
M A N N I N G

Bear Bibeault
Yehuda Katz
Aurelio De Rosa
FOREWORDS BY Dave Methvin
 John Resig

IN ACTION

THIRD EDITION

www.EBooksWorld.ir

Praise for Earlier Editions of jQuery in Action

Every technical book should be like this one…concise but clear, humorous but not silly, and one
that answers all the questions it raises, quickly. The reader is never left wondering “But what
about...” for more than a sentence or two.

—JRoller Online Book Reviews

Thanks to the authors and their exemplary style, this comprehensive book, or operating manual
as it might be called, can be taken in a front-to-back approach to learn from scratch, or as a ref-
erence for those already dabbling in jQuery and needing verification of best practices.

—Matthew McCullough
Denver Open Source Users Group

With its capable technical coverage, extensive use of sample code, and approachable style, this
book is a valuable resource for any web developer seeking to maximize the power of JavaScript,
and a must-have for anyone interested in learning jQuery.

—Michael J. Ross
Web Developer and Slashdot Contributor

An excellent work, a worthy successor to others in Manning’s In Action series. It is highly read-
able and chock-full of working code. The Lab Pages are a marvelous way to explore the library,
which should become an important part of every web developer’s arsenal. Five stars all ‘round!

—David Sills
JavaLobby, DZone

I highly recommend the book for learning the fundamentals of jQuery and then serving as a good
reference book as you leverage the power of jQuery more and more in your daily development.

—David Hayden
MVP C#, Codebetter.com

I highly recommend this book to any novice or advanced JavaScript developers who want to get
serious about JavaScript and start writing optimized and elegant code without all the hassle of
traditional JavaScript code authoring.

—Val’s Blog

The Elements of Style for JavaScript.
—Joshua Heyer

Trane Inc.
www.EBooksWorld.ir

www.EBooksWorld.ir

jQuery in Action
THIRD EDITION

BEAR BIBEAULT
YEHUDA KATZ

AURELIO DE ROSA

M A N N I N G
Shelter Island
www.EBooksWorld.ir

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editors: Jeff Bleiel, Sean Dennis
20 Baldwin Road Technical development editor: Al Scherer
PO Box 761 Copyeditor: Linda Recktenwald
Shelter Island, NY 11964 Proofreader: Melody Dolab

Technical proofreader: Richard Scott-Robinson
Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617292071
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
www.EBooksWorld.ir

http://www.manning.com

 To Annarita, because you give balance to my life
 —Aurelio
www.EBooksWorld.ir

www.EBooksWorld.ir

brief contents
PART 1 STARTING WITH JQUERY... 1

1 ■ Introducing jQuery 3

PART 2 CORE JQUERY...21
2 ■ Selecting elements 23

3 ■ Operating on a jQuery collection 52

4 ■ Working with properties, attributes, and data 79

5 ■ Bringing pages to life with jQuery 99

6 ■ Events are where it happens! 134

7 ■ Demo: DVD discs locator 172

8 ■ Energizing pages with animations and effects 188

9 ■ Beyond the DOM with jQuery utility functions 224

10 ■ Talk to the server with Ajax 260

11 ■ Demo: an Ajax-powered contact form 301

PART 3 ADVANCED TOPICS317
12 ■ When jQuery is not enough...plugins to the rescue! 319

13 ■ Avoiding the callback hell with Deferred 358

14 ■ Unit testing with QUnit 385

15 ■ How jQuery fits into large projects 412
vii

www.EBooksWorld.ir

www.EBooksWorld.ir

contents
foreword to the third edition xvii
foreword to the first edition xix
preface xxi
acknowledgments xxiii
about this book xxv
about the authors xxix

PART 1 STARTING WITH JQUERY...................................... 1

1 Introducing jQuery 3
1.1 Write less, do more 4
1.2 Unobtrusive JavaScript 6

Separating behavior from structure 7 ■ Segregating the
script 7

1.3 Installing jQuery 8
Choosing the right version 9 ■ Improving performances
using a CDN 11

1.4 How jQuery is structured 13
Save space creating your own custom build 14

1.5 jQuery fundamentals 15
Properties, utilities, and methods 15 ■ The jQuery object 15
The document ready handler 17 ■ Summary 19
ix

www.EBooksWorld.ir

CONTENTSx
PART 2 CORE JQUERY..21

2 Selecting elements 23
2.1 Selecting elements for manipulation 24
2.2 Basic selectors 26

The All (or Universal) selector 27 ■ The ID selector 30
The Class selector 30 ■ The Element selector 31

2.3 Retrieving elements by their hierarchy 32
2.4 Selecting elements using attributes 34
2.5 Introducing filters 37

Position filters 38 ■ Child filters 39 ■ Form filters 42
Content filters 43 ■ Other filters 44 ■ How to create
custom filters 46

2.6 Enhancing performances using context 49
2.7 Testing your skills with some exercises 50

Exercises 50 ■ Solutions 51

2.8 Summary 51

3 Operating on a jQuery collection 52
3.1 Generating new HTML 53
3.2 Managing the jQuery collection 55

Determining the size of a set 57 ■ Obtaining elements
from a set 57 ■ Getting sets using relationships 62
Slicing and dicing a set 66 ■ Even more ways to use a set 75

3.3 Summary 77

4 Working with properties, attributes, and data 79
4.1 Defining element properties and attributes 80
4.2 Working with attributes 83

Fetching attribute values 83 ■ Setting attribute values 84
Removing attributes 86 ■ Fun with attributes 86

4.3 Manipulating element properties 88
4.4 Storing custom data on elements 91
4.5 Summary 98
www.EBooksWorld.ir

CONTENTS xi
5 Bringing pages to life with jQuery 99
5.1 Changing element styling 100

Adding and removing class names 100 ■ Getting and setting
styles 104

5.2 Setting element content 114
Replacing HTML or text content 114 ■ Moving elements 116
Wrapping and unwrapping elements 122 ■ Removing
elements 126 ■ Cloning elements 128 ■ Replacing
elements 129

5.3 Dealing with form element values 131
5.4 Summary 133

6 Events are where it happens! 134
6.1 Understanding the browser event models 136

The DOM Level 0 Event Model 136 ■ The DOM Level 2 Event
Model 143 ■ The Internet Explorer Model 148

6.2 The jQuery Event Model 149
Attaching event handlers with jQuery 149 ■ Removing event
handlers 156 ■ Inspecting the Event instance 159
Triggering event handlers 160 ■ Shortcut methods 165
How to create custom events 168 ■ Namespacing events 169

6.3 Summary 170

7 Demo: DVD discs locator 172
7.1 Putting events (and more) to work 173

Filtering large data sets 174 ■ Element creation by template
replication 176 ■ Setting up the mainline markup 178
Adding new filters 179 ■ Adding the controls templates 182
Removing unwanted filters and other tasks 183 ■ Showing the
results 183 ■ There’s always room for improvement 186

7.2 Summary 187

8 Energizing pages with animations and effects 188
8.1 Showing and hiding elements 189

Implementing a collapsible “module” 190 ■ Toggling the display
state of elements 192
www.EBooksWorld.ir

CONTENTSxii
8.2 Animating the display state of elements 193
Showing and hiding elements gradually 193 ■ Introducing the
jQuery Effects Lab Page 198 ■ Fading elements into and out of
existence 200 ■ Sliding elements up and down 202 ■ Stopping
animations 203

8.3 Adding more easing functions to jQuery 204
8.4 Creating custom animations 206

A custom scale animation 209 ■ A custom drop animation 210
A custom puff animation 211

8.5 Animations and queuing 213
Simultaneous animations 213 ■ Queuing functions for
execution 215 ■ Inserting functions into the effects queue 221

8.6 Summary 222

9 Beyond the DOM with jQuery utility functions 224
9.1 Using the jQuery properties 225

Disabling animations 226 ■ Changing the animations
rate 226 ■ The $.support property 227

9.2 Using other libraries with jQuery 228
9.3 Manipulating JavaScript objects and collections 232

Trimming strings 232 ■ Iterating through properties and
collections 233 ■ Filtering arrays 235 ■ Translating
arrays 237 ■ More fun with JavaScript arrays 239
Extending objects 242 ■ Serializing parameter values 244
Testing objects 248 ■ Parsing functions 251

9.4 Miscellaneous utility functions 254
Doing nothing 254 ■ Testing for containment 254
Prebinding function contexts 255 ■ Evaluating
expressions 257 ■ Throwing exceptions 258

9.5 Summary 259

10 Talk to the server with Ajax 260
10.1 Brushing up on Ajax 261

Creating an XHR instance 261 ■ Initiating the request 264
Keeping track of progress 265 ■ Getting the response 265

10.2 Loading content into elements 266
Loading content with jQuery 267 ■ Loading dynamic HTML
fragments 271
www.EBooksWorld.ir

CONTENTS xiii
10.3 Making GET and POST requests 276
Getting data with GET 278 ■ Getting JSON data 280
Dynamically loading script 281 ■ Making POST
requests 283 ■ Implementing cascading dropdowns 284

10.4 Taking full control of an Ajax request 289
Making Ajax requests with all the trimmings 289 ■ Setting request
defaults 294 ■ Handling Ajax events 295 ■ Advanced Ajax
utility functions 298

10.5 Summary 300

11 Demo: an Ajax-powered contact form 301
11.1 The features of the project 302
11.2 Creating the markup 304
11.3 Implementing the PHP backend 305
11.4 Field validation using Ajax 307
11.5 Even more fun with Ajax 309

Hiding the dialog box 311

11.6 Improving the user experience using effects 311
Toggling the effects 312

11.7 A note on accessibility 313
11.8 Summary 314

PART 3 ADVANCED TOPICS . ..317

12 When jQuery is not enough...plugins to the rescue! 319
12.1 Why extend jQuery? 320
12.2 Where to find plugins 320

How to use a (well-written) plugin 321 ■ Great plugins for
your projects 324

12.3 The jQuery plugin authoring guidelines 325
File- and function-naming conventions 325 ■ Beware
the $ 326 ■ Taming complex parameter lists 327
Keep one namespace 330 ■ Namespacing events and
data 333 ■ Maintaining chainability 337
Provide public access to default settings 337

12.4 Demo: creating a slideshow as a jQuery plugin 340
Setting up the markup 343 ■ Developing Jqia Photomatic 344
www.EBooksWorld.ir

CONTENTSxiv
12.5 Writing custom utility functions 351
Writing a date formatter 352

12.6 Summary 356

13 Avoiding the callback hell with Deferred 358
13.1 Introduction to promises 359
13.2 The Deferred and Promise objects 362
13.3 The Deferred methods 363

Resolving or rejecting a Deferred 364 ■ Execute functions
upon resolution or rejection 365 ■ The when() method 369
Notifying about the progress of a Deferred 371 ■ Follow the
progress 372 ■ Using the Promise object 374 ■ Take it short
with then() 377 ■ Always execute a handler 381 ■ Determine
the state of a Deferred 381

13.4 Promisifying all the things 382
13.5 Summary 384

14 Unit testing with QUnit 385
14.1 Why is testing important? 386

Why unit testing? 387 ■ Frameworks for unit testing
JavaScript 388

14.2 Getting started with QUnit 389
14.3 Creating tests for synchronous code 392
14.4 Testing your code using assertions 394

equal(), strictEqual(), notEqual(), and notStrictEqual() 394
The other assertion methods 397 ■ The throws() assertion
method 399

14.5 How to test asynchronous tasks 400
14.6 noglobals and notrycatch 403
14.7 Group your tests in modules 404
14.8 Configuring QUnit 405
14.9 An example test suite 407

14.10 Summary 411

15 How jQuery fits into large projects 412
15.1 Improving the performance of your selectors 413

Avoiding the Universal selector 414 ■ Improving the Class
www.EBooksWorld.ir

CONTENTS xv
selector 414 ■ Don’t abuse the context parameter 415
Optimizing filters 416 ■ Don’t overspecify selectors 417

15.2 Organizing your code into modules 418
The object literals pattern 419 ■ The Module pattern 420

15.3 Loading modules with RequireJS 421
Getting started with RequireJS 422 ■ Using RequireJS with
jQuery 424

15.4 Managing dependencies with Bower 425
Getting started with Bower 426 ■ Searching a package 427
Installing, updating, and deleting packages 428

15.5 Creating single-page applications with Backbone.js 429
Why use an MV* framework? 430 ■ Starting with
Backbone.js 432 ■ Creating a Todos manager application
using Backbone.js 435

15.6 Summary 445
15.7 The end 446

appendix JavaScript that you need to know but might not! 447
index 465
www.EBooksWorld.ir

www.EBooksWorld.ir

foreword to the third edition
A decade ago, John Resig imagined a JavaScript library that would simplify the way
people built web sites. Today, that library, jQuery, is used by more than 80% of all web
sites that use JavaScript, according to BuiltWith.com. It would be hard to call yourself
a web developer today without knowing jQuery.

 On the technical side, jQuery simplifies the long-winded native method calls that
browsers use and shrinks the number of lines of code that it takes to get things done.
That’s why jQuery’s motto is “Write less, do more.” jQuery also paves over the differ-
ences in behavior—and even some outright bugs—that exist in browsers. That simpli-
fies both development and testing.

 From the start, jQuery was designed so that it could be extended by others. The
jQuery plugin model lets anyone build specialized functionality on top of what jQuery
already offers. There are thousands of jQuery plugins that do everything from light-
boxes to form validation. The result is that many people with only a modest amount of
programming skill are able to create beautiful and functional web sites by building on
the work that others have done.

 Still, code alone is not what made jQuery popular. From the beginning, a strong
community of helpful developers filled online forums and mailing lists to answer ques-
tions for newcomers. The insight gained from those discussions led to better docu-
mentation, training classes, and books like this one.

 This book is a great way to learn jQuery. Early on, it covers a central tenet of
jQuery’s API, which is to select some elements on a web page and do something with
them. That same pattern applies whether you are hiding, showing, animating, remov-
ing, or changing an element’s appearance. The selection process uses the standard CSS
selector syntax, with some jQuery enhancements that give selection even more power.
xvii

www.EBooksWorld.ir

FOREWORD TO THE THIRD EDITIONxviii
 I must confess that the chapter on events is my favorite because my first major code
contribution to jQuery was the rewrite of the event module in jQuery 1.7. This chap-
ter does a great job of explaining the purpose and usefulness of events on a web page,
which are the main way that you can be notified of how the user is interacting with the
web page. Nearly every jQuery operation you do is started through an event of some
kind.

 I’m also glad this book covers some topics often ignored, such as unit testing and
organization of large projects. Many small projects eventually turn into large ones,
and the advice in these chapters can help you to manage that growth in a way that
reduces maintenance headaches.

 The chapters building demo applications do a great job of showing how all the
parts of jQuery fit together and demonstrate important concepts like templating that
are central to all modern JavaScript frameworks and applications. Even today, I feel a
bit amazed by demos like this showing it’s possible to build something useful with very
little code.

 Aurelio De Rosa has been a contributor to the jQuery community for several years
and is a member of jQuery’s content team that ensures jQuery’s online documenta-
tion is up-to-date. His work on this latest edition of jQuery in Action gives you timely
information that reflects the most recent version of the library. Aurelio has also made
jQuery’s online documentation better in the process of writing this book by uncover-
ing inconsistencies and missing information. You, as a reader of this book and soon-to-
be jQuery developer, are the lucky beneficiary. Go forward and, “Write less, do more!”

 DAVE METHVIN

PRESIDENT, JQUERY FOUNDATION
www.EBooksWorld.ir

foreword to the first edition
It’s all about simplicity. Why should web developers be forced to write long, complex,
book-length pieces of code when they want to create simple pieces of interaction?
There’s nothing that says that complexity has to be a requirement for developing web
applications.

 When I first set out to create jQuery, I decided that I wanted an emphasis on small,
simple code that served all the practical applications that web developers deal with
day to day. I was greatly pleased as I read through jQuery in Action to see in it an
excellent manifestation of the principles of the jQuery library.

 With an overwhelming emphasis on practical, real-world code presented in a terse,
to-the-point format, jQuery in Action will serve as an ideal resource for those looking
to familiarize themselves with the library.

 What’s pleased me the most about this book is the significant attention to detail
that Bear and Yehuda have paid to the inner workings of the library. They were thor-
ough in their investigation and dissemination of the jQuery API. It felt like nary a day
went by when I wasn’t graced with an email or instant message from them asking for
clarification, reporting newly discovered bugs, or recommending improvements to
the library. You can be safe knowing that the resource that you have before you is one
of the best thought-out and researched pieces of literature on the jQuery library.

 One thing that surprised me about the contents of this book is the explicit inclu-
sion of jQuery plugins and the tactics and theory behind jQuery plugin development.
The reason why jQuery is able to stay so simple is through the use of its plugin
architecture. It provides a number of documented extension points upon which plug-
ins can add functionality. Often that functionality, while useful, is not generic enough
xix

www.EBooksWorld.ir

FOREWORD TO THE FIRST EDITIONxx
for inclusion in jQuery itself—which is what makes the plugin architecture necessary.
A few of the plugins discussed in this book, like the Forms, Dimension, and Live-
Query plugins, have seen widespread adoption and the reason is obvious: they’re
expertly constructed, documented, and maintained. Be sure to pay special attention
to how plugins are utilized and constructed as their use is fundamental to the jQuery
experience.

 With resources like this book, the jQuery project is sure to continue to grow and
succeed. I hope the book will end up serving you well as you begin your exploration
and use of jQuery.

JOHN RESIG

CREATOR OF JQUERY
www.EBooksWorld.ir

preface
It always astonishes me when I think about the amount of work and effort I put into
this book. When the people at Manning approached me to write the third edition of
jQuery in Action, I knew that it wasn’t going to be a walk in the park, but I definitely
underestimated the task. I thought, “This is going to be a piece of cake. A few months
of work and I’ll be done.” Two years and many nights of work later, I don’t regret my
choice. Writing this book has been an incredible journey, one that has let me improve
my skills in many different ways. I’ve become a better developer and a better writer,
and I’ve improved my jQuery skills.

 Two years ago, I was a web developer with a strong passion for jQuery, and I was
grateful that this library solved so many problems for me for free. Before I started this
project, my knowledge of jQuery was good, but without a doubt, writing and revising
the chapters that you’re about to read forced me to dive much deeper and, as a result,
I was able to take my skills to the next level. I also had the opportunity to discover new
issues regarding the library and its documentation. Revising this book allowed me to
contribute to jQuery on a regular basis—so much that I’ve been invited to join the
jQuery team. Needless to say, this has been an unexpected and very welcome achieve-
ment, and I’m proud to be part of such an amazing project.

 Now that you know how I came to embark on this journey, let’s tackle a crucial
question: was this third edition really needed? I think it was, and this can be summed
up with two basic facts. The previous edition of the book covers jQuery up to version
1.4, while the last version is 1.11, with jQuery 3 (also covered in this book) just around
the corner. The second reason is that jQuery is definitely the most used JavaScript
library out there. It’s employed by 63% of the top one million sites in the world, and
xxi

www.EBooksWorld.ir

PREFACExxii
by 17% of the internet. These two facts should lead you to understand that much has
changed since the second edition of jQuery in Action was published, and that jQuery is
not only still relevant, but isn’t going to disappear any time soon.

 In this third edition of the book, you’ll see quite a few changes. First of all, I
deleted the chapters about the jQuery UI because both jQuery and the jQuery UI
have grown so much that they deserve a book of their own. In addition, as you’ll see by
turning the pages of this edition, I decided to add some advanced topics that weren’t
covered in the previous edition. Finally, I’ve introduced many new examples, lab
pages, snippets of code, live demos, and much more to make this edition even better.

 Turn this page, delve into the book, and start learning about the most-used
JavaScript library in the world. Have fun!

 AURELIO DE ROSA
www.EBooksWorld.ir

acknowledgments
As with the previous editions of this book, and presumably with every successful book
published, the number of people involved in getting the job done is impressive. It
not only takes a lot of time to write a (good) book, but it also takes the contributions
of many people with a variety of skills and roles in order to produce and publish it.
The staff at Manning worked tirelessly to make sure that this book attained the level
of quality expected, and I thank them for their efforts. Without them, this book
would not have been possible. The “end credits” for this book include not only the
publisher, Marjan Bace, but also the following people: Al Scherer, Ana Romac,
Candace Gillhoolley, Cynthia Kane, Dottie Marsico, Jeff Bleiel, Kevin Sullivan, Linda
Recktenwald, Mary Piergies, Melody Dolab, Ozren Harlovic, Robin de Jongh, Scott
Meyers, and Sean Dennis. I thank them all, as well as the many others who worked
behind the scenes.

 Another big thank you goes to the peer reviewers who helped in spotting errors,
from simple typos to errors in terminology and code. The number of people who
reviewed this book will probably surprise you, but they have been really helpful. For
their contributions and insights, I’d like to thank Chris Maki, Christopher Haupt,
Chuck Durfee, Francesco Bianchi, Gary A. Stafford, Gregor Zurowski, Jan Goyvaerts,
Jean-François Morin, John D. Lewis, John Stemper, Karen Christenson, Keith Webster,
Matt Forsythe, Ricardo Mano, Ryan Meeks, Suraj Kumar, William E. Wheeler, and Wil-
lie Roberts.

 Special thanks to Richard Scott-Robinson, who worked as the book’s technical
proofreader. He took the time and effort (and I’m sure this wasn’t fast or easy) to
check each and every code example in the book in multiple environments. He also
xxiii

www.EBooksWorld.ir

ACKNOWLEDGMENTSxxiv
offered invaluable contributions to the technical accuracy of the text and insightful
comments, most of which are included in the volume you’re holding in your hands
(or the digital copy you’re reading).

 Sincere thanks to Dave Methvin for penning the foreword to this edition and
endorsing my work, and to Bear Bibeault and Yehuda Katz for writing the two best-sell-
ing editions that preceded this one.

 On a personal level, the most important person I’d like to thank is my soon-to-be-
wife Annarita. Your love, patience, and sweetness have been crucial throughout this
journey and not only this one. You complained not once during the two years I spent
working on this project instead of doing something with you. Your support and under-
standing have been stunning and that’s why I’m dedicating this book to you. You, my
dear Annarita, give balance to my life. Thank you for all the lovely moments spent
together and those yet to come. I love you.

 Big thanks also go to my family: Raffaele, Eufemia, Giusy, Viola, my grandmothers
Giuseppina and Anna, and my grandfather Aurelio. Thank you for all your love.
You’re partly responsible for who I am and what I’ve done. You have supported me as
much as you could, and I owe you a lot.

 I also want to thank Francesco Palladino. You’re the best friend a person could
have. You have always been there for me when I needed it. I wish you all the best life
has to offer and may all your dreams come true.

 And while I’m speaking about dreams, I also want to dedicate this book to all the
people who have a burning passion and believe in their dreams. Don’t stop believing
in them because others tell you to, even if it’s tough to keep going. One day, you’ll
achieve them. To all the dreamers out there, I wish you good luck.

 I want to thank all the people who have contributed to form me and to shape the
person that I have become, in one way or another: Albert Einstein, Ludwig van
Beethoven, Lucius Annaeus Seneca, Roberto De Rosa, Leonardo Grisolia, and the
anonymous umbrella seller.

 Finally, I want to thank all the people on the jQuery team. If I’ve written a good
book, it’s because of the marvelous work you’ve been doing all these years. You rock!

 AURELIO DE ROSA
www.EBooksWorld.ir

about this book
This book is for web developers who want to delve into jQuery, the most popular and
adopted JavaScript library on the internet. The goal is to guide you, the reader,
through the path of becoming a pro of jQuery regardless of your starting level, begin-
ner or advanced. This tome covers the whole library in depth, including some addi-
tional tools and frameworks such as Bower and QUnit, without forgetting to advocate
best practices. Each API method is presented in an easy-to-digest syntax block that
describes the parameters and the return value of the method.

jQuery in Action, Third Edition covers topics from the simple, such as what’s jQuery
and how to include it in a web page, to the advanced, such as the way the library
implements Promises and how to create jQuery plugins. To help you in this journey,
the content features many examples, three plugins, and three sample projects. It also
includes what we called Lab Pages. These comprehensive and fun pages are an excel-
lent way for you to see the nuances of the jQuery methods in action, without the need
to write a slew of code yourself.

 The book assumes a fundamental knowledge of HTML, CSS, and JavaScript. A pre-
vious knowledge of jQuery is not required but might come in handy to help you
absorb the concepts faster.

Roadmap
We’ve divided the book into three parts: an introduction to jQuery and what it brings
to the table, the jQuery core, where we cover all of its features, and a section on
advanced topics.
xxv

www.EBooksWorld.ir

ABOUT THIS BOOKxxvi
 Chapter 1 is about the philosophy behind jQuery and how it adheres to a principle
called unobtrusive JavaScript. It discusses what jQuery is, what problems it tries to
solve, and why you might want to employ it in your web projects.

 Chapter 2 covers the selection of DOM elements via the use of selectors and how to
create your own custom selectors. We’ll also introduce you to the term jQuery collection
(or jQuery object), which is used to refer to the JavaScript object returned by jQuery’s
methods. It contains the set of elements selected on which you can operate with the
library.

 Chapter 3 expands on chapter 2 by teaching how to refine or create a new selec-
tion of elements starting with a previous selection. You’ll also learn how to create new
DOM elements with jQuery.

 Chapter 4 focuses on the many methods jQuery offers for working with attributes
and properties, and what their differences are. Moreover, it explains how to store cus-
tom data on one or more DOM elements.

 Chapter 5 is all about manipulating element class names, cloning and setting the
content of DOM elements, and modifying the DOM tree by adding, moving, or replac-
ing elements.

 Chapter 6 introduces you to the various event models and how browsers allow you
to establish handlers to control what happens when an event occurs. Then, we’ll cover
how jQuery allows developers to do the same thing while avoiding dealing with
browser incompatibilities. In addition, the chapter describes important notions like
event delegation and event bubbling.

 Chapter 7 is different from the previous ones because its aim is to walk you
through the development of a project, a DVD discs locator, where you can apply the
lessons learned up to this point.

 Chapter 8 examines the methods used to show and hide elements, and how you
can create animations. Function queuing for serially running effects, as well as general
functions, are also covered.

 Chapter 9 is dedicated to utility functions, functions that are namespaced by
jQuery that usually don’t operate on DOM elements.

 Chapter 10 covers one of the most important concepts of recent years: Ajax. We’ll
see how jQuery makes it almost brain-dead simple to use Ajax on web pages, shielding
us from all the usual pitfalls, while vastly simplifying the most common types of Ajax
interactions (such as returning JSON objects).

 We set up a new challenge for you in chapter 11. Here, we’ll tackle a real-world
problem that many developers face: creating a contact form. The project consists of
building a working contact form that doesn’t require a complete reload of the page to
inform the user about the failure or success in sending the message.

 Chapter 12 is the first of part 3 where we move onto advanced topics, most of
which are not strictly related to the core of the library. In this chapter, we’ll discuss
how to extend the functionality of jQuery by creating plugins for it. These plugins
come in two flavors: methods and utility functions. In this chapter we’ll examine both
of them.
www.EBooksWorld.ir

ABOUT THIS BOOK xxvii
 Chapter 13 explains how to avoid what’s known as the callback hell by describing
jQuery’s implementation of Promises. As you’ll learn, this is a delicate and controver-
sial topic that has been the subject of discussions for years.

 In chapter 14 we introduce you to testing, what it is, and why it’s important. We’ll
focus our attention on one particular kind of testing: unit testing. Then, we’ll cover
QUnit, a JavaScript testing framework employed by some of the jQuery projects
(jQuery, jQuery UI, and jQuery Mobile) to unit test the code.

 Chapter 15, the last chapter of the book, starts with tips and tricks to improve the
performance of code that uses jQuery by selecting elements the right way. Then, we’ll
broaden our focus to several tools, frameworks, and patterns not strictly related to
jQuery but that can be used to craft fast, solid, and beautiful code. In particular, this
chapter explains how to organize your code in modules, how to load modules with
RequireJS, and how to manage front-end dependencies with Bower. Finally, we’ll give
you a taste of how jQuery fits into single-page applications by skimming the surface of
Backbone.js.

 To top it all off, we have provided an appendix highlighting key JavaScript con-
cepts such as function contexts and closures—essential to make the most effective use
of jQuery on our pages—for readers who are unfamiliar with, or would like a
refresher on, these concepts.

Source code conventions and downloads
The source code in the book, whether in code listings or snippets, is in a fixed-width
font like this, which sets it off from the surrounding text. In some listings, the code
is annotated to point out key concepts, and numbered bullets are sometimes used in
the text to provide additional information about the code. The code is formatted so
that it fits within the available page space in the book by adding line breaks and using
indentation carefully.

 All of the source code for the examples in the book can be found at this GitHub
link: https://github.com/AurelioDeRosa/jquery-in-action. The source code is also
available for download from the publisher’s website at www.manning.com/derosa/ or
www.manning.com/jquery-in-action-third-edition.

Software requirements
The code examples for this book are organized in folders, one for each chapter, ready
to be easily served by a local web server such as the Apache HTTP Server. With the
exception of the projects built in chapters 7 and 10 and a few other ones, the exam-
ples don’t require the presence of a web server and can be loaded directly into a
browser for execution, if you so desire. The project in chapter 10 requires more back-
end interaction than Apache can deliver, so running it locally requires setting up PHP
for Apache.

 All examples were tested in a variety of browsers, including Internet Explorer, Fire-
fox, Safari, Opera, and Chrome.
www.EBooksWorld.ir

https://github.com/AurelioDeRosa/jquery-in-action
http://www.manning.com/derosa/
http://www.manning.com/jquery-in-action-third-edition
http://httpd.apache.org/
http://www.php.net/

ABOUT THIS BOOKxxviii
Author Online
Purchase of jQuery in Action, Third Edition includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/derosa. This
Author Online (AO) page provides information on how to get on the forum once
you’re registered, what kind of help is available, and the rules of conduct on the
forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog among individual readers and between readers and authors can take place. It’s
not a commitment to any specific amount of participation on the part of the authors,
whose contribution to the AO remains voluntary (and unpaid). We suggest you try ask-
ing the authors some challenging questions, lest their interest stray!

 The AO forum and the archives of previous discussions will be accessible from the
publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of jQuery in Action, Third Edition is captioned “The Watch-
man.” The illustration is taken from a French travel book, Encyclopédie des Voyages by
J. G. St. Saveur, published almost 200 years ago. Travel for pleasure was a relatively
new phenomenon at the time, and travel guides such as this one were popular, intro-
ducing both the tourist as well as the armchair traveler to the inhabitants of other
regions of the world, as well as to the regional costumes and uniforms of French sol-
diers, civil servants, tradesmen, merchants, and peasants.

 The diversity of the drawings in the Encyclopédie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by how they were speaking or what they were wearing.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
diversity for a more varied personal life—or a more varied and interesting intellectual
and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago, brought back to life by the pictures from collections such as this one.
www.EBooksWorld.ir

http://www.manning.com/derosa

about the authors
BEAR BIBEAULT has been writing software for over three decades,
starting with a Tic-Tac-Toe program written on a Control Data
Cyber supercomputer via a 100-baud teletype. Because he has
two degrees in Electrical Engineering, Bear should be designing
antennas or something; but, since his first job with Digital Equip-
ment Corporation, he has always been much more fascinated
with programming.

 Bear has also served stints with companies such as Lightbridge Inc., BMC Software,
Dragon Systems, Works.com, and a handful of other companies. Bear even served in
the U.S. Military teaching infantry soldiers how to blow up tanks; skills that come in
handy during those daily scrum meetings. Bear is currently a senior web developer for
a leading provider of object storage software.

 In addition to his day job, Bear also writes books (duh!), runs a small business that
creates web applications and offers other media services (but not wedding videogra-
phy—never, ever wedding videography), and helps to moderate JavaRanch.com as a
“sheriff” (senior moderator). When not planted in front of a computer, Bear likes to
cook big food (which accounts for his jeans size), dabble in photography and video,
ride his Yamaha V-Star, and wear tropical-print shirts.

 He works and resides in Austin, Texas, a city he dearly loves, except for the com-
pletely insane drivers.
xxix

www.EBooksWorld.ir

ABOUT THE AUTHORSxxx
YEHUDA KATZ has been involved in a number of open source
projects over the past several years. In addition to being a core
team member of the jQuery project, he is also a contributor to
Merb, an alternative to Ruby on Rails (also written in Ruby).

 Yehuda was born in Minnesota, grew up in New York, and
now lives in sunny Santa Barbara, California. He has worked on
websites for the New York Times, Allure Magazine, Architectural

Digest, Yoga Journal, and other similarly high-profile clients. He has programmed pro-
fessionally in a number of languages including Java, Ruby, PHP, and JavaScript.

 In his copious spare time, he maintains VisualjQuery.com and helps answer ques-
tions from new jQuery users in the IRC channel and on the official jQuery mailing list.

AURELIO DE ROSA is a (full-stack) senior web developer with
more than 5 years’ professional experience programming for the
web using the WAMP stack and HTML5, CSS3, Sass, JavaScript,
and PHP. He’s a member of the jQuery team and the JoindIn
team, and an expert on JavaScript and HTML5 APIs. His interests
also include web security, accessibility, performance, and SEO.

 When not busy writing code, he’s a regular writer, speaker,
author of books, and coauthor of some academic papers.
www.EBooksWorld.ir

Part 1

Starting with jQuery

If you’re reading this page, it’s because you’ve heard of jQuery from a fellow
developer or read about it in a website or forum, and you’re eager to understand
what this library is all about. Maybe you’re employing this library at work and
you want to improve your skills to impress your boss. Or perhaps you’ve never
heard about this jQuery thing and you were just captured by the very nice illus-
tration on the cover of this book. Whatever the reason that brought you to open
this book and read this page, the next chapter will (hopefully) give you all the
explanations you need.

 In the only chapter belonging to part 1, you’ll learn more about what jQuery
is, what problems it tries to solve, and why you might want to employ it in your
web projects. In chapter 1 we’ll teach you how to extricate yourself from the dif-
ferent versions of jQuery available and decide which one best fits your needs. If
you’re into web development and want to become a professional of the most
used library in the world, proceed to chapter 1 and start the amazing journey
that this book will be.
www.EBooksWorld.ir

www.EBooksWorld.ir

Introducing jQuery
“There are only two kinds of languages: the ones people complain about and the
ones nobody uses.” How well this sentence from Bjarne Stroustrup, who designed
and implemented C++, summarizes the sentiments about JavaScript. It, as well as
several other languages (most notably PHP), was bemoaned as a “bad” language for
several years. Then, something magical happened. Thanks to the rise of Ajax, the
release of several libraries such as Prototype, Moo Tools, and jQuery, and the new,
highly interactive web applications (which you might also have heard referred to as
single-page applications), developers started understanding JavaScript’s potential.
Today JavaScript is also one of the most ubiquitous languages thanks to Node.js, a
platform that allows you to use it as a server-side language, and PhoneGap, a frame-
work for creating hybrid mobile applications.

 jQuery is a free (licensed under the MIT License), popular JavaScript library,
created by John Resig in 2006, that’s designed to simplify the client-side scripting of
HTML. As stated on the jQuery website,

This chapter covers
 What exactly jQuery is and why you should use it

 The unobtrusive JavaScript strategy

 Choosing the right version of jQuery

 Fundamental elements and concepts of jQuery
3

www.EBooksWorld.ir

4 CHAPTER 1 Introducing jQuery
jQuery is a fast, small, and feature-rich JavaScript library. It makes things
like HTML document traversal and manipulation, event handling,
animation, and Ajax much simpler with an easy-to-use API that works
across a multitude of browsers. With a combination of versatility and
extensibility, jQuery has changed the way that millions of people write
JavaScript.

Although you might find this claim a bit self-promotional or presumptuous, it asserts
nothing but the truth. jQuery has really changed the way millions of developers
and designers write their code. Its use is so widespread that, according to the
latest BuiltWith statistics (as of April 2015), jQuery is used by 63% of the top
million websites (http://trends.builtwith.com/javascript/jQuery). The previously
cited Moo Tools library, its nearest competitor, has a usage of just 3% (http://trends
.builtwith.com/javascript/MooTools), while Prototype has a mere 2.5% (http://
trends.builtwith.com/javascript/Prototype).

 jQuery is used by some of the most important companies and websites in the
world, such as Microsoft, Amazon, Dell, Etsy, Netflix, Best Buy, Instagram, Fox News,
GoDaddy, and many more. If you had any doubts about jQuery, this data should con-
vince you that it’s a stable and reliable library that you can use in your projects.

 This book covers many aspects of the library starting from basic concepts, like
selectors and the methods to traverse the Document Object Model (DOM), to more
advanced ones, like extending the functionalities (creating plugins), improving the
performances of your code, and testing. It assumes you have a minimal knowledge of
JavaScript. If you need a refresher, take a look at the appendix. If you’re unfamiliar
with the language, you may find this text too tough, so we encourage you to study it
and then come back. We’ll wait here.

 Are you back? Glad to see you again! Let’s start from the beginning—that is, dis-
cussing what jQuery has to offer you and how it can help you in your web develop-
ment process.

1.1 Write less, do more
jQuery’s motto is “Write less, do more.” If you’ve spent any time at all trying to add
dynamic functionality to your pages, you’ve found that performing simple tasks using
raw JavaScript can result in dozens of lines of code (LoC). The creator of jQuery spe-
cifically created this library to make common tasks trivial and easy to learn, solving
issues caused by browser incompatibilities.

 For example, anyone who has dealt with radio groups in JavaScript knows that it’s a
lesson in tedium to discover which radio element of a radio group is currently
checked and to obtain its value attribute. The radio group needs to be located, and
the resulting set of radio elements must be inspected, one by one, to find out which
element has its checked attribute set. This element’s value attribute can then be
obtained.
www.EBooksWorld.ir

http://trends.builtwith.com/javascript/jQuery
http://trends.builtwith.com/javascript/MooTools
http://trends.builtwith.com/javascript/MooTools
http://trends.builtwith.com/javascript/Prototype
http://trends.builtwith.com/javascript/Prototype

5Write less, do more
 To be compatible with Internet Explorer 6 and above (if you ignore some older
browsers, a better approach exists), such code might be implemented as follows:

var checkedValue;
var elements = document.getElementsByTagName('input');
for (var i = 0; i < elements.length; i++) {
 if (elements[i].type === 'radio' &&
 elements[i].name === 'some-radio-group' &&
 elements[i].checked) {
 checkedValue = elements[i].value;
 break;
 }
}

Contrast that with how it can be done using jQuery:

var checkedValue =
 jQuery('input:radio[name="some-radio-group"]:checked').val();

Don’t worry if that looks a bit cryptic right now. In short order, you’ll understand how
it works, and you’ll be whipping up your own terse—but powerful—jQuery statements
to make your pages come alive. The point we want to show here is how the library can
turn a lot of lines of code into just one.

 What makes the previous jQuery statement so short is the power of the selector, an
expression used to identify target elements on a page. It allows you to easily locate and
grab the elements that you need; in this case, the checked element in the radio group.
If you haven’t downloaded the example code yet, now would be a great time to do so.
It can be obtained from a link on this book’s web page at http://www.manning.com/
derosa. Unpack the code and load into your browser the HTML page that you find in
the file chapter-1/radio.group.html. This page, shown in figure 1.1, uses the jQuery
statement that we just examined to determine which radio button has been checked.

 This example shows you how simple and concise code written using jQuery can be.
This isn’t the only real power of jQuery; otherwise we could have thrown it out the
window a long time ago. Nonetheless, one of its great strengths is the ability to retrieve
elements using complex selectors without worrying about cross-browser compatibility,
especially in older browsers.

 When you perform a selection, you’re relying on two things: a method and a selec-
tor. Today the latest versions of all major browsers support native methods for element
selection like document.querySelector() and document.querySelectorAll(). They
allow you to use more complex selectors instead of the usual selection by ID or class.

Figure 1.1 Determining which radio
button is checked is easy to accomplish
in one statement with jQuery!
www.EBooksWorld.ir

http://www.manning.com/derosa
http://www.manning.com/derosa

6 CHAPTER 1 Introducing jQuery
In addition, the new CSS3 selectors are widely supported among modern browsers. If
you aimed to support only modern browsers, and the capabilities of jQuery lay only in
selecting elements, you would have enough power to avoid the overhead introduced
by the library in your website. The fact that a lot of people still rely on older browsers,
which you may have to support, can be a real pain because you have to deal with all
the inconsistencies. This is one of the main reasons to employ jQuery. It allows you to
reliably use its selectors without the worry of code not working in browsers that don’t
support them natively.

NOTE If you’re wondering what browsers are considered modern today, they
are Internet Explorer 10 and above and the latest versions of Chrome, Opera,
Firefox, and Safari.

Still not convinced? Here’s a list of issues that you’ll have to tackle on your own if you
don’t use jQuery: http://goo.gl/eULyPT. In addition, as we outlined, the library is
much more than that, as you’ll discover in the rest of the book.

 Let’s now examine how JavaScript should be used on your pages.

1.2 Unobtrusive JavaScript
You may recall the bad-old days before CSS, when you were forced to mix stylistic
markup with the document structure markup in your HTML pages. Anyone who’s
been authoring pages for any amount of time surely does, most likely with less than
fondness.

 The addition of CSS to your web development toolkits allows you to separate stylis-
tic information from the document structure and gives travesties like the tag
the well-deserved boot. Not only does the separation of style from structure make your
documents easier to manage, but it also gives you the versatility to completely change
the stylistic rendering of a page by swapping out different style sheets.

 Few of you would voluntarily regress to the days of applying styles with HTML ele-
ments, yet markup such as the following is still all too common:

<button onclick="document.getElementById('xyz').style.color='red';">
 Click Me
</button>

You can easily see that the style of this button element isn’t applied via the use of the
 tag and other deprecated style-oriented markup. It’s determined by whatever,
if any, CSS rules (not shown here) that are in effect on the page. Although this decla-
ration doesn’t mix style markup with structure, it does mix behavior with structure. It
includes the JavaScript to be executed when the button is clicked as part of the
markup of the button element via the onclick attribute (which, in this case, changes
the color of a DOM element with the ID value of xyz into red). Let’s examine how you
might improve this situation.
www.EBooksWorld.ir

http://goo.gl/eULyPT

7Unobtrusive JavaScript
1.2.1 Separating behavior from structure

For all the same reasons that it’s desirable to segre-
gate style from structure within an HTML document,
it’s just as beneficial (if not more so) to separate the
behavior from the structure. Ideally, an HTML page
should be structured as shown in figure 1.2, with
structure, style, and behavior each partitioned nicely
in its own niche.

 This strategy, known as unobtrusive JavaScript, is
now embraced by every major JavaScript library, help-
ing page authors achieve this useful separation on
their pages. As the library that popularized this move-
ment, jQuery’s core is well optimized for producing
unobtrusive JavaScript easily. Unobtrusive JavaScript
considers any JavaScript expressions or statements
placed within or among HTML tags in the <body> of
HTML pages, either as attributes of HTML elements
(such as onclick) or in script blocks placed any-
where other than the very end of the body of the
page, to be incorrect.

 “But how can I instrument the button without the onclick attribute?” you might
ask. Consider the following change to the button element:

<button id="test-button">Click Me</button>

Much simpler! But now, you’ll note, the button doesn’t do anything. You can click it
all day long, and no behavior will result. Let’s fix that.

1.2.2 Segregating the script

Rather than embedding the button’s behavior in its markup, you’ll segregate the
script by moving it to a script block. Following the current best practices, you should
place it at the bottom of the page before the closing body tag (</body>):

<script>
 document.getElementById('test-button').addEventListener(
 'click',
 function() {
 document.getElementById('xyz').style.color = 'red';
 },
 false
);
</script>

Because you’re placing the script at the bottom of the page, you don’t need to use a
handler attached to the onload event of the window object, like developers (errone-
ously) use to do in the past, or wait for the DOMContentLoaded event, which is only

STYLE
Local style elements

and imported style sheets

<html>
 <head>

STRUCTURE
HTML structural

elements

BEHAVIOR
Local script elements

and imported script files

 </head>
 <body>

 </body>
</html>

Figure 1.2 With structure, style,
and behavior each neatly tucked
away within a page, readability and
maintainability are maximized.
www.EBooksWorld.ir

8 CHAPTER 1 Introducing jQuery
available in modern browsers. The DOMContentLoaded event is fired when the HTML
document has been completely loaded and parsed, without waiting for stylesheets,
images, and so on to finish loading. The load event is fired when an HTML page and
its dependent resources have finished loading (we’ll return to this topic in
section 1.5.3). By placing the script at the bottom of the page, when the browser
parses the statement, the button element exists because its markup has been parsed,
so you can safely augment it.

NOTE For performance reasons, script elements should always be placed at
the bottom of the document body. The first reason is to allow progressive ren-
dering, and the second is to have greater download parallelization. The moti-
vation behind the first is that rendering is blocked for all content below a
script element. The reason behind the second is that the browser won’t start
any other downloads, even on a different hostname, if a script element is
being downloaded.

The previous snippet is another example of code that isn’t 100% compatible with the
browsers your project might be targeting. It uses a JavaScript method, addEvent-
Listener(), that’s not supported by Internet Explorer 6–8. As you’ll learn later on in
this book, jQuery helps you in solving this problem, too.

 Unobtrusive JavaScript, though a powerful technique to add to the clear separa-
tion of responsibilities within a web application, doesn’t come without a price. You
might already have noticed that it took a few more lines of script to accomplish your
goal than when you placed it into the button markup. Unobtrusive JavaScript may
increase the line count of the script that needs to be written, and it requires some dis-
cipline and the application of good coding patterns to the client-side script.

 But none of that is bad; anything that persuades you to write your client-side code
with the same level of care and respect usually allotted to server-side code is a good
thing! But it is extra work—without jQuery, that is.

 jQuery is specifically focused on the task of making it easy and delightful for you to
code your pages using unobtrusive JavaScript techniques, without paying a hefty price
in terms of effort or code bulk. You’ll find that making effective use of jQuery will
enable you to accomplish much more on your pages while writing less code. The
motto is still “Write less, do more,” isn’t it? Without further ado, let’s start looking at
how jQuery makes it so easy for you to add rich functionality to your pages without the
expected pain.

1.3 Installing jQuery
Now that you know what jQuery is and what it can do for you, you need to download the
library to start getting your hands dirty. To download it, please visit the page http://
jquery.com/download/. Once there, you’ll probably be overwhelmed by the plethora
of options available. Branch 1.x, 2.x, or 3.x? Compressed or uncompressed? Download
it or use a content delivery network (CDN)? Which one to choose depends on several
factors. To make a conscious choice, let’s uncover the differences.
www.EBooksWorld.ir

http://jquery.com/download/
http://jquery.com/download/

9Installing jQuery
1.3.1 Choosing the right version

In April 2013, the jQuery team introduced version 2.0 with the intention of looking at
the future of the web instead of its past, especially from the browser’s perspective.
Until that point, jQuery supported all of the latest versions of Chrome, Firefox, Safari,
Opera, and Internet Explorer starting from version 6. With the introduction of ver-
sion 2.0, the team decided to leave behind the older Internet Explorer 6, 7, and 8
browsers to focus on the web as it will be, not as it was.

 This decision caused the deletion of a bunch of code created to solve browser
incompatibilities and missing features in those prehistoric browsers. The fulfillment
of this task resulted in a smaller (-12%) and faster code base. Although 1.x and 2.x are
two different branches, they have a strict relation. There’s feature parity between
jQuery version 1.10 and 2.0, version 1.11 and 2.1, and so on.

 In October 2014, Dave Methvin, the president of the jQuery Foundation (the
foundation that takes care of jQuery and other projects—https://jquery.org/), pub-
lished a blog post (http://blog.jquery.com/2014/10/29/jquery-3-0-the-next-genera-
tions/) where he publicly announced the plan to release a new major version of
jQuery: jQuery 3. In the same way version 1.x supports old browsers while 2.x targets
modern browsers, jQuery 3 is split into two versions. jQuery Compat 3 is the successor
of 1.x, whereas jQuery 3 is the successor of 2.x. He further explained:

We’ll also be re-aligning our policy for browser support starting with these
releases. The main jQuery package remains small and tight by supporting
the evergreen browsers (the current and previous versions of a specific
browser) that are common at the time of its release. We may support
additional browsers in this package based on market share. The jQuery
Compat package offers much wider browser support, but at the expense of
a larger file size and potentially lower performance.

With the new version, the team also took the opportunity to drop the support for
some browsers, fix many bugs, and improve several features.

 The first factor to consider when deciding which version to use is which browsers
your project must support. Table 1.1 describes the browsers supported by each major
version of jQuery.

Table 1.1 An overview of the browsers supported by the major versions of jQuery

Browsers jQuery 1 jQuery 2 jQuery Compat 3 jQuery 3

Internet Explorer 6+ 9+ 8+ 9+

Chrome Current and previous Current and previous Current and previous Current and previous

Firefox Current and previous Current and previous Current and previous Current and previous

Safari 5.1+ 5.1+ 7.0+ 7.0+

Opera 12.1x
Current and previous

12.1x
Current and previous

Current and previous Current and previous
www.EBooksWorld.ir

https://jquery.org/
http://blog.jquery.com/2014/10/29/jquery-3-0-the-next-generations/
http://blog.jquery.com/2014/10/29/jquery-3-0-the-next-generations/

10 CHAPTER 1 Introducing jQuery
As you can see from the table, there’s a certain degree of overlap in regard to the
browser versions supported. But keep in mind that what’s referred to as “Current and
previous” (meaning the current and preceding version of a browser at the time a new
version of jQuery is released) changes based on the release date of the new version of
jQuery.

 Another important factor to base your decision on is where you’ll use jQuery. Here
are some use cases that can help you in your choice:

 Websites that don’t need to support older versions of Internet Explorer, Opera,
and other browsers can use branch 3.x. This is the case for websites running in
a controlled environment such as a company local network.

 Websites that need to target an audience as wide as possible, such as a govern-
ment website, should use branch 1.x.

 If you’re developing a website that needs to be compatible with a wider audi-
ence but you don’t have to support Internet Explorer 6–7 and old versions of
Opera and Safari, you should use jQuery Compat 3.x.

 If you don’t need to support Internet Explorer 8 and below, but you have to
support old versions of Opera and Safari, you should use jQuery 2.x.

 Mobile apps developed using PhoneGap or similar frameworks can use jQuery
3.x.

 Firefox OS or Chrome OS apps can use jQuery 3.x.
 Websites that rely on very old plugins, depending on the actual code of the plu-

gins, may be forced to use jQuery 1.x.

In summary, two of the factors are where you’re going to use the library and which
browsers you intend to support.

 Another source of confusion could be the choice between the compressed (also
referred to as minified) version, intended for the production stage, or the uncom-
pressed version, intended for the development stage (see the comparison in
figure 1.3). The advantage of the minified library is the reduction in size that leads to
bandwidth savings for the end users. This reduction is achieved by removing the use-
less spaces (indentation), removing the code’s comments that are useful for developers
but ignored by the JavaScript engines, and shrinking the names of the variables (obfus-
cation). These changes produce code that’s harder to read and debug—which is why
you shouldn’t use this version in development—but smaller in size.

iOS 6.1+ 6.1+ 7.0+ 7.0+

Android 2.3
4.0+

2.3
4.0+

2.3
4.0+

2.3
4.0+

Table 1.1 An overview of the browsers supported by the major versions of jQuery (continued)

Browsers jQuery 1 jQuery 2 jQuery Compat 3 jQuery 3
www.EBooksWorld.ir

11Installing jQuery
In this book we’ll use jQuery 1.x as a base to let you test your code in the widest range
of possible browsers, but we’ll highlight all the differences introduced by jQuery 3 so
that your knowledge will be as up to date as possible.

 Choosing the right version of jQuery is important, but we also cited the difference
between hosting jQuery locally or using a CDN.

1.3.2 Improving performances using a CDN

Today it’s common practice to serve files like images and libraries through a content
delivery network to improve the performance of a website. A CDN is a distributed system
of servers created to offer content with high availability and performance. You might
be aware that browsers can download a fixed set of contents, usually from four to eight
files, from a host at the same time. Because the files served using a CDN are provided
from a different host, you can speed up the whole loading process, increasing the
number of files downloaded at a time. Besides, a lot of today’s websites use CDNs, so
there’s a higher probability that the required library is already in the user’s browser
cache. Employing a CDN to load jQuery doesn’t guarantee better performance in
every situation because there are many factors that come into play. Our advice is to
test which configuration best suits your specific case.

Uncompressed

Compressed

Figure 1.3 At the top, a snippet taken from the jQuery's source code that shows you the uncompressed version
format. At the bottom, the same snippet minified to be used in production.
www.EBooksWorld.ir

12 CHAPTER 1 Introducing jQuery
 Nowadays there are several CDNs you can rely on to include jQuery, but the most
reliable are the jQuery CDN (http://code.jquery.com), the Google CDN (https://
developers.google.com/speed/libraries/devguide), and the Microsoft CDN (http://
www.asp.net/ajaxlibrary/cdn.ashx).

 Let’s say you want to include the compressed version of jQuery 1.11.3 using the
jQuery CDN. You can do that by writing the following code:

<script src="//code.jquery.com/jquery-1.11.3.min.js"></script>

As you may have noticed, this code doesn’t specify the protocol to use (either HTTP or
HTTPS). Instead, you’re specifying the same protocol used in your website. But keep
in mind that using this technique in a page that doesn’t run on a web server will cause
an error.

 Using a CDN isn’t all wine and roses, though. No server or network has 100%
uptime on the internet, and CDNs are no exception. If you rely on a CDN to load
jQuery, in the rare situations where it’s down or not accessible and the visitor’s
browser doesn’t have a cached copy, your website’s code will stop working. For critical
applications this can be a real problem. To avoid it, there’s a simple and smart solu-
tion you can adopt, employed by a lot of developers. Once again, you want to include
the minified version of jQuery 1.11.3, but now you’ll use this smart solution:

<script src="//code.jquery.com/jquery-1.11.3.min.js"></script>
<script>window.jQuery || document.write('<script src="javascript/jquery-

1.11.3.min.js"><\/script>');</script>

The idea behind this code is to request a copy of the library from a CDN and check if
it has been loaded, testing whether the jQuery property of the window object is
defined. If the test fails, you inject a code that will load a local hosted copy that, in this
specific example, is stored in a folder called javascript. If the jQuery property is pres-
ent, you can use jQuery’s methods safely without the need to load the local hosted
copy.

 You test for the presence of the jQuery property because, once loaded, the library
adds this property. In it you can find all the methods and properties of the library.
During the development process, we suggest that you use a local copy of jQuery to
avoid any connectivity problems.

 In addition to the jQuery property, you’ll also find a shortcut called $ that you’ll see
a lot in the wild and in this book. Although it may seems odd, in JavaScript a variable
or a property called $ is allowed. We called $ a shortcut because it’s actually the same
object of jQuery as proved by this statement taken from the source code:

window.jQuery = window.$ = jQuery;

So far, you’ve learned how to include jQuery in your web pages but you know nothing
about how it’s structured. We’ll look at this topic in the next section.
www.EBooksWorld.ir

13How jQuery is structured
1.4 How jQuery is structured
The jQuery repository (https://github.com/jquery/jquery), hosted on GitHub, is a
perfect example of how front-end development has changed over the past years.
Although not strictly related to the use of the library itself, it’s always important to
know how expert developers organize their workflow and the tools they employ.

 If you’re an experienced front-end developer, chances are you’re already aware of
some, if not all, of these tools, but a refresher is always worthwhile. The development
team adopted the latest and coolest technologies in today’s front-end panorama for
the development of jQuery, specifically these:

 Node.js (http://nodejs.org)—A platform built on Chrome’s JavaScript runtime
that enables you to run JavaScript as a server-side language.

 npm (https://npmjs.org)—The official package manager for Node.js used to
install packages like Grunt and its tasks.

 Grunt (http://gruntjs.com)—A task runner to automate common and repeti-
tive tasks such as building, testing, and minification.

 Git (http://git-scm.com)—A free, distributed version control system to keep
track of changes in the code. It allows easy collaboration between developers.

On the other hand, jQuery’s source code follows the asynchronous module definition
(AMD) format. The AMD format is a proposal for defining modules where both the
module and its dependencies can be asynchronously loaded. In practice, this means
that although you use jQuery as a unique, single block, its source is split into several
files (modules), as shown in figure 1.4. The dependencies relative to these files are
managed through the use of a dependencies manager—in this case, RequireJS.

ajax ajax/xhr ajax/script ajax/jsonp css

deprecated dimensions effects event

jQuery

event/alias offset wrap core/ready

deferred Sizzle
exports/
global

exports/
amd

Figure 1.4 A schema representing jQuery’s modules: ajax, ajax/xhr, ajax/script,
ajax/jsonp, css, deprecated, dimensions, effects, event, event/alias,
offset, wrap, core/ready, deferred, exports/global, exports/amd, and Sizzle
www.EBooksWorld.ir

http://nodejs.org
https://npmjs.org
http://gruntjs.com
http://git-scm.com

14 CHAPTER 1 Introducing jQuery
 To give you an idea of what’s inside the modules, here are some examples:

 ajax—Contains all the Ajax functions like ajax(), get(), and post().
 deprecated—Contains all the currently deprecated methods that haven’t been

removed. What’s inside this module depends on the jQuery version.
 effects—Contains the methods that allow animations like animate() and

slideUp().
 event—Contains the methods to attach event handlers to browser events like

on() and off().

The organization into modules of the source leads to another advantage: the possibil-
ity of building a custom version of jQuery containing only the modules you need.

1.4.1 Save space creating your own custom build

jQuery offers you the possibility of building your own custom version of the library,
containing only the functionalities you need. This allows you to reduce the weight of
your library, which will lead to a performance improvement because the end user has
fewer KBs to download.

 The ability to eliminate the modules you don’t need is important. Although you
might think that you’ll need all the power that jQuery brings to the table, it’s doubtful
that you’ll use all of its functions in the same website. Why not remove those useless
lines of code to improve the performance of your website?

 You can use Grunt to create a custom version. Imagine that you need a minified
version of jQuery 1.11.3 with all the functionalities (except the deprecated methods
and properties) and the effects. To perform this task, you need to install Node.js,
Git, and Grunt on your local machine. After installing them, you have to clone
jQuery’s repository by running the following command using the command-line
interface (CLI):

git clone git://github.com/jquery/jquery.git

Once the cloning process is complete, enter these last two commands:

npm install
grunt custom:-deprecated,-effects

You’re finished! Inside the folder named dist you’ll find your custom jQuery build in
both minified and non-minified versions.

 This approach doesn’t come without drawbacks, though. The first issue arises
when a new version of jQuery is released. The second arises when a new functionality
of your website requires a feature contained in a module that wasn’t previously
included. In these cases, you need to again perform the steps described previously
(usually only the commands) to create a new custom version that includes the new
methods, bug fixes, or the missing module.

 Now that you know how to put the library in place and how to create a custom
build, it’s time to delve into jQuery’s fundamentals.
www.EBooksWorld.ir

15jQuery fundamentals
1.5 jQuery fundamentals
At its core, jQuery focuses on retrieving elements from HTML pages and performing
operations on them. If you’re familiar with CSS, you’re already well aware of the power
of selectors, which describe groups of elements by their type, attributes, placement
within the document, and much more. With jQuery, you can employ that knowledge
and that degree of power to vastly simplify your JavaScript.

 jQuery places a high priority on ensuring that code will work consistently across all
major browsers; many of the harder JavaScript problems have been silently solved for
you. Should you find that the library needs a bit more juice, jQuery has a simple but
powerful way for extending its functionality via plugins, which we’ll discuss in detail in
chapter 12.

 Let’s start by taking a look at the jQuery object itself and how you can use your CSS
knowledge to produce powerful yet terse code.

1.5.1 Properties, utilities, and methods

As we said before, the jQuery library is exposed through a property called jQuery and
a shortcut called $. Using them gives you access to the properties, methods, and func-
tions that jQuery provides.

 One of the properties exposed by the jQuery property is fx.off. It allows enabling
or disabling effects executed using jQuery’s methods. We’ll discuss this and other
properties in detail in chapter 9.

 Much more exciting are the utilities, also referred to as utility functions. You can
think of them as a handful of commonly used, general-purpose functions that are
included in the library. You could say that jQuery acts as a namespace for them.

 To give you a basic idea of what they are, let’s look at an example. One of the utili-
ties available is the function for trimming strings. Its aim is to remove whitespaces
from the beginning and the end of a string. A call to it could look like this:

var trimmed = $.trim(someString);

If the value of someString is “ hello ”, the result of the $.trim() call will be “hello”.
As you can see, in this example we used the jQuery shortcut ($). Remember that it’s
an identifier like any other in JavaScript. Writing a call to the same function using the
jQuery identifier, rather than its alias, will result in this code:

var trimmed = jQuery.trim(someString);

Another example of a utility function is $.isArray(), which, as you may guess, tests if
a given argument is an array.

 In addition to properties and functions, the library also exposes methods that are
available once you call the jQuery() function. Let’s learn more.

1.5.2 The jQuery object

The first function you’ll use in your path to learn jQuery is jQuery(). It accepts up to
two arguments, and, depending on their number and type, performs different tasks.
www.EBooksWorld.ir

16 CHAPTER 1 Introducing jQuery
Like many other (almost all) methods in the library, it allows for chaining. Chaining is
a programming technique used to call several methods in a single statement. Instead
of writing

var obj = new Obj();
obj.method();
obj.anotherMethod();
obj.yetAnotherMethod();

you can write

var obj = new Obj();
obj.method().anotherMethod().yetAnotherMethod();

The most common use of jQuery() is to select elements from the DOM so you can
apply some changes to them. In this case, it accepts two parameters: a selector and
(optionally) a context. This function returns an object containing a collection of DOM
elements that match the given criteria. But what’s a selector?

 When CSS was introduced to web technologies in order to separate design from
content, a way was needed to refer to groups of page elements from external style
sheets. The method developed was to use selectors, which concisely represent ele-
ments based on their type, attributes, or position within the HTML document. Those
familiar with XML might be familiar with XPath (more on this here: http://
www.w3.org/TR/xpath20/) as a means to select elements within an XML document.
CSS selectors represent an equally powerful concept but are tuned for use within
HTML pages, are a bit more concise, and are generally considered easier to under-
stand.

 jQuery makes use of the same selectors as CSS. It supports not only the widely
implemented ones belonging to CSS2.1 but also the more powerful selectors defined
in CSS3. This is important because some of them may not be fully implemented by all
browsers or may never make their appearance (for example, in older versions of Inter-
net Explorer). As if this were not enough, jQuery also has its own selectors and allows
you to create your own custom selectors.

 In this book you’ll be able to use your existing knowledge of CSS to get up and run-
ning fast, and then you’ll learn about the more advanced selectors that jQuery sup-
ports. If you have little knowledge of them, don’t worry. We’ll cover jQuery selectors in
great detail in chapter 2, and you can find a full list of them on the jQuery site at
http://api.jquery.com/category/selectors/.

 Let’s say you want to select all the <p>s in the page using jQuery(). To do this, you
can write

var paragraphs = jQuery('p');

The library searches for matching elements within the DOM starting from the docu-
ment root, so for a huge number of elements the process can be slow.
www.EBooksWorld.ir

17jQuery fundamentals
 In most cases, you can speed up the search using the context parameter. It’s used
to restrict the process to one or more subtrees, depending on the selector used. To
understand it, you’ll modify the previous example.

 Let’s say that you want to find all the <p>s contained in a <div>. Contained doesn’t
mean the <div> must be the parent of the <p>; it can also be a generic ancestor. You
can achieve this task as shown below:

var paragraphsInDiv = jQuery('p', 'div');

Using the jQuery alias, the same statement will look like this:

var paragraphsInDiv = $('p', 'div');

When you use the second argument, jQuery first collects elements based on this selec-
tor called context and then retrieves the descendants that match the first parameter,
selector. We’ll discuss this topic in more detail in chapter 2.

 As we said, the jQuery() function (and its alias $()) returns a JavaScript object
containing a set of DOM elements that match the selector, in the order in which
they’re defined within the document. This object possesses a large number of useful
predefined methods that can act on the collected group of elements. We’ll use the
term jQuery collection, jQuery object, or jQuery set (or other similar expressions) to refer
to this returned JavaScript object that contains the set of matched elements that can
be operated on with the methods defined by jQuery. Based on this definition, the pre-
vious paragraphsInDiv variable is a jQuery object containing all the paragraphs that
are descendants of a div element. You’ll use jQuery objects extensively when you need
to perform operations, like running a certain animation or applying a style, on several
elements in the page.

 As mentioned earlier, one important feature of a large number of these methods,
which we often refer to as jQuery methods, is that they allow for chaining. After a
method has completed its work, it returns the same group of elements it acted on,
ready for another action. As things get progressively more complicated, making use of
jQuery’s chainability will continue to reduce the lines of code necessary to produce
the results you want.

 In the previous section, we highlighted the advantages of placing the JavaScript
code at the bottom of the page. For many years now, developers have placed the
scripts elements in the <head> of the page, relying on a jQuery method called
ready(). This approach is now discouraged, but many developers still use it. In the
next section you’ll learn more about it and also discover what the suggested approach
is today.

1.5.3 The document ready handler

When embracing unobtrusive JavaScript, behavior is separated from structure. Apply-
ing this principle, you perform operations on the page elements outside the docu-
ment markup that creates them. In order to achieve this, you need a way to wait until
the DOM elements of the page are fully realized before those operations execute.
www.EBooksWorld.ir

18 CHAPTER 1 Introducing jQuery
 In the radio group example, the entire body has to be loaded before the behavior
can be applied. Traditionally, the onload handler for the window instance is used for
this purpose, executing statements after the entire page is fully loaded. The syntax is
typically something like this:

window.onload = function() {
 // do stuff here
};

This causes the defined code to execute after the document has fully loaded. Unfortu-
nately, the browser not only delays executing the onload code until after the DOM tree
is created but also waits until all external resources are fully loaded and the page is dis-
played in the browser window. This includes resources like images as well as Quick-
Time and Flash videos embedded in web pages. As a result, visitors can experience a
serious delay between the time that they first see the page and the time that the
onload script is executed.

 Even worse, if an image or other resource takes significant time to load, visitors will
have to wait for the image loading to complete before the rich behaviors become
available. This could make the whole unobtrusive JavaScript proposition a nonstarter
for many real-life cases.

 A much better approach would be to wait only until the document structure is fully
parsed and the browser has converted the HTML into its resulting DOM tree before
executing the script to apply the rich behaviors. Accomplishing this in a cross-browser
manner that takes into account older browsers is somewhat difficult, but jQuery pro-
vides a simple means to trigger the execution of code once the DOM tree has loaded
(without waiting for external resources).

 The formal syntax to define such code is as follows:

jQuery(document).ready(function() {
 // Your code goes here...
});

First, you wrap the document object using the jQuery()
function, and then you call the ready() method, passing a
function to be executed when the document is ready to be
manipulated. This means that inside the function passed
to ready() you can safely access all of the elements of your
page. A schema of the mechanism described is shown in
figure 1.5.

 We called that the formal syntax for a reason; a short-
hand form is as follows:

jQuery(function() {
 // your code hoes here...
});

By passing a function to jQuery() or its alias $(), you
instruct the browser to wait until the DOM has fully loaded

Handler executed

Page downloaded

HTML parsed

DOM created

Document ready fired

Figure 1.5 A representation
of the steps performed by
browsers before the
document-ready handler is
executed
www.EBooksWorld.ir

19Summary
(but only the DOM) before executing the code. Even better, you can use this tech-
nique multiple times within the same HTML document, and the browser will execute
all of the functions you specify in the order in which they’re declared within the page.

 In contrast, the window’s onload technique allows for only a single function. This
limitation can also result in hard-to-find bugs if any included third-party code uses the
onload mechanism for its own purpose (not a best-practice approach).

 Using the document-ready handler is a good way to embrace the unobtrusive
JavaScript technique, but its use isn’t mandatory and can be avoided.

 Because ready() takes care to execute the code after the DOM is loaded, develop-
ers used to place the script elements in the <head> of the page. As we discussed in
section 1.2.2, “Segregating the script,” you can place them just before the closing body
tag (</body>). By doing so, you can completely avoid the use of $(document)
.ready() because at that point all of the other elements are already in the DOM.
Therefore, you can retrieve and use them safely. If you want to see an example of
how $(document).ready() can be avoided, take a look at the source code of the file
chapter-1/radio.group.html.

 In the remainder of this book we’ll stick with the current best practices, so you
won’t use ready().

1.6 Summary
We’ve covered a great deal of material in this whirlwind introduction to jQuery. To
summarize, it’s generally useful for any page that needs to perform anything but the
most trivial of JavaScript operations. It’s also strongly focused on enabling page
authors to employ the concept of unobtrusive JavaScript within their pages. With this
approach, behavior is separated from structure in the same way that CSS separates
style from structure, achieving better page organization and increased code versatility.

 Despite the fact that jQuery introduces only two new names in the JavaScript
namespace—the self-named jQuery function and its $ alias—the library provides a
great deal of functionality by making that function highly versatile, adjusting the oper-
ation that it performs based on the parameters passed to it.

 We mentioned how well the repository of the library and the code in general are
organized. We also paid great attention to the several available versions of the library
and their differences in order to be able to make a conscious choice. Performance is
an important factor to consider, so we described the possibilities you have to reduce
the added overhead to a minimum by including a library in your pages. Using CDNs
and customizing the modules that you want are an amazing way to speed up the down-
load of jQuery.

 In the chapters that follow, we’ll explore all the features that jQuery has to offer
you as a web developer. We’ll begin our tour in the next chapter as you learn how to
use jQuery selectors to quickly and easily identify the elements that you wish to act on.
www.EBooksWorld.ir

www.EBooksWorld.ir

Part 2

Core jQuery

Many years have passed since John Resig presented jQuery to the world.
Fewer but still quite a few years are behind us since jQuery was only a library to
manipulate the DOM. During this time jQuery has created an entire ecosystem
around itself consisting of companion libraries and other projects such as these:

 jQuery UI—A library consisting of a set of user interface interactions,
effects, widgets, and themes to help you create amazing user interfaces

 jQuery Mobile—An HTML5-based user interface system for all popular
mobile device platforms, to help you create beautiful designs for mobile
devices

 QUnit—A JavaScript unit-testing framework used by all the other jQuery
projects

 Plugins—The plugins published on npm (https://www.npmjs.com/) and
the myriad of other plugins spread across the web that people have cre-
ated to cover those use cases not covered by jQuery or to improve its func-
tionalities

In part 2 of this book, we’ll cover the core library from stem to stern. When you
finish these chapters, you’ll thoroughly know the jQuery library and be ready to
tackle any web project armed with one of the most powerful client-side tools
available. So turn the page, dig in, and get ready to learn how to breathe life into
your web applications in a way that’s not only easy but fun!
www.EBooksWorld.ir

https://www.npmjs.com/

www.EBooksWorld.ir

Selecting elements
In this chapter, we’ll examine in great detail how the DOM elements to be acted
upon are identified by looking at one of the most powerful and frequently used
capabilities of jQuery’s $() function: the selection of DOM elements via selectors.
Throughout the pages of this chapter, you’ll become familiar with the plethora of
selectors available. jQuery not only provides full support for all the CSS selectors
but also introduces other ones. We’ll also introduce you to filters, many of which are
special jQuery-only selectors that usually work with other types of selectors to fur-
ther reduce a set of matched elements. As if this weren’t enough, you’ll learn how
to create custom filters (also referred to as custom selectors or custom pseudo-selectors) in
case your pages need one the library doesn’t support. We’ll also discuss context,
the second parameter of the $() function, and describe the implications of its use.

This chapter covers
 Selecting elements with jQuery by using CSS

selectors

 Discovering the unique jQuery-only filters

 Developing custom filters

 Learning the context parameter of the jQuery()
function
23

www.EBooksWorld.ir

24 CHAPTER 2 Selecting elements
 A good number of the capabilities required by interactive web applications are
achieved by manipulating the DOM elements that make up the pages. But before they
can be manipulated, they need to be identified and selected. This and the next chap-
ter provide you with the concepts to select elements. In the previous edition of this
book, they were a unique chapter because their contents are highly related, but we
decided to split them to help you digest the huge number of concepts described. Note
that, despite the split, this chapter is still pretty long and terse. You may expect to go
through it several times before mastering all its concepts. With this last note in mind,
let’s begin our detailed tour of the many ways that jQuery lets you specify which ele-
ments are to be targeted for manipulation.

2.1 Selecting elements for manipulation
The first thing you need to do when using virtually any jQuery method is to select
some document elements to act upon. As you learned in chapter 1, to select elements
in a page using jQuery, you need to pass the selector to the jQuery() function (or its
alias $()). The jQuery() function and its alias return a jQuery object containing a set
of DOM elements that match the given criteria and also expose many of jQuery’s
methods and properties.

 Sometimes the set of elements you want to select will be easy to describe, such as “all
paragraph elements on the page.” Other times they’ll require a more complex descrip-
tion like “all list elements that have the class list-element, contain a link, and are first
in the list.” Fortunately, jQuery provides a robust selector syntax you can use to easily
specify sets of elements elegantly and concisely. You probably already know a big chunk
of the syntax. jQuery uses the CSS syntax you already know and love and extends it with
some custom means to perform both common and complex selections.

 To help you learn about element selection, we’ve put together a jQuery Selectors
Lab Page that’s available in the downloadable code examples for this book (in the file
chapter-2/lab.selectors.html). The Selectors Lab allows you to enter a jQuery selector
string and see (in real time!) which DOM elements get selected. When displayed, the
lab should look as shown in figure 2.1.

TIP If you haven’t yet downloaded the example code, you really ought to do
so now—the information in this chapter will be much easier to absorb if you
follow along with the lab exercises. Visit this book’s web page at http://
www.manning.com/derosa to find the download link, or go to https://github
.com/AurelioDeRosa/jquery-in-action.

The Selector Panel at the top left contains a text box and a button. To run a lab
“experiment,” type a selector into the text box and click the Apply button. Go ahead
and type the string li into the box and click Apply.

 The selector that you type (in this case li) is applied to the HTML fragment loaded
into the DOM Sample pane at the upper right. The lab code that executes when you
click Apply adds a class named found-element to all the matching elements. A CSS
declaration defined for the page causes all elements with that class to be highlighted
www.EBooksWorld.ir

https://github.com/AurelioDeRosa/jquery-in-action
https://github.com/AurelioDeRosa/jquery-in-action
http://www.manning.com/derosa
http://www.manning.com/derosa

25Selecting elements for manipulation
with a black border and gray background. After clicking Apply, you should see the dis-
play shown in figure 2.2, in which all li elements in the DOM sample are highlighted.
In addition, the executed jQuery statement, as well as the tag names of the selected
elements, is displayed below the Selector text box. The HTML markup used to render
the DOM sample fragment is displayed in the lower pane, labeled “DOM Sample
Code.” This should help you experiment with writing selectors targeted at the ele-
ments in this sample.

Figure 2.1 The jQuery Selectors Lab Page allows you to observe the behavior of any selector you
choose in real time.
www.EBooksWorld.ir

26 CHAPTER 2 Selecting elements
We’ll talk more about using this lab as we progress through the chapter. For the
moment, let’s take a look at how jQuery deals with the basic CSS selectors.

2.2 Basic selectors
For applying styles to page elements, web developers have become familiar with a
small but useful group of selection expressions that work across all browsers. Those
expressions can select by an element’s ID, by CSS class names, and by tag names. A spe-
cial case of selecting elements by tag name is the Universal selector, which allows you
to select all the page elements within the DOM. The selection expressions enable you
to perform basic searches in the DOM, and we’ll provide the details in the following
sections. When combined, these selectors allow you to achieve slightly more compli-
cated selections. Table 2.1 provides a quick refresher of these selectors and how you
can combine them.

Table 2.1 Some simple CSS selector examples

Example Description In CSS?

* Matches all the elements in the page ✓

#special-id Matches the element with the ID value of special-id ✓

.special-class Matches all elements with the class special-class ✓

Matched
elements

Matched elements
highlighted

jQuery
command
executed

Figure 2.2 A selector value of li matches all li elements when applied, as shown by the displayed results.
www.EBooksWorld.ir

27Basic selectors
In JavaScript, you have a set of functions, such as getElementById() and get-
ElementsByClassName(), that are designed to work with a specific type of selector to
retrieve DOM elements to act upon. Unfortunately, you might have some problems
using even such simple functions. For example, getElementsByClassName() isn’t sup-
ported in versions of Internet Explorer prior to 9. If you want to use only native meth-
ods, you should pay attention to cross-browser compatibilities.

 jQuery to the rescue! If the browser supports the selector or the function natively,
jQuery will rely on it to be more efficient; otherwise it’ll use its methods to return the
expected result. The good news is that you don’t have to worry about this difference.
jQuery will do its work for you behind the scenes, so you can focus on other aspects of
your code.

 The jQuery library is fully CSS3 compliant, so selecting elements will present no
surprises; the same elements that would be selected in a style sheet by a standards-
compliant browser will be selected by jQuery’s selector engine. The library does not
depend on the CSS implementation of the browser it’s running within. Even if the
browser doesn’t implement a standard CSS selector correctly, jQuery will correctly
select elements according to the rules of the World Wide Web Consortium (W3C)
standard.

 For some practice, play with the Selectors Lab and run some experiments with
some basic CSS selectors until you feel comfortable with them.

 Happy to know that jQuery will solve all the cross-browser compatibilities (for the
supported browsers) for us, we can now delve into the plethora of selectors available.

2.2.1 The All (or Universal) selector

The first selector available is the All (or Universal) selector, which is represented by an
asterisk (*). As the name suggests, it allows you to retrieve all of the DOM elements of
a web page, even the head element and its children. To reinforce this concept, let’s say
you have the following HTML page:

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery in Action, 3rd edition</title>
 </head>
 <body>

a Matches all anchor (a) elements ✓

a.special-class Matches all anchor (a) elements that have the class
special-class

✓

.class.special-class Matches all elements with the class class and class
special-class

✓

Table 2.1 Some simple CSS selector examples (continued)

Example Description In CSS?
www.EBooksWorld.ir

28 CHAPTER 2 Selecting elements
 <p>I'm a paragraph</p>
 </body>
</html>

To retrieve all the elements of the page you need to use the Universal selector and
pass it to the jQuery() function (or its alias $()) in a statement like the following:

var allElements = $('*');

Before moving on, there’s an established convention we want to mention. When sav-
ing the result of a selection made with jQuery in a variable, a widely adopted conven-
tion is to prepend or (less commonly) append a dollar sign to the name of the
variable. It doesn’t have a special meaning; it’s used as a reminder of what the variable
is storing. Another reason to adopt one of these conventions is to be sure not to
invoke $() on a set of DOM elements on which we’ve already called this method. For
example, you may erroneously write the following:

var allElements = $('*');
// Other code here...
$(allElements);

Using the aforementioned conventions, you can rewrite the previous statement
prepending the dollar sign to the variable name, as shown here:

var $allElements = $('*');

Alternatively, you also can write it this way:

var allElements$ = $('*');

We recommend adopting one of these conventions and sticking with it. Throughout
the rest of the book, we’ll use the first one: the dollar sign prepended.

 Let’s now see the first complete example of using jQuery in a web page. In this
example, shown in listing 2.1, we’ll use a CDN to include jQuery using the fallback
technique learned in chapter 1, and the Universal selector to select all the elements of
the page. You can find the code for this listing in the file chapter-2/listing-2.1.html in
the source provided with the book. In the remainder of the book, the examples will
only include a reference to a local version of the jQuery library, avoiding the use of
any CDN. There are two main reasons for this choice: brevity (that is, writing less
code) and avoiding an additional HTTP request (that fails if you’re running the exam-
ples while offline).

<!DOCTYPE html>
<html>
 <head>
 <title>jQuery in Action, 3rd edition</title>
 </head>
 <body>
 <p>I'm a paragraph</p>
 <script src="//code.jquery.com/jquery-1.11.3.min.js"></script>

Listing 2.1 Using the Universal selector with jQuery

Request jQuery from
the jQuery CDN.
www.EBooksWorld.ir

29Basic selectors
 <script>
 window.jQuery || document.write('<script src="../js/jquery-

1.11.3.min.js"><\/script>');
 var $allElements = $('*');
 </script>
 </body>
</html>

We told you that the previous listing was created to select all the elements of the page,
but what are these elements? If you inspect the variable using a debugger or with the
help of the console (where available), you’ll see that they are html, head, title, body,
p, script (the first in the page), and script (the second in the page).

WARNING We want to point out that the console.log() method is not sup-
ported by old versions of Internet Explorer (IE 6–7). In the examples in this
book we’ll ignore this issue and we’ll use this method heavily to avoid resort-
ing to the very annoying window.alert() method. But you should keep in
mind this lack of support in case your code needs to work in these browsers.

Remember, the elements are retrieved and stored in the same order in which they
appear on the page.

As you’ve seen, the use of the All selector forces jQuery to traverse all of the DOM’s
nodes. With a lot of elements in the DOM, the process might be very slow; therefore its
use is discouraged. In addition, it’s unlikely that you’ll need to retrieve all the ele-
ments of a page, although you could need to collect those belonging to a specific sub-
tree of the DOM, as you’ll see later.

 If you’ve ever played with JavaScript and a browser, you know that one of the most-
used selections is performed using the ID of a given element. Let’s discover more
about this topic.

Fall back to a local
copy if the CDN is
unavailable.

Select all the elements
in the page.

Developer tools
Trying to develop a DOM-scripted application without the aid of a debugging tool is
like trying to play concert piano while wearing welding gloves. Why would you do that
to yourself?

Depending on the browser you’re using, there are different options you can choose
to inspect your code. All major modern browsers have a set of built-in tools for this
purpose, although with a different name, that you can adopt. For example, in Chrome
these tools are called the Chrome Developer Tools (https://developers.google.com/
chrome-developer-tools/), whereas in Internet Explorer they’re called the F12 devel-
oper tools (http://msdn.microsoft.com/en-us/library/bg182326(v=vs.85).aspx).
Firefox has its own built-in tools as well, but developers usually use a plugin called
Firebug (http://getfirebug.com). These tools not only let you inspect the JavaScript
console, but they also allow you to inspect the live DOM, the CSS, the scripts, and
many other aspects of your page as you work through its development.
www.EBooksWorld.ir

http://msdn.microsoft.com/en-us/library/bg182326(v=vs.85).aspx

30 CHAPTER 2 Selecting elements
2.2.2 The ID selector

The ID selector is one of the most used selectors, not only in jQuery but also in plain
JavaScript. In JavaScript, to select an element by its ID, you pass the ID to the native
document.getElementById() function. If you have some knowledge of CSS, you’ll
recall that the ID selector is characterized by a sharp (#) sign (in some countries this
symbol is known with a different name like number sign or pound sign) prepended to
the element’s ID. If you have this paragraph in your page

<p id="description">jQuery in Action is a book about jQuery</p>

you can retrieve it using the ID selector and jQuery by writing

$('#description');

When used with the ID selector, jQuery returns a collection of either zero or one DOM
element. In case you have more than one element on a page with the same ID, the
library retrieves only the first matched element encountered. Although you can have
more than one element with the same ID, it’s invalid and you should not do that.

NOTE The W3C specifications of HTML5 assert that the value of an ID “must
not contain any space characters. There are no other restrictions on what
form an ID can take; in particular, IDs can consist of just digits, start with a
digit, start with an underscore, consist of just punctuation, etc.” It’s possible
to use characters such as the period (.) that have a special meaning in CSS
and jQuery (because it follows the CSS conventions). Because of this, they
must be escaped by prepending two backslashes to the special character.
Thus, if you want to select an element with ID of .description, you have to
write $('#\\.description').

It isn’t accidental that we compared how to select elements by their ID in jQuery and
in JavaScript at the beginning of this section, using the getElementById() function.
In jQuery the selection by ID is the fastest one, regardless of the browser used, because
behind the scenes the library uses getElementById(), which is very fast.

 Using the ID selector you’re able to quickly retrieve one element in the DOM.
Often, you need to retrieve elements based on the class names used. How can you
select elements that share the same style?

2.2.3 The Class selector

The Class selector is used to retrieve elements by the CSS class names used. As a
JavaScript developer, you should be familiar with this kind of selection through the
use of the native getElementsByClassName() function. jQuery follows the CSS con-
ventions, so you have to prepend a dot before the chosen class name. For example, if
you have the following HTML code inside the <body> of a page

<div>
 <h1 class="green">A title</h1>
 <p class="description">I'm a paragraph</p>
www.EBooksWorld.ir

31Basic selectors
</div>
<div>
 <h1 class="green">Another title</h1>
 <p class="description blue">I'm yet another paragraph</p>
</div>

and you want to select the elements that have the class description, you need to pass
.description to the $() function by writing the following statement:

var $descriptions = $('.description');

The result of this statement is an object, often referred to by the documentation as
a jQuery object or a jQuery collection (other names you can find in the wild are set of
matched elements, or simply set or collection) containing the two paragraphs of the HTML
snippet. The library will also select the nodes having multiple classes where one of
them matches the given name (like the second paragraph).

 In jQuery, like in CSS, it’s also possible to combine more class name selectors. If
you want to select all the elements having the classes description and blue, you can
concatenate them, resulting in $('.description.blue').

 The Class selector is surely one of the most used among JavaScript and CSS, but
there’s another basic selector we still need to discuss.

2.2.4 The Element selector

The Element selector allows you to pick up elements based on their tag name.
Because of its support in almost any browser (including IE6), jQuery uses get-
ElementsByTagName() to select elements by tag name behind the scenes. To under-
stand what kind of selection you can perform with the Element selector, let’s say you
want all the <div>s in a page. To achieve this task, you have to write

var $divs = $('div');

It’s common to use it in conjunction with other selectors because you’ll usually have a
lot of elements of the same type in your pages. In such cases, it must be written before
the other selectors. Hence, if you want all <div>s having class clearfix, you have to
write the following statement:

var $clearfixDivs = $('div.clearfix');

You can also combine it with the ID selector, but we strongly encourage you to not do
that for two reasons: performance and usefulness. Using a complex selector, jQuery
will perform a search using its own methods, usually avoiding the use of native func-
tions, and this leads to slower execution. In addition, as we pointed out in the section
on the ID selector, jQuery will retrieve the first (if any) element having the searched
ID. Therefore, if you’re searching for just one element, there’s no need to add com-
plexity to your selector by mixing two types.

 jQuery also enables you to use different types in a single selection, providing a per-
formance gain because the DOM is traversed only once. To use it, you have to add a
comma after each selector but the last one (spaces after the comma are ignored, so
www.EBooksWorld.ir

32 CHAPTER 2 Selecting elements
their use is a matter of code style). To select all the <div>s and the s in a page,
you can write

$('div, span');

In case a given element matches more than one of the comma-separated selectors
(which is not possible when you use only Element selectors because, for example, an
element is a div or a span), the library will retrieve it only once, removing all the
duplicates for you.

 Thanks to the selectors discussed in these sections, you’re able to perform basic
searches in the DOM. But you often need to select elements using more complex crite-
ria. You may need to retrieve DOM nodes based on their relation with other nodes like
“all the links inside an unordered list.” What you’re doing here is specifying a selec-
tion based on the hierarchy of the elements. How to perform such a search is the
topic of the next section.

2.3 Retrieving elements by their hierarchy
Retrieving a set of elements by their class name is a nice feature, but often you don’t
want to search the whole page. Sometimes you may want to select only the direct chil-
dren of a certain element. Consider the following HTML fragment from the sample
DOM in the Selectors Lab:

<ul class="my-list">

 jQuery supports

 CSS1
 CSS2
 CSS3
 Basic XPath

 jQuery also supports

 Custom selectors
 Form selectors

Suppose that you wanted to select the a element pointing to the jQuery website but
not those to various local pages describing the different CSS specifications. To achieve
this goal you can use the Child selector, in which a parent and its direct child are sepa-
rated by the right angle bracket character (>). You can write

ul.my-list > li > a

This selector will collect only links that are direct children of list elements, which are in
turn direct children of the that have class my-list. The links contained in the
sublists are excluded because the ul element serving as their parent doesn’t have the
class my-list. Running this selector in the lab page gives the result shown in figure 2.3.
www.EBooksWorld.ir

33Retrieving elements by their hierarchy
The Child selector isn’t the only one available to express a relation between two or
more elements based on the DOM tree’s hierarchy. Table 2.2 provides an overview of
the selectors of this type.

All the selectors described in the table but the first one are part of the CSS2.1 specifica-
tions, so they aren’t supported by Internet Explorer 6. But you can use all of them
safely in jQuery because the library deals with these kinds of problems for you.

Table 2.2 The CSS hierarchy selectors supported by jQuery

Selector Description In CSS?

E F Matches all elements with tag name F that are descendants of E ✓

E>F Matches all elements with tag name F that are direct children of E ✓

E+F Matches all elements with tag name F that are immediately preceded
by sibling E

✓

E~F Matches all elements with tag name F preceded by any sibling E ✓

Figure 2.3 With the selector ul.my-list > li > a, only the direct children of parent nodes are
matched.
www.EBooksWorld.ir

34 CHAPTER 2 Selecting elements
 These selectors improved your ability to precisely target the DOM nodes you want
to act upon. Over time a lot of other CSS selectors have been created to place more
power in your hands. One of the features introduced was the ability to select elements
based on their attributes. These selectors are the topic of the next section.

2.4 Selecting elements using attributes
Attribute selectors are extremely powerful and allow you to select elements based on
their attributes. You can easily recognize these selectors because they’re wrapped with
square brackets (for example, [selector]).

 To see them in action, let’s take another look at a portion of the lab page:

 jQuery supports

 CSS1
 CSS2
 CSS3
 Basic XPath

What usually makes the link pointing to an external site unique is the http:// at the
beginning of the string value for the link’s href attribute. Actually, an external link
may also be prefixed by https://, ftp://, and many other protocols. Besides, a link
pointing to a page of the same website might still start with http://. But for the sake
of simplicity we’ll take into account http:// only and we’ll pretend that internal links
use only relative paths.

 In CSS, you could select links that have an href value starting with http:// with
the following selector:

a[href^='http://']

Using jQuery, the latter can be employed in a statement like the following:

var $externalLinks = $("a[href^='http://']");

This matches all links with an href value beginning with the exact string http://. The
caret character (^) is used to specify that the match has to occur at the beginning of a
value. Because this is the same character used by most regular expression processors to
signify matching at the beginning of a candidate string, it should be easy to remember.

 Visit the lab page again (from which the previous HTML fragment was lifted), type
a[href^='http://'] into the text box, and click Apply. Note that only the jQuery link
is highlighted.
www.EBooksWorld.ir

35Selecting elements using attributes
Now imagine you want all the links but those pointing to the jQuery website’s home-
page. Using our lovely library, you can write

$("a[href!='http://jquery.com']")

This statement, using the “not equal attribute” selector, gives you the expected result.
Because this selector isn’t part of the CSS specifications, behind the scenes jQuery
can’t take advantage of the native querySelectorAll() method, so this results in a
slower execution.

 These symbols can’t be combined with other ones to create even more powerful
selectors. For example, if you want to select all links but the externals (assuming only
those starting with http://), you can’t write

$("a[href!^='http://']");

At this point you may think that selecting elements by their attribute is possible only in
conjunction with the Element selector. But this isn’t the case. You can use whatever
selector you like, and even no other selectors at all, resulting in a selector like
[href^='http://']. In this case, the use of the Universal selector (*) is implicitly
assumed.

 There are other ways to use attribute selectors. To match an element—for exam-
ple, a form—that possesses a specific attribute, regardless of its value, you can use

form[method]

This matches any <form> that has an explicit method attribute.
 To match a specific attribute value, you use something like

input[type='text']

This selector matches all input elements with a type of text.
 You’ve already seen the “match attribute at beginning” selector in action. Here’s

another example:

div[title^='my']

This selects all div elements with a title attribute whose value begins with my.

Single and double quotes
Pay attention to single and double quotes when you use the attribute selectors. A
wrong combination of the latter will result in an invalid statement. If your style of code
adopts the use of double quotes for strings and you want to use the same quotes for
wrapping the attributes value, you must escape them. If you feel it’s easier for you to
read a selection without escaped characters, you can mix the quote types. Using the
selector a[href^="http://"] will result in the following equivalent statements:
$("a[href^=\"http://\"]");
$('a[href^=\'http://\']');
$("a[href^='http://']");
$('a[href^="http://"]');
www.EBooksWorld.ir

36 CHAPTER 2 Selecting elements
 What about an “attribute ends with” selector? Coming right up:

a[href$='.pdf']

This is a useful selector for locating all links that reference PDF files.
 And here’s a selector, called “attribute contains,” for locating elements whose attri-

butes contain arbitrary strings anywhere in the attribute value:

a[href*='jquery.com']

As you’d expect, this selector matches all a elements that reference the jQuery site.
 Another selector is the “contain prefix.” It selects elements with a given attribute’s

value equal to a specified string or equal to a specified string followed by a hyphen. If
you write

div[class|='main']

this selector will find all the <div>s having class="main" or having a class name start-
ing with main-, like class="main-footer".

 The last selector we’re going to discuss is similar to the previous one, except it’s
used to search for a word within an attribute’s value. Let’s say you’re using the HTML5
data-* attribute—for example, data-technologies—to specify a list of values in some
s of your page. You want to perform a search to find if one of them contains
the value "javascript". You can perform this selection using the following selector:

span[data-technologies~="javascript"]

This selects s having an attribute like data-technologies="javascript" but
also data-technologies="jquery javascript qunit". You can think of it as the
equivalent of the Class selector but for a generic attribute.

 The presented selectors can also be chained in case you need to retrieve nodes
that match more criteria. You can chain as many selectors as you like; there isn’t a
fixed limit. For example, you can write

input[type="text"][required]

This selector retrieves all the <input>s that are required (the required attribute has
been introduced in HTML5) and are of type text.

 Table 2.3 summarizes the CSS selectors that deal with attributes that you can use in
jQuery.

 With all this knowledge in hand, head over to the jQuery Selectors Lab Page and
spend some more time running experiments using selectors of various types from
table 2.3. Try to make some targeted selections like the input element having the
type of checkbox and the value of 1 (hint: you’ll need to use a combination of selec-
tors to get the job done).

 Selectors aren’t used only to retrieve elements using the $() function. As you’ll dis-
cover later in this chapter, they’re one of the most used parameters to pass to jQuery’s
methods. For example, once you’ve made a selection, you can use a jQuery method
and a new selector to add new elements to the previous set or to filter some elements.
www.EBooksWorld.ir

37Introducing filters
Another case is to find all the descendants of the elements in a previous stored set that
match a given selector.

As if the power of the selectors that we’ve discussed so far isn’t enough, there are some
more options that offer an even finer ability to slice and dice the DOM. In the next sec-
tion we’ll introduce other types of selectors known as filters. In the CSS specification
these types of selectors are referred as pseudo-classes.

2.5 Introducing filters
Filters are selectors that usually work with other types of selectors to reduce a set of
matched elements. You can recognize them easily because they always start with a
colon (:). Just as you’ve seen for the attributes, if another selector isn’t specified, the
use of the Universal selector is implicitly assumed. One of the peculiarities of these
selectors is that some of them accept an argument passed inside the parentheses; for
example, p:nth-child(2). In the next sections, we’ll discuss all the available filters in
jQuery broken down into different categories.

Table 2.3 The attribute selectors supported by jQuery

Selector Description In CSS?

E[A] Matches all elements with tag name E that have attribute A of any
value

✓

E[A='V'] Matches all elements with tag name E that have attribute A whose
value is exactly V

✓

E[A^='V'] Matches all elements with tag name E that have attribute A whose
value starts with V

✓

E[A$='V'] Matches all elements with tag name E that have attribute A whose
value ends with V

✓

E[A!='V'] Matches all elements with tag name E that have attribute A whose
value doesn’t match V (are not equal to V) or that lack attribute A
completely

E[A*='V'] Matches all elements with tag name E that have attribute A whose
value contains V

✓

E[A|='V'] Matches all elements with tag name E that have attribute A whose
value is equal to V or to V- (V followed by a hyphen)

✓

E[A~='V'] Matches all elements with tag name E that have attribute A whose
value is equal to V or contains V delimited by spaces

✓

E[C1][C2] Matches all elements with tag name E that have attributes that sat-
isfy the criteria C1 and C2

✓

www.EBooksWorld.ir

38 CHAPTER 2 Selecting elements
2.5.1 Position filters

Sometimes you’ll need to select elements by their position on the page. You might
want to select the first or last link on the page or from the third paragraph. jQuery
supports mechanisms for achieving these specific selections.

 For example, consider

a:first

This format of selector matches the first <a> on the page. Now, let’s say you want to
retrieve links starting from the third one on the page. To achieve this goal, you can
write

a:gt(1)

This selector is really interesting because it gives us the chance to discuss a few points.
First, we’re using a selector called Greater than (gt) because there isn’t one called
Greater than or equal. Also, unlike the selectors you’ve seen so far, it accepts an argu-
ment (1 in this case) that specifies the index from which to start. Why do you pass 1 if
you want to start from the third element? Shouldn’t it be 2? The answer comes from
our programming background where indexes usually start at 0. The first element has
index 0, the second has index 1, and so on.

 These selectors specific to jQuery provide surprisingly elegant solutions to some-
times tough problems. See table 2.4 for a list of these Position filters (which the
jQuery documentation collocates inside the basic filters category).

As we noted, the first index in a set of elements is always 0. For this reason, the :even
selector will counterintuitively retrieve the odd-positioned elements because of their

Table 2.4 The Position filters supported by jQuery

Selector Description In CSS?

:first Selects the first match within the context. li a:first returns the
first anchor that’s a descendant of a list item.

:last Selects the last match within the context. li a:last returns the
last anchor that’s a descendant of a list item.

:even Selects even elements within the context. li:even returns every
even-indexed list item.

:odd Selects odd elements within the context. li:odd returns every odd-
indexed list item.

:eq(n) Selects the nth matching element.

:gt(n) Selects elements after the nth matching element (the nth element
is excluded).

:lt(n) Selects elements before the nth matching element (the nth element
is excluded).
www.EBooksWorld.ir

39Introducing filters
even indexes. For example, :even will collect the first, third, and so on elements of a
set because they have even indexes (0, 2, and so on). The takeaway lesson is :even and
:odd are related to the index of the elements within the set, not their position.

 Another fact to highlight is that you can also pass to :eq(), :gt(), and :lt() a
negative index. In this case the elements are filtered counting backward from the last
element. If you write p:gt(-2), you’re collecting only the last paragraph in the page.
Considering that the last paragraph has index -1, the penultimate has index -2, and so
on, basically you’re asking for all the paragraphs that come after the penultimate.

 In some situations you don’t want to select only the first or last element in the
whole page but each first or last element relative to a given parent in the page. Let’s
discover how.

2.5.2 Child filters

We said that jQuery embraces the CSS selectors and specifications. Thus, it shouldn’t
be surprising that you can use the child pseudo-classes introduced in CSS3. They allow
you to select elements based on their position inside a parent element. Where the lat-
ter is omitted, the Universal selector is assumed. Let’s say you want to retrieve ele-
ments based on their position inside a given element. For example,

ul li:last-child

selects the last child of parent elements. In this example, the last child of each
 element is matched.

 You may also need to select elements of a type only if they’re the fourth child of a
given parent. For example,

div p:nth-child(4)

retrieves all <p>s inside a <div> that are the fourth child of their parent element.
 The :nth-child() pseudo-class is different from :eq() although they’re often

confused. Using the former, all the children of a containing element are counted,
regardless of their type. Using the latter, only the elements corresponding to the selec-
tor attached to the pseudo-class are counted, regardless of how many siblings they
have before them. Another important difference is that :nth-child() is derived from
the CSS specifications; therefore it assumes the index starts from 1 instead of 0.

 Another use case we can think of is “retrieve all the second elements having class
description inside a <div>.” This request is accomplished using the selector

div .description:nth-of-type(2)

As you’re going through this section you should realize that the available selectors
are many and powerful. Table 2.5 shows all the Child filters described so far and
many more. Please note that when a selector allows for more syntaxes, like :nth-
child(), a check mark in the In CSS? column of table 2.5 means that all the syntaxes
are supported.
www.EBooksWorld.ir

40 CHAPTER 2 Selecting elements
As table 2.5 points out, :nth-child(), :nth-last-child(), :nth-last-of-type(),
and :nth-of-type() accept different types of parameters. The parameter can be an
index, the word “even,” the word “odd,” or an equation. The latter is a formula where
you can have an unknown variable as n. If you want to target the element at any posi-
tion that’s a multiple of 3 (for example 3, 6, 9, and so on), you have to write 3n. If you
need to select all the elements at a position that’s a multiple of 3 plus 1 (like 1, 4, 7,
and so on), you have to write 3n+1.

 Because things are becoming more complicated, it’s best to see some examples.
Consider the following table from the lab’s sample DOM. It contains a list of program-
ming languages and some basic information about them:

<table id="languages">
 <thead>
 <tr>
 <th>Language</th>
 <th>Type</th>
 <th>Invented</th>
 </tr>

Table 2.5 The Child filters of jQuery

Selector Description In CSS?

:first-child Matches the first child element within the context ✓

:last-child Matches the last child element within the context ✓

:first-of-type Matches the first child element of the given type ✓

:last-of-type Matches the last child element of the given type ✓

:nth-child(n)
:nth-child(even|odd)
:nth-child(Xn+Y)

Matches the nth child element, even or odd child
elements, or nth child element computed by the
supplied formula within the context based on the
given parameter

✓

:nth-last-child(n)
:nth-last-child(even|odd)
:nth-last-child(Xn+Y)

Matches the nth child element, even or odd child
elements, or nth child element computed by the
supplied formula within the context, counting from
the last to the first element, based on the given
parameter

✓

:nth-of-type(n)
:nth-of-type(even|odd)
:nth-of-type(Xn+Y)

Matches the nth child element, even or odd child
elements, or nth child element of their parent in
relation to siblings with the same element name

✓

:nth-last-of-type(n)
:nth-last-of-type(even|odd)
:nth-last-of-type(Xn+Y)

Matches the nth child element, even or odd child
elements, or nth child element of their parent in
relation to siblings with the same element name,
counting from the last to the first element

✓

:only-child Matches the elements that have no siblings ✓

:only-of-type Matches the elements that have no siblings of the
same type

✓

www.EBooksWorld.ir

41Introducing filters
 </thead>
 <tbody>
 <tr>
 <td>Java</td>
 <td>Static</td>
 <td>1995</td>
 </tr>
 <tr>
 <td>Ruby</td>
 <td>Dynamic</td>
 <td>1993</td>
 </tr>
 <tr>
 <td>Smalltalk</td>
 <td>Dynamic</td>
 <td>1972</td>
 </tr>
 <tr>
 <td>C++</td>
 <td>Static</td>
 <td>1983</td>
 </tr>
 </tbody>
</table>

Let’s say that you wanted to get all of the table cells that contain the names of pro-
gramming languages. Because they’re all the first cells in their rows, you could use

#languages td:first-child

You could also use

#languages td:nth-child(1)

but the first syntax would be considered pithier and more elegant.
 To grab the language type cells, you’d change the selector to use :nth-child(2),

and for the year they were invented, you’d use :nth-child(3) or :last-child. If you
wanted the absolute last table cell (the one containing the text 1983), you’d use the
:last pseudo-class seen in the previous section, resulting in td:last.

 To test your ability, you can imagine another situation. Let’s say that you want to
retrieve the name of the languages and their year of creation using :nth-child().
Basically, what you’re asking here is to take for each table row (<tr>) the first and the
third columns (<td>). The first and easier solution is to pass odd as the argument to
the filter, resulting in

#languages td:nth-child(odd)

Just to have some more fun, let’s make the previous selection harder, assuming that
you want to perform the same selection passing a formula to the :nth-child() filter.
Recalling that the index for :nth-child() starts at 1, you can turn the previous selec-
tor into

#languages td:nth-child(2n+1)
www.EBooksWorld.ir

42 CHAPTER 2 Selecting elements
This last example should reinforce in you the idea that jQuery puts great power in
your hands.

 Before we move on, head back over to the Selectors Lab and try selecting entries
two and four from the list. Then try to find three different ways to select the cell con-
taining the text 1972 in the table. Also try to get a feel for the difference between the
:nth-child() type of filters and the absolute position selectors.

 Even though the CSS selectors we’ve examined so far are incredibly powerful, we’ll
discuss ways of squeezing even more power out of jQuery’s selectors that are specifi-
cally designed to target form elements or their status.

2.5.3 Form filters

The CSS selectors that you’ve seen so far give you a great deal of power and flexibility
to match the desired DOM elements, but there are even more selectors that give you
greater ability to filter the selections.

 As an example, you might want to match all check boxes that are in a checked
state. You might be tempted to try something along these lines:

$('input[type="checkbox"][checked]');

But trying to match by attribute will check only the initial state of the control as speci-
fied in the HTML markup. What you really want to check is the real-time state of the
controls. CSS offers a pseudo-class, :checked, that matches elements that are in a
checked state. For example, whereas the input[type="checkbox"] selector selects all
input elements that are check boxes, the input[type="checkbox"]:checked selector
narrows the search to only input elements that are check boxes and are currently
checked. When rewriting your previous statement to select all the check boxes that
are currently checked using the filter, you can write

$('input[type="checkbox"]:checked');

jQuery also provides a handful of powerful custom filter selectors, not specified by
CSS, that make identifying target elements even easier. For example, the custom
:checkbox selector identifies all check box elements. Combining these custom selec-
tors can be powerful and shrink your selectors even more. Consider rewriting once
again our example using filters only:

$('input:checkbox:checked');

As we discussed earlier, jQuery supports the CSS filter selectors and also defines a
number of custom selectors. They’re described in table 2.6.

Table 2.6 The CSS and custom jQuery filter selectors

Selector Description In CSS?

:button Selects only button elements (input[type=submit],
input[type=reset], input[type=button], or button)
www.EBooksWorld.ir

43Introducing filters
These CSS and custom jQuery filter selectors can be combined, too. For example, if
you want to select only enabled and checked check boxes, you could use

$('input:checkbox:checked:enabled');

 Try out as many of these filters as you like in the Selectors Lab Page until you feel
that you have a good grasp of their operation.

 These filters are an immensely useful addition to the set of selectors at your dis-
posal, but did you think, even for one moment, that the selectors ended here? No way!

2.5.4 Content filters

Another of the categories that you can find in the jQuery documentation is the one
containing Content filters. As the name suggests, these filters are designed to select ele-
ments based on their content. For example, you can choose elements if they contain a
given word or if the content is completely empty. Note that by content we mean not
only raw text but also child elements.

 As you saw earlier, CSS defines a useful selector for selecting elements that are
descendants of specific parents. For example, this selector

:checkbox Selects only check box elements (input[type=checkbox])

:checked Selects check boxes or radio elements in the checked state or
options of select elements that are in a selected state

✓

:disabled Selects only elements in the disabled state ✓

:enabled Selects only elements in the enabled state ✓

:file Selects only file input elements (input[type=file])

:focus Selects elements that have the focus at the time the selector is run ✓

:image Selects only image input elements (input[type=image])

:input Selects only form elements (input, select, textarea, button)

:password Selects only password elements (input[type=password])

:radio Selects only radio elements (input[type=radio])

:reset Selects only reset buttons (input[type=reset] or
button[type=reset])

:selected Selects only option elements that are in the selected state

:submit Selects only submit buttons (button[type=submit] or
input[type=submit])

:text Selects only text elements (input[type=text]) or input without a
type specified (because type=text is the default)

Table 2.6 The CSS and custom jQuery filter selectors (continued)

Selector Description In CSS?
www.EBooksWorld.ir

44 CHAPTER 2 Selecting elements
div span

will select all span elements that are descendants of div elements.
 But what if you wanted the opposite? What if you wanted to select all <div>s that

contained span elements? That’s the job of the :has() filter. Consider this selector

div:has(span)

which selects the div ancestor elements as opposed to the span descendant elements.
 This can be a powerful mechanism when you get to the point where you want to

select elements that represent complex constructs. For example, let’s say that you
want to find which table row contains a particular image element that can be uniquely
identified using its src attribute. You might use a selector such as this

$('tr:has(img[src="puppy.png"])');

which would return any table row element containing the identified image anywhere
in its descendant hierarchy.

 A complete list of the Content filters is shown in table 2.7.

If you’re starting to feel overwhelmed by all these selectors and filters, we suggest that
you take a small break, because you aren’t finished yet!

2.5.5 Other filters

You’ve seen an incredible number of selectors and filters (special selectors) that you
probably didn’t even know existed. Your journey into the world of selectors hasn’t
ended, and in this section we’ll discuss the remaining ones. A couple of them, :visible
and :hidden, are categorized in the library’s documentation under Visibility filters, but
for brevity we decided to include them here.

 If you want to negate a selector—let’s say to match any input element that’s not a
check box—you can use the :not() filter. For example, to select non–check box
input elements, you could use

input:not(:checkbox)

But be careful! It’s easy to go astray and get some unexpected results!

Table 2.7 The Content filters supported by jQuery

Selector Description In CSS?

:contains(text) Selects only elements containing the specified text (the text of the
children and the descendants is also evaluated).

:empty Selects only elements that have no children (including text nodes). ✓

:has(selector) Selects only elements that contain at least one element that
matches the specified selector.

:parent Selects only elements that have at least one child node (either an
element or text).
www.EBooksWorld.ir

45Introducing filters
 Let’s say that you wanted to select all images except those whose src attribute con-
tained the text dog. You might quickly come up with the following selector:

$(':not(img[src*="dog"])');

But if you used this selector, you’d find that not only did you get all the image ele-
ments that don’t reference dog in their src, but in general, every element in the DOM
that isn’t an image element with such src attribute’s value!

 Whoops! Remember that when a base selector is omitted, it defaults to the Univer-
sal selector. Your errant selector actually reads as “fetch all elements that aren’t images
that reference ‘dog’ in their src attributes.” What you intended was “fetch all image
elements that don’t reference ‘dog’ in their src attributes,” which would be expressed
like this:

$('img:not([src*="dog"])');

 Again, use the lab page to conduct experiments until you’re comfortable with how
to use the :not() filter to invert selections.

 When working with jQuery it’s common to use its methods to hide one or more
elements on a page. To retrieve these elements you can use the :hidden filter. An ele-
ment is considered hidden not only if it has

display: none;

applied but also if it doesn’t occupy space. For example, a hidden element is also one
that has its width and height set to zero. Using this selector

input:hidden

you’re targeting all the input elements of the page that are hidden.

When creating web pages, you often use foreign words. If you write correct, semantic
HTML, you’ll find yourself tagging those words using the em element, adding the lang
attribute to specify the language. Let’s say that you have a page about pizza; you could
have markup like the following:

<p>The first pizza was called <em lang="it">Margherita, and it was
created in <em lang="it">Napoli (Italy).</p>

You can select all those foreign words of this example using the :lang() filter in this
way:

var $foreignWords = $('em:lang(it)');

jQuery 3: Feature changed
jQuery 3 slightly modifies the meaning of the :visible (and therefore of :hidden)
filter. Starting from jQuery 3, elements will be considered :visible if they have any
layout boxes, including those of zero width and/or height. For example, br elements
and inline elements with no content will now be selected by the :visible filter.
www.EBooksWorld.ir

46 CHAPTER 2 Selecting elements
A complete list of the remaining filters is shown in table 2.8.

Although jQuery offers an incredible number of selectors, it doesn’t cover all the pos-
sible use cases, and the development team behind the library knows it. For this reason,
they gave you the option to create your own filters. Let’s look at how you can do this.

2.5.6 How to create custom filters

In the previous sections, you learned all the selectors and filters supported by jQuery.
Regardless of their number, you may deal with use cases not covered. You may also
find yourself doing the same selection and then the same filtering on the retrieved set
over and over again, using loops and selection constructs. In situations like these you
can create a shortcut to collect nodes of the DOM or, to better phrase it, you can cre-
ate a custom filter (also referred as a custom selector or custom pseudo-selector).

 In jQuery there are two ways to create a custom filter. The first is simpler to write but
its use is discouraged because it has been replaced, starting from jQuery 1.8, by the sec-
ond one. In this book we’ll describe the newer method only, but if you want to take a
look at the old way, we’ve prepared a JS Bin just for you (http://jsbin.com/ImIboXAz/
edit?html,js,console,output). The example is also available in the file chapter-2/
custom.filter.old.html of the source provided with this book. Keep in mind that when
using the new approach, you’re developing a custom filter that won’t work in versions
of jQuery prior to 1.8. However, this shouldn’t be a problem in many cases as this ver-
sion is obsolete.

 To explain the new way to create a custom filter, we’ll start with an example. Pre-
tend you’re developing a tech game where you have a list of levels to complete with a
certain grade of difficulty, the number of points the user can earn, and a list of tech-
nologies to employ to complete it. Your hypothetical list could resemble this:

Table 2.8 The remaining filters supported by jQuery

Selector Description In CSS?

:animated Selects only elements that are currently under animated control

:header Selects only elements that are headers: <h1> through <h6>

:hidden Selects only elements that are hidden

:lang(language) Selects elements in a specified language ✓

:not(selector) Negates the specified selector ✓

:root Selects the element that’s the root of the document ✓

:target Selects the target element indicated by the fragment identifier of
the document’s URI

✓

:visible Selects only elements that are visible
www.EBooksWorld.ir

http://jsbin.com/ImIboXAz/edit?html,js,console,output
http://jsbin.com/ImIboXAz/edit?html,js,console,output

47Introducing filters

Te
c

el
<ul class="levels">
 <li data-level="1" data-points="1" data-technologies="javascript node

grunt">Level 1
 <li data-level="2" data-points="10" data-technologies="php composer">Level

2
 <li data-level="3" data-points="100" data-technologies="jquery

requirejs">Level 3
 <li data-level="4" data-points="1000" data-technologies="javascript jquery

backbone">Level 4

Now imagine you often need to retrieve levels (data-level) higher than 2 but only if
they allow you to earn more than 100 points (data-points) and have jQuery in the
list of the technologies to employ (data-technologies). Using the knowledge you’ve
acquired so far, you know how to search li elements having the word jquery inside the
attribute data-technologies (li[data-technologies~="jquery"]). But how do you
perform a number comparison using selectors? The truth is you can’t. To accomplish
this task, you must loop over your initial selection and then retain only the elements
you need, as shown here:

var $levels = $('.levels li[data-technologies~="jquery"]');
var matchedLevels = [];
for(var i = 0; i < $levels.length; i++) {
 if ($levels[i].getAttribute('data-level') > 2 &&
 $levels[i].getAttribute('data-points') > 100) {
 matchedLevels.push($levels[i]);
 }
}

Instead of repeating these lines every time, you can create a custom filter:

$.expr[':'].requiredLevel = $.expr.createPseudo(function(filterParam) {
 return function(element, context, isXml) {
 return element.getAttribute('data-level') > 2 &&
 element.getAttribute('data-points') > 100;
 };
});

As you can see, a filter is nothing but a function added to a property called :, which
belongs to jQuery’s expr attribute. That’s no mistake, dear reader. It’s a property
called “colon.” The latter is a property containing jQuery’s native filters, and you can
use it to add your own.

 You call your custom filter requiredLevel, and instead of passing the function
directly, you use a jQuery utility (actually it belongs to the underlying Sizzle selectors
engine) called createPseudo() B.

Initial selection using the
attribute selector

Loop over the matched
set of elements.

Test if the current
element matches
the requirements.Add to the final

set of elements.

Declare the filter using the
createPseudo() function.

B

Return the
anonymous
function called to
perform the tests.C

sts the
urrent
ement.

D

www.EBooksWorld.ir

48 CHAPTER 2 Selecting elements
 To the createPseudo() function, you pass an anonymous function where you
declare a parameter called filterParam. The name of the latter, standing for “filter
parameter,” is arbitrary and you can choose a different one if you prefer. This parame-
ter represents an optional parameter you can pass to the filter, just like filters such as
:eq() and :nth-child(), that you won’t use for the moment. Inside this anonymous
function, you create another anonymous function that will be returned and that’s
responsible for performing the filtering. To this inner function, jQuery passes the ele-
ments to be processed one at a time (element parameter), the DOMElement or
DOMDocument from which selection will occur (context parameter), and a Boolean
that specifies if you’re working on an XML document or not (isXML parameter) C.
Inside the innermost function, you write the code to test whether the element should
be kept or not D. In your case, you test whether the level is higher than 2 and the
points the user can earn are more than 100.

 In the previous example, we introduced an argument called filterParam that you
can use to pass a parameter to your custom filter. Due to the fixed nature of our
requirements, we didn’t use it. Let’s have some fun seeing how it can help you.

 Imagine you want to retrieve levels based on the offered number of points—some-
thing like “select all the levels with a number of points higher than X.” That big X is a
good opportunity to use a parameter to pass to your pseudo-selector. Based on this
requirement, you can create a new filter:

$.expr[':'].pointsHigherThan = $.expr.createPseudo(function(filterParam) {

 var points = parseInt(filterParam, 10);

 return function(element, context, isXml) {

 return element.getAttribute('data-points') > points;

 };

});

There are a few differences compared to the previous example. You use the create-
Pseudo() function as before, but you call the filter pointsHigherThan. Before declar-
ing the second function, you need to save the argument in a variable called points B
so it’ll be available in its closure (if you don’t know what a closure is, read the section
on closures in the appendix). At this point, you can use the given argument through
the use of the stored variable C.

 Let’s put this new filter into action. If you want to retrieve all the levels that allow
you to earn more than 50 points, you can write

var $elements = $('.levels li:pointsHigherThan(50)');

obtaining the last two list items.
 Both the custom filters presented in this section are available in the file chapter-2/

custom.filter.html and also as a JS Bin (http://jsbin.com/mucigo/edit?html,js,console
,output).

Cache
argument to be
available in the
inner function's
closure.B

C
Use the cached

argument in the test.
www.EBooksWorld.ir

http://jsbin.com/mucigo/edit?html,js,console,output
http://jsbin.com/mucigo/edit?html,js,console,output

49Enhancing performances using context
 So far, you’ve used half the power of the jQuery() function used to select elements
because you used just one of the two parameters you can pass. It’s time to fix this.

2.6 Enhancing performances using context
Up to this point, we’ve been acting as if there were only one argument that we can
pass to jQuery’s $() function, but this was just a bit of hand waving to keep things sim-
ple at the start. In chapter 1 we briefly introduced a second parameter called context.
It’s used to restrict the selection to one or more subtrees of the DOM, depending on
the selector used. This argument is helpful when you have a large number of elements
in a page because it can narrow down the subtree(s) where jQuery will perform the
second phase of the search.

 As you’ll see with many of jQuery’s methods, when an optional argument is omit-
ted, a reasonable default is assumed. And so it is with context. When a selector is
passed as the first parameter, context defaults to document, applying that selector to
every element in the DOM tree.

 That’s often exactly what you want, so it’s a nice default. But there may be times
when you want to limit your search to a subset of the entire DOM. In such cases, you
can identify a subset of the DOM that serves as the root of the subtree to which the
selector is applied.

 The Selectors Lab offers a good example of this scenario. When that page applies
the selector that you typed into the text field, the selector is applied only to the subset
of the DOM that’s loaded into the DOM Sample pane.

 You can use a DOM element reference as context but also a string that contains a
jQuery selector or a jQuery collection. (Yes, that means that you can pass the result of
one $() invocation to another—don’t let that make your head explode yet; it’s not as
confusing as it may seem at first.)

 When a selector or jQuery collection is provided as context, the identified ele-
ments serve as the context for the application of the selector. Because there can be
multiple such elements, this is a nice way to provide disparate subtrees in the DOM to
serve as the context for the selection process.

 Let’s take the lab page as an example. We’ll assume that the selector string is
stored in a variable conveniently named selector. When you apply this submitted
selector, you want to apply it only to the sample DOM, which is contained within a div
element with an ID of sample-dom.

 If you were to code the call to the jQuery function like this

$(selector);

the selector would be applied to the entire DOM tree, including the form in which the
selector was specified. That’s not what you want. What you want is to limit the selec-
tion process to the subtree of the DOM rooted at the div element with the ID of
sample-dom; so instead you write

$(selector, '#sample-dom');
www.EBooksWorld.ir

50 CHAPTER 2 Selecting elements
which limits the application of the selector to the desired portion of the DOM.
 When you use context, jQuery first retrieves elements based on it and then selects

the descendants that match the selector provided as the first argument. In other
words, you search for elements that match selector that need to have context as
their ancestor. Therefore, the Descendant selector can be replaced by the use of context.
Consider the following selection where you select the <p>s inside a <div>:

$('div p');

It can be turned into

$('p', 'div');

giving the same result.
 With this section we’ve completed the discussion of jQuery selectors. We know how

hard it has been to go through all these selectors, and you shouldn’t feel discouraged.
Take your time to absorb the described concepts, and when you feel ready, move on.

 Before we look at the methods of chapter 3, we’ll test your skills with some exer-
cises focused on the concepts described so far.

2.7 Testing your skills with some exercises
In this section you’ll practice doing some exercises targeting the selectors and the fil-
ters described in this chapter. If you want to test your solutions, you can run them
using the jQuery Selectors Lab Page. In addition, we’ll provide you our solutions to
allow you to compare them with yours.

2.7.1 Exercises

Here’s the list of exercises:

1 Select all the links in the page.
2 Select all the direct child links of a <div> having the class wrapper.
3 Select all the links and the paragraphs that have as their ancestor a <div>.
4 Select all the s that have the attribute data-level equal to hard but not

the attribute data-completed equal to true.
5 Select all the elements on the page having the class name wrapper without

using the class selector.
6 Select the third list item inside the list having the ID list, at any level.
7 Select all the list items (li) inside the list having the ID list, after the second.
8 Select the paragraphs that are the multiple of 3 plus 1 (1, 4, 7, and so on) child

of their parent, having the class description.
9 Select the <input>s of type password only if they’re required (required attri-

bute of HTML5) and are the first child of a <form>.
10 Select all the <div>s in the page that have no children, have an odd position

(hint: not index!), and don’t have the class wrapper.
11 Create a custom filter to select elements having only numbers, letters, or the

underscore (_) as their text.
www.EBooksWorld.ir

51Summary
2.7.2 Solutions

Here’s the list of solutions:

1 $('a')
2 $('div.wrapper > a')

3 $('div a, div p') or even better, using the context parameter, $('a, p',
'div')

4 $('span[data-level="hard"][data-completed!="true"]')
5 $('[class~="wrapper"]')

6 $('#list li:eq(2)') or even better $('li:eq(2)', '#list')
7 $('li:gt(1)', '#list')
8 $('p.description:nth-child(3n+1)')
9 $('input[required]:password:first-child', 'form')

10 $('div:empty:even:not(.wrapper)')
11 $.expr[":"].onlyText = $.expr.createPseudo(function(filterParam) {

 return function(element, context, isXml) {
 return element.innerHTML.match(/^\w+$/);
 }
});

How did you do? Do you feel comfortable with the ideas outlined so far? Good! With
this section we’ve completed the overview of the selectors available and how you can
create your own.

2.8 Summary
This chapter focused on creating and adjusting sets of elements (referred to in this
chapter and beyond as a jQuery collection or set of matched elements) via the many means
that jQuery provides for identifying elements on an HTML page.

 jQuery provides a versatile and powerful set of selectors, patterned after the selec-
tors of CSS, for identifying elements within a page document in a concise but powerful
syntax. These selectors include the CSS3 syntax currently supported by most modern
browsers. jQuery not only supports all the CSS selectors but also expands them with its
own set of selectors, offering you even more expressive power to collect elements in a
web page. As if this wasn’t enough, jQuery is so flexible that it also allows you to create
your own filters.

 In this chapter we covered all the selectors available in jQuery. In the next chapter
we’ll take a look at how to use the $() function to create new HTML elements. You’ll
also discover methods that accept a selector as a parameter to perform some opera-
tions on a set of matched elements.
www.EBooksWorld.ir

Operating on a
jQuery collection
In this chapter you’ll discover how to create new DOM elements using the highly
flexibile jQuery() function. The need to create new elements will occur frequently
in your practice with the library. You’ll find yourself using this capability especially
when we start discussing how to inject external data into a web page using JSON
and the XML format and jQuery’s methods to work with Ajax.

 In addition, you’ll learn other methods that are different from jQuery(). We’ll
divide these methods into two parts. First, we’ll describe the methods that, starting
from a jQuery collection, accept a selector as a parameter to create a new set of ele-
ments. For example, you’ll see a method that, starting from a set, creates a new set
containing all the children of the elements in the initial set, optionally filtered
using the selector passed as its argument. Then we’ll cover methods that aren’t
strictly related to selectors but that allow you to iterate over the elements in a set or
perform a test on them. Let’s get started!

This chapter covers
 Creating and injecting new HTML elements in the DOM

 Manipulating a jQuery collection

 Iterating over the elements of a jQuery collection
52

www.EBooksWorld.ir

53Generating new HTML
3.1 Generating new HTML
On many occasions, you’ll want to generate new fragments of HTML to insert into a
page. Such dynamic elements could be as simple as extra text you want to display or as
complicated as creating a table of database results you’ve obtained from a server. A
typical situation where this feature comes in handy is when you need to fetch external
data, usually served as JSON or XML, using Ajax.

 With jQuery, creating dynamic elements is a simple matter. You can create a jQuery
object containing DOM elements on the fly by passing to the $() function a string that
contains the HTML markup for those elements. Consider this line:

$('<div>Hello</div>');

This expression creates a new jQuery object containing a div element that’s ready to
be added to the page (at this point it isn’t injected in the DOM). Any jQuery method
that you could run on a set of existing elements can be run on the newly created
HTML fragment. This may not seem impressive at first glance, but when you throw
event handlers, Ajax, and effects into the mix (as you will in the upcoming chapters),
you’ll discover how powerful it is.

 Note that if you want to create an empty div element, you can get away with this
shortcut:

$('<div>');

This is identical to $('<div></div>') and $('<div />'), although it’s highly recom-
mended that you use well-formed markup and include the opening and closing tags
for any element types that can contain other elements. From a performance perspec-
tive these three alternatives are equivalent, as you can see from the benchmark shown
in figure 3.1 (live test at http://jsperf.com/jquery-create-markup/4).

Figure 3.1 A benchmark comparing the three ways of creating a new element using jQuery().
It proves that they are equivalent from a performance point of view in almost every browser.
www.EBooksWorld.ir

54 CHAPTER 3 Operating on a jQuery collection

E

It’s easy to create such simple HTML elements, and thanks to the chainability of
jQuery methods, creating more complex elements isn’t much harder. You can apply
any jQuery method to the jQuery collection containing the newly created element.
You could also create attributes on the element with jQuery’s attr() method (we’ll
cover that in a later chapter), but jQuery provides an even better means to do so.

 In the previous chapter we introduced you to the context parameter of the $()
function. When creating a new element with the $() function, you use the context
parameter to specify the attributes and their values for the element you’re creating
in the form of a JavaScript object. The properties of such an object serve as the name
of the attributes to be applied to the element, whereas the values serve as the values of
the attributes.

 Let’s say that you want to create an img element complete with multiple attributes
and make it clickable to boot. Take a look at the code in the following listing.

$('',
 {
 src: 'images/little.bear.png',
 alt: 'Little Bear',
 title:'I woof in your general direction',
 click: function() {
 alert($(this).attr('title'));
 }
 })
 .appendTo('body');

The single jQuery statement in the listing creates the basic img element B; gives it
important attributes using the second parameter, such as its source, alternate text,
and flyout title C; and attaches it to the DOM tree (as a child of the body element) E.
In the example shown, you append the element to the DOM using jQuery’s
appendTo() method. We haven’t covered this method yet but it appends the elements
in the jQuery collection—in this case only the newly created image—to the element
specified in the argument, which in our example is the body element.

 We’re also throwing a bit of a curve ball at you here. In this example you also use
the second parameter to establish an event handler that issues an alert (garnered
from the image’s title attribute) when the image is clicked D.

 Regardless of how you arrange the code, that’s a pretty hefty statement—which is
spread across multiple lines and with logical indentation for readability—but it also
does a heck of a lot. Such statements aren’t uncommon in jQuery-enabled pages, and
if you find it a bit overwhelming, don’t worry. We’ll cover every method used in this
statement over the next few chapters. Writing such compound statements will be sec-
ond nature before too long.

Listing 3.1 Dynamically creating a full-featured img element

Creates the basic img elementB

Assigns various attributesCstablishes
the click
handler

D

Add the element to the DOM
by appending it at the end of
the body element.

E

www.EBooksWorld.ir

55Managing the jQuery collection
Figure 3.2 shows the result of this code, both when the page is first loaded (3.2a) and
after the image has been clicked (3.2b). The full code for this example can be found
in the book’s project code at chapter-3/listing-3.1.html.

 Up until now, you’ve applied methods to the entire set of matched elements, but
there may be times when you want to further manipulate that set before acting upon it.

3.2 Managing the jQuery collection
Once you have a jQuery set, whether identified from existing DOM elements with
selectors or created as new elements using HTML snippets (or a combination of both),
you’re ready to manipulate those elements using the powerful set of jQuery methods.
We’ll start looking at those methods in the next chapter, but what if you want to fur-
ther refine the jQuery set? In this section, we’ll explore the many ways that you can
refine, extend, or filter the jQuery set that you wish to operate upon.

 In order to help you in this endeavor, we’ve included another lab in the download-
able project code for this chapter: the jQuery Operations Lab Page (chapter-3/
lab.operations.html). This page, which looks a lot like the Selectors Lab we employed
in chapter 2, is shown in figure 3.3.

 This new lab page not only looks like the Selectors Lab, but it also operates in a
similar fashion. But in this lab, rather than typing a selector, you can type in any com-
plete jQuery operation that results in a jQuery collection. The operation is executed
in the context of the DOM Sample, and, as with the Selectors Lab, the results are
displayed.

Figure 3.2a Creating complex elements on the
fly(including this image, which generates an
alert when it’s clicked) is easy as pie.

Figure 3.2b The dynamically generated image
possesses all expected styles and attributes,
including the mouse click behavior of issuing
an alert.
www.EBooksWorld.ir

56 CHAPTER 3 Operating on a jQuery collection
NOTE This lab page loads the elements upon which it acts inside an iframe.
Due to the security restrictions of some browsers, this operation may fail. To
avoid this issue, you can either execute the page under a web server like
Apache, Tomcat, or IIS or search for a specific solution for your browser.
For example, in WebKit-based browsers, you can run them through the
command-line interface (CLI) using the flag --allow-file-access-from-
files. It’s important that the command creates a new process, so it must not
open a new tab but a new window.

Figure 3.3 The jQuery Operations Lab Page lets you compose jQuery collections in real time to help
you see how collections can be created and managed.
www.EBooksWorld.ir

57Managing the jQuery collection
The jQuery Operations Lab allows you to enter any expression that results in a jQuery
set. Because of the way jQuery chaining works, this expression can also include jQuery
methods, making this a powerful lab for examining the operations of jQuery.

 Be aware that you need to enter valid syntax, as well as expressions that result in a
jQuery set. Otherwise, you’re going to be faced with a handful of unhelpful JavaScript
errors.

 To get a feel for the lab, load it in your browser and enter this text into the Opera-
tion field:

$('img').hide();

Then click the Execute button. This operation is executed within the context of the
DOM Sample, and you’ll see how the images disappear from the sample.

 After any operation, you can restore the DOM Sample to its original condition by
clicking the Restore button. Although we haven’t treated it yet, the hide() method
belongs to jQuery, and you’ll see it in detail later in this book. For the moment, what
you need to know is that this function allows you to hide all the elements in a set. We
used it because we wanted to give you a concrete example of what you can do in the
Operations Lab Page. You’ll see this new lab in action as you work your way through
the sections that follow, and you might even find it helpful in later chapters to test var-
ious jQuery operations.

3.2.1 Determining the size of a set

We mentioned before that a jQuery set acts a lot like an array. This mimicry includes a
length property, just like JavaScript arrays, that contains the number of elements in
the jQuery collection.

 Let’s say you want to know the number of all the paragraphs in your page and show
it on the screen; you can write the following statement:

alert($('p').length);

Okay, so now you know how many elements you have. What if you want to access them
directly?

3.2.2 Obtaining elements from a set

Once you have a jQuery set, you often use jQuery methods to perform some sort of
operation upon it as a whole. There may be times when you want a direct reference to
an element or elements to perform raw JavaScript operations upon them. Let’s look at
some of the ways that jQuery allows you to do just that.

FETCHING ELEMENTS BY INDEX

Because jQuery allows you to treat a jQuery collection as a JavaScript array, you can
use simple array indexing to obtain any element in the list by position. For example,
to obtain the first element in the set of all s with an alt attribute on the page,
you could write

var imgElement = $('img[alt]')[0];
www.EBooksWorld.ir

58 CHAPTER 3 Operating on a jQuery collection
The most observant of you might have noticed that we didn’t prepend the dollar sign
($) in front of the variable name (imgElement). We didn’t forget it. This jQuery set
contains an array of DOM elements, so if you retrieve a single element, it isn’t a jQuery
set made of one element itself but a plain DOM element.

 If you prefer to use a method rather than array indexing, jQuery defines the get()
method for that purpose.

The fragment

var imgElement = $('img[alt]').get(0);

is equivalent to the previous example that used array indexing.
 The get() method also accepts a negative index. Using get(-1) will retrieve the

last element in the set, get(-2) the second to last, and so on. In addition to obtaining
a single element, get() can also return an array of all the elements of the set if used
without a parameter.

 Sometimes you’ll want a jQuery object containing a specific element rather than
the plain element itself. It would look weird (although valid) to write something like
this:

$($('p').get(2))

For this purpose, jQuery provides the eq() method. The latter mimics the action of
the :eq() selector filter discussed in the previous chapter. To see their differences in
terms of code, let’s say you want to select the second element in a set containing all
the <div>s of a page. Here’s how you can perform this task, reporting the alternatives
side by side:

var $secondDiv = $('div').eq(1); var $secondDiv = $('div:eq(1)');

Method syntax: get

get([index])
Obtains one or all of the matched elements in the set. If no parameter is specified, all elements
in the jQuery object are returned as a JavaScript array. If an index parameter is provided, the
indexed element is returned. index can be negative, in which case the count is performed
starting from the end of the matched set.

Parameters
index (Number) The index of the single element to return. If omitted, the entire set is

returned as an array. If a negative integer is given, the count starts from the end
of the set. If the index is out of bounds, which is less than the negative number of
elements or equal to or greater than the number of elements, the method returns
undefined.

Returns
A DOM element, or an array of DOM elements, or undefined.

Selecting using the
eq() method

Selecting using the
:eq() filter
www.EBooksWorld.ir

59Managing the jQuery collection
The difference between the statements is minimal, but for performance reasons
(more details in chapter 15) it’s better to stick with the first form (the eq() method).
As a rule of thumb, we suggest you use methods over filters because they usually lead
to better performance.

 Now that we’ve highlighted the difference between the method and the filter, it’s
time to dive into the details of the former.

Obtaining the first element of a set is such a common operation that there’s a conve-
nience method that makes it even easier: the first() method.

The first() method has its filter counterpart in the :first filter. Once again, we
want to show an example of the two alternatives. Say that you want to retrieve the first
paragraph of the page; you can write one of the following:

var $firstPar = $('p').first(); var $firstPar = $('p:first');

Not surprisingly, the difference in terms of code is minimal, but the first() method
should be preferred to the :first filter.

Method syntax: eq

eq(index)
Obtains the indexed element in the set and returns a new set containing just that element.

Parameters

index (Number) The index of the single element to return. A negative index can be specified
to select the element starting from the end of the set.

Returns
A jQuery collection containing one or zero elements.

Method syntax: first

first()
Obtains the first element in the set and returns a new set containing just that element. If the
original set is empty, so is the returned set.

Parameters
none

Returns
A jQuery collection containing one or zero elements.

Selecting using the
first() method

Selecting using the
:first filter
www.EBooksWorld.ir

60 CHAPTER 3 Operating on a jQuery collection
 As you might expect, there’s a corresponding method to obtain the last element in
a set as well, which is the counterpart of the :last filter.

If you want to practice with these methods, you can use the jQuery Operations Lab
Page. For example, if you want to retrieve the first list item of the list shown in the
page, you can write

$('li', '.my-list').first();

Now let’s examine the other method to obtain an array of elements in the set.

FETCHING ALL THE ELEMENTS AS AN ARRAY

If you wish to obtain all of the elements in a jQuery object as a JavaScript array of
DOM elements, jQuery provides the toArray() method.

Consider this example:

var allLabeledButtons = $('label + button').toArray();

This statement collects all the <button>s on the page that are immediately preceded
by <label>s into a jQuery object and then creates a JavaScript array of those elements
to assign to the allLabeledButtons variable.

FINDING THE INDEX OF AN ELEMENT

Whereas get() finds an element given an index, you can use an inverse operation,
index(), to find the index of a particular element in the set. The syntax of the
index() method is as follows.

Method syntax: last

last()
Obtains the last element in the set and returns a new set containing just that element. If the
original set is empty, so is the returned set.

Parameters

None

Returns

A jQuery collection containing one or zero elements.

Method syntax: toArray

toArray()
Returns the elements in the set as an array of DOM elements.

Parameters

None

Returns

A JavaScript array of the DOM elements within the sets.
www.EBooksWorld.ir

61Managing the jQuery collection
To help you understand this method, let’s say that you have the following HTML code:

<ul id="main-menu">
 <li id="home-link">Homepage
 <li id="projects-link">Projects
 <li id="blog-link">Blog
 <li id="about-link">About

For some reason you want to know the ordinal index of the list item () containing
the link to the blog, which is the element having the ID of blog-link, within the unor-
dered list having the ID of main-menu.

NOTE It’s not a best practice to fill your pages with so many IDs because in
large applications it’s hard to manage them and assure that there won’t be
duplicates. We used them for the sake of the example.

You can obtain this value with this statement:

var index = $('#main-menu > li').index($('#blog-link'));

Based on what you learned about the parameters accepted by index(), you can also
write this statement like this:

var index = $('#main-menu > li').index(document.getElementById('blog-link'));

Remember that the index is zero-based. The first element has index 0, the second has
index 1, and so on. Thus, the value you’ll obtain is 2 because the element is the third
in the list. This code is available in the file chapter-3/jquery.index.html and also as a
JS Bin (http://jsbin.com/notice/edit?html,js,console).

 The index() method can also be used to find the index of an element within its
parent (that is, among its siblings). This case can be a bit hard to understand, so let’s
drill down to see its meaning. The parent of the list item with ID of blog-link is the
unordered list main-menu. The siblings are the elements at the same level from the
DOM tree point of view (siblings) of blog-link that share the same parent (the unor-
dered list). Given our markup, these elements are all the other list items. The links are

Method syntax: index

index([element])
Finds the specified element in the set and returns its ordinal index within the set, or finds the
ordinal index of the first element of the set within its siblings. If the element isn’t found, the value
-1 is returned.

Parameters
element (Selector|Element|jQuery) A string containing a selector, a reference to the element,

or a jQuery object whose ordinal value is to be determined. In case a jQuery object
is given, the first element of the set is searched. If no argument is given, the index
returned is that of the first element of the set within its list of siblings.

Returns
The ordinal value of the specified element within the set or its siblings or -1 if not found.
www.EBooksWorld.ir

http://jsbin.com/notice/edit?html,js,console

62 CHAPTER 3 Operating on a jQuery collection
excluded because they’re inside main-menu but not at the same level of blog-link.
Writing this

var index = $('#blog-link').index();

will set index, once again, to 2.
 To understand why calling index() without a parameter is interesting, consider

the following markup:

<div id="container">
 <p>This is a text</p>

 Homepage

 <p>Yet another text</p>
</div>

This time, the markup contains several different elements. Let’s say you want to know
the ordinal index of the first img element within its parent (the <div> with ID of
container). You can write

var index = $('#container > img').index();

The value of index will be set to 1 because, among the children of container, the first
 found is the second element (coming after the <p>).

 In addition to retrieving the index of an element, jQuery also gives you the ability
to obtain subsets of a set, based on the relationship of the items in a jQuery collection
to other elements in the DOM. Let’s see how.

3.2.3 Getting sets using relationships

jQuery allows you to get new sets from an existing one, based on the hierarchical rela-
tionships of the elements to the other elements within the DOM.

 Let’s say you have a paragraph having an ID of description and you want to know
the number of its ancestors that are a <div>. With your current knowledge of selectors
and methods this isn’t possible. That’s where a function like parents() comes into
play. Consider the following code:

var count = $('#description').parents('div').length;

Using parents(), you’re able to retrieve the information you want. This method
retrieves the ancestors of each element in the current set of matched elements (which
consists of the only paragraph having description as its ID). You can optionally filter
the ancestors using a selector, as in the example. Because in your jQuery collection
you have just one element (assuming it exists in your page), the result is what you
expect.

 What if you want to know the number of children of your hypothetical paragraph?
This can be easily achieved using selectors:

var count = $('#description > *').length;
www.EBooksWorld.ir

63Managing the jQuery collection
But wait! Are you using the same Universal selector we highly discouraged in the pre-
vious sections? Unfortunately, yes. A better approach from a performance point of
view is to express the same statement using the children() method as follows:

var count = $('#description').children().length;

This method, however, doesn’t return text nodes. How can you deal with this case?
 For such situations where you have to work with text nodes, you can employ

contents(). The contents() method and children() differ in another detail: the
former doesn’t accept any parameters. Returning to our counting example, you can
write

var count = $('#description').contents().length;

You know that just counting elements isn’t very useful and we know that you’re impa-
tient to get your hands dirty and start creating awesome effects using jQuery. We ask
you to wait a few pages in order to allow us to provide you with a solid knowledge base.

 The find() method is probably one of the most used methods. It lets you search
through the descendants of the elements (using a depth-first search) in a set and
returns a new jQuery object. This new jQuery object contains all the elements that
match a passed selector expression. For example, given a set of matched elements in a
variable called $set, you can get another jQuery set of all the citations (<cite>)
within paragraphs (<p>) that are descendants of elements in the original set:

$set.find('p cite');

Like many other jQuery methods, the find() method’s power comes when it’s used
within a jQuery chain of operations. This method becomes handy when you need to
constrain a search for descendant elements in the middle of a jQuery method chain,
where you can’t employ any other context or constraining mechanism.

 Before listing all the methods belonging to this category, we want to show you
another example. Imagine you have the following HTML snippet:

 <li class="awesome">First
 Second
 <li class="useless">Third
 <li class="good">Fourth
 <li class="brilliant amazing">Fifth

You want to retrieve all the siblings of the list item having class awesome up to but
excluding the one having both the classes brilliant and amazing (the fifth). To per-
form this task, you can use nextUntil(). It accepts a selector as its first argument and
retrieves all the following siblings of the elements in the set until it reaches an ele-
ment matching the given selector. Hence, you can write

var $listItems = $('.awesome').nextUntil('.brilliant.amazing');
www.EBooksWorld.ir

64 CHAPTER 3 Operating on a jQuery collection
What if you want to perform the same task but retrieve only those having the class good?
The function accepts an optional second argument, called filter, that allows you to
achieve this goal. You can update the previous statement, resulting in the following:

var $listItems = $('.awesome').nextUntil('.brilliant.amazing', '.good');

You can execute this example in your browser by loading the file chapter-3/
jquery.nextuntil.html or by accessing the relative JS Bin (http://jsbin.com/fuhen/
edit?html,js,console).

 Table 3.1 shows this and the other methods that belong to this category and that
allow you to get a new jQuery object from an existing one. Most of these methods
accept an optional argument, which will be specified by adopting the usual conven-
tion of wrapping it with square brackets.

Table 3.1 Methods for obtaining a new set based on relationships to other HTML DOM
elements

Method Description

children([selector]) Returns a set consisting of all the children of the elements in the set,
optionally filtered by a selector.

closest(selector
[, context])

Returns a set containing the single nearest ancestor of each element
in the set that matches the specified selector, starting from the ele-
ment itself. As the first argument, an element or a jQuery object can be
passed as well. In this case, it will be tested against the ancestors. If
found, a set containing it will be returned; an empty array will be
returned otherwise.
A DOM element can be optionally specified as context. In this case,
to have a match the ancestor must also be a descendant of this
element.

contents() Returns a set of the contents of the elements in the set, which may
include text nodes.

find(selector) Returns a set of the descendants of each element in the set, filtered by
a given selector, jQuery object, or element.

next([selector]) Returns a set consisting of the immediately following sibling of each
element in the set of matched elements. If an element is the sibling of
more than one element, it's taken only once. If a selector is provided, it
retrieves the next sibling only if it matches that selector.

nextAll([selector]) Returns a set containing all the following siblings of the elements in
the set. If a selector is provided, it retrieves elements only if they
match the selector.
www.EBooksWorld.ir

http://jsbin.com/fuhen/edit?html,js,console
http://jsbin.com/fuhen/edit?html,js,console

65Managing the jQuery collection
nextUntil([selector[,
filter]])

Returns a set of all the following siblings of the elements in the set up
to but not including the element matched by the selector. If no matches
are made to the selector, or if the selector is omitted, all following sib-
lings are selected. In this case, selector can be a string containing a
selector expression, a DOM node, or a jQuery object.
The method optionally accepts another selector expression, filter,
as its second argument. If it's provided, the elements will be filtered by
testing whether they match it.

offsetParent() Returns a set containing the closest relatively, absolutely, or fixedly
positioned (in the CSS sense of the terms) parent of the elements in
the set.

parent([selector]) Returns a set consisting of the direct parent of all the elements in the
set. If an element is the parent of more than one element, it's taken only
once. If a selector is given, parents are collected only if they match it.

parents([selector]) Returns a set consisting of the unique ancestors (an element is
selected only once, even if it matches multiple times) of all the ele-
ments in the collection. This includes the direct parents as well as the
remaining ancestors all the way up to but not including the document
root. If a selector is given, ancestors are collected only if they match it.

parentsUntil(
[selector[, filter]])

Returns a set of all ancestors of the elements in the collection up to
but not including the element matched by the selector. If the selector
isn’t matched or isn’t supplied, all ancestors are selected. In this
case, selector can be a string containing a selector expression, a
DOM node, or a jQuery object.
The method optionally accepts another selector expression, filter,
as its second argument. If it's provided, the elements will be filtered by
testing whether they match it.

prev([selector]) Returns a set consisting of the immediately previous sibling of each ele-
ment in the set of matched elements. If an element is the sibling of
more than one element, it's taken only once. If a selector is provided, it
retrieves the previous sibling only if it matches that selector.

prevAll([selector]) Returns a set containing all the previous siblings of the elements in the
set. Elements can be optionally filtered by a selector.

prevUntil([selector
[, filter]])

Returns a set of all preceding siblings of the elements in the collection
up to but not including the element matched by the selector. If the
selector is not matched or is not supplied, all the previous siblings are
selected. In this case, selector can be a string containing a selector
expression, a DOM node, or a jQuery object.
The method optionally accepts another selector expression, filter,
as its second argument. If it's provided, the elements will be filtered by
testing whether they match it.

siblings([selector]) Returns a set consisting of all siblings of the elements in the set taken
only once. Elements can be optionally filtered by a selector.

Table 3.1 Methods for obtaining a new set based on relationships to other HTML DOM
elements (continued)

Method Description
www.EBooksWorld.ir

66 CHAPTER 3 Operating on a jQuery collection
Now that we’ve described all these methods, let’s look at a concrete example of some
of them.

 Consider a situation where a button’s event handler (which we’ll explore in great
detail in chapter 6) is triggered with the button element referenced by the this key-
word within the handler. Such a situation occurs when you want to execute some
JavaScript code (for example, a calculation or an Ajax call) when a button is clicked.
Further, let’s say that you want to find the <div> block within which the button is
defined. The closest() method makes it a breeze:

$(this).closest('div');

But this would find only the most immediate ancestor <div>; what if the <div> you
seek is higher in the ancestor tree? No problem. You can refine the selector you pass
to closest() to discriminate which element is selected:

$(this).closest('div.my-container');

Now the first ancestor <div> with the class my-container will be selected.
 The remainder of these methods work in a similar fashion. Take, for example, a sit-

uation in which you want to find a sibling button with a particular title attribute:

$(this).siblings('button[title="Close"]');

What you’re doing here is retrieving all the siblings that are <button>s and have the
title “Close.” If you want to ensure that only the first sibling is retrieved, you can
employ the first() method you learned in this chapter:

$(this).siblings('button[title="Close"]').first();

These methods give you a large degree of freedom to select elements from the DOM
based on their relationships to the other DOM elements. How would you go about
adjusting the set of elements that are in a jQuery collection?

3.2.4 Slicing and dicing a set

Once you have a set, you may want to augment that set by adding to it or by reducing
the set to a subset of the originally matched elements. jQuery offers a large collection
of methods to manage a jQuery set. First let’s look at adding elements to a set.

ADDING MORE ELEMENTS TO A SET

You may often find yourself wanting to add more elements to an existing jQuery col-
lection. This capability is more useful when you want to add more elements after
applying some method to the original set. Remember, jQuery chaining makes it possi-
ble to perform an enormous amount of work in a single statement.

 We’ll look at some concrete examples of such situations in a moment, but first,
let’s start with a simpler scenario. Let’s say that you want to match all s that have
either an alt or a title attribute. The powerful jQuery selectors allow you to express
this as a single selector, such as

$('img[alt], img[title]');
www.EBooksWorld.ir

67Managing the jQuery collection
But to illustrate the operation of the add() method, you could match the same set of
elements with

$('img[alt]').add('img[title]');

Using the add() method in this fashion allows you to chain a bunch of selectors
together, creating a union of the elements that satisfy either of the selectors.

 Methods such as add() are also significant (and more flexible than aggregate
selectors) within jQuery method chains because they don’t augment the original set
but create a new set with the result. You’ll see in a bit how this can be extremely useful
in conjunction with methods such as end() (which we’ll examine in section 3.2.5) that
can be used to back out operations that augment original sets.

 This is the syntax of the add() method.

Bring up the jQuery Operations Lab page in your browser and enter this expression:

$('td').add('th');

Then click the Execute button. This will execute the jQuery operation and select all
the cells of the table. Figure 3.4 shows a screen capture of the results.

 In figure 3.4 you can see that all the table cells, including the header ones (<th>),
were added to the set. The black outline and the gray background highlight the ele-
ments captured by your selection. This style is assigned to every element you’ll act
upon by automatically adding a class called found-element.

 Now let’s take a look at a more realistic use of the add() method. Let’s say that you
want to apply a red border to all s that have an alt attribute, adding to them a
class called red-border. Then you want to apply a level of transparency to all img

Method syntax: add

add(selector[, context])
Creates a new jQuery object and adds elements specified by the selector parameter to it. The
selector parameter can be a string containing a selector, an HTML fragment, a DOM element,
an array of DOM elements, or a jQuery object.

Parameters

selector (Selector|Element|Array|jQuery) Specifies what’s to be added to the matched
set. This parameter can be a selector, in which case any matched elements
are added to the set. If the parameter is an HTML fragment, the appropriate
elements are created and added to the set. If it’s a DOM element, it’s added
to the set. If it’s an array of DOM elements or a jQuery object, all the
elements contained are added to the set.

context (Selector|Element|jQuery) Specifies a context to limit the search for elements
that match the first parameter. This is the same parameter that can be
passed to the jQuery() function.

Returns

A copy of the original set with the additional elements.
www.EBooksWorld.ir

68 CHAPTER 3 Operating on a jQuery collection
elements that have either an alt or title attribute, adding a class called opaque. The
comma operator (,) of CSS selectors won’t help you with this one because you want to
apply an operation to a set and then add more elements to it before applying another
operation. You could easily accomplish this with multiple statements, but it would be
more efficient and elegant to use the power of jQuery chaining to accomplish the task
in a single expression. To add the cited classes, you’ll use a jQuery function called
addClass(). In its simplest form, it takes a class name as an argument and adds it to
the elements in the set.

Figure 3.4 The cells of the table have been matched by the jQuery expression.
www.EBooksWorld.ir

69Managing the jQuery collection
 What we described results in a single statement such as this:

$('img[alt]')
 .addClass('red-border')
 .add('img[title]')
 .addClass('opaque');

Here you create a set of all s that have an alt attribute and apply a predefined
class that applies a red border. Then you add the img elements that have a title attri-
bute and finally apply a class that establishes a level of transparency to the newly aug-
mented set.

 Enter this statement into the jQuery Operations Lab Page (which has predefined
the referenced classes), click the Execute button, and view the results, as shown in
figure 3.5.

In these results, you can see that the flower images (those with alt) have a red border.
In addition, all the images but the coffee pot, the only one with neither an alt nor a
title, are faded as a result of applying an opacity rule. As you may note, the images
that aren’t flowers (except the coffee pot) also have a black border. The reason is that
in addition to the opaque class, the previously mentioned found-element class has
been automatically added. Actually, the found-element class has been added to all the
selected images, but the black border for the flower images has been overridden by
the style declarations of the red-border class.

 The add() method can also be used to add elements to an existing set, given direct
references to those elements. Passing an element reference, or an array of element
references, to the add() method adds the elements to the set. If you had an element
reference in a variable named someElement, you could add it to the set of all images
containing an alt property with this statement:

$('img[alt]').add(someElement);

As if that wasn’t flexible enough, not only does the add() method allow you to add
existing elements to the set, but you can also use it to add new elements by passing it a
string containing HTML markup. Consider this:

$('p').add('<div>Hi there!</div>');

This fragment creates a set of all p elements in the document and then creates a new
set that includes the <div> created on the fly.

 Augmenting the set with add() is easy and powerful, but now let’s look at the
jQuery methods that let you remove elements from a set.

Figure 3.5 jQuery chaining allows you
to perform complex operations in a single
statement, as shown in these results.
www.EBooksWorld.ir

70 CHAPTER 3 Operating on a jQuery collection
HONING THE CONTENTS OF A SET

You saw that it’s a simple matter to augment a jQuery object from multiple selectors
chained together with the add() method. It’s also possible to chain selectors together
to form an except relationship by employing the not() method. This is similar to the
:not filter selector we discussed in the previous chapter, but it can be employed in a
similar fashion to the add() method to remove elements from the set anywhere within
a jQuery chain of methods.

 Let’s say that you want to select all img elements in a page that have a title attri-
bute except for those that contain the text “puppy” as their value. You could come up
with a single selector that expresses this condition (namely img[title]:not

([title*="puppy"])), but for the sake of illustration, let’s pretend that you forgot
about the :not filter. By using the not() method, which removes any elements from a
set that match the specified selector, you can express an except type of relationship. To
perform the described match, you can write

$('img[title]').not('[title*="puppy"]');

Type this expression into the jQuery Operations Lab Page and execute it. You’ll see
that only the first dog image has the highlight applied. The black puppy, which is
included in the original set because it possesses a title attribute, is removed by the
not() invocation because its title contains the text “puppy”.

The not() method can be used to remove individual elements from the set by passing
a reference to an element or an array of element references. The latter is interesting
and powerful because, as you’ll remember, any jQuery set can be used as an array of
element references.

 When maximum flexibility is needed, you can pass a function to not() and make a
determination of whether to keep or remove the element on an element-by-element
basis. jQuery passes to the function an argument that specifies the index of the ele-
ment inside the set. Consider this example:

Method syntax: not

not(selector)
Creates a copy of the set without the elements that match the criteria specified by the value of the
selector parameter.

Parameters
selector (Selector|Element|Array|jQuery|Function) Specifies which elements are to be

removed. If the parameter is a jQuery selector, the matching elements are
removed. If an element reference, array of elements, or a jQuery set is
passed, those elements are removed from the set. If a function is passed,
the function is invoked for each item in the set (with this set to the item),
and returning true from the invocation causes the item to be removed from
the set. In addition, jQuery passes the index of the element inside the set
as the first argument of the function, and the current element as the second
argument.

Returns
A copy of the original set without the removed elements.
www.EBooksWorld.ir

71Managing the jQuery collection
$('div').not(function(index) {
 return $(this).children().length > 2 && index % 2 === 0;
});

This statement will select all <div>s of the page and then remove those that have more
than two children and have an odd index (not position) inside the set. If you want to
see a live result, you can try it in the Lab Page and you’ll receive four matches.

 This method allows you to filter the set in ways that are difficult or impossible to express
with a selector expression by resorting to programmatic filtering of the set elements.

 For those times when the test applied within the function passed to not() seems to
be the opposite of what you want to express, not() has an inverse method, filter().
It works in a similar fashion, except that it removes elements when the function
returns false.

 For example, let’s say that you want to create a set of all <td>s that contain a posi-
tive integer value. For such situations, you can employ the filter() method, as
follows:

$('td').filter(function() {
 return this.innerHTML.match(/^\d+$/);
});

This statement creates a set of all td elements and then invokes the function passed to
the filter() method for each of them, with the current matched element as the this
value for the invocation. The function used employs a regular expression to deter-
mine whether the element content matches the described pattern (a sequence of one
or more digits), returning null if not. Elements whose filter function invocation
returns false, or a falsy value in general (null, undefined, and so on), aren’t
included in the returned set.

 The syntax of the filter() method is the following.

Method syntax: filter

filter(selector)
Creates a copy of the set and removes elements from the new set that don’t match the criteria
specified by the value of the selector parameter.

Parameters
selector (Selector|Element|Array|jQuery|Function) Specifies which elements are to

be removed. If the parameter is a string containing a selector, any
elements that don’t match are removed. If an element reference, array of
elements, or jQuery object is passed, all but those elements are removed
from the set. If a function is passed, the function is invoked for each
element in the set (with this referencing the current element), and
returning false from the invocation causes the element to be removed
from the set. In addition, jQuery passes the index of the element inside the
set as the first argument of the function and the current element as the
second argument.

Returns
A copy of the original set without the removed elements.
www.EBooksWorld.ir

72 CHAPTER 3 Operating on a jQuery collection
Again, bring up the jQuery Operations Lab Page, type the previous expression in, and
execute it. You’ll see that the table cells for the Invented column are the only td ele-
ments that end up being selected.

 The filter() method can also be used with a selector expression. When used in
this manner, it operates inversely to the corresponding not() method, removing any
elements that don’t match the passed selector. This isn’t a super-powerful method,
because it’s usually easier to use a more restrictive selector in the first place, but it can
be useful within a chain of jQuery methods. Consider, for example,

$('img')
 .addClass('opaque')
 .filter('[title*="dog"]')
 .addClass('red-border');

This chained statement selects all images of a page, applies the opaque class to them,
and then reduces the set to only those image elements whose title attribute con-
tains the string dog before applying another class named red-border. The result is
that all the images end up semitransparent, but only the tan dog gets the red border
treatment.

 The not() and filter() methods give you powerful means to adjust a set of ele-
ments in a collection on the fly, based on almost any criteria concerning the elements
in the set. But you can also subset the set, based on the position of the elements within
the set. Let’s look at those methods next.

OBTAINING SUBSETS OF A SET

Sometimes you may wish to obtain a subset of a set based on the position of the ele-
ments within the set. jQuery provides a slice() method to do that. This method cre-
ates and returns a new set from any contiguous portion, or a slice, of an original set.

If you want to obtain a set that contains a single element from another set, based on its
position in the original set, you can employ the slice() method. For example, to
obtain the third element of a previous selection, you could write

Method syntax: slice

slice(start[, end])
Creates and returns a new set containing a contiguous portion of the matched set.

Parameters

start (Number) The zero-based position of the first element to be included in the
returned slice.

end (Number) The optional zero-based index of the first element not to be included in
the returned slice, or one position beyond the last element to be included. If
negative, it indicates an offset from the end of the set. If omitted, the slice
extends to the end of the set.

Returns

The newly created set.
www.EBooksWorld.ir

73Managing the jQuery collection
$('img, div.wrapper', 'div').slice(2, 3);

This statement selects all the s, and the <div>s having the class wrapper, within a
<div>, and then generates a new set containing only the third element in the matched
set. As you can see, your previously acquired knowledge comes back again and again
as you advance in the book.

 Note that this is different from using get(2), which returns the third DOM ele-
ment in the set, but is the same as using eq(2).

 A statement such as

$('*').slice(0, 4);

selects all elements on the page and then creates a set containing the first four
elements.

 To grab elements up to the end of the set, the statement

$('*').slice(4);

matches all elements on the page and then returns a set containing all but the first
four elements.

 Another method you can use to obtain a subset of a set is has(). Like the :has fil-
ter, this method tests the children of the elements in a jQuery object, using this check
to choose the elements to become part of the subset.

For example, consider this line:

$('div').has('img[alt]');

This expression will create a set of all <div>s and then create and return a second set
that contains only those <div>s that contain at least one descendant that pos-
sesses an alt attribute.

TRANSLATING ELEMENTS OF A SET

Often you’ll want to perform transformations on the elements of a set. For example,
you may want to collect all the IDs of the elements in the set or perhaps collect the val-
ues of a set of form elements in order to create a query string from them. The map()
method comes in handy for such occasions.

Method syntax: has

has(selector)
Creates and returns a new set containing only elements from the original set that contain
descendants that match the passed selector expression.

Parameters
selector (Selector|Element) A string containing a selector to be applied to all descendants

of the elements in the set, or a DOM element to be tested. Only elements within
the set possessing an element that matches the selector, or the passed
element, are included in the returned set.

Returns

A jQuery object.
www.EBooksWorld.ir

74 CHAPTER 3 Operating on a jQuery collection
For example, the following code will collect all the IDs of all the <div>s on the page:

var $allIDs = $('div').map(function() {
 return this.id;
});

With this statement you’re actually retrieving a jQuery object containing the IDs,
which is usually not what you want. If you want to work with a plain JavaScript array,
you can append the toArray() method to the chain as such:

var allIDs = $('div').map(function() {
 return this.id;
})
.toArray();

There are other methods that we want to introduce in this chapter. Let’s discover more.

TRAVERSING A SET’S ELEMENTS

The map() method is useful for iterating over the elements of a set in order to collect
values or translate the elements in some other way, but you’ll have many occasions
where you’ll want to iterate over the elements for more general purposes. For these
occasions, the jQuery each() method is invaluable.

Method syntax: map

map(callback)

Invokes the callback function for each element in the set and collects the returned values into
a jQuery object.

Parameters

callback (Function) A callback function that’s invoked for each element in the set.
Two parameters are passed to this function: the zero-based index of the
element within the set and the element itself. The element is also established
as the function context (the this keyword). To add an element into the new
set, a value different from null or undefined must be returned.

Returns

The set of translated values.

Method syntax: each

each(iterator)

Traverses all the elements in the matched set, invoking the passed iterator function for each
of them.

Parameters
iterator (Function) A function called for each element in the matched set. Two parameters

are passed to this function: the zero-based index of the element within the set
and the element itself. The element is also established as the function context
(the this reference).

Returns

The jQuery collection.
www.EBooksWorld.ir

75Managing the jQuery collection
An example of using this method could be to set a property value on all elements in a
matched set. For example, consider this:

$('img').each(function(i){
 this.alt = 'This is image[' + i + '] with an id of ' + this.id;
});

This statement will invoke the passed function for each img element on the page,
modifying its alt property using the index of the element within the set and its ID.

 So far you’ve seen a lot of methods you can use with a jQuery object, but you’re not
finished yet! Let’s see more about how jQuery deals with them.

3.2.5 Even more ways to use a set

There are still a few more tricks that jQuery has up its sleeve to let you refine your col-
lections of objects.

 Another method that we’ll examine allows you to test a set to verify if it contains at
least one element that matches a given selector expression. The is() method returns
true if at least one element matches the selector and false otherwise. Take a look at
this example:

var hasImage = $('*').is('img');

This statement sets the value of the hasImage variable to true if the current page has
at least one image.

This is a highly optimized and fast operation within jQuery and can be used without
hesitation in areas where performance is of high concern.

 We’ve made a big deal about the ability to chain jQuery methods together to per-
form a lot of activity in a single statement, and we’ll continue to do so, because it is a
big deal. This chaining ability not only allows you to write powerful operations in a
concise manner but also improves efficiency because sets don’t have to be recom-
puted in order to apply multiple methods to them.

Method syntax: is

is(selector)
Determines if any element in the set matches the passed selector expression.

Parameters
selector (Selector|Element|Array|jQuery|Function) The selector expression, the element, an

array of elements, or the jQuery object to test against the elements of the set. If a
function is provided, it's invoked for each element in the jQuery collection (with
this set to the item), and returning true from the invocation causes the whole
function to return true. In addition, jQuery passes the index of the element inside
the set as the first argument of the function and the current element as the
second argument.

Returns
true if at least one element matches the passed selector; false otherwise.
www.EBooksWorld.ir

76 CHAPTER 3 Operating on a jQuery collection
 Now consider the following statement:

$('img').filter('[title]').hide();

Two sets are generated within this statement: the original set of all the s in the
DOM and a second set consisting of only those that possess the title attribute. (Yes, you
could have done this with a single selector, but bear with us for illustration of the con-
cept. Imagine that you do something important in the chain before the call to
filter().) Then you hide all the elements in the set (those having the title attribute).

 But ponder this: what if you subsequently want to apply a method, such as adding a
class name, to the original set after it’s been filtered? You can’t tack it onto the end of
the existing chain; that would affect the titled images, not the original set of images.

 For this need jQuery provides the end() method. This method, when used within a
jQuery chain, will back up to a previous collection and return it as its value so that sub-
sequent operations will apply to that previous set.

 For example, take a look at this statement:

$('img')
 .filter('[title]')
 .hide()
 .end()
 .addClass('my-class');

The filter() method returns the set of the images possessing a title attribute. By
calling end() you back up to the previous set of matched elements (the original set of
all images), which gets operated on by the addClass() method. Without the interven-
ing end() method, addClass() would have operated only on the set of the images
with the title attribute. To avoid that, you should store the initial set in a variable and
then write two statements. The end() method allows you to get rid of such a variable
and perform all the operations in a single statement.

 The syntax of the end() method is as follows.

jQuery objects maintain an internal stack that keeps track of changes to the matched
set of elements. When a method like those shown so far is invoked, the new set is
pushed into the stack. Once jQuery’s end() method is called, the topmost (most
recent) set is popped from the stack, leaving the previous set exposed for subsequent
methods to operate upon.

Method syntax: end

end()
Used within a chain of jQuery methods; ends the most recent filtering operation in the current
chain and returns the set of matched elements to its previous state

Parameters
none

Returns
The previous jQuery collection
www.EBooksWorld.ir

77Summary
 Another handy jQuery method that modifies the cited stack is addBack(), which
adds the previous set of elements on the stack to the current set, optionally filtered by
a selector.

Consider this:

$('div')
 .addClass('my-class')
 .find('img')
 .addClass('red-border')
 .addBack()
 .addClass('opaque');

This statement selects all the div elements of the page, adds the class my-class to
them, and creates a new set consisting of all img elements that are descendants of
those div elements. Then it applies class red-border to them and creates a third set
that’s a merger of the div elements (because it was the topmost set on the stack) and
their descendant img elements. Finally, it applies class opaque to them.

 Whew! At the end of it all, the <div>s end up with classes my-class and opaque,
whereas the images that are descendants of those elements are given classes red-
border and opaque.

 This chapter should have proved to you that mastering selectors and the methods
to operate on them is important. These features, together with those used to traverse
the DOM, allow you to precisely select elements regardless of the complexity of your
requirements. Now that you have a solid understanding of this topic, we can delve into
more exciting topics.

3.3 Summary
This chapter described how to create and augment a set of matched elements using
HTML fragments to create new elements on the fly. These orphaned elements can be
manipulated, along with any other elements in the set, and eventually attached to
parts of the page document.

 A set of methods to adjust the set in order to refine the contents of the set, either
immediately after creation or midway through a set of chained methods, is available.

Method syntax: addBack

addBack([selector])
Adds the previous set of elements on the stack to the current set, optionally filtered by a selector

Parameters

selector (Selector) A string containing a selector expression to match the current set of
elements against

Returns
The merged jQuery collection
www.EBooksWorld.ir

78 CHAPTER 3 Operating on a jQuery collection
Applying filtering criteria to an existing set can also easily create new jQuery
collections.

 All in all, jQuery offers a lot of tools to make sure that you can easily and accurately
identify the page elements you wish to manipulate.

 In this chapter, we covered a lot of ground without really doing anything to the
DOM elements of the page. But now that you know how to select the elements that you
want to operate upon, you’re ready to start adding life to your pages with the power of
the jQuery DOM manipulation methods.
www.EBooksWorld.ir

Working with properties,
attributes, and data
Everyone who has approached software development for the first time has learned
a very important lesson: even huge and complex software consists of a mix of ele-
mentary instructions. Summing numbers, counting items, and iterating over
elements are just a few examples of these basic operations. In the same way, you can
create a nice visual with jQuery by manipulating attributes, properties, classes,
styles, and so on.

 You can manipulate attributes and properties of elements with JavaScript’s
native functions, but some tasks aren’t as easy as you’d like them to be. In addition,
using those functions leaves you with the burden of dealing with browsers’ incom-
patibilities. jQuery provides a full set of methods to easily work with attributes and
properties, solving all the compatibility issues for you.

 Another key concept when working with DOM elements and the creation of
effects is the possibility of storing custom data on the elements you’re operating

This chapter covers
 Getting and setting element attributes

 Working with element properties

 Storing custom data on elements
79

www.EBooksWorld.ir

80 CHAPTER 4 Working with properties, attributes, and data
upon. jQuery allows you to save the state an element is in at a given time. This feature
is crucial for creating plugins, as you’ll discover in part 3 of this book.

 This chapter focuses on the many methods jQuery offers for working with attri-
butes, properties, and data.

4.1 Defining element properties and attributes
When it comes to DOM elements, some of the most basic components you can manip-
ulate are the properties and the attributes assigned to those elements. These proper-
ties and attributes are initially assigned to the JavaScript object instances that
represent the DOM elements as a result of parsing the HTML markup, and they can be
changed dynamically under script control. Let’s make sure that you have the terminol-
ogy and concepts straight.

Properties are intrinsic to JavaScript objects, and each has a name and a value. The
dynamic nature of JavaScript allows you to create properties on JavaScript objects
under script control. (The appendix goes into great detail on this concept if you’re
new to JavaScript.)

 When referring to attributes, we mean the values that are specified on the markup
of DOM elements, not the properties of an object instance. Consider the following
HTML markup for an image element:

<img id="my-image" src="image.gif" alt="An image" class="some-class"
 title="This is an image"/>

In this element’s markup, the tag name is img, and the markup for id, src, alt, class,
and title represents the element’s attributes, each of which consists of a name and a
value. The browser reads and interprets this element markup to create the JavaScript
object instance of type HTMLElement that represents this element in the DOM.

 The first difference between these two concepts is that the properties’ values may
be different from their related attributes’ values. Whereas the latter are always strings,
the corresponding properties’ values may be strings, Booleans, numbers, or even
objects. For example, trying to retrieve tabindex as an HTML attribute gives you a
string (composed of all digits, but still a string). But retrieving its related property
gives you a number. Another example is style, which if retrieved as an attribute is a
string but if retrieved as a property is an object (of type CSSStyleDeclaration). To
see this difference in action, let’s say that you have the following HTML element in a
web page:

<input id="surname" tabindex="1" style="color:red; margin:2px;" />

Now create a script in the same page made of the following statements or type them
directly in a browser’s console:

var element = document.getElementById('surname');

console.log(typeof element.getAttribute('tabindex'));

console.log(typeof element.tabIndex);

Prints "string"
Prints "number"
www.EBooksWorld.ir

81Defining element properties and attributes
console.log(element.getAttribute('style'));

console.log(element.style);

All the attributes of an element are gathered into an object, which is stored as a prop-
erty named, reasonably enough, attributes on the DOM element instance. In addi-
tion, the object representing the element is given a number of properties, including
some that represent the attributes of the element’s markup.

 As such, the attribute values are stored not only in the attributes property but
also in a handful of other properties. Figure 4.1 shows a simplified overview of this
process.

An active connection remains between the attribute values stored in the attributes
object and the corresponding properties. Changing an attribute value usually results
in a change in the corresponding property value and vice versa. To be more specific,
consider the following input element (a checkbox, to be precise) with an additional,
nonstandard attribute (in bold):

<input type="checkbox" id="book" name="book" title="Check this!"
 book="jQuery in Action" />

Prints the string
"color:red; margin:2px;"

Prints the CSSStyleDeclaration object
containing all the styles applied to the element

NodeList

Legend

src='image.gif'

alt='An image'

class='some-class'

title='This is an image'

id='my-image'

Other implicit or defaulted attributes ...

HTML markup

img element

id:'my-image'

src:'http://localhost/image.gif'

alt:'An image'

className:'some-class'

title:'This is an image'

attributes

Other properties ...

Direct reference

Value correspondence

Figure 4.1 HTML markup is translated into DOM elements, including the attributes of the tag and
properties created from them. The browser creates a correspondence between the attributes and
properties of the elements.
www.EBooksWorld.ir

82 CHAPTER 4 Working with properties, attributes, and data
The following are true:

 If the attribute exists as a built-in (native) property of the corresponding DOM
object, the value is synchronized. For example, title is a standard attribute
and exists in the DOM element representing an image. Therefore, any change
of its value will result in an update in the related property and vice versa.

 If the attribute exists as a built-in property but it’s a Boolean, the value isn’t syn-
chronized. For example, checked retrieved as an attribute gives you the initial
state of the check box element (null if not defined, as in our element). If
retrieved as a property, regardless of whether it was defined or not, you obtain a
Boolean (true if checked, false otherwise) of the current state of the element.

 If the attribute doesn’t exist as a built-in property, it won’t be created and the
value won’t be synchronized. For example, the book attribute won’t be created
as a property of the DOM element.

To test this synchronization idea, consider the previous checkbox element and the fol-
lowing statements:

var checkbox = document.getElementById('book');
console.log(checkbox.getAttribute('title') === checkbox.title);

checkbox.title = 'New title!';
console.log(checkbox.getAttribute('title') === checkbox.title);

checkbox.setAttribute('title', 'Another title!');
console.log(checkbox.getAttribute('title') === checkbox.title);

console.log(checkbox.getAttribute('checked') === checkbox.checked);

All of the console.log() calls but the last one print true on the console, confirming
what we asserted.

WARNING Once again we want to highlight that the console.log() method
isn’t supported by old versions of Internet Explorer (IE 6–7). In the examples
of this book we’ll ignore this issue and we’ll use it heavily to avoid resorting to
the annoying window.alert() method. But you should keep in mind this lack
of support in case your code needs to support these browsers.

The previous example can be found in the file name chapter-4/attributes.and
.properties.html of the source provided with this book and as a JS Bin (http://
jsbin.com/ soqexa/edit?html,js,console).

 In addition to the properties, values are not always identical, either. For example,
setting the src attribute of the image element to image.gif will result in the src prop-
erty being set to the full absolute URL of the image (that is, http://www.yourdomain
.com/image.gif).

 For the most part, the name of a JavaScript property matches that of any corre-
sponding attribute, but there are some cases where they differ. For example, the
class attribute is represented by the className property, and the tabindex attribute
is represented by a tabIndex property.
www.EBooksWorld.ir

http://jsbin.com/ soqexa/edit?html,js,console
http://jsbin.com/ soqexa/edit?html,js,console

83Working with attributes
jQuery gives you the means to easily manipulate an element’s attributes and provides
access to the element instance so that you can also change its properties. Which of
these you choose to manipulate depends on what you want to do. Let’s start by look-
ing at getting and setting element attributes.

4.2 Working with attributes
In this section we’ll delve into the world of attributes and the methods jQuery offers to
work with them.

4.2.1 Fetching attribute values

In jQuery, to get and set a value of an attribute you can use the attr() method. This is
a typical peculiarity of jQuery. As you’ll often see, the same method can be used either
to read or to write a value. In other words, the method can work as a getter or a setter.
What action jQuery will perform depends on the number and types of the parameters
passed. The attr() method can be used to either fetch the value of an attribute from
the first element in the matched set or to set attribute values onto all matched elements.

 The syntax for the fetch variant of the attr() method (the method as a getter) is
as follows.

Method syntax: attr

attr(name)
Obtains the value assigned to the specified attribute for the first element in the matched set.

Parameters

name (String) The name of the attribute whose value is to be fetched.

Returns

The value of the attribute for the first matched element. The value undefined is returned if the
matched set is empty or the attribute doesn’t exist on the first element.

Detecting support for an attribute
HTML5 introduced several new attributes that you can add into your page’s elements.
The difference between attributes defined in the markup but not present in the DOM
element generated by the browser comes in handy when you need to detect the sup-
port for these attributes. Take as an example the new HTML5 required attribute.
When the user adds it to a form field, the browser requires the user to enter some
data into that field before the form can be submitted. You can detect if the browser
supports this attribute by writing

if ("required" in document.createElement("input")) {
 // Attribute supported
}

This test will return true if the browser supports the feature; false otherwise.

If you need to detect the support for many features, we suggest you use Modernizr,
the library that we mentioned in chapter 1.
www.EBooksWorld.ir

84 CHAPTER 4 Working with properties, attributes, and data
Even though you usually think of element attributes as those predefined by HTML,
you can use attr() with custom attributes set through JavaScript or HTML markup. As
you already saw in chapter 2, to add a custom attribute you can use the new HTML5
data-* attribute. To illustrate this, consider the following img element with a custom
attribute (highlighted in bold):

<img id="my-image" src="image.gif" alt="An image" alt="A beautiful image"
 data-custom="some value" />

Note that we’ve added a custom attribute, unimaginatively named data-custom, to
the element. You can retrieve that attribute’s value as if it was any of the standard attri-
butes, with

$('#my-image').attr('data-custom');

Attribute names aren’t case-sensitive in HTML, so regardless of how an attribute such
as title is declared in the markup, you can access (or set, as you’ll see) attributes
using any variant of case: Title, TITLE, TiTlE, and any other combinations are all
equivalent. In XHTML, even though attribute names must be lowercase in the
markup, you can retrieve them using any case variant.

 The set variant of attr() has some handy features of its own. Let’s take a look.

4.2.2 Setting attribute values

There are two ways to set attributes onto selected elements with jQuery. Let’s start with
the most straightforward, which allows you to set a single attribute at a time for all the
elements retrieved. Its syntax is as follows.

This variant of attr(), which may seem simple at first, is actually rather sophisticated
in its operation.

 In its most basic form, the value parameter can be any JavaScript expression that
results in a value that will be converted into a string. Things get more interesting when
the value parameter is an inline function or a reference of a function. In such cases,

Method syntax: attr

attr(name, value)
Sets the named attribute to the passed value for all elements in the jQuery object.

Parameters

name (String) The name of the attribute to be set.
value (String|Number|Boolean|Function) Specifies the value of the attribute. This can

be any JavaScript expression that results in a value of the type specified.
Unless a function is provided, any other value will be converted to a string. The
function is invoked for each element in the set, passing the index of the
element and the current value of the named attribute on the element. The
return value of the function becomes the attribute value.

Returns
The jQuery collection.
www.EBooksWorld.ir

85Working with attributes
the function is invoked for each element retrieved, with the return value of the func-
tion used as the attribute value. When the function is invoked, it’s passed two parame-
ters: one that contains the zero-based index of the element within the set and one that
contains the current value of the named attribute of the element. Additionally, the
element is established as the function context (this) for the function invocation,
allowing the function to tune its processing for each specific element—the main
power of using functions in this way.

 Consider the following statement:

$('[title]').attr('title', function(index, previousValue) {
 return previousValue + ' I am element ' + index +
 ' and my name is ' + (this.id || 'unset');
});

This method will run through all the elements on the page having a title attribute.
It’ll modify the title attribute of each element by appending to the previous value a
string composed using the index of the element within the DOM and the id attribute
of each specific element, if available, or the string 'unset' otherwise.

 You’d use this means of specifying the attribute value whenever that value is depen-
dent on other aspects of the element, when you need the original value to compute
the new value, or whenever you have other reasons to set the values individually.

 The second set variant of attr() allows you to conveniently specify multiple attri-
butes at a time.

This format is a quick and easy way to set multiple attributes on all the elements of a
set. The passed parameter can be any object reference, commonly an object literal,
whose properties specify the names and values of the attributes to be set. Consider
this:
$('input').attr({
 value: '',
 title: 'Please enter a value'
});

This statement sets the value of all input elements to the empty string and sets the
title to the string 'Please enter a value'.

Method syntax: attr

attr(attributes)
Uses the properties and values specified by the passed object to set corresponding attributes on
all elements of the matched set

Parameters
attributes (Object) An object whose properties are copied as attributes to all elements in

the set

Returns
The jQuery collection
www.EBooksWorld.ir

86 CHAPTER 4 Working with properties, attributes, and data
 Note that if any property value in the object passed as the value parameter is a
function reference, it operates similarly to the previous format of attr(); the function
is invoked for each individual element in the jQuery object.

WARNING Attempting to change the type attribute on an input or button
element created via document.createElement() will throw an exception on
Internet Explorer 6–8.

Now that you know how to get and set attributes, what about getting rid of them?

4.2.3 Removing attributes

In order to remove attributes from DOM elements, jQuery provides the removeAttr()
method. Its syntax is as follows.

Let’s see an example of this method in use. The goal is to remove the title and alt
attributes from all the images in a page. To perform this task, you can write the follow-
ing statement:

$('img').removeAttr('title alt');

The removeAttr() method internally uses the JavaScript removeAttribute() func-
tion. But it has the advantage of being called directly on every element in a jQuery
object and allowing the use of chaining.

 Removing an attribute doesn’t remove any corresponding property from the
JavaScript DOM element, although it may cause its value to change. For example,
removing a readonly attribute from an element would cause the value of the ele-
ment’s readOnly property to flip from true to false, but the property itself wouldn’t
be removed from the element.

 Now let’s look at some examples of how you might apply this knowledge to your
pages.

4.2.4 Fun with attributes

Let’s see how these methods can be used to fiddle with the element attributes in vari-
ous ways.

Method syntax: removeAttr

removeAttr(name)
Removes the specified attribute or attributes from every matched element

Parameters
name (String) The name of the attribute or list of attributes’ names separated by a

space to remove

Returns
The jQuery collection
www.EBooksWorld.ir

87Working with attributes
EXAMPLE #1—FORCING LINKS TO OPEN IN A NEW WINDOW

Imagine that you want to make all the links on your website that point to external
domains open in new windows. This is fairly trivial if you’re in total control of the
entire markup and can add a target attribute, as shown here:

Some External Site

That’s all well and good, but what if you’re not in control of the markup? You could be
running a content management system or a wiki, where end users are able to add con-
tent, and you can’t rely on them to add the target="_blank" to all external links.
First you need to determine what you want: you want all links whose href attributes
begin with http:// to open in a new window, which you’ve determined can be done
by setting the target attribute to _blank. In addition, you don’t want to take into
account those links that already have the target attribute set with the right value. For
the sake of simplicity, in this example we’re deliberately ignoring other protocols such
as FTP, HTTPS, and the like.

 You can use the techniques you’ve learned in this section to do this concisely:

$('a[href^="http://"]')
 .not('[target="_blank"]')
 .attr('target', '_blank');

First you select all the links with an href attribute starting with http://, which indi-
cates that the reference is external (assuming the page isn’t using absolute URLs for
internal resources). Then you exclude all those links that already have their target
attribute set to _blank. Finally, you set the attribute to the remaining elements. Mis-
sion accomplished with a single line of jQuery code! You can see this code in action by
opening the file chapter-4/new.window.links.html.

EXAMPLE #2—SIMULATING THE PLACEHOLDER ATTRIBUTE

Another excellent use for jQuery’s attribute functionality is to simulate the new HTML5
placeholder attribute. In this example, we’ll show you a basic implementation to sim-
ulate it that well serves to show the use of the attr() method, but it isn’t intended for
use in production. There are many reasons why you shouldn’t use this code in your
projects. The first reason is that you won’t test for browser support, so running this
code will perform the operation on browsers that support the placeholder attribute as
well. Another reason is that the text won’t be hidden once the field is focused, so the
user has to delete the value manually. What a pain!

The placeholder attribute
The placeholder attribute shows text, which ideally specifies what the field is for or
an example of a possible value, inside a field. The text is shown until the field is
focused or a value has been inserted by the user, depending on the browser, in which
case the text is hidden. This attribute applies to <input>s and <textarea>s. On
older browsers that don’t support it (Internet Explorer 6–9) this attribute is ignored
and nothing happens, like you never wrote the attribute in first place.
www.EBooksWorld.ir

88 CHAPTER 4 Working with properties, attributes, and data
What you’ll do in this example is copy the value of the placeholder attribute and set
it as the value of the value attribute. By doing so, every browser will show the text of
the placeholder even if placeholder isn’t supported. For the sake of the example,
we’ll cover only the case of <input> elements. The reason is that in order to target
<textarea>s too, you’d need jQuery’s text() method, which we haven’t covered yet
(but will do so shortly).

 Assume that you have the following form:

<form>
 <label for="username">Username:</label>
 <input id="username" name="username" placeholder="JohnDoe" />
 <label for="email">Email:</label>
 <input type="email" id="email" name="email" placeholder="email@fake.com" />
 <input type="submit" value="Login" />
</form>

To satisfy the requirements, you can write this simple code:

$('input').each(function(index, element) {
 var $element = $(element);
 $element.attr('value', $element.attr('placeholder'));
});

The result of this execution is shown in figure 4.2. In addition, the code can be found
in the file chapter-4/placeholder.html and as a JS Bin (http://jsbin.com/onuMiDU/
edit?html,js,output).

Now that you’ve seen the ins and the outs of dealing with attributes, let’s take a look at
how to manipulate the properties of an element.

4.3 Manipulating element properties
As with the attr() method, to get and set a value of a property in jQuery you can use
a similar approach: the prop() method. attr() and prop() are similar in their capa-
bilities and in the parameters they accept. Besides, for those of you who like anec-
dotes, the prop() method was extracted from attr() as a way to reorganize the latter
and to let it focus solely on attributes. Prior to version 1.6, attr() dealt with both attri-
butes and properties. But that’s a very old story.

Selects all <input>s and
iterates over them

Creates a new
jQuery object
containing the
current element
and stores it in a
variable

Copies the value of placeholder as the
value of the value attribute

Figure 4.2 The fields of the form are filled with the values specified
in the placeholder attribute using the attr() method.
www.EBooksWorld.ir

ttp://jsbin.com/onuMiDU/edit?html,js,output
ttp://jsbin.com/onuMiDU/edit?html,js,output

89Manipulating element properties
 The syntax of the prop() method to retrieve the value of a property is as follows.

Consider once again a checkbox element:

<input type="checkbox" id="legal-age" name="legal-age" title="Check this!" />

You can verify if it’s checked with the use of the prop() method. In this example pre-
tend that you completely forgot about the :checked filter and the is() method:

if ($('#legal-age').prop('checked') === false) {
 console.log('The checkbox is currently unchecked');
}

The jQuery prop() method provides access to some commonly used properties that,
traditionally, have been a thorn in the side of page authors everywhere due to their
browser dependency. This set of normalized-access names, which is also used by
attr(), is shown in table 4.1.

Method syntax: prop

prop(name)
Obtains the value of the given property for the first element in the matched set.

Parameters

name (String) The name of the property whose value has to be retrieved.

Returns

The value of the property for the first matched element. The value undefined is returned if the
value of a property hasn’t been set or if the matched set has no elements.

Table 4.1 jQuery prop() normalized-access names

jQuery normalized name DOM name

cellspacing cellSpacing

cellpadding cellPadding

class className

colspan colSpan

contenteditable contentEditable

for htmlFor

frameborder frameBorder

maxlength maxLength

readonly readOnly

rowspan rowSpan

tabindex tabIndex

usemap useMap
www.EBooksWorld.ir

90 CHAPTER 4 Working with properties, attributes, and data
Knowing if a certain check box is checked or not is nice, but what if you want to pro-
grammatically mark it as checked? You can achieve this goal employing the prop()
method as a setter. The syntax of its first variant as a setter is shown here.

You can programmatically mark as checked a given check box as follows:

$('#legal-age').prop('checked', true);

As we pointed out, attr() and prop() have a lot in common, and the variant where
you can specify multiple properties at once is no exception. The syntax of this varia-
tion is presented here.

This format allows you to quickly set multiple properties, avoiding a long chain of sin-
gle calls to prop(). For example, you can write the following:

$('input:checkbox').prop({
 disabled: true,
 checked: true
});

The last method to discuss in regard to property management is removeProp(). It
removes a property set by using the prop() method for all the elements selected. Its
syntax is shown here.

Method syntax: prop

prop(name, value)
Sets the named property to the given value for all elements in the jQuery collection.

Parameters
name (String) The name of the property to be set.
value (Any|Function) Specifies the value of the property. This can be any JavaScript

expression that results in a value or it can be a function. The function is
invoked for each element, passing the index of the element in the jQuery
collection and the current value of the named attribute for that particular
element. The return value of the function becomes the property value.

Returns
The jQuery collection.

Method syntax: prop

prop(properties)
Uses the properties and values specified by the given object to set corresponding properties on all
elements of the matched set

Parameters
properties (Object) An object whose properties are copied as properties to all elements in

the set

Returns

The jQuery collection
www.EBooksWorld.ir

91Storing custom data on elements

Unlike removeAttr(), this method doesn’t allow for a list of space-separated names.
This method shouldn’t be used to remove native properties such as checked or
required because it’ll completely remove the property. Once removed, it can’t be
added again to the element. If you wish to change the current status of one of those
properties, set the value to false using prop().

 Element attributes and properties are useful concepts for data as defined by HTML
and the W3C, but in the course of page authoring, you frequently need to store your
own custom data. Let’s see what jQuery can do for you on that front.

4.4 Storing custom data on elements
Let’s just come right out and say it: global variables suck. Except for the infrequent,
truly global values, it’s hard to imagine a worse place to store information that you’ll
need while defining and implementing the complex behavior of your pages. Not only
do you run into scope issues, but they also don’t scale well when you have multiple
operations occurring simultaneously (menus opening and closing, Ajax requests fir-
ing, animations executing, and so on).

 The functional nature of JavaScript can help mitigate this through the use of clo-
sures (if you need a refresher on this topic, read the appendix), but closures aren’t
appropriate for every situation.

 Because your page behaviors are so element-focused, it makes sense to use the ele-
ments themselves as storage scopes. Again, the nature of JavaScript, with its ability to
dynamically create custom properties on objects, can help you out here. But you must
proceed with caution. Because DOM elements are represented by JavaScript object
instances, they, like all other object instances, can be extended with custom properties
of your own choosing. But dragons await!

 These custom properties, so-called expandos, aren’t without risk. In particular, it’s
easy to create circular references that can lead to serious memory leaks—for example,
keeping a reference to an element you don’t need anymore. In traditional web appli-
cations, where the DOM is dropped frequently as new pages are loaded, memory leaks
may not be as big an issue. But for authors of highly interactive web applications that
employ lots of script on pages that may hang around for quite some time, memory
leaks can be a huge problem.

Method syntax: removeProp

removeProp(name)
Removes the specified property from every element in the jQuery collection

Parameters

name (String) The name of the property to remove

Returns

The jQuery collection
www.EBooksWorld.ir

92 CHAPTER 4 Working with properties, attributes, and data
 jQuery comes to your rescue by providing a means to tack data onto any DOM ele-
ment that you choose, in a controlled fashion, without relying on potentially problem-
atic expandos. You can place any arbitrary JavaScript value, even arrays and objects, on
DOM elements by using the cleverly named data() method. This is the syntax.

The data() method treats camel-case names the same way as dashed (or hyphenated)
names. The following statement

$('.class').data('lastValue');

is the equivalent of

$('.class').data('last-value');

Besides, unlike the attr() method that stores values always as strings, data() is able
to keep the value’s type. data() also tries to convert an attribute’s value to its native
type when used as a getter. Let’s look at an example.

 Let’s say you have this code in your page:

$('.class').attr('last-value', 10);
console.log(typeof $('.class').attr('last-value'));

You’ll see "string" on the console because attr() has converted the number 10 into
its string equivalent ("10"). On the other hand, if you write

$('.class').data('last-value', 10);
console.log(typeof $('.class').data('last-value'));

you’ll see "number" on the console because data() keeps the value’s type as is.
 Now imagine you have the following HTML code:

<input id="name" name="name" data-mandatory="true" />

You’ll obtain different results using attr() and data(), as follows:

console.log(typeof $('#name').attr('data-mandatory'));

console.log(typeof $('#name').data('mandatory'));

Method syntax: data

data(name, value)
Adds the passed value to the jQuery-managed data store for all elements in the set

Parameters

name (String) The name of the data to be stored
value (Any) The value to be stored except undefined

Returns
The jQuery collection

Prints "string"

Prints "number"

Prints "string"
Prints "boolean"
www.EBooksWorld.ir

93Storing custom data on elements
The attr() method retrieves the value as a string, so by printing its type you obtain
"string". On the other hand, data() is able to convert the value to a Boolean (the
same applies to number, null, and so on), so you see "boolean".

 It’s worth noting that undefined isn’t recognized as a value but still returns a
jQuery object. Therefore, a statement such as

$('#name').data('mandatory', undefined);

doesn’t modify the value of mandatory, but it returns the jQuery object that it was
called on, which allows for method chaining.

 Having the ability to add new data to an element is nice, but so far you’re limited
to adding one item of data at a time, which isn’t very practical. Fortunately, jQuery has
a variant of data() as a setter that accepts an object of key-value pairs.

We’ll continue our exploration of the data() method soon, but first we want to men-
tion that jQuery also provides a utility function of the jQuery object that’s called and
acts in the same way as the previously explained data() method.

jQuery.data() (or equivalently $.data()) is a low-level method because it acts on
a DOM element instead of a jQuery object. This method accepts the same parameters
of data() but introduces a new one (first in the list of parameters) where you can pass
the DOM element on which you want to store the data.

 To give you an idea of their differences, let’s say that you have an element having
book as its ID and you want to store a given value using $.data() (the method that
doesn’t work with a jQuery object). You can do this as shown here:

$.data(document.getElementById('book'), 'price', 10);

If using data() (the method that works with a jQuery object), you’d call it as follows:

$('#book').data('price', 10);

It should be no surprise that the data() method is also able to read data, not just write
it. Here’s the syntax for retrieving data using the data() method.

Method syntax: data

data(object)
Adds the key-value pairs of the given object to the jQuery-managed data store for all elements in
the set

Parameters

object (Object) An object of key-value pairs to be stored

Returns

The jQuery collection
www.EBooksWorld.ir

94 CHAPTER 4 Working with properties, attributes, and data

The behavior of the data() method as a getter is interesting and may lead to some
confusion, so it deserves further discussion.

 The getter form of this method helps in retrieving data stored in memory using
its setter version. If the previously stored data isn’t found, the method searches for a
data-* attribute of the HTML element with the same name given. Once data()
retrieves a value from a data-* attribute, the method stores that value in the jQuery-
managed data store (consider it as internal memory jQuery uses to keep track of all
sorts of things). Therefore, any following call to the method will no longer retrieve
the value from the attribute, even if you changed the latter using the attr() method,
because it’s now stored in the jQuery memory. In case the attribute isn’t found,
undefined is returned. Figure 4.3 shows the described flow to help you visualize this.

Method syntax: data

data([name])
Retrieves any previously stored data or an HTML5 data-* attribute with the specified name on the
first element of the set. If a name isn’t specified, the method returns an object containing all the
previously stored data.

Parameters
name (String) The name of the data to be retrieved.

Returns

The retrieved data, or undefined if not found.

$("#level1").data("level")

Return undefined.

Return the stored value.

Return the attribute’s value.

No

No

Yes

YesIs level
data stored using

data()?

Does
the element have
a data-level

attribute?

Store the attribute’s value.

Figure 4.3 How data() searches
for stored information. The getter
form of this method helps you
retrieve data stored using its setter
version. If the required stored data
isn’t found, the method searches for
a data-* attribute of the HTML
element with the same name given. If
this attribute isn’t found,
undefined is returned.
www.EBooksWorld.ir

95Storing custom data on elements
This process can be tricky, so we’ll look at some examples. Let’s say that you have the
following element:

<input id="level1" type="text" value="I'm a text!" data-custom="foo" />

You want to retrieve the value of data-custom. You can do that using either the
data() or the attr() method but with different parameters. Here’s how:

console.log($('#level1').data('custom'));
console.log($('#level1').attr('data-custom'));

Both previous statements print the string "foo" on the console. But what happens if
you use the data() method as shown here?

$('#level1').data('custom', 'new value');

console.log($('#level1').data('custom'));
console.log($('#level1').attr('data-custom'));

You changed the value of custom using the data() method and tried to retrieve it
using both the getter version of data() and attr(). This time the result is different!
Sounds crazy? You’re not finished yet.

 As our last example, imagine that you have the previous element without any previ-
ously added data because you’ve just loaded the page. This time you want to prove
that once the value of an attribute of an HTML element is retrieved for the first time
using data(), the value managed by data() is completely independent from the attri-
bute and thus any future call to attr(). To see this behavior in action, you’ll retrieve
the value of the attribute using data(), then you’ll change the attribute using attr(),
and finally you’ll invoke attr() and data() to highlight the difference. This descrip-
tion is implemented by the following code:

console.log($('#level1').data('custom'));
console.log($('#level1').attr('data-custom'));

$('#level1').attr('data-custom', 'new value');

console.log($('#level1').data('custom'));
console.log($('#level1').attr('data-custom'));

If you want to play with this example to better understand the concept, you can open
the file chapter-4/getting.and.setting.data.html or access the relative JS Bin we’ve cre-
ated (http://jsbin.com/uHAzIyoD/edit?html,js,console).

Both print "foo", but the methods
need different parameters.

Updates the value of the data attribute

Prints the value using
data(). The string
printed is "new value".

Prints the value using attr().
The string printed is "foo".

Both these lines print "foo".

Sets the value of the
data-custom attribute
to "new value"

Prints "foo" because it was
stored in memory (after
invoking data() as a getter
the first time)Prints the value "new value"
www.EBooksWorld.ir

http://jsbin.com/uHAzIyoD/edit?html,js,console

96 CHAPTER 4 Working with properties, attributes, and data
The jQuery.data() method we introduced previously can also be used to retrieve the
stored data. To do that, you need to pass the DOM element on which you want to oper-
ate as the first parameter and the name of the data to retrieve as the second. In this
case, too, the name of the data is optional. If you omit it, jQuery retrieves all the data
stored for the given DOM element. The jQuery.data() utility function can be used to
retrieve data stored using the data() method and vice versa.

jQuery not only has methods to set and get data, but in the interests of proper mem-
ory management, it also provides the removeData() method as a way to dump any
data that may no longer be necessary. This method allows you to remove values that
were previously set using data(), but it doesn’t affect any HTML5 data-* attribute of
the element (you have to use removeAttr() for this). The syntax of this method is
shown here.

jQuery 3: Bug fixed
jQuery 3 fixes a bug of the data() method that occurred when dealing with attributes
with digits in the name—for example, if you have the following element:

<div id="name" data-foo-42="test"></div>

If you’re using a version of jQuery prior to 3 and you write

console.log($('#name').data());

instead of an object containing the property foo-42 with a value of test, you obtain
an empty object.

jQuery 3: Feature changed
jQuery 3 changes the behavior of the data() method to align it to the Dataset API
specifications (http://www.w3.org/TR/html5/dom.html#dom-dataset). In particular,
the main change is that jQuery will transform all the properties’ key to be camel case.
To understand this change, consider the following element:

<div id="name"></div>

If you’re using a version of jQuery prior to 3 and you write

$('#name').data({'my-property': 'hello'});
console.log($('#name').data());

you’ll obtain the following result on the console:

{my-property: "hello"}

In jQuery 3, you’ll obtain this result instead:

{myProperty: "hello"}

Note how in jQuery 3 the name of the property is in camel case while in jQuery 1.11
and 2.1 it contains a dash. In case you want to learn more about this change, you
can refer to the related issue on GitHub: https://github.com/jquery/jquery/issues/
2257.
www.EBooksWorld.ir

https://github.com/jquery/jquery/issues/2257
https://github.com/jquery/jquery/issues/2257

97Storing custom data on elements

Based on what you’ve just learned, to remove all the data stored for a given element
you can write the following:

$('#legal-age').removeData();

If you want to remove the foo and bar data, you can write

$('#legal-age').removeData(['foo', 'bar']);

or

$('#legal-age').removeData('foo bar');

Note that it’s not necessary to remove data manually when removing an element from
the DOM with jQuery methods; the library will smartly handle that for you.

 As for the data() method, jQuery provides a utility function equivalent to
removeData(). This utility is called jQuery.removeData() (or $.removeData(), using
the jQuery alias), and it accepts as its first parameter the DOM element on which you
want to remove the data, and optionally the name of the data to remove as its second
parameter. So, if you want to employ $.removeData() to remove all the data stored
on the element having legal-age as its ID, you’ll have to write

$.removeData(document.getElementById('legal-age'));

In addition to the jQuery.removeData() method, jQuery has another utility function
that deals with data stored on an element. This method, called jQuery.hasData(),
allows you to test whether a DOM element has any jQuery data associated with it. Its
syntax is as follows.

Method syntax: removeData

removeData([name])
Removes any previously stored data with the specified name on all elements of the jQuery object.
The parameter can also be an array or a string of space-separated names to remove. If no
arguments are given, all values are removed.

Parameters
name (String|Array) A string containing the name or names separated by a space of

the data to be removed. If an array is provided, its elements are used to search
the names of the data to remove.

Returns
The jQuery collection.

Method syntax: jQuery.hasData

jQuery.hasData(element)
Determines whether an element has any associated data

Parameters
element (Element) A DOM element to be checked for data

Returns
true if there’s any data associated with the element; false otherwise
www.EBooksWorld.ir

98 CHAPTER 4 Working with properties, attributes, and data
To see how you can use it, you’ll test for the presence of any data on an element
having legal-age as its ID, store some data, and then run the test again. Thus, you
expect the first test to return false and the second to return true. Let’s see jQuery
.hasData() in action:

$.hasData(document.getElementById('legal-age'));
$.data(document.getElementById('legal-age'), 'count', 10);
$.hasData(document.getElementById('legal-age'));

We’ll exploit the capability to tack data onto DOM elements to our advantage in many
of the examples in the upcoming chapters. But if you’ve run into the usual headaches
that global variables can cause, it’s easy to see how storing data in context within the
element hierarchy opens up a whole new world of possibilities. In essence, the DOM
tree has become a complete “namespace” hierarchy for you to employ; you’re no lon-
ger limited to a single global space.

 We mentioned the className property much earlier in this section as an example
of a case where markup attribute names differ from property names, but truth be told,
class names are a bit special in other respects as well and are handled as such by
jQuery. The next chapter describes a better way to deal with class names than by
directly accessing the className property or using the attr() method.

4.5 Summary
In this chapter we’ve gone beyond the art of selecting elements and started manipu-
lating their attributes and properties. In these pages you discovered the differences
between attributes and properties and how you can operate on them using jQuery. In
addition, you learned how to perform basic tasks—for example, forcing external links
to be opened in a new page—just by adding or changing an attribute.

 Another important role methods played in this chapter was to manage custom
data. As you’ve seen, some methods have an interesting behavior that can be confus-
ing. Hopefully we’ve cleared up any confusion by the examples we used.

 Updating or removing properties, data, and attributes may be useful, but you need
further exploration to see the real power of jQuery. You also need to understand con-
cepts such as moving elements, creating new elements to wrap others, and handling
events. In the next chapter we’ll delve into some of these topics.

Returns false; no
data stored for
this element

Stores a value
(10) associated
with the name
countReturns true because of the

previous statement
www.EBooksWorld.ir

Bringing pages to life
with jQuery
Today web developers and designers know better than those of 10 years ago (or
even themselves 10 years ago) and use the power given to them by DOM scripting to
enhance a user’s web experience, rather than showcase annoying tricks made of
blinking texts and animated GIFs. Whether it’s to incrementally reveal content, cre-
ate input controls beyond the basic set provided by HTML, or give users the ability
to tune pages to their own liking, DOM manipulation has allowed many web devel-
opers to amaze (not annoy) their users.

 On an almost daily basis, many of us come across web pages that do something
that makes us say, “Hey! I didn’t know you could do that!” And being the commen-
surate professionals that we are (not to mention being insatiably curious about

This chapter covers
 Manipulating element class names

 Setting the content of DOM elements

 Getting and setting form element values

 Cloning DOM elements

 Modifying the DOM tree by adding, moving, or
replacing elements
99

www.EBooksWorld.ir

100 CHAPTER 5 Bringing pages to life with jQuery
such things), we immediately start looking at the source code to find out how they did
it. That’s the beauty of the web, where you can see other developers’ code at any time,
isn’t it?

 But rather than having to code up all that script ourselves, we find that jQuery pro-
vides a robust set of tools to manipulate the DOM, making those types of “Wow!” pages
possible with a surprisingly small amount of code. Whereas the previous chapter intro-
duced you to working with properties, attributes, and data with jQuery, this chapter
discusses how to perform operations on DOM elements to bring them to life and to
bring that elusive “Wow!” factor to your pages.

5.1 Changing element styling
In the previous chapter, we mentioned that the className property is an example of a
case where markup attribute names differ from property names. But, truth be told,
class names are a bit special in other respects as well and are handled as such by
jQuery. This section describes a better way to deal with class names than by directly
accessing the className property or using the jQuery’s attr() method.

 When you want to change the styling of an element, there are two options used
more often than others. The first is that you can add or remove a class, causing a
restyle of the element based on its new or removed class. The other is that you can
operate on the DOM element by applying styles directly.

 Let’s start by taking a look at how jQuery makes it simple to perform changes to an
element’s style via classes.

5.1.1 Adding and removing class names

The class attribute of HTML elements is crucially important to the creation of inter-
active interfaces. In HTML, the class attribute is used to supply these names as a
space-separated string. You can have as many spaces as you want, but people usually
use one. For example, you may have

<div class="some-class my-class another-class"></div>

Unfortunately, rather than manifesting themselves as an array of names in the DOM
element’s corresponding className property, the class names appear as that same
space-delimited string. How disappointing, and how cumbersome! This means that
whenever you want to add class names to or remove class names from an element that
already has class names, you need to parse the string to determine the individual
names when reading it and be sure to restore it to a valid space-separated format when
writing it.

 Taking the cue from jQuery and other similar libraries, HTML5 has introduced a
better way to manage this task through an API called classList. The latter has more
or less the same methods exposed by jQuery, but unfortunately, unlike their jQuery
counterparts, these native methods can work on only one element at a time. If you
want to add a class to a set of elements, you have to iterate over them. In addition,
www.EBooksWorld.ir

101Changing element styling
being a new introduction, it isn’t supported by older browsers, most notably Internet
Explorer 6–9. To better understand this difference, consider this code written in pure
JavaScript that selects all elements having class some-class and adds the class hidden:

var elements = document.getElementsByClassName('some-class');
for(var i = 0; i < elements.length; i++) {
 elements[i].classList.add('hidden');
}

The previous snippet is compatible only with modern browsers, including Internet
Explorer 10 and above. Now compare it with its jQuery equivalent:

$('.some-class').addClass('hidden');

The jQuery version is not only shorter but is also compatible starting with Internet
Explorer 6 (depending on the version of jQuery you’ll use, of course)!

NOTE The list of class names is considered unordered; that is, the order of the
names within the space-delimited list has no semantic meaning.

Although it’s not a monumental activity to write code that handles the task of adding
and removing class names from a set of elements, it’s always a good idea to abstract
such details behind an API that hides the mechanical details of such operations.
Luckily, you don’t have to develop your own code because jQuery has already done
that for you.

 Adding class names to all the elements of a set is an easy operation with the follow-
ing addClass() method that was used in the previous snippet.

Removing class names is just as straightforward with the following removeClass()
method.

Method syntax: addClass

addClass(names)
Adds the specified class name(s) to all the elements in the set. If a function is provided, every
element of the set is passed to it, one at a time, and the returned value is used as the class
name(s).

Parameters
names (String|Function) Specifies the class name, or a space-delimited string of

names, to be added. If a function, the function is invoked for each element,
with that element set as the function context (this). The function is passed
two values: the element index and the element’s current class value. The
function’s returned value is used as the new class name or names to add to
the current value.

Returns
The jQuery collection.
www.EBooksWorld.ir

102 CHAPTER 5 Bringing pages to life with jQuery

To see when the removeClass() method is useful, let’s say that you have the following
element in a page:

<p id="text" class="hidden">A brief description</p>

You can remove the hidden class with this simple statement:

$('#text').removeClass('hidden');

Often, you may want to switch a set of styles that belong to a class name back and forth,
perhaps to indicate a change between two states or for any other reasons that make
sense with your interface. jQuery makes this easy with the toggleClass() method.

Method syntax: removeClass

removeClass(names)
Removes the specified class name(s) from each element in the jQuery collection. If a function is
provided, every element of the set is passed to it, one at a time, and the returned value is used to
remove the class name(s).

Parameters
names (String|Function) Specifies the class name, or a space-delimited string of

names, to be removed. If a function, the function is invoked for each element,
setting that element as the function context (this). The function is passed two
values: the element index and the class value prior to any removal. The
function’s returned value is used as the class name or names to be removed.

Returns

The jQuery collection.

Method syntax: toggleClass

toggleClass([names][, switch])
Adds the specified class name(s) on elements that don’t possess it, or removes the name(s) from
elements that already possess the class name(s). Note that each element is tested individually,
so some elements may have the class name added and others may have it removed.
If the switch parameter is provided, the class name(s) is always added to elements without it if
switch is true, and removed from those that have it if it’s false.
If the method is called without parameters, all the class names of each element in the set will be
removed and eventually restored with a new call to this method.
If only the switch parameter is provided, all the class names of each element in the set will be
kept or removed on that element based on the value of switch.
If a function is provided, the returned value is used as the class name or names, and the action taken is
based on the switch value.

Parameters

names (String|Function) Specifies the class name, or a space-delimited string of
names, to be toggled. If a function, the function is invoked for each element,
with that element set as the function context (this). The function is passed
two values: the element index and the class value of that element. The
function’s returned value is used as the class name or names to toggle.

switch (Boolean) A control expression whose value determines if the class will only be
added to the elements (true) or only removed (false).

Returns
The jQuery collection.
www.EBooksWorld.ir

103Changing element styling
As you can see, the toggleClass() method gives you many possibilities. Before mov-
ing forward with other methods, let’s see some examples.

 One situation where the toggleClass() method is most useful is when you want to
switch visual renditions between elements quickly and easily, usually based on some
other elements. Imagine that you want to develop a simple share widget where you
have a button that, when clicked, shows a box containing the social media buttons to
share the link of the page. If the button is clicked again, the box should be hidden.

 Using jQuery—and jQuery’s click() method that we’ll cover in chapter 6—you
can easily create this widget:

$('.share-widget').click(function() {
 $('.socials', this).toggleClass('hidden');
});

The complete code for this demo is available in the file chapter-5/share.widget.html.
Before you’re disappointed, we want to highlight that the demo doesn’t provide any
actual sharing functionality, only placeholder text. The resulting page in its two states
(box hidden and displayed) is shown in figures 5.1a and figure 5.1b, respectively.

Toggling a class based on whether the elements already possess the class or not is a
common operation, but so is toggling the class based on some other arbitrary condi-
tion. Consider the following code:

if (aValue === 10) {
 $('p').addClass('hidden');
} else {
 $('p').removeClass('hidden');
}

For this common situation, jQuery provides the switch parameter we discussed in
the description of the method. You can shorten the previous snippet of code as
reported here:

$('p').toggleClass('hidden', aValue === 10);

Figure 5.1a The presence of the
hidden class is toggled whenever the
user clicks the button, causing the box to
be shown or hidden. In its initial state the
box is hidden.

Figure 5.1b When the Share button is
clicked, it toggles the hidden class. This
figure shows the box when displayed.
www.EBooksWorld.ir

104 CHAPTER 5 Bringing pages to life with jQuery
In this case, the class hidden will be added to all the paragraphs selected if the variable
aValue is strictly equal to 10; otherwise it’ll be removed.

 As our last example, imagine that you want to add a class on a per-element basis
based on a given condition. You might want to add to all the odd-positioned elements
in the set a class called hidden while keeping all the classes of the even-positioned ele-
ments unchanged. You can achieve this goal by passing a function as the first argu-
ment of toggleClass():

$('p').toggleClass(function(index) {
 return (index % 2 === 0) ? 'hidden' : '' ;
});

Sometimes you need to determine whether an element has a particular class to perform
some operations accordingly. With jQuery, you can do that by calling the hasClass()
method:

$('p:first').hasClass('surprise-me');

This method will return true if any element in the set has the specified class, false
otherwise. The syntax of this method is as follows.

Recalling the is() method from chapter 3, you could achieve the same goal with

$('p:first').is('.surprise-me');

But arguably, the hasClass() method makes for more readable code, and internally
hasClass() is a lot more efficient.

 Manipulating the stylistic rendition of elements via CSS class names is a powerful
tool, but sometimes you want to get down to the nitty-gritty styles themselves as
declared directly on the elements. Let’s see what jQuery offers you for that.

5.1.2 Getting and setting styles

Modifying the class of an element allows you to choose which predetermined set of
defined style sheet rules should be applied. But sometimes you only want to set the
value of one or very few properties that are unknown in advance; thus a class name
doesn’t exist. Applying styles directly on the elements (via the style property available
on all DOM elements) will automatically override the style defined in style sheets (some
exceptions such as !important apply, but we aren’t going to cover CSS specificity in

Method syntax: hasClass

hasClass(name)
Determines if any element of the set possesses the passed class name

Parameters

names (String) The class name to be searched

Returns

Returns true if any element in the set possesses the passed class name, false otherwise
www.EBooksWorld.ir

105Changing element styling
detail here), giving you more fine-grained control over individual elements and their
styles.

 The jQuery css() method allows you to manipulate these styles, working in a simi-
lar fashion to attr(). You can set an individual CSS style by specifying its name and
value, or a series of styles by passing in an object.

The value argument can also be a function in a similar fashion to the attr() method.
This means that you can, for instance, expand the width of all elements in the set by
20 pixels times the index of the element as follows:

$('.expandable').css('width', function(index, currentWidth) {
 return parseInt(currentWidth, 10) + 20 * index;
});

In this snippet you need to pass the current value to parseInt() because the width of
an element is returned in pixels and as a string (for example, "50px"). Without a con-
version, the sum will act as a concatenation of strings resulting in a value like
"50px20" (if the value of index is 1).

 In case you want to expand the width of all the elements by 20 pixels, jQuery offers
you a nice shortcut. Instead of writing a function, you can write

$('.expandable').css('width', '+=20');

A similar shortcut is available if you want to subtract a given amount of pixels:

$('.expandable').css('width', '-=20');

Method syntax: css

css(name, value)
css(properties)

Sets the named CSS style property or properties to the specified value for each matched element.

Parameters
name (String) The name of the CSS property to be set. Both the CSS and DOM

formatting of multiple-word properties (for example background-color versus
backgroundColor) are supported. Most of the time you’ll use the first format
version.

value (String|Number|Function) A string, number, or function containing the property
value. If a number is passed, jQuery will convert it to a string and add “px” to
the end of that string. If you need a different unit, convert the value to a string
and add the appropriate unit before calling the method. If a function is passed
as this parameter, it will be invoked for each element of the collection, setting
the element as the function context (this). The function is passed two values:
the element index and the current value. The returned value serves as the new
value for the CSS property.

properties (Object) Specifies an object whose properties are copied as CSS properties to
all elements in the set.

Returns
The jQuery collection.
www.EBooksWorld.ir

106 CHAPTER 5 Bringing pages to life with jQuery
One interesting side note—and yet another example of how jQuery makes your life
easier—is that the normally problematic opacity property will work perfectly across
browsers (even older ones) by passing in a value between 0.0 and 1.0; no more mess-
ing with the old IE alpha filters!

 Now let’s see an example of use of the second signature of the css() method:

$('p').css({
 margin: '1em',
 color: '#FFFFFF',
 opacity: 0.8
});

This code will set the values specified to all the elements in the set. But what if you
want to create a descending opacity effect with your elements?

 As in the shortcut version of the attr() method, you can use functions as values to
any CSS property in the property’s parameter object, and they will be called on each
element in the set to determine the value that should be applied. You can achieve this
task by using a function as the value of opacity instead of a fixed number:

$('p').css({
 margin: '1em',
 color: '#1933FF',
 opacity: function (index, currentValue) {
 return 1 - ((index % 10) / 10);
 }
});

An example of a page using this code can be found in file chapter-5/descending.opacity
.html and as a JS Bin (http://jsbin.com/cuhexe/edit?html,js,output).

 Lastly, let’s discuss how you can use css() with a name or an array of names passed
in to retrieve the computed style of the property or properties associated with that
name(s) of the first element in the jQuery object. When we say computed style, we
mean the style after all linked, embedded, and inline CSS has been applied.

This variant of the css() method always returns values as a string, so if you need a
number or some other type, you’ll need to parse the returned value using parseInt()
or parseFloat() depending on the situation.

Method syntax: css

css(name)
Retrieves the computed value or values of the CSS property or properties specified by name for the
first element in the set

Parameters
name (String|Array) Specifies the name of a CSS property or array of CSS properties

whose computed value is to be returned

Returns
The computed value as a string or an object of property-value pairs
www.EBooksWorld.ir

http://jsbin.com/cuhexe/edit?html,js,output

107Changing element styling
 To understand how the getter version of css() works when you pass an array of
names, let’s see an example. The goal is to print on the console the property and its
corresponding value of an element having special as its class for the following prop-
erties: font-size, color, and text-decoration. To complete the task, you have to
write this:

var styles = $('.special').css([
 'font-size', 'color', 'text-decoration'
]);

for(var property in styles) {
 console.log(property + ': ' + styles[property]);
}

This code can be found in the file chapter-5/css.and.array.html and as a JS Bin (http://
jsbin.com/mimixu/edit?html,css,js,console,output). Loading the page (or the JS Bin)
in your browser, you can see how the values printed are the result of the combination
of all the styles defined in the page. For example, the value printed for font-size isn’t
"20px" but "24px". This happens because the value defined for the special class
(24px) has more specificity than the one defined for the div elements (20px).

 The css() method is another example of how jQuery solves a lot of cross-browser
incompatibilities for you. To achieve this goal using native methods, you should use
getComputedStyle() in all the versions of Chrome, Firefox, Opera, Safari, and Inter-
net Explorer starting from version 9 and use the currentStyle and runtimeStyle
properties in Internet Explorer 8 and below.

 Before moving on, we want to highlight two important facts. The first fact is that
different browsers may return CSS color values that are logically but not textually
equal. For example, if you have a declaration like color: black; some browsers may
return #000, #000000, or rgb(0, 0, 0). The second is that the retrieval of shorthand
CSS properties such as margin or border is not guaranteed by jQuery (although it
works in some browsers).

 For a small set of CSS values that are commonly accessed, jQuery provides conve-
nience methods that access these values and convert them to the most commonly
used types.

GETTING AND SETTING DIMENSIONS

When it comes to CSS styles that you want to set or get on your pages, is there a more
common set of properties than the element’s width or height? Probably not, so jQuery
makes it easy for you to deal with the dimensions of the elements as numeric values
rather than strings.

 Specifically, you can get (or set) the width and height of an element as a number
by using the convenient width() and height() methods. You can set the width or
height as follows.

Retrieves the object with
the property-value pairs

Loops over the object
www.EBooksWorld.ir

http://jsbin.com/mimixu/edit?html,css,js,console,output
http://jsbin.com/mimixu/edit?html,css,js,console,output

108 CHAPTER 5 Bringing pages to life with jQuery
Keep in mind that these are shortcuts for the css() method, so

$('div').width(500);

is identical to

$('div').css('width', 500);

You can also retrieve the width or height as follows.

The getter version of these two methods is a bit different from its css() counterpart.
css() returns a string containing the value and the unit measure (for example,
"40px"), whereas width() and height() return a number, which is the value without
the unit and converted into a Number data type. If your style defines the width or
height using units different from pixels (em, %, and so on), jQuery will still return the
value relative to the width or height of the element in pixels.

Method syntax: width and height

width(value)
height(value)
Sets the width or height of all elements in the matched set.

Parameters
value (Number|String|Function) The value to be set. This can be a number of pixels or

a string specifying a value in units (such as px, em, or %). If no unit is specified,
px is the default.
If a function is provided, the function is invoked for each element in the set,
passing that element as the function context (this). The function is passed
two values: the element index and the element’s current value. The function’s
returned value is used as the new value.

Returns
The jQuery collection.

Method syntax: width and height

width()
height()
Retrieves the width or height of the first element of the jQuery object

Parameters
none

Returns

The computed width or height as a number in pixels; null if the jQuery object is empty

jQuery 3: Bug fixed
jQuery 3 fixes a bug of the width(), height(), and all the other related methods.
These methods will no longer round to the nearest pixel, which made it hard to position
elements in some situations. To understand the problem, let’s say that you have three
elements with a width of 33% inside of a container element that has a width of 100px:
www.EBooksWorld.ir

109Changing element styling
The fact that the width and height values are returned from these functions as num-
bers isn’t the only convenience that these methods bring to the table. If you’ve ever
tried to find the width or height of an element by looking at its style.width or
style.height properties, you were confronted with the sad truth that these proper-
ties are only set by the corresponding style attribute of that element; to find out the
dimensions of an element via these properties, you have to set them in the first place.
Not exactly a paragon of usefulness!

 The width() and height() methods, on the other hand, compute and return the
size of the element. Knowing the precise dimensions of an element in simple pages
that let their elements lay out wherever they end up isn’t usually necessary, but know-
ing such dimensions in highly interactive scripted pages is crucial to being able to cor-
rectly place active elements, such as context menus, custom tool tips, extended
controls, and other dynamic components.

 Let’s put them to work. Figure 5.2 shows a sample page that was set up with two pri-
mary elements: a div serving as a test subject that contains a paragraph of text (with a
border and background color for emphasis) and a second div in which to display the
dimensions. To write the dimensions in the second div, we’ll use the html() method
that we’ll cover shortly.

 The dimensions of the test subject aren’t known in advance because no style rules
specifying dimensions are applied. The width of the element is determined by the
width of the browser window, and its height depends on how much room will be
needed to display the contained text. Resizing the browser window will cause both
dimensions to change.

 In our page, we define a function that will use the width() and height() methods
to obtain the dimensions of the test subject div (identified as test-subject) and dis-
play the resulting values in the second div (identified as display):

function displayDimensions() {
 $('#display').html(
 $('#test-subject').width() + 'x' + $('#test-subject').height()
);
}

<div class="wrapper">
 <div>Hello</div>
 <div>Hi</div>
 <div>Bye</div>
</div>

Prior to jQuery 3, if you tried to retrieve the width of one of the three children elements
as follows

$('.wrapper div:first').width();

you’d obtain the value 33 as the result because jQuery rounds the value 33.33333.
In jQuery 3 this bug has been fixed, so you’ll obtain more accurate results.
www.EBooksWorld.ir

110 CHAPTER 5 Bringing pages to life with jQuery
We call this function as the last statement of our script, resulting in the initial values
being displayed, as shown in the upper portion of figure 5.2.

 We also add a call to the same function in a resize handler on the window that
updates the display whenever the browser window is resized (you’ll learn how to
do this in chapter 6), as shown in the lower portion of figure 5.2. The full code of
this page is shown in the following listing and can be found in the file chapter-5/
dimensions.html.

<!DOCTYPE html>
<html>
 <head>
 <title>Dynamic Dimensions Example - jQuery in Action, 3rd edition</

title>
 <link rel="stylesheet" href="../css/main.css"/>
 <style>
 #test-subject
 {
 background-color: #FFFFCC;
 border: 2px ridge maroon;
 padding: 0.5em;
 }
 </style>
 </head>
 <body>
 <div id="test-subject">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eget enim id neque aliquet porttitor. Suspendisse
 nisl enim, nonummy ac, nonummy ut, dignissim ac, justo.
 Aenean imperdiet semper nibh. Vivamus ligula. In in ipsum
 sed neque vehicula rhoncus. Nam faucibus pharetra nisi.
 Integer at metus. Suspendisse potenti. Vestibulum ante

Listing 5.1 Dynamically tracking and displaying the dimensions of an element

Figure 5.2 The width and height of the test
element aren’t fixed and depend on the width of
the browser window.

Declares test subject
with dummy text
www.EBooksWorld.ir

111Changing element styling
 ipsum primis in faucibus orci luctus et ultrices posuere
 cubilia Curae; Proin quis eros at metus pretium elementum.
 </div>
 <div id="display"></div>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 function displayDimensions() {
 $('#display').html(
 $('#test-subject').width() + 'x' +
 $('#test-subject').height()
);
 }

 $(window).resize(displayDimensions);
 displayDimensions();
 </script>
 </body>
</html>

In addition to the convenient width() and height() methods, jQuery also provides
similar methods for getting more particular dimension values, as described in table 5.1.

Table 5.1 Additional jQuery dimension-related methods

Method Description

innerHeight() Returns the inner height of the first matched element, which excludes the
border but includes the padding. The value returned is of type Number
unless the jQuery object is empty, in which case null is returned. If a num-
ber is returned, it refers to the value of the inner height in pixels.

innerHeight(value) Sets the inner height of all the matched elements with the value specified
by value. The type of value can be String, Number, or Function. The
default unit used is px. If a function is provided, it’s called for every element
in the jQuery object. The function is passed two values: the index position
of the element within the jQuery object and the current inner height value.
Within the function, this refers to the current element within the jQuery
object. The returned value of the function is set as the new value of the
inner height of the current element.

innerWidth() Same as innerHeight()except it returns the inner width of the first
matched element, which excludes the border but includes the padding.

innerWidth(value) Same as innerHeight(value) except the value is used to set the inner
width of all the matched elements.

outerHeight
([includeMargin])

Same as innerHeight() except it returns the outer height of the first
matched element, which includes the border and the padding. The
includeMargin parameter causes the margin to be included if it’s true.

outerHeight(value) Same as innerHeight(value) except the value is used to set the outer
height of all the matched elements.

Displays dimensions in this area

Defines a function that
displays width and
height of test subject

Establishes resize handler
that invokes display function

Invokes the function to
show the initial values
www.EBooksWorld.ir

112 CHAPTER 5 Bringing pages to life with jQuery
You’re not finished yet; jQuery also gives you easy support for positions and scrolling
values.

POSITIONS AND SCROLLING

jQuery provides two methods for getting the position of an element. Both of these
methods return a JavaScript object that contains two properties: top and left, which
indicate the top and left values of the element.

 The two methods use different origins from which their relative computed values
are measured. One of these methods, offset(), returns the position relative to the
document.

This method can also be used to set the current coordinates of one or more elements.

outerWidth
([includeMargin])

Same as innerHeight() except it returns the outer width of the first
matched element, which includes the border and the padding. The
includeMargin parameter causes the margin to be included if it’s true.

outerWidth(value) Same as innerHeight(value) except the value is used to set the outer
width of all the matched elements.

Method syntax: offset

offset()
Returns the current coordinates (in pixels) of the first element in the set, relative to the document.

Parameters
none

Returns
An object with left and top properties as numbers depicting the position in pixels relative to the
document.

Method syntax: offset

offset(coordinates)
Sets the current coordinates (in pixels) of all the elements in the set, relative to the document.

Parameters
coordinates (Object|Function) An object containing the properties top and left, which are

numbers indicating the new top and left coordinates for the elements in the
set. If a function is provided, it’s invoked for each element in the set, passing
that element as the function context (this) and passing two values: the
element index and the object containing the current values of top and left.
The function’s returned object is used to set the new values.

Returns

The jQuery collection.

Table 5.1 Additional jQuery dimension-related methods (continued)

Method Description
www.EBooksWorld.ir

113Changing element styling
The other method, position(), returns values relative to an element’s closest offset
parent. The offset parent of an element is the nearest ancestor that has an explicit posi-
tioning rule of relative, absolute, or fixed defined. The syntax of position() is as
follows.

Both offset() and position() can only be used for visible elements.
 In addition to element positioning, jQuery gives you the ability to get and set the

scroll bar position of an element. Table 5.2 describes these methods that work with
both visible and hidden elements.

Now that you’ve learned how to get and set the horizontal and vertical position of the
scroll bar of elements using jQuery, let’s see an example.

 Imagine that you have an element with an ID of elem shown in the middle of your
page and that after one second you want to move it to the top-left corner of the docu-
ment. The point we’ve described has as its coordinates [0, 0], which means that to
move it there you have to set both left and top to 0. To achieve the goal just
described, all you need is these few lines of code:

setTimeout(function() {
 $('#elem').offset({

Method syntax: position

position()
Returns the position (in pixels) of the first element in the set relative to the element’s closest
offset parent

Parameters
none

Returns
An object with left and top properties as numbers depicting the position in pixels relative to the
closest offset parent

Table 5.2 The jQuery scroll bar control methods

Method Description

scrollLeft() Returns the horizontal position of the scroll bar of the first matched element.
The value returned is of type Number unless the jQuery object is empty, in
which case null is returned. If a number is returned, it refers to the value of
the position in pixels.

scrollLeft(value) Sets the horizontal position of the scroll bar for all matched elements of
value pixels. This method returns the jQuery set it has been called upon.

scrollTop() Same as scrollLeft() except it returns the vertical position of the scroll
bar of the first matched element.

scrollTop(value) Same as scrollLeft(value) except the value is used to set the vertical
position of the scroll bar for all the matched elements.
www.EBooksWorld.ir

114 CHAPTER 5 Bringing pages to life with jQuery
 left: 0,
 top: 0
 });
}, 1000);

Let’s now discuss different ways of modifying an element’s contents.

5.2 Setting element content
When it comes to modifying the contents of elements, there are a lot of different
methods you can employ, depending on the type of the text you want to inject. If
you’re interested in setting a text whose content should not be parsed as markup, you
can use properties like textContent or innerText, depending on the browser.

 Once again jQuery saves you from these browser incompatibilities by giving you a
number of methods that you can employ.

5.2.1 Replacing HTML or text content

First up is the simple html() method, which allows you to retrieve the HTML content
of an element when used without parameters or, as you’ve seen with other jQuery
methods, to set the content of all the elements in the set when used with a parameter.

 Here’s how to get the HTML content of an element.

And here’s how to set the HTML content of all the matched elements.

Method syntax: html

html()
Obtains the HTML content of the first element in the matched set,

Parameters

none

Returns

The HTML content of the first matched element.

Method syntax: html

html(content)
Sets the passed HTML fragment as the content of all matched elements.

Parameters
content (String|Function) The HTML fragment to be set as the element’s content. If a

function, the function is invoked for each element in the set, setting that
element as the function context (this). The function is passed two values: the
element index and the existing content. The function’s returned value is used
as the new content.

Returns
The jQuery collection.
www.EBooksWorld.ir

115Setting element content
Let’s say that in your page you have the following element:

<div id="message"></div>

You’re running a function you’ve developed, and once it ends you need to show a
message that contains some content to your user. You can perform this task with a
statement like the following:

$('#message').html('<p>Your current balance is 1000$</p>');

This statement will cause your previous element to be updated as reported here:

<div id="message"><p>Your current balance is 1000$</p></div>

In this case, the tags passed to the method will be processed as HTML. The total bal-
ance, for instance, will be shown in bold.

 In addition to setting the content as HTML, you can also set or get only the text
contents of elements. The text() method, when used without parameters, returns a
string that’s the concatenation of all the texts in the matched set. For example, let’s
say you have the following HTML fragment:

<ul id="the-list">
 OneTwoThreeFour

The statement

var text = $('#the-list').text();

results in the variable text being set to OneTwoThreeFour. Note that if there are white
spaces or new lines in between elements (for example between a closing and an
opening) they’ll be included in the resulting string.

 The syntax of this method is as follows.

You can also use the text() method to set the text content of the elements in the
jQuery object. The syntax for this format is as follows.

Method syntax: text

text()
Retrieves the combined text contents of each element in the set of matched elements, including
their descendants.

Parameters
none

Returns
A string of all the text contents.
www.EBooksWorld.ir

116 CHAPTER 5 Bringing pages to life with jQuery

Changing the inner HTML or text of elements using these methods will replace the
contents that were previously in the elements, so use these methods carefully. jQuery
isn’t limited to these methods only, so let’s take a look at the others.

5.2.2 Moving elements

Manipulating the DOM of a page without the necessity of a page reload opens a world
of possibilities for making your pages dynamic and interactive. You’ve already seen a
glimpse of how jQuery lets you create DOM elements on the fly. These new elements
can be attached to the DOM in a variety of ways, and you can also move (and copy and
move) existing elements.

 To add content to the end of existing content, the append() method is available.

Let’s see an example of the use of this method. Consider the following simple case:

$('p').append('some text');

Method syntax: text

text(content)
Sets the text content of all elements in the set to the passed value. If the passed text contains
angle brackets (< and >) or the ampersand (&), these characters are replaced with their equivalent
HTML entities.

Parameters
content (String|Number|BooleanFunction) The text content to be set into the elements

in the set. When the value is of type Number or Boolean, it’ll be converted to a
String representation. Any angle bracket characters are escaped as HTML
entities. If a function, it’s invoked for each element in the set, setting that
element as the function context (this). The function is passed two values: the
element index and the existing text. The function’s returned value is used as
the new content.

Returns
The jQuery collection.

Method syntax: append

append(content[, content, ..., content])
Appends the passed argument(s) to the content of all matched elements. This method accepts an
arbitrary number of arguments with a minimum of one.

Parameters

content (String|Element|jQuery|Array|Function) A string, a DOM element, an array of
DOM elements, or a jQuery object to be appended. If a function is provided, the
function is invoked for each element in the set, setting that element as the
function context (this). The function is passed two values: the element index
and the existing contents of that element. The function’s returned value is used
as the content to append.

Returns
The jQuery collection.
www.EBooksWorld.ir

117Setting element content
This statement appends the HTML fragment created from the passed string to the end
of the existing content of all p elements on the page.

 A more complex use of this method identifies existing elements of the DOM as the
items to be appended. Consider the following:

$('p.append-to').append($('a.append'));

This statement moves all a elements with the class append to the end of the content of
all p elements having class append-to. If there are multiple targets (the elements of
the jQuery object the append() method is called upon) for the operation, the original
element is cloned as many times as is necessary and then appended. In all cases, the
original is removed from its initial location.

 This operation is semantically a move if one target is identified; the original source
element is removed from its initial location and appears at the end of the target’s list
of children.

 Consider the following HTML code:

Text
<p class="append-to"></p>

By running the previous statement, you’ll end up with the following markup:

<p class="append-to">
 Text
</p>

The operation can also be a copy-and-move operation if multiple targets are identi-
fied, creating enough copies of the original so that each target can have one
appended to its children.

 In place of a full-blown set, you can also reference a specific DOM element, as
shown:

$('p.appendToMe').append(someElement);

Another example of use for this method is the following:

$('#message').append(
 '<p>This</p>',
 [
 '<p>is</p>',
 $('<p>').text('my')
],
 $('<p>text</p>')
);

In this code you can see how the append() method can manage multiple arguments
and each argument can be of a different type (a string, an array, and a jQuery object).
The result of running it is that you’ll have an element having an ID of message with
four paragraphs that compose the sentence “This is my text.”

 Although it’s a common operation to add elements to the end of an element’s con-
tent—you might be adding a list item to the end of a list, a row to the end of a table, or
www.EBooksWorld.ir

118 CHAPTER 5 Bringing pages to life with jQuery
adding a new element to the end of the document body—you might also need to add
a new or existing element to the start of the target element’s contents.

 When such a need arises, the prepend() method will do the trick.

Sometimes you might wish to place elements somewhere other than at the beginning
or end of an element’s content. jQuery allows you to place new or existing elements
anywhere in the DOM by identifying a target element that the source elements are to
be placed before or after.

 Not surprisingly, the methods are named before() and after(). Their syntax
should seem familiar by now.

Method syntax: prepend

prepend(content[, content, ..., content])
Prepends the passed argument(s) to the content of all matched elements. This method accepts an
arbitrary number of arguments with a minimum of one.

Parameters
content Same as the content parameter of append() except the argument(s) are

prepended to the content of each element in the set of matched elements.

Returns

The jQuery collection.

Method syntax: before

before(content[, content, ..., content])
Inserts the passed argument(s) into the DOM as siblings of the target elements, positioned before
the targets. The target elements in the set must already be part of the DOM. This method accepts
an arbitrary number of arguments with a minimum of one.

Parameters

content Same as the content parameter of append() except the argument(s) is
inserted before each element in the set of matched elements.

Returns
The jQuery collection.

Method syntax: after

after(content[, content, ..., content])
Inserts the passed argument(s) into the DOM as siblings of the target elements positioned after
the targets. The target elements in the set must already be part of the DOM. This method accepts
an arbitrary number of arguments with a minimum of one.

Parameters
content Same as the content parameter of append() except the argument(s) is

inserted after each element in the set of matched elements.

Returns

The jQuery collection.
www.EBooksWorld.ir

119Setting element content
These operations are crucial to manipulating the DOM effectively in your pages, so
we’ve provided a Move and Copy Lab Page so that you can play around with these
operations until you thoroughly understand them. This lab is available at chapter-5/
lab.move.and.copy.html, and its initial display is as shown in figure 5.3.

 The left pane of this Lab contains three images that can serve as sources for your
move/copy experiments. Select one or more of the images by checking their corre-
sponding check boxes.

 Targets for the move/copy operations are in the right pane and are also selected
via check boxes. Controls at the bottom of the pane allow you to select one of the four
operations to apply: append, prepend, before, or after. (Ignore “clone” for now; we’ll
attend to that later.)

Figure 5.3 The Move and Copy Lab Page will let you inspect the operation of the DOM manipulation
methods.
www.EBooksWorld.ir

120 CHAPTER 5 Bringing pages to life with jQuery
The Execute button causes any source images you’ve selected to be applied to a set of
the selected targets using the specified operation. When you want to put everything
back into place so you can run another experiment, use the Restore button.

 Let’s run an append experiment. Select the dog image and then select Target 2.
Leaving the append operation selected, click Execute. The result of this operation is
shown in figure 5.4.

Use the Move and Copy Lab Page to try various combinations of sources, targets, and
the four operations until you have a good feel for how they operate.

 Sometimes it might make the code more readable if you could reverse the order of
the elements passed to these operations. If you want to move or copy an element from
one place to another, a possible approach would be to wrap the source elements
(rather than the target elements) and to specify the targets in the parameters of the
method. Well, jQuery lets you do that by providing analogous operations to the four
that we just examined, reversing the order in which sources and targets are specified.
They are appendTo(), prependTo(), insertBefore(), and insertAfter(), and are
described in table 5.3.

Figure 5.4 Cozmo has been added to the end of Target 2 as a result of the append operation.
www.EBooksWorld.ir

121Setting element content
Wow, that’s a lot of stuff to learn all at once. To help you digest this bunch of new
methods, we’ll show you a couple of examples.

EXAMPLE #1 - MOVING ELEMENTS

Let’s say you have the following HTML code in a page:

<div id="box">
 <p id="description">jQuery is so awesome!</p>
 <button id="first-btn">I'm a button</button>
 <p id="adv">jQuery in Action rocks!</p>
 <button id="second-btn">Click me</button>
</div>

This code will be rendered by Chrome as shown in figure 5.5a.
 Your first goal will be to move all the buttons before the first

paragraph, the one having description as its ID. To perform this
task you can use the insertBefore() method:

$('button').insertBefore('#description');

Because you’re a good and observant reader, you’re thinking
“Hey, I can do that using the before() method by just switching
the selectors and wrapping the target one with the $() function!”
Congratulations, you’re right! The previous statement can be
equivalently turned into this:

$('#description').before($('button'));

Once executed, regardless of which of the two previous state-
ments you run, the page will be updated as shown in figure 5.5b.

 You can see this code in action accessing the related JS Bin
(http://jsbin.com/ARedIWU/edit?html,js,output) or the file

Table 5.3 Additional methods to move elements in the DOM

Method Description

appendTo(target) Inserts every element in the set of matched elements to the end of the
content of the specified target(s). The argument provided (target) can
be a string containing a selector, an HTML string, a DOM element, an
array of DOM elements, or a jQuery object. The method returns the
jQuery object it was called upon.

prependTo(target) Same as appendTo(target) except the elements in the set of
matched elements are inserted at the beginning of the content of the
specified target(s).

insertBefore(target) Same as appendTo(target) except the elements in the set of
matched elements are inserted before the specified target(s).

insertAfter(target) Same as appendTo(target) except the elements in the set of
matched elements are inserted after the specified target(s).

Figure 5.5a The
HTML code rendered
by Chrome

Figure 5.5b The
HTML snippet
rendered by Chrome
after the execution
of the statement
www.EBooksWorld.ir

http://jsbin.com/ARedIWU/edit?html,js,output

122 CHAPTER 5 Bringing pages to life with jQuery
chapter-5/moving.buttons.html (as soon as the page is loaded, the buttons will be
moved). Now let’s see a slightly more complex example.

EXAMPLE #2 - COPYING AND MERGING CONTENT

Imagine you have the same markup as the previous example and you want to create a
new paragraph having the content equal to the union of the two paragraphs inside
the div and put it right after the div itself. The content of this newly created para-
graph will be “jQuery is so awesome! jQuery in Action rocks!” You can do that by com-
bining two of the methods we explained in this chapter: text() and after(). The
code that implements this request is listed here:

var $newParagraph = $('<p></p>').text(
 $('#description').text() + ' ' + $('#adv').text()
);
$('#box').after($newParagraph);

These two examples should prove how the more methods you discover, the more
power you have in your hands. And we’re not finished yet! There’s one more thing we
need to address before we move on. Sometimes, rather than inserting elements into
other elements, you want to do the opposite. Let’s see what jQuery offers for that.

5.2.3 Wrapping and unwrapping elements

Another type of DOM manipulation that you’ll often need to perform is to wrap an
element (or a set of elements) in some markup. You might want to wrap all links of a
certain class inside a <div>. You can accomplish such DOM modifications by using
jQuery’s wrap() method.

To understand what this method does, let’s say that you have the following markup:

A text
<a>Hi there!

Method syntax: wrap

wrap(wrapper)
Wraps the elements in the jQuery object with the argument provided.

Parameters

wrapper (String|Element|jQuery|Function) A string containing the opening tag (and
optionally the closing tag) of the element with which to wrap each element of
the matched set. The argument can also be an element, a jQuery object, or a
selector specifying the elements to be cloned and serve as the wrapper. If a
selector matching more than one element or a jQuery object is passed, only the
first element is used as the wrapper. If a function is provided, the function is
invoked for each element in the set, passing that element as the function
context (this) and passing one parameter to the function that’s the element
index. The function’s returned value, which can be an HTML fragment or a
jQuery object, is used to wrap the current element of the set.

Returns

The jQuery collection.
www.EBooksWorld.ir

123Setting element content
Another text

To wrap each link with class surprise with a <div> having class hello, you could write

$('a.surprise').wrap('<div class="hello"></div>');

The result of running such a statement would be the following:

<div class="hello">A text</div>
<a>Hi there!
<div class="hello">Another text</div>

If you wanted to wrap the link in a clone of a hypothetical first div element on the
page, you could write

$('a.surprise').wrap($('div:first'));

or alternatively

$('a.surprise').wrap('div:first');

Remember that in this case the content of the div will also be cloned and used to sur-
round the a elements.

 When multiple elements are collected in a jQuery object, the wrap() method oper-
ates on each one individually. If you’d rather wrap all the elements in the jQuery
object as a unit, you could use the wrapAll() method instead.

Method syntax: wrapAll

wrapAll(wrapper)
Wraps the elements of the matched set, as a unit, with the argument provided

Parameters
wrapper Same as the wrapper parameter of wrap()

Returns
The jQuery collection

jQuery 3: Bug fixed
jQuery 3 fixes a bug of the wrapAll() method that occurred when passing a function
to it. Prior to jQuery 3, when passing a function to wrapAll(), it wrapped the ele-
ments of the matched set individually instead of wrapping them as a unit. Its behavior
was the same as passing a function to wrap().

In addition to fixing this issue, because in jQuery 3 the function is called only once,
it isn’t passed the index of the element within the jQuery object. Finally, the function
context (this) now refers to the first element in the matched set.
www.EBooksWorld.ir

124 CHAPTER 5 Bringing pages to life with jQuery
Sometimes you may not want to wrap the elements in a matched set but rather their
contents. For just such cases, the wrapInner() method is available.

The converse operation of wrap(), which is removing the parent of a child element, is
possible with the unwrap() method.

Before moving on, let’s see an example of the use of these methods.

HOW TO WRAP LABEL-INPUT AND LABEL-TEXTAREA PAIRS OF A FORM

Imagine that you have the following contact form:

<form id="contact" method="post">
 <label for="name">Name:</label>
 <input name="name" id="name" />
 <label for="email">Email:</label>
 <input name="email" id="email" />
 <label for="subject">Subject:</label>
 <input name="subject" id="subject" />
 <label for="message">Message:</label>

Method syntax: wrapInner

wrapInner(wrapper)
Wraps the contents, including text nodes, of the elements in the matched set with the argument
provided

Parameters

wrapper Same as the wrapper parameter of wrap()

Returns

The jQuery collection

Method syntax: unwrap

unwrap()
Removes the parent element of the elements in the set. The child element, along with any
siblings, replaces the parent element in the DOM.

Parameters

none

Returns
The jQuery collection.

jQuery 3: Parameter added
jQuery 3 adds an optional selector parameter to unwrap(). You can pass a string
containing a selector expression to match the parent element against. In case
there is a match, the child elements are unwrapped; otherwise, the operation isn’t
performed.
www.EBooksWorld.ir

125Setting element content

Wr
pai
the
 <textarea name="message" id="message"></textarea>
 <input type="submit" value="Submit" />
</form>

You want to wrap every label-input or label-textarea pair in a <div> having the
class field. You define this class as follows:

.field
{
 border: 1px solid black;
 margin: 5px 0;
}

Wrapping the pairs means that you don’t want to wrap each element inside the form
individually. To achieve this goal, you’ll need to use some of the knowledge you’ve
acquired throughout the first chapters of the book. But don’t worry! This can be a
good test to see if you’ve digested the concepts explained so far or if you need a quick
refresher. One of the possible solutions is the following:

$('input, textarea', '#contact').each(function(index, element) {

 var $this = $(this);

 $this

 .add($this.prev('label'))

 .wrapAll('<div class="field"></div>');

});

To perform the exercise, you need to select all the <input>s and the <textarea>s
inside the <form> (for the sake of brevity we’re ignoring other tags such as <select>)
and find a way to tie them with the related <label>. Then you have to process each
pair individually. To do that, after selecting the elements you need, use the each()
method we covered in chapter 3. Inside the anonymous function passed to it, wrap the
current element using $() and then store it in a variable because you’re going to use it
twice. Then add to the element in the set the preceding sibling element only if it’s a
label element. At this point, you have a set with the two elements you need, so you
wrap this set with the <div> as required. Yeah, mission accomplished!

 Figure 5.6a shows the <form> before running the code and figure 5.6b shows it
after.

Selects all the form’s <input>s
and <textarea>s and processes

them individually

Caches the set
containing the
current
element only

aps the
r inside
 <div>

Adds to the set the preceding sibling
element only if it’s a <label>

Figure 5.6a The form before
executing the code
www.EBooksWorld.ir

126 CHAPTER 5 Bringing pages to life with jQuery
In case you want to play further with this example, it’s available as a JS Bin (http://
jsbin.com/IrUhEfAg/edit?html,css,js,output) and in the file chapter-5/wrapping
.form.elements.html.

 So far you’ve learned how to perform many operations. It’s now time to learn how
to remove elements from the DOM.

5.2.4 Removing elements

Sometimes you might need to remove elements that are no longer needed. If you
want to remove a set of elements and all their content, you can use the remove()
method, whose syntax is as follows.

Note that as with many other jQuery methods, the set is returned as the result of this
method. The elements that were removed from the DOM are still referenced by this set
(and hence are not yet eligible for garbage collection) and can be further operated
upon using other jQuery methods including appendTo(), prependTo(), insert-
Before(), insertAfter(). But any data stored or event listener added to the removed
element is lost.

 If you want to remove the elements from the DOM but retain any bound events and
data (that you might have added using the data() method), you can use detach().

Method syntax: remove

remove([selector])
Removes all elements and their content in the set from the page, including event listeners
attached and any data stored

Parameters

selector (String) An optional selector that further filters which elements of the set are to
be removed

Returns
The jQuery collection

Method syntax: detach

detach([selector])
Removes all elements and their content in the set from the page DOM, retaining any bound events
and jQuery data

Figure 5.6b The form after executing
the code. Note how each label-input
or label-textarea pair is surrounded
by a black border, proving that they’ve
been wrapped by the <div> as required.
www.EBooksWorld.ir

http://jsbin.com/IrUhEfAg/edit?html,css,js,output
http://jsbin.com/IrUhEfAg/edit?html,css,js,output

127Setting element content

Retrie

elem
The detach() method is the preferred means of removing an element that you’ll want
to put back into the DOM at a later time with its events and data intact. A typical situa-
tion pulls the element from the DOM, applies several changes to it, and then pushes it
again in the DOM. Doing so will improve the performance of your code because mod-
ifying a detached element is faster than applying all the changes to one or more ele-
ments that are currently in the DOM.

 To completely empty DOM elements of their contents but retain the elements
themselves, you can use the empty() method. Its syntax is as follows.

This method is useful when you deal with injecting external content fetched using
Ajax. Let’s say that you fetched some new content and now you need to add it inside
your page in a <div> having content as its ID. You can perform this task with the fol-
lowing code:

var newContent = '<p>Wow, this new content is awesome!</p>';

$('#content')

 .empty()

 .html(newContent);

Remember to pay attention when you inject external content inside your page using
the html() method because you may be exposed to attacks such as XSS (cross-site
scripting) and CSRF (cross-site request forgery).

 Removing elements is nice, but sometimes you need to clone elements.

Method syntax: detach (continued)

Parameters
selector (Selector) An optional selector string that further filters which elements of the

set are to be detached

Returns
The jQuery collection.

Method syntax: empty

empty()
Removes the content of all DOM elements in the matched set.

Parameters
none

Returns
The jQuery collection.

Content ideally
fetched from an
external resourceves

the
ent

Removes its content

Injects the fetched content
inside it as HTML
www.EBooksWorld.ir

128 CHAPTER 5 Bringing pages to life with jQuery
5.2.5 Cloning elements

One more way that you can manipulate the DOM is to make copies of elements to
attach elsewhere in the tree. jQuery provides a handy wrapper method for doing so
with its clone() method.

Making copies of existing elements with clone() isn’t useful unless you do something
with the copies. Generally, once the set containing the clones is generated, another
jQuery method is applied to stick them somewhere in the DOM. For example,

$('img').clone().appendTo('fieldset.photo');

makes copies of all img elements and appends them to all fieldset elements with the
class name photo.

 A slightly more interesting example is as follows:

$('ul').clone(true).insertBefore('#here');

This method’s chain performs a similar operation, but the targets of the cloning oper-
ation—all ul elements—are copied including their data and event handlers. In addi-
tion, because the clone() method clones children, too, and it’s likely that any ul
element will have a number of li children, you’re sure that no information is lost.
Because you omit the second argument but specify the first, the data and event han-
dlers of all the children are also copied.

 Before moving to another topic, let’s discuss one last example. Imagine that you
have a set of links with an image inside them. Both links and images have some data
and events handlers attached. You want to copy all of them and place the copies after
all the elements inside the first div of the page. In addition, you want to retain only
the data and the handlers of the links, not those of the images inside. This task is per-
formed with the following statement:

$('a').clone(true, false).appendTo('div:first');

Method syntax: clone

clone([copyHandlersAndData[, copyChildrenHandlersAndData]])
Creates a deep copy of the elements in the jQuery collection and returns a new jQuery collection
that contains them. The elements and any children are copied. Event handlers and data are
optionally copied depending on the setting of the copyHandlersAndData parameter.

Parameters
copyHandlersAndData (Boolean) If true, event handlers and data are copied.

If false or omitted, handlers and data aren’t copied.
copyChildrenHandlersAndData (Boolean) If true, copies the event handlers and the

data for all the children of the cloned elements. If
omitted, if the first parameter is provided, the same
value is used; otherwise false is assumed. If false,
the event handlers and the data aren’t copied.

Returns
The newly created jQuery collection.
www.EBooksWorld.ir

129Setting element content
This statement shows you the use of the optional parameters discussed in the descrip-
tion of the method.

 In order to see the clone operation in action, return to the Move and Copy Lab
Page. Just above the Execute button is a pair of radio buttons that allows you to specify
a cloning operation as part of the main DOM manipulation operation. When the Yes
radio button is selected, the sources are cloned before the append(), prepend(),
before(), and after() methods are executed.

 Repeat some of the experiments you conducted earlier with cloning enabled, and
note how the original sources are unaffected by the operations.

 You can insert, remove, and copy. Using these operations in combination, it would
be easy to perform higher-level operations such as replace. But guess what? You don’t
need to!

5.2.6 Replacing elements

For those times when you want to replace existing elements with new ones, or to move
an existing element to replace another, jQuery provides the replaceWith() method.

To understand what this method does, let’s discuss an example. Imagine that you have
the following markup:

You want to replace all the images that have an alt attribute, one at a time, with span
elements. The latter will have as their text the value of the alt attribute of the image
being replaced. Employing each() and replaceWith(), you could do it like this:

$('img[alt]').each(function(){
 $(this).replaceWith('' + $(this).attr('alt') + '');
});

Method syntax: replaceWith

replaceWith(content)
Replaces each matched element with the specific content.

Parameters

content (String|Element|Array|jQuery|Function) A string containing an HTML fragment to
become the replaced content, or a DOM element, an array of DOM elements, or
a jQuery object containing the elements to be moved to replace the existing
elements. If a function, the function is invoked for each element in the set,
setting that element as the function context (this) and passing no parameters.
The function’s returned value is used as the new content.

Returns
A jQuery collection containing the replaced elements.
www.EBooksWorld.ir

130 CHAPTER 5 Bringing pages to life with jQuery
The each() method lets you iterate over each matched element, and replaceWith()
is used to replace the images with generated span elements. The resulting markup is
shown here:

A ball
A blue bird

This example shows once again how easy it is to work with jQuery to manipulate the
DOM.

 The replaceWith() method returns a jQuery set containing the elements that
were removed from the DOM, in case you want to do something other than just dis-
card them. As an exercise, consider how you’d augment the example code to reattach
these elements elsewhere in the DOM after their removal.

 When an existing element is passed as the argument to replaceWith(), it’s
detached from its original location in the DOM and reattached to replace the target
elements. If there are multiple such targets, the original element is cloned as many
times as needed.

 At times, it may be convenient to reverse the order of the elements as specified by
replaceWith() so that the replacing element can be specified using the matching
selector. You’ve already seen such complementary methods, such as append() and
appendTo(), that let you specify the elements in the order that makes the most sense
for your code.

 Similarly, the replaceAll() method mirrors replaceWith(), allowing you to per-
form a similar operation. But in this case the elements to be replaced are defined by
the selector passed as arguments and thus are not those the method is called upon.

Like replaceWith(), replaceAll() returns a jQuery collection. But it doesn’t contain
the replaced elements but rather the replacing elements. The replaced elements are
lost and can’t be further operated upon. Keep this in mind when deciding which
replace method to employ.

 Based on the description of the replaceAll() method, you can achieve the same
goal of the previous example by writing the following:

Method syntax: replaceAll

replaceAll(target)
Replaces each element matched by the passed target with the set of matched elements to
which this method is applied

Parameters

target (String|Element|Array|jQuery) A selector string expression, a DOM element, an
array of DOM elements, or a jQuery collection that specifies the elements to be
replaced

Returns
A jQuery collection containing the inserted elements
www.EBooksWorld.ir

131Dealing with form element values
$('img[alt]').each(function(){
 $('' + $(this).attr('alt') + '').replaceAll(this);
});

Note how you invert the argument passed to $() and replaceAll().
 Now that we’ve discussed handling general DOM elements, let’s take a brief look at

handling a special type of element: the form elements.

5.3 Dealing with form element values
Because form elements have special properties, jQuery’s core contains a number of
convenience functions for activities such as these:

 Getting and setting their values
 Serializing them
 Selecting elements based on form-specific properties

Let’s take a look at one of the most common operations you’ll want to perform on a
form element: getting access to its value. jQuery’s val() method takes care of the
most common cases, returning the value attribute of a form element for the first ele-
ment in the jQuery object. Its syntax is as follows.

This method, although quite useful, has a number of limitations of which you need to
be wary. If the first element in the set isn’t a form element, an empty string is
returned, which some of you may find misleading. This method doesn’t distinguish
between the checked or unchecked states of check boxes and radio buttons and will
return the value of check boxes or radio buttons as defined by their value attribute,
regardless of whether they’re checked or not.

Method syntax: val

val()
Returns the current value of the first element in the jQuery collection. If the first element is a
<select> and no option is selected, the method returns null. If the element is a multiselect
element (a <select> having the multiple attribute specified) and at least one option is
selected, the returned value is an array of all selected options.

Parameters
none

Returns
The fetched value or values.

What’s a form element?
When we use the term form element, we’re referring to the elements that can appear
within a form, possess name and value attributes, and whose values are sent to the
server as HTTP request parameters when the form is submitted.
www.EBooksWorld.ir

132 CHAPTER 5 Bringing pages to life with jQuery
 For radio buttons, the power of jQuery selectors combined with the val() method
saves the day. Consider a form with a radio group (a set of radio buttons with the same
name) named radio-group and the following expression:

$('input[type="radio"][name="radio-group"]:checked').val();

This expression returns the value of the single checked radio button (or undefined if
none are checked). That’s a lot easier than looping through the buttons looking for
the checked element, isn’t it?

 Because val()considers only the first element in a set, it’s not as useful for check
box groups where more than one control might be checked. But jQuery rarely leaves
you without recourse. Consider the following:

var checkboxValues =
 $('input[type="checkbox"][name="checkboxgroup"]:checked').map(function() {
 return $(this).val();
 })
 .toArray();

Although the val() method is great for obtaining the value of any single form control
element, if you want to obtain the complete set of values that would be submitted
through a form submission, you’ll be much better off using the serialize() or
serializeArray() methods (which you’ll see in chapter 10).

 Another common operation you’ll perform is to set the value of a form element.
The val() method is also used for this purpose by supplying a value. Its syntax is as
follows.

As the description of the method specifies, the val() method can be used to cause
check box or radio elements to become checked or to select options within a
<select> element. Consider the following statement:

$('input[type="checkbox"], select').val(['one', 'two', 'three']);

Method syntax: val

val(value)
Sets the passed value as the value of all matched elements. If an array of values is provided, it
causes any check boxes, radio buttons, or options of select elements in the set to become
checked or selected if their value properties match any of the values passed in the values array.

Parameters

value (String|Number|Array|Function) Specifies the value that is to be set as the
value property of each element in the set. An array of values will be used to
determine which elements are to be checked or selected. If a function, the
function is invoked for each element in the set, with that element passed as
the function context (this), and two values: the element index and the current
value of the element. The value returned from the function is taken as the new
value to be set.

Returns

The jQuery collection.
www.EBooksWorld.ir

133Summary
It’ll search all the checkboxes and selects on the page for values that match any of
the input strings: "one", "two", or "three". Any element found that matches will
become checked or selected. In case of a select element without the multiple attri-
bute defined, only the first value to match is selected. In our previous code only an
option having a value of one is selected because in the array passed to val() the string
"one" comes before the strings "two" and "three". This makes val() useful for much
more than the text-based form elements.

5.4 Summary
With the techniques learned in this chapter, you’re able to copy elements, move them,
replace them, or even remove them. You can also append, prepend, or wrap any ele-
ment or set of elements on the page. In addition, we discussed how to manage the val-
ues of form elements, all leading to powerful yet succinct logic.

 With that behind you, you’re ready to look at some more advanced concepts, start-
ing with the typically messy job of handling events in your pages.
www.EBooksWorld.ir

Events are where
it happens!
Like many other GUI management systems, the interfaces presented by HTML web
pages are asynchronous and event-driven, even if the protocol used to deliver them to
the browser, HTTP, is wholly synchronous in nature. Whether a GUI is implemented
as a desktop program using Java Swing, X11, or the .NET Framework, or as a page in
a web application using HTML and JavaScript, the program steps are pretty much
the same:

This chapter covers
 The event models as implemented by the browsers

 The jQuery event model

 Binding event handlers to DOM elements

 Event delegation

 Namespacing events

 The Event object instance

 Triggering event handlers under script control

 Registering proactive event handlers
134

www.EBooksWorld.ir

135
1 Set up the user interface.
2 Wait for something interesting to happen.
3 React accordingly.
4 Go to step 2.

The first step sets up the display of the user interface; the others define its behavior. In
web pages, the browser handles the setup of the display in response to the markup
(HTML) and style (CSS) that you send to it. The script you include in the page defines
the behavior of the interface, although it can change the user interface (UI) as well.

 This script takes the form of event listeners, also referred as event handlers (although
there’s a subtle technical difference), that react to the various events that occur while
the page is displayed. These events could be generated by the system (such as timers
or the completion of asynchronous requests) but are often the result of some user
activity (such as moving the mouse, clicking a button of the mouse, entering text via
the keyboard, or even touch gestures). Without the ability to react to these events, the
World Wide Web’s greatest use might be limited to showing pictures.

 Although HTML itself does define a small set of built-in semantic actions that
require no scripting on your part (such as reloading pages as the result of clicking an
anchor tag or submitting a form via a submit button), any other behaviors that you
wish your pages to exhibit require you to handle the various events that occur as your
users interact with those pages.

 In this chapter, we’ll examine the various ways that browsers expose these events
and how they allow you to establish handlers to control what happens when these
events occur. In addition, we’ll look at the challenges that you face due to the multi-
tude of differences between the browser event models. Then you’ll see how jQuery
cuts through the browser-induced fog to relieve you of these burdens.

 Let’s start off by examining how browsers expose their event models.

JavaScript you need to know!
One of the benefits that jQuery brings to web pages is the ability to implement a great
deal of scripting-enabled behavior without having to write a lot of script yourself.
jQuery handles the nuts-and-bolts details so that you can concentrate on the job of
making your applications do what they need to do!

Up to this point, the ride has been pretty painless. You needed only rudimentary
JavaScript skills to code and understand the jQuery examples we introduced in the
previous chapters. In this chapter and the chapters that follow, you must understand
a handful of important fundamental JavaScript concepts to make effective use of the
jQuery library.

Depending on your background, you may already be familiar with these concepts, but
some page authors may have been able to get pretty far without a firm grasp of
them—the very flexibility of JavaScript makes such a situation possible. Before we
proceed, it’s time to make sure that you’ve wrapped your head around these core
concepts.
www.EBooksWorld.ir

136 CHAPTER 6 Events are where it happens!
6.1 Understanding the browser event models
Long before anyone considered standardizing how browsers would handle events,
Netscape Communications Corporation introduced an event-handling model in its
Netscape Navigator browser. This model is known by a few names. You may have heard
it termed the Netscape Event Model, the Basic Event Model, or even the rather vague
Browser Event Model, but most people have come to call it the DOM Level 0 Event Model.

NOTE The term DOM level is used to indicate what level of requirements an
implementation of the W3C DOM specification meets. There isn’t a DOM
Level 0, but that term is used to informally describe what was implemented
prior to DOM Level 1.

The W3C didn’t create a standardized model for event handling until DOM Level 2,
introduced in November 2000. This model enjoys support from all modern standards-
compliant browsers such as Internet Explorer 9 and above, Firefox, Chrome, Safari,
and Opera. Internet Explorer 8 and below have their own way and support a subset of
the functionality in the DOM Level 2 Event Model, albeit using a proprietary interface.

 Before we show you how jQuery makes that irritating fact a non-issue, you need to
spend some time getting to know how the various event models operate.

6.1.1 The DOM Level 0 Event Model

The DOM Level 0 Event Model is the event model that most amateurs and beginning
web developers employ on their pages because it’s somewhat browser-independent
and fairly easy to use.

 Under this event model, event handlers are declared by assigning a reference to a
function instance to properties of the DOM elements. These properties are defined to
handle a specific event type; for example, a click event is handled by assigning a
function to the onclick property and a mouseover event by assigning a function to the
onmouseover property of elements that support these event types.

 The browsers also allow you to specify the body of event handler functions as attri-
bute values embedded within the HTML markup of the DOM elements, providing a
shortcut for creating event handlers. An example of defining handlers in both ways is
shown in the following listing, which can be found in the downloadable code for this
book in the file chapter-6/dom.0.events.html.

(continued)
If you’re already comfortable with the workings of the JavaScript Object and
Function and have a good handle on concepts like function contexts and closures,
you may want to continue reading this and the upcoming chapters. If these concepts
are unfamiliar or hazy, we strongly urge you to turn to the appendix to help you get up
to speed on these necessary concepts and then come back.
www.EBooksWorld.ir

137Understanding the browser event models
<!DOCTYPE html>
<html>
 <head>
 <title>DOM Level 0 Events - jQuery in Action, 3rd edition</title>
 <link rel="stylesheet" href="../css/main.css"/>
 <style>
 img
 {
 display: block;
 margin: auto;
 }
 </style>
 </head>
 <body>
 <img id="example" src="images/example.jpg" alt="A bolt of lightning"
 onclick="console.log('At ' + formatDate(new Date()) + ' BOOM!');" />
 <script>
 function formatDate(date) {
 return (date.getHours() < 10 ? '0' : '') + date.getHours() +
 ':' + (date.getMinutes() < 10 ? '0' : '') + date.getMinutes() +
 ':' + (date.getSeconds() < 10 ? '0' : '') + date.getSeconds() +
 '.' + (date.getMilliseconds() < 10 ?
 '00' : (date.getMilliseconds() < 100 ? '0' : '')) +
 date.getMilliseconds();
 }
 document.getElementById('example').onmouseover = function(event) {
 console.log('At ' + formatDate(new Date()) + ' Crackle!');
 };
 </script>
 </body>
</html>

In this example, you employ both styles of event handler declaration: declaring in a
markup attribute B and declaring under script control C. In the body of the page,
you define an img element, having example as its ID, upon which you’re defining the
event handler for the click event using the onclick attribute B.

 Inside the <script> tag, you declare a function called formatDate() used to for-
mat and return a string representing the time of the given Date object. Then, using
the JavaScript’s getElementById() method, you retrieve a reference to the image, set-
ting its onmouseover property to an inline function C. This function becomes the
event handler for the element when a mouseover event is triggered on it. Note that
this function expects a single parameter to be passed to it, which we’ll discuss in a few
moments. Within this function, you print on the console a formatted date using once
again the previously declared formatDate() function D.

NOTE We’ve thrown the concept of unobtrusive JavaScript out the window
for this example. Long before you reach the end of this chapter, you’ll see
why you won’t need to embed event behavior in the DOM markup anymore!

Listing 6.1 Declaring DOM Level 0 event handlers

Instruments img element B

Defines the
mouseover
handler

C

DEmits text to the console
www.EBooksWorld.ir

138 CHAPTER 6 Events are where it happens!
Loading this page (found in the file chapter-6/dom.0.events.html) into Chrome, wav-
ing the mouse pointer over the image a few times, and then clicking the image results
in a display similar to that shown in figure 6.1.

 You declared the click event handler in the img element markup using the follow-
ing attribute:

onclick="console.log('At ' + formatDate(new Date()) + ' BOOM!');"

This might lead you to believe that the statement becomes the click event handler
for the element, but that’s not the case. When handlers are declared via HTML
markup attributes, an anonymous function is automatically created using the value of
the attribute as the function body. Assuming that imageElement is a reference to the
image element, the construct created as a result of the attribute declaration is equiva-
lent to the following:

imageElement.onclick = function(event) {
 console.log('At ' + formatDate(new Date()) + ' BOOM!');
};

Note how the value of the attribute is used as the body of the generated function and
that the function is created so that the event parameter is available within the gener-
ated function. Finally, within this function you can refer to the element itself using the
this keyword. We haven’t used it in our simple example, but it’s a detail we wanted to
highlight.

 Once again, we want to remind you that using the attribute mechanism of declar-
ing DOM Level 0 event handlers violates the precepts of unobtrusive JavaScript. You’ll
shortly see that JavaScript and jQuery, which also deal with browser incompatibilities,
provide a much better way to declare event handlers than either of the means
described. But first, let’s examine what that event parameter is all about.

Figure 6.1 Waving the mouse over
the image and clicking it results in
the event handlers firing and emitting
their messages to the console.
www.EBooksWorld.ir

139Understanding the browser event models
THE EVENT INSTANCE

When an event handler is fired, an instance of an object named Event is passed to the
handler as its first parameter in all standards-compliant browsers. Once again, the lat-
ter are Internet Explorer 9 and above, Firefox, Chrome, Safari, and Opera. Internet
Explorer 8 and below do things in their own proprietary way by tacking the Event
instance onto a global property (in other words, a property of window) named event.
It’s worth noting that in order to preserve backward compatibility with older scripts,
new versions of Internet Explorer still have a reference to the event in the window
object. Not only that, but Microsoft has also kept its proprietary properties of the
object, merging them with the standard ones. Notably, although Chrome was released
long after the publication of the DOM Level 2, it adds a reference to the event in the
window object and supports Internet Explorer’s properties as well.

 In order to deal with this discrepancy, you’ll often see the following used as the
first statement in a non-jQuery event handler:

if (!event) {
 event = window.event;
}

Those of you who are more experienced with JavaScript will know that you can reduce
the previous code to a one-line statement:

event = event || window.event;

This levels the playing field by using feature detection (a concept we’ll explore in
chapter 9) to check if the event parameter is passed and assigning the value of the
window’s event property to it otherwise. After this statement, you can reference the
event parameter regardless of how it was made available to the handler.

 The properties of the Event instance provide a great deal of information regard-
ing the event that has been fired and is currently being handled. This includes details
such as which element the event was triggered on, the coordinates of mouse events,
and which key was clicked for keyboard events.

 But not so fast. If you’re dealing with older versions of Internet Explorer, not only
do they use a proprietary means to get the Event instance to the handler, but they also
use a proprietary definition of the Event object in place of the W3C-defined stan-
dard—you’re not out of the object-detection woods yet. With all these exceptions in
place, you can understand how happy developers have been that new versions of
Internet Explorer embraced W3C standards. Microsoft is not as evil as many think.

 To give you an idea of these inconsistencies among browsers, let’s look at an exam-
ple. To get a reference of the target element—the element on which the event was
triggered—you must access the target property in standards-compliant browsers but
the srcElement property in older versions of Internet Explorer. You deal with this
inconsistency by employing feature detection with a statement such as the following:

var target = event.target || event.srcElement;
www.EBooksWorld.ir

140 CHAPTER 6 Events are where it happens!
This statement tests whether event.target is defined and, if so, assigns its value to the
local target variable; otherwise, it assigns the value of event.srcElement. You’ll be
required to take similar steps for other Event properties of interest.

 Up until this point, we’ve acted as if event handlers are pertinent only to the ele-
ments that serve as the trigger to an event, such as the image element of listing 6.1,
but events propagate throughout the DOM tree. Let’s find out about that.

EVENT BUBBLING

When an event is triggered on an element in the DOM tree, the event-handling mech-
anism of the browser checks if a handler has been established for that particular event
on that element and, if so, invokes it. But that’s hardly the end of the story.

 After the target element has had its chance to handle the event, the event model
checks with the parent of that element to see if it has a handler for the event type, and
if so, it’s also invoked. At this point its parent is checked, then its parent, then its par-
ent, and on and on, all the way up to the top of the DOM tree. Because the event han-
dling propagates upward like the bubbles in a champagne flute (assuming you view
the DOM tree with its root at the top), this process is termed event bubbling.

 Let’s modify the example from listing 6.1 so that you can see this process in action.
Consider the code in the next listing, which can be found in the file chapter-6/
dom.0.propagation.html.

<!DOCTYPE html>
<html>
 <head>
 <title>DOM Level 0 Bubbling - jQuery in Action, 3rd edition</title>
 <link rel="stylesheet" href="../css/main.css"/>
 <style>
 img
 {
 display: block;
 margin: auto;
 }
 </style>
 </head>
 <body>
 <div id="greatgrandpa">
 <div id="grandpa">
 <div id="pops">
 <img id="example" src="images/example.jpg"
 alt=" A bolt of lightning" />
 </div>
 </div>
 </div>
 <script>
 function formatDate(date) {
 return (date.getHours() < 10 ? '0' : '') + date.getHours() +
 ':' + (date.getMinutes() < 10 ? '0' : '') + date.getMinutes() +
 ':' + (date.getSeconds() < 10 ? '0' : '') + date.getSeconds() +

Listing 6.2 Events propagate from the point of origin to the top of the DOM
www.EBooksWorld.ir

141Understanding the browser event models

Lo
the
 '.' + (date.getMilliseconds() < 10 ?
 '00' : (date.getMilliseconds() < 100 ? '0' : '')) +
 date.getMilliseconds();
 }

 var elements = document.getElementsByTagName('*');
 for(var i = 0; i < elements.length; i++) {
 (function(current) {
 current.onclick = function(event) {
 event = event || window.event;
 var target = event.target || event.srcElement;
 console.log(
 'At ' + formatDate(new Date()) +
 ' For ' + current.tagName + '#'+ current.id +
 ' target is ' + target.tagName + '#' + target.id
);
 };
 })(elements[i]);
 }
 </script>
 </body>
</html>

You do a lot of interesting things in the changes to this example. First you remove the
previous handling of the mouseover event so that you can concentrate on the click
event. You also wrap the image element that will serve as the target for your event
experiment into three nested div elements, merely to place the image element artifi-
cially deeper within the DOM hierarchy. You also give almost every element in the
page a specific ID.

 Inside the <script> tag, you use JavaScript’s getElementsByTagName() method
and the Universal selector to retrieve all the elements on the page B. Then, using a
for loop, you iterate over each of them C and attach a handler to react to a click
event D. For each matched element, you create a closure (please read the section on
closures in the appendix if closures are a subject that gives you heartburn) to record
its instance in the local variable current. Inside the handler you can’t refer to
elements[i] because at the time the handler will be executed, the value of the index
i is outside the range of the array(-like) object.

NOTE The method getElementsByTagName() doesn't return an actual array
but an HTMLCollection. Objects like this are called array-like because they
allow you to reference their elements using an index, and they also have a
length property but don’t implement array methods like push() and join().

The handler employs the browser-dependent tricks that we discussed in the previous
section to locate the Event instance and identify the event target, and then it prints a
message on the console. This message is another interesting part of this example. It
displays the tag name and the ID of the current element (if any), putting closures to
work, followed by the ID of the target. By doing so, each message that’s logged to the
console displays the information about the current element of the bubble process, as
well as the target element that started the whole shebang.

Selects every
element on the page

Bops over
 selected
elements

C

Defines the
onclick
handler for
every elementD
www.EBooksWorld.ir

142 CHAPTER 6 Events are where it happens!
Loading the page (located in the file chapter-6/dom.0.propagation.html) and click-
ing the image results in the display shown in figure 6.2.

 This clearly illustrates that when the event is fired, it’s delivered first to the target
element and then to each of its ancestors in turn, all the way up to the root html
element.

 This is a powerful ability because it allows you to establish handlers on elements at
any level to manage events occurring on their descendants. Consider as an example a
handler on a form element that reacts to any change event on its child elements to
effect dynamic changes to the display based on the elements’ new values.

 But what if you don’t want the event to propagate? Can you stop it?

AFFECTING EVENT PROPAGATION AND SEMANTIC ACTIONS

There may be occasions when you want to prevent an event from bubbling any further
up the DOM tree. This might be because you’re fastidious and you know that you’ve
already accomplished any processing necessary to handle the event, or you may want
to forestall unwanted handling that might occur higher up in the chain.

 Regardless of the reason, you can prevent an event from propagating any higher
via mechanisms provided on the Event instance. In modern browsers, you can call the
stopPropagation() method of the Event instance to halt the propagation of the
event farther up the ancestor hierarchy. In older versions of Internet Explorer, you
have to set a property named cancelBubble to true in the Event instance. Interest-
ingly, many modern standards-compliant browsers support the cancelBubble mecha-
nism even though it’s not part of any W3C standard.

 Some events have default semantics associated with them. For example, a click
event on an anchor element will cause the browser to navigate to the element’s href,
and a submit event on a form element will cause the form to be submitted. Should you
wish to cancel these semantic actions—usually referred as the default actions—of the
event, in modern browsers you can call the preventDefault() method of the Event
instance. In older versions of Internet Explorer, the method doesn’t exist, so you have
to set a property called returnValue to false. Alternatively, within the event handler
you can achieve the same result by returning false. Sometimes you may also need to
stop the propagation and the default action.

Figure 6.2 The console
messages clearly show the
propagation of the event as it
bubbles up the DOM tree from the
target element to the tree root.
www.EBooksWorld.ir

143Understanding the browser event models
 A frequent use for such an action is in the realm of form validation. In the handler
for the form’s submit event, you can make validation checks on the form’s controls
and return false if any problems with the data entry are detected.

 You may also have seen the following on form elements:

<form name="myForm" onsubmit="return false;" ...

This effectively prevents the form from being submitted in any circumstances except
under script control (via form.submit(), which doesn’t trigger a submit event).

 Under the DOM Level 0 Event Model, almost every step you take in an event han-
dler involves using browser-specific detection in order to figure out what action to
take. What a headache! But don’t put away the aspirin yet—it doesn’t get any easier
when you consider the more advanced event model.

6.1.2 The DOM Level 2 Event Model

One severe shortcoming of the DOM Level 0 Event Model is that only one event han-
dler per element can be registered for any specific event type at a time. This happens
because a property is used to store a reference to a function that’s to serve as an event
handler. If you have two things that you want to do when an element is clicked, the fol-
lowing statements won’t let that happen:

someElement.onclick = function doFirstThing() {};
someElement.onclick = function doSecondThing() {};

Because the second assignment replaces the previous value of the onclick property,
only doSecondThing() is invoked when the event is triggered. Sure, you could wrap
the two functions in another function that calls both, but as pages get more compli-
cated it becomes increasingly difficult to keep track of such things. Moreover, if you
use multiple reusable components or libraries in a page, they may have no idea of the
event-handling needs of the other components. The code that somebody else has writ-
ten might be trying to set the someElement.onclick property as well, and either this
click handler or yours is going to be overwritten. You could employ other solutions,
but all of these add complexity to pages that are likely to already be complex enough.

 The establishment of a standard event model, the DOM Level 2 Event Model, was
designed to address these types of problems. Let’s see how event handlers, even multi-
ple ones, are established on DOM elements under this more advanced model.

ESTABLISHING EVENT HANDLERS

Rather than assigning a function reference to an element property, DOM Level 2
event handlers are established via an element method. Each DOM element defines a
method named addEventListener() that’s used to attach event listeners to the ele-
ment. The format of this method is as follows:

addEventListener(eventType, listener, useCapture)
www.EBooksWorld.ir

144 CHAPTER 6 Events are where it happens!
The eventType parameter is a string that identifies the type of event to be handled.
These string values are, generally, the same event names you used in the DOM Level 0
Event Model without the on prefix: for example: click, mouseover, keydown, and so on.

 The listener parameter is a reference to the function (or an inline, usually anon-
ymous, function) that’s to be established as the handler for the named event type on
the element. As in the basic event model, the Event instance is passed to this function
as its first parameter.

 The final parameter, useCapture, is a Boolean whose operation we’ll explore in a
few moments, when we discuss event propagation in the Level 2 Model. For now,
you’ll leave it set to false.

 Now that we’ve discussed the parameters of addEventListener(), guess what?
Older versions of Internet Explorer have their own way of attaching handlers! We’ll
delve into the details of the Internet Explorer way in section 6.1.3, “The Internet
Explorer Event Model.”

 To see the method in action, you’ll once again change the example from listing 6.1
to use the more advanced event model. You’ll concentrate only on the click event
type. This time you’ll establish three click event handlers on the img element. The
new example code can be found in the file chapter-6/dom.2.events.html and is shown
in the following listing.

<!DOCTYPE html>
<html>
 <head>
 <title>DOM Level 2 Events - jQuery in Action, 3rd edition</title>
 <link rel="stylesheet" href="../css/main.css"/>
 <style>
 img
 {
 display: block;
 margin: auto;
 }
 </style>
 </head>
 <body>
 <img id="example" src="images/example.jpg"
 alt=" A bolt of lightning " />
 <script>
 function formatDate(date) {
 return (date.getHours() < 10 ? '0' : '') + date.getHours() +
 ':' + (date.getMinutes() < 10 ? '0' : '') + date.getMinutes() +
 ':' + (date.getSeconds() < 10 ? '0' : '') + date.getSeconds() +
 '.' + (date.getMilliseconds() < 10 ?
 '00' : (date.getMilliseconds() < 100 ? '0' : '')) +
 date.getMilliseconds();
 }

 var element = document.getElementById('example');

Listing 6.3 Establishing event handlers with the DOM Level 2 Event Model
www.EBooksWorld.ir

145Understanding the browser event models

es
ent
 on
 element.addEventListener('click', function(event) {
 console.log('At ' + formatDate(new Date()) + ' BOOM once!');
 }, false);
 element.addEventListener('click', function(event) {
 console.log('At ' + formatDate(new Date()) + ' BOOM twice!');
 }, false);
 element.addEventListener('click', function(event) {
 console.log('At ' + formatDate(new Date()) + ' BOOM thrice!');
 }, false);
 </script>
 </body>
</html>

This code is simple, but it clearly shows how you can establish multiple event handlers
on the same element for the same event type—something you weren’t able to do easily
with the Basic Event Model. Inside the <script> tag, you grab a reference to the
image element and then establish three event handlers for the click event B.

 Loading this page into a standards-compliant browser (not Internet Explorer 8
and below) and clicking the image results in the display shown in figure 6.3.

Now that we’ve shown this very useful feature, you’ll find out what’s up with that
useCapture parameter.

EVENT PROPAGATION

You saw earlier that with the DOM Level 0 Event Model, once an event was triggered
on an element, the event propagated from the target element upward in the DOM
tree to all the target’s ancestors. The advanced Level 2 Event Model also provides this
bubbling phase but ups the ante with an additional capture phase.

 Under the DOM Level 2 Event Model, when an event is triggered, the event first
propagates from the root of the DOM tree down to the target element and then prop-
agates again from the target element up to the DOM root. The former phase (root to
target) is called the capture phase, and the latter (target to root) is called the bubble phase.

Establish
three ev
handlers
the img
element

B

Figure 6.3 Clicking the image once
demonstrates that all three handlers
established for the click event are
triggered.
www.EBooksWorld.ir

146 CHAPTER 6 Events are where it happens!
 When a function is established as an event handler, it can be flagged as a capture
handler, in which case it will be triggered during the capture phase, or as a bubble
handler, to be triggered during the bubble phase. As you might have guessed by
this time, the useCapture parameter to addEventListener() identifies which type of
handler is established. A value of false for this parameter establishes a bubble han-
dler, whereas a value of true registers a capture handler. This parameter has become
optional, defaulting to false in newer versions of all major browsers (for example, in
Firefox starting from version 6).

 Think back a moment to the example of listing 6.2 where you explored the propa-
gation of the Basic Model events through a DOM hierarchy. In that example, you
embedded an image element within three layers of div elements. Within such a hier-
archy, under DOM Level 2, the propagation of a click event with the img element as
its target would move through the DOM tree as shown in figure 6.4.

Let’s put that to the test, shall we? The next listing shows the code for a page contain-
ing the element hierarchy of figure 6.4 (chapter-6/dom.2.propagation.html).

<!DOCTYPE html>
<html>
 <head>
 <title>DOM Level 2 Propagation - jQuery in Action, 3rd edition</title>
 <link rel="stylesheet" href="../css/main.css"/>
 <style>
 img
 {
 display: block;
 margin: auto;

Listing 6.4 Tracking event propagation with bubble and capture handlers

Event start

Capture Bubble

Event end
<html>

<body>

<div id="greatgrandpa">

<div id="grandpa">

<div id="pops">

Target

Figure 6.4 Propagation in the DOM Level 2 Event Model traverses the DOM
hierarchy twice: once from top to target during the capture phase and once
from target to top during the bubble phase.
www.EBooksWorld.ir

147Understanding the browser event models
 }
 </style>
 </head>
 <body>
 <div id="greatgrandpa">
 <div id="grandpa">
 <div id="pops">
 <img id="example" src="images/example.jpg"
 alt="A bolt of lightning" />
 </div>
 </div>
 </div>
 <script>
 function formatDate(date) {
 return (date.getHours() < 10 ? '0' : '') + date.getHours() +
 ':' + (date.getMinutes() < 10 ? '0' : '') + date.getMinutes() +
 ':' + (date.getSeconds() < 10 ? '0' : '') + date.getSeconds() +
 '.' + (date.getMilliseconds() < 10 ?
 '00' : (date.getMilliseconds() < 100 ? '0' : '')) +
 date.getMilliseconds();
 }
 var elements = document.getElementsByTagName('*');
 for(var i = 0; i < elements.length; i++) {
 (function(current) {
 current.addEventListener('click', function(event) {
 console.log(
 'At ' + formatDate(new Date()) +
 ' Capture for ' + current.tagName + '#'+ current.id +
 ' target is ' + event.target.tagName + '#' +
 event.target.id
);
 }, true);
 current.addEventListener('click', function(event) {
 console.log(
 'At ' + formatDate(new Date()) +
 ' Bubble for ' + current.tagName + '#'+ current.id +
 ' target is ' + event.target.tagName + '#' +
 event.target.id
);
 }, false);
 })(elements[i]);
 }
 </script>
 </body>
</html>

This code changes the example of listing 6.2 to use the DOM Level 2 Event Model to
establish the event handlers. In the <script> tag, you use the getElementsByTag-
Name() method and the Universal selector to retrieve all the elements on the page.
On each of them, you establish two handlers: one capture handler B and one bubble
handler C. Each handler prints a message on the console identifying the type of han-
dler, the current element, and the ID of the target element.

Establishes
listener for
the capture

phase on the
current
element

B

Establishes
listener for
the bubble

phase on the
current
element

C

www.EBooksWorld.ir

148 CHAPTER 6 Events are where it happens!
With the page loaded into Chrome, clicking the image results in the display in
figure 6.5 showing the progression of the event through the handling phases and the
DOM tree. Note that because you defined both capture and bubble handlers for the
target, two handlers were executed for the target and all its ancestor nodes.

 Now that we’ve put you through all the trouble to understand these two types of
handlers, you should know that capture handlers are hardly ever used in web pages.
One of the historical reasons is that old versions of Internet Explorer don’t support
this type of event propagation.

 Before we look at how jQuery can help sort out this mess, let’s briefly examine the
Internet Explorer Model.

6.1.3 The Internet Explorer Model

Versions of Internet Explorer prior to 9 don’t provide support for the DOM Level 2
Event Model. These versions of Microsoft’s browser provide a proprietary interface
that closely resembles the bubble phase of the standard model. Rather than add-
EventListener(), the Internet Explorer Model defines a method named attach-
Event() for each DOM element. This method accepts two parameters similar to those
of the standard model:

attachEvent(eventName, handler)

The first parameter is a string that names the event type to be attached but uses the
name of the corresponding element property from the DOM Level 0 Model such as
onclick, onmouseover, onkeydown, and so on.

Figure 6.5 Clicking the image results in each handler emitting a console message that
identifies the path of the event during both the capture and bubble phases.
www.EBooksWorld.ir

149The jQuery Event Model
 The second parameter is the function to be established as the handler, and the
Event instance must be fetched from the window.event property. In addition, this
method doesn’t support any semblance of a capture phase.

 Even when using the relatively browser-independent DOM Level 0 Model, you’re
faced with a tangle of browser-dependent choices to make at each stage of event han-
dling. And when using the more capable DOM Level 2 or Internet Explorer Model,
you even have to fork your code when establishing the handlers in the first place if you
want to support a wider audience.

 jQuery is going to simplify your life by hiding these browser disparities for you.
Let’s see how!

6.2 The jQuery Event Model
Although it’s true that the creation of highly interactive applications requires a hefty
reliance on event handling, the thought of writing event-handling code on a large
scale while dealing with the browser differences would be enough to daunt even the
most intrepid of page authors.

 You could hide the differences behind an API that abstracts the differences away
from your page code, but why bother when jQuery has already done it for you?

 jQuery’s event model implementation, which we’ll refer to informally as the
jQuery Event Model, exhibits the following features:

 Provides a unified method for establishing event handlers
 Allows multiple handlers for each event type on each element
 Uses standard event-type names: for example, click or mouseover
 Passes the Event instance as the first argument of the handlers
 Normalizes the Event instance for the most-often-used properties
 Provides unified methods for event canceling and default action blocking

With the notable exception of support for a capture phase, the feature set of the
jQuery Event Model closely resembles that of the DOM Level 2 Event Model while sup-
porting both standards-compliant browsers and older versions of Internet Explorer
with a single API. The omission of the capture phase shouldn’t be an issue for the vast
majority of page authors who never use it (or even know it exists) due to its lack of
support in older IE. But is it really that simple? Let’s find out.

6.2.1 Attaching event handlers with jQuery

Using the jQuery Event Model, you can attach event handlers to DOM elements with
the on() method. So far, you’ve seen how to attach one or more handlers to a single
element, but one of the advantages of using jQuery is that you can use its powerful
jQuery() method to retrieve a set of elements and then attach the same handler to all
of them in one statement. Consider the following simple example:

$('img').on('click', function(event) {
 alert('Hi there!');
});
www.EBooksWorld.ir

150 CHAPTER 6 Events are where it happens!
This statement binds the supplied inline anonymous function as the click event han-
dler for every image on a page. The full syntax of the on() method is as follows.

Before delving into a more detailed discussion of this crucial jQuery method, let’s put
a basic example into action. Taking the code of listing 6.3 and converting it from the
DOM Level 2 Event Model to the jQuery Event Model, you end up with the code
shown in the next listing, which you can find in the file chapter-6/jquery.events.html.

Method syntax: on

on(eventType[, selector][, data], handler)
on(eventsHash[, selector][, data])
Attaches an event handler function for one or more events to the selected elements.

Parameters
eventType (String) Specifies the name of the event type or types (a complete list can be

found in table 6.1) for which the handler is to be established. Multiple event
types can be specified by separating them with a space.
These event types can be namespaced using a string as a suffix of the event
name preceded by a period character (for example, click.myapp). Multiple
namespaces are allowed (for example, click.myapp.mymodule).

selector (String) An optional selector string used for event delegation to filter the
descendants of the selected elements that trigger the event. If the selector is
omitted, the event is always triggered when it reaches the selected element.

data (Any) Data to be passed to the Event instance as a property named data and
made available to the handler function.

handler (Function) The function that’s to be established as the event handler. When
invoked, it will be passed the Event instance as its first argument, and its
function context (this) is set to the current element of the bubble phase. The
value false is also allowed as a shorthand for a function that does return
false;. The function can also receive additional parameters through the use of
trigger() or triggerHandler() (discussed later in this chapter).

eventsHash (Object) A JavaScript object that allows handlers for multiple event types to be
established in a single call. The property names identify the event type (same
as would be used for the eventType parameter), and the property value
provides the handler.

Returns
The jQuery collection.

jQuery 3: Signature improved
jQuery 3 allows the handler parameter to be an object. At the time of this writing
there aren’t many details about this improvement, but don’t worry: this isn’t a com-
mon use case. If you want to learn more about this feature, you can take a look at
the related issue on GitHub: https://github.com/jquery/jquery/issues/1735.
www.EBooksWorld.ir

https://github.com/jquery/jquery/issues/1735

151The jQuery Event Model

<!DOCTYPE html>
<html>
 <head>
 <title>Events in jQuery Example - jQuery in Action, 3rd edition</title>
 <link rel="stylesheet" href="../css/main.css"/>
 <style>
 img
 {
 display: block;
 margin: auto;
 }
 </style>
 </head>
 <body>
 <img id="example" src="images/example.jpg"
 alt=" A bolt of lightning" />

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 function formatDate(date) {
 return (date.getHours() < 10 ? '0' : '') + date.getHours() +
 ':' + (date.getMinutes() < 10 ? '0' : '') + date.getMinutes() +
 ':' + (date.getSeconds() < 10 ? '0' : '') + date.getSeconds() +
 '.' + (date.getMilliseconds() < 10 ?
 '00' : (date.getMilliseconds() < 100 ? '0' : '')) +
 date.getMilliseconds();
 }

 $('#example')
 .on('click', function (event) {
 console.log('At ' + formatDate(new Date()) + ' BOOM once!');
 })
 .on('click', function (event) {
 console.log('At ' + formatDate(new Date()) + ' BOOM twice!');
 })
 .on('click', function (event) {
 console.log('At ' + formatDate(new Date()) + ' BOOM thrice!');
 });
 </script>
 </body>
</html>

The changes to this code, limited to how you attached the event handlers B, are sim-
ple but important. You create a set consisting of the target img element and invoke the
on() method three times on it—remember, jQuery chaining lets you apply multiple
methods in a single statement—each of which establishes a click event handler on
the element.

 Loading this page into any browser supported by jQuery (you can finally forget the
standards-compliant browser story!) and clicking the image results in the display shown
in figure 6.6, which, not surprisingly, is the exact same result you saw in figure 6.3.

Listing 6.5 Establishing advanced event handlers without browser-specific code

Binds event
handlers to
image using

jQuery
B

www.EBooksWorld.ir

152 CHAPTER 6 Events are where it happens!
This code also works in older versions of Internet Explorer (the specific versions
depend on the jQuery version used), which wasn’t possible using the code from
listing 6.3 without adding browser-specific testing and branching code to use the cor-
rect event model for the current browser.

 It’s worth noting that, unlike other jQuery methods, the selector parameter isn’t
used at the time the on() method is called to further filter the objects in the jQuery
collection that will receive the event handler. It’s used at the time the event happens
to determine whether or not the event handler is called. This concept will be clearer
in a few pages where you’ll see a concrete example, so please be patient.

The on() method has an important difference compared to the native methods to
attach event handlers. Returning false from an event handler added using this
jQuery method is the same as calling preventDefault() and stopPropagation(),
whereas returning false in an event handler added using a native method is equiva-
lent to only invoking preventDefault().

 At this point, page authors who have wrestled with mountains of browser-specific
event-handling code in their pages are no doubt singing “Happy Days Are Here
Again” and spinning in their office chairs. Who could blame them?

 Listing 6.5 shows how flexible and clever the on() method is. If you only want to
pass a handler without specifying data or selector, you can do so without the need to

Figure 6.6 Using the jQuery Event
Model allows you to specify multiple
event handlers just like the DOM
Level 2 Event Model.

jQuery 3: Methods deprecated
The on() method provides a unified interface to replace jQuery’s bind(),
delegate(), and live() methods. While live() was deprecated in version 1.7 and
then removed in version 1.9, bind() and delegate() were still around but their use
was strongly discouraged. jQuery 3 deprecates the bind() and delegate() meth-
ods, so we suggest you to stick with on() (which explains why we haven’t covered
these older methods in this book).
www.EBooksWorld.ir

153The jQuery Event Model
pass null for arguments. The on() method allows you to pass the handler as the sec-
ond parameter. Instead of writing

$('img').on('click', null, null, function() { ... });

you can write

$('img').on('click', function() { ... });

Explaining how this result is achieved is outside the scope of this book, but we strongly
encourage you to read the source of the method to learn it.

 In the description of the on() method you learned that the first parameter can
be a list of space-separated events. An example of code that uses this variant is the
following:

$('button')
 .on('click', function(event) {
 console.log('Button clicked!');
 })
 .on('mouseenter mouseleave', myFunctionHandler);

In this simple snippet, you retrieve all the <button>s in the page and attach to them
three event handlers. The first one, an anonymous function, is executed when the
click event is triggered. The second handler, myFunctionHandler, is a hypothetical
function declared elsewhere that’s executed when either the event mouseenter or
mouseleave is fired.

 In the description of the signature of on(), we also highlighted how the first
parameter can be a JavaScript object that we named eventsHash, where the property
names identify the event type and the property value provides the handler. Using this
approach, the previous code can be rewritten as follows:

$('button').on({
 click: function(event) {
 console.log('Button clicked!');
 },
 mouseenter: myFunctionHandler,
 mouseleave: myFunctionHandler
});

Which version to use is up to you, but we suggest you choose a style and stick with it.
 Sometimes you may need to pass some data to the event handler. Although you

can store the data in a variable and rely on closure, there are cases so simple that you
can avoid this technique and use the data parameter. Let’s say that you have a handler
attached to the click event of a button, and this handler prints on the console the
full name of a person. You can pass the name using the data parameter as shown
here:

$('#my-button').on('click', {
 name: 'John Resig'
}, function (event) {
 console.log('The name is: ' + event.data.name);
});
www.EBooksWorld.ir

154 CHAPTER 6 Events are where it happens!
As demonstrated by this snippet, you access the name property of the object via the
data property of the Event instance (event). In case you want to see a live demo, this
example is available in the file chapter-6/on.data.parameter.html and also as a JS Bin
(http://jsbin.com/IVONuWol/edit?html,js,console,output).

 So far, you’ve attached event handlers on DOM elements that are already in the
HTML markup of the page. But what about elements that don’t exist yet but will?

 As we’ve discussed, jQuery allows you to dynamically manipulate the DOM by add-
ing, modifying, or deleting elements. When you throw Ajax into the mix, it’s likely
that DOM elements will come into and out of existence frequently during the lifetime
of the page. This is particularly true if you’re dealing with single-page applications.

 The solution to this issue is called event delegation. Event delegation is an important
technique that suggests that you attach the handler to a parent of the element(s)
instead of the element(s) itself. Event delegation can be employed in raw JavaScript as
well, but this is one of the cases where jQuery shows its power in all its greatness. Imag-
ine that you have an empty unordered list that has been filled with five list items using
an Ajax call. At the time the scripts of the page were executed, the list was still empty:

<ul id="my-list">

After the Ajax call, the list resembles the following:

<ul id="my-list">
 Item 1
 Item 2
 Item 3
 Item 4
 Item 5

You want to print on the console the index of a list item as soon as the mouse hovers
over it. Now let’s compare how you can implement event delegation in raw JavaScript
and use jQuery to achieve your goal.

 Using raw JavaScript, the code to perform this task looks like the following:

document.getElementById('my-list').addEventListener('mouseover',
 function(event) {
 if (event.target.nodeName === 'LI') {
 console.log('List item: ' +
 (Array.prototype.indexOf.call(
 document.getElementById('my-list').children,
 event.target
) + 1)
);
 }
 },
 false
);
www.EBooksWorld.ir

http://jsbin.com/IVONuWol/edit?html,js,console,output

155The jQuery Event Model
Using jQuery, you can reduce it all to three lines of code (using the same code style to
be fair):

$('#my-list').on('mouseover', 'li', function(event) {
 console.log('List item: ' + ($(this).index() + 1));
});

That’s clean code! Do you think all you’ve gained is fewer lines of code? No way! Did
you consider that the raw JavaScript version doesn’t take into account older versions
of Internet Explorer whereas jQuery does? Of course, behind the scenes jQuery per-
forms more or less the same operations, but why worry about compatibility issues
when jQuery can do it for you? At this point you should start to understand why
jQuery has been so widely adopted for developing websites. In case you want to play
with these snippets, you can find the raw JavaScript code in the file chapter-6/
javascript.event.delegation.html and as a JS Bin (http://jsbin.com/fihixa/edit?html,js
,console,output). The code showing how to implement event delegation with jQuery
can be found in the file chapter-6/jquery.event.delegation.html and as a JS Bin (http://
jsbin.com/bobaza/edit?html,js,console,output).

 The advantages of event delegation aren’t limited to executing handlers for ele-
ments that don’t exist yet, though. It also allows you to save memory and time. Imag-
ine if the Ajax call filled the list with hundreds of list items instead of just five as in our
example. To attach the handler directly to the list items, you should have looped over
each item (you could have used the jQuery() method, but behind the scenes it would
have done nothing but iterate over each element). This task would have required a
given amount of time, maybe even a few hundred milliseconds. While your loop is
executing, the user interface of the browser is blocked and the user perceives poor
performance. In addition, because JavaScript is a single-threaded language, no other
operations can be performed while your loop is executing. It’s pretty obvious that
attaching a handler to just one (parent) element requires less time. We also said that
event delegation enables you to save memory. In this example, you went from having
to keep in memory hundreds of handlers to just one. A big savings! When implement-
ing event delegation, you’ll sometimes see code attached to document. Modifying our
example, the jQuery code would resemble this:

$(document).on('mouseover', '#my-list li', function(event) {
 console.log('List item: ' + ($(this).index() + 1));
});

Note how you update the selector parameter to assure that you attach the handler on
the same set of elements. Because of this example you may think that it’s a good idea
to attach all the handlers to document, but attaching many delegated handlers to an
element near the root of the DOM or to document can degrade the performance. In
such cases, every time an event is fired, jQuery has to compare the provided selector
parameter with the element that fired the event for every element from the event tar-
get up to the top (because of event bubbling). To avoid this issue, a good practice is to
attach delegated events to an element as close as possible to those you’re targeting.
www.EBooksWorld.ir

http://jsbin.com/fihixa/edit?html,js,console,output
http://jsbin.com/fihixa/edit?html,js,console,output
http://jsbin.com/bobaza/edit?html,js,console,output
http://jsbin.com/bobaza/edit?html,js,console,output

156 CHAPTER 6 Events are where it happens!
 Up to this point, we’ve talked a lot about events and we’ve even used some of them.
But how many are there, and what are these events? Table 6.1 lists all those that you
can listen for.

Now that you’ve learned all about how to attach event handlers, we can discuss a varia-
tion of on() that allows you to attach a handler that has to be fired only once and then
removed.

LISTENING FOR AN EVENT ONCE

jQuery provides a specialized version of the on() method, named one(), that estab-
lishes an event handler as a one-shot deal. Once the event handler executes, it’s
automatically removed. Its syntax is identical to the on() method, so we’ll omit
the explanation of the parameters (if you need a refresher, you can refer to the syn-
tax of on()).

Up to this point, you’ve seen how to bind an event handler to a set of elements, but
you may eventually need to remove it. Let’s see how.

6.2.2 Removing event handlers

Typically, once an event handler is established using on(), it remains in effect for the
remainder of the life of the page. But particular interactions may dictate that han-
dlers be removed based on certain criteria. Consider, for example, a page where mul-
tiple steps are presented and once a step has been completed, its controls revert to
read-only.

Table 6.1 Events available for listening

Events

blur
change
click
dblclick
error
focus

focusin
focusout
keydown
keypress
keyup
load

mousedown
mouseenter
mouseleave
mousemove
mouseout
mouseover

mouseup
ready
resize
scroll
select
submit
unload

Method syntax: one

one(eventType[, selector][, data], handler)
one(eventsHash[, selector][, data])
Establishes a function as the event handler for the specified event type on all elements in the
matched set. Once executed, the handler is automatically removed.

Returns
The jQuery collection.
www.EBooksWorld.ir

157The jQuery Event Model
 For such cases, it would be advantageous to remove event handlers under script
control to save memory. You’ve seen that the one() method can automatically remove
a handler after it has completed its first (and only) execution, but for the more general
cases where you’d like to remove event handlers under your own control, jQuery pro-
vides an on() counterpart called off(). The syntax of off(), shown next, has parame-
ters with the same meaning described for on() and one(), so we won’t repeat them.

You can use this method to remove event handlers from the elements of the jQuery
object at various levels of granularity. All listeners can be removed by omitting all the
parameters. Listeners of a specific type can be removed by providing just that event
type. If the name of one or more events is provided, all the handlers are removed, del-
egated or not. Finally, specific handlers can be removed by providing a reference to
the function originally established as the listener. To do this, a reference to the func-
tion must be retained when binding the function as an event listener in the first place.
For this reason, when a function that’s eventually to be removed as a handler is origi-
nally established as a listener, it’s either defined as a top-level function (so that it can
be referred to by its top-level variable name) or a reference to it is retained by some
other means. Supplying the function as an anonymous inline reference would make it
impossible to later reference the function in a call to off().

In the case of anonymous inline functions, using namespaced events can come in
quite handy, because you can unbind all events in a particular namespace without
having to retain individual references to the listeners. For example,

$('*').off('.fred');

Method syntax: off

off(eventType[, selector][, handler])
off(eventsHash, [, selector])
off()
Removes event handlers from all elements of the jQuery object as specified by the optional
parameters given. If no parameters are provided, all listeners are removed from the elements.

Returns

The jQuery collection.

jQuery 3: Methods deprecated
The off() method provides a unified interface to replace unbind(),
undelegated(), and die() (what a scary name!). Like their respective counterparts,
die() (a counterpart of live()) was deprecated in version 1.7 and then removed in
version 1.9, whereas unbind() (a counterpart of bind()) and undelegate() (a
counterpart of delegate()) were still in the core but their use was discouraged.
jQuery 3 deprecates the unbind() and undelegate() methods, so we suggest you
stick with off().
www.EBooksWorld.ir

158 CHAPTER 6 Events are where it happens!
will remove all event listeners in namespace fred (remember that in this case the
period in front of the name doesn’t indicate a class selector). This use of namespaces
is particularly useful when attaching handlers from a jQuery plugin, as we’ll discuss in
chapter 12.

 Before moving on, let’s see an example of using on() and off(). Consider the fol-
lowing markup where you have three buttons:

<button id="btn">Does nothing</button>
<button id="btn-attach">Attach handler</button>
<button id="btn-remove">Remove handler</button>

Moreover, you have the following code:

var $btn = $('#btn');
var counter = 1;

function logHandler() {
 console.log('click ' + counter);
 counter++;
};

$('#btn-attach').on('click', function() {
 $btn
 .on('click', logHandler)
 .text('Log');
});

$('#btn-remove').on('click', function() {
 $btn
 .off('click', logHandler)
 .text('Does nothing');
});

The idea is to have the first button, which does nothing by its own, and the other two
buttons, which attach a handler to the first button and remove the handler, respec-
tively. Inside the handler, you print on the console the number of times the button
was clicked while the handler was attached B.

 To perform this task, in the first part of the code you declare a variable, $btn, con-
taining a set made of one element, the first button (the one having btn as its ID).
Then you declare the counter (counter) and a function that you’ll use later as the
handler on the button. In the second part of the snippet, you attach an inline handler
to the second button (the one having btn-attach as its ID), using the on() method
C. Its aim is to attach the function logHandler as a handler of the first button when
the click event is fired. In the same way, you attach an inline handler to the third but-
ton (the one having btn-remove as its ID) whose aim is to remove the handler from
the first button D. You can see this example in action in the file chapter-6/adding
.removing.handlers.html and also as a JS Bin (http://jsbin.com/iquRujug/
edit?html,js,console,output). Note that multiple clicks of the Attach handler button
will add a number of identical event handlers, so the counter will jump accordingly at
every click of the Log button.

Defines a function that will
print on the console the
number of times it’s executed

B

Attaches a handler to execute
when the click event is fired on
the btn-attach button

C

Attaches a handler to execute
when the click event is fired on
the btn-remove button

D

www.EBooksWorld.ir

http://jsbin.com/iquRujug/edit?html,js,console,output
http://jsbin.com/iquRujug/edit?html,js,console,output

159The jQuery Event Model
 So far, you’ve seen that the jQuery Event Model makes it easy to establish (as well
as remove) event handlers without worrying about browser differences, but what
about writing the event handlers themselves?

6.2.3 Inspecting the Event instance

When an event handler established with the on() method or the other ones we’ve
mentioned is invoked, an Event instance is passed to it as the first parameter to the
function regardless of the browser, eliminating the need to worry about the win-
dow.event property under older versions of Internet Explorer. But that still leaves you
dealing with the divergent properties of the Event instance, doesn’t it?

 Thankfully, no, because jQuery doesn’t really pass the Event instance to the han-
dlers. Screech! (sound of a needle being dragged across a record).

 Yes, we’ve been glossing over this little detail because, up until now, it hasn’t mat-
tered. But now that we’ve advanced to the point where we’re going to examine the
instance within handlers, the truth must be told!

 In reality, jQuery defines an object of type jQuery.Event that it passes to the han-
dlers. But you can forgive us for our simplification because jQuery copies most of the
original Event properties to this object. Therefore, if you look for only the properties
that you expected to find on Event, the object is almost indistinguishable from the
original Event instance.

 But that’s not the important aspect of this object; what’s really valuable, and the
reason that this object exists, is that it holds a set of normalized values and methods
that you can use independently of the containing browser, ignoring the differences in
the Event instance.

 Table 6.2 lists the jQuery.Event properties that are safe to access in a platform-
independent manner. Note that some properties may have the value undefined
depending on the event triggered.

As you can see, some of the properties have been marked with an asterisk. The reason
is that jQuery normalizes them for cross-browser consistency. What this means is that
they’re named differently in some browsers (yes, older versions of Internet Explorer).
To avoid the pain of remembering all these differences, jQuery provides one property

Table 6.2 Browser-independent jQuery.Event properties

Properties

altKey
bubbles
button
cancelable
charCode
clientX
clientY
ctrlKey

currentTarget
data
detail
delegateTarget
eventPhase
metaKey*
namespace
offsetX

offsetY
originalTarget
originalEvent
pageX*
pageY*
prevValue
relatedTarget*
result

screenX
screenY
shiftKey
target*
timeStamp
type
view
which*
www.EBooksWorld.ir

160 CHAPTER 6 Events are where it happens!
name and takes care of filling the holes. One example is the target property, which
in older versions of Internet Explorer is called srcElement. In addition, some events
may have specific properties that you can access through the originalEvent property.

 The jQuery.Event object also has several methods, described in table 6.3.

In addition to allowing you to manage event handling and the Event object in a
browser-independent manner, jQuery provides a set of methods that gives you the
ability to trigger events or run event handlers under script control. Let’s look at those.

6.2.4 Triggering event handlers

Event handlers are designed to be invoked when browser or user activity triggers the
propagation of their associated events through the DOM hierarchy. But there may be
times when you want to trigger the execution of a handler under script control. You
could define such event handlers as top-level functions so that you can invoke them by
name, but as you’ve seen, defining event handlers as inline anonymous functions is
much more common and so darned convenient! Moreover, calling an event handler
as a function doesn’t cause semantic actions or bubbling to occur.

 For this need, jQuery has provided methods that will automatically trigger event
handlers on your behalf under script control. The most general of these methods is
trigger(), whose syntax is as follows.

Table 6.3 Browser-independent jQuery.Event methods

Methods

preventDefault() Prevents any default semantic action (such as form sub-
mission, link redirection, check box state change, and so
on) from occurring.

stopPropagation() Stops any further propagation of the event up the DOM
tree. Additional events on the current target aren’t
affected. Works with browser-defined events as well as
custom events.

stopImmediatePropagation() Stops all further event propagation including additional
events on the current target.

isDefaultPrevented() Returns true if the preventDefault() method has
been called on this instance.

isPropagationStopped() Returns true if the stopPropagation() method has
been called on this instance.

isImmediatePropagationStopped() Returns true if the stopImmediatePropagation()
method has been called on this instance.
www.EBooksWorld.ir

161The jQuery Event Model
The trigger() method, as well as the convenience methods that we’ll introduce in a
moment, do their best to simulate the event to be triggered, including propagation
through the DOM hierarchy and the execution of semantic actions.

 Each handler called is passed a populated instance of jQuery.Event. Because
there’s no real event, properties that report event-specific values, such as the location
of a mouse event or the key of a keyboard event, aren’t passed (the properties don’t
exist at all, which is different from having their value as undefined). The target prop-
erty is set to reference the element of the matched set to which the handler was
bound.

 Just as with actual events, triggered event propagation can be halted via a call to
the jQuery.Event instance’s stopPropagation() method, or a false value can be
returned from any of the invoked handlers.

 The data parameter passed to the trigger() method isn’t the same as the one
passed when a handler is established. The latter is placed into the jQuery.Event
instance as the data property; the value passed to trigger() (and, as you’re about to
see, triggerHandler()) is passed as a parameter to the listeners. This allows both data
values to be used without conflicting with each other.

 Before moving to triggerHandler(), let’s discuss in detail the data parameter of
the trigger() method and how passing an array differs from passing any other data
type. For the sake of the discussion, consider the following snippet, which adds an
event handler on a hypothetical element having foo as its ID that’s executed when the
click event is fired:

$('#foo').on('click', function(event, par1, par2, par3){
 console.log(par1, par2, par3);
});

As you can see, you define the event parameter as usual but also three new parame-
ters: par1, par2, and par3. Inside the handler you print on the console the value of
these three new parameters. Now imagine that you employ jQuery’s trigger()

Method syntax: trigger

trigger(eventType[, data])
Invokes any event handlers and behaviors established for the passed event type for all matched
elements.

Parameters
event (String|jQuery.Event) Specifies the name of the event type for which handlers

are to be invoked, including namespaced events. Alternatively a jQuery.Event
can be passed.

data (Any) Data to be passed to the handlers. If an array is provided, the elements
are passed to the handler as different parameters.

Returns

The jQuery collection.
www.EBooksWorld.ir

162 CHAPTER 6 Events are where it happens!
method to execute this handler as shown here, passing three numbers (1, 2, and 3) in
addition to the event to trigger:

$('#foo').trigger('click', 1, 2, 3);

As a result, you’ll see the following logged on the console:

1 undefined undefined

This happens because the trigger method accepts only one argument to pass data to
the handler, so all the others (2 and 3 in this case) are ignored. If you want to provide
more than one argument, you can employ an array as shown here:

$('#foo').trigger('click', [1, 2, 3]);

Once the handler attached to the element is executed, the following line will be
printed on the console, proving that all the elements of the array have been passed as
separated parameters (par2 and par3 aren’t undefined anymore):

1 2 3

In case you want to play further with the data parameter, we’ve set up a demo for you
that you can find in the file chapter-6/trigger.data.parameter.html and also as a JS Bin
(http://jsbin.com/mefohu/edit?html,js,console,output).

 For cases where you want to trigger a handler but not cause propagation of the
event and execution of semantic actions, jQuery provides the triggerHandler()
method, which looks and acts just like trigger() except that no bubbling or semantic
actions will occur.

The triggerHandler() method has the data parameter in common with trigger(),
so the previous demo works with triggerHandler() as well, but they also have some
important differences that are worth discussing. The first one is that trigger() acts
on all the elements in the jQuery collection, whereas triggerHandler()operates on
only the first one. In addition, triggerHandler() doesn’t allow for chaining because
it returns as its value the same value returned by the handler executed (if no handler
is triggered or the handler doesn’t return a value, it returns undefined), whereas

Method syntax: triggerHandler

triggerHandler(eventType[, data])
Invokes any event handlers established for the passed event type for all matched elements
without bubbling, semantic actions, or live events. This method returns whatever value was
returned by the last handler it caused to be executed, or undefined.

Parameters
eventType (String) Specifies the name of the event type for which handlers are to be

invoked.
data (Any) Data to be passed to the handlers. If an array is provided, the elements

are passed to the handler as different parameters.

Returns

Any. If no handler is triggered or the handler doesn’t return a value, undefined is returned.
www.EBooksWorld.ir

http://jsbin.com/mefohu/edit?html,js,console,output

163The jQuery Event Model
trigger() returns the set of matched elements. Finally, events fired with trigger-
Handler() don’t bubble up the DOM hierarchy.

 No words can replace a good example, so before moving to the next section, it’s
time to see both trigger() and triggerHandler() in action (this book is still called
jQuery in Action, isn’t it?). The code of the example is shown in the following listing
and can be found in the downloadable code in the file chapter-6/jquery.triggering
.events.html and as a JS Bin (http://jsbin.com/AqaqAGO/edit?html,css,js,console
,output).

<!DOCTYPE html>
<html>
 <head>
 <title>Triggering Events - jQuery in Action, 3rd edition</title>
 <link rel="stylesheet" href="../css/main.css"/>
 <style>
 #wrapper
 {
 border: 1px solid #3A5895;
 padding: 10px;
 }

 #address:focus
 {
 border: 3px solid #000000;
 }
 </style>
 </head>
 <body>
 <div id="wrapper">
 <button id="btn">Click me!</button>
 <input type="text" id="address" />
 </div>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 $('#wrapper')
 .on('focus', function() {
 console.log('Div focused');
 })
 .on('click', function() {
 console.log('Div clicked');
 });

 $('#address')
 .on('focus', function() {
 console.log('Input focused');
 })
 .triggerHandler('focus');

 $('#btn')
 .on('click', function() {
 console.log('Button clicked');

Listing 6.6 Triggering events in jQuery

Attach two
handlers to div

element for focus
and click events.

B
Attach handler to input
element, executed when
focus event is triggered.

C

Trigger focus
event on input element
using triggerHandler().

DAttach handler
to button
element,

executed when
click event is

triggered.

E

www.EBooksWorld.ir

http://jsbin.com/AqaqAGO/edit?html,css,js,console,output
http://jsbin.com/AqaqAGO/edit?html,css,js,console,output

164 CHAPTER 6 Events are where it happens!
 })
 .trigger('click');
 </script>
 </body>
</html>

The code in this listing allows you to see the behavior of trigger() and trigger-
Handler() discussed previously. Opening the page, you should see a layout, as shown
by figure 6.7.

In listing 6.6 you create a <div> acting as a wrapper of the other two elements of the
page: a button and an input box. In the usual script element, you first select the wrap-
per element, attaching two listeners to it using the on() method: one for the focus
event and one for the click event B. Inside them, you print a message on the console
to explain what element and event have been called. Then you attach a handler for the
focus event on the input element that has address as its ID C. Thanks to chaining,
before closing the statement with the semicolon, you also call the triggerHandler()
method, passing the string focus as its argument D. By calling triggerHandler(),
you cause the execution of the function that you’ve just attached in C. As we said,
triggerHandler() doesn’t bubble up, so the handler attached to the element, having
wrapper as its ID for the same event, won’t be executed.

 Finally, you select the button element, attaching to it a handler for the click event
E. As for the input element, before closing the statement, you trigger an event but
this time using trigger() F. Therefore, after printing on the console the message set
in its handler, the event bubbles up so that the handler attached to the click event of
the div is executed as well.

 Based on the discussion of this example, as soon as you load the page, the output
of the console should be as shown in figure 6.8.

Methods like on() and trigger() are frequently used, so writing their full syntax each
time rapidly becomes annoying. The jQuery team knows it, so they introduced a set of
shortcut methods.

Trigger click event on button
element using trigger().F

Figure 6.7 Layout of the page
jquery.triggering.events.html

Figure 6.8 Output of the page
jquery.triggering.events.html
www.EBooksWorld.ir

165The jQuery Event Model
6.2.5 Shortcut methods

jQuery provides a handful of shortcut methods to establish specific event handlers as
well as trigger events. Because the syntax of each of these methods is identical except
for the name of the method, we’ll save some space and present them all in the follow-
ing single syntax descriptor.

In addition to the ability to attach a handler, these methods can act as the trigger()
method. The syntax for all these methods is exactly the same except for the method
name, and that syntax is as follows.

Method syntax: specific event binding

eventName([data,] handler)
Establishes the specified function as the event handler for the event named by the method’s
name. The supported methods are as follows:

blur
change
click
dblclick
focus
focusin

focusout
keydown
keypress
keyup
mousedown
mouseenter

mouseleave
mousemove
mouseout
mouseover
mouseup
ready

resize
scroll
select
submit

Parameters

data (Any) Data to be passed to the Event instance as a property named data
and made available to the handler function.

handler (Function) The function that’s to be established as the event handler.

Returns
The jQuery collection.

Method syntax: Specific event triggering

eventName()
Invokes any event handler and behavior established for the named event type for all matched
elements. The supported methods are as follows:
blur
change
click
dblclick
focus
focusin

focusout
keydown
keypress
keyup
mousedown
mouseenter

mouseleave
mousemove
mouseout
mouseover
mouseup
resize

scroll
select
submit

Parameters

none

Returns
The jQuery collection.
www.EBooksWorld.ir

166 CHAPTER 6 Events are where it happens!
To give you an idea of what a shortcut looks like, let’s change the last statement of list-
ing 6.6 so that it employs them. For ease of reading we report the statement here:

$('#btn')
 .on('click', function() {
 console.log('Button clicked');
 })
 .trigger('click');

Using the shortcuts just discussed, you can change it as follows:

$('#btn')
 .click(function() {
 console.log('Button clicked');
 })
 .click();

In addition to these shortcuts, there’s another one in jQuery that’s a bit different.

HOVERING OVER ELEMENTS

A common multi-event scenario that’s frequently employed in interactive applications
involves mousing into and out of elements. Events that inform you when the mouse
pointer has entered an area, as well as when it has left that area, are essential to build-
ing many of the user interface elements that are com-
monly presented to users on your pages. Among these
element types, cascading menus used as navigation systems
are a common example.

 A vexing behavior of the mouseover and mouseout
event types often hinders the easy creation of such ele-
ments: a mouseout event fires as the mouse is moved over
an area that is covered by its children. Consider the display
in figure 6.9 that shows the layout of the file chapter-6/
hover.html, which is also available as a JS Bin (http://
jsbin.com/nobuti/edit?html,js,console,output).

 This page displays two identical (except for naming)
sets of areas: an outer area and an inner area. Load this
page into your browser as you follow the rest of this section.

jQuery 3: Methods removed
jQuery 3 gets rid of the already deprecated load(), unload(), and error() shortcut
methods. These methods weren’t listed in the previous descriptions because they
were deprecated a long time ago (since jQuery 1.8). If you’re still using them in your
projects or you’re employing a plugin that relies on one or more of them, upgrading
to jQuery 3 will break your code.

Figure 6.9 This page helps
demonstrate when mouse
events fire as the mouse
pointer is moved over an
area and its children.
www.EBooksWorld.ir

http://jsbin.com/nobuti/edit?html,js,console,output
http://jsbin.com/nobuti/edit?html,js,console,output

167The jQuery Event Model
 For the top set of rectangles on the page, the following statements establish han-
dlers for the mouseover and mouseout events:

$('#outer1').on('mouseover mouseout', report);
$('#inner1').on('mouseover mouseout', report);

These statements establish a function named report as the event handler for both the
mouseover and mouseout events defined as follows:

function report(event) {
 event.stopPropagation();
 console.log(event.type + ' on ' + event.target.id);
}

This listener first stops the event from bubbling up and then prints some text on the
console containing the name of the event and the ID of the element it was fired.

 Now move the mouse pointer into the area labeled “Outer 1” (being careful not to
enter “Inner 1”). You’ll see on the console that a mouseover event has fired. Move the
pointer back out of the area and, as expected, you’ll see that a mouseout event has
fired.

 Now move the mouse pointer into “Outer 1” but this time continue inward until
the pointer enters “Inner 1”. As the mouse enters “Inner 1”, a mouseover event is fired
for it and a mouseout event fires for “Outer 1”. If you wave your pointer back and forth
over the boundary between “Outer 1” and “Inner 1”, you’ll see a flurry of mouseout
and mouseover events. This is the defined behavior, even if it’s rather unintuitive.
Even though the pointer is still within the bounds of “Outer 1”, when the pointer
enters a contained element, the event model considers the transition to be leaving the
outer area.

 Expected or not, you don’t always want that behavior. Often you want to be
informed when the pointer leaves the bounds of the outer area and don’t care
whether the pointer is over a contained area or not.

 Luckily, major browsers support a pair of mouse events, mouseenter and mouse-
leave, first introduced by Microsoft in Internet Explorer. This event pair acts slightly
more intuitively, not firing a mouseleave event when moving from an element to a
descendant of that element.

 Using jQuery you could establish handlers for this set of events using the following
code:

$(element).mouseenter(function1).mouseleave(function2);

But jQuery also provides a single method that makes it even easier: hover(). The syn-
tax of this method is as follows.
www.EBooksWorld.ir

168 CHAPTER 6 Events are where it happens!
Use the following script to establish mouse event handlers for the second set of areas
(“Outer 2” and its “Inner 2” child) of the example page:

$('#outer2').hover(report);
$('#inner2').hover(report);

As with the first set of areas, the report() function is established as both the
mouseenter and mouseleave handlers for “Outer 2” and “Inner 2”. But unlike the
first set of areas, when you pass the mouse pointer over the boundary between “Outer
2” and “Inner 2”, neither of these handlers (for “Outer 2”) is invoked. This is useful
for those situations where you have no need for parent handlers to react when the
mouse pointer passes over child elements.

 Let’s now see how it’s possible to create custom events in jQuery.

6.2.6 How to create custom events

Creating custom events in jQuery is straightforward and requires the use of the meth-
ods we’ve discussed so far. Custom events are a convenient way to execute one or
more statements based on a given condition that may happen in different parts of
your code. Let’s say that you have a set of statements to execute that are logically
related. You can group them to create a handler and then trigger your custom event
when needed. To be honest, the event doesn’t need to be created in any formal way
but only listened to and triggered. This means that you can attach a handler for a cus-
tom event using the on() method, passing as its first argument the name of the new
event. Then you can fire it using trigger() and passing the same name.

 A basic example of creating and using a custom event is shown here:

$('#btn').on('customEvent', function(){
 alert('customEvent');
});
$('#anotherBtn').click(function() {
 $('#btn').trigger('customEvent');
});

Method syntax: hover

hover(enterHandler, leaveHandler)
hover(handler)
Establishes handlers for the mouseenter and mouseleave events for matched elements. These
handlers fire only when the area covered by the elements is entered and exited, ignoring
transitions to child elements.

Parameters
enterHandler (Function) The function to become the mouseenter handler.
leaveHandler (Function) The function to become the mouseleave handler.
handler (Function) A single handler to be called for both mouseenter and

mouseleave events.

Returns

The jQuery collection.
www.EBooksWorld.ir

169The jQuery Event Model
In this code you attach a handler for a custom event called customEvent to the ele-
ment having ID of btn. Then you attach a handler to the element having ID of
anotherBtn that, once clicked, triggers the customEvent event. Because you fired the
customEvent event on the element having ID of btn, the alert will be shown.

 Keep in mind that jQuery won’t create at runtime a shortcut with the same name
of a custom event, so writing

$('#btn').customEvent();

will throw an error.
 In addition to custom events, jQuery allows you to namespace events. We intro-

duced this feature in the previous sections without covering it in detail. It’s time to fill
in the gap.

6.2.7 Namespacing events

Another nifty little event-handling extra that jQuery provides is the ability to group
event handlers by assigning them to a namespace. Unlike conventional namespacing
(which assigns namespaces via a prefix), the event names are namespaced by adding a
suffix to the event name separated by a period character. If you’d like, you can use
multiple suffixes to place the event into multiple namespaces, as we cited in the
description of the on() method. By grouping event bindings in this way, you can easily
act upon them later as a unit.

 Take, for example, a page that has two modes: a display mode and an edit mode.
When in edit mode, event listeners are placed on many elements of the page, but
these listeners aren’t appropriate for display mode and need to be removed when the
page transitions out of edit mode. You could namespace the edit mode events with
code such as this:

$('.my-class').on('click.editMode', myFunction);

By grouping all these bindings into a namespace called editMode, you can later oper-
ate upon them as a whole. For example, you can remove all the events namespaced
under editMode from all the elements of the page with the following statement:

$('*').off('.editMode');

As we said, jQuery also allows you to use multiple namespaces for a given event. In the
following example you can see this feature:

$('.elements').on('click.myApp.myName', myFunction);

Namespaces are case sensitive, so if you have the previous statement and execute the
following

$('.elements').trigger('click.myapp');

the handler attached to the event won’t be executed (note the lowercase a).
www.EBooksWorld.ir

170 CHAPTER 6 Events are where it happens!
 There’s another important concept to highlight. Imagine you have the following
code:

$('.elements').on('click.myApp.myName', myFunction);
$('.other-elements').on('click.myApp', myOtherFunction);

You want to execute all the event handlers attached to a click event that has the
namespace myApp. This means that you want to execute both myFunction() and
myOtherFunction(). To do so you don’t have to execute two different statements like
these:

$('.elements').trigger('click.myApp');
$('.other-elements').trigger('click.myApp.myName');

You can select all the elements of both the sets and fire the click event, specifying
only the myApp namespace:

$('.elements, .other-elements').trigger('click.myApp');

If a comparison will help you, you can consider multiple namespaces acting as the OR
logical operator. If a namespaced event is fired, all the handlers attached to events
having as one of their namespaces the one specified will be executed.

 With all these event-handling tools under your belt, you’ll employ what you’ve
learned so far in the next chapter and look at an example page that makes use of
them, as well as some of the other jQuery techniques that you’ve learned from previ-
ous chapters.

6.3 Summary
Building upon the jQuery knowledge that you’ve gained so far, this chapter intro-
duced you to the world of event handling.

 You learned that there are vexing challenges to implementing event handling in
web pages, but such handling is essential for creating pages in interactive web applica-
tions. Not insignificant among those challenges is the fact that there are three event
models that each operate in different ways across the set of modern popular browsers.

 The legacy Basic Event Model, also informally termed the DOM Level 0 Event
Model, enjoys somewhat browser-independent operation to declare event listeners,
but the implementation of the listener functions requires divergent browser-
dependent code in order to deal with differences in the Event instance. Although
simple, this model limits you to only one listener for any event type on a particular
DOM element.

 You can avoid this deficiency by using the DOM Level 2 Event Model, a more
advanced and standardized model in which an API binds handlers to their event types
and DOM elements. Versatile though this model is, it’s supported only by standards-
compliant browsers such as Chrome, Firefox, Internet Explorer 9 and above, Safari,
and Opera.

 For Internet Explorer 8 and below, an API-based proprietary event model that pro-
vides a subset of the functionality of the DOM Level 2 Event Model is available.
www.EBooksWorld.ir

171Summary
 Coding all event handling in a series of if statements—one clause for the standard
browsers and one for older versions of Internet Explorer—is a good way to drive your-
self to early dementia. Luckily, jQuery comes to the rescue and saves you from that fate.

 The library provides a general on() method to establish event listeners of any type
on any element, as well as event-specific convenience methods such as change() and
click(). These methods operate in a browser-independent fashion and normalize the
Event instance passed to the handlers with the standard properties and methods most
commonly used in event listeners.

 jQuery also provides the means to remove event handlers by exposing the off()
method, or cause them to be triggered under script control. As if all that wasn’t
enough, jQuery provides the possibility of using the on() method to assign handlers
proactively to elements that may not even exist yet.

 Finally, we discussed how to create custom events and namespacing events,
explaining the advantages and the use cases for these features.

 In this chapter, we looked at a few examples of using events in your pages, and we
explored a comprehensive example that demonstrated many of the concepts that
you’ve learned up to this point. In the next chapter, we’ll look at how to put together
the concepts explained so far to create a nice application built on top of jQuery.
www.EBooksWorld.ir

Demo: DVD discs locator
We’re not even at the halfway point of the book and hopefully you’ve learned a lot
of new topics, methods, and techniques. Throughout the previous chapters, we’ve
covered jQuery selectors, DOM traversal and manipulation, and event handling.
For each of these topics we’ve shown you several examples. They were great for let-
ting you focus on a single aspect and helping you fix the concept, but they were
limited.

 In this chapter, we’ll cover all the previously mentioned topics and also try to fill
the gap by providing a demonstration of what you can do with the knowledge
you’ve acquired. In the next few sections you’ll develop a basic yet fully functional
application to manage a collection of DVDs. Let’s see what you can do!

This chapter covers
 jQuery selectors

 DOM traversal and manipulation

 Attaching event handlers to DOM elements

 Event delegation

 Using custom events
172

www.EBooksWorld.ir

173Putting events (and more) to work
7.1 Putting events (and more) to work
Let’s pretend that you’re a videophile whose collection of DVDs, numbering in the
thousands, has become a huge problem. Not only has organization become an issue,
making it hard to find a DVD quickly, but all those DVDs in their cases have become a
storage problem. They’ve taken over way too much space and will get you thrown out
of the house if the problem isn’t solved.

 We’ll posit that you solved the storage side of the problem by buying DVD binders
that hold one hundred DVDs each in much less space than the comparable number of
DVDs in their cases. But although that saved you from having to sleep on a park
bench, organizing the DVD discs is still an issue. How will you find a DVD that you’re
looking for without having to manually flip through each binder until you find the
one you’re seeking?

 You can’t do something like sort the DVDs in alphabetical order to help quickly
locate a specific disc. That would mean that every time you bought a new DVD, you’d
need to shift all the discs in perhaps dozens of binders to keep the collection sorted.
Imagine the job ahead of you if you bought Armageddon!

 Well, you have a computer, you have the know-how to write web applications, and
you have jQuery! You’ll solve the problem by writing a DVD database program to help
keep track of what DVDs you have and where they are. The code for this example can
be found in the file chapter-7/dvds.html.

NOTE This demo has been heavily changed compared to the one presented
in the second edition of this book. If you bought it (thank you!), we really
encourage you not to skip this chapter. You’ll find a lot of new stuff, and this
time the filters really work (in the old version you had always the same, static
results)!

The project you’re going to build uses a few Ajax calls to perform some tasks. We
haven’t covered this topic yet, but we assure you that this lack won’t make it harder for
you to see all the other concepts in action. Due to the security restrictions of some
browsers, the demo can raise an error. We already advised you about this issue in chap-
ter 3, but for your convenience we’re repeating the same note here.

NOTE Due to security restrictions of some browsers, you may fail in playing
with this demo. To avoid this issue, you can either execute the page under a
web server like Apache, Tomcat, or IIS or search for a specific solution for
your browser. For example, in WebKit-based browsers, you can run it through
the command-line interface (CLI) using the flag --allow-file-access-
from-files. It’s important that the command creates a new process, so it
must open not a new tab but a new window.

Let’s get to work!
www.EBooksWorld.ir

174 CHAPTER 7 Demo: DVD discs locator
7.1.1 Filtering large data sets

Our DVD database program is faced with the same problem of many other applica-
tions, web-delivered or otherwise. How do you allow your users (in this case yourself)
to quickly find the information they seek?

 You could be all low-tech about it and display a sorted list of all the titles, but that
would still be painful to scroll through if there’s anything more than a handful of
entries. Besides, you want to learn how to do it right so that you can apply what you
learn to real, customer-facing applications. So no shortcuts!

 Obviously, designing a complex application would be well beyond the scope of this
chapter. Therefore, we’ll concentrate on developing a control panel that allows you to
specify filters with which you can tune the list of titles returned when you perform a
database search.

 You’ll want the ability to filter on the DVD title, of course. But you’ll also add the
ability to filter the search based on the year that the movie was released, the binder in
which you placed the disc, and even whether you’ve viewed the movie yet or not. (This
will help answer the commonly asked question, “What should I watch tonight?”)

 Your initial reaction may be to wonder what the big deal is. After all, you can put
up a number of fields and be done with it, right? Well, not so fast.

 A single field for something like the title is fine if, for example, you want to find all
movies with the word creature in their title. But what if you want to search for creature
only if the movie was released between 1987 and 1999?

 In order to provide a robust interface for specifying filters, you’ll need to specify
multiple filters for different properties of the DVD. But in this project you won’t allow
specifying the same filter multiple times. In addition, rather than trying to guess how
many filters will be needed, you’ll create them on demand.

 Each filter is identified by a drop-down (single-selection select element) that
specifies the field that’s to be filtered. Based on the type of that field (string, date,
number, and even Boolean), the appropriate controls are displayed on the line to cap-
ture information about the filter. The users are given the ability to add as many of
these filters as they like but, once again, one of the same type, or to remove previously
specified filters.

 A picture being worth a thousand words, study the time-progression display of fig-
ures 7.1a through 7.1c. They show the filter panel that you’ll build (a) when initially
displayed, (b) after a filter has been specified, and (c) after a number of filters have
been specified.

 As you can see by inspecting the interactions shown in figures 7.1a through 7.1c,
there’s going to be a lot of element creation on the fly. Let’s take a few moments to
discuss how you’re going to go about that.
www.EBooksWorld.ir

175Putting events (and more) to work
Figure 7.1a The display
initially shows a single,
unconfigured filter.

After a field is selected,
the qualifiers are added.

Figure 7.1b After a
filter type is selected,
its qualifier controls
are added.

The user can add
multiple filters.

Figure 7.1c The user
can add multiple filters.
www.EBooksWorld.ir

176 CHAPTER 7 Demo: DVD discs locator

Defin

ch
tem
7.1.2 Element creation by template replication

You can readily see that to implement this filtering control panel, you’re going to
need to create a fair number of elements in response to various events. For example,
you’ll need to create a new filter entry whenever the user clicks the Add Filter button
and new controls specific for that filter whenever a specific field is selected.

 No problem! As you’ve learned, jQuery allows you to dynamically create elements
using the $() function. Although you’ll do some of that in this example, you’re also
going to explore some higher-level alternatives.

 When you’re dynamically creating lots of elements, all the code necessary to create
those elements and stitch together their relationships can get a bit unwieldy and difficult
to maintain, even with jQuery’s assistance. (Without jQuery’s help, it can be a complete
nightmare!) It would be great if you could create a “blueprint” of the complex markup
using HTML and then replicate it whenever you needed an instance of the blueprint.

 Yearn no more! The jQuery clone() method gives you just that ability.
 The approach that you’re going to take is to create sets of template markup that

represent the HTML fragments you’d like to replicate and use the clone() method
whenever you need to create an instance of that template. You don’t want these tem-
plates to be visible to the end user, so you’ll wrap them in a div element that’s hidden
from view using CSS.

 As an example, consider the combination of the X button and drop-down that
identifies the filterable fields. You’ll need to create an instance of this combination
every time the user clicks the Add Filter button. The jQuery code to create such a but-
ton and the select element, along with its child option elements, could be consid-
ered a tad long, although it wouldn’t be too onerous to write or maintain. But it’s easy
to envision that anything more complex would get unwieldy quickly.

 Using our template technique, and placing the template markup for that button
and drop-down in a parent <div> used to hide all the templates, create the markup as
follows:

<div class="templates">
 <div class="template filter-chooser">
 <input type="button" class="filter-remover" value="X" />

 <select name="filter" class="filter-type">
 <option value="" data-template-type="" selected="selected">
 Choose a filter
 </option>
 <option value="title" data-template-type="template-title">
 DVD Title
 </option>
 <option value="binder" data-template-type="template-binder">
 Binder
 </option>
 <option value="year" data-template-type="template-year">
 Release Date
 </option>
 <option value="viewed" data-template-type="template-viewed">

Encloses and hides all templatesB
es the
filter-
ooser
plate C
www.EBooksWorld.ir

177Putting events (and more) to work
 Viewed?
 </option>
 </select>
 </div>
 <!—- more templates go here -->
</div>

The outer <div> with class of templates serves as a container for all your templates
and will be given a CSS declaration display: none; to prevent it from being dis-
played B. Within this container, you define another <div> that you give the classes
template and filter-chooser C. You’ll use the template class to identify (single)
templates in general and the filter-chooser class to identify this particular tem-
plate type. You’ll see how these classes are used as JavaScript hooks shortly.

 Also note that each <option> in the <select> has been given a custom attribute:
data-template-type. You’ll use this value to determine what type of filter controls
need to be used for the selected filter field.

 Based on which filter type is identified, you’ll populate the remainder of the filter
entry line with controls that are appropriate for the filter type. For example, if the
template type is template-title, you’ll want to display a text field into which the user
can type a title (or part of it) to search and a drop-down giving them options for how
that term is to be applied (contains, equal to, and so on).

 You’ll set up the template for this set of controls as follows:

<div class="template template-title">
 <select name="title-condition">
 <option value="contains">contains</option>
 <option value="starts-with">starts with</option>
 <option value="ends-with">ends with</option>
 <option value="equal">is exactly</option>
 </select>
 <input type="text" name="title" />
</div>

Again, you use the template class to identify the element as a template, and flag the
specific template with the class template-title. We’ve purposely made it such that
this class matches the data-template-type value on the field chooser drop-down.

 Replicating these templates whenever and wherever you want is easy using the
jQuery knowledge you have under your belt. Let’s say that you want to append a tem-
plate instance to the end of an element that you have a reference to in a variable
named whatever. You could write

$('div.template.template-title')
 .clone()
 .appendTo(whatever);

In this statement, you select the template container to be replicated (in this case, the
one having class template-title) using those convenient classes you placed on
the template markup. Then you clone the element using the clone() method, and
finally you attach the template to the end of the contents of the element identified by
whatever. See why we keep emphasizing the power of jQuery method chains?
www.EBooksWorld.ir

178 CHAPTER 7 Demo: DVD discs locator
 Inspecting the options of the filter-chooser drop-down, you see that you
have a number of other template types defined: template-binder, template-year,
and template-viewed. You’ll define controls templates for those filter types as well
with this code:

<div class="template template-binder">
 <input type="text" name="binder-min" class="numeric" />
 through
 <input type="text" name="binder-max" class="numeric" />
</div>

<div class="template template-year">
 <input type="text" name="year-min" class="date" />
 through
 <input type="text" name="year-max" class="date" />
</div>

<div class="template template-viewed">
 <label><input type="radio" name="viewed" value="true" checked="checked" />

Yes</label>
 <label><input type="radio" name="viewed" value="false" /> No</label>
</div>

Okay. Now that you have your replication strategy defined, let’s take a look at the pri-
mary markup.

7.1.3 Setting up the mainline markup

If you refer back to figure 7.1a, you can see that the initial display of your DVD search
page is pretty simple: a header, a first filter instance, a few buttons, and a preset table
where you’ll display the results. Take a look at the HTML markup that achieves that:

<h1>Disc Locator</h1>

<form id="form-filters" action="#">
 <fieldset>
 <legend>Filters</legend>
 <div id="filters">
 </div>
 <div class="buttons-wrapper">
 <input type="button" id="filter-add" value="Add Filter" />
 <input type="submit" id="filter-apply" value="Apply Filters"/>
 </div>
 </fieldset>
</form>

<div id="panel-results">
 <table id="results">
 <tr>
 <th>Title</th>
 <th>Year</th>
 <th>Binder</th>
 <th>Page</th>
 <th>Slot</th>
 <th>Viewed</th>
 </tr>

Binder filter template

Year filter template

Viewed filter template

Container for filter instancesB

Container for search resultsC
www.EBooksWorld.ir

179Putting events (and more) to work
 </table>
</div>

There’s nothing too surprising in that markup—or is there? Where, for example, is
the markup for the initial filter drop-down? You’ve set up a container in which the fil-
ters will be placed B, but it’s initially empty. Why?

 Well, you’re going to need to be able to populate new filters dynamically—which
we’ll get to in just a moment—so why do the work in two places? As you’ll see, you’ll
be able to use the dynamic code to initially populate the first filter, so you don’t need
to explicitly create it in the static markup. One other thing that we should point out is
that you’ve set aside a table to receive the results C.

 You have your simple, mainline HTML laid out, and you have a handful of hidden
templates that you can use to quickly generate new elements via replication. Finally
you can start writing the code that will apply the behavior to your page!

7.1.4 Adding new filters

Upon a click of the Add Filter button, you need to add a new filter to the <div> that
you’ve set up to receive it, which you’ve identified with the ID of filters. If you recall
how easy it is to establish event handlers using jQuery, it should be an easy matter to
add a click handler to the Add Filter button. But there’s something else to consider!

 You’ve already seen how you’re going to replicate form controls when the user
adds filters, and you have a good strategy for easily creating multiple instances of these
controls. But eventually you’re going to have to submit these values to the server so it
can look up the filtered results in the database. Writing the backend is outside the
scope of this chapter, but this doesn’t mean that your application won’t work. You’ll
simulate a database with a file called movies.json, which contains a JSON array. The
movies.json file is bundled with the source of this book, and you’ll find it in the folder
called chapter-7. Each element of the array is an object having the following proper-
ties: title, year, binder, page, slot, and viewed.

 To avoid loading the JSON object every time you interact with the application,
you’ll load it once when the page is loaded and store it in a global variable called
movies. To perform this task, you need to employ a jQuery utility function called
getJSON(). We haven’t covered it yet (we’ll discuss it in section 10.3.2), but what it
does is access a resource (URL or file) containing a JSON object (an array or any other
type of valid JSON format is allowed) and execute a handler once it has been
retrieved. This method passes the JSON that was retrieved, converted into a JavaScript
type, to the handler. Inside the latter, you’ll do nothing but assign this JavaScript
object to your global movies variable and fire a custom event, called moviesLoaded, to
inform your application that you’re ready to work.

 “Global variable? I thought those were evil,” I hear you say. Global variables can be
a problem when used incorrectly. In this case, this is truly a global value that repre-
sents a page-wide concept, and it will never cause any conflicts because all aspects of
the page will want to access this single value in a consistent fashion. Nonetheless, ide-
ally an application should have only one global variable for its application-specific
www.EBooksWorld.ir

180 CHAPTER 7 Demo: DVD discs locator
concerns in a similar fashion to jQuery, where you can find all the methods, utility
functions, and properties of the library under the jQuery property. Rather than
assigning the data to a global variable called movies, you can create one global vari-
able—for example, dvdApp—retaining the movie data and the application’s methods.

 In this demo, you’ll ignore the risks of using a global variable in order to make
everything as simple as possible. The final code that implements what we’ve described
so far is shown here:

var movies;
$.getJSON('movies.json', function(data) {
 movies = data;
 $(document).trigger('moviesLoaded');
});

$(document).on('moviesLoaded', function() {
 // Business logic here
});

Inside the handler for your custom event, moviesLoaded, you’re ready to establish
another handler that will be executed when the Add Filter button is clicked. Before
writing the necessary code, you need to write the following two statements at the
beginning of your code:

var $filters = $('#filters');
var templatesAvailable = $('.template', '.templates')
 .not('.filter-chooser')
 .length;

The first is needed because you’ll use the element having filters as its ID several
times. The second is needed because you need to verify that not all the templates
defined in the page are already in use. Once you’ve done this, you’re ready to write
the body of the callback:

$('#filter-add')
 .click(function() {
 if ($filters.find('.template:last .filter-type').val() === '') {
 return;
 }

 var filterInUse = $filters
 .children()
 .map(function() {
 return $(this)
 .children('.template')
 .attr('class')
 .match(/\b(template-.+?)\b/g)[0];
 })
 .get();

 if (filterInUse.length === templatesAvailable) {
 return;
 }

 var $filterChooser = $('div.template.filter-chooser')

Establishes
click handler

B Verifies if the button
was pressed before

selecting a filter

C

Finds filters
already

in use D

Tests if all the
filters available
are in use

E

Creates filter
entry block

F

www.EBooksWorld.ir

181Putting events (and more) to work
 .clone()
 .removeClass('filter-chooser')
 .addClass('filter');

 $filterChooser
 .find('option[data-template-type]')
 .filter(function() {
 return filterInUse
 .indexOf($(this)
 .data('template-type')) >= 0;
 })
 .remove();
 $filterChooser.appendTo($filters);
 })
 .click();

Although this snippet may look complicated at first glance, it accomplishes a great
deal without a lot of code. Let’s break it down one step at a time.

 The first thing that you do in this code is to establish a click handler on the Add
Filter button B by using the jQuery click() method. It’s within the function passed
to this method, which will get invoked when the button is clicked, that all the interest-
ing stuff happens.

 Before performing any action, you need to verify if the Add Filter button was
pressed before the user selected a filter, in which case you need to terminate the func-
tion prematurely C. If a filter was selected because a click of the Add Filter button is
going to, well, add a filter, you need to create a new container for the filter to reside
within. As we said, you don’t allow multiple filters of the same type, so you have to
retrieve all the types of filters in use D to exclude them. To retrieve the filters in use
you rely on the class name you used for each template (template-title, template-
year, and so on) and two methods we introduced in the previous chapters of this
book: map() and get(). When finished, you test if all the filters available are in use; if
so, prematurely terminate the handler E. If not, continue the process.

 You clone the template, using the jQuery clone() method, that you set up con-
taining the filter drop-down using the replication approach that we discussed in the
previous section. Then give it the class filter not only for CSS styling but also to be
able to locate these elements later in the code F. After the element is created, it’s
time to exclude the filters already in use by using the filter() method G. Then
append the cloned template to the master filter container that you created with the
ID value of filters H.

 The previous operation was the last one defined inside the handler. After you
attach the latter, but before closing the statement, trigger the click event on the same
element using the click() method I. We discussed this version of the shortcuts in
the section “Shortcut methods” of chapter 6. This is a well-known and often used tech-
nique to execute a handler you’ve just attached.

 Why do this? Do you remember when you guessed where the markup is for the ini-
tial filter drop-down? Yes, you got it! You execute the handler so that as soon as the

Removes filters
already in use

G

Appends the filters
drop-down templateH

Triggers the click eventI
www.EBooksWorld.ir

182 CHAPTER 7 Demo: DVD discs locator

Re
a

co
page is loaded, the first select element is appended in the panel to allow you to per-
form the first choice.

 Load this page into your browser and test the action of the Add Filter button. Note
how every time you click the Add Filter button, a new filter is added to the page. If you
inspect the DOM with a JavaScript debugger (Firebug in Firefox and the Chrome
Developer Tool are great for this), you’ll see how the template has been copied in the
container.

 In one function (the handler) you’ve used a lot of the knowledge you’ve gained so
far. This should prove to you, once again, how jQuery allows you to perform complex
operations in a few lines of code.

 But your job isn’t over yet. The drop-downs don’t yet specify which field is to be fil-
tered. When the user makes a selection, you need to populate the filter container,
adding the appropriate controls for that filter type.

7.1.5 Adding the controls templates

Whenever a selection is made from a filter drop-down, you need to populate the filter
with the controls that are appropriate for that filter. You’ve made it easy for yourself by
creating markup templates to copy when you determine which one is appropriate. But
there are also a few other housekeeping tasks that you need to do whenever the value
of the drop-down is changed.

 Take a look at what you’ll do when establishing the change handler for the drop-
down. Remember that the following code, like that of the previous section, is written
inside the handler for the custom event called moviesLoaded:

$('#filters').on('change', '.filter-type', function() {
 var $this = $(this);
 var $filter = $this.closest('.filter');
 var filterType = $this.find(':selected').data('template-type');

 $('.qualifier', $filter).remove();
 $('div.template.' + filterType)
 .clone()
 .addClass('qualifier')
 .appendTo($filter);
 $this.find('option[value=""]').remove();
})

You take advantage of jQuery’s on() method to establish a handler up front that will
automatically be established at the appropriate points without further action on your
part. This time, you proactively establish a change handler, employing event delega-
tion, for any filter drop-down that comes into being B. This is needed because at the
time you attach the handler, the filters don’t exist inside the div having the ID of filters.

 When the change handler fires, cache the jQuery object that contains the current
element (this) because you’ll use it several times. Then, collect a couple pieces of
information: the parent filter container and the filter type recorded in the custom
data-template-type attribute.

Establishes
change handlerB

moves
ny old
ntrols

C

Replicates
appropriate templateD

Removes the “Choose
a filter” optionE
www.EBooksWorld.ir

183Putting events (and more) to work
 When you have those values in hand, you need to remove any filter controls that
might already be in the container C. After all, the user can change the value of the
selected field many times, and you don’t want to keep adding more and more controls
as you go along! You’ll add the qualifier class to all the appropriate elements as
they’re created (in the next statement) so it’s easy to select and remove them.

 Once you’re sure you have a clean slate, replicate the template for the correct set
of qualifiers D by using the value you obtained from the data-template-type attri-
bute. The qualifier class name is added to each created element for easy selection
(as you saw in the previous statement) and the element is appended to the parent fil-
ter container.

 Finally, remove the “Choose a filter” <option> from the filter drop-down E,
because when the user has selected a specific field, it doesn’t make any sense to
choose that entry again. You could just ignore the change event that triggers when the
user selects this option, but the best way to prevent a user from doing something that
doesn’t make sense is to not let them do it in the first place!

 Refer again to the example page in your browser. Try adding multiple filters and
change their selections. Note how the qualifiers always match the field selection.

 Now for those remove buttons...

7.1.6 Removing unwanted filters and other tasks

You’ve given the user the ability to change the field that any filter will be applied to,
but you’ve also given them a remove button (labeled X) that they can use to remove a
filter completely.

 By this time, you should already have realized that this task will be almost trivial
with the tools at your disposal. When the button is clicked, all you need to do is find
the closest parent filter container and blow it away! Note that in the source the han-
dler is attached by chaining this code with the previous segment. But for the sake of
clarity we’ll repeat the selection in the following code:

$('#filters').on('click', '.filter-remover', function() {
 $(this).closest('.filter').remove();
});

Here you employ event delegation again because at the time the page is loaded there
aren’t elements having class filter-remover inside the main panel.

 Now that all the handlers for the filters have been set, there’s only one thing left:
applying the filters and showing the results.

7.1.7 Showing the results

In the previous section, we said that writing the backend of the application was out-
side the scope of this chapter, but we didn’t want to leave you without a working appli-
cation. As pointed out previously, you’ll emulate a database using a JSON array stored
in a file called movies.json bundled with the source. In this section you’ll discover the
www.EBooksWorld.ir

184 CHAPTER 7 Demo: DVD discs locator

Re
th

Filters
mo

base
the fil
logic of the function that you need to attach as a handler for the submit event of the
form. Let’s see what this handler is all about:

$('#form-filters').submit(function(event) {
 event.preventDefault();

 var titleCondition = $filters.find('select[name="title-condition"]').val();
 var title = $filters.find('input[name="title"]').val();
 var binderMin = parseInt($filters.find('input[name="binder-min"]').val(), 10);
 var binderMax = parseInt($filters.find('input[name="binder-max"]').val(), 10);
 var yearMin = parseInt($filters.find('input[name="year-min"]').val(), 10);
 var yearMax = parseInt($filters.find('input[name="year-max"]').val(), 10);
 var viewed = $filters.find('input[name="viewed"]:checked').val();

 $('tr:has(td)', '#results').remove();
 results = $.grep(movies, function(element, index) {
 return (
 (
 (
 titleCondition === undefined &&

 title === undefined
) ||

 (
 titleCondition === 'contains' &&
 element.title.indexOf(title) >= 0
) ||

 (
 titleCondition === 'stars-with' &&

 element.title.indexOf(title) === 0
) ||

 (
 titleCondition === 'ends-with' &&
 element.title.indexOf(title) === element.title.length - title.length
) ||
 (
 titleCondition === 'equals' &&
 element.title === title
)
) &&
 (isNaN(binderMin) || element.binder >= binderMin) &&
 (isNaN(binderMax) || element.binder <= binderMax) &&
 (isNaN(yearMin) || element.year >= yearMin) &&
 (isNaN(yearMax) || element.year <= yearMax) &&
 (viewed === undefined || element.viewed === (viewed === 'true'))
);
 });

 var row;
 for(var i = 0; i < results.length; i++) {
 row = '<td>' + results[i].title + '</td>';
 row += '<td>' + results[i].year + '</td>';
 row += '<td>' + results[i].binder + '</td>';
 row += '<td>' + results[i].page + '</td>';
 row += '<td>' + results[i].slot + '</td>';
 row += '<td>' + (results[i].viewed ? 'X' : '') + '</td>';

Attaches a
listener for the
submit event

B
Prevents
the default
behavior

C

trieves
e value
of the
filters
used

D

Clears previous
results but not
headersE the

vies
d on
ters F

Loops over the
filtered movies

G

Formats the
properties of
the movie as
cells of a row
of a tableH
www.EBooksWorld.ir

185Putting events (and more) to work
 $('#results').append(
 $('<tr>').html(row)
);
 }
});

To start you attach a function as a handler for the submit event of the form B.
Because you don’t want your browser to perform an HTTP request (remember, you
don’t have a backend) inside the handler, you prevent the default behavior C. Then
execute a set of assignments to retrieve the values of the filters filled by the user D.
Even if the user won’t use all of them, try to retrieve all the possible values. For those
that haven’t been added, the value will result in an undefined value that you’ll deal
with later.

 In the next statement you clear the table from any previous result, keeping in
place its headers E. Then, using $.grep(), create a new array containing only the
movies that match the filters filled F. We haven’t yet covered this method (we’ll dis-
cuss it in section 9.3.3), but it’s similar to the filter() method.

 As soon as you have the results of the query, you must show them. To achieve this
goal, loop over the filtered movies G. Inside the loop, format the properties of each
movie as cells of a row of the table H. The actual row element (tr) is created on the
fly using the ability of the jQuery() method to create elements based on a string.
Once it’s created, append the row to the table I.

 Now that you’ve analyzed the handler, go ahead and click the Apply Filters button.
There you go! The set of movies that match the filters has been displayed on the
screen. An example of the results shown by this project is illustrated in figure 7.2.

 With this last step you’ve completed the page, at least as far as we wanted to take it
for the purposes of this chapter, but as you know...

Appends the cells to a row
created on the fly and then
appends the row to the
results tableI

Figure 7.2 An example
of the results returned
by the DVD Disc Locator
www.EBooksWorld.ir

186 CHAPTER 7 Demo: DVD discs locator
7.1.8 There’s always room for improvement

For your filter form to be considered production-quality, there’s still lots of room for
improvement.

 The following list describes some additional functionality either that this form
requires before being deemed complete or that would be just plain nice to have. Can
you implement these additional features with the knowledge you’ve gained up to this
point?

 Data validation is poor in your form. For example, inside the handler of the
form’s Submit button you convert strings into numbers where it makes sense,
but better controls may be of help, especially for the date fields.

Ideally, with a backend on the server, you could punt and let the server-side
code handle it—after all, it has to validate the data regardless. But that makes for
a less-than-pleasant user experience, and as we’ve already pointed out, the best
way to deal with errors is to prevent them from happening in the first place.

Because the solution involves inspecting the Event instance—something that
wasn’t included in the example up to this point—we’re going to give you the
code to disallow the entry of any characters but digits into the numeric fields.
The operation of the code should be evident to you with the knowledge you’ve
gained in this chapter, but if not, now would be a good time to go back and
review the key points:
$('input.numeric').on('keypress', function(event) {
 // Character with code 48 is "0". Character with code 57 is "9".
 if (event.which < 48 || event.which > 57) return false;
});

For browsers that support HTML5, a simpler solution exists. You could force the
user to use only numbers by using the new <input> type called number.

 Date fields aren’t well validated. How would you go about ensuring that only
valid date ranges are entered? What if the user fills a start date greater than the
end date? You can’t do it on a character-by-character basis as you did with the
numeric fields.

 When qualifying fields are added to a filter, the user must click in one of the
fields to give it focus. Not all that friendly! Add code to the example to give
focus to the new controls as they’re added.

 One of the requirements was to not allow a user to have the same filter more
than once. In its current version, there’s a way to have the same filter twice,
which also uncovers a defect of the demo. Can you find out how and fix this
behavior?

 Your form allows the user to specify more than one filter but only one per type.
How would you change the form to allow the user to specify multiple filters of
the same type?

 The types of the filters could be updated when deleting one of the filters in use.
If you add all four types of filters (DVD Title, Binder, Release Date, and Viewed?)
www.EBooksWorld.ir

187Summary
and then delete the first (DVD Title), you won’t be able to change one of the
remaining filters in order to have DVD Title again. This happens because the list
is created at the time you click the Add Filter button and is never updated. How
can you update the demo to address this issue? (Hint: Listen to the click event
of the buttons having class filter-remover.)

 What other improvements would you make, either to the robustness of the code
or the usability of the interface? How does jQuery help?

If you come up with ideas that you’re proud of, be sure to visit the Manning web page
for this book at http://www.manning.com/derosa, which contains a link to the discus-
sion forum. You’re encouraged to post your solutions for all to see and discuss!

7.2 Summary
Using the jQuery knowledge that you’ve gained so far, in this chapter you developed a
fully working web application to manage a DVD collection. One of the lessons that you
may have learned from working on it is that tasks that at first glance may seem com-
plex are nothing but a combined set of simple statements. We hope that you had fun
developing this small application, which was aimed at reinforcing the concepts we cov-
ered up to this point.

 In the next chapter, we’ll look at how jQuery builds on these capabilities to put ani-
mation and animated effects to work for you.
www.EBooksWorld.ir

http://www.manning.com/derosa

Energizing pages with
animations and effects
In the early days of the web, the capabilities afforded to page authors were severely
limited, not only by the minimal APIs but also by the sluggishness of scripting
engines and low-powered systems. The idea of using these limited abilities for ani-
mation and effects was laughable, and for years the only animation was through the
use of animated GIF images (which were generally used poorly, making pages more
annoying than usable).

 Today’s browser scripting engines are lightning fast, running on hardware that
was unimaginable 10 years ago, and offer a rich variety of capabilities to us as page
authors. Even more important, modern browsers have implemented several CSS3

This chapter covers
 Showing and hiding elements without animation

 Showing and hiding elements using core animation
effects

 Extending the core easing functions

 Writing custom animations

 Controlling animation and function queuing
188

www.EBooksWorld.ir

189Showing and hiding elements
modules with standardized properties that allow us to create amazing animations and
effects. Some examples of these properties are transition, transform, filter, blur,
and mask. Unfortunately, there are some issues to keep in mind. The first is that the
actual modules implemented depend on the browser, so not all browsers support the
same modules. In addition, browsers supporting a given module have implemented it
at different times and the span can be considerable. The second point is that older
browsers and several mobile browsers don’t support these modules and some of them
(most notably older ones) will never do so. Therefore, if we want to create an anima-
tion that works on all browsers, we have no other choice but to use JavaScript.

 But even though JavaScript can help us in achieving this task, it’s not easy to create
animations using native functions. Fortunately, jQuery comes to our rescue, providing
a trivially simple interface for creating all sorts of neat effects.

 But before we dive into adding whiz-bang effects to our pages, we need to contem-
plate the question, should we? Like a Hollywood movie that’s all special effects and no
plot, a page that overuses effects can elicit a very different, and negative, reaction than
what we intend. Be mindful that effects should be used to enhance the usability of a
page, not hinder it by just showing off. Also remember that too many animations can
slow down the performance of a website, especially when accessed from a mobile
device. With those cautions in mind, let’s see what jQuery has to offer.

8.1 Showing and hiding elements
Perhaps the most common type of dynamic effect you’ll want to perform on one or
more elements is the simple act of showing or hiding them. We’ll get to more fancy
animations in a bit, but sometimes you just want to keep it simple and pop elements
into existence or make them instantly vanish!

 The methods for showing and hiding elements are pretty much what you’d expect:
show(), to show the elements in a jQuery object, and hide(), to hide them. We’re
going to delay presenting their formal syntax for reasons that will become clear in a
bit; for now, let’s concentrate on using these methods with no arguments.

 As simple as these methods may seem, you should keep a few things in mind. First,
jQuery hides elements by changing their style.display property to none. If an ele-
ment in the set of matched elements is already hidden, it will remain hidden but will
still be returned for chaining. For example, suppose you have the following HTML
fragment:

<div style="display: none;">This will start hidden</div>
<div>This will start shown</div>

If you write

$('div').hide().addClass('fun');

you’ll end up with the following result:

<div style="display: none;" class="fun">This will start hidden</div>
<div style="display: none;" class="fun">This will start shown</div>
www.EBooksWorld.ir

https://github.com/gdsmith/jquery.easing
https://github.com/gdsmith/jquery.easing
https://github.com/gdsmith/jquery.easing
http://jqueryui.com
http://jqueryui.com
http://jqueryui.com
../Markup/(Mannin
../Markup/(Mannin
http://api.jqueryui.com/easings/
http://api.jqueryui.com/easings/
https://github.com/jquery/jquery-color

190 CHAPTER 8 Energizing pages with animations and effects
Note that even though the first element was already hidden, it remains part of the
matched set and takes part in the remainder of the method chain. This is confirmed
by the fact that both elements possess the class fun after the statement is executed.

 The second point to keep in mind is that jQuery shows objects by changing the
display property from none to either block or inline. Which of these values is cho-
sen is based on whether a previously specified explicit value was set for the element or
not. If the value was explicit, it’s remembered and reverted. Otherwise it’s based on
the default state of the display property for the target element type. For example,
div elements will have their display property set to block, whereas a span element’s
display property will be set to inline.

NOTE Until versions 1.11.0 and 2.1.0 of jQuery, this mechanism had a bug.
After the first call to hide(), jQuery stored the old value of the display prop-
erty internally in a variable. Then, when the show() method was called,
jQuery restored this value. Therefore, if after the first call to hide(), the
display property was set to something else, when the show() method was
executed jQuery restored the old value and not the changed one. You can
find more on this issue here: http://bugs.jquery.com/ticket/14750.

Now that you know how these methods behave, let’s see how you can work with them.

8.1.1 Implementing a collapsible “module”

You’re no doubt familiar with websites that present various pieces of information in
configurable modules (sometimes referred to as tiles) or some sort of dashboard page.
This kind of website lets you configure much about how the page is presented, includ-
ing moving the modules around, expanding them to full-page size, and even removing
them completely. Many of them also provide a nice feature: the ability to roll up a mod-
ule into its caption bar so that it takes up less space, without having to remove it from
the page. This seems a perfect example of a functionality that you can replicate by using
the knowledge acquired in the previous section. Thus, what you’re going to do is create
dashboard modules that allow users to roll up a module into its caption bar.

 Before delving into writing code, let’s see what the module will look like in its nor-
mal and rolled-up states. These states are shown in figures 8.1a and 8.1b.

 In figure 8.1a, we show a module with two major sections: a caption bar and a body.
The body contains the data of the module—in this case, random “Lorem ipsum” text
(you can learn more about what this text is here: http://en.wikipedia.org/wiki/
Lorem_ipsum). The more interesting caption bar contains a caption for the module
and a small button (the minus sign on the top right) that you’ll instrument to invoke
the roll-up (and roll-down) functionality.

 Once the button is clicked, the body of the module will disappear as if it had been
rolled up into the caption bar. A subsequent click will roll down the body, restoring its
original appearance.

 The code to implement this functionality can be found in file chapter-8/collapsible
.module.take.1.html and is shown in listing 8.1. In case you surmise that the “take.1”
part of this filename indicates that we’ll be revisiting this example, you’re right!
www.EBooksWorld.ir

http://bugs.jquery.com/ticket/14750
http://en.wikipedia.org/wiki/Lorem_ipsum
http://en.wikipedia.org/wiki/Lorem_ipsum

191Showing and hiding elements
<!DOCTYPE html>
<html>
 <head>
 <title>Collapsible Module - Take 1</title>
 <link rel="stylesheet" href="../css/main.css" />
 <link rel="stylesheet" href="../css/module.css" />
 </head>
 <body>
 <div class="module">
 <div class="caption clearfix">
 <h1>Module Caption</h1>
 -
 </div>
 <div class="body">
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eget enim id neque aliquet porttitor. Suspendisse
 nisl enim, nonummy ac, nonummy ut, dignissim ac, justo.
 Aenean imperdiet semper nibh. Vivamus ligula. In in ipsum
 sed neque vehicula rhoncus. Nam faucibus pharetra nisi.
 Integer at metus. Suspendisse potenti. Vestibulum ante
 ipsum primis in faucibus orci luctus et ultrices posuere
 cubilia Curae; Proin quis eros at metus pretium elementum.
 </div>
 </div>

 <script src="../js/jquery-1.11.1.min.js"></script>
 <script>
 $('.icon-roll').click(function() {
 var $body = $(this).closest('.module').find('.body');
 if ($body.is(':hidden')) {
 $body.show();
 } else {

Listing 8.1 The first implementation of our collapsible module

Figure 8.1a You’ll create your own dashboard
modules, which consist of two parts: a bar with
a caption and roll-up button (the minus sign on
the top right), and a body in which data can be
displayed.

Figure 8.1b When the roll-up button (the minus
sign on the top right) is clicked, the module body
disappears as if it had been rolled up into the
caption bar.

The block
representing
the module

B

The caption of
the moduleC

The body of
the module D

Attaches a
handler to the

containing the
minus “icon”

E

Finds the
body of the

module F
Tests the current
status of the body
(shown or hidden)GShows the body

if it was hiddenH
www.EBooksWorld.ir

192 CHAPTER 8 Energizing pages with animations and effects
 $body.hide();
 }
 });
 </script>
 </body>
</html>

The markup that you’ll use to create the structure of your module is fairly straightfor-
ward. We’ve applied to it some class names that serve both for identification as well as
for CSS styling. The entire construct is enclosed in a <div> having module as a class B,
and it contains the caption C and the body D that are <div>s with the classes
caption and body applied, respectively. The caption element has also a class called
clearfix that’s used only for styling purpose, so we’re not going to discuss it.

 In order to give this module the roll-up behavior, you put inside the caption a
 having class icon-roll, containing an “icon” (actually a text with the minus
sign). To this element you attach a handler for the click event E.

 Within the click handler, you first locate the body associated with the module. You
need to find the specific instance of the module body because, remember, you may
have many modules on your dashboard page, so you can’t just select all elements that
have the body class. You quickly locate the correct body element by finding the closest
module container, and then starting from it you search for a descendant having class
body F. If how the expression finds the correct element isn’t clear to you, now would
be a good time to review the information in the early chapters of the book regarding
finding and selecting elements.

 Once the body is located, you test whether the body is hidden or visible using
jQuery’s is() method G. If the body is hidden, you show it using show() H; other-
wise, you hide it using hide() I. That wasn’t difficult at all, was it? But as it turns out,
it can be even easier!

8.1.2 Toggling the display state of elements

Toggling the display state of elements between revealed and hidden—as you did for
the collapsible module example—is such a common occurrence that jQuery defines a
method named toggle() that makes it even easier.

 Let’s apply this method to the collapsible module and see how it helps to simplify
the code of listing 8.1. The next listing shows only the click handler for the refactored
page (no other changes are necessary) with the changes highlighted in bold. The
complete page code can be found in the file chapter-8/collapsible.module.take.2
.html.

$('.icon-roll').click(function() {
 $(this)
 .closest('.module')
 .find('.body')
 .toggle();
});

Listing 8.2 The collapsible module code, simplified with toggle()

Hides the body if
it was shownI
www.EBooksWorld.ir

193Animating the display state of elements
Note that you no longer need the conditional statement to determine whether to hide
or show the module body; toggle() takes care of swapping the displayed state on your
behalf. This allows you to simplify the code quite a bit and avoid the need to store the
body reference in a variable.

 The toggle() method isn’t useful only as a shortcut for alternating calls to show()
and hide(), and in the next few pages you’ll discover how this method allows you to
do more than that.

 Instantaneously making elements appear and disappear is handy, but sometimes
you want the transition to be less abrupt. Let’s see what’s available for that.

8.2 Animating the display state of elements
Human cognitive ability being what it is, making items pop into and out of existence
instantaneously can be jarring. If you blink at the wrong moment, you could miss the
transition, leaving you to wonder, “What just happened?”

 Gradual transitions of a short duration help you know what’s changing and how
you got from one state to the other—and that’s where the jQuery core effects come in.
There are three sets of effect types:

 Show and hide (There’s a bit more to these methods than what we discussed in
section 8.1.)

 Fade in and fade out
 Slide down and slide up

Let’s look more closely at each of these effect sets.

8.2.1 Showing and hiding elements gradually

The show(), hide(), and toggle() methods are more flexible than we led you to
believe in the previous section. When called with no arguments, these methods effect
a simple manipulation of the display state of the DOM elements, causing them to
instantaneously be revealed or hidden. But when arguments are passed to them, these
effects can be animated so that the changes in display status of the affected elements
take place over a period of time.

 With that, you’re now ready to look at the full syntaxes of these methods.

Method syntax: hide

hide(duration[, easing][, callback])
hide(options)
hide()
Causes the elements selected to become hidden. If called with no parameters, the operation
takes place instantaneously by setting the display style property value of the elements to none.
If a duration parameter is provided, the elements are hidden over a period of time by adjusting
their width, height, and opacity downward to zero, at which time their display style property value
is set to none to remove them from the display.
www.EBooksWorld.ir

http://jsbin.com/pulik/edit?html,js,console,output

194 CHAPTER 8 Energizing pages with animations and effects
The hide() method gives us the opportunity to discuss several points. The first point is
the easing parameter, which allows you to specify an easing function. The term easing
is used to describe the manner in which the processing and pace of the frames of the
animation are handled. By using some fancy math on the duration of the animation
and current time position, some interesting variations to the effects are possible. But
what functions are available? The jQuery core supports only two functions: linear,
which progresses at a constant pace throughout the animation, and swing, which pro-
gresses slightly slower at the beginning and end of the animation than it does in the
middle. “Why only two functions?” you may ask. The reason isn’t that jQuery wants to
kill your creativity. Rather, jQuery wants to be as lean as possible by externalizing any
additional feature to third-party libraries. You’ll learn how to add more easing func-
tions (sometimes referred to as easings) in section 8.3.

NOTE The value "normal" of the duration parameter is just a convention.
You can use whatever string you like (except "slow" and "fast", of course) to
specify a transition that has to last 400 milliseconds. For example, you may use
"jQuery", "jQuery in Action", or "wow", obtaining exactly the same result.
If you want to see it with your own eyes, search for the property
jQuery.fx.speeds within the jQuery source. That said, we strongly advise you
to stick with the usual "normal" value to avoid driving your colleagues crazy.

Method syntax: hide (continued)

An optional easing function name can be passed to specify how the transition between the states
is performed.
An optional callback can be specified, and is invoked when the animation is complete.
In its second version, you can provide an object containing some options to pass to the method
(more on the properties available later).

Parameters

duration (Number|String) Specifies the duration of the effect as a number of
milliseconds or as one of the predefined value strings: "slow" (same as
passing 600), "normal" (same as passing 400), or "fast" (same as passing
200). If this parameter is omitted and a callback function is specified as the
first parameter, the value of "normal" is assumed.

easing (String) Specifies an easing function name to use when performing the
transition from the visible state to the hidden state. The easing functions
specify the pace of the animation at different points while in execution. If an
animation takes place but this parameter isn’t specified, it defaults to
"swing". More about these functions in section 8.3.

callback (Function) A function invoked when the animation completes. No parameters
are passed to this function, but the function context (this) is set to the
element that was animated. The callback is fired for each element that
undergoes animation.

options (Object) An optional set of options to pass to the method. The options available
are shown in table 8.1.

Returns
The jQuery collection.
www.EBooksWorld.ir

195Animating the display state of elements
The other parameter worth a discussion is options. Using this parameter you can
heavily customize how the hide() method acts. The properties and the values allowed
are shown in table 8.1.

All these properties enable you to create amazing effects. We’ll cover this topic shortly,
developing three different custom effects. We know there are a lot of unclear concepts
and you might be a bit confused. But don’t worry; everything will be explained in
detail shortly, so please bear with us.

 Now that you’ve studied in depth the hide() method and its parameters, you can
learn more about show(). Because the meaning of the parameters is the same for
show() as for hide(), we won’t repeat their description.

Table 8.1 The properties and the values, in alphabetic order, allowed in the options parameter

Property Value

always (Function) A function called when the animation completes or stops without com-
pleting. The Promise object passed to it is either resolved or rejected (we’ll dis-
cuss this concept in chapter 13).

complete (Function) A function called when the animation is completed.

done (Function) A function called when the animation completes, which means when its
Promise object is resolved.

duration (String|Number) The duration of the effect as a number of milliseconds or as one
of the predefined strings. Same as explained before.

easing (String) The function name to use when performing the transition from the visible
state to the hidden state. Same as explained before.

fail (Function) A function invoked when the animation fails to complete. The Promise
object passed to it is rejected.

progress (Function) A function executed after each step of the animation. The function is
called only once per animated element regardless of the number of animated
properties.

queue (Boolean|String) A Boolean specifying whether the animation has to be placed in
the effects queue (more on this in a later section). If the value passed is false,
the animation will begin immediately. The default value is true. In case a string is
passed, the animation is added to the queue represented by that string. When a
custom queue name is used, the animation does not automatically start.

specialEasing (Object) A map of one or more CSS properties whose values are easing functions.

start (Function) A function invoked when the animation begins.

step (Function) A function executed for each animated property of each animated
element.
www.EBooksWorld.ir

196 CHAPTER 8 Energizing pages with animations and effects
As you saw in our second example, jQuery provides a shortcut called toggle() to tog-
gle the state of one or more elements. Its syntax is shown here, and in this case too
we’ll omit the description of the parameters already described.

Let’s do a third take on the collapsible module, animating the opening and closing of
the sections. Given the previous information about the toggle() method, you’d think
that the only change you’d need to make to the code in listing 8.2 would be to change
the call to toggle() to toggle('slow'). And you’d be right. But not so fast! Because that
was just too easy, let’s take the opportunity to add an additional feature to the module.

 Let’s say that to give the user an unmistakable visual clue, you want the module’s
caption to display a different icon when it’s in its rolled-up state. You could make the
change before firing off the animation, but it’d be much cooler to wait until the ani-
mation is finished.

Method syntax: show

show(duration[, easing][, callback])
show(options)
show()

Causes any hidden elements in the set of matched elements to be revealed. If called with no
parameters, the operation takes place instantaneously by setting the display style property
value of the elements to an appropriate setting (block or inline).
If a duration parameter is provided, the elements are revealed over a specified duration by
adjusting their width, height, and opacity upward to full size and opacity.
An optional easing function name can be specified to define how the transition between the states
is performed.
An optional callback can be specified that’s invoked when the animation is complete.
In its second version, you can provide an object containing some options to pass to the method,
as described in table 8.1.

Returns

The jQuery collection.

Method syntax: toggle

toggle(duration[, easing][, callback])
toggle(options)
toggle(condition)
toggle()
Performs show() on any hidden element and hide() on any non-hidden element. See the syntax
description of those methods for their semantics.
In its third form, toggle() shows or hides the selected elements based on the evaluation of the
passed condition. If true, the elements are shown; otherwise, they’re hidden.

Parameters

condition (Boolean) Determines whether elements must be shown (if true) or hidden (if
false).

Returns
The jQuery collection.
www.EBooksWorld.ir

197Animating the display state of elements
You can’t just make the call right after the animation method call because animations
don’t block. The statements following the animated method call would execute imme-
diately, probably even before the animation has had a chance to commence. This is a
great occasion to use the callback parameter of toggle().

 The approach you’ll take is that after the animation is complete, you’ll replace the
text of the containing the icon. You’ll use the minus sign if the body is visible
(to indicate that it can be collapsed) and the plus sign if the body is hidden (to indi-
cate that it can be expanded). You could also have done this by working with CSS and
the content property, by adding a class name to the module to indicate that it’s rolled
up and removing the class name otherwise. But because this isn’t a book on CSS, we’ll
skip this solution. The next listing shows the change that you need to make to your
code to make it happen.

jQuery 3: Feature changed
jQuery 3 changes the behavior of hide(), show(), toggle(), fadeIn(), and all the
other related methods that we’ll cover in this chapter. All these methods will no lon-
ger override the CSS cascade. What this means is that if an element is hidden—
because in your style sheet you have a declaration of display: none;—invoking
show() (or similar methods like fadeIn() and slideDown()) on that element will no
longer show it. To understand this change, consider the following element:
<div class="hidden">Hello!</div>

Now, let’s assume that in your style sheet you have the following code:
.hidden { display: none; }

If you’re using a version of jQuery prior to 3, if you write
$('div').show('slow');

you’ll see a nice animation that ultimately will show the element.

In jQuery 3, executing the same statement will have no effect as the library doesn’t
override the CSS declaration. If you want to obtain the same result in jQuery 3, you
should use a statement like the following instead:
$('div')
 .removeClass('hidden')
 .hide()
 .show('slow');

Alternatively, you could use this statement:
$('div')
 .removeClass('hidden')
 .css('display', 'none')
 .show('slow');

This change is controversial and will probably break the code of many websites. At
the time of writing, the final version of jQuery 3 has not been published, so this new
behavior could be modified or completely reverted. Please take the time to check the
official documentation to learn more.
www.EBooksWorld.ir

198 CHAPTER 8 Energizing pages with animations and effects
$('.icon-roll').click(function() {
 var $icon = $(this);
 $icon
 .closest('.module')
 .find('.body')
 .toggle('slow', function() {
 $icon.text($(this).is(':hidden') ? '+' : '-');
 });
});

You can find the page with these changes in file chapter-8/collapsible.module.take
.3.html.

 Knowing how much people love to tinker, we’ve set up a handy tool that we’ll use
to further examine the operation of these and the remaining effect methods.

8.2.2 Introducing the jQuery Effects Lab Page

Back in chapter 2, we introduced the concept of lab pages to help you experiment
with using jQuery selectors. For this chapter, we’ve set up a jQuery Effects Lab Page
for exploring the operation of the jQuery effects in the file chapter-8/lab.effects.html.
Loading this page into your browser results in the display shown in figure 8.2.

This lab consists of two main panels: a control panel in which you’ll specify which
effect will be applied and another panel that contains four test subject elements upon
which the effects will act.

 “Are they daft?” you might be thinking. “There are only two test subjects.”

Listing 8.3 Animated version of the module, with a change of the caption icon

Changes the text of
the icon based on
the state of the
body of the module

Figure 8.2 The initial state of the
jQuery Effects Lab Page, which will
help you examine the operation of
the jQuery effects methods
www.EBooksWorld.ir

199Animating the display state of elements
 No, your authors haven’t lost it yet. There are four elements, but two of them
(another <div> with text and another image) are initially hidden.

 Let’s use this page to demonstrate the operations of the methods we’ve discussed to
this point. Load the page in your browser, and follow along with the ensuing experiments:

 Experiment 1—With the controls left as-is after the initial page load, click the Apply
button. This will execute a show() method with no parameters. The expression
that was applied is displayed below the Apply button for your information. Note
that the two initially hidden test subject elements appear instantly. If you’re won-
dering why the belt image on the far right appears a bit faded, it’s because its
opacity has been purposefully set to 50% (the actual value in CSS is 0.5).

 Experiment 2—Select the Hide radio button and click Apply to execute the
hide() method without arguments passed to it. All of the test subjects immedi-
ately vanish. Take special notice that the pane in which they resided has tight-
ened up. This indicates that the elements have been completely removed from
the display rather than merely made invisible.

NOTE When we say that an element has been removed from the display
(here, and in the remainder of our discussion about effects), we mean
that the element is no longer being taken into account by the
browser’s layout manager by setting its CSS display style property to
none. It doesn’t mean that the element has been removed from the
DOM tree; none of the effects will ever cause an element to be
removed from the DOM.

 Experiment 3—Select the Toggle radio button and click Apply. Click Apply
again. And again. You’ll note that each subsequent execution of toggle() flips
the presence of the test subjects.

 Experiment 4—Reload the page to reset everything to the initial conditions (in
Firefox set focus to the address bar and press the Enter key—simply clicking the
reload button won’t reset the form elements). Select Toggle and click Apply.
Note that the two initially visible subjects vanish and the two that were hidden
appear. This demonstrates that the toggle() method applies individually to
each element, revealing the ones that are hidden and hiding those that aren’t.

 Experiment 5—In this experiment, we’ll move into the realm of animation.
Reload the page, leave Show selected, and select Slow for the Speed setting.
Click Apply, and carefully watch the test subjects. The two hidden elements,
rather than popping into existence, gradually grow from their top-left corner. If
you want to really see what’s going on, reload the page again, select Millisec-
onds for the Speed setting and enter 5000 for the value. This will extend the
duration of the effect to five (excruciating) seconds and give you plenty of time
to observe the behavior of the effect.

 Experiment 6—Choosing various combinations of Show, Hide, and Toggle, as
well as various speeds, experiment with these effects until you feel you have a
good handle on how they operate.
www.EBooksWorld.ir

200 CHAPTER 8 Energizing pages with animations and effects
Armed with the jQuery Effects Lab Page and the knowledge of how this first set of
effects operates, let’s take a look at the next set of effects.

8.2.3 Fading elements into and out of existence

If you watched the operation of the show()and hide() effects carefully, you will have
noted that they scaled the size of the elements (either up or down as appropriate) and
adjusted the opacity of the elements as they grew or shrank. The next set of effects,
fadeIn() and fadeOut(), affect only the opacity of the elements; once they reach 0
(totally transparent) or 1 (totally visible) depending on the method called, they set
the display property to either none or whatever it was (we covered this mechanism in
section 8.1).

 Other than the lack of scaling, these methods work in a fashion similar to the ani-
mated forms of show() and hide(). The syntaxes of these methods are similar to
show() and hide() and the meaning of the parameters is the same, so we won’t repeat
the parameters. The only difference between fadeIn(), fadeOut(), and all the other
animation-related methods and the previously described methods (show(), hide(),
and toggle()) is that because the former when called without parameters perform a
transition, the change from one state to another doesn’t happen immediately.

 With this in mind, their syntaxes are as follows.

Method syntax: fadeIn

fadeIn(duration[, easing][, callback])
fadeIn(options)
fadeIn()
Causes the matched elements that are hidden to be shown by gradually changing their opacity to
their natural value. This value is either the opacity originally applied to the element or 1 (totally
visible). The duration of the change in opacity is determined by the duration parameter. If the
duration parameter is omitted, the default is 400 milliseconds ("normal"). Only hidden
elements are affected.

Returns
The jQuery collection.

Method syntax: fadeOut

fadeOut(duration[, easing][, callback])
fadeOut(options)
fadeOut()
Causes the matched elements that aren’t hidden to be removed from the display by gradually
changing their opacity to 0. The duration of the change in opacity is determined by the duration
parameter. If the duration parameter is omitted, the default is 400 milliseconds ("normal"). Only
displayed elements are affected. Once opacity has been reduced to 0, the element is removed
from the display.

Returns

The jQuery collection.
www.EBooksWorld.ir

201Animating the display state of elements
In the same way a convenient method named toggle() is used to hide() and show()
elements based on their current state, fadeIn() and fadeOut() have fadeToggle().
The syntax of this method is the following.

Let’s have some more fun with the jQuery Effects Lab Page. Load the lab page, and
run through a set of experiments similar to those in the previous section but using the
Fade In, Fade Out, and Fade Toggle selections (don’t worry about Fade To for now;
we’ll attend to that soon enough).

 It’s important to note that when the opacity of an element is adjusted, the jQuery
hide(), show(), toggle(), fadeIn(), fadeOut(), and fadeToggle() effects remem-
ber the original opacity of an element and honor its value. In the lab, we purposely set
the initial opacity of the belt image at the far right to 50% before hiding it. Through-
out all the opacity changes that take place when applying the jQuery effects, this orig-
inal value is never stomped on.

 Another effect that jQuery provides is via the fadeTo() method. This effect adjusts
the opacity of the elements like the previously examined fade effects, but it never
removes the elements from the display. Before you start playing with fadeTo() in the
lab, here’s its syntax (we’ll describe only the new parameters).

Unlike the other effects that adjust opacity while hiding or revealing elements,
fadeTo() doesn’t remember the original opacity of an element. This makes sense
because the whole purpose of this effect is to explicitly change the opacity to a spe-
cific value.

Method syntax: fadeToggle

fadeToggle(duration[, easing][, callback])
fadeToggle(options)
fadeToggle()
Performs fadeOut() on any non-hidden elements and fadeIn() on any hidden elements. See
the syntax description of those methods for their semantics.

Returns

The jQuery collection.

Method syntax: fadeTo

fadeTo(duration, opacity[, easing][, callback])
Gradually adjusts the opacity of the elements in the jQuery object from their current settings to the
new setting specified by opacity

Parameters

opacity (Number) The target opacity to which the elements will be adjusted, specified
as a value from 0 to 1

Returns
The jQuery collection
www.EBooksWorld.ir

202 CHAPTER 8 Energizing pages with animations and effects
 Bring up the lab page and cause all elements to be revealed (you should know how
by now). Then work through the following experiments:

 Experiment 1—Select Fade To and a speed value slow enough for you to observe
the behavior; 4000 milliseconds is a good choice. Now set the Opacity field
(which expects a value between 0 and 1) to 0.1 and click Apply. The test sub-
jects will fade to 0.1 opacity over the course of 4 seconds.

 Experiment 2—Set the opacity to 1 and click Apply. All elements, including the
initially semitransparent belt image, are adjusted to full opaqueness.

 Experiment 3—Set the opacity to 0 and click Apply. All elements fade away to
invisibility, but note that once they’ve vanished, the enclosing module doesn’t
tighten up. Unlike the fadeOut() effect, fadeTo() never removes the elements
from the display, even when they’re fully invisible.

Continue experimenting with the Fade To effect until you’ve mastered its behavior.
Then you’ll be ready to move on to the next set of effects.

8.2.4 Sliding elements up and down

Another set of effects that hide or show elements—slideDown() and slideUp()—also
works in a similar manner to the hide() and show() effects, except that the elements
appear to slide down from their tops when being revealed and to slide up into their
tops when being hidden, and without parameters they are animated.

 Like the previous set of effects, the slide effects have a related method that will tog-
gle the elements between hidden and revealed: slideToggle(). The by now familiar
syntaxes for these methods follow.

Method syntax: slideDown

slideDown(duration[, easing][, callback])
slideDown(options)
slideDown()
Causes any matched elements that are hidden to be shown by gradually increasing their height.
Only hidden elements are affected.

Returns

The jQuery collection.

Method syntax: slideUp

slideUp(duration[, easing][, callback])
slideUp(options)
slideUp()
Causes any matched elements that are displayed to be removed from the display by gradually
decreasing their height.

Returns
The jQuery collection.
www.EBooksWorld.ir

203Animating the display state of elements
Except for the manner in which the elements are revealed and hidden, these effects
act similarly to the other show and hide effects. Convince yourself of this by displaying
the jQuery Effects Lab Page and running through experiments like those you applied
using the other effects.

8.2.5 Stopping animations

You may have a reason now and then to stop an animation once it has started. This
could be because a user event dictates that something else should occur or because
you want to start a completely new animation. The stop() method will achieve this for
you.

When using the stop() method, keep in mind that any change that has already taken
place for any animated elements will remain in effect. In addition, if you call stop()
on a set when jQuery is performing an animation like slideUp() and the animation
isn’t completed, a portion of the elements will still be visible on the page. If you want
to restore the elements to their original states, it’s your responsibility to change the
CSS values back to their starting values using jQuery’s css() method or a similar
method.

Method syntax: slideToggle

slideToggle(duration[, easing][, callback])
slideToggle(options)
slideToggle()
Performs slideDown() on any hidden elements and slideUp() on any displayed elements. See
the syntax description of those methods for their semantics.

Returns
The jQuery collection.

Method syntax: stop

stop([queue][, clearQueue[, goToEnd]])
Stops any animation that’s currently in progress for the elements in the jQuery object.

Parameters

queue (String) The name of the queue in which to stop animations (we’ll get to that
shortly).

clearQueue (Boolean) If specified and set to true, stops not only the current animation but
any other animations waiting in the animation queue. The default value is
false.

goToEnd (Boolean) If specified and set to true, completes the current animation
immediately (as opposed to merely stopping it). The default value is false.

Returns

The jQuery collection.
www.EBooksWorld.ir

204 CHAPTER 8 Energizing pages with animations and effects
 You can avoid having elements with only part of the animation completed by pass-
ing true as the value of the goToEnd parameter. If you want to remove all the anima-
tions in the queue and set the CSS properties as if the current animation was
completed, you have to call stop(true, true). By specifying the current animation,
we mean that if you’ve chained three animations and while the first is still running you
call stop(true, true), the style of the elements will be set as if the first animation was
completed and the other two were never run (they’re removed from the queue before
being performed).

 In some cases, when stopping an animation you also want to set the CSS properties
as if all the animations were completed. In such situations you can use finish().

To help you visualize the main difference between stop() and finish(), we’ve cre-
ated a demo that you can find in the file chapter-8/stop.vs.finish.html and that’s also
available as a JS Bin (http://jsbin.com/taseg/edit?html,js,output).

 In addition to these two methods, there’s also a global flag called jQuery.fx.off
that you can use to completely disable all animations. Setting this flag to true will
cause all effects to take place immediately without animation. Another jQuery flag
that deals with animations is jQuery.fx.interval. We’ll cover these flags and why
you’d want to use them formally in chapter 9 when we also discuss the other jQuery
flags provided by jQuery.

 Now that you’ve seen the effects built into the core of jQuery, let’s investigate writ-
ing your own!

8.3 Adding more easing functions to jQuery
In the previous section you learned about the easing parameter and the easing func-
tions available in jQuery: linear and swing. The number of core effects supplied with
jQuery is purposely kept small, in order to keep jQuery’s core footprint to a mini-
mum. But this doesn’t mean you can’t employ third-party libraries to gain access to
more easings (once again you need to remember that easing functions are often
referred as easings). The jQuery Easing plugin (https://github.com/gdsmith/
jquery.easing) and the jQuery UI library (http://jqueryui.com) provide additional
transitions and effects. The term plugin should be familiar to you, but if it isn’t, a

Method syntax: finish

finish([queue])
Stops the animation that’s currently in progress for the elements in the jQuery object, removes all
the animations in the queue (if any), and immediately sets the CSS properties to their target
values.

Parameters

queue (String) The name of the queue in which to stop animations. If not specified, the
fx queue is assumed, which is the default queue used by jQuery.

Returns
The jQuery collection.
www.EBooksWorld.ir

http://jsbin.com/taseg/edit?html,js,output
https://github.com/gdsmith/jquery.easing
https://github.com/gdsmith/jquery.easing
http://jqueryui.com

205Adding more easing functions to jQuery
plugin is a component that adds a specific feature to an existing software, framework,
or library. We’ll cover plugins and how to create your own jQuery plugin extensively in
chapter 12.

NOTE The jQuery UI is a curated set of user interface interactions, effects,
widgets, and themes built on top of jQuery. It’s an amazing library and you
should really consider taking a look at it (after reading this book, of course).
Apart from the official website, an excellent resource is jQuery UI in Action by
T.J. VanToll (Manning, 2014). A good read!

When there’s more than one alternative, people usually start asking what the best
solution is. As often happens, there’s no best solution in general, but the choice
should be based on the specific use case. To help you choose what library to adopt, we
can say that you should use jQuery UI to add the effects only if you’re already using
the library in your project for other reasons (for example, the widgets it provides);
otherwise, you should stick with the plugin. The reason is that both offer the same eas-
ing functions, but the jQuery Easing plugin is more lightweight (only 3.7 KB in its
compressed version) because it’s focused on one feature, whereas the jQuery UI has
more than just easings. For the sake of completeness, we should also mention that the
download page of the jQuery UI offers the possibility of customizing the build of the
library, including only the modules you need, which leads to a reduction of the
weight.

 Both the jQuery Easing plugin and the jQuery UI library add 30 (yes, 30; you read
it right) new easing functions, listed in table 8.2.

The jQuery Easing plugin has a peculiarity worth discussing. It stores jQuery’s core
swing easing, which is the default, under the name jswing. In addition, it redefines
swing to behave in the same way as the easeOutQuad easing. Because of this change,
the latter becomes the default easing.

 To use the jQuery Easing plugin in your pages., you have two possibilities. The first
and easier one is to include it using a CDN. Most of you will remember that we intro-
duced CDNs in chapter 1 of this book when discussing those to include jQuery.

Table 8.2 The easing functions added by both the jQuery Easing plugin and the jQuery
UIEasing functions

easeInQuad
easeOutQuad
easeInOutQuad
easeInCubic
easeOutCubic
easeInOutCubic
easeInQuart
easeOutQuart
easeInOutQuart
easeInQuint

easeOutQuint
easeInOutQuint
easeInExpo
easeOutExpo
easeInOutExpo
easeInSine
easeOutSine
easeInOutSine
easeInCirc
easeOutCirc

easeInOutCirc
easeInElastic
easeOutElastic
easeInOutElastic
easeInBack
easeOutBack
easeInOutBack
easeInBounce
easeOutBounce
easeInOutBounce
www.EBooksWorld.ir

206 CHAPTER 8 Energizing pages with animations and effects
 The second method is to download the plugin from the repository and save it in a
folder that your pages can access. For example, if you save the library in a folder called
js, you can include it by writing

<script src="js/jquery.easing.min.js"></script>

To add the jQuery UI to your pages, you can employ the same methods: CDN or host-
ing it locally. To include the library via the jQuery CDN, assuming you want to use ver-
sion 1.11.4, you have to write

<script src="http://code.jquery.com/ui/1.11.4/jquery-ui.min.js"></script>

If you host it locally instead, assuming that you saved the library in a folder called js,
you have to write

<script src="js/jquery-ui-1.11.4.min.js"></script>

Now that you know how to include the jQuery Easing plugin and jQuery UI in your
pages, you can employ the additional easing functions provided. Using them is simple
because all you have to do is pass the name of the transition you want to use as the
easing parameter.

 To get a quick glimpse of the evolution in the time of the easing functions listed in
table 8.2, take a look at http://api.jqueryui.com/easings/. But taking a quick look at
the easing functions isn’t enough in our opinion; you deserve more. For this reason,
we created a new lab page to allow you to see these effects applied to the methods cov-
ered in this chapter.

 This new lab page, shown in figure 8.3, is called jQuery Advanced Effects Lab Page
and can be found in the file chapter-8/lab.advanced.effects.html of the source code
provided with the book.

 Play with this new lab page until you have a clear idea of how different easing func-
tions change the way the elements of a page can be animated at different paces.

 Up to this point you’ve seen only the precreated animations at your disposal, but
sometimes you’ll want to create your own animations. Let’s see how you can do this.

8.4 Creating custom animations
In the previous section you saw how to easily integrate new easing functions by using
third-party libraries. Creating your own animations is also a surprisingly simple matter.

 jQuery exposes the animate() method, which allows you to apply your own custom
animated effects to a set of elements. Let’s take a look at its syntax, including the
parameters’ descriptions. It’s been a few pages since we reminded you of the meaning
of the parameters, so even if they have the same meaning, we’ll repeat their descrip-
tion here. This way you don’t have to turn back a lot of pages.
www.EBooksWorld.ir

http://api.jqueryui.com/easings/

207Creating custom animations
Method syntax: animate

animate(properties[[, duration][, easing]][, callback])
animate(properties[, options])
Animate the properties specified by properties of all the elements in the jQuery collection. An
optional duration, easing function, and callback function can be specified. The callback function is
invoked when the animation is complete. An alternative format specifies a set of options in
addition to the properties.

Parameters

properties (Object) An object of CSS properties and values that the animation will move
toward. The animation takes place by adjusting the values of the style
properties from the current value for an element to the value specified in this
object. When specifying multiword properties you can write them either using
camel case notation (i.e., backgroundColor) or quoting the name without the
camel case notation ('background-color').

duration (Number|String) Optionally specifies the duration of the effect as a number of
milliseconds or as one of the predefined value strings: "slow" (same as
passing 600), "normal" (same as passing 400), or "fast" (same as passing
200). If this parameter is omitted and a callback function is specified as the
first parameter, the speed "normal" is assumed.

Select which easing
function to use.

Figure 8.3 The initial state
of the jQuery Advanced Effects
Lab Page
www.EBooksWorld.ir

208 CHAPTER 8 Energizing pages with animations and effects
You can create custom animations by supplying a set of CSS style properties and target
values that those properties will converge toward as the animation progresses. Anima-
tions start with an element’s original style value and proceed by adjusting that style
value in the direction of the target value. The intermediate values that the style
achieves during the effect (automatically handled by the animation engine) are deter-
mined by the duration of the animation and the easing function.

 The specified target values can be absolute values or relative values from the start-
ing point. To specify relative values, prefix the value with += or -= to indicate relative
target values in the positive or negative direction, respectively.

 By default, animations are added to a queue for execution; applying multiple ani-
mations to an object will cause them to run serially. If you’d like to run animations in
parallel, set the queue option to false.

 The list of CSS style properties that can be animated is limited to those that accept
numeric values for which there’s a logical progression from a start value to a target
value. This numeric restriction is completely understandable—how would you envi-
sion the logical progress from a source value to an end value for a non-numeric prop-
erty such as background-image? For values that represent dimensions, jQuery assumes
the default unit of pixels, but you can also specify em units or percentages by includ-
ing the em or % suffixes.

NOTE In CSS it’s possible to animate the color property of an element, but
you can’t achieve this effect using jQuery’s animate() method unless you
employ the jQuery.Color plugin (https://github.com/jquery/jquery-color).

Frequently animated style properties include top, left, width, height, and opacity.
But if it makes sense for the effect you want to achieve, you can also animate numeric
style properties such as font-size, margin, padding, and border.

 In addition to specific values for the target properties, you can also specify one of
the strings "hide", "show", or "toggle"; jQuery will compute the end value as appropri-
ate to the specification of the string. Using "hide" for the opacity property, for exam-
ple, will result in the opacity of an element being reduced to 0. Using any of these
special strings has the added effect of automatically revealing or removing the element

Method syntax: animate (continued)

easing (String) Specifies an optional easing function name to use when performing the
transition. These functions specify the pace of the animation at different points
while in execution. If an animation takes place but this parameter isn’t
specified, it defaults to "swing". More about these functions in section 8.3.

callback (Function) An optional function invoked when the animation completes. No
parameters are passed to this function, but the function context (this) is set
to the element that was animated. The callback is fired for each element that
undergoes animation.

options (Object) An optional set of options to pass to the method. The options available
are shown in table 8.1.

Returns
The jQuery collection.
www.EBooksWorld.ir

https://github.com/jquery/jquery-color

209Creating custom animations
from the display (like the hide() and
show() methods), and it should be
noted that "toggle" remembers the
initial state so that it can be restored
on a subsequent "toggle".

 Before moving ahead, we thought
we should give you a better idea of
how the easing functions can change
an animation. For this reason, we cre-
ated a page that you can find in the
file chapter-8/easings.html that shows
how the animate() method can be
used with the jQuery Easing plugin.
With this page you can move an image from the left to the right according to a given
easing function. The initial state of the page is shown in figure 8.4.

 Play with this page until you are sure you understand how the easing functions
work. In case you want to test more easings, you don’t have to reload the page. Once
an animation is completed, clicking the Apply button will reset the position of the
image and start the animation selected.

 Now try your hand at writing a few more custom animations.

8.4.1 A custom scale animation

Consider a simple scale animation in which you want to adjust the size of the elements
to twice their original dimensions. Such an animation is shown in listing 8.4.

NOTE This specific animation can be easily performed via CSS in modern
browsers using transform: scale(2). As pointed out in the introduction to
this chapter, modern browsers support a lot of new standards, but you should
be aware of the issues that come from targeting only modern browsers.

$('.animated-elements').each(function() {
 var $this = $(this);
 $this.animate({
 width: $this.width() * 2,
 height: $this.height() * 2
 },
 2000
);
});

To implement this animation, you iterate over all the elements having animated-
elements as their class, via jQuery’s each() method B. By doing so, you can apply the
animation individually to each element. This is important because the property values
that you need to specify for each element are based on the individual dimensions for
that element C. If you knew that you’d be animating a single element (such as if you

Listing 8.4 A custom scale animation

Iterates over each matched elementB

Specifies individual
target valuesC

Sets the duration in millisecondsD

Figure 8.4 The initial state of the easings.html page
www.EBooksWorld.ir

210 CHAPTER 8 Energizing pages with animations and effects
were using an ID selector) or applying the exact same set of values to each element,
you could dispense with each() and animate the set directly.

 Within the callback passed to each(), the animate() method is applied to each ele-
ment, one at a time. You access the element by using this and set the style property val-
ues for width and height to double the element’s original dimensions. The result is that
over the course of 2 seconds (as specified by the duration parameter set to 2000 D),
each element in the jQuery object will grow from its original size to twice that size.

 We’ll provide you with a demo to play with the code created in this section, but for
the moment let’s try something a bit more extravagant.

8.4.2 A custom drop animation

Let’s say that you want to conspicuously animate the removal of an element from the
display. The animation you’ll use to accomplish this will make the element appear to
drop off the page, disappearing from the display as it does so.

 If you think about it for a moment, you can figure out that by adjusting the top
position of the element, you can make it move down the page to simulate the drop;
adjusting the opacity will make it seem to vanish as it does so. And finally, when all
that’s done, you can remove the element from the display. You can accomplish this
drop effect with the code in the following listing.

$('.animated-elements').each(function() {
 var $this = $(this);
 $this
 .css('position', 'relative')
 .animate({
 opacity: 0,
 top: $(window).height() - $this.height() -
 $this.position().top
 },
 'normal',
 function() {
 $this.hide();
 }
);
});

There’s a bit more going on here than in the previous custom effect. You once again
iterate over the elements in the set, but this time adjusting the position and the opac-
ity of the elements. To adjust the top value of an element relative to its original posi-
tion, you first need to change its CSS position style property value to relative B.

 Then you specify a target opacity of 0 and a computed top value. You don’t want
to move an element so far down the page that it moves below the window’s bottom;
this could cause scroll bars to be displayed where none may have been before, possibly
distracting users. You don’t want to draw their attention away from the animation—
grabbing their attention is why you’re animating in the first place! Use the height and

Listing 8.5 A custom drop animation

Selects all elements having class
animated-elements

Dislodges element from static flowB

Computes drop
distanceC

Executes function when
animation is completedD

Removes element
from displayE
www.EBooksWorld.ir

211Creating custom animations
vertical position of the element, as well as the height of the window, to compute how
far down the page the element should drop C. Of course, this consideration makes
sense only if the space between the elements and the bottom of the page is large
enough.

 When the animation is completed, you want to remove the element from the dis-
play, so specify a callback function D that applies the non-animated hide() method
to the element E.

NOTE We did a little more work than we needed to in this animation so we
could demonstrate doing something that needs to wait until the animation is
completed in the callback function. If we were to specify the value of the opac-
ity property as "hide" rather than 0, the removal of the element(s) at the end
of the animation would be automatic, and we could dispense with the callback.

Now let’s try one more type of “make it go away” effect for good measure.

8.4.3 A custom puff animation

Rather than dropping elements off the page, let’s say you want an effect that makes it
appear as if the element dissipates into thin air like a puff of smoke. To animate such
an effect, you can combine a scale effect with an opacity effect, growing the element
while fading it away. One issue you need to deal with for this effect is that this dissipa-
tion would not fool the eye if you let the element grow in place with its upper-left cor-
ner anchored. You want the center of the element to stay in the same place as it grows.
Hence, in addition to its size, you need to adjust the position of the element as part of
the animation. The code for the puff effect is shown in the next listing.

$('.animated-elements').each(function() {
 var $this = $(this);
 var position = $this.position();
 $this
 .css({
 position: 'absolute',
 top: position.top,
 left: position.left
 })
 .animate({
 opacity: 'hide',
 width: $this.width() * 5,
 height: $this.height() * 5,
 top: position.top - ($this.height() * 5 / 2),
 left: position.left - ($this.width() * 5 / 2)
 },
 'fast'
);
});

Listing 8.6 A custom puff animation

Selects all elements having
class animated-elements and
iterates over themB

Dislodges
element from
static flow

C

Adjusts
element size,
position, and
opacity

D

www.EBooksWorld.ir

212 CHAPTER 8 Energizing pages with animations and effects
In this animation, you select all the elements having a class of animated-elements and
iterate over them B. Then you decrease the opacity to 0 while growing the element to
five times its original size and adjusting its position by half that new size, resulting in
the center of the element remaining in the same position D. You don’t want the ele-
ments surrounding the animated element to be pushed out while the target element
is growing, so you take it out of the layout flow completely by changing its position to
absolute and explicitly setting its position coordinates C. Because you specified hide
for the opacity value, the elements are automatically hidden (removed from the dis-
play) once the animation is completed.

 Each of these three custom effects can be observed by loading the page found in
the file chapter-8/custom.effects.html, whose display is shown in figure 8.5.

Although we’d love to show you how these effects behave, screenshots have obvious
limitations, which we’re sure you understand. But figure 8.6 shows a frame of the puff
effect in progress. We’ll leave it to you to try out the various effects on this page and
observe their behavior.

 Up to this point, all of the examples we’ve examined have used a single animation
method. Let’s discuss how things work when you use more than one.

Figure 8.5 The custom effects you developed
(scale, drop, and puff) can be observed in action
using the buttons provided on this example page.

Figure 8.6 The puff effect expands
and moves the image while
simultaneously reducing its opacity.
www.EBooksWorld.ir

213Animations and queuing
8.5 Animations and queuing
You’ve seen how multiple properties of elements can be animated using a single ani-
mation method, but we haven’t examined how animations behave when you call
simultaneous animation methods. In this section we’ll examine how animations
behave in concert with each other.

8.5.1 Simultaneous animations

What would you expect to happen if you were to execute the following code?

$('#test-subject').animate({left: '+=256'}, 'slow');
$('#test-subject').animate({top: '+=256'}, 'slow');

You know that the animate() method doesn’t block while its animation is running on
the page, nor do any of the other animation methods. You can prove that by experi-
menting with this code block:

console.log(1);
$('#test-subject').animate({left: '+=256'}, 'slow');
console.log(2);

If you were to execute this code, you’d see that the messages “1” and “2” are printed
immediately on the console, one after the other, without waiting for the animation
to complete. If you want to prove that this is true, take a look at the file chapter-8/
asynchronous.animate.html or the JS Bin we’ve created for you (http://jsbin.com/
pulik/edit?html,js,console,output).

 What would you expect to happen when you run the code with two animation
method calls (the first snippet of this section)? Because the second method isn’t
blocked by the first, it stands to reason that both animations fire off simultaneously
(or within a few milliseconds of each other) and that the effect on the element ani-
mated would be the combination of the two effects. In this case, because one effect is
adjusting the left style property and the other the top style property, you might
expect that the result would be a meandering diagonal movement of the element.

 Let’s put that to the test. In the file chapter-8/revolutions.html we’ve put together
an experiment that sets up two images (one of which is to be animated) and a button
to start the experiment. In addition, you’ll use the console to write some output.
Figure 8.7 shows its initial state.

Figure 8.7 Initial state of the page
where you’ll observe the behavior of
multiple, simultaneous animations
www.EBooksWorld.ir

http://jsbin.com/pulik/edit?html,js,console,output
http://jsbin.com/pulik/edit?html,js,console,output

214 CHAPTER 8 Energizing pages with animations and effects
The Animate button is instrumented as shown in the following listing.

function formatDate(date) {
 return (date.getHours() < 10 ? '0' : '') + date.getHours() +
 ':' + (date.getMinutes() < 10 ? '0' : '') + date.getMinutes() +
 ':' + (date.getSeconds() < 10 ? '0' : '') + date.getSeconds() +
 '.' + (date.getMilliseconds() < 10 ?
 '00' : (date.getMilliseconds() < 100 ? '0' : '')) +
 date.getMilliseconds();
}

$('#button-animate').click(function() {
 var $moonImage = $('img[alt="moon"]');
 console.log('At ' + formatDate(new Date()) + ' 1');

 $moonImage.animate({left: '+=256'}, 2500);
 console.log('At ' + formatDate(new Date()) + ' 2');

 $moonImage.animate({top: '+=256'}, 2500);
 console.log('At ' + formatDate(new Date()) + ' 3');

 $moonImage.animate({left: '-=256'}, 2500);
 console.log('At ' + formatDate(new Date()) + ' 4');

 $moonImage.animate({top: '-=256'}, 2500);
 console.log('At ' + formatDate(new Date()) + ' 5');
});

In the click handler for the button B, you fire off four animations, one after the
other, interspersed with calls to console.log() that show you when the animation
calls were fired off.

 Bring up the page, and click the Animate button. As expected, the console mes-
sages “1” through “5” immediately appear on the console, as shown in figure 8.8, each
firing off a few milliseconds after the previous one.

 But what about the animations? If you examine the code in listing 8.7, you can see
that you have two animations changing the top property and two animations changing
the left property. In fact, the animations for each property are doing the exact oppo-
site of each other. What should you expect? Might they just cancel each other out, leav-
ing the moon (our test subject) to remain completely still? No. You see that each
animation happens serially, one after the
other, such that the moon makes a complete
and orderly revolution around the Earth
(albeit in a very unnatural square orbit that
would have made Kepler’s head explode).

 What’s going on? You’ve proven via the
console messages that the animations aren’t
blocking, yet they execute serially just as if

Listing 8.7 Instrumentation for multiple simultaneous animations

Defines the
click handler
for the buttonB

Figure 8.8 The console messages appear in
rapid succession, proving that the animation
methods aren’t blocking until completion.
www.EBooksWorld.ir

215Animations and queuing
they were (at least with respect to each other). This happens because internally
jQuery is queuing up the animations and executing them serially on your behalf.

 Refresh the page to clear the console, and click the Animate button three times in
succession. (Pause between clicks just long enough to avoid double-clicks.) You’ll note
that 15 messages get immediately sent to the console, indicating that your click han-
dler has executed three times, and then sit back as the moon makes three orbits
around the Earth. Each of the 12 animations is queued up by jQuery and executed in
order because the library maintains a queue on each animated element named fx just
for this purpose.

 What’s even better is that jQuery makes it possible for you to create your own exe-
cution queues, not just for animations but for whatever purposes you want. Let’s learn
about that.

8.5.2 Queuing functions for execution

Queuing up animations for serial execution is an obvious use for function queues. But
is there a real benefit? After all, the animation methods allow for completion
callbacks, so why not just fire off the next animation in the callback of the previous
animation?

ADDING FUNCTIONS TO A QUEUE

Let’s review the code fragment of listing 8.7 (minus the console.log() invocations
for clarity):

var $moonImage = $('img[alt="moon"]');
$moonImage.animate({left: '+=256'}, 2500);
$moonImage.animate({top: '+=256'}, 2500);
$moonImage.animate({left: '-=256'}, 2500);
$moonImage.animate({top: '-=256'}, 2500);

Compare that to the equivalent code that would be necessary without function queu-
ing, using the completion callbacks:

var $moonImage = $('img[alt="moon"]');
$moonImage.animate({left: '+=256'}, 2500, function(){
 $moonImage.animate({top: '+=256'}, 2500, function(){
 $moonImage.animate({left: '-=256'}, 2500, function(){
 $moonImage.animate({top: '-=256'}, 2500);
 });
 });
});

It’s not that the callback variant of the code is that much more complicated, but it’d
be hard to argue that the original code isn’t a lot easier to read (and to write in the
first place). And if the bodies of the callback functions were to get substantially more
complicated.... Well, it’s easy to see how being able to queue up the animations makes
the code a lot less complex.
www.EBooksWorld.ir

216 CHAPTER 8 Energizing pages with animations and effects
 Queues can be created on any element, and distinct queues can be created by using
unique names for them (except for fx, which is reserved for the effects queue). The
method to add a function to a queue is, unsurprisingly, queue(). It has three variants.

The queue() method is most often used to add functions to the end of the named
queue, but it can also be used to fetch any existing functions in a queue or to replace
the list of functions in a queue. Note that the third form, in which an array of func-
tions is passed to queue(), can’t be used to add multiple functions to the end of a
queue because any existing queued functions are removed. In order to add functions
to the queue, you’d fetch the array of functions that are already in the queue using
the first form of the method, merge the new functions, and set the modified array
back into the queue using the third form of queue().

 “No example here?” you say. Using the queue() method, you can add new anima-
tions at the end of a queue, but did you think we haven’t discussed how you can exe-
cute them? Let’s discover how so that we can set up a demo for you.

EXECUTING THE QUEUED FUNCTIONS

Queuing up functions for execution is not all that useful unless you can somehow
cause the execution of the functions to actually occur. Enter the dequeue() method.

Method syntax: queue

queue([name])
queue([name], function)
queue([name], queue)
The first form returns any queue of the passed name already established on the first element in
the set as an array of functions.
The second form adds the passed function to the end of the named queue for all elements in the
matched set. If such a named queue doesn’t exist on an element, it’s created.
The last form replaces any existing queue on the matched elements with the passed queue.
When the name parameter is omitted, the default queue, fx, is assumed.

Parameters

name (String) The name of the queue to be fetched, added to, or replaced. If omitted,
the default effects queue of fx is assumed.

function (Function) The function to be added to the end of the queue. When invoked, the
function context (this) will be set to the DOM element upon which the queue
has been established. This function is passed only one argument named next.
next is another function that, when called, automatically dequeues the next
item and keeps the queue moving.

queue (Array) An array of functions that replaces the existing functions in the named
queue.

Returns

An array of functions for the first form. The jQuery collection for the remaining forms.
www.EBooksWorld.ir

217Animations and queuing
When dequeue() is invoked, the foremost function in the named queue for each ele-
ment in the jQuery object (the first in the queue) is executed, with the function con-
text for the invocation (this) being set to the element. Consider the code in the
following listing, available in the file chapter-8/manual.dequeue.html.

<!DOCTYPE html>
<html>
 <head>
 <title>Manual Dequeue</title>
 <link rel="stylesheet" href="../css/main.css" />
 <style>
 button
 {
 display: block;
 margin: auto;
 }
 </style>
 </head>
 <body>
 <button>Dequeue</button>

 <script src="../js/jquery-1.11.1.min.js"></script>
 <script>
 var $images = $('img');

 $images
 .queue('chain', function() {
 console.log('First: ' + $(this).attr('alt'));
 })
 .queue('chain', function() {
 console.log('Second: ' + $(this).attr('alt'));
 })
 .queue('chain', function() {
 console.log('Third: ' + $(this).attr('alt'));
 })
 .queue('chain', function() {

Method syntax: dequeue

dequeue([name])
Removes the foremost function in the named queue for each element in the jQuery object and
executes it for each element.

Parameters

name (String) The name of the queue from which the foremost function is to be
removed and executed. If omitted, the default effects queue of fx is assumed.

Returns

The jQuery collection

Listing 8.8 Queuing and dequeuing functions on multiple elements

Establishes
four queued

functions
B

www.EBooksWorld.ir

218 CHAPTER 8 Energizing pages with animations and effects
 console.log('Fourth: ' + $(this).attr('alt'));
 });

 $('button').click(function() {
 $images.dequeue('chain');
 });
 </script>
 </body>
</html>

In this example, you have two images upon which you add functions to a queue
named chain B. Inside each function you emit on the console the alt attribute of
whatever DOM element is serving as the function context and a number relating to its
position in the queue. This way, you can tell which function is being executed and
from which element’s queue. So, at the moment, you aren’t doing anything special
with these images (they won’t move). Upon clicking the Dequeue button, the button’s
click handler C causes a single execution of the dequeue() method. Go ahead and
click the button once and observe the messages in the console, as shown in figure 8.9.

 You can see that the first function you added to the chain queue for the images
has been fired twice: once for the Earth image and once for the Moon image. Clicking
the Dequeue button more times removes the subsequent functions from the queues
one at a time and executes them until the queues have been emptied, after which call-
ing dequeue() has no effect.

 In this example, the dequeuing of the functions was under manual control—you
needed to click the button four times (resulting in four calls to dequeue()) to get all
four functions executed. Frequently you want to trigger the execution of the entire set
of queued functions. For such times, a commonly used idiom is to call the dequeue()
method within the queued function in order or using the next parameter passed to
the queued function. Using one of these two techniques, you trigger the execution of
the next queued function, creating a sort of chain of calls.

Dequeues one
function on each clickC

Figure 8.8 Clicking the Dequeue button causes a single queued instance of the function
to fire, once for each image that it was established upon.
www.EBooksWorld.ir

219Animations and queuing
 Consider the following changes to the code in listing 8.8 that uses both techniques
mentioned:

var $images = $('img');

$images
 .queue('chain', function(next) {
 console.log('First: ' + $(this).attr('alt'));
 next();
 })
 .queue('chain', function(next) {
 console.log('Second: ' + $(this).attr('alt'));
 next();
 })
 .queue('chain', function() {
 console.log('Third: ' + $(this).attr('alt'));
 $(this).dequeue('chain');
 })
 .queue('chain', function() {
 console.log('Fourth: ' + $(this).attr('alt'));
 });

The modified version of the file chapter-8/manual.dequeue.html that includes the
previous snippet can be found in the file chapter-8/automatic.dequeue.html.

 Bring up that page in your browser and click the Dequeue button. Note how the
single click now triggers the execution of the entire chain of queued functions, as
shown by figure 8.10. Also note that the last function added to the queue doesn’t have
a call to dequeue() because at that time the queue will already be empty.

 With dequeue() you can execute the function at the front of the queue. But some-
times you may need to remove all the functions stored in the queue without execut-
ing them.

Figure 8.9 Clicking the Dequeue button causes all the functions in the queue to fire for every
image that they were established upon.
www.EBooksWorld.ir

220 CHAPTER 8 Energizing pages with animations and effects
CLEARING OUT UNEXECUTED QUEUED FUNCTIONS

If you want to remove the queued functions from a queue without executing them,
you can do that with the clearQueue() method.

Although similar to the stop() animation method, clearQueue() is intended for use
on general queued functions rather than just animation effects.

 Sometimes, instead of clearing the queue you may need to delay the execution of a
queue function. Let’s discuss this possibility.

DELAYING QUEUED FUNCTIONS

Another queue-oriented activity you might want to perform is to add a delay between
the executions of queued functions. The delay() method enables that.

To see where delay() comes in handy, imagine that you have an image, having my-
image as its ID, that you want to hide and then show again after one second. You can
do this with the following statement:

$('#my-image')
 .slideUp('slow')
 .delay(1000)
 .slideDown('fast');

This method is useful but not so flexible because it isn’t possible to cancel a delay
once it’s set.

Method syntax: clearQueue

clearQueue([name])
Removes all unexecuted functions from the named queue.

Parameters

name (String) The name of the queue from which the functions are to be removed
without execution. If omitted, the default effects queue of fx is assumed.

Returns
The jQuery collection

Method syntax: delay

delay(duration[, queueName])
Adds a delay to all unexecuted functions in the named queue.

Parameters

duration (Number|String) The delay duration in milliseconds, or one of the strings
"fast", "normal", or "slow", representing values of 200, 400, and 600
respectively.

queueName (String) The name of the queue from which the functions are to be delayed. If
omitted, the default effects queue of fx is assumed

Returns

The jQuery collection.
www.EBooksWorld.ir

221Animations and queuing
 Before moving to the next chapter, there’s one more thing to discuss regarding
queuing functions.

8.5.3 Inserting functions into the effects queue

We mentioned that internally jQuery uses a queue named fx to queue up the func-
tions necessary to implement the animations. What if you’d like to add your own
functions to this queue in order to intersperse actions within a queued series of
effects? Now that you know about the queuing methods, you can!

 Think back to the previous example in listing 8.7, where you used four animations
to make the moon revolve around the Earth. Imagine that you wanted to turn the
background of the moon image black after the second animation (the one that moves
it downward). If you just added a call to the css() method between the second and
third animations (in bold) as follows

var $moonImage = $('img[alt="moon"]');
$moonImage.animate({left: '+=256'}, 2500);
$moonImage.animate({top: '+=256'}, 2500);
$moonImage.css({backgroundColor: 'black'});
$moonImage.animate({left: '-=256'}, 2500);
$moonImage.animate({top: '-=256'}, 2500);

you’d be disappointed because this would cause the background to change immedi-
ately, perhaps even before the first animation had a chance to start (remember that
animate() is a non-blocking method). Rather, consider the following code (the
change is in bold):

var $moonImage = $('img[alt="moon"]');
$moonImage.animate({left: '+=256'}, 2500);
$moonImage.animate({top: '+=256'}, 2500);
$moonImage.queue('fx',
 function() {
 $(this)
 .css({backgroundColor: 'black'});
 .dequeue('fx');
 }
);
$moonImage.animate({left: '-=256'}, 2500);
$moonImage.animate({top: '-=256'}, 2500);

Here you wrap the call to the css() method in a function that you place onto the fx
queue using the queue() method. (We could have omitted the queue name, because
fx is the default, but we made it explicit here for clarity.) This puts your color-
changing function into place on the effects queue where it will be called as part of the
function chain that executes as the animations progress, between the second and
third animations.

But note! After you call the css() method, you call the dequeue() method on the
fx queue. This is absolutely necessary to keep the animation queue chugging along.
Failure to call dequeue() at this point will cause the animations to grind to a halt,
because nothing is causing the next function in the chain to execute. The unexecuted
www.EBooksWorld.ir

222 CHAPTER 8 Energizing pages with animations and effects
animations will just sit there on the effects queues until either something causes a
dequeue and the functions commence or the page unloads and everything gets
discarded.

 In addition to this change, ponder this: what color will the background be after the
animation is completed? Because you don’t perform other changes, it will remain
black. This is something you want to avoid, and so you should restore both the posi-
tion and the background of the moon. The last parameter of animate(), the callback
function, is what you need. You can restore the original background color (white) of
the image inside this callback, as shown here:

$moonImage.animate({top: '-=256'}, 2500, function() {
 $(this).css({backgroundColor: 'white'});
});

If you’d like to see this process in action, load the page in the file chapter-8/
revolutions.2.html into your browser and click the Animate button.

 Queuing functions comes in handy whenever you want to execute functions con-
secutively but without the overhead, or complexity, of nesting functions in asynchro-
nous callbacks. Today there are more advanced techniques and methods to tackle this
issue (usually referred to as “callback hell”), which we’ll discuss in chapter 13 when
talking about the Deferred and Promise objects. But that’s another chapter.

8.6 Summary
This chapter introduced you to the animated effects that jQuery makes available out
of the box as well as to the animate() method that allows you to create your own cus-
tom animations.

 The show() and hide() methods, when used without parameters, reveal and con-
ceal elements from the display immediately, without any animation. You can perform
animated versions of the hiding and showing of elements with these methods by pass-
ing parameters that control the speed of the animation as well as providing an
optional callback that’s invoked when the animation completes. The toggle()
method toggles the displayed state of an element between hidden and shown.

 Another set of methods, fadeOut() and fadeIn(), also hides and shows elements
by adjusting the opacity of elements when removing or revealing them in the display.
Similar to hide() and show(), the fade effect has a fadeToggle() method. Another
method of this type, fadeTo(), animates a change in opacity for its elements without
removing the elements from the display.

 A final set of three built-in effects animates the removal or display of your selected
elements by adjusting their height: slideUp(), slideDown(), and slideToggle().

 The previous methods introduced you to the concept of easing. The term is used to
describe the manner in which the processing and pace of the frames of the animation
are handled. The jQuery core provides only two easing functions to keep the library

Alternatively you can
replace white with
#FFFFFF or any
equivalent variant.
www.EBooksWorld.ir

223Summary
light, but you can extend jQuery with other libraries or plugins, most notably the
jQuery Easing plugin and the jQuery UI, to obtain a whole set of new easing functions.

 In addition, jQuery gives you the opportunity to build your own custom anima-
tions using the animate() method. By using it, you can animate any CSS style property
that accepts a numeric value, most commonly the opacity, position, and dimensions of
the elements.

 You also learned how jQuery queues animations for serial execution and how you
can use the jQuery queuing methods to add your own functions to the effects queue
or your own custom queues.

 When we explored writing your own custom animations, you wrote the code for
these custom effects as inline code within the on-page JavaScript. A much more com-
mon, and useful, method is to package custom animations as jQuery plugins. You’ll
learn how to do that in chapter 12, and you’re encouraged to revisit these effects after
you’ve read that chapter. Repackaging the custom effects we developed in this chapter,
and any that you can think up on your own, would be an excellent follow-up exercise.

 But before you write your own jQuery extensions, let’s take a look at some utility
functions and flags that jQuery provides.
www.EBooksWorld.ir

Beyond the DOM with
jQuery utility functions
Up to this point, we’ve spent a number of chapters examining the jQuery methods
that operate upon a set of DOM elements selected by using the $() function. But
you may recall that way back in chapter 1 we also introduced the concept of utility
functions—functions namespaced by jQuery/$ that don’t operate on a jQuery
object. These functions could be thought of as top-level functions except that
they’re defined on the $ instance rather than window, keeping them out of the
global scope. Generally, these functions either operate upon JavaScript objects other
than DOM elements or perform some non-object-related operation (such as an
Ajax request or the parsing of a XML string).

This chapter covers
 The jQuery properties

 Avoiding conflict between jQuery and other libraries

 Array manipulation functions

 Extending and merging objects

 Parsing different formats

 Dynamically loading new scripts
224

www.EBooksWorld.ir

225Using the jQuery properties
 In addition to functions, jQuery provides some properties (sometimes referred to
as flags) that are defined within the jQuery/$ namespace. Some of these properties
are meant for internal use only, but because they’re documented in the jQuery API
website and some plugins use them, we thought that they’re worth a mention for the
most curious among you.

 You may wonder why we waited until this chapter to introduce these functions and
properties. We had two reasons:

 We wanted to guide you into thinking in terms of using jQuery methods rather
than resorting to lower-level operations.

 Because the methods take care of much of what you want to do when manipu-
lating DOM elements on the pages, these lower-level functions are frequently
most useful when writing the methods themselves (as well as other extensions)
rather than in page-level code. (We’ll tackle how to write your own jQuery plu-
gins in chapter 12.)

In this chapter, we won’t talk about the utility functions that deal with Ajax because
we'll dedicate the whole of chapter 10 to them. We’ll start out with those properties we
mentioned.

9.1 Using the jQuery properties
A few features that jQuery makes available to page authors are available not via meth-
ods or functions but as properties defined on $. In the past, several jQuery plugin
authors have relied on these features to develop their plugins. But as will be evident in
a few pages, some of them have been deprecated and their use isn’t recommended.

 The jQuery properties available are these:

 $.fx.off—Enables or disables effects
 $.fx.interval—Changes the rate at which animations fire
 $.support—Details supported features (for internal use only)

jQuery 3: Properties removed
jQuery 3 gets rid of the already deprecated context (https://api.jquery.com/
context/), support (https://api.jquery.com/jQuery.support/), and selector (https:/
/api.jquery.com/selector/) properties. If you’re still using them in your project or
you’re employing a plugin that relies on one or more of them, upgrading to jQuery 3
will break your code.

For the curious: the $.browser property
Before version 1.9 jQuery offered a set of properties that developers used for branch-
ing their code (performing different operations based on the value of a given prop-
erty). They were set up when the library was loaded, making them available even
www.EBooksWorld.ir

https://api.jquery.com/context/
https://api.jquery.com/context/
https://api.jquery.com/jQuery.support/
https://api.jquery.com/selector/
https://api.jquery.com/selector/

226 CHAPTER 9 Beyond the DOM with jQuery utility functions
Let’s examine these properties, starting by looking at how jQuery lets you disable
animations.

9.1.1 Disabling animations

There may be times when you want to conditionally disable animations in a page that
includes various animated effects. You might do so because you’ve detected that the
platform or device is unlikely to deal with them well, or perhaps for accessibility rea-
sons. For example, you might want to completely disable animations on low-resource
mobile devices because the effects will be sluggish, resulting in a bad experience for
the user. When you detect that you’re in an animation-adverse environment or that
you don’t need them, you can set the value of $.fx.off to true.

 This will not suppress any effects you’ve used on the page; it’ll simply disable the
animation of those effects. For example, the fade effects will show and hide the ele-
ments immediately, without the intervening animations. Similarly, calls to the
animate() method will set the CSS properties to the specified final values without ani-
mating them.

 The $.fx.off flag, together with $.fx.interval discussed in the next section, is a
read/write flag, which means you can read as well as set its values. On the contrary,
$.support is meant to be read-only.

9.1.2 Changing the animations rate

Like any library that performs animations, jQuery has a property called $.fx.interval
to set the rate at which animations fire. As you know, an animation is made up of a pro-
gression of steps that, seen as a whole, create the effect. If a comparison helps, you can
think of a movie as a progression of photos shown at a regular pace. Using the
$.fx.interval property, you can tweak the pace at which the steps are performed.

 The $.fx.interval property is a read/write property and its value is expressed in
milliseconds, with its default value set to 13. The latter is not random, but it’s a rea-
soned choice guided by a trade-off between having smooth animations while not
stressing the CPU.

 In a heavily animation-driven scenario, you may want to try to tweak this value a bit to
create even smoother animations. You can do so by setting the value of $.fx.interval to
a number less than 13. Modifying the rate can result in nicer effects in some browsers,
but on low-resource devices or not-so-fast browser engines (for example, those in the
older versions of Internet Explorer) this may not be true. On these browsers, not only

(continued)
before any ready handlers had executed. They were defined as properties of
$.browser. The flags available were msie, mozilla, webkit, safari, and opera.
www.EBooksWorld.ir

227Using the jQuery properties
might you not have evident advantages, but you may also notice worse performance
because of the stress of the CPU.

 That being said, imagine that you want to set the value of $.fx.interval to 10. To
do so, you can write

$.fx.interval = 10;

In the same way that you can set a lower value, you can increase it. This change may
become handy if you’re working on a web page that’s stressing the CPU—for example,
if several animations are running at the same time or because the page performs CPU-
intensive operations while running some animations. Because animations aren’t as
important as performing tasks, you can decide to slow down the rate at which anima-
tions fire to help the CPU. For instance, you may set the value to 100 so that the
refresh happens 10 times each second:

$.fx.interval = 100;

To allow you to see the difference in how animations run depending on the value of
$.fx.interval, we created a demo just for you that you can find in the file chapter-9/
$.fx.interval.html and also as a JS Bin (http://jsbin.com/tevoy/edit?html,css,js,output).

 Now that we’ve finished with properties that deal with animations, let’s quickly
examine the one that provides information on the environment provided by the user
agent.

9.1.3 The $.support property

jQuery has a property named $.support that stores the result of some feature testing
that is of interest for the library. This property allows jQuery to know which features
are supported and which are not supported in the browser and act accordingly. This
property is intended for jQuery’s internal consumption only and it’s deprecated since
jQuery 1.9, so we strongly encourage you to avoid using it. Some examples of the
property exposed, now or in the past, are boxModels, cssFloat, html5Clone, cors,
and opacity.

 Relying on the $.support object is a bad idea because its properties may be
removed at any time without notice when they’re no longer needed internally. The
deletion of these properties is done to improve the performance of the library’s load
because it avoids the need to perform some tests on the browser. In this book we
decided to mention it because you might use an old but good plugin that relies on the
$.support property.

 This object is also one of the few cases where there’s a difference between the
branches of jQuery; the 1.x branch has more properties than the 2.x branch, and
Compat 3.x has more properties than 3.x. For example, 1.x has ownLast, inline-
BlockNeedsLayout, and deleteExpando that 2.x doesn’t have.
www.EBooksWorld.ir

http://jsbin.com/tevoy/edit?html,css,js,output

228 CHAPTER 9 Beyond the DOM with jQuery utility functions
With this section we’ve covered the last property left, so we’re now ready to move
along and start discussing jQuery’s utility functions.

9.2 Using other libraries with jQuery
The definition of the $ global name is usually the largest point of contention and con-
flict when using other libraries on the same page as jQuery. As you know, jQuery uses
$ as an alias for the jQuery name, which is used for every feature that jQuery exposes.
But other libraries, most notably Prototype, use the $ name as well.

 jQuery provides the $.noConflict() utility function to relinquish control of the $
identifier to whatever other library might wish to use it. The syntax of this function is as
follows.

Feature detection with Modernizr
If your project needs to act in a different way based on the features supported by a
given browser, you should employ an approach known as feature detection. Instead
of detecting the browser used by the user and then trying to determine whether fea-
tures are supported or not (an approach known as browser detection), feature detec-
tion requires that you detect for the presence of the features directly.

For a project where you need to test for several features, we strongly encourage
the use of an external library created for this specific purpose. The most famous and
most used library is Modernizr (http://modernizr.com/). This library detects the
availability of native support for features that stem from the HTML5 and CSS3
specifications.

Modernizr tests for features that are implemented in at least one major browser
(there’s no point in testing for a feature that nobody supports, right?) but usually sup-
ported in two or more. The following is a list of what Modernizr does for you:

 Tests for support of over 40 features in a few milliseconds
 Creates a JavaScript object (named Modernizr) containing the results of the

tests as Boolean properties
 Adds classes to the html element describing what features are implemented
 Provides a script loader to allow you to use polyfills to backfill functionality in

old browsers
 Allows using the new HTML5 sectioning elements in older versions of Internet

Explorer

What’s a polyfill?
A polyfill is a piece of code (or plugin) that provides the technology that developers
expect the browser to provide natively. The term was created in 2010 by Remy Sharp,
a well-known JavaScript developer and founder of the Full Frontal conference. You
can find more information about how and why the term was created in the original
Remy Sharp post “What is a Polyfill?” (http://remysharp.com/2010/10/08/what-is-
a-polyfill/).
www.EBooksWorld.ir

http://modernizr.com/
http://remysharp.com/2010/10/08/what-is-a-polyfill/
http://remysharp.com/2010/10/08/what-is-a-polyfill/

229Using other libraries with jQuery
$ is an alias for jQuery, so all of jQuery’s functionality is still available after the applica-
tion of $.noConflict(), albeit by using the jQuery property of the window object. But
don’t worry. You can still save typing some characters by defining a new, short identi-
fier. You can compensate for the loss of the brief—yet beloved—$, defining your own
shorter but nonconflicting alias for jQuery, such as

var $j = jQuery;

In case you need to give up both the $ and the jQuery identifier, you can still use the
jQuery methods and utility functions by using the $.noConflict() utility function and
storing the returned value (the jQuery library) into another global property:

window.$new = $.noConflict(true);

Once this statement is executed, you’re able to use the jQuery methods by employing
the $new property just created (for example, $new('p').find('a')).

 A design pattern you may often see employed, called Immediately-Invoked Func-
tion Expression (IIFE), consists of creating an environment where the $ identifier is
scoped to refer to the jQuery object. (If you’ve never heard of this pattern or need a
refresher, please review the appendix.) This technique is commonly used in several
situations: to extend jQuery, particularly by plugin authors; to simulate private vari-
ables; and to deal with closures. In the case of plugin authors, this is useful because
they can’t make any assumptions regarding whether page authors have called
$.noConflict() and, most certainly, they can’t subvert the wishes of the page authors
by calling it themselves.

 We’ll cover this pattern in detail in the appendix. For the moment, understand
that if you write

(function($) {
 // Function body here
})(jQuery);

Function syntax: $.noConflict

$.noConflict(jqueryPropertyToo)

Restores control of the $ identifier to another library, allowing mixed library use on pages using
jQuery. Once this function is executed, jQuery features will need to be invoked using the jQuery
identifier (the jQuery property of the window object) rather than the $ identifier.
Optionally, the jQuery identifier can also be given up by passing true to the function.
This method should be called after including jQuery but before including the conflicting library.

Parameters

jqueryPropertyToo (Boolean) If provided and set to true, the jQuery identifier is given
up in addition to the $; otherwise it’s kept.

Returns
jQuery
www.EBooksWorld.ir

230 CHAPTER 9 Beyond the DOM with jQuery utility functions
you can safely use the $ identifier inside the function body, regardless of whether it’s
already defined by Prototype or some other library outside of the function. Pretty
nifty, isn’t it?

 Let’s prove what we’ve discussed in this section with a simple test. For the first part
of the test, examine the HTML document in the following listing (available in chapter-
9/overriding.$.test.1.html).

<!DOCTYPE html>
<html>
 <head>
 <title>Overriding $ - Test 1</title>
 <link rel="stylesheet" href="../css/main.css"/>
 </head>
 <body>
 <button id="button-test">Click me!</button>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 $ = 'Hello world!';
 try {
 $('#button-test').on('click', function() {
 alert('$ is an alias for jQuery');
 });
 } catch (ex) {
 alert('$ has been replaced. The value is "' + $ + '"');
 }
 </script>
 </body>
</html>

In this example, you import jQuery, which defines the global names jQuery and its
alias $. You then redefine the global $ variable to a string value B, overriding the
jQuery definition. You replace $ with a simple string value for simplicity within this
example, but it could be redefined by including another library such as Prototype.

 Then you try to attach a handler to a button defined in the markup of the page C.
Inside the handler you call the JavaScript alert() function to show a success message
on the screen D. If something goes wrong, you show a failure message E.

 Loading this page in a browser proves that you
see the failure alert displayed, as shown in figure 9.1.
The reason for the failure is that you’ve redefined
the value of the $ identifier. Moreover, the button
doesn’t trigger any action because $ was reassigned
before the click handler was defined.

 Now you’ll make one slight change to this
example to be able to use $ safely. The following
code shows only the portion of the code within the
try block that has been modified. The change is

Listing 9.1 Overriding $ test 1

Overrides the
window.$
property with a
custom value (a
string)

B

Attaches a handler
to the button
shown in the pageCAlerts a

successful
message D

Alerts a failure
message E

Figure 9.1 The page shows that $
has been replaced. The value is "Hello
world!” because its redefinition has
taken effect.
www.EBooksWorld.ir

231Using other libraries with jQuery

e

 is

F

highlighted in bold for your convenience. The full code of this example can be found
in the file chapter-9/overriding.$.test.2.html of the source provided with this book:

try {
 (function($) {
 $('#button-test').on('click', function() {
 alert('$ is an alias for jQuery');
 });
 })(jQuery);

} catch (ex) {

The only change you make is to wrap the statement
where you attached the handler with an IIFE and pass
the window.jQuery property to it. When you load this
changed version and click the button, you’ll see that
the button now works and a different message is dis-
played, as shown in figure 9.2.

 Changing the code as shown in the previous exam-
ple lets you use the $ shortcut as an alias for jQuery,
while preserving the original, global value of $ (the
string "Hello world!" in this case). Now let’s see how
you can restore the value of $ to whatever it was before including the jQuery library
using the $.noConflict() method. A typical situation where you’d use this method is
shown in the next listing and is available in the file chapter-9/$.noConflict.html and
as a JS Bin (http://jsbin.com/bolok/edit?html,console).

<!DOCTYPE html>
<html>
 <head>
 <title>Using $.noConflict()</title>
 <link rel="stylesheet" href="../css/main.css"/>
 </head>
 <body>
 <script>
 window.$ = {
 customLog: function(message) {
 console.log('The function says: ' + message);
 }
 };
 </script>
 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 console.log('customLog: ' + ($.customLog === undefined));
 $.noConflict();
 console.log('customLog: ' + ($.customLog === undefined));
 $.customLog('Old value restored!');
 </script>
 </body>
</html>

Listing 9.2 Using the $.noConflict() method

Creates a
dummy
library
assigned to
window.$

B

Imports
the jQuery

library

C

D Prints on th
console the
result that
tests if
$.customLog
defined

Restores
the old

value of $ E
Prints again on the console

the result that tests if
$.customLog is definedPrints a message on the

console using $.customLog() G

Figure 9.2 The alert now
displays the success message
set inside the handler.
www.EBooksWorld.ir

http://jsbin.com/bolok/edit?html,console

232 CHAPTER 9 Beyond the DOM with jQuery utility functions
In this example, you create a dummy custom library B having just one method:
customLog(). You could import any library that takes advantage of the $ shortcut, like
Prototype, in place of the dummy library, but you want to avoid adding another real
library for the sake of simplicity. Then you import the jQuery library C that replaces
the library stored in $. Next you check that the dummy library has been replaced by
testing that the customLog() method isn’t defined (jQuery doesn’t have such a
method) D.

 In the next line of code, you restore the value of $ to whatever it was before the
import of the jQuery library, calling jQuery’s noConflict() function E. Finally, you
test again if you can access the customLog() method via the $ shortcut F and print a
message on the console using this method G.

 Now that you’ve seen how you can use jQuery to avoid any interference with other
libraries, it’s time to learn the other jQuery utility functions.

9.3 Manipulating JavaScript objects and collections
The majority of jQuery features implemented as utility functions are designed to oper-
ate on JavaScript objects other than the DOM elements. Generally, anything designed
to operate on the DOM is provided as a jQuery method. Although some of these func-
tions can be used to operate on DOM elements—which are JavaScript objects, after
all—the focus of the utility functions isn’t DOM-centric.

 These functions run the gamut from simple string manipulation and type testing
to complex collection filtering, serialization of form values, and even implementing a
form of object inheritance through property merging. Let’s start with one that’s pretty
basic.

9.3.1 Trimming strings

Almost inexplicably, before ECMAScript 5 the String type didn’t possess a method to
remove whitespace characters from the beginning and end of a string instance. Such
basic functionality is part of a String class in most other languages, but JavaScript
mysteriously lacked this useful feature until a few versions ago. What this means is that
you can’t use this function in versions of Internet Explorer prior to 9.

 String trimming is a common need in many JavaScript applications; one promi-
nent example is during form data validation. Because whitespace is invisible on the
screen (hence its name), it’s easy for users to accidentally enter extra space characters
before or after valid entries in text boxes or text areas. During validation, you want to
silently trim such whitespace from the data rather than alerting the user to the fact
that something they can’t see is tripping them up.

 To help you out with older browsers, but also to help people with all browsers prior
to the introduction of the JavaScript native method (String.prototype.trim()), the
jQuery team included the $.trim() utility function. Behind the scenes, to improve its
performance this method uses the native String.prototype.trim() where sup-
ported. The $.trim() method is defined as follows.
www.EBooksWorld.ir

233Manipulating JavaScript objects and collections
A simple example of using this function to trim the value of a text field is

var trimmedString = $.trim($('#some-field').val());

Be aware that this function converts the parameter you pass to its String type equiva-
lent, so if you erroneously pass an object to it, you’ll obtain the string "[object
Object]".

 Now let’s look at some functions that operate on arrays and other objects.

9.3.2 Iterating through properties and collections

Oftentimes when you have nonscalar values composed of other components you’ll
need to iterate over the contained items. Whether the container element is a
JavaScript array (containing any number of other JavaScript values, including other
arrays) or instances of JavaScript objects (containing properties), the JavaScript lan-
guage gives you the means to iterate over them. For arrays, you iterate over their ele-
ments using the for loop; for objects, you iterate over their properties using the
for...in loop (other constructs are available, but let’s ignore them for the moment).

 You can code examples of each as follows:

var anArray = ['one', 'two', 'three'];
for (var i = 0; i < anArray.length; i++) {
 // Do something here with anArray[i]
}
var anObject = {one: 1, two: 2, three: 3};
for (var prop in anObject) {
 // Do something here with prop
}

Pretty easy stuff, but some might think that the syntax is needlessly wordy and com-
plex—a criticism frequently targeted at the for loop.

 A few years ago, a method of the Array object called forEach() was added to
JavaScript. Unfortunately, being a later addition, some browsers, most notably versions
of Internet Explorer prior to 9, don’t support it. In addition, belonging to the Array
object, it can’t be employed to iterate over other kinds of objects. jQuery to the rescue!

Function syntax: $.trim

$.trim(value)

Removes any leading or trailing whitespace characters from the passed string and returns the
result.
Whitespace characters are defined in this case as any character matching the JavaScript regular
expression \s, which matches not only the space character but also the form feed, new line,
return, tab, and vertical tab characters, as well as the Unicode character \u00A0.

Parameters

value (String) The string value to be trimmed. This original value isn’t modified.

Returns

The trimmed string.
www.EBooksWorld.ir

234 CHAPTER 9 Beyond the DOM with jQuery utility functions
 You know that jQuery defines the each() method, allowing you to easily iterate
over the elements in a jQuery collection without the need for the for loop syntax. For
arrays, array-like objects, and objects, jQuery provides an analogous utility function
named $.each().

 The really nice thing is that the same syntax is used, whether iterating over the
items in an array or the properties of an object. Besides, it can be used in Internet
Explorer 6–8 as well. Its syntax is as follows.

This unified syntax can be used to iterate over arrays, array-like objects, or objects using
the same format. With this function, you can write the previous example as follows:

var anArray = ['one', 'two', 'three'];
$.each(anArray, function(i, value) {
 // Do something here
});
var anObject = {one:1, two:2, three:3};
$.each(anObject, function(name, value) {
 // Do something here
});

Although using $.each() with an inline function sounds good, this function makes it
easy to write reusable iterator functions or to factor out the body of a loop into
another function for purposes of code clarity, as in the following example:

$.each(anArray, someComplexFunction);

Note that when iterating over a collection, you can break out of the loop by returning
false from the iterator function. On the contrary, returning a truthy value (values
evaluating to true) is the same as using continue, which means that the function
stops immediately and the next iteration is performed.

Function syntax: $.each

$.each(collection, callback)
A generic iterator function, which can be used to seamlessly iterate over both objects and arrays.
Arrays and array-like objects with a length property (such as a function’s arguments object) are
iterated by numeric index, from 0 to length-1. Other objects are iterated via their named
properties.

Parameters

collection (Array|Object) An array (or array-like object) whose items are to be iterated
over, or an object whose properties are to be iterated over.

callback (Function) A function invoked for each element in the collection. If the
collection is an array (or array-like object), this callback is invoked for each
array item; if it’s an object, the callback is invoked for each object property.
The first parameter to this callback is the index of the array element or the
name of the object property. The second parameter is the array item or
property value.
The function context (this) of the invocation is also set to the value passed
as the second parameter.

Returns
The same collection passed.
www.EBooksWorld.ir

235Manipulating JavaScript objects and collections
NOTE Using the $.each() function may be convenient from a syntax point
of view, but it’s usually (slightly) slower than using the old-fashioned for
loop. Whether you should use it or not is really up to you.

Sometimes you may iterate over arrays to pick and choose elements to become part of
a new array. Although you could use $.each() for that purpose, let’s see how jQuery
makes that even easier.

9.3.3 Filtering arrays

Traversing an array to find elements that match certain criteria is a frequent need of
applications that handle lots of data. You might wish to filter the data for items that
fall above or below a particular threshold, or, perhaps, that match a certain pattern.
For any filtering operation of this type, jQuery provides the $.grep()utility function.

 The name of the $.grep() function might lead you to believe that the function
employs the use of regular expressions like its namesake UNIX grep command. But
the filtering criterion used by the $.grep() utility function isn’t a regular expression;
it’s a callback function provided by the caller that defines the criteria to determine
whether a data value should be included or excluded from the resulting set of values.
Nothing prevents that callback from using regular expressions to accomplish its task,
but their use isn’t automatic.

 The syntax of the function is as follows.

Function syntax: $.grep

$.grep(array, callback[, invert])
Traverses the passed array, invoking the callback function for each value. The return value of the
callback function determines whether the value is collected into a new array returned as the value
of the $.grep() function. If the invert parameter is omitted or false, a callback value of true
causes the data to be collected. If invert is true, a callback value of false causes the value to
be collected. The original array isn’t modified.

jQuery 3: Feature added
jQuery 3 introduces the ability to iterate over the DOM elements of a jQuery collection
using the for-of loop, part of the ECMAScript 6 specifications. Thanks to this fea-
ture, you can now write code like the following:

var $divs = $('div');
for (var element of $divs) {
 // Do something with element
}

Please note how we didn’t prepend the dollar sign in front of the element variable to
highlight that its value will be a DOM element and not a jQuery collection made of one
element at a time.
www.EBooksWorld.ir

236 CHAPTER 9 Beyond the DOM with jQuery utility functions
Let’s say that you want to filter an array for all values that are greater than 100. You’d
do that with a statement such as the following:

var bigNumbers = $.grep(originalArray, function(value) {
 return value > 100;
 });

The callback function that you pass to $.grep() can use whatever processing it likes to
determine if the value should be included. The decision could be as easy or as com-
plex as you need.

 Even though the $.grep() function doesn’t directly use regular expressions
(despite its name), JavaScript regular expressions can be powerful tools in your call-
back functions to determine whether to include or exclude values from the resultant
array. Consider a situation in which you have an array of values and wish to identify
any values that don’t match the pattern for United States postal codes (also known as
ZIP codes).

U.S. postal codes consist of five decimal digits optionally followed by a dash and four
more decimal digits. A regular expression for such a pattern would be /^\d{5}
(-\d{4})?$/, so you could filter a source array for nonconformant entries with the
following:

var badZips = $.grep(
 originalArray,
 function(value) {
 return value.match(/^\d{5}(-\d{4})?$/) !== null;
 },
 true
);

Notable in this example is the use of the String class’s match() method to determine
whether a value matches the pattern or not and the specification of the invert param-
eter to $.grep() as true to exclude any values that match the pattern.

Function syntax: $.grep (continued)

Parameters

array (Array) The traversed array whose data values are examined for collection. This
array isn’t modified in any way by this operation.

callback (Function) A function whose return value determines whether the current data
value is to be collected. This function receives two parameters: the current
value for this iteration and the index of the value within the array. A return
value of true causes the current value to be collected, unless the value of the
invert parameter is true, in which case the opposite occurs.

invert (Boolean) An optional value that if true inverts the normal operation of the
function.

Returns
The array of collected values.
www.EBooksWorld.ir

237Manipulating JavaScript objects and collections
 Collecting subsets of data isn’t the only operation you might perform on them.
Let’s look at another utility function that jQuery provides.

9.3.4 Translating arrays

Data might not always be in the format that you need it to be. Another common oper-
ation that’s frequently performed in data-centric web applications is the translation of
a set of values to another set. Although it’s a simple matter to write a for loop to cre-
ate one array from another, or an array from an object, jQuery makes it even easier
with the $.map utility function.

Let’s look at a trivial example that shows the $.map() function in action:

var oneBased = $.map(
 [0, 1, 2, 3, 4],
 function(value) {
 return value + 1;
 }
);

This statement converts the passed array into the following:

[1, 2, 3, 4, 5]

An important behavior to note is that if the function returns either null or undefined,
the result isn’t collected. In such cases, the resulting array will be smaller in length than
the original, and the one-to-one correspondence between items by order is lost.

 Let’s now look at a slightly more involved example. Imagine that you have an array
of strings, perhaps collected from form fields, that is expected to represent numeric
values. You want to convert this array of strings to an array of corresponding Number
instances. Because there’s no guarantee against the presence of an invalid numeric
string, you need to take some precautions. Consider the following code, which is also

Function syntax: $.map

$.map(collection, callback)
Iterates through the passed array or object, invoking the callback function for each item and
collecting the return values of the function invocations in a new array.

Parameters

collection (Array|Object) An array or object whose values are to be transformed to values
in the new array.

callback (Function) A function whose return values are collected in the new array
returned as the result of a call to the $.map() function.
This function is passed two parameters: the current value and the index of
that value within the original array. If an object is passed, the second
argument is the property name of the current value.

Returns
The array of collected values.
www.EBooksWorld.ir

238 CHAPTER 9 Beyond the DOM with jQuery utility functions
available in the file chapter-9/$.map.html and as a JS Bin (http://jsbin.com/
zonopor/edit?html,js,console):

var strings = ['1', '2', '3', '4', 'S', '6'];
var values = $.map(strings, function(value) {
 var result = new Number(value);
 return isNaN(result) ? null : result;
});

You start with an array of string values, each of which is expected to represent a
numeric value. But a typo (or perhaps user entry error) resulted in the letter S instead
of the expected number 5. The code handles this case by checking the Number
instance created by the constructor to see if the conversion from string to numeric was
successful or not. If the conversion fails, the value returned will be the constant NaN.
But the funny thing about NaN is that, by definition, it doesn’t equal anything else,
including itself! Therefore the value of the expression NaN===NaN is false!

 Because you can’t use a comparison operator to test for NaN (which stands for Not a
Number, by the way), JavaScript provides the isNaN() method, which you employ to
test the result of the string-to-numeric conversion.

 In this example, you return null in the case of failure, ensuring that the resulting
array contains only the valid numeric values with any error values elided. If you want
to collect all the values, you can allow the transformation function to return NaN for
bad values.

 Another useful behavior of $.map()is that it gracefully handles the case where an
array is returned from the transformation function, merging the returned value into
the resulting array. Consider the following statement:

var characters = $.map(
 ['this', 'that'],
 function(value) {
 return value.split('');
 }
);

This statement transforms an array of strings into an array of all the characters
that make up the strings. After execution, the value of the variable characters is as
follows:

['t', 'h', 'i', 's', 't', 'h', 'a', 't']

This is accomplished by use of JavaScript’s split() method, which returns an array of
the string’s characters when passed an empty string as its delimiter. This array is
returned as the result of the transformation function and is merged into the resultant
array.

 jQuery’s support for arrays doesn’t stop here. There are a handful of minor func-
tions that you might find handy.
www.EBooksWorld.ir

http://jsbin.com/zonopor/edit?html,js,console
http://jsbin.com/zonopor/edit?html,js,console

239Manipulating JavaScript objects and collections
9.3.5 More fun with JavaScript arrays

Have you ever needed to know if a JavaScript array contained a specific value and,
perhaps, even the location of that value in the array? If so, you’ll appreciate the
$.inArray() function.

A trivial but illustrative example of using this function is

var index = $.inArray(2, [1, 2, 3, 4, 5]);

This results in the index value of 1 being assigned to the index variable.
 Another useful array-related function creates JavaScript arrays from other array-

like objects. Consider the following snippet:

var images = document.getElementsByTagName('img');

This populates the variable images with a HTMLCollection of all the images on the
page.

 Dealing with this and similar objects is a bit of a pain because they lack native
JavaScript Array methods like sort() and indexOf(). Converting a HTMLCollection
(and similar objects) to a JavaScript array makes things a lot nicer. The jQuery
$.makeArray function is what you need in this case.

This function is intended for use in code that makes little use of jQuery, which inter-
nally handles this sort of thing on your behalf. This function also comes in handy

Function syntax: $.inArray

$.inArray(value, array[, fromIndex])
Returns the index position of the first occurrence of the passed value.

Parameters

value (Any) The value for which the array will be searched.
array (Array) The array to be searched.
fromIndex (Number) The index of the array at which to begin the search. The default is 0,

which will search the whole array.

Returns
The index of the first occurrence of the value within the array, or -1 if the value isn’t found.

Function syntax: $.makeArray

$.makeArray(object)
Converts the passed array-like object into a JavaScript array

Parameters

object (Object) Any object to turn into a native Array

Returns
The resulting JavaScript array
www.EBooksWorld.ir

240 CHAPTER 9 Beyond the DOM with jQuery utility functions
when handling the arguments array-like object within functions. Imagine that you
have the following function and that internally you want to sort the arguments pro-
vided to it:

function foo(a, b) {
 // Sort arguments here
}

You can grab all the arguments at once using the arguments array-like. The problem is
that arguments is not of type Array, so you can’t write:

function foo(a, b) {
 var sortedArgs = arguments.sort();
}

This code will throw an error because arguments doesn’t possess the JavaScript
Array’s sort() method that would be useful to sort the arguments. This is a situation
where the $.makeArray() can help. You can fix the issue by converting arguments
into a real array and then sort its elements:

function foo(a, b) {
 var sortedArgs = $.makeArray(arguments).sort();
}

Once you make this change, sortedArgs will contain an array with the arguments
passed to the foo() function sorted as required.

 Let’s now say that you have the following statement:

var arr = $.makeArray({a: 1, b: 2});

Once this statement is executed, arr will contain an array made of one element,
which is the object passed as an argument to $.makeArray().

 Another seldom-used function that might be useful when dealing with arrays built
outside of jQuery is the $.unique() function.

This function is intended for use on element arrays made of DOM elements created
outside the bounds of jQuery. Although many people think that this function can be
used with arrays of strings or numbers, we want to stress that $.unique() works only
with arrays of DOM elements.

Function syntax: $.unique

$.unique(array)
Given an array of DOM elements, returns an array of the unique elements in the original array,
sorted in document order

Parameters

array (Array) The array of DOM elements to be examined

Returns
An array of DOM elements returned in document order, consisting of the unique elements in the
passed array
www.EBooksWorld.ir

241Manipulating JavaScript objects and collections
 Before delving into the description of the next function, let’s look at an example
of using $.unique(). Consider the following markup:

<div class="black">foo</div>
<div class="red">bar</div>
<div class="black">baz</div>
<div class="red">don</div>
<div class="red">wow</div>

Now imagine that for some reason you need to retrieve the <div>s having class black
as an array of DOM elements, then add all the <div>s in the page to this collection,
and finally filter the latter to remove the duplicates. You can achieve these require-
ments with the following code (which includes some statements to log the difference
in the number of elements):

var blackDivs = $('.black').get();
console.log('The black divs are: ' + blackDivs.length);
var allDivs = blackDivs.concat($('div').get());
console.log('The incremented divs are: ' + allDivs.length);
var uniqueDivs = $.unique(allDivs);
console.log('The unique divs are: ' + uniqueDivs.length);

In case you want to play with this example, you can find it in the file chapter-9/
$.unique.html and online as a JS Bin (http://jsbin.com/borin/edit?html,js,console).

Now suppose that you want to merge two arrays. jQuery has a function for this task
called $.merge.

Function syntax: $.merge

$.merge(array1, array2)
Merges the values of the second array into the first and returns the result. The first array is
modified by this operation and returned as the result. The second array isn’t modified.

Parameters

array1 (Array) An array into which the other array’s values will be merged.
array2 (Array) An array whose values will be merged (concatenated) into the first

array.

Returns

The first array, modified with the results of the merge.

jQuery 3: Method renamed
jQuery 3 renamed the $.unique() utility function in $.uniqueSort() to make it
clear that the function sorts as well. Despite this change, in jQuery 3 you can still
invoke $.unique(), which is now just an alias for $.uniqueSort(), but it’s now dep-
recated and will be removed in following versions of the library.
www.EBooksWorld.ir

http://jsbin.com/borin/edit?html,js,console

242 CHAPTER 9 Beyond the DOM with jQuery utility functions
Consider the following code:

var arr1 = [1, 2, 3, 4, 5];
var arr2 = [5, 6, 7, 8, 9];
var arr3 = $.merge(arr1, arr2);

After this code executes, arr2 is untouched, but arr1 and arr3 contain the following:

[1, 2, 3, 4, 5, 5, 6, 7, 8, 9]

Note how there are two occurrences of 5 because the $.merge() utility function
doesn’t remove the duplicates.

 Now that you’ve seen how jQuery helps you to easily work with arrays, let’s see how
it helps you manipulate plain-old JavaScript objects.

9.3.6 Extending objects

Although we all know that JavaScript provides some features that make it act in many
ways like an object-oriented language, JavaScript isn’t what anyone would call purely
object-oriented because of the features that it doesn’t support. One of these impor-
tant features is inheritance (supported in the ECMAScript 6)—the manner in which
new classes are defined by extending the definitions of existing classes.

 A pattern for mimicking inheritance in JavaScript is to extend an object by copying
the properties of a base object into the new object, extending the new object with the
capabilities of the base.

 It’s fairly easy to write JavaScript code to perform this extension by copying, but as
with so many other procedures, jQuery anticipates this need and provides a ready-
made utility function to help you out: $.extend(). As you’ll see in chapter 12, which is
about jQuery plugins, this function is useful for much more than extending an object.
Its syntax is as follows.

Function syntax: $.extend

$.extend([deep,] target, [source1, source2, ... sourceN])
Extends the object passed as target with the properties of the remaining passed objects. The
extended object is also provided as the return value.

Parameters

deep (Boolean) An optional flag that determines whether a deep or shallow copy is
made. If omitted or false, a shallow copy is executed. If true, a deep copy is
performed.

target (Object) The object whose properties are augmented with the properties of the
source object(s). If this object is the only parameter provided, it’s assumed as
a source and the jQuery object is assumed to be the target. If more than one
argument is given, this object is directly modified with the new properties
before being returned as the value of the function.
Any properties with the same name as properties in any of the source
elements are overridden with the values from the source elements.
www.EBooksWorld.ir

243Manipulating JavaScript objects and collections
The behavior of this function is interesting because of its flexibility. Almost every argu-
ment in the signature is optional and allows you to change what the function does.
Arguments that are null or undefined are ignored.

 If only one object is provided, then it’s interpreted not as a target but as a source.
In this case, the jQuery object is assumed to be the target and properties of the object
are merged into the jQuery object.

 It’s worth noting that the merged object may have fewer properties than the sum
of those of the target and the sources even if they’re all different. The reason is that
$.extend() ignores the properties whose value is undefined. Let’s take a look at this
function with an example. You’ll set up three objects, a target and two sources, as
follows:

var target = {a: 1, b: 2, c: 3};
var source1 = {c: 4, d: 5, e: 6};
var source2 = {c: 7, e: 8, f: 9};

Then you’ll operate on these objects using $.extend() as follows:

$.extend(target, source1, source2);

This code takes the contents of the source
objects and merges them into the target. To test
this code, we’ve set up this example code in the
file chapter-9/$.extend.test.1.html, which exe-
cutes the code and displays the results on the
page. Loading this page into a browser results
in the display shown in figure 9.3.

 As you can see, all properties of the source
objects have been merged into the target
object. But note the following important
nuances:

 All of the objects contain a property named c. The value of c in source1
replaces the value in the original target, which in turn is replaced by the value
of c in source2.

 Both source1 and source2 contain a property named e. The value of e within
source2 overrides the value within source1 when merged into target, demon-
strating how objects later in the list of arguments take precedence over those
earlier in the list.

Function syntax: $.extend (continued)

source1 ...
sourceN

(Object) One or more objects whose properties are added to the target
object. When more than one source is provided and properties with the same
names exist in the sources, sources later in the argument list override those
earlier in the list.

Returns

The extended target object.

Figure 9.3 The $.extend() function
merges properties from multiple source
objects without duplicates and gives
precedence to instances in reverse order of
specification.
www.EBooksWorld.ir

244 CHAPTER 9 Beyond the DOM with jQuery utility functions
Before moving forward, let’s look at another example of a situation that you, like your
dear authors, have faced several times. Let’s say that you want to merge the properties
of two objects preserving both of them, which means that you don’t want the target
object to be modified. To perform this operation, you can pass an empty object as the
target, as shown here:

var mergedObject = $.extend({}, object1, object2);

By passing an empty object as the first parameter, both object1 and object2 are
treated as sources; thus they’re not modified.

 As the last example, we’ll show you the result of performing a deep copy of two
objects using the first parameter of $.extend(). Let’s say that you have the following
objects:

var target = {a: 1, b: 2};
var source1 = {b: {foo: 'bar'}, c: 3};
var source2 = {b: {hello: 'world'}, d: 4};

You operate on these objects calling the $.extend() method as follows:

$.extend(true, target, source1, source2);

Once again, we’ve created a page that
reproduces this example so that you can
play with it. The code is contained in
the file chapter-9/$.extend.test.2.html.
Loading the latter into your browser will
give you the results shown in figure 9.4.

 This function is really useful and
you’ll use it a lot. Let’s now move on
because we still have a few other utility
functions to examine.

9.3.7 Serializing parameter values

It should come as no surprise that in a dynamic, highly interactive application. Submit-
ting requests is a common occurrence. Frequently, these requests will be submitted as
a result of a form submission, where the browser formats the request body containing
the request parameters on your behalf. Other times, you’ll submit requests as URLs in
the href attribute of a elements. In these latter cases, it becomes your responsibility to
correctly create and format the query string that contains any request parameters you
wish to include with the request.

 Server-side templating tools generally have great mechanisms that help you con-
struct valid URLs, but when creating them dynamically on the client, JavaScript
doesn’t give you much in the way of support. Remember that not only do you need to
correctly place all the ampersands (&) and equal signs (=) that format the query string
parameters, but you also need to make sure that each name and value is properly

Figure 9.4 An example of how the $.extend()
function can merge nested objects
www.EBooksWorld.ir

245Manipulating JavaScript objects and collections
URI-encoded. Although JavaScript provides a handy function for that (encodeURI-
Component()), the formatting of the query string falls squarely into your lap.

 As you might have come to expect, jQuery anticipates that burden and gives you a
tool to make it easier: the $.param() utility function.

To see this method in action, consider the following statement:

$.param({
 'a thing': 'it&s=value',
 'another thing': 'another value',
 'weird characters': '!@#$%^&*()_+='
});

Here you pass an object with three properties to the $.param() function, in which the
names and the values all contain characters that must be encoded within the query
string in order for it to be valid. The result of this function call is

a+thing=it%26s%3Dvalue&another+thing=another+value&weird+characters=!%40%23%2
4%25%5E%26*()_%2B%3D

Note that the query string is formatted correctly and that the non-alphanumeric char-
acters in the names and values have been properly encoded. This might not make the
string all that readable to you, but server-side code lives for such strings!

 One note of caution: if you pass an array of elements or a jQuery object that con-
tains elements other than those representing form values, you’ll end up with a bunch
of entries such as

undefined=&

in the resulting string, because this function doesn’t weed out inappropriate elements
in its passed argument.

Function syntax: $.param

$.param(params[, traditional])
Serializes the passed information into a string suitable for use as the query string of a submitted
request. The passed value can be an array of form elements, a jQuery object, or a JavaScript
object. The query string is properly formatted and each name and value in the string is properly
URI-encoded.

Parameters

params (Array|jQuery|Object) The value to be serialized into a query string.
If an array of elements or a jQuery object is passed, the name/value pairs
represented by the included form controls are added to the query string.
If a JavaScript object is passed, the object’s properties form the parameter
names and values.

traditional (Boolean) An optional flag indicating whether to perform a traditional shallow
serialization. This generally affects only source objects with nested objects. If
omitted, defaults to false.

Returns
The formatted query string.
www.EBooksWorld.ir

246 CHAPTER 9 Beyond the DOM with jQuery utility functions
 You might be thinking that this isn’t a big deal because, after all, if the values are
form elements, they’re going to end up being submitted by the browser via the form,
which will handle all of this for you. Well, hold onto your hat. In chapter 10, when we
start talking about Ajax, you’ll see that form elements aren’t always submitted by their
forms!

 But that’s not going to be an issue, because you’ll also see later on that jQuery pro-
vides a higher-level means (that internally uses this very utility function) to handle this
sort of thing in a more sophisticated fashion.

 Let’s now consider another example. Imagine that you have the following form in
your page:

<form>
 <label for="name">Name:</label>
 <input id="name" name="name" value="Aurelio" />
 <label for="surname">Surname:</label>
 <input id="surname" name="surname" value="De Rosa" />
 <label for="address">Address:</label>
 <input id="address" name="address" value="Fake street 1, London, UK" />
</form>

If you call the $.param() utility function by passing to it a jQuery object containing all
the input elements of this form as shown here,

$.param($('input'));

you’ll obtain the following string as a result:

name=Aurelio&surname=De+Rosa&address=Fake+address+123%2C+London%2C+UK

This example should have clarified how $.param() works with form elements. But our
discussion of this function isn’t complete yet.

SERIALIZING NESTED PARAMETERS

Trained by years of dealing with the limitations of HTTP and HTML form controls, web
developers are conditioned to think of serialized parameters, aka query strings, as a
flat list of name/value pairs. For example, imagine a form in which you collect some-
one’s name and address. The query parameters for such a form might contain names
such as firstname, lastname, and city. The serialized version of the query string
might be this:

firstname=Yogi&lastname=Bear&streetaddress=123+Anywhere+Lane&city=Austin&stat
e=TX&postalcode=78701

The preserialized version of this construct would be as follows:

{
 firstname: 'Yogi',
 lastname: 'Bear',
 streetaddress: '123 Anywhere Lane',
 city: 'Austin',
 state: 'TX',
 postalcode : '78701'
}

www.EBooksWorld.ir

247Manipulating JavaScript objects and collections
As an object, that doesn’t really represent the way that you’d think about such data.
From a data organization point of view, you might think of this data as two major ele-
ments, a name and an address, each with its own properties, perhaps something along
the lines of this:

{
 name: {
 first: 'Yogi',
 last: 'Bear'
 },
 address: {
 street: '123 Anywhere Lane',
 city: 'Austin',
 state: 'TX',
 postalcode : '78701'
 }
}

But this nested version of the element, though more logically structured than the flat
version, doesn’t easily lend itself to conversion to a query string. Or does it?

 By using a conventional notation employing square brackets, such a construct
could be expressed as the following:

name[first]=Yogi&name[last]=Bear&address[street]=123+Anywhere+Lane&address[ci
ty]=Austin&address[state]=TX&address[postalcode]=78701

In this notation, subproperties are expressed using square brackets to keep track of
the structure. Many server-side languages such as PHP can handily decode these
strings.

 This is a smart behavior and it’s not the traditional way JavaScript treats such
objects. What you might expect is something like

name=[object+Object]&address=[object+Object]

which isn’t helpful at all.
 Fortunately, jQuery is able to deal with nested parameters, allowing you to decide

when to apply the traditional or the smart behavior. All you need to do is pass true to
obtain the traditional object and false (or omit it entirely) for the smart behavior, as
the second parameter of $.param().

 You can prove this to yourself with the $.param() Lab page provided in the file
chapter-9/lab.$.param.html and shown in figure 9.5.

 This lab page lets you see how $.param() will serialize flat and nested objects,
using its smart algorithm, as well as the traditional algorithm.

 Go ahead and play around with this lab before moving to the next section. In the
page we’ve set two sample objects so that you can immediately start testing $.param().
We also added the ability to edit them and to add new properties, so you can play with
different object structures that you might want to serialize.
www.EBooksWorld.ir

248 CHAPTER 9 Beyond the DOM with jQuery utility functions
9.3.8 Testing objects

You may have noticed that many of the jQuery methods and utility functions have
rather malleable parameter lists; optional parameters can be omitted without the
need to include null values as placeholders. Take the on() method as an example. Its
most used signature is

on(eventType[, selector][, data], handler)

If you have no selector or data to pass, you can simply call on() with the handler func-
tion as the second parameter; there’s no need for placeholders. jQuery handles this
by testing the types of the arguments, and if it sees that there are only two arguments
and that a function is passed as the second argument, it interprets that as the handler
rather than as a selector or a data argument.

 Testing arguments for various types, including whether they are functions or not,
will certainly come in handy if you want to create your own functions and methods
that are similarly friendly and versatile. For this reason, jQuery exposes a number of
testing utility functions, as outlined in table 9.1.

Table 9.1 jQuery utility functions for testing objects

Function Description

$.isArray(param) Returns true if param is a JavaScript array (but not if param is any
other array-like object like a jQuery set); false otherwise

$.isEmptyObject(param) Returns true if param is a JavaScript object with no properties,
including any inherited from prototype; false otherwise

$.isFunction(param) Returns true if param is a function; false otherwise

$.isNumeric(param) Returns true if param represents a numeric value; false otherwise

$.isPlainObject(param) Returns true if param is a JavaScript object created via {} or new
Object(); false otherwise

Figure 9.5 The $.param() Lab lets you see how flat and nested objects are serialized using
the new and traditional algorithms.
www.EBooksWorld.ir

249Manipulating JavaScript objects and collections

nts
t
Knowing these functions is nice, but you may feel that a practical example would be
even nicer. Here you go!

 Let’s say that you want a function that accepts either an array or an object as its first
parameter and multiplies each numeric item of the array or value of the object by a
given number passed as its second parameter. In addition, you want to specify a func-
tion that’s applied after the multiplication of an item as its third parameter. To have
more fun, the second argument (which we’ll call factor) and the third one (which
we’ll call customFunction) will be optional. This means that you can avoid both of
them as well as just one. The function must return a new object of the same type as the
first parameter, without modifying the latter.

 Based on this description, the signature of the function can be represented like
this:

multiplier(collection[, factor][, customFunction])

Thanks to the methods listed in table 9.1, you’re able to deal with all these cases with-
out much hassle. Implementing the function results in code like that in the following
listing. You can also find this code with some tests in the file chapter-9/testing
.functions.html and as a JS Bin (http://jsbin.com/lolub/edit?js,console).

function multiplier(collection, factor, customFunction) {
 function calc(value) {
 return $.isFunction(factor) ?
 factor(value) :
 $.isFunction(customFunction) ?
 customFunction(value * factor) :
 value * factor;
 }

 var result = null;

 if (factor === undefined && customFunction === undefined) {
 factor = 1;
 }

 if ($.isArray(collection)) {
 result = $.map(collection, function(value) {
 if ($.isNumeric(value)) {
 return calc(value);
 }
 });

$.isWindow(param) Returns true if param is the window object; false otherwise

$.isXMLDoc(param) Returns true if param is an XML document or a node within an XML
document; false otherwise

Listing 9.3 Testing utility functions

Table 9.1 jQuery utility functions for testing objects (continued)

Function Description

Defines the calc()
support function
that has the core
calculation

B

If the second and
the third argume
are undefined, se
factor to 1.

C

If dealing with an
array, use the
$.map() function to
call calc() on each
array’s value.

D

www.EBooksWorld.ir

http://jsbin.com/lolub/edit?js,console

250 CHAPTER 9 Beyond the DOM with jQuery utility functions
 } else if ($.isPlainObject(collection)) {
 result = {};
 for(var prop in collection) {
 if ($.isNumeric(collection[prop])) {
 result[prop] = calc(collection[prop]);
 }
 }
 }

 return result;
}

The code of this listing is interesting and uses many of the functions covered in this
chapter, so we’ll describe it in more detail.

 In the first part of the function, you define the calc() support function that has
the core calculation B. It deals with the variable parameters of the multiplier()
function and it performs different operations based on the value passed as the second
and the third arguments. If the second and the third arguments are undefined, you
set factor to 1. Then the real calculation starts. If collection is of type Array, the
function uses the $.map() utility function to call calc() on each array’s value, but
only if it’s a number D. If collection is of type Object, the function employs a
for…in loop to call calc() on each object’s value, but only if it’s a number E. Finally,
the result is returned F. The data type of the result depends on the data type of the
first argument (Array or Object). In case collection is neither an Array nor an
Object, null is returned.

 The functions described in this section allow you to test if a variable contains a
value of a particular type (Object, Array, Function, and so on) or not. But what if the
information you want to know is the type itself?

DISCOVERING THE TYPE OF A VALUE

jQuery has one additional utility function that deals with types called $.type(). The
syntax of this function is the following.

To give you an idea of the result of calling this function, let’s say that you have a state-
ment like the following:

$.type(3);

Function syntax: $.type

$.type(param)
Determines the type of a value

Parameters

param (Any) The value to test

Returns
A string describing the type of the value

If dealing with an
object, use a
for…in loop to call
calc() on each
object’s value.

E

Returns the result of the calculationF
www.EBooksWorld.ir

251Manipulating JavaScript objects and collections
In this case you’ll obtain this result:

"number"

If you have this statement

$.type([1, 2, 3]);

you’ll obtain this string as the result:

"array"

This is an important difference compared to the usual way of testing types in
JavaScript that will come in handy when we delve into developing plugins. In fact, if
you perform the test

if (typeof [1, 2, 3] === 'array')

you’ll obtain false because the value returned by typeof [1, 2, 3] is "object".
 Now that you have a complete overview of the utility functions that deal with data

types, let’s look at a bunch of functions that allow you to parse strings of different
types.

9.3.9 Parsing functions

jQuery provides a set of utility functions to parse several formats ranging from JSON to
XML and HTML. Modern browsers provide an object called JSON that deals with the
JSON format. This object has the parse() method that, as the name says, parses a
JSON string. Exactly, modern browsers.... As always, this means that not all of your
users have support for this feature. Fortunately, jQuery comes again to your help, pro-
viding the $.parseJSON() utility function.

You’ve seen several times that when the browser supports the native methods, jQuery
uses it, and this case is no exception. If the browser supports JSON.parse(), jQuery
will use it; otherwise it will use a JavaScript trick to perform the evaluation. In doing
so, jQuery improves the performance of the operation where possible.

 The JSON string must be completely well-formed, and the rules for well-formed JSON
are much stricter than JavaScript expression notation. For example, all property names
must be delimited by double-quote characters, even if they form valid identifiers.

Function syntax: $.parseJSON

$.parseJSON(json)
Parses the passed JSON string, returning its evaluation

Parameters

json (String) The JSON string to be parsed

Returns
The evaluation of the JSON string
www.EBooksWorld.ir

252 CHAPTER 9 Beyond the DOM with jQuery utility functions
Invalid JSON will result in an error being thrown. See http://www.json.org for the nitty-
gritty on well-formed JSON.

JSON isn’t the only format used on the web to exchange information. Another com-
monly used one is XML. jQuery allows you to easily parse a string containing XML, turn-
ing it into its equivalent XML document by using the $.parseXML() utility function.

XML documents are easy to use and traverse because jQuery supports them, so you
can pass the object returned by the $.parseXML() function to jQuery and then use
the methods you’ve learned so far. Sound crazy? Don’t worry; in a moment we’ll pres-
ent a lab page that will enable you to play with this concept.

 The last method belonging to this category is $.parseHTML(). It uses a native DOM
element creation function to convert a string containing HTML markup to a set of
DOM elements. Then, you can operate on these elements using the jQuery methods.
The syntax of this function is the following.

In the description of the function, we specified that the default value of keepScripts
is false. There’s an important security concern behind this decision. When fetching
the HTML string from an external source, if you include the scripts, you enable a mali-
cious person to perform an attack on your website.

 It’s worth mentioning that in most environments, even if you get rid of the script
elements, it’s still possible to perform an attack, so you should make certain you

Function syntax: $.parseXML

$.parseXML(xml)
Parses an XML string into an XML document

Parameters

xml (String) The XML string to be parsed

Returns

The XML document derived from the string

Function syntax: $.parseHTML

$.parseHTML(html[, context][, keepScripts])
Parses a string into an array of DOM nodes.

Parameters

html (String) The HTML string to be parsed.
context (Element) An optional element to use as the context in which the HTML

fragment will be generated. If not specified or if null or undefined is
passed, the default value is the (current) document.

keepScripts (Boolean) If true the function will keep and include the scripts in the HTML
string. The default value is false.

Returns
An array of DOM elements derived from the string.
www.EBooksWorld.ir

http://www.json.org

253Manipulating JavaScript objects and collections
escape untrusted inputs from the source such as the URL or cookies. As an example of
attacks that don’t come via a script element, think of those that can be performed
using the onerror attribute of an img element.

 The three utility functions we’ve just discussed gave us the chance to create
another lab page, which you can find in the file chapter-9/lab.parsing.html and which
is shown in figure 9.6.

 This lab page has three prebuilt snippets of code. The first one is a JSON object
that you can query using dot notation. We made this possible by using the $.parse-
JSON() function to turn the raw text into a JavaScript object.

 Then another section allows you to query XML and HTML code in the same way
you saw for the lab page of chapter 2. This time we’ll only show how many elements
have been selected. For this part of the lab page we’ve employed $.parseXML() and
$.parseHTML().

 Note that you can modify all three code snippets because we put them into a
textarea element. Therefore, you can test your own JSON object or any XML or
HTML code that you want. Open the lab page and play with it.

 Once you feel comfortable with these methods, you’re ready to learn about the
other utility functions that can’t be grouped into a category.

Figure 9.6 The Parsing Functions Lab lets you play with the jQuery functions that deal with
the three supported formats: JSON, XML, and HTML.
www.EBooksWorld.ir

254 CHAPTER 9 Beyond the DOM with jQuery utility functions
9.4 Miscellaneous utility functions
This section will explore the set of utility functions that are pretty much a category on
their own. We’ll start with one that doesn’t seem to do much.

9.4.1 Doing nothing

jQuery defines a utility function that does nothing, literally. This function could have
been named $.uselessFunctionThatDoesNothing(), but that’s a tad long, so it’s
named $.noop(). It’s defined with the following syntax.

Hmmm, a function that is passed nothing, does nothing, and returns undefined.
What’s the point?

 Do you recall that many jQuery methods are passed parameters or option values
that are optional function callbacks? $.noop() serves as a handy default for those call-
backs when the user doesn’t supply one.

9.4.2 Testing for containment

When you want to test one element for containment within another, jQuery provides
the $.contains() utility function.

Hey, wait a minute! Doesn’t this sound familiar? Indeed, we discussed the has()
method back in chapter 2, to which this function bears a striking resemblance.

 This function, used frequently internally to jQuery, is most useful when you
already have references to the DOM elements to be tested and there’s no need to take
on the overhead of creating a jQuery collection.

Function syntax: $.noop

$.noop()
Does nothing

Parameters

none

Returns
undefined

Function syntax: $.contains

$.contains(container, contained)
Tests if one element is contained within another in the DOM hierarchy

Parameters

container (Element) The DOM element being tested as containing another element
contained (Element) The DOM element being tested for containment

Returns

true if the contained element is contained within the container; false otherwise
www.EBooksWorld.ir

255Miscellaneous utility functions
 To see this method in action, consider the following markup:

<div id="wrapper">
 <p id="description">Some text</p>
</div>
<div id="empty"></div>

If you execute the following two statements

console.log($.contains(
 document.getElementById('wrapper'),
 document.getElementById('description')
));
console.log($.contains(
 document.getElementById('empty'),
 document.getElementById('description')
));

you’ll obtain the following result on the console:

true
false

The reason is that the element having description as its ID is a descendant of the ele-
ment having wrapper as its ID, but not of the one whose ID is empty.

 This section and the previous one were simple to digest. Now turn your attention
to one of the more esoteric utility functions—one that lets you have a pronounced
effect on how event listeners are called.

9.4.3 Prebinding function contexts

As you’ve seen throughout our examination of jQuery, functions and their contexts
play an important role in jQuery-using code. The context of a function—what’s
pointed to by this—is determined by how the function is invoked and not how it’s
defined (see the appendix if you want to review this concept). When you want to call a
particular function and explicitly control what the function context will be, you can
use JavaScript’s call() or apply() method to invoke the function.

 But what if you’re not the one calling the function? What if, for example, the func-
tion is a callback? In that case, you’re not the one invoking the function so you can’t
use the previously mentioned methods to affect the setting of the function context.

 jQuery provides a utility function by which you can prebind an object to a function
so that when the function is invoked, the bound object will become the function con-
text. This utility function is named $.proxy(), and its syntax is as follows.

Function syntax: $.proxy

$.proxy(function, proxy[, argument, ..., argument])
$.proxy(proxy, property[, argument, ..., argument])

Takes a function and returns a new one that will have a particular context
www.EBooksWorld.ir

256 CHAPTER 9 Beyond the DOM with jQuery utility functions
Bring up the example in the file chapter-9/
$.proxy.html and you’ll see the display shown in
figure 9.7.

 In this example page you have a Test button,
whose ID is test-button, which you store in a
variable as follows:

var $button = $('#test-button');

When the Normal radio button is clicked, a click
handler is established on the Test button and its
container:

$button.click(customLog);

The customLog() handler shows on the screen the ID of the function context (what-
ever is referred to by this):

function customLog() {
 $('#log').prepend(
 '' + this.id + ''
);
}

When the button is clicked, you’d expect the
established handler to have as the function con-
text the element upon which it was established:
the Test button. The result of clicking the Test
button is shown in figure 9.8.

 But when the Proxied radio button is clicked,
the handler is established as follows:

$button.click($.proxy(customLog, $('#control-panel').get(0)));

This establishes the same handler as before, except that the handler function has
been passed through the $.proxy() utility function, prebinding an object to the han-
dler. In this case you bind the element with the ID of control-panel. The bound
object doesn’t have to be an element—in fact, most often it won’t be. We chose it for

Function syntax: $.proxy (continued)

Parameters

function (Function) The function whose context will be changed
proxy (Object) The object to which the context (this) of the function should be set
argument (Any) An argument to pass to the function referenced in the function

parameter
property (String) The name of the function whose context will be changed (should be a

property of the proxy object)

Returns
The new function whose context is set to the proxy object

Figure 9.7 The $.proxy example
page will help you see the difference
between normal and proxied callbacks.

Figure 9.8 The result of the
$.proxy example page when using
the normal handler
www.EBooksWorld.ir

257Miscellaneous utility functions
this example because it makes the object easy to
identify via its ID.

 Now, when you click the Test button, you
obtain the result shown in figure 9.9, which proves
how the function context has been forced to be
the object that you bound to the handler with
$.proxy().

 This ability is useful for providing data to a call-
back that it might not normally have access to via
closures or other means.

 The most common use case for $.proxy() is
when you want to bind a method of an object as a
handler and have the method’s owning object established as the handler’s function
context exactly as if you had called the method directly. Consider an object such as this:

var obj = {
 id: 'obj',
 hello: function() { alert('Hi there! I am ' + this.id); }
};

If you were to call the hello() method via obj.hello(), the function context (this)
would be obj. But if you establish the function as a handler like so,

$(whatever).click(obj.hello);

you’ll find that the function context is the current bubbling element, not obj. And if
your handler relies on obj, you’re rather screwed. You can get out of this predica-
ment by using $.proxy() to force the function context to be obj with the following
statement:

$(whatever).click($.proxy(obj.hello, obj));

Alternatively, using the second signature of the function, you can achieve the same
goal with

$(whatever).click($.proxy(obj, 'hello'));

where obj is the object to which the context (this) of the function should be set and
the string "hello" represents the name of the function that belongs to obj, whose con-
text will be changed.

 Be aware that going this route means that you won’t have any way of knowing the
current bubble element of the event propagation—the value normally established as
the function context.

9.4.4 Evaluating expressions

Although the use of eval() isn’t recommended by many developers, there are times
when it’s useful (take a look at the code of the Parsing Functions Lab page for an
example).

Figure 9.9 This example shows the
effects of prebinding an object to the
click handler for the Test button.
www.EBooksWorld.ir

258 CHAPTER 9 Beyond the DOM with jQuery utility functions
 The problem is that eval() executes in the current context. When writing plugins
and other reusable scripts, you might want to ensure that the evaluation always takes
place in the global context. Enter the $.globalEval() utility function.

We’ll wrap up our investigation of the utility functions with one that you’ll use when
learning how to write jQuery plugins but that you might use in other situations, too.

9.4.5 Throwing exceptions

Under some circumstances you’ll want to throw an error in a function or a plugin
you’ve authored. For example, you may want to throw an error if a developer passes to
your plugin an unexpected parameter. For this purpose, jQuery provides a utility
function called $.error().

This method exists primarily for plugin developers who wish to override it and pro-
vide a better display (or more information) for the error messages. A simple example
of use of this function is the following:

function isPrime(number) {
 if (typeof number !== 'number') {
 $.error('The argument provided is not a number');
 }
 // Remaining code here...
}

We’ll use this function again when we discuss how to develop plugins for jQuery, but
that’s another chapter.

Function syntax: $.globalEval

$.globalEval(code)
Evaluates the passed JavaScript code in the global context

Parameters

code (String) The JavaScript code to be evaluated

Returns
The evaluation of the JavaScript code

Function syntax: $.error

$.error(string)
Takes a string and throws an exception containing it

Parameters

string (String) A string specifying the message to send out

Returns
undefined
www.EBooksWorld.ir

259Summary
9.5 Summary
In this chapter we surveyed the features that jQuery provides outside of the methods
that operate on a jQuery object. These included an assortment of functions, as well as
a set of flags, defined directly on the jQuery top-level name (as well as its $ alias).

 First, you learned about the flags that deal with animations. Setting $.fx.off lets
you completely disable animations on your website so that changes will happen imme-
diately. Then we introduced $.fx.interval, a flag to change the smoothness with
which animations run.

 Recognizing that page authors may sometimes wish to use other libraries in con-
junction with jQuery, jQuery provides $.noConflict(), which allows other libraries to
use the $ alias. After calling this function, all jQuery operations must use the jQuery
name rather than $.

 jQuery also provides a set of functions that are useful for dealing with data sets in
arrays. $.each() makes it easy to traverse through items in collections; $.grep()
allows you to create new arrays by filtering the data using whatever filtering criteria
you’d like to use; $.map() allows you to easily apply your own transformations to a
source to produce a corresponding new array with the transformed values.

 You can also use jQuery to test if a value is in an array with $.inArray() and even
test if a value is an array itself with $.isArray(). You can also test for functions using
$.isFunction() or check the type of an object using the $.type() utility.

 Another set of functions that the library offers allows you to deal with different for-
mats. Two of them, $.parseJSON() and $.parseXML(), parse the two best known
formats used on the web to exchange information: JSON and XML. The remaining
one, $.parseHTML(), lets you parse HTML markup.

 In addition to a bunch of minor functions, you also discovered how to merge
objects using jQuery’s $.extend() function. This function allows you to merge the
properties of any number of source objects into a target object. Finally, the $.proxy()
function lets you change the function context of any function in your code.

 With these additional tools safely tucked away in your toolbox, you’re ready to
tackle the utility functions that jQuery provides to perform Ajax requests.
www.EBooksWorld.ir

Talk to the server
with Ajax
Ajax is one of the technologies that has heavily transformed the landscape of the
web. The ability to make asynchronous requests back to the server without the need
to reload entire pages has enabled a whole new set of user-interaction paradigms
and made DOM-scripted applications possible.

 A few years after Microsoft introduced Ajax, a handful of events launched it into
the collective consciousness of the web development community. The non-
Microsoft browsers implemented a standardized version of the technology as the
XMLHttpRequest (XHR) object; Google began using XHR; and, in 2005, Jesse James
Garrett of Adaptive Path coined the term Ajax (for Asynchronous JavaScript and
XML).

This chapter covers
 A brief overview of Ajax

 Loading preformatted HTML from the server

 Making GET and POST requests

 Exerting fine-grained control over requests

 Setting default Ajax properties

 Handling Ajax events
260

www.EBooksWorld.ir

261Brushing up on Ajax
 As if they were only waiting for the technologies to be given a catchy name, the web
development masses suddenly took note of Ajax in a big way, and it has become one of
the primary means by which we can enable DOM-scripted applications.

 In this chapter, we’ll take a brief tour of Ajax (if you’re already an Ajax guru, you
might want to skip ahead to section 10.2), and then we’ll look at how jQuery makes
using Ajax a snap. Let’s start off with a refresher on what Ajax technology is all about.

10.1 Brushing up on Ajax
Although we’ll take a quick look at Ajax in this section, this isn’t intended as a com-
plete Ajax tutorial or an Ajax primer. If you’re completely unfamiliar with Ajax (or
worse, think that we’re talking about a dishwashing liquid or a mythological Greek
hero), we encourage you to familiarize yourself with the technology through
resources that are geared toward teaching you all about Ajax.

 Some people may argue that the term Ajax applies to any method of making server
requests without the need to refresh the user-facing page (such as by submitting a
request to a hidden iframe element), but most people associate the term with the use
of XMLHttpRequest (XHR) or the Microsoft XMLHTTP ActiveX control. A diagram of
the overall process, which we’ll examine one step at a time, is shown in figure 10.1.

Let’s take a look at how those objects are used to generate requests to the server,
beginning with creating an XHR instance.

10.1.1 Creating an XHR instance

In a perfect world, computer code would work in all commonly used browsers, but, as
you’ve already learned, we don’t live in such a world. Things are no different when it
comes to Ajax. There’s a standard way to make asynchronous requests via the
JavaScript XHR object, and there’s an (old) Internet Explorer proprietary way that
uses an ActiveX control. With Internet Explorer 7, a wrapper that emulates the stan-
dard interface is available, but IE 6 requires divergent code.

NOTE jQuery’s Ajax implementation—which we’ll address throughout the
remainder of this chapter—uses the ActiveX object when available. This is
good news for us! By using jQuery for our Ajax needs, we know that the best
approaches have been researched and will be utilized. If you don’t need to
support old versions of Internet Explorer, your job will be much easier.

1 Create and set up
the XHR instance.

4 Response body
evaluated

2 Request sent
to server

3 Response returned
to client

Client
(browser)

Server Figure 10.1 The
lifecycle of an Ajax
request as it makes its
way from the client to the
server and back again
www.EBooksWorld.ir

262 CHAPTER 10 Talk to the server with Ajax
Once created, the code to set up, initiate, and respond to the request is relatively
browser-independent, and creating an instance of XHR is easy for any particular
browser. The problem is that different browsers implement XHR in different ways, and
we need to create the instance in the manner appropriate for the current browser.

 But rather than relying on detecting which browser a user is running to determine
which path to take, we’ll use the preferred technique of feature detection that we intro-
duced in the previous chapter. The code in the following listing shows a typical idiom
used to instantiate an instance of XHR using this technique.

var xhr;
if (window.ActiveXObject) {
 xhr = new ActiveXObject('Microsoft.XMLHTTP');

} else if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();

} else {
 throw new Error('Ajax is not supported by this browser');
}

Once created, the XHR instance sports a conveniently consistent set of properties and
methods across all supporting browser instances. These properties and methods are
shown in table 10.1, and the most commonly used of these will be discussed in the sec-
tions that follow.

Listing 10.1 Capability detection resulting in code that can use Ajax in many browsers

Table 10.1 XMLHttpRequest (XHR) methods and properties

Methods Description

abort() Causes the currently executing request to be cancelled.

getAllResponseHeaders() Returns a single string containing the names and values of all
response headers, or null if no response has been received.

getResponseHeader(name) Returns the string containing the text of the specified header, or
null if either the response has not yet been received or the
header doesn't exist in the response.

open(method, url[,
async[, username[,
password]]])

Sets the HTTP method (such as GET or POST) and the destina-
tion URL of the request. Optionally, the request can be declared
synchronous and a username and password can be supplied for
requests requiring container-based authentication.

overrideMimeType(mime) Sets the Content-Type header for the response to mime.

send([content]) Initiates the request. The optional content parameter provides
the request body. content is ignored if request method is GET
or HEAD.

setRequestHeader(name,
value)

Sets a request header using the specified name and value.

Tests for the presence
of ActiveX

Tests for the
presence of XHR

Throws an
error if there’s
no Ajax support
www.EBooksWorld.ir

263Brushing up on Ajax
NOTE Want to get it from the horse’s mouth? You can find the XHR specifica-
tion at http://www.w3.org/TR/XMLHttpRequest/.

Now that you have an XHR instance created, let’s look at what it takes to set up and
fire off the request to the server.

Properties Description

onreadystatechange The event handler to be invoked when the state of the request
changes.

readyState An integer value that indicates the current state of the request
as follows:

0 = UNSENT
1 = OPENED
2 = HEADERS_RECEIVED
3 = LOADING
4 = DONE

response The response entity body according to responseType.

responseText The body content returned in the response.

responseType Can be set to change the response type. Its value can be one of
"" (empty string), arraybuffer, blob, document, json, or
text.

responseXML If the body content is identified as XML, the XML DOM is created
from the body content.

status The response status code returned from the server. For exam-
ple: 200 for success or 404 for not found. See the HTTP specifi-
cationa for the full set of codes.

statusText The status text message returned by the response.

timeout The number of milliseconds a request can take before being
forced to terminate. The default value is 0, which means there is
no timeout.

ontimeout The event handler to be called when the request times out.

upload The upload process can be tracked by adding an event listener
to upload.

withCredentials Indicates whether or not cross-site Access-Control requests
should be made using credentials such as cookies or authoriza-
tion headers. The default is false.

a. HTTP 1.1 status code definitions from RFC 2616:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.

Table 10.1 XMLHttpRequest (XHR) methods and properties (continued)
www.EBooksWorld.ir

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10

264 CHAPTER 10 Talk to the server with Ajax
10.1.2 Initiating the request

Before you can send a request to the server, you need to perform the following steps:

1 Specify the HTTP method (such as POST or GET).
2 Provide the URL of the server-side resource to be contacted.
3 Let the XHR instance know how it can inform you of its progress.
4 Provide any body content for requests such as POST.

You set up the first two items by calling the open() method of an XHR object as follows:

xhr.open('GET', '/some/resource/url');

Note that this method doesn’t cause the request to be sent to the server. It merely sets
up the URL and HTTP method to be used. The open() method can also be passed a
third Boolean parameter that specifies whether the request is to be asynchronous
(true, which is the default) or synchronous (false). There’s seldom a good reason to
make the request synchronous (even if doing so means you don’t have to deal with
callback functions); after all, the asynchronous nature of the request is usually the
whole point of making a request in this fashion.

 In the third step, you must provide a means for the XHR instance to tap you on the
shoulder to let you know what’s going on. You accomplish this by assigning a callback
function to the onreadystatechange property of the XHR object. This function,
known as the ready state handler, is invoked by the XHR instance at various stages of its
processing. By looking at the settings of the other properties of XHR, you can find out
exactly what’s going on with the request. We’ll take a look at how a typical ready state
handler operates in the next section.

 The final steps to initiate the request are providing any body content for requests
such as POST and sending it off to the server. Both of these steps are accomplished via
the send() method. For GET or HEAD requests, which typically have no body, no body
content parameter is passed, as follows:

xhr.send();

When request parameters are passed to the other requests type, the string passed to
the send() method must be in the proper format (which you might think of as query
string format) in which the names and values are properly URI-encoded. URI encoding
is beyond the scope of this section (and, as it turns out, jQuery is going to handle all of
that for you), but if you’re curious, in JavaScript you can use encodeURIComponent().

 An example of such a call is as follows:

xhr.send('a=1&b=2&c=3');

Now let’s see what the ready state handler is all about.
www.EBooksWorld.ir

265Brushing up on Ajax
10.1.3 Keeping track of progress

An XHR instance informs you of its progress through the ready state handler. This
handler is established by assigning a reference to the function to serve as the ready
handler to the onreadystatechange property of the XHR instance.

 Once the request is initiated via the send() method, this callback will be invoked
numerous times as the request makes transitions through its various states. The cur-
rent state of the request is available as a numeric code in the readyState property
(see the description of this property in table 10.1). That’s nice, but more often than
not, you’re only interested in when the request completes and whether it was success-
ful or not. Frequently you’ll see ready handlers implemented using the idiom shown
in the next listing.

xhr.onreadystatechange = function() {
 if (this.readyState === 4) {
 if (this.status >= 200 && this.status < 300) {
 // Success
 } else {
 // Problem
 }
 }
}

This code ignores all but the DONE state (state with value of 4), and once that has been
detected, it examines the value of the status property to determine whether the
request succeeded or not. The HTTP specification defines all status codes in the 200 to
299 range as success and those with values of 300 or above as various types of failure or
redirection.

 Now let’s explore dealing with the response from a completed request.

10.1.4 Getting the response

Once the ready handler has determined that the readyState is complete and that the
request completed successfully, you can retrieve the body of the response from the
XHR instance.

 Despite the moniker Ajax (where the X stands for XML), the format of the
response body can be any text format; it’s not limited to XML. The response to Ajax
requests could be plain text, an HTML fragment, or any data represented using the
JavaScript Object Notation (JSON) format.

 Regardless of its format, the body of the response is available via the responseText
property of the XHR instance (assuming that the request completes successfully). If
the response indicates that the format of its body is XML by including a content type
header specifying a MIME type of text/xml or application/xml or a MIME type that
ends with +xml, the response body will be parsed as XML. The resulting DOM will be
available in the responseXML property. JavaScript (and jQuery itself, using its selector
API) can then be used to process the XML DOM.

Listing 10.2 Ready state handlers written to ignore all but the DONE state

Ignores all but DONE state

Branches on response status

Executes on success
Executes on failure
www.EBooksWorld.ir

266 CHAPTER 10 Talk to the server with Ajax
 At this point, you might want to review the diagram of the whole process shown in
figure 10.1. In this short overview of Ajax, we’ve identified the following pain points
that page authors using Ajax need to deal with:

 Instantiating an XHR object requires browser-specific code.
 Ready handlers need to sift through a lot of uninteresting state changes.
 The response body needs to be dealt with in numerous ways, depending on its

format.

The remainder of this chapter will describe how jQuery’s Ajax methods and utility
functions make Ajax a lot easier (and cleaner) to use on your pages. There are a lot of
choices in the jQuery Ajax API, and we’ll start with some of the simplest and most-used
tools.

10.2 Loading content into elements
Perhaps one of the most common uses of Ajax is to grab a chunk of content from the
server and stuff it into the DOM at some strategic location. The content could be an
HTML fragment that’s to become the child content of a target container element, or it
could be plain text that will become the content of the target element.

Setting up for the examples
Unlike most of the example code that we’ve examined so far in this book, the code
examples for this chapter require the services of a web server to receive the Ajax
requests to server-side resources. Because it’s well beyond the scope of this book
to discuss the operation of server-side mechanisms, we’re going to skip the setup of
the server.

The code that we’ll use on the server side is developed in PHP, so your server should
be able to process it. In case you’ve never done this, here’s a list of tools to start
with regardless of your operating system:

 Windows users: http://www.wampserver.com/en
 Mac users: https://www.mamp.info

If you’re used to another language, such Java or ASP .NET, you should be able to port
the code in your language of choice because the pages are very simple. If you decide
to convert the pages to Java or ASP.NET, you should also set up a web server that’s
able to understand these languages, like Tomcat and IIS, respectively. Here’s a list
of resources that will help you with this process:

 Tomcat for Windows and Linux users: https://tomcat.apache.org/tomcat-7.0-
doc/setup.html

 Tomcat for Mac users: http://serverfault.com/questions/183496/how-do-i-
start-apache-tomcat-at-boot-on-mac-os-x

 IIS for Windows users: http://www.iis.net/learn/install/installing-iis-7/installing-
iis-on-windows-vista-and-windows-7
www.EBooksWorld.ir

https://tomcat.apache.org/tomcat-7.0-doc/setup.html
https://tomcat.apache.org/tomcat-7.0-doc/setup.html
http://www.wampserver.com/en
https://www.mamp.info
http://serverfault.com/questions/183496/how-do-i-start-apache-tomcat-at-boot-on-mac-os-x
http://serverfault.com/questions/183496/how-do-i-start-apache-tomcat-at-boot-on-mac-os-x
http://www.iis.net/learn/install/installing-iis-7/installing-iis-on-windows-vista-and-windows-7
http://www.iis.net/learn/install/installing-iis-7/installing-iis-on-windows-vista-and-windows-7

267Loading content into elements
Let’s imagine that you want to grab a chunk of HTML from the server using a
resource named some-resource and make it the content of a <div> element with an
ID of elem. For the final time in this chapter, let’s look at how you’d do this without
jQuery’s assistance.

 Using the patterns set out earlier in this chapter, you can write the code shown in
listing 10.3. The full HTML file for this example can be found in the file chapter-10/
listing.10.3.html.

NOTE Again, you must run this example using a web server—you can’t just
open the file in the browser—so the URL should be http://localhost:8080/
chapter-10/listing.10.3.html. Omit the port specification of :8080 if you’re
using Apache and leave it in if you’re using Tomcat. In future URLs in this
chapter we’ll use the notation [:8080] to indicate that the port number might
or might not be needed, but be sure not to include the square brackets as
part of the URL.

var xhr;
if (window.ActiveXObject) {
 xhr = new ActiveXObject('Microsoft.XMLHTTP');
} else if (window.XMLHttpRequest) {
 xhr = new XMLHttpRequest();
} else {
 throw new Error('Ajax is not supported by this browser');
}
xhr.onreadystatechange = function() {
 if (this.readyState === 4) {
 if (this.status >= 200 && this.status < 300) {
 document.getElementById('elem').innerHTML = this.responseText;
 }
 }
}
xhr.open('GET', 'some-resource');
xhr.send();

Although there’s nothing tricky going on here, that’s a nontrivial amount of code (17
lines). The equivalent code you’d write using jQuery is as follows:

$('#elem').load('some-resource');

We’re betting that we know which code you’d rather write and maintain!
 Let’s now take a close look at the jQuery method used in this statement.

10.2.1 Loading content with jQuery

The simple jQuery statement at the end of the previous section loads content from a
server-side resource using one of the most basic but useful jQuery Ajax methods:
load(). The full syntax description of this method is as follows.

Listing 10.3 Using native XHR to fetch and include an HTML fragment
www.EBooksWorld.ir

268 CHAPTER 10 Talk to the server with Ajax

In the description of this method we’ve introduced a new object called jqXHR. This
name is an abbreviation for jQuery XMLHTTPRequest, which is a superset of the
XMLHTTPRequest (XHR) object. For example, it contains the responseText and
responseXML properties, as well as a getResponseHeader() method. It implements
the Promise interface that we’ll discuss in detail in chapter 13.

 Though simple to use, this method has some important nuances. For example,
when the data parameter is used to supply the request parameters and the argument
passed is an object, the request is made using the POST HTTP method; otherwise, a
GET request is initiated. If you want to make a GET request with parameters, you can
include them as a query string on the URL. But be aware that when you do so, you’re
responsible for ensuring that the query string is properly formatted and that the
names and values of the request parameters are URI-encoded. The JavaScript encode-
URIComponent() method is handy for this, or you can employ the services of the
jQuery $.param() utility function that we covered in chapter 9.

 Sometimes you need to perform an action just after you’ve injected content into
one or more elements. Let’s say that you’re polling the server to have updates of the
status of the London underground and that you want to show a message on the web
page each time an update is retrieved. For the sake of the example, you’ll repeat the
request one second after the callback function has been executed. A basic implemen-
tation that satisfies this request is shown here:

var updates = 1;
function pollInfo() {

Method syntax: load

load(url[, data][, callback])
Performs an Ajax request to the specified URL passing optional data. A callback function can be
specified that’s invoked when the request completes and the DOM has been modified. The
response text replaces the content of all matched elements.

Parameters

url (String) The URL of the server-side resource to which the request is sent,
optionally modified via selector (explained below).

data (String|Object|Array) Specifies any data that’s to be passed as request
parameters. This parameter can be a string that will be used as the query string
or response body, an object whose properties are serialized, or an array of
objects whose name and value properties specify the name/value pairs.
If specified as an object or as an array, the request is made using the POST
method. If omitted or specified as a string, the GET method is used.

callback (Function) An optional callback function invoked after the response data has
been loaded into the elements of the matched set. The parameters passed to
this function are the response text, a status string (usually "success"), and
the jqXHR instance (explained in a few moments).
This function will be invoked once for each element in the jQuery collection with
the target element set as the function context (this).

Returns

The jQuery collection.
www.EBooksWorld.ir

269Loading content into elements
 $('#container').load(
 '/check-updates',
 function(responseText, textStatus, jqXHR) {
 if (textStatus === 'success') {
 $('#status-update').text('Data updated. Update #' + updates);
 updates++;
 }
 setTimeout(pollInfo, 1000);
 }
);
}
pollInfo();

Most of the time, you’ll use the load() method to inject the complete response into
whatever elements are contained within the jQuery object, but sometimes you may
want to filter elements coming back as the response. To do that, jQuery allows you to
specify a selector that will be used to limit which response elements are injected into
the elements in the set. You can specify the selector by suffixing the URL with a space
followed by the selector itself.

 For example, to filter response elements so that only <div> instances are injected,
you have to write the following:

$('.inject-me').load('/some-resource div');

The selector used can be arbitrarily complex, which means that you can also write
statements like this:

$('.inject-me').load('/some-resource div .some-class a');

In this case jQuery will search for all the elements that match the selector specified.
 When it comes to supplying the data to be submitted with a request, sometimes

you’ll wing it with ad hoc data, but frequently you’ll find yourself wanting to gather
data that a user has entered into form controls.

 As you might expect, jQuery has some assistance up its sleeve.

SERIALIZING FORM DATA

If the data that you want to send as request parameters comes from form controls, a
helpful jQuery method for building a query string is serialize(), whose syntax is as
follows.

Method syntax: serialize

serialize()
Creates a properly formatted and encoded query string from all form elements in the jQuery
collection

Parameters

none

Returns
The formatted query string

Invokes the pollInfo()
function after 1000
milliseconds

Invokes pollInfo() the first time
www.EBooksWorld.ir

270 CHAPTER 10 Talk to the server with Ajax
The serialize() method is smart enough to collect information only from the form
control elements in the set of matched elements and only from those qualifying ele-
ments that are deemed successful. A successful control is one that would be included as
part of a form submission according to the rules of the HTML specification.1 Controls
such as unchecked check boxes and radio buttons, dropdowns with no selections, and
disabled controls aren’t considered successful and don’t participate in form submis-
sion, so they’re also ignored by serialize().

 The ability to serialize values to send them to the server is a nice addition to
jQuery, but unfortunately our lovely library doesn’t provide a utility to perform the
opposite operation: deserialize.

Deserialization is the operation of populating and changing the state of form fields
based on a serialized string. It’s useful if you have a complex search form and you want
to store some commonly performed searches of a given user. In this case you can save
the values of the fields in a cookie or database so that the user can click a button and
restore those values without filling the form over and over again.

 When jQuery fails to offer a solution, the vibrant community around the project
takes care of it. That’s another reason why jQuery is so awesome. For situations like the
one described previously, you can employ a jQuery plugin called jQuery.deserialize
(https://github.com/kflorence/jquery-deserialize).

1 HTML 4.01 Specification, section 17.13.2, “Successful controls”: http://www.w3.org/TR/html401/interact/
forms.html#h-17.13.2.

Deserialize data with jQuery.deserialize
To use jQuery.deserialize you first need to include it in your page. The method is the
same one seen many times in this book—placing a link to the library inside a
<script> tag after the jQuery library, as shown here:

<script href="path/to/jquery.js"></script>
<script href="path/to/jquery.deserialize.js"></script>

With the plugin in place, let’s say that you have the following form:

<form id="my-form">
 <input name="name" />
 <input name="surname" />
</form>
<button id="btn">Auto fill</button>

You also have the following string that comes from a previous serialization:

name=Aurelio&surname=De+Rosa

With this premise in mind, if you want to autofill the form as soon as the user clicks
the btn button, you can write

$('#btn').click(function() {
 $('#my-form').deserialize('name=Aurelio&surname=De+Rosa');
});
www.EBooksWorld.ir

http://www.w3.org/TR/html401/interact/forms.html#h-17.13.2
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.2
https://github.com/kflorence/jquery-deserialize

271Loading content into elements
If you’d rather get the form data in a JavaScript array (as opposed to a query string),
jQuery provides the serializeArray() method.

The array returned by serializeArray() is composed of object literals, each of which
contains a name property and a value property that contain the name and value of
each successful form control. Note that this is (not accidentally) one of the formats
suitable for passing to the load() method to specify the request parameter data.

 With the load() method at your disposal, let’s put it to work solving some com-
mon real-world problems that many web developers encounter.

10.2.2 Loading dynamic HTML fragments

In business applications, particularly for commerce websites, often you’ll want to grab
real-time data from the server in order to present your users with the most up-to-date
information. After all, you wouldn’t want to mislead customers into thinking that they
can buy something that’s not available, would you?

 In this section, you’ll begin to develop a page that you’ll add to throughout the
course of the chapter. This page is part of a website for a fictitious firm named The
Boot Closet, an online retailer of overstock and closeout motorcycle boots. Unlike the
fixed product catalogs of other online retailers, this inventory of overstock and close-
outs is fluid, depending on what deals the proprietor was able to make that day and
what’s already been sold from the inventory. It will be important for you to always
make sure that you’re displaying the latest info!

 To begin your page (which will omit site navigation and other boilerplate to con-
centrate on the lessons at hand), you want to present your customers with a dropdown
containing the styles that are currently available and, when a style is selected, display
detailed information regarding that style. On initial display, the page will appear as
shown in figure 10.2.

Method syntax: serializeArray

serializeArray()
Collects the values of all successful form controls into an array of objects containing the names
and values of the controls

Parameters

none

Returns
The array of form data
www.EBooksWorld.ir

272 CHAPTER 10 Talk to the server with Ajax
After the page first loads, a dropdown with the list of styles currently available in the
inventory is displayed. When no style is selected, you’ll display a helpful message as a
placeholder for the selection: “- choose a style -”. This invites the user to interact with
the dropdown, and when a user selects a boot style from this dropdown, here’s what
you want to do:

 Display the detailed information about that style in the area below the drop-
down.

 Remove the “- choose a style -” entry; once the user picks a style, it has served its
purpose and is no longer useful.

Let’s start by taking a look at the HTML markup for the body that defines this page
structure:

<body>
 <div id="banner"></div>

 <h1>Choose your boots</h1>
 <div>
 <div id="selections-pane">
 <label for="boot-chooser-control">Boot style:</label>
 <select id="boot-chooser-control" name="model"></select>
 </div>
 <div id="product-detail-pane"></div>
 </div>
</body>

Not much to it, is there? As would be expected, you define all the visual rendition
information in an external style sheet (not shown here), and adhering to the precepts
of unobtrusive JavaScript, you include no behavioral aspects in the HTML markup.

 The most interesting parts of this markup are a container B that holds the select
element that will allow customers to choose a boot style and another container C into
which product details will be injected.

 Note that the boot style control needs to have its option elements added before
the user can interact with the page. Let’s add the necessary behavior to this page. The
first thing you’ll add is an Ajax request to fetch and populate the boot style dropdown.

Figure 10.2 The initial display of your commerce page with a simple dropdown inviting
customers to click it

Contains selection controlB

Holds place for product detailsC
www.EBooksWorld.ir

273Loading content into elements
NOTE Under most circumstances, initial values such as these would be han-
dled on the server prior to sending the HTML to the browser. This means that
even if your users have JavaScript disabled or can’t execute JavaScript code,
they can still use the web page. There may be circumstances where prefetch-
ing data via Ajax may be appropriate, but we’re doing that here for instruc-
tional purposes only.

To add the options to the boot style control, you use the handy load() method:

$('#boot-chooser-control').load('actions/fetch-boot-style-options.php');

How simple is that? The only complicated part of this statement is the URL, which isn’t
all that long or complicated, that specifies a request to a server-side PHP page.

 One of the nice things about using Ajax (with the ease of jQuery making it even
nicer) is that it’s completely independent of the server-side technology. You make
HTTP requests, sometimes with appropriate parameter data, and as long as the server
returns the expected responses, you can ignore whether the server is powered by Java,
Ruby, PHP, or even old-fashioned CGI.

 In this particular case, you expect that the server-side resource will return the
HTML markup representing the boot style options—supposedly from the inventory
database. The faux backend code returns the following as the response:

<option value="">- choose a style -</option>
<option value="7177382">Caterpillar Tradesman Work Boot</option>
<option value="7269643">Caterpillar Logger Boot</option>
<option value="7332058">Chippewa 9" Briar Waterproof Bison Boot</option>
<option value="7141832">Chippewa 17" Engineer Boot</option>
<option value="7141833">Chippewa 17" Snakeproof Boot</option>
<option value="7173656">Chippewa 11" Engineer Boot</option>
<option value="7141922">Chippewa Harness Boot</option>
<option value="7141730">Danner Foreman Pro Work Boot</option>
<option value="7257914">Danner Grouse GTX Boot</option>

This response then gets injected into the select element, resulting in a fully func-
tional control.

 Your next act is to instrument the dropdown so that it can react to changes, carry-
ing out the duties that we listed earlier. The code for that is only slightly more
complicated:

$('#boot-chooser-control').change(function(event) {

 $('#product-detail-pane').load(

 'actions/fetch-product-details.php',

 {

 model: $(event.target).val()

 },

 function() {

 $('[value=""]', event.target).remove();

 }

);

});

Establishes event
handler for change

B

Fetches and displays product
detail sending to the server
the chosen model

C

Removes the
placeholder optionD
www.EBooksWorld.ir

274 CHAPTER 10 Talk to the server with Ajax
In this code, you select the boot style dropdown and bind a change handler to it B.
In the event handler for the change event, which will be invoked whenever a cus-
tomer changes the option of the dropdown selected, you obtain the current value of
the selection by calling jQuery’s val() method on the event target after you’ve
wrapped it using $(). In this case, the target element is the select element that trig-
gered the event.

 You employ the load() method C on the product-detail-pane element to send
a request to the page actions/fetch-product-details.php. To this page you send
the boots model by using an object literal whose only property is named model.
Finally, you remove the placeholder option D inside the callback of the load()
method.

 After the customer chooses an available boot style, the page will appear as shown
in figure 10.3.

 The most notable operation performed is the use of the load() method to quickly
and easily fetch snippets of HTML from the server and place them within the DOM as
the children of existing elements. This method is extremely handy and well suited to
web applications that are powered by servers capable of server-side templating.

Figure 10.3 The server-side resource returns a preformatted fragment of HTML to
display the detailed boot information.
www.EBooksWorld.ir

275Loading content into elements
 The following listing shows the complete code for the Boot Closet page, which can
be found at http://localhost[:8080]/chapter-10/phase.1.html. You’ll revisit this page
to add further capabilities to it as you progress through this chapter.

<!DOCTYPE html>
<html>
 <head>
 <title>The Boot Closet - Phase 1</title>
 <link rel="stylesheet" href="../css/main.css" />
 <link rel="stylesheet" href="../css/bootcloset.css">
 </head>
 <body>
 <div id="banner"></div>

 <h1>Choose your boots</h1>
 <div>
 <div id="selections-pane">
 <label for="boot-chooser-control">Boot style:</label>
 <select id="boot-chooser-control" name="model"></select>
 </div>
 <div id="product-detail-pane"></div>
 </div>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 $('#boot-chooser-control')
 .load('actions/fetch-boot-style-options.php')
 .change(function(event) {
 $('#product-detail-pane').load(
 'actions/fetch-product-details.php',
 {
 model: $(event.target).val()
 },
 function() {
 $('[value=""]', event.target).remove();
 }
);
 });
 </script>
 </body>
</html>

The load() method is tremendously useful when you want to grab a fragment of
HTML to stuff into the content of an element (or set of elements). But there may be
times when you either want more control over how the Ajax request gets made or
need to do something more complex with the returned data in the response body.

 Let’s continue our investigation of what jQuery has to offer for these more com-
plex situations.

Listing 10.4 The first phase of the Boot Closet commerce page
www.EBooksWorld.ir

276 CHAPTER 10 Talk to the server with Ajax
10.3 Making GET and POST requests
The load() method makes either a GET or a POST request, depending on how the
request parameter data (if any) is provided, but sometimes you want to have a bit
more control over which HTTP method gets used. Why should you care? Because your
server may care.

 Web authors have traditionally played fast and loose with the GET and POST meth-
ods, using one or the other without heeding how HTTP intends for these methods to
be used. The intentions for each method are as follows:

 GET requests—Intended to be idempotent; the same GET operation, made again
and again and again, should return exactly the same results (assuming no other
force is at work changing the server state).

 POST requests—Can be non-idempotent; the data they send to the server can be
used to change the model state of the application—for example, adding or
updating records in a database or removing information from the server.

A GET request should, therefore, be used whenever the purpose of the request is to
merely get data, as its name implies. It may be required to send some parameter data
to the server for the GET, for example, to identify a style number to retrieve color
information. But when data is being sent to the server in order to effect a change,
POST should be used.

WARNING This is more than theoretical. Browsers make decisions about
caching based on the HTTP method used, and GET requests are highly subject
to caching. Using the proper HTTP method ensures that you don’t get cross-
ways with the browser’s or server’s expectations regarding the intentions of
the requests. This is just a glimpse into the realm of RESTful principles, where
other HTTP methods such as PUT and DELETE also come into play. But for
our purposes, we’ll limit our discussion to the GET and POST methods.

With that in mind, if you look back to our phase-one implementation of The Boot
Closet (in listing 10.4), you’ll discover that you’re doing it wrong! Because jQuery initi-
ates a POST request when you supply an object hash for the data parameter, you’re
making a POST when you really should be making a GET request. If you glance at
Chrome’s Developer Tools log (as shown in figure 10.4), when you display your page
in Chrome, you can see that your second request, submitted when you make a selec-
tion from the style dropdown, is indeed a POST.

NOTE The result you’ll see on your console is the same as the figure only if
you enable the option Log XMLHttpRequests. If you don’t want to enable this
option, you can take a look at the Network tab.

Does it really matter? That’s up to you, but if you want to use HTTP in the manner in
which it was intended, your request to fetch the boot detail should be a GET rather
than a POST.
www.EBooksWorld.ir

277Making GET and POST requests
Figure 10.4 An inspection of the Chrome console shows that you’re making a POST request when you should be
making a GET.

Developer tools
Trying to develop a DOM-scripted application without the aid of a debugging tool is like trying
to play concert piano while wearing welding gloves. Why would you do that to yourself?

Depending on the browser you’re using, there are different options you can choose to inspect
your code. All modern major browsers have a set of built-in tools for this purpose, each with
a different name, that you can adopt. For example, in Chrome these tools are called Developer
Tools (https://developer.chrome.com/devtools/), whereas in Internet Explorer they’re called
F12 developer tools (http://msdn.microsoft.com/en-us/library/bg182326(v=vs.85).aspx).
Firefox has its own built-in tools as well, but developers usually tend to use a plugin called
Firebug (http://getfirebug.com). These tools not only let you inspect the JavaScript console,
but they also allow you to inspect the live DOM, the CSS, the script, and many other aspects
of your page as you work through its development.

One feature most relevant for your current purposes is the ability to log Ajax requests along
with both the request and response information.
www.EBooksWorld.ir

https://developer.chrome.com/devtools/
http://msdn.microsoft.com/en-us/library/bg182326(v=vs.85).aspx
http://getfirebug.com

278 CHAPTER 10 Talk to the server with Ajax
You could make the parameter that specifies the request information a string rather
than an object (and we’ll revisit that a little later), but for now, let’s take advantage of
another way that jQuery lets you initiate Ajax requests.

10.3.1 Getting data with GET

jQuery gives you a few means to send GET requests, which, unlike load(), are imple-
mented not as jQuery methods but as utility functions. These are the functions we
mentioned but didn’t cover in the previous chapter.

 When you want to fetch some data from the server and decide what to do with it by
yourself (rather than letting the load() method set it as the content of one or more
elements), you can use the $.get() utility function.

Function syntax: $.get

$.get(url[, data][, callback][, dataType])
Sends a GET request to the server using the specified URL with any passed parameters as the
query string.

Parameters

url (String) The URL of the server-side resource to contact via the GET method. If
an empty string is passed, the request is sent to the current URL at the time
the method is invoked.

data (String|Object) Specifies any data that’s to be passed as request parameters in
the query string. This parameter is optional and can be a string or an object
whose properties are serialized into properly encoded parameters to be passed
to the request.

callback (Function) An optional function invoked when the request completes
successfully. The response body is passed as the first parameter to this
callback, interpreted according to the setting of the dataType parameter, and
the status string is passed as the second parameter. A third parameter
contains a reference to the jqXHR instance. Inside the callback, the context
(this) is set to an object that represents the Ajax settings used in the call. This
parameter becomes required if dataType is provided. In case you don’t need a
function, you can pass null or $.noop() as a placeholder.

dataType (String) Optionally specifies how the response body is to be interpreted, and it
can be one of the following values: html, text, xml, json, script, or jsonp.
The default value is determined by jQuery depending on the response obtained
and will be one among xml, json, script, or html. See the description of
$.ajax() later in this chapter for more details.

Returns

The jqXHR instance.
www.EBooksWorld.ir

279Making GET and POST requests
The $.get() utility function allows you to perform GET requests in a more versatile
way. In addition to the request parameters and the callback to be invoked upon a suc-
cessful response, you can now even direct how the response is to be interpreted and
passed to the callback. If even that’s not enough versatility, you’ll be see a more gen-
eral function, $.ajax(), where you’ll also examine the dataType parameter in greater
detail. For now you’ll let it default to html or xml depending on the content type of
the response. By using $.get() in your Boot Closet page, you can replace the use of
the load() method, as shown in the next listing.

$('#boot-chooser-control')
 .change(function(event) {
 $.get(
 'actions/fetch-product-details.php',
 {
 model: $(event.target).val()
 },
 function(response) {
 $('#product-detail-pane').html(response);
 $('[value=""]', event.target).remove();
 }
);
 });

The changes for this second phase of our page are subtle but significant. You call
$.get() B in place of load(), passing the same URL and the same request parame-
ters. Because you’re using the $.get() utility function in this case, you can be assured
that a GET request will be performed even if you pass an object. $.get() doesn’t auto-
matically inject the response anywhere within the DOM, so you need to do that your-
self by using jQuery’s html() method C.

 The code for this version of our page can be found at http://localhost[:8080]/
chapter-10/phase.2.html. Loading the page and selecting a style dropdown, you can
see that a GET request has been made, as shown in figure 10.5.

Listing 10.5 Changing The Boot Closet to use a GET when fetching style details

jQuery 3: Signature added
jQuery 3 adds a new signature for the $.get() utility function:

$.get([options])

options is an object that can possess many properties. To learn more about it,
please refer to the description of the $.ajax() utility function discussed later in this
chapter. It’s worth noting that the method property that the options object can con-
tain will automatically be set to "GET".

Performs a GET requestB

Injects the response HTML C
www.EBooksWorld.ir

280 CHAPTER 10 Talk to the server with Ajax
In this example you returned HTML code from the server and inserted it into the
DOM, but as you can see from the values available for the dataType parameter of
$.get(), there are many possibilities other than HTML.

 Let’s look at another jQuery utility function that’s quite useful when your data
needs suggest that you should employ the JSON format.

10.3.2 Getting JSON data

When XML is overkill or otherwise unsuitable as a data-transfer mechanism, JSON is
often used in its place. One reason for this choice is that JSON is astoundingly easy to
digest in client-side scripts, and jQuery makes it even easier.

 For times when you know that the response will be JSON, the $.getJSON() utility
function automatically parses the returned JSON string and makes the resulting
JavaScript value available to its callback. The syntax of $.getJSON(), shown next, has
parameters with the same meaning described for $.get(), so we won’t repeat them.

Figure 10.5 Now you can see that the second request is a GET rather than a POST, as befitting the operation.
www.EBooksWorld.ir

281Making GET and POST requests
As you can see from the description, this function is simply a convenience function for
calling $.get() with a dataType of "json".

$.getJSON() isn’t the only one, as you’ll discover in the next section.

10.3.3 Dynamically loading script

Most of the time, you’ll load the external scripts that your page needs from script files
when the page loads via <script> tags at the bottom of your page. But every now and
then you might want to load a script under script control. You might do this because
you don’t know if the script will be needed until after some specific user activity has
taken place, and you don’t want to include the script unless it’s absolutely needed. Or
perhaps you need to use some information not available at load time to make a condi-
tional choice between various scripts.

 Regardless of why you might want to dynamically load new scripts into the page,
jQuery provides the $.getScript() utility function to make it easy. This utility func-
tion also has parameters with the same meaning described for $.get(), so we won’t
repeat them.

Under the covers, this function invokes $.get() by setting the data parameter to
undefined and the dataType parameter to "script". In the source of jQuery the
$.getScript() utility function is defined as follows:

getScript: function(url, callback) {
 return jQuery.get(url, undefined, callback, "script");
}

Function syntax: $.getJSON

$.getJSON(url[, data][, callback])
Sends a GET request to the server using the specified URL, with any passed parameters as the
query string. The response is interpreted as a JSON string, and the resulting value is passed to the
callback function.

Returns
The jqXHR instance.

Function syntax: $.getScript

$.getScript(url[, callback])
Fetches the script specified by the url parameter performing a GET request to the specified
server, optionally invoking a callback upon success. The URL isn’t restricted to the same domain
as the containing page.

Returns
The jqXHR instance.
www.EBooksWorld.ir

282 CHAPTER 10 Talk to the server with Ajax
When this function is executed, the script in the file is evaluated, any inline script is
executed, and any defined variables or functions become available.

 Let’s see this in action. Consider the following script file (available in chapter-10/
external.js):

alert('I am inline!');
var someVariable = 'Value of someVariable';
function someFunction(value) {
 alert(value);
}

This trivial script file contains an inline statement (which issues an alert that leaves no
doubt as to when the statement gets executed), a variable declaration, and a declara-
tion for a function that issues an alert containing whatever value is passed to it when
executed. Now let’s write a page to include this script file dynamically. The page is
shown in the next listing and can be found in the file chapter-10/$.getScript.html.

<!DOCTYPE html>
<html>
 <head>
 <title>$.getScript() Example</title>
 <link rel="stylesheet" href="../css/main.css"/>
 </head>
 <body>
 <button id="load-button">Load</button>
 <button id="inspect-button">Inspect</button>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 $('#load-button').click(function() {
 $.getScript('external.js');
 });

 $('#inspect-button').click(function() {
 someFunction(someVariable);
 });
 </script>
 </body>
</html>

This page defines two buttons B that you use to trigger
two different actions. The Load button causes the
“external.js” file to be dynamically loaded through the
use of the $.getScript() utility function C. Click this
button and, as expected, the inline statement within the
file triggers an alert message, as shown in figure 10.6.

 Clicking the Inspect button executes its click
handler D, which executes the dynamically loaded
someFunction() function, passing the value of the
dynamically loaded someVariable variable. If the alert

Listing 10.6 Dynamically loading a script file and examining the results

Defines test buttonsB

Fetches script on
clicking Load buttonC

Displays result
on clicking
Inspect buttonD

Figure 10.6 The dynamic
loading and evaluation of the
script file results in the inline
alert statement being executed.
www.EBooksWorld.ir

283Making GET and POST requests
appears as shown in figure 10.7, you know that both the variable and function are
loaded correctly.

 In addition to providing these utility functions to perform GET requests, jQuery
also lets you make POST requests. Let’s see how.

10.3.4 Making POST requests

There are a number of reasons why you might choose a POST over a GET. First, the
intention of HTTP is that POST will be used for any non-idempotent requests. There-
fore, if your request has the potential to cause a change in the server-side state, result-
ing in varying responses, it should be a POST. Moreover, accepted practices and
conventions aside, a POST operation must sometimes be used when the data to be
passed to the server exceeds the small amount that can be passed by a URL in a query
string—a limit that’s a browser-dependent value. And sometimes the server-side
resource you contact might perform different functions depending on whether your
request uses the GET or POST method. These are just a few of the many reasons why
you might want to choose a POST request over a GET request.

 For those occasions when a POST is needed, jQuery offers the $.post() utility
function. This utility function is identical to $.get() except for employing the POST
HTTP method. For this reason, in the description of the syntax of the method, we
won’t repeat the meaning of the parameters. The syntax of $.post() is as follows.

Function syntax: $.post

$.post(url[, data][, callback][, dataType])
Sends a POST request to the server using the specified URL, with any parameters passed within
the body of the request

Returns

The jqXHR instance

Figure 10.7 The appearance of the
alert shows that the dynamic function is
loaded correctly, and the correctly
displayed value shows that the variable
was dynamically loaded.

jQuery 3: Signature added
jQuery 3 adds a new signature for the $.post() utility function:

$.post([options])

options is an object that can possess many properties. To learn more about it,
please refer to the description of the $.ajax() utility function discussed later in this
chapter. It’s worth noting that the method property that the options object can con-
tain will automatically be set to "POST".
www.EBooksWorld.ir

284 CHAPTER 10 Talk to the server with Ajax

Dr
menu
colo

is
d

jQuery takes care of the details of passing the request data in the request body (as
opposed to the query string) and sets the HTTP method appropriately.

 Now, getting back to the Boot Closet project, you’ve made a really good start, but
there’s more to buying a pair of boots than selecting a style; customers are sure to
want to pick which color they like, and certainly they’ll need to specify their size. We’ll
use these additional requirements to show how to solve one of the most-asked ques-
tions on the web, that of...

10.3.5 Implementing cascading dropdowns

The implementation of cascading dropdowns—where subsequent dropdown options
depend on the selections of previous dropdowns—is one of the most used patterns on
the web. In this section we’re going to implement a solution on the Boot Closet page
that demonstrates how ridiculously simple jQuery makes it.

 You’ve already seen how easy it is to load a dropdown dynamically with server-
powered option data, but now you’ll see that tying multiple dropdowns together in a
cascading relationship is only slightly more work.

 Let’s dig in by listing the changes you need to make in the next phase of your page:

 Add dropdowns for color and size.
 When a style is selected, add options to the color dropdown that show the col-

ors available for that style.
 When a color is selected, add options to the size dropdown that show the sizes

available for the selected combination of style and color.
 Make sure things remain consistent. This includes removing the “- please make

a selection -” options from newly created dropdowns once they’ve been used
and making sure that the three dropdowns never show an invalid combination.

You’re also going to revert to using load() again, this time coercing it to initiate a GET
rather than a POST. The reason is that load() seems more natural when you’re using
Ajax to load HTML fragments.

 To start off, let’s examine the new HTML markup that defines the additional drop-
downs. A new container for the select elements is defined to contain three labeled
elements:

<div id="selections-pane">
 <label for="boot-chooser-control">Boot style:</label>
 <select id="boot-chooser-control" name="model"></select>

 <label for="color-chooser-control">Color:</label>
 <select id="color-chooser-control" name="color" disabled></select>

 <label for="size-chooser-control">Size:</label>
 <select id="size-chooser-control" name="size" disabled></select>
</div>

Dropdown
menu for
the model

opdown
 for the
r, which
 initially
isabled

Dropdown menu for the size,
which is initially disabled
www.EBooksWorld.ir

285Making GET and POST requests
The previous model’s select element remains, but it has been joined by two more:
one for color and one for size, each of which is initially empty and disabled (by using
the disabled attribute).

 The style selection dropdown must now perform double duty. Not only must it
continue to fetch and display the boot details when a selection is made, but its change
handler must now also populate and enable the color-selection dropdown with the
colors available for whatever style was chosen.

 Let’s refactor the fetching of the details first. You want to use load(), but you also
want to force a GET, as opposed to the POST that you were initiating earlier. In order
to have load() induce a GET, you need to pass a string rather than an object to specify
the request parameter data. Luckily, with jQuery’s help, you won’t have to build that
string yourself. The first part of the change handler for the style dropdown gets refac-
tored like this:

var $bootChooser = $('#boot-chooser-control');
var $colorChooser = $('#color-chooser-control');
var $sizeChooser = $('#size-chooser-control');

$bootChooser.change(function() {
 $('#product-detail-pane').load(
 'actions/fetch-product-details.php',
 $(this).serialize()
);
 // More to follow
});

By using jQuery’s serialize() method, you create a string representation of the
value of the style dropdown, thereby coercing the load() method to initiate a GET,
just as you wanted.

 The second duty that the change handler needs to perform is to load the color-
choice dropdown with appropriate values for the chosen style and then enable it. Take
a look at the rest of the code to be added to the handler:

$colorChooser.load(

 'actions/fetch-color-options.php',

 $(this).serialize(),

 function() {

 $(this).prop('disabled', false);

 $sizeChooser

 .prop('disabled', true)

 .html('');

 }

);

This code should look familiar. It’s another use of load(), this time loading data from
a page named actions/fetch-color-options.php, which is designed to return a set of
formatted <option>s representing the colors available for the chosen style passed B.

Defines variables used
throughout the code

Provides data as a query string

Fetches and loads
color optionsB

Enables color controlC

Disables and
empties size controlD
www.EBooksWorld.ir

286 CHAPTER 10 Talk to the server with Ajax
 You also specify a callback to be executed when the GET request successfully
returns a response. In this callback, you perform two important tasks. First, you enable
the color-chooser control C. The call to load() injects the <option> tags, but once
populated, it would still be disabled if you didn’t enable it. Second, the callback dis-
ables and empties the size-chooser control D. Why? (Pause a moment and think
about it.)

 Even though the size control will already be disabled and empty the first time the
style chooser’s value is changed, what about later on? What if, after the customer
chooses a style and a color (which you’ll soon see results of in the population of the
size control), they change the selected style? The sizes displayed depend on the com-
bination of style and color, so the sizes previously displayed are no longer applicable
and don’t reflect a consistent view of what’s chosen. Therefore, whenever the style
changes, you need to blow the size options away and reset the size control to initial
conditions.

 Before you sit back and enjoy a lovely beverage, you have more work to do. You still
have to instrument the color-chooser dropdown to use the selected style and color val-
ues to fetch and load the size-chooser dropdown. The code to do this follows a famil-
iar pattern:

$colorChooser.change(function() {
 $sizeChooser.load(
 'actions/fetch-size-options.php',
 $colorChooser
 .add($bootChooser)
 .serialize(),
 function() {
 $(this).prop('disabled', false);
 }
);
});

Upon a change event in the color control, the size information is obtained via the
actions/fetch-size-options.php page, passing both the boot style and color selec-
tions, and the size control is enabled.

 There’s one more thing that you need to do. When each dropdown is initially pop-
ulated, it’s seeded with an option element with a blank value and display text along
the lines of “- choose a something -”. You may recall that in the previous phases of this
page, you added code to remove that option from the style dropdown upon selection.

 Well, you could add such code to the change handlers for the style and color drop-
downs and add instrumentation for the size dropdown (which currently has none) to
add that. But let’s be a bit more suave about it.

 One capability of the event model that often gets ignored by many a web developer
is event bubbling. Page authors frequently focus only on the targets of events and forget
that events will bubble up the DOM tree, where handlers can deal with those events in
more general ways than at the target level.
www.EBooksWorld.ir

287Making GET and POST requests
 If you recognize that removing the option with a blank value from any of the three
dropdowns can be handled in the exact same fashion regardless of which dropdown is
the target of the event, you can avoid repeating the same code in three places by
establishing a single handler, higher in the DOM, that will recognize and handle the
change events. This trick should remind you of our discussion about event delegation
in chapter 6.

 Recalling the structure of the document, the three dropdowns are contained
within a <div> element with an ID of selections-pane. You can handle the removal
of the temporary option for all three dropdowns with the following single listener:

$('#selections-pane').change(function(event){
 $('[value=""]', event.target).remove();
});

This listener will be triggered whenever a change event happens on any of the
enclosed dropdowns, and it will remove the option with the blank value within the
context of the target of the event (which will be the changed dropdown).

 With that, you’ve completed phase three of The Boot Closet, adding cascading
dropdowns into the mix, as shown in figure 10.8. You can use the same techniques in
any pages where dropdown values depend on previous selections. The page for this
phase can be found at http://localhost[:8080]/chapter-10/phase.3.html.

Figure 10.8 The third phase of The Boot Closet shows how easy it is to implement cascading
dropdowns.
www.EBooksWorld.ir

288 CHAPTER 10 Talk to the server with Ajax
The full code of the page is now as shown in the following listing.

<!DOCTYPE html>
<html>
 <head>
 <title>The Boot Closet - Phase 3</title>
 <link rel="stylesheet" href="../css/main.css" />
 <link rel="stylesheet" href="../css/bootcloset.css" />
 </head>
 <body>
 <div id="banner"></div>

 <h1>Choose your boots</h1>
 <div>
 <div id="selections-pane">
 <label for="boot-chooser-control">Boot style:</label>
 <select id="boot-chooser-control" name="model"></select>
 <label for="color-chooser-control">Color:</label>
 <select id="color-chooser-control" name="color" disabled></select>
 <label for="size-chooser-control">Size:</label>
 <select id="size-chooser-control" name="size" disabled></select>
 </div>
 <div id="product-detail-pane"></div>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 var $bootChooser = $('#boot-chooser-control');
 var $colorChooser = $('#color-chooser-control');
 var $sizeChooser = $('#size-chooser-control');

 $bootChooser
 .load('actions/fetch-boot-style-options.php')
 .change(function() {
 $('#product-detail-pane').load(
 'actions/fetch-product-details.php',
 $(this).serialize()
);

 $colorChooser.load(
 'actions/fetch-color-options.php',
 $(this).serialize(),
 function() {
 $(this).prop('disabled', false);
 $sizeChooser
 .prop('disabled', true)
 .html('');
 }
);
 });

 $colorChooser.change(function() {
 $sizeChooser.load(
 'actions/fetch-size-options.php',
 $colorChooser
 .add($bootChooser)

Listing 10.7 The Boot Closet, now with cascading dropdowns!
www.EBooksWorld.ir

289Taking full control of an Ajax request
 .serialize(),
 function() {
 $(this).prop('disabled', false);
 }
);
 });

 $('#selections-pane').change(function(event){
 $('[value=""]', event.target).remove();
 });
 </script>
 </body>
</html>

As you’ve seen, with the load() method and the various GET and POST jQuery Ajax
functions at your disposal, you can exert some measure of control over how your
request is initiated and how you’re notified of its completion. But for those times
when you need full control over an Ajax request, jQuery has a means for you to get as
picky as you want.

10.4 Taking full control of an Ajax request
The functions and methods you’ve seen so far are convenient for many cases, but
there may be times when you want to take control of all the nitty-gritty details into
your own hands. For example, you may want to be sure that each time your Ajax
request is performed, you’ll receive fresh data (that is, avoid the browser cache).
Another situation where the use of a lower-level method may come in handy is when
you need to perform an Ajax request but its result is important only if retrieved within
a certain amount of time. The last example we want to mention is that sometimes you
could receive the result of the Ajax call in a certain format—for example, as plain
text—but you prefer it to be converted into another one, such as HTML or XML.

 In this section, we’ll explore how jQuery lets you exert such dominion.

10.4.1 Making Ajax requests with all the trimmings

For those times when you want or need to exert fine-grained control over how you
make Ajax requests, jQuery provides a general utility function for making Ajax
requests: $.ajax(). Under the covers, all other jQuery features that make Ajax
requests eventually use this function to perform the request. Its syntax is as follows.

Function syntax: $.ajax

$.ajax(url[, options])
$.ajax([options])
Performs an Ajax request using the URL and the options passed to control how the request is
made and callbacks notified. In the second version of this utility function, the URL is specified in
the options. If no parameters are specified, the request is made to the current page.

Parameters

url (String) The string containing the URL to which the request is sent.
www.EBooksWorld.ir

290 CHAPTER 10 Talk to the server with Ajax
Looks simple, doesn’t it? But don’t be deceived. The options parameter can specify a
very large range of values that can be used to tune the operation of this function,
including the URL to which to send the request. These options (in general order of
their importance and the likelihood of their use) are defined in table 10.2.

Function syntax: $.ajax (continued)

options (Object) An object whose properties define the parameters for this operation.
See table 10.2 for details.

Returns
The jqXHR instance.

Table 10.2 Options for the $.ajax() utility function

Name Description

url (String) The string containing the URL to which the request is sent. If an empty
string is passed, the request is sent to the current URL at the time the method is
invoked.

method (String) The HTTP method to use. Usually either POST or GET. If omitted, the
default is GET. If you’re using versions of jQuery prior to 1.9.0, this same property
must be named as type instead.

data (String|Object|Array) Defines the values that will be sent to the server. If the
request is a GET, the values are passed as the query string. If a POST, the values
are passed as the request body. In either case, the encoding of the values is han-
dled by the $.ajax() utility function.

This parameter can be a string that will be used as the query string or response
body, an object whose properties are serialized, or an array of objects whose name
and value properties specify the name/value pairs.

dataType (String) In its basic form, it’s a keyword that identifies the type of data that’s
expected to be returned by the response. This value determines what, if any, postpro-
cessing occurs upon the data before being passed to callback functions. The valid
values are as follows:

xml—The response text is parsed as an XML document and the resulting XML
DOM is passed to the callbacks.
html—The response text is passed unprocessed to the callback functions.
Any <script> blocks within the returned HTML fragment are evaluated.
json—The response text is evaluated as a JSON string and the resulting
object is passed to the callbacks.
jsonp—Similar to json except that remote scripting is allowed, assuming the
remote server supports it.
script—The response text is passed to the callbacks. Prior to any callbacks
being invoked, the response is processed as a JavaScript statement or
statements.
text—The response text is assumed to be plain text.

The server is responsible for setting the appropriate content-type response
header. The default value is determined by jQuery depending on the response
obtained and will be one among xml, json, script, or html.

The value of this option can also be a string of space-separated values. In this
case, jQuery converts a data type into another. For example, if the response is text
and you want it to be treated as XML, you can write "text xml".
www.EBooksWorld.ir

291Taking full control of an Ajax request
cache (Boolean) If false, ensures that the response won’t be cached by the browser.
Note that this works correctly only with HEAD and GET requests. Defaults to true
except when dataType is specified as either script or jsonp.

context (Object|Element) Specifies an object or DOM element that is to be set as the con-
text of all callbacks related to this request. By default, the context is an object that
represents the Ajax settings used in the call.

timeout (Number) Sets a timeout for the Ajax request in milliseconds. The timeout period
starts at the point the $.ajax() call is made. If the request doesn’t complete
before the timeout expires, the request is aborted and the error callback (if
defined) is called.

global (Boolean) If false, disables the triggering of global Ajax events. These are jQuery-
specific custom events that trigger at various points or conditions during the pro-
cessing of an Ajax request. We’ll discuss them in detail in an upcoming section. If
omitted, the default (true) is to enable the triggering of global events.

contentType (String) The content type to be specified on the request. If omitted, the default is
application/x-www-form-urlencoded; charset=UTF-8, the same type
used as the default for form submissions.

success (Function|Array) A function or an array of functions invoked if the response to the
request indicates a success status code. The response body is returned as the
first parameter to this function and evaluated according to the specification of the
dataType property. The second parameter is a string containing a status value—
in this case, always the string "success". A third parameter provides a reference
to the jqXHR instance.

error (Function|Array) A function or an array of functions invoked if the response to the
request returns an error status code. Three arguments are passed to this func-
tion: the jqXHR instance, a status message string (in this case, one of "error",
"timeout", "abort", or "parseerror"), and an optional exception object,
sometimes returned from the jqXHR instance, if any. This handler is not called for
cross-domain script and cross-domain JSONP requests.

complete (Function|Array) A function or an array of functions called upon completion of the
request. Two arguments are passed: the jqXHR instance and a status message
string of "success", "error", "notmodified", "timeout", "abort", or
"parseerror". If either a success or error callback is also specified, this func-
tion is invoked after that callback is called.

beforeSend (Function) A function invoked prior to initiating the request. This function is passed
the jqXHR instance and can be used to set custom headers or to perform other
prerequest operations. Returning false from this handler will cancel the request.

async (Boolean) If specified as false, the request is submitted as a synchronous
request. By default, the value is true and the request is asynchronous. Cross-
domain requests and dataType: "jsonp" requests do not support synchro-
nous operation.

Table 10.2 Options for the $.ajax() utility function (continued)

Name Description
www.EBooksWorld.ir

292 CHAPTER 10 Talk to the server with Ajax
processData (Boolean) If set to false, prevents the data passed from being processed into
URL-encoded format. By default, the value is true and the value of data is URL-
encoded into a format suitable for use with requests of type application/
x-www-form-urlencoded.

contents (Object) An object of string/regular-expression pairs that determine how jQuery will
parse the response, given its content type.

converters (Object) An object containing dataType-to-dataType converters. Each con-
verter's value is a function that returns the transformed value of the response.

crossDomain (Boolean) Set it to true to force a crossDomain request on the same domain.
By default, its value is false for same-domain requests and true for cross-
domain requests.

headers (Object) An object of additional header key/value pairs to send along with
requests. By default, its value is an empty object.

dataFilter (Function) A callback invoked to filter the response data. This function is passed
the raw response data and the dataType value and is expected to return the
“sanitized” data.

ifModified (Boolean) If true, allows a request to succeed only if the response content has
not changed since the last request, according to the Last-Modified header. If
omitted, no header check is performed. Defaults to false.

isLocal (Boolean) Allow the current environment to be recognized as local (for example,
the filesystem). The protocols that jQuery recognizes as local by default are file,
*-extension, and widget.

jsonp (String) Specifies a query parameter name to override the default jsonp callback
parameter name of callback.

jsonpCallback (String|Function) Specifies the callback function name for a JSONP request. This
value will be used instead of the random name automatically generated by jQuery.

username (String) The username to be used in the event of an HTTP authentication request.

password (String) The password to be used in the case of an HTTP authentication request.

scriptCharset (String) The character set to be used for script and jsonp requests when the
remote and local content are of different character sets.

statusCode (Object) An object containing a set of numeric HTTP codes and functions to be
called when the response has the corresponding code. By default, its value is an
empty object.

xhr (Function) A callback used to provide a custom implementation of the XHR
instance.

xhrFields (Object) An object of name-value pairs to set on the native XHR object. By default,
the object is empty.

accepts (Object) The content type sent in the request header that tells the server what kind
of response it will accept in return. By default, its value depends on dataType.

Table 10.2 Options for the $.ajax() utility function (continued)

Name Description
www.EBooksWorld.ir

293Taking full control of an Ajax request
Don’t be scared by this list. We know it can be a bit overwhelming, but first of all, you
don’t have to remember all these options (this book and the official documentation
serve this purpose), and second, it’s unlikely that more than a few of them will be used
for any one request.

“No examples to use $.ajax()?” we hear you say. Don’t worry; the next chapter will be
dedicated to creating an Ajax-powered project.

 Sometimes it might be convenient if you could set default values for the options
presented in table 10.2 for pages where you’re planning to make a large number of
requests. Let’s discover how you can do that.

mimeType (String) A mime type to override the XHR mime type.

traditional (Boolean) If true, the traditional style of parameter serialization is used. See the
description of $.param() in chapter 9 for details on parameter serialization.

Table 10.2 Options for the $.ajax() utility function (continued)

Name Description

What’s JSONP all about?
JSON is a lightweight and heavily used data-interchange format. Websites usually
retrieve data in such a format by performing Ajax requests using an XHR object. This
mechanism abides by the same-origin policy, which dictates that certain types of data
transfer must be restricted to only occur if the target resource’s domain is identical
to the page making the request. To bypass this limit, a new mechanism called JSONP
was proposed in December 2005 by Bob Ippolito in his article “Remote JSON -
JSONP” (http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/).

JSONP (an abbreviation of “JSON with padding”) works by creating a script element
(either in HTML markup or inserted into the DOM via JavaScript), with a reference to
a resource that returns JSON data that’s wrapped by a function declared on the page
performing the request, whose name is provided by the script element. Usually the
name of the function is passed using a parameter named callback. For example,
you might create the following script element:

<script src="http://www.example.com/data?callback=myFunction"></script>

In this case, myFunction() is a function defined in the page that performs the
request that has to deal with the JSON returned. A server able to deal with such
requests will usually respond as shown here:

myFunction({"name": "jQuery in Action"});

This causes the myFunction() function to be executed with the data returned by the
server passed as an argument.

To learn more about JSONP, visit the website www.json-p.org.
www.EBooksWorld.ir

http://www.json-p.org
www.json-p.org
http://bob.ippoli.to/archives/2005/12/05/remote-json-jsonp/

294 CHAPTER 10 Talk to the server with Ajax
10.4.2 Setting request defaults

jQuery provides a way for you to define a default set of Ajax properties that will be
used when you don’t override their values. This can make pages that initiate lots of
similar Ajax calls much simpler. The function to set up the list of Ajax defaults is
$.ajaxSetup().

At any point in script processing this function can be used to set up defaults to be used
for all subsequent calls to $.ajax(). This method has to be used carefully because it’ll
also change the way plugins and other libraries you’re using on your web pages per-
form Ajax calls using $.ajax() and similar methods.

NOTE Defaults set with this function aren’t applied to the load() method.
Also, for utility functions such as $.get() and $.post(), the HTTP method
can’t be overridden by these defaults. For example, setting a default type of
"GET" won’t cause $.post() to use the GET HTTP method.

Let’s say that you’re setting up a page where, for the majority of Ajax requests (made
with the utility functions rather than the load() method), you want to set up some
defaults so that you don’t need to specify them on every call. You can write the follow-
ing as the first statement in the script element:

$.ajaxSetup({
 type: 'POST',
 timeout: 5000,
 dataType: 'html'
});

This would ensure that every subsequent Ajax call (except as noted previously) would
use these defaults, unless explicitly overridden in the properties passed to the Ajax
utility function being used. Specifically you’re setting that all the requests will be POST

Method syntax: $.ajaxSetup

$.ajaxSetup(options)
Establishes the passed set of option properties as the defaults for subsequent calls to $.ajax()
or its derived methods like $.get() and $.post(), including those performed by third-party
libraries or plugins.

Parameters

options (Object) An object instance whose properties define the set of default Ajax
options. These are the same properties described for the $.ajax() function in
table 10.2.
This function shouldn’t be used to set callback handlers for success, error, and
completion. (You’ll see how to set these up using an alternative means in an
upcoming section.)

Returns
undefined
www.EBooksWorld.ir

295Taking full control of an Ajax request
requests, that the maximum time after which the request has to time out is 5 seconds
(5000 milliseconds), and that the response expected has to be interpreted as HTML.

 Now, what about those global events we mentioned that were controlled by the
global option?

10.4.3 Handling Ajax events

Throughout the execution of Ajax requests, jQuery triggers a series of custom events
for which you can establish handlers in order to be informed of the progress of a
request or to take action at various points along the way. jQuery classifies these events
as local events and global events.

Local events are handled by the callback functions that you can directly specify
using the beforeSend, success, error, and complete options of the $.ajax() func-
tion or indirectly by providing callbacks to the convenience methods (which, in turn,
use the $.ajax() function to make the actual requests). You’ve been handling local
events all along, without even knowing it, whenever you’ve registered a callback func-
tion to any jQuery Ajax function.

Global events are triggered for any Ajax request on the web page. You can establish
event handlers for them via the on() method (just like any other event) used on
document (attaching them on any other element won’t work). The global events,
many of which mirror local events, are ajaxStart, ajaxSend, ajaxSuccess, ajax-
Error, ajaxStop, and ajaxComplete.

 The attached handlers receive three parameters: the jQuery.Event instance, the
jqXHR instance, and the object containing the options passed to $.ajax(). Exceptions
to this parameter list are noted in table 10.3, which shows the jQuery Ajax events in
the order in which they’re delivered.

Table 10.3 jQuery Ajax event types

Event name Type Description

ajaxStart Global Triggered when an Ajax request is started, as long as no other
requests are active. For concurrent requests, this event is trig-
gered only for the first of the requests. Only the jQuery.Event
instance is passed.

beforeSend Local Invoked prior to sending the request in order to allow modifica-
tion of the XHR instance. You can cancel the request by returning
false.

ajaxSend Global Triggered prior to sending the request in order to allow modifica-
tion of the XHR instance.

success Local Invoked when a request returns a successful response.

ajaxSuccess Global Triggered when a request returns a successful response.

error Local Invoked when a request returns an error response.
www.EBooksWorld.ir

296 CHAPTER 10 Talk to the server with Ajax
To make sure things are clear, we want to stress that local events represent callbacks
passed to $.ajax() (and its shortcuts), whereas global events are custom events that
are triggered and can be handled by established handlers (to document), just like
other event types.

 In table 10.3 we reported that ajaxStart and ajaxStop receive a jQuery.Event
instance as their only parameter. This parameter doesn’t have a real use case, so it isn’t
reported in the official documentation. But we still wanted to report it for the sake of
precision (and because we’ll use it in the next demo). You can read more about this
topic at https://github.com/jquery/api.jquery.com/issues/478.

 In addition to using on() to establish event handlers, jQuery provides a handful of
convenience functions to establish the handlers, as follows.

ajaxError Global Triggered when a request returns an error response. An optional
fourth parameter referencing the thrown error, if any, is passed.

complete Local Invoked when a request completes, regardless of its status. This
callback is invoked even for synchronous requests.

ajaxComplete
Global Triggered when a request completes, regardless of its status.

This callback is invoked even for synchronous requests.

ajaxStop Global Triggered when an Ajax request completes and there are no other
concurrent requests active. Only the jQuery.Event instance is
passed.

Method syntax: jQuery Ajax event establishers

ajaxComplete(callback)
ajaxError(callback)
ajaxSend(callback)
ajaxStart(callback)
ajaxStop(callback)
ajaxSuccess(callback)
Establishes the passed callback as an event handler for the jQuery Ajax event specified by the
method name.

Parameters

callback (Function) The function to be established as the Ajax event handler. The
function context (this) is the DOM element upon which the handler is
established. Parameters may be passed as outlined in table 10.3.

Returns
The jQuery collection.

Table 10.3 jQuery Ajax event types (continued)

Event name Type Description
www.EBooksWorld.ir

https://github.com/jquery/api.jquery.com/issues/478

297Taking full control of an Ajax request
Let’s put together a simple example of
how some of these methods can be used
to easily track the progress of Ajax
requests. The layout of our test page
(it’s too simple to be called a lab) is
shown in figure 10.9 and is available at
http://localhost[:8080]/chapter-10/
ajax.events.html.

 This page exhibits three controls: a
count field, a Good request button, and
a Bad request button. These buttons
are instrumented to issue the number of
requests specified by the count field.
The Good request button will issue
requests for a valid resource, whereas
the Bad request button will issue the
same number of requests for an invalid resource that will result in failures.

 In the code of this page, you define a number of event handlers as follows:

var $log = $('#log');
$(document).on(
 'ajaxStart ajaxStop ajaxSend ajaxSuccess ajaxError ajaxComplete',
 function(event) {
 $log.text($log.text() + event.type + '\n');
 }
);

This statement establishes a handler on the document object for each of the various
jQuery Ajax event types. The handler writes a message showing the event type that was
triggered into a textarea element having log as its ID.

 Leaving the request count at 1, click
the Good request button and observe
the results. You’ll see that each jQuery
Ajax event type is triggered in the order
described in table 10.3. But to under-
stand the distinctive behavior of the
ajaxStart and ajaxStop events, set the
count control to 2 and click the Good
request button. You’ll see the display
shown in figure 10.10.

 Here you can see how, when multi-
ple requests are active, the ajaxStart
and ajaxStop events are triggered only
once for the entire set of concurrent
requests, whereas the other event types
are triggered on a per-request basis.

Figure 10.9 The initial display of the page we’ll
use to examine the jQuery Ajax events by firing
multiple events and observing the handlers

Figure 10.10 When multiple requests are active,
the ajaxStart and ajaxStop events are called
around the set of requests rather than for each.
www.EBooksWorld.ir

298 CHAPTER 10 Talk to the server with Ajax
 Now try clicking the Bad request but-
ton to generate an invalid request and
observe the event behavior. You’ll obtain
the result shown in figure 10.11, which
proves that this time the ajaxError

event is fired.
 As you’ve seen, $.ajax() gives you a

lot of options to use, offering you great
flexibility, but there may be times (not a
lot, to be honest) when you want to do
even more. For instance, you may want
to handle requests based on some
options or modifying existing ones
before a request is made or to manage
the transfer of the data of an Ajax call. A
possible use case, as we’ll discuss in the next section with an example, is to prevent an
Ajax call to some domains you want to deny access to. Let’s see what jQuery has to
offer for such situations.

10.4.4 Advanced Ajax utility functions

In addition to all the methods and utility functions we’ve discussed so far, jQuery has
other goodies to offer. Probably you won’t have a lot of chances to see these two utility
functions in action, but because they exist, we want to introduce you to them. Say
“Hi!” to $.ajaxPrefilter() and $.ajaxTransport().

$.ajaxPrefilter() can be used to prevent an Ajax request based on some custom
options you set when you called $.ajax(). Its syntax is reported here.

Method syntax: $.ajaxPrefilter

$.ajaxPrefilter([dataTypes,] callback)
Handles custom Ajax options or modifies existing options before each request is sent and before
they’re processed by subsequent calls to $.ajax().

Parameters

dataTypes (String) An optional string containing one or more space-separated dataTypes
as described for the $.ajax() function in table 10.2. If this parameter is
passed, the handler is called only if the dataTypes of the request match.

callback (Function) A function to set default values for future Ajax requests. This function
receives three parameters: options containing the request options,
originalOptions that stores the options provided to the $.ajax() call
(without the defaults from ajaxSettings), and jqXHR, which is the jqXHR
object of the request.

Returns
undefined

Figure 10.11 The result of a bad request shows
that the ajaxError event is called.
www.EBooksWorld.ir

299Taking full control of an Ajax request
To see a concrete example of its use, imagine that you want to abort all the requests of
type XML directed to a certain set of domains. You may want to do so because you
know that they’ll always fail.

 To achieve this goal you can write code like the following, also available in the file
http://localhost:8080/chapter-10/$.ajaxPrefilter.html and as a JS Bin (http://jsbin
.com/bitiv/edit?js,console):

$.ajaxPrefilter('xml', function(options, originalOptions, jqXHR) {
 if ($.inArray(options.url, originalOptions.deniedDomains) !== -1) {
 console.log('Ajax request to ' + options.url + ' aborted');
 jqXHR.abort();
 } else {
 console.log('Ajax request performed');
 }
});

$.ajax(
 'http://www.google.com',
 {
 dataType: 'xml',
 deniedDomains: [
 'http://www.google.com',
 'http://www.manning.com'
]
 }
);

The aim of this function isn’t limited to changing the behavior of the Ajax calls based
on the options set. It can also be employed in cases where you want to redirect a
request from the original dataType to another, which is achieved by returning the
dataType you want.

 The other less-known function we want to mention is $.ajaxTransport(). This is a
low-level function that allows you to take control of how $.ajax() issues the transport
of a request’s data. Its syntax is shown here.

Function syntax: $.ajaxTransport

$.ajaxTransport([dataType,] callback)
Creates an object that handles the actual transmission of Ajax data.

Parameters

dataType (String) An optional string containing the data type to use. If this parameter is
passed, the handler is called only if the dataType of the request matches.

callback (Function) A function to return the new transport object to use with the
dataType provided. This function receives three parameters: options
containing the request options, originalOptions that stores the options
provided to the $.ajax() call (without the defaults from ajaxSettings), and
jqXHR, which is the jqXHR object of the request.

Returns
undefined

Prefilters requests based
on the dataType

specified and a set of
denied domains

If the domain is not
allowed, abort the

request.

Performs an
Ajax request
www.EBooksWorld.ir

http://jsbin.com/bitiv/edit?js,console
http://jsbin.com/bitiv/edit?js,console

300 CHAPTER 10 Talk to the server with Ajax
The callback function of this method has to return a new transport object, which is a
JavaScript object that provides two methods, send() and abort(), that are used inter-
nally by $.ajax().

 The send() function receives two parameters called headers and completeCall-
back. The former is an object of key-value pairs of request headers that the transport
can transmit if it supports it, whereas the latter is the callback used to notify $.ajax()
of the completion of the request.

 With this last somewhat complicated utility function, we’ve completed our over-
view of the methods and functions jQuery provides to deal with Ajax. The examples
shown so far are a good start to sink your teeth into jQuery’s way of dealing with Ajax.
Nonetheless you, our dear reader, deserve much more than that.

 The aim of the next chapter is to show a real-world example that employs the
power of Ajax to solve a common problem that you may face—and have probably
already faced.

10.5 Summary
Ajax is a key part of modern applications, and jQuery is no slouch in providing a rich
set of tools for you to work with.

 For loading HTML content into DOM elements, the load() method provides an
easy way to grab the content from the server and make it the content of any set of
matched elements. Whether a GET or POST method is used is determined by the type
of the data parameter provided.

 When a GET is required, jQuery provides the $.get() and $.getJSON() utility
functions. $.getJSON() is useful when JSON data is returned from the server. To force
a POST, the $.post() utility function can be used.

 When maximum flexibility is required, the $.ajax() utility function, with its
ample assortment of options, lets you control the most minute aspects of an Ajax
request. All other Ajax features in jQuery use the services of this function to provide
their functionality.

 To make managing the bevy of options less of a chore, jQuery provides the
$.ajaxSetup() utility function that allows you to set default values for any frequently
used options to the $.ajax() function (and for all of the other Ajax functions that use
the services of $.ajax()).

 To round out the Ajax toolset, jQuery also allows you to monitor the progress of
Ajax requests by triggering Ajax events at the various stages, allowing you to establish
handlers to listen for those events. You can bind the handlers using the on() method
or use the convenience methods: ajaxStart(), ajaxSend(), ajaxSuccess(), ajax-
Error(), ajaxComplete(), and ajaxStop().

 Thanks to this impressive collection of Ajax tools under your belt, it’s easy to
enable rich functionality in your web applications. With this in mind, let’s delve into
our real-world demo.
www.EBooksWorld.ir

Demo: an Ajax-powered
contact form
In the previous chapter we covered even more topics that belong to jQuery’s core.
In between the discussion of the methods, utility functions, and flags, we showed
you a lot of snippets of code, demos, and lab pages. All these examples should have
given you more confidence with the arguments treated.

 In chapter 7, we developed a demo to show you the power of jQuery in a real-
world example. It employed many of the methods and techniques you had learned
up to that point in the book. Then we introduced you to more advanced topics like
effects and animations, utility functions, and, even more important, Ajax. The lat-
ter is a key concept and also a great technique to adopt to build your web pages.

 In this chapter, we’ll tackle another real-world problem that many of you,
sooner or later, will face: creating a contact form. Relying on the knowledge you’ve

This chapter covers
 Effects with jQuery

 jQuery’s utility functions

 Making Ajax requests

 Creating an accessible form
301

www.EBooksWorld.ir

302 CHAPTER 11 Demo: an Ajax-powered contact form
acquired so far, you’ll build not only a complete working contact form but also one
that doesn’t require a reload of the page to inform the user about the failure or suc-
cess in sending the message. Just like the previous chapter, you’ll use PHP as the lan-
guage to develop the server-side part of the demo. If you don’t know much about PHP,
don’t worry. The code will be so simple and well explained that you won’t have a hard
time understanding it.

 With this in mind, and without any further ado, let’s start.

11.1 The features of the project
Before delving into the development of your project, we’ll discuss its requirements. The
demo needs only two pages: one that contains the form (that we’ll call index.html) and
another for the backend business logic (that we’ll name contact.php). You can play
with this example by accessing the chapter-11 folder of this book’s sources.

 To keep things as simple as possible but still interesting, you’ll create a form that
contains four fields: full name, email, subject of the message, and the message itself.
You want all of these fields to be mandatory. Finally, you want the email address to be
well formatted and all the other fields to have at least four characters.

 The form will be highly interactive and will check that the fields conform to the
constraints established without the need to reload the page. To achieve this goal,
you’ll employ some of the techniques you learned in the previous chapters, and in
particular the concepts discussed in the chapter dedicated to Ajax, to send requests to
the server.

 The tests to validate the input of the user will be performed for all the fields each
time the user clicks the Submit button. In addition, you’ll perform them on a single
field every time that field loses the focus. If a value isn’t valid, you’ll warn the user with
an informative message placed beneath the field.

Figure 11.1 shows an example of the feature described.

Why server-side validation?
Some of you might wonder why we decided to employ server-side validation for the
data instead of performing the task on the client using only JavaScript. The reason is
that every validation you perform with JavaScript is unreliable and unsafe because a
user could easily disable JavaScript. Thus, you’d end up allowing your users to send
invalid or potentially dangerous data or duplicate the same validations on the server.
To avoid these issues you’ll employ server-side validation while keeping the page
interactive through Ajax.

Figure 11.1 An example of an invalid
field and the error message shown
www.EBooksWorld.ir

303The features of the project
In addition to this feedback, when the user submits the form you’ll show a dialog box
with either an error message, shown in figure 11.2a, or a success message, shown in
figure 11.2b.

 The messages shown will be returned by the PHP page using a JSON object and
injected into the dialog using jQuery. The structure of the JSON returned is shown in
figure 11.3.

 The structure of the JSON object is straightforward. It’s made up of three proper-
ties: status, message, and info. status is a string used to specify whether the values
written by the user are all correct. If so, the value will be success; otherwise, the value
is error. The message property contains a string meant to be shown in the dialog box.
In the case of the validation of a single field, if the value of the latter is valid, message
will be an empty string. The info property provides an array containing objects
related to the fields of the form that are invalid. Each of these objects exposes two
properties: field and message. The aim of field is to specify the name of the field
that contains the error. message has the same role described before, but this time it’s
used to provide the specific error of the invalid field.

Figure 11.2a The dialog box displayed in
case the form contains one or more errors.

Figure 11.2b The dialog box displayed in
case all the form’s fields are valid and the
message is successfully sent. In the success
message the name of the sender (in this case,
Aurelio De Rosa) is included.

JSON

status

message

info

Info

0

1

2

…

N

N-th

field

message

Figure 11.3 The structure of the JSON object
returned by the PHP page that validates the
user’s inputs and sends the email
www.EBooksWorld.ir

304 CHAPTER 11 Demo: an Ajax-powered contact form
 Let’s move on to the next step: the markup of the form.

11.2 Creating the markup
In the previous section we discussed the constraints you want to apply to your form’s
fields. These constraints can be set using some of the new HTML5 attributes and types.
For example, to have an email field that is well formatted and mandatory, you can
have the following input in a form:

<input type="email" name="email" id="email" required />

In modern browsers, as soon as the user submits the form, this input will trigger the
tests you want. Unfortunately, old browsers like Internet Explorer 9 and below don’t
recognize the email type and the required attribute. When something isn’t recog-
nized, the default behavior of the browsers is to ignore it. In this case it’s like you
defined type="text" and the required attribute wasn’t specified. Therefore, you’re
on your own with these browsers.

 If you want to use these new HTML5 attributes and types and then fall back on
your own controls for older browsers, you can employ the technique you learned in
section 4.1:

if (!('required' in document.createElement('input'))) {
 // Set our own controls
}

In this demo, to keep things as simple as possible, you’ll pretend that you’ve forgotten
HTML5. You’ll always use your own controls and avoid using HTML5 attributes. With
these considerations in mind, take a look at the code of your form, as shown in the fol-
lowing listing.

<form id="contact-form" name="contact-form" class="box" method="post"
 action="contact.php">

 <div class="form-field">
 <label for="name">Full name:</label>
 <input name="name" id="name" />

 </div>
 <div class="form-field">
 <label for="email">Email:</label>
 <input name="email" id="email" />

 </div>
 <div class="form-field">
 <label for="subject">Subject:</label>
 <input name="subject" id="subject" />

 </div>
 <div class="form-field">
 <label for="message">Message:</label>
 <textarea name="message" id="message"></textarea>

Listing 11.1 The markup of the contact form
www.EBooksWorld.ir

305Implementing the PHP backend

 </div>
 <input type="submit" value="Submit"/>
 <input type="reset" value="Reset"/>
</form>

As you can see from the listing, each field is composed of three elements: a label, an
input (textarea for the message), and a span. The label element is used to specify
the name of the field and has the for attribute set to improve the accessibility of the
form. The <input>s and the <textarea> allow users to write the information
required. Finally, span is used to show the feedback illustrated in figure 11.1. In addi-
tion to these elements, you have the Submit and the Reset buttons at the bottom of
the form.

 The contact form isn’t the only component of the page. You also need a dialog box
to show the messages. The markup of the latter is pretty simple because it needs only a
title, a paragraph, and a button to close the dialog. These three elements are wrapped
into a container so you can treat them as a unique component.

 The HTML code of the dialog is shown here:

<div class="dialog-box">
 <h2 class="title"></h2>
 <p class="message"></p>
 <button>OK</button>
</div>

With this snippet we’ve completed the overview of the HTML code of index.html. If
you run the demo in its current state, it’s neither interactive nor useful because it
doesn’t do anything at all.

 Let’s fix this by adding the backend code. Don’t worry if you don’t understand
PHP; we’ll highlight only the key points.

11.3 Implementing the PHP backend
The backend of your project has two main responsibilities: validating the user’s input
and sending the email. The former is the most interesting one for your purposes
because, based on the specifications of your project, you have to deal with two differ-
ent cases. The first case is a partial request resulting from the loss of the focus of a
field. The second is a request containing the values of all the fields, resulting from the
click of the Submit button.

 To distinguish between these two cases, you’ll add a custom parameter called
partial to your partial requests (more on this when we discuss the JavaScript code).
In such situations, the PHP page has to skip all the validations but the one related to
the field that has lost the focus. Then it has to return a JSON object according to the
result of the test. The result will be stored in a variable called $result (we have such
an imagination!) and returned (using the echo language construct) using a PHP func-
tion called json_encode() as shown here:

echo json_encode($result);
www.EBooksWorld.ir

306 CHAPTER 11 Demo: an Ajax-powered contact form

Se
appro

erro

S
appro

erro
To distinguish between the partial and the complete request, you’ll employ a variable
called $isPartial whose value is set as follows:

$isPartial = empty($_POST['partial']) ? false : true;

To help you understand the backend code, let’s analyze the part of the code relative to
the name of the user, shown in the next listing.

if (!$isPartial && $_POST['name'] === '') {
 $result['info'][] = array(
 'field' => 'name',
 'message' => sprintf($messages['required'], 'Full name')
);

} else if ((!$isPartial || isset($_POST['name']))
 && strlen($_POST['name']) <= 3
) {

 $result['info'][] = array(
 'field' => 'name',
 'message' => sprintf($messages['short'], 'Full name', 4)
);
}

The most interesting parts of this listing are the two if conditions. In the first one,
you test if the current request isn’t partial (negating the $isPartial variable) and the
value is empty ($_POST['name'] === '') B. If both evaluate to true, you set the
appropriate error message specifying that the value is mandatory and thus must be
filled C.

 The second if D is a bit trickier. You want to verify whether the value of the field
is shorter than four characters (strlen($_POST['name']) <= 3) and if so, return an
error. But it’s when you want to perform the validation that things get interesting. You
have to verify the length if the request isn’t partial (!$isPartial), so all the fields must
be validated, or if the request is partial and it concerns the name field ($isPartial &&
isset($_POST['name'])). Based on this discussion, you might think that the final con-
dition to use is this:

!$isPartial || ($isPartial && isset($_POST['name']))

But the part on the right of the OR operator will only be evaluated if the part on the
left is false—that is, when the request is partial. Relying on this information, you can
shorten the condition, obtaining the following:

!$isPartial || isset($_POST['name'])

If the condition evaluates to true, you set the appropriate error message E.

Listing 11.2 The code for the name field test

The request isn’t partial
and the value is empty.

B

ts the
priate
r data

C

If the request isn’t
partial or if a name
has been entered
but it’s shorter than
four characters

D

ets the
priate
r data E
www.EBooksWorld.ir

307Field validation using Ajax

he
 Understanding this condition may be
hard at first, but reading the code care-
fully a couple of times should prove that
we wrote the code properly. In case
you’re still unsure, you can take a look at
the diagram in figure 11.4.

 The validation of the other fields is
similar to the one we just described, so
we’ll omit their discussion.

 Now that we’ve covered the backend
code, it’s time to delve into the most
interesting part of our project: the
JavaScript code. In the next section you’ll
discover how you can employ jQuery to
tie together the pieces you’ve built in
order to bring your page to life.

11.4 Field validation using Ajax
Your form is in place and you have a PHP page able to process the incoming requests.
In an old-fashioned, synchronous world this would be enough. The user fills the form
and clicks the Submit button to send the data to the server; the latter uses a server-side
language to process the data, validate them, and eventually produce an output page.
Today, users expect websites to be highly interactive, and you can meet this expecta-
tion using Ajax.

 The first feature you’ll develop is the ability to give feedback to the user about the
validity of a field, without the need to submit the form. This is a nice enhancement; it
saves your users’ bandwidth because there’s no need to reload all the assets.

 The idea is to offer a quick response to the user as soon as a given field loses the
focus. To implement it, you have to perform an Ajax request to the server containing
the value of the field that has just lost the focus. Then, if it isn’t valid, you have to show
the error returned by the server. In case an issue with the request occurs, you want to
log it on the console so that you can eventually debug the project. The code imple-
menting the described behavior is shown in the following listing.

$('input, textarea', '#contact-form').blur(function() {

 var $this = $(this);

 $.ajax(

 'contact.php',

 {

 method: 'POST',

Listing 11.3 Validating the data as the user fills the form

Attaches a handler for t
blur event of the input
and textarea elements

B

Performs an Ajax
request to the server

C

The page to which to send the dataD

Specifies that the HTTP method to use is POSTE

OK Error:
length<=3

Error:
value required

Partial?

Length<=3?

Set? Empty?

Yes No

NoYesNo

No

Yes

Yes

Figure 11.4 The process used to validate the
user’s input
www.EBooksWorld.ir

308 CHAPTER 11 Demo: an Ajax-powered contact form

S

ex
 dataType: 'json',

 data: $this.serialize() + '&partial=true',

 success: function(data) {

 if (data.status === 'error') {

 $this

 .next('.error')

 .text(data.info[0].message);

 }

 },

 error: function(data) {

 console.log(data);

 }

 }

);

});

The first thing you do in this snippet is to listen for the blur event triggered by either
an input or a textarea element of your form B. Inside the handler for this event you
send the request to the server employing the $.ajax() utility function because you
want to have more control over the request C.

 The first parameter you pass to this function is the page that will receive the data,
which is contact.php D. In addition to the page, you pass an object as the second
parameter to refine your request. Based on what you learned in the previous chapter,
if you want to use the HTTP request methods correctly, you have to use a POST request.
You’ll set the method property to POST E. The second property you’ll define is
dataType. You know that your PHP page will return a JSON object; hence you assign
the type of the data expected to the appropriate value (json) F. You also serialize the
field and its value, adding your special parameter (partial=true) to mark the request
as partial G. Once you’ve set all these properties, it’s time to establish the callback for
the two main statuses: success and error.

 In the success callback H, you check the value of the status property of the
object returned. If it’s error, you set the next span element (described in section
11.2) to the value of the message property of the first item of the info property I.
Inside the callback of the error status, which indicates an error in the request itself,
you log on the console the message obtained J.

 With this code you’re able to inform your users about the validity of their input.
Once an error has been shown beneath a field, the user may want to return to that field
to correct the error. As the field regains the focus, you have to hide the error. By doing
so, you prevent your users from feeling that even the new value they’re writing is incor-
rect. Implementing this functionality is easy. All you have to do is attach a handler on
the focus event for the same set of elements selected in previous code. Inside the han-
dler, you hide the span element. Because you have to operate on the same set of

ets the type
of data

pected from
the server F

Serializes the field to
send in the request’s
body with an
additional parameterG

Defines the
handler to run
after the result

is returned
successfully H

Sets the error
message for the
field if anyI

Defines a callback in case
of errors with the requestJ
www.EBooksWorld.ir

309Even more fun with Ajax

P

elements, you can save some lines by chaining the code to implement this feature (in
bold) with the one from listing 11.3. The relevant code for this change is as follows:

$('input, textarea', '#contact-form').blur(function() {
 // Code omitted here...
})
.focus(function() {
 $(this)
 .next('.error')
 .text('');
});

In this snippet and in listing 11.3, you use a few methods you learned throughout the
book. You use the blur() shortcut method to attach a handler to the blur event. You
employ the $.ajax() utility function to send an asynchronous request to the server.
The serialize() method allows you to obtain the name and the value of a field as a
string. The next() method lets you retrieve the span right after the field that lost the
focus. Finally, using the text() method, you set the text of the span element. These
are just examples of how using a few of jQuery’s methods and utility functions enables
you to create nice features for your web pages.

 Regardless of the validity of the values inserted, the user may still click the Submit
button. At the moment, this action triggers the classic synchronous request that you
want to avoid. Let’s see how you can change this default behavior.

11.5 Even more fun with Ajax
The ability to provide a quick feedback to your users is a nice feature. Nonetheless,
you want to instruct your form to know what to do in case the user clicks the Submit
button.

 To build this feature, you need to attach a handler to the submit event triggered by
the form. Your handler’s aim is to perform an Ajax request to contact.php, sending
all the values inserted. As soon as the server returns the result, you need to analyze it.
If it contains errors, you need to show each error message in the respective field’s
span. Then you need to show the dialog box containing the general message of the
request, which will indicate either success or failure. The code for this feature is
shown in the listing that follows.

$('#contact-form').submit(function(event) {

 event.preventDefault();

 $.post(

 'contact.php',

 $(this).serialize(),

 function (data) {

 if (data.status === 'error') {

 $.each(data.info, function(index, elem) {

 $('#' + elem.field)

Listing 11.4 The handler to manage the submit request via an Ajax request

Attaches a handler to the
submit event of the formBrevents

the
default
action C Sends an

asynchronous POST
request to the serverD

Sets the error messages
for each fieldE
www.EBooksWorld.ir

310 CHAPTER 11 Demo: an Ajax-powered contact form
 .next('.error')
 .text(elem.message);
 });
 }

 var $dialogBox = $('.dialog-box');

 $dialogBox
 .children('.title')
 .text(data.status);

 $dialogBox
 .children('.message')
 .text(data.message);

 $dialogBox
 .finish()
 .show();
 },
 'json'
);
});

This code isn’t very different from that shown in the previous section. Here you estab-
lish a listener for the submit event of the form B. In it you prevent the default
action—that is, sending a synchronous POST request—using the preventDefault()
method. You use it because you don’t want the POST request to be sent anyway after
executing your code C.

 The next operation you must perform is to send the request to the server. Once
again, you need it to be a POST request. This time you don’t need to specify a callback
for the error status, so you can use the $.post() utility function because its arguments
are enough for your needs D. The first argument passed is the page that will receive
the data, contact.php. Then you serialize the form so that the values contained in its
fields will be sent in the body of the request. The third parameter is the success call-
back. Finally, specify the type of data expected (json).

 Inside the success handler of $.post(), check the value of the status property of
the object returned. If it’s error, iterate over the info property to set the error mes-
sage for each field containing errors E.

 Regardless of the validity of the fields, you have to show general feedback to your
users using the dialog box you created. To do so, set the title and the message of the
dialog box F and then show it G. Before showing the dialog box, also ensure that
any previous animation is stopped by calling jQuery’s finish() method.

 With this code in place, when the user clicks the Submit button, the handler we
just discussed is executed. Then the dialog box is shown, reporting the success or fail-
ure message. At this point the interaction will hang. Can you image why? Take a few
seconds to think about it.

 The reason is that you haven’t instructed the button of the dialog to close (hide)
the dialog once the user clicks it. Let’s fix this issue.

Sets the title and
the message of
the dialog box

F

Stops the currently running
animation and shows the dialog boxG
www.EBooksWorld.ir

311Improving the user experience using effects
11.5.1 Hiding the dialog box

Closing the dialog box shouldn’t be hard at this point of your path. But before delving
into the code, let’s make a small optimization.

 In the handler of the Ajax request shown in listing 11.4, you defined the variable
$dialogBox:

var $dialogBox = $('.dialog-box');

Because you need to operate again on this element of the page, you can save some
keystrokes and slightly optimize the performance of your code by moving that state-
ment to the beginning of your code (at the top of the script element).

 To hide the dialog box when the button inside it is clicked, you need to attach a lis-
tener for the click event of the button itself. This can be done with the following
snippet:

$dialogBox.children('button').click(function() {
 $(this)
 .parent()
 .hide();
});

With this addition your demo does everything you planned. If you’re excited about
what you did so simply and you want to use this contact form in your next project, go
ahead.

 For those of you who want to go further, let’s see how you can improve the project
using some effects.

11.6 Improving the user experience using effects
Effects and animations are never an indispensable part of any application, in the sense
that with or without them people should still be able to perform the task they want.
Under some circumstances, though, they can be useful for improving the experience
of your users. In this project you can allow error messages and the dialog box to
appear and disappear gradually instead of being displayed and hidden in a snap.

 The first effect you can add affects the handler of the button of the dialog box. You
can update your code so that the dialog box will be hidden slowly. Instead of using
hide(), you can employ jQuery’s slideUp() method. You won’t pass any parameter to
it so that the effect will last 400 milliseconds (the default). The resulting code is shown
here:

$dialogBox.children('button').click(function() {
 $(this)
 .parent()
 .slideUp();
});

If you want to take control of the duration, feel free to pass a parameter to the
method.
www.EBooksWorld.ir

312 CHAPTER 11 Demo: an Ajax-powered contact form
 In the same way that you added an effect when the dialog is hidden, you can mod-
ify the way it’s shown. You can use slideDown() for this purpose, but for the sake of
diversity, you’ll pass an argument to show(). As you’ll recall from section 8.2.1, you
can pass either a number that specifies the number of milliseconds the effect will last
or a string with a value of slow, normal, or fast. You don’t want your users to wait too
long before the dialog appears, so you’ll pass the fast string and the effect will last
200 milliseconds.

 Other effects can be added to the error messages, but we’ll leave this to you as a
simple exercise to complete.

 The effects you introduced may please some users but annoy others. In an attempt
to provide a great experience for as wide an audience as possible, you have to keep
many different points of view in mind. Let’s see what you can do for those who don’t
want animations to run.

11.6.1 Toggling the effects

In chapter 8 we introduced you to jQuery’s flags. Among others, we discussed the
fx.off flag that allows you to globally disable all the animations. To give the user this
opportunity, you need to provide them an HTML element to use. In the demo you’ll
employ a selection box with two options, On and Off, but you’re free to use any other
HTML element that fits the purpose, like a check box or two radio buttons (one for
each option).

 The code of the select element is as follows:

<div class="animations-box">
 <label for="animations">Animations are:</label>
 <select id="animations">
 <option value="true" selected>On</option>
 <option value="false">Off</option>
 </select>
</div>

You’ll place this markup just above your form. Once you’ve done this, you need to add
the logic so that this select will actually do something. To achieve this goal you have
to listen for changes (using the change event) of the selected option and update the
fx.off flag accordingly. The following code serves the purpose:

$('#animations').change(function() {
 $.fx.off = $(this).val() === 'false';
})
.change();

As you may have noticed, you not only listened for the change event but also triggered
it just after having set the handler. This ensures that the flag is set to whatever default
value the <select> assumes. This trick comes in handy if you want to use the Off
option as the default value without the need to update the JavaScript code (setting the
fx.off flag to true).

 Before concluding this project, there’s one last point we want to discuss.
www.EBooksWorld.ir

313A note on accessibility
11.7 A note on accessibility
JavaScript is a powerful and ubiquitous language that allows you to perform an incred-
ible number of tasks. As you’ve seen in this book, jQuery enables you to take your
code to the next level, doing a lot with few lines of code. When developing for the
web, however, you have to keep in mind that not everyone is able or even allowed to
load and execute JavaScript. Some users may use a computer with JavaScript disabled.
Or their server may fail to serve a JavaScript library, a module, or a file in general. For
such occasions, as professionals of the web, you must have a plan B.

 In this project you used JavaScript to enhance the experience of your users. If your
JavaScript code fails to load for any reason, your contact form will still work. Your Sub-
mit button will be able to send the data of the form to the server. This is possible
because you developed it by building on top of the native behavior of HTML. The only
drawback is that the process will turn into a synchronous one and your users will see a
new page (or the same page with different content) served by the server. But is this
true? Will your users actually see a page?

 You developed your contact.php page so that it always serves a JSON object. If the
JavaScript code fails to load and the user submits the form, all they’ll see is an unintel-
ligible and unpleasant string representing the JSON object. What a shame! Is this
really the best you can do?

 As it turns out, you can slightly update your project to solve this issue. What you
need to do is edit contact.php so that it can distinguish whether the request is an
Ajax one or not. If it’s an Ajax request, it can serve the JSON object; otherwise, it
should use the data collected to fill a complete page and serve it to the user. Although
it may seem like a simple change, it improves the accessibility of the demo and can
save your users a lot of frustration. The presented approach, called progressive enhance-
ment, has many advantages and is valid for more than just this project.

 Planning for JavaScript failures isn’t the only way you can improve the accessibility
of your web pages. You can and should adopt WAI-ARIA (http://www.w3.org/TR/wai-
aria/) as well. Explaining it in detail is outside the scope of this book, but to give you an

Progressive enhancement
Progressive enhancement is a methodology that emphasizes accessibility, semantic
HTML markup, and external style sheet and scripting technologies. The expression
was coined by Steven Champeon in a series of articles and presentations for Web-
monkey and the SXSW Interactive conference in 2003.

This methodology evangelizes the creation of web pages so that everyone can
access the basic content and functionality and then provide an enhanced version to
those using a better technology (for example, a modern browser). It not only
improves the accessibility of web pages but can also improve their rank in the SERPs
(Search Engine Result Pages), so you should adopt this methodology in all of your
future projects.
www.EBooksWorld.ir

http://www.w3.org/TR/wai-aria/

314 CHAPTER 11 Demo: an Ajax-powered contact form
idea, it provides an ontology of roles, states, and properties that define accessible user
interface elements. These improve the accessibility and interoperability of web content
and applications. One of the exposed roles, dialog, is a perfect fit for your dialog box.
To employ it you have to add some attributes (highlighted in bold) to your markup as
follows:

<div class="dialog-box" role="dialog" aria-labelledby="dialog-title"
 aria-describedby="dialog-desc">
 <h2 id="dialog-title" class="title"></h2>
 <p id="dialog-desc" class="message"></p>
 <button>OK</button>
</div>

Another improvement can be obtained using the HMTL5 required attribute we cited
in the introduction of this chapter. Using it will enable User Agents that support
HTML5 to provide the information that the field is mandatory to the users. Assistive
Technologies (ATs) don’t always proceed at the same speed as the usual suspects
(Chrome, Firefox, and so on). To fill this gap, you can set the WAI-ARIA attribute
aria-required to the mandatory elements as shown here:

<input name="name" id="name" required aria-required="true" />

Even if the UA supports HTML5, adding some WAI-ARIA attributes won’t hurt.
 The enhancements discussed are just a small set of what you can do to improve the

accessibility of your contact form. But these changes should have opened your mind
on this matter enough to spur you to consider accessibility in your next project.

11.8 Summary
In this chapter we put your knowledge into action by developing a simple but fully
functional Ajax contact form. While developing the demo, we touched on a lot of top-
ics covered in this book. We used the selectors, including the context parameter,
which you learned in chapter 2. Methods like parent(), next(), and find(), intro-
duced in chapter 3, were used to refine the selection of elements. The text()
method, discussed in chapter 5, was employed to update the text of the span contain-
ing the errors. We employed some methods related to events, discussed in chapter 6,
to listen for and trigger them (like blur(), click(), and focus()). We added some
effects, covered in chapter 8, to let elements appear gradually. The $.each() utility
function, introduced in chapter 9, helped you in iterating over the array of errors.
Finally, we used the $.ajax() and the $.post() utility functions, discussed in chapter
10, to perform asynchronous requests to the server.

 This wrap-up should have demonstrated to you that what we’ve covered so far isn’t
theoretical but has a lot of applications in the real world. In this demo we employed at
least one concept from almost every chapter of this book.

 We hope that throughout these pages you’ve come to understand how each piece
of the jQuery library is important to achieve a certain goal (the contact form, in this
www.EBooksWorld.ir

315Summary
case) and how combining them gives you incredible power. We hope that you had fun
developing this project and that you’re more confident using the topics discussed.

 With this example we’ve completed the second part of the book. Starting with the
next chapter, we’ll delve into more advanced concepts like creating plugins and unit-
testing code.
www.EBooksWorld.ir

www.EBooksWorld.ir

Part 3

Advanced topics

In part 2 of this book we introduced you to an incredible number of jQuery
selectors, methods, and utility functions. If you’ve mastered them, with a bit of
time and a pinch of patience, you’re now able to create every feature you want.
In the last chapter, we proved to you that this is true and that with enough
knowledge, the only limit is your imagination.

 Although jQuery is powerful, it doesn’t have a method or a function for
everything your projects may require. To fill this gap jQuery has been built to be
easily extensible, allowing web developers to include their functionalities as if
they were part of the jQuery core. In the next chapters you’ll learn how to create
plugins for jQuery. Then we’ll discuss the Deferred object and its methods. The
Deferred object belongs to the jQuery core, but we’ve chosen to treat it sepa-
rately because it’s not easy to digest.

 Unless you’re developing a very small project—something that only you will
use—you’ll write code that needs to be refactored, updated, and changed in
some way. For such situations you want to be sure that all the code that used to
work before the changes won’t break after the updates. A way to ensure this is to
test your project. Because we’re talking about testing, why not adopt the same
solid unit-testing framework, called QUnit, that has been developed by the
jQuery team and employed to test the jQuery library? It sounds pretty reason-
able, doesn’t it? This is what we’ll do in chapter 14.

 Finally, in the last chapter of this book we’ll share with you some tools, tech-
niques, tips, and tricks that are useful when dealing with large projects and show
you how jQuery fits into them.
www.EBooksWorld.ir

318 PART 3 Advanced topics
 All the topics mentioned here make the difference between a midweight devel-
oper who knows how to use the library and a professional who’s able to improve and
optimize code while not forgetting to develop future-proof code (thanks to testing).
We’ll dissect these topics in the upcoming chapters.

 Without wasting your precious time, let’s dive into the advanced topics of this
book.
www.EBooksWorld.ir

When jQuery
is not enough...

plugins to the rescue!
Over the course of this book, you’ve seen that jQuery gives you a large toolset of
useful methods and utility functions, and you’ve also seen that you can easily tie
these tools together to give your pages whatever behavior you choose. Sometimes
that code follows common patterns you’ll want to use again and again. When such
patterns emerge, it makes sense to capture these repeated operations as reusable
tools that you can add to your original toolset. In this chapter, we’ll explore how to
capture these reusable fragments of code as extensions to jQuery called jQuery plug-
ins. A jQuery plugin comes in two forms: as a jQuery method for jQuery collections
(like find() or animate()) or as a utility function (like $.grep() and $.extend()).
In this chapter we’ll cover both flavors.

This chapter covers
 Why extend jQuery with custom code

 Using third-party plugins

 Guidelines for effectively extending jQuery

 Writing custom utility functions

 Writing custom methods for jQuery objects
319

www.EBooksWorld.ir

320 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
 When developing a project, it’s unlikely that you have the time to build everything
you need from scratch, especially if the code has been developed by someone else.
Therefore, we’ll also introduce some popular plugins you may want to look at.

 But before any of that, let’s discuss why you’d want to pattern your own code as
extensions to jQuery in the first place.

12.1 Why extend jQuery?
If you’ve been paying attention while reading through this book, you undoubtedly
have noted that adopting jQuery for use in your pages has a profound effect on how a
script is written within a page.

 jQuery promotes a certain style for a page’s code: generally forming a jQuery col-
lection and then applying a jQuery method, or chain of methods, to that collection.
When writing your own code, you can write it however you please, but most experi-
enced developers agree that having all of the code on a site, or at least the great
majority of it, adhere to a consistent style is a good practice and one that we recom-
mend. One good reason to pattern your code as jQuery extensions is to help maintain
a consistent code style throughout the site. Another good reason is that by creating a
reusable component, your future projects will benefit from it and other developers
can also benefit if you publish the code on the web.

 The final reason we’ll consider (though it’s possible others could list even
more reasons) is that, by extending jQuery, you can use the existing code base that
jQuery makes available to you. For example, by creating new jQuery methods, you
automatically inherit the use of jQuery’s powerful selector mechanism and the cross-
compatibility fixes to browser issues the library provides. Why write everything from
scratch when you can layer on such powerful tools?

 Given these reasons, it’s easy to see that writing your reusable components as
jQuery extensions is a smart way of working. In the remainder of this chapter, we’ll
examine the guidelines and patterns that allow you to create jQuery plugins and
you’ll create a few of your own.

 Before you start learning how to develop your own extensions, let’s see how you
can find, judge, and use other developers’ plugins.

12.2 Where to find plugins
After several months’ hard work, the jQuery team announced the release of the new
(improved!) jQuery plugin registry with an official blog post (http://blog.jquery.com
/2013/01/16/announcing-the-jquery-plugin-registry/) published on January 16,
2013. The new registry, accessible at http://plugins.jquery.com/, replaced the old
one that was affected by a lot of problems. But circa two years later, the new registry
was set in read-only mode, meaning that new plugin releases won’t be processed. As a
replacement for the new registry, the jQuery team recommends using npm (https://
www.npmjs.com/).
www.EBooksWorld.ir

http://blog.jquery.com/2013/01/16/announcing-the-jquery-plugin-registry/
http://blog.jquery.com/2013/01/16/announcing-the-jquery-plugin-registry/
http://plugins.jquery.com/
https://www.npmjs.com/
https://www.npmjs.com/

321Where to find plugins
 Accessing the URL, you’ll be prompted with a clean interface that shows a search
bar that you can use to find the plugin(s) you need. Once the results of a search are
returned, you can click a name to find a lot of other information on the plugin,
including the link to download it.

 Although npm is the recommended channel where you can find the plugins, it’s
not the only one. An alternative with a nice UI but with a rather limited number of
plugins is Unheap (http://www.unheap.com/).

 If neither of them satisfies you or you can’t find what you need, keep in mind that
Google is your friend. But also remember to verify the source. After all, you’re going
to include one or more JavaScript files in your website! Not satisfied yet? Wait until the
next few sections and we’ll instruct you on how to create your own plugin.

 Knowing where to look to find jQuery’s extensions isn’t enough. You don’t want
your well-crafted project to be filled with bad code or, even worse, to be slowed down
by an incorrectly developed plugin. The next section gives you some tips on how to
evaluate a plugin.

12.2.1 How to use a (well-written) plugin

When working on a project, relying on a third-party plugin is a smart way to save time
because you don’t have to build, test, and maintain it on your own. But is this always
true? Based on our experience, the answer is no.

 Adding a plugin to your project means adding a dependency to it. Choosing a
plugin is an important decision because your whole project will be built on top of it.
You should take some time to check several factors before committing to the use of a
given plugin. Some of these factors are strictly related to the code whereas others are
external. The combination of these clues gives you an idea of the stability and the
quality of the component. Let’s start analyzing some code-external factors.

CODE-EXTERNAL FACTORS

You rely on third-party components to free yourself from the burden of developing
one or more features from scratch. But if you don’t pay attention to the component
you’re using, you may find yourself losing more time than you saved in fixing existing
bugs or understanding how to use it. Although we’re talking about jQuery plugins,
keep in mind that these points are also applicable to tools, libraries, and any third-
party software.

NOTE For a more in-depth discussion on this and related topics we suggest
you take a look at the chapter “Writing Maintainable, Future-Friendly Code”
by Nicholas Zakas included in the fourth Smashing ebook titled New Perspec-
tives on Web Design (2013, https://shop.smashingmagazine.com/smashing-
book-4-new-perspectives-on-web-design.html).

The first thing to look at is the last time the plugin was updated. It gives you an idea of
how much attention the author gives to this project. A plugin not updated for a while
may indicate an abandoned plugin, something you want to avoid. Before using it take
www.EBooksWorld.ir

http://www.unheap.com/
https://shop.smashingmagazine.com/smashing-book-4-new-perspectives-on-web-design.html
https://shop.smashingmagazine.com/smashing-book-4-new-perspectives-on-web-design.html

322 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
the time to look at its changelog. The last update isn’t always a good metric because a
plugin built for a certain version of jQuery will still work in a new minor or patch
release (more on these terms at http://semver.org/) because for the most part they’re
backward compatible. The case where an update breaks a plugin leads us to the sec-
ond point.

 The second factor to consider is the rate at which an author tackles issues. Software
is never perfect and an issue can arise for many reasons. The speed at which the
author fixes them is very important. If a plugin stops working due to an update of
jQuery and you’re using it, the lack of a rapid action forces you to either keep using
the old version of jQuery or to fix the issue yourself, nullifying any advantage leading
to the externalization of a feature.

 Another important factor is the version of the plugin. Unless it’s developed by a
newbie, the version of the library has a precise meaning (described in the link pro-
vided previously). Therefore, don’t ever use a 0.1.0 version of a plugin, unless you
want to try it for fun. Often, software that hasn’t reached version 1.0.0 is subject to a
lot of changes that break backward compatibilities.

 The fourth point is to check who the author is. Is it a company or a lone gunner?
Does the company or the developer have a good reputation? Usually components
developed by a company are well maintained because companies can invest money,
whereas a single developer usually works on these projects in their spare time. But
even if the author is a single developer, if they’re an established authority, it can be
worthwhile to use it.

 Another factor is the documentation of the plugin. If it’s poorly documented or
lacks any documentation, it’s better to continue your research. Such extensions will
force you to invest a lot of time trying to understand how they work and how to use
them.

 In conclusion, keep in mind that not all jQuery plugins have the same quality and
it’s your responsibility to check them out to the best of your knowledge.

 The factors analyzed in this section are important but represent only one side of
the coin. To correctly evaluate a plugin, you have to have a good grasp of its code, too.
The point here isn’t to suggest that you go on the web and read the entire code of
each plugin you want to use. This practice may take many hours of work. The idea is
to have an overview of the quality of the source, parsing a sample, in the attempt to
spot flags of bad code. In order to have the knowledge to evaluate the source’s quality,
you need to be instructed on the principles required to create a plugin. Therefore, we
ask you to wait until the next few pages where we’ll mentor you on the creation of a
plugin through a step-by-step guide.

 Now let’s take a look at how you can use a third-party plugin.

USING A PLUGIN

Once you’ve found a plugin that fits your needs and you’ve checked that it deserves
your attention, you can add it to your project. Using a well-written plugin is usually
www.EBooksWorld.ir

http://semver.org/

323Where to find plugins
easy. All you have to do is to store it in a folder accessible by the web server and add it
after the jQuery library.

 As the first example, we’ll take a look at the jQuery Easing plugin (https://
github.com/gdsmith/jquery.easing) that we introduced in section 8.3 when talking
about easing functions. Once you’ve downloaded it, store it in a folder that your page
can access. For example, you may store it in a folder called “javascript.” Then you have
to add it to your page using a script element, after the jQuery library. If you add the
plugin before jQuery, you’ll receive an error and all the JavaScript of your page will
stop working. In your page you should have markup that resembles this:

<script src="javascript/jquery.1.11.3.min.js"></script>
<script src="javascript/jquery.easing.min.js"></script>

With the markup in place, what happens next depends on the plugin used. In this
case, you don’t have any new jQuery methods or utility functions to call. jQuery Easing
only injects easing functions into the jQuery core, allowing you to use them as if they
were native.

 This plugin is a special case because many plugins require you to add some
markup in your web page or to add a few classes to an element or even an ID. To see
one of these extensions in action, you’ll take a look at slick (https://github.com/
kenwheeler/slick), a jQuery plugin used to create carousels. In the next example
you’ll write the code to create a carousel of images.

 The first step required to use slick is to add its JavaScript file after the jQuery
library. If you stored it in a folder called “javascript” at the same level of your HTML
page, you’ll have markup like the following:

<script src="javascript/jquery.1.11.3.min.js"></script>
<script src="javascript/slick.min.js"></script>

After adding the JavaScript file, you also have to add a CSS file included in slick. As
you learned in chapter 1, the JavaScript files should always be located before the clos-
ing </body> tag, whereas the CSS files should be placed in the <head> of the page.
If you’ve stored the CSS file in a folder called “css,” you should have code like the
following:

<head>
 <link rel="stylesheet" href="css/slick.css" />

Once you’ve finished doing this, you have to set up the markup of your page. Because
you want a carousel of images, you have to wrap the images with a container element
(in this case you’ll use a <div>) as shown here:

<div class="carousel">

</div>
www.EBooksWorld.ir

https://github.com/gdsmith/jquery.easing
https://github.com/gdsmith/jquery.easing
https://github.com/kenwheeler/slick
https://github.com/kenwheeler/slick

324 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
With this code in place, the only step left is to call the slick() method to run the
magic:

<script>
 $('.carousel').slick();
</script>

This statement relies on the default configuration of the plugin, but you can change it
to fit your need. If you want to deepen your knowledge about this plugin, you can take
a look at the repository and its documentation.

 These two examples should give you an idea of what you should expect when inte-
grating a third-party plugin into your web pages. Now, before you start to create your
own extensions, let’s take a brief look at some popular and useful jQuery plugins.

12.2.2 Great plugins for your projects

This section gives you a short list of some of the most popular and most used jQuery
plugins that you can use in your projects to perform common tasks. This isn’t a com-
prehensive list by any means, but it’s a good start.

 The first plugin we suggest is typeahead.js (https://github.com/twitter/typeahead.js).
It’s a fast and full-featured autocomplete plugin developed by Twitter. This means that
you can pass it a set of data and it will allow you to have an <input> that shows sugges-
tions to the users while they’re typing.

 The second jQuery extension worth mentioning is isotope (https://github.com/
metafizzy/isotope). It allows you to filter and sort UI elements using nice animations
with different types of placement. Some examples are row, column, and the famous
masonry.

 Another very interesting plugin is pickadate.js (https://github.com/amsul/
pickadate.js). It’s a mobile-friendly, responsive, and lightweight jQuery date and time
input picker. It adds a widget to an <input> so that once a user focuses on the ele-
ment, a date or time picker is shown to facilitate the selection.

 The fourth plugin in this list is Chosen (https://github.com/harvesthq/chosen).
It’s a library for making long, unwieldy select boxes more user-friendly and nicer
looking.

 Velocity (https://github.com/julianshapiro/velocity) is a jQuery plugin that re-
implements jQuery’s animate() method to improve its performance and include new
features.

 The last two plugins we suggest are jCarousel (https://github.com/jsor/jcarousel)
and Magnific Popup (https://github.com/dimsemenov/Magnific-Popup). jCarousel
is defined as a plugin to create a carousel that works with other objects in addition
to images. Magnific Popup is a light and responsive light-box script with a focus on
performance.

 These plugins have become popular because they solve a real-world problem in a
smart and efficient way or because they tackled the problem before any other plugin.
Regardless of the reason, we’re sure that you want your plugins to be as successful as
www.EBooksWorld.ir

https://github.com/twitter/typeahead.js
https://github.com/metafizzy/isotope
https://github.com/metafizzy/isotope
https://github.com/amsul/pickadate.js
https://github.com/amsul/pickadate.js
https://github.com/harvesthq/chosen
https://github.com/julianshapiro/velocity
https://github.com/jsor/jcarousel
https://github.com/dimsemenov/Magnific-Popup

325The jQuery plugin authoring guidelines
the ones presented here. To achieve this goal, you need to learn how to develop a
good plugin. That’s exactly the aim of the next section.

12.3 The jQuery plugin authoring guidelines
This section contains a set of guidelines to help you to name and structure a plugin.
These guidelines ensure not only that your code plugs into the jQuery architecture
properly, but also that it’ll work and play well with other jQuery plugins and even
other JavaScript libraries. Here we’ll outline the basics and the best practices to follow
when authoring a plugin.

 Extending jQuery takes one of two forms:

 Methods to operate on a jQuery collection (what we’ve been calling jQuery
methods)

 Utility functions defined directly on $ (the alias for jQuery)

In the remainder of this section, we’ll go over some guidelines that are common to
both and then we’ll dedicate other sections to each specific type.

 To help you with the learning process, as you discover more rules to follow you’ll
also put them into action. The goal is to build Jqia Context Menu (Jqia being short for
jQuery in Action), a jQuery plugin to show a custom context menu on one or more
specified elements of a page. The context menu is the one that’s shown on a PC screen
when you click the right mouse button on a page or press the menu key on the page
when it’s focused.

 For the context menu, the plugin will use an element of the page (typically a list),
hidden by default, that has to be set up in the page. The element of the page acting as
the menu will be retrieved through its ID. Your plugin will allow two actions, so it’ll
have two methods: one to initialize the plugin and one to destroy the effect. When ini-
tialized, the plugin will override the default behavior of the right click (which shows
the usual context menu) to display the custom menu. When performing the destroy
action, the plugin will clean up the resources and restore the default behavior.

 Finally, to make things even more interesting, you’ll enable developers who use
your plugin to override the left click too. In this case, regardless of the mouse button
clicked, the custom menu will be displayed. By default, this option will be disabled.

 Now that we’ve explained our plan, roll up your sleeves because you have a lot of
work to do.

12.3.1 File- and function-naming conventions

The first decision to make when developing a plugin is its name. When naming a
plugin, you must avoid name collisions. It’s important that the plugin you develop
doesn’t conflict with other files or plugins, which would lead to big headaches for web
page authors.

 The guideline recommended by the jQuery team is simple but effective, advocat-
ing the following format:
www.EBooksWorld.ir

326 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
 Choose a name for the plugin that’s short but also reasonably descriptive.
 Prefix the filename with jquery.
 Optionally add the name of the company or the suite.
 Follow that with the name of the plugin.
 Optionally include the version number of the plugin.
 Conclude with .js.

Taking our Jqia Context Menu plugin as an example, if you want to follow all these
recommendations, you should name the file jquery.jqia.contextMenu-1.0.0.js.

 The use of the jquery prefix eliminates (ideally) any possible name collisions with
files intended for use with other libraries. After all, anyone writing non-jQuery plugins
has no business using the jquery prefix, but that leaves the plugin name itself still
open for contention within the jQuery community. In our example, the name of the
plugin consists of more than a word (at this point a lot of names are already taken).
We wrote the words using camel-case syntax, but you can use lowercase for all the
words or even separate them by dots or dashes. Which one you use is a matter of per-
sonal taste, and our suggestion is to pick a convention and stick with it.

 One way to ensure that your plugin filenames are unlikely (you can never be 100%
sure) to conflict with others is to subprefix them with a name that’s unique to you or
your organization or a suite. For example, if we wanted to subprefix plugins that
belong to this book, we could use the filename prefix jquery.jqia, as you did in the pre-
vious example.

 The third point of the list is optional for a good reason. Let’s say that some devel-
opers are using a plugin we’ve published. Things are going nice and our plugin is suc-
cessful. We want to ship a new version having new features, and here comes the
problem. Our file is called something like jquery.jqia.contextMenu-1.1.0.js. Thus, the
developers using our plugin not only have to update the JavaScript file but also have
to change the markup to update the version suffix. It would have been much simpler
if our plugin file was called jquery.jqia.contextMenu.js, specifying the version with a
comment inside the file. Doing so, the developers could have replaced only the
JavaScript file without updating the markup.

 These explanations should clarify why you need such rules. You can put them into
action with your plugin project. You’ll ignore the optional rule about the version, so
go on and create a new file, naming it jquery.jqia.contextMenu.js.

 In this section we stressed the importance of naming files and how you can’t make
any assumption about what’s been used in other developers’ websites. The same con-
cern applies to our lovely $ shortcut. Let’s dig in.

12.3.2 Beware the $

Having written a fair amount of jQuery code, we’ve seen how handy it is to use the $
alias in place of jQuery. But when writing plugins that may end up in other people’s
pages, we can’t be quite so cavalier. As plugin authors, we have no way of knowing
www.EBooksWorld.ir

327The jQuery plugin authoring guidelines
whether a web developer intends to use the $.noConflict() function (discussed in
section 9.2) to allow the $ alias to be used by another library (most notably Prototype).
We could employ the jQuery name in place of the $ alias, but dang it, we like using $.

 In section 9.2 we introduced a design pattern called IIFE (Immediately-Invoked
Function Expression), covered in more details in the appendix, which is often used to
make sure that the $ alias refers to the jQuery name in a localized manner, without
affecting the remainder of the page. This pattern can and should also be employed
when defining jQuery plugins, as follows:

(function($){
//
// Plugin definition goes here
//
})(jQuery);

By passing jQuery to a function that defines the parameter as $, the latter is guaran-
teed to reference jQuery within the body of the function. You can now happily use $
to your heart’s content in the definition of the plugin.

 With this new wisdom in mind, open the jquery.jqia.contextMenu.js file and put
the previous snippet inside it (you can omit the comments if you want).

 Now take a look at another guideline for authoring plugins that deal with parameters.

12.3.3 Taming complex parameter lists

Most plugins tend to be simple affairs that require few, if any, parameters. Intelligent
defaults are supplied when optional parameters are omitted, and parameter order can
even take on a different meaning when some optional parameters are omitted.

 jQuery’s on() method is a good example of such behavior; if the optional data
parameter is omitted, the listener function, which is normally specified as the fourth
parameter, can be supplied as the third. If the selector parameter is missing, too, you
can even pass the handler as the second argument. The dynamic nature of JavaScript
allows you to write such flexible code, but this sort of thing can start to break down
and get complex (for both web developers and plugin authors) when the number of
parameters grows larger. The possibility of a breakdown increases when many of the
parameters are optional.

 Consider a function whose signature is as follows:

function complex(p1, p2, p3, p4, p5, p6, p7) {
 // Code here...
}

This function defines seven parameters. Now let’s say that all but the first are optional.
There are too many optional parameters to make any intelligent guess about the inten-
tion of the caller when optional parameters are omitted. If a caller of this function is
omitting only trailing parameters, this isn’t much of a problem, because the optional
trailing arguments can be detected as undefined. But what if the caller wants to specify
p7 but allow p2 through p6 by default? And what if some of the omitted parameters
www.EBooksWorld.ir

328 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
accept the same data type (nullifying any chance to resort to the data type of the values
passed)? Callers would need to use placeholders for any omitted parameters and write

complex(valueA, null, null, null, null, null, valueB);

Yuck! Even worse is a call such as

complex(valueA, null, valueC, valueD, null, null, valueB);

Web developers using this function are forced to carefully keep track of counting
nulls and the order of the parameters; plus, the code is difficult to read and under-
stand. But short of not allowing the caller so many options, what can you do?

 Again, the flexible nature of JavaScript comes to the rescue. A pattern that allows
you to tame this chaos has arisen among the page-authoring communities—the options
hash. Using this pattern, optional parameters are gathered into a single parameter in
the guise of a JavaScript Object instance, whose property name-value pairs serve as the
optional parameters.

 Using this technique, our first example could be written as

complex(valueA, {p7: valueB});

The second would be as follows:

complex(valueA, {
 p3: valueC,
 p4: valueD,
 p7: valueB
});

Much, much better!
 You don’t have to account for omitted parameters with placeholder nulls, and you

also don’t need to count parameters. Each optional parameter is conveniently labeled
so that it’s clear exactly what it represents (when you use better parameter names than
p1 through p7, that is).

NOTE Some APIs follow this convention of bundling optional parameters
into a single options parameter (leaving required parameters as standalone
parameters). Others bundle the complete set of parameters, required and
optional alike, into a single object. We prefer to use the second approach
because the amount of required parameters may increase over the time, so
this solution is more future-proof.

Although this is obviously a great advantage to the caller of your complex functions,
what about the ramifications for you as the plugin author? As it turns out, you’ve
already seen a jQuery-supplied mechanism that makes it easy for you to gather these
optional parameters together and merge them with default values. Let’s reconsider
our example function with a required parameter and six optional parameters. The
new, simplified signature is

complex(p1, options)
www.EBooksWorld.ir

329The jQuery plugin authoring guidelines
Within this function, you can merge those options with default values with the handy
$.extend() utility function. Consider the following:

function complex(p1, options) {
 var settings = $.extend({
 p2: defaultValue1,
 p3: defaultValue2,
 p4: defaultValue3,
 p5: defaultValue4,
 p6: defaultValue5,
 p7: defaultValue6
 },
 options || {}
);

 // Remainder of the function...
}

By merging the values passed by the web developer in the options parameter with an
object containing all the available options with their default values, the settings vari-
able ends up with the default values superseded by any explicit values specified by the
web developer.

TIP Rather than creating a new settings variable, you could use the
options reference itself to accumulate the values. That would cut down on
one reference on the stack, but let’s stay on the side of clarity for the moment.

In the previous code you guard against an options object that’s null or undefined
with || {}, which supplies an empty object if options evaluates to false (as you know
null and undefined do). Easy, versatile, and caller-friendly!

 Now that you’ve moved another step forward in the process of learning how to cre-
ate beautiful and well-written plugins, let’s apply it to your project. Recalling the
description of Jqia Context Menu, you’ll remember that you need an optional param-
eter that specifies whether the custom menu must also be displayed when the left
mouse button is clicked. In addition to this option, you need to specify the ID of the
element that will act as the menu. Although you need only two parameters, one man-
datory and one optional, you’ll use the approach of passing a single object to your
plugin. The reason, as we mentioned before, is that this approach is more future-
proof.

 Turning this description into code, which must replace the contents of the
JavaScript file you’re working on, results in the following:

(function($) {
 var defaults = {
 idMenu: null,
 bindLeftClick: false
 };
})(jQuery);
www.EBooksWorld.ir

330 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
In this code you define an object, called defaults, containing a property to specify
the ID of the menu (idMenu) and another one to know if the click with the left button
should be overwritten (bindLeftClick).

 At the moment you’ve only defined an object with two properties, so there’s noth-
ing special here. Let’s move on to the guidelines regarding how you should develop
the methods of your plugin.

12.3.4 Keep one namespace

Similarly to what you’ve seen in regard to naming files, you should ensure the names
you give to your functions, whether they’re new utility functions or methods for the
jQuery collections, don’t collide with methods of other extensions you might be
using.

 When creating plugins for your own use, you’re usually aware of what other com-
ponents you’ll use; unless your project is huge, it’s an easy matter to avoid any naming
collisions. What if you’re creating your plugins for public consumption? What if your
plugins, which you initially intended to use privately, turn out to be so useful that you
want to share them with the rest of the community?

 To better understand this concept, let’s see a concrete example. As we said, Jqia
Context Menu needs two methods: init() and destroy(). You might be tempted to
add the following code in your JavaScript file:

var init = function(options) {
 // Code here...
};
var destroy = function() {
 // Code here...
};

Unfortunately this isn’t what you really need.
 One of the main points of using an IIFE is to create an environment where vari-

ables and functions declared inside the IIFE can’t be accessed from outside. This
behavior is indeed useful for your defaults variable that you don’t want to be visible
from outside your plugin but not for your methods. Inside your IIFE you need a way to
expose your methods to the outside world.

 The plugin you’re creating operates on jQuery collections, and to add a method
for jQuery collections you must assign them to a property named $.fn. Updating your
JavaScript file to comply with these considerations results in the code shown in the fol-
lowing listing.

(function($) {
 var defaults = {
 idMenu: null,
 bindLeftClick: false
 };

Listing 12.1 A first version of the Jqia Context Menu plugin
www.EBooksWorld.ir

331The jQuery plugin authoring guidelines
 $.fn.init = function() {
 // Code here...
 };
 $.fn.destroy = function() {
 // Code here...
 };
})(jQuery);

The code shown in this listing can’t do anything because you haven’t defined the body
of init() and destroy(). Nonetheless, you can already call them as if they were
native jQuery methods.

 Playing with new toys is always exciting, so you might be tempted to add a
console.log() statement inside each of the two methods defined (just to prove
they’re executed), add the jQuery library and the jquery.jqia.contextMenu.js file to a
web page, and then write a statement like the following to see your project in action:

$('p').init();

Unfortunately, if you run the page, right after the output of the console.log() state-
ment you’ll get a scary error message. The reason is that you’ve chosen a common
name for your method, so common that jQuery has one of its own. Your method is in
conflict with the previously defined jQuery init() method, and this issue raises an
important point: namespacing methods.

 Properly namespacing your plugin is an important part of your development. It
assures that your extension will have a low chance of being in conflict with other plug-
ins or even jQuery’s core methods.

 Applying this guideline, you could rename your methods as jqiaCustomMenu-
Init() and jqiaCustomMenuDestroy(). With this change you can safely call both
because they won’t conflict with any jQuery native method. Although the change
works, the jQuery guidelines discourage claiming more than one namespace to avoid
cluttering $.fn. The suggested solution, employed by a lot of top plugins, is to collect
all the plugin’s methods in an object literal (usually called methods) and call them
using a single method that accepts a string containing the method’s name to execute.

 To give you an idea, let’s say that your call-all-the-methods method is named jqia-
ContextMenu. Using it, you can execute the destroy() method as follows (let’s forget
about parameters for now):

$('#element').jqiaContextMenu('destroy');

Following this rule, you can turn the code in listing 12.1 into that shown in the next
listing.

(function($) {
 var defaults = {
 idMenu: null,
 bindLeftClick: false
 };

Listing 12.2 Revisited version of Jqia Context Menu plugin

Defines the default optionsB
www.EBooksWorld.ir

332 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
 var methods = {
 init: function(options) {
 // Code here...
 },
 destroy: function() {
 // Code here...
 }
 };

 $.fn.jqiaContextMenu = function(method) {
 if (methods[method]) {
 return methods[method].apply(
 this,
 Array.prototype.slice.call(arguments, 1)
);
 } else if ($.type(method) === 'object') {
 return methods.init.apply(this, arguments);
 } else {
 $.error('Method ' + method +

 ' does not exist on jQuery.jqiaContextMenu');
 }
 };
})(jQuery);

Inside the outermost anonymous function, you set up the default options for the
plugin parameters B. Then you declare an object literal containing the methods you
need (with an empty body at the moment) C.

 The second part of the code is the most interesting and it’s really clever. First, you
assign an anonymous function to a new property of $.fn, called jqiaContextMenu D.
Doing so, you’re claiming only one name for all your methods instead of one for each
method, as the guidelines suggest. Inside this function, you test if the first argument
passed, method, has a corresponding property inside the methods variable E. If so,
you use an advanced JavaScript technique that uses JavaScript’s apply() and call()
functions to execute the required method. apply() is used to set the context of the
function (this) to the set of elements in the jQuery collection and to forward to the
invoked method all the parameters passed but the first one to your plugin (because
the first is the name of the method to invoke). Since arguments isn’t a real array (it’s
called an array-like object), you use array’s slice() method and call() to remove the
first argument from arguments.

NOTE If you need to learn or refresh your knowledge of apply() and call(),
please refer to the appendix.

If the first test fails, you check if the first parameter is an object F. In such cases you
invoke your init() method, forwarding to it all the parameters passed to jqia-
ContextMenu(). The reason is that if the user calls jqiaContextMenu() passing the
object containing the options, you assume that the user wanted to initialize the plugin
and invoke its default action. In this case, too, you use apply() to set the context of
the function to the set of elements in the jQuery collection and to forward the

Declares the object literal
containing the methodsC

Claims the
jqiaContextMenu
namespace and assigns it
an anonymous function

D

If the required method
exists, calls the method
passing the other
parameters as its arguments

E

If the argument
is an object,
calls the init()
methodF

If none of the
above, raises
an exception

G

www.EBooksWorld.ir

333The jQuery plugin authoring guidelines
arguments to the invoked method. Finally, if both tests fail, you raise an exception
using the $.error() utility function G.

 As you can see, the update you’ve made to your code is effective and enables you to
use only one namespace (jqiaContextMenu) for all the methods. The same rule we
discussed in this section is valid for events bound and data stored by your plugin. Let’s
discover more.

12.3.5 Namespacing events and data

In chapter 6 you learned about the possibility of namespacing events. This feature is
particularly useful when authoring plugins. It’s a best practice that plugins that attach
handlers to events namespace them. Following this principle, if you later need to
unbind them, you can perform the action without fear of interfering with other plug-
ins that may be listening for the same events.

 In addition to listening for events, some plugins need to store data on one or
more elements of a web page. They can be useful to keep track of the state of an ele-
ment or to check if the plugin has already been called on that element. This can be
done using jQuery’s data() method we introduced in chapter 4. Easy to retrieve, easy
to delete.

 By following all the guidelines described so far, you’ll end up with a great plugin
structure. But you’re still missing the most important pieces: the methods body. Let’s
start with init().

THE INIT() METHOD OF JQIA CONTEXT MENU

The init() method has the following responsibilities:

1 Check that the options are passed to the plugin, especially that mandatory ones
are provided.

2 Merge the passed options with the default values.
3 Test if the plugin has already been initialized on the selected element(s).
4 Store the options on the element(s) in the jQuery collection.
5 Listen for the mouse right button’s click event, named contextmenu, on the ele-

ment(s) in the jQuery collection to show the custom menu. Optionally, listen
for the mouse left button’s click event (click).

6 Hide the custom menu when a click event is fired outside the element(s) in the
jQuery collection.

To perform the first step, you must verify that idMenu, the property containing the ID
of the element that acts as the custom menu, is set and the element exists on the page.
This is accomplished with the following code:

if (!options.idMenu) {
 $.error('No menu specified');
} else if ($('#' + options.idMenu).length === 0) {
 $.error('The menu specified does not exist');
}

www.EBooksWorld.ir

334 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
In this code, you use the length property to test if the element exists on the page.
 The second step is also easy to achieve. You need to call jQuery’s extend() utility

function to merge the values:

options = $.extend(true, {}, defaults, options);

As you can see in this statement, you’re reusing options to avoid adding an extra
(unneeded) variable.

 Steps three and four are closely related to each other. Once the plugin has been
initialized on the selected elements, you use jQuery’s data() method to store the
options under the same name. In this case you’ll also use them to verify whether the
element has already been initialized by your plugin. You can use the stored informa-
tion with other functionalities you may want to add, like changing the configuration
for a given element later on.

 To store the data you can write the following statement:

this.data('jqiaContextMenu', options);

When the plugin is executed for the first time on the page, you’re sure that no elements
have already been initialized. What if you run Jqia Context Menu on the same set of ele-
ments? The double initialization on an element is something you want to avoid because,
for example, it’ll add the same event handler twice. You need to check that each element
in the set of matched elements doesn’t have any data stored using your plugin’s
namespace (jqiaContextMenu). This task is performed with the following code:

if (
 this.filter(function() {
 return $(this).data('jqiaContextMenu');
 }).length !== 0
) {
 $.error('The plugin has already been initialized');
}

Although short, this snippet gives us the opportunity to reinforce an important point:
the meaning of this in a plugin. Within the function attached to $.fn, the this key-
word refers to the jQuery instance (the jQuery collection on which the plugin is
called). You can use every jQuery method directly without the need to wrap it using
the $() method (for example, $(this)). The same is true for the functions defined in
the methods object because you’ve changed their context using apply(). If you didn’t
use apply(), inside init() the this keyword would refer to the methods object.

 Due to how you’ve structured the plugin, inside a callback executed within the
plugin, the this keyword refers to a specific DOM element. In your code you use
jQuery’s filter() method, which iterates over the elements in the set. At the first iter-
ation, the this of the callback will refer to the first element in the set of matched ele-
ments, at the second iteration this will refer to the second element in the set, and so
on. That’s why inside the anonymous function passed to filter() you passed this as
the argument of $(): to use jQuery’s data() method.
www.EBooksWorld.ir

335The jQuery plugin authoring guidelines
 Now that you have a better understanding of the meaning of this inside a jQuery
plugin, let’s continue our discussion of the init() method.

 Step five is the core of your project. To accomplish it you need to add a callback to
the contextmenu event, which is typically fired when the user on a PC clicks the right
mouse button. As you’ll recall, you’re also providing the opportunity to listen for a
click performed using the left mouse button. Based on the options passed by the
developer, you may need to listen for both contextmenu and click.

 Inside the callback you need to prevent the default behavior; otherwise, the native
context menu will be displayed as well. Once that’s done, you have to set the position
of the custom menu according to the position of the mouse at the time the click was
performed (this information is stored in the Event object passed to your callback).
Finally, you have to show the menu.

 The code that performs these actions is shown here:

this.on(
 'contextmenu.jqiaContextMenu' +
 (options.bindLeftClick ? ' click.jqiaContextMenu' : ''),
 function(event) {
 event.preventDefault();

 $('#' + options.idMenu)
 .css({
 top: event.pageY,
 left: event.pageX
 })
 .show();
 }
);

In this code you’re using the ternary operator to establish if you need to listen for the
click event, too. You’re passing an object to jQuery’s css() method to set the posi-
tion of the menu (you also need to set position: absolute on the menu, but this
declaration is set in a CSS file). You aren’t setting the unit (pixels, in this case),
because when not specified, jQuery assumes the value is in pixels.

 The last step consists of hiding the custom menu when a click is performed,
regardless of the mouse’s button, outside the elements initialized by Jqia Context
Menu. This means that you should attach a handler that hides the custom menu to all
the elements of the page except the ones initialized by your plugin. Attaching a lis-
tener to every element on the page has serious drawbacks in terms of performance, so
you’ll take advantage of event delegation. You’ll attach only one listener to the root of
the document, the html element, as follows:

$('html').on(
 'contextmenu.jqiaContextMenu click.jqiaContextMenu',
 function() {
 $('#' + options.idMenu).hide();
 }
);
www.EBooksWorld.ir

336 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
With this snippet in place, it may seem that you’ve completed your init() method,
but this isn’t true.

 In its current state, your project has a serious bug. Once a click is performed on an
initialized element, a custom menu is shown. Then, due to event bubbling, the event
is propagated toward the root of the DOM tree. Once it reaches the html element, the
callback you attached is executed, hiding the custom menu. The result is that the cus-
tom menu is shown for a few milliseconds (so fast you can’t even see it). To fix this
issue, you have to call event.stopPropagation() inside the callback of the initialized
elements.

 With this last consideration, you’ve completed the init() method. Let’s now
explore how to develop the destroy() method. (If you’re curious about how the com-
plete plugin will look, you can jump to listing 12.3.)

THE DESTROY() METHOD OF JQIA CONTEXT MENU

The destroy() method is responsible for cleaning up the resources used by your
plugin, which consist of the data stored on the initialized elements and the listener
attached, including those attached to the html element. Besides, you want to ensure
the custom menu is hidden before destroy() is completed; otherwise it’ll be dis-
played until the page is reloaded.

 One of the possible versions of code that implements these needs is shown here:

this
 .each(function() {
 var options = $(this).data('jqiaContextMenu');
 if (options !== undefined) {
 $('#' + options.idMenu).hide();
 }
 })
 .removeData('jqiaContextMenu')
 .add('html')
 .off('.jqiaContextMenu');

As the first thing, you loop over each element in the set of matched elements to
retrieve the custom menu attached and hide it (if this element was initialized by your
plugin). Then you remove the data stored on each element, but this time you don’t
need to iterate over them to perform special checks, so you can let jQuery’s remove-
Data() method do it for you.

 The last action to perform is to unbind all the handlers attached to events
namespaced with jqiaContextMenu. To do that, you add the html element to the
current jQuery set and call the off() method, passing the string ".jqiaContextMenu"
to it.

 The most observant of you may have noted that you used the string "jqiaContext-
Menu" a lot of times in the snippets shown previously, although for different purposes.
To avoid these repetitions you can store it in a private variable (accessible only inside
your plugin) and then change your code accordingly.
www.EBooksWorld.ir

337The jQuery plugin authoring guidelines
 Assuming the following statement is added beneath the defaults variable,

var namespace = 'jqiaContextMenu';

the body of destroy() can be rewritten as follows:

this
 .each(function() {
 var options = $(this).data(namespace);
 if (options !== undefined) {
 $('#' + options.idMenu).hide();
 }
 })
 .removeData(namespace)
 .add('html')
 .off('.' + namespace);

At this point your plugin is working, but there are two additional gems of wisdom to
discover.

12.3.6 Maintaining chainability

Throughout this book you’ve made a massive use of jQuery chaining to perform sev-
eral operations in one statement. Your methods don’t return a value, so undefined
(which is the default) will be returned. Because of this, a developer using your exten-
sion can’t call any other jQuery method after calling jqiaContextMenu().

 The change required to maintain chainability in a plugin is simple yet invaluable.
What you need to do is to ensure that your methods always return the this keyword.
Applying this change to the destroy() method, after the line

.off('. ' + namespace);

you’ll have

return this;

You should make the same change for the init() method of the plugin as well.
Thanks to this change you maintain chainability, allowing anyone using Jqia Context
Menu to continue to operate on the same set in a single statement.

12.3.7 Provide public access to default settings

Your extension isn’t very customizable, but as things become more complex, you may
find yourself passing the same large subset of options over and over again to different
elements.

 An improvement you can make is to expose the default settings so that a developer
using your plugin can override them. With this change, the developer only needs to
pass an object with the different options at each call of the plugin.

 To apply this improvement to your project you need to make two changes. The
first change is made on the defaults variable. In order to expose it to the external
world, you need to assign it to the $.fn property. To avoid going against the rule of
www.EBooksWorld.ir

338 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
not claiming more than one namespace, you’ll set the object containing the default
values as a property of jqiaContextMenu. Therefore, you’ll turn

var defaults = {
 // Options here...
};

into

$.fn.jqiaContextMenu.defaults = {
 // Options here...
};

You also need to move the default configuration after the statement where you claim
the namespace ($.fn.jqiaContextMenu = function(method) {).

 With this update, the default values can’t be referenced anymore using the
defaults variable. You have to replace each occurrence of defaults in your code with
$.fn.jqiaContextMenu.defaults. In your project there’s only one occurrence, which
resides inside the init() method, when you merge the options with the default ones.
Therefore you have to change that statement as shown here:

options = $.extend(true, {}, $.fn.jqiaContextMenu.defaults, options);

With these changes in place, let’s look at how you can use the exposed default values.
 Let’s say that you want to always bind the left click when calling Jqia Context Menu.

You can write

$.fn.jqiaContextMenu.defaults.bindLeftClick = true;

Then you can call the plugin by passing only the idMenu property inside the object.
 With this last change you’ve completed your project. The final code is shown in the

following listing.

(function($) {
 var namespace = 'jqiaContextMenu';

 var methods = {
 init: function(options) {
 if (!options.idMenu) {
 $.error('No menu specified');
 } else if ($('#' + options.idMenu).length === 0) {
 $.error('The menu specified does not exist');
 }

 options = $.extend(
 true,
 {},

 $.fn.jqiaContextMenu.defaults,
 options
);

 if (
 this.filter(function() {
 return $(this).data(namespace);

Listing 12.3 The final version of Jqia Context Menu
www.EBooksWorld.ir

339The jQuery plugin authoring guidelines
 }).length !== 0
) {
 $.error('The plugin has already been initialized');
 }

 this.data(namespace, options);

 $('html').on(
 'contextmenu.' + namespace + ' click.' + namespace,
 function() {
 $('#' + options.idMenu).hide();
 }
);

 this.on(
 'contextmenu.' + namespace +
 (options.bindLeftClick ? ' click.' + namespace : ''),
 function(event) {
 event.preventDefault();
 event.stopPropagation();

 $('#' + options.idMenu)
 .css({
 top: event.pageY,
 left: event.pageX
 })
 .show();
 }
);

 return this;
 },
 destroy: function() {
 this
 .each(function() {
 var options = $(this).data(namespace);
 if (options !== undefined) {
 $('#' + options.idMenu).hide();
 }
 })
 .removeData(namespace)
 .add('html')
 .off('.' + namespace);

 return this;
 }
 };

 $.fn.jqiaContextMenu = function(method) {
 if (methods[method]) {
 return methods[method].apply(
 this,
 Array.prototype.slice.call(arguments, 1)
);
 } else if ($.type(method) === 'object') {
 return methods.init.apply(this, arguments);
 } else {
 $.error('Method ' + method +
 ' does not exist on jQuery.jqiaContextMenu'
www.EBooksWorld.ir

340 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
);
 }
 };

 $.fn.jqiaContextMenu.defaults = {
 idMenu: null,
 bindLeftClick: false
 };
})(jQuery);

This code is available in the file js/jquery.jqia.contextMenu.js in the source code of
this book. To have this plugin completely working, you also need to set up an accom-
panying style sheet that you can find in css/jquery.jqia.contextMenu.css. We also pro-
vided a demo that you can find in the file chapter-12/jqia.contextMenu.html so that
you can play with your plugin. Figure 12.1 shows the result of clicking the right mouse
button on an element of the demo page that has been initialized by the Jqia Context
Menu plugin.

What do you think of the result? Are you happy? We hope so and that you had fun
while developing this small project. In the next section we’ll develop a more complex
jQuery plugin built according to the guidelines you just learned.

12.4 Demo: creating a slideshow as a jQuery plugin
For our more complex plugin example, you’re going to develop a jQuery method that
allows a web developer to whip up a quick slideshow page. You’ll create a jQuery
plugin, which you’ll name Jqia Photomatic, and then you’ll whip up a test page to put
it through its paces. When complete, this test page will appear as shown in figure 12.2.
This page sports the following components:

 A set of thumbnail images
 A full-size photo of one of the images available in the thumbnail list
 A set of buttons for moving through the slideshow manually and for starting

and stopping the automatic slideshow

The behaviors of the page are as follows:

 Clicking any thumbnail displays the corresponding full-size image.

Figure 12.1 The effect of clicking the
right mouse button on an element that
has been initialized by the Jqia Context
Menu plugin
www.EBooksWorld.ir

341Demo: creating a slideshow as a jQuery plugin
 Clicking the full-size image displays the next image.
 Clicking any button performs the following operations:

– First—Displays the first image
– Previous—Displays the previous image
– Next—Displays the next image
– Last—Displays the last image
– Play—Commences moving through the photos automatically until clicked

again
 Any operation that moves past the end of the list of images wraps back to the

beginning and any operation that moves past the beginning of the list wraps to
the end. Clicking Next while on the last image displays the first image, and
clicking Previous while on the first image displays the last.

You’ll define your plugin so that developers can set up the elements in any manner
they like and then tell you which page element should be used for each purpose. Fur-
thermore, in order to give web developers as much leeway as possible, you’ll define
your plugin so that they can provide any jQuery collection containing images to serve
as thumbnails as long as they’re gathered together as in our test page.

 To start, here’s the syntax for the Jqia Photomatic plugin.

Figure 12.2 The test page that you’ll use to put the Jqia Photomatic plugin through its paces
www.EBooksWorld.ir

342 CHAPTER 12 When jQuery is not enough... plugins to the rescue!

Because you have a nontrivial number of parameters for controlling the operation of
Jqia Photomatic (some of which can be omitted), you utilize an object hash to pass
them as discussed in section 12.3.3. The possible options that you can specify are
shown in table 12.1.

You’ll now create the test page for this plugin before you dive into creating the Jqia
Photomatic plugin itself.

Method syntax: jqiaPhotomatic

jqiaPhotomatic(options)
Instruments the set of thumbnails, as well as page elements identified in the options object
hash, to operate as Jqia Photomatic controls.

Parameters

options (Object) An object hash that specifies the options for Jqia Photomatic. See
table 12.1 for details.

Returns

The jQuery collection.

Table 12.1 The options for the Jqia Photomatic custom plugin method

Option name Description

firstControl (Selector) A jQuery selector that identifies the DOM element(s) to serve as a
First control. If omitted, no control is instrumented.

lastControl (Selector) A jQuery selector that identifies the DOM element(s) to serve as a
Last control. If omitted, no control is instrumented.

nextControl (Selector) A jQuery selector that identifies the DOM element(s) to serve as a
Next control. If omitted, no control is instrumented.

photoElement (Selector) A jQuery selector that identifies the img element that’s to serve as
the full-size photo display. If omitted, defaults to the jQuery selector
img.photomatic-photo.

playControl (Selector) A jQuery selector that identifies the DOM element(s) to serve as a
Play control. If omitted, no control is instrumented.

previousControl (Selector) A jQuery selector that identifies the DOM element(s) to serve as a
Previous control. If omitted, no control is instrumented.

transformer (Function) A function used to transform the URL of a thumbnail image into the
URL of its corresponding full-size photo image. If omitted, the default transfor-
mation substitutes all instances of thumbnail with photo in the URL.

delay (Number) The interval between transitions for an automatic slideshow, in milli-
seconds. Defaults to 3000.
www.EBooksWorld.ir

343Demo: creating a slideshow as a jQuery plugin

t

12.4.1 Setting up the markup

The first step to perform to create your plugin is to build the page that will use it. The
code for this page, available in the file chapter-12/jqia.photomatic.html, is shown in
the listing that follows.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Jqia Photomatic - jQuery in Action, 3rd edition</title>
 <link rel="stylesheet" href="../css/main.css"/>
 <link rel="stylesheet" href="../css/jquery.jqia.photomatic.css"/>
 </head>
 <body>
 <h1 class="header">Jqia Photomatic</h1>

 <div id="thumbnails-pane">

 </div>

 <div>

 </div>

 <div id="button-bar">
 <img src="../images/button.first.png" id="first-button"
 alt="First photo" />
 <img src="../images/button.previous.png" id="previous-button"
 alt="Previous photo" />
 <img src="../images/button.play.png" id="play-button"
 alt="Play or pause slideshow" />
 <img src="../images/button.next.png" id="next-button"
 alt="Next photo" />
 <img src="../images/button.last.png" id="last-button"
 alt="Last photo" />
 </div>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script src="../js/jquery.jqia.photomatic.js"></script>
 <script>
 $('#thumbnails-pane img').jqiaPhotomatic({
 photoElement: '#photo-display',

Listing 12.4 The test page that creates the Photomatic display in figure 12.2

Contains the
thumbnail
images

B

Defines
the image
element
for full-size
photos

C

Contains
the

elements
o serve as

controls D

Invokes the
Photomatic pluginE
www.EBooksWorld.ir

344 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
 previousControl: '#previous-button',
 nextControl: '#next-button',
 firstControl: '#first-button',
 lastControl: '#last-button',
 playControl: '#play-button',
 delay: 1000
 });
 </script>
 </body>
</html>

By applying the principles of unobtrusive JavaScript and keeping all style information
in an external style sheet, your markup is tidy and simple.

 The HTML markup consists of a container that holds the thumbnail images B, an
image element (initially sourceless) to hold the full-size photo C, and a collection of
images D that will control the slideshow. Everything else is handled by your new
plugin. The on-page script has a tiny footprint, consisting of a single statement that
invokes your plugin, passing a few options E.

 With this markup in place, it’s time to dive into the plugin itself.

12.4.2 Developing Jqia Photomatic

To start the development of this plugin you’ll use the same skeleton that you used for
Jqia Context Menu but with a different namespace:

(function($){
 var methods = {
 init: function() {
 }
 };

 $.fn.jqiaPhotomatic = function(method) {
 if (methods[method]) {
 return methods[method].apply(
 this,
 Array.prototype.slice.call(arguments, 1)
);
 } else if ($.type(method) === 'object') {
 return methods.init.apply(this, arguments);
 } else {
 $.error('Method ' + method +
 ' does not exist on jQuery.jqiaPhotomatic'
);
 }
 };
})(jQuery);

This plugin only needs the initialization function, but to adopt a future-proof
approach in case you want to extend it, you’ll use a methods variable as you did in the
previous project.
www.EBooksWorld.ir

345Demo: creating a slideshow as a jQuery plugin
 Inside the init() function, you merge the caller settings with the default ones
described in table 12.1. The result is stored in a single options object that you can
refer to throughout the remainder of the function.

 A caller of your plugin may have interest in overriding some of the default values
(for example, the delay property), so you’ll expose them to the external world as
shown here:

$.fn.jqiaPhotomatic.defaults = {
 photoElement: 'img.photomatic-photo',
 transformer: function(name) {
 return name.replace('thumbnail', 'photo');
 },
 nextControl: null,
 previousControl: null,
 firstControl: null,
 lastControl: null,
 playControl: null,
 delay: 3000
};

In the same way you did for the Jqia Context Menu plugin, the merge is performed
using jQuery’s $.extend() method:

options = $.extend(true, {}, $.fn.jqiaPhotomatic.defaults, options);

After the execution of this statement, the options variable will contain the defaults
supplied by the inline hash object overridden with any values supplied by the caller.

 You also need to keep track of a few other things. In order for your plugin to know
what concepts like next relative image and previous relative image mean, you need not
only a list of the thumbnail images but also an indicator that identifies the current
image being displayed.

 The list of thumbnail images is the jQuery collection that this method is operating
on—or, at least, it should be. You don’t know what the developers collected in the
jQuery collection, so you want to filter it down to only image elements. This operation
can be done with a selector and jQuery’s filter() method. But where should you
store these two pieces of information?

 You could easily create another variable to hold it, but to keep settings together,
you’ll store them as additional properties of options. To do that, you have to slightly
modify the call to extend() as follows:

options = $.extend(
 true,
 {},
 $.fn.jqiaPhotomatic.defaults,
 options,
 {
 current: 0,
 $thumbnails: this.filter('img')
 }
);
www.EBooksWorld.ir

346 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
Note how you place the object containing the current image shown and the list of the
thumbnails as the last argument of the extend() method because of how the latter
prioritizes the properties to merge. You name the property containing the list as
$thumbnails because its value is a jQuery collection.

 Now that your initial state is set up, you’re ready to move on to the meat of the
plugin—adding appropriate features to the controls, thumbnails, and photo display.

NOTE You’re able to keep the state of things because of closure. You’ve seen
closures before, but if you’re still shaky on them, please review the appendix.
You must understand closures not only for completing the implementation of
the Jqia Photomatic plugin but also when creating anything but the most triv-
ial of plugins.

Now you need to attach a number of event listeners to the controls and elements that
you’ve identified up to this point. Because the options variable is in scope when you
declare the functions that represent those listeners, each listener will be part of a clo-
sure that includes the options variable. You can rest assured that even though the lat-
ter may appear to be temporary, the state that it represents will stick around and be
available to all the listeners that you define.

 Speaking of those listeners, here’s a list of click event listeners that you’ll need to
attach to the various elements:

 Clicking a thumbnail photo will cause its full-size version to be displayed.
 Clicking the full-size photo will cause the next photo to be displayed.
 Clicking the element defined as the Previous control will cause the previous

image to be displayed. If the first image of the set was displayed, after clicking
the Previous control the last image will be displayed.

 Clicking the Next control will cause the next image to be displayed. If the last
image of the set was displayed, after clicking the Next control the first image
will be displayed.

 Clicking the First control will cause the first image in the list to be displayed.
 Clicking the Last control will cause the last image in the list to be displayed.
 Clicking the Play control will cause the slideshow to automatically proceed, pro-

gressing through the photos using a delay specified in the settings. A subse-
quent click on the control will stop the slideshow.

Looking over this list, you immediately note that all of these listeners have something
in common: they all need to cause the full-size photo of one of the thumbnail images
to be displayed. And being the good and clever coder that you are, you want to factor
out that common processing into a function so that you don’t need to repeat the same
code over and over again.

 You don’t want to infringe on either the global namespace or the $ namespace for
a function that should only be called internally from your plugin code. The power of
www.EBooksWorld.ir

347Demo: creating a slideshow as a jQuery plugin
JavaScript as a functional language comes to your aid once again and allows you to
define this new function within the plugin function. By doing so, you limit its scope to
within the plugin function itself (one of your goals).

 For this reason you define the function needed, named showPhoto(), inside the
plugin but outside init(). The function will define two parameters. The first is the
actual options for this call of the plugin, whereas the second is the index of the
thumbnail that’s to be shown full size. The code of the function is shown here:

function showPhoto(options, index) {
 $(options.photoElement).attr(
 'src',
 options.transformer(options.$thumbnails[index].src)
);
 options.current = index;
}

This new function, when passed the index of the thumbnail whose full-size photo has
to be displayed, uses the values in the options object to do the following:

1 Look up the src attribute of the thumbnail identified by index.
2 Pass that value through the transformer function to convert it from a thumb-

nail URL to a full-size photo URL.
3 Assign the result of the transformation to the src attribute of the full-size image

element.
4 Record the index of the displayed photo as the new current index.

With that handy function available, you’re ready to define the listeners that we listed
earlier. You’ll start by adding functionality to the thumbnails themselves, which simply
need to cause their corresponding full-size photo to be displayed, as follows:

options.$thumbnails.click(function() {
 showPhoto(options, options.$thumbnails.index(this));
});

In this handler, you obtain the value of the thumbnail’s index by passing the clicked
element (referenced by this) to jQuery’s index() method.

 Instrumenting the photo display element to show the next photo in the list is just
as simple:

$(options.photoElement + ', ' + options.nextControl).click(function() {
 showPhoto(options, (options.current + 1) % options.$thumbnails.length);
});

You establish a click handler, in which you call the showPhoto() function with the
options object and the next index value. Note how you use the JavaScript modulo
operator (%) to wrap around to the front of the list when you fall off the end.

 The most observant of you may have spotted that you actually include another
selector in the statement. The reason is that the behavior of the Next button is exactly
the same. You optimize the instruction by using the comma to create a single selector.
www.EBooksWorld.ir

348 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
 The handlers for the First, Previous, and Last controls all follow a similar pattern:
figure out the appropriate index of the thumbnail whose full-size photo is to be shown
and call showPhoto() with that index:

$(options.previousControl).click(function() {
 showPhoto(
 options,
 options.current === 0 ?
 options.$thumbnails.length - 1 :
 options.current - 1
);
});

$(options.firstControl).click(function() {
 showPhoto(options, 0);
}).triggerHandler('click');

$(options.lastControl).click(function() {
 showPhoto(options, options.$thumbnails.length - 1);
});

The only line worth a mention in this code is the use of triggerHandler(). You call
this method to load the initial photo into the image container when the plugin is
executed.

 The instrumentation of the Play control is somewhat more complicated. Rather
than showing a particular photo, this control must start a progression through the
entire photo set. Then it has to stop that progression on a subsequent click. Let’s take
a look at the code you use to accomplish that:

var tick;
$(options.playControl).click(function() {
 var $this = $(this);
 if ($this.attr('src').indexOf('play') !== -1) {
 tick = window.setInterval(
 function() {
 $(options.nextControl).triggerHandler('click');
 },
 options.delay
);
 $this.attr(
 'src',
 $this.attr('src').replace('play', 'pause')
);
 } else {
 window.clearInterval(tick);
 $this.attr(
 'src',
 $this.attr('src').replace('pause', 'play')
);
 }
});

First you use the image’s src to decide what operation to perform. If src attribute has
the string “play” in it, you need to start the slideshow; otherwise you need to stop it.
www.EBooksWorld.ir

349Demo: creating a slideshow as a jQuery plugin
 In the body of the if, you employ the JavaScript setInterval() method to cause a
function to continually fire off using the delay value. You store the handle of that
interval timer in a varible called tick for later reference. Inside the anonymous func-
tion passed to setInterval(), you emulate a click on the Next control to progress to
the next photo; this happens each time the function in setInterval() is called.

 The last statement inside the if updates the src attribute of the element to show
the pause image. This change allows you to reach the else part of the code at the sec-
ond interaction with the Play button.

 In the else part you want to stop the slideshow. To do that, you clear the interval
timeout using clearInterval(), passing tick, and restore the play image.

 As the final task, and in order to fulfill the wisdom of maintaining chainability, you
need to return the original set of matched elements. You achieve this with

return this;

Take a moment to do a short victory dance; you’re finally finished! Bet you didn’t
think it would be that easy. The completed plugin code, which you’ll find in the file
js/jquery.jqia.photomatic.js, is shown in the following listing.

(function($) {

 function showPhoto(options, index) {
 $(options.photoElement).attr(
 'src',
 options.transformer(options.$thumbnails[index].src)
);
 options.current = index;
 }

 var methods = {
 init: function(options) {
 options = $.extend(
 true,
 {},
 $.fn.jqiaPhotomatic.defaults,
 options,
 {
 current: 0,
 $thumbnails: this.filter('img')
 }
);

 options.$thumbnails.click(function() {
 showPhoto(options, options.$thumbnails.index(this));
 });

 $(options.photoElement + ', ' + options.nextControl).click(
 function() {
 showPhoto(
 options,
 (options.current + 1) % options.$thumbnails.length

Listing 12.5 The complete implementation of the Jqia Photomatic plugin
www.EBooksWorld.ir

350 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
);
 }
);

 $(options.previousControl).click(function() {
 showPhoto(
 options,
 options.current === 0 ?
 options.$thumbnails.length - 1 :
 options.current – 1
);
 });

 $(options.firstControl).click(function() {
 showPhoto(options, 0);
 }).triggerHandler('click');

 $(options.lastControl).click(function() {
 showPhoto(options, options.$thumbnails.length - 1);
 });

 var tick;
 $(options.playControl).click(function() {
 var $this = $(this);
 if ($this.attr('src').indexOf('play') !== -1) {
 tick = window.setInterval(
 function() {
 $(options.nextControl).triggerHandler('click');
 },
 options.delay
);
 $this.attr(
 'src',
 $this.attr('src').replace('play', 'pause')
);
 } else {
 window.clearInterval(tick);
 $this.attr(
 'src',
 $this.attr('src').replace('pause', 'play')
);
 }
 });

 return this;
 }
 };

 $.fn.jqiaPhotomatic = function(method) {
 if (methods[method]) {
 return methods[method].apply(
 this,
 Array.prototype.slice.call(arguments, 1)
);
 } else if ($.type(method) === 'object') {
 return methods.init.apply(this, arguments);
 } else {
www.EBooksWorld.ir

351Writing custom utility functions
 $.error(
 'Method ' + method +
 ' does not exist on jQuery.jqiaPhotomatic'
);
 }
 };

 $.fn.jqiaPhotomatic.defaults = {
 photoElement: 'img.photomatic-photo',
 transformer: function(name) {
 return name.replace('thumbnail', 'photo');
 },
 nextControl: null,
 previousControl: null,
 firstControl: null,
 lastControl: null,
 playControl: null,
 delay: 3000
 };
})(jQuery);

This plugin is typical of jQuery-enabled code; it packs a big wallop in some compact
code. But it serves to demonstrate an important set of techniques—using closures to
maintain state across the scope of a jQuery plugin and to enable the creation of pri-
vate implementation functions that plugins can define and use without resorting to
any namespace infringements.

 Also note that because you took such care to not let state leak out of the plugin,
you’re free to add as many Jqia Photomatic widgets to a page as you like, without fear
that they’ll interfere with one another (taking care, of course, to make sure you don’t
use duplicate ID values in the markup).

 But is it complete? You be the judge and consider the following exercises:

 The transition from photo to photo is instantaneous. Using your knowledge
from the animation and effect chapter, change the plugin so that photos cross-
fade into one another.

 Going one step further, how would you go about allowing the developer to use a
custom animation of choice?

 For maximum flexibility, you coded this plugin to take advantage of HTML ele-
ments already created by the user. How would you create an analogous plugin,
but with less display freedom, that generated all the required HTML elements
on the fly?

Now that you know all about implementing a new jQuery method, it’s time to learn
more about creating custom utility functions.

12.5 Writing custom utility functions
In this book, we’ve used the term utility function to describe functions defined as prop-
erties of jQuery (and therefore $). These functions are usually intended to act
on non-element JavaScript objects or to perform some other operation that doesn’t
www.EBooksWorld.ir

352 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
specifically operate on any objects. Some examples of utility functions you’ve seen are
$.each() and $.noConflict(). In this section, you’ll learn how to add your own cus-
tom utility functions.

 Adding a function as a property to an object or a function is as easy as declaring
the function and assigning it. Creating a trivial custom utility function should be as
easy as

$.say = function(what) {
 alert('I say ' + what);
};

And, in truth, it is that easy. But this manner of defining utility functions isn’t without
pitfalls. If some developer includes this function on a page that uses Prototype and
has called $.noConflict(), rather than adding a jQuery extension the developer
would create a method on Prototype’s $() function. (Get thee to the appendix if the
concept of a method of a function makes your head hurt.) As you can see, unlike plug-
ins that operate on a set of matched elements, a utility function is assigned to $ and
not to $.fn.

 We’ve already described this issue and its solution in section 12.3.2 (hint: create an
IIFE). Discussing a utility function like the one just shown isn’t a big deal, so let’s
implement and examine a nontrivial one.

12.5.1 Writing a date formatter

If you’ve come to the world of client-side programming from the server, one of the
things you may have longed for is a simple date formatter, something that the
JavaScript Date object doesn’t provide. Because such a function would operate on a
Date instance rather than any DOM element, it’s a perfect candidate for a utility func-
tion. Let’s write one that uses the following syntax.

Function syntax: $.formatDate

$.formatDate(date, pattern)

Formats the passed date according to the supplied pattern. The tokens that are substituted in the
pattern are as follows:
yyyy: the 4-digit year
yy: the 2-digit year
MMMM: the full name of the month
MMM: the abbreviated name of the month
MM: the month number as a 0-filled, 2-character field
M: the month number
dd: the day of the month as a 0-filled, 2-character field
d: the day of the month
EEEE: the full name of the day of the week
EEE: the abbreviated name of the day of the week
a: the meridian (AM or PM)
HH: the 24-hour clock hour in the day as a 2-character, 0-filled field
www.EBooksWorld.ir

353Writing custom utility functions
The implementation of this function is shown in the following listing. We’re not going
to go into too much detail regarding the algorithm used to perform the formatting
because that isn’t the point of this chapter. We’ll use this implementation to point out
some interesting tactics that you can use when creating a somewhat complex utility
function.

(function($) {
 var patternParts =
/^(yy(yy)?|M(M(M(M)?)?)?|d(d)?|EEE(E)?|a|H(H)?|h(h)?|m(m)?|s(s)?|S)/;
 var patternValue = {
 yy: function(date) {
 return toFixedWidth(date.getFullYear(), 2);
 },
 yyyy: function(date) {
 return date.getFullYear().toString();
 },
 MMMM: function(date) {
 return $.formatDate.monthNames[date.getMonth()];
 },
 MMM: function(date) {
 return $.formatDate.monthNames[date.getMonth()].substr(0, 3);
 },
 MM: function(date) {
 return toFixedWidth(date.getMonth() + 1, 2);
 },
 M: function(date) {
 return date.getMonth() + 1;
 },
 dd: function(date) {
 return toFixedWidth(date.getDate(), 2);

Function syntax: $.formatDate (continued)

H: the 24-hour clock hour in the day
hh: the 12-hour clock hour in the day as a 2-character, 0-filled field
h: the 12-hour clock hour in the day
mm: the minutes in the hour as a 2-character, 0-filled field
m: the minutes in the hour
ss: the seconds in the minute as a 2-character, 0-filled field
s: the seconds in the minute
S: the milliseconds in the second as a 3-character, 0-filled field

Parameters

date (Date) The date to be formatted.
pattern (String) The pattern to format the date into. Any characters not matching

pattern tokens are copied as is to the result.

Returns
The formatted date.

Listing 12.6 Implementation of the $.formatDate() utility function

Defines the regular expression
to match tokens in the pattern

B

Defines an object
containing formatting
function to use once a
specific match is foundC
www.EBooksWorld.ir

354 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
 },
 d: function(date) {
 return date.getDate();
 },
 EEEE: function(date) {
 return $.formatDate.dayNames[date.getDay()];
 },
 EEE: function(date) {
 return $.formatDate.dayNames[date.getDay()].substr(0, 3);
 },
 HH: function(date) {
 return toFixedWidth(date.getHours(), 2);
 },
 H: function(date) {
 return date.getHours();
 },
 hh: function(date) {
 var hours = date.getHours();
 return toFixedWidth(hours > 12 ? hours - 12 : hours, 2);
 },
 h: function(date) {
 return date.getHours() % 12;
 },
 mm: function(date) {
 return toFixedWidth(date.getMinutes(), 2);
 },
 m: function(date) {
 return date.getMinutes();
 },
 ss: function(date) {
 return toFixedWidth(date.getSeconds(), 2);
 },
 s: function(date) {
 return date.getSeconds();
 },
 S: function(date) {
 return toFixedWidth(date.getMilliseconds(), 3);
 },
 a: function(date) {
 return date.getHours() < 12 ? 'AM' : 'PM';
 }
 };

 function toFixedWidth(value, length, fill) {
 var result = (value || '').toString();
 fill = fill || '0';
 var padding = length - result.length;
 if (padding < 0) {
 result = result.substr(-padding);
 } else {
 for (var n = 0; n < padding; n++) {
 result = fill + result;
 }
 }
 return result;
 }

A function to format
the passed value as a
fixed-width field of
the specified length

D

Assigns
default

value

E

Computes paddingF

Truncates if necessaryG

Pads resultH

Returns final resultI
www.EBooksWorld.ir

355Writing custom utility functions

onths

ays
 $.formatDate = function(date, pattern) {
 var result = [];
 while (pattern.length > 0) {
 patternParts.lastIndex = 0;
 var matched = patternParts.exec(pattern);
 if (matched) {
 result.push(patternValue[matched[0]].call(this, date));
 pattern = pattern.slice(matched[0].length);
 } else {
 result.push(pattern.charAt(0));
 pattern = pattern.slice(1);
 }
 }
 return result.join('');
 };

 $.formatDate.monthNames = [
 'January', 'February', 'March', 'April', 'May', 'June', 'July',
 'August', 'September', 'October', 'November', 'December'
];

 $.formatDate.dayNames = [
 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday',
 'Saturday'
];
})(jQuery);

The most interesting aspect of this implementation, aside from a few JavaScript tricks
used to keep the amount of code in check, is that the anonymous function assigned to
$.formatDate J needs some ancillary arrays, objects and functions to do its job. In
particular:

 A regular expression used to match tokens in the pattern B
 A list of the English names of the months 1)
 A list of the English names of the days 1!
 A set of subfunctions designed to provide the value for each token type, given a

source date C
 A private function that formats the passed value as a fixed-width field of the

specified length D

In this utility function you define several variables and functions. Some of them are
private (declared using the var keyword), whereas others are exposed to the external
world (defined as property of $.formatDate). The patternParts variable is only
needed by your function so it’s nonsense to expose it, and it’s kept private. On the
other hand, monthNames 1) and dayNames 1! may be overwritten to provide the names
of the months and the days in another language, so you allow accessing them from
outside the function. Remember, JavaScript functions are first-class objects, and they
can have their own properties like any other JavaScript object.

 Your utility function relies on a support function called toFixedWidth(). The
passed value to this function is converted to its string equivalent, and the fill character

Implements
main body of
the functionJ

Provides name of the m1)

Provides name of the d1!
www.EBooksWorld.ir

356 CHAPTER 12 When jQuery is not enough... plugins to the rescue!
is determined either from the passed value or the default of 0 E. Then you compute
the amount of padding needed F.

 If you end up with negative padding (the result is longer than the passed field
length), you truncate from the beginning of the result to end up with the specified
length G; otherwise, you pad the beginning of the result with the appropriate num-
ber of fill characters H prior to returning it as the result of the function I.

 And the formatting algorithm itself? In a nutshell, it operates as follows:

1 Creates an array to hold portions of the result.
2 Iterates over the pattern, supplied as the second argument to the utility func-

tion, consuming identified token and non-token characters until the string has
been completely inspected.

3 Resets the regular expression (stored in patternParts) on each iteration by
setting its lastIndex property to 0.

4 Tests the regular expression for a token match against the current beginning of
the pattern.

5 Calls the function in the patternValue collection of conversion functions to
obtain the appropriate value from the Date instance if a match occurs. This
value is pushed onto the end of the results array, and the matched token is
removed from the beginning of the pattern.

6 Removes the first character from the pattern and adds it to the end of the
results array if a token isn’t matched at the current beginning of the pattern.

7 Joins the results array into a string and returns it as the value of the function
when the entire pattern has been consumed.

You’ll find this extension in the file js/jquery.jqia.formatDate.js and a simple page to
test it at chapter-12/jqia.formatDate.html.

12.6 Summary
This chapter introduced you to writing reusable code that extends jQuery. Writing
your own code as extensions to jQuery has a number of advantages. Not only does it
keep your code consistent across your web application regardless of whether it’s
employing jQuery APIs or your own, but it also makes all of the power of jQuery avail-
able to your own code.

 Following a few naming rules helps avoid naming collisions between filenames and
with other plugins’ code, as well as problems that might be encountered when the $
name is reassigned by a page that will use your plugin. In addition, you’ve seen how
you can build plugins that don’t break jQuery’s chainability.

 Creating new utility functions is as easy as creating new function properties on $,
and new jQuery methods are easily created as properties of $.fn.
www.EBooksWorld.ir

357Summary
 If plugin authoring intrigues you, we highly recommend that you download and
comb through the code of existing plugins to see how their authors implemented
their own features. You’ll see how the techniques presented in this chapter are used in
a wide range of plugins, and you’ll even learn new techniques.

 Having yet more jQuery knowledge at your disposal, let’s move on to learning how
you can use jQuery to better manage asynchronous functions.
www.EBooksWorld.ir

Avoiding the callback
hell with Deferred
For a long time, JavaScript developers have used callback functions to perform sev-
eral tasks such as running operations after a given amount of time (using set-
Timeout()), or at regular intervals (using setInterval()), or to react to a given
event (click, keypress, load, and so on). We’ve discussed and employed callbacks
extensively to perform asynchronous operations; for example, in chapter 6 where
we focused on events, in chapter 8 when we talked about animations, and in chap-
ter 10 where we covered Ajax. Callback functions are simple and get the job done,
but they become unmanageable as soon as you need to execute many asynchro-
nous operations, either in parallel or in sequence. The situation where you have a
lot of nested callbacks, or independent callbacks that have to be synchronized, is
often referred to as the “callback hell.”

This chapter covers
 What promises are and why they’re important

 The Deferred object

 How to manage multiple asynchronous operations

 Resolving and rejecting a promise
358

www.EBooksWorld.ir

359Introduction to promises
 Today, websites and web applications are often powered by JavaScript code more
than backend code only (this is the era of API-driven services, isn’t it?). For this rea-
son, developers need a better way to manage and synchronize asynchronous opera-
tions to keep their code readable and maintainable.

 In this chapter we’ll discuss promises, what they are, and how jQuery allows you to
use them. Our lovely library implements promises (the concept) through the use of
two objects: Deferred and Promise. How jQuery implements promises has been the
subject of discussions, criticisms, and a lot of changes, as you’ll learn in the next pages.

 While progressing through this chapter, you’ll note that the terminology might be
confusing and that the concept of promises doesn’t map one to one with the Promise
object, which admittedly is weird. You’ll also need to learn several new terms. Don’t be
scared, though. The text is filled with several examples and extensive explanations
that will help you with the learning process.

13.1 Introduction to promises
In real life, the one away from computers (yes, there is something more out there), we
often talk about promises. You ask people to make you a promise or you’re asked by
others to promise something. Intuitively, a promise is a commitment derived from a
request you make to ask a person to perform a given action at some point in the
future. Sometimes the action can be executed very soon; sometimes you have to wait
for a while. In an ideal world, a promise would always be kept. Unfortunately, our
world is far from being ideal, so it happens that a promise is sometimes unfulfilled, no
matter the reason. Regardless of the time it’ll take and the final result, a promise
doesn’t block you from doing something else in the meantime like reading, cooking,
or working.

 In JavaScript, a promise is exactly this. You request a resource from another website,
the result of a long calculation either from your server or from a JavaScript function,
or the response of a REST service (these are examples of promises), and you perform
other tasks while you await the result. When the latter becomes available (the promise
is resolved/fulfilled) or the request has failed (the promise is failed/rejected), you act
accordingly.

 The previous description has hopefully given you a good understanding of what
promises are. But they have a much more formal definition. Promises have been
widely discussed and such discussions have resulted in two proposals: Promises/A and
Promises/A+. It’s important that we discuss these two proposals before delving into
the jQuery way of dealing with promises so that you can have a better understanding
of promises as a concept.

 The specifications of Promises/A+ can be found at http://promisesaplus.com/,
but in summary, they define a promise in this way:

A promise represents the eventual result of an asynchronous operation.
The primary way of interacting with a promise is through its then method,
which registers callbacks to receive either a promise’s eventual value or the
reason why the promise cannot be fulfilled.
www.EBooksWorld.ir

http://promisesaplus.com/

360 CHAPTER 13 Avoiding the callback hell with Deferred
PROMISES/A+ SPECIFICATIONS

The then() method described by the Promises/A+ proposal is the core of promises.
The then() method accepts two functions: one to execute in the event that the promise
is fulfilled and the other if the promise is rejected. When a promise is in one of these
states, regardless of which one, it’s settled. If a promise is neither fulfilled nor rejected
(for example, if you’re still waiting for the response of a server calculation), it’s pending.

 Even if the formal definition mentions asynchronous operations, it’s worth noting
that a promise can also be resolved or rejected by a synchronous operation, so you can
use promises for more than Ajax requests, as we’ll discuss in detail later in this chapter.

 Sometimes the operation, either synchronous or asynchronous, may already be
completed and thus the value returned or the reason why the promise was rejected is
already available. In this case, if you register a function using the then() method, this
function will be executed immediately. This is another important difference between
how promises act compared to callback functions in response to an event. Remember
that if you add a handler for an event that has already been fired, the callback won’t
be executed.

 Now that you’ve read about promises and the then() method, it’s crucial that you
understand why promises are so good and why they can help you in your work. To
prove it, we’ll discuss and solve a simple scenario, similar to others you might encoun-
ter in your job. We’ll first approach the problem using the knowledge you’ve acquired
so far, such as callback functions, and then we’ll iterate on the code to help you reach
a better solution in terms of readability and maintainability by using promises.

 Let’s say that you’re building a web page that uses a third-party web service called
Randomizer. This service provides an API that returns a random number every time
it’s called. You want your web page to retrieve two numbers and sum them. Once fin-
ished, you want to show the result in an element having content as its ID. To accom-
plish this goal you need to perform two Ajax requests, synchronize the callback
functions in some way (you’ll use a support function), and finally show the result. The
most complex part of the code is the second: the synchronization of the two indepen-
dent Ajax requests.

 The code of the web page we’re discussing is shown in the following listing. Please
note that executing this page won’t give you any result because you’re performing
requests to a nonexistent Randomizer service, but the code developed will help you in
understanding the importance of promises.

var number1, number2;

function handler() {
 var $content = $('#content');

 if (number1 === null || number2 === null) {
 $content.text('An error has occurred, try again later.');
 } else if (number1 !== undefined && number2 !== undefined) {
 $content.text(number1 + number2);

Listing 13.1 Implementing multiple asynchronous operations with callbacks

Defines the function that both
the Ajax callbacks will invoke

Prints the
result on
the page
www.EBooksWorld.ir

361Introduction to promises
 }
}

$.ajax(http://www.randomizer.com/number', {
 success: function(data, status) {
 number1 = (status === 'success') ? parseInt(data, 10) : null;
 handler();
 },
 error: function() {
 number1 = null;
 handler();
 }
});

$.ajax('http://www.randomizer.com/number', {
 success: function(data, status) {
 number2 = (status === 'success') ? parseInt(data, 10) : null;
 handler();
 },
 error: function() {
 number2 = null;
 handler();
 }
});

The previous listing is pretty simple but it has a big issue: you need to introduce a vari-
able for every callback function. In this case you need only two, but as the project
grows, the situation could become unmanageable. In addition, let’s assume that the
previous code was the body of a function invoked by another function called foo. How
could you return the result of the two Ajax requests to the foo function? With the cur-
rent approach, you can’t without introducing some global variables. Finally, what if
you had to make two Ajax requests, with the second starting after the first is com-
pleted? In this case, you’d need to have a callback inside a callback. With more and
more callbacks coming into play, the code would become a complete mess, and that’s
why this situation is known as the “callback hell.”

 The example discussed has given you an idea of what the problem is with callback
functions. You can improve this code using promises, resulting in several advantages.
ECMA International (http://www.ecma-international.org/), the group behind the
JavaScript specifications, has decided to introduce promises in the next version of
JavaScript (ECMAScript 2015, also known as ECMAScript 6) and to adhere to the
Promises/A+ proposal. Some modern browsers already support them, but others
don’t and older browsers never will. Therefore, if you want to write clean, readable,
and maintainable code by using the promises approach, you need to rely on a polyfill
or a library in case you want more functions than those offered by the standard.

 jQuery helps you avoid all these browser issues but, depending on the version of
the library you’re using, it might do it in a slightly different manner. jQuery provides
you with two objects, Deferred and Promise, that you can reliably use in your projects.
But before we introduce them, we need to split the discussion in order to help you to
easily follow the concepts of this chapter.

Performs the first
Ajax request

Calls the support
function that
synchronizes
the callbacks

Performs the second
Ajax request

Calls the support
function that
synchronizes
the callbacks
www.EBooksWorld.ir

http://www.ecma-international.org/

362 CHAPTER 13 Avoiding the callback hell with Deferred
 jQuery’s 1.x and 2.x implementation adheres to the CommonJS Promises/A pro-
posal (http://wiki.commonjs.org/wiki/Promises/A) that was used as a base for Prom-
ises/A+. Therefore, there are differences in how you can use promises in pure
JavaScript and in jQuery 1.x and 2.x. Moreover, because jQuery follows a different
proposal in these branches, the library is incompatible with other ones. The Prom-
ises/A proposal defines a promise in this way:

A promise represents the eventual value returned from the single
completion of an operation. A promise may be in one of the three states,
unfulfilled, fulfilled, and failed. The promise may only move from
unfulfilled to fulfilled, or unfulfilled to failed.

PROMISES/A SPECIFICATIONS

As you can see, the terminology for the Promise object’s definition, illustrated in fig-
ure 13.1, is a bit different. The Promises/A proposal defines the unfulfilled, fulfilled,
and failed states, whereas the Promises/A+ proposal uses the pending, fulfilled, and
rejected states.

These proposals outline the behavior of promises and not the implementation, so
libraries implementing promises have a then() method in common but may differ for
other methods exposed.

 In jQuery 3.x the interoperability with a standard promise (as implemented in
ECMAScript 2015, which follows the Promises/A+ proposal) has been improved. The
signature of the then() method is still a bit different for backward compatibility but
the behavior is more in line with the standard. Don’t worry if this is confusing at first;
we’ll highlight all the differences and also provide you with many examples.

 In the next section, you’ll learn more about the Deferred and Promise objects
and, where necessary, we’ll also highlight other differences between the Promises/A
and the Promises/A+ proposals.

13.2 The Deferred and Promise objects
The Deferred object was introduced in jQuery 1.5 as a chainable utility used to regis-
ter multiple callbacks into callback queues, invoke callback queues, and relay the suc-
cess or failure state of any synchronous or asynchronous function. Since then, it has

Promise

Fulfilled Failed

Unfulfilled

Promises/A

Promise

Fulfilled Rejected

Pending

Promises/A+

Figure 13.1 The
terminology differences of
the Promises/A and the
Promises/A+ proposals
www.EBooksWorld.ir

http://wiki.commonjs.org/wiki/Promises/A

363The Deferred methods
been subject to discussions, some criticisms, and a lot of changes along the way.1 This
object can be used for many asynchronous operations, like Ajax requests and anima-
tions, but also with JavaScript timing functions. Together with the Promise object, it
represents the jQuery implementation of promises.

 The Promise object is created starting from a Deferred object or a jQuery object
and possesses a subset of the methods of the Deferred object (always(), done(),
fail(), state(), and then()). Deferred objects are typically used if you write your
own function that deals with asynchronous callbacks. So, your function is the producer
of the value and you want to prevent users from changing the state of the Deferred.

 In chapter 10 we covered the utility functions that jQuery provides to work with Ajax
requests, but for your convenience, we omitted to say that the returned value of those
functions, which is a jqHXR object as you might remember, implements the Promise
interface. For this reason they’re sometimes referred to as Promise-compatible objects,
and you can call all the methods of regular Promise objects on them. This will allow you
to write cleaner and more readable code.

 Let’s now discuss how to work with Deferreds and Promises.

13.3 The Deferred methods
In jQuery, a Deferred object is created by calling the $.Deferred() constructor. The
syntax of this function is as follows.

The Deferred object allows for chaining, like many of the jQuery methods we’ve dis-
cussed so far, but it has its own methods. You’ll never find yourself writing a statement
like this:

$.Deferred().html('Promises are great!');

1 http://bugs.jquery.com/ticket/11010.
“You’re Missing the Point of Promises” by Domenic Denicola: http://domenic.me/2012/10/14/youre-
missing-the-point-of-promises/.
“Javascript promises and why jQuery implementation is broken” by Valerio Gheri: https://thewayofcode
.wordpress.com/tag/jquery-deferred-broken/.
https://github.com/jquery/jquery/issues/1722.

Method syntax: $.Deferred

$.Deferred([beforeStart])
A constructor function that returns a chainable utility object with methods to register multiple
callbacks into callback queues, invoke callback queues, and relay the success or failure state of
any synchronous or asynchronous function. It accepts an optional function to execute before the
constructor returns.

Parameters

beforeStart (Function) A function that’s called before the constructor returns. The function
accepts a Deferred object used as the context (this) of the function.

Returns
The Deferred object.
www.EBooksWorld.ir

http://bugs.jquery.com/ticket/11010
http://bugs.jquery.com/ticket/11010
http://domenic.me/2012/10/14/youre-missing-the-point-of-promises/
http://domenic.me/2012/10/14/youre-missing-the-point-of-promises/
https://thewayofcode.wordpress.com/tag/jquery-deferred-broken/
https://thewayofcode.wordpress.com/tag/jquery-deferred-broken/
https://github.com/jquery/jquery/issues/1722

364 CHAPTER 13 Avoiding the callback hell with Deferred
Having created a new Deferred object isn’t of any utility if you don’t know how to use
it. Starting from the next section, we’ll cover the methods exposed by this object.

13.3.1 Resolving or rejecting a Deferred

One of the first concepts we discussed in this chapter is the state in which a promise
can be. In jQuery, a promise can be resolved (the promise is successful), rejected (an
error occurred), or pending (the promise is neither resolved nor rejected). These
states can be reached in two ways. The first is determined by code that you or another
developer has written and with an explicit call to methods like deferred.resolve(),
deferred.resolveWith(), deferred.reject(), or deferred.rejectWith(). These
methods, as we’ll discuss in a few moments, allow you to either resolve or reject a
promise. The second is determined by the success or the failure of a jQuery func-
tion—for example, $.ajax()—so you don’t have to call any of the previously men-
tioned methods yourself.

 Before you can write any code that uses the Deferred object, you have to get
acquainted with these methods, so let’s discover their syntax. The syntax of the
deferred.resolve() method is shown here.

The syntax of the deferred.resolveWith() method is shown here.

Method syntax: deferred.resolve

deferred.resolve([argument, ..., argument])
Resolve a Deferred triggering the execution of any successful callback defined, passing any
given argument. This method accepts an arbitrary number of arguments.

Parameters

argument (Any) An optional argument of any type that is passed to the success callback
functions defined.

Returns
The Deferred object.

Method syntax: deferred.resolveWith

deferred.resolveWith(context[, argument, ..., argument])
Resolve a Deferred triggering the execution of any successful callback defined, passing any
given argument, and setting context as their context.

Parameters

context (Object) The object to set as the context of the successful callbacks.
argument (Any) An optional argument of any type that is passed to the success callback

function defined.

Returns
The Deferred object.
www.EBooksWorld.ir

365The Deferred methods
Sometimes it happens that a promise needs to be rejected. For such circumstances
you can employ the deferred.reject() method. Its syntax is shown here.

In the same way that jQuery defines a method to set the context for the successful call-
backs, you can set it for failure callbacks by using the deferred.rejectWith()
method. The syntax of this method is reported here.

Up to this point you’ve learned how to create a Deferred and how to resolve or reject
it, but the fun comes when you write code to react to the change in a Deferred’s state.
Let’s see how.

13.3.2 Execute functions upon resolution or rejection

Usually you want to know when a Deferred is resolved to perform some actions. To do
that, you can employ the deferred.done() method. It accepts one or more argu-
ments, all of which can be either a single function or an array of functions. These call-
back functions are executed in the order in which they were added. The syntax of this
method is shown here.

Method syntax: deferred.reject

deferred.reject([argument, ..., argument])
Reject a Deferred triggering the execution of any failure callback defined, passing any given
argument. This method accepts an arbitrary number of arguments.

Parameters

argument (Any) An optional argument of any type that is passed to the failure callback
function defined.

Returns
The Deferred object.

Method syntax: deferred.rejectWith

deferred.rejectWith(context[, argument, ..., argument])
Reject a Deferred, triggering the execution of any failure callback defined, passing any given
argument, and setting context as their context.

Parameters

context (Object) The object to set as the context of the failure callbacks.
argument (Any) An optional argument of any type that is passed to the failure callback

function defined.

Returns
The Deferred object.
www.EBooksWorld.ir

366 CHAPTER 13 Avoiding the callback hell with Deferred
In the same way that you can execute operations when a Deferred object is resolved,
you can run functions when it’s rejected. To do that, you can use the deferred
.fail() method. Its syntax is as follows.

In this case, too, when the Deferred is rejected, the callbacks are executed in the
order in which they were added.

 Now that we’ve introduced you to these methods, we’re able to show you some
code to demonstrate what this fuss is all about. To start simply, we’ll modify the exam-
ple we discussed at the beginning of this chapter and rewrite it to use Deferreds. This
time we want to provide you with a working demo, so we’ll add in a simple PHP page,
called “integer.php,” to simulate the Randomizer service. The resulting code is shown
in the next listing and is also available in the file chapter-13/randomizer.1.html.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Using Promises with Ajax requests version 1</title>
 <link rel="stylesheet" href="../css/main.css" />
 </head>
 <body>
 <p>

Method syntax: deferred.done

deferred.done(callbacks[, callbacks, ..., callbacks])
Add handlers that are called when the Deferred object is resolved. This method accepts an
arbitrary number of callbacks with a minimum of one.

Parameters

callbacks (Function|Array) A function or array of functions that is called when the
Deferred is resolved.

Returns

The Deferred object.

Method syntax: deferred.fail

deferred.fail(callbacks[, callbacks, ..., callbacks])
Add handlers that are called when the Deferred object is rejected. This method accepts an
arbitrary number of callbacks with a minimum of one.

Parameters

callbacks (Function|Array) A function or array of functions that is called when the
Deferred is rejected.

Returns
The Deferred object.

Listing 13.2 Using Promises with Ajax requests, version 1
www.EBooksWorld.ir

367The Deferred methods
 The generated random numbers are
 and .
 Their sum is
 <p>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 var number1, number2;

 function handler() {
 var $sum = $('#sum');

 if (number1 === null || number2 === null) {
 $sum.text('An error has occurred, try again later.');
 } else if (number1 !== undefined && number2 !== undefined) {
 $sum.text(number1 + number2);
 }
 }

 var promise1 = $.ajax('integer.php');
 promise1.done(function(data, status, jqXHR) {
 number1 = (status === 'success') ? parseInt(data, 10) : null;
 $('#number1').text(number1);
 handler();
 })
 .fail(function() {
 number1 = null;
 handler();
 });

 var promise2 = $.ajax('integer.php');
 promise2.done(function(data, status, jqXHR) {
 number2 = (status === 'success') ? parseInt(data, 10) : null;
 $('#number2').text(number2);
 handler();
 })
 .fail(function() {
 number2 = null;
 handler();
 });
 </script>
 </body>
</html>

The code in this listing is called version 1 because you’ll work on it again and refactor
it until you reach a clean and elegant solution to this problem using promises. As you
can see, it isn’t much different from listing 13.1, but it still shows some important
concepts.

 The first concept is that you store the jqXHR object returned by the $.ajax() func-
tion in two variables called promise1 B and promise2 E. As we mentioned, a jqXHR
object is Promise-compatible, which means that you can call methods like done() and
fail() on it. Using variables wasn’t really necessary because you could have chained
the done() and fail() methods directly, but we wanted to make clear to you what
kind of object is returned by $.ajax() through the name of the variables.

Stores the Promise-
compatible object
returned by $.ajax() in
a variable

B

Adds a
callback to
execute if

the first
promise is

fulfilled C

Adds a callback to
execute if the first
promise is rejected

D

Stores another Promise-
compatible object returned
by $.ajax() in a variable

E

Adds a
callback to
execute if

the second
promise is

fulfilled F Adds a callback to
execute if the second
promise is rejectedG
www.EBooksWorld.ir

368 CHAPTER 13 Avoiding the callback hell with Deferred
 Then you attach the same success and failure callbacks that were developed in list-
ing 13.1. The callbacks to execute if the Ajax request is successful are added by calling
the done() method on the variables promise1 C and promise2 F. The same thing
happens to the failure callbacks that are added by calling the method fail() on
promise1 D and promise2 G.

 While we’re talking about done() and fail(), we want to highlight that if you add
a success or failure callback after the state of a Deferred is changed to either resolved
or rejected, the callback will be executed immediately. Consider the following code:

var promise1 = $.ajax('integer.php');
setTimeout(function() {
 promise1.done(function(data, status, jqXHR) {
 // Code here
 })
 .fail(function() {
 // Code here
 });
}, 5000);

In this case you delay the statement that adds the callbacks by five seconds to simulate
a long enough time for the “integer.php” page to be executed and its response
returned (this isn’t guaranteed, but it’s enough for the sake of the example). Based
on this assumption, at the time done() and fail() are invoked to add the callbacks,
the state of promise1 is already defined. What you might expect, because of your
experience with listeners added to events, is that none of them will be executed. The
reason is that the “event” of changing the state of the promise has already happened.
But one of the two functions will still run, which is an important difference.

 Another interesting difference is that you can add as many callbacks as you like
with one statement. Let’s say that if an Ajax request is successful, you want to execute
two functions, foo() and bar(). In a traditional approach, you’d write code like the
following:

$.ajax('integer.php', {
 success: function(data, status, jqXHR) {
 foo(data, status, jqXHR);
 bar(data, status, jqXHR);
 }
);

Using the done() method, you can rewrite it in a single line of code:

$.ajax('integer.php').done(foo, bar);

Or equivalently (note that here you pass an array of functions):

$.ajax('integer.php').done([foo, bar]);

Much better, isn’t it?
 Listing 13.2 employs some of the new methods you’ve learned, but it still suffers

from the awkward synchronization approach used. Let’s see how to do better.
www.EBooksWorld.ir

369The Deferred methods
13.3.3 The when() method

In order to edit listing 13.2 to its final version, we need to introduce you to another
utility function: $.when(). It provides a simple way to execute callback functions based
on one or more objects, usually Deferred or Promise-compatible objects representing
asynchronous events. This is exactly what you need in your code because you have two
Promise-compatible objects returned by the two $.ajax() calls. But before using it,
let’s discover its syntax and the parameters it accepts.

The $.when() utility function has an interesting point to highlight: it doesn’t return a
Deferred object but a Promise object. What’s returned by this method can’t
be resolved or rejected; you can only call done(), fail(), and a few other methods
on it. It’s worth noting that in ECMAScript 2015 there’s a similar method called
Promise.all().

 If you pass a single Deferred object to $.when(), its Promise object is returned;
otherwise a new Promise is created starting from a “master” Deferred that will keep
track of the state of all the objects (Promise, Promise-compatible, Deferred objects,
and so on) passed to $.when().

$.when() causes the execution of the success callbacks (the functions to run in the
event of success) when and if all the objects passed to this utility function are resolved
(in the case of Deferreds, Promises, and Promise-compatible objects) or can be con-
sidered resolved (any other type of objects). Conversely, it causes the execution of the
failure callbacks as soon as one of the Deferreds is rejected or one of the Promise or
Promise-compatible objects is in a rejected state. The arguments passed to the call-
back functions, whether for success or failure, are the ones passed to either resolve()
or reject(), depending on the case.

 Before we lose you in this sea of information, let’s see a concrete example. As we
mentioned earlier, we’ll rewrite the code of listing 13.2 and try to improve it by using
Deferreds. The final result is shown in the next listing and is also available in the file
chapter-13/randomizer.2.html.

Method syntax: $.when

$.when(object[, object, ..., object])
Provides a way to execute callback functions based on one or more objects, usually Deferred or
Promise-compatible objects representing asynchronous events. This function accepts an arbitrary
number of objects with a minimum of one.

Parameters

object (Deferred|Promise|Object) A Deferred, Promise, Promise-compatible, or
JavaScript object. If a JavaScript object is passed, it’s treated as a resolved
Deferred.

Returns
A Promise object.
www.EBooksWorld.ir

370 CHAPTER 13 Avoiding the callback hell with Deferred

C
Pro
from
Defe

$.wh
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Using Promises with Ajax requests version 2</title>
 <link rel="stylesheet" href="../css/main.css" />
 </head>
 <body>
 <p>
 The generated random numbers are
 and .
 Their sum is
 <p>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 function success(params1, params2) {
 var number1 = (params1[1] === 'success') ?
 parseInt(params1[0], 10) : null;

 var number2 = (params2[1] === 'success') ?
 parseInt(params2[0], 10) : null;

 if (number1 === null || number2 === null) {
 fail();
 return;
 }

 $('#number1').text(number1);
 $('#number2').text(number2);
 $('#sum').text(number1 + number2);
 }

 function fail() {
 $('#sum').text('An error has occurred, try again later.');
 }

 $.when($.ajax('integer.php'), $.ajax('integer.php'))
 .done(success)
 .fail(fail);
 </script>
 </body>
</html>

Looking at this code should make you feel happy and your eyes should shine. Thanks
to $.when(), we’ve highly simplified the code of listing 13.2 and made it more read-
able and manageable. Let’s analyze the code.

 The key point is the use of $.when(), which you employ to solve the issue you had
with the synchronization of the results of the Ajax requests D. By doing so, you don’t
have to set the success and failure functions for each of them. In fact, you’ll only set

Listing 13.3 Using Promises with Ajax requests, version 2

Defines a
success callbackB

Defines a
failure callback

Creates a new
mise starting
 a “master”
rred created
internally by

en(), which is
based on the
$.ajax() calls

D

E

Sets the success()
callback using the

deferred.done()
method

Sets the fail()
callback using the

deferred.fail() method F
www.EBooksWorld.ir

371The Deferred methods
them on the Promise object returned by $.when() through the use of done() E and
fail() F. Once again, we want you to remember that a Promise object is created
starting from a Deferred object or a jQuery object (in this case it’s created internally
by $.when()) and possesses a subset of the methods of the Deferred (always(),
done(), fail(), state(), and then()).

 The success() function is executed when both of the Promise-compatible objects
are fulfilled. Its behavior isn’t changed compared to the previous version, but there is
an interesting detail to discuss. You define two parameters for this function, params1
and params2, because this is the number of the Promise-compatible objects you’re
using B. Each of these parameters is an array containing the usual parameters passed
to the success callback of a $.ajax(), $.get(), or $.post() function: data, statusText,
and jqXHR. It’s worth noting that if the value passed was a single object, it wouldn’t be
wrapped.

 The last function defined in the listing is fail() C. It’s extracted from the previ-
ous listing’s handler() function and it’s executed as soon as one of the Ajax requests
fails.

 In addition to resolving or rejecting a Deferred, you can also give a notification
about the progress of the process.

13.3.4 Notifying about the progress of a Deferred

Sometimes you may have some code that needs to know the state of a Deferred. For
example, if you’re retrieving data asynchronously, you want to know the percentage of
completion of the process. If this process is promise-based, you may have a function
waiting for either the resolution or the rejection of that promise, which you want to
keep informed about its state. For such occasions, you can employ
deferred.notify(). The syntax of this method is as follows.

In case you want to force the context of the callback functions executed, you can use
deferred.notifyWith().

Method syntax: deferred.notify

deferred.notify([argument, ..., argument])
Triggers the execution of any progress callback defined, passing any given argument. This method
accepts an arbitrary number of arguments.

Parameters

argument (Any) An optional argument of any type that is passed to the progress callback
functions defined.

Returns

The Deferred object.
www.EBooksWorld.ir

372 CHAPTER 13 Avoiding the callback hell with Deferred
Thanks to these methods, you’re now ready to see how you can perform some actions
while an operation is in progress.

13.3.5 Follow the progress

With the methods discussed in the previous section, you can be notified about the
progress of an asynchronous operation. But this is completely useless if you can’t “lis-
ten” for these updates. Enter the deferred.progress() method.

Now that you know how this method works, let’s fix the idea with an example. Let’s say
that you want to create an animation for a progress bar and you want to be able to keep
track of the progress of the animation to display the percentage of completion. To do
that you can use the deferred.progress() and the deferred.notify() methods.

NOTE The example we’re going to develop isn’t ideal. A better way would be
to return the Promise object of the Deferred used and let the caller of the
animation function update the percentage. We’ll modify it in the next sec-
tion, but for the moment we want to keep things as simple as possible and
move in little steps, so bear with us.

The code that implements the previous requirements is reported in the following list-
ing and available as a JS Bin (http://jsbin.com/yohiho/edit?html,css,js,output). You
can find it in the file chapter-13/deferred.progress.1.html.

Method syntax: deferred.notifyWith

deferred.notifyWith(context[, argument, ..., argument])
Triggers the execution of any progress callback defined, passing any given argument and setting
context as their context

Parameters

context (Object) The object to set as the context of the progress callbacks
argument (Any) An optional argument of any type that is passed to the progress callback

functions defined

Returns
The Deferred object

Method syntax: deferred.progress

deferred.progress(callbacks[, callbacks, ..., callbacks])
Add handlers that are called when the Deferred object generates progress notifications. This
method accepts an arbitrary number of callbacks with a minimum of one.

Parameters

callbacks (Function|Array) A function or array of functions that is called when the
Deferred object generates progress notifications.

Returns
The Deferred object.
www.EBooksWorld.ir

http://jsbin.com/yohiho/edit?html,css,js,output

373The Deferred methods
<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Using deferred.progress() version 1</title>
 <link rel="stylesheet" href="../css/main.css" />
 <style>
 .bar,
 .inner-bar
 {
 height: 50px;
 border-radius: 3px;
 }

 .bar
 {
 position: relative;
 border: 1px solid #000000;
 background-color: #CCCCCC;
 }

 .inner-bar
 {
 width: 0%;
 background-color: #F72F39;
 }

 .progress
 {
 position: absolute;
 font-size: 30px;
 width: 100%;
 text-align: center;
 top: 10px;
 }

 button
 {
 margin-top: 15px;
 }
 </style>
 </head>
 <body>
 <div class="bar">
 <div class="inner-bar"></div>
 0%
 </div>

 <button id="run-button">Run animation</button>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 function animate(milliseconds) {
 var $innerBar = $('.inner-bar').width(0);
 var $barWidth = $('.bar').width();
 var step = $barWidth / 100;

Listing 13.4 Using deferred.progress(), version 1

Defines a simple
progress barB

Defines the
function that
animates the
progress bar

C

www.EBooksWorld.ir

374 CHAPTER 13 Avoiding the callback hell with Deferred
 var deferred = $.Deferred().progress(function (value) {
 $('.progress').text(Math.floor(value) + '%');
 });

 var idInterval = setInterval(
 function () {
 // Can't use width() to retrieve the width because
 // of issue #1724
 // (https://github.com/jquery/jquery/issues/1724)
 var nextWidth =
 parseFloat($innerBar.get(0).style.width) + step;
 deferred.notify(nextWidth * 100 / $barWidth);
 $innerBar.width(nextWidth);
 if (nextWidth >= $barWidth) {
 deferred.resolve();
 clearInterval(idInterval);
 }
 },
 milliseconds / 100
);
 }

 $('#run-button').click(function() {
 animate(1000);
 });
 </script>
 </body>
</html>

In this example you create a simple progress bar that shows the percentage of comple-
tion B. Inside the script element, you define a function called animate() that ani-
mates the progress bar C. It accepts the number of milliseconds the animation has to
last. Inside it, you instantiate a new Deferred object and add a progress callback that
updates the percentage of completion D.

 Using JavaScript’s setInterval() function, you set up the core of the animate()
function where you calculate the next step of the animation, which will always be to
add another $barWidth/100 to the bar width, and notify the Deferred E. Finally,
when the animation is completed you resolve the Deferred using the deferred
.resolve() method F.

 This example has shown you how to use the deferred.progress() method, but
you might struggle to understand why you don’t place the statement to update the
percentage inside the function passed to setInterval() and get rid of the Deferred
object altogether. You could indeed do this, but the previous listing has given us the
chance to lead you gradually toward a crucial concept: when to use the Deferred
object or the Promise object and why.

13.3.6 Using the Promise object

In order to master Deferreds and Promises you have to understand when to use one
and when the other. To help you understand this topic, let’s say that you want to
implement a promise-based timeout function. You are the producer of the function. In

Creates a new
Deferred, adding a
progress callback

D

E

Notifies the
Deferred at

each step of the
animation, passing

the percentage
of completion

Resolves the
Deferred when

the animation is
completed F
www.EBooksWorld.ir

375The Deferred methods
this case, the consumer of your function doesn’t need to care about resolving or reject-
ing it. The consumer only needs to be able to add handlers to execute operations
upon the fulfillment, the failure, or the progress of the Deferred. Even more, you
want to ensure that the consumer isn’t able to resolve or reject the Deferred at their
discretion.

 To achieve this goal, you need to return the Promise object of the Deferred you’ve
created in your timeout function, not the Deferred itself. To be able to do that, we
need to introduce you to another method called deferred.promise().

Now that you know about the existence of this method, let’s write some code to use it.
The code is shown in the next listing, available as a JS Bin (http://jsbin.com/kefaza/
edit?js,output) and in the file chapter-13/promise.timer.html.

function timeout(milliseconds) {
 var deferred = $.Deferred();
 setTimeout(deferred.resolve, milliseconds);

 return deferred.promise();
}

timeout(1000).done(function() {
 alert('I waited for 1 second!');
});

In this listing you define a function called timeout() that wraps the JavaScript set-
Timeout() function. Inside timeout() you create a new Deferred object (you’re the
producer) B and arrange that setTimeout() resolves this Deferred after a given num-
ber of milliseconds C. Once finished, you return the Deferred’s Promise object D.
Doing so, you ensure that the caller of your function (the consumer) E can’t resolve
or reject the Deferred object but can only add callbacks to execute using methods like
deferred.done() and deferred.fail().

Method syntax: deferred.promise

deferred.promise([target])
Return the Deferred’s Promise object.

Parameters

target (Object) An object to which the promise methods will be attached. If this
parameter is provided, the method attaches the Promise behavior to it and
returns this object, instead of creating a new one.

Returns
The Promise object.

Listing 13.5 A promise-based timer

Creates a new DeferredB
Resolves the
Deferred after
a given amount
of time
(milliseconds)C

Returns the
Deferred’s
PromiseD

Adds a success callback to
the returned PromiseE
www.EBooksWorld.ir

http://jsbin.com/kefaza/edit?js,output
http://jsbin.com/kefaza/edit?js,output

376 CHAPTER 13 Avoiding the callback hell with Deferred
 The previous example is pretty simple and may not have entirely clarified when to
use a Deferred and when to use a Promise object. For those of you who still have
doubts, let’s discuss another example. We’ll revisit our progress bar demo so that the
animate() function will focus on animating the progress bar only, freeing it from the
responsibility of updating the text showing the percentage of completion. Hence, it’s
the caller of the function that has to update the text percentage and, optionally, per-
form other tasks when the Deferred is resolved or rejected.

 The new version of this code is shown in the following listing and is also available as
a JS Bin (http://jsbin.com/cefece/edit?html,css,js,output) and in the file chapter-13/
deferred.progress.2.html. Note that in this listing we’ve omitted the style of the page so
that you can focus on the code. In addition, we’ve bolded the parts that are changed in
comparison with the previous version.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Using deferred.progress() version 2</title>
 <link rel="stylesheet" href="../css/main.css" />
 </head>
 <body>
 <div class="bar">
 <div class="inner-bar"></div>
 0%
 </div>

 <button id="run-button">Run animation</button>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 function animate(milliseconds) {
 var $innerBar = $('.inner-bar').width(0);
 var $barWidth = $('.bar').width();
 var step = $barWidth / 100;

 var deferred = $.Deferred();
 var idInterval = setInterval(
 function () {
 // Can't use width() to retrieve the width because
 // of issue #1724
 // (https://github.com/jquery/jquery/issues/1724)
 var nextWidth =
 parseFloat($innerBar.get(0).style.width) + step;
 deferred.notify(nextWidth * 100 / $barWidth);
 $innerBar.width(nextWidth);
 if (nextWidth >= $barWidth) {
 deferred.resolve();
 clearInterval(idInterval);
 }

Listing 13.6 Using deferred.progress(), version 2

Creates a new
Deferred

B

www.EBooksWorld.ir

http://jsbin.com/cefece/edit?html,css,js,output

377The Deferred methods
 },
 milliseconds / 100
);

 return deferred.promise();
 }

 $('#run-button').click(function() {
 animate(1000)
 .progress(function(value) {
 $('.progress').text(Math.floor(value) + '%');
 })
 .done(function() {
 alert('The process is completed');
 });
 });
 </script>
 </body>
</html>

As you can see, in this version of the animate() function you only create the
Deferred B. Once the code that runs the animation has been set, you return its
Promise so that the caller of this method can add callbacks C. Once again, you’re
returning the Promise because you want to enable the caller to add callbacks but not
to be able to change the state of the Deferred. In this case, it’s the responsibility of
the function that created the Deferred to either resolve or reject it.

 Finally, inside the handler that’s attached to the click event of the button you
define a callback to run during the progress of the animation using deferred
.progress() D, and then a callback to execute when the Deferred is resolved, using
deferred.done() (this was absent in the previous version) E.

 With this example we’ve hopefully reinforced the concepts and the methods
described so far. The most observant of you may have noted that we haven’t yet cov-
ered the only method mentioned by both the Promises/A and the Promises/A+ speci-
fications, the then() method. Let’s fix that.

13.3.7 Take it short with then()

In section 13.1 we summarized the definitions of promise taken by the Promises/A
and the Promises/A+ proposals. Both of these definitions mention a then() method,
but whereas the Promises/A proposal specifies that the method must possess a third
argument that will be used as a handler for a progress event, the Promises/A+ pro-
posal doesn’t have such an argument. The jQuery implementation of this method
prior to version 3 (branches 1.x and 2.x) differs from both these proposals because it
defines the first argument, the success callback, as mandatory and the other two, the
failure and progress callbacks, as optional. In contrast, the Promises/A and Promises/
A+ proposals specify that all their arguments are optional.

 The deferred.then() method can be used as a shortcut for calling
deferred.done(), deferred.fail(), and deferred.progress() when you only need

Returns the
Deferred’s Promise

C

Adds a handler to
execute while the

Promise object
returned is
in progress D

Adds a handler
to execute when
the Promise
object returned
is resolvedE
www.EBooksWorld.ir

378 CHAPTER 13 Avoiding the callback hell with Deferred
to execute one handler for each or some of these methods. In case you need
more handlers of the same type, you can chain calls to then(), done(), fail(), and
progress(). Moreover, if you don’t need a handler of a given type, you can simply
pass null. For example, you can write a code statement like the following:

$.Deferred()
 .then(success1)
 .then(success2, null, progress1)
 .done(success3);

Now that you know what this method can do for you, it’s time to learn its syntax.

The deferred.then() method returns a Promise object instead of a Deferred. After
you invoke it, you won’t be able to resolve or reject the Deferred you used unless you
keep a reference to it. Recalling the handler of the click event of the button defined
in listing 13.6, using the deferred.then() method you could rewrite it as follows,
obtaining the same result:

animate(1000).then(
 function() {
 alert('The process is completed');
 },
 null,
 function (value) {
 $('.progress').text(Math.floor(value) + '%');
 }
);

What makes this method even more interesting is that it has the power to forward the
value received as a parameter to other deferred.then(), deferred.done(), deferred
.fail(), or deferred.progress() calls defined after it.

 Before you start to cry in despair, let’s look at a simple example:

var deferred = $.Deferred();
deferred
 .then(function(value) { return value + 1; })
 .then(function(value) { return value + 2; })

Method syntax: deferred.then

deferred.then(resolvedCallback[, rejectedCallback
[, progressCallback]])
Defines handlers executed when the Deferred object is resolved, rejected, or in progress. In
case one of these parameters isn’t needed, you can pass null.

Parameters

resolvedCallback (Function) A function executed when the Deferred is resolved.
rejectedCallback (Function) A function executed when the Deferred is rejected.
progressCallback (Function) A function executed when the Deferred is in progress.

Returns

A Promise object.
www.EBooksWorld.ir

379The Deferred methods
 .done(function(value) { alert(value); });
deferred.resolve(0);

This code creates a new Deferred and then adds three functions to execute when it’s
resolved, two using the deferred.then() method and one using deferred.done().
The last line resolves the Deferred with a value of 0 (zero), causing the execution of
the three functions defined (in the order in which they were added).

 Inside the functions added using deferred.then() you return a new value, cre-
ated starting from the one received. The first function receives the value 0 because
this is the value passed to deferred.resolve(), sums it to 1, and returns the result.
The result of the sum is passed to the next function added using deferred .then().
The second function receives 1 instead of 0 as an argument. This value (1) is summed
to 2 and the result returned (3) is used by the next handler. This time, the handler is
added using deferred.done(), which doesn’t have this power, so you alert the final
value, 3.

 If you add yet another function using deferred.done() to the chain in the previ-
ous example and return a modified value from the third in the chain (the one added
using deferred.done()), the new handler will receive the same value as the third.
The following code will alert the value 3 twice:

var deferred = $.Deferred();
deferred
 .then(function(value) { return value + 1; })
 .then(function(value) { return value + 2; })
 .done(function(value) { alert(value); return value + 5; })
 .done(function(value) { alert(value); });
deferred.resolve(0);

In Promises/A and Promises/A+ compliant libraries (for example, jQuery 3.x), a
thrown exception is translated into a rejection and the failure callback is called with
the exception. In jQuery 1.x and 2.x an uncaught exception will halt the program’s
execution. Consider the following code:

var deferred = $.Deferred()
deferred
 .then(function(value) {
 throw new Error('An error message');
 })
 .fail(function(value) {
 alert('Error');
 });
deferred.resolve();

In jQuery 3.x, you’ll see an alert with the message “Error.” In contrast, jQuery 1.x and
2.x will allow the thrown exception to bubble up, usually reaching window.onerror. If
a function for this isn’t defined, you’ll see on the console the message “Uncaught
Error: An error message.”

 You can investigate this issue further to better understand this different behavior.
Take a look at the following code:
www.EBooksWorld.ir

380 CHAPTER 13 Avoiding the callback hell with Deferred
var deferred = $.Deferred();
deferred
 .then(function() {
 throw new Error('An error message');
 })
 .then(
 function() {
 console.log('First success function');
 },
 function() {
 console.log('First failure function');
 }
)
 .then(
 function() {
 console.log('Second success function');
 },
 function() {
 console.log('Second failure function');
 }
);
deferred.resolve();

In jQuery 3.x, this code would write on the console the messages “First failure func-
tion” and “Second success function.” The reason is that, as we mentioned, the specifi-
cation states that a thrown exception should be translated into a rejection and the
failure callback has to be called with the exception. In addition, once the exception
has been managed (in our example by the failure callback passed to the second
then()), the following success functions should be executed (in this case the success
callback passed to the third then()).

 In jQuery 1.x and 2.x, none but the first function (the one throwing the error)
is executed. You’ll only see on the console the message “Uncaught Error: An error
message.”

Despite these differences of the jQuery library from the specifications, Deferred
remains an incredibly powerful tool to have under your belt. As a professional devel-
oper and with the increasing difficulty of your projects, you’ll find yourself using it a lot.

jQuery 3: Method added
jQuery 3 adds a new method to the Deferred and the Promise objects called
catch(). It’s a method to define a handler executed when the Deferred object is
rejected or its Promise object is in a rejected state. Its signature is as follows:

deferred.catch(rejectedCallback)

This method is nothing but a shortcut for then(null, rejectedCallback) and it
has been added to align jQuery 3 even more to the ECMAScript 2015 specifications
that include a namesake method.
www.EBooksWorld.ir

381The Deferred methods
 Sometimes, regardless of the state of a Deferred, you’ll want to perform one or
more actions. jQuery has a method for such circumstances, too.

13.3.8 Always execute a handler

There may be times when you want to execute one or more handlers regardless of the
state of the Deferred. To do that you can use the deferred.always() method.

Consider the following code:

var deferred = $.Deferred();
deferred
 .then(
 function(value) {
 console.log('success: ' + value);
 },
 function(value) {
 console.log('fail: ' + value);
 }
)
 .always(function() {
 console.log('I am always logged');
 });
deferred.reject('An error');

When executing this code, you’ll see two messages on the console. The first is “fail: An
error” because the Deferred has been rejected. The second is “I am always logged”
because the callbacks added using deferred.always() are executed regardless of the
resolution or rejection of the Deferred.

 There’s one last method to discuss.

13.3.9 Determine the state of a Deferred

When writing code that uses a Deferred, you may need to verify its current state. To
do that, you can employ the deferred.state() method. It does exactly what you’d
expect: it returns a string that specifies the current state of the Deferred. Its syntax is
the following.

Method syntax: deferred.always

deferred.always(callbacks[, callbacks, ..., callbacks])
Add handlers that are called when the Deferred object is either resolved or rejected. This method
accepts an arbitrary number of callbacks with a minimum of one.

Parameters

callbacks (Function|Array) A function or array of functions that is called when the
Deferred is either resolved or rejected.

Returns
The Deferred object.
www.EBooksWorld.ir

382 CHAPTER 13 Avoiding the callback hell with Deferred
This method is particularly useful when you want to unit-test your code. For example,
you could write a statement like this:

assert.equal(deferred.state(), 'resolved');

The method used in the previous statement comes from the QUnit unit-testing frame-
work that we’ll discuss in the next chapter. It simply verifies that the first parameter is
equal to the second, in which case the test passes.

13.4 Promisifying all the things
The previous sections focused on the Deferred and Promise objects and their meth-
ods, but we’ve reserved another small surprise for you: the promise() method. The
latter is different from the deferred.promise() method that you learned a few pages
back. promise() allows you to transform a jQuery object into a Promise object,
enabling you to add handlers using the methods discussed in this chapter. The syntax
of this method is shown here.

Based on the description of this method, if the jQuery object in use doesn’t have ani-
mations running, it’s resolved right away. Hence, any handler attached is executed
immediately. Consider the following code:

$('p')
 .promise()
 .then(function(value) { console.log(value); });

Method syntax: deferred.state

deferred.state()
Determines the current state of a Deferred object. Returns a string that can be "resolved",
"rejected", or "pending".

Returns
A string representing the state of the Deferred.

Method syntax: promise

promise([type][, target])
Returns a dynamically generated Promise object that’s resolved once all actions of a certain type
bound to the collection, queued or not, have finished. By default, type is fx, which means the
returned Promise is resolved when all animations of the selected elements have completed.

Parameters

type (String) The type of queue that has to be observed. The default value is
fx, which represents the default queue for the effects.

target (Object) The object onto which the promise methods have to be
attached.

Returns
A Promise object.
www.EBooksWorld.ir

383Promisifying all the things
If the paragraphs of the page aren’t running any animations, the function added using
then() is executed immediately and the value passed to it is the jQuery object itself.

 Let’s now consider a slightly more complex example that involves animations cre-
ated using the animate() method that you learned about in chapter 8. In this exam-
ple you’ll create two squares and move them from the left to the right of the page at
different speeds, so that the animations will finish at different times. Once both the
animations are completed, you’ll alert a success message.

 The code to achieve this goal is shown in the next listing and is also available as a
JS Bin (http://jsbin.com/wuhiqa/edit?js,output) and in the file chapter-13/
promisify.html.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Promisifying a jQuery object</title>
 <link rel="stylesheet" href="../css/main.css" />
 <style>
 .square
 {
 position: relative;
 width: 25px;
 height: 25px;
 background-color: #1E39BC;
 margin: 10px 0;
 }
 </style>
 </head>
 <body>
 <div id="square1" class="square"></div>
 <div id="square2" class="square"></div>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 $('#square1').animate({left: 500}, 1500);
 $('#square2').animate({left: 500}, 3000);
 $('.square')
 .promise()
 .done(function() {
 alert('The animations are completed');
 });
 </script>
 </body>
</html>

In the code of this listing you animate both squares, but the first animation will last
1500 milliseconds B, whereas the second will last 3000 milliseconds C. After these
animations have been defined, you select both squares using the class name that they

Listing 13.7 Promisifying a jQuery collection

Animates
the first
square

B

Animates
the second

square C

Creates a Promise based
on the jQuery object that
includes both squares

D

Defines a
function to
execute once
both animations
are completedE
www.EBooksWorld.ir

http://jsbin.com/wuhiqa/edit?js,output

384 CHAPTER 13 Avoiding the callback hell with Deferred
share, square, and create a Promise object using the promise() method that we’re
covering in this section D. Finally, you add a function to execute once both anima-
tions are completed E. How cool is that?

13.5 Summary
In this chapter we introduced you to promises, a better pattern for dealing with asyn-
chronous code. Promises enable you to avoid having to use nasty tricks to synchronize
parallel asynchronous functions and the need to nest callbacks inside callbacks inside
callbacks.

 We outlined the Promises/A and the Promises/A+ proposals and explained how
they compare with jQuery’s implementation of promises. We also illustrated the differ-
ences that the two proposals have, focusing our attention on the different terminology
adopted and the number of parameters specified for the then() method, the core of
promises.

 The jQuery implementation of promises involves two objects: Deferred and
Promise. As we described, the latter is created starting from a Deferred or a jQuery
object and possesses a subset of the methods of the Deferred.

 We delved into the many methods exposed by Deferred. The latter can be resolved
using the deferred.resolve() method or rejected using deferred.reject(). You
can also be notified about the progress of the asynchronous operation using
deferred.notify(). All these methods have a related method that accepts an addi-
tional parameter, which allows you to set the context of the functions triggered:
deferred.resolveWith(), deferred.rejectWith(), and deferred.notifyWith().

deferred.done(), deferred.fail(), and deferred.progress() are the methods
that enable you to add handlers to run when a Deferred is resolved, rejected, or still
in progress.

 Another interesting concept is $.when(), a utility function that allows you to easily
synchronize multiple asynchronous and even synchronous functions.

 We introduced you to jQuery’s implementation of the then() method, high-
lighting the differences that jQuery has with other libraries that adhere to either the
Promises/A or the Promises/A+ proposal.

 This chapter also covered other methods exposed by the Deferred object, like
deferred.always() and deferred.state().

 Finally, we discussed promise(), a method to transform any jQuery object into a
Promise object. This method is very useful because it enables you to use the power of
Deferreds with simple jQuery objects.

 With this chapter we’ve completed our overview of the jQuery library. Thanks to
the chapters you’ve read so far, you’ve hopefully learned the ins and the outs of this
library and you can now define yourself as a jQuery ninja! Congratulations!

 In the next chapter we’ll try to move a step forward by discussing a crucial concept
that every professional developer has to master: unit testing. Turn the page and con-
tinue your learning process.
www.EBooksWorld.ir

Unit testing with QUnit
The previous chapter was the last discussing concepts strictly related to the jQuery
core. Deferred and Promise might have been tough arguments to learn but, hope-
fully, with our help the process has gone smoothly.

 It’s now time for you to enhance your skills even further. In this chapter you’ll
learn other tools and techniques that every pro must know. You’ll apply them to
code written using jQuery, but you can reuse this knowledge with any code written
in JavaScript. Testing is an essential concept to master if you’re working in a team
or on anything that isn’t for your personal use only.

 Important topics that you’ll explore in this chapter are tests and how to make
assertions. An assertion is a way to verify that your code works correctly and your
assumptions are respected. Stated another way, an assertion verifies that a function
returns the value you expect given a set of inputs, or that the value of a variable or
property of an object is what you expect after running some operations on it.

This chapter covers
 Why testing is important

 What unit testing means

 Installing QUnit

 Testing your JavaScript code with QUnit

 How to create a complete test suite with QUnit
385

www.EBooksWorld.ir

386 CHAPTER 14 Unit testing with QUnit
 Finally, after a brief introduction about what unit testing is and why you should
consider it, we’ll discuss QUnit. It’s one of the libraries available in the JavaScript com-
munity to unit test code written in JavaScript. The reason why we’ll talk about QUnit
and not another library is that QUnit is the framework employed by all the jQuery
projects (jQuery, jQuery UI, and jQuery Mobile) to unit test the code.

 Without further ado, let’s discover more about testing, in particular unit testing,
and QUnit.

14.1 Why is testing important?
To explain why software testing is important, we’ll start with an example. How would
you answer if we asked you to drive a car that nobody has ever tested in a Formula 1
race? Would you risk your life with something nobody has ever checked to see if it’s
robust enough to not get destroyed at the first curve? Or that the brakes actually brake
the car? Of course, the answer to all these questions is a big “No!” The same principle
applies to software. Nobody wants to use software that crashes every two minutes or
that doesn’t work as expected, or even worse, that doesn’t match the requirements or
the expectations of the user. That’s exactly where software testing comes into play.

 Software testing is the process of evaluating a piece of software to detect differ-
ences between the actual and expected output, with a given input. Testing helps build
safe, reliable, and stable software. It provides valuable information and insight into
the state of the system or software. Software testing also serves as a metric of how your
product differs from the specifications, customer expectations, past versions of the
same product, and many other criteria. Another primary purpose is to detect defects
of the code, usually referred to as bugs.

 When talking about bug detection, we don’t mean that testing allows you to verify
all the possible conditions and find every bug in your system, which is impossible in
every real-world system. The scope is to verify your code, product, or system under
certain conditions to see if it works as expected. Even employing testing, bugs will
always exist. This isn’t something you can eradicate with practice or knowledge
because it’s intrinsic in every complex system. You have to accept that bugs in soft-
ware exist not because you or other developers working on it aren’t good enough,
but because any real-world software is so complex that you can’t predict, and thus fix,
every source of failure.

 Testing is an essential part of the life of every developer. At least, it should be.
Unfortunately, many developers are scared of testing. It’s often seen as an extra activ-
ity, something that forces you to waste time—a lot of time. Of course, you don’t have
to take this wisdom to the other extreme. If you’re developing a really small piece of
code for yourself to automate a process you only have to perform once in your life,
testing it is probably not worth the effort. But as more experienced developers will
confirm, if you’re developing even a small project or library that you plan to use in
your daily work and share with your team, other developers, or the entire JavaScript
community, then you’d better test it.
www.EBooksWorld.ir

387Why is testing important?
 Testing is an incredibly wide discipline. You can test your projects for a bunch of
different aspects (for example, compatibility testing and regression testing), using dif-
ferent methods (for example, visual testing and black-box testing), and at different
levels (for example, unit testing and integration testing). By no means is the purpose
of this section to teach you the ins and outs of software testing. The topic is so broad
that it would require us to write another book just for this topic. What we want to com-
municate here is the importance of testing and why you should test your software in
case you haven’t been doing it yet.

 In the next section, we’ll give you an overview of one of the types we mentioned:
unit testing.

14.1.1 Why unit testing?

Unit testing is a software testing method that promotes the practice of thinking of soft-
ware as a set of isolated pieces of code, referred to as units, that can be tested individu-
ally to verify that they work as expected. When unit testing, each set of tests targeting a
single unit should be independent from the others. Usually a unit is identified by a
function or a method, depending on the type of programming language adopted.

 In short, the main benefits of unit testing code are these:

 Attest that the code returns expected results given specific inputs.
 Discover the highest number of defects in an early stage (related to the previ-

ous point).
 Improve the design of the code.
 Identify units that are too complex.

Adhering to the principles of unit testing, given a function of your software and a set
of inputs, you can determine if the function is returning the expected outputs. This
process is usually automated and involves a unit-testing framework. Unit testing con-
sists of writing functions that, when executed, pass a set of inputs you’ve defined to the
targeted function (the one you’re testing). Then these functions verify that for each
set of inputs the returned result is the one expected (that you’ve defined in the test
function). Employing this method, you can also verify that if you pass invalid inputs to
the targeted function, the latter is able to deal with them gracefully (this can also
mean raising an expected error or exception). When one or more tests fail, you know
there’s an error in the code of the unit, so you need to fix it. This process is iterated
until all the tests are passed (the results returned match those expected).

 The goal of unit testing is to find the largest percentage possible of software
defects in an early stage of the development process. Another advantage is that once
you have all the tests for a given unit in place, you can improve the code of the unit
(function or method) confidently. If you make a mistake while updating the code, one
or more tests will (usually) fail and you’ll know that something went wrong. There-
fore, you can change your code more confidently knowing that you’re not breaking a
feature that used to work properly.
www.EBooksWorld.ir

388 CHAPTER 14 Unit testing with QUnit
 Another benefit always associated with unit testing is that it helps in understanding
and improving how to design the code. Instead of writing code to do something, you
start by outlining all the conditions your code has to meet and what outputs you
expect. This concept is usually related to a development methodology called test-
driven development (TDD).

The final advantage we want to highlight is that unit testing helps in identifying units
that are too complex. For example, you can recognize that a method is doing more
than its primary goal—remember the single responsibility principle (SRP). What usu-
ally happens is that when writing the test code you feel that it’s too complex or it’s
becoming too long. This is a good indication that the method needs to be divided up
or refactored.

 If a project is developed with JavaScript, there’s an additional reason to embrace
testing: browser incompatibilities. Although the major browsers, including Internet
Explorer, are adhering to web standards more and more every day, they still have dif-
ferent behaviors in many circumstances. Having solid tests is one way to avoid the
issue of deploying code that works in certain browsers and breaks your web pages in
others. You can run the same tests in different browsers to verify that all of them pass.

 Now that you have an idea of what testing and unit testing are, and you have a
good grasp of why you should employ them, it’s time to take a look at the unit-testing
frameworks available for your JavaScript code.

14.1.2 Frameworks for unit testing JavaScript

Do you know that joke, pretty famous among JavaScript developers, that says that you
should think of a word, search Google for “<word>.js,” and if a library with that name
exists, have a drink? If you didn’t, you know it now. The point of this joke isn’t to get
you drunk but to highlight the huge number of JavaScript libraries, frameworks, and
plugins out there. The same point could be made for unit testing frameworks.

 The JavaScript community offers a lot of frameworks that you can use to unit test
your projects. But like software, testing frameworks come and go. Before sticking with
one you should check that it’s still maintained. In this section we’ll give you a brief
overview of some of the most popular JavaScript unit-testing frameworks.

 QUnit (http://qunitjs.com/) is the first unit-testing framework we want to intro-
duce. It was developed to test jQuery, but then it turned into a standalone unit-testing

Test-driven development
Test-driven development is a software development process that relies on writing
tests before writing the code (unit) to test. The first step in TDD is to write an initially
failing test case. Then the developer has to produce the code that implements the
feature until all the tests are passed. Finally, the code is refactored until it matches
an acceptable quality standard.
www.EBooksWorld.ir

http://qunitjs.com/

389Getting started with QUnit
framework. It has been adopted by all the other projects managed by the jQuery team,
but it can be used with any JavaScript-based code. QUnit supports the same browsers
as jQuery 1.x. One of the advantages of this framework is that it provides an easy-to-
use set of methods that you can employ to test your project. In addition to the usual
assert methods, QUnit allows you to test asynchronous functions.

 Mocha (http://mochajs.org/) is a feature-rich JavaScript test framework running
on Node.js and the browser. Mocha tests run serially, allowing for flexible and accu-
rate reporting, while mapping uncaught exceptions to the correct test cases.

 Jasmine (http://jasmine.github.io/) is an open source, behavior-driven develop-
ment (BDD) framework for JavaScript. It has a clean and easy-to-read syntax.

Other frameworks that you may read about on the web and that we want to mention
are YUI Test (http://yuilibrary.com/yui/docs/test/) and Selenium (http://docs
.seleniumhq.org/). Which framework to use depends on your preference, on your
and your team’s skills, and on the kind of approach you want to adopt (TDD or BDD).
In the remainder of this chapter we’ll discuss QUnit because, as we mentioned, it’s the
framework maintained and used by the jQuery team. If they trust QUnit, why
shouldn’t you? Let’s look at how you can start using it.

14.2 Getting started with QUnit
One of the best features of QUnit is its ease of use. Getting started with this framework
is a matter of performing three simple steps.

 The first thing to do is to download the framework. QUnit can be downloaded in
several different ways. The first method is to access its website and download the
JavaScript and the CSS file in the latest version available.

NOTE At the time of this writing the latest version is 1.18.0, but all the exam-
ples provided in this chapter were developed to work seamlessly in QUnit 2.0.

The JavaScript file contains the test runner (the code responsible for executing the
tests) and the actual testing framework (the set of methods used to test the code); the
CSS file styles the test suite page used to display the test results. You can find the links
to these files on the right-hand side of the homepage, as shown in figure 14.1.

 The second step is to move them into a folder where you’ll also create an HTML
file. This file must contain a reference to the CSS file and the JavaScript file, as well as

Behavior-driven development
Behavior-driven development is a software development process that evolved from
test-driven development. When using BDD you not only test the code at the granular
level with unit tests but also test the application using acceptance tests. BDD spec-
ifies that tests of any unit of software should be specified in terms of the desired
behavior of the unit.
www.EBooksWorld.ir

http://mochajs.org/
http://jasmine.github.io/
http://yuilibrary.com/yui/docs/test/
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/

390 CHAPTER 14 Unit testing with QUnit
a mandatory element (usually a <div>) having an ID of qunit. Inside it, the frame-
work will create the elements that make up the user interface used to group the tests
and show the results. The resulting HTML code should resemble that shown in the fol-
lowing listing.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>QUnit Tests</title>
 <link rel="stylesheet" href="qunit-1.18.0.css" />
 </head>
 <body>
 <div id="qunit"></div>
 <script src="qunit-1.18.0.js"></script>
 </body>
</html>

The last step to perform is to open the HTML file in the browser of your choice. Once
it’s open you’ll be presented with a page similar to the one illustrated in figure 14.2.

Listing 14.1 A minimal setup of the QUnit framework

Figure 14.1 The homepage of the QUnit framework

Includes the
framework
style sheet

Wraps QUnit’s
user interface

Includes QUnit’s
JavaScript file

Figure 14.2 The user interface of the QUnit framework
www.EBooksWorld.ir

391Getting started with QUnit
 Pretty easy, isn’t it? Let’s now analyze the components of this user interface.
 The top part of the interface is nothing but the content of the title element

placed in the head of the page (“QUnit Tests”). Below this title, you can see a green
bar. It’s green because all the tests passed (no tests at all means everything is working
fine). This bar will turn red if one or more tests you defined fail.

 In the second section you can see three check boxes: Hide passed tests, Check for
Globals (sometimes referred as noglobals), and No try-catch. When the first option is
checked, QUnit will hide the passed tests (those returning the expected result). The
second check box allows you to verify if a property has been added to the window
object by comparing it before and after each test, in which case the test will fail, listing
the differences. The last flag can be used to verify if your code throws an exception
when you instruct QUnit to run your test outside of its surrounding try-catch block.
In addition to the check boxes, there’s an input element that you can use to filter the
tests run to search a specific test.

 In the third section you can read the value of the window.navigator.userAgent
property. This property returns the user agent string for the browser that’s accessing
the page.

 The bottom section shows the time QUnit spent processing the defined tests.
Underneath that you can read the number of assertions defined, the number of those
that passed, and the number that failed.

As you can see, these numbers are all zero. The reason is that we haven’t defined any
test yet. There are no assertions at all, either passed or failed. When you write some
tests and assertions, QUnit will list here the assertions grouped by test.

 If you looked at the official documentation while downloading the files, you may
have noticed that it specifies another element as mandatory in the minimal setup of
the framework. This is an element (usually a <div>) having an ID of qunit-fixture.
Its aim is to prevent some tests failing or succeeding as a side effect of previously exe-
cuted tests, such as deleting or inserting elements in the DOM. This element is useful
because the framework resets the elements inside it after each test. Thus, it isn’t man-
datory, but you should include it in any real project.

What’s an assertion?
An assertion verifies that a statement is equal to true. This is useful for testing that
your code returns the expected result. It’s important to note that an assertion should
only be used to test meaningful code. We mean that you should verify only your code
base and nothing more. For example, if your code uses a native JavaScript function,
it’s completely useless to test it. You have to assume that a JavaScript function (for
example, getElementById()) doesn’t have issues, even if sometimes it does.
www.EBooksWorld.ir

392 CHAPTER 14 Unit testing with QUnit
With the framework set up, you’re ready to test your code. But before learning how to
do that, you need to make a few changes. The first is to include in your page the
JavaScript code or file that you want to test (for example, code.js). You can place it
wherever you want as long as it comes before the code you’ll write to test it. The sec-
ond change is to include the code or file containing the tests. They’re usually placed
in a different JavaScript file, often called tests.js. This file must be included after the
script element you used to include the QUnit’s JavaScript file. You should have code
that looks like the following:

<script src="code.js"></script>
<script src="qunit-1.18.0.js"></script>
<script src="tests.js"></script>

The content of these files can also be inlined (putting the content inside the script
element). In the examples of this chapter we’ll always inline the test code and some-
times even the code to test because of its simplicity, but we strongly suggest adopting
an external file when you employ QUnit in a real project.

 With this last note in mind, you’re ready to discover what this framework has to
offer.

14.3 Creating tests for synchronous code
QUnit allows you to test synchronous and asynchronous code. For the moment we’ll
focus on testing synchronous code because it’s the easiest way to delve into the world
of QUnit.

 To create a test in QUnit you have to use a method called test(). Its syntax is
shown here.

Other ways to obtain QUnit
QUnit can be obtained in different ways. A first possible method is to include the files
needed using the jQuery CDN. To do that using version 1.18.0, you should include in
your page the following code:

<link rel="stylesheet" href="//code.jquery.com/qunit/qunit-1.18.0.css"/>
<script src="//code.jquery.com/qunit/qunit-1.18.0.js"></script>

Another method is to download QUnit via Bower by running the following command:

bower install --save-dev qunit

Finally, you can obtain the framework via npm:

npm install --save-dev qunitjs
www.EBooksWorld.ir

393Creating tests for synchronous code
To create a new test, write the following code:

QUnit.test('My first test', function(assert) {
 // Code here...
});

If you put this test in the previously mentioned tests.js file or inline it and then open
the HTML file in a browser, you’ll see an error. The framework is complaining that
you’ve defined a test without any assertion. What’s the sense of defining a test if you
don’t test any code at all?

 When creating a test, it’s a best practice to set the number of assertions you expect
to be executed. This can be done by using the expect() method of the assert param-
eter described when discussing QUnit.test(). If you deal with synchronous code only,
the use of expect() might seem useless because you might think that the only way an
assertion could not be executed is if an error, caught by the framework, occurs. This
objection is valid until you take into account asynchronous code. For the moment,
trust us and use expect().

 The syntax of expect() is as follows.

With the knowledge of the expect() method in hand, you can now modify the previ-
ous test to set your expectation of running zero tests:

QUnit.test('My first test', function(assert) {
 assert.expect(0);
});

Method syntax: QUnit.test

QUnit.test(name, test)
Add a test to run.

Parameters

name (String) The name to identify the test created.
test (Function) The function containing the assertions to run. The framework passes

an argument called assert to this function. It provides all of QUnit's assertion
methods.

Returns
undefined

Method syntax: expect

expect(total)
Set the number of assertions that are expected to run within a test. If the number of assertions
actually executed doesn’t match the total parameter, the test will fail.

Parameters

total (Number) The number of assertion expected to run within the test.

Returns
undefined
www.EBooksWorld.ir

394 CHAPTER 14 Unit testing with QUnit
If you reopen the HTML page, you’ll find that the previous error message has disap-
peared. The reason is that with this change you’ve explicitly set the number of asser-
tions to be executed to zero, so QUnit is sure that this is exactly what you wanted.

 By using expect() you’ve fixed the issue in your HTML page but you still don’t
have any assertions in place. Let’s examine the various types of assertions QUnit
provides.

14.4 Testing your code using assertions
Assertions are the core of software testing because they allow you to verify that your
code is working as expected. QUnit provides numerous methods to test your expecta-
tions that can all be accessed within a test through the assert parameter passed to the
function passed to QUnit.test().

 We’ll start our overview of the assertion methods by covering four of them.

14.4.1 equal(), strictEqual(), notEqual(), and notStrictEqual()

In this section we’ll cover four of the methods provided by QUnit. The first method
we want to introduce is equal().

The description of the assertion, the message parameter, is optional but we suggest
that you always set it.

 To give you an idea of how to use this method, let’s look at a simple example. Imag-
ine you created a function that sums two numbers passed as arguments. The defini-
tion of such a function in JavaScript would be like the following:

function sum(a, b) {
 return a + b;
}

With the sum() function in place, you want to verify that it works correctly. To do that
employing the equal() method, you can write a test like this:

Method syntax: equal

equal(value, expected[, message])
Verify that the value parameter is equal to the expected parameter using a nonstrict comparison
(==).

Parameters

value (Any) The value returned by a function or a method, or stored in a variable to
verify.

expected (Any) The value to test against.
message (String) An optional description of the assertion. If omitted, the message shown

is “okay” in case of success and “failed” in case of failure.

Returns
undefined
www.EBooksWorld.ir

395Testing your code using assertions
QUnit.test('My first test', function(assert) {
 assert.expect(3);
 assert.equal(sum(2, 2), 4, 'Sum of two positive numbers');
 assert.equal(sum(-2, -2), -4, 'Sum of two negative numbers');
 assert.equal(sum(2, 0), 2, 'Sum of a positive number and the neutral

element');
});

You can run the test opening the file chapter-14/test.1.html or accessing the relative
JS Bin (http://jsbin.com/towoxa/edit?html,output).

 Running the previous test gives you confidence that your code works properly and
your function is robust. But is this the case? As it turns out, it isn’t. What if you add the
following assertion to your test? (Remember to update the argument passed to assert
.expect() accordingly.)

assert.equal(sum(-1, true), 0, 'Sum of a negative number and true');

This assertion succeeds because JavaScript is a weakly typed language, so true is equal
to 1. Therefore, summing -1 and true gives 0 as a result.

 In addition to the issue of passing a Boolean, what will happen if you pass a num-
ber and a string like "foo" to sum()? In this situation your function will treat both
parameters as strings and will concatenate them. Sometimes this may even be the
expected result, but usually you want to explicitly deal with such cases. For example,
you may want to raise an exception if one or both of the parameters aren’t of type
Number or convert them before performing the sum. Before we start discussing how to
deal with exceptions and taking into account complex cases, let’s introduce another
assertion method QUnit has to offer: strictEqual().

 The strictEqual() method is similar to equal() with the exception that it per-
forms a strict comparison between the actual and the expected values. Its syntax is
shown here.

For the sake of using strictEqual() with the simple sum() function you created, let’s
replace the previous assertion with one where you compare the sum of two numbers

Method syntax: strictEqual

strictEqual(value, expected[, message])
Verify the value parameter is equal to the expected parameter using a strict comparison (===).

Parameters

value (Any) The value returned by a function, a method, or stored in a variable to
verify.

expected (Any) The value to test against.
message (String) An optional description of the assertion. If omitted, the message shown

is “okay” in case of success and “failed” in case of failure.

Returns
undefined
www.EBooksWorld.ir

http://jsbin.com/towoxa/edit?html,output

396 CHAPTER 14 Unit testing with QUnit
with the Boolean value false (you can also update all the other assertions to use
strictEqual()):

assert.strictEqual(sum(-2, 2), false, 'Sum of a negative and a positive
number is equal to false');

Refreshing the HTML page will present you with an error. The test is able to detect
that the actual and expected values aren’t equal. But using this kind of assertion (that
isn’t very useful to test the function), your test is failing, which isn’t what you want.
The idea should be to verify that the sum of two numbers is not equal to a Boolean
(false in this case), and if this happens your assertion has to succeed.

 For such situations where you want to assert that a value is not equal or strictly
equal to another, you can employ the counterpart of the methods you’ve seen:
notEqual() and notStrictEqual().

 Update the previous assertion in order to see if your test succeeds:

assert.notStrictEqual(sum(-2, 2), false, 'Sum of a negative and a positive
number is not equal to false');

This time refreshing the HTML page will correctly execute all four assertions and your
test will succeed.

 The complete and updated version of the page is shown in the following listing.
It’s available in the file chapter-14/test.2.html of the source provided with this book
and as a JS Bin (http://jsbin.com/suroya/edit?html,output).

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>QUnit - Test 2</title>
 <link rel="stylesheet" href="../css/qunit-1.18.0.css" />
 </head>
 <body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
 <script>
 function sum(a, b) {
 return a + b;
 }
 </script>
 <script src="../js/qunit-1.18.0.js"></script>
 <script>
 QUnit.test('My first test', function(assert) {
 assert.expect(4);
 assert.strictEqual(
 sum(2, 2),
 4,
 'Sum of two positive numbers'
);
 assert.strictEqual(

Listing 14.2 The use of strictEqual() and notStrictEqual()

The CSS
style sheet
of QUnit

The
function
to test The

JavaScript file
of QUnit

The code to test
the sum()
function
www.EBooksWorld.ir

http://jsbin.com/suroya/edit?html,output

397Testing your code using assertions
 sum(-2, -2),
 -4,
 'Sum of two negative numbers'
);
 assert.strictEqual(
 sum(2, 0),
 2,
 'Sum of a positive number and the neutral element'
);
 assert.notStrictEqual(
 sum(-2, 2),
 false,
 'Sum of a negative and a positive number is not false'
);
 });
 </script>
 </body>
</html>

Up to this point, we’ve only discussed how to test numbers in JavaScript. But the meth-
ods you’ve learned can be used to test other data types such as Array, Object, String,
and so on. In addition, although QUnit is useful for testing any JavaScript code, this
book is still about jQuery. Therefore, let’s see some examples using all the methods
described so far applied to code written using jQuery methods and utility functions:

assert.equal($.trim(' '), '',
 'Trimming a spaces-only string returns an empty string');
assert.strictEqual($('input:checked').length,
 $('input').filter(':checked').length,
 'Filtering elements in advance or later produce the same number of
 elements');
assert.notEqual($('input:checked'), $('input').filter(':checked'),
 'Two jQuery objects are different unless they point to the same memory
 address');
assert.notStrictEqual(new Array(1, 2, 3), [1, 2, 3],
 'Two arrays are different unless they point to the same memory address');

As you can see, testing different data types is really no different than testing Numbers.
Let’s now move on to the other assertion methods.

14.4.2 The other assertion methods

Other assertion methods provided by QUnit are similar in scope and the parameters
they accept; therefore we decided to compact them into table 14.1.

Table 14.1 An overview of other assertion methods provided by QUnit

Method Description

deepEqual(value, expected[, message]) A recursive, strict comparison that works on
all JavaScript types. The assertion passes if
value and expected are identical in terms
of properties and values and value and
expected also have the same prototype.
www.EBooksWorld.ir

398 CHAPTER 14 Unit testing with QUnit
To see these new methods in action, let’s build a function that tests if a number is
even:

function isEven(number) {
 return number % 2 === 0;
}

To test the isEven() function you may write

assert.strictEqual(isEven(4), true, '4 is an even number');

But by using the ok() method you can simplify the assertion:

assert.ok(isEven(4), '4 is an even number');

Much better, isn’t it?
 The difference between deepEqual() and propEqual() is subtle but important. To

understand it, let’s define an object literal called human with a property named full-
Name that’s initialized to null. In addition, let’s define a function called Person that
has to be used as a constructor that accepts as its only parameter a string and defines a
property on the created object named fullName. The code to create the function and
the object literal is the following:

function Person(fullName) {
 this.fullName = fullName;
}

var human = {
 fullName: null
};

Now you can instantiate an object of type Person setting "John Doe" as the value of
fullName and also set the fullName property of the human object literal. Then you can
test for their equality using deepEqual() and propEqual() to highlight their differ-
ence. The relevant code is shown here, but it’s also available in the file chapter-14/
test.3.html and as a JS Bin (http://jsbin.com/tecihe/edit?html,output):

notDeepEqual(value, expected[, message]) Same as deepEqual() but tests for inequal-
ity of at least one property or value.

propEqual(value, expected[, message]) A strict comparison of the properties and val-
ues of an object. The assertion passes if all
the properties and the values are equal in a
strict comparison.

notPropEqual(value, expected[, message]) Same as propEqual() but tests for inequal-
ity of at least one property or value.

ok(value[, message]) An assertion that passes if the first argument
is truthy.

Table 14.1 An overview of other assertion methods provided by QUnit (continued)

Method Description
www.EBooksWorld.ir

http://jsbin.com/tecihe/edit?html,output

399Testing your code using assertions
QUnit.test('Testing propEqual() and deepEqual()', function(assert) {
 assert.expect(2);

 var person = new Person('John Doe');
 human.fullName = 'John Doe';

 assert.propEqual(person, human, 'Passes. Same properties and values');
 assert.deepEqual(person, human, 'Fails. Same properties and values, but

different prototype');
});

If you run this test, you’ll see that the first assertion passes but the second fails. The
reason is that the objects person and human have the same properties and values but
different prototypes (person has Person as its prototype whereas human has Object as its
prototype). This condition is sufficient to pass an assertion using propEqual() but not
using deepEqual().

 There’s one last assertion method to discuss.

14.4.3 The throws() assertion method

We left the throws() assertion method to the end because it’s a bit different from the
others. Its syntax is as follows.

This method is different from the others in that it doesn’t accept as its first argument
a value to test but rather a function that’s expected to throw an error because the
expected value is optional. To see it in action, let’s modify the isEven() function to
throw an error if the parameter passed isn’t of type Number:

function isEven(number) {
 if (typeof number !== 'number') {
 throw new Error('The passed argument is not a number');
 }

 return number % 2 === 0;
}

To test that the error is thrown, you can write

Method syntax: throws

throws(function[, expected][, message])
Verify that a callback throws an exception, and optionally compare the thrown error.

Parameters

function (Function) The function to execute.
expected (Object|Function|RegExp) An Error object, an Error function (constructor), a

RegExp that matches (or partially matches) the string representation, or a
callback function that must return true to pass the assertion check.

message (String) An optional description of the assertion. If omitted, the message shown
is “okay” in case of success and “failed” in case of failure.

Returns

undefined
www.EBooksWorld.ir

400 CHAPTER 14 Unit testing with QUnit
assert.throws(
 function() {
 isEven('test');
 },
 new Error('The passed argument is not a number'),
 'Passing a string throws an error'
);

In this case you pass the expected value in the form of the same Error instance you
expect to be thrown. Alternatively, you can verify that the error message is what you
expect by changing the previous assertion to use a regular expression:

assert.throws(
 function() {
 isEven('test');
 },
 /The argument passed is not a number/,
 'Passing a string throws an error'
);

With the throws() method we’ve completed the overview of the assertion methods
provided by QUnit to test synchronous code. To test asynchronous code like callbacks
passed to jQuery’s Ajax functions, you need to learn an additional method. Let’s dis-
cover more.

14.5 How to test asynchronous tasks
Sometimes you need to perform a given action or repeat it over and over again after a
given amount of time. Other times you want to retrieve information from a server
without reloading the page. These are situations where you need to execute one or
more functions asynchronously.

 To test asynchronous functions you can use the same method to create the test and
the same assertion methods you learned in the previous section. But you also need a
mechanism to inform the test runner that you’re waiting for an asynchronous method
to be completed. Let’s look at the async() method. It belongs to the same assert
parameter we’ve mentioned many times in this chapter, and its syntax is the following.

Method syntax: async

async()
Instruct QUnit to wait for an asynchronous operation.

Parameters

none

Returns
A unique resolution callback function.
www.EBooksWorld.ir

401How to test asynchronous tasks

o
d
k

k
a

As you can see from the description, this method doesn’t accept any parameters and
returns a function. This function is unique and must be used only once, and it must
be invoked inside the asynchronous function you want to test.

 To better understand how this methods works, let’s analyze the code shown in the
next listing, which is also available in the file chapter-14/asynchronous.test.html.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>QUnit - Asynchronous test</title>
 <link rel="stylesheet" href="../css/qunit-1.18.0.css" />
 </head>
 <body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>

 <script src="../js/jquery-1.11.3.min.js"></script>
 <script>
 function isEven(number) {
 return number % 2 === 0;
 }
 </script>
 <script src="../js/qunit-1.18.0.js"></script>
 <script>
 QUnit.test('Testing asynchronous code', function(assert) {
 var $fixtures = $('#qunit-fixture');
 assert.expect(4);

 assert.strictEqual(
 $fixtures.children().length,
 0,
 'The children of qunit-fixtures are 0'
);

 var firstCallback = assert.async();
 window.setTimeout(function() {
 assert.ok(isEven(4), '4 is even');
 firstCallback();
 }, 500);

 var secondCallback = assert.async();
 $fixtures.load('test.1.html #qunit', function() {
 assert.ok(
 true,
 'File test.1.html has been successfully loaded'
);
 assert.strictEqual(
 $fixtures.children().length,
 1,
 'The elements appended to qunit-fixtures are 1'

Listing 14.3 Asynchronous test with QUnit

Defines an
isEven()
function

B

Retrieves the
element with ID
qunit-featureC

Calls async() to create
a unique callback
stored in firstCallback

D

Calls window.setTimeout()
to execute a function
asynchronouslyE

Executes the
callback stored in

firstCallback F

Calls async() t
create a secon
unique callbac
stored in
secondCallbacG

Retrieves
a page

synchronously
using load() H
www.EBooksWorld.ir

402 CHAPTER 14 Unit testing with QUnit
);
 secondCallback();
 });
 });
 </script>
 </body>
</html>

In this code you set up the markup to use QUnit and include jQuery. You also define
the isEven() function to test if a number is even or not B. Then, after including the
QUnit test runner, you create an asynchronous test using the usual QUnit.test()
method.

 Inside the test you retrieve the element with the ID of qunit-feature C that you’ll
use to inject some elements later in the code. Then you set the number of asserts you
expect to run and create a first assertion.

 Next, you call the assert.async() method to create a first unique callback that’s
stored in the variable named firstCallback D. The first asynchronous operation
you perform is to run a function with 500 milliseconds of delay by using the window
.setTimeout() method E. Inside the callback defined, you test if 4 is even and exe-
cute the callback stored in firstCallback F. Executing this function is crucial
because if you omit it, the test runner will wait indefinitely for the invocation of the
function, blocking the execution of any other test.

 In the last part of the code, you execute async() again to create a second unique
callback G. The second callback is stored in the variable secondCallback. The other
asynchronous operation of the code uses jQuery’s load() method. You attempt to
retrieve the file chapter-14/test.1.html and then inject only the element having qunit
as its ID H. Inside the callback passed to load(), you verify that the file is correctly
loaded using the assert.ok() method and that only one element has been injected
into the element having as its ID qunit-fixture. Once this is finished, you execute
the callback stored in secondCallback I.

 Running asynchronous tests is easy, as you’ve seen in this example. The only aspect
to remember is to invoke the callback functions generated using the async() method.

 Sometimes when using jQuery’s Ajax functions you want to load resources from a
server. It may happen that you’re developing the JavaScript code before the backend
code has been written or that you don’t want to rely on the correctness of the backend
code to ensure that your frontend code works as expected. For such situations, you
can mock the Ajax requests using jQuery Mockjax (https://github.com/jakerella/
jquery-mockjax) or Sinon.js (http://sinonjs.org/).

 Earlier in this chapter we mentioned three check boxes on the user interface pro-
vided by QUnit when running tests. Let’s talk a bit more about the two of them that
modify the behavior of QUnit.

Executes the
callback stored in
secondCallbackI
www.EBooksWorld.ir

https://github.com/jakerella/jquery-mockjax
https://github.com/jakerella/jquery-mockjax
http://sinonjs.org/

403noglobals and notrycatch
14.6 noglobals and notrycatch
QUnit offers you two check boxes, noglobals (labelled as “Check for Globals”) and
notrycatch (labelled as “No try-catch”), that you can check and uncheck as needed in
order to change the behavior of all tests performed on the page.

 The noglobals flag will fail a test if a new global variable (which is the same as add-
ing a property to the window object) is introduced by the code you’re executing. The
following example shows a test that will fail if the noglobals flag is checked:

QUnit.test('Testing the noglobals option', function(assert) {
 assert.expect(1);
 window.bookName = 'jQuery in Action';
 assert.strictEqual(bookName, 'jQuery in Action', 'Strings are equal');
});

The reason the test fails is because the code added the bookName property to the
window object. The test wouldn’t have failed if the code had only modified an existing
property of the window object such as name.

 The notrycatch flag allows you to run QUnit without a surrounding try-catch
block. This will prevent QUnit from catching any error and listing it, but often it
allows for deeper debugging of an issue. The following example, which you can find
in the file chapter-14/notrycatch.html, shows this option in action:

QUnit.test('Testing the notrycatch option', function(assert) {
 assert.expect(1);
 assert.strictEqual(add(2, 2), 4, 'The sum of 2 plus 2 is equal to 4');
});

In this code the add() function isn’t defined, so invoking it will cause an error (specif-
ically a ReferenceError). If you run the code activating the notrycatch flag, the
framework won’t catch this error for you and it’ll be logged in the console. The differ-
ence is shown in figures 14.3a and 14.3b.

Figure 14.3a Executing the test without the notrycatch flag
www.EBooksWorld.ir

404 CHAPTER 14 Unit testing with QUnit
When dealing with large applications, you need to keep your tests logically organized
so that you’re able to run a specific group of tests without running the complete test
suite. This is where modules come into play.

14.7 Group your tests in modules
As a plugin or library increases in size, you may want to split the source into modules
to enhance its maintainability. You already saw this pattern when we discussed the
structure of jQuery, whose code is made up of more than 10,000 lines. The same prin-
ciple applies to the code you write to test your project.

 QUnit has a simple method to group tests into modules called QUnit.module(). Its
syntax is as follows.

Looking at the signature of this method, you may guess how you can specify which
tests belong to a given module. The answer is that the tests belonging to a module are
those defined after QUnit.module() is invoked but before another call to QUnit
.module() (if any) is found. The following code should clarify this statement:

Method syntax: QUnit.module

QUnit.module(name[, lifecycle])
Group a set of related tests under a single module.

Parameters

name (String) The name to identify the module.
lifecycle (Object) An object containing two optional functions to run before (beforeEach)

and after (afterEach) each test, respectively. Each of these functions receives
an argument called assert that provides all of QUnit's assertion methods.

Returns
undefined

Figure 14.3b Executing the test with the notrycatch flag activated
www.EBooksWorld.ir

405Configuring QUnit
QUnit.module('Core');
QUnit.test('First test', function(assert) {
 assert.expect(1);
 assert.ok(true);
});

QUnit.module('Ajax');
QUnit.test('Second test', function(assert) {
 assert.expect(1);
 assert.ok(true);
});

In this snippet we’ve highlighted in boldface the invocations of QUnit.module(). In
this case the test labeled as “First test” belongs to the Core module, and the test
labeled “Second test” belongs to the Ajax module.

 If you put the previous code into action, you’ll see that the test names are pre-
ceded by the module name in the test results. In addition, you can select a specific
module name to select the tests to run from the drop-down menu displayed in the
top-right corner of the page. These details are illustrated in figure 14.4.

Now that you know how to organize a test suite in a proper and maintainable way, it’s
time to learn some specific configuration properties of the QUnit framework.

14.8 Configuring QUnit
In the same way that jQuery has a lot of reasonable default values for many of its meth-
ods, QUnit is released with a preset configuration. Sometimes you may need to tweak
this configuration a bit to satisfy your project-specific needs.

 The framework allows you to override these default values, exposing them
through a property called config. Table 14.2 shows all the properties exposed via the
QUnit.config object.

Figure 14.4 Execution of a test suite organized into modules
www.EBooksWorld.ir

406 CHAPTER 14 Unit testing with QUnit
The custom configuration of the test suite must be placed after the JavaScript file of
QUnit. You can define the configuration in an external file, as in the following code,
or inline it.

<script src="qunit-1.18.0.js"></script>
<script src="qunit-config.js"></script>

If you have a huge test suite, you may want to hide the passed tests by default to focus
on those that have failed. To do that you use the hidepassed property described in
table 14.2 as shown here:

QUnit.config.hidepassed = true;

If you want to force yourself or your team to specify the number of assertions, you can
use the requireExpects property:

QUnit.config.requireExpects = true;

Table 14.2 The configuration properties of QUnit.config

Name Description

altertitle (Boolean) QUnit changes the document.title to add a check mark or an x to
specify that a test suite passed or failed. Setting this property to false (the
default value is true) disables this behavior. This is useful if your code works
with document.title.

autostart (Boolean) QUnit runs tests when the load event is triggered on window. If you
load tests asynchronously, you can set the value to false (by default it’s true)
and then call QUnit.start() when everything is loaded.

hidepassed (Boolean) QUnit shows all the tests, including the ones passed. Setting this
property to true, you’ll see only those that failed.

moduleFilter (String) Specify a single module to run by specifying its name. The default value
is undefined, so QUnit will run all the loaded modules.

reorder (Boolean) The framework first runs tests that failed on a previous execution. If
you want to change this behavior, set the value to false.

requireExpects (Boolean) Set this property to true if you want to force the use of the
assert.expect() method.

testId (Array) This property allows QUnit to run specific test blocks by a hashed string
combining their module name and test name. The default value is undefined.

testTimeout (Number) Set a maximum time execution after which all tests will fail. The
default value is undefined, which means there’s no limit.

scrolltop (Boolean) Set this property to false if you want to prevent QUnit from going
back to the top of the page when all the tests have executed.

urlConfig (Array) Controls the form controls to place into the QUnit toolbar (the bar where
you can find the noglobals and notrycatch flags). By extending this array,
you can add your own check boxes and select lists.
www.EBooksWorld.ir

407An example test suite
QUnit defines other methods that we haven’t and won’t cover in this chapter, but
they’re of secondary importance. The topics we’ve covered up to this point allow you
to create a complete test suite that’s sufficient for most cases.

 In the next section, you’ll create a complete test suite to see all the QUnit knowl-
edge you’ve acquired in action. It’ll be fun!

14.9 An example test suite
In this last section you’ll build a complete test suite for a project, and what’s better
than testing something you’ve developed in this very book? That’s why you’ll create a
test suite for Jqia Context Menu, the jQuery plugin you built in chapter 12 to show a
custom context menu on one or more specified elements of a page.

 The first step needed to create the suite is to construct a new page with the essen-
tial setup for QUnit, where you’ll also need to include the jQuery library and the files
relative to Jqia Context Menu (jquery.jqia.contextMenu.css and jquery.jqia.context-
Menu.js). Once you’ve done so, you’ll place an unordered list that will act as the cus-
tom menu inside the element having qunit-fixture as its ID. You’ll also use this
element as the one where you’ll show the custom menu.

 You want to force yourself and all the people involved in writing the test suite to
use the assert.expect() method. To do so you have to modify the default value of
the QUnit configuration’s property requireExpects so that QUnit raises an error if it
isn’t invoked.

 The Jqia Context Menu plugin consists of one JavaScript file, so ideally you won’t
need to group your tests into modules. But you must remove all the data attached to
the element having the ID of qunit-fixture each time a test is completed. Therefore,
you need to use afterEach as follows:

QUnit.module('Core', {
 afterEach: function() {
 $('#qunit-fixture').removeData();
 }
});

After the declaration of the module you can define your tests. You’ll create five tests in
total, divided as described here:

 Basic requirements—Contains the assertions that verify whether jQuery and the
Jqia Context Menu plugin have been correctly loaded. In addition it checks that
your plugin correctly exposes the default values to configure it.

 Wrong parameters—Defines the assertions to check that the plugin is able to deal
with unexpected parameter types or missing mandatory properties (that is,
idMenu).

 Initializations—Specifies the assertions to verify if the plugin breaks chainability
and that it doesn’t raise errors when the right parameters are passed. In addi-
tion, it tests that the plugin can’t be initialized two or more times on the same
element.
www.EBooksWorld.ir

408 CHAPTER 14 Unit testing with QUnit
 Callbacks—Contains the assertions to test if the menu is displayed or hidden
based on the events fired and what element caused the event.

 Destroy—Tests that the chainability is kept and that the method correctly
removes all the data attached to the element. In addition, it verifies that the
menu is hidden when the effect of the plugin is cancelled.

Coding the description of these tests results in the following listing.

QUnit.test('Basic requirements', function(assert) {
 assert.expect(4);

 assert.ok($, 'jQuery is loaded');
 assert.ok($.fn.jqiaContextMenu, 'The plugin is loaded correctly');
 assert.ok($.fn.jqiaContextMenu.defaults, 'The defaults are exposed');
 assert.propEqual(
 $.fn.jqiaContextMenu.defaults,
 {
 idMenu: null,
 bindLeftClick: false
 },
 'The defaults exposed are correct'
);
});

QUnit.test('Wrong parameters', function(assert) {
 assert.expect(6);
 var $fixture = $('#qunit-fixture');

 assert.throws(
 function() {
 $fixture.jqiaContextMenu('no method');
 },
 /Method .*? does not exist/,
 'Call an undefined method'
);

 assert.throws(
 function() {
 $fixture.jqiaContextMenu(100);
 },
 /Method .*? does not exist/,
 'Wrong argument type: number'
);

 assert.throws(
 function() {
 $fixture.jqiaContextMenu(null);
 },
 /Method .*? does not exist/,
 'Wrong argument type: null'
);

 assert.throws(
 function() {

Listing 14.4 The complete test suite for Jqia Context Menu

Creates a test to verify
basic requirements

are met

Tests that the plugin
can deal with wrong
parameters passed to it
www.EBooksWorld.ir

409An example test suite

 $fixture.jqiaContextMenu([]);
 },
 /Method .*? does not exist/,
 'Wrong argument type: array'
);

 assert.throws(
 function() {
 $fixture.jqiaContextMenu({});
 },
 /No menu specified/,
 'Unspecified menu'
);

 assert.throws(
 function() {
 $fixture.jqiaContextMenu({idMenu: 'unknown id'});
 },
 /The menu specified does not exist/,
 'Unknown menu'
);
});

QUnit.test('Initialization', function(assert) {
 assert.expect(5);
 var $fixture = $('#qunit-fixture');
 var $fixtureInitialized = $fixture.jqiaContextMenu({
 idMenu: 'context-menu'
 });

 assert.ok($fixtureInitialized, 'Menu initialized');
 assert.notEqual(
 $fixtureInitialized.data('jqiaContextMenu'),
 {},
 'Correct namespace used'
);
 assert.strictEqual(
 $fixture.length,
 $fixtureInitialized.length,
 'Keep chainability'
);
 assert.strictEqual(
 $fixture,
 $fixtureInitialized,
 'Return the same object'
);
 assert.throws(
 function() {
 $fixture.jqiaContextMenu({idMenu: 'context-menu'});
 },
 /The plugin has already been initialized/,
 'Plugin already initialized on the element'
);
});

QUnit.test('Callbacks', function(assert) {
 assert.expect(3);

Verifies that
jqiaContextMenu() keeps
chainability, sets data-*
attributes, and so on
when passing a correct
parameter

Tests that the menu is
hidden/shown after the
event of interest is fired
(clicks outside/inside the
target elements)
www.EBooksWorld.ir

410 CHAPTER 14 Unit testing with QUnit
 var $fixture = $('#qunit-fixture').jqiaContextMenu({
 idMenu: 'context-menu'
 });
 var $menu = $('#context-menu');

 assert.strictEqual(
 $menu.css('display'),
 'none',
 'The menu is hidden'
);
 $fixture.trigger('contextmenu');
 assert.strictEqual(
 $menu.css('display'),
 'block',
 'The menu is displayed after the click'
);
 $('html').click();
 assert.strictEqual(
 $menu.css('display'),
 'none',
 'The menu is hidden after clicking other elements'
);
});

QUnit.test('Destroy', function(assert) {
 assert.expect(5);
 var $fixture = $('#qunit-fixture').jqiaContextMenu({
 idMenu: 'context-menu'
 });
 var $fixtureDestroyed = $fixture.jqiaContextMenu('destroy');
 var $menu = $('#context-menu');

 assert.strictEqual(
 $fixture.length,
 $fixtureDestroyed.length,
 'Keep chainability'
);
 assert.strictEqual(
 $fixture,
 $fixtureDestroyed,
 'Return the same object'
);
 assert.strictEqual(
 $menu.css('display'),
 'none',
 'The menu is hidden'
);
 assert.strictEqual(
 $fixture.data('jqiaContextMenu'),
 undefined,
 'Namespaced data cleared'
);
 $fixture.trigger('contextmenu');
 assert.strictEqual(
 $menu.css('display'),
 'none',

Verifies that destroy()
keeps chainability,

removes data-*
attributes, and so on
www.EBooksWorld.ir

411Summary
 'The menu is still hidden after the click'
);
});

If you want to run this test suite and play with it a bit (maybe introducing other mean-
ingful tests?), you’ll find it in the file chapter-14/test.suite.html.

 This test suite has been created to pass all the tests, but to have a better grasp of
the code written to test the plugin, you might want to see some tests failing. If you
want to see some tests fail, try to change the code of the plugin in an unexpected way.
If you need a suggestion, try to remove the return this; statement in the init() and
the destroy() methods. Doing so will break the chainability of the plugin, and thus
the relative assertions will fail.

 This last demo showed you not only another example of most of the methods we
covered in this chapter but also what a complete test suite looks like. We hope that
you’ll take our advice to heart and start testing your code more frequently if you don’t
do so already.

14.10 Summary
In this chapter we described the fundamental concepts of software testing and why
unit-testing your code is so important. Testing gives you more confidence that your
code is working properly and that it (virtually) doesn’t have bugs.

 We provided an overview of the frameworks available for unit testing JavaScript
projects, focusing our attention on QUnit. This framework, maintained by the same
team that offers you the lovely jQuery library, provides an easy-to-use set of methods to
test your code.

 After describing how to create tests with QUnit.test(), we introduced you to sev-
eral assertion methods used to verify that the returned values of your functions and
methods are what you expect. You also learned the importance of setting the number
of assertions you expect to run through the use of the assert.expect() method.

 Then you discovered how to test functions that run asynchronously—for example,
those passed to JavaScript’s native function setTimeout() or to jQuery’s Ajax func-
tions—with the help of assert.async().

 Finally, you learned how to organize your test suite into modules and how to set a
project-specific configuration. With all this power in your hands, you developed a
complete and working test suite. Our hope is that starting from tomorrow, or even
today, you’ll begin testing your code so that you can use and refactor it with more
confidence.

 In the next and last chapter of this book you’ll discover some useful tools that can
help you employ jQuery in large projects.
www.EBooksWorld.ir

How jQuery fits
into large projects
If you’ve read all the previous chapters, you’ve hopefully learned how to write beau-
tiful and concise code using jQuery, how to extend its features, and how to unit-test
your code. Now that you know jQuery, you’re ready to learn when it isn’t enough
and the use of another library or even a framework is required.

 In this chapter, the last of this book, we’ll broaden our focus to several tools,
frameworks, and patterns not strictly related to jQuery but that can be used to craft
fast, solid, and beautiful code.

 The main purpose of jQuery is to help you manipulate the DOM. DOM manipu-
lation is usually slow, so you need to understand how you can tweak the perfor-
mance of your jQuery code to perform operations as quickly as possible. You also

This chapter covers
 Improving selectors for better performance

 Organizing your code in modules

 Loading modules with RequireJS

 Managing dependencies with Bower

 Creating SPAs with Backbone.js
412

www.EBooksWorld.ir

413Improving the performance of your selectors
have to understand how to easily integrate jQuery into large projects and how to cor-
rectly structure your code in modules to improve the maintainability of your code base.

 One of the most important challenges developers deal with is the creation of per-
formant code. Many people often underestimate this task, but optimizing your
JavaScript-based source is always rewarding. It may happen that improving the perfor-
mance is hard due to poorly written code that needs a deep refactoring, but other
times it’s as easy as selecting elements properly. In the first section of this chapter,
we’ll discuss extensively how you can improve the performance of code written with
jQuery by selecting elements the right way.

 When you work on large projects there’s a strong need for a better code organiza-
tion. If you don’t manage it properly, when you add new features or refactor your
code, you’ll find yourself dealing with a complete mess. One way to address this issue
is to apply some common and reliable patterns. The practice of organizing your code
in modules, which is the second topic covered in this chapter, allows you to have a bet-
ter overview of the whole project. It also allows you to easily organize the project so
that different developers can work on different modules.

 Splitting a project into modules is a good way to keep it organized but it introduces
a problem. A given module may depend on others in order to work, so you need to be
careful about the order in which you include them in your web pages. If you deal with
a couple of modules, this issue is easy to manage, but when developing large projects,
it isn’t so simple. In situations where many modules, plugins, libraries, or frameworks
come into play, each of them with its own dependencies, you need a professional and
reliable method to include them in the right order. One of the possible approaches is
to adopt RequireJS, a library that we’ll cover in section 15.3.

 In the previous paragraph we mentioned plugins, libraries, and frameworks. When
developing a web project, it takes time to write everything from scratch, so you usually
rely on third-party software. Examples of such software are jQuery and Modernizr. To
include these components in your project, you visit the respective websites, download
the files needed, and put them into a folder. Although this process works, it’s slow and
boring. In addition, it leaves you with the burden of manually checking for new ver-
sions. To automate this activity you can employ Bower, which we’ll introduce in sec-
tion 15.4.

 Finally, in the last section of this chapter, we’ll take a look at Backbone.js. The sec-
tion isn’t meant as a complete guide to this framework, but we want to give you an
idea of what’s next in your learning path and how jQuery integrates with frameworks
such as Backbone.js to create complex applications.

15.1 Improving the performance of your selectors
Achieving high performance is a huge concern, today more than ever. Every web pro-
ject should take care of this aspect from the start in order to avoid publishing pages
that take up to 10 seconds to load.
www.EBooksWorld.ir

414 CHAPTER 15 How jQuery fits into large projects
 Performant code isn’t only something to brag about with friends; it can improve
the satisfaction of your users. In this section, you’ll learn some tips and tricks to speed
up your code by selecting elements with jQuery the right way.

15.1.1 Avoiding the Universal selector

The first and simplest advice we can give you to improve the performance of a selec-
tion is to avoid the Universal selector unless it’s absolutely needed. If in your code you
have a selection like

$('form :checkbox');

it’s equivalent to

$('form *:checkbox');

As you might recall, when a selector is omitted in front of a filter, the Universal selec-
tor is implicitly assumed. To improve the performance of the previous selection, you
should turn it into

$('form input:checkbox');

or even better, recalling what you’ve learned about the context parameter, into

$('input:checkbox', 'form');

This last selection is in most cases faster than the one you saw at the beginning of this
section.

 Another case where you should avoid the use of the Universal selector is when
you’re retrieving all the direct children of a given element. An easy solution to achieve
this task that uses the Universal selector is

$('form > *');

But you can do better than that! A better approach is to use the tag name selector and
then employ jQuery’s children() function:

$('form').children();

This solution is better because it allows jQuery to call the native JavaScript get-
ElementsByTagName() function, which is very fast.

 The principle shown in the last example can be applied to other cases. Remember
that the best performances are achieved when jQuery can call the JavaScript native
functions like getElementById() (the fastest function among similar ones), get-
ElementsByTagName(), and so on.

15.1.2 Improving the Class selector

Throughout the book you’ve discovered that, when possible, jQuery uses the
JavaScript native functions to speed up the operations performed.

 To select elements based on their class name, the library uses the getElementsBy-
ClassName() function behind the scenes in browsers that support it: IE9+, Firefox 3+,
www.EBooksWorld.ir

http://requirejs.org/docs/download.html

415Improving the performance of your selectors
Chrome, Safari, Opera 9.5+, and many others. In versions of Internet Explorer prior
to 9, jQuery is still able to give you the expected result but it has to rely on an imple-
mentation of its own. Because of this, if the page contains a huge number of elements,
the selection process can be slow.

 If you want to improve the performance for Internet Explorer 6–8—for example,
if they’re the only browsers you’re targeting (some organizations are really stuck in
the past)—you can optimize the search by combining the Class selector with the Ele-
ment selector. Specifically, you can prepend the latter to the class name of interest.

 For example, if you want to select all of the p elements having class description
and store them in a variable, you can write

var $elements = $('p.description');

This is a good start to improving the performance of your code, but there’s more that
you can do.

15.1.3 Don’t abuse the context parameter

Back in chapter 2 we introduced the second parameter of jQuery() called context.
We stated that when using this parameter it’s usually possible to improve the perfor-
mance of a selection by restricting the latter to one or more subtrees of the DOM,
depending on the selector used.

 There are cases where the use of context doesn’t improve the performance,
though. For example, if you’re selecting an element by its ID, you won’t reap any ben-
efit in specifying context. Even more, in this specific case, you’re worsening the per-
formance. Therefore, avoid writing statements like

var $element = $('#test', 'div');

because it’ll worsen the performance compared to

var $element = $('#test');

The first solution is slower because the library has to retrieve a potentially large num-
ber of <div>s first and then test their descendants, instead of immediately taking
advantage of the native getElementById() function. In case you wonder how slow it
could be, take a look at the astonishing results of the test at http://jsperf.com/jquery-
context-parameter that are displayed in the chart of figure 15.1.

 This chart was created using jsPerf (http://jsperf.com), a service that allows you to
create and share test cases. It’s a good alternative if you don’t want to run a test on
your machine or if you want to share the results.

 Thanks to this example, we can extract another good point. In order to allow
jQuery to use getElementById(), you should never prepend a tag name to an ID, so
avoid writing a selector like $('p#test').

 A case where the use of context can often speed up the performance is when you
provide an ID. However, this rule isn’t set in stone. In fact, when dealing with perfor-
mance there isn’t a rule that’s always true or false, and you need to test case by case.
www.EBooksWorld.ir

http://jsperf.com/jquery-context-parameter
http://jsperf.com/jquery-context-parameter
http://jsperf.com/
http://bower.io/
http://nodejs.org/
https://www.npmjs.com/
https://www.npmjs.com/
http://git-scm.com/downloads

416 CHAPTER 15 How jQuery fits into large projects
Performance depends on a lot of factors such as the number and type of the elements
in your page and the browser. The take-away lesson is test, test, and once again, test
your selectors to verify what works best in that specific case.

 The possible optimizations aren’t over yet. Let’s see what you can do with filters.

15.1.4 Optimizing filters

Many of the filters supported by jQuery aren’t part of the CSS specification, so they
can’t take advantage of the performance provided by the use of native methods such
as querySelectorAll(). For some of them, such as :input, :visible, and others, it’s
better to first select using a pure CSS selector and then filter using the filter()
method. For example, instead of writing

$('p:visible');

you can write

$('p').filter(':visible');

For other filters, such as :image, :password, :reset, and others, you can take advan-
tage of the attribute selector instead. Imagine you want to retrieve all the reset buttons
in a page. You could use the :reset filter writing

$(':reset');

but you can optimize this selection by turning it into

$('[type="reset"]');

Figure 15.1 A performance test of a selection of an element using its ID with and without the use of
the context parameter (higher is better)
www.EBooksWorld.ir

http://git-scm.com/downloads

417Improving the performance of your selectors
In this selection you’re implicitly using the Universal selector that we said you should
avoid. To further improve this selection, you can prepend an Element selector as
shown here:

$('input[type="reset"]');

During our exploration, you’ve met the position filters and in particular :eq(), :lt(),
and :gt(). Like other filters discussed in this book, they’re jQuery extensions and
aren’t supported by CSS. To improve the performance in cases where you need to use
them, you can select the elements and then employ the eq() method as a replace-
ment for the :eq() filter. By doing so, you allow jQuery to take advantage of the native
JavaScript methods. As a replacement for :lt() and :gt(), you can use the slice()
method.

 Based on these suggestions, if you want to select the first two list items in a list, you
can write

$('#my-list li').slice(0, 2);

instead of

$('#my-list li:lt(2)');

The last optimization we want to mention here concerns the :not() and the :has()
filters. In browsers that support querySelectorAll(), the former can be replaced by
jQuery’s not() function, and the second can be replaced by jQuery’s has() method.

 For example, you can turn

$('input[placeholder!="Name"]');

into

$('input').not('[placeholder="Name"]');

With this last piece of advice, we’ve completed the optimizations applicable to filters.
But there’s a last pearl of wisdom we want to share with you.

15.1.5 Don’t overspecify selectors

jQuery relies on a selector engine, called Sizzle, that parses selectors from right to left.
This means that in order to speed up a selection, you must be more specific on
the right side and less specific on the left. To give you a concrete idea, imagine you
want to select all the s having the class value within a <table> with the class
revenue. When performing a selection it’s usually better to write

var $values = $('.revenue span.value');

instead of

var $values = $('table.revenue .value');

Because of the previous statement and the example we showed you, you might be
tempted to overspecify selectors, especially on the right side. Don’t do it! If the same
www.EBooksWorld.ir

418 CHAPTER 15 How jQuery fits into large projects
set of elements can be retrieved with fewer selectors, get rid of the useless parts.
Therefore, avoid writing statements like

var $values = $('table.revenue tr td span.value');

if you can select the same elements with

var $values = $('.revenue span.value');

The former statement is harder to read and won’t boost performance.
 The advice we’ve given in this section should help you to optimize your selections.

Let’s now discuss how to improve the structure of a project by organizing it into
modules.

15.2 Organizing your code into modules
When working on large applications you have to pay attention to organize your code
properly. Limiting global namespace pollution and providing logical module organiza-
tion are priorities, and code written using jQuery is no exception. You should take care
of its structure in the same way you would do for any other code written without it.

 The simple approach those starting with JavaScript adopt is to define several func-
tions and objects in a file, as shown here:

function foo() {};
function bar() {};
function baz() {};
var obj = {};
var anotherObj = {};

The problem with this code is that all these functions and objects become global
(available as properties of the window object), so sooner or later a library will come in
and overwrite one of them. In addition, it doesn’t consider that you may want to keep
some data private, a problem we already discussed when talking about jQuery plugins
and how the jQuery library is structured.

 Another problem is that if these functions and objects serve different roles and are
used in different parts of the project, the only way you have to recognize those roles is
by reading the names you assigned. Let’s say that you have JavaScript code for an
ecommerce website, and that the obj object and the bar() function are needed for
the payments part of the application, and the baz() function and the anotherObj
object are required for the basket. How you can distinguish them?

 Using more technical terminology, you can say that your application has two mod-
ules: payment and basket. Modules play an important role in the robust architecture of
an application and, as you’ll see, help you keep the units of code for a project separate
and organized. In JavaScript, there are several options for implementing modules:
AMD (asynchronous module definition, discussed in section 15.3), ECMAScript 2015
(also known as ECMAScript 6), object literals, CommonJS, and others.

 In the following sections you’ll learn some patterns to use to organize your code
into modules.
www.EBooksWorld.ir

http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/
https://github.com/jeromegn/Backbone.localStorage

419Organizing your code into modules
15.2.1 The object literals pattern

One of the simplest techniques you can adopt to organize code into modules is to use
object literals. To simplify the explanation of this approach we’ll break the discussion
into simple steps.

 The first step, which lets you avoid polluting the global namespace, is to
“namespace” the functions, objects, and other variables you defined using an object
literal:

var myService = {
 foo: function() {},
 bar: function() {},
 baz: function() {},
 obj: {},
 anotherObj: {}
}

With this small change you can access the same functions and objects as before but
through one entry point. Because of that, the likelihood that a library would override
your code is decreased, but you haven’t solved the issue of separating the functions
and objects based on their role.

 The previous approach can be extended further to solve this issue:

var myService = {
 foo: function() {},
 payment: {
 obj: {},
 bar: function() {}
 },
 basket: {
 anotherObj: {},
 baz: function() {}
 }
};

With this structure, you could call the baz() function of the basket module as shown
here:

myService.basket.baz();

Once you have your code logically separated, you can even place each module in a dif-
ferent file. You might have a basket.js file, containing the basket module, defined as
such:

myService.basket = {
 anotherObj: {},
 baz: function() {}
};

Thanks to the division into multiple files, different developers can easily work on a sin-
gle module, reducing the chance of stepping on each other’s toes.

 Although this approach solves some issues, it isn’t well suited for keeping data
private that’s globally available inside the module. In other words, you need a way to

Defines the only function that belongs to the core

Defines the payment module

Defines the basket module
www.EBooksWorld.ir

420 CHAPTER 15 How jQuery fits into large projects
create functions and objects accessible only inside the module but not outside it.
(Inside a function you can create data available to that function only.) In the next sec-
tion we’ll present a better methodology that’s also able to deal with this issue.

15.2.2 The Module pattern

The Module pattern has been adopted in JavaScript to emulate the concept of private
methods and variables inside an object like in OO languages such as Java and C#. We
used the term emulate because technically speaking there aren’t access modifiers like
private and public in JavaScript.

 The Module pattern consists of two main components: an IIFE (more on this con-
cept in the appendix of this book) and an object to return or augment. To give you a
quick grasp of the subject, here’s a simple example of code implementing this pattern:

var myFirstModule = (function() {
 return {
 foo: function() {},
 bar: function () {},
 obj: {}
 }
})();

This code creates an IIFE and inside it returns an object literal containing the func-
tions and the objects you want to expose publicly.

 At first glance, this pattern doesn’t seem very different from the previous one, but
wait until the end of this section before judging. Thanks to this approach you’re able
to create variables and functions accessible within the module that from the outside
are inaccessible. Let’s say that you want to add to the previous code a “private” vari-
able, called count, that keeps track of the number of times the foo() function is
invoked. You also want to define a “private” function doSomethingPrivate(), which is
invoked whenever the bar() function is executed. The code to achieve this goal is
shown here:

var myFirstModule = (function() {

 var count = 0;

 function doSomethingPrivate() {};

 return {

 obj: {},

 foo: function() { count++; },

 bar: function () { doSomethingPrivate(); }

 }

})();

Now that you have a better understanding of the Module pattern, we can introduce
you to one of its variations. This variation lets you augment the basket module dis-
cussed in the previous section:

Declares a “private” variable
Declares a “private” function

Increments the value of count

Invokes
doSomethingPrivate()
www.EBooksWorld.ir

421Loading modules with RequireJS

nd
t
o
e

window.myService = (function(oldMyService) {

 oldMyService.basket = {

 baz: function() {},

 anotherObj: {}

 };

 return oldMyService;

})(window.myService || {});

The previous code is small but employs a couple of interesting techniques. First, you
assign whatever is returned by the IIFE to a property called myService defined on the
window object B. The IIFE has only one parameter defined, called oldMyService, that
will receive the value of a previously defined window.myService property or an empty
object in case it isn’t defined (that is, in case its value is falsy) E. This way, you can
augment the myService property with another module (if it already has at least one)
or create a first module.

 Inside the IIFE you define a property called basket of this object that represents
your module, where you define the functions and the properties you want to expose
publicly C. Finally, you return the augmented object D. This statement is necessary
if the value of window.myService was falsy and an empty object literal was passed to
the IIFE.

 With this last example we’ve concluded our brief overview of how to organize a
project into modules. There are other patterns that we haven’t covered in this section,
but now you should be ready to keep your code clean and more manageable. In the
next section we’ll discuss another pattern for creating modules, called AMD, and will
introduce you to RequireJS, a library created to load modules while respecting their
dependencies.

15.3 Loading modules with RequireJS
In the previous section we discussed two simple approaches to organize your code
into modules. But they have a major drawback: you have to manually manage the
dependencies of each module. For example, a method of one module may need to
use a property of another object. To avoid this issue you have to pay attention to the
order in which you include them in your web pages, but for a project that has tens or
hundreds of modules this becomes difficult and error-prone. What makes this solu-
tion even harder to employ is that some modules may depend on third-party plugins,
libraries, or frameworks.

 One method for solving this issue would be to define the dependencies of the
modules and then have “something” that organizes the inclusions in the right order
for you. This is where asynchronous module definition and RequireJS (http://
requirejs.org/) come into play.

Creates an IIFE a
assigns the resul
of its execution t
window.myServicB

Creates a basket property on
oldMyService and assigns an
object literal to itC

Returns the updated oldMyService objectD

Passes a previously defined
window.myService as an argument or
an empty object if it isn’t definedE
www.EBooksWorld.ir

http://requirejs.org/
http://requirejs.org/

422 CHAPTER 15 How jQuery fits into large projects
 The asynchronous module definition (AMD) is a JavaScript API that specifies a
mechanism for defining modules so that the module and its dependencies can be
asynchronously loaded.

 RequireJS is a JavaScript file and module loader that’s optimized for in-browser use
but that can be used in other JavaScript environments, like Rhino and Node.js. This
library is highly configurable, allowing for a high level of flexibility, but it’s also possi-
ble to start simple to accommodate basic needs. In this section we won’t cover the
library in detail, but we’ll describe it enough to get you started.

 RequireJS loads each dependency as a script tag inside the head element of the
page. Then the library waits for all dependencies to load and calculates the right
order in which to call the functions that define the modules. Finally, it calls the mod-
ule definition functions in the appropriate order.

 Now that you know what RequireJS is and what it does, let’s start using it.

15.3.1 Getting started with RequireJS

The first step you need to perform is to download the library. Access the download
page at http://requirejs.org/docs/download.html and download the latest version
available.

 Before you can use RequireJS in your web pages, we need to discuss some of its main
concepts. The first topic we want to cover is the define() function defined by AMD.

To fix the idea, let’s say that you have an object called Person, defined in a file called
Person.js. Its only property is name and it has no dependencies. Using the define()
function you can create it as such:

define({
 name: 'John Doe'
});

As you can see, you declare neither an ID for this module nor dependencies.

Method syntax: define

define([[id,] dependencies,] factory)
Define a new module with optional dependencies and identifier.

Parameters

id (String) The identifier of the module.
dependencies (Array) An array containing the name of the modules the new module

depends on.
factory (Object|Function) An object literal or function that defines the new module.

When a function is provided, it receives as parameters the dependencies in
the order in which they are defined.

Returns
undefined
www.EBooksWorld.ir

http://requirejs.org/docs/download.html

423Loading modules with RequireJS
 In addition to Person, you have an object named Car that’s stored in a file called
Car.js. This object has a method called getOwner() that internally uses the property
name of the Person object (literal); thus it has the Person module as a dependency.
The Car module can be defined as shown here:

define(['Person'], function(Person) {
 function Car() {
 this.getOwner = function() {
 return 'The owner is ' + Person.name;
 };
 }

 return Car;
});

In the code you include Person as a dependency and then create a function named
Car that acts as a constructor. This function has a getOwner() method that returns a
simple message that uses the name property of Person. Finally, Car is returned to be
available as a module. So far, you’ve defined two modules, but you still haven’t used
them. The require() function exists for such a purpose.

 The require() function is similar to define() in that both define a module, but
the former also executes it. This means that it loads and executes the dependent mod-
ules before executing the function provided. Usually an application has one
require() function as a main entry and other modules defined via define().

 To conclude our example, imagine you have a file called main.js acting as the entry
point of your application, where you want to alert the name of the car’s owner. To do
so, you can use require() defining Car as its dependency:

require(['Car'], function(Car) {
 var car = new Car();
 alert(car.getOwner());
});

If you’ve followed this section carefully, you should have a question blinking in your
head: how does RequireJS know from a simple string (for example, "Car") what mod-
ule to load? The answer is that the library creates a module having the same name as
the file containing the definition. In the example, even though you didn’t define the
ID for your modules, you have three module names: main, Car, and Person. The rea-
son is that you have three JavaScript files: main.js, Car.js, and Person.js.

 Let’s take this convention even further. If you have a file named Basket.js that’s
stored in a folder called cart, the module will be named cart/Basket.

 The final step to let RequireJS do its job is to include it in an HTML page. You can
do so using a script element with the addition of a data-main attribute. This attri-
bute is used to define the entry point of your application (the file using require()).
Assuming that you’ve placed the RequireJS library and all the previously created mod-
ules in a folder called scripts, you could start the demo by writing

<script data-main="scripts/main" src="scripts/require.min.js"></script>
www.EBooksWorld.ir

424 CHAPTER 15 How jQuery fits into large projects
A working example that employs all the snippets we’ve developed in this section can
be found in the folder chapter-15/requirejs.

 Now that we’ve covered some basic concepts, let’s see how you can apply them and
use RequireJS with jQuery.

15.3.2 Using RequireJS with jQuery

Back in chapter 12, we taught you what jQuery plugins are and how you can develop
your own to extend jQuery’s powers. Being plugins for jQuery, they depend on, well,
jQuery. And the code you write using your jQuery plugins’ methods depends on
jQuery and these plugins. This is a perfect situation in which to employ RequireJS in
your project.

 Your plugins haven’t been developed to use AMD from the start. Therefore, it
would seem that the only solution would be to go through every plugin and adapt
them to use define(), declaring jQuery as a dependency. Fortunately, there’s a better
approach, and that’s the subject of the next section.

JQUERY PLUGINS USING AMD
If you’re developing a plugin from scratch and you want to use RequireJS, you can
wrap the definition of the plugin with a call to define(), declaring jQuery as a depen-
dency, as follows:

define(['jquery'], function($) {
 $.fn.jqia = function() {
 // Plugin code here...
 };
});

What this snippet reveals is that you don’t need to return the module because you’re
augmenting the original jQuery object. Furthermore, you don’t need to wrap the def-
inition of your plugin inside an IIFE because you already have a function that wraps it,
and the jQuery object will be provided by RequireJS. As it is, the previous code doesn’t
work because RequireJS isn’t able to resolve the “jquery” string specified as a depen-
dency into the jQuery library. An easy way to solve this issue, recalling the conventions
RequireJS employs, is to rename the jQuery file as jquery.js and place it in the same
directory as the main entry. Once you’ve done that, you’ll be ready to use your plugin.

 Let’s now assume that the plugin you wrapped was stored in a file called
jquery.jqia.js. We’ll also assume the entry point of your project is stored in a file called
main.js and that it depends on jQuery and your plugin. With this in mind, your
main.js file should look like the following:

require(['jquery', 'jquery.jqia'], function($) {
 // Code that uses jQuery and the plugin
});

In this example there are two details to highlight. The first is that because the code
relies on the plugin, the latter is defined as a dependency. The second is that you
don’t need to add a second parameter to use the plugin, because once the plugin is
loaded it augments the original jQuery object.
www.EBooksWorld.ir

425Managing dependencies with Bower
ADAPTING EXISTENT JQUERY PLUGINS

When starting a new project, planning to structure it in modules that employ AMD is
easy. But often you have to maintain older libraries or use third-party software that
wasn’t created with AMD in mind. For such situations, you can create a configuration
file for RequireJS that allows you to avoid changing these files to use define():

requirejs.config({
 shim: {
 'jquery.jqia': ['jquery']
 }
});

This configuration employs the shim property and must be placed before the
require() call. The shim property has an object as its value and enables you to specify
dependencies for jQuery plugins that don’t call define(). The object literal assigned
to shim must define the name of the modules as properties and their array of depen-
dencies as values.

 Based on this description, the final code of main.js is as follows:

requirejs.config({
 shim: {
 'jquery.jqia': ['jquery']
 }
});

require(['jquery', 'jquery.jqia'], function($) {
 // Code that uses jQuery and our plugin
});

With this last example you’ve seen how to adopt RequireJS in projects that take advan-
tage of jQuery and jQuery plugins. The concepts described are far from being a com-
plete guide to RequireJS, and there’s a lot more to discuss, like the optimizer and the
many configuration properties provided. But this is a good start to employing this
library to organize the dependency of your projects.

 In the same way that you need a better way to manage the dependencies of a mod-
ule and the order in which you should include them in your projects, you need a bet-
ter and faster method to install, update, and even delete third-party software that your
project uses. That’s exactly what we’ll discuss next.

15.4 Managing dependencies with Bower
The development of a web project usually involves the use of third-party components
to speed up the process. A project that employs one or two third-party components
can be easily managed manually, as we used to do until a few years ago. As things get
more complicated, developers needed a reliable way to install and manage those pro-
ject dependencies.

 In the past few years a lot of tools have been released to address this problem.
One of these tools is Bower (http://bower.io/). In this section, we’ll look at it and its
main features, focusing our attention on how jQuery can be integrated into a project
using Bower.
www.EBooksWorld.ir

http://bower.io/

426 CHAPTER 15 How jQuery fits into large projects
15.4.1 Getting started with Bower

Bower was created at Twitter and released in 2012. Since then, a lot of developers
have contributed to this project, and now it’s one of the most well-known front-end
tools. Bower is defined as “a package manager for the web,” which means that it’s a
dependency manager for JavaScript, CSS, and much more, such as web fonts. A pack-
age can be a JavaScript library (such as jQuery, jQuery UI, or QUnit), a CSS file (such
as Reset.css or Normalize.css), an iconic web font (such as FontAwesome), a frame-
work (such as Bootstrap), a jQuery plugin (such as jQuery Easing or jQuery File
Upload), or anything else a developer wants to expose as a third-party component for
a web project.

 Funny enough, Bower has some dependencies itself, so you need to satisfy those
dependencies before you can use it. These dependencies are Node.js (http://
nodejs.org/), the platform that enables you to run JavaScript as a server-side language
and that we’ve mentioned a few times in this book; npm (https://www.npmjs.com/),
which is installed with Node.js; and a Git client (http://git-scm.com/downloads).
Once you’ve installed them, you’re ready to enter the Bower world.

 Bower defines a manifest file called bower.json, written in JSON format, which pro-
vides information about the project such as its name, the author(s), the current ver-
sion, and the packages used. This manifest file comes in handy if you’re working in a
team because it lets you share the information with the other members. This is useful
because they can install all the dependencies of the project by typing a single com-
mand (we’ll discuss it in a few moments).

 Once you’ve installed all the Bower dependencies, you can install Bower by run-
ning on the command-line interface (CLI) the command

npm install -g bower

This process can take up to a few minutes, but once it’s completed you’re ready to
employ this tool in your projects.

 Let’s now say that you’re developing a new project and you want to use Bower to
manage the dependencies. To start, you need to move to the project’s folder and cre-
ate the bower.json file inside it. This file can be created either manually or with the
help of Bower. In this example we’ll discuss the second option. Open up the CLI,
move to the project’s folder, and run the command

bower init

The tool will ask you some information about the project, as shown in figure 15.2.
 After you’ve filled in all the fields and confirmed the information, the manifest file

(bower.json) will be created inside the folder. An example of a bower.json file is shown
in the following listing.
www.EBooksWorld.ir

http://nodejs.org/
http://nodejs.org/
https://www.npmjs.com/
http://git-scm.com/downloads

427Managing dependencies with Bower
{
 "name": "jqia-context-menu",
 "version": "1.0.0",
 "authors": [
 "jqia-team <test@test.com>"
],
 "description": "A jQuery plugin to show a custom context menu on one or

more specified elements of a page.",
 "main": "src/jqia-context-menu.js",
 "keywords": [
 "jQuery",
 "plugin",
 "context-menu"
],
 "license": "MIT"
}

Your project is now set up to use Bower, but so far you haven’t done anything really
exciting or very useful. In the next two sections we’ll revamp your interest.

15.4.2 Searching a package

A package in Bower is nothing but a component that you want to use in a project. Not
all the libraries and frameworks available on the web can be managed with Bower, but
because Bower comprises more than 34,000 packages, you can be pretty sure that
everything you may need is already available.

 If you want to know if a package is available, you can search it using Bower. To do
that, open the CLI and run the command

bower search <package_name>

where <package_name> stands for the name of the package.
 And what better example could we propose than searching for jQuery? To search

for jQuery using Bower you have to run the command

bower search jquery

Listing 15.1 An example of a bower.json file

Figure 15.2 Using Bower to create the manifest file of a project
www.EBooksWorld.ir

428 CHAPTER 15 How jQuery fits into large projects
The execution of this command will give you as a result not only the jQuery library
itself but also all the other packages that have the string "jquery" in their name,
description, or keywords.

 Once you’ve identified the exact name of the package to be used, you’re ready to
install it.

15.4.3 Installing, updating, and deleting packages

Before installing a package, there’s an important decision to make. You have to decide
if the dependency you’re going to install is needed in production or is only necessary
for you as a developer.

 To give you a concrete idea, jQuery is a package you need in production because
your whole JavaScript code, or part of it, needs jQuery to work. The same reason is
valid for other components like jQuery UI or Backbone.js. Other packages, such as a
testing framework (like QUnit or Mocha), are only needed while developing the pro-
ject to ensure the code quality and robustness. No other parts of the software—at least
not those that will be deployed—need it. This is an important difference that will
slightly change the way you install a dependency.

 To install a package with Bower you have to run the command

bower install <package_name> <--production-or-development>

where <package_name> is the name of the package and <--production-or-development>
is a flag to specify if the package is intended for development purposes only (--save-
dev) or not (--save).

 To install jQuery as a production dependency, open the CLI and move the project’s
folder to the same level as the bower.json file. Once that’s done, execute the command

bower install jquery --save

Let’s now say that you also want to install QUnit because you want to unit test your
project. To install it as a development dependency, the command to use is

bower install qunit --save-dev

The first time the install command is executed, a folder called bower_components
is created. Inside this folder the tool downloads the packages required. It also updates
the bower.json file by adding the package in the dependency or the devDependency
section, depending on the option specified.

 Once a dependency—for example, jQuery—is downloaded, you need to include it
in your project. Assuming you have an index.html file created at the same level of the
bower_components folder, you have to write

<script src="bower_components/jquery/dist/jquery.min.js"></script>

The actual path varies from package to package, but the structure is usually similar.
 Once you install all the dependencies needed, you can start developing the fea-

tures of the project.
www.EBooksWorld.ir

429Creating single-page applications with Backbone.js
 The development process usually requires a lot of time, and while writing the code
it can happen that a new version of one or more of the packages you’re using is
released. New releases often fix important bugs, so it’s important to keep your depen-
dencies up to date.

UPDATING A PACKAGE

Updating a package is easy. All you need to do is to move to the root of the project and
execute on the CLI the command

bower update <package_name>

If you want to update jQuery, you have to write

bower update jquery

Sometimes you might want to update all of your packages at once. Bower enables you
to do that with the command

bower update

There may be situations where a dependency isn’t needed anymore and you want to
delete it. Let’s see how.

REMOVING A PACKAGE

To delete a dependency using Bower you can run the command

bower uninstall <package_name> <--production-or-development>

where the meaning of the two parameters is the same as explained previously.
 Imagine that you gave QUnit a try in your project but you didn’t like it very much

and decided to write your tests using Mocha. You need to delete QUnit, which was
installed as a development dependency. To do that, you need to run on the CLI the
command

bower uninstall qunit --save-dev

With this last example we’ve completed our overview of Bower. This tool has more
commands than those we’ve discussed, but they’re enough to get you up and running
and to speed up your workflow.

 Thanks to jQuery, Bower, RequireJS, and the other software we’ve introduced in
this book, you’re ready to develop websites and web applications in a solid and profes-
sional way. But this chapter would be incomplete without mentioning single-page
applications and how to create them using an MVC framework.

15.5 Creating single-page applications with Backbone.js
As we discussed in the introduction, when working on large projects there’s a real
need to have good code organization. Imagine for a moment what would happen to
software developed by companies like Google or Microsoft if they had bad code orga-
nization. With products where new features are added and old ones are updated
frequently, poorly structured code leads to an incredible amount of time wasted. And
as you know, time is money.
www.EBooksWorld.ir

430 CHAPTER 15 How jQuery fits into large projects
 One of the most used patterns to structure software is the Model–View–Controller
(MVC) pattern. It’s a software architectural pattern that separates concerns into three
main concepts: model, view, and controller. The model represents the application
data, such as a registered user of a website. The view is the component that deals with
displaying the data—that is, how the data will be shown in the web page if you’re using
this pattern on the web. The controller updates the model’s state and sends the data
to the view (for example, a change in the address of the user).

 If you were a PHP developer, you’d be aware of Symphony, Laravel, or Zend Frame-
work; if you were a Java developer, you’d probably have heard of Spring Web MVC or
Struts. But because we’re talking about JavaScript, we have other frameworks. One of
these frameworks that implements the MVC pattern is Backbone.js.

 Ideally, jQuery could be used to create single-page applications, but because that
isn’t its main purpose, more often than not you’ll end up with complex, hard-to-write,
and hard-to-maintain code. To create such applications, you need a framework specif-
ically developed with this scope in mind, such as Backbone.js. Backbone.js has some
libraries on which it relies: Underscore.js and jQuery. Therefore, the knowledge
you’ve acquired so far will be useful even in this context.

 Today many web applications rely on JavaScript and Ajax to create better user
interactions and to create single-page applications (SPAs). These are applications that,
once loaded in the browser, perform all the HTTP requests without requiring the
whole page to reload. In terms of performance, this is a big advantage because the
browser doesn’t have to load all the assets (JavaScript files, CSS files, fonts, and so on)
again. It loads only the small portion that has to be injected into the DOM, returned
by the server.

 The presented approach doesn’t come without cost. SPAs usually have a longer
loading time because they require loading more code than other applications. For
this reason, you have to pay attention to balancing the code needed by your applica-
tion and its weight. A page that takes too long to load is at risk of losing users.

 In the following sections, we’ll discuss the features of the pattern implemented by
the framework and also give a brief overview of its main concepts such as models,
views, and routers. In addition, we’ll develop a simple yet useful application to orga-
nize to-do lists (from now on we’ll refer to it as the Todos manager). We chose this
application because it’s often used as a project when learning a new framework. Its
scope is to save the tasks you have to do so you can easily remember them. Please note
that this section isn’t intended to be an in-depth guide to Backbone.js, and we’ll only
skim the surface. If you want a complete resource, you can buy a book dedicated to
this framework.

15.5.1 Why use an MV* framework?

Just like a lot of things in life, programming is a cycle. You have a problem that you
solve using the tools you have at a given moment, but then new libraries and frame-
works are released to improve the code and the solutions adopted. Then new issues
arise and the cycle starts again.
www.EBooksWorld.ir

431Creating single-page applications with Backbone.js
 When the first SPAs came out, many developers started to employ jQuery (or simi-
lar libraries) and a lot of callbacks and Ajax calls to synchronize the user input with
the data stored on the server. Once these applications increased in complexity, the
code became unmaintainable and unscalable. As a consequence, developers needed a
framework to help them with the development of a well-structured and maintainable
code. That’s where frameworks like Backbone.js, AngularJS, Ember, and many others
came into play. They’re usually referred to as MV* frameworks because they don’t
quite fit either the MVC pattern, the MVP (Model-View-Presenter) pattern, or the
MVVM (Model-View-ViewModel) pattern.

 An illustration representing the MVC pattern and the Backbone.js implementation
of this pattern is shown in figure 15.3.

 As you can see from figure 15.3, the main difference between the classic MVC pat-
tern and the Backbone.js implementation lies in the view component. The view also
acts as a controller, handling the rendering of the UI that’s represented by the tem-
plate block, and has the responsibility of updating the model.

Controller

Model

Updates model
Interacts with

Validates input

Modifies models

User interface
presents data

Selects the
view to render

Triggers
update

MVC

View

Collection

Set of models

View

Model

Template

Interacts with

Outputs template(s)

Listen to
model events

Updates model

Backbone.js Data

Validates data

HTML code

Renders data

UI handler

Listens to
DOM, model, and
collection events

Figure 15.3 The MVC pattern
compared to the Backbone.js
implementation
www.EBooksWorld.ir

432 CHAPTER 15 How jQuery fits into large projects
 Now that you’re aware of the model implemented by Backbone.js, let’s delve into
each component, one at a time, to analyze its responsibilities and features.

15.5.2 Starting with Backbone.js

As you’ve seen, Backbone.js allows developers to break their code into small pieces.
Let’s take a brief look at its components.

MODEL

Models are the objects representing the data of your application. Models have as
properties the attributes that feature the objects. Here you usually add the methods to
validate the data, initialize the properties, and notify the server about changes in the
model.

 To explore the idea of what a model is, think for a moment about the Todos man-
ager you’re going to build. One of the models of your application (actually the only
one you’ll have) is the Todo entry, which is a single activity to perform. Each of these
Todos will have a title, a position inside the list, and a property to indicate if it has
been completed or not. These three attributes of the object are the properties of the
model.

 Models are completely agnostic about how the information they contain will be dis-
played, and each of them can be connected with one or more views that listen for
changes. In this way, you ensure that what is displayed is in sync with the data described
by the model. In Backbone.js, models are created by extending the Backbone.Model
object. You can also group models into a unique entity, called a collection, which is the
subject of the next section.

 Here’s an example of a Todo model having the properties just described:

var todo = Backbone.Model.extend({
 position: 1,
 title: '',
 done: false
});

As you can see from the code, in its basic form a model is just a set of properties
declared into an object passed to the Backbone.Model.extend method.

COLLECTION

A collection is a set of models and it’s used to organize and perform operations on the
models included in it. When you define a collection, you need to set a property that
specifies the type of the collection you’re creating.

 Collections help you avoid the need to manually observe single model instances.
In the Todos manager application, you’ll need a way to group the Todos because
you’ll want to represent them as a unique list. Therefore, you’ll use a collection.

 In Backbone.js, you create a collection by extending the Backbone.Collection
object. A collection can have one or more views listening for changes.

 The following example shows how you can create a collection of Todos using the
model shown in the previous section:
www.EBooksWorld.ir

433Creating single-page applications with Backbone.js
var todoList = Backbone.Collection.extend({
 model: todo
});

As you can see, a collection can be as simple as an object containing as its only prop-
erty the specification of the models it contains.

VIEW

The view is the component that responds to DOM events by executing one or more
methods based on your needs. It’s usually tied to a specific model. Views help you
keep the DOM in sync with the data, and they’re the components where you write the
logic behind the presentation of the data.

 This component doesn’t contain the HTML code. The HTML code is written in tem-
plates managed with other JavaScript libraries like Mustache.js or Underscore.js.
Because Backbone.js relies on Underscore.js, in our demo project we’ll stick with the
latter.

 Recalling our example of the Todos manager, the view represents the object that
will allow you to listen for DOM events and run one or more methods accordingly. To
give you a concrete idea, you can think of a DOM event as the click on the Add Todo
button or the addition of a new model in your list of Todos.

 The most important property of a view is el. It’s a reference to a DOM element that
all views must have, and it ties the View object to a DOM element. Often you’ll use
jQuery and its methods on el, so Backbone.js defines a convenient $el property,
which is nothing but a jQuery object that wraps the el property.

 The el property can be associated with a DOM element in two ways. The first way is
to create a new element for the view and then add it to the DOM. In this case, the new
element is created by the framework and the reference is assigned automatically. In
addition, you can use some other properties to set common attributes of a DOM ele-
ment. The properties discussed are tagName, which is the name of the tag (as div, p,
li), id, and className, which is the CSS class name to assign. The second way is to ref-
erence to an element that already exists in the page.

 Another important although optional feature of a view is the render() method. In
it you define the logic behind the render of a template—the statements that will actu-
ally render the HTML representing the model. In the render() method you’ll usually
have a JSON object of the model associated with the view that’s passed to the template
to populate it with this data and show the HTML to the user. To be precise, you’ll com-
pile a template into a function using Underscore’s _.template() method and pass
the JSON object to this function. For example, you’ll have code like the following:

var TodoView = Backbone.View.extend({
 render: function() {
 this.$el.html(this.template(this.model.toJSON()));

 return this;
 }
});
www.EBooksWorld.ir

434 CHAPTER 15 How jQuery fits into large projects
The following example creates a li element using the first approach discussed to asso-
ciate the el property to a DOM element and also defines a template:

var TodoView = Backbone.View.extend({
 tagName: 'li',
 className: 'todo',
 template: _.template($('#todo-template').html())
});

A template is a piece of HTML containing some template tags that will be replaced by
the data store in a model. For example, let’s say that you want to show the title of a
Todo; you might create a template like the following:

<script type="text/template" id="todo-template">
 <%- title %>
</script>

To sum up, users interact with the HTML markup contained in templates that are
managed by views. Views are responsible for notifying the model and, eventually, for
modifying part of the HTML.

 Views are also responsible for passing the models to the templates. The templates
contain placeholders where you can show the attributes’ values. These placeholders
are replaced on the fly with the actual values of the models. You can also employ other
structures like conditional statements that use the data passed to decide if a given
HTML element or attribute has to be shown or not.

 As you’ve seen from the template snippet, templates are created by inserting their
content into a <script>. They usually have a type="text/template" attribute and an
ID so you can easily retrieve them using jQuery or similar libraries. An example of the
template tags cited previously is <%- title %>, where <%- %> is used to interpolate the
value of the variable and HTML-escape it, and title is the name of the property you
expect to be sent from the view.

ROUTER

A router provides a way to tie parts of your project to a given URL and to keep track of
states in the application. A router maps a path to a function. It usually works with one
or more models and then updates a view. Figure 15.4 shows an abstraction of how the
router component fits into the general Backbone.js architecture.

 Routers translate a URL or hash fragments of the URL into an application state.
This means that they’re needed if you want to make a given state of your application

Router

View Model

Updates Updates/retrieves

HTTP request

Figure 15.4 A schema of how a
router interacts with other
components of Backbone.js
www.EBooksWorld.ir

435Creating single-page applications with Backbone.js
sharable or bookmarkable. Once one of the paths defined in the router matches the
current URL, the relative function is executed.

 To illustrate the idea, let’s recall our Todos manager and imagine that you want to
enable the user to ask for a specific Todo in order to see its details. This is where a
router comes into play. You can create a router and associate a URL—for example,
todo/MY-TODO-ID—with a function to execute that updates the page, removing the
list of Todos and showing just the details of the one required.

 Routers are defined by extending the Backbone.Router object, and you usually
will have only one router per application, although you can have as many routers as
you need. An example router definition is shown in the following listing.

var TodoRouter = Backbone.Router.extend({
 routes: {
 "todo/:id": "getTodo",
 "search/:string": "searchTodo"
 },

 getTodo: function(id) {
 // Your code here
 },

 searchTodo(string) {
 // Your code here
 }
});

In the router example shown, you define two routes B, todo/:id and search/
:string, assigning an object to the routes property. The object has as keys the pat-
tern of the routes and as values the function to execute when the route matches the
URL (for instance, “todo/2” matches the first route defined). In this example, todo/
:id and search/:string are mapped to the getTodo and searchTodo functions
respectively, whose bodies are defined in the remainder of the object literal C.

 As explained earlier, once one of the paths defined in the router matches the cur-
rent URL, the relative function is executed, passing as its arguments the variable(s)
defined in the path. Variables are the parts of the path you defined starting with the
colon, like :id.

 With this explanation, we’ve completed the analysis of the framework’s compo-
nents. It’s time to get your hands dirty with the development of the Todos manager.

15.5.3 Creating a Todos manager application using Backbone.js

When learning a new framework, most people agree that one of the most effective
ways to solidify the idea is to develop a small project. The goal of this section is to
guide you through the creation of a simple Todos manager (figure 15.5) that allows
you to perform the typical CRUD (Create Read Update Delete) operations. To keep
the project as simple as possible, instead of using a web service to send and store

Listing 15.2 A simple router in Backbone.js

Defines routes
and maps them
to functions

B

Declares functions
to execute on
route match

C

www.EBooksWorld.ir

436 CHAPTER 15 How jQuery fits into large projects
your data, you’ll use the Web Storage API
(http://www.w3.org/TR/webstorage/), relying
on a Backbone.js adapter called Backbone
.localStorage (https://github.com/jeromegn/
Backbone.localStorage). The complete code
can be found in the source code provided
with this book in the folder chapter-15/todos-
manager.

 Your Todos manager will have only one
model that represents a Todo. Every Todo
item will have a title property, where you’ll save the task that has to be done, its posi-
tion inside the list in a property called position, and a Boolean that specifies if the
Todo has been completed or not in a property called done. You’ll also employ one col-
lection to help you keep the models sorted. Finally, differently from what you might
expect, you’ll have two views. You’ll adopt the Element controller pattern that consists
of two views: the first controls a collection of items, whereas instances of the second
deal with each individual item.

 The structure of the project, shown in figure 15.6, is quite straightforward. It has
an index.html page that contains the HTML markup and the templates used by the
application. It also has a css folder containing the
basic CSS file that gives the application a better
look and feel, a js folder containing all the librar-
ies included (such as jQuery and Backbone.js)
inside a subfolder named vendor, and a file called
app.js containing the project’s specific code. To
keep things as easy as possible, you’ll put all the
code in the same file, but when dealing with large
projects a better choice is to have a different file
for every object stored in a subfolder named like
the components you’ve seen so far: models, col-
lections, and views.

 Now that you’ve seen the features of the pro-
ject, let’s start developing it.

CREATING THE HTML
No web app that interacts with users can be developed without an interface, so the
first step is to create the HTML markup. All of the HTML markup and the templates
will reside in the index.html file. The interface is simple because you only need two
components. The first is the place where the user can type the new activity to perform
(the title of the Todo) and add it to the list, while the second is the list of Todos.

 When developing a web application it’s a good practice to provide feedback to the
user in case of failure of any of the operations performed. For this reason, you’ll also
add a DOM element to show error messages in case they’re needed.

Figure 15.5 Layout of the Todos manager
application

Figure 15.6 Folder and file structure
of the Todo application
www.EBooksWorld.ir

http://www.w3.org/TR/webstorage/
https://github.com/jeromegn/Backbone.localStorage
https://github.com/jeromegn/Backbone.localStorage

437Creating single-page applications with Backbone.js
 The HTML implementing these needs is shown here:

<div id="todo-sheet">
 <input id="new-todo" type="text" placeholder="Put your Todo here" />
 <button id="new-todo-save">Save</button>

 <ul class="todos">

</div>

In this code you create the element (ul) where the Todos will be injected, but you
haven’t decided how you want to display them. You need to create the template for
the s containing the information of a Todo. How you do that depends on your
design choices, but we’ll still give you a suggestion. As we said in the introduction, the
Todos have title, position, and done properties. The first two can be represented
using a simple span element, whereas for the last one a check box would be a better
choice because it enables users to check it and mark the Todo as completed.

TIP In the markup shown we omitted a label element associated with the
input field to let you focus on the code related to the project. However, when
dealing with form elements, it’s always a good practice to provide such labels
because they improve the accessibility of your elements.

 The showing the title of the Todo will be editable in place thanks to the
contenteditable attribute. In addition, you’ll allow users to delete the Todo using a
button element having as its text a big X. To provide feedback to the user for com-
pleted Todos, you’ll assign to the element a class that styles it as stroked.

 Earlier, in the section titled “View,” we pointed out that templates contain place-
holders where you can show the model’s values and other structures like conditional
statements. The template for the Todo is shown below:

<script type="text/template" id="todo-template">
 <%- position %>.
 <input class="todo-done" type="checkbox"
 <%= done ? checked="checked" : '' %> title="Completed" />
 <span class="todo-title <%= done ? 'todo-stroked' : '' %>"
 contenteditable="true"><%- title %>
 <button class="todo-delete" title="Delete">X</button>
</script>

Apart from the placeholders, you use a condition to test if the Todo is completed.
 With all the HTML code in place, you need to include the libraries that will allow

you to kick off the application and your code.

INSTALLING BACKBONE.JS
Backbone.js has as its unique hard dependency a library called Underscore.js (version
>= 1.7.0). This means that you must include the latter before Backbone.js; otherwise,
the framework won’t work. Including the framework and its dependency is as easy as
including jQuery. All you have to do is add them to your page using the <script> tag.
www.EBooksWorld.ir

438 CHAPTER 15 How jQuery fits into large projects
 The libraries your project will rely on are jQuery (this is still a book on jQuery, isn’t
it?), Backbone.js and its dependency Underscore.js, and the Backbone.localStorage
adapter. To include them, you’ll add the <script> tags having the reference to them
at the end of the index.html page but before the closing <body> tag, as shown in the
next listing.

<!DOCTYPE html>
<html>
 <head>
 ...
 </head>
 <body>
 ...
 <script src="js/vendor/jquery-1.11.3.min.js"></script>
 <script src="js/vendor/underscore-min.js"></script>
 <script src="js/vendor/backbone-min.js"></script>
 <script src="js/vendor/backbone.localStorage-min.js"></script>
 <script src="js/app.js"></script>
 </body>
</html>

The code shows how simple it is to include the framework.

NOTE If you want to improve this demo project, you can download all the
libraries with Bower and manage the order of inclusion with RequireJS.

For the sake of precision, the homepage of the framework specifies the following:

[...] for RESTful persistence, history support via Backbone.Router and DOM
manipulation with Backbone.View, include jQuery, and json2.js for older
Internet Explorer support.

The markup looks good, but at the moment your application isn’t able to do anything.
Let’s fix this by developing the model of your project.

THE TODO MODEL

The only model of the Todos manager is the one representing a single Todo, which is
the activity to complete (figure 15.7). Each instance of this object has title,
position, and done properties. Instead of adding them directly, as shown in the snip-
pet in the section “Model,” you’ll wrap them with an object assigned to a property
called defaults. By doing so, when an instance of
the model is created, any unspecified property
will be set to the respective default value. This
approach isn’t mandatory, but the advantage is
that you ensure a default value for each property
of the model.

 In your model you’ll also create two methods:
initialize() and validate(). Both are optional

Listing 15.3 Including libraries in a web page

Model
- Position
- Title
- Done

Todo

Figure 15.7 A representation of a
Todo object, the only model of the
Todos manager
www.EBooksWorld.ir

439Creating single-page applications with Backbone.js
but you’ll find yourself using them often in your projects. The former, present also in
collections and views, is executed whenever a new instance of a model is created. Here
you’ll add the listeners for one or more events so that a handler can be executed once
an event is triggered.

 The validate() method is, by default, called before storing the object. This
method should return an error, which can be a string or an object, in case of failure
and nothing on success. In case of failure, the model won’t be updated on the storage
used, whether it resides on a server or locally (as your project does). This method is
important because when it returns an error, it also fires an event called invalid that
you can listen to in order to perform one or more specific actions.

 In your project, inside the initialize() method you’ll listen for this and other
events to log some information on the console. By doing so you can keep an eye on
what’s going on in your application.

 Before delving into the code, you need to perform a simple preliminary step.
Throughout the book you’ve learned how important it is to not pollute the global
scope. All the models, views, and collections you’ll develop will live inside a single
namespace that you’ll name app. Your first line of code will be this:

window.app = {};

With your namespace in place, take a look at the code of the Todo model shown in
the following listing.

app.Todo = Backbone.Model.extend({
 defaults: {
 position: 1,
 title: '',
 done: false
 },

 initialize: function() {
 this
 .on('invalid', function(model, error) {
 console.log(error);
 })
 .on('add', function(model, error) {
 console.log(
 'Todo with title "' + model.get('title') + '" added.'
);
 })
 .on('remove', function(model, error) {
 console.log(
 'Todo with title "' + model.get('title') + '" deleted.'
);
 })
 .on('change', function(model, error) {
 console.log(
 'Todo with title "' + model.get('title') + '" updated.'
);

Listing 15.4 The Todo model

Extends the Backbone.Model objectB

Defines the
default values of
the properties

C

Attaches a handler to
the invalid eventD
www.EBooksWorld.ir

440 CHAPTER 15 How jQuery fits into large projects
 });
 },

 validate: function(attributes) {
 if(!attributes.title) {
 return 'Title is required and cannot be empty';
 }

 if(
 attributes.position === undefined ||
 parseInt(attributes.position, 10) < 1
) {
 return 'Position must be positive';
 }
 }
});

At the beginning of the listing you create a new object by extending Backbone
.Model B. You assign the result to a property called Todo, which is stored as a prop-
erty of the window.app object you previously created (not shown in the listing). You
also define an object literal having as keys the names of the attributes you want to cre-
ate and as values the default values of the properties C.

 As mentioned before, you also create the initialize() method, where you add the
handlers for several events such as invalid D. Finally, you override the validate()
method E, where you check that the title isn’t falsy (empty string, null, undefined,
and so on), make sure the position is greater than zero, and return an error message
if needed.

 In this section you built the model to represent the Todos for your application, but
you want to group them into a collection. Let’s see how.

THE TODOS COLLECTION

You want to group the models together to represent them as a unique list. To do so
you’ll employ a collection that’s created by extending the Backbone.Collection
object and specify its type by setting the value for the model property. You also have to
force the list to be an ordered list because you want it to be sorted by the position spec-
ified in each Todo. Therefore, you need to define a comparator to sort the models by
setting the comparator property inside the collection. The latter can be a method
defined by the developer as well as a string that specifies the name of the attribute to
use to sort objects. As we said, you want to sort the Todos based on the position attri-
bute; hence you’ll specify position as the value of the comparator property.

 When a new Todo is added or deleted by the user, you want to keep your list cor-
rectly sorted and with sequential position numbers. For this reason, you need to listen
for the add and remove events to execute a function that you’ll call collection-
Changed, which is responsible for restoring the correct numbering sequence. Back-
bone.js passes the model added or deleted to the handler as an argument. This is
important because you’ll test if it’s valid or not, using the isValid() method, and only
if the test is passed will the other model’s position be updated. The code that imple-
ments the Todo collection is shown in the next listing.

Declares the
method to validate
the properties

E

www.EBooksWorld.ir

441Creating single-page applications with Backbone.js
app.todoList = new (Backbone.Collection.extend({
 model: app.Todo,

 localStorage: new Backbone.LocalStorage('todo-list'),

 comparator: 'position',

 initialize: function() {
 this.on('add remove', this.collectionChanged);
 },

 collectionChanged: function(todo) {
 if (todo.isValid()) {
 this.each(function(element, index) {
 element.save({
 position: index + 1
 });
 });
 this.sort();
 }
 }
}));

With this section we’ve covered the objects used to store the data and group the
Todos, but nothing can be presented to the user yet. It’s time to fill the gap by devel-
oping the views.

THE TODO VIEWS

The Todos manager has two views, one that deals with each individual Todo and
another that deals with the collection of Todos. In this section we’ll discuss the for-
mer; the latter is covered in the next section.

 The Todos (as a group) are represented as a list, whereas a single Todo is created
as an item of the list. In terms of HTML this means you’ll have a ul element and many
li elements. Inside the s you’ll display the data associated with the model: title,
position, and done. To create the li element, you’ll set the tagName property of the
view and, although not mandatory, the className property to easily associate a style to
the element. To display the data of the model, you’ll use the template described in the
“Creating the HTML” section and override the render() method.

 This view is also responsible for reacting to events of interest for a single Todo, like
the deletion or addition of a single activity (a Todo). To achieve this goal, you’ll use
the Backbone events hash. It’s nothing but an object, assigned to the events property
of the view, made up of key-value pairs. A key is in the form of “eventName selector”
and a value is the name of a callback function to execute.

 The code implementing this view is shown in the listing that follows.

Listing 15.5 The collection of Todos

Specifies that this is a
collection of Todo models

Defines the (local)
storage where the
Todos are stored

Elements are
updated only if
the model is valid
www.EBooksWorld.ir

442 CHAPTER 15 How jQuery fits into large projects
app.TodoView = Backbone.View.extend({
 tagName: 'li',
 className: 'todo',

 template: _.template($('#todo-template').html()),

 events: {
 'blur .todo-position': 'updateTodo',
 'change .todo-done': 'updateTodo',
 'keypress .todo-title': 'updateOnEnter',
 'click .todo-delete': 'deleteTodo'
 },

 initialize: function() {
 this.listenTo(this.model, 'change', this.render);
 this.listenTo(this.model, 'destroy', this.remove);
 },

 deleteTodo: function() {
 this.model.destroy();
 },

 updateTodo: function() {
 this.model.save({
 title: $.trim(this.$title.text()),
 position: parseInt(this.$position.text(), 10),
 done: this.$done.is(':checked')
 });
 },

 updateOnEnter: function(event) {
 if (event.which === 13) {
 this.updateTodo();
 }
 },

 render: function() {
 this.$el.html(this.template(this.model.toJSON()));
 this.$title = this.$('.todo-title');
 this.$position = this.$('.todo-position');
 this.$done = this.$('.todo-done');

 return this;
 }
});

In the first lines of the listing you define this view’s tag element, define a class name
for the element, and cache its template. Then you create the events hash B associat-
ing some events to a set of callbacks you’ll create in the view. For example, you want to
know when a user clicks the Delete button to delete the model from the list C.
Finally, in the render() function you display the previously compiled template D and
return the HTML snippet that replaces the content of the view’s element.

 Let’s now discuss the second view of the application.

Listing 15.6 The Todo view

Caches the template

The events hash:
associate events
with callbacks

B

Deletes the model
from the storage

C

Saves the model

Updates the model
when the Enter key
is pressed while
editing a Todo

Renders the
compiled
template

D

www.EBooksWorld.ir

443Creating single-page applications with Backbone.js
THE APPLICATION VIEW

The application view, called appView, is responsible for the creation of new Todos and
the display of the Todo list.

 Unlike the Todo view, in your HTML you already have a DOM element this view can
refer to, so you won’t set the tagName and the className. The element is the <div>
having todo-sheet as its ID. You’ll set it as the value of the el property of the appView.
When the view is initialized, you also want to fetch the list of Todos stored so that you
can show them to the user. For this reason you’ll call the fetch() method on the list
in the initialize() method.

 Based on its responsibilities, the only DOM event you’re interested in for this view
is the click on the Save button. Once it’s fired, you can execute the function create-
Todo() to create and store the new Todo written by the user. This situation is a perfect
fit for the events hash. In addition to this DOM event, this view needs to listen for
changes in the Todos list in order to update the HTML representing the list. The next
listing shows the code that implements what we’ve discussed in this section.

app.appView = Backbone.View.extend({
 el: '#todo-sheet',

 events: {
 'click #new-todo-save': 'createTodo'
 },

 initialize: function() {
 this.$input = this.$('#new-todo');
 this.$list = this.$('ul.todos');

 this.listenTo(app.todoList, 'reset sort destroy', this.showTodos);
 this.listenTo(app.todoList, 'invalid', this.showError);

 app.todoList.fetch();
 },

 createTodo: function() {
 app.todoList.create(
 {
 title: this.$input.val().trim()
 },
 {
 at: 0,
 validate: true
 }
);

 this.$input.val('');
 },

 showError: function(collection, error, model) {
 this
 .$('.error-message')
 .finish()

Listing 15.7 The application view

Caches the list and
the input elementB

Fetches models from storageC

Creates the new TodoD

Places the Todo at the top of the
list and forces its validationE

Displays the error
to the user

F

www.EBooksWorld.ir

444 CHAPTER 15 How jQuery fits into large projects
 .html(error)
 .fadeIn('slow')
 .delay(2000)
 .fadeOut('slow');
 },

 showTodo: function(todo) {
 if (todo.isValid()) {
 var view = new app.TodoView({ model: todo });
 this.$list.prepend(view.render().el);
 }
 },

 showTodos: function() {
 this.$list.empty();
 var todos = app.todoList.sortBy(function(element) {
 return -1 * parseInt(element.get('position'), 10);
 });
 for(var i = 0; i < todos.length; i++) {
 this.showTodo(todos[i]);
 }
 }
});

In the initialize() method you cache the ul and the input element where the user
can write the activity to perform (the title of the Todo) B. Then you attach a handler
for the events of interest. Finally, you fetch the models from local storage C.

 In the createTodo() method you create the instance of a Todo model, passing
only the title and relying on the default values for the other properties D. Then you
put it in your list of Todos, placing it at the beginning of the list using the at option
and forcing its validation via the validate option E.

 In case an error occurs, a message is shown inside the element having the class
error-message by executing the showError() method F.

 To render the list of Todos you create a showTodos() method and a support
method, showTodo(), that’s responsible for rendering a single Todo. Inside show-
Todos(), you first ensure there’s nothing inside the ul element that contains the
Todos, using jQuery’s empty() method. Then you sort the list in reverse order because
you want the last stored element, the head of the list, to be shown as the first list item.
The last Todo should be displayed at the top of the list, shouldn’t it?

 Finally, you loop over the reverse-sorted list, calling the showTodo() method and
passing as an argument the current Todo. The showTodo() method tests if the given
Todo is valid G and, in case of success, a view associated with it is created and
prepended to the ul.

 At this point all the code is in place and you need to kick off your application. This
is done by writing at the end of the file the following statement:

new app.appView();

With this last statement, the project is completed and you’re allowed to celebrate this
event by drinking champagne. The final and complete code can be found in the

Adds the item only if
the model is valid

G

www.EBooksWorld.ir

445Summary
source provided with this book in the folder chapter-15/todos-manager. To execute
the application, open the index.html file in your browser.

 This section dedicated to Backbone.js is just an introduction to the framework,
and the application you built is very basic. But you should have noticed how closely
jQuery was integrated within it and how jQuery was used extensively inside the func-
tions that Backbone.js allowed you to construct. This is a true testament to the wide-
spread usefulness and flexibility of jQuery. We hope that thanks to this introduction
you’re more aware of the potentiality of Backbone.js and intrigued enough to go fur-
ther. As a final challenge to test your knowledge, we invite you to modify the project to
employ Bower, RequireJS, and QUnit. Have fun!

15.6 Summary
In the first part of this chapter you saw how to improve the performance of code that
uses jQuery by selecting elements the right way. We discussed when to take advantage
of the context parameter of jQuery() and when to avoid its use. We also covered how
to avoid using the Universal selector. Later you learned how to achieve better perfor-
mance in older browsers by creating selectors that allow jQuery to call JavaScript
native functions like getElementById() and getElementsByClassName().

 No library or framework is magic. Remember that when you use third-party soft-
ware, even a powerful one like jQuery, it makes some optimizations on your behalf,
but others are your responsibility.

 In the second main section we introduced you to the importance of keeping your
code base clean and organized. We taught you what a module is and some of the pat-
terns available to split your code, written using jQuery (but not limited to this case
only), in modules. Among the advantages of this approach is that you have the possi-
bility of creating “private” variables and functions and avoiding polluting the global
scope.

 A tool we presented is RequireJS, a JavaScript file and module loader for different
environments. This library frees you from the burden of manually sorting modules,
libraries, and frameworks based on their dependencies. In its section, we covered how
to develop modules to take advantage of RequireJS and showed how you can adapt
existing JavaScript code to work with it. Specifically, we showed you how to use an
existing jQuery plugin with RequireJS without changing its source through the use of
a simple configuration file.

 Another tool we described is Bower. It’s a package manager for the web that
empowers you to manage your JavaScript, CSS, and other types of dependencies
including jQuery. You saw how you can search a package your application may need
through the use of the CLI. Then you also learned how to install, update, and delete a
package using Bower.

 In the last part of this chapter you learned about Backbone.js, one of the MV*
frameworks available in the JavaScript world. Backbone.js enables you to create single-
page applications (SPAs), a type of application widely employed today that helps
www.EBooksWorld.ir

446 CHAPTER 15 How jQuery fits into large projects
developers to reduce the backend of complex applications to a minimum. In fact,
most of the business logic is written in JavaScript and resides on the client side. The
section dedicated to Backbone.js showed you what a possible next step is now that you
know all about jQuery. In addition, this framework integrates well with jQuery to
enable you to develop amazing applications.

 We also discussed the architecture and main concepts of Backbone.js: models,
routers, views, templates, and collections. Then we put it all together to develop a
basic application to keep your daily activities organized, called Todos manager.

15.7 The end
Oh my! How much time has passed since the start of this book! It has been an incred-
ible experience for us to offer you the best resource possible, and we really hope to
have achieved our goal. We’re sure that it has been an incredible journey for you as
well, and that you’ve had some moments of discouragement in the attempt to remem-
ber the huge amount of information we’ve provided. If you can’t recall every function
we explained or the list of arguments accepted by a function, don’t worry: there’s
nothing wrong with that. Experience, practice, and a tab of your browser constantly
pointing to the jQuery documentation can solve this issue.

 jQuery is a constantly evolving project, and it’s subject to numerous updates, addi-
tions, deprecation, and even feature deletions as you’ve discovered by reading the
changes brought by jQuery 3. Sometimes it’s hard to catch up with all the news, the
updates introduced by the team in every release of the library and the documentation,
and the bugs found.

 In this book we tried hard to offer you the most up-to-date information pertaining
to the functions and the properties offered by jQuery, the best practices adopted by
the web community, and also some advanced programming techniques.

 We hope you’ve enjoyed this book and that you won’t stop learning. We also wish
you health and happiness, and may all your bugs be easily solvable!
www.EBooksWorld.ir

appendix
JavaScript that you

need to know but might not!

One of the great benefits that jQuery brings to your web applications is the ability
to implement a great deal of scripting-enabled behavior without having to write a
whole lot of script yourself. jQuery handles the nuts-and-bolts details so that you
can concentrate on the job of making your applications do what they need to do!

 For the first few chapters in this book, you needed only rudimentary JavaScript
skills to code and understand the examples provided. In the later chapters, such as
those on event handling, animations, and Ajax, you had to understand a handful of
fundamental JavaScript concepts to make effective use of the jQuery library. You
may have found that a lot of things that you perhaps took for granted in JavaScript
(or took on blind faith) started to make more sense.

This appendix covers
 Which JavaScript concepts are important for effectively

using jQuery

 JavaScript Object basics

 How functions are first-class objects

 What’s an IIFE?

 Determining (and controlling) what this means

 What’s a closure?
447

www.EBooksWorld.ir

448 APPENDIX JavaScript that you need to know but might not!
 We’re not going to go into an exhaustive study of all JavaScript concepts here—
that’s not the purpose of this book. The purpose of this appendix is to give you the
fundamental JavaScript concepts you need to make the most effective use of jQuery.

 The most important of these concepts is that functions are first-class objects in
JavaScript, which is a result of the way JavaScript defines and deals with functions. In
order to understand what it means for a function to be an object, let alone a first-class
one, we must first make sure that you understand what a JavaScript object is all about.
Let’s dive right in.

1 JavaScript Object fundamentals
The majority of object-oriented (OO) languages define a fundamental Object data
type of some kind from which all other objects are derived. In JavaScript, the funda-
mental Object serves as the basis for all other objects, but that’s where the compari-
son stops. At its basic level, the JavaScript Object has little in common with the
fundamental Object defined by most other OO languages.

 Once created, a JavaScript Object holds no data and exposes little in the way of
semantics. But those limited semantics do give it a great deal of potential. Let’s see
how.

1.1 How objects come to be

A new object in JavaScript can be created in several ways. The first method we want to
introduce is via the new operator paired with the Object constructor. Creating an
object this way is as easy as this:

var shinyAndNew = new Object();

It could be even easier (as you’ll see shortly), but this will do for now.
 This new object contains nothing: no information, no complex semantics, nothing.

It doesn’t get interesting until you start adding things to it—things known as properties.

1.2 Properties of objects

JavaScript objects can contain data and possess methods (well, sort of) that you can
create dynamically as needed. Take a look at the following code fragment:

var ride = new Object();
ride.make = 'Yamaha';
ride.model = 'XT660R';
ride.year = 2014;
ride.purchased = new Date(2015, 4, 10);

Here you create a new Object instance and assign it to a variable named ride. You
then populate this variable with a number of properties of different data types: two
strings, a number, and an instance of an instance of Date.

NOTE In Date months start with 0. January corresponds to 0, February to 1,
March to 2, and so on.
www.EBooksWorld.ir

http://jsbin.com/dumac/edit?html,js,output
http://jsbin.com/dumac/edit?html,js,output

449JavaScript Object fundamentals
You don’t need to declare these properties prior to assigning them; they come into
being merely by the act of your assigning a value to them. That’s mighty powerful and
it gives you a great deal of flexibility. But flexibility always comes at a price!

 For example, let’s say that in subsequent code on your scripted HTML page you
want to change the value of the purchase date:

ride.purchased = new Date(2015, 7, 21);

No problem ... unless you make an inadvertent typo such as

ride.purcahsed = new Date(2015, 7, 21);

There’s no compiler to warn you that you’ve made a mistake; a new property named
purcahsed is cheerfully created on your behalf, leaving you to wonder later why the
new date didn’t take when you reference the correctly spelled property.

 With great power comes great responsibility (where have you heard that before?),
so type carefully!

 From this example, you’ve learned that an instance of the JavaScript Object, which
we’ll refer to as an object from here forward, is a collection of properties. Each of these
properties consists of a name and a value. The name of a property is a string, and the
value can be any JavaScript data type: Number, String, Boolean, Object, and so on.
This means the primary purpose of an Object instance is to serve as a container for a
named collection of other types.

 An object property can be another Object instance, which in turn has its own set
of properties, which can in turn be objects with their own properties, and so on, to any
depth that makes sense for the data that you’re trying to model.

 Let’s say that you add a new property to your ride instance that identifies the
owner of the vehicle. This property is another JavaScript object that contains proper-
ties such as the name and occupation of the owner:

var owner = new Object();
owner.name = 'Spike Spiegel';
owner.occupation = 'bounty hunter';
ride.owner = owner;

To access the nested property, you write the following:

var ownerName = ride.owner.name;

There are no limits to the nesting levels you can employ (except the limits of good
sense). When finished—up to this point—the object hierarchy is as shown in figure 1.

 Note how each value in the figure is a distinct instance of a JavaScript type.

NOTE There’s no need for all the intermediary variables (such as owner) that
we created for illustrative purposes in these code fragments. In a short
while, you’ll see more efficient and compact ways to declare objects and their
properties.
www.EBooksWorld.ir

450 APPENDIX JavaScript that you need to know but might not!
Up to this point, you’ve referenced properties of an object by using the dot (period
character) operator. Now ponder this: what will happen if you have a property named
color.scheme (note the period in the middle of the name)? In this case, the
JavaScript interpreter will try to look up scheme as a nested property of color.

 “Well, just don’t do that!” you say. But what about space characters? What about
other characters that could be mistaken for delimiters rather than part of a name?
And most importantly, what if you don’t even know what the property name is, but you
have it as a value in another variable or as the result of an expression evaluation?

 For all these cases, the dot operator is inadequate, and you must use the more gen-
eral square brackets operator for accessing properties

object[propertyNameExpression]

where propertyNameExpression is a JavaScript expression whose evaluation as a
string forms the name of the property to be referenced. For example, all three of the
following references are equivalent:

ride.make
ride['make']
ride['m' + 'a' + 'k' + 'e']

So is this reference:

var p = 'make';
ride[p];

Using the square brackets operator is the only way to reference properties whose
names don’t form valid JavaScript identifiers, such as this,

ride["a property name that's rather odd!"]

which contains characters not legal for JavaScript identifiers or whose names are the
values of other variables.

Object

model

year

purchased

owner

make

Object

occupation

name

Number 2014

String Yamaha

String XT660R

Date 2015-08-21

String Spike Spiegel

String bounty hunter

Figure 1 The object hierarchy shows that Objects are containers for named references
to other Objects or JavaScript built-in types.
www.EBooksWorld.ir

451JavaScript Object fundamentals
 Building up objects by creating new instances with the new operator and assigning
each property using separate assignment statements can be a tedious affair. In the
next section, we’ll look at a more compact and easy-to-read notation for declaring
objects and their properties.

1.3 Object literals

In the previous section, you created an object that modeled some of the properties of
a motorcycle, assigning it to a variable named ride. To do so, you used two new opera-
tions, an intermediary variable named owner, and a bunch of assignment statements.
This is tedious and error-prone. In addition, it’s difficult to visually grasp the structure
of the object during a quick inspection of the code.

 Luckily, you can use a notation that’s more compact and easier to visually scan.
Consider the following statement:

var ride = {
 make: 'Yamaha',
 model: 'XT660R',
 year: 2014,
 purchased: new Date(2015, 7, 21),
 owner: {
 name: 'Spike Spiegel',
 occupation: 'bounty hunter'
 }
};

Using an object literal, this fragment creates the same ride object that you built up with
assignment statements in the previous section but in a unique, compact statement.
This notation is preferred by most page authors.

 The structure is pretty simple; an object is denoted by a matching pair of braces,
within which properties are listed delimited by commas. Each property is denoted by
listing its name and value separated by a colon character. As you can see by the decla-
ration of the owner property, object declarations can be nested.

 You can also express arrays using the array literal notation, which consists of a
comma-delimited list of elements within square brackets, as in the following:

var someValues = [2, 3, 5, 7, 11, 13, 17];

In the examples presented in this section, object references are frequently stored in
variables or in properties of other objects. Let’s take a look at a special case of the lat-
ter scenario.

1.4 Objects as window properties

Up to this point, you’ve seen two ways to store a reference to a JavaScript object: vari-
ables and properties. These two means of storing references use differing notation, as
shown in the following snippet:

var aVariable = 'This is a text.';
someObject.aProperty = 'This is another text.';
www.EBooksWorld.ir

http://jsbin.com/jurub/1/edit?html,js,output
http://jsbin.com/jurub/1/edit?html,js,output
http://jsbin.com/jurub/1/edit?html,js,output

452 APPENDIX JavaScript that you need to know but might not!
These two statements each assign a string to something: a variable in the first state-
ment and an object property in the second. But are these statements really perform-
ing different operations? As it turns out, they’re not!

 When the var keyword is used at the top level, outside the body of any containing
function, it’s only a programmer-friendly notation for referencing a property of the
predefined JavaScript window object. Any reference created in top-level scope is implic-
itly made on the window instance. This means that all of the following statements, if
made at the top level (that is, outside the scope of a function), are equivalent:

var foo = 'bar';
window.foo = 'bar';
foo = 'bar';

Regardless of which notation is used, a window property named foo is created (if it’s
not already in existence) and assigned the value of bar. This concept might not seem
hard to understand, but the scoping rules get more complex when you delve deeper
into the bodies of functions.

 That pretty much covers things for our overview of the JavaScript Object. These
are the important concepts to take away from this discussion:

 A JavaScript object is an unordered collection of properties.
 Properties consist of a name and a value.
 Objects can be declared using object literals.
 Arrays can be declared using array literals.
 Top-level variables are properties of window.

Now let’s discuss what we meant when we referred to JavaScript functions as first-class
objects.

2 Functions as first-class citizens
In many traditional OO languages, objects can contain data and possess methods. In
these languages, the data and methods are usually distinct concepts; JavaScript walks a
different path.

 Functions in JavaScript are considered objects like any other object type that’s
defined in JavaScript such as Strings, Numbers, or Dates. Like other objects, functions
are defined by a JavaScript constructor—in this case Function—and they can be

 Assigned to variables
 Assigned as a property of an object
 Passed as a parameter
 Returned as a function result
 Created using literals

Because functions are treated in the same way as other objects in the language, we say
that functions are first-class objects.
www.EBooksWorld.ir

453Functions as first-class citizens
 In JavaScript, functions can serve different purposes and can be defined in differ-
ent ways. Let’s discover more.

2.1 Function expressions and function declarations

Although it might seems odd, functions are nothing but values that can be called, and
we’ll prove that this is true shortly. One way of defining a function is called a function
declaration. Consider the following code:

function doSomethingWonderful() {
 alert('Does something wonderful');
}

A function declaration is composed of the keyword function, followed by the name of
the function, followed by its parameters list enclosed in parentheses, followed by the
function body. In the previous snippet, you define a function whose name is doSome-
thingWonderful that has no parameters. When invoked, it executes its body, which in
this case is made of a single call to alert(). It may seem that the function doesn’t
return a value. But in JavaScript if an explicit value isn’t returned, by default a func-
tion returns undefined.

A few moments ago we stated that variables defined at the top level create properties
of the window object. Function objects are no different. If the previous function decla-
ration is declared at the top level, you’ll obtain the creation of a window property with
the same name as the function name. Therefore, the following statements are all
equivalent:

function hello() { alert('Hi there!'); }
hello = function hello() { alert('Hi there!'); }
window.hello = function hello() { alert('Hi there!'); }

In browsers that have implemented partly or in full the specifications of ECMAScript 6
you can access the name of the function through a property of the function itself
called name.

 In JavaScript, functions can be defined as a part of a statement and are therefore
named function expressions. A function expression produces as its value a function
object. Consider the following code:

var myFunc = function() {
 alert('this is a function');
};

Browsers and function names
Browsers that have implemented partly or in full the specifications of ECMAScript 6
expose a property of functions called name that stores the name of the function. You
can find out more about this property at https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Function/name.
www.EBooksWorld.ir

http://benalman.com/news/2010/11/immediately-invoked-function-expression/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name

454 APPENDIX JavaScript that you need to know but might not!

Erro
As you can see, you define a variable called myFunc to which you assign a function.
Because this is a statement, note the semicolon at the end of the statement, after the
closing curly bracket. The function doesn’t have a name (thus its name property will be
an empty string), so you can’t invoke it using its name. But because you’ve assigned it
to a variable, you can execute the function as follows:

myFunc();

This isn’t the only difference between a function declaration and a function expres-
sion. Another important difference is that function declarations are hoisted but func-
tion expressions are not. To understand what this means in practice, consider the
following example:

funcDecl();
funcExpr();

function funcDecl() {
 alert('function declaration');
}

var funcExpr = function() {
 alert('function expression');
};

In this example you define two functions: funcDecl() B and funcExpr() C. But
before they’re actually defined, you try to execute them. The first call (funcDecl();)
succeeds, but the second (funcExpr();) raises an error. The different behavior is
caused by the fact that funcDecl() is hoisted but funcExpr() isn’t.

 In the same way you can assign a function expression to a variable, you can assign it
to a property of an object:

var myObj = {
 bar: function() {}
};

You’ve seen examples of assigning functions to variables and properties, but what
about passing functions as parameters? Let’s take a look at why and how you do that.

2.2 Functions as callbacks

When dealing with events or timers, or when you’re performing Ajax requests, the
nature of the code in a web page is asynchronous. One of the most prevalent concepts
in asynchronous programming is the notion of a callback function.

 Let’s take the example of a timer. You can cause a timer to fire—let’s say in five sec-
onds—by passing the appropriate duration value to the window.setTimeout()
method. But how does that method let you know when the timer has expired so that
you can do whatever it is that you’re waiting around for? It does so by invoking a func-
tion that you supply.

The message is alerted correctly.
r!

Creates a function via
a function declarationB

Creates a function via
a function expressionC
www.EBooksWorld.ir

455Functions as first-class citizens
 Consider the following code:

function hello() { alert('Hi there!'); }
setTimeout(hello, 5000);

You declare a function named hello and set a timer to fire in 5 seconds, expressed as
5000 milliseconds by the second parameter. In the first parameter to the setTime-
out() method, you pass a function reference. Passing a function as a parameter is no
different than passing any other value, just as you passed a number.

 When the timer expires, the hello function is called. Because the setTimeout()
method makes a call back to a function in your own code, that function is termed a
callback function.

 This code example would be considered naive by most advanced JavaScript coders
because the creation of the hello name is unnecessary as you’re using it only once.
Unless the function is to be called elsewhere in the page, there’s no need to create the
window property hello to momentarily store the Function instance to pass it as the
callback parameter.

 The more elegant way to code this fragment is

setTimeout(function() { alert('Hi there!'); }, 5000);

in which you express the function directly in the parameter list (as an inline anonymous
function), and no needless name is generated. You’ll often see this idiom used in
jQuery code when there’s no need for a function instance to be assigned to a top-level
property.

 The functions you’ve created in the examples so far are either top-level functions
(which you know are top-level window properties) or assigned to parameters in a func-
tion call. You can also assign Function instances to properties of objects. Let’s see how.

2.3 What this is all about

OO languages automatically provide a means to reference the current instance of an
object from within a method. In languages like Java and C#, a variable named this
points to that current instance. In JavaScript, a similar concept exists and even uses
the same this keyword, which also provides access to an object associated with a func-
tion. But the JavaScript implementation of this differs from its OO counterparts.

 In class-based OO languages, this generally references the instance of the class for
which the method has been declared. In JavaScript, where functions are first-class
objects that aren’t declared as part of anything, the object referenced by this—
termed the function context—is determined not by how the function is declared but by
how it’s invoked.

 This means that the same function can have different contexts depending on how
it’s called. That may seem freaky at first, but it can be quite useful.

 In the default case, the context (this) of an invocation of the function is the
object whose property contains the reference used to invoke the function. Let’s look
www.EBooksWorld.ir

456 APPENDIX JavaScript that you need to know but might not!
back to the motorcycle example for a demonstration, amending the object creation as
follows (additions are highlighted in bold):

var ride = {
 make: 'Yamaha',
 model: 'XT660R',
 year: 2014,
 purchased: new Date(2015, 7, 21),
 owner: {
 name: 'Spike Spiegel',
 occupation: 'bounty hunter'
 },
 whatAmI: function() {
 return this.year + ' ' + this.make + ' ' + this.model;
 }
};

To your original example code, add a property named whatAmI that references a
Function instance. The new object hierarchy, with the Function instance assigned to
the property named whatAmI, is shown in figure 2.

 When the function is invoked through the property reference, like this,

var bike = ride.whatAmI();

the function context (this) is set to the object instance pointed to by ride. As a
result, the variable bike gets set to the string '2014 Yamaha XT660R' because the func-
tion picks up the properties of the object through which it was invoked via this.

Object

model

year

purchased

whatAml

owner

make

Object

occupation

name

Function

() {
 return this.year + ' ' + this.make + ' ' + this.model;
}

Number 2014

String Yamaha

String XT660R

Date 2015-08-21

String Spike Spiegel

String bounty hunter

Figure 2 This model clearly shows that the function isn’t part of the Object but is only referenced
from the Object property named whatAmI.
www.EBooksWorld.ir

457Functions as first-class citizens
 The same is true of top-level functions. Remember that top-level functions are
properties of window, so their function context, when called as top-level functions, is
the window object.

 Although that may be the usual and implicit behavior, JavaScript gives you the
means to explicitly control what’s used as the function context. You can set the func-
tion context to whatever you want by invoking a function via the Function methods
call() or apply(). Although it seems crazy, as first-class objects, even functions have
methods as defined by the Function constructor.

 The call() method invokes the function specifying as its first parameter the
object to serve as the function context, whereas the remainder of the parameters
become the parameters of the called function—the second parameter to call()
becomes the first argument of the called function and so on. The apply() method
works in a similar fashion except that its second parameter is expected to be an array
of objects that become the arguments to the called function.

 To reinforce the concept, let’s see an example. Consider the code of the following
listing (available in the downloadable code as appendix-a/function.context.html and
as a JS Bin at http://jsbin.com/dumac/edit?html,js,output).

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Function Context Example</title>
 </head>
 <body>
 <script>
 var obj1 = { handle: 'obj1' };
 var obj2 = { handle: 'obj2' };
 var obj3 = { handle: 'obj3' };
 var value = 'test';
 window.handle = 'window';

 function whoAmI(param) {
 return this.handle + ' ' + param;
 }

 obj1.identifyMe = whoAmI;

 alert(whoAmI(value));
 alert(obj1.identifyMe(value));
 alert(whoAmI.call(obj2, value));
 alert(whoAmI.apply(obj3, [value]));
 </script>
 </body>
</html>

Listing 1 Function context value depends on how the function is invoked

Defines three object literals
with the same property name
but different values

B

Defines a function
with one parameter

C

Assigns the function to a
property of the ob1 object

D

Invokes the
whoAmI()

function

E

Invokes the whoAmI()
function using the
reference stored in
obj1.indentifyMe

F

Invokes the
whoAmI()
function using
call()G

H

Invokes the
whoAmI() function

using apply()
www.EBooksWorld.ir

http://jsbin.com/dumac/edit?html,js,output

458 APPENDIX JavaScript that you need to know but might not!
In the code, you define three simple objects, each
with a handle property that makes it easy to identify
the object given a reference B. You also add a handle
property to the window instance so that it’s also easily
identifiable.

 You then define a top-level function that returns
the value of the handle property for whatever object
serves as its function context C and assign the same
function instance to a property of object obj1 named
identifyMe D. You can say that this creates a method
on obj1 named identifyMe, although it’s important
to note that the function is declared independently of
the object.

 Finally, you issue four alerts, each of which uses a
different mechanism to invoke the same function
instance. When loaded into a browser, the sequence
of four alerts is as shown in figure 3.

 This sequence of alerts illustrates the following:

 When the function is called directly as a top-
level function, the function context is the win-
dow instance E.

 When called as a property of an object (obj1 in
this case), the object becomes the function con-
text of the function invocation F. You could
say that the function acts as a method for that
object—as in OO languages. But take care not
to get too blasé about this analogy. You can be
led astray if you’re not careful, as the remain-
der of this example’s results will show.

 Employing the call() method of Function causes the function context to be
set to whatever object is passed as the first parameter to call()—in this case,
obj2 G. In this example, the function acts like a method to obj2, even though
it has no association whatsoever—even as a property—with obj2. It also shows
how parameters can be passed when using call().

 As with call(), using the apply() method of Function sets the function con-
text to whatever object is passed as the first parameter H. The difference
between these two methods becomes significant only when parameters are
passed to the function. In fact, when using apply() all the parameters must be
provided as elements of a single array passed as the second argument.

This example page clearly demonstrates that the function context is determined on a
per-invocation basis and that a single function can be called with any object acting as

Figure 3 The object serving as the
function context changes with the
manner in which the function is
called.
www.EBooksWorld.ir

459Functions as first-class citizens
its context. As a result, it’s probably never correct to say that a function is a method of
an object. It’s much more correct to state the following:

A function func acts as a method of object obj when obj serves as the function
context of the invocation of func.

As a further illustration of this concept, consider the effect of adding the following
statement to your example:

alert(obj1.identifyMe.call(obj3));

Even though you reference the function as a property of obj1, the function context
for this invocation is obj3, further emphasizing that it’s not how a function is declared
but how it’s invoked that determines its function context.

 Now that you understand how functions can act as methods of objects, turn your
attention to another advanced function topic that will play an important role in effec-
tive usage of jQuery: closures.

2.4 Closures

Stated as simply as possible, a closure is a Function instance coupled with the local vari-
ables from its environment that are necessary for its execution. When a function is
declared, it has the ability to reference any variables that are in its scope at the point
of declaration. This is expected and should be no surprise to any developer from any
background. But with closures, these variables are carried along with the function
even after the point of declaration has gone out of scope, closing the declaration.

 The ability for callback functions to reference the local variables in effect when
they were declared is an essential tool for writing effective JavaScript. Using a timer,
let’s look at the illustrative example in the next listing. The code is available in the file
appendix-a/closure.html and also as a JS Bin at http://jsbin.com/jurub/1/edit?html
,js,output.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>Closure Example</title>
 </head>
 <body>
 <div id="display"></div>

 <script src="../js/jquery-1.11.1.min.js"></script>
 <script>
 function timer() {
 var local = 1;
 window.setInterval(
 function() {
 $('#display').append(
 '<div>At ' + new Date() + ' local=' + local + '</div>'

Listing 2 Closures allow access to the scope of a function’s declaration

Defines the element where
the current time is written

B

Initializes the local variable to 1CDefines a
function that is
executed every

two seconds D
www.EBooksWorld.ir

http://jsbin.com/jurub/1/edit?html,js,output
http://jsbin.com/jurub/1/edit?html,js,output

460 APPENDIX JavaScript that you need to know but might not!
);
 local++;
 },
 2000
);
 }

 timer();
 </script>
 </body>
</html>

In this example you create a function called timer() that’s executed after it has been
defined F. In the timer() function you declare a local variable named local C and
assign it a numeric value of 1. You then use the window.setInterval() method to
establish a timer that will fire every two seconds D. As the callback for the timer, you
specify an inline function that references the local variable and shows the current
time and the value of local by appending a div element into an element named dis-
play that’s defined in the page body B. As part of the callback, the local variable’s
value is also incremented by 1 E.

 If you haven’t had any experience with closures, you might think that because the
callback will fire off two seconds after the timer() function has been invoked, the
value of local is undefined during the execution of the callback. But upon loading
the page and letting it run for a short time, you’ll see the display shown in figure 4.

This example works because although it is true that the block in which local is
declared goes out of scope when the ready handler exits, the closure created by the
declaration of the function, which includes local, stays in scope for the lifetime of the
function.

NOTE You might have noted that the closure, as with all closures in
JavaScript, was created implicitly without the need for explicit syntax as is
required in some other languages that support closures. This is a double-
edged sword that makes it easy to create closures (whether you intend to or
not!), but it can make them difficult to spot in the code. Unintended closures
can have unintended consequences. For example, circular references can
lead to memory leaks. A classic example of this is the creation of DOM ele-
ments that refer back to closure variables, preventing those variables from
being reclaimed.

Increments the local
variable by 1E

Executes the timer()
functionF

Figure 4 Closures allow callbacks to
access their environment even if that
environment has gone out of scope.
www.EBooksWorld.ir

461Functions as first-class citizens
Another important feature of closures is that a function context is never included as
part of the closure. For example, the following code won’t execute as you might
expect:

...
this.id = 'someID';
$('*').each(function() {
 alert(this.id);
});

Remember that each function invocation has its own function context so that, in the
preceding code, the function context within the callback function passed to each() is
an element from the jQuery collection (that is an element of the DOM), not the prop-
erty of the outer function set to 'someID'. Each invocation of the callback function
displays an alert box showing the ID of each element in the jQuery collection in turn.

 When access to the object serving as the function context in the outer function is
needed, you can employ a common idiom to create a copy of the this reference in a
local variable that will be included in the closure. Consider the following change to
the example:

this.id = 'someID';
var outer = this;
$('*').each(function() {
 alert(outer.id);
});

The variable outer (most times named that) becomes part of the closure because it
has been referenced inside the callback function and, as such, can be accessed in it.
The variable outer is assigned a reference to whatever is the context outside of the
callback function defined. For example, if the previous code is wrapped inside a func-
tion named foo, the variable outer will be a reference to the foo’s function context. If
the previous code was defined in an HTML page without being wrapped by a function,
the variable outer will be a reference to the window object.

 The changed code now displays an alert showing the string 'someID' as many
times as there are elements in the jQuery collection.

 You’ll find closures indispensable when creating elegant code using jQuery com-
mands that utilize asynchronous callbacks, which is particularly true in the areas of
Ajax requests and event handling.

 Before concluding this appendix, we want to discuss with you one last concept that
we’ve used extensively throughout this book: Immediately-Invoked Function Expres-
sion (IIFE).

2.5 Immediately-Invoked Function Expression

An Immediately-Invoked Function Expression is a JavaScript design pattern that cre-
ates a function expression and then immediately executes the function. This term was
coined by Ben Alman in his article “Immediately-Invoked Function Expression (IIFE)”
(http://benalman.com/news/2010/11/immediately-invoked-function-expression/).
www.EBooksWorld.ir

http://benalman.com/news/2010/11/immediately-invoked-function-expression/

462 APPENDIX JavaScript that you need to know but might not!
Before discussing what the benefits of using an IIFE are, let’s see how you can imple-
ment it:

(function() {
 // The code of the function goes here...
})();

In this code, you create an anonymous function that’s immediately executed thanks to
the () at the end. The function is wrapped inside two parentheses because you need
to tell the parser to expect a function expression and not a function declaration.

 This pattern is useful in several situations. You can use it to create “private” vari-
ables and functions so they won’t be accessible outside the scope of the function. An
additional benefit is that because you can create “private” variables and functions, you
avoid polluting the global namespace.

 When employing an IIFE you can also pass arguments to it in the same way you can
with other functions. For example, you could do something like this:

var i = 10;
(function(index) {
 // The code of the function goes here...
})(i);

In this example you declare a variable called i and then pass it to the IIFE. Inside the
function you can perform any action needed that uses the value of i through the index
parameter.

 Immediately-Invoked Function Expressions are often used when you need to use
variables of the outer scope inside an event handler. Consider the case where a page
has the following three buttons:

<button id="button-1">Button 1</button>
<button id="button-2">Button 2</button>
<button id="button-3">Button 3</button>

What you want to do is to attach a handler to each of them, prompting their index
(1 for button-1, 2 for button-2, and 3 for button-3). A possible implementation
could be as follows:

for (var i = 1; i <= 3; i++) {
 document.getElementById('button-' + i).addEventListener(
 'click',
 function() { alert(i); }
);
}

Unfortunately, this code doesn’t work as expected. Regardless of the button clicked,
the page will always prompt an alert showing the number 3. The reason is that at the
time the callback is executed, the for loop is concluded and the value of the variable
i, accessible via closure, is 3.

 To solve this issue, you can employ an IIFE:
www.EBooksWorld.ir

463Summary
for (var i = 1; i <= 3; i++) {
 (function(index) {
 document.getElementById('button-' + index).addEventListener(
 'click',
 function() { alert(index); });
 })(i);
}

This code creates a new closure for each of the three iterations of the for loop. There-
fore, each function retains its own value of the index parameter, which in turn is set
passing the i variable.

 As you can see, this pattern is extremely useful and we’re sure you’ll adopt it exten-
sively in your code.

3 Summary
JavaScript is a language that’s widely used across the web, but it’s often not deeply used
by many of the page authors writing it. In this appendix, we introduced some aspects
of the language that you must understand to use jQuery effectively.

 If you have an OO background, thinking of an Object instance as an unordered col-
lection of name/value pairs may be a far cry from what you think of as an object, but it’s
an important concept to grasp when writing JavaScript of even moderate complexity.

 Functions in JavaScript are first-class citizens that can be declared and referenced
in a manner similar to the other object types. You can declare them using a function
declaration or a function expression, store them in variables and object properties,
and even pass them to other functions as parameters to serve as callback functions.

 The term function context describes the object that’s referenced by this during the
invocation of a function. Although a function can be made to act like a method of an
object by setting the object as the function context, functions aren’t declared as meth-
ods of any single object. The manner of invocation (possibly explicitly controlled by
the caller) determines the function context of the invocation.

 You also learned how a function declaration and its environment form a closure,
allowing the function, when later invoked, to access those local variables that become
part of the closure.

 Finally, we discussed a JavaScript pattern called IIFE. It enables you to create “pri-
vate” variables and functions and avoid polluting the global namespace. It’s useful
when dealing with an event’s callback, where you may need to create a closure to
ensure using the right value of a variable.

 With these concepts firmly under your belt, you’re ready to face the challenge of
writing effective JavaScript using jQuery on your pages.
www.EBooksWorld.ir

www.EBooksWorld.ir

 index

Symbols

^ (caret character) 34
: (colon) 37, 47
. (dot operator) 450
$() function 17–18, 23–24, 31
[] square brackets 34, 450
* (All selector) 27–29
(ID selector) 30
$ alias 12, 15, 18, 225,

326–327
+ (Adjacent sibling

combinator) 33
> (child combinator) 33
~ (General sibling

combinator) 33

A

accepts option 292
add() method 67
addBack() method 77
addClass() method 68, 76,

101
addEventListener()

method 143
after() method 118, 122
Ajax (Asynchronous JavaScript

and XML)
Ajax events 295–298
$.ajax() utility

function 289–293
$.ajaxPrefilter() utility

function 298–299
$.ajaxTransport() utility

function 299–300

contact form example
accessibility 313
effects and

animation 311–312
field validation 307–309
handler for processing

the request 309–311
HTML markup 304–305
overview 302–304
PHP backend 305–307

creating XHR object
261–263

GET requests
dynamically loading

scripts 281–283
$.get() utility function

278–280
overview 276–278

history of 260–261
loading content using

HTML fragments
271–275

load() method 267–269
serialize() method

269–271
overview 261
POST requests 276–278,

283–284
receiving response 265–266
sending requests 264
setting request

defaults 294–295
tracking progress 265

$.ajax() utility function
289–293, 308

ajaxComplete event 295–296
ajaxError event 295–296, 298

$.ajaxPrefilter() utility
function 298–299

ajaxSend event 295
$.ajaxSetup() utility function

294–295
ajaxStart event 295, 297
ajaxStop event 295–297
ajaxSuccess event 295
$.ajaxTransport() utility

function 299–300
alert() function 230
All selector (*) 27–29
--allow-file-access-from-files

flag 56
altertitle property 406
always() method 381
AMD (asynchronous module

definition) 13, 418,
422

animate() method 206,
208–209, 213

:animated selector 46
animation

changing rate for
226–227

creating custom
drop animation example

210–211
puff animation example

211–212
scale animation example

209–210
disabling 226
easing functions 204–206
Effects Lab Page 198–200
fading elements in and out

200–202
465

www.EBooksWorld.ir

466 INDEX
animation (continued)
queuing

adding functions to
queue 215–216

clearing out unexecuted
queued functions 220

delaying queued
functions 220–221

executing queued
functions 216–219

showing and hiding elements
collapsible module

190–192
gradual animation

effect 193–198
overview 189–190
toggling display state

192–193
simultaneous 213–215
sliding elements up and

down 202–203
stopping 203–204
toggling 312

append() method 116–117
appendTo() method 54, 121
apply() method 332, 457
array literal 451
arrays

filtering 235–237
translating 237–238

assert parameter 400
assertions

deepEqual() method 397
definition 391
equal() method 394–397
notDeepEqual() method

397–398
notEqual() method 396–397
notPropEqual() method

397–398
notStrictEqual() method

396–397
ok() method 397–398
propEqual() method

397–398
strictEqual() method

395–397
throws() method 399–400

Assistive Technologies. See ATs
async option 291
async() method 400, 402
asynchronous code,

testing 400–402
Asynchronous JavaScript and

XML. See Ajax

asynchronous module defini-
tion. See AMD

ATs (Assistive Technologies)
314

attachEvent() method 148
attr() method 83–85, 89
attributes

fetching values 83–84
properties and 80–83
removing 86
selectors for 34–37
setting values 84–86

autostart property 406

B

Backbone.js
advantages of MV*

frameworks 430–432
collection 432–433, 440–441
installing 437–438
model 432, 438–440
router 434–435
Todos manager application

application view 443–446
collection 440–441
HTML markup 436–437
installing Backbone.js

437–438
model 438–440
overview 435–436
Todo model 438–440
Todos collection 440–441
Todos view 441–442

Backbone.localStorage
adapter 436, 438

Basic Event Model 136
BDD (behavior-driven

development) 389
before() method 118, 121
beforeSend option 291, 295
behavior-driven development.

See BDD
blur event 156, 308
body element 7–8
Bower

installing packages 428–429
overview 425–427
removing packages 429
searching packages 427–428
updating packages 429

$.browser property 225
browsers

developer tools 277

DOM Level 0 Event Model
event bubbling 140–142
Event object 139–140
overview 136–139
preventing default actions

142–143
preventing event

propagation 142
DOM Level 2 Event Model

creating event
handlers 143–145

event bubbling 145–148
overview 143

event models overview 136
Internet Explorer Model

148–149
:button selector 42

C

cache option 291
call() method 457
callback hell 358, 361
callback, function as 454–455
cancelBubble property 142
capture phase 145
caret character (^) 34
Cascading Style Sheets. See CSS
CDN (content delivery

network) 11–12
chainability

for plugins 337
testing 408
using with methods 16–17

change event 156
:checkbox selector 43
:checked selector 43
Child filters 39–42
children() method 63–64, 414
Chrome Developer Tools 29,

182
class attribute 100
Class selector 30–31, 414–415
classes, CSS

adding and removing
100–104

css() method 104–107
classList API 100
className property 100
clearInterval() method 349
clearQueue() method 220
CLI (command-line interface)

14, 56, 173, 426
click event 136, 156
click() method 103, 181
www.EBooksWorld.ir

467INDEX
clone() method 128, 176–177,
181

closest() method 64, 66
closures 136, 141, 459–461
collections

creating from DOM element
relationships 62–66

elements in
adding additional

elements 66–69
fetching all elements as

array 60
fetching by index 57–60
finding index of element

60–62
iterating through 233–235
manipulating

adding previous set of
elements 77

comparing contents with
selector 75

excluding elements from
subsets 70–73

transforming set 73–74
traversing elements 74–75
using previous collection

76
Operations Lab Page 55–57
overview 432–433
size of 57

colon (:) 37, 44
command-line interface.

See CLI
CommonJS 362
complete event 296
complete option 291, 295
computed style 106
console.log() method 29, 82
contact form example

accessibility 313
effects and animation

311–312
field validation 307–309
handler for submit requests

309–311
hiding dialog box 311
HTML markup 304–305
overview 302–304
PHP backend 305–307

:contains selector 44
$.contains() utility function

254
content delivery network. See

CDN
Content filters 43–44

contents option 292
contents() method 63–64
contentType option 291
context parameter 17, 49, 54,

414–416
context property 225, 291
converters option 292
createPseudo() function 48
crossDomain option 292
CSRF (cross-site request

forgery) 127
CSS (Cascading Style Sheets)

adding and removing classes
100–104

css() method 104–107
Modernizr and 228
selectors 16

custom animations
drop animation example

210–211
puff animation example

211–212
scale animation example

209–210
custom build of jQuery 14

D

data option 290
data storage, jQuery-managed

91
data() method 92–93, 96, 333
dataFilter option 292
dataType option 290
date formatter example 352
dblclick event 156
deepEqual() method 397–398
default actions, preventing

142–143
default settings for plugins

337–340
Deferred object

always() method 381
$.Deferred() constructor

363–364
determining state of 381–

382
following progress 372–374
notifying about

progress 371–372
overview 362–363
resolving or rejecting 364–365
then() method 377–381
using Promise object 374–37 7

when() method 369–371
define() function 422, 424
delay() method 220
dependency management

installing packages 428–429
overview 425–427
removing packages 429
searching packages 427–428
updating packages 429

dequeue() method 216–219,
221

Descendant selector 50
deserialization 270
destroy() method 336–337
detach() method 126
developer tools 29, 277
dimensions, DOM element

107–112
:disabled selector 43
display property 189
document ready handler 17
DOM (Document Object

Model) 4, 53–55
DOM Level 0 Event Model

event bubbling 140–142
Event object 139–140
overview 136–139
preventing default actions

142–143
preventing event

propagation 142
DOM Level 2 Event Model

creating event handlers
143–145

event bubbling 145–148
overview 143

done() method 365, 367
dot operator 450
drop animation example

210–211
duration parameter 194
DVD disc locator example

adding filters 179–182
controls templates 182–183
displaying results 183–185
element creation by template

replication 176–178
filtering large data sets

174–175
overview 173–174
page markup 178–179
possible improvements for

186
removing filters 183
www.EBooksWorld.ir

468 INDEX
E

each() method 74, 125, 234
$.each() utility function

234–235
easing functions 194, 204–206
Easing plugin 323
ECMAScript 361–362, 418, 453
effects 311–312
Element selector 31–32
elements, DOM

appending to DOM 53–55
cloning 128–129
creating collections from

relationships among
elements 62–66

data storage for 91
fading in and out 200–202
form element values 131
manipulating properties of

88–91
moving 116–122
removing 126–127
replacing content 114–116
replacing element 129–131
showing and hiding

collapsible module
190–192

gradual animation effect
193–198

overview 189–190
toggling display state

192–193
sliding up and down

202–203
styling

adding and removing
classes 100–104

dimensions 107–112
positions and scrolling

112–114
setting individual styles

with css() method
104–107

wrapping and unwrapping
122–124

elements, jQuery collection
adding additional elements

66–69
fetching all elements as array

60
fetching by index 57–60
finding index of element

60–62
email type 304

:empty selector 44
empty() method 127
:enabled selector 43
encodeURIComponent()

method 245, 264, 268
end() method 76
:eq selector 38
eq() method 58
equal() method 394–397
error event 156, 295
error option 291, 295
$.error() utility function 258
eval() function 257
:even selector 38
event delegation 154–155
event module 14
events

browser event models
overview 136

DOM Level 0 Event Model
event bubbling 140–142
Event object 139–140
overview 136–139
preventing default actions

142–143
preventing event

propagation 142
DOM Level 2 Event Model

creating event handlers
143–145

event bubbling 145–148
overview 143

general discussion 134–136
Internet Explorer Model

148–149
jQuery Event Model

attaching event handlers
149–156

creating custom events
168–169

hovering over elements
166–168

jQuery.Event object
159–160

listening for event once
156

namespacing events 169
overview 149
removing event handlers

156–159
shortcut methods 165–166
triggering event handlers

160–164
event.stopPropagation()

method 336

exceptions, throwing 258
expandos 91
expect() method 393, 407
expr attribute 47
extend() method 346
$.extend() utility function

242–244, 334
extending objects 242–244

F

F12 developer tools 29, 277
fadeIn() method 200
fadeOut() method 200
fadeTo() method 201
fadeToggle() method 201
fading elements in and out

200–202
fail() method 366–367
feature detection 228, 262
:file selector 43
filter() method 71–72, 76, 181,

345, 416
filterParam parameter 48
filters

Child filters 39–42
Content filters 43–44
creating custom 46–49
definition 37–38
Form filters 42–43
optimizing performance

416–417
overview 44–46
Position filters 38–39

find() method 63–64
finish() method 204, 310
Firebug plugin 29, 182, 277
:first selector 38
first() method 59
:first-of-type selector 40
$.fn property 330, 332, 334
focus event 156
:focus selector 43
focusin event 156
focusout event 156
forEach() method 233
for...in loop 233
Form filters 42–43
forms

adding effects and animation
311–312

element values 131
validation 307–309
validation, and default

actions 143
www.EBooksWorld.ir

469INDEX
forms (continued)
wrapping label-input

pairs 124–126
function contexts 136
function expressions 453
functions

as callbacks 454–455
closures 459–461
declaring 453–454
IIFE 461
overview 15, 452–453
queuing 221
this keyword 455–459

$.fx.interval property 226
$.fx.off property 226, 312

G

~ (General sibling combinator)
33

GET requests
cascading dropdowns

using 284–289
dynamically loading scripts

281–283
$.get() utility function

278–280
overview 276–278
receiving JSON data

280–281
get() method 58
$.get() utility function 278–280
getAllResponseHeaders()

method 262
getElementById() function 27,

30, 414–415
getElementsByClassName()

function 27, 30, 414
getElementsByTagName()

function 31, 141, 414
$.getJSON() utility function

179, 280–281
getResponseHeader() method

262
$.getScript() utility function

281–283
Git 13, 426
global events 295
global option 291
global variables 179
$.globalEval() utility function

258
grep() method 185
$.grep() utility function

235–236

Grunt 13
:gt selector 38

H

:has selector 44
has() method 73, 254
hasClass() method 104
hasData() method 97–98
:header selector 46
headers option 292
height() method 107–109
:hidden selector 44, 46
hide() method 57, 189–190,

193–194
hidepassed property 406
hiding elements

collapsible module 190–192
gradual animation effect

193–198
overview 189–190
toggling display state

192–193
hierarchy selectors 32–34
hover() method 167
hovering over elements

166–168
html() method 114
HTML5 (Hypertext Markup

Language 5) 100
ID selectors and 30
loading fragments using

Ajax 271–275
Modernizr and 228

I

ID selector 30
idempotent, defined 276
ifModified option 292
IIFE (Immediately-Invoked

Function Expression)
229, 327, 420, 461

IIS (Internet Information
Services) 266

:image selector 43
$.inArray() utility function 239
index

fetching collection element
by 57–60

finding for collection
element 60–62

index() method 60–61
inheritance 242

init() method 333–336
inline anonymous functions

455
innerHeight() method 111
innerWidth() method 111
:input selector 43
insertAfter() method 121
insertBefore() method 121
Internet Explorer 277, 304

compatibility with 5, 9, 27,
101

Event Model for 148–149
Internet Information Services.

See IIS
is() method 75
$.isArray() utility function 248
isDefaultPrevented() method

160
$.isEmptyObject() utility

function 248
$.isFunction() utility function

248
isImmediatePropagation-

Stopped() method
160

isLocal option 292
$.isNumeric() utility function

248
isotope plugin 324
$.isPlainObject() utility

function 248
isPropagationStopped()

method 160
$.isWindow() utility function

249
$.isXMLDoc() utility function

249

J

Jasmine 389
JavaScript Object Notation.

See JSON
jCarousel plugin 324
jQuery 4–6

document ready handler 17
installing

choosing version 9–11
custom builds 14
improving performance

using CDN 11–12
jQuery object 15–17
module structure 13–14
properties 15
www.EBooksWorld.ir

470 INDEX
jQuery (continued)
unobtrusive JavaScript

overview 6–7
script placement 7–8
separating behavior from

structure 7
utility functions 15

jQuery UI 205
jQuery.Color plugin 208
jQuery.deserialize 270
jQuery.fx.interval flag 204
jQuery.fx.off flag 204
JSON (JavaScript Object

Notation)
defined 293
receiving from GET requests

280–281
well-formed 251

json_encode() function 305
JSONP (JSON with padding)

293
jsonp option 292
JSON.parse() function 251
jsonpCallback option 292
jsPerf 415

K

keydown event 156
keypress event 156
keyup event 156

L

:lang selector 46
:last selector 38
last() method 60
:last-child selector 40
:last-of-type selector 40
length property 57, 141
linear easing 194
lines of code. See LoC
load event 156
load() method 267–269, 273–

275, 285
LoC (lines of code) 4
local events 295
:lt selector 38

M

Magnific-Popup plugin 324
$.makeArray() utility function

239–240

map() method 73
$.map() utility function

237–238
match() method 236
$.merge() utility function

241–242
method option 290
methods

chaining 16–17
defined 325

mimeType option 293
minification 10
Mocha 389
Mockjax 402
models

overview 432
Todos manager application

example 438–440
Model-View-Controller pat-

tern. See MVC pattern
Model-View-Presenter pattern.

See MVP pattern
Model-View-ViewModel

pattern. See MVVM
pattern

Modernizr 228
module() method 404
moduleFilter property 406
modules

loading with RequireJS
421–425

Module pattern 420–421
object literals pattern

419–420
overview 418–419
structure of 13–14

Moo Tools 3–4
mousedown event 156
mouseenter event 156, 167
mouseleave event 156, 167
mousemove event 156
mouseout event 156, 167
mouseover event 136, 156, 167
mouseup event 156
Mustache.js 433
MVC (Model-View-Controller)

pattern 430
MVP (Model-View-Presenter)

pattern 431
MVVM (Model-View-View-

Model) pattern 431

N

namespaces 15
for events 169
jQuery/$ 225
for plugins 330–333

naming conventions 325–326
NaN (Not a Number) 238
nested parameters 247
Netscape Event Model 136
next() method 64, 309
nextAll() method 64
nextUntil() method 63, 65
$.noConflict() utility function

228–232, 327, 352
Node.js 3, 13, 426
noglobals flag 403
$.noop() utility function 254
Not a Number. See NaN
:not selector 44, 46
not() method 70
notDeepEqual() method 398
notEqual() method 396–397
notify() method 371
notifyWith() method 371
notPropEqual() method 398
notrycatch flag 403–404
notStrictEqual() method

396–397
npm 13, 320, 426
:nth-* selectors 40

O

obfuscation 10
object literals pattern 419–420
object-oriented languages.

See OO languages
objects

cretaing 448
discovering type for 250–251
extending 242–244
functions as first-class objects

closures 459–461
declaring functions

453–454
functions as callbacks

454–455
IIFE 461
overview 452–453
this keyword 455–459

object literals 451
overview 448
properties of 448–451
testing 248–251
www.EBooksWorld.ir

471INDEX
objects (continued)
window properties as

451–452
:odd selector 38
off() method 157–158
offset() method 112–113
offsetParent() method 65
ok() method 398
on() method 150, 152–153,

182, 327
one() method 156
onload handler 18
:only-child selector 40
:only-of-type selector 40
onreadystatechange event

263–264
ontimeout event 263
OO (object-oriented)

languages 448
opacity

fading elements in and
out 200–202

showing and hiding elements
gradually 193–198

open() method 262, 264
options parameter 328–329,

346–347
originalEvent property 160
outerHeight() method 111
outerWidth() method 112
overrideMimeType() method

262

P

packages, dependency
installing 428–429
removing 429
searching 427–428
updating 429

$.param() utility function
245–247, 268

parameters 327–330
:parent selector 44
parents() method 62, 65
parentsUntil() method 65
parseInt() method 105
parsing functions 251–253
password option 292
:password selector 43
performance

improving using CDN 11–12
selector

avoid overspecifying
selectors 417–418

avoiding Universal selector
414

context parameter caveats
415–416

improving Class selector
414–415

optimizing filters 416–417
pickadate.js 324
placeholder attribute 87–88
plugins

creating
destroy() method 336–337
init() method 333–336
maintaining chainability

337
namespacing 330–333
naming conventions

325–326
overview 325
parameter lists 327–330
providing public access to

default settings
337–340

using $ alias 326–327
custom utility functions

351–352
defined 204
extending jQuery through

320
finding 320–321
overview 319–320
recommended plugins

324–325
slideshow example

creating plugin 344–351
HTML markup for

343–344
overview 340–343

using 321–324
polyfill 228
Position filters 38–39
position, element 112–114
position() method 113
POST requests 276–278,

283–284
$.post() utility function

283–284, 310
prepend() method 118
prependTo() method 121
prev() method 65
prevAll() method 65
preventDefault() method 160,

310
prevUntil() method 65
processData option 292

progress() method 372, 374
progressive enhancement 313
promise() method 375, 382
promises

creating promise object from
jQuery object 382

Deferred object
always() method 381
$.Deferred() constructor

363–364
determining state of

381–382
executing functions

365–368
following progress

372–374
notifying about progress

371–372
overview 362–363
resolving or rejecting

364–365
then() method 377–381
when() method 369–371

overview 359–362
Promise objects 362–363,

374–377
prop() method 88–90
propEqual() method 398
properties

attributes and 80–83
changing animations rate

226–227
disabling animations 226
general discussion 225–226
manipulating for elements

88–91
of objects 448–451
overview 15
$.support property 227–228

Prototype 3–4, 352
$.proxy() utility function

255–257
pseudo-classes 37
puff animation example

211–212

Q

querySelectorAll() method 35,
416–417

queue() method 216
queuing animations

adding functions to
queue 215–216
www.EBooksWorld.ir

472 INDEX
queuing animations (continued)
clearing out unexecuted

queued functions 220
delaying queued functions

220–221
executing queued functions

216–219
QUnit

asynchronous code testing
400–402

configuration 405–407
grouping tests in modules

404–405
noglobals flag 403
notrycatch flag 403–404
overview 389–392
synchronous code testing

392–394
test suite example 407
using assertions

deepEqual() method
397–398

equal() method 394–397
notDeepEqual()

method 397–398
notEqual() method

396–397
notPropEqual()

method 397–398
notStrictEqual() method

396–397
ok() method 397–398
propEqual() method

397–398
strictEqual() method

395–397
throws() method 399–400

R

:radio selector 43
ready event 156
ready state handler 264
ready() method 17–19
readyState property 263, 265
registry, plugin 320
regular expressions 236
reject() method 365
rejectWith() method 365
remove() method 126
removeAttribute() function 86
removeClass() method 101
removeData() method 96–97,

336
removeProp() method 90

render() method 433
reorder property 406
replaceAll() method 130
replaceWith() method

129–130
requests, Ajax

custom
$.ajax() utility function

289–293
$.ajaxPrefilter() utility

function 298–299
$ajaxTransport() utility

function 299–300
handling Ajax events

295–298
setting request defaults

294–295
GET requests

cascading dropdowns
using 284–289

dynamically loading
scripts 281–283

$.get() utility function
278–280

overview 276–278
receiving JSON data

280–281
POST requests 276–278,

283–284
sending 264
tracking progress 265

required attribute 36, 83, 304,
314

requireExpects property 406
RequireJS 421–425
:reset selector 43
resize event 156
resolve() method 364, 374
resolveWith() method 364
response property 263
responses, Ajax

loading content using
HTML fragments 271–275
load() method 267–269
overview 266–267
serialize() method

269–271
receiving 265–266

responseText property 263,
265, 268

responseType property 263
responseXML property 263,

265, 268
:root selector 46
routers 434–435

S

scale animation example
209–210

script elements 8
scriptCharset option 292
scripts, loading dynamically

281–283
scroll event 156
scrolling elements 112–114
scrollLeft() method 113
scrolltop property 406
scrollTop() method 113
Search Engine Result Pages.

See SERPs
select event 156
:selected selector 43
selector property 225
selectors

All selector (*) 27–29
attribute selectors 34–37
Class selector 30–31
defined 5
Element selector 31–32
filters

Child filters 39–42
Content filters 43–44
creating custom 46–49
defined 37–38
Form filters 42–43
overview 44–46
Position filters 38–39

hierarchy selectors 32–34
ID selector 30
improving performance

using context 49–50
overview 26–27
performance

avoid overspecifying
selectors 417–418

avoiding Universal selector
414

context parameter caveats
415

improving Class selector
414–415

optimizing filters 416–417
Selectors Lab Page 24–26

Selenium 389
send() method 262, 264
serialize() method 132,

269–271, 285, 309
serializeArray() method 132,

271
serializing parameter

values 244–247
www.EBooksWorld.ir

473INDEX
SERPs (Search Engine Result
Pages) 313

server-side validation 302
setInterval() method 349, 374
setRequestHeader() method

262
showing elements

collapsible module 190–192
gradual animation effect

193–198
overview 189–190
toggling display state

192–193
siblings() method 65
single responsibility principle.

See SRP
single-page applications.

See SPAs
Sinon.js 402
size, collection 57
Sizzle 417
slice() method 72, 417
slick plugin 323
slideDown() method 202, 312
slideshow example

creating plugin 344–351
HTML markup for 343–344
overview 340–343

slideToggle() method 203
slideUp() method 202, 311
sliding elements up and down

202–203
sort() method 240
SPAs (single-page applications)

advantages of MV*
frameworks 430–432

collection 432–433, 440–441
defined 3
model 432, 438–440
overview 429–430
router 434–435
Todos manager application

application view 443–446
collection 440–441
HTML markup 436–437
installing Backbone.js

437–438
model 438–440
overview 435–436
Todo model 438–440
Todos collection 440–441
Todos view 441–442

square brackets 34, 450
srcElement property 139

SRP (single responsibility
principle) 388

state() method 381
status property 263, 265
statusCode option 292
statusText property 263
stop() method 203
stopImmediatePropagation()

method 160
stopPropagation() method

142, 160–161
strictEqual() method 395–397
String.prototype.trim()

function 232
strings trimming 232–233
styling elements

adding and removing classes
100–104

dimensions 107–112
general discussion 100
positions and scrolling

112–114
setting individual styles with

css() method
104–107

submit event 156
:submit selector 43
success option 291, 295
$.support property 227–228
swing easing 194
synchronous code, testing

392–394

T

target property 87, 139
:target selector 46
TDD (test-driven development)

388
template() method 433
templates 433
test() method 392
test-driven development.

See TDD
testId property 406
testing

asynchronous code 400–402
grouping tests in modules

404–405
importance of 386–387
noglobals flag 403
notrycatch flag 403–404
objects 248–251
QUnit

configuration 405–407
overview 389–392

synchronous code 392–394
test suite example 407
unit testing

frameworks for 388–389
importance of 387–388

using assertions
deepEqual() method

397–398
equal() method 394–397
notDeepEqual() method

397–398
notEqual() method

396–397
notPropEqual() method

397–398
notStrictEqual() method

396–397
ok() method 397–398
propEqual() method

397–398
strictEqual() method

395–397
throws() method 399–400

testing objects 248–251
testTimeout property 406
:text selector 43
text() method 115, 122, 309
then() method 360, 362,

377–381
this keyword 66, 337, 349,

455–459
throwing exceptions 258,

399–400
timeout option 291
timeout property 263
toArray() method 60, 74
Todos manager application

application view 443–446
collection 440–441
HTML markup 436–437
installing Backbone.js

437–438
model 438–440
overview 435–436
Todo model 438–440
Todos collection 440–441
Todos view 441–442

toggle() method 192–193, 196
toggleClass() method 102–103
Tomcat 266
traditional option 293
trigger() method 160–161
triggerHandler() method

162–163, 348
$.trim() utility function 232
www.EBooksWorld.ir

474 INDEX
trimming strings 232–233
truthy values 234
$.type() utility function 250
typeahead.js 324

U

Underscore.js 433, 437
Unheap 321
$.unique() utility function

240–241
unit testing

asynchronous code 400–402
frameworks for 388–389
grouping tests in modules

404–405
importance of 387–388
noglobals flag 403
notrycatch flag 403–404
QUnit

configuration 405–407
overview 389–392

synchronous code 392–394
test suite example 407
using assertions

deepEqual() method
397–398

equal() method 394–397
notDeepEqual()

method 397–398
notEqual() method

396–397
notPropEqual() method

397–398
notStrictEqual() method

396–397
ok() method 397–398
propEqual() method

397–398
strictEqual() method

395–397
throws() method 399–400

Universal selector 414
unload event 156

unobtrusive JavaScript
overview 6–7
script placement 7–8
separating behavior from

structure 7
unwrapping elements 122–124
upload property 263
url option 290
urlConfig property 406
useCapture parameter 146
username option 292
utility functions

custom 351–352
defined 325
discovering type for values

250–251
doing nothing 254
evaluating expressions

257–258
extending objects 242–244
filtering arrays 235–237
iterating through collections

233–235
overview 15
parsing functions 251–253
prebinding function contexts

255–257
serializing parameter values

244–247
testing for containment

254–255
testing objects 248–251
throwing exceptions 258
translating arrays 237–238
trimming strings 232–233
using noConflict() function

with other libraries
228–232

V

val() method 131–133
validation

server-side vs. JavaScript 302

using Ajax 307–309
var keyword 452
variables, global 179
velocity.js 324
views

overview 433–434
Todos manager application

example 441–442
:visible selector 44, 46

W

W3C (World Wide Web
Consortium) 27

Web Storage API 436
when() method 369–371
width() method 107–109
window object 452
window.alert() method 29, 82
window.navigator.userAgent

property 391
withCredentials property 263
World Wide Web Consortium.

See W3C
wrapping elements

overview 122–124
wrapping label-input pairs of

form 124–126

X

XHR object, creating 261–263
xhr option 292
xhrFields option 292
XMLHTTP ActiveX control

261
XMLHttpRequest 260–261

Y

YUI Test 389
www.EBooksWorld.ir

Bear Bibeault ● Yehuda Katz ● Aurelio De Rosa

T
hanks to jQuery, no one remembers the bad old days
when programmers manually managed browser inconsis-
tencies, CSS selectors support, and DOM navigation, and

when every animation was a frustrating exercise in raw Java-
Script. The elegant, intuitive jQuery library beautifully man-
ages these concerns, and jQuery 3 adds even more features to
make your life as a web developer smooth and productive.

jQuery in Action, Third Edition, is a fast-paced guide to jQuery,
focused on the tasks you’ll face in nearly any web dev project.
In it, you’ll learn how to traverse the DOM, handle events,
perform animations, write jQuery plugins, perform Ajax
requests, and even unit test your code. Its unique Lab Pages
anchor each concept in real-world code. This expanded
Third Edition adds new chapters that teach you how to
interact with other tools and frameworks and build modern
single-page web applications.

What’s Inside
● Updated for jQuery 3
● DOM manipulation and event handling
● Animations and effects
● Advanced topics including Unit Testing and Promises
● Practical examples and labs

Readers are assumed to have only beginning-level JavaScript
knowledge.

Bear Bibeault is coauthor of Secrets of the JavaScript Ninja,
Ajax in Practice, and Prototype and Scriptaculous in Action.
Yehuda Katz is an early contributor to jQuery and cocreator
of Ember.js. Aurelio De Rosa is a full-stack web developer and
a member of the jQuery content team.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/jquery-in-action-third-edition

$44.99 / Can $51.99 [INCLUDING eBOOK]

jQuery IN ACTION Third Edition

WEB DEVELOPMENT

M A N N I N G

“Does a great job of
showing how all the parts

of jQuery fi t together
and demonstrates

important concepts.”
—From the Foreword by
 Dave Methvin, President

 jQuery Foundation

“The best-thought-out and
researched piece of literature

on the jQuery library.”—From the Foreword by
John Resig, Creator of jQuery

“For three editions now,
this is the only jQuery

book I recommend
 to my clients, period.”

—Christopher Haupt
 Mobirobo Inc.

SEE INSERT

www.EBooksWorld.ir

	jQuery
	brief contents
	contents
	foreword to the third edition
	foreword to the first edition
	preface
	acknowledgments
	about this book
	Roadmap
	Source code conventions and downloads
	Software requirements
	Author Online
	About the cover illustration

	about the authors
	Part 1 Starting with jQuery
	1 Introducing jQuery
	1.1 Write less, do more
	1.2 Unobtrusive JavaScript
	1.2.1 Separating behavior from structure
	1.2.2 Segregating the script

	1.3 Installing jQuery
	1.3.1 Choosing the right version
	1.3.2 Improving performances using a CDN

	1.4 How jQuery is structured
	1.4.1 Save space creating your own custom build

	1.5 jQuery fundamentals
	1.5.1 Properties, utilities, and methods
	1.5.2 The jQuery object
	1.5.3 The document ready handler

	1.6 Summary

	Part 2 Core jQuery
	2 Selecting elements
	2.1 Selecting elements for manipulation
	2.2 Basic selectors
	2.2.1 The All (or Universal) selector
	2.2.2 The ID selector
	2.2.3 The Class selector
	2.2.4 The Element selector

	2.3 Retrieving elements by their hierarchy
	2.4 Selecting elements using attributes
	2.5 Introducing filters
	2.5.1 Position filters
	2.5.2 Child filters
	2.5.3 Form filters
	2.5.4 Content filters
	2.5.5 Other filters
	2.5.6 How to create custom filters

	2.6 Enhancing performances using context
	2.7 Testing your skills with some exercises
	2.7.1 Exercises
	2.7.2 Solutions

	2.8 Summary

	3 Operating on a jQuery collection
	3.1 Generating new HTML
	3.2 Managing the jQuery collection
	3.2.1 Determining the size of a set
	3.2.2 Obtaining elements from a set
	3.2.3 Getting sets using relationships
	3.2.4 Slicing and dicing a set
	3.2.5 Even more ways to use a set

	3.3 Summary

	4 Working with properties, attributes, and data
	4.1 Defining element properties and attributes
	4.2 Working with attributes
	4.2.1 Fetching attribute values
	4.2.2 Setting attribute values
	4.2.3 Removing attributes
	4.2.4 Fun with attributes

	4.3 Manipulating element properties
	4.4 Storing custom data on elements
	4.5 Summary

	5 Bringing pages to life with jQuery
	5.1 Changing element styling
	5.1.1 Adding and removing class names
	5.1.2 Getting and setting styles

	5.2 Setting element content
	5.2.1 Replacing HTML or text content
	5.2.2 Moving elements
	5.2.3 Wrapping and unwrapping elements
	5.2.4 Removing elements
	5.2.5 Cloning elements
	5.2.6 Replacing elements

	5.3 Dealing with form element values
	5.4 Summary

	6 Events are where it happens!
	6.1 Understanding the browser event models
	6.1.1 The DOM Level 0 Event Model
	6.1.2 The DOM Level 2 Event Model
	6.1.3 The Internet Explorer Model

	6.2 The jQuery Event Model
	6.2.1 Attaching event handlers with jQuery
	6.2.2 Removing event handlers
	6.2.3 Inspecting the Event instance
	6.2.4 Triggering event handlers
	6.2.5 Shortcut methods
	6.2.6 How to create custom events
	6.2.7 Namespacing events

	6.3 Summary

	7 Demo: DVD discs locator
	7.1 Putting events (and more) to work
	7.1.1 Filtering large data sets
	7.1.2 Element creation by template replication
	7.1.3 Setting up the mainline markup
	7.1.4 Adding new filters
	7.1.5 Adding the controls templates
	7.1.6 Removing unwanted filters and other tasks
	7.1.7 Showing the results
	7.1.8 There’s always room for improvement

	7.2 Summary

	8 Energizing pages with animations and effects
	8.1 Showing and hiding elements
	8.1.1 Implementing a collapsible “module”
	8.1.2 Toggling the display state of elements

	8.2 Animating the display state of elements
	8.2.1 Showing and hiding elements gradually
	8.2.2 Introducing the jQuery Effects Lab Page
	8.2.3 Fading elements into and out of existence
	8.2.4 Sliding elements up and down
	8.2.5 Stopping animations

	8.3 Adding more easing functions to jQuery
	8.4 Creating custom animations
	8.4.1 A custom scale animation
	8.4.2 A custom drop animation
	8.4.3 A custom puff animation

	8.5 Animations and queuing
	8.5.1 Simultaneous animations
	8.5.2 Queuing functions for execution
	8.5.3 Inserting functions into the effects queue

	8.6 Summary

	9 Beyond the DOM with jQuery utility functions
	9.1 Using the jQuery properties
	9.1.1 Disabling animations
	9.1.2 Changing the animations rate
	9.1.3 The $.support property

	9.2 Using other libraries with jQuery
	9.3 Manipulating JavaScript objects and collections
	9.3.1 Trimming strings
	9.3.2 Iterating through properties and collections
	9.3.3 Filtering arrays
	9.3.4 Translating arrays
	9.3.5 More fun with JavaScript arrays
	9.3.6 Extending objects
	9.3.7 Serializing parameter values
	9.3.8 Testing objects
	9.3.9 Parsing functions

	9.4 Miscellaneous utility functions
	9.4.1 Doing nothing
	9.4.2 Testing for containment
	9.4.3 Prebinding function contexts
	9.4.4 Evaluating expressions
	9.4.5 Throwing exceptions

	9.5 Summary

	10 Talk to the server with Ajax
	10.1 Brushing up on Ajax
	10.1.1 Creating an XHR instance
	10.1.2 Initiating the request
	10.1.3 Keeping track of progress
	10.1.4 Getting the response

	10.2 Loading content into elements
	10.2.1 Loading content with jQuery
	10.2.2 Loading dynamic HTML fragments

	10.3 Making GET and POST requests
	10.3.1 Getting data with GET
	10.3.2 Getting JSON data
	10.3.3 Dynamically loading script
	10.3.4 Making POST requests
	10.3.5 Implementing cascading dropdowns

	10.4 Taking full control of an Ajax request
	10.4.1 Making Ajax requests with all the trimmings
	10.4.2 Setting request defaults
	10.4.3 Handling Ajax events
	10.4.4 Advanced Ajax utility functions

	10.5 Summary

	11 Demo: an Ajax-powered contact form
	11.1 The features of the project
	11.2 Creating the markup
	11.3 Implementing the PHP backend
	11.4 Field validation using Ajax
	11.5 Even more fun with Ajax
	11.5.1 Hiding the dialog box

	11.6 Improving the user experience using effects
	11.6.1 Toggling the effects

	11.7 A note on accessibility
	11.8 Summary

	Part 3 Advanced topics
	12 When jQuery is not enough... plugins to the rescue!
	12.1 Why extend jQuery?
	12.2 Where to find plugins
	12.2.1 How to use a (well-written) plugin
	12.2.2 Great plugins for your projects

	12.3 The jQuery plugin authoring guidelines
	12.3.1 File- and function-naming conventions
	12.3.2 Beware the $
	12.3.3 Taming complex parameter lists
	12.3.4 Keep one namespace
	12.3.5 Namespacing events and data
	12.3.6 Maintaining chainability
	12.3.7 Provide public access to default settings

	12.4 Demo: creating a slideshow as a jQuery plugin
	12.4.1 Setting up the markup
	12.4.2 Developing Jqia Photomatic

	12.5 Writing custom utility functions
	12.5.1 Writing a date formatter

	12.6 Summary

	13 Avoiding the callback hell with Deferred
	13.1 Introduction to promises
	13.2 The Deferred and Promise objects
	13.3 The Deferred methods
	13.3.1 Resolving or rejecting a Deferred
	13.3.2 Execute functions upon resolution or rejection
	13.3.3 The when() method
	13.3.4 Notifying about the progress of a Deferred
	13.3.5 Follow the progress
	13.3.6 Using the Promise object
	13.3.7 Take it short with then()
	13.3.8 Always execute a handler
	13.3.9 Determine the state of a Deferred

	13.4 Promisifying all the things
	13.5 Summary

	14 Unit testing with QUnit
	14.1 Why is testing important?
	14.1.1 Why unit testing?
	14.1.2 Frameworks for unit testing JavaScript

	14.2 Getting started with QUnit
	14.3 Creating tests for synchronous code
	14.4 Testing your code using assertions
	14.4.1 equal(), strictEqual(), notEqual(), and notStrictEqual()
	14.4.2 The other assertion methods
	14.4.3 The throws() assertion method

	14.5 How to test asynchronous tasks
	14.6 noglobals and notrycatch
	14.7 Group your tests in modules
	14.8 Configuring QUnit
	14.9 An example test suite
	14.10 Summary

	15 How jQuery fits into large projects
	15.1 Improving the performance of your selectors
	15.1.1 Avoiding the Universal selector
	15.1.2 Improving the Class selector
	15.1.3 Don’t abuse the context parameter
	15.1.4 Optimizing filters
	15.1.5 Don’t overspecify selectors

	15.2 Organizing your code into modules
	15.2.1 The object literals pattern
	15.2.2 The Module pattern

	15.3 Loading modules with RequireJS
	15.3.1 Getting started with RequireJS
	15.3.2 Using RequireJS with jQuery

	15.4 Managing dependencies with Bower
	15.4.1 Getting started with Bower
	15.4.2 Searching a package
	15.4.3 Installing, updating, and deleting packages

	15.5 Creating single-page applications with Backbone.js
	15.5.1 Why use an MV* framework?
	15.5.2 Starting with Backbone.js
	15.5.3 Creating a Todos manager application using Backbone.js

	15.6 Summary
	15.7 The end

	Appendix JavaScript that you need to know but might not!
	1 JavaScript Object fundamentals
	1.1 How objects come to be
	1.2 Properties of objects
	1.3 Object literals
	1.4 Objects as window properties

	2 Functions as first-class citizens
	2.1 Function expressions and function declarations
	2.2 Functions as callbacks
	2.3 What this is all about
	2.4 Closures
	2.5 Immediately-Invoked Function Expression

	3 Summary

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

