the fully qualified name or
an AssemblyName object

“Assembly Names” on page 761

CodeBase, Location Location of the assembly file “Resolving and Loading
Assemblies” on page 779

Load, LoadFrom, LoadFile Manually loads an assembly into
the current application domain

“Resolving and Loading
Assemblies” on page 779

GlobalAssemblyCache Indicates whether the assembly is
in the GAC

“The Global Assembly Cache” on
page 768

GetSatelliteAssembly Locates the satellite assembly of a
given culture

“Resources and Satellite
Assemblies” on page 770

GetType, GetTypes Returns a type, or all types, defined
in the assembly

“Reflecting and Activating Types”
on page 790 in Chapter 19

EntryPoint Returns the application’s entry
method, as a MethodInfo

“Reflecting and Invoking
Members” on page 797 in
Chapter 19

GetModules, ManifestModule Returns all modules, or the main
module, of an assembly

“Reflecting Assemblies” on page
810 in Chapter 19

GetCustomAttributes Returns the assembly’s attributes “Working with Attributes” on
page 812 in Chapter 19

Strong Names and Assembly Signing
A strongly named assembly has a unique and untamperable identity. It works by
adding two bits of metadata to the manifest:

758 | Chapter 18: Assemblies

www.EBooksWorld.ir

• A unique number that belongs to the authors of the assembly
• A signed hash of the assembly, proving that the unique number holder pro‐

duced the assembly

This requires a public/private key pair. The public key provides the unique identify‐
ing number, and the private key facilitates signing.

Strong-name-signing is not the same as Authenticode-signing.
We cover Authenticode later in this chapter.

The public key is valuable in guaranteeing the uniqueness of assembly references: a
strongly named assembly incorporates the public key into its identity. The signature
is valuable for security—it prevents a malicious party from tampering with your
assembly. Without your private key, no one can release a modified version of the
assembly without the signature breaking (causing an error when loaded). Of course,
someone could re-sign the assembly with a different key pair—but this would give
the assembly a different identity. Any application referencing the original assembly
would shun the imposter because public key tokens are written into references.

Adding a strong name to a previously “weak” named assembly
changes its identity. For this reason, it pays to give production
assemblies strong names from the outset.

A strongly named assembly can also be registered in the GAC.

How to Strongly Name an Assembly
To give an assembly a strong name, first generate a public/private key pair with the
sn.exe utility:

sn.exe -k MyKeyPair.snk

This manufactures a new key pair and stores it to a file called MyApp.snk. If you
subsequently lose this file, you will permanently lose the ability to recompile your
assembly with the same identity.

You then compile with the /keyfile switch:

csc.exe /keyfile:MyKeyPair.snk Program.cs

Visual Studio assists you with both steps in the Project Properties window.

A strongly named assembly cannot reference a weakly named
assembly. This is another compelling reason to strongly name
all your production assemblies.

The same key pair can sign multiple assemblies—they’ll still have distinct identities
if their simple names differ. The choice as to how many key pair files to use within
an organization depends on a number of factors. Having a separate key pair for
every assembly is advantageous should you later transfer ownership of a particular

A
ssem

b
lies

Strong Names and Assembly Signing | 759

www.EBooksWorld.ir

application (along with its referenced assemblies), in terms of minimum disclosure.
But it makes it harder for you to create a security policy that recognizes all of your
assemblies. It also makes it harder to validate dynamically loaded assemblies.

Prior to C# 2.0, the compiler did not support the /keyfile
switch, and you would specify a key file with the AssemblyKey
File attribute instead. This presented a security risk, because
the path to the key file would remain embedded in the assem‐
bly’s metadata. For instance, with ildasm, you can see quite
easily that the path to the key file used to sign mscorlib in CLR
1.1 was as follows:

F:\qfe\Tools\devdiv\EcmaPublicKey.snk

Obviously, you need access to that folder on Microsoft’s .NET
Framework build machine to take advantage of that informa‐
tion!

Delay Signing
In an organization with hundreds of developers, you might want to restrict access to
the key pairs used for signing assemblies, for a couple of reasons:

• If a key pair gets leaked, your assemblies are no longer untamperable.
• A test assembly, if signed and leaked, could be maliciously propagated as the

real assembly.

Withholding key pairs from developers, though, means they cannot compile and
test assemblies with their correct identity. Delay signing is a system for working
around this problem.

A delay-signed assembly is flagged with the correct public key, but not signed with
the private key. A delay-signed assembly is equivalent to a tampered assembly and
would normally be rejected by the CLR. The developer, however, instructs the CLR
to bypass validation for the delay-sign assemblies on that computer, allowing the
unsigned assemblies to run. When it comes time for final deployment, the private
key holder re-signs the assembly with the real key pair.

To delay-sign, you need a file containing just the public key. You can extract this
from a key pair by calling sn with the -p switch:

sn -k KeyPair.snk
sn -p KeyPair.snk PublicKeyOnly.pk

KeyPair.snk is kept secure and PublicKeyOnly.pk is freely distributed.

You can also obtain PublicKeyOnly.pk from an existing signed
assembly with the -e switch:

sn -e YourLibrary.dll PublicKeyOnly.pk

You then delay-sign with PublicKeyOnly.pk by calling csc with the /delaysign+
switch:

760 | Chapter 18: Assemblies

www.EBooksWorld.ir

csc /delaysign+ /keyfile: PublicKeyOnly.pk /target:library YourLibrary.cs

Visual Studio does the same if you tick the “Delay sign” checkbox in Project Proper‐
ties.

The next step is to instruct the .NET runtime to skip assembly identity verification
on the development computers running the delay-signed assemblies. This can be
done on either a per-assembly or a per-public key basis, by calling the sn tool with
the Vr switch:

sn -Vr YourLibrary.dll

Visual Studio does not perform this step automatically. You
must disable assembly verification manually from the com‐
mand line. Otherwise, your assembly will not execute.

The final step is to fully sign the assembly prior to deployment. This is when you
replace the null signature with a real signature that can be generated only with
access to the private key. To do this, you call sn with the R switch:

sn -R YourLibrary.dll KeyPair.snk

You can then reinstate assembly verification on development machines as follows:

sn -Vu YourLibrary.dll

You won’t need to recompile any applications that reference the delay-signed assem‐
bly, because you’ve changed only the assembly’s signature, not its identity.

Assembly Names
An assembly’s “identity” comprises four pieces of metadata from its manifest:

• Its simple name
• Its version (“0.0.0.0” if not present)
• Its culture (“neutral” if not a satellite)
• Its public key token (“null” if not strongly named)

The simple name comes not from any attribute, but from the name of the file to
which it was originally compiled (less any extension). So, the simple name of the
System.Xml.dll assembly is “System.Xml.” Renaming a file doesn’t change the assem‐
bly’s simple name.

The version number comes from the AssemblyVersion attribute. It’s a string divided
into four parts as follows:

major.minor.build.revision

You can specify a version number as follows:

[assembly: AssemblyVersion ("2.5.6.7")]

A
ssem

b
lies

Assembly Names | 761

www.EBooksWorld.ir

The culture comes from the AssemblyCulture attribute and applies to satellite
assemblies, described later in the section “Resources and Satellite Assemblies” on
page 770.

The public key token comes from a key pair supplied at compile time via
the /keyfile switch, as we saw earlier, in the section “How to Strongly Name an
Assembly” on page 759.

Fully Qualified Names
A fully qualified assembly name is a string that includes all four identifying compo‐
nents, in this format:

simple-name, Version=version, Culture=culture, PublicKeyToken=public-key

For example, the fully qualified name of System.Xml.dll is:

"System.Xml, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089"

If the assembly has no AssemblyVersion attribute, the version appears as “0.0.0.0”. If
it is unsigned, its public key token appears as “null”.

An Assembly object’s FullName property returns its fully qualified name. The com‐
piler always uses fully qualified names when recording assembly references in the
manifest.

A fully qualified assembly name does not include a directory
path to assist in locating it on disk. Locating an assembly
residing in another directory is an entirely separate matter
that we pick up in “Resolving and Loading Assemblies” on
page 779.

The AssemblyName Class
AssemblyName is a class with a typed property for each of the four components of a
fully qualified assembly name. AssemblyName has two purposes:

• It parses or builds a fully qualified assembly name.
• It stores some extra data to assist in resolving (finding) the assembly.

You can obtain an AssemblyName object in any of the following ways:

• Instantiate an AssemblyName, providing a fully qualified name.

• Call GetName on an existing Assembly.

• Call AssemblyName.GetAssemblyName, providing the path to an assembly file
on disk (desktop apps only).

762 | Chapter 18: Assemblies

www.EBooksWorld.ir

You can also instantiate an AssemblyName object without any arguments and then
set each of its properties to build a fully qualified name. An AssemblyName is muta‐
ble when constructed in this manner.

Here are its essential properties and methods:

string FullName { get; } // Fully qualified name
string Name { get; set; } // Simple name
Version Version { get; set; } // Assembly version
CultureInfo CultureInfo { get; set; } // For satellite assemblies
string CodeBase { get; set; } // Location

byte[] GetPublicKey(); // 160 bytes
void SetPublicKey (byte[] key);
byte[] GetPublicKeyToken(); // 8-byte version
void SetPublicKeyToken (byte[] publicKeyToken);

Version is itself a strongly typed representation, with properties for Major, Minor,
Build, and Revision numbers. GetPublicKey returns the full cryptographic public
key; GetPublicKeyToken returns the last eight bytes used in establishing identity.

To use AssemblyName to obtain the simple name of an assembly:

Console.WriteLine (typeof (string).Assembly.GetName().Name); // mscorlib

To get an assembly version:

string v = myAssembly.GetName().Version.ToString();

We’ll examine the CodeBase property in the later section “Resolving and Loading
Assemblies” on page 779.

Assembly Informational and File Versions
Because an integral part of an assembly name is its version, changing the Assembly
Version attribute changes the assembly’s identity. This affects compatibility with
referencing assemblies, which can be undesirable when making nonbreaking
updates. To address this, there are two other independent assembly-level attributes
for expressing version-related information, both of which are ignored by the CLR:

AssemblyInformationalVersion

The version as displayed to the end user. This is visible in the Windows File
Properties dialog box as “Product Version.” Any string can go here, such as
“5.1 Beta 2.” Typically, all the assemblies in an application would be
assigned the same informational version number.

AssemblyFileVersion

This is intended to refer to the build number for that assembly. This is visi‐
ble in the Windows File Properties dialog box as “File Version.” As with
AssemblyVersion, it must contain a string consisting of up to four num‐
bers separated by periods.

A
ssem

b
lies

Assembly Names | 763

www.EBooksWorld.ir

Authenticode Signing
Authenticode is a code-signing system whose purpose is to prove the identity of the
publisher. Authenticode and strong-name signing are independent: you can sign an
assembly with either or both systems.

While strong-name signing can prove that assemblies A, B, and C came from the
same party (assuming the private key hasn’t been leaked), it can’t tell you who that
party was. In order to know that the party was Joe Albahari—or Microsoft Corpora‐
tion—you need Authenticode.

Authenticode is useful when downloading programs from the Internet because it
provides assurance that a program came from whoever was named by the Certifi‐
cate Authority and was not modified in transit. It also prevents the “Unknown Pub‐
lisher” warning shown in Figure 18-3 when running a downloaded application for
the first time. Authenticode signing is also a requirement when submitting apps to
the Windows Store, and for assemblies in general as part of the Windows Logo pro‐
gram.

Figure 18-3. Unsigned file warning

764 | Chapter 18: Assemblies

www.EBooksWorld.ir

Authenticode works with not only .NET assemblies, but also unmanaged executa‐
bles and binaries such as ActiveX controls or .msi deployment files. Of course,
Authenticode doesn’t guarantee that a program is free from malware—although it
does make it less likely. A person or entity has been willing to put its name (backed
by a passport or company document) behind the executable or library.

The CLR does not treat an Authenticode signature as part of
an assembly’s identity. However, it can read and validate
Authenticode signatures on demand, as we’ll see soon.

Signing with Authenticode requires that you contact a certificate authority (CA)
with evidence of your personal identity or company’s identity (articles of incorpora‐
tion, etc.). Once the CA has checked your documents, it will issue an X.509 code-
signing certificate that is typically valid for one to five years. This enables you to
sign assemblies with the signtool utility. You can also make a certificate yourself with
the makecert utility, however it will be recognized only on computers on which the
certificate is explicitly installed.

The fact that (non-self-signed) certificates can work on any computer relies on pub‐
lic key infrastructure. Essentially, your certificate is signed with another certificate
belonging to a CA. The CA is trusted because all CAs are loaded into the operating
system (to see them, go to the Windows Control Panel and choose Internet
Options→Content tab→Certificates button→Trusted Root Certification Authorities
tab). A CA can revoke a publisher’s certificate if leaked, so verifying an Authenti‐
code signature requires periodically asking the CA for an up-to-date list of certifica‐
tion revocations.

Because Authenticode uses cryptographic signing, an Authenticode signature is
invalid if someone subsequently tampers with the file. We discuss cryptography,
hashing, and signing in Chapter 21.

How to Sign with Authenticode

Obtaining and installing a certificate
The first step is to obtain a code-signing certificate from a CA (see “Where to Get a
Code-Signing Certificate” on page 766). You can then either work with the certifi‐
cate as a password-protected file or load the certificate into the computer’s certifi‐
cate store. The benefit of doing the latter is that you can sign without needing to
specify a password. This is advantageous because it avoids having a password visible
in automated build scripts or batch files.

A
ssem

b
lies

Authenticode Signing | 765

www.EBooksWorld.ir

Where to Get a Code-Signing Certificate
Just a handful of code-signing CAs are preloaded into Windows as root certification
authorities. These include (with prices for one-year code-signing certificates at the
time of publication): Comodo ($180), Go Daddy ($200), GlobalSign ($220), Digi‐
Cert ($223), thawte ($299), and Semantic ($499).

There is also a reseller called Ksoftware (http://www.ksoftware.net), which currently
offers Comodo code-signing certificates for $95 per year.

The Authenticode certificates issued by Ksoftware, Comodo, Go Daddy, and Global‐
Sign are advertised as less restrictive in that they will also sign non-Microsoft pro‐
grams. Aside from this, the products from all vendors are functionally equivalent.

Note that a certificate for SSL cannot generally be used for Authenticode signing
(despite using the same X.509 infrastructure). This is, in part, because a certificate
for SSL is about proving ownership of a domain; Authenticode is about proving
who you are.

To load a certificate into the computer’s certificate store, go to the Windows Control
Panel and select Internet Options→Content tab→Certificates button→Import. Once
the import is complete, click the View button on the certificate, go to the Details tab,
and copy the certificate’s thumbprint. This is the SHA-1 hash that you’ll subse‐
quently need to identity the certificate when signing.

If you also want to strong-name-sign your assembly (which is
highly recommended), you must do so before Authenticode
signing. This is because the CLR knows about Authenticode
signing, but not vice versa. So if you strong-name-sign an
assembly after Authenticode-signing it, the latter will see the
addition of the CLR’s strong name as an unauthorized modifi‐
cation and consider the assembly tampered.

Signing with signtool.exe
You can Authenticode-sign your programs with the signtool utility that comes with
Visual Studio. It displays a UI if you call it with the signwizard flag; otherwise, you
can use it in command-line style as follows:

signtool sign /sha1 (thumbprint) filename

The thumbprint is that of the certificate as shown in the computer’s certificate store.
(If the certificate is in a file instead, specify the filename with /f, and the password
with /p.)

For example:

signtool sign /sha1 ff813c473dc93aaca4bac681df472b037fa220b3 LINQPad.exe

You can also specify a description and product URL with /d and /du:

766 | Chapter 18: Assemblies

www.EBooksWorld.ir

http://www.ksoftware.net

... /d LINQPad /du http://www.linqpad.net

In most cases, you will also want to specify a time-stamping server.

Time stamping
After your certificate expires, you’ll no longer be able to sign programs. However,
programs that you signed before its expiry will still be valid—if you specified a time-
stamping server with the /t switch when signing. The CA will provide you with a
URI for this purpose: the following is for Comodo (or Ksoftware):

... /t http://timestamp.comodoca.com/authenticode

Verifying that a program has been signed
The easiest way to view an Authenticode signature on a file is to view the file’s prop‐
erties in Windows Explorer (look in the Digital Signatures tab). The signtool utility
also provides an option for this.

Authenticode Validation
Both the operating system and the CLR may validate Authenticode signatures.

Windows validates Authenticode signatures before running programs marked as
“blocked”—in practice, this means programs run for the first time after having been
downloaded from the Internet. The status—or absence—of Authenticode informa‐
tion is then shown in the dialog box we saw in Figure 18-3.

The CLR reads and validates Authenticode signatures when you ask for assembly
evidence. Here’s how to do that:

Publisher p = someAssembly.Evidence.GetHostEvidence<Publisher>();

The Publisher class (in System.Security.Policy) exposes a Certificate prop‐
erty. If this returns a non-null value, it has been Authenticode-signed. You can then
query this object for the details of the certificate.

Prior to Framework 4.0, the CLR would read and validate
Authenticode signatures when an assembly was loaded—
rather than waiting until you called GetHostEvidence. This
had potentially disastrous performance consequences, because
Authenticode validation may round-trip to the CA to update
the certificate revocation list—which can take up to 30 sec‐
onds (to fail) if there are Internet connectivity problems. For
this reason, it’s best to avoid Authenticode-signing .NET 3.5 or
earlier assemblies if possible. (Signing .msi setup files, though,
is fine.)

Regardless of the Framework version, if a program has a bad or unverifiable
Authenticode signature, the CLR will merely make that information available via
GetHostEvidence: it will never display a warning to the user or prevent the assem‐
bly from running.

A
ssem

b
lies

Authenticode Signing | 767

www.EBooksWorld.ir

As we said previously, an Authenticode signature has no effect on an assembly’s
identity or name.

The Global Assembly Cache
As part of the .NET Framework installation, a central repository is created on the
computer for storing .NET assemblies, called the Global Assembly Cache, or GAC.
The GAC contains a centralized copy of the .NET Framework itself, and it can also
be used to centralize your own assemblies.

The main factor in choosing whether to load your assemblies into the GAC relates
to versioning. For assemblies in the GAC, versioning is centralized at the machine
level and controlled by the computer’s administrator. For assemblies outside the
GAC, versioning is handled on an application basis, so each application looks after
its own dependency and update issues (typically by maintaining its own copy of
each assembly that it references).

The GAC is useful in the minority of cases where machine-centralized versioning is
genuinely advantageous. For example, consider a suite of interdependent plug-ins,
each referencing some shared assemblies. We’ll assume each plug-in is in its own
directory, and for this reason, there’s a possibility of there being multiple copies of a
shared assembly (maybe some later than others). Further, we’ll assume the hosting
application will want to load each shared assembly just once for the sake of effi‐
ciency and type compatibility. The task of assembly resolution is now difficult for
the hosting application, requiring careful planning and an understanding of the
subtleties of assembly loading contexts. The simple solution here is to put the
shared assemblies into the GAC. This ensures that the CLR always makes straight‐
forward and consistent assembly-resolution choices.

In more typical scenarios, however, the GAC is best avoided because it adds the fol‐
lowing complications:

• XCOPY or ClickOnce deployment is no longer possible; an administrative
setup is required to install your application.

• Updating assemblies in the GAC also requires administrative privileges.
• Use of the GAC can complicate development and testing, because fusion, the

CLR’s assembly resolution mechanism, always favors GAC assemblies over
local copies.

• Versioning and side-by-side execution require some planning, and a mistake
may break other applications.

On the positive side, the GAC can improve startup time for very large assemblies,
because the CLR verifies the signatures of assemblies in the GAC only once upon
installation, rather than every time the assembly loads. In percentage terms, this is
relevant if you’ve generated native images for your assemblies with the ngen.exe
tool, choosing non-overlapping base addresses. A good article describing these
issues is available online at the MSDN site, titled “To NGen or Not to NGen?”

768 | Chapter 18: Assemblies

www.EBooksWorld.ir

Assemblies in the GAC are always fully trusted—even when
called from an assembly running in a limited-permissions
sandbox. We discuss this further in Chapter 21.

How to Install Assemblies to the GAC
To install assemblies to the GAC, the first step is to give your assembly a strong
name. Then you can install it using the .NET command-line tool, gacutil:

gacutil /i MyAssembly.dll

If the assembly already exists in the GAC with the same public key and version, it’s
updated. You don’t have to uninstall the old one first.

To uninstall an assembly (note the lack of a file extension):

gacutil /u MyAssembly

You can also specify that assemblies be installed to the GAC as part of a setup
project in Visual Studio.

Calling gacutil with the /l switch lists all assemblies in the GAC.

Once an assembly is loaded into the GAC, applications can reference it without
needing a local copy of that assembly.

If a local copy is present, it’s ignored in favor of the GAC image.
This means there’s no way to reference or test a recompiled
version of your library—until you update the GAC. This holds
true as long as you preserve the assembly’s version and iden‐
tity.

GAC and Versioning
Changing an assembly’s AssemblyVersion gives it a brand-new identity. To illus‐
trate, let’s say you write a utils assembly, version it “1.0.0.0”, strongly name it, and
then install it in the GAC. Then suppose later you add some new features, change
the version to “1.0.0.1”, recompile it, and reinstall it into the GAC. Instead of over‐
writing the original assembly, the GAC now holds both versions. This means:

• You can choose which version to reference when compiling another application
that uses utils.

• Any application previously compiled to reference utils 1.0.0.0 will continue to
do so.

This is called side-by-side execution. Side-by-side execution prevents the “DLL hell”
that can otherwise occur when a shared assembly is unilaterally updated: applica‐
tions designed for the older version might unexpectedly break.

A complication arises, though, when you want to apply bug fixes or minor updates
to existing assemblies. You have two options:

A
ssem

b
lies

The Global Assembly Cache | 769

www.EBooksWorld.ir

• Reinstall the fixed assembly to the GAC with the same version number.
• Compile the fixed assembly with a new version number and install that to the

GAC.

The difficulty with the first option is that there’s no way to apply the update selec‐
tively to certain applications. It’s all or nothing. The difficulty with the second
option is that applications will not normally use the newer assembly version without
being recompiled. There is a workaround—you can create a publisher policy allow‐
ing assembly version redirection—at the cost of increasing deployment complexity.

Side-by-side execution is good for mitigating some of the problems of shared
assemblies. If you avoid the GAC altogether—instead allowing each application to
maintain its own private copy of utils—you eliminate all of the problems of shared
assemblies!

Resources and Satellite Assemblies
An application typically contains not only executable code, but also content such as
text, images, or XML files. Such content can be represented in an assembly through
a resource. There are two overlapping use cases for resources:

• Incorporating data that cannot go into source code, such as images
• Storing data that might need translation in a multilingual application

An assembly resource is ultimately a byte stream with a name. You can think of an
assembly as containing a dictionary of byte arrays keyed by string. This can be seen
in ildasm if we disassemble an assembly that contains a resource called banner.jpg
and a resource called data.xml:

.mresource public banner.jpg
{
 // Offset: 0x00000F58 Length: 0x000004F6
}
.mresource public data.xml
{
 // Offset: 0x00001458 Length: 0x0000027E
}

In this case, banner.jpg and data.xml were included directly in the assembly—each
as its own embedded resource. This is the simplest way to work.

The Framework also lets you add content through intermediate .resources contain‐
ers. There are designed for holding content that may require translation into differ‐
ent languages. Localized .resources can be packaged as individual satellite assemblies
that are automatically picked up at runtime, based on the user’s operating system
language.

770 | Chapter 18: Assemblies

www.EBooksWorld.ir

Figure 18-4 illustrates an assembly that contains two directly embedded resources,
plus a .resources container called welcome.resources, for which we’ve created two
localized satellites.

Figure 18-4. Resources

Directly Embedding Resources
Embedding resources into assemblies is not supported in
Window Store apps. Instead, add any extra files to your
deployment package, and access them by reading from your
application StorageFolder (Package.Current.InstalledLo
cation).

To directly embed a resource at the command line, use the /resource switch when
compiling:

csc /resource:banner.jpg /resource:data.xml MyApp.cs

You can optionally specify that the resource be given a different name in the assem‐
bly as follows:

csc /resource:<file-name>,<resource-name>

To directly embed a resource using Visual Studio:

• Add the file to your project.
• Set its build action to “Embedded Resource.”

Visual Studio always prefixes resource names with the project’s default namespace,
plus the names of any subfolders in which the file is contained. So, if your project’s

A
ssem

b
lies

Resources and Satellite Assemblies | 771

www.EBooksWorld.ir

default namespace was Westwind.Reports, and your file was called banner.jpg in the
folder pictures, the resource name would be Westwind.Reports.pictures.banner.jpg.

Resource names are case-sensitive. This makes project sub‐
folder names in Visual Studio that contain resources effec‐
tively case-sensitive.

To retrieve a resource, you call GetManifestResourceStream on the assembly con‐
taining the resource. This returns a stream, which you can then read as any other:

Assembly a = Assembly.GetEntryAssembly();

using (Stream s = a.GetManifestResourceStream ("TestProject.data.xml"))
using (XmlReader r = XmlReader.Create (s))
 ...

System.Drawing.Image image;
using (Stream s = a.GetManifestResourceStream ("TestProject.banner.jpg"))
 image = System.Drawing.Image.FromStream (s);

The stream returned is seekable, so you can also do this:

byte[] data;
using (Stream s = a.GetManifestResourceStream ("TestProject.banner.jpg"))
 data = new BinaryReader (s).ReadBytes ((int) s.Length);

If you’ve used Visual Studio to embed the resource, you must remember to include
the namespace-based prefix. To help avoid error, you can specify the prefix in a sep‐
arate argument, using a type. The type’s namespace is used as the prefix:

using (Stream s = a.GetManifestResourceStream (typeof (X), "XmlData.xml"))

X can be any type with the desired namespace of your resource (typically, a type in
the same project folder).

Setting a project item’s build action in Visual Studio to
“Resource” within a WPF application is not the same as set‐
ting its build action to “Embedded Resource”. The former
actually adds the item to a .resources file called <Assembly‐
Name>.g.resources, whose content you access through WPF’s
Application class, using a URI as a key.
To add to the confusion, WPF further overloads the term
“resource.” Static resources and dynamic resources are both
unrelated to assembly resources!

GetManifestResourceNames returns the names of all resources in the assembly.

.resources Files
The Framework also lets you add .resources files are containers for potentially local‐
izable content. A .resources file ends up as an embedded resource within an assem‐
bly—just like any other kind of file. The difference is that you must:

772 | Chapter 18: Assemblies

www.EBooksWorld.ir

• Package your content into the .resources file to begin with

• Access its content through a ResourceManager or pack URI, rather than a Get
ManifestResourceStream

.resources files are structured in binary and so are not human-editable; therefore,
you must rely on tools provided by the Framework and Visual Studio to work with
them. The standard approach with strings or simple data types is to use the .resx
format, which can be converted to a .resources file either by Visual Studio or the
resgen tool. The .resx format is also suitable for images intended for a Windows
Forms or ASP.NET application.

In a WPF application, you must use Visual Studio’s “Resource” build action for
images or similar content needing to be referenced by URI. This applies whether
localization is needed or not.

We describe how to do each of these in the following sections.

.resx Files
The Framework also lets you add A .resx file is a design-time format for produc‐
ing .resources files. A .resx file uses XML and is structured with name/value pairs as
follows:

<root>
 <data name="Greeting">
 <value>hello</value>
 </data>
 <data name="DefaultFontSize" type="System.Int32, mscorlib">
 <value>10</value>
 </data>
</root>

To create a .resx file in Visual Studio, add a project item of type “Resources File”. The
rest of the work is done automatically:

• The correct header is created.
• A designer is provided for adding strings, images, files, and other kinds of data.
• The .resx file is automatically converted to the .resources format and embedded

into the assembly upon compilation.
• A class is written to help you access the data later on.

The resource designer adds images as typed Image objects
(System.Drawing.dll), rather than as byte arrays, making them
unsuitable for WPF applications.

A
ssem

b
lies

Resources and Satellite Assemblies | 773

www.EBooksWorld.ir

Creating a .resx file at the command line
If you’re working at the command line, you must start with a .resx file that has a
valid header. The easiest way to accomplish this is to create a simple .resx file pro‐
grammatically. The System.Resources.ResXResourceWriter class (which, pecu‐
liarly, resides in the System.Windows.Forms.dll assembly) does exactly this job:

using (ResXResourceWriter w = new ResXResourceWriter ("welcome.resx")) { }

From here, you can either continue to use the ResXResourceWriter to add resour‐
ces (by calling AddResource) or manually edit the .resx file that it wrote.

The easiest way to deal with images is to treat the files as binary data and convert
them to an image upon retrieval. This is also more versatile than encoding them as a
typed Image object. You can include binary data within a .resx file in base 64 format
as follows:

<data name="flag.png" type="System.Byte[], mscorlib">
 <value>Qk32BAAAAAAAAHYAAAAoAAAAMAMDAwACAgIAAAAD/AA....</value>
</data>

or as a reference to another file that is then read by resgen:

<data name="flag.png"
 type="System.Resources.ResXFileRef, System.Windows.Forms">
 <value>flag.png;System.Byte[], mscorlib</value>
</data>

When you’re done, you must convert the .resx file by calling resgen. The following
converts welcome.resx into welcome.resources:

resgen welcome.resx

The final step is to include the .resources file when compiling, as follows:

csc /resources:welcome.resources MyApp.cs

Reading .resources files
If you create a .resx file in Visual Studio, a class of the same
name is generated automatically with properties to retrieve
each of its items.

The ResourceManager class reads .resources files embedded within an assembly:

ResourceManager r = new ResourceManager ("welcome",
 Assembly.GetExecutingAssembly());

(The first argument must be namespace-prefixed if the resource was compiled in
Visual Studio.)

You can then access what’s inside by calling GetString or GetObject with a cast:

string greeting = r.GetString ("Greeting");
int fontSize = (int) r.GetObject ("DefaultFontSize");

774 | Chapter 18: Assemblies

www.EBooksWorld.ir

Image image = (Image) r.GetObject ("flag.png"); // (Visual Studio)
byte[] imgData = (byte[]) r.GetObject ("flag.png"); // (Command line)

To enumerate the contents of a .resources file:

ResourceManager r = new ResourceManager (...);
ResourceSet set = r.GetResourceSet (CultureInfo.CurrentUICulture,
 true, true);
foreach (System.Collections.DictionaryEntry entry in set)
 Console.WriteLine (entry.Key);

Creating a pack URI resource in Visual Studio
In a WPF application, XAML files need to be able to access resources by URI. For
instance:

<Button>
 <Image Height="50" Source="flag.png"/>
</Button>

Or, if the resource is in another assembly:

<Button>
 <Image Height="50" Source="UtilsAssembly;Component/flag.png"/>
</Button>

(Component is a literal keyword.)

To create resources that can be loaded in this manner, you cannot use .resx files.
Instead, you must add the files to your project and set their build action to
“Resource” (not “Embedded Resource”). Visual Studio then compiles them into
a .resources file called <AssemblyName>.g.resources—also the home of compiled
XAML (.baml) files.

To load a URI-keyed resource programmatically, call Application.GetResource-
Stream:

Uri u = new Uri ("flag.png", UriKind.Relative);
using (Stream s = Application.GetResourceStream (u).Stream)

Notice we used a relative URI. You can also use an absolute URI in exactly the fol‐
lowing format (the three commas are not a typo):

Uri u = new Uri ("pack://application:,,,/flag.png");

If you’d rather specify an Assembly object, you can retrieve content instead with a
ResourceManager:

Assembly a = Assembly.GetExecutingAssembly();
ResourceManager r = new ResourceManager (a.GetName().Name + ".g", a);
using (Stream s = r.GetStream ("flag.png"))
 ...

A ResourceManager also lets you enumerate the content of a .g.resources container
within a given assembly.

A
ssem

b
lies

Resources and Satellite Assemblies | 775

www.EBooksWorld.ir

Satellite Assemblies
Data embedded in .resources is localizable.

Resource localization is relevant when your application runs on a version of Win‐
dows built to display everything in a different language. For consistency, your appli‐
cation should use that same language, too.

A typical setup is as follows:

• The main assembly contains .resources for the default or fallback language.
• Separate satellite assemblies contain localized .resources translated to different

languages.

When your application runs, the Framework examines the language of the current
operating system (from CultureInfo.CurrentUICulture). Whenever you request a
resource using ResourceManager, the Framework looks for a localized satellite
assembly. If one’s available—and it contains the resource key you requested—it’s
used in place of the main assembly’s version.

This means you can enhance language support simply by adding new satellites—
without changing the main assembly.

A satellite assembly cannot contain executable code, only
resources.

Satellite assemblies are deployed in subdirectories of the assembly’s folder as fol‐
lows:

programBaseFolder\MyProgram.exe
 \MyLibrary.exe
 \XX\MyProgram.resources.dll
 \XX\MyLibrary.resources.dll

XX refers to the two-letter language code (such as “de” for German) or a language
and region code (such as “en-GB” for English in Great Britain). This naming system
allows the CLR to find and load the correct satellite assembly automatically.

Building satellite assemblies
Recall our previous .resx example, which included the following:

<root>
 ...
 <data name="Greeting"
 <value>hello</value>
 </data>
</root>

We then retrieved the greeting at runtime as follows:

776 | Chapter 18: Assemblies

www.EBooksWorld.ir

ResourceManager r = new ResourceManager ("welcome",
 Assembly.GetExecutingAssembly());
Console.Write (r.GetString ("Greeting"));

Suppose we want this to instead write “Hallo” if running on the German version of
Windows. The first step is to add another .resx file named welcome.de.resx that sub‐
stitutes hello for hallo:

<root>
 <data name="Greeting">
 <value>hallo<value>
 </data>
</root>

In Visual Studio, this is all you need to do—when you rebuild, a satellite assembly
called MyApp.resources.dll is automatically created in a subdirectory called de.

If you’re using the command line, you call resgen to turn the .resx file into a .resour‐
ces file:

resgen MyApp.de.resx

and then call al to build the satellite assembly:

al /culture:de /out:MyApp.resources.dll /embed:MyApp.de.resources /t:lib

You can specify /template:MyApp.exe to import the main assembly’s strong name.

Testing satellite assemblies
To simulate running on an operating system with a different language, you must
change the CurrentUICulture using the Thread class:

System.Threading.Thread.CurrentThread.CurrentUICulture
 = new System.Globalization.CultureInfo ("de");

CultureInfo.CurrentUICulture is a read-only version of the same property.

A useful testing strategy is to ℓѻ¢αℓïʐɘ into words that can
still be read as English but do not use the standard Roman
Unicode characters.

Visual Studio designer support
The designers in Visual Studio provide extended support for localizing components
and visual elements. The WPF designer has its own workflow for localization; other
Component-based designers use a design-time-only property to make it appear that a
component or Windows Forms control has a Language property. To customize for
another language, simply change the Language property and then start modifying
the component. All properties of controls that are attributed as Localizable will be
persisted to a .resx file for that language. You can switch between languages at any
time just by changing the Language property.

A
ssem

b
lies

Resources and Satellite Assemblies | 777

www.EBooksWorld.ir

Cultures and Subcultures
Cultures are split into cultures and subcultures. A culture represents a particular
language; a subculture represents a regional variation of that language. The Frame‐
work follows the RFC1766 standard, which represents cultures and subcultures with
two-letter codes. Here are the codes for English and German cultures:

en
de

Here are the codes for the Australian English and Austrian German subcultures:

en-AU
de-AT

A culture is represented in .NET with the System.Globalization.CultureInfo
class. You can examine the current culture of your application as follows:

Console.WriteLine (System.Threading.Thread.CurrentThread.CurrentCulture);
Console.WriteLine (System.Threading.Thread.CurrentThread.CurrentUICulture);

Running this on a computer localized for Australia illustrates the difference between
the two:

EN-AU
EN-US

CurrentCulture reflects the regional settings of the Windows control panel,
whereas CurrentUICulture reflects the language of the operating system.

Regional settings include such things as time zone and the formatting of currency
and dates. CurrentCulture determines the default behavior of such functions as
DateTime.Parse. Regional settings can be customized to the point where they no
longer resemble any particular culture.

CurrentUICulture determines the language in which the computer communicates
with the user. Australia doesn’t need a separate version of English for this purpose,
so it just uses the US one. If I spent a couple of months working in Austria, I would
go to the control panel and change my CurrentCulture to Austrian-German. How‐
ever, since I can’t speak German, my CurrentUICulture would remain US English.

ResourceManager, by default, uses the current thread’s CurrentUICulture property
to determine the correct satellite assembly to load. ResourceManager uses a fallback
mechanism when loading resources. If a subculture assembly is defined, that one is
used; otherwise, it falls back to the generic culture. If the generic culture is not
present, it falls back to the default culture in the main assembly.

778 | Chapter 18: Assemblies

www.EBooksWorld.ir

Resolving and Loading Assemblies
A typical application comprises a main executable assembly plus a set of referenced
library assemblies. For example:

AdventureGame.exe
Terrain.dll
UIEngine.dll

Assembly resolution refers to the process of locating referenced assemblies. Assem‐
bly resolution happens both at compile time and at runtime. The compile-time sys‐
tem is simple: the compiler knows where to find referenced assemblies because it’s
told where to look. You (or Visual Studio) provide the full path to referenced assem‐
blies that are not in the current directory.

Runtime resolution is more complicated. The compiler writes the strong names of
referenced assemblies to the manifest—but not any hints as to where to find them.
In the simple case where you put all referenced assemblies in the same folder as the
main executable, there’s no issue because that’s (close to) the first place the CLR
looks. The complexities arise:

• When you deploy referenced assemblies in other places
• When you dynamically load assemblies

Windows Store apps are very limited in what you can do in
the way of customizing assembly loading and resolution. In
particular, loading an assembly from an arbitrary file location
isn’t supported, and there’s no AssemblyResolve event.

Assembly and Type Resolution Rules
All types are scoped to an assembly. An assembly is like an address for a type. To
give an analogy, we can refer to a person as “Joe” (type name without namespace),
or “Joe Bloggs” (full type name), or “Joe Bloggs of 100 Barker Ave, WA” (assembly-
qualified type name).

During compilation, we don’t need to go further than a full type name for unique‐
ness, because you can’t reference two assemblies that define the same full type name
(at least not without special tricks). At runtime, though, it’s possible to have many
identically named types in memory. This happens within the Visual Studio designer,
for instance, whenever you rebuild the components you’re designing. The only way
to distinguish such types is by their assembly; therefore, an assembly forms an
essential part of a type’s runtime identity. An assembly is also a type’s handle to its
code and metadata.

The CLR loads assemblies at the point in execution when they’re first needed. This
happens when you refer to one of the assembly’s types. For example, suppose that

A
ssem

b
lies

Resolving and Loading Assemblies | 779

www.EBooksWorld.ir

AdventureGame.exe instantiates a type called TerrainModel.Map. Assuming no
additional configuration files, the CLR answers the following questions:

• What’s the fully qualified name of the assembly that contained TerrainMo
del.Map when AdventureGame.exe was compiled?

• Have I already loaded into memory an assembly with this fully qualified name
in the same (resolution) context?

If the answer to the second question is yes, it uses the existing copy in memory;
otherwise, it goes looking for the assembly. The CLR first checks the GAC, then the
probing paths (generally the application base directory), and as a final resort, fires
the AppDomain.AssemblyResolve event. If none returns a match, the CLR throws an
exception.

AssemblyResolve
The AssemblyResolve event allows you to intervene and manually load an assembly
that the CLR can’t find. If you handle this event, you can scatter referenced assem‐
blies in a variety of locations and still have them load.

Within the AssemblyResolve event handler, you locate the assembly and load it by
calling one of three static methods in the Assembly class: Load, LoadFrom, or Load
File. These methods return a reference to the newly loaded assembly, which you
then return to the caller:

static void Main()
{
 AppDomain.CurrentDomain.AssemblyResolve += FindAssembly;
 ...
}

static Assembly FindAssembly (object sender, ResolveEventArgs args)
{
 string fullyQualifiedName = args.Name;
 Assembly a = Assembly.LoadFrom (...);
 return a;
}

The ResolveEventArgs event is unusual in that it has a return type. If there are mul‐
tiple handlers, the first one to return a nonnull Assembly wins.

Loading Assemblies
The Load methods in Assembly are useful both inside and outside an AssemblyRe
solve handler. Outside the event handler, they can load and execute assemblies not
referenced at compilation. An example of when you might do this is to execute a
plug-in.

780 | Chapter 18: Assemblies

www.EBooksWorld.ir

Think carefully before calling Load, LoadFrom, or LoadFile:
these methods permanently load an assembly into the current
application domain—even if you do nothing with the resul‐
tant Assembly object. Loading an assembly has side effects: it
locks the assembly files as well as affecting subsequent type
resolution.
The only way to unload an assembly is to unload the whole
application domain. (There’s also a technique to avoid locking
assemblies called shadow copying for assemblies in the probing
path—go to http://albahari.com/shadowcopy for the MSDN
article.)
If you just want to examine an assembly without executing
any of its code, you can instead use the reflection-only context
(see Chapter 19).

To load an assembly from a fully qualified name (without a location), call Assem
bly.Load. This instructs the CLR to find the assembly using its normal automatic
resolution system. The CLR itself uses Load to find referenced assemblies.

To load an assembly from a filename, call LoadFrom or LoadFile.

To load an assembly from a URI, call LoadFrom.

To load an assembly from a byte array, call Load.

You can see what assemblies are currently loaded in memory
by calling AppDomain’s GetAssemblies method:

foreach (Assembly a in
AppDomain.CurrentDomain.GetAssemblies())
{
 Console.WriteLine (a.Location); // File path
 Console.WriteLine (a.CodeBase); // URI
 Console.WriteLine (a.GetName().Name); // Simple name
}

Loading from a filename
LoadFrom and LoadFile can both load an assembly from a filename. They differ in
two ways. First, if an assembly with the same identity has already been loaded into
memory from another location, LoadFrom gives you the previous copy:

Assembly a1 = Assembly.LoadFrom (@"c:\temp1\lib.dll");
Assembly a2 = Assembly.LoadFrom (@"c:\temp2\lib.dll");
Console.WriteLine (a1 == a2); // true

LoadFile gives you a fresh copy:

Assembly a1 = Assembly.LoadFile (@"c:\temp1\lib.dll");
Assembly a2 = Assembly.LoadFile (@"c:\temp2\lib.dll");
Console.WriteLine (a1 == a2); // false A

ssem
b

lies

Resolving and Loading Assemblies | 781

www.EBooksWorld.ir

http://albahari.com/shadowcopy

If you load twice from an identical location, however, both methods give you the
previously cached copy. (In contrast, loading an assembly twice from an identical
byte array gives you two distinct Assembly objects.)

Types from two identical assemblies in memory are incompat‐
ible. This is the primary reason to avoid loading duplicate
assemblies and hence a reason to favor LoadFrom over Load
File.

The second difference between LoadFrom and LoadFile is that LoadFrom hints the
CLR as to the location of onward references, whereas LoadFile does not. To illus‐
trate, suppose your application in \folder1 loads an assembly in \folder2 called Tes‐
tLib.dll, which references \folder2\Another.dll:

\folder1\MyApplication.exe

\folder2\TestLib.dll
\folder2\Another.dll

If you load TestLib with LoadFrom, the CLR will find and load Another.dll.

If you load TestLib with LoadFile, the CLR will be unable to find Another.dll and
will throw an exception—unless you also handle the AssemblyResolve event.

In following sections, we demonstrate these methods in the context of some practi‐
cal applications.

Statically referenced types and LoadFrom/LoadFile
When you refer to a type directly in your code, you’re statically referencing that type.
The compiler bakes a reference to that type into the assembly being compiled, as
well as the name of the assembly containing the type in question (but not any infor‐
mation on where to find it at runtime).

For instance, suppose there’s a type called Foo in an assembly called foo.dll and your
application bar.exe includes the following code:

var foo = new Foo();

The bar.exe application statically references the Foo type in the foo assembly. We
could instead dynamically load foo as follows:

Type t = Assembly.LoadFrom (@"d:\temp\foo.dll").GetType ("Foo");
var foo = Activator.CreateInstance (t);

If you mix the two approaches, you will usually end up with two copies of the
assembly in memory, because the CLR considers each to be a different “resolution
context.”

We said previously that when resolving static references, the CLR looks first in the
GAC, then in the probing path (normally the application base directory), and then
fires the AssemblyResolve event as a last resort. Before any of this, though, it checks

782 | Chapter 18: Assemblies

www.EBooksWorld.ir

whether the assembly has already been loaded. However, it considers only assem‐
blies that have either:

• Been loaded from a path that it would otherwise have found on its own (prob‐
ing path)

• Been loaded in response to the AssemblyResolve event

Hence, if you’ve already loaded it from an unprobed path via LoadFrom or LoadFile,
you’ll end up with two copies of the assembly in memory (with incompatible types).
To avoid this, you must be careful, when calling LoadFrom/LoadFile, to first check
whether the assembly exists in the application base directory (unless you want to
load multiple versions of an assembly).

Loading in response to the AssemblyResolve event is immune to this problem
(whether you use LoadFrom, LoadFile—or load from a byte array as we’ll see later),
because the event fires only for assemblies outside the probing path.

Whether you use LoadFrom or LoadFile, the CLR always looks
first for the requested assembly in the GAC. You can bypass
the GAC with ReflectionOnlyLoadFrom (which loads the
assembly into a reflection-only context). Even loading from a
byte array doesn’t bypass the GAC, although it gets around the
problem of locking assembly files:

byte[] image = File.ReadAllBytes (assemblyPath);
Assembly a = Assembly.Load (image);

If you do this, you must handle the AppDomain’s AssemblyRe
solve event in order to resolve any assemblies that the loaded
assembly itself references and keep track of all loaded assem‐
blies (see “Packing a Single-File Executable” on page 785).

Location versus CodeBase
An Assembly’s Location property usually returns its physical location in the file sys‐
tem (if it has one). The CodeBase property mirrors this in URI form except in spe‐
cial cases, such as if loaded from the Internet, where CodeBase is the Internet URI
and Location is the temporary path to which it was downloaded. Another special
case is with shadow-copied assemblies, where Location is blank and CodeBase is its
unshadowed location. ASP.NET and the popular NUnit testing framework employ
shadow copying to allow assemblies to be updated while the website or unit tests are
running (for the MSDN reference, go to http://albahari.com/shadowcopy). LINQPad
does something similar when you reference custom assemblies.

Hence relying solely on Location is dangerous if you’re looking for an assembly’s
location on disk. The better approach is to check both properties. The following
method returns an assembly’s containing folder (or null if it cannot be determined):

public static string GetAssemblyFolder (Assembly a)
{
 try

A
ssem

b
lies

Resolving and Loading Assemblies | 783

www.EBooksWorld.ir

http://albahari.com/shadowcopy

 {
 if (!string.IsNullOrEmpty (a.Location))
 return Path.GetDirectoryName (a.Location);

 if (string.IsNullOrEmpty (a.CodeBase)) return null;

 var uri = new Uri (a.CodeBase);
 if (!uri.IsFile) return null;

 return Path.GetDirectoryName (uri.LocalPath);
 }
 catch (NotSupportedException)
 {
 return null; // Dynamic assembly generated with Reflection.Emit
 }
}

Note that because CodeBase returns a URI, we use the Uri class to obtain its local
file path.

Deploying Assemblies Outside the Base Folder
Sometimes you might choose to deploy assemblies to locations other than the appli‐
cation base directory, for instance:

..\MyProgram\Main.exe

..\MyProgram\Libs\V1.23\GameLogic.dll

..\MyProgram\Libs\V1.23\3DEngine.dll

..\MyProgram\Terrain\Map.dll

..\Common\TimingController.dll

To make this work, you must assist the CLR in finding the assemblies outside the
base folder. The easiest solution is to handle the AssemblyResolve event.

In the following example, we assume all additional assemblies are located in c:
\ExtraAssemblies:

using System;
using System.IO;
using System.Reflection;

class Loader
{
 static void Main()
 {
 AppDomain.CurrentDomain.AssemblyResolve += FindAssembly;

 // We must switch to another class before attempting to use
 // any of the types in c:\ExtraAssemblies:
 Program.Go();
 }

 static Assembly FindAssembly (object sender, ResolveEventArgs args)
 {
 string simpleName = new AssemblyName (args.Name).Name;

784 | Chapter 18: Assemblies

www.EBooksWorld.ir

 string path = @"c:\ExtraAssemblies\" + simpleName + ".dll";

 if (!File.Exists (path)) return null; // Sanity check
 return Assembly.LoadFrom (path); // Load it up!
 }
}

class Program
{
 internal static void Go()
 {
 // Now we can reference types defined in c:\ExtraAssemblies
 }
}

It’s vitally important in this example not to reference types in
c:\ExtraAssemblies directly from the Loader class (e.g., as
fields), because the CLR would then attempt to resolve the
type before hitting Main().

In this example, we could use either LoadFrom or LoadFile. In either case, the CLR
verifies that the assembly that we hand it has the exact identity it requested. This
maintains the integrity of strongly named references.

In Chapter 24, we describe another approach that can be used when creating new
application domains. This involves setting the application domain’s PrivateBinPath
to include the directories containing the additional assemblies—extending the stan‐
dard assembly probing locations. A limitation of this is that the additional directo‐
ries must all be below the application base directory.

Packing a Single-File Executable
Suppose you’ve written an application comprising 10 assemblies: 1 main executable
file, plus 9 DLLs. Although such granularity can be great for design and debugging,
it’s also good to be able to pack the whole thing into a single “click and run” exe‐
cutable—without demanding the user perform some setup or file extraction ritual.
You can accomplish this by including the compiled assembly DLLs in the main exe‐
cutable project as embedded resources, and then writing an AssemblyResolve event
handler to load their binary images on demand. Here’s how it’s done:

using System;
using System.IO;
using System.Reflection;
using System.Collections.Generic;

public class Loader
{
 static Dictionary <string, Assembly> _libs
 = new Dictionary <string, Assembly>();

 static void Main()
 {

A
ssem

b
lies

Packing a Single-File Executable | 785

www.EBooksWorld.ir

 AppDomain.CurrentDomain.AssemblyResolve += FindAssembly;
 Program.Go();
 }

 static Assembly FindAssembly (object sender, ResolveEventArgs args)
 {
 string shortName = new AssemblyName (args.Name).Name;
 if (_libs.ContainsKey (shortName)) return _libs [shortName];

 using (Stream s = Assembly.GetExecutingAssembly().
 GetManifestResourceStream ("Libs." + shortName + ".dll"))
 {
 byte[] data = new BinaryReader (s).ReadBytes ((int) s.Length);
 Assembly a = Assembly.Load (data);
 _libs [shortName] = a;
 return a;
 }
 }
}

public class Program
{
 public static void Go()
 {
 // Run main program...
 }
}

Because the Loader class is defined in the main executable, the call to Assem
bly.GetExecutingAssembly will always return the main executable assembly, where
we’ve included the compiled DLLs as embedded resources. In this example, we pre‐
fix the name of each embedded resource assembly with "Libs.". If the Visual Stu‐
dio IDE was used, you would change "Libs." to the project’s default namespace (go
to Project Properties→Application). You would also need to ensure that the “Build
Action” IDE property on each of the DLL files included in the main project was set
to “Embedded Resource”.

The reason for caching requested assemblies in a dictionary is to ensure that if the
CLR requests the same assembly again, we return exactly the same object. Other‐
wise, an assembly’s types will be incompatible with those loaded previously (despite
their binary images being identical).

A variation of this would be to compress the referenced assemblies at compilation,
then decompress them in FindAssembly using a DeflateStream.

Selective Patching
Suppose in this example that we want the executable to be able to autonomously
update itself—perhaps from a network server or website. Directly patching the exe‐
cutable not only would be awkward and dangerous, but also the required file I/O
permissions may not be forthcoming (if installed in Program Files, for instance). An
excellent workaround is to download any updated libraries to isolated storage (each

786 | Chapter 18: Assemblies

www.EBooksWorld.ir

as a separate DLL) and then modify the FindAssembly method such that it first
checks for the presence of a library in its isolated storage area before loading it from
a resource in the executable. This leaves the original executable untouched and
avoids leaving any unpleasant residue on the user’s computer. Security is not com‐
promised if your assemblies are strongly named (assuming they were referenced in
compilation), and if something goes wrong, the application can always revert to its
original state—simply by deleting all files in its isolated storage.

Working with Unreferenced Assemblies
Sometimes it’s useful to explicitly load .NET assemblies that may not have been ref‐
erenced in compilation.

If the assembly in question is an executable and you simply want to run it, calling
ExecuteAssembly on the current application domain does the job. ExecuteAssem
bly loads the executable using LoadFrom semantics and then calls its entry method
with optional command-line arguments. For instance:

string dir = AppDomain.CurrentDomain.BaseDirectory;
AppDomain.CurrentDomain.ExecuteAssembly (Path.Combine (dir, "test.exe"));

ExecuteAssembly works synchronously, meaning the calling method is blocked
until the called assembly exits. To work asynchronously, you must call ExecuteAs
sembly on another thread or task (see Chapter 14).

In most cases, though, the assembly you’ll want to load is a library. The approach
then is to call LoadFrom, and then use reflection to work with the assembly’s types.
For example:

string ourDir = AppDomain.CurrentDomain.BaseDirectory;
string plugInDir = Path.Combine (ourDir, "plugins");
Assembly a = Assembly.LoadFrom (Path.Combine (plugInDir, "widget.dll"));
Type t = a.GetType ("Namespace.TypeName");
object widget = Activator.CreateInstance (t); // (See Chapter 19)
...

We used LoadFrom rather than LoadFile to ensure that any private assemblies
widget.dll referenced in the same folder were also loaded. We then retrieved a type
from the assembly by name and instantiated it.

The next step could be to use reflection to dynamically call methods and properties
on widget; we describe how to do this in the following chapter. An easier—and
faster—approach is to cast the object to a type that both assemblies understand.
This is often an interface defined in a common assembly:

public interface IPluggable
{
 void ShowAboutBox();
 ...
}

This allows us to do this:

A
ssem

b
lies

Working with Unreferenced Assemblies | 787

www.EBooksWorld.ir

Type t = a.GetType ("Namespace.TypeName");
IPluggable widget = (IPluggable) Activator.CreateInstance (t);
widget.ShowAboutBox();

You can use a similar system for dynamically publishing services in a WCF or
Remoting Server. The following assumes the libraries we want to expose end in
“server”:

using System.IO;
using System.Reflection;
...
string dir = AppDomain.CurrentDomain.BaseDirectory;
foreach (string assFile in Directory.GetFiles (dir, "*Server.dll"))
{
 Assembly a = Assembly.LoadFrom (assFile);
 foreach (Type t in a.GetTypes())
 if (typeof (MyBaseServerType).IsAssignableFrom (t))
 {
 // Expose type t
 }
}

This does make it very easy, though, for someone to add rogue assemblies, maybe
even accidentally! Assuming no compile-time references, the CLR has nothing
against which to check an assembly’s identity. If everything that you load is signed
with a known public key, the solution is to check that key explicitly. In the following
example, we assume that all libraries are signed with the same key pair as the exe‐
cuting assembly:

byte[] ourPK = Assembly.GetExecutingAssembly().GetName().GetPublicKey();

foreach (string assFile in Directory.GetFiles (dir, "*Server.dll"))
{
 byte[] targetPK = AssemblyName.GetAssemblyName (assFile).GetPublicKey();
 if (Enumerable.SequenceEqual (ourPK, targetPK))
 {
 Assembly a = Assembly.LoadFrom (assFile);
 ...

Notice how AssemblyName allows you to check the public key before loading the
assembly. To compare the byte arrays, we used LINQ’s SequenceEqual method (Sys
tem.Linq).

788 | Chapter 18: Assemblies

www.EBooksWorld.ir

19
Reflection and Metadata

As we saw in the previous chapter, a C# program compiles into an assembly that
includes metadata, compiled code, and resources. Inspecting the metadata and
compiled code at runtime is called reflection.

The compiled code in an assembly contains almost all of the content of the original
source code. Some information is lost, such as local variable names, comments, and
preprocessor directives. However, reflection can access pretty much everything else,
even making it possible to write a decompiler.

Many of the services available in .NET and exposed via C# (such as dynamic bind‐
ing, serialization, data binding, and Remoting) depend on the presence of metadata.
Your own programs can also take advantage of this metadata and even extend it
with new information using custom attributes. The System.Reflection namespace
houses the reflection API. It is also possible at runtime to dynamically create new
metadata and executable instructions in IL (Intermediate Language) via the classes
in the System.Reflection.Emit namespace.

The examples in this chapter assume that you import the System and Sys
tem.Reflection, as well as System.Reflection.Emit, namespaces.

When we use the term “dynamically” in this chapter, we mean
using reflection to perform some task whose type safety is
enforced only at runtime. This is similar in principle to
dynamic binding via C#’s dynamic keyword, although the
mechanism and functionality is different.
To compare the two, dynamic binding is much easier to use
and leverages the DLR for dynamic language interoperability.
Reflection is relatively clumsy to use, is concerned with the
CLR only—but is more flexible in terms of what you can do
with the CLR. For instance, reflection lets you obtain lists of
types and members, instantiate an object whose name comes
from a string, and build assemblies on the fly.

R
efl

ectio
n

and
M

etad
ata

789

www.EBooksWorld.ir

Reflecting and Activating Types
In this section, we examine how to obtain a Type, inspect its metadata, and use it to
dynamically instantiate an object.

Obtaining a Type
An instance of System.Type represents the metadata for a type. Since Type is widely
used, it lives in the System namespace rather than the System.Reflection name‐
space.

You can get an instance of a System.Type by calling GetType on any object or with
C#’s typeof operator:

Type t1 = DateTime.Now.GetType(); // Type obtained at runtime
Type t2 = typeof (DateTime); // Type obtained at compile time

You can use typeof to obtain array types and generic types as follows:

Type t3 = typeof (DateTime[]); // 1-d Array type
Type t4 = typeof (DateTime[,]); // 2-d Array type
Type t5 = typeof (Dictionary<int,int>); // Closed generic type
Type t6 = typeof (Dictionary<,>); // Unbound generic type

You can also retrieve a Type by name. If you have a reference to its Assembly, call
Assembly.GetType (we describe this further in the section “Reflecting Assemblies”
on page 810 later in this chapter):

Type t = Assembly.GetExecutingAssembly().GetType ("Demos.TestProgram");

If you don’t have an Assembly object, you can obtain a type through its assembly
qualified name (the type’s full name followed by the assembly’s fully qualified name).
The assembly implicitly loads as if you called Assembly.Load(string):

Type t = Type.GetType ("System.Int32, mscorlib, Version=2.0.0.0, " +
 "Culture=neutral, PublicKeyToken=b77a5c561934e089");

Once you have a System.Type object, you can use its properties to access the type’s
name, assembly, base type, visibility, and so on. For example:

Type stringType = typeof (string);
string name = stringType.Name; // String
Type baseType = stringType.BaseType; // typeof(Object)
Assembly assem = stringType.Assembly; // mscorlib.dll
bool isPublic = stringType.IsPublic; // true

A System.Type instance is a window into the entire metadata for the type—and the
assembly in which it’s defined.

System.Type is abstract, so the typeof operator must actually
give you a subclass of Type. The subclass that the CLR uses is
internal to mscorlib and is called RuntimeType.

790 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

TypeInfo and Windows Store applications
The Windows Store profile hides most of Type’s members and exposes them on a
class called TypeInfo instead, which you obtain by calling GetTypeInfo. So to get
our previous example to run in a Windows Store application, you do this:

Type stringType = typeof(string);
string name = stringType.Name;
Type baseType = stringType.GetTypeInfo().BaseType;
Assembly assem = stringType.GetTypeInfo().Assembly;
bool isPublic = stringType.GetTypeInfo().IsPublic;

Many of the code listings in this chapter will require this mod‐
ification in order to work in Windows Store applications. So if
an example won’t compile for lack of a member, add .GetTy
peInfo() to the Type expression.

TypeInfo also exists in the full .NET Framework, so code that works in Windows
Store apps also works in desktop apps that target Framework 4.5 or later. TypeInfo
also includes additional properties and methods for reflecting over members.

Windows Store applications are restricted in what they can do with regarding reflec‐
tion. Specifically, they cannot access nonpublic members of types, and they cannot
use Reflection.Emit.

Obtaining array types
As we just saw, typeof and GetType work with array types. You can also obtain an
array type by calling MakeArrayType on the element type:

Type simpleArrayType = typeof (int).MakeArrayType();
Console.WriteLine (simpleArrayType == typeof (int[])); // True

MakeArrayType can be passed an integer argument to make multidimensional rec‐
tangular arrays:

Type cubeType = typeof (int).MakeArrayType (3); // cube shaped
Console.WriteLine (cubeType == typeof (int[,,])); // True

GetElementType does the reverse: it retrieves an array type’s element type:

Type e = typeof (int[]).GetElementType(); // e == typeof (int)

GetArrayRank returns the number of dimensions of a rectangular array:

int rank = typeof (int[,,]).GetArrayRank(); // 3

Obtaining nested types
To retrieve nested types, call GetNestedTypes on the containing type. For example:

foreach (Type t in typeof (System.Environment).GetNestedTypes())
 Console.WriteLine (t.FullName);

OUTPUT: System.Environment+SpecialFolder

R
efl

ectio
n

and
M

etad
ata

Reflecting and Activating Types | 791

www.EBooksWorld.ir

Or, in Window Store:

foreach (TypeInfo t in typeof (System.Environment).GetTypeInfo()
 .DeclaredNestedTypes)
 Debug.WriteLine (t.FullName);

The one caveat with nested types is that the CLR treats a nested type as having spe‐
cial “nested” accessibility levels. For example:

Type t = typeof (System.Environment.SpecialFolder);
Console.WriteLine (t.IsPublic); // False
Console.WriteLine (t.IsNestedPublic); // True

Type Names
A type has Namespace, Name, and FullName properties. In most cases, FullName is a
composition of the former two:

Type t = typeof (System.Text.StringBuilder);

Console.WriteLine (t.Namespace); // System.Text
Console.WriteLine (t.Name); // StringBuilder
Console.WriteLine (t.FullName); // System.Text.StringBuilder

There are two exceptions to this rule: nested types and closed generic types.

Type also has a property called AssemblyQualifiedName,
which returns FullName followed by a comma and then the
full name of its assembly. This is the same string that you can
pass to Type.GetType, and it uniquely identifies a type within
the default loading context.

Nested type names
With nested types, the containing type appears only in FullName:

Type t = typeof (System.Environment.SpecialFolder);

Console.WriteLine (t.Namespace); // System
Console.WriteLine (t.Name); // SpecialFolder
Console.WriteLine (t.FullName); // System.Environment+SpecialFolder

The + symbol differentiates the containing type from a nested namespace.

Generic type names
Generic type names are suffixed with the ' symbol, followed by the number of type
parameters. If the generic type is unbound, this rule applies to both Name and Full
Name:

Type t = typeof (Dictionary<,>); // Unbound
Console.WriteLine (t.Name); // Dictionary'2
Console.WriteLine (t.FullName); // System.Collections.Generic.Dictionary'2

792 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

If the generic type is closed, however, FullName (only) acquires a substantial extra
appendage. Each type parameter’s full assembly qualified name is enumerated:

Console.WriteLine (typeof (Dictionary<int,string>).FullName);

// OUTPUT:
System.Collections.Generic.Dictionary'2[[System.Int32, mscorlib,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],
[System.String, mscorlib, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089]]

This ensures that AssemblyQualifiedName (a combination of the type’s full name
and assembly name) contains enough information to fully identify both the generic
type and its type parameters.

Array and pointer type names
Arrays present with the same suffix that you use in a typeof expression:

Console.WriteLine (typeof (int[]).Name); // Int32[]
Console.WriteLine (typeof (int[,]).Name); // Int32[,]
Console.WriteLine (typeof (int[,]).FullName); // System.Int32[,]

Pointer types are similar:

Console.WriteLine (typeof (byte*).Name); // Byte*

ref and out parameter type names
A Type describing a ref or out parameter has an & suffix:

Type t = typeof (bool).GetMethod ("TryParse").GetParameters()[1]
 .ParameterType;
Console.WriteLine (t.Name); // Boolean&

More on this later, in the section “Reflecting and Invoking Members” on page 797.

Base Types and Interfaces
Type exposes a BaseType property:

Type base1 = typeof (System.String).BaseType;
Type base2 = typeof (System.IO.FileStream).BaseType;

Console.WriteLine (base1.Name); // Object
Console.WriteLine (base2.Name); // Stream

The GetInterfaces method returns the interfaces that a type implements:

foreach (Type iType in typeof (Guid).GetInterfaces())
 Console.WriteLine (iType.Name);

IFormattable
IComparable
IComparable'1
IEquatable'1

R
efl

ectio
n

and
M

etad
ata

Reflecting and Activating Types | 793

www.EBooksWorld.ir

Reflection provides two dynamic equivalents to C#’s static is operator:

IsInstanceOfType

Accepts a type and instance

IsAssignableFrom

Accepts two types

Here’s an example of the first:

object obj = Guid.NewGuid();
Type target = typeof (IFormattable);

bool isTrue = obj is IFormattable; // Static C# operator
bool alsoTrue = target.IsInstanceOfType (obj); // Dynamic equivalent

IsAssignableFrom is more versatile:

Type target = typeof (IComparable), source = typeof (string);
Console.WriteLine (target.IsAssignableFrom (source)); // True

The IsSubclassOf method works on the same principle as IsAssignableFrom but
excludes interfaces.

Instantiating Types
There are two ways to dynamically instantiate an object from its type:

• Call the static Activator.CreateInstance method.

• Call Invoke on a ConstructorInfo object obtained from calling GetConstruc
tor on a Type (advanced scenarios).

Activator.CreateInstance accepts a Type and optional arguments that get passed
to the constructor:

int i = (int) Activator.CreateInstance (typeof (int));

DateTime dt = (DateTime) Activator.CreateInstance (typeof (DateTime),
 2000, 1, 1);

CreateInstance lets you specify many other options, such as the assembly from
which to load the type, the target application domain, and whether to bind to a non‐
public constructor. A MissingMethodException is thrown if the runtime can’t find a
suitable constructor.

Calling Invoke on a ConstructorInfo is necessary when your argument values can’t
disambiguate between overloaded constructors. For example, suppose class X has
two constructors: one accepting a parameter of type string, and another accepting
a parameter of type StringBuilder. The target is ambiguous should you pass a null
argument into Activator.CreateInstance. This is when you need to use a Con
structorInfo instead:

794 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

// Fetch the constructor that accepts a single parameter of type string:
ConstructorInfo ci = typeof (X).GetConstructor (new[] { typeof (string) });

// Construct the object using that overload, passing in null:
object foo = ci.Invoke (new object[] { null });

Or, in Windows Store applications:

ConstructorInfo ci = typeof (X).GetTypeInfo().DeclaredConstructors
 .FirstOrDefault (c =>
 c.GetParameters().Length == 1 &&
 c.GetParameters()[0].ParameterType == typeof (string));

To obtain a nonpublic constructor, you need to specify BindingFlags—see “Access‐
ing Nonpublic Members” on page 806 in the later section “Reflecting and Invoking
Members” on page 797.

Dynamic instantiation adds a few microseconds onto the time
taken to construct the object. This is quite a lot in relative
terms because the CLR is ordinarily very fast in instantiating
objects (a simple new on a small class takes in the region of
tens of nanoseconds).

To dynamically instantiate arrays based on just element type, first call MakeArray
Type. You can also instantiate generic types: we describe this in the following sec‐
tion.

To dynamically instantiate a delegate, call Delegate.CreateDelegate. The follow‐
ing example demonstrates instantiating both an instance delegate and a static dele‐
gate:

class Program
{
 delegate int IntFunc (int x);

 static int Square (int x) { return x * x; } // Static method
 int Cube (int x) { return x * x * x; } // Instance method

 static void Main()
 {
 Delegate staticD = Delegate.CreateDelegate
 (typeof (IntFunc), typeof (Program), "Square");

 Delegate instanceD = Delegate.CreateDelegate
 (typeof (IntFunc), new Program(), "Cube");

 Console.WriteLine (staticD.DynamicInvoke (3)); // 9
 Console.WriteLine (instanceD.DynamicInvoke (3)); // 27
 }
}

You can invoke the Delegate object that’s returned by calling DynamicInvoke, as we
did in this example, or by casting to the typed delegate:

R
efl

ectio
n

and
M

etad
ata

Reflecting and Activating Types | 795

www.EBooksWorld.ir

IntFunc f = (IntFunc) staticD;
Console.WriteLine (f(3)); // 9 (but much faster!)

You can pass a MethodInfo into CreateDelegate instead of a method name. We
describe MethodInfo shortly, in the section “Reflecting and Invoking Members” on
page 797, along with the rationale for casting a dynamically created delegate back to
the static delegate type.

Generic Types
A Type can represent a closed or unbound generic type. Just as at compile time, a
closed generic type can be instantiated whereas an unbound type cannot:

Type closed = typeof (List<int>);
List<int> list = (List<int>) Activator.CreateInstance (closed); // OK

Type unbound = typeof (List<>);
object anError = Activator.CreateInstance (unbound); // Runtime error

The MakeGenericType method converts an unbound into a closed generic type.
Simply pass in the desired type arguments:

Type unbound = typeof (List<>);
Type closed = unbound.MakeGenericType (typeof (int));

The GetGenericTypeDefinition method does the opposite:

Type unbound2 = closed.GetGenericTypeDefinition(); // unbound == unbound2

The IsGenericType property returns true if a Type is generic, and the IsGenericTy
peDefinition property returns true if the generic type is unbound. The following
tests whether a type is a nullable value type:

Type nullable = typeof (bool?);
Console.WriteLine (
 nullable.IsGenericType &&
 nullable.GetGenericTypeDefinition() == typeof (Nullable<>)); // True

GetGenericArguments returns the type arguments for closed generic types:

Console.WriteLine (closed.GetGenericArguments()[0]); // System.Int32
Console.WriteLine (nullable.GetGenericArguments()[0]); // System.Boolean

For unbound generic types, GetGenericArguments returns pseudotypes that repre‐
sent the placeholder types specified in the generic type definition:

Console.WriteLine (unbound.GetGenericArguments()[0]); // T

796 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

At runtime, all generic types are either unbound or closed.
They’re unbound in the (relatively unusual) case of an expres‐
sion such as typeof(Foo<>); otherwise, they’re closed. There’s
no such thing as an open generic type at runtime: all open
types are closed by the compiler. The method in the following
class always prints False:

class Foo<T>
{
 public void Test()
 {
 Console.Write (GetType().IsGenericTypeDefinition);
 }
}

Reflecting and Invoking Members
The GetMembers method returns the members of a type. Consider the following
class:

class Walnut
{
 private bool cracked;
 public void Crack() { cracked = true; }
}

We can reflect on its public members as follows:

MemberInfo[] members = typeof (Walnut).GetMembers();
foreach (MemberInfo m in members)
 Console.WriteLine (m);

This is the result:

Void Crack()
System.Type GetType()
System.String ToString()
Boolean Equals(System.Object)
Int32 GetHashCode()
Void .ctor()

R
efl

ectio
n

and
M

etad
ata

Reflecting and Invoking Members | 797

www.EBooksWorld.ir

Reflecting Members with TypeInfo
TypeInfo exposes a different (and somewhat simpler) protocol for reflecting over
members. Using this API is optional in applications that target Framework 4.5 or
later but mandatory in Windows Store apps, since there’s no exact equivalent to the
GetMembers method.

Instead of exposing methods like GetMembers that return arrays, TypeInfo exposes
properties that return IEnumerable<T>, upon which you typically run LINQ queries.
The broadest is DeclaredMembers:

IEnumerable<MemberInfo> members =
 typeof(Walnut).GetTypeInfo().DeclaredMembers;

Unlike with GetMembers(), the result excludes inherited members:

Void Crack()
Void .ctor()
Boolean cracked

There are also properties for returning specific kinds of members (DeclaredProper
ties, DeclaredMethods, DeclaredEvents, and so on) and methods for returning a
specific member by name (e.g., GetDeclaredMethod). The latter cannot be used on
overloaded methods (as there’s no way to specify parameter types). Instead, you run
a LINQ query over DeclaredMethods:

MethodInfo method = typeof (int).GetTypeInfo().DeclaredMethods
 .FirstOrDefault (m => m.Name == "ToString" &&
 m.GetParameters().Length == 0);

When called with no arguments, GetMembers returns all the public members for a
type (and its base types). GetMember retrieves a specific member by name—although
it still returns an array because members can be overloaded:

MemberInfo[] m = typeof (Walnut).GetMember ("Crack");
Console.WriteLine (m[0]); // Void Crack()

MemberInfo also has a property called MemberType of type MemberTypes. This is a
flags enum with these values:

All Custom Field NestedType TypeInfo
Constructor Event Method Property

When calling GetMembers, you can pass in a MemberTypes instance to restrict the
kinds of members that it returns. Alternatively, you can restrict the result set by call‐
ing GetMethods, GetFields, GetProperties, GetEvents, GetConstructors, or Get
NestedTypes. There are also singular versions of each of these to hone in on a spe‐
cific member.

798 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

It pays to be as specific as possible when retrieving a type
member, so your code doesn’t break if additional members are
added later. If retrieving a method by name, specifying all
parameter types ensures your code will still work if the
method is later overloaded (we provide examples shortly, in
the section “Method Parameters” on page 804).

A MemberInfo object has a Name property and two Type properties:

DeclaringType

Returns the Type that defines the member

ReflectedType

Returns the Type upon which GetMembers was called

The two differ when called on a member that’s defined in a base type: Declaring
Type returns the base type whereas ReflectedType returns the subtype. The follow‐
ing example highlights this:

class Program
{
 static void Main()
 {
 // MethodInfo is a subclass of MemberInfo; see Figure 19-1.

 MethodInfo test = typeof (Program).GetMethod ("ToString");
 MethodInfo obj = typeof (object) .GetMethod ("ToString");

 Console.WriteLine (test.DeclaringType); // System.Object
 Console.WriteLine (obj.DeclaringType); // System.Object

 Console.WriteLine (test.ReflectedType); // Program
 Console.WriteLine (obj.ReflectedType); // System.Object

 Console.WriteLine (test == obj); // False
 }
}

Because they have different ReflectedTypes, the test and obj objects are not equal.
Their difference, however, is purely a fabrication of the reflection API; our Program
type has no distinct ToString method in the underlying type system. We can verify
that the two MethodInfo objects refer to the same method in either of two ways:

Console.WriteLine (test.MethodHandle == obj.MethodHandle); // True

Console.WriteLine (test.MetadataToken == obj.MetadataToken // True
 && test.Module == obj.Module);

A MethodHandle is unique to each (genuinely distinct) method within an applica‐
tion domain; a MetadataToken is unique across all types and members within an
assembly module.

R
efl

ectio
n

and
M

etad
ata

Reflecting and Invoking Members | 799

www.EBooksWorld.ir

MemberInfo also defines methods to return custom attributes (see the section
“Retrieving Attributes at Runtime” on page 815 later in this chapter).

You can obtain the MethodBase of the currently executing
method by calling MethodBase.GetCurrentMethod.

Member Types
MemberInfo itself is light on members because it’s an abstract base for the types
shown in Figure 19-1.

Figure 19-1. Member types

You can cast a MemberInfo to its subtype—based on its MemberType property. If you
obtained a member via GetMethod, GetField, GetProperty, GetEvent, GetConstruc
tor, or GetNestedType (or their plural versions), a cast isn’t necessary. Table 19-1
summarizes what methods to use for each kind of C# construct.

Table 19-1. Retrieving member metadata

C# construct Method to use Name to use Result

Method GetMethod (Method name) MethodInfo

Property GetProperty (Property name) PropertyInfo

Indexer GetDefaultMembers MemberInfo[] (containing
PropertyInfo objects if compiled
in C#)

Field GetField (Field name) FieldInfo

Enum member GetField (Member name) FieldInfo

Event GetEvent (Event name) EventInfo

Constructor GetConstructor ConstructorInfo

Finalizer GetMethod "Finalize" MethodInfo

800 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

C# construct Method to use Name to use Result

Operator GetMethod "op_" + operator name MethodInfo

Nested type GetNestedType (Type name) Type

Each MemberInfo subclass has a wealth of properties and methods, exposing all
aspects of the member’s metadata. This includes such things as visibility, modifiers,
generic type arguments, parameters, return type, and custom attributes.

Here is an example of using GetMethod:

MethodInfo m = typeof (Walnut).GetMethod ("Crack");
Console.WriteLine (m); // Void Crack()
Console.WriteLine (m.ReturnType); // System.Void

All *Info instances are cached by the reflection API on first use:

MethodInfo method = typeof (Walnut).GetMethod ("Crack");
MemberInfo member = typeof (Walnut).GetMember ("Crack") [0];

Console.Write (method == member); // True

As well as preserving object identity, caching improves the performance of what is
otherwise a fairly slow API.

C# Members Versus CLR Members
The preceding table illustrates that some of C#’s functional constructs don’t have a
1:1 mapping with CLR constructs. This makes sense because the CLR and reflection
API were designed with all .NET languages in mind—you can use reflection even
from Visual Basic.

Some C# constructs—namely indexers, enums, operators, and finalizers—are con‐
trivances as far as the CLR is concerned. Specifically:

• A C# indexer translates to a property accepting one or more arguments,
marked as the type’s [DefaultMember].

• A C# enum translates to a subtype of System.Enum with a static field for each
member.

• A C# operator translates to a specially named static method, starting in “op_”;
for example, "op_Addition".

• A C# finalizer translates to a method that overrides Finalize.

R
efl

ectio
n

and
M

etad
ata

Reflecting and Invoking Members | 801

www.EBooksWorld.ir

Another complication is that properties and events actually comprise two things:

• Metadata describing the property or event (encapsulated by PropertyInfo or
EventInfo)

• One or two backing methods

In a C# program, the backing methods are encapsulated within the property or
event definition. But when compiled to IL, the backing methods present as ordinary
methods that you can call like any other. This means GetMethods returns property
and event backing methods alongside ordinary methods. To illustrate:

class Test { public int X { get { return 0; } set {} } }

void Demo()
{
 foreach (MethodInfo mi in typeof (Test).GetMethods())
 Console.Write (mi.Name + " ");
}

// OUTPUT:
get_X set_X GetType ToString Equals GetHashCode

You can identify these methods through the IsSpecialName property in Method
Info. IsSpecialName returns true for property, indexer, and event accessors—as
well as operators. It returns false only for conventional C# methods—and the
Finalize method if a finalizer is defined.

Here are the backing methods that C# generates:

C# construct Member type Methods in IL

Property Property get_XXX and set_XXX

Indexer Property get_Item and set_Item

Event Event add_XXX and remove_XXX

Each backing method has its own associated MethodInfo object. You can access
these as follows:

PropertyInfo pi = typeof (Console).GetProperty ("Title");
MethodInfo getter = pi.GetGetMethod(); // get_Title
MethodInfo setter = pi.GetSetMethod(); // set_Title
MethodInfo[] both = pi.GetAccessors(); // Length==2

GetAddMethod and GetRemoveMethod perform a similar job for EventInfo.

To go in the reverse direction—from a MethodInfo to its associated PropertyInfo
or EventInfo—you need to perform a query. LINQ is ideal for this job:

PropertyInfo p = mi.DeclaringType.GetProperties()
 .First (x => x.GetAccessors (true).Contains (mi));

802 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

Generic Type Members
You can obtain member metadata for both unbound and closed generic types:

PropertyInfo unbound = typeof (IEnumerator<>) .GetProperty ("Current");
PropertyInfo closed = typeof (IEnumerator<int>).GetProperty ("Current");

Console.WriteLine (unbound); // T Current
Console.WriteLine (closed); // Int32 Current

Console.WriteLine (unbound.PropertyType.IsGenericParameter); // True
Console.WriteLine (closed.PropertyType.IsGenericParameter); // False

The MemberInfo objects returned from unbound and closed generic types are
always distinct—even for members whose signatures don’t feature generic type
parameters:

PropertyInfo unbound = typeof (List<>) .GetProperty ("Count");
PropertyInfo closed = typeof (List<int>).GetProperty ("Count");

Console.WriteLine (unbound); // Int32 Count
Console.WriteLine (closed); // Int32 Count

Console.WriteLine (unbound == closed); // False

Console.WriteLine (unbound.DeclaringType.IsGenericTypeDefinition); // True
Console.WriteLine (closed.DeclaringType.IsGenericTypeDefinition); // False

Members of unbound generic types cannot be dynamically invoked.

Dynamically Invoking a Member
Once you have a MethodInfo, PropertyInfo or FieldInfo object, you can dynami‐
cally call it or get/set its value. This is called dynamic binding or late binding, because
you choose which member to invoke at runtime rather than compile time.

To illustrate, the following uses ordinary static binding:

string s = "Hello";
int length = s.Length;

Here’s the same thing performed dynamically with reflection:

object s = "Hello";
PropertyInfo prop = s.GetType().GetProperty ("Length");
int length = (int) prop.GetValue (s, null); // 5

GetValue and SetValue get and set the value of a PropertyInfo or FieldInfo. The
first argument is the instance, which can be null for a static member. Accessing an
indexer is just like accessing a property called “Item,” except that you provide
indexer values as the second argument when calling GetValue or SetValue.

To dynamically call a method, call Invoke on a MethodInfo, providing an array of
arguments to pass to that method. If you get any of the argument types wrong, an

R
efl

ectio
n

and
M

etad
ata

Reflecting and Invoking Members | 803

www.EBooksWorld.ir

exception is thrown at runtime. With dynamic invocation, you lose compile-time
type safety but still have runtime type safety (just as with the dynamic keyword).

Method Parameters
Suppose we want to dynamically call string’s Substring method. Statically, this
would be done as follows:

Console.WriteLine ("stamp".Substring(2)); // "amp"

Here’s the dynamic equivalent with reflection:

Type type = typeof (string);
Type[] parameterTypes = { typeof (int) };
MethodInfo method = type.GetMethod ("Substring", parameterTypes);

object[] arguments = { 2 };
object returnValue = method.Invoke ("stamp", arguments);
Console.WriteLine (returnValue); // "amp"

Because the Substring method is overloaded, we had to pass an array of parameter
types to GetMethod to indicate which version we wanted. Without the parameter
types, GetMethod would throw an AmbiguousMatchException.

The GetParameters method, defined on MethodBase (the base class for MethodInfo
and ConstructorInfo), returns parameter metadata. We can continue our previous
example as follows:

ParameterInfo[] paramList = method.GetParameters();
foreach (ParameterInfo x in paramList)
{
 Console.WriteLine (x.Name); // startIndex
 Console.WriteLine (x.ParameterType); // System.Int32
}

Dealing with ref and out parameters
To pass ref or out parameters, call MakeByRefType on the type before obtaining the
method. For instance, this code:

int x;
bool successfulParse = int.TryParse ("23", out x);

can be dynamically executed as follows:

object[] args = { "23", 0 };
Type[] argTypes = { typeof (string), typeof (int).MakeByRefType() };
MethodInfo tryParse = typeof (int).GetMethod ("TryParse", argTypes);
bool successfulParse = (bool) tryParse.Invoke (null, args);

Console.WriteLine (successfulParse + " " + args[1]); // True 23

This same approach works for both ref and out parameter types.

804 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

Retrieving and invoking generic methods
Explicitly specifying parameter types when calling GetMethod can be essential in
disambiguating overloaded methods. However, it’s impossible to specify generic
parameter types. For instance, consider the System.Linq.Enumerable class, which
overloads the Where method as follows:

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource, bool> predicate);

public static IEnumerable<TSource> Where<TSource>
 (this IEnumerable<TSource> source, Func<TSource, int, bool> predicate);

To retrieve a specific overload, we must retrieve all methods and then manually find
the desired overload. The following query retrieves the former overload of Where:

from m in typeof (Enumerable).GetMethods()
where m.Name == "Where" && m.IsGenericMethod
let parameters = m.GetParameters()
where parameters.Length == 2
let genArg = m.GetGenericArguments().First()
let enumerableOfT = typeof (IEnumerable<>).MakeGenericType (genArg)
let funcOfTBool = typeof (Func<,>).MakeGenericType (genArg, typeof (bool))
where parameters[0].ParameterType == enumerableOfT
 && parameters[1].ParameterType == funcOfTBool
select m

Calling .Single() on this query gives the correct MethodInfo object with unbound
type parameters. The next step is to close the type parameters by calling MakeGener
icMethod:

var closedMethod = unboundMethod.MakeGenericMethod (typeof (int));

In this case, we’ve closed TSource with int, allowing us to call Enumerable.Where
with a source of type IEnumerable<int>, and a predicate of type Func<int,bool>:

int[] source = { 3, 4, 5, 6, 7, 8 };
Func<int, bool> predicate = n => n % 2 == 1; // Odd numbers only

We can now invoke the closed generic method as follows:

var query = (IEnumerable<int>) closedMethod.Invoke
 (null, new object[] { source, predicate });

foreach (int element in query) Console.Write (element + "|"); // 3|5|7|

R
efl

ectio
n

and
M

etad
ata

Reflecting and Invoking Members | 805

www.EBooksWorld.ir

If you’re using the System.Linq.Expressions API to dynami‐
cally build expressions (Chapter 8), you don’t need to go to
this trouble to specify a generic method. The Expres

sion.Call method is overloaded to let you specify the closed
type arguments of the method you wish to call:

int[] source = { 3, 4, 5, 6, 7, 8 };
Func<int, bool> predicate = n => n % 2 == 1;

var sourceExpr = Expression.Constant (source);
var predicateExpr = Expression.Constant (predicate);

var callExpression = Expression.Call (
 typeof (Enumerable), "Where",
 new[] { typeof (int) }, // Closed generic arg type.
 sourceExpr, predicateExpr);

Using Delegates for Performance
Dynamic invocations are relatively inefficient, with an overhead typically in the few-
microseconds region. If you’re calling a method repeatedly in a loop, you can shift
the per-call overhead into the nanoseconds region by instead calling a dynamically
instantiated delegate that targets your dynamic method. In the following example,
we dynamically call string’s Trim method a million times without significant over‐
head:

delegate string StringToString (string s);

static void Main()
{
 MethodInfo trimMethod = typeof (string).GetMethod ("Trim", new Type[0]);
 var trim = (StringToString) Delegate.CreateDelegate
 (typeof (StringToString), trimMethod);
 for (int i = 0; i < 1000000; i++)
 trim ("test");
}

This is faster because the costly dynamic binding (shown in bold) happens just
once.

Accessing Nonpublic Members
All of the methods on types used to probe metadata (e.g., GetProperty, GetField,
etc.) have overloads that take a BindingFlags enum. This enum serves as a meta‐
data filter and allows you to change the default selection criteria. The most common
use for this is to retrieve nonpublic members (this works only in desktop apps).

For instance, consider the following class:

class Walnut
{
 private bool cracked;
 public void Crack() { cracked = true; }

806 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

 public override string ToString() { return cracked.ToString(); }
}

We can uncrack the walnut as follows:

Type t = typeof (Walnut);
Walnut w = new Walnut();
w.Crack();
FieldInfo f = t.GetField ("cracked", BindingFlags.NonPublic |
 BindingFlags.Instance);
f.SetValue (w, false);
Console.WriteLine (w); // False

Using reflection to access nonpublic members is powerful, but it is also dangerous,
since you can bypass encapsulation, creating an unmanageable dependency on the
internal implementation of a type.

The BindingFlags enum
BindingFlags is intended to be bitwise-combined. In order to get any matches at
all, you need to start with one of the following four combinations:

BindingFlags.Public | BindingFlags.Instance
BindingFlags.Public | BindingFlags.Static
BindingFlags.NonPublic | BindingFlags.Instance
BindingFlags.NonPublic | BindingFlags.Static

NonPublic includes internal, protected, protected internal, and private.

The following example retrieves all the public static members of type object:

BindingFlags publicStatic = BindingFlags.Public | BindingFlags.Static;
MemberInfo[] members = typeof (object).GetMembers (publicStatic);

The following example retrieves all the nonpublic members of type object, both
static and instance:

BindingFlags nonPublicBinding =
 BindingFlags.NonPublic | BindingFlags.Static | BindingFlags.Instance;

MemberInfo[] members = typeof (object).GetMembers (nonPublicBinding);

The DeclaredOnly flag excludes functions inherited from base types, unless they are
overridden.

The DeclaredOnly flag is somewhat confusing in that it
restricts the result set (whereas all the other binding flags
expand the result set).

Generic Methods
Generic methods cannot be invoked directly; the following throws an exception:

class Program
{
 public static T Echo<T> (T x) { return x; }

R
efl

ectio
n

and
M

etad
ata

Reflecting and Invoking Members | 807

www.EBooksWorld.ir

 static void Main()
 {
 MethodInfo echo = typeof (Program).GetMethod ("Echo");
 Console.WriteLine (echo.IsGenericMethodDefinition); // True
 echo.Invoke (null, new object[] { 123 }); // Exception
 }
}

An extra step is required, which is to call MakeGenericMethod on the MethodInfo,
specifying concrete generic type arguments. This returns another MethodInfo,
which you can then invoke as follows:

MethodInfo echo = typeof (Program).GetMethod ("Echo");
MethodInfo intEcho = echo.MakeGenericMethod (typeof (int));
Console.WriteLine (intEcho.IsGenericMethodDefinition); // False
Console.WriteLine (intEcho.Invoke (null, new object[] { 3 })); // 3

Anonymously Calling Members of a Generic Interface
Reflection is useful when you need to invoke a member of a generic interface and
you don’t know the type parameters until runtime. In theory, the need for this arises
rarely if types are perfectly designed; of course, types are not always perfectly
designed.

For instance, suppose we want to write a more powerful version of ToString that
could expand the result of LINQ queries. We could start out as follows:

public static string ToStringEx <T> (IEnumerable<T> sequence)
{
 ...
}

This is already quite limiting. What if sequence contained nested collections that we
also want to enumerate? We’d have to overload the method to cope:

public static string ToStringEx <T> (IEnumerable<IEnumerable<T>> sequence)

And then what if sequence contained groupings, or projections of nested sequences?
The static solution of method overloading becomes impractical—we need an
approach that can scale to handle an arbitrary object graph, such as the following:

public static string ToStringEx (object value)
{
 if (value == null) return "<null>";
 StringBuilder sb = new StringBuilder();

 if (value is List<>) // Error
 sb.Append ("List of " + ((List<>) value).Count + " items"); // Error

 if (value is IGrouping<,>) // Error
 sb.Append ("Group with key=" + ((IGrouping<,>) value).Key); // Error

 // Enumerate collection elements if this is a collection,
 // recursively calling ToStringEx()

808 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

 // ...

 return sb.ToString();
}

Unfortunately, this won’t compile: you cannot invoke members of an unbound
generic type such as List<> or IGrouping<>. In the case of List<>, we can solve the
problem by using the nongeneric IList interface instead:

if (value is IList)
 sb.AppendLine ("A list with " + ((IList) value).Count + " items");

We can do this because the designers of List<> had the fore‐
sight to implement IList classic (as well as IList generic).
The same principle is worthy of consideration when writing
your own generic types: having a nongeneric interface or base
class upon which consumers can fall back can be extremely
valuable.

The solution is not as simple for IGrouping<,>. Here’s how the interface is defined:

public interface IGrouping <TKey,TElement> : IEnumerable <TElement>,
 IEnumerable
{
 TKey Key { get; }
}

There’s no nongeneric type we can use to access the Key property, so here we must
use reflection. The solution is not to invoke members of an unbound generic type
(which is impossible), but to invoke members of a closed generic type, whose type
arguments we establish at runtime.

In the following chapter, we solve this more simply with C#’s
dynamic keyword. A good indication for dynamic binding is
when you would otherwise have to perform type gymnastics—
as we are doing right now.

The first step is to determine whether value implements IGrouping<,>, and if so,
obtain its closed generic interface. We can do this most easily with a LINQ query.
Then we retrieve and invoke the Key property:

public static string ToStringEx (object value)
{
 if (value == null) return "<null>";
 if (value.GetType().IsPrimitive) return value.ToString();

 StringBuilder sb = new StringBuilder();

 if (value is IList)
 sb.Append ("List of " + ((IList)value).Count + " items: ");

 Type closedIGrouping = value.GetType().GetInterfaces()
 .Where (t => t.IsGenericType &&
 t.GetGenericTypeDefinition() == typeof (IGrouping<,>))

R
efl

ectio
n

and
M

etad
ata

Reflecting and Invoking Members | 809

www.EBooksWorld.ir

 .FirstOrDefault();

 if (closedIGrouping != null) // Call the Key property on IGrouping<,>
 {
 PropertyInfo pi = closedIGrouping.GetProperty ("Key");
 object key = pi.GetValue (value, null);
 sb.Append ("Group with key=" + key + ": ");
 }

 if (value is IEnumerable)
 foreach (object element in ((IEnumerable)value))
 sb.Append (ToStringEx (element) + " ");

 if (sb.Length == 0) sb.Append (value.ToString());

 return "\r\n" + sb.ToString();
}

This approach is robust: it works whether IGrouping<,> is implemented implicitly
or explicitly. The following demonstrates this method:

Console.WriteLine (ToStringEx (new List<int> { 5, 6, 7 }));
Console.WriteLine (ToStringEx ("xyyzzz".GroupBy (c => c)));

List of 3 items: 5 6 7

Group with key=x: x
Group with key=y: y y
Group with key=z: z z z

Reflecting Assemblies
You can dynamically reflect an assembly by calling GetType or GetTypes on an
Assembly object. The following retrieves from the current assembly, the type called
TestProgram in the Demos namespace:

Type t = Assembly.GetExecutingAssembly().GetType ("Demos.TestProgram");

In a Windows Store app, you can obtain an assembly from an existing type:

typeof (Foo).GetTypeInfo().Assembly.GetType ("Demos.TestProgram");

The next example lists all the types in the assembly mylib.dll in e:\demo:

Assembly a = Assembly.LoadFrom (@"e:\demo\mylib.dll");

foreach (Type t in a.GetTypes())
 Console.WriteLine (t);

Or, in a Windows Store app:

Assembly a = typeof (Foo).GetTypeInfo().Assembly;

foreach (Type t in a.ExportedTypes)
 Console.WriteLine (t);

810 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

GetTypes and ExportedTypes return only top-level and not nested types.

Loading an Assembly into a Reflection-Only Context
In the preceding example, we loaded an assembly into the current application
domain in order to list its types. This can have undesirable side effects, such as exe‐
cuting static constructors or upsetting subsequent type resolution. The solution, if
you just need to inspect type information (and not instantiate or invoke types), is to
load the assembly into a reflection-only context (desktop apps only):

Assembly a = Assembly.ReflectionOnlyLoadFrom (@"e:\demo\mylib.dll");
Console.WriteLine (a.ReflectionOnly); // True

foreach (Type t in a.GetTypes())
 Console.WriteLine (t);

This is the starting point for writing a class browser.

There are three methods for loading an assembly into the reflection-only context:

• ReflectionOnlyLoad (byte[])

• ReflectionOnlyLoad (string)

• ReflectionOnlyLoadFrom (string)

Even in a reflection-only context, it is not possible to load
multiple versions of mscorlib.dll. A workaround is to use
Microsoft’s CCI libraries or Mono.Cecil.

Modules
Calling GetTypes on a multimodule assembly returns all types in all modules. As a
result, you can ignore the existence of modules and treat an assembly as a type’s
container. There is one case, though, where modules are relevant—and that’s when
dealing with metadata tokens.

A metadata token is an integer that uniquely refers to a type, member, string, or
resource within the scope of a module. IL uses metadata tokens, so if you’re parsing
IL, you’ll need to be able to resolve them. The methods for doing this are defined in
the Module type and are called ResolveType, ResolveMember, ResolveString, and
ResolveSignature. We revisit this in the final section of this chapter, on writing a
disassembler.

You can obtain a list of all the modules in an assembly by calling GetModules. You
can also access an assembly’s main module directly—via its ManifestModule prop‐
erty.

R
efl

ectio
n

and
M

etad
ata

Reflecting Assemblies | 811

www.EBooksWorld.ir

http://cciast.codeplex.com
http://www.mono-project.com/Cecil

Working with Attributes
The CLR allows additional metadata to be attached to types, members, and assem‐
blies through attributes. This is the mechanism by which many CLR functions such
as serialization and security are directed, making attributes an indivisible part of an
application.

A key characteristic of attributes is that you can write your own, and then use them
just as you would any other attribute to “decorate” a code element with additional
information. This additional information is compiled into the underlying assembly
and can be retrieved at runtime using reflection to build services that work declara‐
tively, such as automated unit testing.

Attribute Basics
There are three kinds of attributes:

• Bit-mapped attributes
• Custom attributes
• Pseudocustom attributes

Of these, only custom attributes are extensible.

The term “attribute” by itself can refer to any of the three,
although in the C# world, it most often refers to custom
attributes or pseudocustom attributes.

Bit-mapped attributes (our terminology) map to dedicated bits in a type’s metadata.
Most of C#’s modifier keywords, such as public, abstract, and sealed, compile to
bit-mapped attributes. These attributes are very efficient because they consume
minimal space in the metadata (usually just one bit), and the CLR can locate them
with little or no indirection. The reflection API exposes them via dedicated proper‐
ties on Type (and other MemberInfo subclasses), such as IsPublic, IsAbstract, and
IsSealed. The Attributes property returns a flags enum that describes most of
them in one hit:

static void Main()
{
 TypeAttributes ta = typeof (Console).Attributes;
 MethodAttributes ma = MethodInfo.GetCurrentMethod().Attributes;
 Console.WriteLine (ta + "\r\n" + ma);
}

Here’s the result:

AutoLayout, AnsiClass, Class, Public, Abstract, Sealed, BeforeFieldInit
PrivateScope, Private, Static, HideBySig

In contrast, custom attributes compile to a blob that hangs off the type’s main meta‐
data table. All custom attributes are represented by a subclass of System.Attribute

812 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

and, unlike bit-mapped attributes, are extensible. The blob in the metadata identi‐
fies the attribute class and also stores the values of any positional or named argu‐
ment that was specified when the attribute was applied. Custom attributes that you
define yourself are architecturally identical to those defined in the .NET Frame‐
work.

Chapter 4 describes how to attach custom attributes to a type or member in C#.
Here, we attach the predefined Obsolete attribute to the Foo class:

[Obsolete] public class Foo {...}

This instructs the compiler to incorporate an instance of ObsoleteAttribute into
the metadata for Foo, which can then be reflected at runtime by calling GetCustomAt
tributes on a Type or MemberInfo object.

Pseudocustom attributes look and feel just like standard custom attributes. They are
represented by a subclass of System.Attribute and are attached in the standard
manner:

[Serializable] public class Foo {...}

The difference is that the compiler or CLR internally optimizes pseudocustom
attributes by converting them to bit-mapped attributes. Examples include [Serial
izable] (Chapter 17), StructLayout, In, and Out (Chapter 25). Reflection exposes
pseudocustom attributes through dedicated properties such as IsSerializable;
and in many cases, they are also returned as System.Attribute objects when you
call GetCustomAttributes (SerializableAttribute included). This means you can
(almost) ignore the difference between pseudo- and non-pseudocustom attributes
(a notable exception is when using Reflection.Emit to generate types dynamically
at runtime; see “Emitting Assemblies and Types” on page 825 later in this chapter).

The AttributeUsage Attribute
AttributeUsage is an attribute applied to attribute classes. It tells the compiler how
the target attribute should be used:

public sealed class AttributeUsageAttribute : Attribute
{
 public AttributeUsageAttribute (AttributeTargets validOn);

 public bool AllowMultiple { get; set; }
 public bool Inherited { get; set; }
 public AttributeTargets ValidOn { get; }
}

AllowMultiple controls whether the attribute being defined can be applied more
than once to the same target; Inherited controls whether an attribute applied to a
base class also applies to derived classes (or in the case of methods, whether an
attribute applied to a virtual method also applies to overriding methods). ValidOn
determines the set of targets (classes, interfaces, properties, methods, parameters,

R
efl

ectio
n

and
M

etad
ata

Working with Attributes | 813

www.EBooksWorld.ir

etc.) to which the attribute can be attached. It accepts any combination of values
from the AttributeTargets enum, which has the following members:

All Delegate GenericParameter Parameter

Assembly Enum Interface Property

Class Event Method ReturnValue

Constructor Field Module Struct

To illustrate, here’s how the authors of the .NET Framework have applied Attribu
teUsage to the Serializable attribute:

[AttributeUsage (AttributeTargets.Delegate |
 AttributeTargets.Enum |
 AttributeTargets.Struct |
 AttributeTargets.Class, Inherited = false)
]
public sealed class SerializableAttribute : Attribute { }

This is, in fact, almost the complete definition of the Serializable attribute. Writ‐
ing an attribute class that has no properties or special constructors is this simple.

Defining Your Own Attribute
Here’s how you write your own attribute:

1. Derive a class from System.Attribute or a descendent of System.Attribute.
By convention, the class name should end with the word “Attribute,” although
this isn’t required.

2. Apply the AttributeUsage attribute, described in the preceding section.
If the attribute requires no properties or arguments in its constructor, the job is
done.

3. Write one or more public constructors. The parameters to the constructor
define the positional parameters of the attribute and will become mandatory
when using the attribute.

4. Declare a public field or property for each named parameter you wish to sup‐
port. Named parameters are optional when using the attribute.

814 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

Attribute properties and constructor parameters must be of
the following types:

• A sealed primitive type: in other words, bool, byte, char,
double, float, int, long, short, or string

• The Type type
• An enum type
• A one-dimensional array of any of these

When an attribute is applied, it must also be possible for the
compiler to statically evaluate each of the properties or con‐
structor arguments.

The following class defines an attribute for assisting an automated unit-testing sys‐
tem. It indicates that a method should be tested, the number of test repetitions, and
a message in case of failure:

[AttributeUsage (AttributeTargets.Method)]
public sealed class TestAttribute : Attribute
{
 public int Repetitions;
 public string FailureMessage;

 public TestAttribute () : this (1) { }
 public TestAttribute (int repetitions) { Repetitions = repetitions; }
}

Here’s a Foo class with methods decorated in various ways with the Test attribute:

class Foo
{
 [Test]
 public void Method1() { ... }

 [Test(20)]
 public void Method2() { ... }

 [Test(20, FailureMessage="Debugging Time!")]
 public void Method3() { ... }
}

Retrieving Attributes at Runtime
There are two standard ways to retrieve attributes at runtime:

• Call GetCustomAttributes on any Type or MemberInfo object.

• Call Attribute.GetCustomAttribute or Attribute.GetCustomAttributes.

These latter two methods are overloaded to accept any reflection object that corre‐
sponds to a valid attribute target (Type, Assembly, Module, MemberInfo, or Parame
terInfo).

R
efl

ectio
n

and
M

etad
ata

Working with Attributes | 815

www.EBooksWorld.ir

From Framework 4.0, you can also call GetCustomAttri
butesData() on a type or member to obtain attribute infor‐
mation. The difference between this and GetCustomAttri
butes() is that the former tells you how the attribute was
instantiated: it reports the constructor overload that was used,
and the value of each constructor argument and named
parameter. This is useful when you want to emit code or IL to
reconstruct the attribute to the same state (see “Emitting Type
Members” on page 828 later in this chapter).

Here’s how we can enumerate each method in the preceding Foo class that has a
TestAttribute:

foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
 TestAttribute att = (TestAttribute) Attribute.GetCustomAttribute
 (mi, typeof (TestAttribute));

 if (att != null)
 Console.WriteLine ("Method {0} will be tested; reps={1}; msg={2}",
 mi.Name, att.Repetitions, att.FailureMessage);
}

Or, in a Windows Store app:

foreach (MethodInfo mi in typeof (Foo).GetTypeInfo().DeclaredMethods)
...

Here’s the output:

Method Method1 will be tested; reps=1; msg=
Method Method2 will be tested; reps=20; msg=
Method Method3 will be tested; reps=20; msg=Debugging Time!

To complete the illustration on how we could use this to write a unit-testing system,
here’s the same example expanded so that it actually calls the methods decorated
with the Test attribute:

foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
 TestAttribute att = (TestAttribute) Attribute.GetCustomAttribute
 (mi, typeof (TestAttribute));

 if (att != null)
 for (int i = 0; i < att.Repetitions; i++)
 try
 {
 mi.Invoke (new Foo(), null); // Call method with no arguments
 }
 catch (Exception ex) // Wrap exception in att.FailureMessage
 {
 throw new Exception ("Error: " + att.FailureMessage, ex);
 }
}

816 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

Returning to attribute reflection, here’s an example that lists the attributes present
on a specific type:

[Serializable, Obsolete]
class Test
{
 static void Main()
 {
 object[] atts = Attribute.GetCustomAttributes (typeof (Test));
 foreach (object att in atts) Console.WriteLine (att);
 }
}

Output:

System.ObsoleteAttribute
System.SerializableAttribute

Retrieving Attributes in the Reflection-Only Context
Calling GetCustomAttributes on a member loaded in the reflection-only context is
prohibited because it would require instantiating arbitrarily typed attributes
(remember that object instantiation isn’t allowed in the reflection-only context). To
work around this, there’s a special type called CustomAttributeData for reflecting
over such attributes. Here’s an example of how it’s used:

IList<CustomAttributeData> atts = CustomAttributeData.GetCustomAttributes
 (myReflectionOnlyType);
foreach (CustomAttributeData att in atts)
{
 Console.Write (att.GetType()); // Attribute type

 Console.WriteLine (" " + att.Constructor); // ConstructorInfo object

 foreach (CustomAttributeTypedArgument arg in att.ConstructorArguments)
 Console.WriteLine (" " +arg.ArgumentType + "=" + arg.Value);

 foreach (CustomAttributeNamedArgument arg in att.NamedArguments)
 Console.WriteLine (" " + arg.MemberInfo.Name + "=" + arg.TypedValue);
}

In many cases, the attribute types will be in a different assembly from the one you’re
reflecting. One way to cope with this is to handle the ReflectionOnlyAssemblyRe
solve event on the current application domain:

ResolveEventHandler handler = (object sender, ResolveEventArgs args)
 => Assembly.ReflectionOnlyLoad (args.Name);

AppDomain.CurrentDomain.ReflectionOnlyAssemblyResolve += handler;

// Reflect over attributes...

AppDomain.CurrentDomain.ReflectionOnlyAssemblyResolve -= handler;

R
efl

ectio
n

and
M

etad
ata

Working with Attributes | 817

www.EBooksWorld.ir

Dynamic Code Generation
The System.Reflection.Emit namespace contains classes for creating metadata
and IL at runtime. Generating code dynamically is useful for certain kinds of pro‐
gramming tasks. An example is the regular expressions API, which emits perform‐
ant types tuned to specific regular expressions. Other uses of Reflection.Emit in
the Framework include dynamically generating transparent proxies for Remoting
and generating types that perform specific XSLT transforms with minimum run‐
time overhead. LINQPad uses Reflection.Emit to dynamically generate typed
DataContext classes.

Reflection.Emit is not supported in the Windows Store profile.

Generating IL with DynamicMethod
The DynamicMethod class is a lightweight tool in the System.Reflection.Emit
namespace for generating methods on the fly. Unlike TypeBuilder, it doesn’t
require that you first set up a dynamic assembly, module, and type in which to con‐
tain the method. This makes it suitable for simple tasks—as well as serving as a
good introduction to Reflection.Emit.

A DynamicMethod and the associated IL are garbage-collected
when no longer referenced. This means you can repeatedly
generate dynamic methods without filling up memory. (To do
the same with dynamic assemblies, you must apply the Assem
blyBuilderAccess.RunAndCollect flag when creating the
assembly.)

Here is a simple use of DynamicMethod to create a method that writes Hello world
to the console:

public class Test
{
 static void Main()
 {
 var dynMeth = new DynamicMethod ("Foo", null, null, typeof (Test));
 ILGenerator gen = dynMeth.GetILGenerator();
 gen.EmitWriteLine ("Hello world");
 gen.Emit (OpCodes.Ret);
 dynMeth.Invoke (null, null); // Hello world
 }
}

OpCodes has a static read-only field for every IL opcode. Most of the functionality is
exposed through various opcodes, although ILGenerator also has specialized meth‐
ods for generating labels and local variables and for exception handling. A method
always ends in Opcodes.Ret, which means “return,” or some kind of branching/
throwing instruction. The EmitWriteLine method on ILGenerator is a shortcut for
Emitting a number of lower-level opcodes. We could have replaced the call to Emit
WriteLine with this, and we would have gotten the same result:

818 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

MethodInfo writeLineStr = typeof (Console).GetMethod ("WriteLine",
 new Type[] { typeof (string) });
gen.Emit (OpCodes.Ldstr, "Hello world"); // Load a string
gen.Emit (OpCodes.Call, writeLineStr); // Call a method

Note that we passed typeof(Test) into DynamicMethod’s constructor. This gives the
dynamic method access to the nonpublic methods of that type, allowing us to do
this:

public class Test
{
 static void Main()
 {
 var dynMeth = new DynamicMethod ("Foo", null, null, typeof (Test));
 ILGenerator gen = dynMeth.GetILGenerator();

 MethodInfo privateMethod = typeof(Test).GetMethod ("HelloWorld",
 BindingFlags.Static | BindingFlags.NonPublic);

 gen.Emit (OpCodes.Call, privateMethod); // Call HelloWorld
 gen.Emit (OpCodes.Ret);

 dynMeth.Invoke (null, null); // Hello world
 }

 static void HelloWorld() // private method, yet we can call it
 {
 Console.WriteLine ("Hello world");
 }
}

Understanding IL requires a considerable investment of time. Rather than under‐
stand all the opcodes, it’s much easier to compile a C# program then to examine,
copy, and tweak the IL. LINQPad displays the IL for any method or code snippet
that you type, and assembly viewing tools such as ildasm or .NET Reflector are use‐
ful for examining existing assemblies.

The Evaluation Stack
Central to IL is the concept of the evaluation stack. To call a method with argu‐
ments, you first push (“load”) the arguments onto the evaluation stack and then call
the method. The method then pops the arguments it needs from the evaluation
stack. We demonstrated this previously, in calling Console.WriteLine. Here’s a sim‐
ilar example with an integer:

var dynMeth = new DynamicMethod ("Foo", null, null, typeof(void));
ILGenerator gen = dynMeth.GetILGenerator();
MethodInfo writeLineInt = typeof (Console).GetMethod ("WriteLine",
 new Type[] { typeof (int) });

// The Ldc* op-codes load numeric literals of various types and sizes.

gen.Emit (OpCodes.Ldc_I4, 123); // Push a 4-byte integer onto stack
gen.Emit (OpCodes.Call, writeLineInt);

R
efl

ectio
n

and
M

etad
ata

Dynamic Code Generation | 819

www.EBooksWorld.ir

gen.Emit (OpCodes.Ret);
dynMeth.Invoke (null, null); // 123

To add two numbers together, you first load each number onto the evaluation stack,
and then call Add. The Add opcode pops two values from the evaluation stack and
pushes the result back on. The following adds 2 and 2, and then writes the result
using the writeLine method obtained previously:

gen.Emit (OpCodes.Ldc_I4, 2); // Push a 4-byte integer, value=2
gen.Emit (OpCodes.Ldc_I4, 2); // Push a 4-byte integer, value=2
gen.Emit (OpCodes.Add); // Add the result together
gen.Emit (OpCodes.Call, writeLineInt);

To calculate 10 / 2 + 1, you can do either this:

gen.Emit (OpCodes.Ldc_I4, 10);
gen.Emit (OpCodes.Ldc_I4, 2);
gen.Emit (OpCodes.Div);
gen.Emit (OpCodes.Ldc_I4, 1);
gen.Emit (OpCodes.Add);
gen.Emit (OpCodes.Call, writeLineInt);

or this:

gen.Emit (OpCodes.Ldc_I4, 1);
gen.Emit (OpCodes.Ldc_I4, 10);
gen.Emit (OpCodes.Ldc_I4, 2);
gen.Emit (OpCodes.Div);
gen.Emit (OpCodes.Add);
gen.Emit (OpCodes.Call, writeLineInt);

Passing Arguments to a Dynamic Method
You can load an argument passed into a dynamic method onto the stack with the
Ldarg and Ldarg_XXX opcodes. To return a value, leave exactly one value on the
stack upon finishing. For this to work, you must specify the return type and argu‐
ment types when calling DynamicMethod’s constructor. The following creates a
dynamic method that returns the sum of two integers:

DynamicMethod dynMeth = new DynamicMethod ("Foo",
 typeof (int), // Return type = int
 new[] { typeof (int), typeof (int) }, // Parameter types = int, int
 typeof (void));

ILGenerator gen = dynMeth.GetILGenerator();

gen.Emit (OpCodes.Ldarg_0); // Push first arg onto eval stack
gen.Emit (OpCodes.Ldarg_1); // Push second arg onto eval stack
gen.Emit (OpCodes.Add); // Add them together (result on stack)
gen.Emit (OpCodes.Ret); // Return with stack having 1 value

int result = (int) dynMeth.Invoke (null, new object[] { 3, 4 }); // 7

820 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

When you exit, the evaluation stack must have exactly 0 or 1
item (depending on whether your method returns a value). If
you violate this, the CLR will refuse to execute your method.
You can remove an item from the stack without processing it
with OpCodes.Pop.

Rather than calling Invoke, it can be more convenient to work with a dynamic
method as a typed delegate. The CreateDelegate method achieves just this. To
illustrate, suppose we define a delegate called BinaryFunction:

delegate int BinaryFunction (int n1, int n2);

We could then replace the last line of our preceding example with this:

BinaryFunction f = (BinaryFunction) dynMeth.CreateDelegate
 (typeof (BinaryFunction));
int result = f (3, 4); // 7

A delegate also eliminates the overhead of dynamic method
invocation—saving a few microseconds per call.

We demonstrate how to pass by reference later in the section “Emitting Type Mem‐
bers” on page 828.

Generating Local Variables
You can declare a local variable by calling DeclareLocal on an ILGenerator. This
returns a LocalBuilder object, which can be used in conjunction with opcodes such
as Ldloc (load a local variable) or Stloc (store a local variable). Ldloc pushes the
evaluation stack; Stloc pops it. For example, consider the following C# code:

int x = 6;
int y = 7;
x *= y;
Console.WriteLine (x);

The following generates the preceding code dynamically:

var dynMeth = new DynamicMethod ("Test", null, null, typeof (void));
ILGenerator gen = dynMeth.GetILGenerator();

LocalBuilder localX = gen.DeclareLocal (typeof (int)); // Declare x
LocalBuilder localY = gen.DeclareLocal (typeof (int)); // Declare y

gen.Emit (OpCodes.Ldc_I4, 6); // Push literal 6 onto eval stack
gen.Emit (OpCodes.Stloc, localX); // Store in localX
gen.Emit (OpCodes.Ldc_I4, 7); // Push literal 7 onto eval stack
gen.Emit (OpCodes.Stloc, localY); // Store in localY

gen.Emit (OpCodes.Ldloc, localX); // Push localX onto eval stack
gen.Emit (OpCodes.Ldloc, localY); // Push localY onto eval stack
gen.Emit (OpCodes.Mul); // Multiply values together
gen.Emit (OpCodes.Stloc, localX); // Store the result to localX

R
efl

ectio
n

and
M

etad
ata

Dynamic Code Generation | 821

www.EBooksWorld.ir

gen.EmitWriteLine (localX); // Write the value of localX
gen.Emit (OpCodes.Ret);

dynMeth.Invoke (null, null); // 42

Redgate’s .NET Reflector is great for examining dynamic
methods for errors: if you decompile to C#, it’s usually quite
obvious where you’ve gone wrong! We explain how to save
dynamic emissions to disk in “Emitting Assemblies and
Types” on page 825. Another useful tool is Microsoft’s IL visu‐
alizer for Visual Studio (http://albahari.com/ilvisualizer).

Branching
In IL, there are no while, do, and for loops; it’s all done with labels and the equiva‐
lent of goto and conditional goto statements. These are the branching opcodes,
such as Br (branch unconditionally), Brtrue (branch if the value on the evaluation
stack is true), and Blt (branch if the first value is less than the second value).

To set a branch target, first call DefineLabel (this returns a Label object), and then
call MarkLabel at the place where you want to anchor the label. For example, con‐
sider the following C# code:

int x = 5;
while (x <= 10) Console.WriteLine (x++);

We can emit this as follows:

ILGenerator gen = ...

Label startLoop = gen.DefineLabel(); // Declare labels
Label endLoop = gen.DefineLabel();

LocalBuilder x = gen.DeclareLocal (typeof (int)); // int x
gen.Emit (OpCodes.Ldc_I4, 5); //
gen.Emit (OpCodes.Stloc, x); // x = 5
gen.MarkLabel (startLoop);
 gen.Emit (OpCodes.Ldc_I4, 10); // Load 10 onto eval stack
 gen.Emit (OpCodes.Ldloc, x); // Load x onto eval stack

 gen.Emit (OpCodes.Blt, endLoop); // if (x > 10) goto endLoop

 gen.EmitWriteLine (x); // Console.WriteLine (x)

 gen.Emit (OpCodes.Ldloc, x); // Load x onto eval stack
 gen.Emit (OpCodes.Ldc_I4, 1); // Load 1 onto the stack
 gen.Emit (OpCodes.Add); // Add them together
 gen.Emit (OpCodes.Stloc, x); // Save result back to x

 gen.Emit (OpCodes.Br, startLoop); // return to start of loop
gen.MarkLabel (endLoop);

gen.Emit (OpCodes.Ret);

822 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

http://albahari.com/ilvisualizer

Instantiating Objects and Calling Instance Methods
The IL equivalent of new is the Newobj opcode. This takes a constructor and loads
the constructed object onto the evaluation stack. For instance, the following con‐
structs a StringBuilder:

var dynMeth = new DynamicMethod ("Test", null, null, typeof (void));
ILGenerator gen = dynMeth.GetILGenerator();

ConstructorInfo ci = typeof (StringBuilder).GetConstructor (new Type[0]);
gen.Emit (OpCodes.Newobj, ci);

Once an object is on the evaluation stack, you can call its instance methods using
the Call or Callvirt opcode. Extending this example, we’ll query the String
Builder’s MaxCapacity property by calling the property’s get accessor and then
write out the result:

gen.Emit (OpCodes.Callvirt, typeof (StringBuilder)
 .GetProperty ("MaxCapacity").GetGetMethod());

gen.Emit (OpCodes.Call, typeof (Console).GetMethod ("WriteLine",
 new[] { typeof (int) }));
gen.Emit (OpCodes.Ret);
dynMeth.Invoke (null, null); // 2147483647

To emulate C# calling semantics:

• Use Call to invoke static methods and value type instance methods.

• Use Callvirt to invoke reference type instance methods (whether or not
they’re declared virtual).

In our example, we used Callvirt on the StringBuilder instance—even though
MaxProperty is not virtual. This doesn’t cause an error: it simply performs a nonvir‐
tual call instead. Always invoking reference type instance methods with Callvirt
avoids risking the opposite condition: invoking a virtual method with Call. (The
risk is real. The author of the target method may later change its declaration.) Call
virt also has the benefit of checking that the receiver is non-null.

Invoking a virtual method with Call bypasses virtual calling
semantics and calls that method directly. This is rarely desira‐
ble and, in effect, violates type safety.

In the following example, we construct a StringBuilder passing in two arguments,
append ", world!" to the StringBuilder, and then call ToString on it:

// We will call: new StringBuilder ("Hello", 1000)

ConstructorInfo ci = typeof (StringBuilder).GetConstructor (
 new[] { typeof (string), typeof (int) });

gen.Emit (OpCodes.Ldstr, "Hello"); // Load a string onto the eval stack
gen.Emit (OpCodes.Ldc_I4, 1000); // Load an int onto the eval stack

R
efl

ectio
n

and
M

etad
ata

Dynamic Code Generation | 823

www.EBooksWorld.ir

gen.Emit (OpCodes.Newobj, ci); // Construct the StringBuilder

Type[] strT = { typeof (string) };
gen.Emit (OpCodes.Ldstr, ", world!");
gen.Emit (OpCodes.Call, typeof (StringBuilder).GetMethod ("Append", strT));
gen.Emit (OpCodes.Callvirt, typeof (object).GetMethod ("ToString"));
gen.Emit (OpCodes.Call, typeof (Console).GetMethod ("WriteLine", strT));
gen.Emit (OpCodes.Ret);
dynMeth.Invoke (null, null); // Hello, world!

For fun, we called GetMethod on typeof(object) and then used Callvirt to per‐
form a virtual method call on ToString. We could have gotten the same result by
calling ToString on the StringBuilder type itself:

gen.Emit (OpCodes.Callvirt, typeof (StringBuilder).GetMethod ("ToString",
 new Type[0]));

(The empty type array is required in calling GetMethod because StringBuilder
overloads ToString with another signature.)

Had we called object’s ToString method nonvirtually:
gen.Emit (OpCodes.Call,
 typeof (object).GetMethod ("ToString"));

the result would have been “System.Text.StringBuilder.” In
other words, we would have circumvented StringBuilder’s
ToString override and called object’s version directly.

Exception Handling
ILGenerator provides dedicated methods for exception handling. The translation
for the following C# code:

try { throw new NotSupportedException(); }
catch (NotSupportedException ex) { Console.WriteLine (ex.Message); }
finally { Console.WriteLine ("Finally"); }

is this:

MethodInfo getMessageProp = typeof (NotSupportedException)
 .GetProperty ("Message").GetGetMethod();

MethodInfo writeLineString = typeof (Console).GetMethod ("WriteLine",
 new[] { typeof (object) });
gen.BeginExceptionBlock();
 ConstructorInfo ci = typeof (NotSupportedException).GetConstructor (
 new Type[0]);
 gen.Emit (OpCodes.Newobj, ci);
 gen.Emit (OpCodes.Throw);
gen.BeginCatchBlock (typeof (NotSupportedException));
 gen.Emit (OpCodes.Callvirt, getMessageProp);
 gen.Emit (OpCodes.Call, writeLineString);
gen.BeginFinallyBlock();
 gen.EmitWriteLine ("Finally");
gen.EndExceptionBlock();

824 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

Just as in C#, you can include multiple catch blocks. To rethrow the same excep‐
tion, emit the Rethrow opcode.

ILGenerator provides a helper method called ThrowExcep
tion. This contains a bug, however, preventing it from being
used with a DynamicMethod. It works only with a Method
Builder (see the next section).

Emitting Assemblies and Types
Although DynamicMethod is convenient, it can generate only methods. If you need
to emit any other construct—or a complete type—you need to use the full “heavy‐
weight” API. This means dynamically building an assembly and module. The
assembly need not have a disk presence, however; it can live entirely in memory.

Let’s assume we want to dynamically build a type. Since a type must live in a module
within an assembly, we must first create the assembly and module before we can
create the type. This is the job of the AssemblyBuilder and ModuleBuilder types:

AppDomain appDomain = AppDomain.CurrentDomain;

AssemblyName aname = new AssemblyName ("MyDynamicAssembly");

AssemblyBuilder assemBuilder =
 appDomain.DefineDynamicAssembly (aname, AssemblyBuilderAccess.Run);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule ("DynModule");

You can’t add a type to an existing assembly, because an
assembly is immutable once created.
Dynamic assemblies are not garbage collected and remain in
memory until the application domain ends, unless you specify
AssemblyBuilderAccess.RunAndCollect when defining the
assembly. Various restrictions apply to collectible assemblies
(see http://albahari.com/dynamiccollect).

Once we have a module where the type can live, we can use TypeBuilder to create
the type. The following defines a class called Widget:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

The TypeAttributes flags enum supports the CLR type modifiers you see when dis‐
assembling a type with ildasm. As well as member visibility flags, this includes type
modifiers such as Abstract and Sealed—and Interface for defining a .NET inter‐
face. It also includes Serializable, which is equivalent to applying the [Serializa
ble] attribute in C#, and Explicit, which is equivalent to applying [StructLay
out(LayoutKind.Explicit)]. We describe how to apply other kinds of attributes
later in this chapter, in the section “Attaching Attributes” on page 834.

R
efl

ectio
n

and
M

etad
ata

Emitting Assemblies and Types | 825

www.EBooksWorld.ir

http://albahari.com/dynamiccollect

The DefineType method also accepts an optional base type:

• To define a struct, specify a base type of System.Value
Type.

• To define a delegate, specify a base type of System.Multi
castDelegate.

• To implement an interface, use the constructor that
accepts an array of interface types.

• To define an interface, specify TypeAttributes.Inter
face | TypeAttributes.Abstract.

Defining a delegate type requires a number of extra steps. In
his weblog at http://blogs.msdn.com/joelpob/, Joel Pobar dem‐
onstrates how this is done in his article titled “Creating dele‐
gate types via Reflection.Emit.”

We can now create members within the type:

MethodBuilder methBuilder = tb.DefineMethod ("SayHello",
 MethodAttributes.Public,
 null, null);
ILGenerator gen = methBuilder.GetILGenerator();
gen.EmitWriteLine ("Hello world");
gen.Emit (OpCodes.Ret);

We’re now ready to create the type, which finalizes its definition:

Type t = tb.CreateType();

Once the type is created, we use ordinary reflection to inspect and perform dynamic
binding:

object o = Activator.CreateInstance (t);
t.GetMethod ("SayHello").Invoke (o, null); // Hello world

Saving Emitted Assemblies
The Save method on AssemblyBuilder writes a dynamically generated assembly to
a specified filename. For this to work, though, you must do two things:

• Specify an AssemblyBuilderAccess of Save or RunAndSave when constructing
the AssemblyBuilder.

• Specify a filename when constructing the ModuleBuilder (this should match
the assembly filename unless you want to create a multimodule assembly).

You can also optionally set properties of the AssemblyName object, such as Version
or KeyPair (for signing).

826 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

http://blogs.msdn.com/joelpob/

For example:

AppDomain domain = AppDomain.CurrentDomain;

AssemblyName aname = new AssemblyName ("MyEmissions");
aname.Version = new Version (2, 13, 0, 1);

AssemblyBuilder assemBuilder = domain.DefineDynamicAssembly (
 aname, AssemblyBuilderAccess.RunAndSave);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule (
 "MainModule", "MyEmissions.dll");

// Create types as we did previously...
// ...

assemBuilder.Save ("MyEmissions.dll");

This writes the assembly to the application’s base directory. To save to a different
location, you must provide the alternative directory when constructing Assembly
Builder:

AssemblyBuilder assemBuilder = domain.DefineDynamicAssembly (
 aname, AssemblyBuilderAccess.RunAndSave, @"d:\assemblies");

A dynamic assembly, once written to a file, becomes an ordinary assembly just like
any other. A program could statically reference the assembly we just built and do
this:

Widget w = new Widget();
w.SayHello();

The Reflection.Emit Object Model
Figure 19-2 illustrates the essential types in System.Reflection.Emit. Each type
describes a CLR construct and is based on a counterpart in the System.Reflection
namespace. This allows you to use emitted constructs in place of normal constructs
when building a type. For example, we previously called Console.WriteLine as fol‐
lows:

MethodInfo writeLine = typeof(Console).GetMethod ("WriteLine",
 new Type[] { typeof (string) });
gen.Emit (OpCodes.Call, writeLine);

We could just as easily call a dynamically generated method by calling gen.Emit
with a MethodBuilder instead of a MethodInfo. This is essential—otherwise, you
couldn’t write one dynamic method that called another in the same type.

R
efl

ectio
n

and
M

etad
ata

Emitting Assemblies and Types | 827

www.EBooksWorld.ir

Figure 19-2. System.Reflection.Emit

Recall that you must call CreateType on a TypeBuilder when you’ve finished popu‐
lating it. Calling CreateType seals the TypeBuilder and all its members—so nothing
more can be added or changed—and gives you back a real Type that you can instan‐
tiate.

Before you call CreateType, the TypeBuilder and its members are in an “uncreated”
state. There are significant restrictions on what you can do with uncreated con‐
structs. In particular, you cannot call any of the members that return MemberInfo
objects, such as GetMembers, GetMethod, or GetProperty—these all throw an excep‐
tion. If you want to refer to members of an uncreated type, you must use the origi‐
nal emissions:

TypeBuilder tb = ...

MethodBuilder method1 = tb.DefineMethod ("Method1", ...);
MethodBuilder method2 = tb.DefineMethod ("Method2", ...);

ILGenerator gen1 = method1.GetILGenerator();

// Suppose we want method1 to call method2:

gen1.Emit (OpCodes.Call, method2); // Right
gen1.Emit (OpCodes.Call, tb.GetMethod ("Method2")); // Wrong

After calling CreateType, you can reflect on and activate not only the Type
returned, but also the original TypeBuilder object. The TypeBuilder, in fact,
morphs into a proxy for the real Type. We’ll see why this feature is important later in
this chapter in the section “Awkward Emission Targets” on page 836.

Emitting Type Members
All the examples in this section assume a TypeBuilder, tb, has been instantiated as
follows:

828 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

AppDomain domain = AppDomain.CurrentDomain;
AssemblyName aname = new AssemblyName ("MyEmissions");

AssemblyBuilder assemBuilder = domain.DefineDynamicAssembly (
 aname, AssemblyBuilderAccess.RunAndSave);

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule (
 "MainModule", "MyEmissions.dll");

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

Emitting Methods
You can specify a return type and parameter types when calling DefineMethod, in
the same manner as when instantiating a DynamicMethod. For instance, the follow‐
ing method:

public static double SquareRoot (double value)
{
 return Math.Sqrt (value);
}

can be generated like this:

MethodBuilder mb = tb.DefineMethod ("SquareRoot",
 MethodAttributes.Static | MethodAttributes.Public,
 CallingConventions.Standard,
 typeof (double), // Return type
 new[] { typeof (double) }); // Parameter types

mb.DefineParameter (1, ParameterAttributes.None, "value"); // Assign name

ILGenerator gen = mb.GetILGenerator();
gen.Emit (OpCodes.Ldarg_0); // Load 1st arg
gen.Emit (OpCodes.Call, typeof(Math).GetMethod ("Sqrt"));
gen.Emit (OpCodes.Ret);

Type realType = tb.CreateType();
double x = (double) tb.GetMethod ("SquareRoot").Invoke (null,
 new object[] { 10.0 });
Console.WriteLine (x); // 3.16227766016838

Calling DefineParameter is optional and is typically done to assign the parameter a
name. The number 1 refers to the first parameter (0 refers to the return value). If
you call DefineParameter, the parameter is implicitly named __p1, __p2, and so on.
Assigning names makes sense if you will write the assembly to disk; it makes your
methods friendly to consumers.

DefineParameter returns a ParameterBuilder object upon
which you can call SetCustomAttribute to attach attributes
(see “Attaching Attributes” on page 834 later in this chapter).

To emit pass-by-reference parameters, such as in the following C# method:

R
efl

ectio
n

and
M

etad
ata

Emitting Type Members | 829

www.EBooksWorld.ir

public static void SquareRoot (ref double value)
{
 value = Math.Sqrt (value);
}

call MakeByRefType on the parameter type(s):

MethodBuilder mb = tb.DefineMethod ("SquareRoot",
 MethodAttributes.Static | MethodAttributes.Public,
 CallingConventions.Standard,
 null,
 new Type[] { typeof (double).MakeByRefType() });

mb.DefineParameter (1, ParameterAttributes.None, "value");

ILGenerator gen = mb.GetILGenerator();
gen.Emit (OpCodes.Ldarg_0);
gen.Emit (OpCodes.Ldarg_0);
gen.Emit (OpCodes.Ldind_R8);
gen.Emit (OpCodes.Call, typeof (Math).GetMethod ("Sqrt"));
gen.Emit (OpCodes.Stind_R8);
gen.Emit (OpCodes.Ret);

Type realType = tb.CreateType();
object[] args = { 10.0 };
tb.GetMethod ("SquareRoot").Invoke (null, args);
Console.WriteLine (args[0]); // 3.16227766016838

The opcodes here were copied from a disassembled C# method. Notice the differ‐
ence in semantics for accessing parameters passed by reference: Ldind and Stind
mean “load indirectly” and “store indirectly,” respectively. The R8 suffix means an 8-
byte floating-point number.

The process for emitting out parameters is identical, except that you call Define
Parameter as follows:

mb.DefineParameter (1, ParameterAttributes.Out, "value");

Generating instance methods
To generate an instance method, specify MethodAttributes.Instance when calling
DefineMethod:

MethodBuilder mb = tb.DefineMethod ("SquareRoot",
 MethodAttributes.Instance | MethodAttributes.Public
 ...

With instance methods, argument zero is implicitly this; the remaining arguments
start at 1. So, Ldarg_0 loads this onto the evaluation stack; Ldarg_1 loads the first
real method argument.

830 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

Overriding methods
Overriding a virtual method in a base class is easy: simply define a method with an
identical name, signature and return type, specifying MethodAttributes.Virtual
when calling DefineMethod. The same applies when implementing interface meth‐
ods.

TypeBuilder also exposes a method called DefineMethodOverride that overrides a
method with a different name. This makes sense only with explicit interface imple‐
mentation; in other scenarios, use DefineMethod.

HideBySig
If you’re subclassing another type, it’s nearly always worth specifying MethodAttri
butes.HideBySig when defining methods. HideBySig ensures that C#-style method
hiding semantics are applied, which is that a base method is hidden only if a subtype
defines a method with an identical signature. Without HideBySig, method hiding
considers only the name, so Foo(string) in the subtype will hide Foo() in the base
type, which is generally undesirable.

Emitting Fields and Properties
To create a field, you call DefineField on a TypeBuilder, telling it the desired field
name, type, and visibility. The following creates a private integer field called
“length”:

FieldBuilder field = tb.DefineField ("length", typeof (int),
 FieldAttributes.Private);

Creating a property or indexer requires a few more steps. First, call DefineProperty
on a TypeBuilder, telling it the name and type of the property:

PropertyBuilder prop = tb.DefineProperty (
 "Text", // Name of property
 PropertyAttributes.None,
 typeof (string), // Property type
 new Type[0] // Indexer types
);

(If you’re writing an indexer, the final argument is an array of indexer types.) Note
that we haven’t specified the property visibility: this is done individually on the
accessor methods.

The next step is to write the get and set methods. By convention, their names are
prefixed with “get_” or “set_”. You then attach them to the property by calling Set
GetMethod and SetSetMethod on the PropertyBuilder.

To give a complete example, we’ll take the following field and property declaration:

string _text;
public string Text
{
 get { return _text; }

R
efl

ectio
n

and
M

etad
ata

Emitting Type Members | 831

www.EBooksWorld.ir

 internal set { _text = value; }
}

and generate it dynamically:

FieldBuilder field = tb.DefineField ("_text", typeof (string),
 FieldAttributes.Private);
PropertyBuilder prop = tb.DefineProperty (
 "Text", // Name of property
 PropertyAttributes.None,
 typeof (string), // Property type
 new Type[0]); // Indexer types

MethodBuilder getter = tb.DefineMethod (
 "get_Text", // Method name
 MethodAttributes.Public | MethodAttributes.SpecialName,
 typeof (string), // Return type
 new Type[0]); // Parameter types

ILGenerator getGen = getter.GetILGenerator();
getGen.Emit (OpCodes.Ldarg_0); // Load "this" onto eval stack
getGen.Emit (OpCodes.Ldfld, field); // Load field value onto eval stack
getGen.Emit (OpCodes.Ret); // Return

MethodBuilder setter = tb.DefineMethod (
 "set_Text",
 MethodAttributes.Assembly | MethodAttributes.SpecialName,
 null, // Return type
 new Type[] { typeof (string) }); // Parameter types

ILGenerator setGen = setter.GetILGenerator();
setGen.Emit (OpCodes.Ldarg_0); // Load "this" onto eval stack
setGen.Emit (OpCodes.Ldarg_1); // Load 2nd arg, i.e., value
setGen.Emit (OpCodes.Stfld, field); // Store value into field
setGen.Emit (OpCodes.Ret); // return

prop.SetGetMethod (getter); // Link the get method and property
prop.SetSetMethod (setter); // Link the set method and property

We can test the property as follows:

Type t = tb.CreateType();
object o = Activator.CreateInstance (t);
t.GetProperty ("Text").SetValue (o, "Good emissions!", new object[0]);
string text = (string) t.GetProperty ("Text").GetValue (o, null);

Console.WriteLine (text); // Good emissions!

Notice that in defining the accessor MethodAttributes, we included SpecialName.
This instructs compilers to disallow direct binding to these methods when statically
referencing the assembly. It also ensures that the accessors are handled appropri‐
ately by reflection tools and Visual Studio’s IntelliSense.

832 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

You can emit events in a similar manner, by calling DefineE
vent on a TypeBuilder. You then write explicit event accessor
methods and attach them to the EventBuilder by calling
SetAddOnMethod and SetRemoveOnMethod.

Emitting Constructors
You can define your own constructors by calling DefineConstructor on a type
builder. You’re not obliged to do so—a default parameterless constructor is provided
automatically if you don’t. The default constructor calls the base class constructor if
subtyping, just like in C#. Defining one or more constructors displaces this default
constructor.

If you need to initialize fields, the constructor’s a good spot. In fact, it’s the only
spot: C#’s field initializers don’t have special CLR support—they are simply a syntac‐
tic shortcut for assigning values to fields in the constructor.

So, to reproduce this:

class Widget
{
 int _capacity = 4000;
}

you would define a constructor as follows:

FieldBuilder field = tb.DefineField ("_capacity", typeof (int),
 FieldAttributes.Private);
ConstructorBuilder c = tb.DefineConstructor (
 MethodAttributes.Public,
 CallingConventions.Standard,
 new Type[0]); // Constructor parameters

ILGenerator gen = c.GetILGenerator();

gen.Emit (OpCodes.Ldarg_0); // Load "this" onto eval stack
gen.Emit (OpCodes.Ldc_I4, 4000); // Load 4000 onto eval stack
gen.Emit (OpCodes.Stfld, field); // Store it to our field
gen.Emit (OpCodes.Ret);

Calling base constructors
If subclassing another type, the constructor we just wrote would circumvent the base
class constructor. This is unlike C#, where the base class constructor is always called,
whether directly or indirectly. For instance, given the following code:

class A { public A() { Console.Write ("A"); } }
class B : A { public B() {} }

the compiler, in effect, will translate the second line into this:

class B : A { public B() : base() {} }

R
efl

ectio
n

and
M

etad
ata

Emitting Type Members | 833

www.EBooksWorld.ir

This is not the case when generating IL: you must explicitly call the base constructor
if you want it to execute (which nearly always, you do). Assuming the base class is
called A, here’s how to do it:

gen.Emit (OpCodes.Ldarg_0);
ConstructorInfo baseConstr = typeof (A).GetConstructor (new Type[0]);
gen.Emit (OpCodes.Call, baseConstr);

Calling constructors with arguments is just the same as with methods.

Attaching Attributes
You can attach custom attributes to a dynamic construct by calling SetCustomAttri
bute with a CustomAttributeBuilder. For example, suppose we want to attach the
following attribute declaration to a field or property:

[XmlElement ("FirstName", Namespace="http://test/", Order=3)]

This relies on the XmlElementAttribute constructor that accepts a single string. To
use CustomAttributeBuilder, we must retrieve this constructor, as well as the two
additional properties we wish to set (Namespace and Order):

Type attType = typeof (XmlElementAttribute);

ConstructorInfo attConstructor = attType.GetConstructor (
 new Type[] { typeof (string) });

var att = new CustomAttributeBuilder (
 attConstructor, // Constructor
 new object[] { "FirstName" }, // Constructor arguments
 new PropertyInfo[]
 {
 attType.GetProperty ("Namespace"), // Properties
 attType.GetProperty ("Order")
 },
 new object[] { "http://test/", 3 } // Property values
);

myFieldBuilder.SetCustomAttribute (att);
// or propBuilder.SetCustomAttribute (att);
// or typeBuilder.SetCustomAttribute (att); etc

Emitting Generic Methods and Types
All the examples in this section assume that modBuilder has been instantiated as
follows:

AppDomain domain = AppDomain.CurrentDomain;
AssemblyName aname = new AssemblyName ("MyEmissions");

AssemblyBuilder assemBuilder = domain.DefineDynamicAssembly (
 aname, AssemblyBuilderAccess.RunAndSave);

834 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

ModuleBuilder modBuilder = assemBuilder.DefineDynamicModule (
 "MainModule", "MyEmissions.dll");

Defining Generic Methods
To emit a generic method:

1. Call DefineGenericParameters on a MethodBuilder to obtain an array of
GenericTypeParameterBuilder objects.

2. Call SetSignature on a MethodBuilder using these generic type parameters.
3. Optionally, name the parameters as you would otherwise.

For example, the following generic method:

public static T Echo<T> (T value)
{
 return value;
}

can be emitted like this:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

MethodBuilder mb = tb.DefineMethod ("Echo", MethodAttributes.Public |
 MethodAttributes.Static);
GenericTypeParameterBuilder[] genericParams
 = mb.DefineGenericParameters ("T");

mb.SetSignature (genericParams[0], // Return type
 null, null,
 genericParams, // Parameter types
 null, null);

mb.DefineParameter (1, ParameterAttributes.None, "value"); // Optional

ILGenerator gen = mb.GetILGenerator();
gen.Emit (OpCodes.Ldarg_0);
gen.Emit (OpCodes.Ret);

The DefineGenericParameters method accepts any number of string arguments—
these correspond to the desired generic type names. In this example, we needed just
one generic type called T. GenericTypeParameterBuilder is based on System.Type,
so it can be used in place of a TypeBuilder when emitting opcodes.

GenericTypeParameterBuilder also lets you specify a base type constraint:

genericParams[0].SetBaseTypeConstraint (typeof (Foo));

and interface constraints:

genericParams[0].SetInterfaceConstraints (typeof (IComparable));

To replicate this:

public static T Echo<T> (T value) where T : IComparable<T>

R
efl

ectio
n

and
M

etad
ata

Emitting Generic Methods and Types | 835

www.EBooksWorld.ir

you would write:

genericParams[0].SetInterfaceConstraints (
 typeof (IComparable<>).MakeGenericType (genericParams[0]));

For other kinds of constraints, call SetGenericParameterAttributes. This accepts
a member of the GenericParameterAttributes enum, which includes the following
values:

DefaultConstructorConstraint
NotNullableValueTypeConstraint
ReferenceTypeConstraint
Covariant
Contravariant

The last two are equivalent to applying the out and in modifiers to the type parame‐
ters.

Defining Generic Types
You can define generic types in a similar fashion. The difference is that you call
DefineGenericParameters on the TypeBuilder rather than the MethodBuilder. So,
to reproduce this:

public class Widget<T>
{
 public T Value;
}

you would do the following:

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

GenericTypeParameterBuilder[] genericParams
 = tb.DefineGenericParameters ("T");

tb.DefineField ("Value", genericParams[0], FieldAttributes.Public);

Generic constraints can be added just as with a method.

Awkward Emission Targets
All the examples in this section assume that a modBuilder has been instantiated as
in previous sections.

Uncreated Closed Generics
Suppose you want to emit a method that uses a closed generic type:

public class Widget
{
 public static void Test() { var list = new List<int>(); }
}

The process is fairly straightforward:

836 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

TypeBuilder tb = modBuilder.DefineType ("Widget", TypeAttributes.Public);

MethodBuilder mb = tb.DefineMethod ("Test", MethodAttributes.Public |
 MethodAttributes.Static);
ILGenerator gen = mb.GetILGenerator();

Type variableType = typeof (List<int>);

ConstructorInfo ci = variableType.GetConstructor (new Type[0]);

LocalBuilder listVar = gen.DeclareLocal (variableType);
gen.Emit (OpCodes.Newobj, ci);
gen.Emit (OpCodes.Stloc, listVar);
gen.Emit (OpCodes.Ret);

Now suppose that instead of a list of integers, we want a list of widgets:

public class Widget
{
 public static void Test() { var list = new List<Widget>(); }
}

In theory, this is a simple modification; all we do is replace this line:

Type variableType = typeof (List<int>);

with this:

Type variableType = typeof (List<>).MakeGenericType (tb);

Unfortunately, this causes a NotSupportedException to be thrown when we then
call GetConstructor. The problem is that you cannot call GetConstructor on a
generic type closed with an uncreated type builder. The same goes for GetField and
GetMethod.

The solution is unintuitive. TypeBuilder provides three static methods as follows:

public static ConstructorInfo GetConstructor (Type, ConstructorInfo);
public static FieldInfo GetField (Type, FieldInfo);
public static MethodInfo GetMethod (Type, MethodInfo);

Although it doesn’t appear so, these methods exist specifically to obtain members of
generic types closed with uncreated type builders! The first parameter is the closed
generic type; the second parameter is the member you want on the unbound generic
type. Here’s the corrected version of our example:

MethodBuilder mb = tb.DefineMethod ("Test", MethodAttributes.Public |
 MethodAttributes.Static);
ILGenerator gen = mb.GetILGenerator();

Type variableType = typeof (List<>).MakeGenericType (tb);

ConstructorInfo unbound = typeof (List<>).GetConstructor (new Type[0]);
ConstructorInfo ci = TypeBuilder.GetConstructor (variableType, unbound);

LocalBuilder listVar = gen.DeclareLocal (variableType);
gen.Emit (OpCodes.Newobj, ci);

R
efl

ectio
n

and
M

etad
ata

Awkward Emission Targets | 837

www.EBooksWorld.ir

gen.Emit (OpCodes.Stloc, listVar);
gen.Emit (OpCodes.Ret);

Circular Dependencies
Suppose you want to build two types that reference each other. For instance:

class A { public B Bee; }
class B { public A Aye; }

You can generate this dynamically as follows:

var publicAtt = FieldAttributes.Public;

TypeBuilder aBuilder = modBuilder.DefineType ("A");
TypeBuilder bBuilder = modBuilder.DefineType ("B");

FieldBuilder bee = aBuilder.DefineField ("Bee", bBuilder, publicAtt);
FieldBuilder aye = bBuilder.DefineField ("Aye", aBuilder, publicAtt);

Type realA = aBuilder.CreateType();
Type realB = bBuilder.CreateType();

Notice that we didn’t call CreateType on aBuilder or bBuilder until we populated
both objects. The principle is: first hook everything up, and then call CreateType on
each type builder.

Interestingly, the realA type is valid but dysfunctional until you call CreateType on
bBuilder. (If you started using aBuilder prior to this, an exception would be
thrown when you tried to access field Bee.)

You might wonder how bBuilder knows to “fix up” realA after creating realB. The
answer is that it doesn’t: realA can fix itself the next time it’s used. This is possible
because after calling CreateType, a TypeBuilder morphs into a proxy for the real
runtime type. So, realA, with its references to bBuilder, can easily obtain the meta‐
data it needs for the upgrade.

This system works when the type builder demands simple information of the
unconstructed type—information that can be predetermined—such as type, mem‐
ber, and object references. In creating realA, the type builder doesn’t need to know,
for instance, how many bytes realB will eventually occupy in memory. This is just
as well, because realB has not yet been created! But now imagine that realB was a
struct. The final size of realB is now critical information in creating realA.

If the relationship is noncyclical—for instance:

struct A { public B Bee; }
struct B { }

you can solve this by first creating struct B, and then struct A. But consider this:

struct A { public B Bee; }
struct B { public A Aye; }

838 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

We won’t try to emit this because it’s nonsensical to have two structs contain each
other (C# generates a compile-time error if you try). But the following variation is
both legal and useful:

public struct S<T> { ... } // S can be empty and this demo will work.

class A { S Bee; }
class B { S<A> Aye; }

In creating A, a TypeBuilder now needs to know the memory footprint of B, and
vice versa. To illustrate, we’ll assume that struct S is defined statically. Here’s the
code to emit classes A and B:

var pub = FieldAttributes.Public;

TypeBuilder aBuilder = modBuilder.DefineType ("A");
TypeBuilder bBuilder = modBuilder.DefineType ("B");

aBuilder.DefineField ("Bee", typeof(S<>).MakeGenericType (bBuilder), pub);
bBuilder.DefineField ("Aye", typeof(S<>).MakeGenericType (aBuilder), pub);

Type realA = aBuilder.CreateType(); // Error: cannot load type B
Type realB = bBuilder.CreateType();

CreateType now throws a TypeLoadException no matter in which order you go:

• Call aBuilder.CreateType first and it says “cannot load type B”.

• Call bBuilder.CreateType first and it says “cannot load type A”!

You’ll run into this problem if you emit typed LINQ to SQL
DataContexts dynamically. The generic EntityRef type is a
struct, equivalent to S in our examples. The circular reference
happens when two tables in the database link to each other
through reciprocal parent/child relationships.

To solve this, you must allow the type builder to create realB partway through cre‐
ating realA. This is done by handling the TypeResolve event on the current applica‐
tion domain just before calling CreateType. So, in our example, we replace the last
two lines with this:

TypeBuilder[] uncreatedTypes = { aBuilder, bBuilder };

ResolveEventHandler handler = delegate (object o, ResolveEventArgs args)
{
 var type = uncreatedTypes.FirstOrDefault (t => t.FullName == args.Name);
 return type == null ? null : type.CreateType().Assembly;
};

AppDomain.CurrentDomain.TypeResolve += handler;

Type realA = aBuilder.CreateType();
Type realB = bBuilder.CreateType();

R
efl

ectio
n

and
M

etad
ata

Awkward Emission Targets | 839

www.EBooksWorld.ir

AppDomain.CurrentDomain.TypeResolve -= handler;

The TypeResolve event fires during the call to aBuilder.CreateType, at the point
when it needs you to call CreateType on bBuilder.

Handling the TypeResolve event as in this example is also
necessary when defining a nested type, when the nested and
parent types refer to each other.

Parsing IL
You can obtain information about the content of an existing method by calling Get
MethodBody on a MethodBase object. This returns a MethodBody object that has
properties for inspecting a method’s local variables, exception handling clauses,
stack size—as well as the raw IL. Rather like the reverse of Reflection.Emit!

Inspecting a method’s raw IL can be useful in profiling code. A simple use would be
to determine which methods in an assembly have changed, when an assembly is
updated.

To illustrate parsing IL, we’ll write an application that disassembles IL in the style of
ildasm. This could be used as the starting point for a code analysis tool or a higher-
level language disassembler.

Remember that in the reflection API, all of C#’s functional
constructs are either represented by a MethodBase subtype or
(in the case of properties, events, and indexers) have Method
Base objects attached to them.

Writing a Disassembler
You can download the source code for this at http://www.alba
hari.com/nutshell/.

Here is a sample of the output our disassembler will produce:

IL_00EB: ldfld Disassembler._pos
IL_00F0: ldloc.2
IL_00F1: add
IL_00F2: ldelema System.Byte
IL_00F7: ldstr "Hello world"
IL_00FC: call System.Byte.ToString
IL_0101: ldstr " "
IL_0106: call System.String.Concat

To obtain this output, we must parse the binary tokens that make up the IL. The
first step is to call the GetILAsByteArray method on MethodBody to obtain the IL as
a byte array. In order to make the rest of the job easier, we will write this into a class
as follows:

840 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

http://www.albahari.com/nutshell/
http://www.albahari.com/nutshell/

public class Disassembler
{
 public static string Disassemble (MethodBase method)
 => new Disassembler (method).Dis();

 StringBuilder _output; // The result to which we'll keep appending
 Module _module; // This will come in handy later
 byte[] _il; // The raw byte code
 int _pos; // The position we're up to in the byte code

 Disassembler (MethodBase method)
 {
 _module = method.DeclaringType.Module;
 _il = method.GetMethodBody().GetILAsByteArray();
 }

 string Dis()
 {
 _output = new StringBuilder();
 while (_pos < _il.Length) DisassembleNextInstruction();
 return _output.ToString();
 }
}

The static Disassemble method will be the only public member of this class. All
other members will be private to the disassembly process. The Dis method contains
the “main” loop where we process each instruction.

With this skeleton in place, all that remains is to write DisassembleNextInstruc
tion. But before doing so, it will help to load all the opcodes into a static dictionary
so we can access them by their 8- or 16-bit value. The easiest way to accomplish this
is to use reflection to retrieve all the static fields whose type is OpCode in the OpCodes
class:

static Dictionary<short,OpCode> _opcodes = new Dictionary<short,OpCode>();

static Disassembler()
{
 Dictionary<short, OpCode> opcodes = new Dictionary<short, OpCode>();
 foreach (FieldInfo fi in typeof (OpCodes).GetFields
 (BindingFlags.Public | BindingFlags.Static))
 if (typeof (OpCode).IsAssignableFrom (fi.FieldType))
 {
 OpCode code = (OpCode) fi.GetValue (null); // Get field's value
 if (code.OpCodeType != OpCodeType.Nternal)
 _opcodes.Add (code.Value, code);
 }
}

We’ve written it in a static constructor so that it executes just once.

Now we can write DisassembleNextInstruction. Each IL instruction consists of a
1- or 2-byte opcode, followed by an operand of zero, 1, 2, 4, or 8 bytes. (An excep‐

R
efl

ectio
n

and
M

etad
ata

Parsing IL | 841

www.EBooksWorld.ir

tion is inline switch opcodes, which are followed by a variable number of operands).
So, we read the opcode, then the operand and then write out the result:

void DisassembleNextInstruction()
{
 int opStart = _pos;

 OpCode code = ReadOpCode();
 string operand = ReadOperand (code);

 output.AppendFormat ("IL{0:X4}: {1,-12} {2}",
 opStart, code.Name, operand);
 _output.AppendLine();
}

To read an opcode, we advance one byte and see whether we have a valid instruc‐
tion. If not, we advance another byte and look for a 2-byte instruction:

OpCode ReadOpCode()
{
 byte byteCode = _il [_pos++];
 if (_opcodes.ContainsKey (byteCode)) return _opcodes [byteCode];

 if (_pos == _il.Length) throw new Exception ("Unexpected end of IL");

 short shortCode = (short) (byteCode * 256 + _il [_pos++]);

 if (!_opcodes.ContainsKey (shortCode))
 throw new Exception ("Cannot find opcode " + shortCode);

 return _opcodes [shortCode];
}

To read an operand, we first must establish its length. We can do this based on the
operand type. Because most are 4 bytes long, we can filter out the exceptions fairly
easily in a conditional clause.

The next step is to call FormatOperand, which will attempt to format the operand:

string ReadOperand (OpCode c)
{
 int operandLength =
 c.OperandType == OperandType.InlineNone
 ? 0 :
 c.OperandType == OperandType.ShortInlineBrTarget ||
 c.OperandType == OperandType.ShortInlineI ||
 c.OperandType == OperandType.ShortInlineVar
 ? 1 :
 c.OperandType == OperandType.InlineVar
 ? 2 :
 c.OperandType == OperandType.InlineI8 ||
 c.OperandType == OperandType.InlineR
 ? 8 :
 c.OperandType == OperandType.InlineSwitch
 ? 4 * (BitConverter.ToInt32 (_il, _pos) + 1) :
 4; // All others are 4 bytes

842 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

 if (_pos + operandLength > _il.Length)
 throw new Exception ("Unexpected end of IL");

 string result = FormatOperand (c, operandLength);
 if (result == null)
 { // Write out operand bytes in hex
 result = "";
 for (int i = 0; i < operandLength; i++)
 result += _il [_pos + i].ToString ("X2") + " ";
 }
 _pos += operandLength;
 return result;
}

If the result of calling FormatOperand is null, it means the operand needs no spe‐
cial formatting, so we simply write it out in hexadecimal. We could test the disas‐
sembler at this point by writing a FormatOperand method that always returns null.
Here’s what the output would look like:

IL_00A8: ldfld 98 00 00 04
IL_00AD: ldloc.2
IL_00AE: add
IL_00AF: ldelema 64 00 00 01
IL_00B4: ldstr 26 04 00 70
IL_00B9: call B6 00 00 0A
IL_00BE: ldstr 11 01 00 70
IL_00C3: call 91 00 00 0A
...

Although the opcodes are correct, the operands are not much use. Instead of hexa‐
decimal numbers, we want member names and strings. The FormatOperand
method, once written, will address this—identifying the special cases that benefit
from such formatting. These comprise most 4-byte operands and the short branch
instructions:

string FormatOperand (OpCode c, int operandLength)
{
 if (operandLength == 0) return "";

 if (operandLength == 4)
 return Get4ByteOperand (c);
 else if (c.OperandType == OperandType.ShortInlineBrTarget)
 return GetShortRelativeTarget();
 else if (c.OperandType == OperandType.InlineSwitch)
 return GetSwitchTarget (operandLength);
 else
 return null;
}

There are three kinds of 4-byte operands that we treat specially. The first is refer‐
ences to members or types—with these, we extract the member or type name by
calling the defining module’s ResolveMember method. The second case is strings—
these are stored in the assembly module’s metadata and can be retrieved by calling

R
efl

ectio
n

and
M

etad
ata

Parsing IL | 843

www.EBooksWorld.ir

ResolveString. The final case is branch targets, where the operand refers to a byte
offset in the IL. We format these by working out the absolute address after the cur‐
rent instruction (+ 4 bytes):

string Get4ByteOperand (OpCode c)
{
 int intOp = BitConverter.ToInt32 (_il, _pos);

 switch (c.OperandType)
 {
 case OperandType.InlineTok:
 case OperandType.InlineMethod:
 case OperandType.InlineField:
 case OperandType.InlineType:
 MemberInfo mi;
 try { mi = _module.ResolveMember (intOp); }
 catch { return null; }
 if (mi == null) return null;

 if (mi.ReflectedType != null)
 return mi.ReflectedType.FullName + "." + mi.Name;
 else if (mi is Type)
 return ((Type)mi).FullName;
 else
 return mi.Name;

 case OperandType.InlineString:
 string s = _module.ResolveString (intOp);
 if (s != null) s = "'" + s + "'";
 return s;

 case OperandType.InlineBrTarget:
 return "IL_" + (_pos + intOp + 4).ToString ("X4");

 default:
 return null;
 }

The point where we call ResolveMember is a good window for
a code analysis tool that reports on method dependencies.

For any other 4-byte opcode, we return null (this will cause ReadOperand to format
the operand as hex digits).

The final kinds of operand that need special attention are short branch targets and
inline switches. A short branch target describes the destination offset as a single
signed byte, as at the end of the current instruction (i.e., + 1 byte). A switch target is
followed by a variable number of 4-byte branch destinations:

string GetShortRelativeTarget()
{
 int absoluteTarget = _pos + (sbyte) _il [_pos] + 1;
 return "IL_" + absoluteTarget.ToString ("X4");

844 | Chapter 19: Reflection and Metadata

www.EBooksWorld.ir

}

string GetSwitchTarget (int operandLength)
{
 int targetCount = BitConverter.ToInt32 (_il, _pos);
 string [] targets = new string [targetCount];
 for (int i = 0; i < targetCount; i++)
 {
 int ilTarget = BitConverter.ToInt32 (_il, _pos + (i + 1) * 4);
 targets [i] = "IL_" + (_pos + ilTarget + operandLength).ToString ("X4");
 }
 return "(" + string.Join (", ", targets) + ")";
}

This completes the disassembler. We can test it by disassembling one of its own
methods:

MethodInfo mi = typeof (Disassembler).GetMethod (
 "ReadOperand", BindingFlags.Instance | BindingFlags.NonPublic);

Console.WriteLine (Disassembler.Disassemble (mi));

R
efl

ectio
n

and
M

etad
ata

Parsing IL | 845

www.EBooksWorld.ir

www.EBooksWorld.ir

20
Dynamic Programming

In Chapter 4, we explained how dynamic binding works in the C# language. In this
chapter, we look briefly at the DLR and then explore the following dynamic pro‐
gramming patterns:

• Numeric type unification
• Dynamic member overload resolution
• Custom binding (implementing dynamic objects)
• Dynamic language interoperability

In Chapter 25, we’ll describe how dynamic can improve COM
interoperability.

The types in this chapter live in the System.Dynamic namespace, except for Call
Site<>, which lives in System.Runtime.CompilerServices.

The Dynamic Language Runtime
C# relies on the dynamic language runtime (DLR) to perform dynamic binding.

Contrary to its name, the DLR is not a dynamic version of the CLR. Rather, it’s a
library that sits atop the CLR—just like any other library such as System.Xml.dll. Its
primary role is to provide runtime services to unify dynamic programming—in
both statically and dynamically typed languages. Hence languages such as C#, VB,
IronPython, and IronRuby all use the same protocol for calling functions dynami‐
cally. This allows them to share libraries and call code written in other languages.

D
ynam

ic
P

ro
g

ram
m

ing

847

www.EBooksWorld.ir

The DLR also makes it relatively easy to write new dynamic languages in .NET.
Instead of having to emit IL, dynamic language authors work at the level of expres‐
sion trees (the same expression trees in System.Linq.Expressions that we talked
about in Chapter 8).

The DLR further ensures that all consumers get the benefit of call-site caching, an
optimization whereby the DLR avoids unnecessarily repeating the potentially
expensive member resolution decisions made during dynamic binding.

Framework 4.0 was the first Framework version to ship with
the DLR. Prior to that, the DLR existed as a separate down‐
load on Codeplex. That site still contains some additional use‐
ful resources for language developers.

What Are Call Sites?
When the compiler encounters a dynamic expression, it has no idea who will evalu‐
ate that expression at runtime. For instance, consider the following method:

public dynamic Foo (dynamic x, dynamic y)
{
 return x / y; // Dynamic expression
}

The x and y variables could be any CLR object, a COM object, or even an object
hosted in a dynamic language. The compiler cannot, therefore, take its usual static
approach of emitting a call to a known method of a known type. Instead, the com‐
piler emits code that eventually results in an expression tree that describes the oper‐
ation, managed by a call site that the DLR will bind at runtime. The call site essen‐
tially acts as an intermediary between caller and callee.

A call site is represented by the CallSite<> class in System.Core.dll. We can see this
by disassembling the preceding method—the result is something like this:

static CallSite<Func<CallSite,object,object,object>> divideSite;

[return: Dynamic]
public object Foo ([Dynamic] object x, [Dynamic] object y)
{
 if (divideSite == null)
 divideSite =
 CallSite<Func<CallSite,object,object,object>>.Create (
 Microsoft.CSharp.RuntimeBinder.Binder.BinaryOperation (
 CSharpBinderFlags.None,
 ExpressionType.Divide,
 /* Remaining arguments omitted for brevity */));

 return divideSite.Target (divideSite, x, y);
}

As you can see, the call site is cached in a static field to avoid the cost of re-creating
it on each call. The DLR further caches the result of the binding phase and the
actual method targets. (There may be multiple targets depending on the types of x
and y.)

848 | Chapter 20: Dynamic Programming

www.EBooksWorld.ir

The actual dynamic call then happens by calling the site’s Target (a delegate), pass‐
ing in the x and y operands.

Notice that the Binder class is specific to C#. Every language with support for
dynamic binding provides a language-specific binder to help the DLR interpret
expressions in a manner specific to that language, so as not to surprise the program‐
mer. For instance, if we called Foo with integer values of 5 and 2, the C# binder
would ensure that we got back 2. In contrast, a VB.NET binder would give us 2.5.

Numeric Type Unification
We saw in Chapter 4 how dynamic lets us write a single method that works across all
numeric types:

static dynamic Mean (dynamic x, dynamic y) => (x + y) / 2;

static void Main()
{
 int x = 3, y = 5;
 Console.WriteLine (Mean (x, y));
}

It’s a humorous reflection on C# that the keywords static and
dynamic can appear adjacently! The same applies to the key‐
words internal and extern.

However, this (unnecessarily) sacrifices static type safety. The following compiles
without error, but then fails at runtime:

string s = Mean (3, 5); // Runtime error!

We can fix this by introducing a generic type parameter, and then casting to
dynamic within the calculation itself:

static T Mean<T> (T x, T y)
{
 dynamic result = ((dynamic) x + y) / 2;
 return (T) result;
}

Notice that we explicitly cast the result back to T. If we omitted this cast, we’d be
relying on an implicit cast, which might at first appear to work correctly. The
implicit cast would fail at runtime, though, upon calling the method with an 8- or
16-bit integral type. To understand why, consider what happens with ordinary static
typing when you sum two 8-bit numbers together:

byte b = 3;
Console.WriteLine ((b + b).GetType().Name); // Int32

We get an Int32—because the compiler “promotes” 8- or 16-bit numbers to Int32
prior to performing arithmetic operations. For consistency, the C# binder tells the
DLR to do exactly the same thing, and we end up with an Int32 that requires an

D
ynam

ic
P

ro
g

ram
m

ing

Numeric Type Unification | 849

www.EBooksWorld.ir

explicit cast to the smaller numeric type. Of course, this could create the possibility
of overflow if we were, say, summing rather than averaging the values.

Dynamic binding incurs a small performance hit—even with call-site caching. You
can mitigate this by adding statically typed overloads that cover just the most com‐
monly used types. For example, if subsequent performance profiling showed that
calling Mean with doubles was a bottleneck, you could add the following overload:

static double Mean (double x, double y) => (x + y) / 2;

The compiler will favor that overload when Mean is called with arguments that are
known at compile time to be of type double.

Dynamic Member Overload Resolution
Calling a statically known method with dynamically typed arguments defers mem‐
ber overload resolution from compile time to runtime. This is useful in simplifying
certain programming tasks—such as simplifying the Visitor design pattern. It’s also
useful in working around limitations imposed by C#’s static typing.

Simplifying the Visitor Pattern
In essence, the Visitor pattern allows you to “add” a method to a class hierarchy
without altering existing classes. Although useful, this pattern in its static incarna‐
tion is subtle and unintuitive compared to most other design patterns. It also
requires that visited classes be made “Visitor-friendly” by exposing an Accept
method, which can be impossible if the classes are not under your control.

With dynamic binding, you can achieve the same goal more easily—and without
needing to modify existing classes. To illustrate, consider the following class hierar‐
chy:

class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }

 // The Friends collection may contain Customers & Employees:
 public readonly IList<Person> Friends = new Collection<Person> ();
}

class Customer : Person { public decimal CreditLimit { get; set; } }
class Employee : Person { public decimal Salary { get; set; } }

Suppose we want to write a method that programmatically exports a Person’s details
to an XML XElement. The most obvious solution is to write a virtual method called
ToXElement() in the Person class that returns an XElement populated with a Per
son’s properties. We would then override it in Customer and Employee classes such
that the XElement was also populated with CreditLimit and Salary. This pattern
can be problematic, however, for two reasons:

850 | Chapter 20: Dynamic Programming

www.EBooksWorld.ir

• You might not own the Person, Customer, and Employee classes, making it
impossible to add methods to them. (And extension methods wouldn’t give
polymorphic behavior.)

• The Person, Customer, and Employee classes might already be quite big. A fre‐
quent antipattern is the “god object,” where a class such as Person attracts so
much functionality that it becomes a nightmare to maintain. A good antidote is
to avoid adding functions to Person that don’t need to access Person’s private
state. A ToXElement method might be an excellent candidate.

With dynamic member overload resolution, we can write the ToXElement function‐
ality in a separate class, without resorting to ugly switches based on type:

class ToXElementPersonVisitor
{
 public XElement DynamicVisit (Person p) => Visit ((dynamic)p);

 XElement Visit (Person p)
 {
 return new XElement ("Person",
 new XAttribute ("Type", p.GetType().Name),
 new XElement ("FirstName", p.FirstName),
 new XElement ("LastName", p.LastName),
 p.Friends.Select (f => DynamicVisit (f))
);
 }

 XElement Visit (Customer c) // Specialized logic for customers
 {
 XElement xe = Visit ((Person)c); // Call "base" method
 xe.Add (new XElement ("CreditLimit", c.CreditLimit));
 return xe;
 }

 XElement Visit (Employee e) // Specialized logic for employees
 {
 XElement xe = Visit ((Person)e); // Call "base" method
 xe.Add (new XElement ("Salary", e.Salary));
 return xe;
 }
}

The DynamicVisit method performs a dynamic dispatch—calling the most specific
version of Visit as determined at runtime. Notice the line in boldface, where we
call DynamicVisit on each person in the Friends collection. This ensures that if a
friend is a Customer or Employee, the correct overload is called.

We can demonstrate this class as follows:

var cust = new Customer
{
 FirstName = "Joe", LastName = "Bloggs", CreditLimit = 123
};

D
ynam

ic
P

ro
g

ram
m

ing

Dynamic Member Overload Resolution | 851

www.EBooksWorld.ir

cust.Friends.Add (
 new Employee { FirstName = "Sue", LastName = "Brown", Salary = 50000 }
);

Console.WriteLine (new ToXElementPersonVisitor().DynamicVisit (cust));

Here’s the result:

<Person Type="Customer">
 <FirstName>Joe</FirstName>
 <LastName>Bloggs</LastName>
 <Person Type="Employee">
 <FirstName>Sue</FirstName>
 <LastName>Brown</LastName>
 <Salary>50000</Salary>
 </Person>
 <CreditLimit>123</CreditLimit>
</Person>

Variations
If you plan more than one visitor class, a useful variation is to define an abstract
base class for visitors:

abstract class PersonVisitor<T>
{
 public T DynamicVisit (Person p) { return Visit ((dynamic)p); }

 protected abstract T Visit (Person p);
 protected virtual T Visit (Customer c) { return Visit ((Person) c); }
 protected virtual T Visit (Employee e) { return Visit ((Person) e); }
}

Subclasses then don’t need to define their own DynamicVisit method: all they do is
override the versions of Visit whose behavior they want to specialize. This also has
the advantages of centralizing the methods that encompass the Person hierarchy,
and allowing implementers to call base methods more naturally:

class ToXElementPersonVisitor : PersonVisitor<XElement>
{
 protected override XElement Visit (Person p)
 {
 return new XElement ("Person",
 new XAttribute ("Type", p.GetType().Name),
 new XElement ("FirstName", p.FirstName),
 new XElement ("LastName", p.LastName),
 p.Friends.Select (f => DynamicVisit (f))
);
 }

 protected override XElement Visit (Customer c)
 {
 XElement xe = base.Visit (c);
 xe.Add (new XElement ("CreditLimit", c.CreditLimit));
 return xe;

852 | Chapter 20: Dynamic Programming

www.EBooksWorld.ir

 }

 protected override XElement Visit (Employee e)
 {
 XElement xe = base.Visit (e);
 xe.Add (new XElement ("Salary", e.Salary));
 return xe;
 }
}

You can even then subclass ToXElementPersonVisitor itself.

Multiple Dispatch
C# and the CLR have always supported a limited form of dynamism in the form of
virtual method calls. This differs from C#’s dynamic binding in that for virtual
method calls, the compiler must commit to a particular virtual member at compile
time—based on the name and signature of a member you called. This means that:

• The calling expression must be fully understood by the compiler (e.g., it must
decide at compile time whether a target member is a field or property).

• Overload resolution must be completed entirely by the compiler, based on the
compile-time argument types.

A consequence of that last point is that the ability to perform virtual method calls is
known as single dispatch. To see why, consider the following method call (where
Walk is a virtual method):

animal.Walk (owner);

The runtime decision of whether to invoke a dog’s Walk method or a cat’s Walk
method depends only on the type of the receiver, animal (hence “single”). If many
overloads of Walk accept different kinds of owner, an overload will be selected at
compile time without regard to the actual runtime type of the owner object. In other
words, only the runtime type of the receiver can vary which method gets called.

In contrast, a dynamic call defers overload resolution until runtime:

animal.Walk ((dynamic) owner);

The final choice of which Walk method to call now depends on the types of both
animal and owner—this is called multiple dispatch since the runtime types of argu‐
ments, in addition to the receiver type, contribute to the determination of which
Walk method to call.

Anonymously Calling Members of a Generic Type
The strictness of C#’s static typing is a two-edged sword. On the one hand, it enfor‐
ces a degree of correctness at compile time. On the other hand, it occasionally
makes certain kinds of code difficult or impossible to express, at which point you

D
ynam

ic
P

ro
g

ram
m

ing

Dynamic Member Overload Resolution | 853

www.EBooksWorld.ir

have to resort to reflection. In these situations, dynamic binding is a cleaner and
faster alternative to reflection.

An example is when you need to work with an object of type G<T> where T is
unknown. We can illustrate this by defining the following class:

public class Foo<T> { public T Value; }

Suppose we then write a method as follows:

static void Write (object obj)
{
 if (obj is Foo<>) // Illegal
 Console.WriteLine ((Foo<>) obj).Value); // Illegal
}

This method won’t compile: you can’t invoke members of unbound generic types.

Dynamic binding offers two means by which we can work around this. The first is
to access the Value member dynamically as follows:

static void Write (dynamic obj)
{
 try { Console.WriteLine (obj.Value); }
 catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException) {...}
}

This has the (potential) advantage of working with any object that defines a Value
field or property. However, there are a couple of problems. First, catching an excep‐
tion in this manner is somewhat messy and inefficient (and there’s no way to ask the
DLR in advance, “Will this operation succeed?”). Second, this approach wouldn’t
work if Foo was an interface (say, IFoo<T>), and either of the following conditions
was true:

• Value was implemented explicitly.

• The type that implemented IFoo<T> was inaccessible (more on this soon).

A better solution is to write an overloaded helper method called GetFooValue and
to call it using dynamic member overload resolution:

static void Write (dynamic obj)
{
 object result = GetFooValue (obj);
 if (result != null) Console.WriteLine (result);
}

static T GetFooValue<T> (Foo<T> foo) { return foo.Value; }
static object GetFooValue (object foo) { return null; }

Notice that we overloaded GetFooValue to accept an object parameter, which acts
as a fallback for any type. At runtime, the C# dynamic binder will pick the best over‐
load when calling GetFooValue with a dynamic argument. If the object in question

854 | Chapter 20: Dynamic Programming

www.EBooksWorld.ir

is not based on Foo<T>, it will choose the object-parameter overload instead of
throwing an exception.

An alternative is to write just the first GetFooValue overload,
and then catch the RuntimeBinderException. The advantage
is that it distinguishes the case of foo.Value being null. The
disadvantage is that it incurs the performance overhead of
throwing and catching an exception.

In Chapter 19, we solved the same problem with an interface using reflection—with
a lot more effort (see “Anonymously Calling Members of a Generic Interface” on
page 808). The example we used was to design a more powerful version of
ToString() that could understand objects such as IEnumerable and IGrouping<,>.
Here’s the same example solved more elegantly with dynamic binding:

static string GetGroupKey<TKey,TElement> (IGrouping<TKey,TElement> group)
{
 return "Group with key=" + group.Key + ": ";
}

static string GetGroupKey (object source) { return null; }

public static string ToStringEx (object value)
{
 if (value == null) return "<null>";
 if (value is string) return (string) value;
 if (value.GetType().IsPrimitive) return value.ToString();

 StringBuilder sb = new StringBuilder();

 string groupKey = GetGroupKey ((dynamic)value); // Dynamic dispatch
 if (groupKey != null) sb.Append (groupKey);

 if (value is IEnumerable)
 foreach (object element in ((IEnumerable)value))
 sb.Append (ToStringEx (element) + " ");

 if (sb.Length == 0) sb.Append (value.ToString());

 return "\r\n" + sb.ToString();
}

In action:

Console.WriteLine (ToStringEx ("xyyzzz".GroupBy (c => c)));

Group with key=x: x
Group with key=y: y y
Group with key=z: z z z

Notice that we used dynamic member overload resolution to solve this problem. If
we did the following instead:

D
ynam

ic
P

ro
g

ram
m

ing

Dynamic Member Overload Resolution | 855

www.EBooksWorld.ir

dynamic d = value;
try { groupKey = d.Value); }
catch (Microsoft.CSharp.RuntimeBinder.RuntimeBinderException) {...}

it would fail, because LINQ’s GroupBy operator returns a type implementing IGroup
ing<,> which itself is internal, and therefore inaccessible:

internal class Grouping : IGrouping<TKey,TElement>, ...
{
 public TKey Key;
 ...
}

Even though the Key property is declared public, its containing class caps it at
internal, making it accessible only via the IGrouping<,> interface. And as we
explained in Chapter 4, there’s no way to tell the DLR to bind to that interface when
invoking the Value member dynamically.

Implementing Dynamic Objects
An object can provide its binding semantics by implementing IDynamicMetaObject
Provider—or more easily by subclassing DynamicObject, which provides a default
implementation of this interface. We demonstrated this briefly in Chapter 4, with
the following example:

static void Main()
{
 dynamic d = new Duck();
 d.Quack(); // Quack method was called
 d.Waddle(); // Waddle method was called
}

public class Duck : DynamicObject
{
 public override bool TryInvokeMember (
 InvokeMemberBinder binder, object[] args, out object result)
 {
 Console.WriteLine (binder.Name + " method was called");
 result = null;
 return true;
 }
}

DynamicObject
In the preceding example, we overrode TryInvokeMember, which allows the con‐
sumer to invoke a method on the dynamic object—such as a Quack or Waddle.
DynamicObject exposes other virtual methods that enable consumers to use other
programming constructs as well. The following correspond to constructs that have
representations in C#:

856 | Chapter 20: Dynamic Programming

www.EBooksWorld.ir

Method Programming construct

TryInvokeMember Method

TryGetMember, TrySetMember Property or field

TryGetIndex, TrySetIndex Indexer

TryUnaryOperation Unary operator such as !

TryBinaryOperation Binary operator such as ==

TryConvert Conversion (cast) to another type

TryInvoke Invocation on the object itself—e.g., d("foo")

These methods should return true if successful. If they return false, then the DLR
will fall back to the language binder, looking for a matching member on the Dynami
cObject (subclass) itself. If this fails, then a RuntimeBinderException is thrown.

We can illustrate TryGetMember and TrySetMember with a class that lets us dynami‐
cally access an attribute in an XElement (System.Xml.Linq):

static class XExtensions
{
 public static dynamic DynamicAttributes (this XElement e)
 => new XWrapper (e);

 class XWrapper : DynamicObject
 {
 XElement _element;
 public XWrapper (XElement e) { _element = e; }

 public override bool TryGetMember (GetMemberBinder binder,
 out object result)
 {
 result = _element.Attribute (binder.Name).Value;
 return true;
 }

 public override bool TrySetMember (SetMemberBinder binder,
 object value)
 {
 _element.SetAttributeValue (binder.Name, value);
 return true;
 }
 }
}

Here’s how to use it:

XElement x = XElement.Parse (@"<Label Text=""Hello"" Id=""5""/>");
dynamic da = x.DynamicAttributes();
Console.WriteLine (da.Id); // 5
da.Text = "Foo";
Console.WriteLine (x.ToString()); // <Label Text="Foo" Id="5" />

D
ynam

ic
P

ro
g

ram
m

ing

Implementing Dynamic Objects | 857

www.EBooksWorld.ir

The following does a similar thing for System.Data.IDataRecord, making it easier
to use data readers:

public class DynamicReader : DynamicObject
{
 readonly IDataRecord _dataRecord;
 public DynamicReader (IDataRecord dr) { _dataRecord = dr; }

 public override bool TryGetMember (GetMemberBinder binder,
 out object result)
 {
 result = _dataRecord [binder.Name];
 return true;
 }
}
...
using (IDataReader reader = someDbCommand.ExecuteReader())
{
 dynamic dr = new DynamicReader (reader);
 while (reader.Read())
 {
 int id = dr.ID;
 string firstName = dr.FirstName;
 DateTime dob = dr.DateOfBirth;
 ...
 }
}

The following demonstrates TryBinaryOperation and TryInvoke:

static void Main()
{
 dynamic d = new Duck();
 Console.WriteLine (d + d); // foo
 Console.WriteLine (d (78, 'x')); // 123
}

public class Duck : DynamicObject
{
 public override bool TryBinaryOperation (BinaryOperationBinder binder,
 object arg, out object result)
 {
 Console.WriteLine (binder.Operation); // Add
 result = "foo";
 return true;
 }

 public override bool TryInvoke (InvokeBinder binder,
 object[] args, out object result)
 {
 Console.WriteLine (args[0]); // 78
 result = 123;
 return true;
 }
}

858 | Chapter 20: Dynamic Programming

www.EBooksWorld.ir

DynamicObject also exposes some virtual methods for the benefit of dynamic lan‐
guages. In particular, overriding GetDynamicMemberNames allows you to return a list
of all member names that your dynamic object provides.

Another reason to implement GetDynamicMemberNames is that
Visual Studio’s debugger makes use of this method to display a
view of a dynamic object.

ExpandoObject
Another simple application of DynamicObject would be to write a dynamic class
that stored and retrieved objects in a dictionary, keyed by string. However, this
functionality is already provided via the ExpandoObject class:

dynamic x = new ExpandoObject();
x.FavoriteColor = ConsoleColor.Green;
x.FavoriteNumber = 7;
Console.WriteLine (x.FavoriteColor); // Green
Console.WriteLine (x.FavoriteNumber); // 7

ExpandoObject implements IDictionary<string,object>—so we can continue
our example and do this:

var dict = (IDictionary<string,object>) x;
Console.WriteLine (dict ["FavoriteColor"]); // Green
Console.WriteLine (dict ["FavoriteNumber"]); // 7
Console.WriteLine (dict.Count); // 2

Interoperating with Dynamic Languages
Although C# supports dynamic binding via the dynamic keyword, it doesn’t go as
far as allowing you to execute an expression described in a string at runtime:

string expr = "2 * 3";
// We can't "execute" expr

This is because the code to translate a string into an expres‐
sion tree requires a lexical and semantic parser. These features
are built into the C# compiler and are not available as a run‐
time service. At runtime, C# merely provides a binder—which
tells the DLR how to interpret an already-built expression
tree.

True dynamic languages such as IronPython and IronRuby do allow you to execute
an arbitrary string, and this is useful in tasks such as scripting, dynamic configura‐
tion, and implementing dynamic rules engines. So although you may write most of
your application in C#, it can be useful to call out to a dynamic language for such
tasks. In addition, you might want to leverage an API that is written in a dynamic
language where no equivalent functionality is available in a .NET library.

In the following example, we use IronPython to evaluate an expression created at
runtime from within C#. This script could be used to write a calculator:

D
ynam

ic
P

ro
g

ram
m

ing

Interoperating with Dynamic Languages | 859

www.EBooksWorld.ir

To run this code, download IronPython (search the Internet
for IronPython), and then reference the IronPython, Micro‐
soft.Scripting, and Microsoft.Scripting.Core assemblies from
your C# application.

using System;
using IronPython.Hosting;
using Microsoft.Scripting;
using Microsoft.Scripting.Hosting;

class Calculator
{
 static void Main()
 {
 int result = (int) Calculate ("2 * 3");
 Console.WriteLine (result); // 6
 }

 static object Calculate (string expression)
 {
 ScriptEngine engine = Python.CreateEngine();
 return engine.Execute (expression);
 }
}

Because we’re passing a string into Python, the expression will be evaluated accord‐
ing to Python’s rules and not C#’s. It also means we can use Python’s language fea‐
tures, such as lists:

var list = (IEnumerable) Calculate ("[1, 2, 3] + [4, 5]");
foreach (int n in list) Console.Write (n); // 12345

Passing State Between C# and a Script
To pass variables from C# to Python, a few more steps are required. The following
example illustrates those steps and could be the basis of a rules engine:

// The following string could come from a file or database:
string auditRule = "taxPaidLastYear / taxPaidThisYear > 2";

ScriptEngine engine = Python.CreateEngine ();

ScriptScope scope = engine.CreateScope ();
scope.SetVariable ("taxPaidLastYear", 20000m);
scope.SetVariable ("taxPaidThisYear", 8000m);

ScriptSource source = engine.CreateScriptSourceFromString (
 auditRule, SourceCodeKind.Expression);

bool auditRequired = (bool) source.Execute (scope);
Console.WriteLine (auditRequired); // True

860 | Chapter 20: Dynamic Programming

www.EBooksWorld.ir

You can also get variables back by calling GetVariable:

string code = "result = input * 3";

ScriptEngine engine = Python.CreateEngine();

ScriptScope scope = engine.CreateScope();
scope.SetVariable ("input", 2);

ScriptSource source = engine.CreateScriptSourceFromString (code,
 SourceCodeKind.SingleStatement);
source.Execute (scope);
Console.WriteLine (engine.GetVariable (scope, "result")); // 6

Notice that we specified SourceCodeKind.SingleStatement in the second example
(rather than Expression) to tell the engine that we want to execute a statement.

Types are automatically marshaled between the .NET and Python worlds. You can
even access members of .NET objects from the scripting side:

string code = @"sb.Append (""World"")";

ScriptEngine engine = Python.CreateEngine ();

ScriptScope scope = engine.CreateScope ();
var sb = new StringBuilder ("Hello");
scope.SetVariable ("sb", sb);

ScriptSource source = engine.CreateScriptSourceFromString (
 code, SourceCodeKind.SingleStatement);
source.Execute (scope);
Console.WriteLine (sb.ToString()); // HelloWorld

D
ynam

ic
P

ro
g

ram
m

ing

Interoperating with Dynamic Languages | 861

www.EBooksWorld.ir

www.EBooksWorld.ir

21
Security

In this chapter, we discuss the two main components of .NET security:

• Permissions
• Cryptography

Permissions, in .NET, provide a layer of security independent of that imposed by the
operating system. Their job is twofold:

Sandboxing
Limiting the kinds of operations that partially trusted .NET assemblies can
perform

Authorization
Limiting who can do what

The cryptography support in .NET allows you to store or exchange high-value data,
prevent eavesdropping, detect message tampering, generate one-way hashes for
storing passwords, and create digital signatures.

The types covered in this chapter are defined in the following namespaces:

System.Security;
System.Security.Permissions;
System.Security.Principal;
System.Security.Cryptography;

Permissions
The Framework uses permissions for both sandboxing and authorization. A permis‐
sion acts as a gate that conditionally prevents code from executing. Sandboxing uses
code access permissions; authorization uses identity and role permissions.

Security

863

www.EBooksWorld.ir

Although both follow a similar model, they feel quite different to use. Part of the
reason for this is that they typically put you on a different side of the fence: with
code access security, you’re usually the untrusted party; with identity and role secu‐
rity, you’re usually the untrusting party. Code access security is most often forced
upon you by the CLR or a hosting environment such as ASP.NET or Internet
Explorer, whereas authorization is usually something you implement to prevent
unprivileged callers from accessing your program.

As an application developer, you’ll need to understand code access security (CAS)
in order to write assemblies that will run in a limited permissions environment. If
you’re writing and selling a component library, it’s easy to overlook the possibility
that your customers will call your library from a sandboxed environment such as a
SQL Server CLR host.

Another reason to understand CAS is if you want to create your own hosting envi‐
ronment that sandboxes other assemblies. For example, you might write an applica‐
tion that allows third parties to write plug-in components. Running those plug-ins
in an application domain with limited permissions reduces the chance of a plug-in
destabilizing your application or compromising its security.

The main scenario for identity and role security is when writing middle-tier or web
application servers. You typically decide on a set of roles, and then for each method
that you expose, you demand that callers are members of a particular role.

CodeAccessPermission and PrincipalPermission
There are essentially two kinds of permissions:

CodeAccessPermission

The abstract base class for all code access security (CAS) permissions, such
as FileIOPermission, ReflectionPermission, or PrintingPermission

PrincipalPermission

Describes an identity and/or role (e.g., “Mary” or “Human Resources”)

The term permission is somewhat misleading in the case of CodeAccessPermission,
because it suggests something has been granted. This is not necessarily the case. A
CodeAccessPermission object describes a privileged operation.

For instance, a FileIOPermission object describes the privilege of being able to
Read, Write, or Append to a particular set of files or directories. Such an object can
be used in a variety of ways:

• To verify that you and all your callers have the rights to perform these actions
(Demand)

• To verify that your immediate caller has the rights to perform these actions
(LinkDemand)

864 | Chapter 21: Security

www.EBooksWorld.ir

• To temporarily escape a sandbox and Assert your assembly-given rights to
perform these actions, regardless of callers’ privileges

You’ll also see the following security actions in the CLR: Deny,
RequestMinimum, RequestOptional, RequestRefuse, and Per
mitOnly. However, these (along with link demands) have been
deprecated or discouraged since Framework 4.0, in favor of
the new transparency model.

PrincipalPermission is much simpler. Its only security method is Demand, which
checks that the specified user or role is valid given the current execution thread.

IPermission
Both CodeAccessPermission and PrincipalPermission implement the IPermis
sion interface:

public interface IPermission
{
 void Demand();
 IPermission Intersect (IPermission target);
 IPermission Union (IPermission target);
 bool IsSubsetOf (IPermission target);
 IPermission Copy();
}

The crucial method here is Demand. It performs a spot-check to see whether the per‐
mission or privileged operation is currently permitted, and it throws a SecurityEx
ception if not. If you’re the untrusting party, you will be Demanding. If you’re the
untrusted party, code that you call will be Demanding.

For example, to ensure that only Mary can run management reports, you could
write this:

new PrincipalPermission ("Mary", null).Demand();
// ... run management reports

In contrast, suppose your assembly was sandboxed such that file I/O was prohibi‐
ted, so the following line threw a SecurityException:

using (FileStream fs = new FileStream ("test.txt", FileMode.Create))
 ...

The Demand, in this case, is made by code that you call—in other words, File
Stream’s constructor:

...
new FileIOPermission (...).Demand();

Security

Permissions | 865

www.EBooksWorld.ir

A code access security Demand checks right up the call stack in
order to ensure that the requested operation is allowed for
every party in the calling chain (within the current application
domain). Effectively, it’s asking, “Is this application domain
entitled to this permission?”
With code access security, an interesting case arises with
assemblies that run in the GAC, which are considered fully
trusted. If such an assembly runs in a sandbox, any Demands
that it makes are still subject to the sandbox’s permission set.
Fully trusted assemblies can, however, temporarily escape the
sandbox by calling Assert on a CodeAccessPermission

object. After doing so, Demands for the permissions that were
asserted always succeed. An Assert ends either when the cur‐
rent method finishes or when you call CodeAccessPermis
sion.RevertAssert.

The Intersect and Union methods combine two same-typed permission objects
into one. The purpose of Intersect is to create a “smaller” permission object,
whereas the purpose of Union is to create a “larger” permission object.

With code access permissions, a “larger” permission object is more restrictive when
Demanded, because a greater number of permissions must be met.

With principle permissions, a “larger” permission object is less restrictive when
Demanded, because only one of the principles or identities is enough to satisfy the
demand.

IsSubsetOf returns true if the given target contains at least its permissions:

PrincipalPermission jay = new PrincipalPermission ("Jay", null);
PrincipalPermission sue = new PrincipalPermission ("Sue", null);

PrincipalPermission jayOrSue = (PrincipalPermission) jay.Union (sue);
Console.WriteLine (jay.IsSubsetOf (jayOrSue)); // True

In this example, calling Intersect on jay and sue would generate an empty per‐
mission, because they don’t overlap.

PermissionSet
A PermissionSet represents a collection of differently typed IPermission objects.
The following creates a permission set with three code access permissions, and then
Demands all of them in one hit:

PermissionSet ps = new PermissionSet (PermissionState.None);

ps.AddPermission (new UIPermission (PermissionState.Unrestricted));
ps.AddPermission (new SecurityPermission (
 SecurityPermissionFlag.UnmanagedCode));
ps.AddPermission (new FileIOPermission (
 FileIOPermissionAccess.Read, @"c:\docs"));
ps.Demand();

866 | Chapter 21: Security

www.EBooksWorld.ir

PermissionSet’s constructor accepts a PermissionState enum, which indicates
whether the set should be considered “unrestricted.” An unrestricted permission set
is treated as though it contained every possible permission (even though its collec‐
tion is empty). Assemblies that execute with unrestricted code access security are
said to be fully trusted.

AddPermission applies Union-like semantics in that it creates a “larger” set. Calling
AddPermission on an unrestricted permission set has no effect (as it already has,
logically, all possible permissions).

You can Union and Intersect permission sets just as you can with IPermission
objects.

Declarative Versus Imperative Security
So far, we manually instantiated permission objects and called Demand on them. This
is imperative security. You can achieve the same result by adding attributes to a
method, constructor, class, struct, or assembly—this is declarative security. Although
imperative security is more flexible, declarative security has three advantages:

• It can mean less coding.
• It allows the CLR to determine in advance what permissions your assembly

requires.
• It can improve performance.

For example:

[PrincipalPermission (SecurityAction.Demand, Name="Mary")]
public ReportData GetReports()
{
 ...
}

[UIPermission(SecurityAction.Demand, Window=UIPermissionWindow.AllWindows)]
public Form FindForm()
{
 ...
}

This works because every permission type has a sister attribute type in the .NET
Framework. PrincipalPermission has a PrincipalPermissionAttribute sister.
The first argument of the attribute’s constructor is always a SecurityAction, which
indicates what security method to call once the permission object is constructed
(usually Demand). The remaining named parameters mirror the properties on the
corresponding permission object.

Security

Permissions | 867

www.EBooksWorld.ir

Code Access Security (CAS)
The CodeAccessPermission types that are enforced throughout the .NET Frame‐
work are listed by category in Tables 21-1 through 21-6. Collectively, these are
intended to cover all the means by which a program can do mischief!

Table 21-1. Core permissions

Type Enables

SecurityPermission Advanced operations, such as calling unmanaged code

ReflectionPermission Use of reflection

EnvironmentPermission Reading/writing command-line environment settings

RegistryPermission Reading or writing to the Windows Registry

SecurityPermission accepts a SecurityPermissionFlag argument. This is an
enum that allows any combination of the following:

AllFlags ControlThread
Assertion Execution
BindingRedirects Infrastructure
ControlAppDomain NoFlags
ControlDomainPolicy RemotingConfiguration
ControlEvidence SerializationFormatter
ControlPolicy SkipVerification
ControlPrincipal UnmanagedCode

The most significant member of this enum is Execution, without which code will
not run. The other members should be granted only in full-trust scenarios, because
they enable a grantee to compromise or escape a sandbox. ControlAppDomain allows
the creation of new application domains (see Chapter 24); UnmanagedCode allows
you to call native methods (see Chapter 25).

ReflectionPermission accepts a ReflectionPermissionFlag enum, which
includes the members MemberAccess and RestrictedMemberAccess. If you’re sand‐
boxing assemblies, the latter is safer to grant while permitting reflection scenarios
required by APIs such as LINQ to SQL.

Table 21-2. I/O and data permissions

Type Enables

FileIOPermission Reading/writing files and directories

FileDialogPermission Reading/writing to a file chosen through an Open or
Save dialog box

IsolatedStorageFilePermission Reading/writing to own isolated storage

ConfigurationPermission Reading of application configuration files

868 | Chapter 21: Security

www.EBooksWorld.ir

Type Enables

SqlClientPermission, OleDbPermission,
OdbcPermission

Communicating with a database server using the
SqlClient, OleDb, or Odbc class

DistributedTransactionPermission Participation in distributed transactions

FileDialogPermission controls access to the OpenFileDialog and SaveFileDia
log classes. These classes are defined in Microsoft.Win32 (for use in WPF applica‐
tions) and in System.Windows.Forms (for use in Windows Forms applications). For
this to work, UIPermission is also required. FileIOPermission is not also required,
however, if you access the chosen file by calling OpenFile on the OpenFileDialog or
SaveFileDialog object.

Table 21-3. Networking permissions

Type Enables

DnsPermission DNS lookup

WebPermission WebRequest-based network access

SocketPermission Socket-based network access

SmtpPermission Sending mail through the SMTP libraries

NetworkInformationPermission Use of classes such as Ping and NetworkInterface

Table 21-4. Encryption permissions

Type Enables

DataProtectionPermission Use of the Windows data protection methods

KeyContainerPermission Public key encryption and signing

StorePermission Access to X.509 certificate stores

Table 21-5. UI permissions

Type Enables

UIPermission Creating windows and interacting with the clipboard

WebBrowserPermission Use of the WebBrowser control

MediaPermission Image, audio, and video support in WPF

PrintingPermission Accessing a printer

Security

Code Access Security (CAS) | 869

www.EBooksWorld.ir

Table 21-6. Diagnostics permissions

Type Enables

EventLogPermission Reading or writing to the Windows event log

PerformanceCounterPermission Use of Windows performance counters

Demands for these permission types are enforced within the .NET Framework. There
are also some permission classes for which the intention is that Demands are
enforced in your own code. The most important of these are concerned with estab‐
lishing identity of the calling assembly, and are listed in Table 21-7. The caveat is
that (as with all CAS permissions) a Demand always succeeds if the application
domain is running in full trust (see the following section).

Table 21-7. Identity permissions

Type Enforces

GacIdentityPermission The assembly is loaded into the GAC

StrongNameIdentityPermis

sion

The calling assembly has a particular strong name

PublisherIdentityPermis

sion

The calling assembly is Authenticode-signed with a particular certificate

How Code Access Security Is Applied
When you run a .NET executable from the Windows shell or command prompt, it
runs with unrestricted permissions. This is called full trust.

If you execute an assembly via another hosting environment—such as a SQL Server
CLR integration host, ASP.NET, ClickOnce, or a custom host—the host decides
what permissions to give your assembly. If it restricts permissions in any way, this is
called partial trust or sandboxing.

More accurately, a host does not restrict permissions to your assembly. Rather, it
creates an application domain with restricted permissions and then loads your
assembly into that sandboxed domain. This means that any other assemblies that
load into that domain (such as assemblies that you reference) run in that same sand‐
box with the same permission set. There are two exceptions, however:

• Assemblies registered in the GAC (including the .NET Framework)
• Assemblies that a host has nominated to fully trust

Assemblies in those two categories are considered fully trusted and can escape the
sandbox by Asserting any permission they want. They can also call methods
marked as [SecurityCritical] in other fully trusted assemblies, run unverifiable

870 | Chapter 21: Security

www.EBooksWorld.ir

(unsafe) code, and call methods that enforce link demands, and those link demands
will always succeed.

So when we say that a partially trusted assembly calls a fully trusted assembly, we
mean that an assembly running in a sandboxed application domain calls a GAC
assembly—or an assembly nominated by the host for full trust.

Testing for Full Trust
You can test whether you have unrestricted permissions as follows:

new PermissionSet (PermissionState.Unrestricted).Demand();

This throws an exception if your application domain is sandboxed. However, it
might be that your assembly is, in fact, fully trusted and so can Assert its way out of
the sandbox. You can test for this by querying the IsFullyTrusted property on the
Assembly in question.

Allowing Partially Trusted Callers
Allowing an assembly to accept partially trusted callers creates the possibility of an
elevation of privilege attack and is therefore disallowed by the CLR unless you
request otherwise. To see why this is so, let’s look first at an elevation of privilege
attack.

Elevation of Privilege
Let’s suppose the CLR didn’t enforce the rule just described and you wrote a library
intended to be used in full-trust scenarios. One of your properties was as follows:

public string ConnectionString
 => File.ReadAllText (_basePath + "cxString.txt");

Now, assume that the user who deploys your library decides (rightly or wrongly) to
load your assembly into the GAC. That user then runs a totally unrelated applica‐
tion hosted in ClickOnce or ASP.NET, inside a restrictive sandbox. The sandboxed
application now loads your fully trusted assembly—and tries to call the Connection
String property. Fortunately, it throws a SecurityException because File.Read
AllText will demand a FileIOPermission, which the caller won’t have (remember
that a Demand checks right up the calling stack). But now consider the following
method:

public unsafe void Poke (int offset, int data)
{
 int* target = (int*) _origin + offset;
 *target = data;
 ...
}

Without an implicit Demand, the sandboxed assembly can call this method—and use
it to inflict damage. This is an elevation of privilege attack.

Security

Allowing Partially Trusted Callers | 871

www.EBooksWorld.ir

1 Before CLR 4.0, partially trusted assemblies could not even call other partially trusted assemblies
if the target was strongly named (unless you applied the APTCA). This restriction didn’t really
aid security and so was dropped in CLR 4.0.

The problem in this case is that you never intended for your library to be called by
partially trusted assemblies. Fortunately, the CLR helps you by preventing this situa‐
tion by default.

APTCA and [SecurityTransparent]
To help avoid elevation of privilege attacks, the CLR does not allow partially trusted
assemblies to call fully trusted assemblies by default.1

To allow such calls, you must do one of two things to the fully trusted assembly:

• Apply the [AllowPartiallyTrustedCallers] attribute (called APTCA for
short).

• Apply the [SecurityTransparent] attribute.

Applying these attributes means that you must think about the possibility of being
the untrusting party (rather than the untrusted party).

Prior to CLR 4.0, only the APTCA attribute was supported. And all that it did was
to enable partially trusted callers. From CLR 4.0, the APTCA also has the effect of
implicitly marking all the methods (and functions) in your assembly as security
transparent. We’ll explain this in detail in the next section; for now, we can summa‐
rize it by saying that security transparent methods can’t do any of the following
(whether running in full or partial trust):

• Run unverifiable (unsafe) code.
• Run native code via P/Invoke or COM.
• Assert permissions to elevate their security level.
• Satisfy a link demand.

• Call methods in the .NET Framework marked as [SecurityCritical]. Essen‐
tially, these comprise methods that do one of the preceding four things without
appropriate safeguards or security checks.

The rationale is that an assembly that doesn’t do any of these
things cannot, in general, be susceptible to an elevation of
privilege attack.

The [SecurityTransparent] attribute applies a stronger version of the same rules.
The difference is that with APTCA, you can nominate selected methods in your
assembly as nontransparent, whereas with [SecurityTransparent], all methods
must be transparent.

872 | Chapter 21: Security

www.EBooksWorld.ir

If your assembly can work with [SecurityTransparent],
your job is done as a library author. You can ignore the nuan‐
ces of the transparency model and skip ahead to “Operating
System Security” on page 885!

Before we look at how to nominate selected methods as nontransparent, let’s first
look at when you’d apply these attributes.

The first (and more obvious) scenario is if you plan to write a fully trusted assembly
that will run in a partially trusted domain. We walk through an example in “Sand‐
boxing Another Assembly” on page 881.

The second (and less obvious) scenario is writing a library without knowledge of
how it will be deployed. For instance, suppose you write an object relational mapper
and sell it over the Internet. Customers have three options in how they call your
library:

1. From a fully trusted environment
2. From a sandboxed domain
3. From a sandboxed domain, but with your assembly fully trusted (e.g., by load‐

ing it into the GAC)

It’s easy to overlook the third option—and this is where the transparency model
helps.

The Transparency Model
To follow this, you’ll need to have read the previous section
and understand the scenarios for applying APTCA and
[SecurityTransparent].

The security transparency model makes it easier to secure assemblies that might be
fully trusted and then called from partially trusted code.

By way of analogy, let’s imagine that being a partially trusted assembly is like being
convicted of a crime and being sent to prison. In prison, you discover that there are
a set of privileges (permissions) that you can earn for good behavior. These permis‐
sions entitle you to perform activities such as watching TV or playing basketball.
There are some activities, however, that you can never perform—such as getting the
keys to the TV room (or the prison gates)—because such activities (methods) would
undermine the whole security system. These methods are called security-critical.

If writing a fully trusted library, you would want to protect those security-critical
methods. One way to do so is to Demand that callers be fully trusted. This was the
approach prior to CLR 4.0:

[PermissionSet (SecurityAction.Demand, Unrestricted = true)]
public Key GetTVRoomKey() { ... }

Security

The Transparency Model | 873

www.EBooksWorld.ir

This creates two problems. First, Demands are slow because they must check right up
the call stack; this matters because security-critical methods are sometimes
performance-critical. A Demand can become particularly wasteful if a security-critical
method is called in a loop—perhaps from another fully trusted assembly in the
Framework. The CLR 2.0 workaround with such methods was to instead enforce
link demands, which check only the immediate caller. But this also comes at a price.
To maintain security, methods that call link-demanded methods must themselves
perform demands or link demands—or be audited to ensure that they don’t allow
anything potentially harmful if called from a less trusted party. Such an audit
becomes burdensome when call graphs are complicated.

The second problem is that it’s easy to forget to perform a demand or link demand
on security-critical methods (again, complex call graphs exacerbate this). It would
be nice if the CLR could somehow help out and enforce that security-critical func‐
tions are not unintentionally exposed to inmates.

The transparency model does exactly that.

The introduction of the transparency model is totally unrela‐
ted to the removal of CAS policy (see sidebar, “Security Policy
in CLR 2.0” on page 881).

How the Transparency Model Works
In the transparency model, security-critical methods are marked with the [Securi
tyCritical] attribute:

[SecurityCritical]
public Key GetTVRoomKey() { ... }

All “dangerous” methods (containing code that the CLR considers could breach
security and allow an inmate to escape) must be marked with [SecurityCritical]
or [SecuritySafeCritical]. This comprises:

• Unverifiable (unsafe) methods
• Methods that call unmanaged code via P/Invoke or COM interop

• Methods that Assert permissions or call link-demanding methods

• Methods that call [SecurityCritical] methods

• Methods that override virtual [SecurityCritical] methods

[SecurityCritical] means “this method could allow a partially trusted caller to
escape a sandbox”.

[SecuritySafeCritical] means “this method does security-critical things—but
with appropriate safeguards and so is safe for partially trusted callers.”

874 | Chapter 21: Security

www.EBooksWorld.ir

Methods in partially trusted assemblies can never call security critical methods in
fully trusted assemblies. [SecurityCritical] methods can be called only by:

• Other [SecurityCritical] methods

• Methods marked as [SecuritySafeCritical]

Security-safe critical methods act as gatekeepers for security-critical methods (see
Figure 21-1), and can be called by any method in any assembly (fully or partially
trusted, subject to permission-based CAS demands). To illustrate, suppose that as
an inmate you want to watch television. The WatchTV method that you’ll call will
need to call GetTVRoomKey, which means that WatchTV must be security-safe-critical:

[SecuritySafeCritical]
public void WatchTV()
{
 new TVPermission().Demand();
 using (Key key = GetTVRoomKey())
 PrisonGuard.OpenDoor (key);
}

Notice that we Demand a TVPermission to ensure that the caller actually has TV-
watching rights, and we carefully dispose of the key we create. We are wrapping a
security-critical method, making it safe to be called by anyone.

Figure 21-1. Transparency model; only the area in gray needs security auditing

Some methods partake in the activities considered “danger‐
ous” by the CLR but are not actually dangerous. You can mark
these methods directly with [SecuritySafeCritical] instead
of [SecurityCritical]. An example is the Array.Copy

method: it has an unmanaged implementation for efficiency
and yet cannot be abused by partially trusted callers.

Security

The Transparency Model | 875

www.EBooksWorld.ir

The UnsafeXXX Pattern
There’s a potential inefficiency in our TV-watching example in that if a prison guard
wants to watch TV via the WatchTV method, he must (unnecessarily) satisfy a TVPer
mission demand. As a remedy, the CLR team recommends a pattern whereby you
define two versions of the method. The first is security-critical and is prefixed by the
word Unsafe:

[SecurityCritical]
public void UnsafeWatchTV()
{
 using (Key key = GetTVRoomKey())
 PrisonGuard.OpenDoor(key);
}

The second is security-safe-critical, and calls the first after satisfying a full stack-
walking demand:

[SecuritySafeCritical]
public void WatchTV()
{
 new TVPermission().Demand();
 UnsafeWatchTV();
}

Transparent code
Under the transparency model, all methods fall into one of three categories:

• Security-critical
• Security-safe-critical
• Neither (in which case, they’re called transparent)

Transparent methods are so called because you can ignore them when it comes to
auditing code for elevation of privilege attacks. All you need to focus on are the
[SecuritySafeCritical] methods (the gatekeepers), which typically comprise just
a small fraction of an assembly’s methods. If an assembly comprises entirely trans‐
parent methods, the entire assembly can be marked with the [SecurityTranspar
ent] attribute:

[assembly: SecurityTransparent]

We then say that the assembly itself is transparent. Transparent assemblies don’t
need auditing for elevation of privilege attacks and implicitly allow partially trusted
callers—you don’t need to apply APTCA.

Setting the transparency default for an assembly
To summarize what we said previously, there are two ways to specify transparency
at the assembly level:

876 | Chapter 21: Security

www.EBooksWorld.ir

• Apply the APTCA. All methods are then implicitly transparent except those
you mark otherwise.

• Apply the [SecurityTransparent] assembly attribute. All methods are then
implicitly transparent, without exception.

The third option is to do nothing. This still opts you into the transparency rules, but
with every method implicitly [SecurityCritical] (apart from any virtual [Securi
tySafeCritical] methods that you override, which will remain safe-critical). The
effect is that you can call any method you like (assuming you’re fully trusted), but
transparent methods in other assemblies won’t be able to call you.

How to Write APTCA Libraries with Transparency
To follow the transparency model, first identify the potentially “dangerous” methods
in your assembly (as described in the previous section). Unit tests will pick these up,
because the CLR will refuse to run such methods—even in a fully trusted environ‐
ment. (The .NET Framework also ships with a tool called SecAnnotate.exe to help
with this.) Then mark each such method with:

• [SecurityCritical], if the method might be harmful if called from a less trus‐
ted assembly

• [SecuritySafeCritical], if the method performs appropriate checks/safe‐
guards and can be safely called from a less trusted assembly

To illustrate, consider the following method, which calls a security-critical method
in the .NET Framework:

public static void LoadLibraries()
{
 GC.AddMemoryPressure (1000000); // Security critical
 ...
}

This method could be abused by being called repeatedly from less trusted callers.
We could apply the [SecurityCritical] attribute, but then the method would be
callable only from other trusted parties via critical or safe-critical methods. A better
solution is to fix the method so that it’s secure and then apply the [SecuritySafe
Critical] attribute:

static bool _loaded;

[SecuritySafeCritical]
public static void LoadLibraries()
{
 if (_loaded) return;
 _loaded = true;
 GC.AddMemoryPressure (1000000);
 ...
}

Security

The Transparency Model | 877

www.EBooksWorld.ir

(This has the benefit of making it safer for trusted callers, too.)

Securing unsafe methods
Next, suppose we have an unsafe method that is potentially harmful if called by a
less trusted assembly. We simply decorate it with [SecurityCritical]:

[SecurityCritical]
public unsafe void Poke (int offset, int data)
{
 int* target = (int*) _origin + offset;
 *target = data;
 ...
}

If you write unsafe code in a transparent method, the CLR will
throw a VerificationException (“Operation could destabi‐
lize the runtime”) before executing the method.

We then secure the upstream methods, marking them with [SecurityCritical] or
[SecuritySafeCritical] as appropriate.

Next, consider the following unsafe method, which filters a bitmap. This is intrinsi‐
cally harmless, so we can mark it SecuritySafeCritical:

[SecuritySafeCritical]
unsafe void BlueFilter (int[,] bitmap)
{
 int length = bitmap.Length;
 fixed (int* b = bitmap)
 {
 int* p = b;
 for (int i = 0; i < length; i++)
 *p++ &= 0xFF;
 }
}

Conversely, you might write a function that doesn’t perform anything “dangerous”
as far as the CLR is concerned but poses a security risk nonetheless. You can deco‐
rate these, too, with [SecurityCritical]:

public string Password
{
 [SecurityCritical] get { return _password; }
}

P/Invokes and [SuppressUnmanagedSecurity]
Finally, consider the following unmanaged method, which returns a window handle
from a Point (System.Drawing):

[DllImport ("user32.dll")]
public static extern IntPtr WindowFromPoint (Point point);

878 | Chapter 21: Security

www.EBooksWorld.ir

Remember that you can call unmanaged code only from [SecurityCritical] and
[SecuritySafeCritical] methods.

You could say that all extern methods are implicitly [Securi
tyCritical], although there is a subtle difference: applying
[SecurityCritical] explicitly to an extern method has the
subtle effect of advancing the security check from runtime to
JIT time. To illustrate, consider the following method:

static void Foo (bool exec)
{
 if (exec) WindowFromPoint (...)
}

If called with false, this will be subject to a security check
only if WindowFromPoint is marked explicitly with [Security
Critical].

Because we’ve made the method public, other fully trusted assemblies can call Win
dowFromPoint directly from [SecurityCritical] methods. For partially trusted
callers, we expose the following secure version, which eliminates the danger, by
Demanding UI permission and returning a managed class instead of an IntPtr:

[UIPermission (SecurityAction.Demand, Unrestricted = true)]
[SecuritySafeCritical]
public static System.Windows.Forms.Control ControlFromPoint (Point point)
{
 IntPtr winPtr = WindowFromPoint (point);
 if (winPtr == IntPtr.Zero) return null;
 return System.Windows.Forms.Form.FromChildHandle (winPtr);
}

Just one problem remains: the CLR performs an implicit Demand for unmanaged
permission whenever you P/Invoke. And because a Demand checks right up the call
stack, the WindowFromPoint method will fail if the caller’s caller is partially trusted.
There are two ways around this. The first is to assert permission for unmanaged
code in the first line of the ControlFromPoint method:

new SecurityPermission (SecurityPermissionFlag.UnmanagedCode).Assert();

Asserting our assembly-given unmanaged right here will ensure that the subsequent
implicit Demand in WindowFromPoint will succeed. Of course, this assertion would
fail if the assembly itself wasn’t fully trusted (by virtue of being loaded into the GAC
or being nominated as fully trusted by the host). We’ll cover assertions in more
detail in “Sandboxing Another Assembly” on page 881.

The second (and more performant) solution is to apply the [SuppressUnmanagedCo
deSecurity] attribute to the unmanaged method:

[DllImport ("user32.dll"), SuppressUnmanagedCodeSecurity]
public static extern IntPtr WindowFromPoint (Point point);

This tells the CLR to skip the expensive stack-walking unmanaged Demand (an opti‐
mization that could be particularly valuable if WindowFromPoint was called from

Security

The Transparency Model | 879

www.EBooksWorld.ir

other trusted classes or assemblies). We can then dump the unmanaged permission
assertion in ControlFromPoint.

Because you’re following the transparency model, applying
this attribute to an extern method doesn’t create the same
security risk as in CLR 2.0. This is because you’re still pro‐
tected by the fact that P/Invokes are implicitly security-
critical, and so can be called only by other critical or safe-
critical methods.

Transparency in Full-Trust Scenarios
In a fully trusted environment, you might want to write critical code and yet avoid
the burden of security attributes and method auditing. The easiest way to achieve
this is not to attach any assembly security attributes—in which case all your meth‐
ods are implicitly [SecurityCritical].

This works well as long as all partaking assemblies do the same thing—or if the
transparency-enabled assemblies are at the bottom of the call graph. In other words,
you can still call transparent methods in third-party libraries (and in the .NET
Framework).

To go in the reverse direction is troublesome; however, this trouble typically guides
you to a better solution. Suppose you’re writing assembly T, which is partly or
wholly transparent, and you want to call assembly X, which is unattributed (and
therefore fully critical). You have three options:

• Go fully critical yourself. If your domain will always be fully trusted, you don’t
need to support partially trusted callers. Making that lack of support explicit
makes sense.

• Write [SecuritySafeCritical] wrappers around methods in X. This then
highlights the security vulnerability points (although this can be burdensome).

• Ask the author of X to consider transparency. If X does nothing critical, this will
be as simple as applying [SecurityTransparent] to X. If X does perform criti‐
cal functions, the process of following the transparency model will force the
author of X to at least identify (if not address) X’s vulnerability points.

880 | Chapter 21: Security

www.EBooksWorld.ir

Security Policy in CLR 2.0
Prior to CLR 4.0, the CLR granted a default set of permissions to .NET assemblies
based on a complex set of rules and mappings. This was called CAS policy and was
defined in the computer’s .NET Framework configuration. Three standard grant
sets resulted from policy evaluation, customizable at the enterprise, machine, user,
and application domain levels:

• “Full trust,” which was granted to assemblies that ran on the local hard drive
• “LocalIntranet,” granted to assemblies that ran over a network share
• “Internet,” granted to assemblies that ran within Internet Explorer

Only “Full trust” was fully trusted by default. This meant that if you ran a .NET exe‐
cutable over a network share, it would run with a limited permission set and usually
fail. This was supposed to offer some protection, but in reality it offered none—
because a malicious party could simply replace the .NET executable with an unman‐
aged executable and be subject to no permission restrictions. All that this restriction
achieved was to frustrate people who wanted to run .NET assemblies in full trust
over a network share.

Therefore, the designers of CLR 4.0 decided to abolish these security policies. All
assemblies now run in a permission set defined entirely by the hosting environment.
Executables that you double-click or run from the command prompt will always
run in full trust—whether on a network share or on a local hard drive.

In other words, it’s now entirely up to the host as to how permissions should be
restricted—a machine’s CAS policy is irrelevant.

If you still need to work with CLR 2.0’s security policy (which will be the case if your
entry executable targets Framework Version 3.5 or earlier), you can view and adjust
security policy with either the mscorcfg.msc MMC plug-in (Control Panel→Admin‐
istrative Tools→Microsoft .NET Framework Configuration) or the caspol.exe
command-line tool. The MMC plug-in no longer ships as standard with the .NET
Framework: you must install the .NET Framework 3.5 SDK.

The security configuration is ultimately stored in an XML file called security.config,
in the Framework’s configuration folder. You can obtain this as follows:

string dir = Path.Combine
 (System.Runtime.InteropServices.RuntimeEnvironment
 .GetRuntimeDirectory(), "config");
string configFile = Path.Combine (dir, "security.config");

Sandboxing Another Assembly
Suppose you write an application that allows consumers to install third-party plug-
ins. Most likely you’d want to prevent plug-ins from leveraging your privileges as a
trusted application, so as not to destabilize your application—or the end user’s com‐

Security

Sandboxing Another Assembly | 881

www.EBooksWorld.ir

puter. The best way to achieve this is to run each plug-in in its own sandboxed
application domain.

For this example, we’ll assume a plug-in is packaged as a .NET assembly called plu‐
gin.exe and that activating it is simply a matter of starting the executable. (In Chap‐
ter 24, we describe how to load a library into an application domain and interact
with it in a more sophisticated way.)

Here’s the complete code, for the host program:

using System;
using System.IO;
using System.Net;
using System.Reflection;
using System.Security;
using System.Security.Policy;
using System.Security.Permissions;

class Program
{
 static void Main()
 {
 string pluginFolder = Path.Combine (
 AppDomain.CurrentDomain.BaseDirectory, "plugins");

 string plugInPath = Path.Combine (pluginFolder, "plugin.exe");

 PermissionSet ps = new PermissionSet (PermissionState.None);

 ps.AddPermission
 (new SecurityPermission (SecurityPermissionFlag.Execution));

 ps.AddPermission
 (new FileIOPermission (FileIOPermissionAccess.PathDiscovery |
 FileIOPermissionAccess.Read, plugInPath));

 ps.AddPermission (new UIPermission (PermissionState.Unrestricted));

 AppDomainSetup setup = AppDomain.CurrentDomain.SetupInformation;
 AppDomain sandbox = AppDomain.CreateDomain ("sbox", null, setup, ps);
 sandbox.ExecuteAssembly (plugInPath);
 AppDomain.Unload (sandbox);
 }
}

You can optionally pass an array of StrongName objects into
the CreateDomain method, indicating assemblies to fully trust.
We’ll give an example in the following section.

First, we create a limited permission set to describe the privileges we want to give to
the sandbox. This must include at least execution rights and permission for the
plug-in to read its own assembly; otherwise, it won’t start. In this case, we also give
unrestricted UI permissions. Then we construct a new application domain, specify‐
ing our custom permission set, which will be awarded to all assemblies loaded into

882 | Chapter 21: Security

www.EBooksWorld.ir

that domain. We then execute the plug-in assembly in the new domain, and unload
the domain when the plug-in finishes executing.

In this example, we load the plug-in assemblies from a subdir‐
ectory called plugins. Putting plug-ins in the same directory as
the fully trusted host creates the potential for an elevation of
privilege attack, whereby the fully trusted domain implicitly
loads and runs code in a plug-in assembly in order to resolve a
type. An example of how this could happen is if the plug-in
throws a custom exception whose type is defined in its own
assembly. When the exception bubbles up to the host, the host
will implicitly load the plug-in assembly if it can find it— in
an attempt to deserialize the exception. Putting the plug-ins in
a separate folder prevents such a load from succeeding.

Asserting Permissions
Permission assertions are useful when writing methods that can be called from a
partially trusted assembly. They allow fully trusted assemblies to temporarily escape
the sandbox in order to perform actions that would otherwise be prohibited by
downstream Demands.

Assertions in the world of CAS have nothing to do with diag‐
nostic or contract-based assertions. Calling Debug.Assert, in
fact, is more akin to Demanding a permission than Asserting a
permission. In particular, asserting a permission has side-
effects if the assertion succeeds, whereas Debug.Assert does
not.

Recall that we previously wrote an application that ran third-party plug-ins in a
restricted permission set. Suppose we want to extend this by providing a library of
safe methods for plug-ins to call. For instance, we might prohibit plug-ins from
accessing a database directly and yet still allow them to perform certain queries
through methods in a library that we provide. Or we might want to expose a
method for writing to a log file—without giving them any file-based permission.

The first step in doing this is to create a separate assembly for this (e.g., utilities) and
add the AllowPartiallyTrustedCallers attribute. Then we can expose a method
as follows:

public static void WriteLog (string msg)
{
 // Write to log
 ...
}

The difficulty here is that writing to a file requires FileIOPermission. Even though
our utilities assembly will be fully trusted, the caller won’t be, and so any file-based
Demands will fail. The solution is to first Assert the permission:

Security

Sandboxing Another Assembly | 883

www.EBooksWorld.ir

public class Utils
{
 string _logsFolder = ...;

 [SecuritySafeCritical]
 public static void WriteLog (string msg)
 {
 FileIOPermission f = new FileIOPermission (PermissionState.None);
 f.AddPathList (FileIOPermissionAccess.AllAccess, _logsFolder);
 f.Assert();

 // Write to log
 ...
 }
}

Because we’re asserting a permission, we must mark the
method as [SecurityCritical] or [SecuritySafeCritical]
(unless we’re targeting an earlier version of the Framework).
In this case, the method is safe for partially trusted callers, so
we choose SecuritySafeCritical. This, of course, means
that we can’t mark the assembly as a whole with [Security
Transparent]; we must use APTCA instead.

Remember that Demand performs a spot-check and throws an exception if the per‐
mission is not satisfied. It then walks the stack, checking that all callers also have
that permission (within the current AppDomain). An assertion checks only that the
current assembly has the necessary permissions, and if successful, makes a mark on
the stack, indicating that from now on, the caller’s rights should be ignored and only
the current assembly’s rights should be considered with respect to those permis‐
sions. An Assert ends when the method finishes or when you call CodeAccessPer
mission.RevertAssert.

To complete our example, the remaining step is to create a sandboxed application
domain that fully trusts the utilities assembly. Then we can instantiate a StrongName
object that describes the assembly, and pass it into AppDomain’s CreateDomain
method:

static void Main()
{
 string pluginFolder = Path.Combine (
 AppDomain.CurrentDomain.BaseDirectory, "plugins");

 string plugInPath = Path.Combine (pluginFolder, "plugin.exe");

 PermissionSet ps = new PermissionSet (PermissionState.None);

 // Add desired permissions to ps as we did before
 // ...

 Assembly utilAssembly = typeof (Utils).Assembly;
 StrongName utils = utilAssembly.Evidence.GetHostEvidence<StrongName>();

884 | Chapter 21: Security

www.EBooksWorld.ir

 AppDomainSetup setup = AppDomain.CurrentDomain.SetupInformation;
 AppDomain sandbox = AppDomain.CreateDomain ("sbox", null, setup, ps,
 utils);
 sandbox.ExecuteAssembly (plugInPath);
 AppDomain.Unload (sandbox);
}

For this to work, the utilities assembly must be strong-name signed.

Prior to Framework 4.0, you couldn’t obtain a StrongName by
calling GetHostEvidence as we did. The solution was to
instead do this:

AssemblyName name = utilAssembly.GetName();
StrongName utils = new StrongName (
 new StrongNamePublicKeyBlob (name.GetPublicKey()),
 name.Name,
 name.Version);

The old-fashioned approach is still useful when you don’t
want to load the assembly into the host’s domain. This is
because you can obtain an AssemblyName without needing an
Assembly or Type object:

AssemblyName name = AssemblyName.GetAssemblyName
 (@"d:\utils.dll");

Operating System Security
The operating system can further restrict what an application can do, based on the
user’s login privileges. In Windows, there are two types of accounts:

• An administrative account that imposes no restrictions in accessing the local
computer

• A limited permissions account that restricts administrative functions and visi‐
bility of other users’ data

A feature called User Account Control (UAC) introduced in Windows Vista means
that administrators receive two tokens or “hats” when logging in: an administrative
hat and an ordinary user hat. By default, programs run wearing the ordinary user
hat—with restricted permissions—unless the program requests administrative eleva‐
tion. The user must then approve the request in the dialog box that’s presented.

For application developers, UAC means that by default, your application will run
with restricted user privileges. This means you must either:

• Write your application such that it can run without administrative privileges
• Demand administrative elevation in the application manifest

The first option is safer and more convenient to the user. Designing your program
to run without administrative privileges is easy in most cases: the restrictions are
much less draconian than those of a typical code access security sandbox.

Security

Operating System Security | 885

www.EBooksWorld.ir

You can find out whether you’re running under an adminis‐
trative account with the following method:

[DllImport ("shell32.dll", EntryPoint = "#680")]
static extern bool IsUserAnAdmin();

With UAC enabled, this returns true only if the current pro‐
cess has administrative elevation.

Running in a Standard User Account
Here are the key things that you cannot do in a standard Windows user account:

• Write to the following directories:
— The operating system folder (typically \Windows) and subdirectories
— The program files folder (\Program Files) and subdirectories
— The root of the operating system drive (e.g., C:\)

• Write to the HKEY_LOCAL_MACHINE branch of the Registry
• Read performance monitoring (WMI) data

Additionally, as an ordinary user (or even as an administrator), you may be refused
access to files or resources that belong to other users. Windows uses a system of
Access Control Lists (ACLs) to protect such resources—you can query and assert
your own rights in the ACLs via types in System.Security.AccessControl. ACLs
can also be applied to cross-process wait handles, described in Chapter 22.

If you’re refused access to anything as a result of operating system security, an Unau
thorizedAccessException is thrown. This is different from the SecurityExcep
tion thrown when a .NET permission demand fails.

The .NET code access permission classes are mostly inde‐
pendent of ACLs. This means you can successfully Demand a
FileIOPermission—but still get an UnauthorizedAccessEx
ception due to ACL restrictions when trying to access the file.

In most cases, you can deal with standard user restrictions as follows:

• Write files to their recommended locations.
• Avoid using the Registry for information that can be stored in files (aside of the

HKEY_CURRENT_USER hive, which you will have read/write access to).
• Register ActiveX or COM components during setup.

The recommended location for user documents is SpecialFolder.MyDocuments:

string docsFolder = Environment.GetFolderPath
 (Environment.SpecialFolder.MyDocuments);

string path = Path.Combine (docsFolder, "test.txt");

886 | Chapter 21: Security

www.EBooksWorld.ir

The recommended location for configuration files that a user might need to modify
outside of your application is SpecialFolder.ApplicationData (current user only)
or SpecialFolder.CommonApplicationData (all users). You typically create subdir‐
ectories within these folders based on your organization and product name.

A good place to put data that need only be accessed within your application is iso‐
lated storage.

Perhaps the most inconvenient aspect of running in a standard user account is that
a program doesn’t have write access to its files, making it difficult to implement an
automatic update system. One option is to deploy with ClickOnce: this allows
updates to be applied without administrative elevation, but places significant restric‐
tions on the setup procedure (e.g., you cannot register ActiveX controls). Applica‐
tions deployed with ClickOnce may also be sandboxed with code access security,
depending on their mode of delivery. We described another, more sophisticated sol‐
ution in Chapter 18, in the section “Packing a Single-File Executable” on page 785.

Administrative Elevation and Virtualization
In Chapter 18, we described how to deploy an application manifest. With an appli‐
cation manifest, you can request that Windows prompt the user for administrative
elevation whenever running your program:

<?xml version="1.0" encoding="utf-8"?>
<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">
 <trustInfo xmlns="urn:schemas-microsoft-com:asm.v2">
 <security>
 <requestedPrivileges>
 <requestedExecutionLevel level="requireAdministrator" />
 </requestedPrivileges>
 </security>
 </trustInfo>
</assembly>

If you replace requireAdministrator with asInvoker, it instructs Windows that
administrative elevation is not required. The effect is almost the same as not having
an application manifest at all—except that virtualization is disabled. Virtualization is
a temporary measure introduced with Windows Vista to help old applications run
correctly without administrative privileges. The absence of an application manifest
with a requestedExecutionLevel element activates this backward-compatibility
feature.

Virtualization comes into play when an application writes to the Program Files or
Windows directory, or the HKEY_LOCAL_MACHINE area of the Registry. Instead
of throwing an exception, changes are redirected to a separate location on the hard
disk where they can’t impact the original data. This prevents the application from
interfering with the operating system—or other well-behaved applications.

Security

Operating System Security | 887

www.EBooksWorld.ir

Identity and Role Security
Identity and role-based security is useful when writing a middle tier server or an
ASP.NET application, where you’re potentially dealing with many users. It allows
you to restrict functionality according to the authenticated user’s name or role. An
identity describes a username; a role describes a group. A principal is an object that
describes an identity and/or a role. Hence, a PrincipalPermission class enforces
identity and/or role security.

In a typical application server, you demand a PrincipalPermission on all methods
exposed to the client for which you want to enforce security. For example, the fol‐
lowing requires that the caller be a member of the “finance” role:

[PrincipalPermission (SecurityAction.Demand, Role = "finance")]
public decimal GetGrossTurnover (int year)
{
 ...
}

To enforce that only a particular user can call a method, you can specify a Name
instead:

[PrincipalPermission (SecurityAction.Demand, Name = "sally")]

(Of course, the necessity to hardcode names makes this hard to manage.) To allow a
combination of identities or roles, you have to use imperative security instead. This
means instantiating PrincipalPermission objects, calling Union to combine them,
and then calling Demand on the end result.

Assigning Users and Roles
Before a PrincipalPermission demand can succeed, you must attach an IPrinci
pal object to the current thread.

You can instruct that the current Windows user be used as an identity in either of
two ways, depending on whether you want to impact the whole application domain
or just the current thread:

AppDomain.CurrentDomain.SetPrincipalPolicy (PrincipalPolicy.
 WindowsPrincipal);
// or:
Thread.CurrentPrincipal = new WindowsPrincipal (WindowsIdentity.
 GetCurrent());

If you’re using WCF or ASP.NET, their infrastructures can help with impersonating
the client’s identity. You can also do this yourself with the GenericPrincipal and
GenericIdentity classes. The following creates a user called “Jack” and assigns him
three roles:

GenericIdentity id = new GenericIdentity ("Jack");
GenericPrincipal p = new GenericPrincipal
 (id, new string[] { "accounts", "finance", "management" });

888 | Chapter 21: Security

www.EBooksWorld.ir

For this to take effect, you’d assign it to the current thread as follows:

Thread.CurrentPrincipal = p;

A principal is thread-based because an application server typically processes many
client requests concurrently—each on its own thread. As each request may come
from a different client, it needs a different principal.

You can subclass GenericIdentity and GenericPrincipal—or implement the
IIdentity and IPrincipal interfaces directly in your own types. Here’s how the
interfaces are defined:

public interface IIdentity
{
 string Name { get; }
 string AuthenticationType { get; }
 bool IsAuthenticated { get; }
}

public interface IPrincipal
{
 IIdentity Identity { get; }
 bool IsInRole (string role);
}

The key method is IsInRole. Notice that there’s no method returning a list of roles,
so you’re obliged only to rule on whether a particular role is valid for that principal.
This can be the basis for more elaborate authorization systems.

Cryptography Overview
Table 21-8 summarizes the cryptography options in .NET. In the remaining sec‐
tions, we explore each of these.

Table 21-8. Encryption and hashing options in .NET

Option Keys to
manage

Speed Strength Notes

File.Encrypt 0 Fast Depends on
user’s
password

Protects files transparently with filesystem
support. A key is derived implicitly from the
logged-in user’s credentials.

Windows Data
Protection

0 Fast Depends on
user’s
password

Encrypts and decrypts byte arrays using an
implicitly derived key.

Hashing 0 Fast High One-way (irreversible) transformation. Used for
storing passwords, comparing files, and checking
for data corruption.

Symmetric
encryption

1 Fast High For general-purpose encryption/decryption. The
same key encrypts and decrypts. Can be used to
secure messages in transit.

Security

Cryptography Overview | 889

www.EBooksWorld.ir

Option Keys to
manage

Speed Strength Notes

Public key encryption 2 Slow High Encryption and decryption use different keys.
Used for exchanging a symmetric key in message
transmission and for digitally signing files.

The Framework also provides more specialized support for creating and validating
XML-based signatures in System.Security.Cryptography.Xml and types for work‐
ing with digital certificates in System.Security.Cryptography.X509Certificates.

Windows Data Protection
In the section “File and Directory Operations” on page 650 in Chapter 15, we
described how you could use File.Encrypt to request that the operating system
transparently encrypt a file:

File.WriteAllText ("myfile.txt", "");
File.Encrypt ("myfile.txt");
File.AppendAllText ("myfile.txt", "sensitive data");

The encryption in this case uses a key derived from the logged-in user’s password.
You can use this same implicitly derived key to encrypt a byte array with the Win‐
dows Data Protection API. The Data Protection API is exposed through the Protec
tedData class—a simple type with two static methods:

public static byte[] Protect (byte[] userData, byte[] optionalEntropy,
 DataProtectionScope scope);

public static byte[] Unprotect (byte[] encryptedData, byte[] optionalEntropy,
 DataProtectionScope scope);

Most types in System.Security.Cryptography live in mscor‐
lib.dll and System.dll. ProtectedData is an exception: it lives in
System.Security.dll.

Whatever you include in optionalEntropy is added to the key, thereby increasing
its security. The DataProtectionScope enum argument allows two options: Curren
tUser or LocalMachine. With CurrentUser, a key is derived from the logged-in
user’s credentials; with LocalMachine, a machine-wide key is used, common to all
users. A LocalMachine key provides less protection but works under a Windows
Service or a program needing to operate under a variety of accounts.

Here’s a simple encryption and decryption demo:

byte[] original = {1, 2, 3, 4, 5};
DataProtectionScope scope = DataProtectionScope.CurrentUser;

byte[] encrypted = ProtectedData.Protect (original, null, scope);
byte[] decrypted = ProtectedData.Unprotect (encrypted, null, scope);
// decrypted is now {1, 2, 3, 4, 5}

890 | Chapter 21: Security

www.EBooksWorld.ir

Windows Data Protection provides moderate security against an attacker with full
access to the computer, depending on the strength of the user’s password. With
LocalMachine scope, it’s effective only against those with restricted physical and
electronic access.

Hashing
Hashing provides one-way encryption. This is ideal for storing passwords in a data‐
base, as you might never need (or want) to see a decrypted version. To authenticate,
simply hash what the user types in and compare it to what’s stored in the database.

A hash code is always a small fixed size regardless of the source data length. This
makes it good for comparing files or detecting errors in a data stream (rather like a
checksum). A single-bit change anywhere in the source data results in a significantly
different hash code.

To hash, you call ComputeHash on one of the HashAlgorithm subclasses such as
SHA256 or MD5:

byte[] hash;
using (Stream fs = File.OpenRead ("checkme.doc"))
 hash = MD5.Create().ComputeHash (fs); // hash is 16 bytes long

The ComputeHash method also accepts a byte array, which is convenient for hashing
passwords:

byte[] data = System.Text.Encoding.UTF8.GetBytes ("stRhong%pword");
byte[] hash = SHA256.Create().ComputeHash (data);

The GetBytes method on an Encoding object converts a string
to a byte array; the GetString method converts it back. An
Encoding object cannot, however, convert an encrypted or
hashed byte array to a string, because scrambled data usually
violates text encoding rules. Instead, use Con

vert.ToBase64String and Convert.FromBase64String: these
convert between any byte array and a legal (and XML-
friendly) string.

MD5 and SHA256 are two of the HashAlgorithm subtypes provided by the .NET
Framework. Here are all the major algorithms, in ascending order of security (and
hash length, in bytes):

MD5(16) → SHA1(20) → SHA256(32) → SHA384(48) → SHA512(64)

The shorter the algorithm, the faster it executes. MD5 is more than 20 times faster
than SHA512 and is well suited to calculating file checksums. You can hash hundreds
of megabytes per second with MD5 and then store its result in a Guid. (A Guid hap‐
pens to be exactly 16 bytes long, and as a value type it is more tractable than a byte
array; you can meaningfully compare Guids with the simple equality operator, for
instance.) However, shorter hashes increase the possibility of collision (two distinct
files yielding the same hash).

Security

Hashing | 891

www.EBooksWorld.ir

Use at least SHA256 when hashing passwords or other security-
sensitive data. MD5 and SHA1 are considered insecure for this
purpose and are suitable to protect only against accidental
corruption, not deliberate tampering.

SHA384 is no faster than SHA512, so if you want more security
than SHA256, you may as well use SHA512.

The longer SHA algorithms are suitable for password hashing, but they require that
you enforce a strong password policy to mitigate a dictionary attack—a strategy
whereby an attacker builds a password lookup table by hashing every word in a dic‐
tionary. You can provide additional protection against this by “stretching” your
password hashes—repeatedly rehashing to obtain more computationally intensive
byte sequences. If you rehash 100 times, a dictionary attack that might otherwise
take 1 month would take 8 years. The Rfc2898DeriveBytes and PasswordDerive
Bytes classes perform exactly this kind of stretching.

Another technique to avoid dictionary attacks is to incorporate “salt”—a long series
of bytes that you initially obtain via a random number generator and then combine
with each password before hashing. This frustrates hackers in two ways: hashes take
longer to compute, and they may not have access to the salt bytes.

The Framework also provides a 160-bit RIPEMD hashing algorithm, slightly above
SHA1 in security. It suffers an inefficient .NET implementation, though, making it
slower to execute than even SHA512.

Symmetric Encryption
Symmetric encryption uses the same key for encryption as for decryption. The
Framework provides four symmetric algorithms, of which Rijndael is the premium
(pronounced “Rhine Dahl” or “Rain Doll”). Rijndael is both fast and secure and has
two implementations:

• The Rijndael class, which was available since Framework 1.0

• The Aes class, which was introduced in Framework 3.5

The two are almost identical, except that Aes does not let you weaken the cipher by
changing the block size. Aes is recommended by the CLR’s security team.

Rijndael and Aes allow symmetric keys of length 16, 24, or 32 bytes: all are cur‐
rently considered secure. Here’s how to encrypt a series of bytes as they’re written to
a file, using a 16-byte key:

byte[] key = {145,12,32,245,98,132,98,214,6,77,131,44,221,3,9,50};
byte[] iv = {15,122,132,5,93,198,44,31,9,39,241,49,250,188,80,7};

byte[] data = { 1, 2, 3, 4, 5 }; // This is what we're encrypting.

892 | Chapter 21: Security

www.EBooksWorld.ir

using (SymmetricAlgorithm algorithm = Aes.Create())
using (ICryptoTransform encryptor = algorithm.CreateEncryptor (key, iv))
using (Stream f = File.Create ("encrypted.bin"))
using (Stream c = new CryptoStream (f, encryptor, CryptoStreamMode.Write))
 c.Write (data, 0, data.Length);

The following code decrypts the file:

byte[] key = {145,12,32,245,98,132,98,214,6,77,131,44,221,3,9,50};
byte[] iv = {15,122,132,5,93,198,44,31,9,39,241,49,250,188,80,7};

byte[] decrypted = new byte[5];

using (SymmetricAlgorithm algorithm = Aes.Create())
using (ICryptoTransform decryptor = algorithm.CreateDecryptor (key, iv))
using (Stream f = File.OpenRead ("encrypted.bin"))
using (Stream c = new CryptoStream (f, decryptor, CryptoStreamMode.Read))
 for (int b; (b = c.ReadByte()) > –1;)
 Console.Write (b + " "); // 1 2 3 4 5

In this example, we made up a key of 16 randomly chosen bytes. If the wrong key
was used in decryption, CryptoStream would throw a CryptographicException.
Catching this exception is the only way to test whether a key is correct.

As well as a key, we made up an IV, or Initialization Vector. This 16-byte sequence
forms part of the cipher—much like the key—but is not considered secret. If trans‐
mitting an encrypted message, you would send the IV in plain text (perhaps in a
message header) and then change it with every message. This would render each
encrypted message unrecognizable from any previous one—even if their unencryp‐
ted versions were similar or identical.

If you don’t need—or want—the protection of an IV, you can
defeat it by using the same 16-byte value for both the key and
the IV. Sending multiple messages with the same IV, though,
weakens the cipher and might even make it possible to crack.

The cryptography work is divided among the classes. Aes is the mathematician; it
applies the cipher algorithm, along with its encryptor and decryptor transforms.
CryptoStream is the plumber; it takes care of stream plumbing. You can replace Aes
with a different symmetric algorithm, yet still use CryptoStream.

CryptoStream is bidirectional, meaning you can read or write to the stream depend‐
ing on whether you choose CryptoStreamMode.Read or CryptoStreamMode.Write.
Both encryptors and decryptors are read- and write-savvy, yielding four combina‐
tions—the choice can have you staring at a blank screen for a while! It can be help‐
ful to model reading as “pulling” and writing as “pushing.” If in doubt, start with
Write for encryption and Read for decryption; this is often the most natural.

To generate a random key or IV, use RandomNumberGenerator in System.Cryptogra
phy. The numbers it produces are genuinely unpredictable, or cryptographically
strong (the System.Random class does not offer the same guarantee). Here’s an exam‐
ple:

Security

Symmetric Encryption | 893

www.EBooksWorld.ir

byte[] key = new byte [16];
byte[] iv = new byte [16];
RandomNumberGenerator rand = RandomNumberGenerator.Create();
rand.GetBytes (key);
rand.GetBytes (iv);

If you don’t specify a key and IV, cryptographically strong random values are gener‐
ated automatically. You can query these through the Aes object’s Key and IV proper‐
ties.

Encrypting in Memory
With a MemoryStream, you can encrypt and decrypt entirely in memory. Here are
helper methods that do just this, with byte arrays:

public static byte[] Encrypt (byte[] data, byte[] key, byte[] iv)
{
 using (Aes algorithm = Aes.Create())
 using (ICryptoTransform encryptor = algorithm.CreateEncryptor (key, iv))
 return Crypt (data, encryptor);
}

public static byte[] Decrypt (byte[] data, byte[] key, byte[] iv)
{
 using (Aes algorithm = Aes.Create())
 using (ICryptoTransform decryptor = algorithm.CreateDecryptor (key, iv))
 return Crypt (data, decryptor);
}

static byte[] Crypt (byte[] data, ICryptoTransform cryptor)
{
 MemoryStream m = new MemoryStream();
 using (Stream c = new CryptoStream (m, cryptor, CryptoStreamMode.Write))
 c.Write (data, 0, data.Length);
 return m.ToArray();
}

Here, CryptoStreamMode.Write works best for both encryption and decryption,
since in both cases we’re “pushing” into a fresh memory stream.

Here are overloads that accept and return strings:

public static string Encrypt (string data, byte[] key, byte[] iv)
{
 return Convert.ToBase64String (
 Encrypt (Encoding.UTF8.GetBytes (data), key, iv));
}

public static string Decrypt (string data, byte[] key, byte[] iv)
{
 return Encoding.UTF8.GetString (
 Decrypt (Convert.FromBase64String (data), key, iv));
}

894 | Chapter 21: Security

www.EBooksWorld.ir

The following demonstrates their use:

byte[] kiv = new byte[16];
RandomNumberGenerator.Create().GetBytes (kiv);

string encrypted = Encrypt ("Yeah!", kiv, kiv);
Console.WriteLine (encrypted); // R1/5gYvcxyR2vzPjnT7yaQ==

string decrypted = Decrypt (encrypted, kiv, kiv);
Console.WriteLine (decrypted); // Yeah!

Chaining Encryption Streams
CryptoStream is a decorator, meaning it can be chained with other streams. In the
following example, we write compressed encrypted text to a file and then read it
back:

// Use default key/iv for demo.
using (Aes algorithm = Aes.Create())
{
 using (ICryptoTransform encryptor = algorithm.CreateEncryptor())
 using (Stream f = File.Create ("serious.bin"))
 using (Stream c = new CryptoStream (f,encryptor,CryptoStreamMode.Write))
 using (Stream d = new DeflateStream (c, CompressionMode.Compress))
 using (StreamWriter w = new StreamWriter (d))
 await w.WriteLineAsync ("Small and secure!");

 using (ICryptoTransform decryptor = algorithm.CreateDecryptor())
 using (Stream f = File.OpenRead ("serious.bin"))
 using (Stream c = new CryptoStream (f, decryptor, CryptoStreamMode.Read))
 using (Stream d = new DeflateStream (c, CompressionMode.Decompress))
 using (StreamReader r = new StreamReader (d))
 Console.WriteLine (await r.ReadLineAsync()); // Small and secure!
}

(As a final touch, we make our program asynchronous by calling WriteLineAsync
and ReadLineAsync, and awaiting the result.)

In this example, all one-letter variables form part of a chain. The mathematicians—
algorithm, encryptor, and decyptor—are there to assist CryptoStream in the
cipher work. The diagram in Figure 21-2 shows this.

Security

Symmetric Encryption | 895

www.EBooksWorld.ir

Figure 21-2. Chaining encryption and compression streams

Chaining streams in this manner demands little memory, regardless of the ultimate
stream sizes.

As an alternative to nesting multiple using statements, you
can construct a chain as follows:

using (ICryptoTransform encryptor = algorithm.CreateEncryptor())
using
 (StreamWriter w = new StreamWriter (
 new DeflateStream (
 new CryptoStream (
 File.Create ("serious.bin"),
 encryptor,
 CryptoStreamMode.Write
),
 CompressionMode.Compress)
)
)

This is less robust than the previous approach, however,
because should an exception be thrown in an object’s con‐
structor (e.g., DeflateStream), any objects already instanti‐
ated (e.g., FileStream) would not be disposed.

896 | Chapter 21: Security

www.EBooksWorld.ir

Disposing Encryption Objects
Disposing a CryptoStream ensures that its internal cache of data is flushed to the
underlying stream. Internal caching is necessary for encryption algorithms because
they process data in blocks, rather than one byte at a time.

CryptoStream is unusual in that its Flush method does nothing. To flush a stream
(without disposing it) you must call FlushFinalBlock. In contrast to Flush, Flush
FinalBlock can be called only once, and then no further data can be written.

In our examples, we also disposed the mathematicians—the Aes algorithm and
ICryptoTransform objects (encryptor and decryptor). Disposal is actually
optional with the Rijndael transforms, because their implementations are purely
managed. Disposal still serves a useful role, however: it wipes the symmetric key
and related data from memory, preventing subsequent discovery by other software
running on the computer (we’re talking malware). You can’t rely on the garbage col‐
lector for this job because it merely flags sections of memory as available; it doesn’t
write zeros over every byte.

The easiest way to dispose an Aes object outside of a using statement is to call
Clear. Its Dispose method is hidden via explicit implementation (to signal its
unusual disposal semantics).

Key Management
It is inadvisable to hardcode encryption keys because popular tools exist to decom‐
pile assemblies with little expertise. A better option is to manufacture a random key
for each installation, storing it securely with Windows Data Protection (or encrypt
the entire message with Windows Data Protection). If you’re encrypting a message
stream, public key encryption provides the best option still.

Public Key Encryption and Signing
Public key cryptography is asymmetric, meaning that encryption and decryption
use different keys.

Unlike symmetric encryption, where any arbitrary series of bytes of appropriate
length can serve as a key, asymmetric cryptography requires specially crafted key
pairs. A key pair contains a public key and private key component that work together
as follows:

• The public key encrypts messages.
• The private key decrypts messages.

The party “crafting” a key pair keeps the private key secret while distributing the
public key freely. A special feature of this type of cryptography is that you cannot
calculate a private key from a public key. So, if the private key is lost, encrypted data

Security

Public Key Encryption and Signing | 897

www.EBooksWorld.ir

cannot be recovered; conversely, if a private key is leaked, the encryption system
becomes useless.

A public key handshake allows two computers to communicate securely over a pub‐
lic network, with no prior contact and no existing shared secret. To see how this
works, suppose computer Origin wants to send a confidential message to computer
Target:

1. Target generates a public/private key pair and then sends its public key to Ori‐
gin.

2. Origin encrypts the confidential message using Target’s public key and then
sends it to Target.

3. Target decrypts the confidential message using its private key.

An eavesdropper will see the following:

• Target’s public key
• The secret message, encrypted with Target’s public key

But without Target’s private key, the message cannot be decrypted.

This doesn’t guard against a man-in-the-middle attack: in
other words, Origin cannot know that Target isn’t some mali‐
cious party. In order to authenticate the recipient, the origina‐
tor needs to already know the recipient’s public key or be able
to validate its key through a digital site certificate.

The secret message sent from Origin to Target typically contains a fresh key for sub‐
sequent symmetric encryption. This allows public key encryption to be abandoned
for the remainder of the session, in favor of a symmetric algorithm capable of han‐
dling larger messages. This protocol is particularly secure if a fresh public/private
key pair is generated for each session, as no keys then need to be stored on either
computer.

The public key encryption algorithms rely on the message
being smaller than the key. This makes them suitable for
encrypting only small amounts of data, such as a key for sub‐
sequent symmetric encryption. If you try to encrypt a mes‐
sage much larger than half the key size, the provider will
throw an exception.

The RSA Class
The .NET Framework provides a number of asymmetric algorithms, of which RSA
is the most popular. Here’s how to encrypt and decrypt with RSA:

byte[] data = { 1, 2, 3, 4, 5 }; // This is what we're encrypting.

using (var rsa = new RSACryptoServiceProvider())

898 | Chapter 21: Security

www.EBooksWorld.ir

{
 byte[] encrypted = rsa.Encrypt (data, true);
 byte[] decrypted = rsa.Decrypt (encrypted, true);
}

Because we didn’t specify a public or private key, the cryptographic provider auto‐
matically generated a key pair, using the default length of 1,024 bits; you can request
longer keys in increments of eight bytes, through the constructor. For security-
critical applications, it’s prudent to request 2,048 bits:

var rsa = new RSACryptoServiceProvider (2048);

Generating a key pair is computationally intensive—taking perhaps 100 ms. For this
reason, the RSA implementation delays this until a key is actually needed, such as
when calling Encrypt. This gives you the chance to load in an existing key—or key
pair, should it exist.

The methods ImportCspBlob and ExportCspBlob load and save keys in byte array
format. FromXmlString and ToXmlString do the same job in a string format, the
string containing an XML fragment. A bool flag lets you indicate whether to
include the private key when saving. Here’s how to manufacture a key pair and save
it to disk:

using (var rsa = new RSACryptoServiceProvider())
{
 File.WriteAllText ("PublicKeyOnly.xml", rsa.ToXmlString (false));
 File.WriteAllText ("PublicPrivate.xml", rsa.ToXmlString (true));
}

Since we didn’t provide existing keys, ToXmlString forced the manufacture of a
fresh key pair (on the first call). In the next example, we read back these keys and
use them to encrypt and decrypt a message:

byte[] data = Encoding.UTF8.GetBytes ("Message to encrypt");

string publicKeyOnly = File.ReadAllText ("PublicKeyOnly.xml");
string publicPrivate = File.ReadAllText ("PublicPrivate.xml");

byte[] encrypted, decrypted;

using (var rsaPublicOnly = new RSACryptoServiceProvider())
{
 rsaPublicOnly.FromXmlString (publicKeyOnly);
 encrypted = rsaPublicOnly.Encrypt (data, true);

 // The next line would throw an exception because you need the private
 // key in order to decrypt:
 // decrypted = rsaPublicOnly.Decrypt (encrypted, true);
}

using (var rsaPublicPrivate = new RSACryptoServiceProvider())
{
 // With the private key we can successfully decrypt:
 rsaPublicPrivate.FromXmlString (publicPrivate);

Security

Public Key Encryption and Signing | 899

www.EBooksWorld.ir

 decrypted = rsaPublicPrivate.Decrypt (encrypted, true);
}

Digital Signing
Public key algorithms can also be used to digitally sign messages or documents. A
signature is like a hash, except that its production requires a private key and so can‐
not be forged. The public key is used to verify the signature. Here’s an example:

byte[] data = Encoding.UTF8.GetBytes ("Message to sign");
byte[] publicKey;
byte[] signature;
object hasher = SHA1.Create(); // Our chosen hashing algorithm.

// Generate a new key pair, then sign the data with it:
using (var publicPrivate = new RSACryptoServiceProvider())
{
 signature = publicPrivate.SignData (data, hasher);
 publicKey = publicPrivate.ExportCspBlob (false); // get public key
}

// Create a fresh RSA using just the public key, then test the signature.
using (var publicOnly = new RSACryptoServiceProvider())
{
 publicOnly.ImportCspBlob (publicKey);
 Console.Write (publicOnly.VerifyData (data, hasher, signature)); // True

 // Let's now tamper with the data, and recheck the signature:
 data[0] = 0;
 Console.Write (publicOnly.VerifyData (data, hasher, signature)); // False

 // The following throws an exception as we're lacking a private key:
 signature = publicOnly.SignData (data, hasher);
}

Signing works by first hashing the data and then applying the asymmetric algorithm
to the resultant hash. Because hashes are of a small fixed size, large documents can
be signed relatively quickly (public key encryption is much more CPU-intensive
than hashing). If you want, you can do the hashing yourself and then call SignHash
instead of SignData:

using (var rsa = new RSACryptoServiceProvider())
{
 byte[] hash = SHA1.Create().ComputeHash (data);
 signature = rsa.SignHash (hash, CryptoConfig.MapNameToOID ("SHA1"));
 ...
}

SignHash still needs to know what hash algorithm you used; CryptoConfig.MapNa
meToOID provides this information in the correct format from a friendly name such
as “SHA1”.

900 | Chapter 21: Security

www.EBooksWorld.ir

RSACryptoServiceProvider produces signatures whose size matches that of the key.
Currently, no mainstream algorithm produces secure signatures significantly
smaller than 128 bytes (suitable for product activation codes, for instance).

For signing to be effective, the recipient must know, and trust,
the sender’s public key. This can happen via prior communica‐
tion, preconfiguration, or a site certificate. A site certificate is
an electronic record of the originator’s public key and name—
itself signed by an independent trusted authority. The name‐
space System.Security.Cryptography.X509Certificates

defines the types for working with certificates.

Security

Public Key Encryption and Signing | 901

www.EBooksWorld.ir

www.EBooksWorld.ir

22
Advanced Threading

We started Chapter 14 with the basics of threading as a precursor to tasks and asyn‐
chrony. Specifically, we showed how to start/configure a thread and covered essen‐
tial concepts such as thread pooling, blocking, spinning, and synchronization con‐
texts. We also introduced locking and thread safety, and demonstrated the simplest
signaling construct, ManualResetEvent.

This chapter resumes where we left off on the topic of threading. In the first three
sections, we flesh out synchronization, locking, and thread safety in greater detail.
We then cover:

• Nonexclusive locking (Semaphore and reader/writer locks)

• All of the signaling constructs (AutoResetEvent, ManualResetEvent, Countdow
nEvent, and Barrier)

• Lazy initialization (Lazy<T> and LazyInitializer)

• Thread-local storage (ThreadStaticAttribute, ThreadLocal<T>, and GetData/
SetData)

• Preemptive threading methods (Interrupt, Abort, Suspend, and Resume)
• Timers

Threading is such a vast topic that we’ve put additional material online to complete
the picture. Visit http://albahari.com/threading/ for a discussion on the following,
more arcane, topics:

• Monitor.Wait and Monitor.Pulse for specialized signaling scenarios

• Nonblocking synchronization techniques for micro-optimization (Inter
locked, memory barriers, volatile)

• SpinLock and SpinWait for high-concurrency scenarios

A
d

vanced
Thread

ing

903

www.EBooksWorld.ir

http://albahari.com/threading/

Synchronization Overview
Synchronization is the act of coordinating concurrent actions for a predictable out‐
come. Synchronization is particularly important when multiple threads access the
same data; it’s surprisingly easy to run aground in this area.

The simplest and most useful synchronization tools are arguably the continuations
and task combinators we described in Chapter 14. By formulating concurrent pro‐
grams into asynchronous operations strung together with continuations and combi‐
nators, you lessen the need for locking and signaling. However, there are still times
when the lower-level constructs come into play.

The synchronization constructs can be divided into three categories:

Exclusive locking
Exclusive locking constructs allow just one thread to perform some activity
or execute a section of code at a time. Their primary purpose is to let
threads access shared writing state without interfering with one other. The
exclusive locking constructs are lock, Mutex, and SpinLock.

Nonexclusive locking
Nonexclusive locking lets you limit concurrency. The nonexclusive locking
constructs are Semaphore(Slim) and ReaderWriterLock(Slim).

Signaling
These allow a thread to block until receiving one or more notifications
from other thread(s). The signaling constructs include ManualResetE
vent(Slim), AutoResetEvent, CountdownEvent, and Barrier. The former
three are referred to as event wait handles.

It’s also possible (and tricky) to perform certain concurrent operations on shared
state without locking, through the use of nonblocking synchronization constructs.
These are Thread.MemoryBarrier, Thread.VolatileRead, Thread.VolatileWrite,
the volatile keyword, and the Interlocked class. We cover this topic online, along
with Monitor’s Wait/Pulse methods, which can be used to write custom signaling
logic—see http://albahari.com/threading/.

Exclusive Locking
There are three exclusive locking constructs: the lock statement, Mutex, and Spin
Lock. The lock construct is the most convenient and widely used, whereas the other
two target niche scenarios:

• Mutex lets you span multiple processes (computer-wide locks).

• SpinLock implements a micro-optimization that can lessen context switches in
high-concurrency scenarios (see http://albahari.com/threading/).

904 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

http://albahari.com/threading/
http://albahari.com/threading/

1 Nuances in the behavior of Windows and the CLR mean that the fairness of the queue can some‐
times be violated.

The lock Statement
To illustrate the need for locking, consider the following class:

class ThreadUnsafe
{
 static int _val1 = 1, _val2 = 1;

 static void Go()
 {
 if (_val2 != 0) Console.WriteLine (_val1 / _val2);
 _val2 = 0;
 }
}

This class is not thread-safe: if Go was called by two threads simultaneously, it would
be possible to get a division-by-zero error, because _val2 could be set to zero in one
thread right as the other thread was in between executing the if statement and Con
sole.WriteLine. Here’s how lock fixes the problem:

class ThreadSafe
{
 static readonly object _locker = new object();
 static int _val1 = 1, _val2 = 1;

 static void Go()
 {
 lock (_locker)
 {
 if (_val2 != 0) Console.WriteLine (_val1 / _val2);
 _val2 = 0;
 }
 }
}

Only one thread can lock the synchronizing object (in this case, _locker) at a time,
and any contending threads are blocked until the lock is released. If more than one
thread contends the lock, they are queued on a “ready queue” and granted the lock
on a first-come, first-served basis.1 Exclusive locks are sometimes said to enforce
serialized access to whatever’s protected by the lock, because one thread’s access can‐
not overlap with that of another. In this case, we’re protecting the logic inside the Go
method, as well as the fields _val1 and _val2.

Monitor.Enter and Monitor.Exit
C#’s lock statement is in fact a syntactic shortcut for a call to the methods Moni
tor.Enter and Monitor.Exit, with a try/finally block. Here’s (a simplified ver‐
sion of) what’s actually happening within the Go method of the preceding example:

A
d

vanced
Thread

ing

Exclusive Locking | 905

www.EBooksWorld.ir

Monitor.Enter (_locker);
try
{
 if (_val2 != 0) Console.WriteLine (_val1 / _val2);
 _val2 = 0;
}
finally { Monitor.Exit (_locker); }

Calling Monitor.Exit without first calling Monitor.Enter on the same object
throws an exception.

The lockTaken overloads
The code that we just demonstrated is exactly what the C# 1.0, 2.0, and 3.0 compil‐
ers produce in translating a lock statement.

There’s a subtle vulnerability in this code, however. Consider the (unlikely) event of
an exception being thrown between the call to Monitor.Enter and the try block
(due, perhaps, to Abort being called on that thread—or an OutOfMemoryException
being thrown). In such a scenario, the lock may or may not be taken. If the lock is
taken, it won’t be released—because we’ll never enter the try/finally block. This
will result in a leaked lock. To avoid this danger, CLR 4.0’s designers added the fol‐
lowing overload to Monitor.Enter:

public static void Enter (object obj, ref bool lockTaken);

lockTaken is false after this method if (and only if) the Enter method throws an
exception and the lock was not taken.

Here’s the more robust pattern of use (which is exactly how C# 4.0 and later trans‐
late a lock statement):

bool lockTaken = false;
try
{
 Monitor.Enter (_locker, ref lockTaken);
 // Do your stuff...
}
finally { if (lockTaken) Monitor.Exit (_locker); }

TryEnter
Monitor also provides a TryEnter method that allows a timeout to be specified,
either in milliseconds or as a TimeSpan. The method then returns true if a lock was
obtained, or false if no lock was obtained because the method timed out. TryEnter
can also be called with no argument, which “tests” the lock, timing out immediately
if the lock can’t be obtained right away. As with the Enter method, TryEnter is over‐
loaded in CLR 4.0 to accept a lockTaken argument.

906 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

Choosing the Synchronization Object
Any object visible to each of the partaking threads can be used as a synchronizing
object, subject to one hard rule: it must be a reference type. The synchronizing
object is typically private (because this helps to encapsulate the locking logic) and is
typically an instance or static field. The synchronizing object can double as the
object it’s protecting, as the _list field does in the following example:

class ThreadSafe
{
 List <string> _list = new List <string>();

 void Test()
 {
 lock (_list)
 {
 _list.Add ("Item 1");
 ...

A field dedicated for the purpose of locking (such as _locker, in the example prior)
allows precise control over the scope and granularity of the lock. The containing
object (this)—or even its type—can also be used as a synchronization object:

lock (this) { ... }

or:

lock (typeof (Widget)) { ... } // For protecting access to statics

The disadvantage of locking in this way is that you’re not encapsulating the locking
logic, so it becomes harder to prevent deadlocking and excessive blocking. A lock
on a type may also seep through application domain boundaries (within the same
process—see Chapter 24).

You can also lock on local variables captured by lambda expressions or anonymous
methods.

Locking doesn’t restrict access to the synchronizing object
itself in any way. In other words, x.ToString() will not block
because another thread has called lock(x); both threads must
call lock(x) in order for blocking to occur.

When to Lock
As a basic rule, you need to lock around accessing any writable shared field. Even in
the simplest case—an assignment operation on a single field—you must consider
synchronization. In the following class, neither the Increment nor the Assign
method is thread-safe:

class ThreadUnsafe
{
 static int _x;
 static void Increment() { _x++; }

A
d

vanced
Thread

ing

Exclusive Locking | 907

www.EBooksWorld.ir

 static void Assign() { _x = 123; }
}

Here are thread-safe versions of Increment and Assign:

static readonly object _locker = new object();
static int _x;

static void Increment() { lock (_locker) _x++; }
static void Assign() { lock (_locker) _x = 123; }

Without locks, two problems can arise:

• Operations such as incrementing a variable (or even reading/writing a variable,
under certain conditions) are not atomic.

• The compiler, CLR and processor are entitled to reorder instructions and cache
variables in CPU registers to improve performance—as long as such optimiza‐
tions don’t change the behavior of a single-threaded program (or a multi-
threaded program that uses locks).

Locking mitigates the second problem because it creates a memory barrier before
and after the lock. A memory barrier is a “fence” around which the effects or reor‐
dering and caching cannot cross.

This applies not just to locks, but to all synchronization con‐
structs. So if your use of a signaling construct, for instance,
ensures that just one thread reads/writes a variable at a time,
you don’t need to lock. Hence, the following code is thread-
safe without locking around x:

var signal = new ManualResetEvent (false);
int x = 0;
new Thread (() => { x++; signal.Set(); }).Start();
signal.WaitOne();
Console.WriteLine (x); // 1 (always)

In “Nonblocking Synchronization” at http://albahari.com/threading, we explain how
this need arises and how the memory barriers and the Interlocked class can pro‐
vide alternatives to locking in these situations.

Locking and Atomicity
If a group of variables are always read and written within the same lock, you can say
the variables are read and written atomically. Let’s suppose fields x and y are always
read and assigned within a lock on object locker:

lock (locker) { if (x != 0) y /= x; }

One can say x and y are accessed atomically, because the code block cannot be divi‐
ded or preempted by the actions of another thread in such a way that it will change
x or y and invalidate its outcome. You’ll never get a division-by-zero error, providing
x and y are always accessed within this same exclusive lock.

908 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

http://albahari.com/threading

The atomicity provided by a lock is violated if an exception is
thrown within a lock block. For example, consider the follow‐
ing:

decimal _savingsBalance, _checkBalance;

void Transfer (decimal amount)
{
 lock (_locker)
 {
 _savingsBalance += amount;
 _checkBalance -= amount + GetBankFee();
 }
}

If an exception was thrown by GetBankFee(), the bank would
lose money. In this case, we could avoid the problem by call‐
ing GetBankFee earlier. A solution for more complex cases is
to implement “rollback” logic within a catch or finally
block.

Instruction atomicity is a different, although analogous concept: an instruction is
atomic if it executes indivisibly on the underlying processor.

Nested Locking
A thread can repeatedly lock the same object in a nested (reentrant) fashion:

lock (locker)
 lock (locker)
 lock (locker)
 {
 // Do something...
 }

or:

Monitor.Enter (locker); Monitor.Enter (locker); Monitor.Enter (locker);
// Do something...
Monitor.Exit (locker); Monitor.Exit (locker); Monitor.Exit (locker);

In these scenarios, the object is unlocked only when the outermost lock statement
has exited—or a matching number of Monitor.Exit statements have executed.

Nested locking is useful when one method calls another from within a lock:

static readonly object _locker = new object();

static void Main()
{
 lock (_locker)
 {
 AnotherMethod();
 // We still have the lock - because locks are reentrant.
 }
}

static void AnotherMethod()

A
d

vanced
Thread

ing

Exclusive Locking | 909

www.EBooksWorld.ir

{
 lock (_locker) { Console.WriteLine ("Another method"); }
}

A thread can block on only the first (outermost) lock.

Deadlocks
A deadlock happens when two threads each wait for a resource held by the other, so
neither can proceed. The easiest way to illustrate this is with two locks:

object locker1 = new object();
object locker2 = new object();

new Thread (() => {
 lock (locker1)
 {
 Thread.Sleep (1000);
 lock (locker2); // Deadlock
 }
 }).Start();
lock (locker2)
{
 Thread.Sleep (1000);
 lock (locker1); // Deadlock
}

More elaborate deadlocking chains can be created with three or more threads.

The CLR, in a standard hosting environment, is not like SQL
Server and does not automatically detect and resolve dead‐
locks by terminating one of the offenders. A threading dead‐
lock causes participating threads to block indefinitely, unless
you’ve specified a locking timeout. (Under the SQL CLR inte‐
gration host, however, deadlocks are automatically detected
and a [catchable] exception is thrown on one of the threads.)

Deadlocking is one of the hardest problems in multithreading—especially when
there are many interrelated objects. Fundamentally, the hard problem is that you
can’t be sure what locks your caller has taken out.

So, you might lock private field a within your class x, unaware that your caller (or
caller’s caller) has already locked field b within class y. Meanwhile, another thread is
doing the reverse—creating a deadlock. Ironically, the problem is exacerbated by
(good) object-oriented design patterns, because such patterns create call chains that
are not determined until runtime.

The popular advice, “Lock objects in a consistent order to avoid deadlocks,”
although helpful in our initial example, is hard to apply to the scenario just
described. A better strategy is to be wary of locking around calls to methods in
objects that may have references back to your own object. Also, consider whether
you really need to lock around calls to methods in other classes (often you do—as
we’ll see in “Thread Safety” on page 629—but sometimes there are other options).

910 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

Relying more on higher-level synchronization options such as task continuations/
combinators, data parallelism, and immutable types (later in this chapter) can lessen
the need for locking.

Here is an alternative way to perceive the problem: when you
call out to other code while holding a lock, the encapsulation
of that lock subtly leaks. This is not a fault in the CLR or .NET
Framework, but a fundamental limitation of locking in gen‐
eral. The problems of locking are being addressed in various
research projects, including Software Transactional Memory.

Another deadlocking scenario arises when calling Dispatcher.Invoke (in a WPF
application) or Control.Invoke (in a Windows Forms application) while in posses‐
sion of a lock. If the UI happens to be running another method that’s waiting on the
same lock, a deadlock will happen right there. This can often be fixed simply by call‐
ing BeginInvoke instead of Invoke (or relying on asynchronous functions which do
this implicitly when a synchronization context is present). Alternatively, you can
release your lock before calling Invoke, although this won’t work if your caller took
out the lock.

Performance
Locking is fast: you can expect to acquire and release a lock in less than 50 nanosec‐
onds on a 2015-era computer if the lock is uncontended. If it is contended, the con‐
sequential context switch moves the overhead closer to the microsecond region,
although it may be longer before the thread is actually rescheduled.

Mutex
A Mutex is like a C# lock, but it can work across multiple processes. In other words,
Mutex can be computer-wide as well as application-wide. Acquiring and releasing an
uncontended Mutex takes around a microsecond—about 20 times slower than a
lock.

With a Mutex class, you call the WaitOne method to lock and ReleaseMutex to
unlock. Just as with the lock statement, a Mutex can be released only from the same
thread that obtained it.

If you forget to call ReleaseMutex and simply call Close or
Dispose, an AbandonedMutexException will be thrown upon
anyone else waiting upon that mutex.

A common use for a cross-process Mutex is to ensure that only one instance of a
program can run at a time. Here’s how it’s done:

class OneAtATimePlease
{
 static void Main()
 {
 // Naming a Mutex makes it available computer-wide. Use a name that's

A
d

vanced
Thread

ing

Exclusive Locking | 911

www.EBooksWorld.ir

 // unique to your company and application (e.g., include your URL).

 using (var mutex = new Mutex (true, "oreilly.com OneAtATimeDemo"))
 {
 // Wait a few seconds if contended, in case another instance
 // of the program is still in the process of shutting down.

 if (!mutex.WaitOne (TimeSpan.FromSeconds (3), false))
 {
 Console.WriteLine ("Another instance of the app is running. Bye!");
 return;
 }
 try { RunProgram(); }
 finally { mutex.ReleaseMutex (); }
 }
 }

 static void RunProgram()
 {
 Console.WriteLine ("Running. Press Enter to exit");
 Console.ReadLine();
 }
}

If running under Terminal Services, a computer-wide Mutex is
ordinarily visible only to applications in the same terminal
server session. To make it visible to all terminal server ses‐
sions, prefix its name with Global\.

Locking and Thread Safety
A program or method is thread-safe if it can work correctly in any multithreading
scenario. Thread safety is achieved primarily with locking and by reducing the pos‐
sibilities for thread interaction.

General-purpose types are rarely thread-safe in their entirety, for the following rea‐
sons:

• The development burden in full thread safety can be significant, particularly if
a type has many fields (each field is a potential for interaction in an arbitrarily
multithreaded context).

• Thread safety can entail a performance cost (payable, in part, whether or not
the type is actually used by multiple threads).

• A thread-safe type does not necessarily make the program using it thread-safe,
and often the work involved in the latter makes the former redundant.

Thread safety is thus usually implemented just where it needs to be, in order to han‐
dle a specific multithreading scenario.

There are, however, a few ways to “cheat” and have large and complex classes run
safely in a multithreaded environment. One is to sacrifice granularity by wrapping

912 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

large sections of code—even access to an entire object—within a single exclusive
lock, enforcing serialized access at a high level. This tactic is, in fact, essential if you
want to use thread-unsafe third-party code (or most Framework types, for that mat‐
ter) in a multithreaded context. The trick is simply to use the same exclusive lock to
protect access to all properties, methods, and fields on the thread-unsafe object. The
solution works well if the object’s methods all execute quickly (otherwise, there will
be a lot of blocking).

Primitive types aside, few .NET Framework types, when
instantiated, are thread-safe for anything more than concur‐
rent read-only access. The onus is on the developer to super‐
impose thread safety, typically with exclusive locks. (The col‐
lections in System.Collections.Concurrent that we cover in
Chapter 23 are an exception.)

Another way to cheat is to minimize thread interaction by minimizing shared data.
This is an excellent approach and is used implicitly in “stateless” middle-tier appli‐
cation and web page servers. Since multiple client requests can arrive simultane‐
ously, the server methods they call must be thread-safe. A stateless design (popular
for reasons of scalability) intrinsically limits the possibility of interaction, since
classes do not persist data between requests. Thread interaction is then limited just
to the static fields one may choose to create, for such purposes as caching com‐
monly used data in memory and in providing infrastructure services such as
authentication and auditing.

Yet another solution (in rich-client applications) is to run code that accesses shared
state on the UI thread. As we saw in Chapter 14, asynchronous functions make this
easy.

The final approach in implementing thread safety is to use an automatic locking
regime. The .NET Framework does exactly this, if you subclass ContextBoundOb
ject and apply the Synchronization attribute to the class. Whenever a method or
property on such an object is then called, an object-wide lock is automatically taken
for the whole execution of the method or property. Although this reduces the
thread-safety burden, it creates problems of its own: deadlocks that would not
otherwise occur, impoverished concurrency, and unintended reentrancy. For these
reasons, manual locking is generally a better option—at least until a less simplistic
automatic locking regime becomes available.

Thread Safety and .NET Framework Types
Locking can be used to convert thread-unsafe code into thread-safe code. A good
application of this is the .NET Framework: nearly all of its nonprimitive types are
not thread-safe (for anything more than read-only access) when instantiated, and
yet they can be used in multithreaded code if all access to any given object is pro‐
tected via a lock. Here’s an example, where two threads simultaneously add an item
to the same List collection, then enumerate the list:

A
d

vanced
Thread

ing

Locking and Thread Safety | 913

www.EBooksWorld.ir

class ThreadSafe
{
 static List <string> _list = new List <string>();

 static void Main()
 {
 new Thread (AddItem).Start();
 new Thread (AddItem).Start();
 }

 static void AddItem()
 {
 lock (_list) _list.Add ("Item " + _list.Count);

 string[] items;
 lock (_list) items = _list.ToArray();
 foreach (string s in items) Console.WriteLine (s);
 }
}

In this case, we’re locking on the _list object itself. If we had two interrelated lists,
we would have to choose a common object upon which to lock (we could nominate
one of the lists, or better: use an independent field).

Enumerating .NET collections is also thread-unsafe in the sense that an exception is
thrown if the list is modified during enumeration. Rather than locking for the dura‐
tion of enumeration, in this example, we first copy the items to an array. This avoids
holding the lock excessively if what we’re doing during enumeration is potentially
time-consuming. (Another solution is to use a reader/writer lock; see “Reader/
Writer Locks” on page 919.)

Locking around thread-safe objects
Sometimes you also need to lock around accessing thread-safe objects. To illustrate,
imagine that the Framework’s List class was, indeed, thread-safe, and we want to
add an item to a list:

if (!_list.Contains (newItem)) _list.Add (newItem);

Whether or not the list was thread-safe, this statement is certainly not! The whole
if statement would have to be wrapped in a lock in order to prevent preemption in
between testing for containership and adding the new item. This same lock would
then need to be used everywhere we modified that list. For instance, the following
statement would also need to be wrapped in the identical lock:

_list.Clear();

to ensure that it did not preempt the former statement. In other words, we would
have to lock exactly as with our thread-unsafe collection classes (making the List
class’s hypothetical thread safety redundant).

914 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

Locking around accessing a collection can cause excessive
blocking in highly concurrent environments. To this end,
Framework 4.0 provides a thread-safe queue, stack, and dic‐
tionary, which we discuss in Chapter 23.

Static members
Wrapping access to an object around a custom lock works only if all concurrent
threads are aware of—and use—the lock. This may not be the case if the object is
widely scoped. The worst case is with static members in a public type. For instance,
imagine if the static property on the DateTime struct, DateTime.Now, was not
thread-safe, and that two concurrent calls could result in garbled output or an
exception. The only way to remedy this with external locking might be to lock the
type itself—lock(typeof(DateTime))—before calling DateTime.Now. This would
work only if all programmers agreed to do this (which is unlikely). Furthermore,
locking a type creates problems of its own.

For this reason, static members on the DateTime struct have been carefully pro‐
grammed to be thread-safe. This is a common pattern throughout the .NET Frame‐
work: static members are thread-safe; instance members are not. Following this pat‐
tern also makes sense when writing types for public consumption, so as not to cre‐
ate impossible thread-safety conundrums. In other words, by making static methods
thread-safe, you’re programming so as not to preclude thread safety for consumers
of that type.

Thread safety in static methods is something that you must
explicitly code: it doesn’t happen automatically by virtue of the
method being static!

Read-only thread safety
Making types thread-safe for concurrent read-only access (where possible) is advan‐
tageous because it means that consumers can avoid excessive locking. Many of
the .NET Framework types follow this principle: collections, for instance, are
thread-safe for concurrent readers.

Following this principle yourself is simple: if you document a type as being thread-
safe for concurrent read-only access, don’t write to fields within methods that a con‐
sumer would expect to be read-only (or lock around doing so). For instance, in
implementing a ToArray() method in a collection, you might start by compacting
the collection’s internal structure. However, this would make it thread-unsafe for
consumers that expected this to be read-only.

Read-only thread safety is one of the reasons that enumerators are separate from
“enumerables”: two threads can simultaneously enumerate over a collection because
each gets a separate enumerator object.

A
d

vanced
Thread

ing

Locking and Thread Safety | 915

www.EBooksWorld.ir

In the absence of documentation, it pays to be cautious in
assuming whether a method is read-only in nature. A good
example is the Random class: when you call Random.Next(), its
internal implementation requires that it update private seed
values. Therefore, you must either lock around using the Ran
dom class or maintain a separate instance per thread.

Thread Safety in Application Servers
Application servers need to be multithreaded to handle simultaneous client
requests. WCF, ASP.NET, and Web Services applications are implicitly multithrea‐
ded; the same holds true for Remoting server applications that use a network chan‐
nel such as TCP or HTTP. This means that when writing code on the server side,
you must consider thread safety if there’s any possibility of interaction among the
threads processing client requests. Fortunately, such a possibility is rare; a typical
server class is either stateless (no fields) or has an activation model that creates a
separate object instance for each client or each request. Interaction usually arises
only through static fields, sometimes used for caching in memory parts of a data‐
base to improve performance.

For example, suppose you have a RetrieveUser method that queries a database:

// User is a custom class with fields for user data
internal User RetrieveUser (int id) { ... }

If this method was called frequently, you could improve performance by caching the
results in a static Dictionary. Here’s a solution that takes thread safety into account:

static class UserCache
{
 static Dictionary <int, User> _users = new Dictionary <int, User>();

 internal static User GetUser (int id)
 {
 User u = null;

 lock (_users)
 if (_users.TryGetValue (id, out u))
 return u;

 u = RetrieveUser (id); // Method to retrieve from database;
 lock (_users) _users [id] = u;
 return u;
 }
}

We must, at a minimum, lock around reading and updating the dictionary to ensure
thread safety. In this example, we choose a practical compromise between simplicity
and performance in locking. Our design actually creates a very small potential for
inefficiency: if two threads simultaneously called this method with the same previ‐
ously unretrieved id, the RetrieveUser method would be called twice—and the
dictionary would be updated unnecessarily. Locking once across the whole method

916 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

would prevent this, but would create a worse inefficiency: the entire cache would be
locked up for the duration of calling RetrieveUser, during which time other
threads would be blocked in retrieving any user.

Immutable Objects
An immutable object is one whose state cannot be altered—externally or internally.
The fields in an immutable object are typically declared read-only and are fully ini‐
tialized during construction.

Immutability is a hallmark of functional programming—where instead of mutating
an object, you create a new object with different properties. LINQ follows this para‐
digm. Immutability is also valuable in multithreading in that it avoids the problem
of shared writable state—by eliminating (or minimizing) the writable.

One pattern is to use immutable objects to encapsulate a group of related fields to
minimize lock durations. To take a very simple example, suppose we had two fields
as follows:

int _percentComplete;
string _statusMessage;

and we wanted to read/write them atomically. Rather than locking around these
fields, we could define the following immutable class:

class ProgressStatus // Represents progress of some activity
{
 public readonly int PercentComplete;
 public readonly string StatusMessage;

 // This class might have many more fields...

 public ProgressStatus (int percentComplete, string statusMessage)
 {
 PercentComplete = percentComplete;
 StatusMessage = statusMessage;
 }
}

Then we could define a single field of that type, along with a locking object:

readonly object _statusLocker = new object();
ProgressStatus _status;

We can now read/write values of that type without holding a lock for more than a
single assignment:

var status = new ProgressStatus (50, "Working on it");
// Imagine we were assigning many more fields...
// ...
lock (_statusLocker) _status = status; // Very brief lock

To read the object, we first obtain a copy of the object reference (within a lock).
Then we can read its values without needing to hold on to the lock:

A
d

vanced
Thread

ing

Locking and Thread Safety | 917

www.EBooksWorld.ir

ProgressStatus status;
lock (_statusLocker) status = _status; // Again, a brief lock
int pc = status.PercentComplete;
string msg = status.StatusMessage;
...

Nonexclusive Locking
Semaphore
A semaphore is like a nightclub: it has a certain capacity, enforced by a bouncer.
Once it’s full, no more people can enter, and a queue builds up outside. Then, for
each person that leaves, one person enters. The constructor requires a minimum of
two arguments: the number of places currently available in the nightclub and the
club’s total capacity.

A semaphore with a capacity of one is similar to a Mutex or lock, except that the
semaphore has no “owner”—it’s thread-agnostic. Any thread can call Release on a
Semaphore, whereas with Mutex and lock, only the thread that obtained the lock can
release it.

There are two functionally similar versions of this class:
Semaphore and SemaphoreSlim. The latter was introduced in
Framework 4.0 and has been optimized to meet the low-
latency demands of parallel programming. It’s also useful in
traditional multithreading because it lets you specify a cancel‐
lation token when waiting (see “Cancellation” on page 610 in
Chapter 14 and it exposes a WaitAsync method for asynchro‐
nous programming. It cannot, however, be used for interpro‐
cess signaling.

Semaphore incurs about 1 microsecond in calling Wai

tOne and Release; SemaphoreSlim incurs about one-tenth of
that.

Semaphores can be useful in limiting concurrency—preventing too many threads
from executing a particular piece of code at once. In the following example, five
threads try to enter a nightclub that allows only three threads in at once:

class TheClub // No door lists!
{
 static SemaphoreSlim _sem = new SemaphoreSlim (3); // Capacity of 3

 static void Main()
 {
 for (int i = 1; i <= 5; i++) new Thread (Enter).Start (i);
 }

 static void Enter (object id)
 {
 Console.WriteLine (id + " wants to enter");
 _sem.Wait();

918 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

 Console.WriteLine (id + " is in!"); // Only three threads
 Thread.Sleep (1000 * (int) id); // can be here at
 Console.WriteLine (id + " is leaving"); // a time.
 _sem.Release();
 }
}

1 wants to enter
1 is in!
2 wants to enter
2 is in!
3 wants to enter
3 is in!
4 wants to enter
5 wants to enter
1 is leaving
4 is in!
2 is leaving
5 is in!

A Semaphore, if named, can span processes in the same way as a Mutex.

Reader/Writer Locks
Quite often, instances of a type are thread-safe for concurrent read operations, but
not for concurrent updates (nor for a concurrent read and update). This can also be
true with resources such as a file. Although protecting instances of such types with a
simple exclusive lock for all modes of access usually does the trick, it can unreason‐
ably restrict concurrency if there are many readers and just occasional updates. An
example of where this could occur is in a business application server, where com‐
monly used data is cached for fast retrieval in static fields. The ReaderWriterLock
Slim class is designed to provide maximum-availability locking in just this scenario.

ReaderWriterLockSlim was introduced in Framework 3.5 and
is a replacement for the older “fat” ReaderWriterLock class.
The latter is similar in functionality, but it is several times
slower and has an inherent design fault in its mechanism for
handling lock upgrades.

When compared to an ordinary lock (Monitor.Enter/Exit),
ReaderWriterLockSlim is still twice as slow, though. The
trade-off is less contention (when there’s a lot of reading and
minimal writing.)

With both classes, there are two basic kinds of lock—a read lock and a write lock:

• A write lock is universally exclusive.
• A read lock is compatible with other read locks.

So, a thread holding a write lock blocks all other threads trying to obtain a read or
write lock (and vice versa). But if no thread holds a write lock, any number of
threads may concurrently obtain a read lock.

A
d

vanced
Thread

ing

Nonexclusive Locking | 919

www.EBooksWorld.ir

ReaderWriterLockSlim defines the following methods for obtaining and releasing
read/write locks:

public void EnterReadLock();
public void ExitReadLock();
public void EnterWriteLock();
public void ExitWriteLock();

Additionally, there are “Try” versions of all EnterXXX methods that accept timeout
arguments in the style of Monitor.TryEnter (timeouts can occur quite easily if the
resource is heavily contended). ReaderWriterLock provides similar methods,
named AcquireXXX and ReleaseXXX. These throw an ApplicationException if a
timeout occurs, rather than returning false.

The following program demonstrates ReaderWriterLockSlim. Three threads con‐
tinually enumerate a list, while two further threads append a random number to the
list every second. A read lock protects the list readers, and a write lock protects the
list writers:

class SlimDemo
{
 static ReaderWriterLockSlim _rw = new ReaderWriterLockSlim();
 static List<int> _items = new List<int>();
 static Random _rand = new Random();

 static void Main()
 {
 new Thread (Read).Start();
 new Thread (Read).Start();
 new Thread (Read).Start();

 new Thread (Write).Start ("A");
 new Thread (Write).Start ("B");
 }

 static void Read()
 {
 while (true)
 {
 _rw.EnterReadLock();
 foreach (int i in _items) Thread.Sleep (10);
 _rw.ExitReadLock();
 }
 }

 static void Write (object threadID)
 {
 while (true)
 {
 int newNumber = GetRandNum (100);
 _rw.EnterWriteLock();
 _items.Add (newNumber);
 _rw.ExitWriteLock();
 Console.WriteLine ("Thread " + threadID + " added " + newNumber);

920 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

 Thread.Sleep (100);
 }
 }

 static int GetRandNum (int max) { lock (_rand) return _rand.Next(max); }
}

In production code, you’d typically add try/finally blocks to
ensure that locks were released if an exception was thrown.

Here’s the result:

Thread B added 61
Thread A added 83
Thread B added 55
Thread A added 33
...

ReaderWriterLockSlim allows more concurrent Read activity than a simple lock.
We can illustrate this by inserting the following line in the Write method, at the
start of the while loop:

Console.WriteLine (_rw.CurrentReadCount + " concurrent readers");

This nearly always prints “3 concurrent readers” (the Read methods spend most of
their time inside the foreach loops). As well as CurrentReadCount, ReaderWriter
LockSlim provides the following properties for monitoring locks:

public bool IsReadLockHeld { get; }
public bool IsUpgradeableReadLockHeld { get; }
public bool IsWriteLockHeld { get; }

public int WaitingReadCount { get; }
public int WaitingUpgradeCount { get; }
public int WaitingWriteCount { get; }

public int RecursiveReadCount { get; }
public int RecursiveUpgradeCount { get; }
public int RecursiveWriteCount { get; }

Upgradeable locks
Sometimes it’s useful to swap a read lock for a write lock in a single atomic opera‐
tion. For instance, suppose you want to add an item to a list only if the item wasn’t
already present. Ideally, you’d want to minimize the time spent holding the (exclu‐
sive) write lock, so you might proceed as follows:

1. Obtain a read lock.
2. Test if the item is already present in the list, and if so, release the lock and

return.
3. Release the read lock.

A
d

vanced
Thread

ing

Nonexclusive Locking | 921

www.EBooksWorld.ir

4. Obtain a write lock.
5. Add the item.

The problem is that another thread could sneak in and modify the list (e.g., adding
the same item) between steps 3 and 4. ReaderWriterLockSlim addresses this
through a third kind of lock called an upgradeable lock. An upgradeable lock is like a
read lock except that it can later be promoted to a write lock in an atomic operation.
Here’s how you use it:

1. Call EnterUpgradeableReadLock.
2. Perform read-based activities (e.g., test whether the item is already present in

the list).
3. Call EnterWriteLock (this converts the upgradeable lock to a write lock).
4. Perform write-based activities (e.g., add the item to the list).

5. Call ExitWriteLock (this converts the write lock back to an upgradeable lock).
6. Perform any other read-based activities.

7. Call ExitUpgradeableReadLock.

From the caller’s perspective, it’s rather like nested or recursive locking. Function‐
ally, though, in step 3, ReaderWriterLockSlim releases your read lock and obtains a
fresh write lock, atomically.

There’s another important difference between upgradeable locks and read locks.
Although an upgradeable lock can coexist with any number of read locks, only one
upgradeable lock can itself be taken out at a time. This prevents conversion dead‐
locks by serializing competing conversions—just as update locks do in SQL Server:

SQL Server ReaderWriterLockSlim

Share lock Read lock

Exclusive lock Write lock

Update lock Upgradeable lock

We can demonstrate an upgradeable lock by changing the Write method in the pre‐
ceding example such that it adds a number to list only if not already present:

while (true)
{
 int newNumber = GetRandNum (100);
 _rw.EnterUpgradeableReadLock();
 if (!_items.Contains (newNumber))
 {
 _rw.EnterWriteLock();
 _items.Add (newNumber);
 _rw.ExitWriteLock();
 Console.WriteLine ("Thread " + threadID + " added " + newNumber);

922 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

 }
 _rw.ExitUpgradeableReadLock();
 Thread.Sleep (100);
}

ReaderWriterLock can also do lock conversions—but unrelia‐
bly because it doesn’t support the concept of upgradeable
locks. This is why the designers of ReaderWriterLockSlim had
to start afresh with a new class.

Lock recursion
Ordinarily, nested or recursive locking is prohibited with ReaderWriterLockSlim.
Hence, the following throws an exception:

var rw = new ReaderWriterLockSlim();
rw.EnterReadLock();
rw.EnterReadLock();
rw.ExitReadLock();
rw.ExitReadLock();

It runs without error, however, if you construct ReaderWriterLockSlim as follows:

var rw = new ReaderWriterLockSlim (LockRecursionPolicy.SupportsRecursion);

This ensures that recursive locking can happen only if you plan for it. Recursive
locking can create undesired complexity because it’s possible to acquire more than
one kind of lock:

rw.EnterWriteLock();
rw.EnterReadLock();
Console.WriteLine (rw.IsReadLockHeld); // True
Console.WriteLine (rw.IsWriteLockHeld); // True
rw.ExitReadLock();
rw.ExitWriteLock();

The basic rule is that once you’ve acquired a lock, subsequent recursive locks can be
less, but not greater, on the following scale:

• Read Lock→Upgradeable Lock→Write Lock

A request to promote an upgradeable lock to a write lock, however, is always legal.

Signaling with Event Wait Handles
The simplest kind of signaling constructs are called event wait handles (unrelated to
C# events). Event wait handles come in three flavors: AutoResetEvent, ManualRese
tEvent(Slim), and CountdownEvent. The former two are based on the common
EventWaitHandle class, where they derive all their functionality.

A
d

vanced
Thread

ing

Signaling with Event Wait Handles | 923

www.EBooksWorld.ir

2 As with locks, the fairness of the queue can sometimes be violated due to nuances in the operat‐
ing system.

AutoResetEvent
An AutoResetEvent is like a ticket turnstile: inserting a ticket lets exactly one per‐
son through. The “auto” in the class’s name refers to the fact that an open turnstile
automatically closes or “resets” after someone steps through. A thread waits, or
blocks, at the turnstile by calling WaitOne (wait at this “one” turnstile until it opens),
and a ticket is inserted by calling the Set method. If a number of threads call Wai
tOne, a queue2 builds up behind the turnstile. A ticket can come from any thread; in
other words, any (unblocked) thread with access to the AutoResetEvent object can
call Set on it to release one blocked thread.

You can create an AutoResetEvent in two ways. The first is via its constructor:

var auto = new AutoResetEvent (false);

(Passing true into the constructor is equivalent to immediately calling Set upon it.)
The second way to create an AutoResetEvent is as follows:

var auto = new EventWaitHandle (false, EventResetMode.AutoReset);

In the following example, a thread is started whose job is simply to wait until sig‐
naled by another thread (see Figure 22-1):

class BasicWaitHandle
{
 static EventWaitHandle _waitHandle = new AutoResetEvent (false);

 static void Main()
 {
 new Thread (Waiter).Start();
 Thread.Sleep (1000); // Pause for a second...
 _waitHandle.Set(); // Wake up the Waiter.
 }

 static void Waiter()
 {
 Console.WriteLine ("Waiting...");
 _waitHandle.WaitOne(); // Wait for notification
 Console.WriteLine ("Notified");
 }
}

// Output:
Waiting... (pause) Notified.

924 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

Figure 22-1. Signaling with an EventWaitHandle

If Set is called when no thread is waiting, the handle stays open for as long as it
takes until some thread calls WaitOne. This behavior helps avoid a race between a
thread heading for the turnstile, and a thread inserting a ticket (“Oops, inserted the
ticket a microsecond too soon; now you’ll have to wait indefinitely!”). However,
calling Set repeatedly on a turnstile at which no one is waiting doesn’t allow a whole
party through when they arrive: only the next single person is let through and the
extra tickets are “wasted.”

Calling Reset on an AutoResetEvent closes the turnstile (should it be open)
without waiting or blocking.

WaitOne accepts an optional timeout parameter, returning false if the wait ended
because of a timeout rather than obtaining the signal.

Calling WaitOne with a timeout of 0 tests whether a wait han‐
dle is “open,” without blocking the caller. Bear in mind,
though, that doing this resets the AutoResetEvent if it’s open.

Disposing Wait Handles
Once you’ve finished with a wait handle, you can call its Close method to release the
operating system resource. Alternatively, you can simply drop all references to the
wait handle and allow the garbage collector to do the job for you sometime later
(wait handles implement the disposal pattern whereby the finalizer calls Close). This
is one of the few scenarios where relying on this backup is (arguably) acceptable,
because wait handles have a light OS burden.

Wait handles are released automatically when an application domain unloads.

A
d

vanced
Thread

ing

Signaling with Event Wait Handles | 925

www.EBooksWorld.ir

Two-way signaling
Let’s say we want the main thread to signal a worker thread three times in a row. If
the main thread simply calls Set on a wait handle several times in rapid succession,
the second or third signal may get lost, since the worker may take time to process
each signal.

The solution is for the main thread to wait until the worker’s ready before signaling
it. This can be done with another AutoResetEvent, as follows:

class TwoWaySignaling
{
 static EventWaitHandle _ready = new AutoResetEvent (false);
 static EventWaitHandle _go = new AutoResetEvent (false);
 static readonly object _locker = new object();
 static string _message;

 static void Main()
 {
 new Thread (Work).Start();

 _ready.WaitOne(); // First wait until worker is ready
 lock (_locker) _message = "ooo";
 _go.Set(); // Tell worker to go

 _ready.WaitOne();
 lock (_locker) _message = "ahhh"; // Give the worker another message
 _go.Set();

 _ready.WaitOne();
 lock (_locker) _message = null; // Signal the worker to exit
 _go.Set();
 }

 static void Work()
 {
 while (true)
 {
 _ready.Set(); // Indicate that we're ready
 _go.WaitOne(); // Wait to be kicked off...
 lock (_locker)
 {
 if (_message == null) return; // Gracefully exit
 Console.WriteLine (_message);
 }
 }
 }
}

// Output:
ooo
ahhh

926 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

Figure 22-2 shows this process visually.

Figure 22-2. Two-way signaling

Here, we’re using a null message to indicate that the worker should end. With
threads that run indefinitely, it’s important to have an exit strategy!

ManualResetEvent
As we described in Chapter 14, a ManualResetEvent functions like a simple gate.
Calling Set opens the gate, allowing any number of threads calling WaitOne to be let
through. Calling Reset closes the gate. Threads that call WaitOne on a closed gate
will block; when the gate is next opened, they will be released all at once. Apart from
these differences, a ManualResetEvent functions like an AutoResetEvent.

As with AutoResetEvent, you can construct a ManualResetEvent in two ways:

var manual1 = new ManualResetEvent (false);
var manual2 = new EventWaitHandle (false, EventResetMode.ManualReset);

From Framework 4.0, there’s another version of ManualResetE
vent called ManualResetEventSlim. The latter is optimized
for short waiting times—with the ability to opt into spinning
for a set number of iterations. It also has a more efficient man‐
aged implementation and allows a Wait to be canceled via a
CancellationToken. It cannot, however, be used for interpro‐
cess signaling. ManualResetEventSlim doesn’t subclass Wai
tHandle; however, it exposes a WaitHandle property that
returns a WaitHandle-based object when called (with the per‐
formance profile of a traditional wait handle).

A
d

vanced
Thread

ing

Signaling with Event Wait Handles | 927

www.EBooksWorld.ir

Signaling Constructs and Performance
Waiting or signaling an AutoResetEvent or ManualResetEvent takes about one
microsecond (assuming no blocking).

ManualResetEventSlim and CountdownEvent can be up to 50 times faster in short-
wait scenarios because of their nonreliance on the operating system and judicious
use of spinning constructs.

In most scenarios, however, the overhead of the signaling classes themselves doesn’t
create a bottleneck and so is rarely a consideration.

A ManualResetEvent is useful in allowing one thread to unblock many other
threads. The reverse scenario is covered by CountdownEvent.

CountdownEvent
CountdownEvent lets you wait on more than one thread. The class was introduced in
Framework 4.0 and has an efficient fully managed implementation. To use the class,
instantiate it with the number of threads or “counts” that you want to wait on:

var countdown = new CountdownEvent (3); // Initialize with "count" of 3.

Calling Signal decrements the “count”; calling Wait blocks until the count goes
down to zero. For example:

static CountdownEvent _countdown = new CountdownEvent (3);

static void Main()
{
 new Thread (SaySomething).Start ("I am thread 1");
 new Thread (SaySomething).Start ("I am thread 2");
 new Thread (SaySomething).Start ("I am thread 3");
 _countdown.Wait(); // Blocks until Signal has been called 3 times
 Console.WriteLine ("All threads have finished speaking!");
}

static void SaySomething (object thing)
{
 Thread.Sleep (1000);
 Console.WriteLine (thing);
 _countdown.Signal();
}

Problems for which CountdownEvent is effective can some‐
times be solved more easily using the structured parallelism
constructs that we describe in Chapter 23 (PLINQ and the Par
allel class).

928 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

You can re-increment a CountdownEvent’s count by calling AddCount. However, if it
has already reached zero, this throws an exception: you can’t “unsignal” a Countdow
nEvent by calling AddCount. To avoid the possibility of an exception being thrown,
you can instead call TryAddCount, which returns false if the countdown is zero.

To unsignal a countdown event, call Reset: this both unsignals the construct and
resets its count to the original value.

Like ManualResetEventSlim, CountdownEvent exposes a WaitHandle property for
scenarios where some other class or method expects an object based on WaitHandle.

Creating a Cross-Process EventWaitHandle
EventWaitHandle’s constructor allows a “named” EventWaitHandle to be created,
capable of operating across multiple processes. The name is simply a string, and it
can be any value that doesn’t unintentionally conflict with someone else’s! If the
name is already in use on the computer, you get a reference to the same underlying
EventWaitHandle; otherwise, the operating system creates a new one. Here’s an
example:

EventWaitHandle wh = new EventWaitHandle (false, EventResetMode.AutoReset,
 "MyCompany.MyApp.SomeName");

If two applications each ran this code, they would be able to signal each other: the
wait handle would work across all threads in both processes.

Wait Handles and Continuations
Rather than waiting on a wait handle (and blocking your thread), you can attach a
“continuation” to it by calling ThreadPool.RegisterWaitForSingleObject. This
method accepts a delegate that is executed when a wait handle is signaled:

static ManualResetEvent _starter = new ManualResetEvent (false);

public static void Main()
{
 RegisteredWaitHandle reg = ThreadPool.RegisterWaitForSingleObject
 (_starter, Go, "Some Data", -1, true);
 Thread.Sleep (5000);
 Console.WriteLine ("Signaling worker...");
 _starter.Set();
 Console.ReadLine();
 reg.Unregister (_starter); // Clean up when we're done.
}

public static void Go (object data, bool timedOut)
{
 Console.WriteLine ("Started - " + data);
 // Perform task...
}

// Output:

A
d

vanced
Thread

ing

Signaling with Event Wait Handles | 929

www.EBooksWorld.ir

(5 second delay)
Signaling worker...
Started - Some Data

When the wait handle is signaled (or a timeout elapses), the delegate runs on a
pooled thread. You are then supposed to call Unregister to release the unmanaged
handle to the callback.

In addition to the wait handle and delegate, RegisterWaitForSingleObject accepts
a “black box” object that it passes to your delegate method (rather like Parameteri
zedThreadStart), as well as a timeout in milliseconds (–1 meaning no timeout) and
a boolean flag indicating whether the request is one-off rather than recurring.

Converting Wait Handles to Tasks
Using ThreadPool.RegisterWaitForSingleObject is awkward in practice, because
you’ll usually want to call Unregister from the callback itself—before the registra‐
tion token is available. Thus, it makes sense to write an extension method such as
the following, which converts a wait handle into a Task that you can await:

public static Task<bool> ToTask (this WaitHandle waitHandle,
 int timeout = -1)
{
 var tcs = new TaskCompletionSource<bool>();
 RegisteredWaitHandle token = null;
 var tokenReady = new ManualResetEventSlim();
 token = ThreadPool.RegisterWaitForSingleObject (
 waitHandle,
 (state, timedOut) =>
 {
 tokenReady.Wait();
 tokenReady.Dispose();
 token.Unregister (waitHandle);
 tcs.SetResult (!timedOut);
 },
 null,
 timeout,
 true);
 tokenReady.Set();
 return tcs.Task;
}

This lets us attach a continuation to a wait handle as follows:

myWaitHandle.ToTask().ContinueWith (...)

or await it:

await myWaitHandle.ToTask();

with an optional timeout:

if (!await (myWaitHandle.ToTask (5000)))
 Console.WriteLine ("Timed out");

930 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

Notice that in implementing ToTask, we used another wait handle (a ManualResetE
ventSlim) to avoid a race condition whereby the callback runs before the registra‐
tion token is assigned to the token variable.

WaitAny, WaitAll, and SignalAndWait
In addition to the Set, WaitOne, and Reset methods, there are static methods on the
WaitHandle class to crack more complex synchronization nuts. The WaitAny, Wai
tAll, and SignalAndWait methods perform signaling and waiting operations on
multiple handles. The wait handles can be of differing types (including Mutex and
Semphore, since these also derive from the abstract WaitHandle class). ManualRese
tEventSlim and CountdownEvent can also partake in these methods via their Wai
tHandle properties.

WaitAll and SignalAndWait have a weird connection to the
legacy COM architecture: these methods require that the
caller be in a multithreaded apartment, the model least suit‐
able for interoperability. The main thread of a WPF or Win‐
dows Forms application, for example, is unable to interact
with the clipboard in this mode. We’ll discuss alternatives
shortly.

WaitHandle.WaitAny waits for any one of an array of wait handles; WaitHandle.Wai
tAll waits on all of the given handles, atomically. This means that if you wait on
two AutoResetEvents:

• WaitAny will never end up “latching” both events.

• WaitAll will never end up “latching” only one event.

SignalAndWait calls Set on one WaitHandle and then calls WaitOne on another Wai
tHandle. After signaling the first handle, it will jump to the head of the queue in
waiting on the second handle; this helps it succeed (although the operation is not
truly atomic). You can think of this method as “swapping” one signal for another
and use it on a pair of EventWaitHandles to set up two threads to rendezvous or
“meet” at the same point in time. Either AutoResetEvent or ManualResetEvent will
do the trick. The first thread executes the following:

WaitHandle.SignalAndWait (wh1, wh2);

whereas the second thread does the opposite:

WaitHandle.SignalAndWait (wh2, wh1);

Alternatives to WaitAll and SignalAndWait
WaitAll and SignalAndWait won’t run in a single-threaded apartment. Fortunately,
there are alternatives. In the case of SignalAndWait, it’s rare that you need its queue-
jumping semantics: in our rendezvous example, for instance, it would be valid sim‐
ply to call Set on the first wait handle and then WaitOne on the other, if wait han‐

A
d

vanced
Thread

ing

Signaling with Event Wait Handles | 931

www.EBooksWorld.ir

dles were used solely for that rendezvous. In the following section, we’ll explore yet
another option for implementing a thread rendezvous.

In the case of WaitAny and WaitAll, if you don’t need atomicity, you can use the
code we wrote in the previous section to convert the wait handles to tasks and then
use Task.WhenAny and Task.WhenAll (Chapter 14).

If you need atomicity, you can take the lowest-level approach to signaling and write
the logic yourself with Monitor’s Wait and Pulse methods. We describe Wait and
Pulse in detail in http://albahari.com/threading/.

The Barrier Class
The Barrier class implements a thread execution barrier, allowing many threads to
rendezvous at a point in time. The class is very fast and efficient, and is built upon
Wait, Pulse, and spinlocks.

To use this class:

1. Instantiate it, specifying how many threads should partake in the rendezvous
(you can change this later by calling AddParticipants/RemoveParticipants).

2. Have each thread call SignalAndWait when it wants to rendezvous.

Instantiating Barrier with a value of 3 causes SignalAndWait to block until that
method has been called three times. It then starts over: calling SignalAndWait again
blocks until called another three times. This keeps each thread “in step” with every
other thread.

In the following example, each of three threads writes the numbers 0 through 4,
while keeping in step with the other threads:

static Barrier _barrier = new Barrier (3);

static void Main()
{
 new Thread (Speak).Start();
 new Thread (Speak).Start();
 new Thread (Speak).Start();
}

static void Speak()
{
 for (int i = 0; i < 5; i++)
 {
 Console.Write (i + " ");
 _barrier.SignalAndWait();
 }
}

OUTPUT: 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4

932 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

http://albahari.com/threading/

A really useful feature of Barrier is that you can also specify a post-phase action
when constructing it. This is a delegate that runs after SignalAndWait has been
called n times, but before the threads are unblocked (as shown in the shaded area in
Figure 22-3). In our example, if we instantiate our barrier as follows:

static Barrier _barrier = new Barrier (3, barrier => Console.WriteLine());

then the output is:

0 0 0
1 1 1
2 2 2
3 3 3
4 4 4

Figure 22-3. Barrier

A post-phase action can be useful for coalescing data from each of the worker
threads. It doesn’t have to worry about preemption, because all workers are blocked
while it does its thing.

Lazy Initialization
A frequent problem in threading is how to lazily initialize a shared field in a thread-
safe fashion. The need arises when you have a field of a type that’s expensive to con‐
struct:

class Foo
{
 public readonly Expensive Expensive = new Expensive();
 ...
}
class Expensive { /* Suppose this is expensive to construct */ }

A
d

vanced
Thread

ing

Lazy Initialization | 933

www.EBooksWorld.ir

The problem with this code is that instantiating Foo incurs the performance cost of
instantiating Expensive—whether or not the Expensive field is ever accessed. The
obvious answer is to construct the instance on demand:

class Foo
{
 Expensive _expensive;
 public Expensive Expensive // Lazily instantiate Expensive
 {
 get
 {
 if (_expensive == null) _expensive = new Expensive();
 return _expensive;
 }
 }
 ...
}

The question then arises, is this thread-safe? Aside from the fact that we’re accessing
_expensive outside a lock without a memory barrier, consider what would happen
if two threads accessed this property at once. They could both satisfy the if state‐
ment’s predicate and each thread end up with a different instance of Expensive. As
this may lead to subtle errors, we would say, in general, that this code is not thread-
safe.

The solution to the problem is to lock around checking and initializing the object:

Expensive _expensive;
readonly object _expenseLock = new object();

public Expensive Expensive
{
 get
 {
 lock (_expenseLock)
 {
 if (_expensive == null) _expensive = new Expensive();
 return _expensive;
 }
 }
}

Lazy<T>
From Framework 4.0, the Lazy<T> class is available to help with lazy initialization. If
instantiated with an argument of true, it implements the thread-safe initialization
pattern just described.

Lazy<T> actually implements a micro-optimized version of
this pattern, called double-checked locking. Double-checked
locking performs an additional volatile read to avoid the cost
of obtaining a lock if the object is already initialized.

934 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

To use Lazy<T>, instantiate the class with a value factory delegate that tells it how to
initialize a new value, and the argument true. Then access its value via the Value
property:

Lazy<Expensive> _expensive = new Lazy<Expensive>
 (() => new Expensive(), true);

public Expensive Expensive { get { return _expensive.Value; } }

If you pass false into Lazy<T>’s constructor, it implements the thread-unsafe lazy
initialization pattern that we described at the start of this section—this makes sense
when you want to use Lazy<T> in a single-threaded context.

LazyInitializer
LazyInitializer is a static class that works exactly like Lazy<T> except:

• Its functionality is exposed through a static method that operates directly on a
field in your own type. This avoids a level of indirection, improving perfor‐
mance in cases where you need extreme optimization.

• It offers another mode of initialization in which multiple threads can race to
initialize.

To use LazyInitializer, call EnsureInitialized before accessing the field, pass‐
ing a reference to the field and the factory delegate:

Expensive _expensive;
public Expensive Expensive
{
 get // Implement double-checked locking
 {
 LazyInitializer.EnsureInitialized (ref _expensive,
 () => new Expensive());
 return _expensive;
 }
}

You can also pass in another argument to request that competing threads race to ini‐
tialize. This sounds similar to our original thread-unsafe example, except that the
first thread to finish always wins—and so you end up with only one instance. The
advantage of this technique is that it’s even faster (on multicores) than double-
checked locking—because it can be implemented entirely without locks using
advanced techniques that we describe in “Nonblocking Synchronization” and “Lazy
Initialization” at http://albahari.com/threading/. This is an extreme (and rarely
needed) optimization that comes at a cost:

• It’s slower when more threads race to initialize than you have cores.
• It potentially wastes CPU resources performing redundant initialization.
• The initialization logic must be thread-safe (in this case, it would be thread-

unsafe if Expensive’s constructor wrote to static fields, for instance).

A
d

vanced
Thread

ing

Lazy Initialization | 935

www.EBooksWorld.ir

http://albahari.com/threading/

• If the initializer instantiates an object requiring disposal, the “wasted” object
won’t get disposed without additional logic.

Thread-Local Storage
Much of this chapter has focused on synchronization constructs and the issues aris‐
ing from having threads concurrently access the same data. Sometimes, however,
you want to keep data isolated, ensuring that each thread has a separate copy. Local
variables achieve exactly this, but they are useful only with transient data.

The solution is thread-local storage. You might be hard-pressed to think of a require‐
ment: data you’d want to keep isolated to a thread tends to be transient by nature. Its
main application is for storing “out-of-band” data—that which supports the execu‐
tion path’s infrastructure, such as messaging, transaction, and security tokens. Pass‐
ing such data around in method parameters is extremely clumsy and alienates all
but your own methods; storing such information in ordinary static fields means
sharing it among all threads.

Thread-local storage can also be useful in optimizing parallel
code. It allows each thread to exclusively access its own ver‐
sion of a thread-unsafe object without needing locks—and
without needing to reconstruct that object between method
calls.
However, it doesn’t mix well with asynchronous code, because
continuations may execute on a different thread to the antece‐
dent.

There are three ways to implement thread-local storage.

[ThreadStatic]
The easiest approach to thread-local storage is to mark a static field with the Thread
Static attribute:

[ThreadStatic] static int _x;

Each thread then sees a separate copy of _x.

Unfortunately, [ThreadStatic] doesn’t work with instance fields (it simply does
nothing); nor does it play well with field initializers—they execute only once on the
thread that’s running when the static constructor executes. If you need to work with
instance fields—or start with a nondefault value—ThreadLocal<T> provides a better
option.

ThreadLocal<T>
ThreadLocal<T> is new to Framework 4.0. It provides thread-local storage for both
static and instance fields—and allows you to specify default values.

936 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

Here’s how to create a ThreadLocal<int> with a default value of 3 for each thread:

static ThreadLocal<int> _x = new ThreadLocal<int> (() => 3);

You then use _x’s Value property to get or set its thread-local value. A bonus of
using ThreadLocal is that values are lazily evaluated: the factory function evaluates
on the first call (for each thread).

ThreadLocal<T> and instance fields
ThreadLocal<T> is also useful with instance fields and captured local variables. For
example, consider the problem of generating random numbers in a multithreaded
environment. The Random class is not thread-safe, so we have to either lock around
using Random (limiting concurrency) or generate a separate Random object for each
thread. ThreadLocal<T> makes the latter easy:

var localRandom = new ThreadLocal<Random>(() => new Random());
Console.WriteLine (localRandom.Value.Next());

Our factory function for creating the Random object is a bit simplistic, though, in
that Random’s parameterless constructor relies on the system clock for a random
number seed. This may be the same for two Random objects created within ~10 ms of
each other. Here’s one way to fix it:

var localRandom = new ThreadLocal<Random>
 (() => new Random (Guid.NewGuid().GetHashCode()));

We use this in the following chapter (see the parallel spellchecking example in
“PLINQ”).

GetData and SetData
The third approach is to use two methods in the Thread class: GetData and SetData.
These store data in thread-specific “slots.” Thread.GetData reads from a thread’s
isolated data store; Thread.SetData writes to it. Both methods require a LocalDa
taStoreSlot object to identify the slot. The same slot can be used across all threads
and they’ll still get separate values. Here’s an example:

class Test
{
 // The same LocalDataStoreSlot object can be used across all threads.
 LocalDataStoreSlot _secSlot = Thread.GetNamedDataSlot ("securityLevel");

 // This property has a separate value on each thread.
 int SecurityLevel
 {
 get
 {
 object data = Thread.GetData (_secSlot);
 return data == null ? 0 : (int) data; // null == uninitialized
 }
 set { Thread.SetData (_secSlot, value); }

A
d

vanced
Thread

ing

Thread-Local Storage | 937

www.EBooksWorld.ir

 }
 ...

In this instance, we called Thread.GetNamedDataSlot, which creates a named slot—
this allows sharing of that slot across the application. Alternatively, you can control
a slot’s scope yourself with an unnamed slot, obtained by calling Thread.Allocate
DataSlot:

class Test
{
 LocalDataStoreSlot _secSlot = Thread.AllocateDataSlot();
 ...

Thread.FreeNamedDataSlot will release a named data slot across all threads, but
only once all references to that LocalDataStoreSlot have dropped out of scope and
have been garbage-collected. This ensures that threads don’t get data slots pulled out
from under their feet, as long as they keep a reference to the appropriate LocalDa
taStoreSlot object while the slot is needed.

Interrupt and Abort
The Interrupt and Abort methods act preemptively on another thread. Interrupt
has no valid use-case, whereas Abort is occasionally useful.

Interrupt forcibly releases a blocked thread, throwing a ThreadInterruptedExcep
tion on the thread. If the thread is not blocked, execution continues until it next
blocks, and then a ThreadInterruptedException is thrown. Interrupt is useless
because there is no scenario that can’t be better solved with signaling constructs and
cancellation tokens (or the Abort method). It’s also inherently dangerous because
you can never really be sure where, in the code, a thread will be forcibly unblocked
(it could within the internals of the .NET Framework, for instance).

Abort attempts to forcibly end another thread, throwing a ThreadAbortException
on the thread right where it’s executing (unmanaged code excepted). ThreadAbor
tException is unusual in that while it can be caught, the exception is rethrown at
the end of the catch block (in an attempt to terminate the thread for good) unless
you call Thread.ResetAbort within the catch block. (In the interim, the thread has
a ThreadState of AbortRequested.)

An unhandled ThreadAbortException is one of only two
types of exception that does not cause application shutdown
(the other is AppDomainUnloadException).

To preserve the integrity of the application domain, any finally blocks are honored
and static constructors are never aborted part-way through. Despite this, Abort is
unsuitable for general-purpose cancellation because it’s still possible for an aborted
thread to cause trouble and pollute the application domain (or even the process).
For example, suppose that a type’s instance constructor obtains an unmanaged
resource (e.g., a file handle), which it releases in its Dispose method. If a thread is

938 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

aborted before the constructor completes, the partially constructed object cannot be
disposed, and the unmanaged handle will leak. (The finalizer, if present, will still
run, but not until the GC catches up with it.) This vulnerability applies to
basic .NET Framework types, including FileStream, making Abort unsuitable in
most scenarios. For an extended discussion on why aborting .NET Framework code
is not safe, see the topic “Aborting Threads” at http://www.albahari.com/threading/.

When there’s no alternative to using Abort, you can mitigate most of the potential
damage by running the thread in another application domain and recreating the
domain after aborting the thread (this is what LINQPad does when you cancel a
query). We discuss application domains in Chapter 24.

It’s valid and safe to call Abort on your own thread because
you know exactly where you are. This is occasionally useful
when you want an exception to get rethrown after each catch
block—ASP.NET does exactly this when you call Redirect.

Suspend and Resume
Suspend and Resume freeze and unfreeze another thread. A frozen thread acts as
though it’s blocked, although suspension is considered distinct from blocking (as
reported by its ThreadState). Just as with Interrupt, Suspend/Resume lack valid
use-cases and are potentially dangerous: if you suspend a thread while it holds a
lock, no other thread can obtain that lock (including your own), making your pro‐
gram vulnerable to deadlocking. For this reason, Suspend and Resume were depre‐
cated in Framework 2.0.

Suspending a thread is mandatory, however, if you want to obtain stack trace on
another thread. This is sometimes useful for diagnostic purposes, and can be done
as follows:

StackTrace stackTrace; // in System.Diagnostics
targetThread.Suspend();
try { stackTrace = new StackTrace (targetThread, true); }
finally { targetThread.Resume(); }

Unfortunately, this is vulnerable to deadlocking, because obtaining a stack trace
itself obtains locks through its use of reflection. You can work around this by having
another thread call Resume if it’s still suspended after, say, 200 ms (at that time, one
can assume a deadlock has occurred). Of course, this will invalidate the stack trace,
but this is infinitely better than deadlocking the application:

StackTrace stackTrace = null;
var ready = new ManualResetEventSlim();

new Thread (() =>
{
 // Backstop to release thread in case of deadlock:
 ready.Set();
 Thread.Sleep (200);
 try { targetThread.Resume(); } catch { }

A
d

vanced
Thread

ing

Suspend and Resume | 939

www.EBooksWorld.ir

http://www.albahari.com/threading/

}).Start();

ready.Wait();
targetThread.Suspend();
try { stackTrace = new StackTrace (targetThread, true); }
catch { /* Deadlock */ }
finally
{
 try { targetThread.Resume(); }
 catch { stackTrace = null; /* Deadlock */ }
}

Timers
If you need to execute some method repeatedly at regular intervals, the easiest way
is with a timer. Timers are convenient and efficient in their use of memory and
resources—compared with techniques such as the following:

new Thread (delegate() {
 while (enabled)
 {
 DoSomeAction();
 Thread.Sleep (TimeSpan.FromHours (24));
 }
 }).Start();

Not only does this permanently tie up a thread resource, but without additional
coding, DoSomeAction will happen at a later time each day. Timers solve these prob‐
lems.

The .NET Framework provides four timers. Two of these are general-purpose mul‐
tithreaded timers:

• System.Threading.Timer

• System.Timers.Timer

The other two are special-purpose single-threaded timers:

• System.Windows.Forms.Timer (Windows Forms timer)

• System.Windows.Threading.DispatcherTimer (WPF timer)

The multithreaded timers are more powerful, accurate, and flexible; the single-
threaded timers are safer and more convenient for running simple tasks that update
Windows Forms controls or WPF elements.

Multithreaded Timers
System.Threading.Timer is the simplest multithreaded timer: it has just a con‐
structor and two methods (a delight for minimalists, as well as book authors!). In

940 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

the following example, a timer calls the Tick method, which writes “tick...” after five
seconds have elapsed, and then every second after that until the user presses Enter:

using System;
using System.Threading;

class Program
{
 static void Main()
 {
 // First interval = 5000ms; subsequent intervals = 1000ms
 Timer tmr = new Timer (Tick, "tick...", 5000, 1000);
 Console.ReadLine();
 tmr.Dispose(); // This both stops the timer and cleans up.
 }

 static void Tick (object data)
 {
 // This runs on a pooled thread
 Console.WriteLine (data); // Writes "tick..."
 }
}

See “Timers” on page 518 in Chapter 12 for a discussion on
disposing multithreaded timers.

You can change a timer’s interval later by calling its Change method. If you want a
timer to fire just once, specify Timeout.Infinite in the constructor’s last argument.

The .NET Framework provides another timer class of the same name in the Sys
tem.Timers namespace. This simply wraps the System.Threading.Timer, provid‐
ing additional convenience while using the identical underlying engine. Here’s a
summary of its added features:

• An IComponent implementation, allowing it to be sited in the Visual Studio’s
Designer’s component tray

• An Interval property instead of a Change method

• An Elapsed event instead of a callback delegate

• An Enabled property to start and stop the timer (its default value being false)

• Start and Stop methods in case you’re confused by Enabled

• An AutoReset flag for indicating a recurring event (default value is true)

• A SynchronizingObject property with Invoke and BeginInvoke methods for
safely calling methods on WPF elements and Windows Forms controls

A
d

vanced
Thread

ing

Timers | 941

www.EBooksWorld.ir

Here’s an example:

using System;
using System.Timers; // Timers namespace rather than Threading

class SystemTimer
{
 static void Main()
 {
 Timer tmr = new Timer(); // Doesn't require any args
 tmr.Interval = 500;
 tmr.Elapsed += tmr_Elapsed; // Uses an event instead of a delegate
 tmr.Start(); // Start the timer
 Console.ReadLine();
 tmr.Stop(); // Stop the timer
 Console.ReadLine();
 tmr.Start(); // Restart the timer
 Console.ReadLine();
 tmr.Dispose(); // Permanently stop the timer
 }

 static void tmr_Elapsed (object sender, EventArgs e)
 {
 Console.WriteLine ("Tick");
 }
}

Multithreaded timers use the thread pool to allow a few threads to serve many
timers. This means that the callback method or Elapsed event may fire on a differ‐
ent thread each time it is called. Furthermore, the Elapsed event always fires
(approximately) on time—regardless of whether the previous Elapsed event fin‐
ished executing. Hence, callbacks or event handlers must be thread-safe.

The precision of multithreaded timers depends on the operating system, and is typi‐
cally in the 10–20 ms region. If you need greater precision, you can use native
interop and call the Windows multimedia timer. This has precision down to 1 ms
and it is defined in winmm.dll. First call timeBeginPeriod to inform the operating
system that you need high timing precision, and then call timeSetEvent to start a
multimedia timer.

When you’re done, call timeKillEvent to stop the timer and timeEndPeriod to
inform the OS that you no longer need high timing precision. Chapter 25 demon‐
strates calling external methods with P/Invoke. You can find complete examples on
the Internet that use the multimedia timer by searching for the keywords dllimport
winmm.dll timesetevent.

942 | Chapter 22: Advanced Threading

www.EBooksWorld.ir

Single-Threaded Timers
The .NET Framework provides timers designed to eliminate thread-safety issues for
WPF and Windows Forms applications:

• System.Windows.Threading.DispatcherTimer (WPF)

• System.Windows.Forms.Timer (Windows Forms)

The single-threaded timers are not designed to work outside
their respective environments. If you use a Windows Forms
timer in a Windows Service application, for instance, the
Timer event won’t fire!

Both are like System.Timers.Timer in the members that they expose—Interval,
Start, and Stop (and Tick, which is equivalent to Elapsed)—and are used in a sim‐
ilar manner. However, they differ in how they work internally. Instead of firing
timer events on pooled threads, they post the events to the WPF or Windows Forms
message loop. This means that the Tick event always fires on the same thread that
originally created the timer—which, in a normal application, is the same thread
used to manage all user interface elements and controls. This has a number of bene‐
fits:

• You can forget about thread safety.

• A fresh Tick will never fire until the previous Tick has finished processing.

• You can update user interface elements and controls directly from Tick event
handling code, without calling Control.BeginInvoke or Dispatcher.BeginIn
voke.

Thus, a program employing these timers is not really multithreaded: you end up
with the same kind of pseudoconcurrency that we described in Chapter 14 with
asynchronous functions that execute on a UI thread. One thread serves all timers—
as well as the processing UI events. Which means that the Tick event handler must
execute quickly, otherwise the user interface becomes unresponsive.

This makes the WPF and Windows Forms timers suitable for small jobs, typically
updating some aspect of the UI (e.g., a clock or countdown display).

In terms of precision, the single-threaded timers are similar to the multithreaded
timers (tens of milliseconds), although they are typically less accurate because they
can be delayed while other user interface requests (or other timer events) are pro‐
cessed.

A
d

vanced
Thread

ing

Timers | 943

www.EBooksWorld.ir

www.EBooksWorld.ir

23
Parallel Programming

In this chapter, we cover the multithreading APIs and constructs aimed at leverag‐
ing multicore processors:

• Parallel LINQ or PLINQ
• The Parallel class
• The task parallelism constructs
• The concurrent collections

These were added in Framework 4.0 and are collectively known (loosely) as PFX
(Parallel Framework). The Parallel class together with the task parallelism con‐
structs is called the Task Parallel Library, or TPL.

You’ll need to be comfortable with the fundamentals in Chapter 14 before reading
this chapter—particularly locking, thread safety, and the Task class.

Why PFX?
Over the past 10 years, CPU manufacturers have shifted from single- to multicore
processors. This is problematic for us as programmers because single-threaded code
does not automatically run faster as a result of those extra cores.

Leveraging multiple cores is easy for most server applications, where each thread
can independently handle a separate client request, but is harder on the desktop—
because it typically requires that you take your computationally intensive code and
do the following:

P
arallel

P
ro

g
ram

m
ing

945

www.EBooksWorld.ir

1. Partition it into small chunks.
2. Execute those chunks in parallel via multithreading.
3. Collate the results as they become available, in a thread-safe and performant

manner.

Although you can do all of this with the classic multithreading constructs, it’s awk‐
ward—particularly the steps of partitioning and collating. A further problem is that
the usual strategy of locking for thread safety causes a lot of contention when many
threads work on the same data at once.

The PFX libraries have been designed specifically to help in these scenarios.

Programming to leverage multicores or multiple processors is
called parallel programming. This is a subset of the broader
concept of multithreading.

PFX Concepts
There are two strategies for partitioning work among threads: data parallelism and
task parallelism.

When a set of tasks must be performed on many data values, we can parallelize by
having each thread perform the (same) set of tasks on a subset of values. This is
called data parallelism because we are partitioning the data between threads. In con‐
trast, with task parallelism, we partition the tasks; in other words, we have each
thread perform a different task.

In general, data parallelism is easier and scales better to highly parallel hardware,
because it reduces or eliminates shared data (thereby reducing contention and
thread-safety issues). Also, data parallelism leverages the fact that there are often
more data values than discrete tasks, increasing the parallelism potential.

Data parallelism is also conducive to structured parallelism, which means that paral‐
lel work units start and finish in the same place in your program. In contrast, task
parallelism tends to be unstructured, meaning that parallel work units may start and
finish in places scattered across your program. Structured parallelism is simpler and
less error-prone and allows you to farm the difficult job of partitioning and thread
coordination (and even result collation) out to libraries.

PFX Components
PFX comprises two layers of functionality, as shown in Figure 23-1. The higher layer
consists of two structured data parallelism APIs: PLINQ and the Parallel class. The
lower layer contains the task parallelism classes—plus a set of additional constructs
to help with parallel programming activities.

946 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

Figure 23-1. PFX components

PLINQ offers the richest functionality: it automates all the steps of parallelization—
including partitioning the work into tasks, executing those tasks on threads, and
collating the results into a single output sequence. It’s called declarative—because
you simply declare that you want to parallelize your work (which you structure as a
LINQ query) and let the Framework take care of the implementation details. In
contrast, the other approaches are imperative, in that you need to explicitly write
code to partition or collate. In the case of the Parallel class, you must collate
results yourself; with the task parallelism constructs, you must partition the work
yourself, too:

 Partitions work Collates results

PLINQ Yes Yes

The Parallel class Yes No

PFX’s task parallelism No No

The concurrent collections and spinning primitives help you with lower-level paral‐
lel programming activities. These are important because PFX has been designed to
work not only with today’s hardware, but also with future generations of processors
with far more cores. If you want to move a pile of chopped wood, and you have 32
workers to do the job, the biggest challenge is moving the wood without the workers
getting in each other’s way. It’s the same with dividing an algorithm among 32 cores:
if ordinary locks are used to protect common resources, the resultant blocking may
mean that only a fraction of those cores are ever actually busy at once. The concur‐
rent collections are tuned specifically for highly concurrent access, with the focus on

P
arallel

P
ro

g
ram

m
ing

Why PFX? | 947

www.EBooksWorld.ir

minimizing or eliminating blocking. PLINQ and the Parallel class themselves rely
on the concurrent collections and on spinning primitives for efficient management
of work.

Other Uses for PFX
The parallel programming constructs are useful not only for leveraging multicores,
but in other scenarios:

• The concurrent collections are sometimes appropriate when you want a
thread-safe queue, stack, or dictionary.

• BlockingCollection provides an easy means to implement producer/consumer
structures, and is a good way to limit concurrency.

• Tasks are the basis of asynchronous programming, as we saw in Chapter 14.

When to Use PFX
The primary use case for PFX is parallel programming: leveraging multicore process‐
ors to speed up computationally intensive code.

A challenge in leveraging multicores is Amdahl’s law, which states that the maxi‐
mum performance improvement from parallelization is governed by the portion of
the code that must execute sequentially. For instance, if only two-thirds of an algo‐
rithm’s execution time is parallelizable, you can never exceed a threefold perfor‐
mance gain—even with an infinite number of cores.

So, before proceeding, it’s worth verifying that the bottleneck is in parallelizable
code. It’s also worth considering whether your code needs to be computationally
intensive—optimization is often the easiest and most effective approach. There’s a
trade-off, though, in that some optimization techniques can make it harder to paral‐
lelize code.

The easiest gains come with what’s called embarrassingly parallel problems—where a
job can be divided easily into tasks that execute efficiently on their own (structured
parallelism is very well suited to such problems). Examples include many image
processing tasks, ray tracing, and brute force approaches in mathematics or cryp‐
tography. An example of a nonembarrassingly parallel problem is implementing an
optimized version of the quicksort algorithm—a good result takes some thought
and may require unstructured parallelism.

PLINQ
PLINQ automatically parallelizes local LINQ queries. PLINQ has the advantage of
being easy to use in that it offloads the burden of both work partitioning and result
collation to the Framework.

948 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

To use PLINQ, simply call AsParallel() on the input sequence and then continue
the LINQ query as usual. The following query calculates the prime numbers
between 3 and 100,000—making full use of all cores on the target machine:

// Calculate prime numbers using a simple (unoptimized) algorithm.

IEnumerable<int> numbers = Enumerable.Range (3, 100000-3);

var parallelQuery =
 from n in numbers.AsParallel()
 where Enumerable.Range (2, (int) Math.Sqrt (n)).All (i => n % i > 0)
 select n;

int[] primes = parallelQuery.ToArray();

AsParallel is an extension method in System.Linq.ParallelEnumerable. It wraps
the input in a sequence based on ParallelQuery<TSource>, which causes the LINQ
query operators that you subsequently call to bind to an alternate set of extension
methods defined in ParallelEnumerable. These provide parallel implementations
of each of the standard query operators. Essentially, they work by partitioning the
input sequence into chunks that execute on different threads, collating the results
back into a single output sequence for consumption (see Figure 23-2).

Figure 23-2. PLINQ execution model

Calling AsSequential() unwraps a ParallelQuery sequence so that subsequent
query operators bind to the standard query operators and execute sequentially. This
is necessary before calling methods that have side effects or are not thread-safe.

For query operators that accept two input sequences (Join, GroupJoin, Concat,
Union, Intersect, Except, and Zip), you must apply AsParallel() to both input
sequences (otherwise, an exception is thrown). You don’t, however, need to keep
applying AsParallel to a query as it progresses, because PLINQ’s query operators
output another ParallelQuery sequence. In fact, calling AsParallel again introdu‐
ces inefficiency in that it forces merging and repartitioning of the query:

P
arallel

P
ro

g
ram

m
ing

PLINQ | 949

www.EBooksWorld.ir

mySequence.AsParallel() // Wraps sequence in ParallelQuery<int>
 .Where (n => n > 100) // Outputs another ParallelQuery<int>
 .AsParallel() // Unnecessary - and inefficient!
 .Select (n => n * n)

Not all query operators can be effectively parallelized. For those that cannot (see
“PLINQ Limitations” on page 952), PLINQ implements the operator sequentially
instead. PLINQ may also operate sequentially if it suspects that the overhead of par‐
allelization will actually slow a particular query.

PLINQ is only for local collections: it doesn’t work with LINQ to SQL or Entity
Framework because in those cases, the LINQ translates into SQL which then exe‐
cutes on a database server. However, you can use PLINQ to perform additional local
querying on the result sets obtained from database queries.

If a PLINQ query throws an exception, it’s rethrown as an
AggregateException whose InnerExceptions property con‐
tains the real exception (or exceptions). See “Working with
AggregateException” on page 978 for more details.

Why Isn’t AsParallel the Default?
Given that AsParallel transparently parallelizes LINQ queries, the question arises,
“Why didn’t Microsoft simply parallelize the standard query operators and make
PLINQ the default?”

There are a number of reasons for the opt-in approach. First, for PLINQ to be use‐
ful, there has to be a reasonable amount of computationally intensive work for it to
farm out to worker threads. Most LINQ to Objects queries execute very quickly, and
not only would parallelization be unnecessary, but the overhead of partitioning, col‐
lating, and coordinating the extra threads may actually slow things down.

Additionally:

• The output of a PLINQ query (by default) may differ from a LINQ query with
respect to element ordering (see “PLINQ and Ordering” on page 951).

• PLINQ wraps exceptions in an AggregateException (to handle the possibility
of multiple exceptions being thrown).

• PLINQ will give unreliable results if the query invokes thread-unsafe methods.

Finally, PLINQ offers quite a few hooks for tuning and tweaking. Burdening the
standard LINQ to Objects API with such nuances would add distraction.

Parallel Execution Ballistics
Like ordinary LINQ queries, PLINQ queries are lazily evaluated. This means that
execution is triggered only when you begin consuming the results—typically via a
foreach loop (although it may also be via a conversion operator such as ToArray or
an operator that returns a single element or value).

950 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

As you enumerate the results, though, execution proceeds somewhat differently
from that of an ordinary sequential query. A sequential query is powered entirely by
the consumer in a “pull” fashion: each element from the input sequence is fetched
exactly when required by the consumer. A parallel query ordinarily uses independ‐
ent threads to fetch elements from the input sequence slightly ahead of when they’re
needed by the consumer (rather like a teleprompter for newsreaders, or an antiskip
buffer in CD players). It then processes the elements in parallel through the query
chain, holding the results in a small buffer so that they’re ready for the consumer on
demand. If the consumer pauses or breaks out of the enumeration early, the query
processor also pauses or stops so as not to waste CPU time or memory.

You can tweak PLINQ’s buffering behavior by calling WithMer
geOptions after AsParallel. The default value of AutoBuf
fered generally gives the best overall results. NotBuffered dis‐
ables the buffer and is useful if you want to see results as soon
as possible; FullyBuffered caches the entire result set before
presenting it to the consumer (the OrderBy and Reverse oper‐
ators naturally work this way, as do the element, aggregation,
and conversion operators).

PLINQ and Ordering
A side effect of parallelizing the query operators is that when the results are collated,
it’s not necessarily in the same order that they were submitted (see Figure 23-2). In
other words, LINQ’s normal order-preservation guarantee for sequences no longer
holds.

If you need order preservation, you can force it by calling AsOrdered() after AsPar
allel():

myCollection.AsParallel().AsOrdered()...

Calling AsOrdered incurs a performance hit with large numbers of elements because
PLINQ must keep track of each element’s original position.

You can negate the effect of AsOrdered later in a query by calling AsUnordered: this
introduces a “random shuffle point” that allows the query to execute more effi‐
ciently from that point on. So if you wanted to preserve input-sequence ordering for
just the first two query operators, you’d do this:

inputSequence.AsParallel().AsOrdered()
 .QueryOperator1()
 .QueryOperator2()
 .AsUnordered() // From here on, ordering doesn't matter
 .QueryOperator3()
 ...

AsOrdered is not the default because for most queries, the original input ordering
doesn’t matter. In other words, if AsOrdered was the default, you’d have to apply
AsUnordered to the majority of your parallel queries to get the best performance,
which would be burdensome.

P
arallel

P
ro

g
ram

m
ing

PLINQ | 951

www.EBooksWorld.ir

PLINQ Limitations
There are currently some practical limitations on what PLINQ can parallelize. These
limitations may loosen with subsequent service packs and Framework versions.

The following query operators prevent a query from being parallelized, unless the
source elements are in their original indexing position:

• The indexed versions of Select, SelectMany, and ElementAt

Most query operators change the indexing position of elements (including those
that remove elements, such as Where). This means that if you want to use the pre‐
ceding operators, they’ll usually need to be at the start of the query.

The following query operators are parallelizable but use an expensive partitioning
strategy that can sometimes be slower than sequential processing:

• Join, GroupBy, GroupJoin, Distinct, Union, Intersect, and Except

The Aggregate operator’s seeded overloads in their standard incarnations are not
parallelizable—PLINQ provides special overloads to deal with this (see “Optimizing
PLINQ” on page 956).

All other operators are parallelizable, although use of these operators doesn’t guar‐
antee that your query will be parallelized. PLINQ may run your query sequentially if
it suspects that the overhead of parallelization will slow down that particular query.
You can override this behavior and force parallelism by calling the following after
AsParallel():

.WithExecutionMode (ParallelExecutionMode.ForceParallelism)

Example: Parallel Spellchecker
Suppose we want to write a spellchecker that runs quickly with very large docu‐
ments by leveraging all available cores. By formulating our algorithm into a LINQ
query, we can very easily parallelize it.

The first step is to download a dictionary of English words into a HashSet for effi‐
cient lookup:

if (!File.Exists ("WordLookup.txt")) // Contains about 150,000 words
 new WebClient().DownloadFile (
 "http://www.albahari.com/ispell/allwords.txt", "WordLookup.txt");

var wordLookup = new HashSet<string> (
 File.ReadAllLines ("WordLookup.txt"),
 StringComparer.InvariantCultureIgnoreCase);

We’ll then use our word lookup to create a test “document” comprising an array of a
million random words. After building the array, we’ll introduce a couple of spelling
mistakes:

952 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

var random = new Random();
string[] wordList = wordLookup.ToArray();

string[] wordsToTest = Enumerable.Range (0, 1000000)
 .Select (i => wordList [random.Next (0, wordList.Length)])
 .ToArray();

wordsToTest [12345] = "woozsh"; // Introduce a couple
wordsToTest [23456] = "wubsie"; // of spelling mistakes.

Now we can perform our parallel spellcheck by testing wordsToTest against wor
dLookup. PLINQ makes this very easy:

var query = wordsToTest
 .AsParallel()
 .Select ((word, index) => new IndexedWord { Word=word, Index=index })
 .Where (iword => !wordLookup.Contains (iword.Word))
 .OrderBy (iword => iword.Index);

foreach (var mistake in query)
 Console.WriteLine (mistake.Word + " - index = " + mistake.Index);

// OUTPUT:
// woozsh - index = 12345
// wubsie - index = 23456

IndexedWord is a custom struct that we define as follows:

struct IndexedWord { public string Word; public int Index; }

The wordLookup.Contains method in the predicate gives the query some “meat”
and makes it worth parallelizing.

We could simplify the query slightly by using an anonymous
type instead of the IndexedWord struct. However, this would
degrade performance because anonymous types (being classes
and therefore reference types) incur the cost of heap-based
allocation and subsequent garbage collection.
The difference might not be enough to matter with sequential
queries, but with parallel queries, favoring stack-based alloca‐
tion can be quite advantageous. This is because stack-based
allocation is highly parallelizable (as each thread has its own
stack), whereas all threads must compete for the same heap—
managed by a single memory manager and garbage collector.

Using ThreadLocal<T>
Let’s extend our example by parallelizing the creation of the random test-word list
itself. We structured this as a LINQ query, so it should be easy. Here’s the sequential
version:

string[] wordsToTest = Enumerable.Range (0, 1000000)
 .Select (i => wordList [random.Next (0, wordList.Length)])
 .ToArray();

P
arallel

P
ro

g
ram

m
ing

PLINQ | 953

www.EBooksWorld.ir

Unfortunately, the call to random.Next is not thread-safe, so it’s not as simple as
inserting AsParallel() into the query. A potential solution is to write a function
that locks around random.Next; however, this would limit concurrency. The better
option is to use ThreadLocal<Random> (see “Thread-Local Storage” on page 936 in
the preceding chapter) to create a separate Random object for each thread. We can
then parallelize the query as follows:

var localRandom = new ThreadLocal<Random>
 (() => new Random (Guid.NewGuid().GetHashCode()));

string[] wordsToTest = Enumerable.Range (0, 1000000).AsParallel()
 .Select (i => wordList [localRandom.Value.Next (0, wordList.Length)])
 .ToArray();

In our factory function for instantiating a Random object, we pass in a Guid’s hash‐
code to ensure that if two Random objects are created within a short period of time,
they’ll yield different random number sequences.

When to Use PLINQ
It’s tempting to search your existing applications for LINQ queries and experiment
with parallelizing them. This is usually unproductive, because most problems for
which LINQ is obviously the best solution tend to execute very quickly and so don’t
benefit from parallelization. A better approach is to find a CPU-intensive bottleneck
and then consider, “Can this be expressed as a LINQ query?” (A welcome side effect
of such restructuring is that LINQ typically makes code smaller and more readable.)

PLINQ is well suited to embarrassingly parallel problems. It can be a poor choice
for imaging, however, because collating millions of pixels into an output sequence
creates a bottleneck. Instead, it’s better to write pixels directly to an array or unman‐
aged memory block and use the Parallel class or task parallelism to manage the
multithreading. (It is possible, however, to defeat result collation using ForAll—we
discuss this in “Optimizing PLINQ.” Doing so makes sense if the image processing
algorithm naturally lends itself to LINQ.)

Functional Purity
Because PLINQ runs your query on parallel threads, you must be careful not to per‐
form thread-unsafe operations. In particular, writing to variables is side-effecting
and therefore thread-unsafe:

// The following query multiplies each element by its position.
// Given an input of Enumerable.Range(0,999), it should output squares.
int i = 0;
var query = from n in Enumerable.Range(0,999).AsParallel() select n * i++;

We could make incrementing i thread-safe by using locks, but the problem would
still remain that i won’t necessarily correspond to the position of the input element.
And adding AsOrdered to the query wouldn’t fix the latter problem, because AsOr

954 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

dered ensures only that the elements are output in an order consistent with them
having been processed sequentially—it doesn’t actually process them sequentially.

Instead, this query should be rewritten to use the indexed version of Select:

var query = Enumerable.Range(0,999).AsParallel().Select ((n, i) => n * i);

For best performance, any methods called from query operators should be thread-
safe by virtue of not writing to fields or properties (non-side-effecting, or function‐
ally pure). If they’re thread-safe by virtue of locking, the query’s parallelism potential
will be limited—by the duration of the lock divided by the total time spent in that
function.

Setting the Degree of Parallelism
By default, PLINQ chooses an optimum degree of parallelism for the processor in
use. You can override it by calling WithDegreeOfParallelism after AsParallel:

...AsParallel().WithDegreeOfPallelism(4)...

An example of when you might increase the parallelism beyond the core count is
with I/O-bound work (downloading many web pages at once, for instance). Since
Framework 4.5, however, task combinators and asynchronous functions provide a
similarly easy and more efficient solution (see “Task Combinators” on page 614 in
Chapter 14. Unlike with Tasks, PLINQ cannot perform I/O-bound work without
blocking threads (and pooled threads, to make matters worse).

Changing the degree of parallelism
You can call WithDegreeOfParallelism only once within a PLINQ query. If you
need to call it again, you must force merging and repartitioning of the query by call‐
ing AsParallel() again within the query:

"The Quick Brown Fox"
 .AsParallel().WithDegreeOfParallelism (2)
 .Where (c => !char.IsWhiteSpace (c))
 .AsParallel().WithDegreeOfParallelism (3) // Forces Merge + Partition
 .Select (c => char.ToUpper (c))

Cancellation
Canceling a PLINQ query whose results you’re consuming in a foreach loop is
easy: simply break out of the foreach and the query will be automatically canceled
as the enumerator is implicitly disposed.

For a query that terminates with a conversion, element, or aggregation operator, you
can cancel it from another thread via a cancellation token (see “Cancellation” on
page 610 in Chapter 14). To insert a token, call WithCancellation after calling
AsParallel, passing in the Token property of a CancellationTokenSource object.
Another thread can then call Cancel on the token source, which throws an Opera
tionCanceledException on the query’s consumer:

P
arallel

P
ro

g
ram

m
ing

PLINQ | 955

www.EBooksWorld.ir

IEnumerable<int> million = Enumerable.Range (3, 1000000);

var cancelSource = new CancellationTokenSource();

var primeNumberQuery =
 from n in million.AsParallel().WithCancellation (cancelSource.Token)
 where Enumerable.Range (2, (int) Math.Sqrt (n)).All (i => n % i > 0)
 select n;

new Thread (() => {
 Thread.Sleep (100); // Cancel query after
 cancelSource.Cancel(); // 100 milliseconds.
 }
).Start();
try
{
 // Start query running:
 int[] primes = primeNumberQuery.ToArray();
 // We'll never get here because the other thread will cancel us.
}
catch (OperationCanceledException)
{
 Console.WriteLine ("Query canceled");
}

PLINQ doesn’t preemptively abort threads because of the danger of doing so (see
“Interrupt and Abort” on page 938 in Chapter 22). Instead, upon cancellation, it
waits for each worker thread to finish with its current element before ending the
query. This means that any external methods that the query calls will run to comple‐
tion.

Optimizing PLINQ

Output-side optimization
One of PLINQ’s advantages is that it conveniently collates the results from parallel‐
ized work into a single output sequence. Sometimes, though, all that you end up
doing with that sequence is running some function once over each element:

foreach (int n in parallelQuery)
 DoSomething (n);

If this is the case—and you don’t care about the order in which the elements are
processed—you can improve efficiency with PLINQ’s ForAll method.

The ForAll method runs a delegate over every output element of a ParallelQuery.
It hooks right into PLINQ’s internals, bypassing the steps of collating and enumerat‐
ing the results. To give a trivial example:

"abcdef".AsParallel().Select (c => char.ToUpper(c)).ForAll (Console.Write);

Figure 23-3 shows the process.

956 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

Collating and enumerating results is not a massively expensive
operation, so the ForAll optimization yields the greatest gains
when there are large numbers of quickly executing input ele‐
ments.

Figure 23-3. PLINQ ForAll

Input-side optimization
PLINQ has three partitioning strategies for assigning input elements to threads:

Strategy Element allocation Relative performance

Chunk partitioning Dynamic Average

Range partitioning Static Poor to excellent

Hash partitioning Static Poor

For query operators that require comparing elements (GroupBy, Join, GroupJoin,
Intersect, Except, Union, and Distinct), you have no choice: PLINQ always uses
hash partitioning. Hash partitioning is relatively inefficient in that it must precalcu‐
late the hashcode of every element (so that elements with identical hashcodes can be
processed on the same thread). If you find this too slow, your only option is to call
AsSequential to disable parallelization.

For all other query operators, you have a choice as to whether to use range or chunk
partitioning. By default:

• If the input sequence is indexable (if it’s an array or implements IList<T>),
PLINQ chooses range partitioning.

• Otherwise, PLINQ chooses chunk partitioning.

In a nutshell, range partitioning is faster with long sequences for which every ele‐
ment takes a similar amount of CPU time to process. Otherwise, chunk partitioning
is usually faster.

P
arallel

P
ro

g
ram

m
ing

PLINQ | 957

www.EBooksWorld.ir

To force range partitioning:

• If the query starts with Enumerable.Range, replace that method with Paralle
lEnumerable.Range.

• Otherwise, simply call ToList or ToArray on the input sequence (obviously,
this incurs a performance cost in itself, which you should take into account).

ParallelEnumerable.Range is not simply a shortcut for call‐
ing Enumerable.Range(...).AsParallel(). It changes the per‐
formance of the query by activating range partitioning.

To force chunk partitioning, wrap the input sequence in a call to Partitioner.Cre
ate (in System.Collection.Concurrent) as follows:

int[] numbers = { 3, 4, 5, 6, 7, 8, 9 };
var parallelQuery =
 Partitioner.Create (numbers, true).AsParallel()
 .Where (...)

The second argument to Partitioner.Create indicates that you want to load-
balance the query, which is another way of saying that you want chunk partitioning.

Chunk partitioning works by having each worker thread periodically grab small
“chunks” of elements from the input sequence to process (see Figure 23-4). PLINQ
starts by allocating very small chunks (one or two elements at a time), then increa‐
ses the chunk size as the query progresses: this ensures that small sequences are
effectively parallelized and large sequences don’t cause excessive round-tripping. If a
worker happens to get “easy” elements (that process quickly), it will end up getting
more chunks. This system keeps every thread equally busy (and the cores “bal‐
anced”); the only downside is that fetching elements from the shared input sequence
requires synchronization (typically an exclusive lock)—and this can result in some
overhead and contention.

Range partitioning bypasses the normal input-side enumeration and preallocates an
equal number of elements to each worker, avoiding contention on the input
sequence. But if some threads happen to get easy elements and finish early, they sit
idle while the remaining threads continue working. Our earlier prime number cal‐
culator might perform poorly with range partitioning. An example of when range
partitioning would do well is in calculating the sum of the square roots of the first
10 million integers:

ParallelEnumerable.Range (1, 10000000).Sum (i => Math.Sqrt (i))

ParallelEnumerable.Range returns a ParallelQuery<T>, so you don’t need to sub‐
sequently call AsParallel.

958 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

Range partitioning doesn’t necessarily allocate element ranges
in contiguous blocks—it might instead choose a “striping”
strategy. For instance, if there are two workers, one worker
might process odd-numbered elements while the other pro‐
cesses even-numbered elements. The TakeWhile operator is
almost certain to trigger a striping strategy to avoid unneces‐
sarily processing elements later in the sequence.

Figure 23-4. Chunk versus range partitioning

Optimizing custom aggregations
PLINQ parallelizes the Sum, Average, Min, and Max operators efficiently without
additional intervention. The Aggregate operator, though, presents special chal‐
lenges for PLINQ. As described in Chapter 9, Aggregate performs custom aggrega‐
tions. For example, the following sums a sequence of numbers, mimicking the Sum
operator:

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate (0, (total, n) => total + n); // 6

We also saw in Chapter 9 that for unseeded aggregations, the supplied delegate must
be associative and commutative. PLINQ will give incorrect results if this rule is vio‐
lated, because it draws multiple seeds from the input sequence in order to aggregate
several partitions of the sequence simultaneously.

P
arallel

P
ro

g
ram

m
ing

PLINQ | 959

www.EBooksWorld.ir

Explicitly seeded aggregations might seem like a safe option with PLINQ, but
unfortunately these ordinarily execute sequentially because of the reliance on a sin‐
gle seed. To mitigate this, PLINQ provides another overload of Aggregate that lets
you specify multiple seeds—or rather, a seed factory function. For each thread, it
executes this function to generate a separate seed, which becomes a thread-local
accumulator into which it locally aggregates elements.

You must also supply a function to indicate how to combine the local and main
accumulators. Finally, this Aggregate overload (somewhat gratuitously) expects a
delegate to perform any final transformation on the result (you can achieve this as
easily by running some function on the result yourself afterward). So, here are the
four delegates, in the order they are passed:

seedFactory

Returns a new local accumulator

updateAccumulatorFunc

Aggregates an element into a local accumulator

combineAccumulatorFunc

Combines a local accumulator with the main accumulator

resultSelector

Applies any final transformation on the end result

In simple scenarios, you can specify a seed value instead of a
seed factory. This tactic fails when the seed is a reference type
that you wish to mutate, because the same instance will then
be shared by each thread.

To give a very simple example, the following sums the values in a numbers array:

numbers.AsParallel().Aggregate (
 () => 0, // seedFactory
 (localTotal, n) => localTotal + n, // updateAccumulatorFunc
 (mainTot, localTot) => mainTot + localTot, // combineAccumulatorFunc
 finalResult => finalResult) // resultSelector

This example is contrived in that we could get the same answer just as efficiently
using simpler approaches (such as an unseeded aggregate, or better, the Sum opera‐
tor). To give a more realistic example, suppose we wanted to calculate the frequency
of each letter in the English alphabet in a given string. A simple sequential solution
might look like this:

string text = "Let's suppose this is a really long string";
var letterFrequencies = new int[26];
foreach (char c in text)
{
 int index = char.ToUpper (c) - 'A';
 if (index >= 0 && index <= 26) letterFrequencies [index]++;
};

960 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

An example of when the input text might be very long is in
gene sequencing. The “alphabet” would then consist of the let‐
ters a, c, g, and t.

To parallelize this, we could replace the foreach statement with a call to Paral
lel.ForEach (as we’ll cover in the following section), but this will leave us to deal
with concurrency issues on the shared array. And locking around accessing that
array would all but kill the potential for parallelization.

Aggregate offers a tidy solution. The accumulator, in this case, is an array just like
the letterFrequencies array in our preceding example. Here’s a sequential version
using Aggregate:

int[] result =
 text.Aggregate (
 new int[26], // Create the "accumulator"
 (letterFrequencies, c) => // Aggregate a letter into the accumulator
 {
 int index = char.ToUpper (c) - 'A';
 if (index >= 0 && index <= 26) letterFrequencies [index]++;
 return letterFrequencies;
 });

And now the parallel version, using PLINQ’s special overload:

int[] result =
 text.AsParallel().Aggregate (
 () => new int[26], // Create a new local accumulator

 (localFrequencies, c) => // Aggregate into the local accumulator
 {
 int index = char.ToUpper (c) - 'A';
 if (index >= 0 && index <= 26) localFrequencies [index]++;
 return localFrequencies;
 },
 // Aggregate local->main accumulator
 (mainFreq, localFreq) =>
 mainFreq.Zip (localFreq, (f1, f2) => f1 + f2).ToArray(),

 finalResult => finalResult // Perform any final transformation
); // on the end result.

Notice that the local accumulation function mutates the localFrequencies array.
This ability to perform this optimization is important—and is legitimate because
localFrequencies is local to each thread.

The Parallel Class
PFX provides a basic form of structured parallelism via three static methods in the
Parallel class:

Parallel.Invoke

Executes an array of delegates in parallel

P
arallel

P
ro

g
ram

m
ing

The Parallel Class | 961

www.EBooksWorld.ir

Parallel.For

Performs the parallel equivalent of a C# for loop

Parallel.ForEach

Performs the parallel equivalent of a C# foreach loop

All three methods block until all work is complete. As with PLINQ, after an unhan‐
dled exception, remaining workers are stopped after their current iteration, and the
exception (or exceptions) are thrown back to the caller—wrapped in an Aggrega
teException (see “Working with AggregateException” on page 978).

Parallel.Invoke
Parallel.Invoke executes an array of Action delegates in parallel and then waits
for them to complete. The simplest version of the method is defined as follows:

public static void Invoke (params Action[] actions);

Just as with PLINQ, the Parallel.* methods are optimized for compute-bound and
not I/O-bound work. However, downloading two web pages at once provides a sim‐
ple way to demonstrate Parallel.Invoke:

Parallel.Invoke (
 () => new WebClient().DownloadFile ("http://www.linqpad.net", "lp.html"),
 () => new WebClient().DownloadFile ("http://www.jaoo.dk", "jaoo.html"));

On the surface, this seems like a convenient shortcut for creating and waiting on
two thread-bound Task objects. But there’s an important difference: Paral
lel.Invoke still works efficiently if you pass in an array of a million delegates. This
is because it partitions large numbers of elements into batches which it assigns to a
handful of underlying Tasks—rather than creating a separate Task for each delegate.

As with all of Parallel’s methods, you’re on your own when it comes to collating
the results. This means you need to keep thread safety in mind. The following, for
instance, is thread-unsafe:

var data = new List<string>();
Parallel.Invoke (
 () => data.Add (new WebClient().DownloadString ("http://www.foo.com")),
 () => data.Add (new WebClient().DownloadString ("http://www.far.com")));

Locking around adding to the list would resolve this, although locking would create
a bottleneck if you had a much larger array of quickly executing delegates. A better
solution is to use the thread-safe collections that we’ll cover in later sections—Con

currentBag would be ideal in this case.

Parallel.Invoke is also overloaded to accept a ParallelOptions object:

public static void Invoke (ParallelOptions options,
 params Action[] actions);

With ParallelOptions, you can insert a cancellation token, limit the maximum
concurrency, and specify a custom task scheduler. A cancellation token is relevant

962 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

when you’re executing (roughly) more tasks than you have cores: upon cancellation,
any unstarted delegates will be abandoned. Any already-executing delegates will,
however, continue to completion. See “Cancellation” on page 610 for an example of
how to use cancellation tokens.

Parallel.For and Parallel.ForEach
Parallel.For and Parallel.ForEach perform the equivalent of a C# for and fore
ach loop, but with each iteration executing in parallel instead of sequentially. Here
are their (simplest) signatures:

public static ParallelLoopResult For (
 int fromInclusive, int toExclusive, Action<int> body)

public static ParallelLoopResult ForEach<TSource> (
 IEnumerable<TSource> source, Action<TSource> body)

The following sequential for loop:

for (int i = 0; i < 100; i++)
 Foo (i);

is parallelized like this:

Parallel.For (0, 100, i => Foo (i));

or more simply:

Parallel.For (0, 100, Foo);

And the following sequential foreach:

foreach (char c in "Hello, world")
 Foo (c);

is parallelized like this:

Parallel.ForEach ("Hello, world", Foo);

To give a practical example, if we import the System.Security.Cryptography
namespace, we can generate six public/private key-pair strings in parallel as follows:

var keyPairs = new string[6];

Parallel.For (0, keyPairs.Length,
 i => keyPairs[i] = RSA.Create().ToXmlString (true));

As with Parallel.Invoke, we can feed Parallel.For and Parallel.ForEach a
large number of work items and they’ll be efficiently partitioned onto a few tasks.

The latter query could also be done with PLINQ:
string[] keyPairs =
 ParallelEnumerable.Range (0, 6)
 .Select (i => RSA.Create().ToXmlString (true))
 .ToArray();

P
arallel

P
ro

g
ram

m
ing

The Parallel Class | 963

www.EBooksWorld.ir

Outer versus inner loops
Parallel.For and Parallel.ForEach usually work best on outer rather than inner
loops. This is because with the former, you’re offering larger chunks of work to par‐
allelize, diluting the management overhead. Parallelizing both inner and outer loops
is usually unnecessary. In the following example, we’d typically need more than 100
cores to benefit from the inner parallelization:

Parallel.For (0, 100, i =>
{
 Parallel.For (0, 50, j => Foo (i, j)); // Sequential would be better
}); // for the inner loop.

Indexed Parallel.ForEach
Sometimes it’s useful to know the loop iteration index. With a sequential foreach,
it’s easy:

int i = 0;
foreach (char c in "Hello, world")
 Console.WriteLine (c.ToString() + i++);

Incrementing a shared variable, however, is not thread-safe in a parallel context.
You must instead use the following version of ForEach:

public static ParallelLoopResult ForEach<TSource> (
 IEnumerable<TSource> source, Action<TSource,ParallelLoopState,long> body)

We’ll ignore ParallelLoopState (which we’ll cover in the following section). For
now, we’re interested in Action’s third type parameter of type long, which indicates
the loop index:

Parallel.ForEach ("Hello, world", (c, state, i) =>
{
 Console.WriteLine (c.ToString() + i);
});

To put this into a practical context, we’ll revisit the spellchecker that we wrote with
PLINQ. The following code loads up a dictionary along with an array of a million
words to test:

if (!File.Exists ("WordLookup.txt")) // Contains about 150,000 words
 new WebClient().DownloadFile (
 "http://www.albahari.com/ispell/allwords.txt", "WordLookup.txt");

var wordLookup = new HashSet<string> (
 File.ReadAllLines ("WordLookup.txt"),
 StringComparer.InvariantCultureIgnoreCase);

var random = new Random();
string[] wordList = wordLookup.ToArray();

string[] wordsToTest = Enumerable.Range (0, 1000000)
 .Select (i => wordList [random.Next (0, wordList.Length)])
 .ToArray();

964 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

wordsToTest [12345] = "woozsh"; // Introduce a couple
wordsToTest [23456] = "wubsie"; // of spelling mistakes.

We can perform the spellcheck on our wordsToTest array using the indexed version
of Parallel.ForEach as follows:

var misspellings = new ConcurrentBag<Tuple<int,string>>();

Parallel.ForEach (wordsToTest, (word, state, i) =>
{
 if (!wordLookup.Contains (word))
 misspellings.Add (Tuple.Create ((int) i, word));
});

Notice that we had to collate the results into a thread-safe collection: having to do
this is the disadvantage when compared to using PLINQ. The advantage over
PLINQ is that we avoid the cost of applying an indexed Select query operator—
which is less efficient than an indexed ForEach.

ParallelLoopState: Breaking early out of loops
Because the loop body in a parallel For or ForEach is a delegate, you can’t exit the
loop early with a break statement. Instead, you must call Break or Stop on a Paral
lelLoopState object:

public class ParallelLoopState
{
 public void Break();
 public void Stop();

 public bool IsExceptional { get; }
 public bool IsStopped { get; }
 public long? LowestBreakIteration { get; }
 public bool ShouldExitCurrentIteration { get; }
}

Obtaining a ParallelLoopState is easy: all versions of For and ForEach are over‐
loaded to accept loop bodies of type Action<TSource,ParallelLoopState>. So, to
parallelize this:

foreach (char c in "Hello, world")
 if (c == ',')
 break;
 else
 Console.Write (c);

do this:

Parallel.ForEach ("Hello, world", (c, loopState) =>
{
 if (c == ',')
 loopState.Break();
 else
 Console.Write (c);

P
arallel

P
ro

g
ram

m
ing

The Parallel Class | 965

www.EBooksWorld.ir

});

// OUTPUT: Hlloe

You can see from the output that loop bodies may complete in a random order.
Aside from this difference, calling Break yields at least the same elements as execut‐
ing the loop sequentially: this example will always output at least the letters H, e, l, l,
and o in some order. In contrast, calling Stop instead of Break forces all threads to
finish right after their current iteration. In our example, calling Stop could give us a
subset of the letters H, e, l, l, and o if another thread was lagging behind. Calling
Stop is useful when you’ve found something that you’re looking for—or when
something has gone wrong and you won’t be looking at the results.

The Parallel.For and Parallel.ForEach methods return a
ParallelLoopResult object that exposes properties called
IsCompleted and LowestBreakIteration. These tell you
whether the loop ran to completion, and if not, at what cycle
the loop was broken.

If LowestBreakIteration returns null, it means that you
called Stop (rather than Break) on the loop.

If your loop body is long, you might want other threads to break partway through
the method body in case of an early Break or Stop. You can do this by polling the
ShouldExitCurrentIteration property at various places in your code; this prop‐
erty becomes true immediately after a Stop—or soon after a Break.

ShouldExitCurrentIteration also becomes true after a can‐
cellation request—or if an exception is thrown in the loop.

IsExceptional lets you know whether an exception has occurred on another
thread. Any unhandled exception will cause the loop to stop after each thread’s cur‐
rent iteration: to avoid this, you must explicitly handle exceptions in your code.

Optimization with local values
Parallel.For and Parallel.ForEach each offer a set of overloads that feature a
generic type argument called TLocal. These overloads are designed to help you
optimize the collation of data with iteration-intensive loops. The simplest is this:

public static ParallelLoopResult For <TLocal> (
 int fromInclusive,
 int toExclusive,
 Func <TLocal> localInit,
 Func <int, ParallelLoopState, TLocal, TLocal> body,
 Action <TLocal> localFinally);

These methods are rarely needed in practice because their target scenarios are cov‐
ered mostly by PLINQ (which is fortunate because these overloads are somewhat
intimidating!).

966 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

Essentially, the problem is this: suppose we want to sum the square roots of the
numbers 1 through 10,000,000. Calculating 10 million square roots is easily paralle‐
lizable, but summing their values is troublesome because we must lock around
updating the total:

object locker = new object();
double total = 0;
Parallel.For (1, 10000000,
 i => { lock (locker) total += Math.Sqrt (i); });

The gain from parallelization is more than offset by the cost of obtaining 10 million
locks—plus the resultant blocking.

The reality, though, is that we don’t actually need 10 million locks. Imagine a team
of volunteers picking up a large volume of litter. If all workers shared a single trash
can, the travel and contention would make the process extremely inefficient. The
obvious solution is for each worker to have a private or “local” trash can, which is
occasionally emptied into the main bin.

The TLocal versions of For and ForEach work in exactly this way. The volunteers
are internal worker threads, and the local value represents a local trash can. In order
for Parallel to do this job, you must feed it two additional delegates that indicate:

1. How to initialize a new local value
2. How to combine a local aggregation with the master value

Additionally, instead of the body delegate returning void, it should return the new
aggregate for the local value. Here’s our example refactored:

object locker = new object();
double grandTotal = 0;

Parallel.For (1, 10000000,

 () => 0.0, // Initialize the local value.

 (i, state, localTotal) => // Body delegate. Notice that it
 localTotal + Math.Sqrt (i), // returns the new local total.

 localTotal => // Add the local value
 { lock (locker) grandTotal += localTotal; } // to the master value.
);

We must still lock, but only around aggregating the local value to the grand total.
This makes the process dramatically more efficient.

P
arallel

P
ro

g
ram

m
ing

The Parallel Class | 967

www.EBooksWorld.ir

As stated earlier, PLINQ is often a good fit in these scenarios.
Our example could be parallelized with PLINQ simply like
this:

ParallelEnumerable.Range (1, 10000000)
 .Sum (i => Math.Sqrt (i))

(Notice that we used ParallelEnumerable to force range par‐
titioning: this improves performance in this case because all
numbers will take equally long to process.)

In more complex scenarios, you might use LINQ’s Aggregate
operator instead of Sum. If you supplied a local seed factory,
the situation would be somewhat analogous to providing a
local value function with Parallel.For.

Task Parallelism
Task parallelism is the lowest-level approach to parallelization with PFX. The classes
for working at this level are defined in the System.Threading.Tasks namespace
and comprise the following:

Class Purpose

Task For managing a unit for work

Task<TResult> For managing a unit for work with a return value

TaskFactory For creating tasks

TaskFactory<TResult> For creating tasks and continuations with the same return type

TaskScheduler For managing the scheduling of tasks

TaskCompletionSource For manually controlling a task’s workflow

We covered the basics of tasks in Chapter 14; in this section we’ll look at advanced
features of tasks that are aimed at parallel programming. Specifically:

• Tuning a task’s scheduling
• Establish a parent/child relationship when one task is started from another
• Advanced use of continuations

• TaskFactory

The Task Parallel Library lets you create hundreds (or even
thousands) of tasks with minimal overhead. But if you want to
create millions of tasks, you’ll need to partition those tasks
into larger work units to maintain efficiency. The Parallel
class and PLINQ do this automatically.

968 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

Visual Studio provides a window for monitoring tasks
(Debug→Window→Parallel Tasks). This is equivalent to the
Threads window, but for tasks. The Parallel Stacks window
also has a special mode for tasks.

Creating and Starting Tasks
As described in Chapter 14, Task.Run creates and starts a Task or Task<TResult>.
This method is actually a shortcut for calling Task.Factory.StartNew, which
allows greater flexibility through additional overloads.

Specifying a state object
Task.Factory.StartNew lets you specify a state object which is passed to the target.
The target method’s signature must then comprise a single object-type parameter:

static void Main()
{
 var task = Task.Factory.StartNew (Greet, "Hello");
 task.Wait(); // Wait for task to complete.
}

static void Greet (object state) { Console.Write (state); } // Hello

This avoids the cost of the closure required for executing a lambda expression that
calls Greet. This is a micro-optimization and is rarely necessary in practice, so we
can put the state object to better use, which is to assign a meaningful name to the
task. We can then use the AsyncState property to query its name:

static void Main()
{
 var task = Task.Factory.StartNew (state => Greet ("Hello"), "Greeting");
 Console.WriteLine (task.AsyncState); // Greeting
 task.Wait();
}

static void Greet (string message) { Console.Write (message); }

Visual Studio displays each task’s AsyncState in the Parallel
Tasks window, so having a meaningful name here can ease
debugging considerably.

TaskCreationOptions
You can tune a task’s execution by specifying a TaskCreationOptions enum when
calling StartNew (or instantiating a Task). TaskCreationOptions is a flags enum
with the following (combinable) values:

LongRunning, PreferFairness, AttachedToParent

LongRunning suggests to the scheduler to dedicate a thread to the task, and as we
described in Chapter 14, this is beneficial for I/O-bound tasks and for long-running

P
arallel

P
ro

g
ram

m
ing

Task Parallelism | 969

www.EBooksWorld.ir

tasks that might otherwise force short-running tasks to wait an unreasonable
amount of time before being scheduled.

PreferFairness tells the scheduler to try to ensure that tasks are scheduled in the
order they were started. It may ordinarily do otherwise, because it internally optimi‐
zes the scheduling of tasks using local work-stealing queues—an optimization that
allows the creation of child tasks without incurring the contention overhead that
would otherwise arise with a single work queue. A child task is created by specifying
AttachedToParent.

Child tasks
When one task starts another, you can optionally establish a parent-child relation‐
ship:

Task parent = Task.Factory.StartNew (() =>
{
 Console.WriteLine ("I am a parent");

 Task.Factory.StartNew (() => // Detached task
 {
 Console.WriteLine ("I am detached");
 });

 Task.Factory.StartNew (() => // Child task
 {
 Console.WriteLine ("I am a child");
 }, TaskCreationOptions.AttachedToParent);
});

A child task is special in that when you wait for the parent task to complete, it waits
for any children as well. At which point any child exceptions bubble up:

TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
var parent = Task.Factory.StartNew (() =>
{
 Task.Factory.StartNew (() => // Child
 {
 Task.Factory.StartNew (() => { throw null; }, atp); // Grandchild
 }, atp);
});

// The following call throws a NullReferenceException (wrapped
// in nested AggregateExceptions):
parent.Wait();

This can be particularly useful when a child task is a continuation, as we’ll see
shortly.

Waiting on Multiple Tasks
We saw in Chapter 14 that you can wait on a single task either by calling its Wait
method or accessing its Result property (if it’s a Task<TResult>). You can also wait

970 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

on multiple tasks at once—via the static methods Task.WaitAll (waits for all the
specified tasks to finish) and Task.WaitAny (waits for just one task to finish).

WaitAll is similar to waiting out each task in turn, but is more efficient in that it
requires (at most) just one context switch. Also, if one or more of the tasks throw an
unhandled exception, WaitAll still waits out every task—and then rethrows an
AggregateException that accumulates the exceptions from each faulted task (this is
where AggregateException is genuinely useful). It’s equivalent to doing this:

// Assume t1, t2 and t3 are tasks:
var exceptions = new List<Exception>();
try { t1.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
try { t2.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
try { t3.Wait(); } catch (AggregateException ex) { exceptions.Add (ex); }
if (exceptions.Count > 0) throw new AggregateException (exceptions);

Calling WaitAny is equivalent to waiting on a ManualResetEventSlim that’s signaled
by each task as it finishes.

As well as a timeout, you can also pass in a cancellation token to the Wait methods:
this lets you cancel the wait—not the task itself.

Canceling Tasks
You can optionally pass in a cancellation token when starting a task. Then, if cancel‐
lation occurs via that token, the task itself enters the “Canceled” state:

var cts = new CancellationTokenSource();
CancellationToken token = cts.Token;
cts.CancelAfter (500);

Task task = Task.Factory.StartNew (() =>
{
 Thread.Sleep (1000);
 token.ThrowIfCancellationRequested(); // Check for cancellation request
}, token);

try { task.Wait(); }
catch (AggregateException ex)
{
 Console.WriteLine (ex.InnerException is TaskCanceledException); // True
 Console.WriteLine (task.IsCanceled); // True
 Console.WriteLine (task.Status); // Canceled
}

TaskCanceledException is a subclass of OperationCanceledException. If you want
to explicitly throw an OperationCanceledException (rather than calling
token.ThrowIfCancellationRequested), you must pass the cancellation token into
OperationCanceledException’s constructor. If you fail to do this, the task won’t end
up with a TaskStatus.Canceled status and won’t trigger OnlyOnCanceled continua‐
tions.

P
arallel

P
ro

g
ram

m
ing

Task Parallelism | 971

www.EBooksWorld.ir

If the task is canceled before it has started, it won’t get scheduled—an OperationCan
celedException will instead be thrown on the task immediately.

Because cancellation tokens are recognized by other APIs, you can pass them into
other constructs and cancellations will propagate seamlessly:

var cancelSource = new CancellationTokenSource();
CancellationToken token = cancelSource.Token;

Task task = Task.Factory.StartNew (() =>
{
 // Pass our cancellation token into a PLINQ query:
 var query = someSequence.AsParallel().WithCancellation (token)...
 ... enumerate query ...
});

Calling Cancel on cancelSource in this example will cancel the PLINQ query,
which will throw an OperationCanceledException on the task body, which will
then cancel the task.

The cancellation tokens that you can pass into methods such
as Wait and CancelAndWait allow you to cancel the wait oper‐
ation and not the task itself.

Continuations
The ContinueWith method executes a delegate right after a task ends:

Task task1 = Task.Factory.StartNew (() => Console.Write ("antecedant.."));
Task task2 = task1.ContinueWith (ant => Console.Write ("..continuation"));

As soon as task1 (the antecedent) completes, fails, or is canceled, task2 (the contin‐
uation) starts. (If task1 had completed before the second line of code ran, task2
would be scheduled to execute right away.) The ant argument passed to the contin‐
uation’s lambda expression is a reference to the antecedent task. ContinueWith itself
returns a task, making it easy to add further continuations.

By default, antecedent and continuation tasks may execute on different threads. You
can force them to execute on the same thread by specifying TaskContinuationOp
tions.ExecuteSynchronously when calling ContinueWith: this can improve per‐
formance in very fine-grained continuations by lessening indirection.

Continuations and Task<TResult>
Just like ordinary tasks, continuations can be of type Task<TResult> and return
data. In the following example, we calculate Math.Sqrt(8*2) using a series of
chained tasks and then write out the result:

Task.Factory.StartNew<int> (() => 8)
 .ContinueWith (ant => ant.Result * 2)
 .ContinueWith (ant => Math.Sqrt (ant.Result))
 .ContinueWith (ant => Console.WriteLine (ant.Result)); // 4

972 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

Our example is somewhat contrived for simplicity; in real life, these lambda expres‐
sions would call computationally intensive functions.

Continuations and exceptions
A continuation can know whether an antecedent faulted by querying the antecedent
task’s Exception property—or simply by invoking Result / Wait and catching the
resultant AggregateException. If an antecedent faults and the continuation does
neither, the exception is considered unobserved and the static TaskScheduler.Unob
servedTaskException event fires when the task is later garbage collected.

A safe pattern is to rethrow antecedent exceptions. As long as the continuation is
Waited upon, the exception will be propagated and rethrown to the Waiter:

Task continuation = Task.Factory.StartNew (() => { throw null; })
 .ContinueWith (ant =>
 {
 ant.Wait();
 // Continue processing...
 });

continuation.Wait(); // Exception is now thrown back to caller.

Another way to deal with exceptions is to specify different continuations for excep‐
tional versus nonexceptional outcomes. This is done with TaskContinuationOp
tions:

Task task1 = Task.Factory.StartNew (() => { throw null; });

Task error = task1.ContinueWith (ant => Console.Write (ant.Exception),
 TaskContinuationOptions.OnlyOnFaulted);

Task ok = task1.ContinueWith (ant => Console.Write ("Success!"),
 TaskContinuationOptions.NotOnFaulted);

This pattern is particularly useful in conjunction with child tasks, as we’ll see very
soon.

The following extension method “swallows” a task’s unhandled exceptions:

public static void IgnoreExceptions (this Task task)
{
 task.ContinueWith (t => { var ignore = t.Exception; },
 TaskContinuationOptions.OnlyOnFaulted);
}

(This could be improved by adding code to log the exception.) Here’s how it would
be used:

Task.Factory.StartNew (() => { throw null; }).IgnoreExceptions();

P
arallel

P
ro

g
ram

m
ing

Task Parallelism | 973

www.EBooksWorld.ir

Continuations and child tasks
A powerful feature of continuations is that they kick off only when all child tasks
have completed (see Figure 23-5). At that point, any exceptions thrown by the chil‐
dren are marshaled to the continuation.

In the following example, we start three child tasks, each throwing a NullReferen
ceException. We then catch all of them in one fell swoop via a continuation on the
parent:

TaskCreationOptions atp = TaskCreationOptions.AttachedToParent;
Task.Factory.StartNew (() =>
{
 Task.Factory.StartNew (() => { throw null; }, atp);
 Task.Factory.StartNew (() => { throw null; }, atp);
 Task.Factory.StartNew (() => { throw null; }, atp);
})
.ContinueWith (p => Console.WriteLine (p.Exception),
 TaskContinuationOptions.OnlyOnFaulted);

Figure 23-5. Continuations

974 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

Conditional continuations
By default, a continuation is scheduled unconditionally—whether the antecedent
completes, throws an exception, or is canceled. You can alter this behavior via a set
of (combinable) flags included within the TaskContinuationOptions enum. The
three core flags that control conditional continuation are:

NotOnRanToCompletion = 0x10000,
NotOnFaulted = 0x20000,
NotOnCanceled = 0x40000,

These flags are subtractive in the sense that the more you apply, the less likely the
continuation is to execute. For convenience, there are also the following precom‐
bined values:

OnlyOnRanToCompletion = NotOnFaulted | NotOnCanceled,
OnlyOnFaulted = NotOnRanToCompletion | NotOnCanceled,
OnlyOnCanceled = NotOnRanToCompletion | NotOnFaulted

(Combining all the Not* flags [NotOnRanToCompletion, NotOnFaulted, NotOnCan
celed] is nonsensical, as it would result in the continuation always being canceled.)

“RanToCompletion” means the antecedent succeeded—without cancellation or
unhandled exceptions.

“Faulted” means an unhandled exception was thrown on the antecedent.

“Canceled” means one of two things:

• The antecedent was canceled via its cancellation token. In other words, an Oper
ationCanceledException was thrown on the antecedent—whose Cancella
tionToken property matched that passed to the antecedent when it was started.

• The antecedent was implicitly canceled because it didn’t satisfy a conditional
continuation predicate.

It’s essential to grasp that when a continuation doesn’t execute by virtue of these
flags, the continuation is not forgotten or abandoned—it’s canceled. This means that
any continuations on the continuation itself will then run—unless you predicate
them with NotOnCanceled. For example, consider this:

Task t1 = Task.Factory.StartNew (...);

Task fault = t1.ContinueWith (ant => Console.WriteLine ("fault"),
 TaskContinuationOptions.OnlyOnFaulted);

Task t3 = fault.ContinueWith (ant => Console.WriteLine ("t3"));

As it stands, t3 will always get scheduled—even if t1 doesn’t throw an exception
(see Figure 23-6). This is because if t1 succeeds, the fault task will be canceled, and
with no continuation restrictions placed on t3, t3 will then execute unconditionally.

P
arallel

P
ro

g
ram

m
ing

Task Parallelism | 975

www.EBooksWorld.ir

Figure 23-6. Conditional continuations

If we want t3 to execute only if fault actually runs, we must instead do this:

Task t3 = fault.ContinueWith (ant => Console.WriteLine ("t3"),
 TaskContinuationOptions.NotOnCanceled);

(Alternatively, we could specify OnlyOnRanToCompletion; the difference is that t3
would not then execute if an exception was thrown within fault.)

Continuations with multiple antecedents
You can schedule continuation to execute based on the completion of multiple ante‐
cedents with the ContinueWhenAll and ContinueWhenAny methods in the TaskFac
tory class. These methods have become redundant, however, with the introduction
of the task combinators that we discussed in Chapter 14 (WhenAll and WhenAny).
Specifically, given the following tasks:

var task1 = Task.Run (() => Console.Write ("X"));
var task2 = Task.Run (() => Console.Write ("Y"));

we can schedule a continuation to execute when both complete as follows:

var continuation = Task.Factory.ContinueWhenAll (
 new[] { task1, task2 }, tasks => Console.WriteLine ("Done"));

Here’s the same result with the WhenAll task combinator:

var continuation = Task.WhenAll (task1, task2)
 .ContinueWith (ant => Console.WriteLine ("Done"));

Multiple continuations on a single antecedent
Calling ContinueWith more than once on the same task creates multiple continua‐
tions on a single antecedent. When the antecedent finishes, all continuations will
start together (unless you specify TaskContinuationOptions.ExecuteSynchro
nously, in which case the continuations will execute sequentially).

The following waits for one second and then writes either “XY” or “YX”:

var t = Task.Factory.StartNew (() => Thread.Sleep (1000));
t.ContinueWith (ant => Console.Write ("X"));
t.ContinueWith (ant => Console.Write ("Y"));

976 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

Task Schedulers
A task scheduler allocates tasks to threads and is represented by the abstract Task
Scheduler class. The Framework provides two concrete implementations: the
default scheduler that works in tandem with the CLR thread pool, and the synchroni‐
zation context scheduler. The latter is designed (primarily) to help you with the
threading model of WPF and Windows Forms, which requires that UI elements and
controls are accessed only from the thread that created them (see “Threading in
Rich-Client Applications” on page 576 in Chapter 14). By capturing it, we can tell a
task or a continuation to execute on this context:

// Suppose we are on a UI thread in a Windows Forms / WPF application:
_uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();

Assuming Foo is a compute-bound method that returns a string and lblResult is a
WPF or Windows Forms label, we could then safely update the label after the opera‐
tion completes as follows:

Task.Run (() => Foo())
 .ContinueWith (ant => lblResult.Content = ant.Result, _uiScheduler);

Of course, C#’s asynchronous functions would more commonly be used for this
kind of thing.

It’s also possible to write our own task scheduler (by subclassing TaskScheduler),
although this is something you’d do only in very specialized scenarios. For custom
scheduling, you’d more commonly use TaskCompletionSource.

TaskFactory
When you call Task.Factory, you’re calling a static property on Task that returns a
default TaskFactory object. The purpose of a task factory is to create tasks—specifi‐
cally, three kinds of tasks:

• “Ordinary” tasks (via StartNew)

• Continuations with multiple antecedents (via ContinueWhenAll and Continue
WhenAny)

• Tasks that wrap methods that follow the defunct APM (via FromAsync; see
“Obsolete Patterns” on page 618 in Chapter 14).

Another way to create tasks is to instantiate Task and call Start. However this only
lets you create “ordinary” tasks, not continuations.

Creating your own task factories
TaskFactory is not an abstract factory: you can actually instantiate the class, and
this is useful when you want to repeatedly create tasks using the same (nonstan‐
dard) values for TaskCreationOptions, TaskContinuationOptions, or TaskSchedu

P
arallel

P
ro

g
ram

m
ing

Task Parallelism | 977

www.EBooksWorld.ir

ler. For example, if we wanted to repeatedly create long-running parented tasks, we
could create a custom factory as follows:

var factory = new TaskFactory (
 TaskCreationOptions.LongRunning | TaskCreationOptions.AttachedToParent,
 TaskContinuationOptions.None);

Creating tasks is then simply a matter of calling StartNew on the factory:

Task task1 = factory.StartNew (Method1);
Task task2 = factory.StartNew (Method2);
...

The custom continuation options are applied when calling ContinueWhenAll and
ContinueWhenAny.

Working with AggregateException
As we’ve seen, PLINQ, the Parallel class, and Tasks automatically marshal excep‐
tions to the consumer. To see why this is essential, consider the following LINQ
query, which throws a DivideByZeroException on the first iteration:

try
{
 var query = from i in Enumerable.Range (0, 1000000)
 select 100 / i;
 ...
}
catch (DivideByZeroException)
{
 ...
}

If we asked PLINQ to parallelize this query and it ignored the handling of excep‐
tions, a DivideByZeroException would probably be thrown on a separate thread,
bypassing our catch block and causing the application to die.

Hence, exceptions are automatically caught and rethrown to the caller. But unfortu‐
nately, it’s not quite as simple as catching a DivideByZeroException. Because these
libraries leverage many threads, it’s actually possible for two or more exceptions to
be thrown simultaneously. To ensure that all exceptions are reported, exceptions are
therefore wrapped in an AggregateException container, which exposes an InnerEx
ceptions property containing each of the caught exception(s):

try
{
 var query = from i in ParallelEnumerable.Range (0, 1000000)
 select 100 / i;
 // Enumerate query
 ...
}
catch (AggregateException aex)
{
 foreach (Exception ex in aex.InnerExceptions)

978 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

 Console.WriteLine (ex.Message);
}

Both PLINQ and the Parallel class end the query or loop
execution upon encountering the first exception—by not pro‐
cessing any further elements or loop bodies. More exceptions
might be thrown, however, before the current cycle is com‐
plete. The first exception in AggregateException is visible in
the InnerException property.

Flatten and Handle
The AggregateException class provides a couple of methods to simplify exception
handling: Flatten and Handle.

Flatten
AggregateExceptions will quite often contain other AggregateExceptions. An
example of when this might happen is if a child task throws an exception. You can
eliminate any level of nesting to simplify handling by calling Flatten. This method
returns a new AggregateException with a simple flat list of inner exceptions:

catch (AggregateException aex)
{
 foreach (Exception ex in aex.Flatten().InnerExceptions)
 myLogWriter.LogException (ex);
}

Handle
Sometimes it’s useful to catch only specific exception types and have other types
rethrown. The Handle method on AggregateException provides a shortcut for
doing this. It accepts an exception predicate which it runs over every inner excep‐
tion:

public void Handle (Func<Exception, bool> predicate)

If the predicate returns true, it considers that exception “handled.” After the dele‐
gate has run over every exception, the following happens:

• If all exceptions were “handled” (the delegate returned true), the exception is
not rethrown.

• If there were any exceptions for which the delegate returned false (“unhan‐
dled”), a new AggregateException is built up containing those exceptions and
is rethrown.

For instance, the following ends up rethrowing another AggregateException that
contains a single NullReferenceException:

P
arallel

P
ro

g
ram

m
ing

Working with AggregateException | 979

www.EBooksWorld.ir

var parent = Task.Factory.StartNew (() =>
{
 // We'll throw 3 exceptions at once using 3 child tasks:

 int[] numbers = { 0 };

 var childFactory = new TaskFactory
 (TaskCreationOptions.AttachedToParent, TaskContinuationOptions.None);

 childFactory.StartNew (() => 5 / numbers[0]); // Division by zero
 childFactory.StartNew (() => numbers [1]); // Index out of range
 childFactory.StartNew (() => { throw null; }); // Null reference
});

try { parent.Wait(); }
catch (AggregateException aex)
{
 aex.Flatten().Handle (ex => // Note that we still need to call Flatten
 {
 if (ex is DivideByZeroException)
 {
 Console.WriteLine ("Divide by zero");
 return true; // This exception is "handled"
 }
 if (ex is IndexOutOfRangeException)
 {
 Console.WriteLine ("Index out of range");
 return true; // This exception is "handled"
 }
 return false; // All other exceptions will get rethrown
 });
}

Concurrent Collections
Framework 4.0 added a set of new collections in the System.Collections.Concur
rent namespace. All of these are fully thread-safe:

Concurrent collection Nonconcurrent equivalent

ConcurrentStack<T> Stack<T>

ConcurrentQueue<T> Queue<T>

ConcurrentBag<T> (none)

ConcurrentDictionary<TKey,TValue> Dictionary<TKey,TValue>

The concurrent collections are optimized for high-concurrency scenarios; however
they can also be useful whenever need a thread-safe collection (as an alternative to
locking around an ordinary collection). However, there are some caveats:

980 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

• The conventional collections outperform the concurrent collections in all but
highly concurrent scenarios.

• A thread-safe collection doesn’t guarantee that the code using it will be thread-
safe (see “Thread Safety” on page 629 in the preceding chapter).

• If you enumerate over a concurrent collection while another thread is modify‐
ing it, no exception is thrown—instead, you get a mixture of old and new con‐
tent.

• There’s no concurrent version of List<T>.
• The concurrent stack, queue, and bag classes are implemented internally with

linked lists. This makes them less memory-efficient than the nonconcurrent
Stack and Queue classes, but better for concurrent access because linked lists
are conducive to lock-free or low-lock implementations. (This is because
inserting a node into a linked list requires updating just a couple of references,
while inserting an element into a List<T>-like structure may require moving
thousands of existing elements.)

In other words, these collections are not merely shortcuts for using an ordinary col‐
lection with a lock. To demonstrate, if we execute the following code on a single
thread:

var d = new ConcurrentDictionary<int,int>();
for (int i = 0; i < 1000000; i++) d[i] = 123;

it runs three times more slowly than this:

var d = new Dictionary<int,int>();
for (int i = 0; i < 1000000; i++) lock (d) d[i] = 123;

(Reading from a ConcurrentDictionary, however, is fast because reads are lock-
free.)

The concurrent collections also differ from conventional collections in that they
expose special methods to perform atomic test-and-act operations, such as TryPop.
Most of these methods are unified via the IProducerConsumerCollection<T> inter‐
face.

IProducerConsumerCollection<T>
A producer/consumer collection is one for which the two primary use cases are:

• Adding an element (“producing”)
• Retrieving an element while removing it (“consuming”)

The classic examples are stacks and queues. Producer/consumer collections are sig‐
nificant in parallel programming because they’re conducive to efficient lock-free
implementations.

P
arallel

P
ro

g
ram

m
ing

Concurrent Collections | 981

www.EBooksWorld.ir

The IProducerConsumerCollection<T> interface represents a thread-safe pro‐
ducer/consumer collection. The following classes implement this interface:

ConcurrentStack<T>
ConcurrentQueue<T>
ConcurrentBag<T>

IProducerConsumerCollection<T> extends ICollection, adding the following
methods:

void CopyTo (T[] array, int index);
T[] ToArray();
bool TryAdd (T item);
bool TryTake (out T item);

The TryAdd and TryTake methods test whether an add/remove operation can be
performed, and if so, they perform the add/remove. The testing and acting are per‐
formed atomically, eliminating the need to lock as you would around a conventional
collection:

int result;
lock (myStack) if (myStack.Count > 0) result = myStack.Pop();

TryTake returns false if the collection is empty. TryAdd always succeeds and
returns true in the three implementations provided. If you wrote your own concur‐
rent collection that prohibited duplicates, however, you’d make TryAdd return false
if the element already existed (an example would be if you wrote a concurrent set).

The particular element that TryTake removes is defined by the subclass:

• With a stack, TryTake removes the most recently added element.

• With a queue, TryTake removes the least recently added element.

• With a bag, TryTake removes whatever element it can remove most efficiently.

The three concrete classes mostly implement the TryTake and TryAdd methods
explicitly, exposing the same functionality through more specifically named public
methods such as TryDequeue and TryPop.

ConcurrentBag<T>
ConcurrentBag<T> stores an unordered collection of objects (with duplicates per‐
mitted). ConcurrentBag<T> is suitable in situations when you don’t care which ele‐
ment you get when calling Take or TryTake.

The benefit of ConcurrentBag<T> over a concurrent queue or stack is that a bag’s
Add method suffers almost no contention when called by many threads at once. In
contrast, calling Add in parallel on a queue or stack incurs some contention
(although a lot less than locking around a nonconcurrent collection). Calling Take
on a concurrent bag is also very efficient—as long as each thread doesn’t take more
elements than it Added.

982 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

1 Due to an implementation detail, there actually needs to be at least two elements to avoid conten‐
tion entirely.

Inside a concurrent bag, each thread gets its own private linked list. Elements are
added to the private list that belongs to the thread calling Add, eliminating conten‐
tion. When you enumerate over the bag, the enumerator travels through each
thread’s private list, yielding each of its elements in turn.

When you call Take, the bag first looks at the current thread’s private list. If there’s at
least one element,1 it can complete the task easily and without contention. But if the
list is empty, it must “steal” an element from another thread’s private list and incur
the potential for contention.

So, to be precise, calling Take gives you the element added most recently on that
thread; if there are no elements on that thread, it gives you the element added most
recently on another thread, chosen at random.

Concurrent bags are ideal when the parallel operation on your collection mostly
comprises Adding elements—or when the Adds and Takes are balanced on a thread.
We saw an example of the former previously, when using Parallel.ForEach to
implement a parallel spellchecker:

var misspellings = new ConcurrentBag<Tuple<int,string>>();

Parallel.ForEach (wordsToTest, (word, state, i) =>
{
 if (!wordLookup.Contains (word))
 misspellings.Add (Tuple.Create ((int) i, word));
});

A concurrent bag would be a poor choice for a producer/consumer queue, because
elements are added and removed by different threads.

BlockingCollection<T>
If you call TryTake on any of the producer/consumer collections we discussed in the
previous section:

ConcurrentStack<T>
ConcurrentQueue<T>
ConcurrentBag<T>

and the collection is empty, the method returns false. Sometimes it would be more
useful in this scenario to wait until an element is available.

Rather than overloading the TryTake methods with this functionality (which would
have caused a blowout of members after allowing for cancellation tokens and time‐
outs), PFX’s designers encapsulated this functionality into a wrapper class called
BlockingCollection<T>. A blocking collection wraps any collection that imple‐

P
arallel

P
ro

g
ram

m
ing

BlockingCollection<T> | 983

www.EBooksWorld.ir

ments IProducerConsumerCollection<T> and lets you Take an element from the
wrapped collection—blocking if no element is available.

A blocking collection also lets you limit the total size of the collection, blocking the
producer if that size is exceeded. A collection limited in this manner is called a boun‐
ded blocking collection.

To use BlockingCollection<T>:

1. Instantiate the class, optionally specifying the IProducerConsumerCollec
tion<T> to wrap and the maximum size (bound) of the collection.

2. Call Add or TryAdd to add elements to the underlying collection.

3. Call Take or TryTake to remove (consume) elements from the underlying col‐
lection.

If you call the constructor without passing in a collection, the class will automati‐
cally instantiate a ConcurrentQueue<T>. The producing and consuming methods let
you specify cancellation tokens and timeouts. Add and TryAdd may block if the col‐
lection size is bounded; Take and TryTake block while the collection is empty.

Another way to consume elements is to call GetConsumingEnumerable. This returns
a (potentially) infinite sequence that yields elements as they become available. You
can force the sequence to end by calling CompleteAdding: this method also prevents
further elements from being enqueued.

BlockingCollection also provides static methods called AddToAny and TakeFro
mAny, which let you add or take an element while specifying several blocking collec‐
tions. The action is then honored by the first collection able to service the request.

Writing a Producer/Consumer Queue
A producer/consumer queue is a useful structure, both in parallel programming
and general concurrency scenarios. Here’s how it works:

• A queue is set up to describe work items—or data upon which work is per‐
formed.

• When a task needs executing, it’s enqueued, and the caller gets on with other
things.

• One or more worker threads plug away in the background, picking off and exe‐
cuting queued items.

A producer/consumer queue gives you precise control over how many worker
threads execute at once, which is useful not only in limiting CPU consumption, but
other resources as well. If the tasks perform intensive disk I/O, for instance, you can
limit concurrency to avoid starving the operating system and other applications.
You can also dynamically add and remove workers throughout the queue’s life. The

984 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

CLR’s thread pool itself is a kind of producer/consumer queue, optimized for short-
running compute-bound jobs.

A producer/consumer queue typically holds items of data upon which (the same)
task is performed. For example, the items of data may be filenames, and the task
might be to encrypt those files. By making the item a delegate, however, you can
write a more general-purpose producer/consumer queue where each item can do
anything.

At http://albahari.com/threading, we show how to write a producer/consumer queue
from scratch using an AutoResetEvent (and later, using Monitor’s Wait and Pulse).
From Framework 4.0, though, writing a producer/consumer from scratch is unnec‐
essary because most of the functionality is provided by BlockingCollection<T>.
Here’s how we leverage it:

public class PCQueue : IDisposable
{
 BlockingCollection<Action> _taskQ = new BlockingCollection<Action>();

 public PCQueue (int workerCount)
 {
 // Create and start a separate Task for each consumer:
 for (int i = 0; i < workerCount; i++)
 Task.Factory.StartNew (Consume);
 }

 public void Enqueue (Action action) { _taskQ.Add (action); }

 void Consume()
 {
 // This sequence that we're enumerating will block when no elements
 // are available and will end when CompleteAdding is called.

 foreach (Action action in _taskQ.GetConsumingEnumerable())
 action(); // Perform task.
 }

 public void Dispose() { _taskQ.CompleteAdding(); }
}

Because we didn’t pass anything into BlockingCollection’s constructor, it instanti‐
ated a concurrent queue automatically. Had we passed in a ConcurrentStack, we’d
have ended up with a producer/consumer stack.

Leveraging Tasks
The producer/consumer that we just wrote is inflexible in that we can’t track work
items after they’ve been enqueued. It would be nice if we could:

• Know when a work item has completed (and await it)
• Cancel a work item

P
arallel

P
ro

g
ram

m
ing

BlockingCollection<T> | 985

www.EBooksWorld.ir

http://albahari.com/threading

• Deal elegantly with any exceptions thrown by a work item

An ideal solution would be to have the Enqueue method return some object giving
us the functionality just described. The good news is that a class already exists to do
exactly this—the Task class, which we can generate either with a TaskCompletion
Source, or by instantiating directly (creating an unstarted or cold task):

public class PCQueue : IDisposable
{
 BlockingCollection<Task> _taskQ = new BlockingCollection<Task>();

 public PCQueue (int workerCount)
 {
 // Create and start a separate Task for each consumer:
 for (int i = 0; i < workerCount; i++)
 Task.Factory.StartNew (Consume);
 }

 public Task Enqueue (Action action, CancellationToken cancelToken
 = default (CancellationToken))
 {
 var task = new Task (action, cancelToken);
 _taskQ.Add (task);
 return task;
 }

 public Task<TResult> Enqueue<TResult> (Func<TResult> func,
 CancellationToken cancelToken = default (CancellationToken))
 {
 var task = new Task<TResult> (func, cancelToken);
 _taskQ.Add (task);
 return task;
 }

 void Consume()
 {
 foreach (var task in _taskQ.GetConsumingEnumerable())
 try
 {
 if (!task.IsCanceled) task.RunSynchronously();
 }
 catch (InvalidOperationException) { } // Race condition
 }

 public void Dispose() { _taskQ.CompleteAdding(); }
}

In Enqueue, we enqueue and return to the caller a task that we create but don’t start.

In Consume, we run the task synchronously on the consumer’s thread. We catch an
InvalidOperationException to handle the unlikely event that the task is canceled
in between checking whether it’s canceled and running it.

986 | Chapter 23: Parallel Programming

www.EBooksWorld.ir

Here’s how we can use this class:

var pcQ = new PCQueue (2); // Maximum concurrency of 2
string result = await pcQ.Enqueue (() => "That was easy!");
...

Hence we have all the benefits of tasks—with exception propagation, return values
and cancellation—while taking complete control over scheduling.

P
arallel

P
ro

g
ram

m
ing

BlockingCollection<T> | 987

www.EBooksWorld.ir

www.EBooksWorld.ir

24
Application Domains

An application domain is the runtime unit of isolation in which a .NET program
runs. It provides a managed memory boundary, a container for loaded assemblies,
and application configuration settings, as well as delineating a communication
boundary for distributed applications.

Each .NET process usually hosts just one application domain: the default domain,
created automatically by the CLR when the process starts. It’s also possible—and
sometimes useful—to create additional application domains within the same pro‐
cess. This provides isolation while avoiding the overhead and communication com‐
plications that arise with having separate processes. It’s useful in scenarios such as
load testing and application patching, and in implementing robust error-recovery
mechanisms.

This chapter is irrelevant to Windows Store and CoreCLR
apps, which have access to only a single application domain.

Application Domain Architecture
Figure 24-1 illustrates the application domain architectures for single-domain, mul‐
tidomain, and typical distributed client/server applications. In most cases, the pro‐
cesses housing the application domains are created implicitly by the operating sys‐
tem—when the user double-clicks your .NET executable file or starts a Windows
service. However, an application domain can also be hosted in other processes such
as IIS or in SQL Server through CLR integration.

In the case of a simple executable, the process ends when the default application
domain finishes executing. With hosts such as IIS or SQL Server, however, the pro‐
cess controls the lifetime, creating and destroying .NET application domains as it
sees fit.

A
p

p
licatio

n
D

o
m

ains

989

www.EBooksWorld.ir

Figure 24-1. Application domain architecture

Creating and Destroying Application Domains
You can create and destroy additional application domains in a process by calling
the static methods AppDomain.CreateDomain and AppDomain.Unload. In the follow‐
ing example, test.exe is executed in an isolated application domain, which is then
unloaded:

static void Main()
{
 AppDomain newDomain = AppDomain.CreateDomain ("New Domain");
 newDomain.ExecuteAssembly ("test.exe");

990 | Chapter 24: Application Domains

www.EBooksWorld.ir

 AppDomain.Unload (newDomain);
}

Note that when the default application domain (the one created by the CLR at
startup) is unloaded, all other application domains automatically unload, and the
application closes. A domain can “know” whether it’s the default domain via the
AppDomain property IsDefaultDomain.

The AppDomainSetup class allows options to be specified for a new domain. The fol‐
lowing properties are the most useful:

public string ApplicationName { get; set; } // "Friendly" name
public string ApplicationBase { get; set; } // Base folder

public string ConfigurationFile { get; set; }
public string LicenseFile { get; set; }

// To assist with automatic assembly resolution:
public string PrivateBinPath { get; set; }
public string PrivateBinPathProbe { get; set; }

The ApplicationBase property controls the application domain base directory,
used as the root for automatic assembly probing. In the default application domain,
this is the main executable’s folder. In a new domain that you create, it can be any‐
where you like:

AppDomainSetup setup = new AppDomainSetup();
setup.ApplicationBase = @"c:\MyBaseFolder";
AppDomain newDomain = AppDomain.CreateDomain ("New Domain", null, setup);

It’s also possible to subscribe a new domain to assembly resolution events defined in
the instigator’s domain:

static void Main()
{
 AppDomain newDomain = AppDomain.CreateDomain ("test");
 newDomain.AssemblyResolve += new ResolveEventHandler (FindAssem);
 ...
}

static Assembly FindAssem (object sender, ResolveEventArgs args)
{
 ...
}

This is acceptable, provided that the event handler is a static method defined in a
type available to both domains. The CLR is then able to execute the event handler in
the correct domain. In this example, FindAssem would execute from within newDo
main, even though it was subscribed from the default domain.

The PrivateBinPath property is a semicolon-separated list of subdirectories below
the base directory that the CLR should automatically search for assemblies. (As with
the application base folder, this can only be set prior to the application domain
starting.) Take, for example, a directory structure where a program has, in its base

A
p

p
licatio

n
D

o
m

ains

Creating and Destroying Application Domains | 991

www.EBooksWorld.ir

folder, a single executable (and perhaps a configuration file) and all the referenced
assemblies in subfolders as follows:

c:\MyBaseFolder\ -- Startup executable
 \bin
 \bin\v1.23 -- Latest assembly DLLs
 \bin\plugins -- More DLLs

Here’s how an application domain would be set up to use this folder structure:

AppDomainSetup setup = new AppDomainSetup();
setup.ApplicationBase = @"c:\MyBaseFolder";
setup.PrivateBinPath = @"bin\v1.23;bin\plugins";
AppDomain d = AppDomain.CreateDomain ("New Domain", null, setup);
d.ExecuteAssembly (@"c:\MyBaseFolder\Startup.exe");

Note that PrivateBinPath is always relative to, and below, the application base
folder. Specifying absolute paths is illegal. AppDomain also provides a PrivateBin
PathProbe property, which, if set to anything other than a blank string, excludes the
base directory itself from being part of the assembly search path. (The reason Priva
teBinPathProbe is a string rather than a bool type relates to COM compatibility.)

Just before any nondefault application domain unloads, the DomainUnload event
fires. You can use this event for tear-down logic: the unloading of the domain (and
the application as a whole, if necessary) is delayed until the execution of all Domai
nUnload event handlers completes.

Just before the application itself closes, the ProcessExit event fires on all loaded
application domains (including the default domain). Unlike with the DomainUnload
event, ProcessExit event handlers are timed: the default CLR host gives event han‐
dlers two seconds per domain, and three seconds in total, before terminating their
threads.

Using Multiple Application Domains
Multiple application domains have the following key uses:

• Providing process-like isolation with minimum overhead
• Allowing assembly files to be unloaded without restarting the process

When additional application domains are created within the same process, the CLR
provides each with a level of isolation akin to that of running in separate processes.
This means that each domain has separate memory, and objects in one domain can‐
not interfere with those in another. Furthermore, static members of the same class
have independent values in each domain. ASP.NET uses exactly this approach to
allow many sites to run in a shared process without affecting one another.

With ASP.NET, the application domains are created by the infrastructure—without
your intervention. There are times, however, when you can benefit from explicitly
creating multiple domains inside a single process. Suppose you’ve written a custom

992 | Chapter 24: Application Domains

www.EBooksWorld.ir

authentication system, and as part of unit testing, you want to stress-test the server
code by simulating 20 clients logging in at once. You have three options in simulat‐
ing 20 concurrent logins:

• Start 20 separate processes by calling Process.Start 20 times.
• Start 20 threads in the same process and domain.
• Start 20 threads in the same process—each in its own application domain.

The first option is clumsy and resource-intensive. It’s also hard to communicate
with each of the separate processes, should you want to give them more specific
instructions on what to do.

The second option relies on the client-side code being thread-safe, which is unlikely
—especially if static variables are used to store the current authentication state. And
adding a lock around the client-side code would prevent the parallel execution that
we need to stress-test the server.

The third option is ideal. It keeps each thread isolated—with independent state—
and yet within easy reach of the hosting program.

Another reason to create a separate application domain is to allow assemblies to be
unloaded without ending the process. This stems from the fact that there’s no way to
unload an assembly other than closing the application domain that loaded it. This is
a problem if it was loaded in the default domain, because closing this domain means
closing the application. An assembly’s file is locked while loaded and so cannot be
patched or replaced. Loading assemblies in a separate application domain that can
be torn down gets around this problem—and helps to reduce the memory footprint
of an application that occasionally needs to load large assemblies.

The LoaderOptimization Attribute
By default, assemblies that load into an explicitly created application domain are
reprocessed by the JIT compiler. This includes:

• Assemblies that have already been JIT-compiled in the caller’s domain
• Assemblies for which a native image has been generated with the ngen.exe tool
• All of the .NET Framework assemblies (except for mscorlib)

This can be a major performance hit, particularly if you repeatedly create and
unload application domains that reference large .NET Framework assemblies. A
workaround is to attach the following attribute to your program’s main entry
method:

[LoaderOptimization (LoaderOptimization.MultiDomainHost)]

This instructs the CLR to load GAC assemblies domain-neutral, so native images are
honored and JIT images shared across application domains. This is usually ideal,

A
p

p
licatio

n
D

o
m

ains

Using Multiple Application Domains | 993

www.EBooksWorld.ir

because the GAC includes all .NET Framework assemblies (and possibly some
invariant parts of your application).

You can go a stage further by specifying LoaderOptimization.MultiDomain: this
instructs all assemblies to be loaded domain-neutral (excluding those loaded out‐
side the normal assembly resolution mechanism). This is undesirable, however, if
you want assemblies to unload with their domain. A domain-neutral assembly is
shared between all domains and so does not unload until the parent process ends.

Using DoCallBack
Let’s revisit the most basic multidomain scenario:

static void Main()
{
 AppDomain newDomain = AppDomain.CreateDomain ("New Domain");
 newDomain.ExecuteAssembly ("test.exe");
 AppDomain.Unload (newDomain);
}

Calling ExecuteAssembly on a separate domain is convenient but offers little oppor‐
tunity to interact with the domain. It also requires that the target assembly is an exe‐
cutable, and it commits the caller to a single entry point. The only way to incorpo‐
rate flexibility is to resort to an approach such as passing a string of arguments to
the executable.

A more powerful approach is to use AppDomain’s DoCallBack method. This executes
on another application domain, a method on a given type. The type’s assembly is
automatically loaded into the domain (the CLR will know where it lives if the cur‐
rent domain can reference it). In the following example, a method in the currently
executing class is run in a new domain:

class Program
{
 static void Main()
 {
 AppDomain newDomain = AppDomain.CreateDomain ("New Domain");
 newDomain.DoCallBack (new CrossAppDomainDelegate (SayHello));
 AppDomain.Unload (newDomain);
 }

 static void SayHello()
 {
 Console.WriteLine ("Hi from " + AppDomain.CurrentDomain.FriendlyName);
 }
}

The example works because the delegate is referencing a static method, meaning it
points to a type rather than an instance. This makes the delegate “domain-agnostic”
or agile. It can run in any domain, and in the same way, as there’s nothing tying it to
the original domain. It’s also possible to use DoCallBack with a delegate referencing

994 | Chapter 24: Application Domains

www.EBooksWorld.ir

an instance method. However, the CLR will attempt to apply Remoting semantics
(described later), which in this case happens to be the opposite of what we want.

Monitoring Application Domains
From Framework 4.0, you can monitor the memory and CPU consumption of a
specific application domain. For this to work, you must first enable application
domain monitoring as follows:

AppDomain.MonitoringIsEnabled = true;

This enables monitoring for all domains in the current process. Once enabled, you
can’t subsequently disable it—setting this property to false throws an exception.

Another way to enable to enable domain monitoring is via the
application configuration file. Add the following element:

<configuration>
 <runtime>
 <appDomainResourceMonitoring enabled="true"/>
 </runtime>
</configuration>

This enables monitoring for all application domains.

You can then query an AppDomain’s CPU and memory usage via the following three
instance properties:

MonitoringTotalProcessorTime
MonitoringTotalAllocatedMemorySize
MonitoringSurvivedMemorySize

The first two properties return the total CPU consumption and managed memory
allocated by that domain since it was started. (These figures can only grow and
never shrink). The third property returns the actual managed memory consump‐
tion of the domain at the time of the last garbage collection.

You can access these properties from the same or another domain.

Domains and Threads
When you call a method in another application domain, execution blocks until the
method finishes executing—just as though you called a method in your own
domain. Although this behavior is usually desirable, there are times when you need
to run a method concurrently. You can do that with multithreading.

We talked previously about using multiple application domains to simulate 20 con‐
current client logins in order to test an authentication system. By having each client
log in on a separate application domain, each would be isolated and unable to inter‐
fere with another client via static class members. To implement this example, we
need to call a “Login” method on 20 concurrent threads, each in its own application
domain:

A
p

p
licatio

n
D

o
m

ains

Monitoring Application Domains | 995

www.EBooksWorld.ir

class Program
{
 static void Main()
 {
 // Create 20 domains and 20 threads.
 AppDomain[] domains = new AppDomain [20];
 Thread[] threads = new Thread [20];

 for (int i = 0; i < 20; i++)
 {
 domains [i] = AppDomain.CreateDomain ("Client Login " + i);
 threads [i] = new Thread (LoginOtherDomain);
 }

 // Start all the threads, passing to each thread its app domain.
 for (int i = 0; i < 20; i++) threads [i].Start (domains [i]);

 // Wait for the threads to finish
 for (int i = 0; i < 20; i++) threads [i].Join();

 // Unload the app domains
 for (int i = 0; i < 20; i++) AppDomain.Unload (domains [i]);
 Console.ReadLine();
 }

 // Parameterized thread start - taking the domain on which to run.
 static void LoginOtherDomain (object domain)
 {
 ((AppDomain) domain).DoCallBack (Login);
 }

 static void Login()
 {
 Client.Login ("Joe", "");
 Console.WriteLine ("Logged in as: " + Client.CurrentUser + " on " +
 AppDomain.CurrentDomain.FriendlyName);
 }
}

class Client
{
 // Here's a static field that would interfere with other client logins
 // if running in the same app domain.
 public static string CurrentUser = "";

 public static void Login (string name, string password)
 {
 if (CurrentUser.Length == 0) // If we're not already logged in...
 {
 // Sleep to simulate authentication...
 Thread.Sleep (500);
 CurrentUser = name; // Record that we're authenticated.
 }
 }
}

996 | Chapter 24: Application Domains

www.EBooksWorld.ir

// Output:
Logged in as: Joe on Client Login 0
Logged in as: Joe on Client Login 1
Logged in as: Joe on Client Login 4
Logged in as: Joe on Client Login 2
Logged in as: Joe on Client Login 3
Logged in as: Joe on Client Login 5
Logged in as: Joe on Client Login 6
...

See Chapter 22 for more information on multithreading.

Sharing Data Between Domains
Sharing Data via Slots
Application domains can use named slots to share data, as in the following example:

class Program
{
 static void Main()
 {
 AppDomain newDomain = AppDomain.CreateDomain ("New Domain");

 // Write to a named slot called "Message" - any string key will do.
 newDomain.SetData ("Message", "guess what...");

 newDomain.DoCallBack (SayMessage);
 AppDomain.Unload (newDomain);
 }

 static void SayMessage()
 {
 // Read from the "Message" data slot
 Console.WriteLine (AppDomain.CurrentDomain.GetData ("Message"));
 }
}

// Output:
guess what...

A slot is created automatically the first time it’s used. The data being communicated
(in this example, "guess what ...") must either be serializable (see Chapter 17) or
be based on MarshalByRefObject. If the data is serializable (such as the string in
our example), it’s copied to the other application domain. If it implements Marshal
ByRefObject, Remoting semantics are applied.

A
p

p
licatio

n
D

o
m

ains

Sharing Data Between Domains | 997

www.EBooksWorld.ir

Intra-Process Remoting
The most flexible way to communicate with another application domain is to
instantiate objects in the other domain via a proxy. This is called Remoting.

The class being “Remoted” must inherit from MarshalByRefObject. The client then
calls a CreateInstanceXXX method on the remote domain’s AppDomain class to
remotely instantiate the object.

The following instantiates the type Foo in another application domain and then calls
its SayHello method:

class Program
{
 static void Main()
 {
 AppDomain newDomain = AppDomain.CreateDomain ("New Domain");

 Foo foo = (Foo) newDomain.CreateInstanceAndUnwrap (
 typeof (Foo).Assembly.FullName,
 typeof (Foo).FullName);

 Console.WriteLine (foo.SayHello());
 AppDomain.Unload (newDomain);
 Console.ReadLine();
 }
}

public class Foo : MarshalByRefObject
{
 public string SayHello()
 => "Hello from " + AppDomain.CurrentDomain.FriendlyName;

 // This ensures the object lasts for as long as the client wants it
 public override object InitializeLifetimeService() => null;
}

When the foo object is created on the other application domain (called the “remote”
domain), we don’t get back a direct reference to the object, because the application
domains are isolated. Instead, we get back a transparent proxy; transparent because
it appears as though it was a direct reference to the remote object. When we subse‐
quently call the SayHello method on foo, a message is constructed behind the
scenes, which is forwarded to the “remote” application domain where it is then exe‐
cuted on the real foo. Rather like saying “hello” on a telephone: you’re talking not to
a real person but to a piece of plastic that acts as a transparent proxy for a person.
Any return value is turned into a message and sent back to the caller.

998 | Chapter 24: Application Domains

www.EBooksWorld.ir

Before Windows Communication Foundation was released
in .NET Framework 3.0, Remoting was one of the two princi‐
pal technologies for writing distributed applications (Web
Services being the other). In a distributed Remoting applica‐
tion, you explicitly set up an HTTP or TCP/IP communica‐
tion channel at each end, allowing communication to cross
process and network boundaries.
Although WCF is superior to Remoting for distributed appli‐
cations, Remoting still has a niche in inter-domain communi‐
cation within a process. Its advantage in this scenario is that it
requires no configuration—the communication channel is
automatically created (a fast in-memory channel), and no type
registration is required. You simply start using it.

The methods on Foo can return more MarshalByRefObject instances, in which case
more transparent proxies are generated when those methods are called. Methods on
Foo can also accept MarshalByRefObject instances as arguments—in which Remot‐
ing happens in reverse. The caller will hold the “remote” object, while the callee will
have a proxy.

As well as marshaling objects by reference, application domains can exchange scalar
values, or any serializable object. A type is serializable if it either has the Serializa
ble attribute or implements ISerializable. Then, when crossing the application
domain boundary, a complete copy of the object is returned, rather than a proxy. In
other words, the object is marshaled by value rather than reference.

Remoting within the same process is client-activated, meaning that the CLR doesn’t
attempt to share or reuse remotely created objects with the same or other clients. In
other words, if the client creates two Foo objects, two objects will be created in the
remote domain, and two proxies in the client domain. This provides the most natu‐
ral object semantics; however, it means that the remote domain is dependent on the
client’s garbage collector: the foo object in the remote domain is released from
memory only when the client’s garbage collector decides that the foo (proxy) is no
longer in use. If the client domain crashes, it may never get released. To protect
against this scenario, the CLR provides a lease-based mechanism for managing the
lifetime of remotely created objects. The default behavior is for remotely created
objects to self-destruct after five minutes of nonuse.

Because in this example the client runs in the default application domain, the client
doesn’t have the luxury of crashing. Once it ends, so does the whole process! Hence,
it makes sense to disable the five-minute lifetime lease. This is the purpose of over‐
riding InitializeLifetimeService—by returning a null lease, remotely created
objects are destroyed only when garbage-collected by the client.

A
p

p
licatio

n
D

o
m

ains

Sharing Data Between Domains | 999

www.EBooksWorld.ir

Isolating Types and Assemblies
In the preceding example, we remotely instantiated an object of type Foo as follows:

Foo foo = (Foo) newDomain.CreateInstanceAndUnwrap (
 typeof (Foo).Assembly.FullName,
 typeof (Foo).FullName);

Here’s the method’s signature:

public object CreateInstanceAndUnwrap (string assemblyName,
 string typeName)

Because this method accepts an assembly and type name rather than a Type object,
you can remotely instantiate an object without loading its type locally. This is useful
when you want to avoid loading the type’s assembly into the caller’s application
domain.

AppDomain also provides a method called CreateIn

stanceFromAndUnwrap. The difference is:

• CreateInstanceAndUnwrap accepts a fully qualified
assembly name (see Chapter 18).

• CreateInstanceFromAndUnwrap accepts a path or file‐
name.

To illustrate, suppose we were writing a text editor that allows the user to load and
unload third-party plug-ins. We demonstrated this in Chapter 21 in the section
“Sandboxing Another Assembly” on page 881, from the perspective of security.
When it came to actually executing the plug-in, however, all we did was call Execu
teAssembly. With Remoting, we can interact with plug-ins in a richer fashion.

The first step is to write a common library that both the host and the plug-ins will
reference. This library will define an interface describing what plug-ins can do.
Here’s a simple example:

namespace Plugin.Common
{
 public interface ITextPlugin
 {
 string TransformText (string input);
 }
}

Next, we need to write a simple plug-in. We’ll assume the following is compiled to
AllCapitals.dll:

1000 | Chapter 24: Application Domains

www.EBooksWorld.ir

namespace Plugin.Extensions
{
 public class AllCapitals : MarshalByRefObject, Plugin.Common.ITextPlugin
 {
 public string TransformText (string input) => input.ToUpper();
 }
}

Here’s how to write a host that loads AllCapitals.dll into a separate application
domain, calls TransformText using Remoting, and then unloads the application
domain:

using System;
using System.Reflection;
using Plugin.Common;

class Program
{
 static void Main()
 {
 AppDomain domain = AppDomain.CreateDomain ("Plugin Domain");

 ITextPlugin plugin = (ITextPlugin) domain.CreateInstanceFromAndUnwrap
 ("AllCapitals.dll", "Plugin.Extensions.AllCapitals");

 // Call the TransformText method using Remoting:
 Console.WriteLine (plugin.TransformText ("hello")); // "HELLO"

 AppDomain.Unload (domain);

 // The AllCapitals.dll file is now completely unloaded and could
 // be moved or deleted.
 }
}

Because this program interacts with the plug-in solely through the common inter‐
face, ITextPlugin, the types in AllCapitals are never loaded into the caller’s appli‐
cation domain. This maintains the integrity of the caller’s domain and ensures that
no locks are held on the plug-in assembly files after their domain is unloaded.

Type discovery
In our preceding example, a real application would need some means of discovering
plug-in type names, such as Plugin.Extensions.AllCapitals.

You can achieve this by writing a discovery class in the common assembly that uses
reflection as follows:

public class Discoverer : MarshalByRefObject
{
 public string[] GetPluginTypeNames (string assemblyPath)
 {
 List<string> typeNames = new List<string>();
 Assembly a = Assembly.LoadFrom (assemblyPath);
 foreach (Type t in a.GetTypes())

A
p

p
licatio

n
D

o
m

ains

Sharing Data Between Domains | 1001

www.EBooksWorld.ir

 if (t.IsPublic
 && t.IsMarshalByRef
 && typeof (ITextPlugin).IsAssignableFrom (t))
 {
 typeNames.Add (t.FullName);
 }
 return typeNames.ToArray();
 }
}

The catch is that Assembly.LoadFrom loads the assembly into the current applica‐
tion domain. Therefore, you must call this method in the plug-in domain:

class Program
{
 static void Main()
 {
 AppDomain domain = AppDomain.CreateDomain ("Plugin Domain");

 Discoverer d = (Discoverer) domain.CreateInstanceAndUnwrap (
 typeof (Discoverer).Assembly.FullName,
 typeof (Discoverer).FullName);

 string[] plugInTypeNames = d.GetPluginTypeNames ("AllCapitals.dll");

 foreach (string s in plugInTypeNames)
 Console.WriteLine (s); // Plugin.Extensions.AllCapitals

 ...

In the System.AddIn.Contract assembly is an API that develops
these concepts into a complete framework for program exten‐
sibility. It addresses such issues as isolation, versioning, dis‐
covery, and activation. For a good source of online informa‐
tion, search for “CLR Add-In Team Blog” on http://
blogs.msdn.com.

1002 | Chapter 24: Application Domains

www.EBooksWorld.ir

http://blogs.msdn.com
http://blogs.msdn.com

25
Interoperability

This chapter describes how to integrate with native (unmanaged) DLLs and COM
components. Unless otherwise stated, the types mentioned in this chapter exist in
either the System or the System.Runtime.InteropServices namespace.

Calling into Native DLLs
P/Invoke, short for Platform Invocation Services, allows you to access functions,
structs, and callbacks in unmanaged DLLs. For example, consider the MessageBox
function, defined in the Windows DLL user32.dll as follows:

int MessageBox (HWND hWnd, LPCTSTR lpText, LPCTSTR lpCaption, UINT uType);

You can call this function directly by declaring a static method of the same name,
applying the extern keyword, and adding the DllImport attribute:

using System;
using System.Runtime.InteropServices;

class MsgBoxTest
{
 [DllImport("user32.dll")]
 static extern int MessageBox (IntPtr hWnd, string text, string caption,
 int type);
 public static void Main()
 {
 MessageBox (IntPtr.Zero,
 "Please do not press this again.", "Attention", 0);
 }
}

The MessageBox classes in the System.Windows and System.Windows.Forms name‐
spaces themselves call similar unmanaged methods.

The CLR includes a marshaler that knows how to convert parameters and return
values between .NET types and unmanaged types. In this example, the int parame‐

N
ative and

C
O

M
Intero

p
erab

ility

1003

www.EBooksWorld.ir

ters translate directly to 4-byte integers that the function expects, and the string
parameters are converted into null-terminated arrays of 2-byte Unicode characters.
IntPtr is a struct designed to encapsulate an unmanaged handle and is 32 bits wide
on 32-bit platforms and 64 bits wide on 64-bit platforms.

Type Marshaling
Marshaling Common Types
On the unmanaged side, there can be more than one way to represent a given data
type. A string, for instance, can contain single-byte ANSI characters or double-byte
Unicode characters and can be length-prefixed, null-terminated, or of fixed length.
With the MarshalAs attribute, you can tell the CLR marshaler the variation in use so
it can provide the correct translation. Here’s an example:

[DllImport("...")]
static extern int Foo ([MarshalAs (UnmanagedType.LPStr)] string s);

The UnmanagedType enumeration includes all the Win32 and COM types that the
marshaler understands. In this case, the marshaler was told to translate to LPStr,
which is a null-terminated single-byte ANSI string.

On the .NET side, you also have some choice as to what data type to use. Unman‐
aged handles, for instance, can map to IntPtr, int, uint, long, or ulong.

Most unmanaged handles encapsulate an address or pointer,
and so must be mapped to IntPtr for compatibility with both
32- and 64-bit operating systems. A typical example is
HWND.

Quite often with Win32 functions, you come across an integer parameter that
accepts a set of constants, defined in a C++ header file such as WinUser.h. Rather
than defining these as simple C# constants, you can define them within an enum
instead. Using an enum can make for tidier code as well as increase static type
safety. We provide an example in the later section “Shared Memory” on page 1008.

When installing Microsoft Visual Studio, be sure to install the
C++ header files—even if you choose nothing else in the C++
category. This is where all the native Win32 constants are
defined. You can then locate all header files by searching for
*.h in the Visual Studio program directory.

Receiving strings from unmanaged code back to .NET requires that some memory
management take place. The marshaler performs this work automatically if you
declare the external method with a StringBuilder rather than a string, as follows:

using System;
using System.Text;
using System.Runtime.InteropServices;

class Test

1004 | Chapter 25: Interoperability

www.EBooksWorld.ir

{
 [DllImport("kernel32.dll")]
 static extern int GetWindowsDirectory (StringBuilder sb, int maxChars);

 static void Main()
 {
 StringBuilder s = new StringBuilder (256);
 GetWindowsDirectory (s, 256);
 Console.WriteLine (s);
 }
}

If you are unsure how to call a particular Win32 method, you
will usually find an example online if you search for the
method name and DllImport. The site http://www.pinvoke.net
is a wiki that aims to document all Win32 signatures.

Marshaling Classes and Structs
Sometimes you need to pass a struct to an unmanaged method. For example, Get
SystemTime in the Win32 API is defined as follows:

void GetSystemTime (LPSYSTEMTIME lpSystemTime);

LPSYSTEMTIME conforms to this C struct:

typedef struct _SYSTEMTIME {
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME;

In order to call GetSystemTime, we must define a .NET class or struct that matches
this C struct:

using System;
using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]
class SystemTime
{
 public ushort Year;
 public ushort Month;
 public ushort DayOfWeek;
 public ushort Day;
 public ushort Hour;
 public ushort Minute;
 public ushort Second;
 public ushort Milliseconds;
}

N
ative and

C
O

M
Intero

p
erab

ility

Type Marshaling | 1005

www.EBooksWorld.ir

http://www.pinvoke.net

The StructLayout attribute instructs the marshaler how to map each field to its
unmanaged counterpart. LayoutKind.Sequential means that we want the fields
aligned sequentially on pack-size boundaries (we’ll see what this means shortly), just
as they would be in a C struct. The field names here are irrelevant; it’s the ordering
of fields that’s important.

Now we can call GetSystemTime:

[DllImport("kernel32.dll")]
static extern void GetSystemTime (SystemTime t);

static void Main()
{
 SystemTime t = new SystemTime();
 GetSystemTime (t);
 Console.WriteLine (t.Year);
}

In both C and C#, fields in an object are located at n number of bytes from the
address of that object. The difference is that in a C# program, the CLR finds this
offset by looking it up using the field token; C field names are compiled directly into
offsets. For instance, in C, wDay is just a token to represent whatever is at the address
of a SystemTime instance plus 24 bytes.

For access speed, each field is placed at an offset that is a multiple of the field’s size.
That multiplier, however, is restricted to a maximum of x bytes, where x is the pack
size. In the current implementation, the default pack size is 8 bytes, so a struct com‐
prising a sbyte followed by an (8-byte) long occupies 16 bytes, and the 7 bytes fol‐
lowing the sbyte are wasted. You can lessen or eliminate this wastage by specifying
a pack size via the Pack property of the StructLayout attribute: this makes the fields
align to offsets that are multiples of the specified pack size. So with a pack size of 1,
the struct just described would occupy just 9 bytes. You can specify pack sizes of 1,
2, 4, 8, or 16 bytes.

The StructLayout attribute also lets you specify explicit field offsets (see “Simulat‐
ing a C Union” on page 1007).

In and Out Marshaling
In the previous example, we implemented SystemTime as a class. We could have
instead chosen a struct—providing GetSystemTime was declared with a ref or out
parameter:

[DllImport("kernel32.dll")]
static extern void GetSystemTime (out SystemTime t);

In most cases, C#’s directional parameter semantics work the same with external
methods. Pass-by-value parameters are copied in, C# ref parameters are copied in/
out, and C# out parameters are copied out. However, there are some exceptions for
types that have special conversions. For instance, array classes and the String
Builder class require copying when coming out of a function, so they are in/out. It

1006 | Chapter 25: Interoperability

www.EBooksWorld.ir

is occasionally useful to override this behavior with the In and Out attributes. For
example, if an array should be read-only, the in modifier indicates to only copy the
array going into the function and not coming out of it:

static extern void Foo ([In] int[] array);

Callbacks from Unmanaged Code
The P/Invoke layer does its best to present a natural programming model on both
sides of the boundary, mapping between relevant constructs where possible. Since
C# can not only call out to C functions but also can be called back from the C func‐
tions (via function pointers), the P/Invoke layer maps unmanaged function pointers
into the nearest equivalent in C#, which is delegates.

As an example, you can enumerate all top-level window handles with this method
in User32.dll:

BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam);

WNDENUMPROC is a callback that gets fired with the handle of each window in
sequence (or until the callback returns false). Here is its definition:

BOOL CALLBACK EnumWindowsProc (HWND hwnd, LPARAM lParam);

To use this, we declare a delegate with a matching signature and then pass a delegate
instance to the external method:

using System;
using System.Runtime.InteropServices;

class CallbackFun
{
 delegate bool EnumWindowsCallback (IntPtr hWnd, IntPtr lParam);

 [DllImport("user32.dll")]
 static extern int EnumWindows (EnumWindowsCallback hWnd, IntPtr lParam);

 static bool PrintWindow (IntPtr hWnd, IntPtr lParam)
 {
 Console.WriteLine (hWnd.ToInt64());
 return true;
 }

 static void Main() => EnumWindows (PrintWindow, IntPtr.Zero);
}

Simulating a C Union
Each field in a struct is given enough room to store its data. Consider a struct
containing one int and one char. The int is likely to start at an offset of 0 and is
guaranteed at least 4 bytes. So, the char would start at an offset of at least 4. If, for
some reason, the char started at an offset of 2, you’d change the value of the int if

N
ative and

C
O

M
Intero

p
erab

ility

Callbacks from Unmanaged Code | 1007

www.EBooksWorld.ir

you assigned a value to the char. Sounds like mayhem, doesn’t it? Strangely enough,
the C language supports a variation on a struct called a union that does exactly this.
You can simulate this in C# using LayoutKind.Explicit and the FieldOffset
attribute.

It might be hard to think of a case in which this would be useful. However, suppose
you want to play a note on an external synthesizer. The Windows Multimedia API
provides a function for doing just this via the MIDI protocol:

[DllImport ("winmm.dll")]
public static extern uint midiOutShortMsg (IntPtr handle, uint message);

The second argument, message, describes what note to play. The problem is in con‐
structing this 32-bit unsigned integer: it’s divided internally into bytes, representing
a MIDI channel, note, and velocity at which to strike. One solution is to shift and
mask via the bitwise <<, >>, &, and | operators to convert these bytes to and from the
32-bit “packed” message. Far simpler, though, is to define a struct with explicit lay‐
out:

[StructLayout (LayoutKind.Explicit)]
public struct NoteMessage
{
 [FieldOffset(0)] public uint PackedMsg; // 4 bytes long

 [FieldOffset(0)] public byte Channel; // FieldOffset also at 0
 [FieldOffset(1)] public byte Note;
 [FieldOffset(2)] public byte Velocity;
}

The Channel, Note, and Velocity fields deliberately overlap with the 32-bit packed
message. This allows you to read and write using either. No calculations are
required to keep other fields in sync:

NoteMessage n = new NoteMessage();
Console.WriteLine (n.PackedMsg); // 0

n.Channel = 10;
n.Note = 100;
n.Velocity = 50;
Console.WriteLine (n.PackedMsg); // 3302410

n.PackedMsg = 3328010;
Console.WriteLine (n.Note); // 200

Shared Memory
Memory-mapped files, or shared memory, is a feature in Windows that allows multi‐
ple processes on the same computer to share data, without the overhead of Remot‐
ing or WCF. Shared memory is extremely fast and, unlike pipes, offers random
access to the shared data. We saw in Chapter 15 how you can use the MemoryMapped
File class to access memory-mapped files; bypassing this and calling the Win32
methods directly is a good way to demonstrate P/Invoke.

1008 | Chapter 25: Interoperability

www.EBooksWorld.ir

The Win32 CreateFileMapping function allocates shared memory. You tell it how
many bytes you need and the name with which to identify the share. Another appli‐
cation can then subscribe to this memory by calling OpenFileMapping with same
name. Both methods return a handle, which you can convert to a pointer by calling
MapViewOfFile.

Here’s a class that encapsulates access to shared memory:

using System;
using System.Runtime.InteropServices;
using System.ComponentModel;

public sealed class SharedMem : IDisposable
{
 // Here we're using enums because they're safer than constants

 enum FileProtection : uint // constants from winnt.h
 {
 ReadOnly = 2,
 ReadWrite = 4
 }

 enum FileRights : uint // constants from WinBASE.h
 {
 Read = 4,
 Write = 2,
 ReadWrite = Read + Write
 }

 static readonly IntPtr NoFileHandle = new IntPtr (-1);

 [DllImport ("kernel32.dll", SetLastError = true)]
 static extern IntPtr CreateFileMapping (IntPtr hFile,
 int lpAttributes,
 FileProtection flProtect,
 uint dwMaximumSizeHigh,
 uint dwMaximumSizeLow,
 string lpName);

 [DllImport ("kernel32.dll", SetLastError=true)]
 static extern IntPtr OpenFileMapping (FileRights dwDesiredAccess,
 bool bInheritHandle,
 string lpName);

 [DllImport ("kernel32.dll", SetLastError = true)]
 static extern IntPtr MapViewOfFile (IntPtr hFileMappingObject,
 FileRights dwDesiredAccess,
 uint dwFileOffsetHigh,
 uint dwFileOffsetLow,
 uint dwNumberOfBytesToMap);

 [DllImport ("Kernel32.dll", SetLastError = true)]
 static extern bool UnmapViewOfFile (IntPtr map);

N
ative and

C
O

M
Intero

p
erab

ility

Shared Memory | 1009

www.EBooksWorld.ir

 [DllImport ("kernel32.dll", SetLastError = true)]
 static extern int CloseHandle (IntPtr hObject);

 IntPtr fileHandle, fileMap;

 public IntPtr Root { get { return fileMap; } }

 public SharedMem (string name, bool existing, uint sizeInBytes)
 {
 if (existing)
 fileHandle = OpenFileMapping (FileRights.ReadWrite, false, name);
 else
 fileHandle = CreateFileMapping (NoFileHandle, 0,
 FileProtection.ReadWrite,
 0, sizeInBytes, name);
 if (fileHandle == IntPtr.Zero)
 throw new Win32Exception();

 // Obtain a read/write map for the entire file
 fileMap = MapViewOfFile (fileHandle, FileRights.ReadWrite, 0, 0, 0);

 if (fileMap == IntPtr.Zero)
 throw new Win32Exception();
 }

 public void Dispose()
 {
 if (fileMap != IntPtr.Zero) UnmapViewOfFile (fileMap);
 if (fileHandle != IntPtr.Zero) CloseHandle (fileHandle);
 fileMap = fileHandle = IntPtr.Zero;
 }
}

In this example, we set SetLastError=true on the DllImport methods that use the
SetLastError protocol for emitting error codes. This ensures that the Win32Excep
tion is populated with details of the error when that exception is thrown. (It also
allows you to query the error explicitly by calling Marshal.GetLastWin32Error.)

In order to demonstrate this class, we need to run two applications. The first one
creates the shared memory, as follows:

using (SharedMem sm = new SharedMem ("MyShare", false, 1000))
{
 IntPtr root = sm.Root;
 // I have shared memory!

 Console.ReadLine(); // Here's where we start a second app...
}

The second application subscribes to the shared memory by constructing a Share
dMem object of the same name, with the existing argument true:

using (SharedMem sm = new SharedMem ("MyShare", true, 1000))
{
 IntPtr root = sm.Root;

1010 | Chapter 25: Interoperability

www.EBooksWorld.ir

 // I have the same shared memory!
 // ...
}

The net result is that each program has an IntPtr—a pointer to the same unman‐
aged memory. The two applications now need somehow to read and write to mem‐
ory via this common pointer. One approach is to write a serializable class that
encapsulates all the shared data, then serialize (and deserialize) the data to the
unmanaged memory using an UnmanagedMemoryStream. This is inefficient, however,
if there’s a lot of data. Imagine if the shared memory class had a megabyte worth of
data, and just one integer needed to be updated. A better approach is to define the
shared data construct as a struct, and then map it directly into shared memory. We
discuss this in the following section.

Mapping a Struct to Unmanaged Memory
A struct with a StructLayout of Sequential or Explicit can be mapped directly
into unmanaged memory. Consider the following struct:

[StructLayout (LayoutKind.Sequential)]
unsafe struct MySharedData
{
 public int Value;
 public char Letter;
 public fixed float Numbers [50];
}

The fixed directive allows us to define fixed-length value-type arrays inline, and it
is what takes us into the unsafe realm. Space in this struct is allocated inline for 50
floating-point numbers. Unlike with standard C# arrays, Numbers is not a reference
to an array—it is the array. If we run the following:

static unsafe void Main() => Console.WriteLine (sizeof (MySharedData));

the result is 208: 50 4-byte floats, plus the 4 bytes for the Value integer, plus 2 bytes
for the Letter character. The total, 206, is rounded to 208 due to the floats being
aligned on 4-byte boundaries (4 bytes being the size of a float).

We can demonstrate MySharedData in an unsafe context, most simply, with stack-
allocated memory:

MySharedData d;
MySharedData* data = &d; // Get the address of d

data->Value = 123;
data->Letter = 'X';
data->Numbers[10] = 1.45f;

or:

// Allocate the array on the stack:
MySharedData* data = stackalloc MySharedData[1];

N
ative and

C
O

M
Intero

p
erab

ility

Mapping a Struct to Unmanaged Memory | 1011

www.EBooksWorld.ir

data->Value = 123;
data->Letter = 'X';
data->Numbers[10] = 1.45f;

Of course, we’re not demonstrating anything that couldn’t otherwise be achieved in
a managed context. Suppose, however, that we want to store an instance of MyShar
edData on the unmanaged heap, outside the realm of the CLR’s garbage collector.
This is where pointers become really useful:

MySharedData* data = (MySharedData*)
 Marshal.AllocHGlobal (sizeof (MySharedData)).ToPointer();

data->Value = 123;
data->Letter = 'X';
data->Numbers[10] = 1.45f;

Marshal.AllocHGlobal allocates memory on the unmanaged heap. Here’s how to
later free the same memory:

Marshal.FreeHGlobal (new IntPtr (data));

(The result of forgetting to free the memory is a good old-fashioned memory leak.)

In keeping with its name, we’ll now use MySharedData in conjunction with the
SharedMem class we wrote in the preceding section. The following program allocates
a block of shared memory and then maps the MySharedData struct into that mem‐
ory:

static unsafe void Main()
{
 using (SharedMem sm = new SharedMem ("MyShare", false, 1000))
 {
 void* root = sm.Root.ToPointer();
 MySharedData* data = (MySharedData*) root;

 data->Value = 123;
 data->Letter = 'X';
 data->Numbers[10] = 1.45f;
 Console.WriteLine ("Written to shared memory");

 Console.ReadLine();

 Console.WriteLine ("Value is " + data->Value);
 Console.WriteLine ("Letter is " + data->Letter);
 Console.WriteLine ("11th Number is " + data->Numbers[10]);
 Console.ReadLine();
 }
}

1012 | Chapter 25: Interoperability

www.EBooksWorld.ir

You can use the built-in MemoryMappedFile class instead of
SharedMem as follows:

using (MemoryMappedFile mmFile =
 MemoryMappedFile.CreateNew ("MyShare", 1000))
using (MemoryMappedViewAccessor accessor =
 mmFile.CreateViewAccessor())
{
 byte* pointer = null;
 accessor.SafeMemoryMappedViewHandle.AcquirePointer
 (ref pointer);
 void* root = pointer;
 ...
}

Here’s a second program that attaches to the same shared memory, reading the val‐
ues written by the first program. (It must be run while the first program is waiting
on the ReadLine statement, since the shared memory object is disposed upon leav‐
ing its using statement.)

static unsafe void Main()
{
 using (SharedMem sm = new SharedMem ("MyShare", true, 1000))
 {
 void* root = sm.Root.ToPointer();
 MySharedData* data = (MySharedData*) root;

 Console.WriteLine ("Value is " + data->Value);
 Console.WriteLine ("Letter is " + data->Letter);
 Console.WriteLine ("11th Number is " + data->Numbers[10]);

 // Our turn to update values in shared memory!
 data->Value++;
 data->Letter = '!';
 data->Numbers[10] = 987.5f;
 Console.WriteLine ("Updated shared memory");
 Console.ReadLine();
 }
}

The output from each of these programs is as follows:

// First program:

Written to shared memory
Value is 124
Letter is !
11th Number is 987.5

// Second program:

Value is 123
Letter is X
11th Number is 1.45
Updated shared memory

N
ative and

C
O

M
Intero

p
erab

ility

Mapping a Struct to Unmanaged Memory | 1013

www.EBooksWorld.ir

Don’t be put off by the pointers: C++ programmers use them throughout whole
applications and are able to get everything working. At least most of the time! This
sort of usage is fairly simple by comparison.

As it happens, our example is unsafe—quite literally—for another reason. We’ve not
considered the thread-safety (or more precisely, process-safety) issues that arise
with two programs accessing the same memory at once. To use this in a production
application, we’d need to add the volatile keyword to the Value and Letter fields
in the MySharedData struct to prevent fields from being cached in CPU registers.
Furthermore, as our interaction with the fields grew beyond the trivial, we would
most likely need to protect their access via a cross-process Mutex, just as we would
use lock statements to protect access to fields in a multithreaded program. We dis‐
cussed thread safety in detail in Chapter 22.

fixed and fixed {...}
One limitation of mapping structs directly into memory is that the struct can con‐
tain only unmanaged types. If you need to share string data, for instance, you must
use a fixed character array instead. This means manual conversion to and from the
string type. Here’s how to do it:

[StructLayout (LayoutKind.Sequential)]
unsafe struct MySharedData
{
 ...
 // Allocate space for 200 chars (i.e., 400 bytes).
 const int MessageSize = 200;
 fixed char message [MessageSize];

 // One would most likely put this code into a helper class:
 public string Message
 {
 get { fixed (char* cp = message) return new string (cp); }
 set
 {
 fixed (char* cp = message)
 {
 int i = 0;
 for (; i < value.Length && i < MessageSize - 1; i++)
 cp [i] = value [i];

 // Add the null terminator
 cp [i] = '\0';
 }
 }
 }
}

There’s no such thing as a reference to a fixed array; instead,
you get a pointer. When you index into a fixed array, you’re
actually performing pointer arithmetic!

1014 | Chapter 25: Interoperability

www.EBooksWorld.ir

With the first use of the fixed keyword, we allocate space, inline, for 200 characters
in the struct. The same keyword (somewhat confusingly) has a different meaning
when used later in the property definition. It tells the CLR to pin an object, so that
should it decide to perform a garbage collection inside the fixed block, it doesn’t
move the underlying struct about on the memory heap (since its contents are being
iterated via direct memory pointers). Looking at our program, you might wonder
how MySharedData could ever shift in memory, given that it lives not on the heap,
but in the unmanaged world, where the garbage collector has no jurisdiction. The
compiler doesn’t know this, however, and is concerned that we might use MyShared
Data in a managed context, so it insists that we add the fixed keyword to make our
unsafe code safe in managed contexts. And the compiler does have a point—here’s
all it would take to put MySharedData on the heap:

object obj = new MySharedData();

This results in a boxed MySharedData—on the heap and eligible for transit during
garbage collection.

This example illustrates how a string can be represented in a struct mapped to
unmanaged memory. For more complex types, you also have the option of using
existing serialization code. The one proviso is that the serialized data must never
exceed, in length, its allocation of space in the struct; otherwise, the result is an
unintended union with subsequent fields.

COM Interoperability
The .NET runtime has had special support for COM since its first version, enabling
COM objects to be used from .NET and vice versa. This support was enhanced sig‐
nificantly in C# 4.0, with improvements to both usability and deployment.

The Purpose of COM
COM is an acronym for Component Object Model, a binary standard for APIs
released by Microsoft in 1993. The motivation for inventing COM was to enable
components to communicate with each other in a language-independent and
version-tolerant manner. Before COM, the approach in Windows was to publish
Dynamic Link Libraries (DLLs) that declared structures and functions using the C
programming language. Not only is this approach language-specific, but it’s also
brittle. The specification of a type in such a library is inseparable from its imple‐
mentation: even updating a structure with a new field means breaking its specifica‐
tion.

The beauty of COM was to separate the specification of a type from its underlying
implementation through a construct known as a COM interface. COM also allowed
for the calling of methods on stateful objects—rather than being limited to simple
procedure calls.

N
ative and

C
O

M
Intero

p
erab

ility

COM Interoperability | 1015

www.EBooksWorld.ir

In a way, the .NET programming model is an evolution of the
principles of COM programming: the .NET platform also
facilitates cross-language development and allows binary
components to evolve without breaking applications that
depend on them.

The Basics of the COM Type System
The COM type system revolves around interfaces. A COM interface is rather like
a .NET interface, but it’s more prevalent because a COM type exposes its functional‐
ity only through an interface. In the .NET world, for instance, we could declare a
type simply as follows:

public class Foo
{
 public string Test() => "Hello, world";
}

Consumers of that type can use Foo directly. And if we later changed the implemen‐
tation of Test(), calling assemblies would not require recompilation. In this
respect, .NET separates interface from implementation—without requiring inter‐
faces. We could even add an overload without breaking callers:

public string Test (string s) => "Hello, world " + s;

In the COM world, Foo exposes its functionality through an interface to achieve this
same decoupling. So, in Foo’s type library, an interface such as this would exist:

public interface IFoo { string Test(); }

(We’ve illustrated this by showing a C# interface—not a COM interface. The princi‐
ple, however, is the same—although the plumbing is different.)

Callers would then interact with IFoo rather than Foo.

When it comes to adding the overloaded version of Test, life is more complicated
with COM than with .NET. First, we would avoid modifying the IFoo interface—
because this would break binary compatibility with the previous version (one of the
principles of COM is that interfaces, once published, are immutable). Second, COM
doesn’t allow method overloading. The solution is to instead have Foo implement a
second interface:

public interface IFoo2 { string Test (string s); }

(Again, we’ve transliterated this into a .NET interface for familiarity.)

Supporting multiple interfaces is of key importance in making COM libraries ver‐
sionable.

IUnknown and IDispatch
All COM interfaces are identified with a GUID.

1016 | Chapter 25: Interoperability

www.EBooksWorld.ir

The root interface in COM is IUnknown—all COM objects must implement it. This
interface has three methods:

• AddRef

• Release

• QueryInterface

AddRef and Release are for lifetime management, since COM uses reference count‐
ing rather than automatic garbage collection (COM was designed to work with
unmanaged code, where automatic garbage collection isn’t feasible). The QueryIn
terface method returns an object reference that supports that interface, if it can do
so.

To enable dynamic programming (e.g., scripting and Automation), a COM object
may also implement IDispatch. This enables dynamic languages such as VBScript
to call COM objects in a late-bound manner—rather like dynamic in C# (although
only for simple invocations).

Calling a COM Component from C#
The CLR’s built-in support for COM means that you don’t work directly with IUn
known and IDispatch. Instead, you work with CLR objects, and the runtime mar‐
shals your calls to the COM world via runtime-callable wrappers (RCWs). The run‐
time also handles lifetime management by calling AddRef and Release (when
the .NET object is finalized) and takes care of the primitive type conversions
between the two worlds. Type conversion ensures that each side sees, for example,
the integer and string types in their familiar forms.

Additionally, there needs to be some way to access RCWs in a statically typed fash‐
ion. This is the job of COM interop types. COM interop types are automatically gen‐
erated proxy types that expose a .NET member for each COM member. The type
library importer tool (tlbimp.exe) generates COM interop types from the command
line, based on a COM library that you choose, and compiles them into a COM
interop assembly.

If a COM component implements multiple interfaces, the
tlbimp.exe tool generates a single type that contains a union of
members from all interfaces.

You can create a COM interop assembly in Visual Studio by going to the Add Refer‐
ence dialog box and choosing a library from the COM tab. For example, if you have
Microsoft Excel 2007 installed, adding a reference to the Microsoft Excel 12.0 Office
Library allows you to interoperate with Excel’s COM classes. Here’s the C# code to
create and show a workbook and then populate a cell in that workbook:

using System;
using Excel = Microsoft.Office.Interop.Excel;

N
ative and

C
O

M
Intero

p
erab

ility

Calling a COM Component from C# | 1017

www.EBooksWorld.ir

class Program
{
 static void Main()
 {
 var excel = new Excel.Application();
 excel.Visible = true;
 Excel.Workbook workBook = excel.Workbooks.Add();
 excel.Cells [1, 1].Font.FontStyle = "Bold";
 excel.Cells [1, 1].Value2 = "Hello World";
 workBook.SaveAs (@"d:\temp.xlsx");
 }
}

The Excel.Application class is a COM interop type whose runtime type is an
RCW. When we access the Workbooks and Cells properties, we get back more
interop types.

This code is fairly simple, thanks to a number of COM-specific enhancements that
were introduced in C# 4.0. Without these enhancements, our Main method looks
like this instead:

var missing = System.Reflection.Missing.Value;

var excel = new Excel.Application();
excel.Visible = true;
Excel.Workbook workBook = excel.Workbooks.Add (missing);
var range = (Excel.Range) excel.Cells [1, 1];
range.Font.FontStyle = "Bold";
range.Value2 = "Hello world";

workBook.SaveAs (@"d:\temp.xlsx", missing, missing, missing, missing,
 missing, Excel.XlSaveAsAccessMode.xlNoChange, missing, missing,
 missing, missing, missing);

We’ll look now at what those language enhancements are, and how they help with
COM programming.

Optional Parameters and Named Arguments
Because COM APIs don’t support function overloading, it’s very common to have
functions with numerous parameters, many of which are optional. For instance,
here’s how you might call an Excel workbook’s Save method:

var missing = System.Reflection.Missing.Value;

workBook.SaveAs (@"d:\temp.xlsx", missing, missing, missing, missing,
 missing, Excel.XlSaveAsAccessMode.xlNoChange, missing, missing,
 missing, missing, missing);

The good news is that the C#’s support for optional parameters is COM-aware, so
we can just do this:

workBook.SaveAs (@"d:\temp.xlsx");

1018 | Chapter 25: Interoperability

www.EBooksWorld.ir

(As we stated in Chapter 3, optional parameters are “expanded” by the compiler into
the full verbose form.)

Named arguments allow you to specify additional arguments, regardless of their
position:

workBook.SaveAs (@"c:\test.xlsx", Password:"foo");

Implicit ref Parameters
Some COM APIs (Microsoft Word, in particular) expose functions that declare
every parameter as pass-by-reference—whether or not the function modifies the
parameter value. This is because of the perceived performance gain from not copy‐
ing argument values (the real performance gain is negligible).

Historically, calling such methods from C# has been clumsy because you must spec‐
ify the ref keyword with every argument, and this prevents the use of optional
parameters. For instance, to open a Word document, we used to have to do this:

object filename = "foo.doc";
object notUsed1 = Missing.Value;
object notUsed2 = Missing.Value;
object notUsed3 = Missing.Value;
...
Open (ref filename, ref notUsed1, ref notUsed2, ref notUsed3, ...);

Since C# 4.0, however, you can omit the ref modifier on COM function calls,
allowing the use of optional parameters:

word.Open ("foo.doc");

The caveat is that you will get neither a compile-time nor a runtime error if the
COM method you’re calling actually does mutate an argument value.

Indexers
The ability to omit the ref modifier has another benefit: it makes COM indexers
with ref parameters accessible via ordinary C# indexer syntax. This would other‐
wise be forbidden because ref/out parameters are not supported with C# indexers
(the somewhat clumsy workaround in older versions of C# was to call the backing
methods such as get_XXX and set_XXX; this workaround is still legal for backward
compatibility).

Interop with indexers was further enhanced in C# 4.0 such that you can call COM
properties that accept arguments. In the following example, Foo is a property that
accepts an integer argument:

myComObject.Foo [123] = "Hello";

Writing such properties yourself in C# is still prohibited: a type can expose an
indexer only on itself (the “default” indexer). Therefore, if you wanted to write code
in C# that would make the preceding statement legal, Foo would need to return
another type that exposed a (default) indexer.

N
ative and

C
O

M
Intero

p
erab

ility

Calling a COM Component from C# | 1019

www.EBooksWorld.ir

Dynamic Binding
There are two ways that dynamic binding can help when calling COM components.
The first is if you want to access a COM component without a COM interop type.
To do this, call Type.GetTypeFromProgID with the COM component name to obtain
a COM instance, and then use dynamic binding to call members from then on. Of
course, there’s no IntelliSense, and compile-time checks are impossible:

Type excelAppType = Type.GetTypeFromProgID ("Excel.Application", true);
dynamic excel = Activator.CreateInstance (excelAppType);
excel.Visible = true;
dynamic wb = excel.Workbooks.Add();
excel.Cells [1, 1].Value2 = "foo";

(The same thing can be achieved, much more clumsily, with reflection instead of
dynamic binding.)

A variation of this theme is calling a COM component that
supports only IDispatch. Such components are quite rare,
however.

Dynamic binding can also be useful (to a lesser extent) in dealing with the COM
variant type. For reasons due more to poor design that necessity, COM API func‐
tions are often peppered with this type, which is roughly equivalent to object
in .NET. If you enable “Embed Interop Types” in your project (more on this soon),
the runtime will map variant to dynamic, instead of mapping variant to object,
avoiding the need for casts. For instance, you could legally do this:

excel.Cells [1, 1].Font.FontStyle = "Bold";

instead of:

var range = (Excel.Range) excel.Cells [1, 1];
range.Font.FontStyle = "Bold";

The disadvantage of working in this way is that you lose auto-completion, so you
must know that a property called Font happens to exist. For this reason, it’s usually
easier to dynamically assign the result to its known interop type:

Excel.Range range = excel.Cells [1, 1];
range.Font.FontStyle = "Bold";

As you can see, this saves only five characters over the old-fashioned approach!

The mapping of variant to dynamic is the default from Visual Studio 2010
onwards, and is a function of enabling Embed Interop Types on a reference.

Embedding Interop Types
We said previously that C# ordinarily calls COM components via interop types that
are generated by calling the tlbimp.exe tool (directly, or via Visual Studio).

1020 | Chapter 25: Interoperability

www.EBooksWorld.ir

Historically, your only option was to reference interop assemblies just as you would
with any other assembly. This could be troublesome because interop assemblies can
get quite large with complex COM components. A tiny add-in for Microsoft Word,
for instance, requires an interop assembly that is orders of magnitude larger than
itself.

From C# 4.0, rather than referencing an interop assembly, you have the option of
linking to it. When you do this, the compiler analyzes the assembly to work out pre‐
cisely the types and members that your application actually uses. It then embeds
definitions for those types and members directly in your application. This means
that you don’t have to worry about bloat, because only the COM interfaces that you
actually use are included in your application.

Interop linking is the default in Visual Studio 2010 and later for COM references. If
you want to disable it, select the reference in the Solution Explorer, and then go to
its properties and set Embed Interop Types to False.

To enable interop linking from the command-line compiler, call csc with /link
instead of /reference (or /L instead of /R).

Type Equivalence
CLR 4.0 and later support type equivalence for linked interop types. That means that
if two assemblies each link to an interop type, those types will be considered equiva‐
lent if they wrap the same COM type. This holds true even if the interop assemblies
to which they linked were generated independently.

Type equivalence relies on the TypeIdentifierAttribute
attribute in the System.Runtime.InteropServices name‐
space. The compiler automatically applies this attribute when
you link to interop assemblies. COM types are then consid‐
ered equivalent if they have the same GUID.

Type equivalence does away with the need for primary interop assemblies.

Primary Interop Assemblies
Until C# 4.0, there was no interop linking and no option of type equivalence. This
created a problem in that if two developers each ran the tlbimp.exe tool on the same
COM component, they’d end up with incompatible interop assemblies, hindering
interoperability. The workaround was for the author of each COM library to release
an official version of the interop assembly, called the primary interop assembly
(PIA). PIAs are still prevalent, mainly because of the wealth of legacy code.

PIAs are a poor solution for the following reasons:

PIAs were not always used
Since everyone could run the type library importer tool, they often did so,
rather than using the official version. In some cases, there was no choice as
the authors of the COM library didn’t actually publish a PIA.

N
ative and

C
O

M
Intero

p
erab

ility

Primary Interop Assemblies | 1021

www.EBooksWorld.ir

PIAs require registration
PIAs require registration in the GAC. This burden falls on developers writ‐
ing simple add-ins for a COM component.

PIAs bloat deployment
PIAs exemplify the problem of interop assembly bloat that we described
earlier. In particular, the Microsoft Office team chose not to deploy their
PIAs with their product.

Exposing C# Objects to COM
It’s also possible to write classes in C# that can be consumed in the COM world. The
CLR makes this possible through a proxy called a COM-callable wrapper (CCW). A
CCW marshals types between the two worlds (as with an RCW) and implements
IUnknown (and optionally IDispatch) as required by the COM protocol. A CCW is
lifetime-controlled from the COM side via reference counting (rather than through
the CLR’s garbage collector).

You can expose any public class to COM. The one requirement is to define an
assembly attribute that assigns a GUID to identify the COM type library:

[assembly: Guid ("...")] // A unique GUID for the COM type library

By default, all public types will be visible to COM consumers. You can make specific
types invisible, however, by applying the [ComVisible(false)] attribute. If you
want all types invisible by default, apply [ComVisible(false)] to the assembly, and
then [ComVisible(true)] to the types you wish to expose.

The final step is to call the tlbexp.exe tool:

tlbexp.exe myLibrary.dll

This generates a COM type library (.tlb) file which you can then register and con‐
sume in COM applications. COM interfaces to match the COM-visible classes are
generated automatically.

1022 | Chapter 25: Interoperability

www.EBooksWorld.ir

26
Regular Expressions

The regular expressions language identifies character patterns. The .NET types sup‐
porting regular expressions are based on Perl 5 regular expressions and support
both search and search/replace functionality.

Regular expressions are used for tasks such as:

• Validating text input such as passwords and phone numbers (ASP.NET pro‐
vides the RegularExpressionValidator control just for this purpose)

• Parsing textual data into more structured forms (e.g., extracting data from an
HTML page for storage in a database)

• Replacing patterns of text in a document (e.g., whole words only)

This chapter is split into both conceptual sections teaching the basics of regular
expressions in .NET and reference sections describing the regular expressions lan‐
guage.

All regular expression types are defined in System.Text.RegularExpressions.

For more on regular expressions, http://regular-
expressions.info is a good online reference with lots of exam‐
ples, and Mastering Regular Expressions by Jeffrey E. F. Friedl,
is invaluable for the serious.
The samples in this chapter are all preloaded into LINQPad.
There is also an interactive utility available called Expresso
(http://www.ultrapico.com), which assists in building and visu‐
alizing regular expressions and comes with its own expression
library.

R
eg

ular
E

xp
ressio

ns

1023

www.EBooksWorld.ir

http://regular-expressions.info
http://regular-expressions.info
http://bit.ly/master-regex
http://www.ultrapico.com

Regular Expression Basics
One of the most common regular expression operators is a quantifier. ? is a quanti‐
fier that matches the preceding item 0 or 1 time. In other words, ? means optional.
An item is either a single character or a complex structure of characters in square
brackets. For example, the regular expression "colou?r" matches color and col
our, but not colouur:

Console.WriteLine (Regex.Match ("color", @"colou?r").Success); // True
Console.WriteLine (Regex.Match ("colour", @"colou?r").Success); // True
Console.WriteLine (Regex.Match ("colouur", @"colou?r").Success); // False

Regex.Match searches within a larger string. The object that it returns has proper‐
ties for the Index and Length of the match, as well as the actual Value matched:

Match m = Regex.Match ("any colour you like", @"colou?r");

Console.WriteLine (m.Success); // True
Console.WriteLine (m.Index); // 4
Console.WriteLine (m.Length); // 6
Console.WriteLine (m.Value); // colour
Console.WriteLine (m.ToString()); // colour

You can think of Regex.Match as a more powerful version of the string’s IndexOf
method. The difference is that it searches for a pattern rather than a literal string.

The IsMatch method is a shortcut for calling Match and then testing the Success
property.

The regular expressions engine works from left to right by default, so only the left‐
most match is returned. You can use the NextMatch method to return more
matches:

Match m1 = Regex.Match ("One color? There are two colours in my head!",
 @"colou?rs?");
Match m2 = m1.NextMatch();
Console.WriteLine (m1); // color
Console.WriteLine (m2); // colours

The Matches method returns all matches in an array. We can rewrite the preceding
example as follows:

foreach (Match m in Regex.Matches
 ("One color? There are two colours in my head!", @"colou?rs?"))
 Console.WriteLine (m);

Another common regular expressions operator is the alternator, expressed with a
vertical bar, |. An alternator expresses alternatives. The following matches “Jen”,
“Jenny”, and “Jennifer”:

Console.WriteLine (Regex.IsMatch ("Jenny", "Jen(ny|nifer)?")); // True

The brackets around an alternator separate the alternatives from the rest of the
expression.

1024 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

From Framework 4.5, you can specify a timeout when match‐
ing regular expressions. If a match operation takes longer than
the specified TimeSpan, a RegexMatchTimeoutException is
thrown. This can be useful if your program processes arbi‐
trary regular expressions (for instance, in an advanced search
dialog box) because it prevents malformed regular expressions
from infinitely spinning.

Compiled Regular Expressions
In some of the preceding examples, we called a static RegEx method repeatedly with
the same pattern. An alternative approach in these cases is to instantiate a Regex
object with the pattern and RegexOptions.Compiled and then call instance meth‐
ods:

Regex r = new Regex (@"sausages?" , RegexOptions.Compiled);
Console.WriteLine (r.Match ("sausage")); // sausage
Console.WriteLine (r.Match ("sausages")); // sausages

RegexOptions.Compiled instructs the RegEx instance to use lightweight code gener‐
ation (DynamicMethod in Reflection.Emit) to dynamically build and compile code
tailored to that particular regular expression. This results in faster matching at the
expense of an initial compilation cost.

A Regex instance is immutable.

The regular expressions engine is fast. Even without compila‐
tion, a simple match typically takes less than a microsecond.

RegexOptions
The RegexOptions flags enum lets you tweak matching behavior. A common use for
RegexOptions is to perform a case-insensitive search:

Console.WriteLine (Regex.Match ("a", "A", RegexOptions.IgnoreCase)); // a

This applies the current culture’s rules for case equivalence. The CultureInvariant
flag lets you request the invariant culture instead:

Console.WriteLine (Regex.Match ("a", "A", RegexOptions.IgnoreCase
 | RegexOptions.CultureInvariant));

Most of the RegexOptions flags can also be activated within a regular expression
itself, using a single-letter code as follows:

Console.WriteLine (Regex.Match ("a", @"(?i)A")); // a

You can turn options on and off throughout an expression as follows:

Console.WriteLine (Regex.Match ("AAAa", @"(?i)a(?-i)a")); // Aa

R
eg

ular
E

xp
ressio

ns

Regular Expression Basics | 1025

www.EBooksWorld.ir

Another useful option is IgnorePatternWhitespace or (?x). This allows you to
insert whitespace to make a regular expression more readable—without the white‐
space being taken literally.

Table 26-1 lists all RegExOptions values along with their single-letter codes.

Table 26-1. Regular expression options

Enum value Regular
expressions
code

Description

None

IgnoreCase i Ignores case (by default, regular expressions are
case-sensitive)

Multiline m Changes ^ and $ so that they match the start/end
of a line instead of start/end of the string

ExplicitCapture n Captures only explicitly named or explicitly
numbered groups (see “Groups” on page 1032)

Compiled Forces compilation to IL (see “Compiled Regular
Expressions” on page 1025)

Singleline s Makes . match every character (instead of
matching every character except \n)

IgnorePatternWhitespace x Eliminates unescaped whitespace from the pattern

RightToLeft r Searches from right to left; can’t be specified
midstream

ECMAScript Forces ECMA compliance (by default, the
implementation is not ECMA-compliant)

CultureInvariant Turns off culture-specific behavior for string
comparisons

Character Escapes
Regular expressions have the following metacharacters, which have a special rather
than literal meaning:

• \ * + ? | { [() ^ $. #

To use a metacharacter literally, you must prefix the character with a backslash. In
the following example, we escape the ? character to match the string "what?":

Console.WriteLine (Regex.Match ("what?", @"what\?")); // what? (correct)
Console.WriteLine (Regex.Match ("what?", @"what?")); // what (incorrect)

If the character is inside a set (square brackets), this rule does
not apply, and the metacharacters are interpreted literally. We
will discuss sets in the following section.

1026 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

The Regex’s Escape and Unescape methods convert a string containing regular
expression metacharacters by replacing them with escaped equivalents, and vice
versa. For example:

Console.WriteLine (Regex.Escape (@"?")); // \?
Console.WriteLine (Regex.Unescape (@"\?")); // ?>

All the regular expression strings in this chapter we express with the C# @ literal.
This is to bypass C#’s escape mechanism, which also uses the backslash. Without the
@, a literal backslash would require four backslashes:

Console.WriteLine (Regex.Match ("\\", "\\\\")); // \

Unless you include the (?x) option, spaces are treated literally in regular expres‐
sions:

Console.Write (Regex.IsMatch ("hello world", @"hello world")); // True

Character Sets
Character sets act as wildcards for a particular set of characters.

Expression Meaning Inverse (“not”)

[abcdef] Matches a single character in the list [^abcdef]

[a-f] Matches a single character in a range [^a-f]

\d Matches a decimal digit
Same as [0-9]

\D

\w Matches a word character (by default, varies according to
CultureInfo.CurrentCulture; for example, in English,
same as [a-zA-Z_0-9])

\W

\s Matches a whitespace character
Same as [\n\r\t\f\v]

\S

\p{category} Matches a character in a specified category \P

. (Default mode) Matches any character except \n \n

. (SingleLine mode) Matches any character \n

To match exactly one of a set of characters, put the character set in square brackets:

Console.Write (Regex.Matches ("That is that.", "[Tt]hat").Count); // 2

To match any character except those in a set, put the set in square brackets with a ^
symbol before the first character:

Console.Write (Regex.Match ("quiz qwerty", "q[^aeiou]").Index); // 5

You can specify a range of characters with a hyphen. The following regular expres‐
sion matches a chess move:

Console.Write (Regex.Match ("b1-c4", @"[a-h]\d-[a-h]\d").Success); // True

R
eg

ular
E

xp
ressio

ns

Regular Expression Basics | 1027

www.EBooksWorld.ir

\d indicates a digit character, so \d will match any digit. \D matches any nondigit
character.

\w indicates a word character, which includes letters, numbers, and the underscore.
\W matches any nonword character. These work as expected for non-English letters,
too, such as Cyrillic.

. matches any character except \n (but allows \r).

\p matches a character in a specified category, such as {Lu} for uppercase letter or
{P} for punctuation (we list the categories in the reference section later in the chap‐
ter):

Console.Write (Regex.IsMatch ("Yes, please", @"\p{P}")); // True

We will find more uses for \d, \w, and . when we combine them with quantifiers.

Quantifiers
Quantifiers match an item a specified number of times.

Quantifier Meaning

* Zero or more matches

+ One or more matches

? Zero or one match

{n} Exactly n matches

{n,} At least n matches

{n,m} Between n and m matches

The * quantifier matches the preceding character or group zero or more times. The
following matches cv.doc, along with any numbered versions of the same file (e.g.,
cv2.doc, cv15.doc):

Console.Write (Regex.Match ("cv15.doc", @"cv\d*\.doc").Success); // True

Notice that we have to escape out the period in the file extension with a backslash.

The following allows anything between cv and .doc and is equivalent to dir
cv*.doc:

Console.Write (Regex.Match ("cvjoint.doc", @"cv.*\.doc").Success); // True

The + quantifier matches the preceding character or group one or more times. For
example:

Console.Write (Regex.Matches ("slow! yeah slooow!", "slo+w").Count); // 2

The {} quantifier matches a specified number (or range) of repetitions. The follow‐
ing matches a blood pressure reading:

1028 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

Regex bp = new Regex (@"\d{2,3}/\d{2,3}");
Console.WriteLine (bp.Match ("It used to be 160/110")); // 160/110
Console.WriteLine (bp.Match ("Now it's only 115/75")); // 115/75

Greedy Versus Lazy Quantifiers
By default, quantifiers are greedy, as opposed to lazy. A greedy quantifier repeats as
many times as it can before advancing. A lazy quantifier repeats as few times as it
can before advancing. You can make any quantifier lazy by suffixing it with the ?
symbol. To illustrate the difference, consider the following HTML fragment:

string html = "<i>By default</i> quantifiers are <i>greedy</i> creatures";

Suppose we want to extract the two phrases in italics. If we execute the following:

foreach (Match m in Regex.Matches (html, @"<i>.*</i>"))
 Console.WriteLine (m);

the result is not two matches, but a single match, as follows:

<i>By default</i> quantifiers are <i>greedy</i>

The problem is that our * quantifier greedily repeats as many times as it can before
matching </i>. So, it passes right by the first </i>, stopping only at the final </i>
(the last point at which the rest of the expression can still match).

If we make the quantifier lazy:

foreach (Match m in Regex.Matches (html, @"<i>.*?</i>"))
 Console.WriteLine (m);

the * bails out at the first point at which the rest of the expression can match. Here’s
the result:

<i>By default</i>
<i>greedy</i>

Zero-Width Assertions
The regular expressions language lets you place conditions on what should occur
before or after a match, through lookbehind, lookahead, anchors, and word bound‐
aries. These are called zero-width assertions because they don’t increase the width
(or length) of the match itself.

Lookahead and Lookbehind
The (?=expr) construct checks whether the text that follows matches expr, without
including expr in the result. This is called positive lookahead. In the following exam‐
ple, we look for a number followed by the word “miles”:

Console.WriteLine (Regex.Match ("say 25 miles more", @"\d+\s(?=miles)"));

OUTPUT: 25

R
eg

ular
E

xp
ressio

ns

Zero-Width Assertions | 1029

www.EBooksWorld.ir

Notice the word “miles” was not returned in the result, even though it was required
to satisfy the match.

After a successful lookahead, matching continues as though the sneak preview never
took place. So, if we append .* to our expression as follows:

Console.WriteLine (Regex.Match ("say 25 miles more", @"\d+\s(?=miles).*"));

the result is 25 miles more.

Lookahead can be useful in enforcing rules for a strong password. Suppose a pass‐
word has to be at least six characters and contain at least one digit. With a lookup,
we could achieve this as follows:

string password = "...";
bool ok = Regex.IsMatch (password, @"(?=.*\d).{6,}");

This first performs a lookahead to ensure that a digit occurs somewhere in the
string. If satisfied, it returns to its position before the sneak preview began and
matches six or more characters. (In the section “Cookbook Regular Expressions” on
page 1035, later in this chapter, we include a more substantial password validation
example.)

The opposite is the negative lookahead construct, (?!expr). This requires that the
match not be followed by expr. The following expression matches “good”—unless
“however” or “but” appears later in the string:

string regex = "(?i)good(?!.*(however|but))";
Console.WriteLine (Regex.IsMatch ("Good work! But...", regex)); // False
Console.WriteLine (Regex.IsMatch ("Good work! Thanks!", regex)); // True

The (?<=expr) construct denotes positive lookbehind and requires that a match be
preceded by a specified expression. The opposite construct, (?<!expr), denotes neg‐
ative lookbehind and requires that a match not be preceded by a specified expression.
For example, the following matches “good”—unless “however” appears earlier in the
string:

string regex = "(?i)(?<!however.*)good";
Console.WriteLine (Regex.IsMatch ("However good, we...", regex)); // False
Console.WriteLine (Regex.IsMatch ("Very good, thanks!", regex)); // True

We could improve these examples by adding word boundary assertions, which we
will introduce shortly.

Anchors
The anchors ^ and $ match a particular position. By default:

^

Matches the start of the string

$

Matches the end of the string

1030 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

^ has two context-dependent meanings: an anchor and a char‐
acter class negator.

$ has two context-dependent meanings: an anchor and a
replacement group denoter.

For example:

Console.WriteLine (Regex.Match ("Not now", "^[Nn]o")); // No
Console.WriteLine (Regex.Match ("f = 0.2F", "[Ff]$")); // F

If you specify RegexOptions.Multiline or include (?m) in the expression:

• ^ matches the start of the string or line (directly after a \n).

• $ matches the end of the string or line (directly before a \n).

There’s a catch to using $ in multiline mode: a new line in Windows is nearly always
denoted with \r\n rather than just \n. This means that for $ to be useful, you must
usually match the \r as well, with a positive lookahead:

(?=\r?$)

The positive lookahead ensures that \r doesn’t become part of the result. The follow‐
ing matches lines that end in ".txt":

string fileNames = "a.txt" + "\r\n" + "b.doc" + "\r\n" + "c.txt";
string r = @".+\.txt(?=\r?$)";
foreach (Match m in Regex.Matches (fileNames, r, RegexOptions.Multiline))
 Console.Write (m + " ");

OUTPUT: a.txt c.txt

The following matches all empty lines in string s:

MatchCollection emptyLines = Regex.Matches (s, "^(?=\r?$)",
 RegexOptions.Multiline);

The following matches all lines that are either empty or contain only whitespace:

MatchCollection blankLines = Regex.Matches (s, "^[\t]*(?=\r?$)",
 RegexOptions.Multiline);

Since an anchor matches a position rather than a character,
specifying an anchor on its own matches an empty string:

Console.WriteLine (Regex.Match ("x", "$").Length); // 0

Word Boundaries
The word boundary assertion \b matches where word characters (\w) adjoin either:

• Nonword characters (\W)

• The beginning/end of the string (^ and $)

\b is often used to match whole words. For example:

R
eg

ular
E

xp
ressio

ns

Zero-Width Assertions | 1031

www.EBooksWorld.ir

foreach (Match m in Regex.Matches ("Wedding in Sarajevo", @"\b\w+\b"))
 Console.WriteLine (m);

Wedding
in
Sarajevo

The following statements highlight the effect of a word boundary:

int one = Regex.Matches ("Wedding in Sarajevo", @"\bin\b").Count; // 1
int two = Regex.Matches ("Wedding in Sarajevo", @"in").Count; // 2

The next query uses positive lookahead to return words followed by “(sic)”:

string text = "Don't loose (sic) your cool";
Console.Write (Regex.Match (text, @"\b\w+\b\s(?=\(sic\))")); // loose

Groups
Sometimes it’s useful to separate a regular expression into a series of subexpressions,
or groups. For instance, consider the following regular expression that represents a
US phone number such as 206-465-1918:

\d{3}-\d{3}-\d{4}

Suppose we wish to separate this into two groups: area code and local number. We
can achieve this by using parentheses to capture each group:

(\d{3})-(\d{3}-\d{4})

We then retrieve the groups programmatically as follows:

Match m = Regex.Match ("206-465-1918", @"(\d{3})-(\d{3}-\d{4})");

Console.WriteLine (m.Groups[1]); // 206
Console.WriteLine (m.Groups[2]); // 465-1918

The zeroth group represents the entire match. In other words, it has the same value
as the match’s Value:

Console.WriteLine (m.Groups[0]); // 206-465-1918
Console.WriteLine (m); // 206-465-1918

Groups are part of the regular expressions language itself. This means you can refer
to a group within a regular expression. The \n syntax lets you index the group by
group number n within the expression. For example, the expression (\w)ee\1
matches deed and peep. In the following example, we find all words in a string start‐
ing and ending in the same letter:

foreach (Match m in Regex.Matches ("pop pope peep", @"\b(\w)\w+\1\b"))
 Console.Write (m + " "); // pop peep

The brackets around the \w instruct the regular expressions engine to store the sub‐
match in a group (in this case, a single letter) so it can be used later. We refer to that
group later using \1, meaning the first group in the expression.

1032 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

Named Groups
In a long or complex expression, it can be easier to work with groups by name
rather than index. Here’s a rewrite of the previous example, using a group that we
name 'letter':

string regEx =
 @"\b" + // word boundary
 @"(?'letter'\w)" + // match first letter, and name it 'letter'
 @"\w+" + // match middle letters
 @"\k'letter'" + // match last letter, denoted by 'letter'
 @"\b"; // word boundary

foreach (Match m in Regex.Matches ("bob pope peep", regEx))
 Console.Write (m + " "); // bob peep

To name a captured group:

(?'group-name'group-expr) or (?<group-name>group-expr)

To refer to a group:

\k'group-name' or \k<group-name>

The following example matches a simple (nonnested) XML/HTML element by
looking for start and end nodes with a matching name:

string regFind =
 @"<(?'tag'\w+?).*>" + // match first tag, and name it 'tag'
 @"(?'text'.*?)" + // match text content, name it 'text'
 @"</\k'tag'>"; // match last tag, denoted by 'tag'

Match m = Regex.Match ("<h1>hello</h1>", regFind);
Console.WriteLine (m.Groups ["tag"]); // h1
Console.WriteLine (m.Groups ["text"]); // hello

Allowing for all possible variations in XML structure, such as nested elements, is
more complex. The .NET regular expressions engine has a sophisticated extension
called “matched balanced constructs” that can assist with nested tags—information
on this is available on the Internet and in Mastering Regular Expressions by Jeffrey E.
F. Friedl.

Replacing and Splitting Text
The RegEx.Replace method works like string.Replace, except that it uses a regu‐
lar expression.

The following replaces “cat” with “dog”. Unlike with string.Replace, “catapult”
won’t change into “dogapult” because we match on word boundaries:

string find = @"\bcat\b";
string replace = "dog";
Console.WriteLine (Regex.Replace ("catapult the cat", find, replace));

OUTPUT: catapult the dog

R
eg

ular
E

xp
ressio

ns

Replacing and Splitting Text | 1033

www.EBooksWorld.ir

The replacement string can reference the original match with the $0 substitution
construct. The following example wraps numbers within a string in angle brackets:

string text = "10 plus 20 makes 30";
Console.WriteLine (Regex.Replace (text, @"\d+", @"<$0>"));

OUTPUT: <10> plus <20> makes <30>

You can access any captured groups with $1, $2, $3, and so on, or ${name} for a
named group. To illustrate how this can be useful, consider the regular expression in
the previous section that matched a simple XML element. By rearranging the
groups, we can form a replacement expression that moves the element’s content into
an XML attribute:

string regFind =
 @"<(?'tag'\w+?).*>" + // match first tag, and name it 'tag'
 @"(?'text'.*?)" + // match text content, name it 'text'
 @"</\k'tag'>"; // match last tag, denoted by 'tag'

string regReplace =
 @"<${tag}" + // <tag
 @"value=""" + // value="
 @"${text}" + // text
 @"""/>"; // "/>

Console.Write (Regex.Replace ("<msg>hello</msg>", regFind, regReplace));

Here’s the result:

<msg value="hello"/>

MatchEvaluator Delegate
Replace has an overload that takes a MatchEvaluator delegate, which is invoked per
match. This allows you to delegate the content of the replacement string to C# code
when the regular expressions language isn’t expressive enough. For example:

Console.WriteLine (Regex.Replace ("5 is less than 10", @"\d+",
 m => (int.Parse (m.Value) * 10).ToString()));

OUTPUT: 50 is less than 100

In the cookbook, we show how to use a MatchEvaluator to escape Unicode charac‐
ters appropriately for HTML.

Splitting Text
The static Regex.Split method is a more powerful version of the string.Split
method, with a regular expression denoting the separator pattern. In this example,
we split a string, where any digit counts as a separator:

foreach (string s in Regex.Split ("a5b7c", @"\d"))
 Console.Write (s + " "); // a b c

1034 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

The result, here, doesn’t include the separators themselves. You can include the sep‐
arators, however, by wrapping the expression in a positive lookahead. The following
splits a camel-case string into separate words:

foreach (string s in Regex.Split ("oneTwoThree", @"(?=[A-Z])"))
 Console.Write (s + " "); // one Two Three

Cookbook Regular Expressions
Recipes

Matching US Social Security number/phone number
string ssNum = @"\d{3}-\d{2}-\d{4}";

Console.WriteLine (Regex.IsMatch ("123-45-6789", ssNum)); // True

string phone = @"(?x)
 (\d{3}[-\s] | \(\d{3}\)\s?)
 \d{3}[-\s]?
 \d{4}";

Console.WriteLine (Regex.IsMatch ("123-456-7890", phone)); // True
Console.WriteLine (Regex.IsMatch ("(123) 456-7890", phone)); // True

Extracting “name = value” pairs (one per line)
Note that this starts with the multiline directive (?m):

string r = @"(?m)^\s*(?'name'\w+)\s*=\s*(?'value'.*)\s*(?=\r?$)";

string text =
 @"id = 3
 secure = true
 timeout = 30";

foreach (Match m in Regex.Matches (text, r))
 Console.WriteLine (m.Groups["name"] + " is " + m.Groups["value"]);
id is 3 secure is true timeout is 30

Strong password validation
The following checks whether a password has at least six characters and whether it
contains a digit, symbol, or punctuation mark:

string r = @"(?x)^(?=.* (\d | \p{P} | \p{S})).{6,}";

Console.WriteLine (Regex.IsMatch ("abc12", r)); // False
Console.WriteLine (Regex.IsMatch ("abcdef", r)); // False
Console.WriteLine (Regex.IsMatch ("ab88yz", r)); // True

R
eg

ular
E

xp
ressio

ns

Cookbook Regular Expressions | 1035

www.EBooksWorld.ir

Lines of at least 80 characters
string r = @"(?m)^.{80,}(?=\r?$)";

string fifty = new string ('x', 50);
string eighty = new string ('x', 80);

string text = eighty + "\r\n" + fifty + "\r\n" + eighty;

Console.WriteLine (Regex.Matches (text, r).Count); // 2

Parsing dates/times (N/N/N H:M:S AM/PM)
This expression handles a variety of numeric date formats—and works whether the
year comes first or last. The (?x) directive improves readability by allowing white‐
space; the (?i) switches off case sensitivity (for the optional AM/PM designator).
You can then access each component of the match through the Groups collection:

string r = @"(?x)(?i)
 (\d{1,4}) [./-]
 (\d{1,2}) [./-]
 (\d{1,4}) [\sT]
 (\d+):(\d+):(\d+) \s? (A\.?M\.?|P\.?M\.?)?";

string text = "01/02/2008 5:20:50 PM";

foreach (Group g in Regex.Match (text, r).Groups)
 Console.WriteLine (g.Value + " ");
01/02/2008 5:20:50 PM 01 02 2008 5 20 50 PM

(Of course, this doesn’t verify that the date/time is correct.)

Matching Roman numerals
string r =
 @"(?i)\bm*" +
 @"(d?c{0,3}|c[dm])" +
 @"(l?x{0,3}|x[lc])" +
 @"(v?i{0,3}|i[vx])" +
 @"\b";

Console.WriteLine (Regex.IsMatch ("MCMLXXXIV", r)); // True

Removing repeated words
Here, we capture a named grouped called dupe:

string r = @"(?'dupe'\w+)\W\k'dupe'";

string text = "In the the beginning...";
Console.WriteLine (Regex.Replace (text, r, "${dupe}"));

In the beginning

1036 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

Word count
string r = @"\b(\w|[-'])+\b";

string text = "It's all mumbo-jumbo to me";
Console.WriteLine (Regex.Matches (text, r).Count); // 5

Matching a Guid
string r =
 @"(?i)\b" +
 @"[0-9a-fA-F]{8}\-" +
 @"[0-9a-fA-F]{4}\-" +
 @"[0-9a-fA-F]{4}\-" +
 @"[0-9a-fA-F]{4}\-" +
 @"[0-9a-fA-F]{12}" +
 @"\b";

string text = "Its key is {3F2504E0-4F89-11D3-9A0C-0305E82C3301}.";
Console.WriteLine (Regex.Match (text, r).Index); // 12

Parsing an XML/HTML tag
Regex is useful for parsing HTML fragments—particularly when the document may
be imperfectly formed:

string r =
 @"<(?'tag'\w+?).*>" + // match first tag, and name it 'tag'
 @"(?'text'.*?)" + // match text content, name it 'textd'
 @"</\k'tag'>"; // match last tag, denoted by 'tag'

string text = "<h1>hello</h1>";

Match m = Regex.Match (text, r);

Console.WriteLine (m.Groups ["tag"]); // h1
Console.WriteLine (m.Groups ["text"]); // hello

Splitting a camel-cased word
This requires a positive lookahead to include the uppercase separators:

string r = @"(?=[A-Z])";

foreach (string s in Regex.Split ("oneTwoThree", r))
 Console.Write (s + " "); // one Two Three

Obtaining a legal filename
string input = "My \"good\" <recipes>.txt";

char[] invalidChars = System.IO.Path.GetInvalidPathChars();
string invalidString = Regex.Escape (new string (invalidChars));

string valid = Regex.Replace (input, "[" + invalidString + "]", "");

R
eg

ular
E

xp
ressio

ns

Cookbook Regular Expressions | 1037

www.EBooksWorld.ir

Console.WriteLine (valid);

My good recipes.txt

Escaping Unicode characters for HTML
string htmlFragment = "© 2007";

string result = Regex.Replace (htmlFragment, @"[\u0080-\uFFFF]",
 m => @"&#" + ((int)m.Value[0]).ToString() + ";");

Console.WriteLine (result); // © 2007

Unescaping characters in an HTTP query string
string sample = "C%23 rocks";

string result = Regex.Replace (
 sample,
 @"%[0-9a-f][0-9a-f]",
 m => ((char) Convert.ToByte (m.Value.Substring (1), 16)).ToString(),
 RegexOptions.IgnoreCase
);

Console.WriteLine (result); // C# rocks

Parsing Google search terms from a web stats log
This should be used in conjunction with the previous example to unescape charac‐
ters in the query string:

string sample =
 "http://google.com/search?hl=en&q=greedy+quantifiers+regex&btnG=Search";

Match m = Regex.Match (sample, @"(?<=google\..+search\?.*q=).+?(?=(&|$))");

string[] keywords = m.Value.Split (
 new[] { '+' }, StringSplitOptions.RemoveEmptyEntries);

foreach (string keyword in keywords)
 Console.Write (keyword + " "); // greedy quantifiers regex

Regular Expressions Language Reference
Tables 26-2 through 26-12 summarize the regular expressions grammar and syntax
supported in the .NET implementation.

1038 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

Table 26-2. Character escapes

Escape code sequence Meaning Hexadecimal equivalent

\a Bell \u0007

\b Backspace \u0008

\t Tab \u0009

\r Carriage return \u000A

\v Vertical tab \u000B

\f Form feed \u000C

\n Newline \u000D

\e Escape \u001B

\nnn ASCII character nnn as octal (e.g., \n052)

\xnn ASCII character nn as hex (e.g., \x3F)

\cl ASCII control character l (e.g., \cG for Ctrl-G)

\unnnn Unicode character nnnn as hex (e.g., \u07DE)

\symbol A nonescaped symbol

Special case: within a regular expression, \b means word boundary, except in a []
set, in which \b means the backspace character.

Table 26-3. Character sets

Expression Meaning Inverse (“not”)

[abcdef] Matches a single character in the list [^abcdef]

[a-f] Matches a single character in a range [^a-f]

\d Matches a decimal digit
Same as [0-9]

\D

\w Matches a word character (by default, varies according to
CultureInfo.CurrentCulture; for example, in English,
same as [a-zA-Z_0-9])

\W

\s Matches a whitespace character
Same as [\n\r\t\f\v]

\S

\p{category} Matches a character in a specified category (see Table 26-6) \P

. (Default mode) Matches any character except \n \n

. (SingleLine mode) Matches any character \n

R
eg

ular
E

xp
ressio

ns

Regular Expressions Language Reference | 1039

www.EBooksWorld.ir

Table 26-4. Character categories

Quantifier Meaning

\p{L} Letters

\p{Lu} Uppercase letters

\p{Ll} Lowercase letters

\p{N} Numbers

\p{P} Punctuation

\p{M} Diacritic marks

\p{S} Symbols

\p{Z} Separators

\p{C} Control characters

Table 26-5. Quantifiers

Quantifier Meaning

* Zero or more matches

+ One or more matches

? Zero or one match

{n} Exactly n matches

{n,} At least n matches

{n,m} Between n and m matches

The ? suffix can be applied to any of the quantifiers to make them lazy rather than
greedy.

Table 26-6. Substitutions

Expression Meaning

$0 Substitutes the matched text

$group-number Substitutes an indexed group-number within the matched text

${group-name} Substitutes a text group-name within the matched text

Substitutions are specified only within a replacement pattern.

1040 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

Table 26-7. Zero-width assertions

Expression Meaning

^ Start of string (or line in multiline mode)

$ End of string (or line in multiline mode)

\A Start of string (ignores multiline mode)

\z End of string (ignores multiline mode)

\Z End of line or string

\G Where search started

\b On a word boundary

\B Not on a word boundary

(?=expr) Continue matching only if expression expr matches on right (positive lookahead)

(?!expr) Continue matching only if expression expr doesn’t match on right (negative lookahead)

(?<=expr) Continue matching only if expression expr matches on left (positive lookbehind)

(?<!expr) Continue matching only if expression expr doesn’t match on left (negative lookbehind)

(?>expr) Subexpression expr is matched once and not backtracked

Table 26-8. Grouping constructs

Syntax Meaning

(expr) Capture matched expression expr into indexed group

(?number) Capture matched substring into a specified group number

(?'name') Capture matched substring into group name

(?'name1-name2') Undefine name2, and store interval and current group into name1; if name2 is
undefined, matching backtracks; name1 is optional

(?:expr) Noncapturing group

Table 26-9. Back references

Parameter syntax Meaning

\index Reference a previously captured group by index

\k<name> Reference a previously captured group by name

Table 26-10. Alternation

Expression syntax Meaning

| Logical or

(?(expr)yes|no) Matches yes if expression matches; otherwise, matches no (no is optional)

(?(name)yes|no) Matches yes if named group has a match; otherwise, matches no (no is optional)

R
eg

ular
E

xp
ressio

ns

Regular Expressions Language Reference | 1041

www.EBooksWorld.ir

Table 26-11. Miscellaneous constructs

Expression syntax Meaning

(?#comment) Inline comment

#comment Comment to end of line (works only in IgnorePatternWhitespace mode)

Table 26-12. Regular expression options

Option Meaning

(?i) Case-insensitive match (“ignore” case)

(?m) Multiline mode; changes ^ and $ so that they match beginning and end of any line

(?n) Captures only explicitly named or numbered groups

(?c) Compiles to IL

(?s) Single-line mode; changes meaning of “.” so that it matches every character

(?x) Eliminates unescaped whitespace from the pattern

(?r) Searches from right to left; can’t be specified midstream

1042 | Chapter 26: Regular Expressions

www.EBooksWorld.ir

27
The Roslyn Compiler

C# 6.0 has a brand-new compiler, written entirely in C#. The new compiler is mod‐
ular, so you can utilize its functionality in many ways besides compiling source code
to an executable or library. Known as “Roslyn”, the new compiler makes it easier to
write static code analysis and refactoring tools, editors with syntax highlighting and
code completion, and Visual Studio plugins that understand C# code.

The Roslyn libraries can be downloaded from NuGet, and there are packages for
both C# and VB. As both languages share some architecture, there are common
dependencies. The NuGet package ID for the C# compiler libraries is Micro
soft.CodeAnalysis.CSharp.

The source code for Roslyn is publicly available under the Apache 2 open source
license. This opens up further possibilities, including morphing C# into a custom or
domain-specific language. The source code is available on GitHub, at https://
github.com/dotnet/roslyn.

The GitHub site also hosts documentation, examples, and walkthroughs that
demonstrate code analysis and refactoring.

.NET Framework 4.6 does not ship with the Roslyn assem‐
blies, and its version of csc.exe invokes the old C# 5 compiler.
Installing Visual Studio 2015 remaps csc.exe to the C# 6 (Ros‐
lyn) compiler.
Without Visual Studio 2015, you can still programmatically
invoke the compiler (and its services) if you download and
reference the Roslyn assemblies. But the csc.exe tool that ships
with the .NET Framework will remain pointed at C# 5 until
you install Visual Studio 2015.

The R
o

slyn
C

o
m

p
iler

1043

www.EBooksWorld.ir

https://github.com/dotnet/roslyn
https://github.com/dotnet/roslyn

The assemblies that comprise the C# compiler library are as follows:

Microsoft.CodeAnalysis.dll
Microsoft.CodeAnalysis.CSharp.dll
System.Collections.Immutable.dll
System.Reflection.Metadata.dll

The former assembly is also used by the VB compiler and contains common base
types for trees, symbols, compilations, and so on.

All code listings in this chapter are available as interactive
samples in LINQPad 5. Go to LINQPad’s Samples tab at the
bottom left, click “Download more samples,” and choose “C#
6.0 in a Nutshell.”

Roslyn Architecture
The Roslyn architecture separates compilation into three phases:

1. Parsing code into syntax trees (the syntactic layer)
2. Binding identifiers to symbols (the semantic layer)
3. Emitting IL

In the first phase, a parser reads C# code and outputs syntax trees. A syntax tree is a
DOM (Document Object Model) that describes source code in tree structure.

The second phase is where C#’s static binding takes place. Assembly references are
read, and the compiler figures out, for instance, that “Console” refers to System.Con
sole in mscorlib.dll. Overload resolution and type inference are a part of this, too.

The third phase produces the output assembly. If you plan to use Roslyn for code
analysis or refactoring, you won’t use this functionality.

Visual Studio’s editor uses the output of the syntactic layer to color keywords,
strings, comments, and disabled code (in blue, red, green, and gray, respectively),
whereas it uses the output of the semantic layer to color resolved type names (in
turquoise).

Workspaces
In this chapter, we describe the compiler and the features it exposes. It’s worth keep‐
ing in mind that there’s an additional “layer” above the compiler called workspaces.
It’s also available on NuGet; the package ID is Microsoft.CodeAnaly

sis.CSharp.Workspaces.

The workspaces layer understands Visual Studio solutions, projects, and docu‐
ments, and includes additional services, such as code refactoring, not strictly related
to the compilation processes.

The workspaces layer is open source, and by looking at the source code, it’s possible
to learn more about the compilation layer.

1044 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

Syntax Trees
A syntax tree is a DOM for source code. The syntax tree API is completely separate
from the System.Linq.Expressions API we discussed in “Expression Trees” on
page 387 in Chapter 8, although the two have conceptual similarities. Both APIs can
represent C# expressions in a DOM; however, a Roslyn syntax tree has the following
unique features:

• It can represent the entire C# language, not just expressions.
• It can include comments, whitespace, and other “trivia,” and can round-trip

with full fidelity back to the original source code.
• It comes with a ParseText method that parses source code into a syntax tree.

Conversely, the System.Linq.Expressions API has the following unique features:

• It’s built into the .NET Framework, and the C# compiler itself is programmed
to emit System.Linq.Expression types when it encounters a lambda expres‐
sion with an assignment conversion to Expression<T>.

• It has a fast and lightweight Compile method that emits a delegate. In contrast,
the semantic layer that compiles Roslyn syntax trees offers only the heavy‐
weight option of compiling a complete program into an assembly.

Something that both APIs have in common is that syntax trees are immutable, so
none of its elements can be altered once created. This means that applications such
as Visual Studio and LINQPad must create a new syntax tree each time you press a
key in the editor in order to update syntax highlighting and autocompletion serv‐
ices. This is less expensive than it sounds because the new syntax tree is able to re-
use most of the elements of the old (see “Transforming a Syntax Tree” on page
1056). And knowing that an object cannot change makes the API simpler to work
with. It also allows for easier and faster parallelization, since multithreaded code can
safely access all parts of a syntax tree without locks.

SyntaxTree Structure
A SyntaxTree comprises three main elements:

Nodes
(Abstract SyntaxNode class.) Represents C# constructs such as expressions,
statements, and method declarations. Nodes always have at least one child,
so a node can never be a leaf in the tree. Nodes can have both nodes and
tokens as children.

Tokens
(SyntaxToken struct.) Represents the identifiers, keywords, operators, and
punctuation that make up your source code. The only kind of children that

The R
o

slyn
C

o
m

p
iler

Syntax Trees | 1045

www.EBooksWorld.ir

tokens can have is optional leading and trailing trivia. A token’s parent is
always a node.

Trivia
(SyntaxTrivia struct.) Trivia is for whitespace, comments, preprocessor
directives, and code that’s inactive due to conditional compilation. Trivia is
always associated with the token that’s immediately to its left or right and is
exposed via that token’s TrailingTrivia and LeadingTrivia properties,
respectively.

Figure 27-1 shows the structure of the following code, with nodes in black, tokens
in gray, and trivia in white:

Console.WriteLine ("Hello");

Figure 27-1. Syntax trees

SyntaxNode is abstract and has a C#-specific subclass for each kind of syntactic ele‐
ment, such as VariableDeclarationSyntax or TryStatementSyntax.

SyntaxToken / SyntaxTrivia are structs, and so a single type represents every kind
of token / trivia. To distinguish different kinds of token or trivia, you must use the
RawKind property or Kind extension method (which we’ll explain in the following
section).

1046 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

The best way to explore a syntax tree is with a visualizer. Vis‐
ual Studio has a downloadable visualizer for use with its
debugger, and LINQPad has one built in. LINQPad displays
the visualizer automatically for the code in the text editor
when you click the Tree button in the output window. You can
also ask LINQPad to display a visualizer for a syntax tree that
you’ve created programmatically by calling DumpSyntaxTree
on the tree (or DumpSyntaxNode on a node).

Understanding Node Types
The subclasses of SyntaxNode have been designed to reflect the result of syntactical
parsing and are blind to semantic type/symbol information obtained from binding
that occurs later. For example, consider the result of parsing the following code:

using System;

class Foo : SomeBaseClass
{
 void Test() { Console.WriteLine(); }
}

You might expect Console.WriteLine to be represented by a class called MethodCal
lExpressionSyntax, but no such class exists. Instead, it’s represented by an Invoca
tionExpressionSyntax, under which there’s a SimpleMemberAccessExpression. This
is because the parser is ignorant of types, so it cannot know that Console is a type
and WriteLine is a method. There are many other possibilities: Console could be a
property of SomeBaseClass, or WriteLine could be an event, field, or property of a
delegate type. All we can know from the syntax is that we’re performing a member
access (identifier.identifier), followed by some kind of invocation with zero argu‐
ments.

Common properties and methods
Nodes, tokens, and trivia have a number of important common properties and
methods:

SyntaxTree property
Returns the syntax tree to which the object belongs.

Span property
Returns the object’s position in source code (see “Finding a child by its off‐
set” on page 1052).

Kind extension method
Returns a SyntaxKind enum that classifies the node, token, or trivia into
one of several hundred values (e.g., IntKeyword, CommaToken, and Whitespa
ceTrivia). The same SyntaxKind enum covers nodes, tokens, and trivia.

The R
o

slyn
C

o
m

p
iler

Syntax Trees | 1047

www.EBooksWorld.ir

ToString method
Returns the text (source code) for the node, token, or trivia. For tokens, the
Text property is equivalent.

GetDiagnostics method
Returns errors or warnings generated during parsing.

IsEquivalentTo method
Returns true if the object is identical to another node, token, or trivia
instance. Whitespace differences are significant (to ignore whitespace, call
NormalizeWhitespace before comparing).

Nodes and tokens also have a FullSpan property and ToFull
String method. These take into account trivia, whereas Span
and ToString do not.

The Kind extension method is a shortcut for casting the RawKind property, which is
of type int, to Microsoft.CodeAnalysis.CSharp.SyntaxKind. The reason for not
simply having a Kind property of type SyntaxKind is that the token and trivia types
are also used in VB syntax trees, which have a different enum type for SyntaxKind.

Obtaining a Syntax Tree
The static ParseText method on CSharpSyntaxTree parses C# code into a Syntax
Tree:

SyntaxTree tree = CSharpSyntaxTree.ParseText (@"class Test
{
 static void Main() => Console.WriteLine (""Hello"");
}");

Console.WriteLine (tree.ToString());

tree.DumpSyntaxTree(); // Displays Syntax Tree Visualizer in LINQPad

To run this in a Visual Studio project, install the Microsoft.CodeAnalysis.CSharp
NuGet package, and import the following namespaces:

using Microsoft.CodeAnalysis;
using Microsoft.CodeAnalysis.CSharp;

You can optionally pass in a CSharpParseOptions object to specify a C# language
version, preprocessor symbols, and a DocumentationMode to indicate whether XML
comments should be parsed (see “Structured trivia” on page 1055). There’s also an
option to specify a SourceCodeKind. Choosing Interactive or Script instructs the
parser to accept a single expression or statement(s) instead of requiring an entire
program, although doing so currently throws a NotSupportedException.

1048 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

Parsing Expressions and Statements
The ability to parse just an expression or statement(s) exists in Microsoft.CodeAnaly
sis.CSharp, but this feature has been blocked (at least in the first release) because
some scenarios haven’t yet been thought through (an example is await expressions).
If you’re interested in experimenting with this functionality, you can unblock it in
one of two ways:

• Download the Roslyn source code from GitHub and disable the check in
CSharpParseOptions.cs.

• Construct a CSharpParseOptions instance and use reflection to set SourceCode
Kind to Interactive or Script.

LINQPad does exactly this to display syntax trees when you set the language to
Expression or Statements.

Another way to obtain a syntax tree is to call CSharpSyntaxTree.Create, passing in
an object graph of nodes and tokens. We describe how to create these objects in
“Transforming a Syntax Tree” on page 1056.

After parsing a tree, you can obtain errors and warnings by calling GetDiagnostics.
(You can also call this method on a specific node or token.)

If the parse resulted in unexpected errors, the tree’s structure
may not be as you expect. For this reason, it’s worth calling
GetDiagnostics before proceeding further.

A nice feature is that a tree with errors will round-trip back to the original text (with
the same errors). In such cases, the parser does its best to provide a syntax tree that’s
useful to the semantic layer, creating “phantom nodes” if necessary. This allows tools
such as code completion to work with incomplete code. (You can determine if a
node is phantom by checking the IsMissing property.)

Calling GetDiagnostics on the syntax tree we created in the last section indicates
no errors, despite having called Console.WriteLine without importing the System
namespace. This is a good example of syntactic versus semantic parsing: our pro‐
gram is syntactically correct, and our error will not manifest until we create a com‐
pilation, add assembly references, and query the semantic model, where binding
takes place.

Traversing and Searching a Tree
A SyntaxTree acts as a wrapper for the tree structure. It has a reference to a single
root node, which you obtain by calling GetRoot:

var tree = CSharpSyntaxTree.ParseText (@"class Test
{

The R
o

slyn
C

o
m

p
iler

Syntax Trees | 1049

www.EBooksWorld.ir

 static void Main() => Console.WriteLine (""Hello"");
}");

SyntaxNode root = tree.GetRoot();

The root node of a C# program is a CompilationUnitSyntax:

Console.WriteLine (root.GetType().Name); // CompilationUnitSyntax

Traversing children
SyntaxNode exposes LINQ-friendly methods to traverse its child nodes and tokens.
The simplest are:

IEnumerable<SyntaxNode> ChildNodes()
IEnumerable<SyntaxToken> ChildTokens()

Following on from our previous example, our root node has a single child node of
type ClassDeclarationSyntax:

var cds = (ClassDeclarationSyntax) root.ChildNodes().Single();

We can enumerate the members of cds via either its ChildNodes method or the Mem
bers property of ClassDeclarationSyntax:

foreach (MemberDeclarationSyntax member in cds.Members)
 Console.WriteLine (member.ToString());

with the following result:

static void Main() => Console.WriteLine (""Hello"");

There are also Descendant* methods which descend recursively into children. We
can enumerate the tokens that make up our program as follows:

foreach (var token in root.DescendantTokens())
 Console.WriteLine ($"{token.Kind(),-30} {token.Text}");

Here’s the result:

ClassKeyword class
IdentifierToken Test
OpenBraceToken {
StaticKeyword static
VoidKeyword void
IdentifierToken Main
OpenParenToken (
CloseParenToken)
EqualsGreaterThanToken =>
IdentifierToken Console
DotToken .
IdentifierToken WriteLine
OpenParenToken (
StringLiteralToken "Hello"
CloseParenToken)
SemicolonToken ;

1050 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

CloseBraceToken }
EndOfFileToken

Notice that there’s no whitespace in the result. Replacing token.Text with
token.ToFullString() would give us whitespace (and any other trivia).

The following uses the DescendantNodes method to locate the syntax node for our
method declaration:

var ourMethod = root.DescendantNodes()
 .First (m => m.Kind() == SyntaxKind.MethodDeclaration);

or alternatively:

var ourMethod = root.DescendantNodes()
 .OfType<MethodDeclarationSyntax>()
 .Single();

With the latter example, ourMethod is of type MethodDeclarationSyntax, which
exposes useful properties specific to method declarations. For instance, if our exam‐
ple contained more than one method definition, and we wanted to find just the
method whose name is “Main”, we could do this:

var mainMethod = root.DescendantNodes()
 .OfType<MethodDeclarationSyntax>()
 .Single (m => m.Identifier.Text == "Main");

Identifier is a property on MethodDeclarationSyntax that returns the token cor‐
responding to the method’s identifier (i.e., its name). We could get the same result
with more effort, as follows:

root.DescendantNodes().First (m =>
 m.Kind() == SyntaxKind.MethodDeclaration &&
 m.ChildTokens().Any (t =>
 t.Kind() == SyntaxKind.IdentifierToken && t.Text == "Main"));

SyntaxNode also has GetFirstToken and GetLastToken methods which are equiva‐
lent to calling DescendantTokens().First() and DescendantTokens().Last().

GetLastToken() is faster than DescendantTokens().Last()
because it returns a direct link rather than enumerating
through all descendants.

As nodes can contain both child nodes and tokens whose relative order is signifi‐
cant, there are also methods to enumerate both together:

ChildSyntaxList ChildNodesAndTokens()
IEnumerable<SyntaxNodeOrToken> DescendantNodesAndTokens()
IEnumerable<SyntaxNodeOrToken> DescendantNodesAndTokensAndSelf()

(ChildSyntaxList implements IEnumerable<SyntaxNodeOrToken> while also
exposing a Count property and an indexer to access an element by position.)

You can traverse trivia directly from a node with the GetLeadingTrivia, GetTrai
lingTrivia, and DescendantTrivia methods. More commonly, though, you’d

The R
o

slyn
C

o
m

p
iler

Syntax Trees | 1051

www.EBooksWorld.ir

access trivia through the token to which it’s attached, via the token’s LeadingTrivia
and TrailingTrivia properties. Or to convert to text, you’d use the ToFullString
method, which includes trivia in the result.

Traversing parents
Nodes and tokens have a Parent property of type SyntaxNode.

For SyntaxTrivia, the “parent” is its token, accessible via the Token property.

Nodes also have methods which ascend back up the tree, which are prefixed with
“Ancestor”.

Finding a child by its offset
All nodes, tokens, and trivia have a Span property of type TextSpan to indicate start‐
ing and ending offsets in the source code. Nodes and tokens also have a FullSpan
property which includes leading and trailing trivia (whereas Span does not). A
node’s Span does, however, include child nodes and tokens.

Working with TextSpan
The TextSpan struct has Start, Length, and End integer properties, which indicate
character offsets in the source code. It also has methods such as Overlap, Overlaps
With, Intersection, and IntersectsWith. The difference between overlapping and
intersecting is a matter of one character: two spans overlap if one starts before the
other ends (<), whereas they intersect if they merely touch (<=).

The SyntaxTree class exposes a GetLineSpan method which converts a TextSpan into
a line and character offset. This method ignores the effects of any #line directives
present in the source code. There’s also a GetMappedLineSpan method which takes
these directives into account.

You can find a descendant object by position with the FindNode, FindToken, and
FindTrivia methods on SyntaxNode. These methods return the descendant object
with the smallest span that fully contains the span that you specify. There’s also a
ChildThatContainsPosition method which searches both descendant nodes and
tokens.

Should a search result in two nodes with an identical span (typically a child and
grandchild), the FindNode method will return the outer (parent) node. You can
change this behavior by passing true to the optional argument getInnermostNode
ForTie.

The Find* methods also have an optional findInsideTrivia bool parameter. If
true, this also searches for nodes or tokens within structured trivia (see “Trivia” on
page 1053).

1052 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

CSharpSyntaxWalker
Another way to traverse a tree is by subclassing CSharpSyntaxWalker, overriding
one or more of its hundreds of virtual methods. This following class counts the
number of if statements:

class IfCounter : CSharpSyntaxWalker
{
 public int IfCount { get; private set; }

 public override void VisitIfStatement (IfStatementSyntax node)
 {
 IfCount++;
 // Call the base method if you want to descend into children.
 base.VisitIfStatement (node);
 }
}

Here’s how to invoke it:

var ifCounter = new IfCounter ();
ifCounter.Visit (root);
Console.WriteLine ($"I found {ifCounter.IfCount} if statements");

The result is equivalent to:

root.DescendantNodes().OfType<IfStatementSyntax>().Count()

Writing a syntax walker can be easier than using the Descendant* methods in more
complex cases when you need to override multiple methods (in part, because C# has
no F#-like pattern matching ability).

By default, CSharpSyntaxWalker visits just nodes. To visit tokens or trivia, you must
call the base constructor with a SyntaxWalkerDepth, indicating the desired depth
(node→token→trivia). Then you can override VisitToken and VisitTrivia:

class WhiteWalker : CSharpSyntaxWalker // Counts space characters
{
 public int SpaceCount { get; private set; }

 public WhiteWalker() : base (SyntaxWalkerDepth.Trivia) { }

 public override void VisitTrivia (SyntaxTrivia trivia)
 {
 SpaceCount += trivia.ToString().Count (char.IsWhiteSpace);
 base.VisitTrivia (trivia);
 }
}

If you remove WhiteWalker’s call to the base constructor, VisitTrivia will not fire.

Trivia
Trivia is for code that, after parsing, the compiler can almost entirely ignore in
terms of producing an output assembly. This comprises whitespace, comments,

The R
o

slyn
C

o
m

p
iler

Syntax Trees | 1053

www.EBooksWorld.ir

XML documentation, preprocessor directives, and code that’s inactive by virtue of
conditional compilation.

The mandatory whitespace in your code is also considered trivia. Although essential
for parsing, it’s not needed once the syntax tree has been produced (at least by the
compiler). Trivia is still important for round-tripping back to the original source
code.

Trivia belongs to the token to which it’s adjacent. By convention, the parser puts
whitespace and comments that follow a token, up to the end of the line, into the
token’s trailing trivia. Anything after that, it treats as leading trivia for the next
token. (There are exceptions for the very start/end of the file.) If you’re creating
tokens programmatically (see “Transforming a Syntax Tree” on page 1056), you can
put the whitespace in either place (or not at all, if you’re not going to convert back
to source code):

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
 static /*comment*/ void Main() {}
}");

SyntaxNode root = tree.GetRoot();

// Find the static keyword token:
var method = root.DescendantTokens().Single (t =>
 t.Kind() == SyntaxKind.StaticKeyword);

// Print out the trivia around the static keyword token:
foreach (SyntaxTrivia t in method.LeadingTrivia)
 Console.WriteLine (new { Kind = "Leading " + t.Kind(), t.Span.Length });

foreach (SyntaxTrivia t in method.TrailingTrivia)
 Console.WriteLine (new { Kind = "Trailing " + t.Kind(), t.Span.Length });

Here’s the output:

{ Kind = Leading WhitespaceTrivia, Length = 1 }
{ Kind = Trailing WhitespaceTrivia, Length = 1 }
{ Kind = Trailing MultiLineCommentTrivia, Length = 11 }
{ Kind = Trailing WhitespaceTrivia, Length = 1 }

Preprocessor directives
It might seem odd that preprocessor directives are considered trivia, given that
some directives (in particular, conditional compilation directives) have a nontrivial
effect on the output.

The reason is that preprocessor directives are processed semantically by the parser
itself, i.e., it’s the parser’s job to do the preprocessing. After which, there’s nothing
left that the compiler need explicitly consider (except for #pragma). To illustrate, let’s
examine how the parser handles conditional compilation directives:

1054 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

#define FOO

#if FOO
 Console.WriteLine ("FOO is defined");
#else
 Console.WriteLine ("FOO is not defined");
#endif

Upon reading the #if FOO directive, the parser knows that FOO is defined, and so
the line that follows is parsed normally (as nodes and tokens), whereas the line of
code following the #else directive is parsed into DisabledTextTrivia.

When calling CSharpSyntaxTree.Parse, you can supply addi‐
tional preprocessor symbols by constructing and passing in a
CSharpParseOptions instance.

Hence, with conditional compilation, it is precisely the text that can be ignored that
ends up in trivia (i.e., the inactive code and the preprocessor directives themselves).

The #line directive is handled similarly, in that the parser reads and interprets the
directive. The information that it harvests is used when you call GetMappedLine
Span on the syntax tree.

The #region directive is semantically empty: the only role of the parser is to check
that #region directives are matched with #endregion directives. The #error and
#warning directives are also processed by the parser, which generates errors and
warnings that you can see by calling GetDiagnostics on the tree or node.

It can be still useful to examine the content of preprocessor directives for purposes
other than producing the output assembly (syntax highlighting, for instance). This
is made easier through structured trivia.

Structured trivia
There are two kinds of trivia:

Unstructured trivia
Comments, whitespace, and code that’s inactive due to conditional compi‐
lation

Structured trivia
Preprocessor directives and XML documentation

Unstructured trivia is treated purely as text, whereas structured trivia also has its
content parsed into a miniature syntax tree.

The HasStructure property on SyntaxTrivia indicates whether structured trivia is
present, and the GetStructure method returns the root node for the miniature syn‐
tax tree:

The R
o

slyn
C

o
m

p
iler

Syntax Trees | 1055

www.EBooksWorld.ir

var tree = CSharpSyntaxTree.ParseText (@"#define FOO");

// In LINQPad:
tree.DumpSyntaxTree(); // LINQPad displays structured trivia in Visualizer

SyntaxNode root = tree.GetRoot();

var trivia = root.DescendantTrivia().First();
Console.WriteLine (trivia.HasStructure); // True
Console.WriteLine (trivia.GetStructure().Kind()); // DefineDirectiveTrivia

In the case of preprocessor directives, you can navigate directly to the structured
trivia by calling GetFirstDirective on a SyntaxNode. There’s also a ContainsDirec
tives property to indicate whether preprocessor trivia is present:

var tree = CSharpSyntaxTree.ParseText (@"#define FOO");
SyntaxNode root = tree.GetRoot();

Console.WriteLine (root.ContainsDirectives); // True

// directive is the root node of the structured trivia:
var directive = root.GetFirstDirective();
Console.WriteLine (directive.Kind()); // DefineDirectiveTrivia
Console.WriteLine (directive.ToString()); // #define FOO

// If there were more directives, we could get to them as follows:
Console.WriteLine (directive.GetNextDirective()); // (null)

Once we’ve got a trivia node, we can cast it to a specific type and query its proper‐
ties, just as we would with any other node:

var hashDefine = (DefineDirectiveTriviaSyntax) root.GetFirstDirective();
Console.WriteLine (hashDefine.Name.Text); // FOO

All nodes, tokens, and trivia have the IsPartOfStructuredTri
via property to indicate whether the object in question is part
of a structured trivia tree (i.e., descends from a trivia object).

Transforming a Syntax Tree
You can “modify” nodes, tokens, and trivia via a set of methods with the following
prefixes (most of which are extension methods):

Add*
Insert*
Remove*
Replace*
With*
Without*

Because syntax trees are immutable, all of these methods return a new object with
the desired modifications, leaving the original untouched.

1056 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

Handling changes to the source code
If you’re writing a C# editor, for instance, you’ll need to update a syntax tree based
on changes to the source code. The SyntaxTree class has a WithChangedText
method which does exactly this: it partially reparses the source code based on modi‐
fications that you describe with a SourceText instance (in Microsoft.CodeAnaly
sis.Text).

To create a SourceText, use its static From method, giving it the complete source
code. You can then use this to create a syntax tree:

SourceText sourceText = SourceText.From ("class Program {}");
var tree = CSharpSyntaxTree.ParseText (sourceText);

Alternatively, you can obtain the SourceText for an existing tree by calling GetText.

You can now “update” sourceText by calling Replace or WithChanges. For example,
we could replace the first five characters (“class”) with “struct,” as follows:

var newSource = sourceText.Replace (0, 5, "struct");

Finally, we can call WithChangedText on the tree to update it:

var newTree = tree.WithChangedText (newSource);
Console.WriteLine (newTree.ToString()); // struct Program {}

Creating new nodes, tokens, and trivia with SyntaxFactory
The static methods on SyntaxFactory programmatically create nodes, tokens, and
trivia, which you can use to “transform” existing syntax trees or to create new trees
from scratch.

The hardest part of doing this is figuring out exactly what kind of nodes and tokens
to create. The solution is to first parse a sample of the code you want, examining the
result in a syntax visualizer. For instance, suppose we want to create a syntax node
for the following:

using System.Text;

We can visualize the syntax tree for this in LINQPad as follows:

CSharpSyntaxTree.ParseText ("using System.Text;").DumpSyntaxTree();

(We can parse “using System.Text;” without error because it’s valid as a complete
program, albeit a functionally empty one. For most other code snippets, you’ll need
to wrap the snippet in a method and/or type definition so that it will parse.)

The result has the following structure, of which we are interested in the second
node (i.e., UsingDirective and its descendants):

Kind Token Text
================================= ==========
CompilationUnit (node)
 UsingDirective (node)
 UsingKeyword (token) using

The R
o

slyn
C

o
m

p
iler

Syntax Trees | 1057

www.EBooksWorld.ir

 WhitespaceTrivia (trailing)
 QualifiedName (node)
 IdentifierName (node)
 IdentifierToken (token) System
 DotToken (token) .
 IdentifierName (node)
 IdentifierToken (token) Text
 SemiColonToken (token) ;
 EndOfFileToken (token)

Starting from the inside, we have two IdentifierName nodes, whose parent is a
QualifiedName. We can create that as follows:

QualifiedNameSyntax qualifiedName = SyntaxFactory.QualifiedName (
 SyntaxFactory.IdentifierName ("System"),
 SyntaxFactory.IdentifierName ("Text"));

We used the overload of QualifiedName that accepts two identifiers. This overload
inserts the dot token for us automatically.

We now need to wrap this in a UsingDirective:

UsingDirectiveSyntax usingDirective =
 SyntaxFactory.UsingDirective (qualifiedName);

Because we didn’t specify tokens for the “using” keyword or the trailing semicolon,
tokens for each were created and added automatically. However, the automatically
created tokens don’t include whitespace. This wouldn’t prevent compilation, but
converting the tree to a string would result in syntactically incorrect code:

Console.WriteLine (usingDirective.ToFullString()); // usingSystem.Text;

We can fix by calling NormalizeWhitespace on the node (or one of its ancestors);
doing so automatically adds whitespace trivia (for both syntactic correctness and
readability). Or for more control, we could add whitespace explicitly:

usingDirective = usingDirective.WithUsingKeyword (
 usingDirective.UsingKeyword.WithTrailingTrivia (
 SyntaxFactory.Whitespace (" ")));

Console.WriteLine (usingDirective.ToFullString()); // using System.Text;

For brevity, we “harvested” the node’s existing UsingKeyword, to which we added
trailing trivia. We could have created an equivalent token with more effort by calling
SyntaxFactory.Token(SyntaxKind.UsingKeyword).

The final step is to add our UsingDirective node to an existing or new syntax tree
(or more precisely, the root node of a tree). To do the former, we cast the existing
tree’s root to a CompilationUnitSyntax and call the AddUsings method. We can
then create a new tree from the transformed compilation unit:

var existingTree = CSharpSyntaxTree.ParseText ("class Program {}");
var existingUnit = (CompilationUnitSyntax) existingTree.GetRoot();

var unitWithUsing = existingUnit.AddUsings (usingDirective);

1058 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

var treeWithUsing = CSharpSyntaxTree.Create (
 unitWithUsing.NormalizeWhitespace());

Remember that all parts of a syntax tree are immutable. Call‐
ing AddUsings returns a new node, leaving the original
untouched. Ignoring the return value is an easy mistake to
make!

We called NormalizeWhitespace on our compilation unit so that calling ToString
on the tree will yield syntactically correct and readable code. Alternatively, we could
have added explicit new-line trivia to usingDirective as follows:

.WithTrailingTrivia (SyntaxFactory.EndOfLine("\r\n\r\n"))

Creating a compilation unit and syntax tree from scratch is a similar process. The
easiest approach is to start with an empty compilation unit and call AddUsings on
the unit as we did before:

var unit = SyntaxFactory.CompilationUnit().AddUsings (usingDirective);

We can add type definitions to our compilation unit by creating them in a similar
fashion, and then calling AddMembers:

// Create a simple empty class definition:
unit = unit.AddMembers (SyntaxFactory.ClassDeclaration ("Program"));

The final step is to create the tree:

var tree = CSharpSyntaxTree.Create (unit.NormalizeWhitespace());
Console.WriteLine (tree.ToString());

// Output:
using System.Text;
class Program{}

CSharpSyntaxRewriter
For more complex syntax tree transformations, you can subclass CSharpSyntaxRe
writer.

CSharpSyntaxRewriter is similar to the CSharpSyntaxWalker class that we looked
at previously (see “SyntaxSyntaxWalker”), except that each Visit* method accepts
and returns a syntax node. By returning something other than was passed in, you
can “rewrite” the syntax tree.

For instance, the following rewriter changes method declaration names to upper‐
case:

class MyRewriter : CSharpSyntaxRewriter
{
 public override SyntaxNode VisitMethodDeclaration
 (MethodDeclarationSyntax node)
 {
 // "Replace" the method's identifier with an uppercase version:

The R
o

slyn
C

o
m

p
iler

Syntax Trees | 1059

www.EBooksWorld.ir

 return node.WithIdentifier (
 SyntaxFactory.Identifier (
 node.Identifier.LeadingTrivia, // Preserve old trivia
 node.Identifier.Text.ToUpperInvariant(),
 node.Identifier.TrailingTrivia)); // Preserve old trivia
 }
}

Here’s how to use it:

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
 static void Main() { Test(); }
 static void Test() { }
}");

var rewriter = new MyRewriter();
var newRoot = rewriter.Visit (tree.GetRoot());
Console.WriteLine (newRoot.ToFullString());

// Output:
class Program
{
 static void MAIN() { Test(); }
 static void TEST() { }
}

Notice that our call to Test() in the main method did not get renamed, because we
visited just member declarations and ignored invocations. To reliably rename invo‐
cations, however, we must be able to determine whether calls to Main() or Test()
refer to the Program type, and not some other type. To do this, a syntax tree is not
enough on its own; we also need a semantic model.

Compilations and Semantic Models
A compilation comprises syntax trees, references, and compilation options. It serves
two purposes:

• Allows compilation to a library or executable (the emit phase)
• Exposes a semantic model that provides symbol information (obtained from

binding)

The semantic model is essential in implementing features such as symbol renaming
or offering code completion listings in an editor.

Creating a Compilation
Whether you’re interested in querying the semantic model or performing a full
compilation, the first step is to create a CSharpCompilation, passing in the (simple)
name of the assembly you wish to create:

var compilation = CSharpCompilation.Create ("test");

1060 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

An assembly’s simple name is important even if you don’t plan to emit an assembly,
because it forms part of the identity of the types inside the compilation.

By default, it assumes that you want to create a library. You can specify a different
kind of output (windows executable, console executable, etc.) as follows:

compilation = compilation.WithOptions (
 new CSharpCompilationOptions (OutputKind.ConsoleApplication));

The CSharpCompilationOptions class has more than a dozen optional constructor
parameters that correspond to the command-line options of the csc.exe tool. So if
you enable compiler optimizations and give your assembly a strong name for
instance, you would do this:

compilation = compilation.WithOptions (
 new CSharpCompilationOptions (OutputKind.ConsoleApplication,
 cryptoKeyFile:"myKeyFile.snk",
 optimizationLevel:OptimizationLevel.Release));

Next, we’ll add syntax trees. Each syntax tree corresponds to a “file” to be included
in the compilation:

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
 static void Main() => System.Console.WriteLine (""Hello"");
}");

compilation = compilation.AddSyntaxTrees (tree);

Finally, we need to add references. The simplest program will require a single refer‐
ence to mscorlib.dll, which we can add as follows:

compilation = compilation.AddReferences (
 MetadataReference.CreateFromFile (typeof (int).Assembly.Location));

The call to MetadataReference.CreateFromFile reads the content of an assembly
into memory, but not using ordinary reflection. Instead, it uses a high-performance
portable assembly reader (available on NuGet) called System.Reflection.Metadata.
The reader is side-effect free and does not load the assembly into the current appli‐
cation domain.

The PortableExecutableReference that you get back from
MetadataReference.CreateFromFile can have a significant
memory footprint, so be careful about holding onto references
that you don’t need. Also, if you find yourself repeatedly creat‐
ing references to the same assembly, a cache is worth consid‐
ering (one that holds weak references is ideal).

You can do everything in a single step by calling the overload of CSharpCompila
tion.Create that takes syntax trees, references, and options. Or you can do it flu‐
ently in a single expression, too:

var compilation = CSharpCompilation.Create ("...")
 .WithOptions (...)

The R
o

slyn
C

o
m

p
iler

Compilations and Semantic Models | 1061

www.EBooksWorld.ir

 .AddSyntaxTrees (...)
 .AddReferences (...);

Diagnostics
A compilation may generate errors and warnings, even if the syntax trees are error-
free. Examples include forgetting to import a namespace, a typo when referring to a
type or member name, and type parameter inference failing. You can get the errors
and warnings by calling GetDiagnostics on the compilation object. Any syntax
errors will be included, too.

Emitting an Assembly
Creating an output assembly is simply a matter of calling Emit:

EmitResult result = compilation.Emit (@"c:\temp\test.exe");
Console.WriteLine (result.Success);

If result.Success is false, EmitResult also has a Diagnostics property to indicate
the errors that occurred during emission (this also includes diagnostics from the
previous stages). If Emit fails due to a file I/O error, it will throw an exception rather
than generate error codes.

The Emit method also lets you specify a .pdb file path (for debug information) and
an XML documentation file path.

Querying the Semantic Model
Calling GetSemanticModel on a compilation returns the semantic model for a syntax
tree:

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
 static void Main() => System.Console.WriteLine (123);
}");

var compilation = CSharpCompilation.Create ("test")
 .AddReferences (
 MetadataReference.CreateFromFile (typeof(int).Assembly.Location))
 .AddSyntaxTrees (tree);

SemanticModel model = compilation.GetSemanticModel (tree);

(The reason for needing to specify a tree is that a compilation can contain multiple
trees.)

You might expect a semantic model to be similar to syntax tree, but with more prop‐
erties and methods and a more detailed structure. This is not the case, and there is
no overarching DOM associated with the semantic model. Instead, you’re given set
of methods to call to obtain semantic information about a particular position or
node in the syntax tree.

1062 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

This means that you can’t “explore” a semantic model like you would a syntax tree,
and using it is rather like playing 20 Questions: the challenge is figuring out the
right questions to ask. There are nearly 50 methods and extension methods; in this
section, we’ll cover some of the most commonly used methods, in particular, those
that demonstrate the principles of using the semantic model.

Following on from our previous example, we could ask for symbol information on
the “WriteLine” identifier as follows:

var writeLineNode = tree.GetRoot().DescendantTokens().Single (
 t => t.Text == "WriteLine").Parent;

SymbolInfo symbolInfo = model.GetSymbolInfo (writeLineNode);
Console.WriteLine (symbolInfo.Symbol); // System.Console.WriteLine(int)

SymbolInfo is a wrapper for symbols, whose nuances we’ll discuss shortly. We’ll
start first with symbols.

Symbols
In the syntax tree, names such as “System”, “Console”, and “WriteLine” are parsed as
identifiers (IdentifierNameSyntax node). Identifiers have little meaning, and the
syntactic parser does no work on “understanding” them other than to distinguish
them from contextual keywords.

The semantic model is able to transform identifiers into symbols, which have type
information (the output of the binding phase).

All symbols implement the ISymbol interface, although there are more specific
interfaces for each kind of symbol. In our example, “System”, “Console”, and “Write‐
Line” map to symbols of the following types:

"System" INamespaceSymbol
"Console" INamedTypeSymbol
"WriteLine" IMethodSymbol

Some symbol types, such as IMethodSymbol have a conceptual analog in the Sys
tem.Reflection namespace (MethodInfo, in this case); whereas some other symbol
types, such as INamespaceSymbol, do not. This is because the Roslyn type system
exists for the benefit of the compiler, whereas the Reflection type system exists for
the benefit of the CLR (after the source code has melted away).

Nonetheless, working with ISymbol types is similar in many ways to using the
Reflection API we described in Chapter 19. Extending our previous example:

ISymbol symbol = model.GetSymbolInfo (writeLineNode).Symbol;

Console.WriteLine (symbol.Name); // WriteLine
Console.WriteLine (symbol.Kind); // Method
Console.WriteLine (symbol.IsStatic); // True
Console.WriteLine (symbol.ContainingType.Name); // Console

The R
o

slyn
C

o
m

p
iler

Compilations and Semantic Models | 1063

www.EBooksWorld.ir

var method = (IMethodSymbol) symbol;
Console.WriteLine (method.ReturnType.ToString()); // void

The output of the last line illustrates a subtle difference with Reflection. Notice that
“void” is in lowercase, which is C# nomenclature (Reflection is language-agnostic).
Similarly, calling ToString() on the INamedTypeSymbol for System.Int32 returns
“int”. Here’s something else you can’t do with Reflection:

Console.WriteLine (symbol.Language); // C#

With the syntax trees API, the classes for syntax nodes differ
for C# and VB (although they share an abstract SyntaxNode
base type). This makes sense because the languages have a dif‐
ferent lexical structure. In contrast, ISymbol and its derived
interfaces are shared between C# and VB. However, their
internal concrete implementations are specific to each lan‐
guage, and the output from their methods and properties
reflects language-specific differences.

We can also ask the symbol where it came from:

var location = symbol.Locations.First();
Console.WriteLine (location.Kind); // MetadataFile
Console.WriteLine (location.MetadataModule
 == compilation.References.Single() // True

If the symbol was defined in our own source code (i.e., a syntax tree), the Source
Tree property will return that tree, and SourceSpan will return its location in the
tree:

Console.WriteLine (location.SourceTree == null); // True
Console.WriteLine (location.SourceSpan); // [0..0)

A partial type may have multiple definitions, in which case it will have multiple
Locations.

The following query returns all the overloads of WriteLine:

symbol.ContainingType.GetMembers ("WriteLine").OfType<IMethodSymbol>()

You can also call ToDisplayParts on a symbol. This returns a collection of “parts”
that make up the full name; in our case, System.Console.WriteLine(int) is com‐
prised of four symbols interspersed with punctuation.

SymbolInfo
If you’re writing code completion for an editor, you’ll need to obtain symbols for
code that’s incomplete or incorrect. For instance, consider the following incomplete
code:

System.Console.Writeline(

Because the WriteLine method is overloaded, it’s impossible to match to a single
ISymbol. Instead, we want to present options to the user. To deal with this, the

1064 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

semantic model’s GetSymbolInfo method returns an ISymbolInfo struct which has
the following properties:

ISymbol Symbol
ImmutableArray<ISymbol> CandidateSymbols
CandidateReason CandidateReason

If there’s an error or ambiguity, the Symbol property returns null, and CandidateSym
bols returns a collection comprising the best matches. The CandidateReason prop‐
erty returns an enum telling you what went wrong.

To obtain error and warning information for a section of code,
you can also call GetDiagnostics on a semantic model, speci‐
fying a TextSpan. Calling GetDiagnostics with no argument
is equivalent to calling the same method on the CSharpCompi
lation object.

Symbol accessibility
ISymbol has a DeclaredAccessibility property that indicates whether the symbol
is public, protected, internal, and so on. However, this isn’t sufficient to determine
whether a given symbol is accessible at a particular position in your source code.
Local variables, for instance, have a lexically limited scope, and a protected class
member is accessible from source code positions within its type or a derived type.
To help with this, SemanticModel has an IsAccessible method:

bool canAccess = model.IsAccessible (42, someSymbol);

This returns true if someSymbol can be accessed at offset 42 in the source code.

Declared symbols
If you call GetSymbolInfo on a type or member declaration, you’ll get no symbols
back. For instance, suppose we want the symbol for our Main method:

var mainMethod = tree.GetRoot().DescendantTokens().Single (
 t => t.Text == "Main").Parent;

SymbolInfo symbolInfo = model.GetSymbolInfo (mainMethod);
Console.WriteLine (symbolInfo.Symbol == null); // True
Console.WriteLine (symbolInfo.CandidateSymbols.Length); // 0

This applies not just to type/member declarations, but any
node where you’re introducing a new symbol rather than con‐
suming an existing symbol.

To obtain the symbol, we must instead call GetDeclaredSymbol:

ISymbol symbol = model.GetDeclaredSymbol (mainMethod);

Unlike GetSymbolInfo, GetDeclaredSymbol either succeeds or it doesn’t. (If it fails,
it will because it can’t find a valid declaration node.)

The R
o

slyn
C

o
m

p
iler

Compilations and Semantic Models | 1065

www.EBooksWorld.ir

To give another example, suppose our Main method is as follows:

static void Main()
{
 int xyz = 123;
}

We can determine the type of xyz as follows:

SyntaxNode variableDecl = tree.GetRoot().DescendantTokens().Single (
 t => t.Text == "xyz").Parent;

var local = (ILocalSymbol) model.GetDeclaredSymbol (variableDecl);
Console.WriteLine (local.Type.ToString()); // int
Console.WriteLine (local.Type.BaseType.ToString()); // System.ValueType

TypeInfo
Sometimes you need type information about an expression or literal for which
there’s no explicit symbol. Consider the following:

var now = System.DateTime.Now;
System.Console.WriteLine (now - now);

To determine the type of now - now, we call GetTypeInfo on the semantic model:

SyntaxNode binaryExpr = tree.GetRoot().DescendantTokens().Single (
 t => t.Text == "-").Parent;

TypeInfo typeInfo = model.GetTypeInfo (binaryExpr);

TypeInfo has two properties, Type and ConvertedType. The latter indicates the type
after any implicit conversions:

Console.WriteLine (typeInfo.Type); // System.TimeSpan
Console.WriteLine (typeInfo.ConvertedType); // object

Because Console.WriteLine is overloaded to accept an object but not a TimeSpan,
an implicit conversion to object took place, which manifested in typeInfo.Conver
tedType.

Looking up symbols
A powerful feature of the semantic model is the ability to ask for all symbols in
scope at a particular point in the source code. The result is the basis for IntelliSense
listings, when the user requests a list of available symbols.

To obtain the listing, simply call LookupSymbols, with the desired source code offset.
To give a complete example:

var tree = CSharpSyntaxTree.ParseText (@"class Program
{
 static void Main()
 {
 int x = 123, y = 234;

1066 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

 }
}");

CSharpCompilation compilation = CSharpCompilation.Create ("test")
 .AddReferences (
 MetadataReference.CreateFromFile (typeof(int).Assembly.Location))
 .AddSyntaxTrees (tree);

SemanticModel model = compilation.GetSemanticModel (tree);

// Look for available symbols at start of 6th line:
int index = tree.GetText().Lines[5].Start;

foreach (ISymbol symbol in model.LookupSymbols (index))
 Console.WriteLine (symbol.ToString());

Here’s the result:

y
x
Program.Main()
object.ToString()
object.Equals(object)
object.Equals(object, object)
object.ReferenceEquals(object, object)
object.GetHashCode()
object.GetType()
object.~Object()
object.MemberwiseClone()
Program
Microsoft
System
Windows

(If we imported the System namespace, we’d see hundreds more symbols for types
in that namespace.)

Example: Renaming a Symbol
To illustrate the features we’ve covered, we’ll write a method to rename a symbol,
which is robust to the most common use-cases. In particular:

• The symbol can be a type, member, local variable, range, or loop variable.
• You can specify the symbol from either its use or declaration.
• (In the case of a class or struct), it will rename the static & instance construc‐

tors.
• (In the case of a class), it will rename the finalizer (destructor).

For brevity, we’ll omit some checks, such as ensuring that the new name is not
already in use and that the symbol isn’t an edge-case for which the rename will fail.
Our method will consider just a single syntax tree and so will have the following sig‐
nature:

The R
o

slyn
C

o
m

p
iler

Compilations and Semantic Models | 1067

www.EBooksWorld.ir

public SyntaxTree RenameSymbol (SemanticModel model, SyntaxToken token,
 string newName)

One obvious way to implement this is to subclass CSharpSyntaxRewriter. However,
a more elegant and flexible approach is to have RenameSymbol call a lower-level
method that returns the text spans to be renamed:

public IEnumerable<TextSpan> GetRenameSpans (SemanticModel model,
 SyntaxToken token)

This allows an editor to call GetRenameSpans directly and apply just the changes
(within an Undo transaction), avoiding the loss of editor state that might otherwise
result in replacing the entire text.

This makes RenameSymbol a relatively simple wrapper around GetRenameSpans. We
can use SourceText’s WithChanges method to apply a sequence of text changes:

public SyntaxTree RenameSymbol (SemanticModel model, SyntaxToken token,
 string newName)
{
 IEnumerable<TextSpan> renameSpans = GetRenameSpans (model, token);

 SourceText newSourceText = model.SyntaxTree.GetText().WithChanges (
 renameSpans.Select (span => new TextChange (span, newName))
 .OrderBy (tc => tc));

 return model.SyntaxTree.WithChangedText (newSourceText);
}

WithChanges throws an exception unless the changes are in order; this is why we
called OrderBy on the latter.

Now we must write GetRenameSpans. The first step is to find the symbol corre‐
sponding to the token we want to rename. The token may be part of either a decla‐
ration or usage, so we’ll first call GetSymbolInfo, and if the result is null, call GetDe
claredSymbol:

public IEnumerable<TextSpan> GetRenameSpans (SemanticModel model,
 SyntaxToken token)
{
 var node = token.Parent;

 ISymbol symbol = model.GetSymbolInfo (node).Symbol
 ?? model.GetDeclaredSymbol (node);

 if (symbol == null) return null; // No symbol to rename.

Next, we need to find the symbol definitions. We can get this from the symbol’s
Locations property. (Our consideration of multiple locations makes us robust to
the scenario of partial classes and methods, although for the former to be useful, we
would need to expand the example to work with multiple syntax trees.)

var definitions =
 from location in symbol.Locations

1068 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

 where location.SourceTree == node.SyntaxTree
 select location.SourceSpan;

Now we need to find usages of the symbol. For this, we start by looking for descend‐
ant tokens whose name matches the symbol’s name, as this is a fast way to weed out
most tokens. Then we can call GetSymbolInfo on the token’s parent node and see
whether it matches the symbol we want to rename:

var usages =
 from t in model.SyntaxTree.GetRoot().DescendantTokens()
 where t.Text == symbol.Name
 let s = model.GetSymbolInfo (t.Parent).Symbol
 where s == symbol
 select t.Span;

Binding-related operations, such as asking for symbol infor‐
mation, have a tendency to be slower than operations that
consider just text or syntax trees. This is because the process
of binding may require searching for types in assemblies,
applying type inference rules, and checking for extensions
methods.

If the symbol is something other than a named type (local variable, range variable,
etc.), our job is done and we can return the definitions plus usages:

if (symbol.Kind != SymbolKind.NamedType)
 return definitions.Concat (usages);

If the symbol is a named type, we need to rename its constructors and destructor, if
present. To do so, we enumerate the descendant nodes, looking for type declarations
whose name matches the one we want to rename. Then we get its declared symbol,
and if it matches the one we’re renaming, we locate its constructor and destructor
methods, returning the spans of their identifiers if present:

 var structors =
 from type in model.SyntaxTree.GetRoot().DescendantNodes()
 .OfType<TypeDeclarationSyntax>()
 where type.Identifier.Text == symbol.Name
 let declaredSymbol = model.GetDeclaredSymbol (type)
 where declaredSymbol == symbol
 from method in type.Members
 let constructor = method as ConstructorDeclarationSyntax
 let destructor = method as DestructorDeclarationSyntax
 where constructor != null || destructor != null
 let identifier = constructor?.Identifier ?? destructor.Identifier
 select identifier.Span;

 return definitions.Concat (usages).Concat (structors);
}

Here’s the complete listing, along with an example of how to use it:

void Demo()
{
 var tree = CSharpSyntaxTree.ParseText (@"class Program

The R
o

slyn
C

o
m

p
iler

Compilations and Semantic Models | 1069

www.EBooksWorld.ir

{
 static Program() {}
 public Program() {}

 static void Main()
 {
 Program p = new Program();
 p.Foo();
 }

 static void Foo() => Bar();
 static void Bar() => Foo();
}
");

 var compilation = CSharpCompilation.Create ("test")
 .AddReferences (
 MetadataReference.CreateFromFile (typeof(int).Assembly.Location))
 .AddSyntaxTrees (tree);

 var model = compilation.GetSemanticModel (tree);

 var tokens = tree.GetRoot().DescendantTokens();

 // Rename the Program class to Program2:
 SyntaxToken program = tokens.First (t => t.Text == "Program");
 Console.WriteLine (RenameSymbol (model, program, "Program2").ToString());

 // Rename the Foo method to Foo2:
 SyntaxToken foo = tokens.Last (t => t.Text == "Foo");
 Console.WriteLine (RenameSymbol (model, foo, "Foo2").ToString());

 // Rename the p local variable to p2:
 SyntaxToken p = tokens.Last (t => t.Text == "p");
 Console.WriteLine (RenameSymbol (model, p, "p2").ToString());
}

public SyntaxTree RenameSymbol (SemanticModel model, SyntaxToken token,
 string newName)
{
 IEnumerable<TextSpan> renameSpans =
 GetRenameSpans (model, token).OrderBy (s => s);

 SourceText newSourceText = model.SyntaxTree.GetText().WithChanges (
 renameSpans.Select (s => new TextChange (s, newName)));

 return model.SyntaxTree.WithChangedText (newSourceText);
}

public IEnumerable<TextSpan> GetRenameSpans (SemanticModel model,
 SyntaxToken token)
{
 var node = token.Parent;

 ISymbol symbol =

1070 | Chapter 27: The Roslyn Compiler

www.EBooksWorld.ir

 model.GetSymbolInfo (node).Symbol ??
 model.GetDeclaredSymbol (node);

 if (symbol == null) return null; // No symbol to rename.

 var definitions =
 from location in symbol.Locations
 where location.SourceTree == node.SyntaxTree
 select location.SourceSpan;

 var usages =
 from t in model.SyntaxTree.GetRoot().DescendantTokens ()
 where t.Text == symbol.Name
 let s = model.GetSymbolInfo (t.Parent).Symbol
 where s == symbol
 select t.Span;

 if (symbol.Kind != SymbolKind.NamedType)
 return definitions.Concat (usages);

 var structors =
 from type in model.SyntaxTree.GetRoot().DescendantNodes()
 .OfType<TypeDeclarationSyntax>()
 where type.Identifier.Text == symbol.Name
 let declaredSymbol = model.GetDeclaredSymbol (type)
 where declaredSymbol == symbol
 from method in type.Members
 let constructor = method as ConstructorDeclarationSyntax
 let destructor = method as DestructorDeclarationSyntax
 where constructor != null || destructor != null
 let identifier = constructor?.Identifier ?? destructor.Identifier
 select identifier.Span;

 return definitions.Concat (usages).Concat (structors);
}

The R
o

slyn
C

o
m

p
iler

Compilations and Semantic Models | 1071

www.EBooksWorld.ir

www.EBooksWorld.ir

Index

Symbols
& (ampersand)

& address-of operator, 187
& bitwise AND operator, 30
& conditional and operator, 34, 165
& in parameter type names, 793
&& conditional AND operator, 34
&& conditional and operator, 526

' (apostrophe) (see quotes, single)
* (asterisk)

* dereference operator, 187
* multiplication operator, 29
* in pointer type names, 793
* in regular expressions, 1026, 1028

@ (at sign)
@ preceding identifiers, 15
@ preceding verbatim string literals,

36, 37
\ (backslash)

\ preceding escape sequences, 35
\ in regular expressions, 1026

{ } (braces)
{ } enclosing expressions in interpola‐

ted strings, 37
{ } enclosing statement blocks, 12, 16
{ } enclosing XML namespaces, 465
{ } in if statement, 59-60
{ } in regular expressions, 1026, 1028

^ (caret)
^ bitwise exclusive OR operator, 30
^ in regular expressions, 1026, 1030

: (colon)
: in named arguments, 49
: preceding attribute, 184
:: namespace alias qualification, 71

, (comma)

, separating declarations, 56
$ (dollar sign)

$ preceding interpolated strings, 37
$ in regular expressions, 1026, 1030

= (equal sign)
= assignment operator, 51
== equal to operator, 33, 164, 219-220,

267, 269, 272, 276
=> in expression-bodied methods, 75
=> in expression-bodied properties, 81
=> in lambda expressions, 143

! (exclamation mark)
! conditional NOT operator, 34
! XML type prefix, 196
!= not equal to operator, 33, 164, 267,

269, 276, 526
/ (forward slash)

/ division operator, 29
/ preceding compiler switches, 526
/* */ enclosing comments, 16
// preceding comments, 11, 16
/// preceding documentation com‐

ments, 193
(hash mark)

preceding preprocessor directives,
191, 525

in regular expressions, 1026
< (left angle bracket)

< > enclosing generic types, 114
< less than operator, 165, 278-279
<< shift left operator, 30
<= less than or equal operator, 165

- (minus sign)
- removing delegate instances, 129
- subtraction operator, 29, 227, 232
-- decrement operator, 29
-0 negative zero, 31

1073

www.EBooksWorld.ir

-= event accessor, 136, 141
-= removing delegate instances, 129
-> pointer-to-member operator, 187,

188
-∞ negative infinity, 31

() (parentheses)
() enclosing lambda expression

parameters, 143
() in regular expressions, 1024
() method call or declaration, 51
() in regular expressions, 1026, 1032

% (percent sign)
% remainder operator, 29

. (period)
. member access operator, 51
. in namespace hierarchy, 65
. in regular expressions, 1026

+ (plus sign)
+ addition operator, 29, 227, 232
+ combining delegate instances, 129
+ in nested type names, 792
+ in regular expressions, 1026, 1028
+ string concatenation operator, 37
++ increment operator, 29
+= combining delegate instances, 129
+= event accessor, 136, 141
+∞ positive infinity, 31

? (question mark)
? in nullable types, 162
? preceding HTTP queries, 693
? preceding indexers, 82
? in regular expressions, 1026, 1028
?. null-conditional operator, 55, 166
?? null coalescing operator, 166
?? null-coalescing operator, 55

" (quotes, double)
" " enclosing string literals, 36
escape sequence for, 35

' (quotes, single)
' enclosing char literals, 35
' following generic type names, 792
escape sequence for, 35

> (right angle bracket)
> greater than operator, 165, 278-279
>= greater than or equal operator, 165
>> shift right operator, 30

; (semicolon)
; terminating statements, 11, 16

[] (square brackets)

[] array declaration or index, 38
[] enclosing attribute names, 183
[] enclosing indexer arguments, 83
[] in regular expressions, 1026-1027
[] string index, 216

~ (tilde)
~ complement operator, 30
~ finalizer, 86

| (vertical bar)
| bitwise OR operator, 30
| conditional or operator, 34, 165
| in regular expressions, 1026
|| conditional OR operator, 34
|| conditional or operator, 526

A
Abort method, Thread, 938-939
Abs method, 259
abstract classes, 92
abstract keyword, 106
abstract members, 92, 104
abstract methods, code contracts on,

545-546
access control, for files, 653
access modifiers, 102-104
accessibility capping, 103
accessors

for events, 141-142
for properties, 80

Acos method, 259
Action delegate, 131, 143
Activator class, 794
adapters, for streams, 625, 639-647
Add method, DateTime and DateTi‐

meOffset, 232
Add method, HashSet or SortedSet, 312
Add method, ICollection, 294
Add method, IDictionary, 315
Add method, IList, 295
Add method, List or ArrayList, 306
Add method, XContainer, 446-447, 455
Add* methods, syntax trees, 1056
AddAfter method, LinkedList, 309
AddAfterSelf method, XNode, 455
AddAnnotation method, XObject, 469
AddBefore method, LinkedList, 309
AddBeforeSelf method, XNode, 455

1074 | Index

www.EBooksWorld.ir

AddCount method, CountdownEvent,
929

AddDays method, DateTime and DateTi‐
meOffset, 232

AddFirst method, LinkedList, 309
AddFirst method, XContainer, 455
AddHours method, DateTime and Date‐

TimeOffset, 232
AddLast method, LinkedList, 309
AddMemoryPressure, GC, 516
AddMilliseconds method, DateTime and

DateTimeOffset, 232
AddMinutes method, DateTime and

DateTimeOffset, 232
AddMonths method, DateTime and Date‐

TimeOffset, 232
AddObject method, EF, 383, 384
AddPermission method, PermissionSet,

867
AddRange method, List or ArrayList, 306
AddRef method, IUnknown, 1016
addressing, network, 675-676
AddSeconds method, DateTime and

DateTimeOffset, 232
AddTicks method, DateTime and DateTi‐

meOffset, 232
AddYears method, DateTime and DateTi‐

meOffset, 232
administrative elevation, 755, 887
ADO.NET, 209-210
Aes class, 892
Aggregate operator, LINQ, 434-436,

959-961
AggregateException class, 978-979
alert, escape sequence for, 35
aliasing types and namespaces, 69
All operator, LINQ, 437
AllowPartiallyTrustedCallers attribute,

872-873
alternator, in regular expressions, 1024
ambient properties, 167
Amdahl's law, 948
ampersand (&)

& address-of operator, 187
& bitwise AND operator, 30
& conditional and operator, 34, 165
& in parameter type names, 793
&& conditional AND operator, 34
&& conditional and operator, 526

Ancestor methods, XNode, 452
anchors, in regular expressions, 1030
AND bitwise operator (&), 30
AND conditional operator (&), 34
AND conditional operator (&&), 34
And method, BitArray, 312
Annotation method, XObject, 469
Annotations method, XObject, 469
anonymous methods, 147
anonymous pipes, 634, 636-638
anonymous types, 174-175

in LINQ queries, 362
antecedent tasks, 585
Any operator, LINQ, 343, 437
APM (asynchronous programming

model), 618-619
apostrophe (') (see quotes, single)
AppContext class, 284
AppDomain class, 990-992
AppDomainSetup class, 991
Append method, 222
AppendAllText method, File, 631
AppendFormat method, 223
AppendLine method, 223
AppendText method, File, 642
application domains, 989-990

created implicitly, 989-990, 992
creating and destroying, 990-992
default, determining, 991
executing methods on, 994-995
isolating types and assemblies for,

1000-1002
monitoring, 995
multiple, using, 992-994
multithreading used by, 995-997
optimizing loading of, 993-994
Remoting with, 998-999
sharing data between, 997-1002

Application event log, 555
application layer, networking, 673-674
application manifest, 753, 755-756
application servers

thread safety for, 916-917
ApplicationBase property, AppDomain‐

Setup, 991
APTCA (AllowPartiallyTrustedCallers)

attribute, 872-873, 877-880
ArgumentException class, 154
ArgumentNullException class, 155

Index | 1075

www.EBooksWorld.ir

ArgumentOutOfRangeException class,
155

arguments (see parameters and argu‐
ments)

arithmetic operators, 29
Array class, 297-305
ArrayList class, 306-308
arrays, 13, 38-42

bounds checking, 41
clearing, 301
comparisons between elements,

298-298
conversions, 305
copying, 298, 305
covariance with, 123
declaration, 38
dynamically instantiating, 795
enumerating, 301
indexing, 38, 300-301
initialization, 38-41, 299
length of, 38-39, 299, 301
metadata for, obtaining, 791
multidimensional, 39-40
rank of, 301
resizing, 305
reversing elements of, 304
searching, 302-303
sorting, 303-304
storage, 297
type names for, 793

as operator, 90
ASCII character set, 223
ASCII encoding, 224, 643
AsEnumerable operator, LINQ, 369-370,

430
Asin method, 259
ASMX Web Services

redundancy of, 211
serialization used by, 716, 742

AsOrdered method, 951
ASP.NET, 206-207

multiple application domains used by,
992

AsParallel method, 949-950
AsQueryable operator, LINQ, 387, 430
AsReadOnly method, Array, 305
AsReadOnly method, List or ArrayList,

306
assemblies, 753-758

accessing at runtime, 757-758
application manifest, 753, 755-756
assembly manifest, 753-755
as attribute target, 184
attributes in, 755
authenticode signing for, 764-768
compiled types in, 753, 789
culture for, 762
delay signing for, 760-761
deploying outside base folder, 784-785
emitting, 825-828
emitting from compilation, 1062
file versions for, 763
friend assemblies, 103
fully qualified name for, 762
GAC for, 768-770
loaded, determining, 781
loading, 780-784
location of, 783
metadata in, 753

(see also metadata)
modules, 756
multifile assemblies, 756
names for, 761-763
naming, 1060
packing into single executable,

785-787
public key token for, 762
resolving, 779-780
resources in, 754, 770-778
sandboxing, 881-885
satellite assemblies, 776-777
selective patching of, 786
side-by-side execution of, 769
strongly named, 758-761
unloading, 781
unreferenced, explicity loading,

787-788
version number for, 761, 769-770

assembly, 4, 13
Assembly class, 757-758, 790
assembly isolation, 667-668
assembly manifest, 753-755
AssemblyBuilder class, 825
AssemblyFileVersion attribute, 763
AssemblyInfo.cs file, 755
AssemblyInformationalVersion attribute,

763
AssemblyKeyFile attribute, 760

1076 | Index

www.EBooksWorld.ir

AssemblyName class, 762-763
AssemblyQualifiedName property, Type,

792
AssemblyResolve event, 780-780
AsSequential method, 949
Assert method, Contract, 543-544
Assert method, Debug and Trace, 529-530
assertions

code contracts for, 532, 534, 543-544
Debug and Trace classes for, 529-530

assignment, 43-44
assignment expressions, 51
Association attribute, 379
associations, L2S or EF, 378-379
Assume method, Contract, 544
AsTask method, 606
asterisk (*)

* dereference operator, 187
* multiplication operator, 29
* in pointer type names, 793
* in regular expressions, 1026, 1028

async keyword, 592-605, 627
asynchronous delegates, 619
asynchronous functions, 594-605

exception posting, 606-607
optimizations, 607-610
WinRT methods for, 605

asynchronous programming, 589-621
APM (asynchronous programming

model), 618-619
BackgroundWorker class, 620-621
call graphs, 591, 603-604
cancellation pattern, 610-612
compared to concurrency, 590
compared to synchronous program‐

ming, 599-600
continuations with, 591-592
EAP (event-based asynchronous pat‐

tern), 619-620
fine-grained concurrency with, 591
lambda expressions, 605
parallelism with, 604
progress reporting pattern, 612-614
TAP (task-based asynchronous pat‐

tern), 614
task combinators, 614-618

asynchronous programming model
(APM), 618-619

asynchrony

HttpClient methods using, 683
stream reading and writing, 627
WebClient methods using, 680
WebResponse methods using, 681

at sign (@)
@ preceding identifiers, 15
@ preceding verbatim string literals,

36, 37
Atan method, 259
atomicity, with locking, 908
Attribute method, XElement, 453
attributes, 183-185, 191-192, 812-813

caller info attributes, 185-186
categories of, 812-813
classes for, 183
conditional compilation, 527-528
debugging, 529
defining, 814-815
for dynamic constructs, 834
for LINQ to SQL entity classes, 371
multiple, specifying, 185
parameters for, 184
reflecting, 815-817
target of, 184
usage of, determining, 813

Attributes method, XElement, 453
AttributeUsage attribute, 813
authentication

HTTP forms, 696-697
network, 688-690

AuthenticationManager class, 689
authenticode signing, for assemblies,

764-768
authorization (see identity and role

authorization)
automatic properties, 81
AutoResetEvent class, 924-927
Average operator, LINQ, 433-434
await keyword, 592-605, 627
awaiter objects, 585

B
background collection, 514
background threads, 574-575
BackgroundWorker class, 502, 620-621
backing store streams, 623-625, 629-638
backslash (\)

\ preceding escape sequences, 35

Index | 1077

www.EBooksWorld.ir

\ in regular expressions, 1026
backspace, escape sequence for, 35
Barrier class, 932-933
base 2, 8, and 16, converting from, 254
base 16 (hexadecimal), converting to, 258
base 64 conversions, 255
base classes, 89
base keyword, 94-95
BaseDirectory method, 631
BaseType property, Type, 793
BigInteger struct, 259-260
binary adapters, for streams, 645
binary operators, 51
binary rewriter, 533-536
binary serializer, 714-716, 733-741

attributes for, 733, 735-738
formatters for, 716, 734
implementing ISerializable for,

738-741
using, 733-735
version tolerance of, 737-738

BinaryFormatter class, 734
BinaryReader class, 623, 645, 706
BinarySearch methods, Array, 302-303
BinaryWriter class, 623, 645, 706
binding

custom, 177
dynamic, 175-183
language, 177-178
static, 176

BindingFlags enum, 806-807
bit arrays, 312
bit-mapped attributes, 812
BitArray class, 312
BitConverter class, 256
BlockingCollection class, 983-987
bool (Boolean) type, 17, 33-35, 165, 171
bounds checking, arrays, 41
boxing and unboxing, 97-99, 108, 163
braces ({ })

{ } enclosing expressions in interpola‐
ted strings, 37

{ } enclosing statement blocks, 12, 16
{ } enclosing XML namespaces, 465
{ } in if statement, 59-60
{ } in regular expressions, 1026, 1028

branching, IL, 822
(see also iteration statements)

Break method, Debugger, 552

break statement, 63
broadcaster, for events, 136
BufferedStream class, 623, 638-639
buffers, fixed-size, 189
built-in types (see predefined types)
byte arrays

conversions to, 256
converting MemoryStream to, 633
encoding to, 225

byte type, 26, 31

C
C format string, 247
<c> tag, 194
C#, 1-3

compatibility with CLR and .NET
Framework, 199-200

compiler, running, 13
platform support, 3
syntax, 14-17
version 3.0, 9-9
version 4.0, 8-9
version 5.0, 8
version 6.0, 6-8

CA (Certificate Authority), 765
caching

call-site caching, 848
weak references for, 521

calculated properties, 80
Calendar class, 230-231
call graphs, 590, 603-604
call sites, dynamic programming, 848-849
call-site checking, code contracts, 549
callbacks

compared to delegates, 128
from unmanaged code, 1007

caller info attributes, 185-186
CallerFilePath attribute, 185
CallerLineNumber attribute, 185
CallerMemberName attribute, 185
CallSite class, 848
CanRead method, Stream, 625, 627
CanSeek method, Stream, 626, 628
CanTimeout method, Stream, 626, 629
CanWrite method, Stream, 625, 627
Capacity method, List or ArrayList, 306
captured variables

in LINQ queries, 350-351

1078 | Index

www.EBooksWorld.ir

lambda expressions with, 572
caret (^)

^ bitwise exclusive OR operator, 30
^ in regular expressions, 1026, 1030

carriage return, escape sequence for, 35
CAS (code access security), 864, 868-871

(see also permissions)
applying, 870
asserting permissions, 883-885
CodeAccessPermission class, 864
full trust with, 870-871, 880
partial trust with, 870-873
sandboxing a third-party assembly,

881-885
testing level of, 871
transparency model for, 873-881

CAS policy, from CLR 2.0, 881
case keyword, switch statement, 60
case sensitivity, 14
case, conventions for, 14
Cast operator, LINQ, 428-429
casting, 31, 89-91, 97-99, 258
catch block, 148, 149-151
cccheck tool, 550
ccrewrite.exe file, 535

(see also binary rewriter)
CCW (COM-callable wrapper), 1022
CDATA, in XML, 480
Ceiling method, 259, 259
Certificate Authority (CA), 765
ChangeItemKey method, KeyedCollec‐

tion, 324
ChangeType method, 254, 263
char (character) type, 35-36, 213-215

literals, 213
methods for, 213-215
storage, 215

character encodings, 642-644
character escapes

regular expressions, 1026-1027
strings, 35

character sets (encodings), 223
character sets (in regular expressions),

1027
checked compiler switch, 30
checked operator, 30
ChildNodes method, SyntaxNode, 1050
ChildTokens method, SyntaxNode, 1050
chunk partitioning, 957-959

class keyword
defining classes, 13, 73
generic reference-type constraint, 118

class members, 18, 73
(see also specific types of members)
dynamically invoking, 803-810
emitting, 828-834
inherited, hiding, 93-94
mapping to CLR constructs, 801-802
reflecting, 797-803

class modifiers, 73
classes, 1, 13, 73-88

abstract, 92
base, 89
circular dependencies on, generating,

838-840
declaration, 73
derived, 89
dynamically instantiating, 794-797
emitting, 825-828
instantiating, 19, 77-79
marshaling, 1005-1006
partial, 86-87
sealed, 94
static, 86
when to use, compared to interfaces,

109
Clear method, Array, 301
Clear method, ICollection, 294
ClearItems method, Collection, 321
Clone method, Array, 298, 305
Close method, AutoResetEvent, 925
Close method, compared to Dispose, 501
Close method, Debug and Trace, 532
Close method, Stream, 626, 629
Close method, TextReader, 640
Close method, TextWriter, 640
closed generic types, 115, 118, 121
closure, 144
CLR (Common Language Runtime), 3-5,

199-206
CLSCompliant attribute, 184
code access security (see CAS)
code contracts, 532-537

abstract methods using, 545-546
advantages of, 533-534
assertions, 532, 534, 543-544
binary rewriter for, 533-536
call-site checking, 549

Index | 1079

www.EBooksWorld.ir

disabling, 535
disadvantages of, 534
enabling, 535
interfaces using, 545
object invariants, 534, 544-545
postconditions, 533-534, 541-543
preconditions, 533-534, 537-541
responding to contract failure, 536
selectively enforcing, 536, 548-549
static contract checking, 533, 549-551

code examples
downloading, xii, xiv, 11
permission to use, xiv

code scratchpad, xii
(see also LINQPad)

<code> tag, 194
code-signing certificate, 765-766
CodeAccessPermission class, 864, 868
CodeBase property, Assembly, 783
Collect method, GC, 515
Collection class, 321-323
CollectionBase class, 323
CollectionDataContract attribute, 729
collections

arrays (see Array class; arrays)
bit arrays (see bit arrays)
categories of, 285
comparisons, customizing, 327-334
concurrent, 980-983
customizable, 321-326
data contract serializer handling,

727-729
dictionaries (see dictionaries)
enumerators for (see enumerators)
interfaces for, 286, 293-295
lists (see lists)
querying (see LINQ)
queues (see queues)
sets (see sets)
stacks (see stacks)

colon (:)
: in named arguments, 49
: preceding attribute, 184
:: namespace alias qualification, 71

Column attribute, 372
COM (Component Object Model),

1015-1017
calling a component from C#,

1017-1020

exposing C# objects to, 1022
interop types and assemblies, 1017,

1020-1022
interoperability with, 206, 1015-1022
PIAs, 1021
type system, 1016

COM+, 210
COM-callable wrapper (see CCW)
Combine method, Path, 656
comma (,)

, separating declarations, 56
CommandLine property, Environment,

282
comments

C# code, 11, 16
XML documentation comments,

193-196
Common Language Runtime (see CLR)
Compare method, IComparer, 330
Compare method, StringComparer, 332
Compare method, strings, 219, 221
CompareOrdinal method, strings, 219,

221
Comparer class, 330-331
CompareTo method, strings, 219-222, 398
comparison operators, 33-34, 169, 278,

279
comparisons

equality, 267-278
order, 278-280

compilation, 13, 1060
conditional, 525-528
doc compiler switch, 193
Roslyn compiler for, 1043-1044
semantic model for, 1060, 1062-1067
syntax trees for, 1045-1060
warnaserror compiler switch, 192

Compiled option, RegexOptions, 1025,
1026

Complex struct, 260
Component Object Model (see COM)
composite format strings, 218-219
compound assignment operators, 52
Compressed file attribute, 651-652
compression streams, 647-650
ComputeHash method, HashAlgorithm,

891
ComVisible attribute, 1022
Concat method, 218

1080 | Index

www.EBooksWorld.ir

Concat operator, LINQ, 343, 426
concatenation of strings, 37
concurrency, 563-564

(see also synchronization)
asynchronous (see asynchronous pro‐

gramming)
tasks for (see tasks)
threads for (see threads)

concurrent collections, 514, 980-983
ConcurrentBag class, 980, 982-983
ConcurrentDictionary class, 980
ConcurrentQueue class, 980
ConcurrentStack class, 980
Conditional attribute, 191-192, 527-529,

535
conditional compilation, 525-528
conditional operators, 34-35, 165
conditional statements (see selection

statements)
ConfigurationPermission class, 869
Console class, 281-282
const keyword, 84
constant expressions, 51
constants, 17, 57, 83-84
ConstrainedCopy method, Array, 305
constraints, on generics, 118-120
ConstructorInfo object, 794
constructors, 19, 76-77

declaration, 76
emitting, 833-834
implicit parameterless constructors, 77
modifiers for, 76
overloading, 76
static, 85-86
for structs, 101
for subclasses, 95-96

contact information for this book, xv
Contains method, HashSet or SortedSet,

312
Contains method, ICollection, 294
Contains method, strings, 216
Contains operator, LINQ, 343, 398, 437
ContainsKey method, IDictionary, 315
ContextBoundObject class, 913
contextual keywords, 15
continuations

for event wait handles, 929-930
for tasks, 585, 591-592

continue statement, 63

ContinueWith method, Task, 586
ContractFailed event, 547-548
ContractInvariantMethod attribute, 544
contracts (see code contracts)
__ContractsRuntime class, 536
ContractVerification attribute, 550-551
contravariance, 125-126, 134-135
conventions used in this book, xiii-xiv
conversions, 20-21

base 2, 8, and 16, converting from, 254
base 16 (hexadecimal), converting to,

258
base 64 conversions, 255
BitConverter, 256
Boolean, 33
boxing conversions, 98
byte arrays, 256
character, 36
custom implicit and explicit, 170
dynamic, 254
dynamic types, 179
enum type, 110, 263-265
implicit and explicit, 20-21, 168
nullable types, 163
numeric types, 28-29, 254-255, 258
reference conversions, 89-91
rounding conversions, 28, 32, 254
type converters, 256
unboxing conversions, 91
XmlConvert class, 255

Convert class, 253-255
ConvertAll method, Array, 305
ConvertAll method, List or ArrayList, 306
ConvertTime method, 236
ConvertTimeFromUtc method, 236
ConvertTimeToUtc method, 236
cookies, HTTP, 695-696
Copy method, Array, 305
Copy method, File, 650
CopyTo method, Array, 305
CopyTo method, ICollection, 294
correlated subquery, 402
Cos method, 259
Cosh method, 259
Count method, ICollection, 294
Count operator, LINQ, 343, 432
CountdownEvent class, 928-929
covariance, 122-125, 135
CPU oversubscription, 580

Index | 1081

www.EBooksWorld.ir

Create method, CSharpSyntaxTree, 1049
Create method, File, 630
Create method, StringComparer, 332
CreateCustomTimeZone method, 236
CreateDelegate method, Delegate, 795
CreateDirectory method, Directory, 654
CreateDomain method, AppDomain,

990-992
CreateEventSource method, EventLog,

556
CreateFileMapping function, 1009
CreateInstance method, Activator, 794
CreateInstance method, Array, 299
CreateInstanceXXX methods, AppDo‐

main, 998, 1000
CreateObjectSet method, EF, 374, 384
CreateText method, File, 642
CreateType method, TypeBuilder, 828
CredentialCache class, 689-690
cross-joins, 408-409, 413
cross-process Mutex, 911
cross-process wait handles, 929
cryptography, 863, 889

disposing encryption objects, 897
encrypting in memory, 894-895
hashing, 891-892
key management, 897
public key encryption, 897-901
random number generator using, 893
symmetric encryption, 892-897
Windows Data Protection, 890-891

CryptoStream class, 623, 893, 895-896
csc.exe, 14

(see also compiler)
CSharpCompilation class, 1060
CSharpCompilationOptions class, 1061
CSharpParseOptions class, 1048
CSharpSyntaxRewriter class, 1059-1060
CSharpSyntaxTree class, 1049
CSharpSyntaxWalker class, 1053
culture-sensitive comparisons, 220, 221
culture-specific conversions, 241
CultureInfo class, 213, 241-242, 258, 778
CultureInvariant option, RegexOptions,

1025-1026
cultures and subcultures, 778
currency formatting, 242, 244, 247, 249
Current method, IEnumerator, 286, 287

CurrentCulture property, Thread, 258,
778

CurrentCultureIgnoreCase method,
StringComparer, 332

CurrentDirectory property, Environment,
282

CurrentThread property, Thread, 566
CurrentTimezone method, 235
CurrentUICulture property, Thread, 778
custom attributes, 812
custom binding, 177
CustomAttributeData class, 817

D
D numeric suffix, 27
D or d format string, 247, 250-253
data contract namespace, 720
data contract serializer, 714-715, 717-733

attributes for, 718-719
binary formatter for, 721
collections, 727-729
DataContractSerializer class, 718
extending, 730-733
formatters for, 716
interoperating with binary serializer,

731-733
interoperating with IXmlSerializable,

733
IXmlSerializer interface with, 716
NetDataContractSerializer class, 718
null or empty members, 726-727
object references serialized with,

723-725
order of members for, 726
required members for, 725
serialization hooks for, 730-731
subclasses serialized with, 721-722

data parallelism, 946-947
(see also Parallel class; PLINQ)

data types (see type system)
DataContext class, L2S, 374-378, 384, 502
DataContract attribute, 718-719
DataContractSerializer class, 718, 719, 721
DataLoadOptions class, L2S, 381, 384
DataMember attribute, 718-719
DataProtectionPermission class, 869
DataReader class, 710
DataSet model, ADO.NET, 209

1082 | Index

www.EBooksWorld.ir

dates and times, 226-240
comparisons, 227, 228, 234
conversions, 230-231
current, 231
DateTime struct, 228-230, 234
DateTimeOffset struct, 228-235,

250-252
daylight saving time, 239-240
formatting and parsing, 228, 230, 233,

250-252
time zones, 228-230, 234-240
TimeSpan class, 227-228

DateTime property, DateTimeOffset, 231
DateTime struct, 228-230, 234, 250-252
DateTimeFormatInfo class, 242, 243
DateTimeKind enum, 230, 231
DateTimeOffset struct, 228-235, 250-252
DateTimeStyles enum, 244
DateTimeStyles flags, 252
Day property, DateTime and DateTi‐

meOffset, 232
daylight saving time, 239-240
DayOfWeek property, DateTime and

DateTimeOffset, 232
DayOfYear property, DateTime and Date‐

TimeOffset, 232
Days property, TimeSpan, 227
DbgCLR debugger, 551
deadlocks, 910-911
Debug class, 529-532
Debugger class, 551
DebuggerHidden attribute, 552
debuggers, 551-552
DebuggerStepThrough attribute, 552
debugging, 525

(see also diagnostics)
conditional compilation, 525-528
Debug class, 529-532
garbage collection during, 505
integrating with a debugger, 551-552
Trace class, 529-532

decimal type, 26, 32
declaration statements, 56
declarative security, 867
DeclareLocal method, ILGenerator, 821
decorator sequences, LINQ, 351-353
decorator streams, 624-625, 638-639
decrement operator, 29
Decrypt method, File, 650

default keyword, 44, 118
Default method, EqualityComparer, 329
default values for types, 44
DefaultIfEmpty operator, LINQ, 432
deferred execution, LINQ queries,

348-354
define compiler switch, 526
#define directive, 190, 191, 525
DefineConstructor method, Constructor‐

Builder, 833-834
DefineField method, FieldBuilder, 831
DefineGenericParameters method, Meth‐

odBuilder, 835
DefineGenericParameters method, Type‐

Builder, 836
DefineMethod method, MethodBuilder,

829-831
DefineProperty method, PropertyBuilder,

831
DefineType method, TypeBuilder, 825
definite assignment, 43-44
DeflateStream class, 504, 623, 647-649
Delay method, Task, 589
delay signing, for assemblies, 760-761
delaysign switch, 760
delegate keyword, 147
delegates, 2, 127-135

Action delegate, 131, 143
compared to interfaces, 132
compatibility of, 133-135
dynamic invocations using, 806
dynamically instantiating, 795
Func delegates, 131, 143, 341-342
generic types as parameters, 131-132,

135
instance methods assigned to, 130
LINQ, 386
multicast delegates, 129-130
plug-in methods using, 128

DelegatingHandler class, 686-687
Delete method, File, 650-651
DeleteObject method, EF, 383, 384
DeleteOnSubmit method, L2S, 383, 384
Demand method, IPermission, 865
Dequeue method, Queue, 310
derived classes, 89, 95
DescendantNodes method, SyntaxNode,

1050

Index | 1083

www.EBooksWorld.ir

DescendantNodes method, XContainer,
451

Descendants method, XContainer, 451
DescendantTokens method, SyntaxNode,

1050
deserialization, 713

(see also serialization)
destructors (see finalizers)
diagnostics, 525

(see also code contracts; debugging)
execution call stack, examining,

553-555
monitoring memory usage, 506
performance counters, 557-562
processes, examining, 552
stopwatch for execution times, 562
threads, examining, 553
Windows event logs for, 555-557

diagrams, UML notation for, xiii
dictionaries, 314-320

Dictionary class, 317-318
Hashtable class, 317-318
HybridDictionary class, 318
IDictionary interfaces, 315-316
ListDictionary class, 318
OrderedDictionary class, 318
SortedDictionary class, 319-320
SortedList class, 319-320

dictionary attack, 892
Dictionary class, 315, 317-318, 328
DictionaryBase class, 326
digital signing, 900-901
directives, preprocessor, 190-192
directories

Directory class, 653
DirectoryInfo class, 654-655
drive information, 659
filesystem events, catching, 659-661
special folders, 657-659
StorageFolder class, 661-662

Directory class, 653
DirectoryInfo class, 654-655
disposal, 499

(see also garbage collection)
calling Dispose from finalizer, 508-510
interface for, 499-500
semantics for, 500-501
unsubscribing from events in, 504-505
when not to use, 502

when to use, 501-503
Dispose method, IDisposable, 64, 152,

499-505, 508-510
Dispose method, Stream, 626, 629
Dispose method, TextReader, 640
Dispose method, TextWriter, 640
Distinct operator, LINQ, 399
DistributedTransactionPermission class,

869
DLL (Dynamic Link Library)

native, callbacks from, 1007
native, calling into, 1003-1004
native, interoperability with,

1003-1007
native, type marshaling with,

1004-1007
.dll files, 4, 13, 753
DllImport attribute, 1003
DLR (Dynamic Language Runtime),

847-849
DNS (Domain Name Service), 675,

703-704
Dns class, 674, 703-704
DnsPermission class, 869
do-while loops, 61
doc compiler switch, 193
DoCallBack method, AppDomain,

994-995
DocumenationMode property, CSharp‐

ParseOPtions, 1048
document object model (see DOM)
documentation comments, 193-196
dollar sign ($)

$ preceding interpolated strings, 37
$ in regular expressions, 1026, 1030

DOM (document object model), 441-442
(see also X-DOM)
syntax trees using (see syntax trees)

domain isolation, 667-668
Domain Name Service (see DNS)
domain names

conversions with IP addresses, 703
domains, application (see application

domains)
double type, 26, 31-33
downcasting, 90-91
drive information, 659
DriveInfo class, 659
dynamic binding, 175-183, 789, 803

1084 | Index

www.EBooksWorld.ir

compared to static binding, 176
compared to var types, 180
conversions, 179
custom binding, 177
language binding, 177-178
members of generic type, calling

anonymously, 853-856
numeric type unification with,

849-850
runtime representation of, 178-179
Visitor pattern using, 850-853

dynamic keyword, 175, 849
Dynamic Language Runtime (see DLR)
Dynamic Link Library (see DLL)
dynamic programming

DLR, 847-849
dynamic objects, implementing,

856-859
interoperating with dynamic lan‐

guages, 859-861
member overload resolution, 850-856
multiple dispatch, 853
numeric type unification, 849-850

DynamicInvoke method, Delegate, 795
DynamicMethod class, 818-819
DynamicObject class, 856-859

E
E (e) constant, 259
E or e format string, 247
EAP (event-based asynchronous pattern),

619-620
EBCDIC encoding, 224
ECMAScript option, RegexOptions, 1026
EDM (Entity Data Model), 373-374
EdmRelationshipNavigationProperty

attribute, 379
.edmx files, 373
EF (see Entity Framework)
Element method, XContainer, 451
ElementAt operator, LINQ, 343, 431
ElementAtOrDefault operator, LINQ, 430
Elements method, XContainer, 450
elements, LINQ, 335
ElementsAfterSelf method, XNode, 453
ElementsBeforeSelf method, XNode, 453
elevation of privilege attack, 871
#elif directive, 191, 526

else clause, 58
#else directive, 191, 526
Elvis operator (see null-conditional oper‐

ator)
Emit method, CSharpCompilation, 1062
Emit method, ILGenerator, 818
EmitWriteLine method, ILGenerator, 818
Empty operator, LINQ, 438
EnableRaisingEvents method, EventLog,

557
encapsulation, 20
Encoding class, 224-225
Encoding method, TextWriter, 640
Encrypt method, File, 650
Encrypted file attribute, 651-652
encryption, 889

disposing encryption objects, 897
key management, 897
chaining encryption streams, 895-896
in memory, 894-895
public key encryption, 897-901
symmetric encryption, 892-897
Windows Data Protection, 890-891

EndContractBlock method, Contract, 540
#endif directive, 190, 191
EndNoGCRegion method, GC, 516
#endregion directive, 191
EndsWith method, strings, 216
Enqueue method, Queue, 310
Ensures method, Contract, 541
EnsuresOnThrow method, Contract, 542
Enter method, Monitor, 905
entity classes

for Entity Framework, 372-374
for LINQ to SQL, 371-372

Entity Data Model (EDM), 373-374
Entity Framework (EF), 364, 371-371

API for, 384
associations, 378-379
compared to LINQ to SQL, 371, 384
deferred execution for, 379-380
disposing contexts, 376
eager loading for associations, 382
entity classes, 372-374
entity connection string for, 374
inheritance strategies, 373
object tracking with, 376-378
ObjectContext object for, 374-378
typed contexts for, 375

Index | 1085

www.EBooksWorld.ir

updates to entities, 382-384
ENTITY, in XML, 480
EntityCollection class, EF, 379, 384
EntityRef class, L2S, 384
EntityReference class, EF, 384
EntitySet class, L2S, 379, 381-382, 384
EntryPoint method, Assembly, 758
EntryWritten event, 557
enum type, 109-112, 262-265

combining members of, as flags, 111
conversions, 110, 263-265
enumerating values of, 265
format strings, 253
operators for, 112
type safety, 265
type safety issues, 112

EnumerateDirectories method, Directory,
654

EnumerateFiles method, Directory, 654
EnumerateFileSystemEntries method,

Directory, 654
enumerators, 156-162, 285-293

generic interfaces for, 287-289
implementing interfaces for, 289-293
initialization, 157
interfaces for, 285-287
iterators producing, 158-162
nongeneric interfaces, when to use,

288
Environment class, 282
environment variables, 282
EnvironmentPermission class, 868
equal sign (=)

= assignment operator, 51
== equal to operator, 33, 164, 219-220,

267, 269, 272, 276
=> in expression-bodied methods, 75
=> in expression-bodied properties, 81
=> in lambda expressions, 143

equality, 267-278
changing the meaning of, 273
custom types and, 273
DateTime and DateTimeOffset, 228
equality and comparison operators,

33-34
overloading equality operators, 169,

276
overriding Equals, 275
referential equality, 268

standard protocols for, 269
strings, comparing, 219
tuples, comparing, 266
value equality, 268
when Equals and == are not equal, 272

equality operators, 33-34, 164, 169, 267,
269, 272, 276

EqualityComparer class, 328-330
Equals method, 169, 219, 220-221, 266,

272, 279
overriding, 275

Equals method (static), 270-271
Equals method (virtual), 269-270
Equals method, IEqualityComparer, 328
Equals method, StringComparer, 332
EqualsExact method, 235
#error directive, 191
Escape method, Regex, 1027
escape sequences

regular expressions, 1026-1027
strings, 35

evaluation stack, IL, 819
event keyword, 136
event logs (see Windows event logs)
event wait handles, 923-932

AutoResetEvent class, 924-927
closing, 925
continuations for, 929-930
converting to tasks, 930-931
CountdownEvent class, 928-929
cross-process, 929
ManualResetEvent class, 927-928
operating on multiple handles,

931-932
event-based asynchronous pattern (EAP),

619-620
EventArgs class, 138
EventHandler delegate, 138
EventLog class, 555
EventLogPermission class, 870
events, 2, 136-142

accessors for, 141-142
modifiers for, 142
standard pattern for, 138-141
weak reference used with, 521

EventWaitHandle class, 924, 929
<example> tag, 194
Except operator, LINQ, 427
Exception class, 148, 149, 154-155

1086 | Index

www.EBooksWorld.ir

exception filters, 151, 153
exception handling, 148-156

Exception types, 154
IL (Intermediate Language) for, 824
with tasks, 584-585
for threads, 573-574
throwing exceptions, 152-154
TryXXX method pattern, 155
within code contract conditions, 548

<exception> tag, 194
ExceptWith method, HashSet or Sorted‐

Set, 313
exclamation mark (!)

! conditional NOT operator, 34
! XML type prefix, 196
!= not equal to operator, 33, 164, 267,

269, 276, 526
exclusive locking, 904-912

atomicity with, 908
deadlocks with, 910-911
lock statement, 905
Monitor class, 905-906
Mutex class, 911-912
nested, 909-910
performance of, 911
synchronization object for, 907
thread safety with, 912-917
when to use, 907-908

exclusive OR bitwise operator (^), 30
.exe files, 4, 13, 753
ExecuteAsAssembly method, AppDo‐

main, 787
ExecuteAssembly method, AppDomain,

787, 994
execution call stack, examining, 553-555
Exists method, Array, 302-303
Exists method, File, 650
Exit method, Monitor, 905
ExitCode property, Environment, 282
Exp method, 259
ExpandoObject class, 859
explicit cast, 31, 258, 263
explicit conversions, 20-21, 168, 170
explicit keyword, 168, 170
ExplicitCapture option, RegexOptions,

1026
expression statements, 57
expression trees, 364, 366-368, 386-390

compared to syntax trees, 1045

DLR using, 848
lambda expressions converted to, 143

expression-bodied methods, 75
expression-bodied properties, 81
expressions, 51-52
Expresso utility, 1023
Extensible Stylesheet Language Transfor‐

mations (see XSLT)
extension methods, 171-174
extern keyword, 69-70

F
F numeric suffix, 27
F or f format string, 247, 251, 253
Fail method, Debug and Trace, 529-530
FailFast method, 282
false operator, 171

(see also bool (Boolean) type)
fence (memory barrier), 904, 908
FieldOffset attribute, 1007
fields, 74

(see also properties; variables)
declaration, 74
emitting, 831-833
initialization, 74, 77, 85, 96
modifiers for, 74

File class, 650-653
File Transfer Protocol (see FTP)
file: protocol, 677, 679, 682, 682
FileAttributes enum, 651
FileDialogPermission class, 869
FileInfo class, 654-655
FileIOPermission class, 869
FileMode enum, 632
FileOptions enum, 633
files

attributes of, 651-652
directories, 653
drive information, 659
File class, 650-653
FileInfo class, 654-655
filesystem events, catching, 659-661
MemoryMappedFile class, 663-665
names for, specifying, 631
paths for, converting to URIs, 677
paths for, specifying, 655-656
permissions, 653
StorageFile class, 662

Index | 1087

www.EBooksWorld.ir

FileSecurity class, 633, 653
FileShare enum, 633
FileStream class, 623, 630-633
filesystem events, 659-661
FileSystemWatcher class, 659-661
finalizers, 86, 507-512
finally block, 148, 151-152, 499-500
Find method, LinkedList, 309
Find methods, Array, 302-303
FindLast method, LinkedList, 309
FindNode method, SyntaxNode, 1052
FindSystemTimeZoneById method, 236
FindToken method, SyntaxNode, 1052
FindTrivia method, SyntaxNode, 1052
First operator, LINQ, 343, 431
FirstAttribute method, XElement, 453
FirstNode method, XContainer, 449
FirstOrDefault operator, LINQ, 430
fixed keyword, 189, 1011, 1014-1015
fixed statement, 187-188
fixed-size buffers, 189
Flags keyword, 111
Flatten method, AggregateException, 979
float type, 26, 31-32
Floor method, 259
fluent query syntax, LINQ, 347
Flush method, Debug and Trace, 532
Flush method, Stream, 626, 629
Flush method, TextWriter, 640
folders (see directories)
for loops, 38, 61
For method, Parallel, 963-968
foreach loops, 62
ForEach method, Array, 301
ForEach method, Parallel, 963-968
foreach statement, 157, 287, 289, 301
foreground threads, 574-575
form feed, escape sequence for, 35
Format method, 218-219, 243-245, 264
format providers, 240-246
FormatProvider method, TextWriter, 640
formatters, for serialization, 716
formatting, 240-253

(see also parsing)
composite format strings, 243
custom format providers, 244-246
custom format strings, 246, 247, 251
enum format strings, 253
format providers, 240-246

numeric format strings, 246-248
standard format strings, 246, 250-251
ToString method, 240, 241
type converters, 256
XmlConvert class, 240, 255-256

forward slash (/)
/ division operator, 29
/ preceding compiler switches, 526
/* */ enclosing comments, 16
// preceding comments, 11, 16
/// preceding documentation com‐

ments, 193
Friedl, Jeffrey E. F. (Mastering Regular

Expressions), 1023
friend assemblies, 103
from clause, LINQ, 345-346
FromBase64String method, 255
FromDays method, 227
FromFileTime method, 230
FromFileTimeUtc method, 230
FromHours method, 227
FromMilliseconds method, 227
FromMinutes method, 227
FromSeconds method, 227
FromSerializedString method, 236
FTP (File Transfer Protocol), 675, 701-702

authentication, 688-690
client-side classes for, 679-682
proxy servers, 687-688

FtpWebRequest class, 674
FtpWebResponse class, 674
full trust, 870
FullName method, Assembly, 758
FullName property, Type, 792
fully qualified assembly name, 762
fully qualified type name, 13, 65
Func delegates, 131, 143, 341-342
function members, 2, 13, 18

(see also events; methods; properties)
abstract, 92
sealed, 94
virtual, 91

functional programming, 2

G
G or g format string, 247, 251, 253
GAC (Global Assembly Cache), 768-770
GacIdentityPermission class, 870

1088 | Index

www.EBooksWorld.ir

gacutil tool, 769
garbage collection, 42-43, 499, 505-507

(see also disposal)
calling Dispose from finalizer, 508-510
finalizers used by, 507-512
forcing, 515
generational, 513-514
memory pressure for, 516
notifications for, 515
pinning objects during, 187-188
roots preventing, 506
tuning, 516
weak references, 520
WinRT's use of, 507

GC (see garbage collection)
generational garbage collection, 513-514
generics, 114-126

compared to C++ templates, 126-126
constraints on, 118-120
contravariance with, 125-126, 135
conversions, 121-122
covariance with, 122-125, 135
default generic values, 118
delegates using, 131-132, 135
dynamically instantiating, 796-797
dynamically invoking methods, 805,

807-810
emitting, 835-837
generic methods, 116-117
generic types, 114-115
open and closed types, 115, 118, 121
reflecting members of, 803
reflecting type names of, 792
self-referencing declarations, 120-121
subclassing, 120
unbound generic types, 118

get accessor, 80, 82
GetAccessControl method, File, 651, 653
GetAdjustmentRules method, 237
GetAmbiguousTimeOffsets method, 237
GetArrayRank method, Type, 791
GetAsync method, HttpClient, 684
GetAttributes method, File, 650-651
GetAwaiter method, 606
GetBytes method, 225, 256
GetCallingAssembly method, Assembly,

758
GetConstructor method, Type, 801

GetConstructor method, TypeBuilder,
837

GetCreationTime method, File, 650
GetCultures method, 258
GetCurrentDirectory method, Directory,

654
GetCustomAttribute method, Attribute,

815
GetCustomAttributes method, Assembly,

758
GetCustomAttributes method, Attribute,

815
GetCustomAttributes method, Type, 815
GetCustomAttributesData method, Type,

816
GetData method, AppDomain, 997
GetData method, Thread, 937-938
GetDaylightChanges method, 236
GetDeclaredSymbol method, Semanti‐

cModel, 1065
GetDefaultMembers method, Type, 801
GetDescendantTrivia method, Syntax‐

Node, 1051
GetDiagnostics method, 1049
GetDiagnostics method, CSharpCompila‐

tion, 1062
GetDiagnostics method, syntax trees,

1048
GetDirectories method, Directory, 654
GetDirectoryRoot method, Directory, 654
GetElementType method, Type, 791
GetEncodings method, 225
GetEntryAssembly method, Assembly,

758
GetEnumerator method, IEnumerable,

286-287
GetEnvironmentVariable method, 282
GetEnvironmentVariables method, 282
GetEvent method, Type, 801
GetEventLogs method, EventLog, 556
GetExecutingAssembly method, Assem‐

bly, 758
GetField method, Type, 801
GetField method, TypeBuilder, 837
GetFiles method, Directory, 654
GetFileSystemEntries method, Directory,

654
GetFirstToken method, SyntaxNode, 1051

Index | 1089

www.EBooksWorld.ir

GetFolderPath method, Environment,
282, 657-659

GetFullPath method, Path, 656
GetGenericArguments method, Type, 796
GetGenericTypeDefinition method, Type,

796
GetHashCode method, 169, 274-275, 328,

332
GetInterfaces method, Type, 793
GetKeyForItem method, KeyedCollection,

324
GetLastAccessTime method, File, 650
GetLastToken method, SyntaxNode, 1051
GetLastWriteTime method, File, 650
GetLeadingTrivia method, SyntaxNode,

1051
GetLength method, arrays, 39, 301
GetLineSpan method, SyntaxTree, 1052
GetLogicalDrives method, Directory, 654
GetLongLength method, Array, 301
GetLowerBound method, Array, 301
GetManifestResourceStream method,

Assembly, 772
GetMembers method, Type, 797-799
GetMethod method, Type, 801, 804
GetMethod method, TypeBuilder, 837
GetModules method, Assembly, 758
GetName method, Assembly, 758
GetNames method, 265
GetNestedType method, Type, 801
GetNestedTypes method, Type, 791
GetParameters method, MethodBase, 804
GetParent method, Directory, 654
GetProcessXXX methods, Process, 552
GetProperty method, Type, 801
GetRandomFileName method, Path, 656
GetRange method, List or ArrayList, 306
GetResourceStream method, Assembly,

775
GetRoot method, SyntaxTree, 1049
GetSatelliteAssembly method, Assembly,

758
GetSemanticModel, CSharpCompilation,

1062
GetString method, 225
GetSymbolInfo method, SemanticModel,

1064
GetSystemTimeZones method, 236
GetTable method, L2S, 374, 384

GetTempFileName method, Path, 656
GetTotalMemory method, GC, 519
GetTrailingTrivia method, SyntaxNode,

1051
GetType method, 99-100
GetType method, Assembly, 758
GetType method, Type, 790-792
GetTypeInfo method, Type, 791
GetTypeInfo, SemanticModel, 1066
GetTypes method, Assembly, 758
GetUnderlyingType method, 263
GetUnicodeCategory method, 215
GetUpperBound method, Array, 301
GetUtcOffset method, 235, 236
GetValue method, Array, 300-301
GetValue method, Type, 803
GetValues method, 265
GetViewBetween method, SortedSet, 314
Global Assembly Cache (GAC), 768-770
global keyword, 71
GlobalAssemblyCache method, Assem‐

bly, 758
globalization, 257-258
globally unique identifiers (see Guid

struct)
goto statement, 63
greedy quantifiers, in regular expressions,

1029
group clause, LINQ, 345
GroupBy operator, LINQ, 423-426
GroupJoin operator, LINQ, 411-419
groups, in regular expressions, 1032-1033
Guid struct, 267
GZipStream class, 623, 647-649

H
Handle method, AggregateException, 979
HasAttributes method, XElement, 453
HasElements method, XElement, 449
hash mark (#)

preceding preprocessor directives,
191, 525

in regular expressions, 1026
hash partitioning, 957
hashing, 889, 891-892
HashSet class, 312-313
Hashtable class, 315, 317-318, 328
hashtables, 274

1090 | Index

www.EBooksWorld.ir

headers, HTTP, 692-693
heap, 42-43

compaction of, 512
Large Object Heap (LOH), 514
memory allocation from, 512

hexadecimal
converting from, 254
converting to, 258

hidden files
Hidden FileAttribute, 651
overwriting, 632

HideBySig attribute, 831
hiding members

inherited members, 93
with explicit interface implementation,

106
horizontal tab, escape sequence for, 35
Hour property, DateTime and DateTi‐

meOffset, 232
Hours property, TimeSpan, 227
HTTP (Hypertext Transfer Protocol),

674-675
authentication, 688-690
client-side classes for, 679-687
cookies, 695-696
forms authentication, 696-697
headers, 692-693
port, 676
proxy servers, 687-688
query strings, 693
server, writing, 698-700
unit testing and mocking, 685-686
uploading form data, 693-694

HttpClient class, 679, 683-688, 690,
694-697

HttpContent class, 685
HttpListener class, 674, 698-700
HttpMessageHandler class, 674, 685-686
HttpRequestMessage class, 684
HttpResponseMessage class, 684
HTTPS (HTTP over SSL), 682, 697
HttpWebRequest class, 674, 695
HttpWebResponse class, 674
HybridDictionary class, 318
Hypertext Transfer Protocol (see HTTP)

I
I/O, 650

asynchronous programming for, 590
Console class, 281-282
file I/O, 225
files (see files)
isolated storage, 663, 666-671
random file I/O, 663
stream I/O, 225
Windows Runtime, 661-663

I/O-bound threads, 567
IAsyncAction interface, 605
IAsyncOperation interface, 605
ICollection interfaces, 293
IComparable interfaces, 170, 278-280
IComparer interfaces, 327, 330-331
IConvertible interface, 254
ICustomFormatter interface, 244-246
IDbConnection interface, 502
IDE (Integrated Development Environ‐

ment), xii
identifiers, 14-16
identity and role authorization, 864,

888-889
(see also permissions)

IDictionary interfaces, 293, 315-316
IDispatch interface, 1017
IDisposable interface, 152, 288, 499-505
IDynamicMetaObjectProvider interface,

177, 856
IEnumerable interfaces, 285-293, 293
IEnumerator interfaces, 156, 285-293
IEqualityComparer interfaces, 277,

327-330
IEquatable<T> interface, 272, 276
#if directive, 190, 525
if statement, 58-60
IFormatProvider interface, 244-246
IFormattable interface, 241
IgnoreCase option, RegexOptions, 1025,

1026
IgnorePatternWhitespace option, Regex‐

Options, 1026
IIdentity interface, 889
IIS (Internet Information Services), 675,

989
IL (Intermediate Language), 4, 789

branching, 822
evaluation stack, 819
exception handling, 824
instance methods, calling, 823-824

Index | 1091

www.EBooksWorld.ir

local variables, generating, 821
methods, generating, 818-819
methods, passing arguments to, 820
objects, instantiating, 823-824
parsing, 840-845

ildasm.exe tool, 755, 756, 840
ILGenerator class, 818
IList interfaces, 293
immutable objects, 917
imperative security, 867
implicit cast, 258
implicit conversions, 20-21, 168, 170
implicit keyword, 168, 170
implicit parameterless constructors, 77
implicit serialization, 717
implicit typing (see var keyword)
In attribute, 1006
in modifier, 125-126
Include method, EF, 382, 384
<include> tag, 195
increment operator, 29
indexers, 82-83

implementing, 83
null-conditional used with, 82
read-only, 83
using, 83

IndexOf method, Array, 302-303
IndexOf method, IList, 295
IndexOf method, strings, 216
IndexOfAny method, 217
infinity, special values for, 31
inheritance, 88-97
InnerException property, Exception, 154
Insert method, IList, 295
Insert method, List or ArrayList, 306
Insert method, strings, 217, 223
Insert* methods, syntax trees, 1056
InsertItem method, Collection, 321
InsertOnSubmit method, L2S, 383, 384
InsertRange method, List or ArrayList,

306
instance constructors (see constructors)
instance members, 19-20
instantiation, 19
int type, 17, 18, 26
integral overflow, 29-30
integral types, 26
Integrated Development Environment

(see IDE)

interfaces, 1, 104-109
code contracts on, 545-546
compared to delegates, 132
explicitly implementing members of,

105-106
extending, 105, 172
reimplementing in a subclass, 107-108
virtually implementing members of,

106
when to use, compared to classes, 109

Interlocked class, 908
Intermediate Language (see IL)
internal access modifier, 102
internationalization (see globalization;

localization)
Internet Information Services (see IIS)
Internet Protocol (see IP)
interpolation of strings, 37
interpreted queries, LINQ, 364-370
Interrupt method, Thread, 938-939
Intersect method, IPermission, 866
Intersect operator, LINQ, 427
IntersectWith method, HashSet or Sorted‐

Set, 313
into clause, LINQ, 345, 346
into keyword, LINQ, 360-361
InvalidOperationException class, 155
invariant culture, 220, 241, 243
Invariant method, Contract, 544-545
InvariantCulture method, StringCom‐

parer, 332
InvariantCultureIgnoreCase method,

StringComparer, 332
Invoke method, ConstructorInfo, 794
Invoke method, MethodInfo, 803
Invoke method, Parallel, 962-963
IP (Internet Protocol), 675
IP address, 675-676, 703
IPAddress class, 676
IPEndPoint class, 676
IPermission interface, 865-866
IPrincipal interface, 888
IProducerConsumerCollection interface,

981-982
IProgress interface, 612
IPv4 addressing, 675
IPv6 addressing, 676
IQueryable interface, 364-366
IReadOnlyDictionary interface, 316

1092 | Index

www.EBooksWorld.ir

IReadOnlyList interface, 296
IronPython, 859-861
IronRuby, 859
is operator, 91, 794
IsAfter method, XNode, 453
IsAlive property, Thread, 566
IsAmbiguousTime method, 237
IsAssignableFrom method, Type, 794
IsAttached method, Debugger, 552
IsBackground property, Thread, 575
IsBefore method, XNode, 453
IsControl method, 214
IsDaylightSavingTime method, 235, 236,

239
IsDefaultDomain property, AppDomain,

991
IsDigit method, 214
IsEmptyElement method, XmlReader, 483
IsEquivalentTo method, syntax trees, 1048
ISerializable interface, 731-733, 738-741
IsFixedDateRule method, 237
IsFixedSize method, IList, 295
IsGenericType method, Type, 796
IsInstanceOfType method, Type, 794
IsInvalidTime method, 237
IsLetter method, 214
IsLetterOrDigit method, 214
IsLower method, 214
IsMatch method, Regex, 1024
IsNumber method, 214
isolated storage, 666-671

disadvantages of, 666
enumerating files in, 670-671
location of, 669-670
reading and writing, 668-669
types of, 666-668
Windows Store apps, 663

IsolatedStorageFile class, 668-669,
670-671

IsolatedStorageFilePermission class, 869
IsolatedStorageScope enum, 669-669, 671
IsolatedStorageStream class, 623, 668
IsProperSubsetOf method, HashSet or

SortedSet, 313
IsProperSupersetOf method, HashSet or

SortedSet, 313
IsPunctuation method, 214
IsReadOnly method, ICollection, 294
IsSeparator method, 214

IsSubsetOf method, HashSet or SortedSet,
313

IsSubsetOf method, IPermission, 866
IsSupersetOf method, HashSet or Sorted‐

Set, 313
IsSymbol method, 214
IsThreadPoolThread method, Thread, 579
IStructuralComparable interface, 333-334
IStructuralEquatable interface, 333-334
IsUpper method, 214
IsWhiteSpace method, 213, 214
ISymbol interface, 1063
iteration statements, 61-62

capturing iteration variable in lambda
expressions, 145-146

for loops, 38
foreach statement, 157, 287
while loops, 157

iterators, 158-162, 290
IUnknown interface, 1016
IXmlSerializable interface, 714, 733,

749-751
IXmlSerializer interface, 716

J
jagged arrays, 40
JIT (Just-In-Time) compiler, 4
join clause, LINQ, 345, 346
Join method, strings, 218
Join method, Thread, 566
Join operator, LINQ, 411-419
jump statements, 63-64
Just-In-Time compiler (see JIT compiler)

K
KeyContainerPermission class, 869
KeyedCollection class, 323-324
keyfile switch, 759
Keys method, IDictionary, 315
keywords, 14-16
Kind method, syntax trees, 1047, 1048

L
L numeric suffix, 27
L2S (see LINQ to SQL)
lambda expressions, 143-147

Index | 1093

www.EBooksWorld.ir

asynchronous, 605
capturing outer variables, 144-146, 572
in LINQ queries, 337, 340-342, 386
parameters for, 143-144
syntax for, 143

LAN (Local Area Network), 675
language binding, 177-178
Large Object Heap (LOH), 514
Last operator, LINQ, 343, 431
LastAttribute method, XElement, 453
LastIndex method, Array, 302-303
LastIndexOf method, 217
LastIndexOfAny method, 217
LastNode method, XContainer, 449
LastOrDefault operator, LINQ, 430
late binding (see dynamic binding)
Launch method, Debugger, 552
LayoutKind.Explicit, 1007
LayoutKind.Sequential, 1006
lazy execution, LINQ queries, 348
lazy initialization, 933-936
lazy quantifiers, in regular expresssions,

1029
Lazy<T> class, 934-935
LazyInitializer class, 935-936
LeadingTrivia method, SyntaxToken, 1051
left angle bracket (<)

< > enclosing generic types, 114
< less than operator, 165, 278-279
<< shift left operator, 30
<= less than or equal operator, 165

left-associative operators, 52
Length method, Stream, 626, 628
Length property, arrays, 38, 301
Length property, StringBuilder, 223
let clause, LINQ, 345-346, 363-364
level switch, 548
#line directive, 191
LinkedList class, 308-310
LINQ (Language Integrated Query),

335-337
deferred execution, 348-354, 358
fluent query syntax, 337-344
interpreted queries, 364-370
lambda expressions with, 337, 340-342
Parallel LINQ (see PLINQ)
projection strategies for, 362-364
query expression syntax, 337, 344-348
query expressions, building, 385-390

query operators, 335, 391-395
subqueries, 355-358

LINQ to SQL (L2S), 364-370
associations, 378-379
compared to Entity Framework, 371,

384
disposing contexts, 376
eager loading for EntitySets, 382
entity classes, 371-372
object tracking with, 376-378
typed contexts for, 375
updates to entities, 382-384

LINQ to XML, 441
(see also X-DOM)
annotations, 468
attributes, 444
documents and declarations, 459-463
loading and parsing, 444-445
names and namespaces, 463
navigating and querying, 448-453
prefixes, 464, 467-468
projecting into X-DOM, 447, 469-475
retrieving data from X-DOM, 448-453
saving and serializing, 445
updating X-DOM, 453-459
values, working with, 456-459

LINQPad, xii, 335
List class, 306-307
<list> tag, 195
ListDictionary class, 315, 318
listeners, trace

flushing and closing, 532
using, 530-531

lists, 295-296, 306-310
(see also collections)
ArrayList class, 306-308
IList interfaces, 295-296
IReadOnlyList interface, 296
LinkedList class, 308-310
List class, 306-307

literals, 16
numeric, 26-28
string, 36

Load method, Assembly, 758
Load method, XDocument and XElement,

444-445
LoaderOptimization attribute, 993-994
LoadFile method, Assembly, 758, 781-783

1094 | Index

www.EBooksWorld.ir

LoadFrom method, Assembly, 758,
781-783

Local Area Network (see LAN)
Local property, TimeZoneInfo, 236
local variables, 57
LocalDateTime property, DateTimeOffset,

231
localization, 257

cultures and subcultures for, 778
satellite assemblies for, 776-778
Visual Studio features for, 777

Location method, Assembly, 758
Location property, Assembly, 783
lock statement, 64, 570, 905
locking, 570-571

exclusive locking, 904-912
non-exclusive locking, 904, 918-923
reader/writer locks, 919-923
recursive, 923
semaphores, 918-919
thread safety with, 912-917
upgradeable locks, 921-923

Log method, Debugger, 552
Log method, Math, 259
Log10 method, 259
logging, Windows event logs, 555-557

(see also debugging)
LOH (see Large Object Heap)
long type, 26
LongCount operator, LINQ, 432
LongLength property, Array, 301
lookahead and lookbehind, in regular

expressions, 1029
LookupSymbols method, SemanticModel,

1066
loops (see iteration statements)

M
M numeric suffix, 27
M or m format string, 251
MachineName property, Environment,

282
mail protocols (see POP; SMTP)
MailMessage class, 704
Main method, 12
MakeArrayType method, Type, 791, 795
MakeByRefType method, Type, 804
makecert utility, 765

MakeGenericMethod method, Type, 805
MakeGenericType method, Type, 796
managed code, 4
managed memory leaks, 516-520
.manifest files, 756
ManifestModule method, Assembly, 758
ManualResetEvent class, 576, 927-928
ManualResetEventSlim class, 927
MapViewOfFile function, 1009
MarshalAs attribute, 1004
MarshalByRefObject class, 998
marshaling types, 1004-1007
Mastering Regular Expressions (Friedl),

1023
Match method, Regex, 1024
MatchEvaluator delegate, 1034
Math class, 259
Max method, Math, 259
Max method, SortedSet, 314
Max operator, LINQ, 433
MediaPermission class, 869
MemberInfo class, 799-801
members (see class members)
memory barrier (fence), 904, 908
memory management

compaction, by garbage collection, 512
diagnosing leaks, 519
garbage collection, 42-43, 506
heap, 42-43
Large Object Heap (LOH), 514
monitoring memory usage, 506, 519
private working set, 506
reference types, 25
shared memory, 1008-1011
stack, 42, 189
unmanaged memory, mapping structs

to, 1011-1015
value types, 24

memory pressure, for garbage collection,
516

MemoryMappedFile class, 663-665, 1013
MemoryStream class, 502, 623, 633-634,

648-649, 894-895
Message property, Exception, 154
metadata, 4, 6, 753

accessing at runtime (see reflection)
metadata tokens, 799, 811
MetadataToken class, 799
method groups, 128

Index | 1095

www.EBooksWorld.ir

MethodBase class, 804
MethodBuilder class, 829-831
MethodHandle class, 799
MethodInfo class, 799
methods, 2, 12-13, 74-76

(see also class members; constructors)
anonymous, 147
constructors, 76-77
dynamic, generating, 818-819
dynamic, passing arguments to, 820
emitting, 829-831
expression-bodied methods, 75
extension methods, 171-174
finalizers, 86
generic, 116-117
modifiers for, 75
overloading, 75, 96
overriding, 92, 541, 543
parameters and arguments for (see

parameters and arguments)
partial, 87
plug-in methods, 128
signature for, 75
treating as values (see delegates)

Microsoft .NET Framework (see .NET
Framework)

Microsoft Message Queuing (see MSMQ)
Microsoft Visual Studio (see Visual Studio

2015)
Microsoft.CodeAnalysis.CSharp.dll

assembly, 1044, 1049
Microsoft.CodeAnalysis.dll assembly,

1044
Millisecond property, DateTime and

DateTimeOffset, 232
Milliseconds property, TimeSpan, 227
Min method, Math, 259
Min method, SortedSet, 314
Min operator, LINQ, 343, 433
minus sign (-)

- removing delegate instances, 129
- subtraction operator, 29, 227, 232
-- decrement operator, 29
-0 negative zero, 31
-= even accessor, 136, 141
-= removing delegate instances, 129
-> pointer-to-member operator, 187,

188
-∞ negative infinity, 31

Minute property, DateTime and DateTi‐
meOffset, 232

Minutes property, TimeSpan, 227
ModuleBuilder class, 825
modules, in assemblies, 756
Monitor class, 905-906
MonitoringIsEnabled property, AppDo‐

main, 995
Month property, DateTime and DateTi‐

meOffset, 232
Move method, File, 650-651
MoveNext method, IEnumerator, 286
MoveToAttribute method, XmlReader,

485
MoveToContent method, XmlReader, 482
MoveToFirstAttribute method,

XmlReader, 486
MoveToNextAttribute method,

XmlReader, 486
mscorlib.dll assembly, 199, 201, 811
MSMQ (Microsoft Message Queuing),

210
mt tool, 756
multicast delegates, 129-130
multicore processers (see parallel pro‐

gramming)
multidimensional arrays, 39-40
Multiline option, RegexOptions, 1026
multiple dispatch, 853
multithreading (see threads)
Mutex class, 911-912

N
N format string, 247
naked type constraint, 120
Name property, Type, 792
named arguments, 49-50
named attribute parameters, 184
named groups, regular expressions, 1033
named pipes, 634-636
NamedPipeClientStream class, 635
NamedPipeServerStream class, 635
nameof operator, 88
names (see identifiers)
namespace keyword, 65
Namespace property, Type, 792
namespaces, 13, 65-71

alias qualifiers, 70-71

1096 | Index

www.EBooksWorld.ir

aliasing, 69
aliasing types in, 69
defining, 65
extern aliases, 69-70
importing, 66
name hiding, 67
name scoping, 67
nested, 114
repeated, 68
using directive in, 68
XML namespaces, 463-468

NaN (Not a Number) value, 31-32
native DLLs

callbacks from, 1007
calling into, 1003-1004
interoperability with, 1003-1007
type marshaling with, 1004-1007

negative lookahead/lookbehind, regular
expressions, 1030

negative zero, special value for, 31
nested namespaces, 114
nested types, 113-114, 791
.NET Framework, 3-5, 199-201

compatibility with CLR and C#,
199-200

version 4.5, 201
version 4.6, 200
version of, xii

.NET Native, 4
NetDataContractSerializer class, 718, 719,

721, 722, 724
(see also data contract serializer)

NetworkCredential class, 688
NetworkInformationPermission class, 869
networking, 673-675

authentication, 688-690
client-side classes, 679-687
DNS, 703-704
exception handling, 690-692
FTP, 701-702
HTTP, 692-697
HTTP server, writing, 698-700
HttpClient class, 683-687
POP3, 708-709
ports, 676
proxy servers, 687-688
SMTP, 703
TCP, 704-711
URIs, 676-678

NetworkStream class, 623
new keyword/operator

anonymous types, creating, 174
compared to override, 93
constructing an object, 19
constructing arrays, 38
inheritance modifier, 93
simplified array initialization, 41

new line, escape sequence for, 35
NewLine method, TextWriter, 640
NewLine property, Environment, 282
NextAttribute method, XAttribute, 453
NextMatch method, Regex, 1024
NextNode method, XNode, 453
Nodes method, XContainer, 449
nodes, in syntax trees, 1045, 1046, 1047
NodesAfterSelf method, XNode, 453
NodesBeforeSelf method, XNode, 453
non-exclusive locking, 904, 918-923
nonblocking synchronization constructs,

904
nonpublic constructors, 77
NonSerialized attribute, 735
Not a Number (NaN) value, 31-32
NOT conditional operator (!), 34
Not method, BitArray, 312
NotImplementedException class, 155
NotSupportedException class, 155
Now property, DateTime, 231
Now property, DateTimeOffset, 231
null coalescing operator, 166
Null field, Stream, 626
null value

escape sequence for, 35
literal for, 24
operators for, 55-56

null-coalescing operator, 55
null-conditional operator, 55, 82, 166
nullable types, 162-168

boxing and unboxing, 163
conversions, 163, 165
operator lifting by, 163-165
uses for, 166

Nullable<T> struct, 162
NullReferenceException, 24, 155
NumberFormatInfo class, 242, 243
NumberStyles enum, 244, 248-250
numeric format strings, 246-248
numeric type unification, 849-850

Index | 1097

www.EBooksWorld.ir

numeric types, 26-33, 258-262
BigInteger struct, 259-260
Complex struct, 260
conversions, 28-29, 31, 254-255, 258
literals, 26-28
math methods, 259
operators, 29-30
Random class, 261
rounding errors, 32
special values, 31-32

(see also null value)
suffixes, 27-28

O
o format string, 251
object initializers, 77-79

in anonymous types, 174
in LINQ queries, 362

object invariants, 534, 544-545
object orientation, 1-2
object type, 97-101

compared to dynamic type, 178-179
members of, 100

object/relational mapper (see ORM)
ObjectContext class, EF, 374-378, 384
ObjectDisposedException class, 155
ObjectSet class, EF, 384
Obsolete attribute, 183
OdbcPermission class, 869
Offset property, DateTimeOffset, 232
OfType operator, LINQ, 428-429
OldValue method, Contract, 542
OleDbPermission class, 869
OnDeserialized attribute, 730-731, 735
OnDeserializing attribute, 730-731, 735
OnSerialized attribute, 730-731, 736
OnSerializing attribute, 730-731, 736
OpCodes class, 818
open generic types, 115
OpenFileMapping function, 1009
OpenRead method, File, 630
OpenText method, File, 642
OpenWrite method, File, 630
operating system security, 885-887
OperationCompleted method, 607
OperationStarted method, 607
operator functions, 168
operator keyword, 168

operator lifting, 163-165
operators, 16, 51

arithmetic, 29
assignment, 51
associativity, 52
comparison, 33-34, 169
compound assignment, 52
conditional, 34-35, 165
for enums, 112
equality, 33-34, 164, 169
increment and decrement, 29
null, 55-56
order of evaluation, 52-53
overloading, 168-171, 276
pointers, 187
for pointers, 188
precedence, 52
relational, 165
table of, 53-55

OptionalField attribute, 737
OR bitwise operator (|), 30
OR conditional operator (|), 34
OR conditional operator (||), 34
Or method, BitArray, 312
order comparisons, 278-280
orderby clause, LINQ, 345
OrderBy operator, LINQ, 338, 340,

421-423
OrderByDescending operator, LINQ,

421-423
OrderedDictionary class, 315, 318
ordinal comparisons, 220
Ordinal method, StringComparer, 332
OrdinalIgnoreCase method, StringCom‐

parer, 332
ORM (object/relational mapper), 209
OSVersion property, Environment, 282
Out attribute, 1006
out modifier, for parameters, 47, 124
Out property, Console, 281
outer joins, LINQ

with association properties, 403
with GroupJoin, 416, 417
with Join, 413
with lookups, 417
with SelectMany, 410-411

outer variables, capturing, 144-146, 147
overflow checking, 30

1098 | Index

www.EBooksWorld.ir

Overlaps method, HashSet or SortedSet,
313

overloading constructors, 76
overloading methods, 75
overloading operators, 168-171, 276
override modifier, 92-94
oversubscription, 580

P
P format string, 247
P/Invoke (Platform Invocation Services),

1003-1004
PadLeft method, 217
PadRight method, 217
<para> tag, 195
Parallel class, 947, 961-968
Parallel LINQ (see PLINQ)
parallel programming, 945-948

AggregateException class, 978-979
Amdahl's law regarding, 948
blocking collections, 983-987
concurrent collections, 980-983
data parallelism, 946-947
Parallel class, 961-968
PLINQ, 948-961
producer/consumer queue, 984
structured parallelism, 946-947
task parallelism, 946-947, 968-978
when to use, 948

ParallelEnumerable class, 949
ParallelLoopState class, 965-966
ParallelQuery class, 949
<param> tag, 194
parameters and arguments, 12, 44-50

for attributes, 184
default values, 48-49
for generics (see type parameters and

arguments)
for indexers, 83
named, 49-50
optional, 48-49, 78
passing by reference, 46-47, 76
passing by value, 45-46, 76
variable number of, 48

<paramref> tag, 195
params modifier, 48
Parent method, XAttribute, 453
Parent property, syntax trees, 1052

Parent property, XNode, 452
parentheses (())

() enclosing lambda expression
parameters, 143

() in regular expressions, 1024
() method call or declaration, 51
() in regular expressions, 1026, 1032

Parse method, DateTime, 228, 230, 233
Parse method, DateTimeOffset, 231
Parse method, numbers, 258
Parse method, strings, 240, 264
Parse method, XDocument and XEle‐

ment, 444-445
ParseExact method, 230, 233
ParseExtract method, 231
ParseText method, CSharpSyntaxTree,

1048
parsing, 240-253

(see also formatting)
base 2, 8, and 16, 254
DateTimeStyles flags, 252
format providers, 240-246
misparsing, avoiding, 251-252
NumberStyles enum, 248-250
Parse method, 240, 241
TryParse method, 241
type converters, 256
XmlConvert class, 240, 255-256

partial methods, 87
partial trust, 870
partial types, 86-87
Path class, 655-656
paths

converting to URIs, 677
specifying, 655-656

pattern matching (see regular expres‐
sions)

.pdb files, 1062
PE (Portable Executable) files, 753
Peek method, Queue, 310
Peek method, Stack, 311
Peek method, TextReader, 640
percent format string, 247
percent sign (%)

% remainder operator, 29
performance counters, 557-562
PerformanceCounterPermission class, 870
period (.)

. member access operator, 51

Index | 1099

www.EBooksWorld.ir

. in namespace hierarchy, 65

. in regular expressions, 1026
<permission> tag, 194
permissions, 863-867

CAS, 868-871
CodeAccessPermission class, 864
declarative security, 867
for files, 653
identity and role authorization,

888-889
imperative security, 867
IPermission interface, 865-866
PermissionSet class, 866-867
PrincipalPermission class, 864

PermissionSet class, 866-867
PFX (Parallel Framework), 945-948

(see also parallel programming)
PI constant, 259
PIA (Primary Interop Assembly), 1021
Ping class, 674
pipes, 634-638

anonymous, 634, 636-638
named, 634-636

PipeStream class, 634-638
Platform Invocation Services (see P/

Invoke)
platform support, 3
PLINQ (Parallel LINQ), 947-961

Aggregate operator with, 959-961
canceling queries, 955
chunk partitioning, 957-959
degree of parallelism, setting, 955
functional purity with, 954
hash partitioning, 957
optimizing, 956-961
ordering of results, 951
range partitioning, 957-959
when to use, 954

plus sign (+)
+ addition operator, 29, 227, 232
+ combining delegate instances, 129
+ in nested type names, 792
+ in regular expressions, 1026, 1028
+ string concatenation operator, 37
++ increment operator, 29
+= combining delegate instances, 129
+= even accessor, 136, 141
+∞ positive infinity, 31

pointers, 3, 187

operators for, 187, 188
pinning objects when using, 187-188
type names for, 793
to unmanaged code, 190
void* pointer, 189

polymorphism, 89
POP (Post Office Protocol), 675, 708-709
Pop method, Stack, 311
Portable Executable (PE) files, 753
ports, networking, 676
Position method, Stream, 626, 628
positive lookahead/lookbehind, regular

expressions, 1029
POST method, HTTP, 680
Post Office Protocol (see POP)
postconditions, 533-534, 541-543
Pow method, 259
#pragma warning directive, 191, 192
precedence of operators, 52
preconditions, 533-534, 537-541
predefined (built-in) types, 17-18
predicates, 340
prefixes for XML namespaces, 464,

467-468
preprocessor directives, 190-192, 525-526,

1054, 1055
PreviousAttribute method, XAttribute,

453
PreviousNode method, XNode, 453
primary expressions, 51
Primary Interop Assembly (see PIA)
primitive types, 25
PrincipalPermission class, 864, 888
PrintingPermission class, 869
PriorityClass property, Process, 575
private access modifier, 102
private working set, 506
PrivateBinPath property, AppDomain‐

Setup, 991
Process class, 282-283, 552-553
processes

examining, 552-553
shared memory between, 664
starting, 282-283

ProcessorCount property, Environment,
282

ProcessThread class, 553
producer/consumer queue, 984
Progress class, 612

1100 | Index

www.EBooksWorld.ir

properties, 2, 79-82
accessors for, 80
ambient, 167
automatic, 81
calculated, 80
emitting, 831-833
expression-bodied properties, 81
initialization, 81
modifiers for, 80
read-only, 80, 81
write-only, 80

property initializers, 81
protected access modifier, 102
protected internal access modifier, 102
ProtectedData class, 890-891
protocols, networking, 673-675, 677, 679,

682
provider layer, ADO.NET, 209
proxy servers, 687-688
pseudocustom attributes, 813
public access modifier, 102, 105
public key encryption, 897-901
public keyword, 20
publicsurface switch, 548
Publisher class, 767
PublisherIdentityPermission class, 870
punctuators, 16
Pure attribute, 536
Push method, Stack, 311

Q
quantifiers, in regular expressions, 1024,

1028-1029
queries, LINQ, 336-337

anonymous types with, 362
captured variables in, 350-351
compared to SQL, 347
composition of, 358-362
decorator sequences for, 351-353
deferred execution of, 348-354, 358
execution of, 354
fluent syntax, 337-344
fluent syntax, compared to query

expression syntax, 347
interpreted, 364-370
lambda expressions in, 337, 340-342,

386
let clause with, 363-364

local queries, 336, 368
mixed syntax, 348
object initializers with, 362
ordering of input elements, 343
progressive query building, 358-359
query continuation with into keyword,

360-361
query expression syntax, 337, 344-348
query expressions, building, 385-390
range variables in, 346
reevaluation of, 349
subqueries, 355-358

query operators, LINQ, 335
aggregation methods, 432-436
conversion methods, 427-430
element operators, 430-432
filtering, 396-399
generation methods, 438-439
grouping, 423-426
joining, 411-420
ordering, 420-423
projecting, 400-411
quantifiers, 437-438
set operators, 426-427

query strings, HTTP, 693
QueryInterface method, IUnknown, 1016
question mark (?)

? in nullable types, 162
? preceding HTTP queries, 693
? preceding indexers, 82
? in regular expressions, 1026, 1028
?. null-conditional operator, 55, 166
?? null coalescing operator, 166
?? null-coalescing operator, 55

Queue class, 310-311
queues, 310-311
quotes, double (")

" " enclosing string literals, 36
escape sequence for, 35

quotes, single (')
' enclosing char literals, 35
' following generic type names, 792
escape sequence for, 35

R
R or r format string, 247, 251
Random class, 261
random file I/O, 663

Index | 1101

www.EBooksWorld.ir

RandomNumberGenerator method,
Cryptography, 893

Range operator, LINQ, 438
range partitioning, 957-959
range variables, LINQ, 346
Rank method, Array, 301
RCW (runtime-callable wrapper), 1017
Read method, Stream, 625, 627-628
Read method, TextReader, 640
Read method, XmlReader, 479
ReadAllBytes method, File, 631
ReadAllLines method, File, 631
ReadAllText method, File, 631
ReadAsync method, Stream, 627
ReadBlock method, TextReader, 640
ReadByte method, Stream, 625, 628
ReadContentAsXXX methods,

XmlReader, 484, 485
ReadElementContentAsString method,

XmlReader, 481
ReadElementContentAsXXX methods,

XmlReader, 484
ReadElementString method, XmlReader,

484
ReadEndElement method, XmlReader,

481
reader/writer locks, 919-923
ReaderWriterLock class, 919
ReaderWriterLockSlim class, 919-923
ReadInnerXml method, XmlReader, 484
ReadLine method, TextReader, 640
ReadLines method, File, 631
ReadObject method, 719
ReadOnly FileAttribute, 651
readonly modifier, 74
ReadOnlyCollection class, 326-326
ReadOuterXml method, XmlReader, 484
ReadStartElement method, XmlReader,

481
ReadString method, XmlReader, 484
ReadSubtree method, XmlReader, 484
ReadTimeout method, Stream, 626, 629
ReadToDescendant method, XmlReader,

484
ReadToEnd method, TextReader, 640
ReadToFollowing method, XmlReader,

484
ReadToNextSibling method, XmlReader,

484

ReadXXX methods, XmlReader, 483
real number types, 26
rectangular arrays, 39
recursive locking, 923
ref modifier, 46-47
refactoring, 12
reference assemblies, 5, 549
reference conversions, 89-91
reference profile, 5

(see also reference assemblies)
reference types, 22-25, 39
ReferenceEquals method, 271
referential equality, 268-269
reflection, 789

assemblies, emitting, 825-828
assemblies, obtaining, 810-811
Assembly class, 757-758
attributes, obtaining, 815-817
dynamic code generation, 818-825
dynamically instantiating types,

794-797
emitting type members, 828-834
generic methods, 805, 807-810
generic types, calling members anony‐

mously, 808-810
members, dynamically invoking,

803-810
members, obtaining, 797-803
modules, 811
nonpublic members, 806-807
types, emitting, 825-828
types, obtaining, 790-794

reflection-only context, 811, 817
ReflectionOnlyAssemblyResolve event,

817
ReflectionOnlyLoad method, Assembly,

811
ReflectionOnlyLoadFrom method,

Assembly, 811
ReflectionPermission class, 868
Regex class, 1024

(see also regular expressions)
RegexOptions class, 1025-1026
#region directive, 191
RegisterForFullGCNotification method,

GC, 515
RegisterWaitForSingleObject method,

ThreadPool, 929-930
RegistryPermission class, 868

1102 | Index

www.EBooksWorld.ir

regular expressions, 1023-1028
alternator, 1024
anchors, 1030
character escapes, 1026-1027
character sets, 1027
compiled, 1025
cookbook, 1035-1038
groups, 1032-1033
language reference for, 1038-1042
lookahead and lookbehind, 1029
metacharacters, 1026
options for, 1025-1026
quantifiers, 1024, 1028-1029
replacing text, 1033-1034
splitting text, 1034
timeout for, 1025
word boundaries, 1031
zero-width assertions, 1029-1032

relational operators, 165
release builds

code contracts for, 536, 547, 548
Trace class for, 529

Release method, IUnknown, 1016
ReleaseMutex method, Mutex, 911
<remarks> tag, 193
Remoting, 206

application domains using, 998-999
serialization used by, 717, 733
uses of, 211

Remove method, HashSet or SortedSet,
312

Remove method, ICollection, 294
Remove method, IDictionary, 315
Remove method, IList, 295
Remove method, LinkedList, 309
Remove method, List or ArrayList, 306
Remove method, strings, 217, 223
Remove method, XAttribute and XNode,

455
Remove* methods, syntax trees, 1056
RemoveAll method, List or ArrayList, 306
RemoveAll method, XElement, 455
RemoveAnnotation method, XObject, 469
RemoveAt method, IList, 295
RemoveAt method, List or ArrayList, 306
RemoveAttributes method, XElement,

455
RemoveFirst method, LinkedList, 309
RemoveItem method, Collection, 321

RemoveLast method, LinkedList, 309
RemoveMemoryPressure, GC, 516
RemoveNodes method, XContainer, 455
RemoveRange method, List or ArrayList,

306
RemoveWhere method, HashSet or Sor‐

tedSet, 312
Repeat operator, LINQ, 438
Replace method, File, 650-651
Replace method, RegEx, 1033-1034
Replace method, strings, 217, 223
Replace* methods, syntax trees, 1056
ReplaceAll method, XElement, 455
ReplaceAttributes method, XElement, 455
ReplaceNodes method, XContainer, 455
ReplaceWith method, XNode, 455
REpresentational State Transfer (see

REST)
Requires method, Contract, 537-540
reserved keywords, 15
Reset method, AutoResetEvent, 925
Reset method, IEnumerator, 286
Reset method, ManualResetEvent, 927
resgen utility, 774
Resize method, Array, 305
resource switch, 771
ResourceManager class, 774
resources, in assemblies, 754, 770-778

directly embedding, 771-772
localized, 776-778
.resources files for, 770, 772, 774
.resx files for, 773-775
URI for, 775

REST (REpresentational State Transfer),
675

Result method, Contract, 542
Result propety, Task, 583
Resume method, Thread, 939
resurrection, with garbage collection,

510-512
ResXResourceWriter class, 774
return statement, 64
<returns> tag, 194
Reverse method, Array, 304
Reverse method, List or ArrayList, 306
Reverse method, SortedSet, 314
Reverse operator, LINQ, 343, 420
rich-client applications, 206

Index | 1103

www.EBooksWorld.ir

(see also Windows Forms; Windows
Runtime; WPF; Xamarin)

asynchronous programming for, 590
synchronization contexts for, 578-579
threading for, 576-578

right angle bracket (>)
> greater than operator, 165, 278-279
>= greater than or equal operator, 165
>> shift right operator, 30

right associative operators, 53
RightToLeft option, RegexOptions, 1026
Rijndael class, 892
role authorization (see identity and role

authorization)
roots, preventing garbage collection, 506
Roslyn compiler, 1043-1044

architecture of, 1044
assemblies for, 1044
creating a compilation, 1060-1062
diagnostics from, 1062
downloading, 1043
emitting assembly from, 1062
references for, 1061
semantic model for, 1060, 1062-1067
syntax trees for, 1045-1060

Round method, 259
rounding errors, 32
RSA class, 898-899
Run method, Task, 579, 581
runtime type checking, 99
runtime-callable wrapper (see RCW)
RuntimeBinderException class, 178

S
s format string, 251
sandboxing, 6, 863, 870

(see also CAS (code access security))
satellite assemblies, 776-777
Save method, AssemblyBuilder, 826
Save method, XDocument and XElement,

445
SaveChanges method, EF, 383, 384
sbyte type, 26, 31
scope

local variables, 57
namespaces, 67

sealed keyword, 94
SecAnnotate.exe tool, 877

Second property, DateTime and DateTi‐
meOffset, 232

Seconds property, TimeSpan, 227
security

administration elevation, 887
authenticode signing for assemblies,

764-768
cryptographically strong random

number generator, 262
cryptography (see cryptography)
dictionary attack, 892
elevation of privilege attack, 871
files, 653
isolated storage, 666
permissions (see permissions)
strongly named assemblies, 758-761
UAC enforcing, 885-887

Security event log, 555
security-critical methods, 873
SecurityCritical attribute, 874-877
SecurityPermission class, 868
SecuritySafeCritical attribute, 874-877
SecurityTransparent attribute, 872-873,

876-876
<see> tag, 194
<seealso> tag, 195
Seek method, Stream, 626, 628
select clause, LINQ, 345
Select operator, LINQ, 338, 340, 400-404
selection statements, 58-61
SelectMany operator, LINQ, 405-411
semantic model, for compilation, 1060

querying, 1062-1067
symbols in, 1063-1064
symbols in, accessibility of, 1065
symbols in, declared, 1065-1066
symbols in, information about,

1064-1065
symbols in, looking up, 1066-1067
symbols in, renaming, 1067-1069
type information in, 1066

SemanticModel class, 1062
Semaphore class, 918
SemaphoreSlim class, 918
semicolon (;)

; terminating statements, 11, 16
SendAsync method, HttpClient, 684
SequenceEqual operator, LINQ, 437
sequences, LINQ, 335

1104 | Index

www.EBooksWorld.ir

Serializable attribute, 731-733
serialization, 713-717

binary serializer, 714-716, 733-741
data contract serializer, 714-715,

717-733
deserialization, 713
mechanisms for (engines), 714-716
XML serializer, 714, 716

ServicePointManager class, 697
set accessor, 80-82
Set method, AutoResetEvent, 925
Set method, ManualResetEvent, 927
SetAccessControl method, File, 651, 653
SetAttributes method, File, 650, 652
SetAttributeValue method, XElement, 454
SetCreationTime method, File, 651
SetCurrentDirectory method, Directory,

654
SetData method, AppDomain, 997
SetData method, Thread, 937-938
SetElementValue method, XElement, 454
SetEnvironmentVariable method, 282
SetEquals method, HashSet or SortedSet,

313
SetIn method, 281
SetItem method, Collection, 321
SetLastAccessTime method, File, 651
SetLastWriteTime method, File, 651
SetLength method, Stream, 626, 628
SetOut method, 281
sets, 312-314

HashSet class, 312-313
SortedSet class, 312-314

SetSignature method, MethodBuilder, 835
SetSwitch method, 284
SetValue method, Array, 300-301
SetValue method, Type, 803
SetValue method, XAttribute and XEle‐

ment, 454, 457
SHA hashing algorithms, 891
shared memory, 664, 1008-1011
shared state, 564, 568-570
shift left/right operators, 30
short type, 26, 31
short-circuiting evaluation, 34
Sign method, 259
Signal method, CountdownEvent, 928
SignalAndWait method, WaitHandle,

931-932

signaling, 576, 904, 923-932
AutoResetEvent class, 924-927
CountdownEvent class, 928-929
ManualResetEvent class, 927-928
performance of, 928
two-way signaling, 926

signature, method, 75
signing

authenticode signing, 764-768
public-key digital signing, 900-901
strong name assembly signing,

758-760
signtool utility, 765-766
Silverlight, 209
Simple Mail Transfer Protocol (see

SMTP)
Sin method, 259
Single operator, LINQ, 431
Singleline option, RegexOptions, 1026
Sinh method, 259
sizeof operator, 190
Skip operator, LINQ, 343, 398-399
SkipWhile operator, LINQ, 399
Sleep method, Thread, 566
slots, sharing data using, 997
SMTP (Simple Mail Transfer Protocol),

675, 703
port, 676

SmtpClient class, 674, 703
SmtpPermission class, 869
sn.exe utility, 759
SoapFormatter class, 734
SocketPermission class, 869
Sort methods, Array, 303-304
SortedDictionary class, 315, 319-320, 330
SortedList class, 315, 319-320, 330
SortedSet class, 312-314
SourceCodeKind enum, 1048
SourceText class, 1057
Span property, syntax trees, 1047, 1052
SpecialFolder enum, 657-659
speculative execution, 564
SpinLock class, 904
Split method, RegEx, 1034
Split method, strings, 218
SQL Server, application domains used by,

989
SQL, compared to LINQ queries, 347
SqlClientPermission class, 869

Index | 1105

www.EBooksWorld.ir

Sqrt method, 259
square brackets ([])

[] array declaration or index, 38
[] enclosing attribute names, 183
[] enclosing indexer arguments, 83
[] in regular expressions, 1026-1027
[] string index, 216

SSL (Secure Sockets Layer), 697
Stack class, 311
stackalloc keyword, 189
StackFrame class, 553-555
stacks, 311

compared to heap, 42
execution call stack, examining,

553-555
Stack<T> class, 311

StackTrace class, 553-555
StackTrace property, Environment, 282
StackTrace property, Exception, 154
Start method, Process, 283
Start method, Thread, 564-566
StartsWith method, strings, 216
statement blocks, 12, 16, 56, 143
statements, 56-64

declaration, 56
expression, 57
iteration, 61-62
jump, 63-64
selection, 58-61

static binding, 176, 1044
static checking tools, 533, 550
static classes, 86
static constructors, 85-86
static members, 19-20
static type checking, 99
static typing, 2
static variable flags, 526-527
Stop method, compared to Dispose, 501
Stopwatch class, 562
storage (see memory management)
StorageFile class, 662
StorageFolder class, 661-663
StorePermission class, 869
Stream class, 625-629
stream I/O, 225
StreamReader class, 502, 623, 639,

641-642
streams, 623-627

adapters, 625, 639-647

asynchronous operations on, 627
backing store streams, 623-625,

629-638
character encodings for, 642-644
closing and flushing, 626, 629
compression streams, 647-650
decorator streams, 624-625, 638-639
file mode for, specifying, 632
filenames for, specifying, 631
reading, 625, 627-628
seeking, 626, 628
thread safety of, 629
timeouts for, 626, 629
writing, 625, 627-628

StreamSocket class, 709-711
StreamSocketListener class, 709
StreamWriter class, 502, 623, 639, 641-642
string type, 17, 36-37, 215-222

base 64 conversions, 255
comparisons, 37, 219-222
composite format strings, 218-219
concatenation, 37
constructing, 215
conversions to, 100
empty, 216
formatting, 240-253
indexing, 216
interpolation, 37, 218
joining, 218
literals, 36, 215
manipulating, 217-218
null, 216
parsing, 240-253
searching within, 216-217
splitting, 218

StringBuilder class, 213, 222-223
StringComparer class, 332
StringReader class, 502, 639, 644
StringWriter class, 502, 639, 644
strong typing, 3
strongly named assemblies, 758-761
StrongNameIdentityPermission class, 870
struct keyword

defining structs, 22
generic value-type constraint, 118

StructLayout attribute, 1006, 1008
structs, 101-102

mapping to unmanaged memory,
1011-1015

1106 | Index

www.EBooksWorld.ir

marshaling, 1005-1006
simulating C union with, 1007

structural comparison, 270, 333-334
structural equality, 268, 274
structured parallelism, 946-947
subclasses (see derived classes)

of generic types, 120
reimplementing interfaces in, 107-108

SubmitChanges method, L2S, 383, 384
subqueries, LINQ, 347, 355-358
subscribers, for events, 136
Substring method, 217
Sum operator, LINQ, 433-434
<summary> tag, 193
superclasses (see base classes)
SuppressMessage attribute, 551
surrogate pairs, 226
Suspend method, Thread, 939
switch statement, 60-61
symmetric encryption, 892-897
SymmetricAlgorithm class, 505
SymmetricExceptWith method, HashSet

or SortedSet, 313
synchronization, 904-932

exclusive locking, 904-912
non-exclusive locking, 904, 918-923
nonblocking, 904, 908
signaling, 904, 923-932

Synchronization attribute, 913
SynchronizationContext class, 578-579
Synchronized method, Stream, 626, 629
Synchronized method, TextReader, 640
Synchronized method, TextWriter, 640
syntax trees, 1045-1060

adding to compilation, 1061
compared to expression trees, 1045
nodes in, 1045, 1046, 1047
obtaining, 1048-1049
preprocessor directives in, 1054, 1055
searching, 1052
structure of, 1045-1048
tokens in, 1045, 1046
transforming, 1056-1060
traversing, 1049-1053
trivia in, 1046, 1053-1056
visualizer for, 1047

SyntaxFactory class, 1057-1059
SyntaxNode class, 1045, 1046, 1047
SyntaxToken struct, 1045, 1046

SyntaxTree class, 1049
SyntaxTree property, 1047
SyntaxTrivia struct, 1046
System event log, 555
System namespace, 202, 213
System.Activities namespace, 210
System.AddIn.Contract assembly, 1002
System.Collections.Immutable.dll assem‐

bly, 1044
System.Core.dll assembly, 199, 201
System.Diagnostics.Contracts namespace,

533
System.dll assembly, 199, 201
System.Dynamic namespace, 847
System.Globalization namespace, 213, 753
System.IO namespace, 623
System.IO.Compression namespace, 647,

649
System.Linq namespaces, 335, 336
System.Linq.Expressions namespace, 335
System.Messaging namespace, 210
System.Net namespaces, 673
System.Reflection namespaces, 753, 789
System.Reflection.Emit namespace, 789,

818, 827-828
System.Reflection.Metadata.dll assembly,

1044
System.Resources namespace, 753
System.Runtime.CompilerServices name‐

space, 847
System.Runtime.Remoting namespace,

212
System.Runtime.Serialization namespace,

713
System.Security.Cryptography name‐

space, 262
System.Text namespace, 213
System.Text.RegularExpressions name‐

space, 1023
System.Threading.Tasks namespace, 968
System.type object, 99-100
System.Web.Services namespace, 212
System.Workflow namespace, 210
System.Xml namespaces, 477
System.Xml.dll assembly, 199
System.Xml.Linq namespace, 441, 477
System.Xml.Serialization namespace, 477,

713, 742
System.Xml.XmlSchema namespace, 477

Index | 1107

www.EBooksWorld.ir

System.Xml.Xsl namespace, 477
SystemDirectory property, Environment,

282

T
T or t format string, 251
Table attribute, 372
Table class, L2S, 384
tabs, escape sequences for, 35
Take operator, LINQ, 343, 398-399
TakeWhile operator, LINQ, 399
Tan method, 259
TAP (task-based asynchronous pattern),

614
Task class, 581, 968
task combinators, 614-618
Task Parallel Library (see TPL)
task parallelism, 946-947, 968-978
task-based asynchronous pattern (TAP),

614
TaskCompletionSource class, 587-589,

968
TaskFactory class, 968
tasks, 581-589

continuations for, 585, 591-592
converting event wait handles to,

930-931
delaying, 589
exceptions propagated by, 584-585
returning results from, 602-603
returning values from, 583
starting, 581-583, 587-589
waiting, 582

TaskScheduler class, 968
TCP (Transmission and Control Proto‐

col), 675, 704-707
concurrency, 707-708
receiving mail from POP3 server,

708-709
Windows Runtime using, 709-711

TcpClient class, 674, 704-708
TcpListener class, 674, 704-708
teardown code (see disposal)
ternary operators, 51
text adapters, for streams, 639-644
text handling, 223-226

(see also char type; string type; String‐
Builder class)

byte arrays, 225
character sets, 223
Encoding class, 224-225
file and stream I/O, 225
text encodings, 223-226

TextReader class, 639-641
TextSpan struct, 1052
TextWriter class, 639-641
ThenBy operator, LINQ, 421-423
ThenByDescending operator, LINQ,

421-423
thin-client applications, 206

(see also ASP.NET)
this keyword (overloading constructors),

76
this reference (referring to instance), 79
Thread class, 258
thread pool, 579-580
thread safety, 569-571

application servers, 916-917
immutable objects, 917
locking for, 912-917
.NET Framework types, 913-916
streams, 629

thread-local storage, 936-938
ThreadLocal class, 936, 953
threads, 564-579

aborting, 938-939
background threads, 574-575, 579
blocking, 580
creating, 564-566
examining, for debugging, 553
exception handling, 573-574
exclusive locking with, 570-571,

904-912
execution barrier, 932-933
foreground threads, 574-575
I/O-bound, 567
interrupting, 938-939
lazy initialization with, 933-936
local data for, 568
marshaling, 576, 578-579
non-exclusive locking with, 918-923
passing data to, 571-573
pausing execution of, 566
priority of, 575
shared state for, 564, 568-570
signaling, 576, 923-932
spinning, 567

1108 | Index

www.EBooksWorld.ir

suspending, 939
synchronization contexts for, 578-579
timers, multithreaded, 940-942
timers, single-threaded, 943
UI threads, 576-578
waiting for a thread to end, 566
worker threads, 576-579

Threads property, Process, 553
ThreadState property, Thread, 567
ThreadStatic attribute, 936
throw keyword, 152
throwonfailure switch, 546-547
TickCount property, Environment, 282
Ticks property, DateTime and DateTi‐

meOffset, 232
tilde (~)

~ complement operator, 30
~ finalizer, 86

time zones, 228-230, 234-240
TimeOfDay property, DateTime and

DateTimeOffset, 232
timers, 940-943

causing memory leaks, 518-519
multithreaded, 940-942
single-threaded, 943
System.Threading.Timer, 940
System.Timers.Timer, 941
System.Windows.Forms.Timer, 943
System.Windows.Threading.Dispatch‐

erTimer, 943
times (see dates and times)
TimeSpan class, 227-228, 230, 232
TimeZone class, 235
TimeZoneInfo class, 235-239
.tlb files, 1022
tlbexp.exe tool, 1022
tlbimp.exe tool, 1017, 1021
ToArray method, List or ArrayList, 306
ToArray operator, LINQ, 349, 429-430
ToBase64String method, 255
ToByteArray method, 267
ToCharArray method, 215
Today property, DateTime, 232
ToDictionary operator, LINQ, 429-430
ToDouble method, 257
ToIntegral method, 258
tokens, in syntax trees, 1045, 1046
ToList operator, LINQ, 349, 429-430
ToLocalTime method, 234, 235

ToLongDateString method, 233
ToLongTimeString method, 233
ToLookup operator, LINQ, 429-430
ToLower method, 213, 218
ToLowerInvariant method, 214, 257
ToObject method, 264
ToSerializedString method, 236
ToShortDateString method, 233
ToShortTimeString method, 233
ToString method, 100, 222, 233, 240, 258,

264, 445-446
ToString method, syntax trees, 1048
TotalDays property, TimeSpan, 228
TotalHours property, TimeSpan, 228
TotalMilliseconds property, TimeSpan,

228
TotalMinutes property, TimeSpan, 228
TotalSeconds property, TimeSpan, 228
ToUniversalTime method, 234
ToUpper method, 213, 218
ToUpperInvariant method, 214, 257
TPL (Task Parallel Library), 945
Trace class, 529-532
TraceError method, Trace, 529
TraceInformation method, Trace, 529
TraceListener class, 530-531
TraceWarning method, Trace, 529
TrailingTrivia method, SyntaxToken, 1051
Transmission and Control Protocol (see

TCP)
transparent methods, 876
transport layer, networking, 673-674
Trim method, 217
TrimEnd method, 217
TrimExcess method, List or ArrayList, 307
TrimExcess method, Queue, 310
TrimExcess method, Stack, 311
TrimStart method, 217
trivia, in syntax trees, 1046, 1053-1056
true operator, 171

(see also bool (Boolean) type)
TrueForAll method, Array, 302-303
Truncate method, 259
try statement, 148-156, 160, 499-500,

573-574
TryAddCount method, CountdownEvent,

929
TryBinaryOperation method, Dynami‐

cObject, 856, 858

Index | 1109

www.EBooksWorld.ir

TryConvert method, DynamicObject, 856
TryEnter method, Monitor, 906
TryGetIndex method, DynamicObject,

856
TryGetMember method, DynamicObject,

856
TryGetSwitch method, 284
TryGetValue method, IDictionary, 315
TryInvoke method, DynamicObject, 856,

858
TryInvokeMember method, DynamicOb‐

ject, 856
TryParse method, 228, 241, 258
TrySetIndex method, DynamicObject,

856
TrySetMember method, DynamicObject,

856
TryStartNoGCRegion method, GC, 516
TryUnaryOperation method, Dynami‐

cObject, 856
TryXXX method pattern, 155
Tuple class, 266-267
type checking, 99
Type class, 790
type converters, 240, 256
type marshaling, 1004-1007
type parameters and arguments, 114-115,

121-122
constraints on, 118-120
contravariant, 135
covariant, 122-125, 124, 135
declaration, 117
default values for, 118

type safety, 2, 112
type system, C#, 1, 17-37

anonymous types, 174-175
base types, 253-255
bool (Boolean) type, 33-35
casting, 31
char (character) type, 35-36
conversions, 20-21
custom types, 18-20
default values, 44
list of types, 25
nested types, 113-114
numeric types, 26-33
predefined types, 17-18, 18
primitive types, 25
reference types, 22-25, 39

static typing, 2
string type, 36-37
strong typing, 3
value types, 21-22, 24, 39

type system, COM, 1016
type unification, 97, 262
TypeBuilder class, 825
TypeConverter class, 256
typed contexts, L2S or EF, 375
TypeInfo class, 791
typeof operator, 99-100, 118, 790-792
typographical conventions used in this

book, xiii-xiv

U
U numeric suffix, 27
U or u format string, 251
UAC (User Account Control), 885-887
UDP (Universal Datagram Protocol), 675,

704
UdpClient class, 674
uint type, 26
UIPermission class, 869
UL numeric suffix, 27
ulong type, 26
UML notation, xiii
unary operators, 51
unbound generic types, 118
unboxing conversions, 91
UNC (Universal Naming Convention),

675, 677
unchecked operator, 30
#undef directive, 191, 526
Unescape method, Regex, 1027
Unicode character set, 36, 223
unified type system, 1
Uniform Resource Identifier (see URI)
Uniform Resource Locator (see URL)
union (C), simulating, 1007
Union method, IPermission, 866
Union operator, LINQ, 426
UnionWith method, HashSet or Sorted‐

Set, 313
Universal Datagram Protocol (see UDP)
Universal Naming Convention (see UNC)
Unload method, AppDomain, 990-992
unmanaged code, pointers to, 190
unmanaged DLLs (see native DLLs)

1110 | Index

www.EBooksWorld.ir

unmanaged memory, 516
UnmanagedType enum, 1004
unsafe code, 187
unsafe keyword, 187
UnsafeXXX pattern, 876
upcasting, 90
upgradeable locks, 921-923
UploadValues method, WebClient, 693
URI (Uniform Resource Identifier), 675,

676-678
prefixes, registering, 682
prefixes, Web request types for, 682

Uri class, 677-678
URL (Uniform Resource Locator), 675
User Account Control (see UAC)
user identities and roles, 888-889
user-interface-based applications, 206-209
UserDomainName property, Environ‐

ment, 282
UserInteractive property, Environment,

282
UserName property, Environment, 282
ushort type, 26, 31
using directive (importing a namespace),

13, 66, 68
using statement (implicit disposal), 64,

152
using static directive, 66
UtcDateTime property, DateTimeOffset,

231
UtcNow property, DateTime, 232
UtcNow property, DateTimeOffset, 232
UTF-8 encoding, 224, 642-643
UTF-16 encoding, 224-226, 643-644
UTF-32 encoding, 224

V
value equality, 268-269
Value method, XAttribute and XElement,

454
Value property, XAttribute and XElement,

456
value types, 21-22, 24, 39
ValueAtReturn method, Contract, 542
Values method, IDictionary, 315
var keyword, 41, 50, 180
variables, 17, 42-44

captured variables, 572

default values, 44
definite assignment, 43-44
implicitly typed, 50
in classes or structs (see fields)
local, scope of, 57
outer variables, capturing, 144-146,

147
storage, 42-43

verbatim string literals, 36, 37
Version property, Environment, 282
vertical bar (|)

| bitwise OR operator, 30
| conditional or operator, 34, 165
| in regular expressions, 1026
|| conditional OR operator, 34
|| conditional or operator, 526

vertical tab, escape sequence for, 35
view accessors, for memory-mapped files,

664-665
virtual function members, 91
virtual keyword, 106
virtualization, enabling and disabling, 887
Visitor pattern, 850-853
Visual Studio 2015

compiler output used by, 1044
workspaces used by, 1044

Visual Studio 2015, editions of, xii
void expressions, 51
void* pointer, 189
volume information (see drive informa‐

tion)

W
wait handles (see event wait handles)
Wait method, CountdownEvent, 928
Wait method, Task, 582
WaitAll method, WaitHandle, 931-932
WaitAny method, WaitHandle, 931-932
WaitForFullGCApproach method, GC,

515
WaitForFullGCComplete method, GC,

515
WaitForPendingFinalizers method, GC,

516
WaitHandle class, 931-932
WaitOne method, AutoResetEvent, 925
WaitOne method, ManualResetEvent, 927
WaitOne method, Mutex, 911

Index | 1111

www.EBooksWorld.ir

warnaserror compiler switch, 192
#warning directive, 191
WCF (Windows Communication Foun‐

dation), 210-211
Remoting compared to, 999
serialization used by, 717, 718

weak delegates, 521
weak references, 520
WeakReference class, 520
Web API, 211
Web Services

serialization used by, 717
WebBrowserPermission class, 869
WebClient class, 502, 674, 679-681, 693,

695
WebPermission class, 869
WebRequest class, 674, 679, 681-682, 694,

696
WebResponse class, 674, 679, 681-682,

696
when clause, in catch block, 151
WhenAll method, Task, 615-618
WhenAny method, Task, 615
where clause, LINQ, 345
Where operator, LINQ, 336, 338, 340,

397-398
while loops, 61, 157
Win32 methods, calling, 1005
windbg.exe application, 519
Windows

special directories in, 657-659
Windows Communication Foundation

(see WCF)
Windows Data Protection, 890-891
Windows event logs, 555-557
Windows Forms, 208
Windows Presentation Foundation (see

WPF)
Windows Runtime (WinRT), 5-6, 208

asynchronous methods, 605
file I/O, 661-663
garbage collection used by, 507
libraries, 753
TCP with, 709-711

Windows Store applications
application domain, 989
application manifest, 755
isolated storage, 663
networking features, 673

TypeInfo class, 791
Windows Workflow, 210
Windows.Storage namespace, 204
.winmd files, 6, 753
With* methods, syntax trees, 1056
WithCancellation method, 955
WithDegreeOfParallelism method, 955
Without* methods, syntax trees, 1056
word boundaries, in regular expressions,

1031
WorkingSet property, Environment, 282
workspaces, 1044
WPF (Windows Presentation Founda‐

tion), 207-208, 775
Write method, Console, 281
Write method, Debug and Trace, 529
Write method, Stream, 625, 628
Write method, TextWriter, 640
WriteAllBytes method, File, 631
WriteAllLines method, File, 631
WriteAllText method, 225
WriteAllText method, File, 631
WriteAsync method, Stream, 627
WriteAttributeString method, XmlWriter,

488
WriteByte method, Stream, 625, 628
WriteElementString method, XmlWriter,

487
WriteEndAttribute method, XmlWriter,

488
WriteEndElement method, XmlWriter,

487
WriteEntry method, EventLog, 556
WriteIf method, Debug and Trace, 529
WriteLine method, Console, 281
WriteLine method, Debug and Trace, 529
WriteLine method, TextWriter, 640
WriteObject method, 719
WriteStartAttribute method, XmlWriter,

488
WriteStartElement method, XmlWriter,

487
WriteTimeout method, Stream, 626, 629
WriteTo method, XNode, 445
WriteValue method, XmlWriter, 487

X
X or x format string, 247, 253

1112 | Index

www.EBooksWorld.ir

X-DOM, 442-446
annotations, 468
attributes, navigating, 453
attributes, updating, 454-455
case sensitivity of, 448
child nodes, navigating, 449-452
child nodes, updating, 454-455
content, specifying, 447-448
deep cloning, automatic, 448
functional construction, 446-447, 469
instantiating, 446-448
LINQ queries for, 450, 452
loading from a file, 444-445
mixing with XmlReader and

XmlWriter, 491-493
navigating, 448-453
parent nodes, navigating, 452
parent nodes, updating, 455-456
parsing from a string, 444-445
peer nodes, navigating, 453
projecting into, 447, 469-475
retrieving data from, 448-453
saving, 445-446
serializing, 445-446
transforming, 473-475
updating, 453-459
validating XML against XSD, 495-496
values, concatenating, 459
values, getting, 457
values, setting, 454, 457
values, with mixed content, 458
XML declarations, 461-463
XML documents, 459-461
XML namespaces, default, 466
XML namespaces, prefixes for,

467-468
XML namespaces, specifying, 465-468

Xamarin, 208
XAttribute type, 444
XComment type, 444, 459
XContainer type, 444
XDeclaration type, 444, 459-463
XDocument type, 442-444, 447, 459-461
XDocumentType type, 459
XElement type, 442-444, 447, 459

using with XmlReader, 492-493
using with XmlWriter, 493

XML declarations, 461-463
XML documentation, 193-196

standard tags, 193-195
in syntax tree trivia, 1055
type prefixes for IDs, 196
user-defined tags, 195

XML documents, 459-461
attribute nodes, traversing, 485
attributes, reading, 485
attributes, writing, 488
elements, reading, 481-484
namespaces in, reading, 486
namespaces in, writing, 488
nodes, reading, 479-481
nodes, writing, 487
reading from a stream, 478-487
transforming with XSLT, 496-497
validating against XSD, 494-496
writing, 487-489
X-DOM representation of (see X-

DOM)
XML namespaces, 203, 463-468

assigning to attributes, 464
data contract serializer using, 720
default, 466
prefixes for, 464, 467-468
specifying in X-DOM, 465-468
used by XmlReader, 486
used by XmlWriter, 488

XML nodes, reading, 479-481
XML Schema Definition (see XSD)
XML serializer, 714, 716, 742-751

attributes for, 742-744
child objects serialized by, 745-747
collections serialized by, 747-749
IXmlSerializable interface with,

749-751
IXmlSerializer interface with, 716
order of elements for, 744
subclasses serialized by, 744-747,

748-749
XmlArray attribute, 747
XmlArrayItem attribute, 747, 749
XmlAttribute attribute, 743
XmlConvert class, 213, 240, 255-256, 258
XmlDocument class, 477
XmlElement attribute, 184, 743, 746, 748,

749
XmlInclude attribute, 744, 746, 749
xmlns attribute, 463
XmlReader class, 477-487, 623

Index | 1113

www.EBooksWorld.ir

attributes, reading, 485
elements, reading, 481-484
hierarchical data, working with,

489-491
mixing with X-DOM, 491-493
namespaces, reading, 486
reading nodes, 479-481
validating XML against XSD, 494-495

XmlReaderSettings class, 478-479
XmlSerializer class, 714, 716, 742-743
XmlWriter class, 487-489, 623

attributes, writing, 488
hierarchical data, working with,

489-491
mixing with X-DOM, 491-493
namespaces, writing, 488
other nodes, writing, 488

XmlWriterSettings class, 487
XName type, 465
XNamespace type, 465
XNode type, 444
XObject type, 442-444, 468
Xor method, BitArray, 312
XProcessingInstruction type, 459

XSD (XML Schema Definition)
validating XML against, 494-496
writing, 493-494

XslCompiledTransform class, 477
XSLT (Extensible Stylesheet Language

Transformations), 496-497
XText type, 444

Y
Y or y format string, 251
Year property, DateTime and DateTi‐

meOffset, 232
yield break statement, 160
yield return statement, 158-160, 290, 291

Z
zero-width assertions, in regular expres‐

sions, 1029-1032
Zip operator, LINQ, 419
ZipArchive class, 649-650
ZipFile class, 649-650

1114 | Index

www.EBooksWorld.ir

About the Authors
Joseph Albahari is the author of C# 5.0 in a Nutshell, C# 6.0 Pocket Reference, and
LINQ Pocket Reference. He also wrote LINQPad—the popular code scratchpad and
LINQ querying utility.

Ben Albahari is cofounder of Auditionist, a casting website for actors in the UK. He
was a Program Manager at Microsoft for five years, where he worked on several
projects, including the .NET Compact Framework and ADO.NET.

He was the cofounder of Genamics, a provider of tools for C# and J++ program‐
mers, as well as software for DNA and protein sequence analysis. He is a coauthor
of C# Essentials, the first C# book from O’Reilly, and of previous editions of C# in a
Nutshell.

Colophon
The animal on the cover of C# 6.0 in a Nutshell is a numidian crane. The numidian
crane (Antropoides virgo) is also called the demoiselle crane because of its grace and
symmetry. This species of crane is native to Europe and Asia and migrates to India,
Pakistan, and northeast Africa in the winter.

Though numidian cranes are the smallest cranes, they defend their territories as
aggressively as other crane species, using their loud voices to warn others of tres‐
passing. If necessary, they will fight. Numidian cranes nest in uplands rather than
wetlands and will even live in the desert if there is water within 200 to 500 meters.
They sometimes make nests out of pebbles in which to lay their eggs, though more
often they will lay eggs directly on the ground, protected only by vegetation.

Numidian cranes are considered a symbol of good luck in some countries and are
sometimes even protected by law.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is an original engraving from the 19th century. The cover fonts are
URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the head‐
ing font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

www.EBooksWorld.ir

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Intended Audience
	How This Book Is Organized
	What You Need to Use This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Joseph Albahari
	Ben Albahari

	Chapter 1. Introducing C# and the .NET Framework
	Object Orientation
	Type Safety
	Memory Management
	Platform Support
	C#’s Relationship with the CLR
	The CLR and .NET Framework
	C# and Windows Runtime
	What’s New in C# 6.0
	What Was New in C# 5.0
	What Was New in C# 4.0
	What Was New in C# 3.0

	Chapter 2. C# Language Basics
	A First C# Program
	Compilation

	Syntax
	Identifiers and Keywords
	Literals, Punctuators, and Operators
	Comments

	Type Basics
	Predefined Type Examples
	Custom Type Examples
	Conversions
	Value Types Versus Reference Types
	Predefined Type Taxonomy

	Numeric Types
	Numeric Literals
	Numeric Conversions
	Arithmetic Operators
	Increment and Decrement Operators
	Specialized Integral Operations
	8- and 16-Bit Integrals
	Special Float and Double Values
	double Versus decimal
	Real-Number Rounding Errors

	Boolean Type and Operators
	Bool Conversions
	Equality and Comparison Operators
	Conditional Operators

	Strings and Characters
	Char Conversions
	String Type

	Arrays
	Default Element Initialization
	Multidimensional Arrays
	Simplified Array Initialization Expressions
	Bounds Checking

	Variables and Parameters
	The Stack and the Heap
	Definite Assignment
	Default Values
	Parameters
	var—Implicitly Typed Local Variables

	Expressions and Operators
	Primary Expressions
	Void Expressions
	Assignment Expressions
	Operator Precedence and Associativity
	Operator Table

	Null Operators
	Null-Coalescing Operator
	Null-conditional operator (C# 6)

	Statements
	Declaration Statements
	Expression Statements
	Selection Statements
	Iteration Statements
	Jump Statements
	Miscellaneous Statements

	Namespaces
	The using Directive
	using static (C# 6)
	Rules Within a Namespace
	Aliasing Types and Namespaces
	Advanced Namespace Features

	Chapter 3. Creating Types in C#
	Classes
	Fields
	Methods
	Instance Constructors
	Object Initializers
	The this Reference
	Properties
	Indexers
	Constants
	Static Constructors
	Static Classes
	Finalizers
	Partial Types and Methods
	The nameof operator (C# 6)

	Inheritance
	Polymorphism
	Casting and Reference Conversions
	Virtual Function Members
	Abstract Classes and Abstract Members
	Hiding Inherited Members
	Sealing Functions and Classes
	The base Keyword
	Constructors and Inheritance
	Overloading and Resolution

	The object Type
	Boxing and Unboxing
	Static and Runtime Type Checking
	The GetType Method and typeof Operator
	The ToString Method
	Object Member Listing

	Structs
	Struct Construction Semantics

	Access Modifiers
	Examples
	Friend Assemblies
	Accessibility Capping
	Restrictions on Access Modifiers

	Interfaces
	Extending an Interface
	Explicit Interface Implementation
	Implementing Interface Members Virtually
	Reimplementing an Interface in a Subclass
	Interfaces and Boxing

	Enums
	Enum Conversions
	Flags Enums
	Enum Operators
	Type-Safety Issues

	Nested Types
	Generics
	Generic Types
	Why Generics Exist
	Generic Methods
	Declaring Type Parameters
	typeof and Unbound Generic Types
	The default Generic Value
	Generic Constraints
	Subclassing Generic Types
	Self-Referencing Generic Declarations
	Static Data
	Type Parameters and Conversions
	Covariance
	Contravariance
	C# Generics Versus C++ Templates

	Chapter 4. Advanced C#
	Delegates
	Writing Plug-in Methods with Delegates
	Multicast Delegates
	Instance Versus Static Method Targets
	Generic Delegate Types
	The Func and Action Delegates
	Delegates Versus Interfaces
	Delegate Compatibility

	Events
	Standard Event Pattern
	Event Accessors
	Event Modifiers

	Lambda Expressions
	Explicitly Specifying Lambda Parameter Types
	Capturing Outer Variables

	Anonymous Methods
	try Statements and Exceptions
	The catch Clause
	The finally Block
	Throwing Exceptions
	Key Properties of System.Exception
	Common Exception Types
	The TryXXX Method Pattern
	Alternatives to Exceptions

	Enumeration and Iterators
	Enumeration
	Collection Initializers
	Iterators
	Iterator Semantics
	Composing Sequences

	Nullable Types
	Nullable<T> struct
	Implicit and explicit nullable conversions
	Boxing and unboxing nullable values
	Operator Lifting
	bool? with & and | Operators
	Nullable Types & Null Operators
	Scenarios for Nullable Types
	Alternatives to Nullable Types

	Operator Overloading
	Operator Functions
	Overloading Equality and Comparison Operators
	Custom Implicit and Explicit Conversions
	Overloading true and false

	Extension Methods
	Extension Method Chaining
	Ambiguity and Resolution

	Anonymous Types
	Dynamic Binding
	Static Binding Versus Dynamic Binding
	Custom Binding
	Language Binding
	RuntimeBinderException
	Runtime Representation of Dynamic
	Dynamic Conversions
	var Versus dynamic
	Dynamic Expressions
	Dynamic Calls Without Dynamic Receivers
	Static Types in Dynamic Expressions
	Uncallable Functions

	Attributes
	Attribute Classes
	Named and Positional Attribute Parameters
	Attribute Targets
	Specifying Multiple Attributes

	Caller Info Attributes (C# 5)
	Unsafe Code and Pointers
	Pointer Basics
	Unsafe Code
	The fixed Statement
	The Pointer-to-Member Operator
	Arrays
	void*
	Pointers to Unmanaged Code

	Preprocessor Directives
	Conditional Attributes
	Pragma Warning

	XML Documentation
	Standard XML Documentation Tags
	User-Defined Tags
	Type or Member Cross-References

	Chapter 5. Framework Overview
	The CLR and Core Framework
	System Types
	Text Processing
	Collections
	Queries
	XML
	Diagnostics and Code Contracts
	Concurrency and Asynchrony
	Streams and I/O
	Networking
	Serialization
	Assemblies, Reflection, and Attributes
	Dynamic Programming
	Security
	Advanced Threading
	Parallel Programming
	Application Domains
	Native and COM Interoperability

	Applied Technologies
	User Interface Technologies
	Backend Technologies
	Distributed System Technologies

	Chapter 6. Framework Fundamentals
	String and Text Handling
	Char
	String
	Comparing Strings
	StringBuilder
	Text Encodings and Unicode

	Dates and Times
	TimeSpan
	DateTime and DateTimeOffset

	Dates and Time Zones
	DateTime and Time Zones
	DateTimeOffset and Time Zones
	TimeZone and TimeZoneInfo
	Daylight Saving Time and DateTime

	Formatting and Parsing
	ToString and Parse
	Format Providers

	Standard Format Strings and Parsing Flags
	Numeric Format Strings
	NumberStyles
	Date/Time Format Strings
	DateTimeStyles
	Enum Format Strings

	Other Conversion Mechanisms
	Convert
	XmlConvert
	Type Converters
	BitConverter

	Globalization
	Globalization Checklist
	Testing

	Working with Numbers
	Conversions
	Math
	BigInteger
	Complex
	Random

	Enums
	Enum Conversions
	Enumerating Enum Values
	How Enums Work

	Tuples
	Comparing Tuples

	The Guid Struct
	Equality Comparison
	Value Versus Referential Equality
	Standard Equality Protocols
	Equality and Custom Types

	Order Comparison
	IComparable
	< and >
	Implementing the IComparable Interfaces

	Utility Classes
	Console
	Environment
	Process
	AppContext

	Chapter 7. Collections
	Enumeration
	IEnumerable and IEnumerator
	IEnumerable<T> and IEnumerator<T>
	Implementing the Enumeration Interfaces

	The ICollection and IList Interfaces
	ICollection<T> and ICollection
	IList<T> and IList
	IReadOnlyList<T>

	The Array Class
	Construction and Indexing
	Enumeration
	Length and Rank
	Searching
	Sorting
	Reversing Elements
	Copying
	Converting and Resizing

	Lists, Queues, Stacks, and Sets
	List<T> and ArrayList
	LinkedList<T>
	Queue<T> and Queue
	Stack<T> and Stack
	BitArray
	HashSet<T> and SortedSet<T>

	Dictionaries
	IDictionary<TKey,TValue>
	IDictionary
	Dictionary<TKey,TValue> and Hashtable
	OrderedDictionary
	ListDictionary and HybridDictionary
	Sorted Dictionaries

	Customizable Collections and Proxies
	Collection<T> and CollectionBase
	KeyedCollection<TKey,TItem> and DictionaryBase
	ReadOnlyCollection<T>

	Plugging in Equality and Order
	IEqualityComparer and EqualityComparer
	IComparer and Comparer
	StringComparer
	IStructuralEquatable and IStructuralComparable

	Chapter 8. LINQ Queries
	Getting Started
	Fluent Syntax
	Chaining Query Operators
	Composing Lambda Expressions
	Natural Ordering
	Other Operators

	Query Expressions
	Range Variables
	Query Syntax Versus SQL Syntax
	Query Syntax Versus Fluent Syntax
	Mixed-Syntax Queries

	Deferred Execution
	Reevaluation
	Captured Variables
	How Deferred Execution Works
	Chaining Decorators
	How Queries Are Executed

	Subqueries
	Subqueries and Deferred Execution

	Composition Strategies
	Progressive Query Building
	The into Keyword
	Wrapping Queries

	Projection Strategies
	Object Initializers
	Anonymous Types
	The let Keyword

	Interpreted Queries
	How Interpreted Queries Work
	Combining Interpreted and Local Queries
	AsEnumerable

	LINQ to SQL and Entity Framework
	LINQ to SQL Entity Classes
	Entity Framework Entity Classes
	DataContext and ObjectContext
	Associations
	Deferred Execution with L2S and EF
	DataLoadOptions
	Eager Loading in Entity Framework
	Updates
	API Differences Between L2S and EF

	Building Query Expressions
	Delegates Versus Expression Trees
	Expression Trees

	Chapter 9. LINQ Operators
	Overview
	Sequence→Sequence
	Sequence→Element or Value
	Void→Sequence

	Filtering
	Where
	Take and Skip
	TakeWhile and SkipWhile
	Distinct

	Projecting
	Select
	SelectMany

	Joining
	Join and GroupJoin
	The Zip Operator

	Ordering
	OrderBy, OrderByDescending, ThenBy, and ThenByDescending

	Grouping
	GroupBy

	Set Operators
	Concat and Union
	Intersect and Except

	Conversion Methods
	OfType and Cast
	ToArray, ToList, ToDictionary, and ToLookup
	AsEnumerable and AsQueryable

	Element Operators
	First, Last, and Single
	ElementAt
	DefaultIfEmpty

	Aggregation Methods
	Count and LongCount
	Min and Max
	Sum and Average
	Aggregate

	Quantifiers
	Contains and Any
	All and SequenceEqual

	Generation Methods
	Empty
	Range and Repeat

	Chapter 10. LINQ to XML
	Architectural Overview
	What Is a DOM?
	The LINQ to XML DOM

	X-DOM Overview
	Loading and Parsing
	Saving and Serializing

	Instantiating an X-DOM
	Functional Construction
	Specifying Content
	Automatic Deep Cloning

	Navigating and Querying
	Child Node Navigation
	Parent Navigation
	Peer Node Navigation
	Attribute Navigation

	Updating an X-DOM
	Simple Value Updates
	Updating Child Nodes and Attributes
	Updating Through the Parent

	Working with Values
	Setting Values
	Getting Values
	Values and Mixed Content Nodes
	Automatic XText Concatenation

	Documents and Declarations
	XDocument
	XML Declarations

	Names and Namespaces
	Namespaces in XML
	Specifying Namespaces in the X-DOM
	The X-DOM and Default Namespaces
	Prefixes

	Annotations
	Projecting into an X-DOM
	Eliminating Empty Elements
	Streaming a Projection
	Transforming an X-DOM

	Chapter 11. Other XML Technologies
	XmlReader
	Reading Nodes
	Reading Elements
	Reading Attributes
	Namespaces and Prefixes

	XmlWriter
	Writing Attributes
	Writing Other Node Types
	Namespaces and Prefixes

	Patterns for Using XmlReader/XmlWriter
	Working with Hierarchical Data
	Mixing XmlReader/XmlWriter with an X-DOM

	XSD and Schema Validation
	Performing Schema Validation

	XSLT

	Chapter 12. Disposal and Garbage Collection
	IDisposable, Dispose, and Close
	Standard Disposal Semantics
	When to Dispose
	Opt-in Disposal
	Clearing Fields in Disposal

	Automatic Garbage Collection
	Roots
	Garbage Collection and WinRT

	Finalizers
	Calling Dispose from a Finalizer
	Resurrection

	How the Garbage Collector Works
	Optimization Techniques
	Forcing Garbage Collection
	Tuning Garbage Collection
	Memory Pressure

	Managed Memory Leaks
	Timers
	Diagnosing Memory Leaks

	Weak References
	Weak References and Caching
	Weak References and Events

	Chapter 13. Diagnostics and Code Contracts
	Conditional Compilation
	Conditional Compilation Versus Static Variable Flags
	The Conditional Attribute

	Debug and Trace Classes
	Fail and Assert
	TraceListener
	Flushing and Closing Listeners

	Code Contracts Overview
	Why Use Code Contracts?
	Contract Principles

	Preconditions
	Contract.Requires
	Contract.Requires<TException>
	Contract.EndContractBlock
	Preconditions and Overridden Methods

	Postconditions
	Contract.Ensures
	Contract.EnsuresOnThrow<TException>
	Contract.Result<T> and Contract.ValueAtReturn<T>
	Contract.OldValue<T>
	Postconditions and Overridden Methods

	Assertions and Object Invariants
	Assertions
	Object Invariants

	Contracts on Interfaces and Abstract Methods
	Dealing with Contract Failure
	The ContractFailed Event
	Exceptions Within Contract Conditions

	Selectively Enforcing Contracts
	Contracts in Release Builds
	Call-Site Checking

	Static Contract Checking
	The ContractVerification Attribute
	Baselines
	The SuppressMessage Attribute

	Debugger Integration
	Attaching and Breaking
	Debugger Attributes

	Processes and Process Threads
	Examining Running Processes
	Examining Threads in a Process

	StackTrace and StackFrame
	Windows Event Logs
	Writing to the Event Log
	Reading the Event Log
	Monitoring the Event Log

	Performance Counters
	Enumerating the Available Counters
	Reading Performance Counter Data
	Creating Counters and Writing Performance Data

	The Stopwatch Class

	Chapter 14. Concurrency and Asynchrony
	Introduction
	Threading
	Creating a Thread
	Join and Sleep
	Blocking
	Local Versus Shared State
	Locking and Thread Safety
	Passing Data to a Thread
	Exception Handling
	Foreground Versus Background Threads
	Thread Priority
	Signaling
	Threading in Rich-Client Applications
	Synchronization Contexts
	The Thread Pool

	Tasks
	Starting a Task
	Returning values
	Exceptions
	Continuations
	TaskCompletionSource
	Task.Delay

	Principles of Asynchrony
	Synchronous Versus Asynchronous Operations
	What is Asynchronous Programming?
	Asynchronous Programming and Continuations
	Why Language Support Is Important

	Asynchronous Functions in C#
	Awaiting
	Writing Asynchronous Functions
	Asynchronous Lambda Expressions
	Asynchronous Methods in WinRT
	Asynchrony and Synchronization Contexts
	Optimizations

	Asynchronous Patterns
	Cancellation
	Progress Reporting
	The Task-based Asynchronous Pattern (TAP)
	Task Combinators

	Obsolete Patterns
	Asynchronous Programming Model (APM)
	Event-Based Asynchronous Pattern (EAP)
	BackgroundWorker

	Chapter 15. Streams and I/O
	Stream Architecture
	Using Streams
	Reading and Writing
	Seeking
	Closing and Flushing
	Timeouts
	Thread Safety
	Backing Store Streams
	FileStream
	MemoryStream
	PipeStream
	BufferedStream

	Stream Adapters
	Text Adapters
	Binary Adapters
	Closing and Disposing Stream Adapters

	Compression Streams
	Compressing in Memory

	Working with ZIP Files
	File and Directory Operations
	The File Class
	The Directory Class
	FileInfo and DirectoryInfo
	Path
	Special Folders
	Querying Volume Information
	Catching Filesystem Events

	File I/O in Windows Runtime
	Working with Directories
	Working with Files
	Isolated Storage in Windows Store Apps

	Memory-Mapped Files
	Memory-Mapped Files and Random File I/O
	Memory-Mapped Files and Shared Memory
	Working with View Accessors

	Isolated Storage
	Isolation Types
	Reading and Writing Isolated Storage
	Store Location
	Enumerating Isolated Storage

	Chapter 16. Networking
	Network Architecture
	Addresses and Ports
	URIs
	Client-Side Classes
	WebClient
	WebRequest and WebResponse
	HttpClient
	Proxies
	Authentication
	Exception Handling

	Working with HTTP
	Headers
	Query Strings
	Uploading Form Data
	Cookies
	Forms Authentication
	SSL

	Writing an HTTP Server
	Using FTP
	Using DNS
	Sending Mail with SmtpClient
	Using TCP
	Concurrency with TCP

	Receiving POP3 Mail with TCP
	TCP in Windows Runtime

	Chapter 17. Serialization
	Serialization Concepts
	Serialization Engines
	Formatters
	Explicit Versus Implicit Serialization

	The Data Contract Serializer
	DataContractSerializer Versus NetDataContractSerializer
	Using the Serializers
	Serializing Subclasses
	Object References
	Version Tolerance
	Member Ordering
	Null and Empty Values

	Data Contracts and Collections
	Subclassed Collection Elements
	Customizing Collection and Element Names

	Extending Data Contracts
	Serialization and Deserialization Hooks
	Interoperating with [Serializable]
	Interoperating with IXmlSerializable

	The Binary Serializer
	Getting Started

	Binary Serialization Attributes
	[NonSerialized]
	[OnDeserializing] and [OnDeserialized]
	[OnSerializing] and [OnSerialized]
	[OptionalField] and Versioning

	Binary Serialization with ISerializable
	Subclassing Serializable Classes

	XML Serialization
	Getting Started with Attribute-Based Serialization
	Subclasses and Child Objects
	Serializing Collections
	IXmlSerializable

	Chapter 18. Assemblies
	What’s in an Assembly
	The Assembly Manifest
	The Application Manifest
	Modules
	The Assembly Class

	Strong Names and Assembly Signing
	How to Strongly Name an Assembly
	Delay Signing

	Assembly Names
	Fully Qualified Names
	The AssemblyName Class
	Assembly Informational and File Versions

	Authenticode Signing
	How to Sign with Authenticode
	Authenticode Validation

	The Global Assembly Cache
	How to Install Assemblies to the GAC
	GAC and Versioning

	Resources and Satellite Assemblies
	Directly Embedding Resources
	.resources Files
	.resx Files
	Satellite Assemblies
	Cultures and Subcultures

	Resolving and Loading Assemblies
	Assembly and Type Resolution Rules
	AssemblyResolve
	Loading Assemblies

	Deploying Assemblies Outside the Base Folder
	Packing a Single-File Executable
	Selective Patching

	Working with Unreferenced Assemblies

	Chapter 19. Reflection and Metadata
	Reflecting and Activating Types
	Obtaining a Type
	Type Names
	Base Types and Interfaces
	Instantiating Types
	Generic Types

	Reflecting and Invoking Members
	Member Types
	C# Members Versus CLR Members
	Generic Type Members
	Dynamically Invoking a Member
	Method Parameters
	Using Delegates for Performance
	Accessing Nonpublic Members
	Generic Methods
	Anonymously Calling Members of a Generic Interface

	Reflecting Assemblies
	Loading an Assembly into a Reflection-Only Context
	Modules

	Working with Attributes
	Attribute Basics
	The AttributeUsage Attribute
	Defining Your Own Attribute
	Retrieving Attributes at Runtime
	Retrieving Attributes in the Reflection-Only Context

	Dynamic Code Generation
	Generating IL with DynamicMethod
	The Evaluation Stack
	Passing Arguments to a Dynamic Method
	Generating Local Variables
	Branching
	Instantiating Objects and Calling Instance Methods
	Exception Handling

	Emitting Assemblies and Types
	Saving Emitted Assemblies
	The Reflection.Emit Object Model

	Emitting Type Members
	Emitting Methods
	Emitting Fields and Properties
	Emitting Constructors
	Attaching Attributes

	Emitting Generic Methods and Types
	Defining Generic Methods
	Defining Generic Types

	Awkward Emission Targets
	Uncreated Closed Generics
	Circular Dependencies

	Parsing IL
	Writing a Disassembler

	Chapter 20. Dynamic Programming
	The Dynamic Language Runtime
	Numeric Type Unification
	Dynamic Member Overload Resolution
	Simplifying the Visitor Pattern
	Anonymously Calling Members of a Generic Type

	Implementing Dynamic Objects
	DynamicObject
	ExpandoObject

	Interoperating with Dynamic Languages
	Passing State Between C# and a Script

	Chapter 21. Security
	Permissions
	CodeAccessPermission and PrincipalPermission
	PermissionSet
	Declarative Versus Imperative Security

	Code Access Security (CAS)
	How Code Access Security Is Applied
	Testing for Full Trust

	Allowing Partially Trusted Callers
	Elevation of Privilege
	APTCA and [SecurityTransparent]

	The Transparency Model
	How the Transparency Model Works
	How to Write APTCA Libraries with Transparency
	Transparency in Full-Trust Scenarios

	Sandboxing Another Assembly
	Asserting Permissions

	Operating System Security
	Running in a Standard User Account
	Administrative Elevation and Virtualization

	Identity and Role Security
	Assigning Users and Roles

	Cryptography Overview
	Windows Data Protection
	Hashing
	Symmetric Encryption
	Encrypting in Memory
	Chaining Encryption Streams
	Disposing Encryption Objects
	Key Management

	Public Key Encryption and Signing
	The RSA Class
	Digital Signing

	Chapter 22. Advanced Threading
	Synchronization Overview
	Exclusive Locking
	The lock Statement
	Monitor.Enter and Monitor.Exit
	Choosing the Synchronization Object
	When to Lock
	Locking and Atomicity
	Nested Locking
	Deadlocks
	Performance
	Mutex

	Locking and Thread Safety
	Thread Safety and .NET Framework Types
	Thread Safety in Application Servers
	Immutable Objects

	Nonexclusive Locking
	Semaphore
	Reader/Writer Locks

	Signaling with Event Wait Handles
	AutoResetEvent
	ManualResetEvent
	CountdownEvent
	Creating a Cross-Process EventWaitHandle
	Wait Handles and Continuations
	Converting Wait Handles to Tasks
	WaitAny, WaitAll, and SignalAndWait

	The Barrier Class
	Lazy Initialization
	Lazy<T>
	LazyInitializer

	Thread-Local Storage
	[ThreadStatic]
	ThreadLocal<T>
	GetData and SetData

	Interrupt and Abort
	Suspend and Resume
	Timers
	Multithreaded Timers
	Single-Threaded Timers

	Chapter 23. Parallel Programming
	Why PFX?
	PFX Concepts
	PFX Components
	When to Use PFX

	PLINQ
	Parallel Execution Ballistics
	PLINQ and Ordering
	PLINQ Limitations
	Example: Parallel Spellchecker
	Functional Purity
	Setting the Degree of Parallelism
	Cancellation
	Optimizing PLINQ

	The Parallel Class
	Parallel.Invoke
	Parallel.For and Parallel.ForEach

	Task Parallelism
	Creating and Starting Tasks
	Waiting on Multiple Tasks
	Canceling Tasks
	Continuations
	Task Schedulers
	TaskFactory

	Working with AggregateException
	Flatten and Handle

	Concurrent Collections
	IProducerConsumerCollection<T>
	ConcurrentBag<T>

	BlockingCollection<T>
	Writing a Producer/Consumer Queue

	Chapter 24. Application Domains
	Application Domain Architecture
	Creating and Destroying Application Domains
	Using Multiple Application Domains
	Using DoCallBack
	Monitoring Application Domains
	Domains and Threads
	Sharing Data Between Domains
	Sharing Data via Slots
	Intra-Process Remoting
	Isolating Types and Assemblies

	Chapter 25. Interoperability
	Calling into Native DLLs
	Type Marshaling
	Marshaling Common Types
	Marshaling Classes and Structs
	In and Out Marshaling

	Callbacks from Unmanaged Code
	Simulating a C Union
	Shared Memory
	Mapping a Struct to Unmanaged Memory
	fixed and fixed {...}

	COM Interoperability
	The Purpose of COM
	The Basics of the COM Type System

	Calling a COM Component from C#
	Optional Parameters and Named Arguments
	Implicit ref Parameters
	Indexers
	Dynamic Binding

	Embedding Interop Types
	Type Equivalence

	Primary Interop Assemblies
	Exposing C# Objects to COM

	Chapter 26. Regular Expressions
	Regular Expression Basics
	Compiled Regular Expressions
	RegexOptions
	Character Escapes
	Character Sets

	Quantifiers
	Greedy Versus Lazy Quantifiers

	Zero-Width Assertions
	Lookahead and Lookbehind
	Anchors
	Word Boundaries

	Groups
	Named Groups

	Replacing and Splitting Text
	MatchEvaluator Delegate
	Splitting Text

	Cookbook Regular Expressions
	Recipes

	Regular Expressions Language Reference

	Chapter 27. The Roslyn Compiler
	Roslyn Architecture
	Workspaces

	Syntax Trees
	SyntaxTree Structure
	Obtaining a Syntax Tree
	Traversing and Searching a Tree
	Trivia
	Transforming a Syntax Tree

	Compilations and Semantic Models
	Creating a Compilation
	Emitting an Assembly
	Querying the Semantic Model
	Example: Renaming a Symbol

	Index

