Creating native cross-platform mobile apps

Jim Bennett
Foreworn By James Montemaqno

/I/l MANNING

www.EBooksWorld.ir

A sneak peak...

By building Xamarin apps using the MVVM design pattern, you too can reuse
80% of your code across iOS and Android.

i0S ' Android
1
C# , C#
App !
layer
C#
1
i
Ul layer C# | C# View
L
! Binding k
Ul logic o View
layer model
Business c# Model
logic layer

Picking the right thread...

We all hate mobile apps that are unresponsive. Here’s how to decide what to run
on a background thread.

www.EBooksWorld.ir

. Does this use Does this take Ul thread or
Does this No No No
involve the Ul? " external resources ——| more than 100 ms ——» background
’ (DB, web)? on a slow device? thread
Yes Yes Yes
Background Background
Ul thread thread thread

Xamanrin in Action

CREATING NATIVE CROSS-PLATFORM
MOBILE APPS

JIM BENNETT

MANNING
SHELTER ISLAND

www.EBooksWorld.ir

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road

PO Box 761

Shelter Island, NY 11964

Email: orders@manning.com

© 2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/I/I Manning Publications Co. Development editor: Elesha Hyde
20 Baldwin Road Review editor: Aleksandar Dragosavljevic
PO Box 761 Technical development editor: Gary Park
Shelter Island, NY 11964 Project editor: Kevin Sullivan

Copyeditor: Andy Carroll
Proofreader: Corbin Collins
Technical proofreader: Tomasz Cielecki
Typesetter: Dottie Marsico
Mlustrator: April Milne
Cover designer: Marija Tudor

ISBN 9781617294389
Printed in the United States of America
12345678910 -EBM - 2322 21 20 19 18

www.EBooksWorld.ir

http://www.manning.com

To the amazing Nat and Evie,
Jor your unwavering love and support whilst I was glued to my laptop.

www.EBooksWorld.ir

www.EBooksWorld.ir

brief contents

PART 1 GETTING STARTED WITH XAMARIN ...eeeeeeseescensocscescossoescenss 1

1 = Introducing native cross-platform applications with Xamarin 3

2 = Hello MVVM—creating a simple cross-platform
app using MVVM 25

3 = MVVM—the model-view-view model design pattern 50

4 = Hello again, MVVM—understanding and enhancing our simple
MVVM app 81

5 = What are we (a)waiting for? An introduction to multithreading
for Xamarin apps 113

PART 2 BUILDING APPS .eteeceeeceescescesscescessosssessossossssssssssessosssssssss 153

6 = Designing MVVM cross-platform apps 155
7 = Building cross-platform models 195
8 = Building cross-platform view models 241
9 = Building simple Android views 288
10 = Building more advanced Android views 319
11 = Building simple iOS views 345
12 = Building more advanced iOS views 385

www.EBooksWorld.ir

vi BRIEF CONTENTS

PART 3 FROM WORKING CODE TO THE STORE.....cccccueteceecacrecanses

13 = Running mobile apps on physical devices 411

14 = Testing mobile apps using Xamarin UlTest 436

15 = Using App Center to build, test, and monitor apps 467
16 = Deploying apps to beta testers and the stores 505

www.EBooksWorld.ir

contents

Sforeword xv
preface xvii
acknowledgments — xix
about this book xxi

about the cover illustration xxvi

PART 1 GETTING STARTED WITH XAMARIN ..ccceeeeecccensseee 1

Introducing native cross-platform applications with Xamarin 3
1.1 Introducing Xamarin mobile apps 4

Vendor-specific native apps 5 = Cordova 6 = Xamarin native
apps 7 = Xamarin.Forms 10 = Xamarin developer tools 12
Mobile-optimized development lifecycle 13

1.2 Creating production-quality mobile apps 14

Design 15 = Develop 17 = Test 18 = Build 21
Distribute 22 = Monitor 22

1.3 Rinse and repeat... 23

Hello MVVM—creating a simple cross-platform
app using MVVM 25
2.1 What are Ul design patterns? 26

2.2 MVVM—the design pattern for Xamarin apps 27
2.3 Whatis cross-platform code? 31
NET Standard class libraries 32

www.EBooksWorld.ir

viii CONTENTS

2.4 Getting started—creating your first solution 34

Requirements—what hardware or software do you need for each
mobile platform? 35 = Creating the solution 36 = What have we
Just created? 42 » Building and running the apps 43

2.5 Is this really a cross-platform app? 47

MVVM—the model-view-view model design pattern 50
3.1 The model layer 52
3.2 The view-model layer 53
State and behavior 54 = Value conversion 65 = Testability 67
3.3 The view layer 68
3.4 Binding 69

Source and target 69 = Binding mode 70 = Binding is not
cross-platform 70 = Value converters 72

3.5 The application layer 74
3.6 Navigation 75
View-first 76 = View-model—first 76 = Which one to use? 78

3.7 Revisiting the square-root calculator app 78

Hello again, MVVM—understanding and
enhancing our simple MVVM app 81
4.1 A deeper dive into our Hello Cross-Platform World
app 82
The model 82 = The view model 82 = The application
layer 83 = The view 84
4.2 Expanding on our Hello World app 92

Using .NET Standard plugins to access device-specific code 93
Installing the Xamarin text-to-speech plugin 95 = Adding the
cross-platform code 97 = Inversion of control 98 = Wiring up the
Android Ul 105 = Wiring up the i:OS Ul 106

What are we (a)waiting for? An introduction to multithreading
for Xamarin apps 113
5.1 Why do we need multithreaded code? 114
5.2 What are threads? 117

Buying coffee 117 = So what is a thread? 120 = A quick
roundup 121

www.EBooksWorld.ir

5.3

5.4

5.5

5.6

5.7

5.8
5.9

CONTENTS ix

UI thread and background threads 122
The Ul thread 122 = Background threads 124
Using tasks to run code in the background 125
Task and Task<T> 126 = Chaining tasks 128
Task results 130

Polling to see if the task has finished 130 = Waiting on the
task 130 = Getting the result from a continuation 131
Task exceptions 132

Updating the UI 133
The Ul task scheduler 135 = Using the power of MVVM 137
Async and await 139

The async and await keywords 139 = Writing your own async
methods 143 = Async commands 147

Make your app feel responsive 148
It’s time to start building things 150

PART 2 BUILDING APPS..cteeceesceescessccsccesccssscssoesssssccsse 1D

Designing MVVM cross-platform apps 155

6.1
6.2

6.3

6.4
6.5

6.6

6.7

Introduction to designing a cross-platform app 156
Designing the Ul and user flows 159

SquareRt—a simple app for calculating square roots 159
Countr—an app for counting multiple things 161
Defining user flows and Uls 162

Architecting the app 164

Which layer? 164 = Which thread? 167 = Mapping code to
layers and threads 169

Creating the solutions 171
Application properties 172

Android manifest 172 = iOS info.plist 175
SDK versions 177

Android SDK versions and the SDK manager 179
10S SDK versions 185

Linking 187

Linking the apps 188 = Linker options 189 = Stopping the
linker from doing too much 191

www.EBooksWorld.ir

CONTENTS

Building cross-platform models 195
7.1 Building simple model layers 196
7.2 Unit testing 199

Creating a unit-test project 201 = Creating your first
test 205 = What do these tests tell you? 210

7.3 Building more complex model layers 211

Services, data models, and repositories 211 = Accessing
databases 214 = Adding a service layer 221
Accessing web services 228

7.4 A quickrecap 238

Building cross-platform view models 241

8.1 The view-model layer 241

The view-model layer inside SquareRt 242 = The view-model
layer inside Countr 244

8.2 Adding state and behavior to SquareRt 248

State inside SquareRt 248 = Exposing behavior via
property changes 257

8.3 Adding state and behavior to Countr 260

Single-value properties 260 = Collections 262
Exposing behavior using commands 267
Messaging 272 = Navigation 278

8.4 A quick roundup 285

Building simple Android views 288
9.1 Building Android Uls 289
Material design 289 = Layout files 291 = Resources 292
Resource locations 292 = Editing layout files 293 = Layout
inflation 298
9.2 Creating the layout file for the SquareRt UI 299

Adding a toolbar 299 = Adding an image 304 = Adding an
EditText control 307 = Adding a result TextView control 312

9.3 Building the SquareRt view 313

What is an activity? 313 = The activity lifecycle 314
Creating an activily for the view 315 = Running the app 317

www.EBooksWorld.ir

CONTENTS xi

Building more advanced Android views 319

10.1 Building the UI for Countr 320
Creating the UI for the master view 320 = Recycler views 322
Creating the UI for the recycler view items 323 = Floating action
buttons 326 = Creating the Ul for the detail view 327
Menu items 328

10.2 Building the Countr activities 328
Setting up master recycler views 330 = The detail view 332
Running the app 334

10.3 App icons and launch screens 336
App icons 336 = Launch screens 338

Building simple 10S views 345
11.1 Building iOS Uls 346

10S human interface guidelines 346 = Storyboards 348
Controls 350 = Different screen resolutions 351 = Auto layout
with constraints 353 = Image resources and asset catalogs 357
A quick recap 359

11.2 Creating the SquareRt storyboard 360

Adding our first view controller 361 = Adding an image 363
Adding a text field 368 = Adding the result label 371
Seeing the layout on different devices 371 = Size classes 372
A quick recap 376

11.3 Building the SquareRt view 376

What is a view controller? 377 = View lifecycle 377 = Creating
the view controller 378 = Wiring up controls to the view
controller 379 = Binding the view controller 381 = Another
quick recap 382 = Running the app 382

Building more advanced 10S views 385

12.1 Building the UI and view controllers for Countr 385

Creating the UI for the master view 386 = Navigation bars and
buttons 393 = Creating the Ul for the detail view 395
A quick recap 397 = Running the app 398

12.2 App icons and launch screens 399
App icons 399 = Launch screens 402

12.3 Making the apps production-ready 406

www.EBooksWorld.ir

xii CONTENTS

PART 3 FROM WORKING CODE TO THE STORE409

Running mobile apps on physical devices 411

13.1 Running Android apps on a real device 412

13.2 Signing Android apps for publishing 415
Setting the package name 415 = Keystores 416
Creating keystores and signing builds 416

13.3 Running iOS apps on a real device 420
What is a provisioning profile? 420 = Bundle identifiers 421
Creating a dummy app in Xcode 421 = Running your app on
a physical device 424

13.4 Creating iOS provisioning profiles 424

Certificates 425 = App IDs 429 = Devices 429
Provisioning profiles 432 = Running your app using the
new provisioning profile 433 = Troubleshooting 434

Testing mobile apps using Xamarin UlTest 436

14.1 Introduction to Ul testing 436

Writing UI tests using Xamarin UlTest 437 = Setting up your

app for Ul testing 439 = Running the auto-generated tests 443
14.2 Writing tests 448

The visual tree. 449 = The REPL 450 = Identifying

controls 452 = Tapping the Add button 454 = Entering

text 455 = Finding controls based on their text 456

Assertions 457 = Proving your test by breaking things 460
14.3 Testing incrementing a counter 462
14.4 The app interface and app queries 463

The IApp interface 464 = Queries 465

Using App Center to build, test, and monitor apps 467

15.1 Introducing Visual Studio App Center 468
Apps 469 = Users and organizations 470 = API 470
CLI 471 = Getting help 471
15.2 Setting up builds 471
Creating your first App Center app 472 = Configuring the
Android build 473 = Configuring the iOS build 476
15.3 Testing your apps using Test Cloud 479

What is Test Cloud? 479 = Preparing your apps to be
lested = 479 = Creating a test run configuration 481

www.EBooksWorld.ir

CONTENTS

Running lests from the command line 484
Viewing the test resulls on App Center 487

15.4 Analytics and crash reporting 491

Adding the App Center SDKs 491 = Understanding
your audience 493 = Adding event tracking 497
Crash reporting 500

Deploying apps to beta testers and the stores 505
16.1 Distributing Android apps to beta testers 506
Enabling app distribution 506 = Auto updates 511
16.2 Publishing Android apps on the Google Play store

Setting wp your account 514 = Creating your app 514
Alternative stores 522

16.3 Distributing iOS apps to beta testers 523
Enabling app distribution 523 = Auto updates 527
16.4 Publishing iOS apps on the Apple App store 530
Provisioning your app for publishing 530 = Setting up
your app 530
appendix A UI flows and threads for SquareRt and Countr 543
appendix B Using MVVM Light instead of MvvmCross 548
index 565

www.EBooksWorld.ir

514

xiii

www.EBooksWorld.ir

Joreword

When Jim told me he was writing a book on Xamarin that was focusing on architec-
ture, design, testing, and best practices, I could not have been more excited. I knew
he was the perfect author for this style of book. The very first time I interacted with
Jim, we were both creating C# bindings around Bluetooth beacon libraries for iOS
and Android. I knew right away we would become great friends, and I'm glad he’s
joined Microsoft as one of our Developer Advocates to continue all of the great work
he was doing in the community.

Xamarin in Action is a resource that I wish I'd had by my side when I was starting
native cross-platform mobile development with Xamarin. This book walks you
through the key fundamentals of what Xamarin is and how the technology works in
Visual Studio, but it also guides you through best practices on building production-
quality mobile applications. From design to architecture to deployment, by the end of
this book you’ll have a full grasp of mobile development with Xamarin and you’ll
surely have fallen in love with it just as much as I have.

When Jim asked me if I would write a foreword for his book, and I started to read
the chapters, it brought me back to when I discovered Xamarin for the first time. This
may be where you are right now, getting ready to start your mobile development
career. I could think of no better way to introduce Xamarin in Action than by sharing
my Xamarin journey with you.

I can vividly remember the moment that made me want to become a mobile devel-
oper, changing my life forever. It was the fall of 2010, and I was attending my first
developer conference, the Professional Developers Conference in Redmond, Wash-
ington, at Microsoft headquarters. While there, I was introduced to Azure, the future
of cloud computing, and was handed my first smartphone. This tiny supercomputer

XV

www.EBooksWorld.ir

https://forums.manning.com/forums/xamarin-in-action

xXvi

FOREWORD

not only fit into my pocket, but also enabled me to craft full-blown applications in C#
from Visual Studio that I could ship to people around the globe. It blew my mind. In
that instant, I knew I was done writing printer software and needed to move to Seattle
to be closer to the action.

Before I knew it, I'd accepted a job at a small startup, moved my life across the
country, and started my role as the sole mobile developer. On my first day, I was tasked
with creating native iOS, Android, and Windows applications in only two months. I
remember immediately freezing up, as I tried to figure out what I'd gotten myself
into, and how I was going to accomplish this as a C# developer who didn’t know
Objective-C or Java. I knew I would have to find a cross-platform framework if I was
going to be successful, and that it would need to integrate into my existing develop-
ment workflow and tools and, of course, be powered by C#. This was when I discov-
ered the Xamarin platform. I didn’t waste any time in downloading the tools and
started crafting my first native iOS and Android apps in C# and Visual Studio!

From my very first File > New experience, I was in love with Xamarin. It gave me
everything I could ask for in a platform, including native performance, access to every
single native API in C#, and a full native user interface that I could craft right from
Visual Studio. Xamarin truly made building cross-platform native apps fast, easy, and
fun, and I never looked back. After successfully shipping those initial apps in just a few
months (and several more over the next few years), I was so in love with Xamarin that
I accepted a job with the company as a developer advocate, so I could focus all my
energy on helping developers around the world transform their careers with the
power of Xamarin.

It’s not hyperbole when I say that I absolutely love this technology and know that it
can transform your business to be more productive and agile when crafting mobile appli-
cations. It even has the power to change your entire career. I'm living proof.

JAMES MONTEMAGNO

Principal Program Manager,
Mobile Developer Tools, Microsoft

www.EBooksWorld.ir

preface

I've been involved in technology most of my life, and every year is more exciting for a
technologist than the last. Innovations keep coming faster and faster, making it some-
times hard (and always expensive) to keep up. One of the most exciting innovations
of the last decade has been the rise of the smartphone. The technology world
changed the day Steve Jobs announced the iPhone, and it has been going from
strength to strength ever since. I've been an avid iPhone user from the start, and I
even wrote a couple of apps using Objective-C during the iPhone’s early years. The
biggest thing I learned from that experience was that writing mobile apps is cool, but
using Objective-C is painful.

Fast-forward a few years, and I was a bored C# developer. I'd been building trading
systems for years, desktop apps designed to help other people make a lot of money
with unexciting technology, and I needed a change. At the start of my career I was pas-
sionate about coding, writing code in my spare time and devouring books and train-
ing courses. After a number of years in finance, that passion was dying. I looked
around for something to fire it back up, and I found the answer—Xamarin.

I'd spent years learning C#, and with Xamarin I could use those skills to build
mobile apps for both iOS and Android. No longer would I have to write Objective-C
code for iOS and Java code for Android. The world of mobile development had been
opened up to developers like me using C#, a language I not only was very comfortable
with, but also actively enjoyed using. I decided that Xamarin was the technology for
me, bought myself a license, signed up for Xamarin University, quit my job, and spent
four months in a co-working space learning Xamarin. I was hooked, and since then I
haven’t looked back. I've been so passionate about the technology that I wanted to tell
the world how easy it is to build cross-platform mobile apps.

xvii

www.EBooksWorld.ir

Xviii

PREFACE

One question that kept coming up in the community was, “How do I build a
production-quality app?” There are many great guides on how to use the iOS and
Android SDKs, but no end-to-end documentation on how to go from an idea to a
working, tested, shipped app—documentation that takes advantage of design patterns
like MVVM not only to build testable code, but also to take advantage of Xamarin’s
most powerful capability: the ability to share large portions of your code between plat-
forms. That was the inspiration for this book. Xamarin is a better way to write, test,
monitor, and deploy mobile apps, and this book aims to show you how.

www.EBooksWorld.ir

acknowledgments

This book has involved a huge amount of work over the past year and a bit. But in
spite of the countless hours I put in, it would never have happened without a lot of
hard work from some amazing people. This book isn’t the creation of a great writer;
instead, it’s the result of an enthusiastic developer standing on the shoulders of giants,
and it is these giants to whom I owe a huge amount of thanks.

First, I’d like to thank the team at Xamarin for creating a product that has excited
me beyond any technology that I've worked with before—especially Miguel de Icaza,
Nat Friedman, and Joseph Hill for founding such an awesome company to create an
awesome product; James Montemagno for kick-starting my involvement with the Xam-
arin community by inspiring me to write and speak; Jayme Singleton for her great
work building the Xamarin community and supporting all its members; and Mikayla
Hutchinson for always being happy to help no matter what dumb questions I ask her.

On the community side, I'd like to thank the Xamarin MVP community, past and
present, for welcoming me to the fold, being on hand to answer questions, and sup-
porting my writing, with special thanks to Dave Evans for giving me my first chance to
speak at a meetup—a defining moment in my community involvement. Part of what
has made this book so easy to write is the amazing framework that is MvvmCross, so I'd
like to also thank the MvvmCross team for their hard work and support, especially
Martijn van Dijk.

This book wouldn’t have been one-tenth as good as it is without the constant sup-
port, feedback, and teaching of my development editor at Manning Publications, Ele-
sha Hyde. The techniques you've taught me have made me a better communicator,
writer, and mentor, and I've been incredibly appreciative of your guidance every time
there was a bump in the road. I hope I've done you proud.

www.EBooksWorld.ir

ACKNOWLEDGMENTS

I'd also like to thank the reviewers who took time to read the manuscript at various
stages in its development: Andreas Berggren, Davide Fiorentino lo Regio, Dennis Sell-
inger, Eric Sweigart, Gareth van der Berg, Jason Smith, Jesse Liberty, Karthikeyarajan
Rajendran, Krishna Chaitanya Anipindi, Lokeshwar Reddy Vangala, Mario Solomou,
Michael Lund, Narasimha Baliga, Patrick Regan, Philip Taffet, Prabhuti Prakash, Ric-
cardo Moschetti, Richard Lebel, Stefan Hellweger, Steve Atchue, Thomas Overby
Hansen, and Zorodzayi Mukuya. This book is much better because of your feedback.
I’d especially like to thank Gary Park and Tomasz Cielecki (another member of the
great MvvmCross team) for their thorough technical review and their constant feed-
back.

Part of this book was written while fueled up on coffee and pancakes, so I'd like to
thank Sarah and the team at Soulshine in Browns Bay, New Zealand, for fueling my
writing every Saturday morning. The majority of this book was written while working
for a small but incredible company in New Zealand called EROAD, and I would love
to thank them for supporting my efforts, especially Jared Langguth for giving me a
chance to write Xamarin apps all day, every day, and Sam Williams for continuously
showing me the world of development from a different perspective.

Finally, there’s no way this book could have happened without the love and sup-
port of my family. My parents first got me into programming at an early age (even
helping copy out ZX Spectrum source code listings from books and magazines), and
they’ve always inspired me to do my best at everything I do and to always do what I
love. Thank you both for being there for me my entire life. My biggest thanks have to
go to my wife, Nat, and my daughter, Evie. Nat—thank you for being by my side as I
followed my passions wherever in the world they took us, and for supporting such a
huge personal project. Evie—thank you for being excited that Daddy was teaching
people to write apps for iPads. I hope one day you find something that excites and
drives you the way Xamarin mobile development has me. I love you both.

All the good parts of this book are thanks to these amazing people. All the mis-
takes are mine and mine alone.

www.EBooksWorld.ir

about this book

Xamarin in Action has been written to help you build production-quality mobile apps—
five-star apps that are well architected, well tested, and deployed to the store with ana-
lytics and crash monitoring. This book covers the journey from idea to delivery, ensur-
ing that you build your apps the right way. It doesn’t try to replicate information that’s
easily available online in API docs; instead, it focuses on the concepts of a well-built
cross-platform Xamarin app, bringing together all the information you need without
bogging you down.

Who should read this book

Xamarin in Action is for developers who want to build cross-platform mobile apps using
C#, either because it’s a language they know, or because they want to take advantage
of the cross-platform capabilities of Xamarin. This book assumes a small amount of C#
knowledge, but all C# developers from beginner to advanced will be able to use it to
learn how to build mobile apps. Even if you’re an experienced native iOS or Android
app developer using Objective-C or Java, this book will help you easily transition to
building Xamarin apps. The underlying architecture of a Xamarin app is very differ-
ent from a native app, and so are the technologies and tools available. This book will
help teach you how to build apps using a cross-platform architecture and the tooling
inside Visual Studio.

How this book is organized

This book is split into three parts covering 16 chapters. Part 1 covers the architectural
concepts behind a well-written cross-platform Xamarin app, with a Hello World exam-
ple app to get you started:

xXxXi

www.EBooksWorld.ir

xxii

ABOUT THIS BOOK

Chapter 1 discusses Xamarin and the benefits of building Xamarin mobile
apps. It also looks at the development lifecycle, covering all the steps in build-
ing production-quality mobile apps.

Chapter 2 starts by looking at MVVM (model-view—view model), the design pat-
tern for building good-quality, testable, cross-platform apps, and then looks at
the structure of a Xamarin app. It then covers creating a basic Hello World
cross-platform mobile app.

Chapter 3 dives into MVVM in more detail, looking at the different layers from
model, through view model, to view. It then covers the application layer and
navigation patterns.

Chapter 4 revisits the example Hello World app from chapter 2, diving deeper
into how the MVVM design pattern was used to build the app. It then looks at
expanding the app using cross-platform Xamarin plugins.

Chapter 5 is all about multithreading, covering the threading considerations
involved when building mobile apps and introducing async and await, a feature
of C# that makes it easy to build clean and easy-to-read multithreaded code.

Part 2 builds on this architecture and shows you how to build cross-platform apps
starting with the cross-platform code and moving on to platform-specific UI code.
You’ll take a couple of examples from the design stage through to fully working iOS
and Android apps:

Chapter 6 introduces the two example apps that will be built throughout the
rest of part 2. It looks at how to design an app, considering what code goes in
what layer in the MVVM design pattern. Finally, it covers creating solutions for
the example apps and looks at the project and application properties for a
Xamarin mobile app.

Chapter 7 focuses on the model layer, including building simple models, build-
ing more complex model layers with services and repositories, and accessing
SQLite databases and web services. It also introduces unit testing, showing how
easy it is to unit-test well-structured code.

Chapter 8 moves up a layer and covers view models. It considers how state and
behavior are represented, covering properties, commands, and value conver-
sion. It also shows how to test UI logic using unit testing.

Chapter 9 covers the view and application layers and starts the process of build-
ing the Android version of one of the example apps. It covers Android resource
files, layouts, UI controls, and activities.

Chapter 10 focuses on the second of the example Android apps, covering recy-
cler views for showing lists of data and multiscreen navigation. It then shows
how to add polish to an app by creating app icons and splash screens.

Chapter 11 moves from Android to iOS, working on the application and view
layers of the first example app, covering view controllers, UI controls, story-
boards, and auto layout and constraints.

www.EBooksWorld.ir

ABOUT THIS BOOK xxiii

Chapter 12 covers how to build the second example iOS app, looking at table
views and multiscreen navigation. It then covers app icons and launch screens.

Part 3 covers making a working app production-ready and shipping it to users:

Chapter 13 looks at how to run apps on real devices, including setting up
Android devices for developers, configuring iOS devices, and generating iOS
provisioning profiles.

Chapter 14 covers Ul testing, the ability to write and run automated tests that
interact with your app the way a real person would.

Chapter 15 introduces Visual Studio App Center, showing how it can be used to
build your apps, run Ul tests against devices in the cloud, and set up your apps
to track usage information and crashes.

Chapter 16 covers the final stage in an app’s journey: delivery to users. It looks
at using App Center to provide beta test builds to selected users and then shows
how to finally publish apps to the Google Play store and Apple App Store.

This book is sequential, with later chapters building on concepts explained in the pre-
vious chapters. It takes you on a journey from idea, through architectural concepts, to
building up each layer, and finally to testing and publishing your app. You’ll find it
easier to read the first two parts from start to finish, rather than dipping in and out of
different chapters. Part 3 can be read out of order, depending on your needs.

About the code

This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. In some cases, the original source
code has been reformatted; I've added line breaks and reworked indentation to
accommodate the available page space in the book. In rare cases, even this wasn’t
enough, and listings include line-continuation markers . Additionally, comments in
the source code have often been removed from the listings when the code is described
in the text. Code annotations accompany many of the listings, highlighting important
concepts.

Source code is available for all chapters in this book, with the exception of chap-
ters 1 and 3. Each chapter has one or more solutions, showing the example app or
apps discussed in that chapter, with all the source for the chapter fully implemented
and working. For example, chapter 7 has two apps with model layers that can be tested
using unit tests, but not a runnable app. By chapter 9, the first example app will run
and be fully working on Android.

All the source code has been tested using Visual Studio 2017 both on Windows
(with the Xamarin workload installed) and Mac based on the 15.4 release published
in October 2017. You’ll need to ensure that you have the Android SDK v7.1 or later
installed. (The latest one is installed by default, but if you installed a long time ago,

www.EBooksWorld.ir

XXiv

ABOUT THIS BOOK

you may need to update your SDK.) You’ll also need Xcode 9 or later installed on your
Mac for iOS builds.

The source code for this book is available for download from the publisher’s web-
site at https://www.manning.com/books/xamarin-in-action.

Software and hardware requirements

The most basic requirement for building Xamarin apps is a computer running Visual
Studio. Windows users will need Visual Studio 2017 with the Xamarin workload
installed. When you install V§2017 with the Xamarin workload, everything you need
should be installed for you, although it’s always worth ensuring you have updated to
the latest version of Visual Studio and updated your Android SDK to the latest stable
version.

Mac users will need the latest version of Visual Studio for Mac installed. The installer
should install and configure everything you need, with one exception—Xcode. You'll
need to install Xcode from the Mac App Store. It’s also worth ensuring everything is up
to date, with the latest stable versions of VS for Mac, the Android SDK, and Xcode
installed.

If you want to build iOS apps from a PC, you’ll need access to a Mac with Visual
Studio for Mac installed, either on your network or via a cloud service such as Macin-
Cloud.

To publish to the stores, you’ll need developer accounts with both Google Play and
Apple. These aren’t free. Currently, the Google Play developer account is a one-time
fee of $25, and the Apple developer program is $99 per year. You’ll be able to run
your code on Android emulators and iOS simulators as you develop, but it’s always
worth having real hardware to test on, especially when you prepare to release to the
stores.

Online resources
If you need additional help:

The forums at https://forums.xamarin.com are a great place to ask questions.
There is a vibrant Xamarin community Slack team that you can join at
https://xamarinchat.herokuapp.com/, full of Xamarin developers and support
engineers.

As always, Stack Overflow (https://stackoverflow.com/) has the answers to most
things you’ll want to know, and lots of top-notch Xamarin developers are on
hand to answer any additional questions you may have.

Book forum

Purchase of Xamarin in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical ques-
tions, and receive help from the author and from other users. To access the forum, go
to https://forums.manning.com/forums/xamarin-in-action. You can also learn more

www.EBooksWorld.ir

https://www.manning.com/books/xamarin-in-action
https://forums.xamarin.com
https://xamarinchat.herokuapp.com/
https://xamarinchat.herokuapp.com/
https://forums.manning.com/forums/xamarin-in-action

ABOUT THIS BOOK XXV

about Manning’s forums and the rules of conduct at https://forums.manning
.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

About the author

JIM BENNETT is a Senior Cloud Developer Advocate at Microsoft, specializing in cloud-
connected Xamarin apps. He has decades of experience building desktop and mobile
apps, mainly using C# and other Microsoft technologies. For the past four years, he
has been heavily involved in developing cross-platform mobile apps using Xamarin,
both at work and as personal projects. He’s a regular speaker on mobile development
at meetups and conferences, contributes to open source, and blogs about and evange-
lizes Xamarin whenever he can. He’s a former Xamarin and Microsoft MVP, he’s pas-
sionate about sharing knowledge and helping others to learn, and when he’s not
playing with his young daughter, he’s happy to spend hours discussing mobile devel-
opment over Thai food and good beer or whisky.

www.EBooksWorld.ir

https://forums.manning.com/forums/about
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

about the cover illustration

The illustration on the cover of Xamarin in Action bears the caption “Bostandji bachi.”
The literal translation is “chief gardener,” but the Bostandjis of the Turkish sultan had
powers and responsibilities ranging far beyond the sultan’s gardens to his palaces and
supervising the police of the capital. The illustration is taken from a collection of cos-
tumes of the Ottoman Empire published on January 1, 1802, by William Miller of Old
Bond Street, London. The title page is missing from the collection, and we’ve so far
been unable to track it down. The book’s table of contents identifies the figures in
both English and French, and each illustration also bears the names of two artists who
worked on it, both of whom would no doubt be surprised to find their art gracing the
front cover of a computer programming book 200 years later.

The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for the
day. The Manning editor didn’t have on his person the substantial amount of cash that
was required for the purchase, and a credit card and check were both politely turned
down. With the seller flying back to Ankara that evening, the situation seemed hopeless.
What was the solution? It turned out to be nothing more than an old-fashioned verbal
agreement sealed with a handshake. The seller proposed that the money be transferred
to him by wire, and the editor walked out with the bank information on a piece of paper
and the portfolio of images under his arm. Needless to say, we transferred the funds the
next day, and we remain grateful and impressed by this unknown person’s trust in one of
us. It recalls something that might have happened a long time ago.

The pictures from the Ottoman collection, like the other illustrations that appear
on Manning’s covers, bring to life the richness and variety of dress customs of two

XXVi

www.EBooksWorld.ir

ABOUT THE COVER ILLUSTRATION xXxXvil

centuries ago. They recall the sense of isolation and distance of that period—and of
every other historic period except our own hyperkinetic present. Dress codes have
changed since then certainly, and the diversity by region, so rich at the time, has faded
away. It’s now often hard to tell the inhabitant of one continent from that of another.
Perhaps, viewed optimistically, we’ve traded a cultural and visual diversity for a more
varied personal life. Or a more varied and interesting intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of the
computer business with book covers based on the rich diversity of regional life as it
was two centuries ago, brought back to life by the pictures from this collection.

www.EBooksWorld.ir

www.EBooksWorld.ir

Part 1

Getting started
with Xamarin

Tle traditional way to build a mobile app is to write it twice: once in Objec-
tive-C or Swift for i0S, and then again in Java for Android. This is a huge waste of
time, duplicating code across two languages. Luckily some of the most innovative
engineers in the world (according to Time magazine) have a solution—Xamarin.

Xamarin is a platform from Microsoft that allows you to build and ship iOS
and Android apps using .NET. It’s also part of a thriving mobile ecosystem con-
taining everything from mobile-specific cloud resources from Microsoft, DevOps
tools, and a huge community of open source software. At its most basic, it’s a way
to use the same language and technology across iOS and Android, allowing you
to reuse large amounts of code and third-party libraries across two very different
mobile platforms. The best practices around Xamarin are focused on keeping
this amount of code-sharing as large as possible.

This first part of the book covers the architectural concepts behind a well-
written cross-platform Xamarin app, focusing on the incredibly popular MVVM
design pattern. A good architecture will help you reuse the most code possible,
so it’s worth investing the time to learn these concepts, avoiding wasting time
writing swathes of code twice. Patterns such as MVVM allow you to test your code
faster and easier using unit tests, catching bugs earlier in the development cycle
and reducing the time manually testing (and bug fixing) further down the devel-
opment cycle. These are the foundations you’ll need to build production-quality
mobile apps.

www.EBooksWorld.ir

PART 1 Getting started with Xamarin

Chapter 1 starts by discussing Xamarin and the benefits of building Xamarin
mobile apps. It also looks at the development lifecycle, covering all the steps in build-
ing production-quality mobile apps.

Chapter 2 looks at the MVVM design pattern as a way to increase your code reuse,
and to build a well-architected, testable app. Then it covers the creation of a Hello
World app that uses a popular MVVM framework.

Chapter 3 dives into MVVM in more detail, looking at the different layers from
model, through view model, to view. It then covers the application layer and naviga-
tion patterns.

Chapter 4 revisits the example Hello World app from chapter 2, diving deeper into
how the MVVM design pattern was used to build the app. It then looks at expanding
the app, using cross-platform Xamarin plugins.

Chapter 5 is all about multithreading, covering the threading considerations
involved in building mobile apps. It also introduces async and await, a feature of C#
that makes it very easy to build clean and easy-to-read multithreaded code.

www.EBooksWorld.ir

Introducing
native cross-plaiform
applications with Xamarin

This chapter covers

= What a Xamarin app is
= The mobile-optimized development lifecycle
= Building production-ready cross-platform apps

Back in 2000 Microsoft announced a new software framework called .NET, along
with a new programming language called C#. Not long after this, a company called
Ximian (founded by Miguel de Icaza and Nat Friedman) started working on Mono,
a free implementation of the .NET framework and the C# compiler that could run
on Linux.

Fast forward 16 years, and Nat Friedman is standing on stage at the Xamarin
Evolve conference giving the keynote talk—physically in front of sixteen hundred
mobile developers and virtually in front of tens of thousands more. He’s speaking
about how Xamarin enables a mobile-optimized development lifecycle. Xamarin
(the company that grew out of the ashes of Ximian and that provides tools and
technology to build cross-platform mobile apps) had just been bought by Microsoft

www.EBooksWorld.ir

11

CHAPTER 1 Introducing native cross-platform applications with Xamarin

for a rumored half a billion U.S. dollars, and had become a key part of Microsoft’s
“mobile first, cloud first” strategy.

Xamarin is now a well-known term among the mobile developer community, and
it’s starting to be well known in other Microsoft-based developer circles. But what do
we mean when we talk about Xamarin mobile apps, and what does Xamarin give us
above and beyond other tools?

Introducing Xamarin mobile apps

To really see the benefits of Xamarin mobile apps, we first need to look at how apps
are built using vendor-provided development environments, or other cross-platform
tools like Cordova, and compare them to what Xamarin offers. We can do this by look-
ing at two main types of developers—an indie developer working on an app in their
spare time, and a corporate development team building an app for their customers.
We’ll start by considering what their differing needs are in terms of platform support,
and then we’ll compare the possible options.

Our example indie developer has come up with the idea of the millennium for a
killer app, FlappyFoo, that they want to sell to consumers on an app store. Our exam-
ple large corporation, FooCorp, wants to build a DailyFoo app to help their customers.

Figure 1.1 outlines the four different mobile development platforms you could
choose from:

Vendor-specific apps using the development environments from Apple and
Google

Cordova

Xamarin native using Xamarin.iOS and Xamarin.Android

Xamarin.Forms

Vendor-specific apps Cordova apps Xamarin apps Xamarin.Forms apps
i0S E Android i0S i Android i0S i Android i0S Android
1 1 1
Application | Objective-C |. Java Provided by |1 | Provided by ct || c# c# c#
layer Swift |i| Kotlin framework i framework i
' = i
Objective-C |, Java H
Ullayer swit |!| Kotlin E N
1 1
E HTML/CSS/JavaScript C#
Business | Objective-C |! Java C#
logic layer Swift H Kotlin

Figure 1.1 A comparison of the different mobile-development platforms

www.EBooksWorld.ir

111

Introducing Xamarin mobile apps 5

This diagram shows the programming languages used and where code can be shared
for each layer of the app—from the application layer (the thin wrapper around the
rest of the app that makes it into something that can be run on each platform), down
through the UI layer to the business logic layer. The boxes are not to scale—they’re
just a representation of the layers. Your app could be heavy on UI but light on logic, so
the UI layer would be bigger, or vice versa. Let’s look at each of these in more detail.

Vendor-specific native apps

Each OS comes with a different set of APIs, a different paradigm for building the user
interface, a different way of handling user interactions, and, most frustratingly, a dif-
ferent programming language (or choice of languages) for you to use. If you want to
build an app for Apple’s iOS-based devices such as iPhones and iPads, you need to
program in either Objective-C or Swift. For Android phones and tablets, you need to
program in Java (with Kotlin support coming soon).

For each platform you’ll end up building the entire app from the user interface
layer right down to any in-app business logic all in the vendor’s preferred language, as
shown in figure 1.2.

i0S ! Android
Application | Objective-C | Java
layer Swift 1 Kotlin
Ullaver | Obiective-Ci[" Java
Y Swit [!| Kotiin
Business | Objective-C E Java . .
logic layer Swift ' Kotlin Figure 1.2 Vendor-specific apps use
! the same language for all layers but
E different languages on each platform

For our indie developer, this is a big problem. For FlappyFoo to be a success, it will
need maximum reach, and this means both iOS and Android versions. To achieve
this, the indie developer will have to learn two programming languages, and there’s
more to learn than just the language syntax—they’ll have to learn different tools, dif-
ferent ways of getting access to third-party code, the different words developers use to
express each concept, and the different design patterns that make up standard apps.
This is a big task.

Even if the indie developer is a polyglot and is happy in multiple environments,
there’s still the issue of time. They’ll have to code the same app twice, implementing
the same logic in different languages. Time to market is key, and if the developer hits
only one platform to start with, there’s nothing to stop copycats from flooding the
other platform quickly. FlappyFoo may dominate the iOS app store but could lose seri-
ous revenue to FlappyBar from another developer on Android.

www.EBooksWorld.ir

1.1.2

CHAPTER 1 Introducing native cross-platform applications with Xamarin

For our corporate team, the biggest issue is cost. To reach multiple platforms usu-
ally means one team per platform with the associated developer and organizational
costs. This can be especially problematic if you consider the difficulties in finding, hir-
ing, and retaining good developers. Ideally you want to be able to release simultane-
ously on all platforms, and to replicate each new feature to both platforms and release
them simultaneously. This is hard if you’ve managed to employ five Android develop-
ers but only two iOS developers (a common scenario as it’s much easier to find Java
developers in the corporate environment to help with Android versions than it is to
find Objective-C or Swift developers).

Thinking of the corporation’s customers who use DailyFoo every day to track their
Foo, the last thing we want is for them to change platform, find out that the new plat-
form’s version is missing a killer feature from DailyFoo, and jump ship to MyBar from
BarCorp.

It’s not all bad, though. The one thing you can always be sure of when writing an
app using the vendor-provided tools is that you’re always building a truly native appli-
cation that will be as high performance as possible and that supports everything the
OS and devices have to offer. Whenever an OS update is released, the tooling is always
updated to match, giving you access to all the newest features that your users will want
to have. This is an important consideration, as app users are fickle. They’ll quickly
drop an app for a competitor if it’s not up to scratch, it’s slow, clunky, or just not well
integrated into their device.

Cordova
As already mentioned, using multiple languages i0s | Android
. - 1
and development.to.ols isa headache. Or-le. popu Application | Provided by ||| Provided by
lar way around this is using Cordova. This is a set layer framework |i| framework
of tools that allows you to create web applications
using HTML, JavaScript, and CSS to build a Ul layer
mobile website, which is then wrapped in an app ————| —
and packaged up for each platform, as shown in HTML/CSS/JavaScript
ﬁgure 1.8 Business
o . . logic layer
This has the big upside of a common lan-

guage and development environment—one tool-
set for the indie developer to learn, or one team Figyre 1.3 Cordova apps:
in a corporate environment. The downsides, HTML/CSS/JavaScript for the Ul and
though, can seriously outweigh this upside. First, ~Pusiness logic wrapped into an app by

R . . s . the Cordova framework.
you aren’t creating a native app—you’re creating
a web app. This means that the widgets you see in
the user interface are HTML widgets styled to look like native components. This might
fool your users now, but if an OS update changes the style, your apps won’t keep up
without a rebuild and will look out of date. Second, the OS and device-specific features
that are available to the native developer won’t be available to a Cordova developer.

www.EBooksWorld.ir

113

Introducing Xamarin mobile apps 7

The tooling does its best to provide some lowest-common-denominator plugins to
allow hardware and OS access, but these are written with the aim of being cross-
platform, so they only support the features common to both platforms. They’re also
later to market. If the vendor releases a new feature you want to take advantage of,
you’ll have to wait for the Cordova plugin to be created to support it, and this may
never happen.

Thinking of our indie developer, if they use Cordova to build FlappyFoo, it could
easily run slowly, especially on older devices. This can lead to a swath of one-star
reviews, a lack of sales, and the developer going hungry. Cordova apps also run in a
browser, so they’re limited by the speed and feature set of that browser—newer ver-
sions of the OS might have a fully featured, fast browser but older versions might be
lacking. This can lead to different capabilities or different levels of performance on
the same device but with different OS versions—something that’s very hard to test on
the hugely fragmented ecosystem of Android.

For our corporate development team building DailyFoo, an app that’s slow or that
looks out of date once an OS update comes out can create a negative image of the
FooCorp brand. If the MyBar app from the rival BarCorp supports 3D touch on iOS,
and DailyFoo doesn’t due to a lack of support from Cordova plugins, our fickle cus-
tomers might easily be tempted to switch.

Xamarin native apps

In my mind, Xamarin is the clear winner because it i0s | Android
. . 1
combines the best of both the previous methods. i aion o | e

Fundamentally, Xamarin provides a set of .NET layer :
wrappers around the native OS APIs based on !
. . 1
Mono—the cross-platform implementation of .NET Ullayer S H
1
that grew out of Ximian. This provides a .NET
framework for Android and iOS, with libraries and
a C# compiler for each platform. It means you can IB”.S'"eSS c#
) .) ogic layer
write apps in C# that target each mobile platform

natively, and because you're using a single program-

ming language, you can easily abstract out all your Figure1.4 Xamarin apps are written
in C#, so you can share common
business logic and also have
platform-specific Uls.

business logic (anything that doesn’t interact with
the device directly) into a set of libraries that can be
shared between platforms. You can even abstract
out a lot of the UI logic by using design patterns
like MVVM (model-view—view model, which you’ll learn about in more detail in chap-
ter 2). Figure 1.13 shows the code split and sharing between each layer.

Let’s take a closer look at those last points, as this is important and is the key rea-
son in my mind for using Xamarin:

Xamarin provides wrappers around native APIs.
Xamarin provides a compiler for each platform to produce native code.

www.EBooksWorld.ir

CHAPTER 1 Introducing native cross-platform applications with Xamarin

This is key. The native APIs are wrapped in G# code so you can call them from your C#
code. You write your apps using the same idioms and classes as pure native code, but
using C#. On iOS you have a UIViewController class for each screen, but this is a C#
class, not the Objective-C one from the iOS SDK that you code against. On Android,
each screen is derived from a class called Activity, butit’s a C# class that wraps the
Java Activity class from the Android SDK.

The code you write is compiled code as well—this isn’t sitting inside some emula-
tor on the device; it’s compiled to native code that interacts with the same libraries as
an app written in the vendor’s language of choice and compiled with their tools. This
means your app is truly native. It uses native widgets on the UI, has access to every
device and OS feature the native API has access to, and is as fast as a native app.

XAMARIN APPS == NATIVE APPS This is the killer feature of Xamarin apps.
They’re written in G# and they have access to all the features of that language,
to a large part of the .NET framework that desktop developers are used to,
and to a whole host of third-party code. But the end result is native code—the
same as that created in Objective-C or Swift on iOS, or Java on Android.

On iOS the C# compiler takes your code and produces a native iOS binary using an
Ahead-Of-Time (AOT) compiler (figure 1.5).

On Android it creates IL code (the same as for G# apps running on Windows),
which is compiled at runtime using just-in-time (JIT) compilation (figure 1.6). This is
provided by a Mono runtime that’s built into your app and installed with it (but don’t
worry, you only get the bits of the Mono runtime you need, thanks to a very good
linker). Xamarin also has an AOT compiler for Android, but at the time of writing, it’s
still very much experimental.

WHAT ABOUT OTHER LANGUAGES? You can also write your apps using F# if you
prefer a more functional style of programming. F# is fully supported for iOS
and Android apps. If VB.NET is your thing, you can build .NET Standard
class libraries using it and call these from your iOS and Android apps built
using G# or F#. Those options are outside the scope of this book, though—
here we’ll just focus on G#.

iOS SDK
(Objective-C)
C# wrapper AOT compiler |
(Xamarin.iOS) loRig
C# app Figure 1.5 Xamarin.iOS uses
an ahead-of-time compiler.

www.EBooksWorld.ir

Introducing Xamarin mobile apps 9

Android SDK
(Java)
) Android app
C# wrapper IL compiler (IL code,
(Xamarin.Android) Mono runtime,
JIT compiler) Figure 1.6 Xamarin Android
C# app uses a Just-in-time compiler
and a Mono runtime.

Because the language of choice is C#, the code libraries written to share code between
iOS and Android can also be shared with a UWP (Universal Windows Platform) app,
so you can easily target Windows 10 devices from desktops to tablets to phones to the
XBox One if you so desire.

For our indie developer, this is good news. They only have one language to learn,
and they only have to write the bulk of their app once, and then write the device-
specific layer once per platform they want to support. This gives a faster time to mar-
ket, which is vital for consumer apps. It also means the core logic code is tested the
same way on all platforms, bugs are fixed once, and improvements and new features
are created with fewer changes.

For our corporate development team, this is also a good thing as it means fewer
developers and less cost. Ideally there would be some developers who specialize in the
platform-specific idioms of each supported OS who can work on the UI or device-
specific logic, but the core of the development team can build the business logic once
in a single language. It’s also easier to build the development teams because C# devel-
opers are easy to find—much easier than Objective-C developers. The advantages for
the indie developer also apply here—less code to test and faster to market with bug
fixes and new features.

This is not a total utopia. Xamarin developers still have to write the UI layer and
anything that interacts with the device using platform-specific C# code and they still
need to understand the idioms of each platform, but they only have one language to
support. One syntax, one toolset, one way of using third-party code.

It’s easy to look at this and think of it as a partial failure—something that misses
the mark by not being totally cross-platform—but that’s really one of its strengths. By
having C# platform-specific APIs, you get the best of what the device has to offer. You
aren’t limited to a common subset; instead you can write each platform’s app in a way
that makes the most of the features of those devices. It also means you have access to
everything—when iOS adds a new feature, Xamarin wraps its API and it’s available to
you pretty much the same day. Your apps can be targeted to each platform, so they
look and feel like a pure, native app and take advantage of the unique features that

www.EBooksWorld.ir

10

114

CHAPTER 1 Introducing native cross-platform applications with Xamarin

make Android and iOS so different, but behind the scenes you’re sharing around
75% of your code base. Table 1.1 shows some examples of this code sharing.

Table 1.1 The amount of code in two popular apps reused between iOS and Android

TouchDraw
(http://elevenworks.com/home)

iCircuit (http://icircuitapp.com)

i0S 70% 61%
Android 86% 2%

There’s one downside to using Xamarin for your mobile apps—you’re dependent on
them wrapping the SDKs and ensuring that the compilers work on all required plat-
forms. There’s an overhead to wrapping the SDKs, and although Xamarin has got
very, very good at it, there can still be a gap between an API being made available from
Apple and Google and Xamarin having it wrapped. This is usually not an issue, as
both Apple and Google release beta versions early enough for Xamarin to have time
to deal with any quirks.

The only thing that has been a problem is when the underlying compiler require-
ments change. This happened recently with Apple Watch apps: originally they were
compiled native code, but for watchOS 2 the Apple compiler changed to output byte-
code instead of native code. It took a long time for Mono to catch up and be able to
compile working watchOS 2 apps. This is the biggest risk with Xamarin—that Apple
or Google could completely change how they build apps, and by the time Xamarin
catches up, your app could have been late to market with a cool new feature or device
support.

Now that Xamarin is owned by Microsoft, I can see this being less of an issue as
they’ll have more resources to throw against such a problem.

Xamarin.Forms

Xamarin also offers a more cross-platform solution

)) iOS | Android

called Xamarin.Forms that attempts to bring code . |
. Application c# ' C#

reuse up to 95-98% by abstracting out the UI and layer !
device-specific code layers. Unlike Cordova apps :
that use HTML, Xamarin.Forms apps are still native Ul layer
apps. It uses an abstraction that sits on top of the ———— —
iOS and Android platforms and provides a lowest C#
common denominator experience, providing fea- IE;iSCiTae;eSr
tures that are common to both platforms. By doing
this, you can get up to 98% code reuse. This is
shown in figure 1.7. Figure 1.7 Xamarin.Forms apps

This abstraction is done using a set of UI classes have a cross-platform Ul to share
that represent features common to both, and when €ven more code.

www.EBooksWorld.ir

http://icircuitapp.com
http://elevenworks.com/home
http://elevenworks.com/home

Introducing Xamarin mobile apps 11

the app is run, these are translated to the native equivalents behind the scenes. For
example, each screen you see is a Page, and this is rendered on iOS using a UIView-
Controller and on Android using an Activity. If you add a Button to this page, it’s a
UIButton on iOS and a Button widget on Android. Unlike Cordova, which uses
HTML to provide the cross-platform capability, Xamarin.Forms uses the actual, native
controls, so you get a true native experience. If the OS updates the look of the but-
tons, your Forms apps will look like the new version. This abstraction is exposed not
only as a set of C# classes you can use from your C# code, but you can also define your
UI using XAML—a variant of XML originally defined by Microsoft for building Uls.

XAML allows you to define your UI using a more declarative syntax, similar in
nature to HTML, and it’s very familiar to developers from a Windows desktop back-
ground who are used to building apps with WPF. If you’ve built WPF or Windows 10
apps, you’ll probably have come across XAML before. Xamarin.Forms uses a slightly
different variant of XAML than WPF/Windows 10, but most of the concepts are the
same. This similarity will increase over time because Microsoft is in the process of
defining XAML Standard, a single XAML syntax that will be used across all the Micro-
soft XAML tooling.

The downside is that you’re building one app for all platforms. Although it tries to
be as native as possible by using native controls, you can’t easily get around platform-
specific idioms. For example, if you have an app that has two screens to work on,
you’d navigate on Android using a drawer exposed by a hamburger menu, whereas on
iOS you’d use tabs. This difference isn’t easy to implement in Forms without a lot of
custom logic and custom Uls. If you want to go further than the lowest common
denominator (for example, adding platform-specific behavior to one control on one
platform) then you’d need to write a custom renderer for it—code that maps from the
Forms controls to the underlying control.

Forms does try to abstract away device-specific features like maps or the camera
using plugins, but again it’s a lowest common denominator model. The camera
plugin won’t give you live photos on iOS, and the maps plugin doesn’t give you the
same amount of control as Google Maps on Android.

For our indie developer, Forms might not be the best choice—the amount of work
it would take to make an app look and feel like a true native experience might out-
weigh the time savings by maximizing code reuse.

For corporate developers, it might be a better option. Certainly for in-house apps,
where you don’t always need a killer native experience, it’s a great tool, but for con-
sumer apps it might not provide all the features needed. I'm sure over time it will
carry on getting better and better—it’s under heavy development at the moment—but
it’s not quite there yet for a great consumer app.

This book focuses on native Xamarin mobile apps, but the principles of MVVM
that we’ll cover also apply to Xamarin.Forms apps.

www.EBooksWorld.ir

12

1.1.5

CHAPTER 1 Introducing native cross-platform applications with Xamarin

Xamarin developer tools

As I've shown, Xamarin is far and away the best choice for mobile development—it
gives you the power and performance of a native app, providing access to everything
in the SDKs and on the devices, and it uses C# as a common language on all platforms
so you can share the majority of your code base. So how do you go about building a
Xamarin app?

For pure native apps, tooling is provided by the vendors: iOS apps are built using
Xcode on the Mac, and Android apps are built using Android Studio on Mac/Win-
dows/Linux.

For Xamarin apps, the best IDE around is Microsoft’s 20-year-old Visual Studio. It
comes with a ridiculous number of features and tools, and it has a huge range of
extensions to provide all manner of new features. It’s available as a community edition
for indie developers and small teams for free, and it tiers up from there depending on
how big your team is, what your support needs are, and whether you want enterprise
features like profilers or embedding assemblies (you can compare the different tiers
at www.visualstudio.com/vs/compare/). Xamarin is fully built into Visual Studio, pro-
viding a totally native experience where you can create a new app that targets iOS or
Android just as easily as you can create a desktop WPF app or a class library. You can
easily reference other projects, add in NuGet packages, and do everything with these
project types that you can do with any native Windows project. From there you can
build your Xamarin Android app and run it on an emulator (Visual Studio provides a
number of built-in Android emulators) or on a real device. You can also build and run
a Xamarin iOS app, albeit with some Apple-related restrictions.

Apple’s licensing rules for its SDK, compiler, and build tools require that you build
on a Mac. Seeing as our Xamarin apps wrap the SDKs and compile down to native code
using the Apple toolchain, you have to have a Mac. Luckily Xamarin iOS on Windows
takes away the pain of this and provides support inside Visual Studio on Windows for
building and debugging iOS apps using a remote Mac—all you need is a Mac with
Xamarin installed that you can connect to, and the magic just happens. Visual Studio
connects to the Mac to compile your code. The iOS SDK on the Mac includes an
iPhone/iPad simulator, which you can use to test your app, and a debugger that allows
you to debug apps running on a device connected via USB to your Mac, so initially you
still had to test your apps either by running the simulator on the Mac or using a device
plugged into it. But Xamarin now has that covered as well—at least for simulators. It
can share the screen from the simulator to your Windows box so you can debug on a
simulator as if it were all available on Windows. This means the Mac you need for build-
ing need not be next to you, or even on the same network. There are cloud services
that can rent you time on Macs, such as Mac In Cloud (www.macincloud.com). You can
use these for building your apps, and you can test these apps by debugging through
Visual Studio on a simulator that’s screen-shared back to your Windows box. Figure 1.8
shows an overview of this process. You only need access to a physical Mac if you want to
test on a real device.

www.EBooksWorld.ir

www.visualstudio.com/vs/compare/
www.macincloud.com

Introducing Xamarin mobile apps 13

Simulator screen is

shared to Windows PC

Simulator
runs on Mac
Windows PC Code sent to Mac to build Mac
running with Xamarin
Visual Studio Build results sent installed
back to Visual Studio

Figure 1.8 Visual Studio can connect to a Mac locally or in the cloud
to build and debug iOS apps in a simulator.

So far, so cool. We’re building cross-platform mobile apps on Windows. But one of the
founding principles of the Mono project that inspired the Xamarin we know and love
is being able to run on different platforms, and Xamarin has you covered there. Visual
Studio is now available on the Mac, albeit in a cut-down version compared to Visual
Studio on Windows. Xamarin used to have an IDE called Xamarin Studio, and this
became the basis of Visual Studio for Mac. Visual Studio for Mac supports building
iOS and Android apps, as well as macOS apps, tvOS apps, and ASP.NET Core websites.
It has Azure integration allowing you to build both the mobile and web components
of your app ecosystem, and even to debug both mobile and web components inside
the same debugging session. Visual Studio on the Mac has the same licensing as for
Windows, so it’s free for indie developers and small teams, with paid plans available
for larger teams.

Which tool you use really depends on personal preference and the platforms you
want to support. In this book we’ll be covering Visual Studio on both Windows and
Mac.

CROSS-PLATFORM ALL THE THINGS! One other awesome thing to note is that
Microsoft has changed recently from a closed company that was Windows
only to one that supports open source and multiple platforms. They’'ve even
open sourced parts of the .NET framework and the compiler and have made
it cross-platform. This means that bits of Mono are slowly being replaced with
the Microsoft implementations from their .NET framework. It also means
that the compiler in Visual Studio is the same on Windows as on Mac, with
both using the open source Roslyn compiler. When you compile on the Mac,
it’s the same compiler as on Windows.

1.1.6 Mobile-optimized development lifecycle

So far we’ve covered Xamarin apps, and, to a lot of people, this is what Xamarin is—a
NET framework and compiler for iOS and Android based on Mono. But as well as

www.EBooksWorld.ir

14

1.2

CHAPTER 1 Introducing native cross-platform applications with Xamarin

providing the tools to build cross-platform apps, Xamarin also provides the tooling
you need to do a lot more than just write the code.

One of the biggest concepts in the development world in recent years is DevOps—
the cultural shift to a model where development and operations are combined. Some
of the aims of DevOps include enabling individuals to be involved in all parts of the
development and release cycle, automating as much as possible, and moving to a con-
tinuous delivery model where code can be checked in, built, and tested automatically
and shipped to production with minimal human input. DevOps is a massive topic, well
outside the scope of this book, but there are a number of tools, either provided by
Xamarin or well integrated with other Xamarin tools, that can be used to help imple-
ment a good DevOps strategy.

During the Xamarin Evolve conference in April 2016, one of the main themes of
the keynote was the mobile-optimized development lifecycle (as illustrated in figure
1.9). During this keynote, a number of tools, both from Xamarin and their new par-
ent company Microsoft, were discussed. It was pretty clear that this was a key focus for

Xamarin as a company, and it’s only been growing with the introduction of Visual Stu-
dio App Center and the greater push towards DevOps. This is important as we con-
sider how to build production-quality mobile apps.

Test

UlTest,
Test Cloud

Build

Visual Studio
App Center

Distribute

Visual Studio
App Center

Monitor

Visual Studio
App Center

Develop

Visual Studio

Figure 1.9 The mobile-optimized development lifecycle is a continuously iterating cycle of
develop, test, build, distribute, and monitor.

Creating production-quality mobile apps

It’s a long journey from a back-of-the-napkin idea to a fully working, deployed app of
sufficient quality to be usable and not get bad reviews. It’s easy for developers to jump
straight into coding, as this is the part we love, but if you want to build an app that’s
successful, you have to consider the whole software-development lifecycle. There’s no
point in diving into the code and building something that doesn’t look good or work
well because you haven’t considered the design of your finished app. During coding,
you have to keep testing and monitoring in mind so that you code in a way that sup-
ports them. For anything more than a prototype, you have to think about the whole
lifecycle before you write a single line of code. This lifecycle is very similar to the
mobile-optimized development lifecycle talked about at Xamarin Evolve, but it adds a
few more steps.

www.EBooksWorld.ir

121

Creating production-quality mobile apps 15

In this book we’ll be building a production-quality app, so let’s look at the stages a
mobile app will need to go through on this journey. We’ll see what Xamarin can (or
can’t) help with.

Starting with an MVP

If you are not embarrassed by the first version of your product, you've
released too late.

—Reid Hoffman

It’s good practice when building a mobile app to start with an MVP—a minimum viable
product. This is the smallest, simplest, fastest-to-market version you can deliver.
Once this is in consumers’ hands, you can monitor how it’s used and deliver features
based on what real people want. A lot of people think an app must be full-featured,
based on their idea of what a full feature set is, to be successful, but your users
might know better. It’s better to get an app out quickly and iterate based on real-world
feedback, because it's very easy to be wrong about what an app should have.

For example, Flickr started out as an online role-playing game with a photo-sharing
tool, and only the photo-sharing part now survives. Be prepared to pivot!

Design

Designing an app is hard, especially for developers with no formal design training.
We’ve all seen some pretty shocking Uls, mainly for in-house apps where developers
have thrown all the content and controls onto the screen and left it at that. In the con-
sumer mobile world, this is no longer an option. Users can jump ship to another app
that does the same things as yours in the time it takes to download a few megabytes of
data from an app store. They have no loyalty to your app, and a bad app can remove
loyalty to your business.

For example, if you're a bank and people use your app to interact with their
accounts every day and the experience is bad, they’d rather change their bank than
keep using your bad app. You can get away with it in a corporate environment where
your users are in-house and have to use whatever you put in front of them, but be pre-
pared for complaints that may not be good for your career progression—especially if
the CEO is one of the users.

There are several things to consider when designing an app:

Consistency—Does your app look and work like other apps on the same plat-
form, especially the ones provided by the OS vendor.

For example, Android apps should follow the activity stack with the Back but-
ton doing what you’d expect. iOS apps should use tabs to switch between popu-
lar actions.

www.EBooksWorld.ir

16

CHAPTER 1 Introducing native cross-platform applications with Xamarin

User experience—Is your app easy to use and intuitive? A user should be able to

just pick it up and know how to use it without any training. Being consistent
with other apps can help with this.

For example, avoid custom icons for buttons or menu items. Instead, use
ones that are industry standard or just use text. No one cares that you think hav-
ing your own custom icons will help promote your brand and make an app look
like it’s yours. Instead, they’ll dump it if they can’t understand how to use it.

Flow—Does your app flow well? Is there an easy flow for a user to use the app?
When one action naturally leads to another, the journey between the actions
should be short and concise.

For example, if your app is for taking photos, the options for editing or shar-
ing a photo should be on the same screen where you view the photo you've
taken, not buried in a menu that involves multiple steps to navigate.

Good looks—Does your app look good, are any images well drawn and appropri-
ate for the device size, is all text clear and readable, and are the colors consis-
tent and appropriate?

For example, an app could be run on a small phone, large phone, “phablet,”
small tablet, or large tablet. Any text on the screen must be readable in all for-
mats, images must be sized to look good on all device sizes, and on-screen items
should be spaced so that it’s clear what the user is looking at without UI ele-
ments blending into each other due to lack of space.

Accessibility—Is your app accessible to users with differing abilities?

For example, if a user increases the default font size, is the app still usable?
Are any audio alerts also available as visual alerts? Some of this is dependent on
your target audience (for example, there is not much you can do to make a
music player accessible to a deaf person), but a well-designed app will consider
all possible users.

It might seem odd to introduce design now, at the start of the book, but it’s an import-
ant thing to think about when you build your app. Although Xamarin provides you
with the tools you need to write cross-platform apps sharing your core code, you still
have to build the platform-specific layer, which includes different UI code for iOS and
Android. As part of this Ul layer, you need to consider what makes each platform dif-
ferent, and design each UI accordingly. For your app to be a success, it needs to be
intuitive and look good on each platform, and part of this is consistency with what
users of each platform are used to. I can’t overemphasize the word consistency
enough—ryour app shouldn’t only be consistent with the platform but with itself. Any
difference will cause user confusion, leading to a bad experience.

Ideally you either need skill as a designer, or access to someone with that skill. This
can be easy in a corporate environment, but maybe not so easy for an indie developer
doing everything on their own. The good news, though, is that the different OS ven-
dors have you covered. They’ve all published a set of guidelines on how to build apps
that not only look and work well, but are also consistent with other apps on that

www.EBooksWorld.ir

122

Creating production-quality mobile apps 17

platform. Google has Material Design, Apple has its Human Interface Guidelines.
We’ll come back to these later in this book when we look at building Uls.

UsABILITY

One of the key things about design is how usable your app is. An app that looks slick
but is impossible to use is probably worse than an app that is bad to look at but works
well. When you are designing your app the relevant platform guidelines can help
ensure some consistency with other apps, but you are still responsible for ensuring a
great user experience. While you are thinking of design also try out your user experi-
ence virtually—either with online tools (of which there are plenty) or simple tools like
paper prototypes. With these you can mock up the Ul and how it works and actually
try it out—have people use the virtual or paper version as if it was a real app and see if
it is natural to them. If they see the first screen of your app and have no idea what to
do then you could lose a customer. Sometimes you only have seconds to draw a user in
before they decide your app is no good and delete it, so it’s vital to make those first
user interactions simple and obvious. One very popular book on user experience
design sums up the most important principle in its title: Don t make me think!’.

Develop

This is the fun part—the bit we as developers love the most. Despite it being the best
bit, it can also be less fun if we don’t have good tools to help. A good developer can
code in a raw text editor, but it’s painful when you’re used to a full-featured IDE.
Luckily, as Xamarin developers, we're spoiled. On Windows there is Visual Studio,
which is in my mind the best IDE around, especially when coupled with extensions
like ReSharper from JetBrains. On Mac there’s Visual Studio for Mac, which uses the
same compiler platform as Visual Studio on Windows. These IDEs give you code com-
pletion, easy-to-use refactorings, and in-editor indications of suspect or erroneous
code. They also provide full debugging support for Xamarin apps running either in
an emulator/simulator or on an actual device.

Seeing as all Xamarin apps are .NET apps using a platform-specific .NET frame-
work, you have access to a whole host of libraries built by third-party developers that
are also built on the .NET framework. Despite the differences between .NET on Win-
dows, iOS, and Android, there’s a core subset that’s common to all platforms, so any
libraries that target this subset can be used in all your apps, and any libraries that tar-
get a particular platform can be used against that platform. This gives you access to a
wealth of code that does all manner of things, from connecting to databases, handling
JSON, and constructing unit tests to providing frameworks for application develop-
ment. Access to these is provided by a packaging tool called NuGet (pronounced New-
Get)—these libraries are packaged into a zip file with multiple libraries separated by
whichever platform they target. At the time of writing, there are almost 57,000 unique
packages available on NuGet.org, and the tools to use these packages are built into
Visual Studio. You simply right-click, select Manage NuGet Packages, and from there
install whatever you need. We’ll look at these a bit more later because they’ll be used
in the apps built throughout this book.

www.EBooksWorld.ir

18

1.2.3

CHAPTER 1 Introducing native cross-platform applications with Xamarin

Testing is an important part of coding—all good coders will write unit tests as they
code, if not before. Luckily Visual Studio on Windows and Mac helps in this endeavor,
providing a way to run or debug tests. With live unit testing in Visual Studio on Win-
dows, or extensions like ReSharper with dotCover or NCrunch, you can even see in
the editor which lines of code are covered by tests, color-coded to indicate which tests
pass and which fail, and with the tests continuously running so it moves from red to
green as you write code. You can also get IDE extensions to use things like behavior-
driven design (BDD), which allows you to write your tests in natural language.

When you code your app, you need to think about testing all the time, to the point
of choosing design patterns that help keep your code separated enough that it can be
tested easily and thoroughly. When we look at how to actually build an app later in this
book, we’ll be using MVVM, a design pattern that enables this, and we’ll think about
testing at every step.

All these tools make coding a lot of fun and reduce the drudge work by making it
easy to automate writing boilerplate code and easy to refactor, so you’re never fighting
with your code to improve it.

Test

Testing really goes hand in hand with coding. It’s something that should be continu-
ous, and ideally automated. Testing every feature of your app takes a long time, and
sometimes it’s very difficult to test every scenario, including the edge cases. If you can
automate this, not only does it save time but it means you can fully test your app at
every stage of development. That way you can catch bugs as soon as they appear, so
you know what changes introduced them and you can fix them while these changes
are fresh in your mind. If you don’t know about them till the end of development, it’s
a lot harder to determine what caused the bug and find a fix.

The ability to run unit tests inside your IDE is a good thing because you have to
think about how to test your code as you write. There are three types of testing to
think about: unit testing, UI testing, and manual testing.

UNIT TESTING

Unit testing is testing units of code, with a unit being the smallest possible isolatable
piece of code. These are black-box tests against the contract of a class, designed to test
that class in isolation. If that class has dependencies on other classes, those dependen-
cies should be mocked out and given predefined behavior to ensure you’re just test-
ing the one class in isolation.

For example, say you have a Counter class that has a Count property and an
IncrementCount method. The behavior of the class is that when you call Increment-
Count, the Count value goes up by 1. Here you can write a test that creates the class,
calls IncrementCount, and verifies that the Count has gone up by 1 and only 1. If it
doesn’t go up, the test fails; if it goes up by anything other than 1, the test fails. You
don’t care about the implementation of the class—how it increments is of no interest,
as this could change at any time. You just care about the contract—that Increment-
Count increments the Count by 1. Once this test is written, you can be sure this method

www.EBooksWorld.ir

Creating production-quality mobile apps 19

works, and if a bug appears in your app that looks like the Count is incremented by 2,
you can easily see that if the unit test passes, the error is elsewhere in your app.

Another example would be a SaveCount method on your Counter class that saves
the count to a web server by making a REST call passing some JSON. If your class is
well written, it shouldn’t talk to the web server directly but abstract that out to another
class (we’ll call it WebService) that actually makes the call. Your class just needs to
construct the [SON and tell the other class which REST endpoint to use, passing it the
JSON. In this case when you construct your Counter class instance, you have to pass it
the WebService instance so it has something to call. As is, this isn’t well separated into
a unit for testing, but we can change that.

Counter

IWebService

Figure 1.10 Mocking is a simple
technique to allow you to unit test
without worrying about dependencies.

MockWebService WebService

Unit test Production app

If the WebService class implements an interface, IWebService, that defines the
method to make the server call, you can instead pass the interface in when you con-
struct your Counter. By doing this, you can mock the interface in your unit test—that
is, have inside the test another object that implements the interface that you have
control of. This way, you can call the SaveCount method and then inspect the call
that was made to your interface and verify that the correct endpoint was called with
the correct JSON.

Ul TESTING

UI testing is the complete opposite of unit testing. Here you’re considering your app
as a whole and testing it as if you were a real user interacting with the app. Xamarin
provides a tool called UlTest to enable this. It’s a library that allows you to write tests
that look like unit tests and that are run using NUnit (a popular unit-testing tool), but
these tests will launch your app on an emulator/simulator or physical device and per-
form interactions like tapping or swiping and allow you to query the UI to verify that
everything works as expected.

For example, in an app that has a count shown in a label and a button that you tap
to increment the count, you could write a UI test that launches the app, reads the
value of the count label, taps the button, then re-reads the label, ensuring that the
value has increased. Xamarin UlTest does this by finding items inside the visual tree
(the representation of the UI on screen) based on their name, ID, or contents. Once
it finds these, you can read data or perform actions like tap, so a test could find the

www.EBooksWorld.ir

20

CHAPTER 1 Introducing native cross-platform applications with Xamarin

count label based on it having an ID of Count defined inside the Android layout or
iOS storyboard, and it could read the text property from there. Ul tests can also call
backdoors—these are special methods embedded in your app to allow you make your
tests more easily. You can use these to do things like prepopulate data to avoid per-
forming lots of repetitive steps in the UI, or to emulate situations that are hard to do
through a UI test, like switching off WiFi on Android to test connectivity issues.

Once you have Ul tests that run and pass on an emulator or your physical device, it
would be nice to run them on more devices. One of the downsides to mobile develop-
ment is the large number of possible devices and OS versions. On iOS this isn’t such
an issue because most people keep their OS up to date, and there’s only a small range
of devices. On Android it’s a massive problem as there are thousands of possible
devices, and OS updates aren’t available to all due to manufacturer and carrier-
provided tweaks. If Google updates Android, the device manufacturer needs to take
that update and apply it to their version of Android and give it to the carrier, who then
needs to apply it to their version before it’s available to be installed on the device. In a
lot of cases, the manufacturer or carrier won’t do this, especially for older devices,
meaning there’s massive fragmentation of OS versions on Android. At the time of
writing, 85% of i0S devices are on the latest version of iOS. On Android, only 7.5%
are on the latest, with 20% one version behind, 16% two versions behind, 33% three
versions behind, and the remainder on even earlier versions.

What Xamarin provides to get around this is a service called Test Cloud. This is
thousands of physical devices from different manufacturers with different OS versions
set up in a data center, and you can rent time on these devices to run your UI tests.
This way you can cover a wide range of device sizes and OS versions, and when you
review the results you see not only which tests pass or fail, but you can get screenshots
of every step, so you can see how the Ul looks. This can be invaluable when you have a
bug that only manifests itself on one OS or one screen size and you don’t have an
emulator or physical device available that replicates it. This is integrated into Visual
Studio—one click to deploy your test and run it in the cloud.

MANUAL TESTING
Yup, you’re on your own with this one. Manual testing means you have to interact with
your app to try everything out. Ideally, if you’ve implemented good unit and UI tests,
you’ve verified that your app works correctly. Manual testing should then be a quick
sanity check to ensure any edge cases that can’t be tested using automation (such as
launching external apps) are working. You should also manually test as you go along,
to verify the usability of the app, verifying the user experience. Automated tests can
verify whether something works correctly, but you still need to interact with the app
yourself to see if things work intuitively. After implementing each feature in the app,
you should try it out to make sure it follows your app’s design (as well as the design
guidelines for each app), and to ensure it’s easy to use and gives good feedback.

For usability testing you should also consider hallway testing—going up to people
and getting them to try the app out and see what feedback they give. When you do

www.EBooksWorld.ir

1.24

Creating production-quality mobile apps 21

this, you should try to mimic the real-world experience as much as possible. Just give
them the app and leave them to it with no help, much like an end user who has just
downloaded it from the app store. If they can’t work out how to use your app, you may
need to reconsider the user experience.

Build

Continuous integration (CI) is the process whereby you continuously integrate your
code changes into the core codebase and test it each time. In its simplest form, it’s
having something that detects when code is changed inside your source code reposi-
tory (such as on GitHub or BitBucket), builds your app, and runs your tests so you can
see straightaway if you’ve broken the build or introduced a bug. This is a huge topic so
I won’t cover it in much detail here, but I'll touch on some areas that are relevant to
Xamarin developers. There are a number of different CI tools around, and they all
have some degree of support for Xamarin apps (even the most basic ones support
Xamarin, because the tooling works from the command line).

There are hundreds of possibilities for the kinds of builds you could set up from a
CI system. For example, you could have a check-in build that monitors your source
code repo, and every time new code is checked in, it builds it and runs all your unit
tests. You could then have another build that runs at the same time every night, get-
ting the latest code, building it, running the unit tests, and then running all of the Ul
tests locally. Finally, you could have a release build that’s triggered manually, which
gets the code, builds it, runs the unit tests, runs the UI tests, and (if all passes) pack-
ages the build up and deploys it to the app store.

The main thing you want with these builds is the continuous feedback loop—every
check-in should be verified to see that it builds and the tests pass; if there are any
errors, the person checking in the code should be notified so they can fix the error
directly. Some CI systems can even take this further and provide precommit builds—
the code you want to commit is built and tests are run, and only if everything passes is
the code committed. If the build or tests fail, the commit is rolled back.

When choosing a CI system, you need to consider how good their support is for
Xamarin apps and how much time you want to spend configuring them. Jenkins, for
example, is a free tool and is fantastic for Java apps, but its Xamarin support is nonex-
istent at the time of writing, so setting up builds is a lot of work. Other tools have Xam-
arin support out of the box, so it’s easy to set up. The main one for Xamarin apps is
Visual Studio App Center.

App Center (https://appcenter.ms) is described as “Mission Control for your apps.”
You can connect to it using a GitHub or Microsoft account, point it to a Git repository
in GitHub, VSTS, or BitBucket, and then it’s trivial to set up builds. You choose which
type of app to build (iOS or Android), choose a branch to build from, point it at your
solution or project file, choose the build configuration, and away it goes. You can also
add signing certificates to allow your builds to run on real devices, and even launch your
app on a device once it’s built as a sanity check to ensure that it works.

www.EBooksWorld.ir

https://appcenter.ms

22

1.2.5

1.2.6

CHAPTER 1 Introducing native cross-platform applications with Xamarin

Distribute

You’ve designed your app, coded it up, tested it, and built it. Now you need to get it
into the hands of your users. You could submit it to the relevant app store, but first it’s
good to put it in the hands of beta testers.

App Center allows you to set up alpha and beta users and distribute your app
directly to them. Once they have your app, you can push out updated builds as you fix
bugs or make tweaks, and when they relaunch the app your users will be prompted to
install these updates. This is direct to the users you want to do the testing, it’s not an
open marketplace. Your users will only be able to download your app if they’re regis-
tered against it, so you have complete control of the distribution.

Monitor

Once your app is released and being used, you should monitor it. If your users are
experiencing crashes, you can expect a slew of one-star reviews that will drive potential
new users away. Your app will have bugs in it (that’s a fact of software development),
but if you can monitor for these and fix the issues as soon as possible, you can mini-
mize the impact. If you know that crashes have happened, you can do something
about it immediately, and that will help with your app downloads. Remember, your
customers won’t file bug reports and eagerly await a fix. They’ll just download another
app that does the same thing as yours.

For the Xamarin developer, it’s easy to monitor for crashes using App Center. You
can integrate the App Center SDK into your app as easily as installing a NuGet pack-
age and adding one line of code. This will track all crashes and upload stack traces to
the App Center site so you can quickly see the line of code where it happened, get it
fixed, and get a new version deployed. This is an invaluable tool—the quicker you can
fix a crash, the less chance you have of losing users.

In addition, App Center allows you to do user and event tracking so you can see
not only the demographics of your audience but also how they’re using your app.
Again, this can be important in making your app as good as possible. If a particular
feature of your app is being used regularly, then it’s something to work on and
improve. If a feature is never used, then either it’s not wanted by your users or not
obvious, so you can strip it out or make it easier to discover. If your app is popular in a
particular country, you can add native language support for that country if it’s not
there already. You can also track the path a user takes through your app, and if popu-
lar features are hidden behind a lot of interactions, you can change the user experi-
ence to surface those features more quickly.

All this is easy to add to your Xamarin app—just one line of code per user action to
track what they’re doing. Demographic data comes as soon as you enable the SDK. If
you capture the right data and use it correctly, you’ll have a powerful tool to help
shape your app.

www.EBooksWorld.ir

1.3

Rinse and repeat. .. 23

Rinse and repeat...

Monitoring is the final step in the mobile-optimized development lifecycle, a cycle

that repeats with every iteration of your app. It’s no good resting on your laurels after

arelease; it’s time to fix bugs and add new features. Figure 1.11 sums up the steps.

Source code
control

Develop
Visual Studio

Test

UlTest,
Test Cloud

Build

Visual Studio
App Center

Distribute

Visual Studio
App Center

Monitor

Visual Studio
App Center

.

On Android, follow Google’s material design guidelines
On iOS, follow Apple’s human interface guidelines
Think about usability and accessibility

Use source code control
Commit your code often
Git is well integrated with Visual Studio

Use Visual Studio on either Mac or Windows to develop your app

For iOS, you need a Mac to build, for debugging, and to host the simulator
Visual Studio on Windows can use a remote Mac for building iOS apps.
You can debug on a remote simulator screen shared over the network,

so the Mac doesn’t need to be physically accessible—it can be in the cloud.

Code your app in a way that allows testing

Unit test as much as possible

Create Ul tests to automatically test the user interface

Use Test Cloud to run your tests or debug on devices you don’t have

Use continuous integration (Cl) to ensure that your code builds and that tests pass
Run your unit tests and Ul tests on a regular basis to get a fast feedback loop
Consider continuous deployment—deploying builds that pass all tests to users
regularly, via tools like App Center

Deploy early versions of your app to alpha and beta testers to get as much real-world
testing as possible

Allow users to provide feedback and raise bugs

Respond to this feedback and fix bugs quickly, then redeploy to the alpha and

beta testers

Monitor for crashes so you can quickly fix the bugs that cause them
Monitor the details of your users so you can ensure you're targeting the
right audience

Track the usage patterns of your app so you know what areas to focus on

Figure 1.11 A summary of all the steps for each cycle of a production app

www.EBooksWorld.ir

24

CHAPTER 1 Introducing native cross-platform applications with Xamarin

Keep your cycles small so it’s easy to change direction based on feedback from your
monitoring or your users. But don’t make them so small that your users are updating
their apps too often (next-day release is important for fixing bugs, but keep features
updates at least a week apart). Regular updates are important because they make your
users feel like your app is here to stay, and they’re good for promoting your app, as
the stores highlight recently updated apps.

Now that you've seen this lifecycle in detail, it’s time to put some of this into prac-
tice and write some code that demonstrates the power of Xamarin apps. In the next
chapter we’ll look at a design pattern that can help you build cross-platform Xamarin
apps by increasing the amount of cross-platform code that can be shared across i0S
and Android apps. Then we’ll follow tradition and build a cross-platform Hello World
application.

Summary

In this chapter you learned

Xamarin native apps are apps built in G# using a version of the .NET framework
based on Mono that’s been customized to run on iOS and Android and using
libraries that wrap the native device SDKs.

Xamarin apps are better than native apps written using the vendor tools
because you get all the power of a native app with all the features of the device
and OS, but they’re written in a common language, allowing you to share com-
mon logic and code between apps on different platforms.

Xamarin has tools for the mobile-optimized development lifecycle, covering
developing, testing, building, distributing, and monitoring.

There’s more to a production-quality mobile app than just coding. You first
need to consider the design of your app to ensure that it’s suitable for the plat-
form you’re targeting. You also need to code it well, ensure it’s fully tested, build
itin a reproducible way, deploy it, and monitor it for issues once it’s in the wild.

www.EBooksWorld.ir

Hello MVVM—creating a
simple cross-platform app
using MIVVM

This chapter covers

What MVVM is and why it’s the best choice for cross-
platform Xamarin apps

What the MVVM design pattern is all about, and why you’d
want to use it to maximize your cross-platform code

Getting set up with Xamarin and the MvvmCross extension

Creating HelloCrossPlatformWorld, your first Xamarin mobile
app
Running your app on iOS and Android

Typically at this point in a book, it’s traditional to build a Hello World app to show
off the technology in question. For this book, though, I'm going to go slightly against
tradition and start by discussing the MVVM (model-view—view model) design pat-
tern. Then we’ll get our hands dirty with some code toward the end of this chapter.

25

www.EBooksWorld.ir

26

2.1

Listens for the Click
event of the button

CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

WE’'RE DISCUSSING MVVM FOR CROSS-PLATFORM XAMARIN APPS The principles
discussed in this chapter are for using MVVM with Xamarin apps. Although
these follow the principles for MVVM on other platforms, such as desktop
Windows apps or the web, there’s a lot more to it for Xamarin apps. If you've
done MVVM before (maybe with WPF) it’s still worth reading this chapter as

there are some important differences.

What are Ul design patterns?

Over time, developers have come across and solved
the same problems again and again. Out of this has
come a set of abstract solutions that can be applied
when building your code. These are known as design
patterns—repeatable solutions to common problems
that occur when designing and building software.

Building apps that interact with the user through
a user interface (UI) is no different. There are stan-
dard problems that developers want to solve, and a
number of patterns have come about as solutions to
these problems.

Let’s consider a simple square-root calculator
app called Sqrt that has a text box you can put a
number in, and a button. When you tap the button,
it calculates the square root of the number in the
text box and shows the answer on a label. An exam-
ple of this app is shown in figure 2.1.

Sqrt
20

\
)

Square Root

Figure 2.1 A simple square-root
calculator app that calculates the
square root of a given number

The simplest way to write this app is to wire up the button to an event that takes the
value directly from the text box, calculates the square root, and writes the value to a
label. All this can be done in the code-behind file for the Ul Simple, and all in one
class. The following listing has some pseudocode for the kind of thing you might write.

Listing 2.1 Pseudocode for adding numbers by wiring to the Ul directly

The number comes from
reading the value from the

Text property of the text box.

MyAddButton.Click += (s, e) =>

{
var number = double.Parse (NumberTextBox.Text) ;
var sqgrt = Math.Sqgrt (number) ;
MyResultLabel.Text = sqgrt.ToString() ;

Once the square root is calculated, the
Text property of the label is set directly.

Although this seems simple, it has a number of flaws.

www.EBooksWorld.ir

2.2

MVVM—the design pattern for Xamarin apps 27

First, this isn’t easily testable. You can only test i0s

i Android
this app by updating the value in the text box and 5y jication o i o
tapping the button. It would be better if you could layer !
write unit tests so you could programmatically test !
the code, covering multiple cases including edge Ullayer c# i c#
cases, such as missing inputs or large or negative
numbers. This way you could run a set of automated .
tests quickly and repeatably every time you change Sgii'?:;esr C#
your code.

Second, this isn’t cross-platform. One of the rea-
sons for building apps using Xamarin is so that parts Figure 2.2 Xamarin apps are
of your app can be written in shared code that works ~ Written in C# so you can share any
. . . . common business logic while
on both iOS and Android. If your calculation is . - gle i
))))) having a platform-specific Ul.
wired directly to the view, you can’t do this. Think
back to the layers introduced in chapter 1, shown in figure 2.2.
In a Xamarin app we have three layers:

Application layer—This is a small part of the code that makes your app runnable
on each platform and has different platform-specific implementations for iOS
and Android.

UI layer—The UI layer also has separate platform-specific implementations for
iOS and Android.

Business logic layer—The business logic layer is shared between the two plat-
forms.

To fit the calculator code into this structure, you’d need to have your calculation code
in the cross-platform business logic layer, and the button, text box, label, and all the
wiring in the Ul layer. This is the kind of problem all UI developers come across on a
daily basis, and, as you’d expect, there’s a design pattern to help with this—MVVM.

MVVM—the design pattern for Xamarin apps

MVVM (model-view—view model) is the most popular design pattern for cross-plat-
form apps built using Xamarin, and it has a history of being a very successful design
pattern for building Windows desktop apps using WPF, Silverlight apps, and now Win-
dows 10 UWP apps. It has even made its way onto the web with frameworks like knock-
out.js using it. When Xamarin designed Xamarin.Forms, whose goal was to have as
much code sharing as possible, the principles of MVVM were baked into the underly-
ing framework right off the bat.

Think back to the three layers in the Xamarin app. These three layers enable a rea-
sonable amount of code sharing, but we can do better. In the Ul layer there are really
two layers—the actual UI widgets, and some logic around these widgets. For example,
we could put some logic around the answer label to make it only visible once the
square root has been calculated. This expands our three layers to four.

www.EBooksWorld.ir

28 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

Figure 2.3 shows the how the layers would look if

’ o i0S | Android
we could move this Ul logic into shared code. If we A !
did this, the label in our example would be in the Ul |a$§r B
layer, and the logic that decides whether it should |
be visible or hidden would be in the cross-platform Ul layer c# | c#
Ul logic layer. This is a great way to do things—we’re :
maximizing code reuse by abstracting the UI logic Ul logic c#
. layer
into cross-platform code.
MVVM helps with this splitting-out of the UI and
its logic. This pattern is named based on the three ,
Business Cc#

layers that you use in your app, as shown in figure logic layer
2.4. Let’s look at these layers in the context of our

calculator example:

Model—Your data and business logic.
The model is the data, business logic, and shared code.

access to any external resources (such as web

services or databases) defined in terms of the

domain, and this maps to the business logic layer in our Xamarin app. In our
example, the model contains the number, the logic to calculate the square root,

and the result.

View—The actual UI, buttons, text controls, and all other widgets.

The view is the Ul with all its widgets and layouts, and this maps to part of the
UI layer and holds the UI widgets (the text box, button, and label). This is a
passive view, so it doesn’t have any code to get or set the values or to handle

events, such as the button click.
View model—The UI data and logic.

For our calculator app, this has properties that represent the numbers on
the model—the input value and the result. It also has a command property that
wraps the square root calculation logic on the model into an object (more on
commands in the next chapter). The view model knows about the model but

has no knowledge of the view.

In addition to these three layers, it has a binder, a binding layer that you can think of as
glue that connects the view model to the view. This removes the need to write boiler-
plate code to synchronize the Ul—the binder can watch for changes in the view
model and update the view to match, or update the view model to match changes
made by the user in the UL This binder is loosely coupled rather than tightly coupled,
and the connection is often made based on wiring up properties in the view and view
model based on their names (so in the case of a binding between a property called
Text and a property called Name, at runtime the binder will use reflection to map

these string values to the underlying properties).

www.EBooksWorld.ir

Figure 2.3 To maximize code reuse,
it would be good to have Ul logic in

MVVM—the design pattern for Xamarin apps

View
! Binding ! /
2. The view model updates - '
the model based on View model
changes pushed from
the binding layer. T
Model

I. The binding keeps the data in

sync between the view and the
view model, and it wires events
up to view-model commands.

3. State changes in the model are

passed back to the view model,
which can then notify the binding
that something has changed, so
the binding can keep the view in
sync with the changes.

Figure 2.4 MVVM has a model, a view model, a view, and a binding layer that keeps the view
and view model in sync and connects events on the view to the view model.

Reflecting on reflection

If you’ve never heard of reflection before, it’s a part of the C# API that allows you to
query details about a class—you can discover properties, fields, methods, or events.
Once you’ve found out the details, you can also execute code. For example, you can
find a property based on its name and then get the value of that property from a par-
ticular instance of that class. Reflection is also common in other languages such as

Java—C# reflection is basically the same as Java reflection.

This is great for binding—if you bind a property called Name, the binding code can use
reflection to find a property on your view-model class with that same name, and then

it can get the value on your view-model instance.

29

For our calculator app, the binding would wire up the text box, button, and label on
the UI to the equivalent properties and a command on the view model.

There’s a bit of magic involved in making this binder work, and this is usually
implemented in an MVVM framework—a third-party library that gives you a set of

base classes providing the implementation of this pattern. I cover how this works later

in this chapter.

MVVM FRAMEWORKS There are multiple MVVM frameworks that work with
Xamarin native apps, such as MvwmCross, MVVM Light, and Caliburn.Micro.
Although each one has differences, they all follow the same basic principles
and do roughly the same things. Later in this book we’ll be using MvwvmCross,
but everything in this book is applicable to most frameworks.

For example, as shown in figure 2.5, we could have a text box on our calculator app

UI that’s bound to a Number property. This means that at runtime it will try to find a

public property called Number on the view model that it’s bound to using reflection,

www.EBooksWorld.ir

CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

The Text property of the TextBox is bound to a property

Sart called “Number” on the view model. The binding looks
up the “Number” property on the view model and finds

400 it using reflection.
\/ The binding listens for updates to the Text property of

the TextBox (usually via a text-changed event raised by

the TextBox). When the user changes the text, the binding

updates the Number property on the view model.

The binding also listens for updates to Number. When

the property changes, it updates the Text property of the
TextBox on the Ul.

TextBox View model
public string Text {get;set;} public string Number {get;set;}

Figure 2.5 Binding keeps the value on the view in sync with the value in the view model.

and it will show the string contained in that property in the text box. If the user
changes the value inside the text box, it will update the value of the Number property
to match what the user has typed in. Conversely, if the value of the Number property on
the view model changes, the binding will update the text box to match.

The binder doesn’t care what the underlying class type is of the view model you're
using, just that it has a public property called Number that it can extract the value from.
In some of the MVVM frameworks, it doesn’t even care if the property is there or not.
Ifit can’t find the property, it just treats it as an empty value. This loose coupling is what
makes MVVM especially powerful—it allows view models to be completely agnostic to
the view, so you can write unit tests against the view model that simulate the UI without
worrying about Ul code getting in the way. It also supports code reuse, so a view could
be glued to any view model that has properties with the names it’s expecting.

Figure 2.6 expands on the previous figures by showing how these layers map to the
three layers of MVVM:

App layer—The app layer is one that doesn’t really come under the pure MVVM
design pattern, but the different MVVM frameworks do provide some application-
layer features. This allows us to have some cross-platform code in our app layer
that can control app logic, such as which view is shown first and how the differ-
ent classes in the app are wired together, such as defining which view model is
used for each view.

UI layer—The Ul layer is our view layer, and this is platform-specific code.
Binding—The binding between the UI layer and the UI logic layer is the
binder—the glue that connects the UI layer to its logic layer. This is usually a

www.EBooksWorld.ir

2.3

What is cross-platform code? 31

mix of cross-plattorm and platform- i0S ! Android
specific code provided by a third-party - i -
framework. App |

layer
UI logic layer—The UI logic layer is our Ci#
view-model layer. It provides logic for i
the Ul and other device interactions in Ul layer c# || c# View
a cross-platform way. Part of this logic is i Bndma |
value conversion—converting from data D T
in your domain objects to data on the UL?S:C C# r;/g?é'
Ul For example, you could model a
user in your domain with a first name
and last name but on the UI want to Business ot Model
show the full name. The view model will ~ '°9ic1aver
provide this value conversion by concat-

enating the names and giving one string
value that will be shown by the UL

Business logic laye—The business logic
layer is the model layer. This contains data, domain objects, logic, and connec-
tivity to external resources such as databases or web services. Again, this is cross-

Figure 2.6 The different layers of MVVM fit
with the different layers of a Xamarin app.

platform.

A QUICK HISTORY LESSON MVVM has been around since 2005 and was devel-
oped by two architects from Microsoft, Ken Cooper and Ted Peters. It was pri-
marily created for use with the new UI technology stack coming out of
Microsoft called WPF, and it leverages the data binding that was a key feature
of WPF. In WPF you write your UI using XAML, a Ul-based markup language,
and in this XAML you can bind the properties of a Ul widget to properties
defined in the data context of the view—essentially the view model. This
allowed UI/UX experts to design the UI using more designer-based tools,
and to simply wire the widgets, based on their names, to code written inde-
pendently by developers.

What is cross-platform code?

Some of the layers in our MVVM-based app use cross-platform code—specifically, part
of the app layer, the Ul logic (view-model) layer, and the business logic (model) layer.
The reason for this is simple—we’re building an app for both iOS and Android, so the
app will need to work the same way on both platforms, use the same type of data, and
have roughly the same UI logic. It makes a lot of sense to build this once and use the
same code on both apps—code that we write once and can run on iOS and Android.
The term cross-platform code has come up a lot already in this book, and it will continue
to be a theme throughout. But what exactly do we mean when we talk about cross-
platform code in C#?

www.EBooksWorld.ir

32

23.1

CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

Cross-platform native apps are not truly cross-platform

In the Xamarin world we talk of cross-platform native apps, but these are not true
cross-platform apps where exactly the same app will run on all platforms. Neither is
it cross-platform in that all the code runs on all platforms (with a hidden app layer).

What | mean here is that we have two apps, one that runs on iOS and one that runs
on Android, both developed using the same language and sharing a large portion of
the code. They're cross-platform in that the business logic (and ideally the Ul logic)
is truly cross-platform, and the smallest possible device-specific Ul and feature layer
is built to be platform-specific.

The MVVM design pattern is very well suited to helping you get as much code-sharing
as possible.

.NET Standard class libraries

When Microsoft released the .NET Framework, they provided a set of APIs that work
on Windows, and with each version of the framework they added more APIs that
developers can use. Over time, support for more platforms was added, such as Micro-
soft’s Silverlight (apps running in a browser) or the Windows Store (apps running in a
sandbox and distributed via a Microsoft app store). These different platforms didn’t
provide the same capabilities, so code written against the core .NET Framework might
not work on Silverlight if it required APIs that Silverlight didn’t (or couldn’t) imple-
ment. The initial solution to this was portable class libraries (PCLs)—libraries that tar-
geted a common subset of the .NET APIs that would run on all platforms. Xamarin
took advantage of this, using the same model to allow you to write portable class
libraries that targeted the subset of the .NET Framework that runs on iOS or Android.

This worked after a fashion, but it caused a lot of confusion. PCLs come in pro-
files—a profile being a defined subset that will work on a particular combination of
platforms. One profile would work on iOS, Android, and Windows under .NET 4.5,
whereas another would also run on iOS and Android but require .NET 4.6. This
meant that not only would you need to choose the right profile for the platforms you
were targeting, but you’d also need any third-party libraries to also target a compatible
profile. If your profile included .NET 4.5 on Windows, you couldn’t use a library that
used a profile that needed .NET 4.6, for example.

Things are now a lot better, thanks to a new initiative from Microsoft called .NET
Standard. This is an attempt to standardize the different .NET platforms into a ver-
sioned set of APIs. Each platform, such as Xamarin iOS, Xamarin Android, or the
NET Framework on Windows implements a particular version of the standard, as well
as all previous versions. This is an inclusive standard, so if a platform supports .NET
Standard 1.6, it also includes 1.5, 1.4, and so on, all the way back to 1.0. The idea

www.EBooksWorld.ir

What is cross-platform code? 33

behind this is simple—each version has more APIs available than the previous version,
and your code can use libraries that target the same or an earlier version of the
standard. For example, if your code targets .NET Standard 1.6, you can use a library
that targets 1.4. You can think of the .NET Framework on Windows as the most com-
plete set of APIs, and each .NET Standard version as a more complete implementa-
tion of the full NET Framework.

You can read more on .NET Standard libraries, and see what version of the stan-
dard is implement by which version of each platform on Microsoft Docs at
http://mng.bz/sB0y. At the time of writing, Xamarin iOS and Android supports ver-
sion 2.0, so you can use code that targets 2.0 or earlier from your Xamarin apps. Be
aware, though, that targeting higher versions may limit the platforms you support. At
the time of writing, UWP only supports 1.4, so if you decide to add a UWP project to
your Xamarin apps to support Windows 10, you’ll need to ensure the core projects
used by your app target 1.4 or lower.

These .NET Standard libraries are perfect for the cross-platform layer in your
Xamarin apps. The set of APIs that NET Standard libraries implement includes all
the bits that would work on all platforms—collections, Tasks, simple I/O, and net-
working. What isn’t included is anything that’s specific to a platform, such as Ul code.
This is left up to platform-specific code to implement. .NET Standard is just an API
specification, it’s not the actual implementation. Under the hood, the code that
makes up the subset of the .NET APIs isn’t the same on all platforms, each platform
implements their features using the native API that the platform provides. But the
interface to it—the classes and namespaces—are the same.

When you write your cross-platform app,

you want as much code as possible inside i0S i Android

NET Standard libraries, as this is the code A C# i Ctt

that’s shared. Thinking again about the layers |a;,)§r !

in our app, you can easily see which layers & (b= i)

would live in a .NET Standard library, as E

shown in figure 2.7. Ul layer c# [i| c# View
To map this to the project structure youre —— 777 éi'néin_g '''''' :

probably used to in a C# solution, you’d have Ul logic h(;; ______________ View

(at least) three projects. One (or more) would layer (NET Standard) | e

be a NET Standard project containing all

your cross-platftorm UI and business logic

code. Another would be an iOS app project ls;‘ii"l‘;;:r C# (NET Standard) | Model

that contains the iOS application code and the

iOS Ul code. And the last would be an

Android app that contains the Android- Figure 2.7 The cross-platform layers in a
specific UI and application code. This is illus- mobile app are implemented in .NET
trated in ﬁgure 92.8. Standard libraries.

www.EBooksWorld.ir

http://mng.bz/sB0y

34

24

CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

Solution Explorer
QE- o-5F F=5

Search Solution Explorer (Ctrl+;) P~

The Droid project contains
the Android app and is

Android-specific. @ Solution 'MyAwesomeApp' (3 projects)
b [{ MyAwesomeApp.Android
The Core project containing o P [MyAwesomeApp.Core
the cross-platform code is b [E MyAwesomeApp.iOS
a .NET Standard library. '\

The iOS project contains the
iOS app and is i0S-specific.

Figure 2.8 A typical cross-platform app would contain a .NET Standard library with the core code,
an Android app with Android-specific code, and an i0OS app with i0S-specific code

Now that you’ve seen some of the basics, let’s build a simple example app using the
MvvmCross MVVM framework.

Getting started—creating your first solution

As promised, you’re now going to create a Hello World app—a simple app that
doesn’t do very much but allows you to be sure your development environment is
working correctly, and to see how simple it is to create a working app. Because the big
strength of Xamarin is to allow you to create cross-platform apps with a large amount
of code sharing, you're going to create two apps: one for iOS and one for Android.
They will share a common core library with all the business logic—inasmuch as you
can have business logic in a Hello World app. You’ll also leverage what you've learned
in this chapter and build it using MVVM. The MvvmCross framework you’ll be using
here will save you writing a lot of boilerplate code. This framework is hugely popular
with developers building cross-platform Xamarin apps, and it’s very actively main-
tained and enhanced.

MVVMCROSS We’ll be covering what you need to know about MvwvmCross to
build your example apps in this book. If you want to read more about it (or
contribute to the framework—it’s fully open source and welcomes contribu-
tions) then head to https://mvvmcross.com.

We’ll be following these steps to achieve this:

Creating and running a new cross-platform app—We’ll be creating a cross-platform
MvvmCross app using a Visual Studio extension that we’ll be installing. Once this
solution has been created, we’ll fire it up on iOS and Android as a sanity check.
Proving the code is cross-platform—Just to prove we have a cross-platform app with
shared code, we’ll be tweaking the code in one place and seeing the effect it has
on both apps.

www.EBooksWorld.ir

https://mvvmcross.com

24.1

Getting started—creating your first solution 35

Despite using MvvmCross here and in the apps we’ll build in later chapters, the aim is
not to lock you into this framework. We’ll only be using some small parts of it, and the
principles behind those parts are pretty standard for the MVVM pattern. These princi-
ples are easy to apply when using other frameworks, such as MVVM Light.

Requirements—what hardware or software do you need
for each mobile platform?

In chapter 1 we discussed Xamarin’s platform support and the tooling you can use.
Here’s a quick refresher:

If you have a Windows PC, you need to install Visual Studio 2017 and ensure the
“Xamarin” workload is ticked in the installer.

If you have a Mac, you need to install Visual Studio for Mac, which includes
Visual Studio as well as the iOS and Android Xamarin components, the
Android SDK, and Google’s Android emulator. You also need to install Xcode
from the Mac App Store for iOS development.

If you want to develop iOS apps using Visual Studio on Windows, you need to
have access to a Mac with Xamarin and Xcode installed.

Always install or upgrade to the latest stable versions of all components, such as
the latest version of VS 2017, the latest VS for Mac, the latest Xcode, and the lat-
est Android SDK and tools. To install the latest Android SDK and tools, you’ll
need to use the Android SDK manager, available from Visual Studio by going to
Tools > Android > Android SDK Manager on Windows or Tools > SDK Manager
on the Mac.

This book doesn’t cover installation

The Visual Studio installers change pretty often, so it’s hard to keep up with them in
print. Although this book does outline what’s needed, it doesn’t cover installation and
configuration in detail.

At the time of writing, the Visual Studio for Mac installer gives you everything you
need on Mac, including Android SDKs and emulators. The only extra thing you need
to install is Xcode from the Mac App Store to build iOS apps.

On Windows, the Visual Studio 2017 installer installs everything, as long as you tick
the right options for cross-platform development, Android SDKs, and emulators,
which change a bit with each update. If you're using a Windows virtual machine on
your Mac to run Visual Studio, you’ll need to enable your virtual machine to host a
nested virtual machine if you want to run the Android emulators—check the VM doc-
umentation for how to do this. If you use a PC, you’ll need an Intel CPU with virtual-
ization enabled (most modern CPUs have this). The system requirements for running
the emulators are listed at the Android Studio site (http://mng.bz/hkXV).

www.EBooksWorld.ir

36

24.2

CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

(continued)

If you get stuck, Xamarin has great documentation on its website (https://aka
.ms/XamDocs) covering everything you need for installation and setup. The site also
has helpful forums with a great community of users, and Xamarin’s own engineers if
you get a particularly strange problem. And obviously, there’s always Stack Overflow.

At this point I’'m going to assume you already have everything you need installed. If
not, now would be a good time to do it.

For this little test app, we’re only going to test on the Android emulator and iOS
simulator, so don’t worry if you don’t have a physical device to use. If you do have a
physical device, then put it to one side for now and just use the emulator/simulator as
there’s a bit of device setup you need to do to run and debug apps on real devices. On
Android this is simple, but on iOS it’s a bit more complicated. We’ll be discussing this
in chapter 13.

As previously mentioned, we’ll be using the MvvmCross framework, and luckily for
us there’s an extension available for Visual Studio that allows us to create a new cross-
platform solution. This solution contains a core library and platform-specific apps for
all supported platforms (so on Visual Studio for Mac you get an iOS app and an
Android app; on Windows it’s iOS, Android, WPF, and UWP). Seeing as we’ll be
installing an extension, and the projects we create will need NuGet packages, you'll
need internet access. This may sound obvious, but if you're in a coffee shop, now
would be a good time to grab their WiFi password.

Creating the solution
Let’s look at how to install the extension and create our first solution.

CREATING THE SOLUTION USING VISUAL STUDIO FOR MAC

From Visual Studio, select Visual Studio > Extensions. This will bring up a dialog box
to allow you to add or remove extensions. From here, select the Gallery tab, ensure
the repository is set to Visual Studio Extension Repository, and look for MvwmCross
Template Pack under IDE Extensions, or by using the search (see figure 2.9). Select
this and click Install. Then click Install on the dialog box that pops up.

www.EBooksWorld.ir

https://aka.ms/XamDocs
https://aka.ms/XamDocs
https://aka.ms/XamDocs

Getting started—creating your first solution 37

The MvvmCross Template Visual Studio has multiple repositories Enter text in here
Pack is under IDE covering stable versions of extensions to search the
extensions in the tree. as well as alpha and beta versions. extension gallery.

[] Extension Manager
% installed 4@ Updates O Gallery (1) R &
Repository: All repositories il Refresh MvvmCross Template pack
Version 1.3.6
Download size: 0.43 M8

¥ IDE extensions

Available in repository:
roeppea
Adds 2 new project types for creating

cross-plaform MvvmCross apps either
using Xamarin.iOS and Xamarin.Android, or
using Xamarin Forms.

The project that is created for Xamarin iOS
and Xamarin.Android is the same as what
you would get if you installed the
MvvmCross Starter Pack nuget and
followed the instructions.

The project that is created for
Xamarin.Forms is the same as the example

from the MvvmCross-Forms repo on
GitHub.
Install...
Install from file... Close
You can install extensions from files instead Click Install to install the extension.

of from the repository if needed.

Figure 2.9 Selecting the MvvmCross Template Pack from the Visual Studio extension manager

Once this is installed, it’s a good idea to restart Visual Studio, as the new solution type
won’t appear in the right place until you do.
Once Visual Studio is restarted, you can start creating a new solution. You can
access the New Solution dialog box in three ways.
From the menu by going to File > New > Solution
Using the keyboard shortcut Shift-Command-N (£+8+N)
By clicking the New Project button at the bottom of the Get Started page shown

when you open Visual Studio for the first time. Whichever way you choose, you’ll
then be presented with the New Solution dialog box (figure 2.10).

www.EBooksWorld.ir

38 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

[m] console project

Library
e] emety prciect
Androkd "
e [B] o 20proiect
Library Liberary
Tests
B NuBet Package
e EI F# Tutorial MvvmCross Single Page Native
::-“ [#] oty proses Creates a new single page native
MvymCross app.
o Mac ASP.NET
D ASP.NET MVC Project
= wos
- D ASP.NET Web Forms Project
Single Page Native Aplicaton a
o 3 s et
Sxmoet [t
Select Other >.Net, then select Enter the project name here.
MvvmCross Single Page Native Application By default, the solution is given
from the MvvmCross section. the same name as the project.

L] New Project

Caonfigure your new MvwmCross Single Page Native Application

B2 fUsers/JimBannatt/Projects
En HelloCrossPlatformWarld

Project Name: | 1 = -3 (7] MesoCrossPlatformorid.sin
B2 HellaCroasPlathormWorld
[] MelloCrossPlatformwarid.csproj

Location: [Users/SimBennatt/Projects Browse...
B Creste a praject directory within the sclution directory.
Version Controk [Use git for version contral,
3 Create a gitignore file to ign il
— / e

Visual Studio will, by default, create all the files You can change the folder the
needed to push this to a Git repository, even project is created in here.
creating an appropriate .gitignore file for you.

Solution Name: HelloCrossPlattormWorld

Figure 2.10 The New Solution dialog boxes showing the MvvmCross cross-platform app
solution template, and setting the project name

www.EBooksWorld.ir

Getting started—creating your first solution 39

From this dialog box select Other > .NET from the left-side list, and then select Myvm-
Cross Single Page Native Application from the list in the middle. Click Next. On the
next screen enter HelloCrossPlatformiorld as the project name and click Create.

This will create a new solution for you containing three projects: a .NET Standard
core project (HelloCrossPlatformWorld.Core), an iOS app (HelloCrossPlatform-
World.iOS), and an Android app (HelloCrossPlatformWorld.Droid), as shown in fig-
ure 2.11. Once the solution has been created, it will try to download all the NuGet
packages it needs—you’ll see the status bar at the top showing Adding Packages. This
may take a while, depending on the speed of your internet connection, and you may
be asked to agree to some license agreements as they download. You’ll need to let
them fully download before building the apps.

[&] Solution O x
¥ || HelloCrossPlatformWorld (master)
» [HelloCrossPlatformWorld.Core

[C] HelloCrossPlatformWorid.Droid

» || HelloCrossPlatformWorld.iOS Figure 2.11 The three projects that
: are created for you in the new solution

WHY NOT HELLOCROSSPLATFORMWORLD.ANDROID The convention for Android
apps is to use “Droid” in their names instead of Android. This is because the
project name becomes the default namespace, and if you have “<some-
thing>.Android” in your namespace, you can get a clash with the global
“Android” namespace. You end up littering your code with global: :Android
.<whatever> in using directives or types, making it harder to read. Stick to
.Droid, it’s easier!

CREATING THE SOLUTION USING VISUAL STUDIO FOR WINDOWS
From Visual Studio select Tools > Extensions and Updates. Select the Online section on
the left, and use the search box to search for MvwmCross for Visual Studio (figure 2.12).
There are multiple extensions with the same and similar names, so ensure the one you
install is named “MvvmCross for Visual Studio” and is at least version 2.0. Select it and
click the Download button, and click Install in the dialog box that pops up.

Once this is downloaded, you’ll be prompted to restart Visual Studio to install the
extension, so close Visual Studio and wait for the extension installer to finish. After this
has finished, restart Visual Studio, and you can create the new solution in two ways:

From the File menu by selecting File > New > Project
By clicking the New Project option from the Start section of the Start Page
that’s shown whenever you open Visual Studio

www.EBooksWorld.ir

40

CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

Installed shows you the extensions Click Download to download Type here to search
you already have installed. and install the extension. the extension gallery.

| ¥ Installed / Sort by: Relevance . MvvmCross / X =

4 Qrfine MvvmCross for Visual Studio | poyniosd |
Created by: Jim Bennett
: _ x A Visual Studio add-in to create an - B o
4 Visual Studic Ma; ace MvwmCioss -platfo hrtion €... Version: 200

Downloads: 1

b Controls
I Templates Rating: & & & & & (0 Votes)
v Tools More Information
Saarch Rasilts Report Extension to Microsoft
Xamarin
b Updates
Scheduled For Install:
| b Roaming Extension Manager Noba
Scheduled For Update:
None
~ Scheduled For Uninstall:
1 None

Change your Extensions and Updates settings

Updates shows updates to Choose Online to search the extensions
extensions and Visual Studio. available in the Visual Studio gallery.

Figure 2.12 Selecting the MvvmCross for Visual Studio extension from the Visual Studio
Extension manager

From the New Project dialog box (shown in figure 2.13), select the MvvmCross section
under Visual C# on the left, choose MvwmCross Single Page Native Application from
the list in the middle, enter HelloCrossPlatformWorld as the project name, and click
OK. Windows has problems with paths longer than 256 characters, and some of the
directories that will be created when your app is built have long names, so you may
want to ensure your solution is created in a folder close to the root of a drive. If you do
it in C\Users\<username>\Documents\isual studio 201A\Projects, your path may be
too long.

This will create five projects for you: a .NET Standard core project, an iOS app, an
Android app, and a couple of Windows apps covering WPF and UWP. We’re only
interested in supporting iOS and Android here, so you can delete the Universal Win-
dows and WPF projects by selecting them and pressing Delete or using Remove from
the right-click context menu. This will leave you with the same three projects as on
Visual Studio for Mac: the core project, the iOS app, and the Android app, as shown
in figure 2.14.

www.EBooksWorld.ir

Getting started—creating your first solution

Select Templates > Visual C# > MvvmCross,
then select MvwvmCross Single Page
Native Application.

If you don’t want to select a template
from the tree, you can type “MvvmCross”
in here to quickly find it.

41

New Project ? *
4 Visual C= * [INETFramework 6.1 ~| Sort by: | Default <] 12 [E5] MwmCross x -
Windows Univershl
Windews Classic Type: Visual C2

sktop
Web
NET Standard
Android
Cloud
Cross-Platform
0%
MvwmCross
Test
b 05
Net finding what you are looking for?
Open Visual Studic Installer

HName: HelloCrossPlatformWorld
Location: [Cavs\
Sclution name: HelleCrossPlatformWorld

x MuvmCross Multi-Page Xamann Forms Appl... Visual (=

& single page MvwmCross native cress-
platform app

[#] Create directory for solution
[] Add 1o Source Contrel

[[]

Cancel

You can change the
folder the project is
created in here.

Enter the project name. By
default, the solution is given
the same name as the project,
but you can change the solution
name if you want.

/

Visual Studio will, by default, create
all the files needed to push this to a
Git repository, even creating an
appropriate .gitignore file for you.

Figure 2.13 The New Project dialog box, where you can create your new solution

@E- o-50¢a F=

Search Solution Explorer (Ctrl+;)
fa] Solution 'HelloCrossPlatformWorld' (3 projects)
b [c#] HelloCrossPlatformWorld.Core

b [{ HelloCrossPlatformWorld.Droid
b [HelloCrossPlatformWorld.iOS

Figure 2.14 The three projects
left in the solution after deleting
the unwanted ones

Connecting Visual Studio to a Mac for iOS development

| won’t be covering this in detail here, as this is well documented in Xamarin’s “Get-
ting Started” guide, on the developer site at http://mng.bz/KbiM, and it could poten-
tially change between the time of writing and when you are reading this.

Essentially, though, you need to allow remote login on a Mac that already has Xama-
rin and Xcode installed. Visual Studio then connects to this Mac to build your iOS app.
The process is pretty simple, and if you use a Mac hosted in the cloud, your provider
should be able to provide instructions about how to set it up.

www.EBooksWorld.ir

http://mng.bz/KbiM

42

243

CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

What have we just created?

The MvvmCross extension has given us three projects that we care about. We have a
cross-platform core project and two app projects. These projects reference MyvmCross
NuGet packages providing the MvvmCross MVVM framework.

When you create this project, the NuGet packages may not be the latest

NuGet packages are versioned. You can install version 1.0 of a package from the
public NuGet server, and later the author could update it to version 1.1. You can then
easily update the NuGet package from inside Visual Studio.

Be wary though. Sometimes packages may not be backwards compatible. The Mvvm-
Cross extension may not always install the latest versions of the MvwmCross NuGet
packages, and if you update them, the code created by the extension will probably
still work, but there are no guarantees.

The core project is a combination of two of our layers—the cross-platform business
logic layer and the cross-platform Ul logic layer. These layers don’t need to exist in sep-
arate projects—they’re just conceptual layers. The core contains a view model for the
app plus some cross-platform application logic (we’ll discuss the application layer in
the next chapter). Figure 2.15 shows the structure of this project in the solution pad.
You’ll notice here that we don’t have any models. In this simple example, the
model is just a string that’s wrapped up inside the view model (and we’ll play with
this string a bit later). This isn’t normal—in a real-world case, the view model would
need something in the model layer so that it could represent the model layer’s state
and behavior. For now though, as this is a trivial Hello World, there’s no model layer.
The platform-specific app and view layers, as well as the binding, live inside the
two app projects—one for iOS and one for Android—as the code for these apps is

[& Solution
[®] HelloCrossPlatformWorld (master) +«+—— The core, cross-platform project

¥ [HelloCrossPlatformWorld.Core

» [Dependencies
v B§ ViewModels «+ T — View models live in this folder.

@L FirstViewModel.cs

\ App.cs contains cross-platform
IE!) App.cs « TTT— application layer code.
» [HelloCrossPlatformWorld.Droid

» ["] HelloCrossPlatformWorld.iOS

Figure 2.15 The structure of the cross-platform core project

www.EBooksWorld.ir

Getting started—creating your first solution 43

¥ | HelloCrossPlatformWorld.Droid

 Getting Started
'3 Connected Services
» 1 References
[y Components
» [Packages
> [Assets
» [Properties
+ [l Resources
» [y drawable
[drawable-hdpi
[drawable-mdpi
[drawable-xhdpi
'8 drawable-xxhdpi
¥ [l layout
FErs‘Me‘\-V.ame
SplashScreen.axml
(¢, toolbar.axml
» [mipmap-hdpi
» '8 mipmap-mdpi
» [mipmap-xhdpi
» [0 mipmap-xxhdpi
» [mipmap-xxxhdpi
» [values
» [values-v21
], AboutResources.txt
Resource.Designer.cs
v [Views
Baseview.cs
@]Firswm.ns
DebugTraca.cs
LinkerPleaselnclude.cs
Se‘tup.cs
1), SplashScreen.cs

¥ [7] HelloCrossPlatformWorld.i0S
 Getting Started
3 Connected Services
» |1 References
[l Components
» |1 Packages
[Assets.xcassets
» [Properties
» [0 Resources
v [y Views
» Flrst\fbew.l:s
a]ﬁrst\fw.swryboerd
AppDaIegata.c.s
DabugTraca.cs
[Entitiements.plist
rnfo.plist
@L LinkerPleaselnclude.cs
Maln.cs
Setup.cs

Views live here in i0S and
consist of a storyboard
that defines the layout
and some code-behind.

Android defines views using two parts:
an XML layout file and some code-behind.
The XML files live here.

The code-behind for the views lives here.

Figure 2.16 The structure of the i0S and Android app projects

platform-specific. The structure is shown in figure 2.16. In the upcoming chapters we’ll
go into more detail about how Android and iOS define their application layers and
their views.

2.4.4 Building and running the apps

We have two apps now, so let’s run them and see what happens. Figure 2.17 shows
what you’ll see when they’re running. In both cases we have an app that has an edit-
able text box and a label. If you change the text in the text box, the label will be
updated instantly.

www.EBooksWorld.ir

44 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

5004 Newsh iPhone 6s - iPhone Bs / i0S 9.3 (13E230)

Carrier ¥ B:33PM -

View for FirstViewModel

Hello MvvmCross il

Hello MvwmCross

Hello MvvmCross

< O a

Figure 2.17 Our Hello Cross-Platform World apps running on both Android and i0S

When you used the MvvmCross extension to create the solution, it created these two
apps for you, both using some shared common code.

ANDROID
Let’s start by taking the Android app for a spin.

SWITCHING FROM MAC TO WINDOWS The project and solution files created by
Visual Studio for Mac are fully compatible with Visual Studio on Windows,
and vice versa. This means if you use one tool and want to change to the
other, you can. It also means you can load anyone else’s solution, regardless
of what tools were used to create it.

The first thing to do is to ensure the Android app is the startup project, so right-click
it and select Set as Startup Project. Once this is selected, you’ll see options for choos-
ing the device to run it on in the menu.

On Visual Studio for Mac (on the left in figure 2.18), you’ll see two drop-down
menus in the top left, and from the second one you can choose the device to run on—

www.EBooksWorld.ir

Getting started—creating your first solution 45

> | Debug » Virtual Devices
| Android_Accelerated_x86 (API 23)
Sowton Android_ARMv7a (APl 23)

CLEEEELEY Manage Google Emulators...
* [HelloCrossPlatformWorld.Core "

b Hallafrass DlaHareWardd Penld

Debug ~ AnyCPU RGN R [> Xamarin_Android_API_23 (Android 6.0 - API 23) ~ i8S <

P Xamarin_Android_API|_23 (Android 6.0 - APl 23)
Xamarin_Android_API_15 (Android 4.0.3 - API 15)
¥ Xamarin_Android_API_23 (Android 6.0 - APl 23)

Figure 2.18 The Android device selection menus

an emulator or a physical device (if you have one plugged in). Visual Studio uses the
emulators from Google and installs and configures two of these by default. You should
select the Accelerated x86 emulator, as this will be faster on a Mac; ARM-based emula-
tors run about 10 times slower than the x86 version.

Visual Studio for Windows installs the Visual Studio Emulator for Android as part
of its installer (assuming the option was ticked when you ran the installer), and it will
configure a few of these inside Visual Studio for you to use.

These emulators come in different hardware types and different Android OS ver-
sions. You’ll need to use an x86-based emulator (it’s much faster than the ARM ver-
sion), and all the x86 emulators are basically the same in terms of hardware, just using
a different version of the Android OS. For now, just choose the latest OS version, and
run the app either by clicking the Run button on the toolbar, or by choosing Run >
Start Debugging on Visual Studio for Mac or Debug > Start Debugging on Windows.
Sit back and relax as your app is built and the emulator is launched.

Be aware that the first time your app builds, it will take a very long time—there are
a number of SDK files that Xamarin needs to download in order to build an Android
app, and it downloads these the first time your app is built with no feedback in the
output except that it’s building. Don’t kill the build—if you do, you may have to man-
ually clean up half-downloaded zip files. If you do get errors about corrupt zip files,
you can find information on how to fix them in Xamarin’s Android Troubleshooting
guide at http://mng.bz/MKSQ.

DON'T RUN MORE THAN ONE ANDROID EMULATOR Android emulators can be a
bit fussy sometimes, as they run inside virtual machines. If you try to run more
than one, they can freeze up and not start. If you ever get this happening—
the emulator screen stays black and nothing happens—quit it and close all
other emulators you have running, and try again.

www.EBooksWorld.ir

http://mng.bz/MKSQ

46

CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

This app doesn’t do much. It just shows off the very basic features of MvwmCross. If
you change the text in the text box, the label below will update to reflect this. We’ll
dive into what’s happening a bit more later, but for now you’re over the first hurdle—
you have an app that runs. Let’s crack on with iOS.

10S
Building and running the iOS app is very similar to Android. First, ensure the iOS app
is the startup project, just as you did for the Android app.

Next you need to select the device to run on. This is slightly different from
Android. Android always builds the same code for emulators and physical devices, so
all you need to do is choose the device. On Visual Studio for Mac, this is the same—
from the drop-down menu choose a simulator or a physical device if one is available
(on the left in figure 2.19). From here, select the iPhone simulator of your choice,
though a recent one is always good.

[3] Debug » Simulator Debug = iPhoneSimulator = HelloCrossPlatformWorld.i0S = o
iPhone Bs 105 8.3
P Phone6:0593
& Solution iPhone Bs Plus 105 9.3 [pik
{Phane 6108 9.3 Device
¥ & HalloCrossPiatiormWor| i
5 et [Phone 6 Plus i0S 8.3 iPad 2i059.3
loCrossPlatiormV | h
v T Hed oy iPad Air 210593
loCrossPiatformW }
IPad Pro i0S 9.3 iPad Pro i059.3
e elelelach 2 iPad Retina i059.3
IPad Air 05 9.3 < 2
iPad Retina i0S 9.3 Whaneds 0393
IPad 2 i0S 8.3 Phone 5105 9.3
Dedon iPhone 35 i059.3

¥ iPhone 610593
Phone 6 Plus i059.3
iPhone 6505 9.3
iPhone Bs Plus i05 9.3

Figure 2.19 The iOS device selection menus

Visual Studio for Windows is similar, though it breaks this out into two drop-down
menus—one to choose either a physical device or a simulator, and another that shows
the available devices or simulators (on the right in figure 2.19). In this case, choose
iPhoneSimulator from the first menu, and select the simulator of your choice from
the second.

Once the appropriate simulator is selected, run the app. If you’re using Visual Stu-
dio for Mac, the simulator will run on your Mac. If you’re using Windows, the simula-
tor will either launch on your Mac, or on your Windows PC if you have the iOS
simulator for Windows installed.

Once the simulator fires up, you'll see the basic MvwvmCross sample app. This is
identical to the Android app—edit the text and the label updates to match. Awe-
some—your Xamarin app is running on iOS without any extra work.

www.EBooksWorld.ir

2.5

Is this really a cross-platform app? 47

Is this really a cross-platform app?

One of the big upsides of Xamarin is being able to write cross-platform apps—sepa-
rate apps for each platform with shared core code. The question on your lips now is
probably “is this what we're seeing here?” The answer is yes! The iOS and Android
projects have part of the application layer (the code to actually run an application),
and the view layer (the Ul is defined in platform-specific code), but the core of every-
thing is in a shared core project. This is pretty simple to prove, so let’s make a simple
code change to demonstrate it.

In the apps you’ve run on Android and iOS, you have a text box with “Hello Mvvm-
Cross” in it, and a label that matches this text, updating whenever the text changes.
Let’s now change the initial value of this text.

In the Core project there’s a ViewModels folder (figure 2.20), and inside this is a
view-model class called FirstViewModel (in the FirstViewModel.cs file). Look at the
hello field, and you’ll see it’s initialized to Hello MvvmCross. Update this to be Hello
Xamarin in Action as follows.

[Solution
[@] HelloCrossPlatformWorld (master) +—— The core, cross-platform project
¥ [HelloCrossPlatformWorld.Core

> Dependencies
v By ViewModels «+ ——— — View models live in this folder.

@L FirstViewModel.cs
IEL App.cs k—\ FirstViewModel is the one we

want to edit.
» [HelloCrossPlatformWorld.Droid

» [| HelloCrossPlatformWorld.iOS

Figure 2.20 The structure of the core project showing the location of the FirstviewModel class

Listing 2.2 Updated hello field in FirstViewModel

string hello = "Hello Xamarin in Action";

This is a one-line code change in one file in shared code. If you build and run the
Android and iOS apps now, you’ll see that both have the new text showing in the text
box and label, as in figure 2.21.

The apps look the same and work the same. The only difference is the original
string value that’s shown on startup.

www.EBooksWorld.ir

48 CHAPTER 2 Hello MVVM—creating a simple cross-platform app using MVVM

6654:NoxusE iPhane Bs - iPhena Bs [i0S 8.3 (13E230)
Carrler = 12:50 PM -

View for FirstViewModel

Hello Xamarin in Action

:Hello Xamarin in
Action

Hello Xamarin in
Action

Hello Xamarin in Action

Figure 2.21 Both sample apps showing the new text, changed by changing only one line
of code

So how does this all work? Let’s look at this solution to see how it fits into our layers.
This app has two views, one on iOS and one on Android, a view model in shared cross-
platform code, and a string that acts as a model (figure 2.22).

Before we can go into much more detail about what’s happening here, there’s a lot
more about MVVM we need to discuss. In the next chapter we’ll take that deeper dive
into MVVM, and once you've seen in more depth how MVVM works we’ll look in
more detail at the code we’ve just built.

i0S H Android
1
1
App c# |-| c#
layer
C# (NET Standard)
1
C# i C#
FirstView i FirstView
Ul layer ! View
UILabel | TextView
UITextField i EditText
.................... Lo === ===
'l Binding (from framework) —
NET : :
Ul logic (S:?aﬁldard) FirstViewModel View
layer string Hello{get;set;} model
Figure 2.22 Our Ul code is in
Busi C# (NET) the platform-specific Ul layer;
IogisclT:;:r Standard) Hello X‘f‘maf in Model our core class with its string
in Action property is in the cross-platform
business logic layer.

www.EBooksWorld.ir

Summary 49

Summary
In this chapter you learned that

A number of design patterns have evolved over time to help in making better
UI applications. The latest incarnation of these, MVVM, is very well suited to
building Xamarin apps, as it maximizes the amount of cross-platform code in
our apps.

A cross-platform Xamarin app is not totally cross-platform. Instead it’s an app
where all platforms are written in the same language (C#) so that you can share
a large portion of your code.

Cross-platform code is written in .NET Standard libraries that provide access to
a subset of .NET that works on all platforms.

The MVVM pattern consists of three layers. You can write two of these layers,
the model and the view model, once inside a .NET Standard library and share
the code between your iOS and Android apps.

You also learned how to

Use an extension in Visual Studio to create a cross-platform Xamarin app, with
projects for iOS and Android, and a .NET Standard library core project for
shared code.

Run these apps inside the iOS simulator and Android emulator.

www.EBooksWorld.ir

MVVM—
the model-view—view
model design pattern

This chapter covers

= A more detailed look at what’s in the model, view model,
view, and binding layers

= How a view model provides cross-platform Ul logic by
modeling state and behavior

= Using property-changed notifications
= Using commands

= How the binding layer glues the view and view-model layers
together

= Value conversion in the view model and value converters
= What happens in the application layer
= Navigation patterns for MVVM apps

50

www.EBooksWorld.ir

51

In the previous chapter we looked at the MVVM JE—
UI design pattern, before creating our first cross-
platform example app. We’re going to examine that
example app in a lot more detail, but first we need
to look at the layers in an MVVM app in more
depth. To do this we’ll take an example calculator \/
app (figure 3.1) and look at how we’d write this

using MVVM.

To understand how to build this app we need to

look at how the user will interact with the UI, and
see how those interactions move up and down “
through the layers of MVVM. Figure 3.2 shows a

high-level overview.

Figure 3.1 A simple square-root
calculator app that calculates the
square root of a given number

I. The app launches, 2. The user enters the 3. The user taps the Square 4. The result of 20 is
creating the model, number 400 into a text Root button, and this calculated in the model,
view, view model, box, and this value is action is propagated and the value propagates
and binding. propagated down through down through the layers back up through the layers
the layers until it ends up to the model, where the until it’s shown on the Ul
\ as a number on the model. square root is calculated. as text on a label.

— N N /

Sqrt Sqrt Sqrt

Square Root

(400 (400 | (400

\
[)|

Square Root Square Root Square Root

View

Binding

View model

Model

Figure 3.2 A typical user interaction with our square-root calculator

www.EBooksWorld.ir

52

3.1

CHAPTER 3 MVVM— the model-view—view model design pattern

At the end of this chapter, we’ll revisit this app diagram, breaking each layer apart and
seeing all the interactions that take place between each layer. This chapter is theory
rather than practice, but it’s important in understanding how to structure your app to
get the most out of the cross-platform capabilities that Xamarin offers. The code
examples here are simple examples and pseudocode, not parts of a fully working app.
In the next chapter we’ll be taking what you learn here and using it to understand and
build on the example app you built in the previous chapter.
Let’s start by looking at how this app could be split between the different layers.

The model layer

The model layer is a cross-platform layer that represents your data, your business logic,
and your access to external resources such as databases or web services. The simple cal-
culator app doesn’t need to access any external resources, but if you did need to persist
data to a database or interact with web services, you’d do this in the model layer.

In our calculator example, the model layer would contain a square-root calculator
class that takes a number, calculates the square root, and makes the result available,
similar to the structure shown in figure 3.3.

The following listing shows a possible implementation. The class has a number
property, Number, a Sqrt method that calculates the square root of the number, and a
read-only Result property that stores the result.

Listing 3.1 A possible implementation of SquareRootCalculator

public class SquareRootCalculator
{
public double Number {get; set;}
public double Result {get; private set;}

public void Sgrt ()
{
Result = Math.Sqgrt (Number) ;

i0S H Android
1
App | cH |E| i |
layer
C# (.NET Standard)
i
Ul layer | C#t | ! | C# | View
!l Binding (from framework) '—
Ullogic C# (NET Standard) View
layer model
C# (NET
IBu§|r|1ess Standard) SquareRootCalculator Model Figure 3.3 The model layer
ogic layer with the classes for the
calculator app

www.EBooksWorld.ir

3.2

The view-model layer 53

The model layer is a layer—it contains one or more classes working together. As you’ll
see later in this chapter, you’ll usually have one view whose name is suffixed with View
for a screen (for example, SquareRootView), and one view model for that view with a
name suffixed with ViewModel (such as SquareRootViewModel). It’s normal to assume
that there should be a corresponding Model class providing the data and business
logic for that view model, but this doesn’t have to be the case. If you want to write your
code that way, go ahead, but don’t feel you have to.

There are many ways to build the model layer following many different patterns
and practices (such as domain-oriented or data-centric approaches). How you build
this layer is up to you, but there are a few main principles you should stick to to make
this layer the first M of MVVM:

The code should be cross-platform—One of the reasons for using this pattern is that
it allows you to reuse as much code as possible.

The code should be testable—Another key reason for using MVVM is testability—
the segregation of the Ul from its logic means you can unit-test that logic, and
this same principle should apply here. Your model layer should be testable
using unit tests—your classes should be well written with single responsibilities
so tests can be clearly defined.

Again, thinking of our calculator app, the SquareRootCalculator class is
very easy to unit-test. You could write tests that set different values for Number,
call Sgrt, and verify the Result property. This is a trivial example, but even in a
more complicated app you’ll need to ensure that it’s testable. This way you can
ensure your model works without having to always build and run your app.

The model should represent data and business logic at the domain level, not the UI level—
This is an important principle of the model layer—it should represent your
data and logic at a level that makes sense to your domain. Any value conversion
of the data in business terms to UI terms shouldn’t be performed at this layer.

Thinking again about our calculator app, the UI controls for entering values
and showing them usually deal with string values. Strings are no good here as
you need to calculate using numbers, so the model should always think in terms
of numbers. The other layers can deal with strings and conversions.

UNIT TESTING Unit testing is a massive topic, worthy of a book in its own
right, so I won’t be going into much detail about it here. All I will be covering
is how to approach writing your app using MVVM to help with writing your
unit tests. If you want to read more on this topic, I recommend 7The Art of Unit
Testing, Second Edition, by Roy Osherove (Manning, 2013).

The view-model layer

The view-model layer (the VM at the end of MVVM) is the Ul logic layer. This layer is
responsible for two things:

www.EBooksWorld.ir

54

3.2.1

CHAPTER 3 MVVM— the model-view—view model design pattern

Value conversion—From data in the model layer represented in a way that makes
sense to your domain to the way data is represented in the Ul

UI logic—Such as logic that determines when to show data and when and how to
navigate between different views

There are a few basic principles behind a good view model:

Just like the model layer, it should be cross-platform.

Again, like the model layer, it should be easily testable using unit tests. You want
to have as high-quality an app as possible, so being able to test the Ul logic
quickly and thoroughly using unit tests will help you achieve this goal.

It must be bindable. Binding is the glue that connects the view model to the
view, and the view model will need to implement features such as property-
changed notifications that allow the binding layer to be aware of changes so
that it can keep the Ul and view model in sync.

It should be stateless. The view model is a value conversion and logic layer. It’s
not a data store, so its state should always come from the model layer. When the
UI changes the state (such as when a text box is updated) the binding tells the
view model that something has changed and that the view model is responsible
for updating the state in the model.

The view model is the meat of the MVVM pattern, and it will usually map one-to-one
against the different screens or to different sections of each view. In our calculator
app, we want a view model that wraps the model, called SquareRootViewModel (figure
3.4). If we had an app with multiple screens, maybe one for square roots and one for
cube roots, we’d also have two view models, SquareRootViewModel and CubeRoot-
ViewModel, each accessing the model layer. Because our model layer is a layer and
doesn’t map one-to-one with view models, we could have both square root and cube
root in the same model class, and that one model would be used by both view models.

State and behavior
When considering a U, there are really two things to think about—state and behavior.

State is the information you see on the screen, be it actual data, like text and
numbers, or a representation of the app’s state, such as buttons being disabled
or validation errors being shown around text boxes. State is a representation of
the data in the model in a way that maps to the Ul, using properties, just like the
properties you’d put on a class.

Behavior is the actions that happen when a user interacts with the UIL The view
model is the implementation of this. Behavior is represented using commands,
objects that encapsulate some kind of logic, which is fired by interacting with
the Ul in a way that executes the command.

Think of driving a car. You're driving at a certain speed, as indicated by the speedom-
eter. By pressing the accelerator you go faster; by pressing the brake you go slower.

www.EBooksWorld.ir

The view-model layer 55

i0S H Android
1
App | C# |E| c# |
layer
C# (.NET Standard)
i
Ul layer | C# | ! | C# | View
S Binding (from framework) _ _ _ __ —
C# (NET
Ul logic Standard) . View
layer SquareRootViewModel model
C# (.NET Figure 3.4 The view-model
IBu_suress SENEEIC) SquareRootCalculator Model c'_asses 'for the calculator app,
ogic layer with a view model that wraps
the SquareRootCalculator

The state is the speed—represented in miles or kilometers per hour. The car deter-
mines its speed by measuring the speed of rotation of the driveshaft and converting
this value into a vehicle speed. In this case, the driveshaft speed measurement is
exposed to the speedometer as a representation of the driveshaft speed but it’s con-
verted mathematically to the vehicle speed.

The behavior is the ability to change speed by pressing the accelerator or brake.
When you press the accelerator, the engine allows more fuel/air in, making the
engine go faster. When you press the brake, the wheels are slowed down using friction.
The representation of how to increase speed is pressing on the accelerator pedal. The
representation of how to decrease speed is pressing on the brake pedal.

The speedometer represents the engine speed, and the pedals represent the
behavior of changing speed, all in a driver-friendly way. This is analogous to our
MVVM layers. The model is the mechanicals of the car, and the view is the speedome-
ter and pedals. The view model represents the vehicle speed and speed-change behav-
ior to the speedometer and pedals in a way that’s consistent with the view.

If we consider our square-root app, we have one number and the ability to tap a
button to calculate the square root and see the result. The state here is the number we
want to calculate the square root of, as well as the result. The behavior is a command
that encapsulates the logic to calculate the square root. By tapping the button, you
command the view model to do something that does this calculation.

It probably sounds a bit contradictory to say that the view model represents state
and behavior after saying that one of the basic principles is that it should be stateless.
Let’s examine what’s meant by both things.

The view model represents the state of the Ul in that all the values and logic that
define the data shown in the UI come from the state of the view model as exposed to
the view layer. The values in text box and label come from properties on the view
model. The setting that defines whether a control is visible or hidden comes from the

www.EBooksWorld.ir

56

CHAPTER 3 MVVM— the model-view—view model design pattern

properties of the view model. In this sense, the view model provides a representation
of the state of the model layer to the Ul

As a class, though, the view model should be stateless, in that it gets its state from
the model layer and shouldn’t hold on to this state itself. The values in the text box
and label are read from the view model, but the original source is the model layer (fig-
ure 3.5). At any time you should be able to recreate the view model from the data in
the model layer, because it will not store any state itself.

I. The binding needs to bind i 4. The view model returns its
to a property called “Result”, View representation of Result to
so it gets this value from the - - the binding layer. The binding
state represented by the Resul&> : Binding ; / layer is agnostic to where the
property on the view model. : : value came from originally;

View model it just cares that it sees a
Result representation of state on
. The view model represents the the view model.

state, but the model contains /
the state, so the Result property 3. The model holds the actual
on the view model reads its value Model \ state and returns the value
of Result from the property on public double Result {get;set;} of its Result property to the
the model. view model.

Figure 3.5 The view model is a representation of the state shown in the model.

The SquareRootViewModel view model
class. The convention is to name view
models with the suffix “ViewModel”.

The real state is in the model layer, and the view model converts that state into state
that’s appropriate for the view layer. The view model represents the state, but the model
contains the state. By having the view model as a representation, you can return the
state directly or perform value conversions on the state before returning it to the
binding layer.

PROPERTIES AND CHANGED NOTIFICATIONS

In its simplest form, a property of a view model is the same as any other property you
may have used in C# code. It has a getter and a setter—methods that return some data
or set the data. Internally in these methods, it could just return or update values, or it
could have some logic. In its simplest form, a property can get and set a value on the
model, as shown here.

Listing 3.2 Pass-through property that gets and sets first number value on the model

The view model has an instance of
the model stored as a private field.

The view model exposes the number
public class SquareRootViewModel to be used in the calculation through
{ the Number property.
SquareRootCalculator sgrtCalc;
The getter for the Number property is a simple
pass-through—it just returns the value of the

{ property on the underlying model.
get { return sgrtCalc.Number; }

public double Number

www.EBooksWorld.ir

The view-model layer 57

set { sqrtCalc.Number = value; } < The setter is also a simple pass-through,

’ setting the value on the underlying model.

public double Result

¢ The Result is also a pass-through,

but it’s read-only on the model so
} it’s only a getter, not a setter.

get { return sgrtCalc.Result; }

So far, so simple. In fact, you’re probably wondering why we bother with a view model
atall if it just calls straight in to the model. The reason for using a view model is because
view models support property-changed notifications—the raising of an event to tell any-
one who’s interested that a property has changed. Remember the binding layer? This
keeps the Ul in sync with the underlying data, and part of keeping this in sync is being
aware of when things change. Figure 3.6 is a recap of binding, highlighting this.

The Text property of the TextBox is bound to a property
“ called “Number” on the view model. The binding looks
up the “Number” property on the view model and finds
400 it using reflection.

\/ The binding listens for updates to the Text property of
the TextBox (usually via a text-changed event raised by

the TextBox). When the user changes the text, the binding

updates the Number property on the view model.

The binding also listens for updates to Number. When

the property changes, it updates the Text property of the
TextBox on the Ul.

TextBox View model
Text Number

Figure 3.6 The binding listens to changes in the view model and updates the view accordingly.

The way the binding layer does this is through property-changed notifications. These
are events raised by the view model telling anyone who’s interested that a property has
changed. In our case, the binding layer is interested, so it listens to these notifications.
When it gets one, it will read the new value of the property and update the UI to match.

The standard way of implementing property-changed notifications in G# is though
an interface called INotifyPropertyChanged. This interface has been around since
NET 2.0 (over a decade ago), and has only one member, an event called Property-
Changed, which uses the standard event-handler delegate, passing an object that
defines the sender and some event arguments. These arguments are of type
PropertyChangedEventArgs, and this type only has one member of note—Property-
Name, the name of the property that has changed as a string. The following listing
shows this interface.

www.EBooksWorld.ir

58

CHAPTER 3 MVVM— the model-view—view model design pattern

Listing 3.3 The INotifyPropertyChanged interface

public interface INotifyPropertyChanged
{

event PropertyChangedEventHandler PropertyChanged;
}

This event doesn’t include the value that’s changed, just the name. The binding layer
will subscribe to this event, and when it’s raised it will get the name of the property
from the event args, find the UI control (or controls) that’s bound to a property of
that name, read the new value from the view model, and update the UL

NOTIFYING THAT ALL PROPERTIES HAVE CHANGED By convention, if you use an
empty string or null as the property name in the event args when raising this
event, it tells the binding layer that everything has changed, so it should
reread all values and update the Ul Be warned, though; not every MVVM
framework will obey this convention.

We can update the view model example to implement this. When the number
changes, or the result of the square root changes, we need to notify the binding of this
change via a property-changed notification. One thing to note here is that your view
model should only notify if something has actually changed—if the value hasn’t
changed, the event shouldn’t be raised.

Let’s add a sqrt method for our view to illustrate this.

Listing 3.4 Adding property-changed notifications to our view model

The view model needs to implement The PropertyChanged event comes
INotifyPropertyChanged. from the INotlfyPropert¥Cha:.rflged
interface.

public class SquareRootViewModel : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged;

—— > void RaisePropertyChanged(string name)
{
PropertyChanged?.Invoke (this,
new PropertyChangedEventArgs (name)); ¢—

The RaisePropertyChanged
method is a helper method to
raise the property-changed
event for a given property.

The event is raised using event
args that contain the name of the
property that has changed.

www.EBooksWorld.ir

The view-model layer 59

public double Number
{
get { return sgrtCalc.Number; }
set
{
—_— if (sgrtCalc.Number == value) return;
sgrtCalc.Number = value;

} RaisePropertyChanged ("Number") ; After the Number property
) changes, a property-
changed event is raised.
public void Sqgrt ()
{
sqgrtCalc.Sqgrt () ;
RaisePropertyChanged ("Result") ;

After the Sqrt method on
) Y the model is called, the
Result property is updated

X so the event is raised.
When the Number property is set, the new value

is compared to the old one, and if the value
hasn’t actually changed, nothing happens: no
update and no property-changed notification.

Simplifying RaisePropertyChanged using an attribute

C# defines an attribute called CallerMemberName that you can set on a string param-
eter of a method, and it tells the compiler to use the name of the calling method or
property as the value for this parameter. This means you can define your property-
changed method as follows:

void RaisePropertyChanged ([CallerMemberName]string name = null)

Then you can call it using RaisePropertyChanged () from inside your property set-
ter, without passing any explicit value for name to the method. The name of the prop-
erty this is called from will be automatically set as the name parameter. For example,
if you call this from inside the setter of the Number property, the value of the name
parameter will be “Number”. A number of MVVM frameworks, including MvwmCross,
use this for their raise-property-changed methods.

Property-changed notifications are the way to tell the binding layer that something
has changed. You can notify about any property at any time—you don’t have to notify
about the property being changed. For example, if your view model had two proper-
ties for a person’s first and last names, and a property that reflected their whole name
as a concatenation of the first and last names, you’d want any changes to either the
first or last name to raise a property-changed notification for the whole name, as
shown in the following listing.

www.EBooksWorld.ir

60

CHAPTER 3 MVVM— the model-view—view model design pattern

Listing 3.5 Property-changed notifications can be raised for any property at any time

public string Name The Name property is
{ dependent on the values of
" + LastName; }

get { return FirstName + " FirstName and LastName.

}

public string FirstName
{
get { return model.FirstName; }

set

{ Because of this dependency,
if (model.FirstName == value) return; when FirstName changes, it
model .FirstName = value; raises a property-changed
RaisePropertyChanged ("FirstName") ; notification for itself and for
RaisePropertyChanged ("Name") ; the Name property.

COLLECTIONS AND COLLECTION-CHANGED NOTIFICATIONS

In addition to using individual properties, there’s a standard way in C# of notifying
the binding layer that the items in a collection have changed: using a similar interface
called INotifyCollectionChanged. This is generally used with list controls—UI wid-
gets that show a list or table of data. Just like with INotifyPropertyChanged, the bind-
ing layer subscribes to an event, and when it receives this event, it will tell the list
control to reload the changes.

Unlike INotifyPropertyChanged, this isn’t an interface that the view model
defines; instead, this is at the property level. The view model will expose a property of
a type that implements INotifyCollectionChanged, and when the binding layer
binds this property to a corresponding property on the list control, it will also sub-
scribe to the event on that property.

An example of this, with an app that shows a list of names, is shown in figure 3.7.
This interface just contains one member, an event called CollectionChanged. This
uses the standard event-handler delegate with event args of type NotifyCollection-
ChangedEventArgs. The following listing shows this interface.

Listing 3.6 The INotifyCollectionChanged interface

public interface INotifyCollectionChanged
{
event NotifyCollectionChangedEventHandler CollectionChanged;

These event args contain a number of properties allowing you to describe the changes
that have been made to the collection. This, in turn, allows the bound list control to
respond appropriately if possible.

For most use cases, though, you don’t need to worry too much about this because
there’s a nice helpful collection that’s already part of the .NET Framework that han-
dles all of this for you—ObservableCollection<T>. The collection is derived from the

www.EBooksWorld.ir

The view-model layer 61

View The ItemsSource property of the List is bound to a property
Names: called “Items” on the view model. The binding looks up the
0 “Items” property on the view model and finds it.
m
Bob The binding also listens for updates to the Items list. When
Alison the collgction changes, it updates the ItemSource property
of the List on the Ul.
Kim
List e] View model
public IEnumerable Binding
_________________ Number
ItemSource {get;set;}

Figure 3.7 Collections can be bound to list controls, and when the collection changes, the list
control on the Ul is updated.

generic List<T> and implements INotifyCollectionChanged. When you perform
any action that changes the list, it will raise the event with the correct arguments.

When the underlying ObservableCollection changes (such as when an item is
added to it), the event is raised, and the binding detects this and tells the list control
to update and show the changes. This is shown in figure 3.8.

Be aware, though, that ObservableCollection will raise the CollectionChanged
event for all changes, so if you’re adding thousands of items, the UI will update thou-
sands of times, which can slow or even lock up your UL It’s probably better in this case
to create a new collection, add all the values to it, and then set your property to this

View When a new item is added to the Items observable
Names: collection (in this case “Gary”), the CollectionChanged

Jim event is raised.
Bc_m The binding detects this event and tells the List control
Alison to update itself to show the new entry. Gary then appears
Kim on the end of the list.
Gary

List CollectionChanged View model

New item is added to the list Items.Add("Gary") ;

Figure 3.8 When an observable collection is updated, an event is raised and the binding detects
this and tells the Ul to update.

www.EBooksWorld.ir

CHAPTER 3 MVVM— the model-view—view model design pattern

new collection—leading to only one Ul update. The following listing shows an exam-
ple of this.

Listing 3.7 Creating a new collection and updating the property

public ObservableCollection<string> Names {get; private set;}

void AddLotsToTheCollection (IEnumerable<string> lotsOfNames)
{
——> var newCollection = new ObservableCollection<string> (Names) ;

foreach (var name in lotsOfNames)
newCollection.Add (name) ;

NaIInes = newCollectlon',-‘ : The public property for the
RaisePropertyChanged("Names"); observable collection is updated
} to the newly created collection.

A new observable collection is
created, copying the values from
the existing collection.

A property-changed
notification is raised to tell the
Ul to use the new collection.

OTHER IMPLEMENTATIONS OF ObservableCollection CAN MAKE THIS EVEN EASIER
There are a number of implementations of ObservableCollection available
in various open source projects that provide better support for bulk operations
by blocking the collection-changed event until all operations are complete.
One such implementation from MvvmCross is MvxObservableCollection,
which has an AddrRange method that suppresses the collection-changed event,
adds all the items passed to the method, and then raises the collection-changed
event. This collection also provides methods for bulk deletes and replace-
ments and for suppressing the collection-changed event while you perform
custom operations.

COMMANDS

The properties of the view model define its state, so the next thing to look at is how
behavior is defined. The standard way to define behavior in MVVM is using the com-
mand pattern. In this pattern, everything needed to perform an action is encapsulated
in an object, and you tell this object that you want it to perform its action at a certain
time, giving it any extra information it needs about the particular time it’s run.

Think of a genie—your wish is its command. You tell the genie that you want a cof-
fee, and it obeys your command using its magic, and poof, a coffee appears, as shown
in figure 3.9.

You can think of the command pattern the same way. The command is an object
that encapsulates the ability to perform an action, such as a genie who encapsulates
the ability to grant your wish. You execute the command with an optional parameter,
commanding the genie to bring you coffee. The command then performs the
action—the genie brings you coffee.

In the C# world, ICommand is the interface for an object that implements this com-
mand pattern. It has a method you can invoke to execute the command with a param-
eter, a method you can call to see if you can execute the command with a parameter,

www.EBooksWorld.ir

The view-model layer 63

| command
you to give me

Your wish is
my command

C >
Figure 3.9 Commanding a genie to bring
you coffee. It would have been eternal
wealth, but coffee was easier to draw.

and an event that gets raised when your ability to execute the command changes as
shown in the following listing.

Listing 3.8 The ICommand interface

public interface ICommand

{
void Execute (object parameter) ;
bool CanExecute (object parameter) ;
event EventHandler CanExecuteChanged;

—

As shown in figure 3.10, you can think of Execute as a method that commands the
genie to grant your wish, and the parameter as the thing you wish for. Traditionally, a
genie will only grant three wishes, so figure 3.11 shows that CanExecute will return
true while you have wishes remaining, but after your third wish will return false. The
CanExecuteChanged event is like the genie telling you after your third wish that you’ve
run out of wishes (and disappearing in a puff of smoke back into the lamp).

Genie checks

'
d *
~ how many
'n\» B

already had

Your wish is
my command

Less than 3

If a wish is granted,
the Genie rechecks
how many wishes
you've already had
’ve l After 3 wishes, the

/A IE,I CanExecuteChanged | Genie disappears

back into his lamp

Sorry, you're
out of wishes

Figure 3.10 Our genie is like the ICommand interface—we can make a wish (Execute) and see when we’ve run
out of wishes (CanExecuteChanged).

www.EBooksWorld.ir

64

CHAPTER 3 MVVM— the model-view—view model design pattern

you've already had

false

Figure 3.11 We can also ask the genie if we can have any more wishes (CanExecute).

r
® 2
— Genie checks
—>| CanExecute (4WP) |—>j — how many wishes —| Less than3 true

The command is exposed as a property on the view model, and the binding layer will
have a way to wire up the command to a widget on the UL

The classic use case is with a button. Buttons usually have a click event, or a similar
event that’s run when the button is tapped. When a button is bound to a command,
the click event will Execute the command. The enabled state of the button would also
be bound to the CanExecute method, so if CanExecute returns true, the button is
enabled, and if it returns false, the button is disabled. This would be evaluated when
the button is first bound and every time the command raises the CanExecuteChanged
event. This is shown in figure 3.12.

In our calculator app, the Square Root button would be bound to a command
that, when executed, calls the Sqrt method on the model. If you haven’t entered a
number into the text box, you can’t calculate a square root, so in this case the Can-
Execute will return false and the button will be disabled. Once you enter text, the
CanExecuteChanged will be raised to tell the binding to re-evaluate CanExecute and
enable the button.

The Click event of the button is bound to a property
called “SqrtCommand” on the view model. The binding
looks up the “SqrtCommand” property on the view

0 model and finds it.

The binding listens for the Click event of the button.
When this is raised, the Execute method on the
0 command on the view model is called.

[72]
N £y

The Enabled property of the button is set based on
the return value of CanExecute of the command. If

the command raises the CanExecuteChanged event,
this is re-evaluated.

Button Lo View model

public event EventHandler Click {get;} Binding public TCommand SqrtCommand {get;}
public bool Enabled {get;} [~ ~"77777

Figure 3.12 Events such as button clicks can be bound to commands, and these commands are
executed when the event is raised.

www.EBooksWorld.ir

3.2.2

The view-model layer 65

Commands don’t return a result, they just run and return once they’ve finished. The
way to return a result, if one is required, is by making changes to the state of the view
model and raising a property-changed event. Some commands don’t need to update a
state because they don’t do anything that requires feedback on the current UI. Com-
mands that do need to update, such as saving data and indicating that the data has
been saved, will do it by updating a property that causes the Ul to change.

Usually you don’t need much fancy logic with a command—just create a command
object and give it a method to run when it’s executed. Unfortunately (and somewhat
surprisingly) there isn’t a default ICommand implementation built into the .NET
Framework that does this. Luckily there are plenty of example implementations
around the internet and others are built into the various MVVM frameworks. These
commands usually take in an Action that provides the method to run on execution,
and optionally a Predicate (a method that returns a Boolean) to use for the imple-
mentation of CanExecute. They also provide a method you can call to raise the Can-
ExecuteChanged event.

In our calculator view model, we can change the Sqrt method shown in listing 3.4
to a command, as follows.

Listing 3.9 Adding a command to the view model

public class SquareRootViewModel : INotifyPropertyChanged
{

public ICommand SgrtCommand {get; private set;} The Sqrt method has been

public SquareRootViewModel () removed, and a new property
(of type ICommand has been

SgrtCommand = new MvxCommand (o => added, called SqrtCommand.

{ .
Creates a new instance

sqrecale.sart(); of the command

RaisePropertyChanged ("Result") ;
1)

In the constructor for the view model, the SgrtCommand is set to a new instance of
MvxCommand, the command class from MvvmCross that takes an Action<object> to
execute (Execute takes an object as its parameter, so the action needs to have an
object parameter). The action is invoked when the command is executed, and in this
example the action calls Sgrt on the model and raises a property change to indicate
the Result has changed.

Value conversion

The model contains data in a way that’s relevant to the domain or business logic; the
UI handles data in a format that can work with the widgets on screen. Some of the
time these formats will be the same, but other times they won’t match.

www.EBooksWorld.ir

CHAPTER 3 MVVM— the model-view—view model design pattern

When they don’t match, the view model will need to convert the state of the model
to a state that the UI can use. The view model will represent the state of the model
using the converted values. Similarly, if the Ul is updated, this needs to be reflected by
updating the state represented by the view model. This means setting a value using
data in the format relevant to the Ul, and then converting it to the format used by the
model. It’s the view model that’s responsible for this value conversion.

Asyou’ve probably noticed in our square-root calculator, the model deals with num-
bers as doubles. This is the business layer, so doubles are fine. Uls, on the other hand,
don’t normally deal in doubles. Text boxes like the one used for entering the number
usually deal in strings, and so do labels like the one we’re using to show the result.

This is where the view model comes in—part of its job is value conversion from the
model layer to the Ul layer. In this case it should be responsible for converting from
strings in the UI to numbers in the model and vice versa.

Let’s look at how the view-model class code should work.

Listing 3.10 Handling value conversion from the model (doubles) to Ul (strings)

public class SquareRootViewModel

{ The Number property on

o the view model is a string. To return a string, the
public string Number getter calls ToString()
{ on the double value

get { return sqgrtCalc.Number.ToString(); } from the model.

set

{

if (value == Number) return;

Compares the value to the

existing value using the property

on the view model instead of the
} property on the model. The

} value is a string, so you need to

compare it with a string instead

of the double on the model.

— 1 sqgrtCalc.Number = double.Parse(value) ;
RaisePropertyChanged ("Number") ;

public string Result

{

get { return sgrtCalc.Result.ToString(); } Again to return a
y

} string the view model
} calls ToString() on the

. value from the model.
To set a double on the model, the setter parses the string

into a double. This could fail, so in the real world you’d
need to ensure the string value is always a valid number—
most Ul text boxes can limit which characters the user can
enter to numbers and decimal points.

VIEW MODELS ARE RESPONSIBLE FOR VALUE CONVERSION The layers above the
view model think in terms of the UI, and the layers below think in terms of
the business logic and domain. The view model is responsible for converting
from one to the other as data passes through this layer.

The model layer has data as doubles. The view-model layer converts these values to
strings, and represents the state of the model layer through string properties. This

www.EBooksWorld.ir

3.2.3

The view-model layer 67

state is in the right format for the Ul layer, so the binding layer can set the text on the
UI controls to these string values. Once a string value on the Ul is updated, the bind-
ing layer updates the string representation of the number on the view model, which
converts the value to a double and updates the data on the model.

There are times where you might want platform-specific value conversion rather
than cross-platform conversion in a view model, and you can do this using a value con-
verter. We’ll look at these later in the chapter.

Testability

Like the model layer, the view-model layer should be built with testability in mind.
View models not only provide cross-platform logic, but when they’re well built you can
write unit tests to verify that their logic is correct: one code base for this logic, one set
of tests, one place to find and fix bugs. This is one of the major reasons behind the
original invention of MVVM—you can write unit tests against your Ul logic. It’s very
easy to do thanks to the way view models encapsulate state and behavior. You can test
user interactions with the UI by writing test code that replicates the way the binding
would update the view model.

For example, to test a user typing into a text box, you don’t actually need a text
box. Instead you can write code that acts like the binding layer and sets the value of
the property on the view model that would be bound to the text box. To test updates
coming to the Ul from the view model, you just need to listen for property-changed or
collection-changed events, and when these happen verify that the property or collec-
tion has the correct value. To test a user clicking a button, you just need to execute the
command and verify what happens.

When building your view models, you should always think about unit testing. Your
view models should be well decoupled and use techniques like interface over imple-
mentation, the same as for models. It’s also worth seeing what your MVVM framework
offers to help you with this. For example, some frameworks provide a messenger to
allow your view models to communicate indirectly with other view models (or other
classes in your app) without having to be aware of each other.

To improve the testability of the SquareRootCalculator view model, we should
decouple it from the model by exposing an interface on the model and passing an
instance of that interface when the view model is constructed inside our app. From a
unit test, we can create a mock model that implements this interface, and then use
this when we construct the view model. This way we have complete control over what
the model will do in the test.

As mentioned earlier, unit testing is a huge topic, and mocking is an important
part of it. It’s outside the scope of this book, but if you always build your model and
view-model layer code to prefer interface to implementation, you’ll be well set up for
unit testing.

www.EBooksWorld.ir

68

3.3

CHAPTER 3 MVVM— the model-view—view model design pattern

The view layer

Put simply, the view layer is the Ul Everything that has to be platform-specific because
it deals with Ul widgets is in the view layer. This layer should be as thin as possible and
just contain code to define which widgets are needed on screen and the values of any of
their properties that won’t change based on logic inside the view model. When you’re
building your view, if you find yourself adding any logic, move it to the view model.

Thinking back to our calculator example, we’d need to create two views called
SquareRootView, one in the iOS app and one in the Android. This naming is in keep-
ing with the convention of the view and view model having the same name with a dif-
ferent suffix, as shown in figure 3.13.

i0OS ! Android
App | c# |i| c# |
layer
C# (.NET Standard)
!
| storyboard ML) |i| Layoutmy) |
1
Ul layer C# 1 C# View
| SquareRootView | H | SquareRootView |
1
'l Binding (from framework) E—
Ul loai C# (NET Vi
Ia;egrlc Standard) SquareRootViewModel mcl)edvél
) C# (NET
IBU.SITGSS Standard) SquareRootCalculator Model Figure 3.13 The view layer is
ogic layer not cross-platform so the views
have to be created twice.

As this layer isn’t cross-platform, you can add all the fancy Ul goodness you want in
this layer—nice looking widgets, animations, effects, and anything else you want that’s
specific to the platform to make your Ul look amazing. Just remember that because
this layer isn’t cross-platform, everything has to be written twice, once for iOS and
once for Android, so everything that can be shared (such as logic) should be shared in
the view-model layer.

On both iOS and Android, there are two parts to any UI:

A layout file—Contains details of the widgets defined in XML and can be used
with a visual designer. Android calls these layout resources; iOS has two types of
these, storyboards and XIB files.

A code-behind file—Provides any logic needed by the UI and defines its lifecycle
(such as when the view is shown and when it’s hidden). On Android this is
called an activity; on iOS this is a view controller.

www.EBooksWorld.ir

3.4

34.1

Binding 69

We’ll look at these layout and code-behind files in more detail in chapters 9 through
12 when we look at building Uls for iOS and Android.

There’s not much more to add about the view layer in terms of MVVM. Most of the
magic of MVVM is in the view-model layer, so the only thing to consider here is what
you can put in the view-model layer and what has to be in the view layer. As a good
rule of thumb, you want to do as much as possible in the layout file, and as little as pos-
sible in the code-behind. If you’re adding code that can’t be in the layout file for what-
ever reason, you should consider whether it’s generic logic that should be in the view
model (and therefore shared between platforms) or if it’s platform-specific and must
be in the view layer. For example, if you're showing or hiding a label based on the
value of a property in the view model, the logic for this should also be in the view
model. If, on the other hand, you’re choosing which of a set of platform-specific ani-
mations you'll use based on a property in the view model, this logic would go in the
view layer—albeit ideally in a separate, self-contained class that could be unit-tested.

Binding

Binding is the magic that links together the view and the view model in a loosely cou-
pled way. It’s responsible for connecting properties on the view to properties on the
view model and keeping them in sync, and for connecting events on the view to com-
mands on the view model so that these commands are run when the user interacts
with the UI. When binding, you link up a named property on the view to a named
property on the view model, and behind the scenes the binding framework will find
the actual properties with the given names and wire them up—setting the view to
match the value in the view model, and monitoring for changes so it can keep these
values in sync.

There’s nothing in the .NET Framework to help bind everything together. Instead,
you have to either write the logic yourself or use a framework such as MvvmCross,
MVVM Light, or Caliburn.Micro to do it.

There are a couple of binding concepts to be aware of—what the source and target
are, and what the binding mode is. You also need to be aware that binding isn’t really
cross-platform, so it can help if you need to bind to properties whose types aren’t sup-
ported in your cross-platform code.

Source and target

When you bind a view to a view model, you connect a target to a source:

The sourceis the original source of data (the view model).
The target is the original target of the data (the view).

It’s easy to see how these definitions can be confusing—for a text-entry box on a new-
user screen, the “source” of the data could be considered what the user enters, but
from a binding perspective the source is always the view model and the target is always
the view.

www.EBooksWorld.ir

70

3.4.2

3.4.3

CHAPTER 3 MVVM— the model-view—view model design pattern

You will often hear the term binding source mentioned, and this refers to the
view model. The binding source is also sometimes referred to as the binding context
(Xamarin.Forms uses this name) or data context (if you’ve done WPF before, you'll
recognize this).

Binding mode
There are four possible modes for binding:

One time—The binding happens once when the view is bound. The value in the
view is set from the property in the view model once, and all changes are
ignored. This is useful for static text or images that can’t change.

One way—The binding goes from source to target only. Every time the view
model changes, the view is updated. This makes sense for static controls such as
labels where the value in the view can never be user-updated, but the view
model may update due to changes from the model layer (such as getting a new
value from a web service).

One way to source—The binding goes from target to source only. Every time the
value on the view changes, the view model is updated. This isn’t used very often.
Two way—The binding goes from source to target and target to source. Every
time the property on the view model changes, the value on the view is updated,
and every time the value on the view changes, the property on the view model is
updated. For controls like text boxes, tick boxes, or radio buttons, this is usually
the default binding mode.

Binding is not cross-platform

Binding is platform-specific, and it’s always set in the view layer. It needs to be, as it
needs to understand the UI widgets to be able to set the data on them and listen for
updates.

In our square-root calculator, we need to bind the text box that the user uses to
enter the number to the Number property on the view model, bind the button to the
SqrtCommand property, and then bind the result label to the Result property.

The binding has to be platform-specific to understand the UI widgets well enough
to monitor for view-layer value changes. In figure 3.14 the binding needs to know how
to detect changes to the text in the text box (for example, by handling a text-changed
event), and how to detect a tap on the button (by handling a click event). On the view-
model side, the binding will listen for property-changed notifications from the
INotifyPropertyChanged interface to know when the view model has been updated.
Once it gets this notification, it needs to know how to instruct the UI to update, such
as knowing how to tell the label to show the result.

www.EBooksWorld.ir

Binding 71

© The Text property of the TextBox is bound to a property called “Number” on the view model.
The binding finds Number and sets the Text property to be that value.

The binding knows about text boxes, so it listens to the TextChanged event. When this is raised,
it will read the value in Text and set the Number property on the view model to that value.

The binding listens to the PropertyChanged event on the view model. When this is raised
for the Number property, it reads the value and sets it on the Text property of the text box.

TextBox

public string Text {get;set;}
public event EventHandler TextChanged {get;}

®
[

400

View model

'\/ """ o public string Number {get;set;}
Label 0

Binding
X X 20| Lo _____ 0 public string Result {get;}
public string Text {get;set;}
9 public ICommand SgrtCommand {get;}
Square Root

Button

public event EventHandler Click {get;}
public bool Enabled {get;set;}

@ The Text property of the label is bound © The Click event of the button is bound to a property called
to a property called “Result” on the “SqrtCommand” on the view model. The binding finds
view model. The binding finds Result and SqrtCommand. It sets the Enabled property on the button
sets the Text property to that value. to the result of calling CanExecute on the command.

The binding listens to the PropertyChanged The binding knows about buttons, so it listens to the Click

event on the view model. When this is event. When this is raised, it executes the SqrtCommand.
raised for the Result property, it reads the

value and sets it on the Text property of The binding listens to the CanExecuteChanged event on the
the label. command. When this is raised, it re-evaluates CanExecute

and sets the Enabled property on the button accordingly.

Figure 3.14 Binding connects the view and view model together in a loosely coupled way, but it needs to be
platform-specific to know which properties and events in the view layer to use.

BINDING USES REFLECTION, SO MAKE SURE YOUR PROPERTIES ARE VISIBLE Binding
needs to be able to find the properties on the source and target (view model
and widget). How good the binding framework is at finding these depends on
the framework, but it’s a good general practice to make your properties public
and to verify how the framework works.

www.EBooksWorld.ir

72

3.4.4

CHAPTER 3 MVVM— the model-view—view model design pattern

Value converters

Binding your cross-platform view model to your platform-specific code is great, but
what about the times when types and even values are different between platforms? For
example, with text boxes on both iOS and Android, you can bind the text to a string
property in your view model—this works on both platforms. The problem comes if
you want to show or hide the text box. On Android, visibility is controlled by an enum
called ViewStates; on iOS it’s a Boolean called Hidden. Normally on your view model,
you want a readable property such as ShowLabel that returns true for the widget
being visible and false for it being hidden. This doesn’t map to the Android enum or
the iOS Hidden property (it’s the inverse, because on iOS true means the widget is
hidden, so not visible).

The way around this is through value converters. As you might recall, the view
model is a value-conversion layer (as well as a UI logic layer) so it can do some things,
but because it’s cross-platform it can’t convert values to platform-specific ones. This
means we must have a small part of our value conversion in platform-specific code,
using value converters. These are classes with the singular purpose of converting from
view-model types to view types, and converting back from view types to view-model
types. Although we want to keep as much UI logic in cross-platform code as we can,
platform-specific value converters are sometimes necessary, as they have to know
about the platform-specific implementations, and they can be encapsulated in a way
that makes them unit-testable.

When binding, you can tell the binding framework to use a particular value con-
verter. When a property on the view model is updated, the binding framework reads
the new value from the view model, converts the value using the value converter, and
sets the converted value on the view. Conversely, when the view updates, the binding
framework will read the value from the view, convert it back using the value converter,
and set the value on the view model. This is shown in figure 3.15.

In contrast to property-changed notifications, there isn’t a standard interface for
value converters available everywhere. Microsoft defined one called IValueConverter
for use in WPF applications, but this isn’t available in .NET Standard libraries, iOS, or
Android apps. Instead, a number of MVVM frameworks provide their own versions,
which are identical.

In MvvmCross there’s IMvxValueConverter. This interface is identical to IValue-
Converter and has two methods—Convert to go from source to target (converting
the view-model value to one the widget is expecting), and ConvertBack to go from tar-
get to source (converting from the widget value to one the view model is expecting).
This interface is shown in the following listing. To create a value converter, you can
implement this interface in your class and pass your class to the binding layer.

www.EBooksWorld.ir

Binding 73

@ BoolToHiddenValueConverter converts a Boolean
representing show from the view model to one
—— representing hide by inverting the value.

View

@ BoolToViewStatesValueConverter converts a
Boolean representing show from the view model

Jim to a ViewStates enum value by converting true to

ViewStates.Visible and false to ViewStates.Gone.

a property called
“ShowName”on the “ShowName” on the
view model. view model.
Binding looks up the “ShowName” property

on the view model and finds it.

o
o >
o &
> [e]
: S
iOS view 3 View model 3 Android view
I = N I I
UILabel E blic bool % TextView
. . public boo . .
public bool Hidden o D public ViewStates
Lo gt-- . R S =
{get;set;} g ShowName {get;set;} A Visibility {get;set;}
[5
The Hidden property of o s The Visibility property
the UlLabel is bound to § § of the TextView is bound
A § to a property called

Binding listens for updates to ShowName.
When the property changes, it passes the

/ value through the value converter.

Hidden is updated using Visibility is updated using
the value that comes out the value that comes out
of the value converter. of the value converter.

Figure 3.15 Value converters allow you to convert a value from the view model to a type that the
view is expecting.

Listing 3.11 The IMvxValueConverter interface

public interface IMvxValueConverter CONVEWSChangeSWomthe
{ source (view-model) value
<

object Convert (object value, Type targetType, to the target (view) value

object parameter, CultureInfo culture);

object ConvertBack (object value, Type targetType,
object parameter, CultureInfo culture);

Converts changes from the target (view)
value to the source (view-model) value

www.EBooksWorld.ir

74

3.5

CHAPTER 3 MVVM— the model-view—view model design pattern

The first parameter in both these methods (value) is the value you want to convert.
These methods then return the converted value. The targetType parameter tells you
what type the method should convert to, though this is normally ignored as value con-
verters are usually pretty specific.

The parameter parameter can be useful if you want to have the value converter
support a few different conversions and tweak the behavior when it’s called. For exam-
ple, you could have a value converter that converts numbers that represent amounts
of money to strings in particular currencies, and use parameter to specify what cur-
rency to use (such as £ or $). The culture parameter is useful if you're supporting
multiple languages, because it allows you to change your output based on the current
localization settings. For example, if you're converting a number to a string, you can
change the decimal symbol to either a period or a comma based on the user’s country
by passing the culture info to the ToString method on the number.

As with commands, no value converters are provided out of the box with the .NET
Framework, but most MVVM libraries provide a few standard ones, such as converting
Booleans to visibility flags. For example, MvvmCross provides MvxVisibilityValueC-
onverter to map true values to visible and false values to invisible, and MvxInvert-
edVisibilityValueConverter to do the opposite.

The application layer

Most of the application layer is provided for you by the platform-specific code that’s
built into the Xamarin iOS and Android SDKs. When you create your app projects, a
few files will be autogenerated for you, containing some application configuration.
Any modifications to this will generally be platform-specific changes, such as handling
notifications on iOS or wiring up background services on Android.

There are some small things that can be configured in cross-platform code, but
this depends very much on your MVVM framework. The main thing you can control
here is the startup process.

Normally, the main Android activity or iOS view controller that’s loaded on appli-
cation startup is defined at the application level, but a good MVVM framework will
allow you to define this in cross-platform code. This is usually done by specifying the
first view model to use. This allows you to put logic in the application layer that can be
shared across both platforms and be unit tested.

A good example of a situation in which you might do this is an app that requires a
user login. When the app is first loaded, your shared application code can see if
there’s already a valid user account from some shared user-management code. If there
is a valid account, it can load the main screen of your app from its view model, and if
not, it can load the login screen view model. If this logic is in cross-platform code,
you’ll only have to write this once, not once per platform.

In addition, the application layer can define how the different classes in your app
are connected. For example, it can ensure that the SquareRootViewModel is con-
structed automatically using an implementation of SquareRootCalculator as the
ISquareRootCalculator constructor parameter.

www.EBooksWorld.ir

3.6

Navigation 75

Navigation

The view-model layer provides as much Ul logic as possible, and part of this UI logic is
related to navigation—the act of moving from one screen to another in the app.
Imagine a company directory app that has two screens: one with a list of employ-
ees, and one that shows the details about an employee. The app provides navigation
from the list to a single employee—when you tap on a person’s name in the list on the
first screen, a new screen shows the details about that person, as shown in figure 3.16.

My Company Directory

I. Tap on a name on Lauren lpsum | Lauren lpsum
the people screen.

Aarti Effern

///A\ \\

\

2. The person screen Figure 3.16 Navigating from
one screen to another by

appears, replacin Mobile Developer
PP » rep g /\,, P tapping on a name in the people

the people screen.
peop list

This kind of navigation is cross-platform in that regardless of how the Ul is updated,
we want to provide this navigation on both platforms. Both platforms will show the
new screen and pass it data about which person was selected. The implementation on
each platform is very different.

Android conceptualizes each screen as a separate activity that the user is under-
taking, and the user has to express an intent to change their activity.

10S thinks about each screen as a view on a part of the app, and the user segues
from one view to another.

Both implementations mean the same thing from the user’s perspective—you see a
different screen—but the terms used and the underlying classes and method calls are
very different.

What is a “screen”?

Many different terms are used to define what we see on an app. At any one time, your
app will fill the screen of the device and display some Ul widgets showing state or
providing behavior. At various times in your app, usually when you tap something, the
whole screen is replaced with another full screen of widgets.

In this book I'll use the term screen to refer to each distinct full screen Ul, so in our
calculator app there’s just one screen showing the square-root calculator. In the com-
pany directory app, there would be two screens—the first one showing the list of peo-
ple, and the second showing the details of a specific person.

www.EBooksWorld.ir

76

3.6.1

3.6.2

CHAPTER 3 MVVM— the model-view—view model design pattern

To see how we can solve this problem in a cross-platform way using MVVM, we first
must consider what we really mean when we think of the screens in an app from an
MVVM perspective. When we see a screen in our app, what we’re really seeing is a view
and a view model—the view provides the UI widgets, and the view model provides the
state and behavior. When we change screens, we’re changing both the view and view
model that are shown. So what controls this changing of screens? Which layer handles
the navigation?

You can have multiple views and view models in a screen

In our simple examples, there’s one view and one view model per screen, but nothing
stops you from having more. You could have a screen made up of multiple parts, and
each part would be its own view and view model.

For example, with the company directory app on a tablet in landscape orientation,
there would be enough space to have the list of people on the left side and the details
about the person on the right. That’s one parent view showing two views and view
models. In portrait orientation, the app would show one view and view model for the
list, and tapping on a person would replace that view with the person view and view
model.

Something has to ensure that the right view model is bound to the right view, so there
needs to be a link between the view and the view model. There are two ways of doing
this: view-first and view-model-first. Both of these approaches rely on there being
something, usually in the app layer, that defines these links.

View-first

View-first means the view is the driver behind the navigation (figure 3.17). At app
startup, the app layer will load a view, and when the view is loaded, something (maybe
some code in the app layer, or even in the view itself) will create the corresponding
view model and bind it up. When you navigate to another screen, the view is responsi-
ble for this. It will know which view it needs to navigate to and will show that view,
which in turn causes its view model to be created and bound up.

View-model-first

View-model-first means the view model is the driver behind the navigation (figure
3.18). The app layer will load a view model at app startup, and this loading of the
view model will cause the view to be created, bound to the view model, and shown.
When you navigate to another screen, the view model is responsible for this. It will
know which view model to navigate to and will interact with something (usually pro-
vided by the MVVM framework you’re using) to create the new view model and its
associated view.

www.EBooksWorld.ir

Navigation

I. App creates . . 3. Tapping on a name
PeopleView. \ Peopleview Personview creates a PersonView
My Company Directory Lauren Ipsum and shows the screen.
Lauren Ipsum
Aarti Effern
Mobile Developer
2. PeopleView creates 4. PersonView creates
PeopleViewModel PersonViewModel and
and binds to it. / binds to it.
\ | PeopleViewModel | | PersonViewModel |

Figure 3.17 View-first navigation—the view drives the creation of view models and navigates to
other views.

PeopleView PersonView

My Company Directory Lauren Ipsum

Lauren Ipsum .

Aarti Effern 7 \

\

.

Mobile Developer

2. The framework

. 4. The framework creates
creates PeopleView PersonView and binds
and binds the view

g the view model to it.
model to it.

| PeopleViewModel | —>| PersonViewModel

I. App creates //' ‘\3 Tapping on a name executes a

PeopleViewModel. command on PeopleViewModel
that creates a PersonViewModel
and shows it.

Figure 3.18 View-model-first navigation—the view model drives the creation of views using the
MVVM framework and navigates to other view models.

www.EBooksWorld.ir

78

3.6.3

3.7

CHAPTER 3 MVVM— the model-view—view model design pattern

Which one to use?

The most popular approach by far is view-model-first. If you have the logic to load
views in the view layer, you have more platform-specific code, and this platform-
specific code is hard to test except manually. Writing unit tests against UI code is
harder than writing them against non-UI code. If the logic is in the view model, you
have more logic in your cross-platform layer, so there’s less code to write and more
code that you can unit-test.

Most MVVM frameworks provide a navigation service of some description—a ser-
vice that allows you to navigate to different views or view models. This service is always
exposed via an interface that you can use from your view models (and mock out for
testing) and it allows you to navigate in a way that’s not tightly coupled to a view class.
In some frameworks, this is done by navigating to a view model, and in others it’s by
navigating using a key (such as a unique string value) that has been linked to a view
and view model. MvwvmCross navigates via view model, and it’s this navigation we’ll be
using in this book.

Revisiting the square-root calculator app

You’ve seen the square-root calculator app broken down layer by layer, so let’s take a
moment to step back and view the bigger picture, using a bigger picture. At the start
of the chapter I presented a figure that showed user interactions with the app. We're
now in a position to expand on this figure, filling in all the different interactions
between the different layers. This is shown in figure 3.19.

Take a moment to study this diagram and follow the flow through the app. It shows
a lot of what we’ve talked about already.

The app starts up and launches a view and view model, ideally using view-model-
first navigation. As these are created, the binding wires up the state and behavior on
the view model to the Ul—the properties are bound to a text box and a label, and the
command is bound to a button. As the user enters text, the view model is updated via
the binding, which in turn pushes the value to the model. Clicking the button exe-
cutes a command that calculates the square root and raises a property-changed notifi-
cation. This property change is detected by the binding, which updates the Ul

This flow seems simple, but it encompasses the bulk of MVVM:

The model is a separate layer that has business logic and uses properties of
types that make sense in the business domain.

The view model wraps the model layer and exposes state and behavior to the
layers above, converting the state from business types to UI types.

The binding sits above the view model and “glues” it to the view.

The view exposes the state and behavior via widgets on the screen that the user
can understand and interact with.

We have a model layer that’s distinct, cross-platform, unit-testable, easier to maintain,
and easier to evolve. We also have a view-model layer that’s distinct, cross-platform,

www.EBooksWorld.ir

© The app starts
and the view
and view model
are created.

O The binding
layer looks up
the properties on
the view and view
model. It adds
event handlers
for the text,
changing in the
number text
box and the click
of the Add button.
It also adds an
event handler
for the property-

Revisiting the square-root calculator app

O The user types “400”

into the text box.

© The binding detects

the text box’s text-

changed event, reads

the value inside the
text box, and passes
it to the property
on the view model.

@ The user taps
the Square
Root button.

© The binding
detects the
button-tap event
and executes the
SqrtCommand on
the view model.

@ The view model raises a

property-changed event
with the property name
Result. The binding
detects the event

and reads the property.

@ The binding reads the

value of Result and sets
it on the result text box.

Square Root

changed event on

the view model. o 7 ®

Finally, it sets the | Vi |

. lew

values on the view

based on the

values in the 0 9 9 @

view model. | Binding |
© Number gets/sets (> (5 (5] (10} (10} ®

Number on the

model, converting View model

from a double on

the model to a —| Number "400" 400 400 400 400

string on the view — w|Result uggn noQ woQn

model. Result gets

Result from the | SgrtCommand Execute

model, converting

it to a string. (6] 9] @ (11}

The SqrtCommand

wraps a call to Sqrt Model

on the model. L e Number 400 400 400 400 400

L w| Result 20 20 20 20
9 Le! SQrt sqgrt ()
O The view model © The SqrtCommand on @ The view model reads

converts the string
value of “400” to a
double value of 400

and passes it through
to the Number property
on the model.

the view model wraps
the Sqrt method on
the model. When the
command is executed,
the Sqrt method is
called and the Result
is set to 20.

the double value of
Result and converts
it to a string.

Figure 3.19 The complete square-root calculator, showing the interactions between all the layers

of MVVM

www.EBooksWorld.ir

79

80

CHAPTER 3 MVVM— the model-view—view model design pattern

unit-testable, easier to maintain, and easier to evolve. We have a binding layer and a
thin Ul layer that’s platform-specific.

Now you’re armed with more knowledge about MVVM. In the next chapter we’ll
take a look back at the Hello World example from chapter 2 and see what’s happening
in the code. We’ll also extend the app using a cross-platform Xamarin plugin to make
it say “Hello” to you.

Summary
In this chapter you learned that

Models are cross-platform and unit-testable, and they represent data at the business-
logic or domain level, not at the Ul level.

View models are cross-platform and unit-testable, and they represent state and
behavior through properties and commands. View models act as a conversion
layer between data or actions at the Ul level and data or methods in the model.
The platform-specific view layer and the cross-platform view model communi-
cate though a binder, a loosely coupled layer that’s usually provided by a frame-
work that keeps the view (binding target) and view model (binding source) in
sync.

To navigate between different screens in your app you can use view-first naviga-
tion to have the view manage the navigation, or view-model-first navigation to
have the view model manage it. View-model-first is preferable, as you can unit-
test this navigation.

The .NET Framework has some interfaces and classes that help to implement
your app using MVVM, but to fully implement the pattern you can use a third-
party framework such as MvvmCross, MVVM Light, or Caliburn.Micro.

www.EBooksWorld.ir

Hello again, MVVM—
understanding and enhancing

our ssmple MVVM app

This chapter covers

= A detailed look into the code of the Hello Cross-Platform
World app from chapter 2

= MvvmCross classes that provide a base implementation of a
view model, a command, and some cross-platform app logic

= How to use MvwmcCross to bind iOS and Android views to the
view model

= Using Xamarin plugins to add cross-platform wrappers around
platform-specific functionality

= Using inversion of control to loosely couple your code for unit
testing

= Creating and binding a command
= Adding code to the view model to make your app speak to you

81

www.EBooksWorld.ir

82

4.1

4.1.1

4.1.2

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

A deeper dive into our Hello Cross-Platform World app

Now that we’ve covered MVVM in detail, it’s a good opportunity to review the Hello
Cross-Platform World app you built in chapter 2 to see what the code does, and how it
fits into the layers for a Xamarin app. You built the app using the MvvmCross exten-
sion, which created a simple Hello World app in which editing the value in a text box
updated a label to match. It was a cross-platform app, and we proved this by changing
a string in the core project and seeing that both apps were updated.

Let’s start working through the model layers from the bottom up.

The model

Starting from the bottom up, let’s think about the model. This is a simple app with a
single string value, so there really isn’t a model layer as such. You can think of the
hello string field as the model.

There’s not much else to look at here, so let’s jump to the more important view-
model layer.

The view model

In the HelloCrossPlatformWorld.Core project, you have a view model called First-
ViewModel (figure 4.1). This view model “wraps” the model (the hello string) and
exposes its value through its state—Dby exposing a property called Hello.

The first thing you may notice about this view model is that it has a base class—Mvx-
ViewModel. This class is provided by MvvmCross (all MvwvmCross classes start with Mvx
and interfaces start with IMvx), and it gives you a basic implementation of a view model.
The main thing that it provides is property-changed notifications—it implements
INotifyPropertyChanged and has some methods to raise the PropertyChanged event.

FirstViewModel lives in the ViewModels FirstViewModel derives from
folder of the HelloCrossPlatformWorld. MvxViewModel, a base view-
Core project. model class from MvvmCross.
(& Solution - € 3 FirstViewModel.cs
v . HelloCrossPlatformWorld {master) Mo setection

using MvvmCross.Core.ViewModels;

namespace HelloCrossPlatformWorld.Core.ViewModels
i

WO R e

public class FirstViewModel
1 MvxViewModel

string hello = "W Kasaris In Action®;
public string Helle
{

get { return hello;\}

set { SetProperty(rdf helle, value); }

WD e m -

[T
-

The hello string acts as a model
layer for this trivial example.

Figure 4.1 The structure of the core project showing the location of the FirstviewModel class

www.EBooksWorld.ir

4.1.3

A deeper dive into our Hello Cross-Platform World app 83

If you look at the Hello property, you may also notice something interesting in the set
method.

Listing 4.1 Setting a value and raising a property-changed event

public string Hello
{
get { return hello; }
set { SetProperty(ref hello, value); }

Normally in a view model, you’d check whether the field was different from the value,
and if so you’d set the field and raise the PropertyChanged event. Here, though, we’re
calling a method, SetProperty. This comes as part of MvxViewModel and wraps the
usual set logic—it will check the value and only update the property and raise the
property-changed event if it’s different. You also may notice that the string is passed by
ref. This means that a reference to the actual string field is passed instead of a copy,
so that inside the SetProperty method you can update the value of the field. It
doesn’t provide any extra magic, it’s just there to save on typing—three lines of code
become one.

This method will also return a Boolean value—true means the value changed and
was updated; false means it wasn’t updated. This is helpful if you need to perform
other actions if the value changed, such as raising property-changed notifications for
other properties that use this value.

The application layer

Before we look at the view, it’s worth taking a brief tour of the application layer. Mvvm-
Cross provides some code in the application layer: some is platform-specific in the two
app projects, and some is cross-platform in the core project. At the moment, all we
really care about is the cross-platform part. This is in a class called App inside App.cs,
as shown in figure 4.2.

[& Solution
v = HelloCrossPlatformWorld (master)
¥ [HelloCrossPlatformWorld.Core
» [References
» [} Packages
» [Properties
» [ViewModels .
- App.cs contains cross-platform
T application layer code.
[©] packages.config
> finbCﬂnﬂHﬂﬂmﬂ“hﬂi&mﬂ
» ["| HelloCrossPlatformWorld.iOS

Figure 4.2 The cross-platform application layer code lives in App.cs in the core project.

www.EBooksWorld.ir

84

4.1.4

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

The App class is derived from MvxApplication, an MvvmCross base application class.
This implements just one method—Initialize. The line in here that’s of interest to
us is the following.

Listing 4.2 Registering the view model shown on app start

RegisterNavigationServiceAppStart<ViewModels.FirstViewModel> () ;

This RegisterNavigationServiceAppStart call tells the MvwmCross application code
that when the app starts up, the first thing to show is the FirstvViewModel. If you
remember back to MVVM navigation in the last chapter, you’ll see that this is view-
model-first navigation—the view model is registered as the app starts, so it’s the first
thing shown on launch. To show this view model, MvvmCross will look for the corre-
sponding view and show that.

You need to tell MvvmCross which view is the right view for each view model. Luck-
ily, though, you don’t need to explicitly tell it; you can do it by the name. By conven-
tion, the view and view model have the same names except for the suffix, and
MvvmCross uses this to determine which view to show for each view model. There are
other ways to tell it if you don’t want to follow this convention, but for now we’ll stick
to the naming convention. The view model here is called FirstViewModel, so to show
it MvwmCross will look for a view called FirstView.

Once the view is loaded, a new instance of the view-model class is created, and this
is set as the binding source of the view.

The view

Our view layer is split across the two app projects, so let’s look at them one by one,
starting with Android.

THE ANDROID VIEW

In the Android project, the Android view is defined as an Activity, which uses a lay-
out file to define the Ul (Activity is the Android code-behind class for a full-screen
window; we’ll look at these in more detail in chapter 9.)

The view activity lives inside a folder called Views, and it’s called FirstView (figure
4.3). Each Activity can build its Ul in code, but more normally it loads the UI from a
layout resource—an XML file that defines the widgets and layout containers (special
widgets that don’t have any visible components but are used to lay out other widgets,
such as to arrange one below another in a vertical stack). The FirstView activity con-
tains nothing of interest to us here. The interesting bit is inside FirstView.axml—the
layout resource that it loads.

www.EBooksWorld.ir

A deeper dive into our Hello Cross-Platform World app 85

[® Solution
¥ & HelloCrossPlatformWorld (master)
3 "" HelloCrossPlatformWorld.Core
- _ HelloCrossPlatformWorld.Droid +~ —— The Android app project
» ') References
'3 Components
» [Packages
» [Assets
» [\ Bootstrap
- Project resources such as images
¥ [l Resources

or layouts live here.

» [l drawable-xxxhdpi
v o ———— _ Thelayouts that define the Ul live here.

| FirstView.axm| .y . .
D FirstView.axml is the one we want to edit.

[©] SplashScreen.axmi
[, toolbar.axmi
» Iy values
» [values-v21
(¥ AboutResources.xt
[] Resource.Designer.cs
> BV /\/ Android uses classes derived from Activity

@O for code-behind for the Ul. These live here.
DebugTrace.cs

@} LinkerPleaselnclude.cs
[©] packages.config
@G Setup.cs
SplashScreen.cs
> _ HelloCrossPlatformWorld.iOS

Figure 4.3 The structure of the Android app project showing the location of the FirstView.axml
layout file

www.EBooksWorld.ir

86 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

e 9 | o [pebug » [] iPhone 65 i0S5 9.3 Xamarin Studio Enterprise

=] Solution L0y FirstView.axml

b HelloCrossPlatformWorld (master)
(3 HelloCrossPlatiormWorld.Core
v HelloCrossPiatiormWorld.Droid
3 Referances
Components

P: es (18 updates)
Ay HelloCrossPlatformWorld.Droid
Bootstrap
Properties
Resources
drawable
drawable-hdpi
drawable-mdpi
| drawable-xhdpl
drawable-othdgl
drawable-xohdpi
layout
[SplashScreen.axmi
[E] tooibar.axmi
L4 values
L3 values-v21
[F] AboutResources.txt
[{¥] Resource.Designer.cs

D Device: Nexus 4 S Version: Android 6.0 (v23) & Theme: Default Thema = E O~ = o« [

%0001 =}

4 v v v
sepmdaid [} oung wewnood [@

4d v v v v v ¥

L3 Views
[ii] DebugTrace.cs
[i] LinkerPleaselinciude.cs
[5] packages.config
[ii] Setup.cs
[ii] SplashScreen.cs

* HelloCrossPlatformWorld.i0S
=3 =

@Emors o Tasks [[] ResGen

Figure 4.4 The FirstView.axml in the designer view

In the Android project is a folder called Resources that holds any resource files the
app needs, such as images, strings, and layout files. You can find the layouts in the lay-
out folder. If you look in there, you’ll see the layout for our first view—FirstView.axml.
If you open this layout resource, you’ll get a tabbed view with one tab for a designer
(figure 4.4) and one for the raw source (figure 4.5). It’s the source view we’re inter-
ested in.

In this Source tab, you’ll see a number of nodes in the XML that each represent a
visual element. Some are layouts, which are elements that hold other elements and lay
them out a certain way, and some are widgets. We’ll go into these in more detail in
chapter 9. For now, these are the basics of the items in this layout:

RelativeLayout—A layout element that allows you to position its children rela-
tive to the container or to each other. For example, you could put something at
the top of the container, or put something below a particular element.
FrameLayout—A layout that contains either a single item or items that are laid
out one on top of the other (on the Z axis, so coming “out” of the screen).
LinearLayout—A layout that stacks items either horizontally or vertically.

www.EBooksWorld.ir

A deeper dive into our Hello Cross-Platform World app 87

® e » [pebug » [] iPhone 65i0S 9.3 Xamarin Studio Enterprise 3R 1
s -
=y
¥ || HelioCrossPlatformWorld (master) Relativelayout » android support.design widget AppBarLayout » @android:layout_height E
» Cmnmo“ 1 <?xml version="1.8" encoding="utf-8"7> .
w [HelloCrossPlatformWorid Droid 2- <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
> 3 xmins:local="http://schemas.android.com/apk/res-auto" ®
+ [Reforences 4 android: layout_width="match_parent*
'3 Components 5 androiq: layout_height="match_parent">
* B Packages (16 updates) 6 <android.support.design.widget.AppBarLayout
D 7 android: layout_height="wrap_content"
> B Assots B android: layout_width="match_parent"”
* [Bootstrap 9 android: id="@+id/toolbar_layout"s>
» I Properties 18 <include
11 android: id="@+id/toolbar"
¥ [Resources 12 layout="glayout/toolbar" B8
» [drawable 13 local: layout_scrollFlags="scroll|enterAlways" />
» [drawabie-hdpl 14 <fandroid.support.design.widget.AppBarLayout> ‘I
15 <FrameLayout
» I drawsble-mapi 16 android: id="@+id/content_f rame"
» [drawable-xhdpi 17 android: layout_below="@id/toolbar_layout"
18 android: layout_width="match_parent"”
* [drawable-xxhdpi
19 android: layout_height="match_parent">
» [l drawable-xoxhdpl 28- <LinearLayout
v [layout 21 android:orientation="vertical"
o : I
android: layout_he _parent">
8] SpiashScreen i 24 <EditText
@ toolbar.axmi 25 android: layout_width="fill_parent"
» B valves 26 android: layout_height="wrap_content"
5 : 27 android: textSize="40dp"
B vaiuosv2 28 local:MyvxBind="Text Hello" />
[] AboutResources.txt 29 <TextView
[5) Resource.Designer.cs e android: layout_width="
31 android: layout_height='
> B Views 32 android: textsize="40dp"
[{i} DebugTrace.cs 33 local:MvxBind="Text Hello" />
34 </LinearLayout>
[} LinkerPleaseinciude.cs
35 </FrameLayout>
6] packages config 36 </RelativeLayout>
[@}] Setup.cs
= e
* | HelloCrossPlatformWorld.i0S E
oo [

| @Eros v Tase [ResGen

Figure 4.5 The FirstView.axml in the source view

= EditText—A text-entry control.
= TextView—A static-text control.

The two nodes we’re interested in, EditText and TextView, are shown in the follow-
ing listing.

Listing 4.3 Binding widgets in the layout resource to the view model

<EditText
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textSize="40dp"
local:MvxBind="Text Hello" />

<TextView
android:layout_width="match_parent" Both widgets have an
android:layout_height="wrap_content" MvxBind attribute set.

android:textSize="40dp"
local:MvxBind="Text Hello" />

www.EBooksWorld.ir

88

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

The EditText is an editable text box—a text-entry control. TextView is static text—a
label. In the XML for these controls, you'll see a number of attributes set that are in
the android namespace. These are standard control properties such as their sizing. In
addition, both of these controls have an interesting attribute in the local namespace.

Listing 4.4 MvvmCross uses an attribute to specify binding in Android layout files

local:MvxBind="Text Hello"

As you might expect from the attribute name, MvxBind is an attribute from Mvvm-
Cross that does binding. It comes from the local XML namespace (defined as
xmlns:local="http://schemas.android.com/apk/res-auto"), which is a special
namespace used to refer to all the resources that come from your app—either the
code you’ve written, or code from external libraries, such as the MvvmCross Android
NuGet packages. By setting these MvxBind attributes, you're telling MvvmCross to bind
the Text property on both controls to a property called Hello on the binding
source—an instance of FirstViewModel. Figure 4.6 shows this binding.

I. The TextChanged event on the EditText is fired.
The binding detects this, reads the Text property, and
updates the Hello property on the FirstViewModel.

FirstViewModel

Hello Xamarin in Action |-

Hello
Hello Xamarin in Action ~——

2. The PropertyChanged event on the FirstViewModel is
fired. The binding detects this, reads the Hello property,
and updates the Text property on the TextView.

Figure 4.6 Binding detects the event on the view and updates the view
model, and it detects events on the view model and updates the view.

THE 10S VIEW
Like Android, iOS has two files for a view: a designer file that defines the UI widgets
and layout, and a view controller file that provides the code-behind (we’ll look at
these in more detail in chapter 11). These live in the Views folder in the Hello-
CrossPlatformWorld.iOS project (figure 4.7).

Unlike in Android, the layout files (in this case, FirstView.storyboard) in iOS are
not very human-readable and are not meant to be edited in source. Instead, you
should use the designer to edit them. This means that you can’t add your binding

www.EBooksWorld.ir

A deeper dive into our Hello Cross-Platform World app 89

Solution
v & HelloCrossPlatformWorld (master)
> r‘ HelloCrossPlatformWorld.Core
» | HelloCrossPlatformWorid.Droid
v [HelloCrossPlatformWorld.OS +~ ——— The i0S app project

» References
11 Components
» [') Packages
Views (the Ul layouts and code-behind)
> Properties
- live here.
» [n Resources

Part of the code-behind for the FirstView;

v Views
= / this file can be edited.
01 FirstView.cs
[, FirstView.storyboard <« The storyboard for the FirstView; this file is
editable in the visual designer.
[0 Firstview.designer.cs \
@] AppDelegate.cs Part of the code-behind for the FirstView;
this file is autogenerated.

@L DebugTrace.cs

[L Entitlements.plist
Info.plist

[0] LinkerPleaselnclude.cs
Main.cs

f= Main.storyboard

[©] packages.config

@ Setup.cs

Figure 4.7 The views in iOS live in the Views folder with a view controller called FirstvView
and a storyboard called FirstView.storyboard.

using attributes the way you did in Android. Instead you can add the binding in the
code-behind—in the FirstView view controller, located in FirstView.cs.
Let’s now look at the important parts of this code.

Listing 4.5 On i0S, binding is done in the view controller

FirstView derives from MvxViewController, ViewDidLoad is called when the
an MvvmCross class that derives from view has been loaded, so as soon
UlViewController. as the Ul widgets in the

storyboard are loaded and the

view is displayed.
public partial class FirstView : MvxViewController piay

{
public override void ViewDidLoad ()
{
base.ViewDidLoad () ;

www.EBooksWorld.ir

90

the view model.

This code shows the FirstView class derived from MvxViewController—a MvvmCross
view controller class that in turn derives from the base iOS UIViewController. View
controllers are responsible for the lifecycle of the view—when it’s shown, when it’s
hidden, and various states in between. In this case, we’re hooking into when the view
is loaded (and all widgets are created) by overriding the ViewDidLoad method. Once
the view is loaded, the code creates a binding set—a collection of bindings between

the controls

If you double-click to open FirstView.storyboard, it will open in a designer. In this
you’ll see a single view with two controls: a label and a text box. If you click on each,

and the binding source (the view model).

you’ll see that they both have names, as shown in figure 4.8.

Xamarin Studio Enterprise Q-

w.es FirstView.storyboard * Properties
VEWAS Generic « onsTRaANTS b %] mom @ Q @ @ | Iy Widget| [Layout (S) Events
Identity
Carrier ® 100% - o e
el £ Class
Label L Module
Restoration |
Localizagief ID ZNF-1S-KcG
The UlLabel has the Name “Label.” This creates
a Label property on the view controller.
Xamarin Studio Enterprise Q-
w.es FirstWiew.storyboard * {1 Properties
vewss Genaric v constrRamts % [mom @ Q @ & | [y Widget| [Layowt (3) Events
identity
— —— Name TextField
Label Class

Module

The UlTextField has the Name “TextField.” This

creates a TextField property on the view controller.

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app
var set = this.CreateBindingSet<FirstView, FirstViewModel> () ;
— set.Bind(Label) .To(vmm => vm.Hello) ;
set.Bind(TextField) .To(vm => vm.Hello); A binding set is a group
set.Apply () ; of bindings for a view
} Once the binding set is and view model.
} created, it can be o
applied to set the The TextField is also bound
The Label is bound to initial values and start to the Hello property on
the Hello property on listening for changes. the view model.

xogpe0)

<]
Bujpng wewnoog [

BUINQ WaWMIOQ [XOGROL —f

Figure 4.8 The iOS storyboard has two controls: one called Label and one called TextField.

www.EBooksWorld.ir

A deeper dive into our Hello Cross-Platform World app 91

You may have noticed that as well as FirstView.cs and FirstView.storyboard, there’s also
afile called FirstView.designer.cs. This is autogenerated every time you change the sto-
ryboard, and it contains mappings from items on the storyboard to properties of the
FirstView class. If you open it, you’ll see the two properties shown in the following
listing.

Listing 4.6 Ul widgets named on storyboards are defined as properties

[Outlet]
[GeneratedCode ("1i0S Designer", "1.0")]
UIKit.UILabel Label { get; set; }

[Outlet]
[GeneratedCode ("1i0S Designer", "1.0")]
UIKit.UITextField TextField { get; set; }

These properties represent the label and text box on the storyboard. The attributes
on them tell the tooling that these properties are autogenerated from the storyboard
designer (so there’s no point in touching this code because your changes will be lost
the next time the storyboard changes) and that it’s an Outlet—the iOS term for a
property that represents something on a storyboard. These two properties are of type
UILabel, which is the iOS class for a static text label, and UITextField, which is the
iOS text entry box.

FirstView.designer.cs contains a class called FirstView, just like the FirstView.cs
file, but both class declarations are marked as partial. If you haven’t come across this
before, it’s a way of saying that multiple files have pieces of the same class, and that the
compiler should stick it all together in one class when it compiles. It’s great for code
like this—we can write one file and have another that’s autogenerated based on a Ul
designer, and both files come together to define the class.

Looking back to the binding code, we’ll bind these two properties to properties on
the view model inside FirstView.cs, as follows.

Listing 4.7 Binding i0S widgets to the view model

var set = this.CreateBindingSet<FirstView, FirstViewModel> () ; ThebMdmg
set.Bind(Label) .To(vm => vm.Hello) ; < set is created.
set.Bind(TextField) .To(vm => vm.Hello) ;
set-Aoply () The binding set is pne Label 1

applied, setting the The TextField is | Hello property.

initial values and bound to the

starting the listening Hello property.

for updates.

This code starts by creating a binding set, of type MvxFluentBindingDescription-
Set—another MvvmCross class. This binding set is typed based on the view and the
view model, and once created it can be used to bind controls to properties on the view
model.

www.EBooksWorld.ir

92

4.2

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

When you bind to UI widgets, there’s usually only one property or event you're
interested in. Labels show static text, so the majority of the time you’re only interested
in binding this text. The same goes with text boxes—usually you're only interested in
binding to the text. With buttons you normally only want to bind to the click event.
Because of this, MvwmCross has some shortcuts, allowing you to bind to a widget with-
out specifying the property you're interested in, and it will automatically pick the most
appropriate one.

That is what you're seeing here. Unlike in the Android example, these bindings
aren’t to a particular property on the label and text field. Instead they're bound
directly to the widgets, and they automagically pick the right property to bind to. In
the Android example, this is less easy because the binding was expressed as an attri-
bute in the XML file, but because we’re forced to create the binding in code on iOS,
we can take advantage of this.

Also unlike Android, the definition of the property on the view model (.To (vm
vm.Hello)) doesn’t appear to be to a string representation of the property. Instead,
it’s some kind of lambda function that points to the property. There isn’t any real
magic here—it uses this expression to get the name of the property to bind to from
code. You can still set a string value of "Hello" instead if you wish, but by doing it this
way you get IntelliSense code completion to help choose the right property and com-
piler checking if you update a property’s name and forget to change it here. (If you
use the built-in refactorings to rename the property, it also gets updated here auto-
matically.)

Once this binding set is created, you Apply it to bind the initial values and listen
for updates. Apart from the different syntax, this works the same way as on Android—
events on the Ul controls cause the view model to be updated, and property-changed
events from the view model cause the view to be updated.

THIS SYNTAX CAN ALSO BE USED IN ANDROID You can bind Android in code in
exactly the same way as iOS if you want to. The attributes in the layout XML
are just another way to do it.

Now that you’ve seen MVVM in action with a real-world example, and you understand
what’s happening in the app, let’s expand on our example by adding some more fea-
tures, providing you with some hands-on exposure to more bits of MVVM.

Expanding on our Hello World app

In the tradition of typical first apps, we’re going to change our Hello World app to ask
for the user’s name and then say hello to them. Seeing as this is a mobile app and we
have access to a lot more than a boring old console, we won’t be displaying some text
to say hello—we can make the app say hello by using the iOS and Android text-to-
speech engines.

These are the steps we’re going to take:

www.EBooksWorld.ir

4.2.1

Expanding on our Hello World app 93

Add a cross-platform plugin from Xamarin to help connect to the text-to-
speech engines on each platform.

Add a button to the UL

Add code in our cross-platform layer that’s wired up to the button to run the
text-to-speech engine.

Using .NET Standard plugins to access device-specific code

As you’ve already seen, we want as much code as possible in the shared layers. The
problem occurs when we want to do something that’s device-specific, such as getting
our app to speak using a text-to-speech engine. The concept is very generic—we want
to call a speak method and have it read the words over the device’s audio output. The
implementation, however, isn’t generic. Android has an API for text to speech, and so
does i0S, but the APIs are not at all the same. What we need is a way to call a generic
speak method, and have the implementation worry about the platform-specific imple-
mentations.

Luckily for us there is such a thing that uses a pattern called bait and switch. What
we can do is create three libraries, each targeting a different thing—one .NET Stan-
dard, one Android-specific, and one iOS-specific. These libraries will have the same
assembly names, namespaces, and classes in each. The only difference is the imple-
mentation. The .NET Standard implementation will do nothing, the iOS one will
implement the functionality using iOS APIs, and the Android one will implement it
using Android APIs. To use these libraries, we reference the .NET Standard version
from the .NET Standard project, the iOS version from the iOS project, and the
Android version from the Android project.

At compile time, the .NET Standard core project is built against the .NET Stan-
dard implementation of the library, the iOS app against the iOS implementation, and
the Android app against the Android implementation. Each library contains the same
namespaces and classes, just different implementations. Runtime is where the magic
happens. The compiler sees that the assemblies have the same names, and in the out-
put directory the one referenced by the app “wins.” So when you’re compiling the iOS
app, the final output directory will contain the version of the assembly that was refer-
enced by the iOS app itself—the iOS library with the iOS implementation. For
Android it’s the same. Remember, these libraries have the same assembly names, so
only one can be in the output directory. When the app is run and a call is made to the
library, it can only be resolved to the platform-specific one, as that’s the only version
available. This means both the app code and the core project will call the platform-
specific version.

Figure 4.9 shows this in action in our text-to-speech example. Calls to Speak are
compiled against the assembly that’s referenced, and at runtime the actual call is
made to the version that’s referenced by the app project.

www.EBooksWorld.ir

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

. Libraries are added. Each project references 3. The .NET Standard implementation
a different library that has the same assembly of Speak does nothing.
name, namespaces, and class names.
4. The Android library implementation
of Speak uses the Android
text-to-speech APIs.

-

2. The iOS library implementation of Speak
uses the i0S text-to-speech APIs.

O O

Libraries {
5 :
: i0S .NET Standard Android 1
' '
E TextToSpeech TextToSpeech TextToSpeech .
' Speak (string) ; Speak (string) ; Speak (string) ; '
' '
' '
! 1

E NET Standard .
E i0S Uses .NET Standard Android E

library at compile time

) Mobile app \

5. At runtime on iOS only, the iOS library is 6. At runtime on Android only, the Android
installed—all calls to Speak use the i0S library is installed—all calls to Speak use
version regardless of where they came from the Android version regardless of where
(i0S app or .NET Standard library). they came from (Android app or .NET

Standard library).

Figure 4.9 Using bait and switch with a text-to-speech plugin to compile against a .NET Standard
version and then use the platform-specific code at runtime

This is a popular pattern used by a number of cross-platform NuGet packages. Xama-
rin itself provides a number of plugins—NuGet packages that provide access to device-
specific functionality using the same bait and switch pattern. The text-to-speech exam-
ple is taken from one of Xamarin’s plugins, and they have other plugins to access
other device services, such as the camera. The limitation with these is they have to rep-
resent the lowest common denominator so that the functionality works on all plat-
forms—there’s no point in adding camera functionality for live photos, for example,
because this is only available on iOS and wouldn’t work on Android.

www.EBooksWorld.ir

Expanding on our Hello World app 95

4.2.2 Installing the Xamarin text-to-speech plugin
Installing this plugin is really easy—you do it using the NuGet package manager.

On Visual Studio for Windows, right-click the solution in the Solution Explorer
and select Manage NuGet Packages for Solution. This will open the NuGet package
manager in the workspace (figure 4.10). Select Browse, and in the search box enter
TextToSpeech. In the list of packages that appears, select the one labeled
“Xam.Plugins. TextToSpeech”. The current version at the time of writing is 3.0.1, so
select this version from the package settings on the right (later versions may work, but
to ensure the following code works, use version 3.0.1). Select all the projects in the
projects list and click the Install button on the right side. This will install the NuGet
package into all three projects—the core project, the iOS app, and the Android app.

In the Browse tab you The Consolidate tab shows all packages

can find packages to that are used in multiple projects but

install, either by browsing The Updates tab have different version in those projects.

all packages (sorted by shows packages

popularity) or by searching. with updates By default, packages come from the
available. official repository at nuget.org. You can

The Installed tab

shows all packages
installed in the
solution.

/

change this to an in-house repository or
a fileshare to use other NuGet packages.

Tick the projects
where you want

Sowse Instaled Updetes Contolidete Manage Packages for Sglution to add the NuGet
[— % ¢ G [inchude prerwiease Fackage source nugetong o package. Here we
E Xam Plugins. TextToSpeech want t? add it to
[] xamenas A | s all projects.
Cross platform Tast 19 Speech for Kamare and Windows. Varsonis) - §
4| Paject Version /
4| HetoCrouPlaticrmiodd Con
#| HeloCreasPistiormitord DroidiHelieCrossPlationn
¢ HetolioesPlatiormivorid 5 MelloCromsatiormiy
installed: not inatalied
Verslon: Latest viabie .01 Iratail
~ Options \
Descrigtion
Kamann snd Windws phugin i parfoem tast 1o ipesch funcsionsiity Click Install to
B e e install the package
el mto. the selected
projects.
Type here to search Choose a version: The default Package details: They usually
the repository. is the latest stable version, include a Project URL, which
but select 3.0.1. provides documentation on use.

Figure 4.10 Adding the TextToSpeech plugin to all projects from the NuGet package manager

www.EBooksWorld.ir

96 CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

For Visual Studio for Mac, the process is similar but a bit longer—you have to add the
NuGet package to each project separately. Right-click on the core project and select
Add > Add NuGet packages. From the dialog box that pops up (shown in figure 4.11),
search for “TextToSpeech”, check the box next to Text to Speech Plugin for Xamarin
and Windows, select version 3.0.1 from the drop-down menu on the bottom right, and
click Add Package. Repeat this process for the iOS and Android projects. Luckily the
NuGet package manager shows any packages already in use at the top, so after adding
it to one project, it will appear at the top of the list for the other projects.

Tick the packages
you want to install.
(You can install
multiple packages
at once.)

By default, packages come
from the official repository

at nuget.org. You can change
this to an in-house repository
or a fileshare to use other
NuGet packages.

Type here to search
the repository.

Package details: They usually
include a Project Page, which
provides documentation

on use.

L
Official NuGet Gallery

o @

[

Show pre-release packages

f

Add Packages

Qm.Plugins. TextTaSpeech @

Xam.Plugins.TextToSpeech
Xamarin and Windows plugin to perform
nmmmry.p' o

Adjustable pitch, speak rate, locale, and
more.

id Xam.Plugins. TextToSpeech
Author James Montemagno
Published 71312017
Downloads 101,850
License View License
Project Page Visit Page
Dependencies

NETStandard. Library (>= 1.6.1)
Version 3.0.1 il

Close Add Package

A

By default, only stable
packages are listed. Tick here
to show prerelease versions.

Visual Studio puts any
packages already used in
your solution at the top.

\

Choose a version: The
default is the latest stable
version, but select 3.0.1.

N

Click Add Package
to add the package
to your project.

Figure 4.11 Adding the TextToSpeech plugin to a single project from the Visual Studio for Mac Add Packages

dialog box

THERE’'S AN EXTENSION TO HELP

There’s an extension for Visual Studio for

Mac called NuGet Package Manager Extensions that provides solution-level
package management. This extension allows you to install or update packages
for multiple projects at the same time.

www.EBooksWorld.ir

Expanding on our Hello World app 97

4.2.3 Adding the cross-platform code

To add the code to speak the hello message, make the code changes shown in the fol-
lowing listing to the FirstViewModel class in FirstViewModel.cs in the HelloCrossPlat-
formWorld.Core project. This is the same place you updated the hello message in
chapter 2. This listing shows the complete class, not just the changes.

Listing 4.8 Updated FirstviewModel with code for speaking

New using directives allow
you to use ICommand and the
ITextToSpeech interface from
the text-to-speech plugin.

The view-model constructor takes
an instance of the ITextToSpeech
interface as a constructor
parameter and stores it.

using System.Windows.Input;
using Plugin.TextToSpeech.Abstractions;

namespace HelloCrossPlatformWorld.Core.ViewModels

{ SayHelloCommand
public class FirstViewModel : MvxViewModel is set up once in
{ the constructor,
readonly ITextToSpeech textToSpeech; and it’s connected
to the SayHello
public FirstViewModel (ITextToSpeech textToSpeech) <+ method. When the
{ command is
this.textToSpeech = textToSpeech; executed, it runs
SayHelloCommand = new MvxCommand (SayHello) ; < | this method

}

public ICommand SayHelloCommand { get; private set; } <

This is a public
—— > void SayHello () read-only
(property for the
textToSpeech.Speak ($"Hello {Name}"); SayHeIIoCommand
) that the Ul can
bind to.
string name = "";
public string Name The Hello property has been
{ renamed to Name, and the
get { return name; } backing field has been changed
set { SetProperty(ref name, value); } from “hello” to “name”.

The SayHello method makes a call to the text-
to-speech interface that was passed to the
constructor to speak the hello message.

These are the changes to the view model:

= A constructor parameter has been added to take and store an instance of the
ITextToSpeech interface.

= The existing Hello property and its backing field have been renamed so you
can use them to store the user’s name.

www.EBooksWorld.ir

98

4.2.4

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

A new method has been added, SayHello. This method makes a call to the
Speak method on the .NET Standard text-to-speech library (remember that at
runtime it will use the platform-specific implementation) using a string built up
from the Name. This method call will make your app say “Hello [Name]” out
loud, using the text-to-speech engine on the device.

A new read-only property called SayHelloCommand has been added. In the con-
structor, this command is created as an MvxCommand, a class that implements
ICommand and comes from MvvmCross. This command class takes an Action as
a constructor parameter, and when the command is executed, the Action is
invoked. In this case the Action is a call to the SayHello method.

One of the most useful and interesting changes is the addition of a constructor
parameter that takes an instance of ITextToSpeech. Passing in an interface is a great
way of making your code better. First, you're segregated from the implementation of
the text-to-speech platform. If you wanted to use a different implementation, you
could, as long as it implemented the same interface. Second, and most importantly,
you can unit-test this. Remember, testing is one of the key benefits of using a pattern
like MVVM, and having the view model interact with the ITextToSpeech interface
rather than a concrete implementation allows you to use a mock implementation in
your unit tests, which can validate that the correct calls are made. Without this, you
can’t unit-test, you can only manually test that the right thing was called by listening
for the spoken text.

The obvious question now is how you pass this implementation into the construc-
tor in your app. You've changed the constructor, but where do you change the call to
the constructor to add the new parameter? The answer is that you don’t, at least not
directly. Instead you use a little bit of magic called inversion of control that can create
your view model for you and pass the right thing to the constructor.

Inversion of control

Think about making coffee at home. You need coffee, hot water, milk, sugar, and
some form of machinery. You’re in control of the coffee-making process—you know
which cupboard you keep your coffee in, where in the fridge the milk lives, and how
to operate your coffee-making technique of choice (grinder, French press, espresso
maker, or whatever). You’re in control, but that means you have to know everything
(figure 4.12).

Now imagine you’ve decided it’s too much like hard work, so instead you pop out
to the local coffee shop to get your morning cup of wake-up juice. Suddenly you don’t
have to worry about beans, milk, kettles, French presses, or other coffee parapherna-
lia. Instead you just ask for coffee and receive a hot cup of a tasty caffeinated beverage.
You’re no longer in control—you’ve given this control up to the barista (figure 4.13).
In return for this lack of control, you now have an easy way to get coffee. You've
inverted that control from you to elsewhere—they could change beans or change
their coffee machine and you wouldn’t know or care. As long as you get your coffee,
you’re happy.

www.EBooksWorld.ir

Expanding on our Hello World app 99

E Figure 4.12 To make coffee at home,
you need to control everything.

%‘ A j
i

Coffee
please

Figure 4.13 At a coffee shop, you
give up control of coffee-making

In code, we can do the same thing, as shown in the following listing. Imagine a theo-
retical class that makes coffee at home, and a person class that uses it.

public class MakeCoffeeAtHome < The coffee-making class
{

public Coffee MakeCoffee()

{

}

} A class that represents a
person who desperately needs
public class Person coffee (such as the author)

{
public void WakeUp ()
{
var coffeeMaker = new MakeCoffeeAtHome(); <

) When the WakeUp method is
Drink (coffeeMaker.MakeCoffee()) ;

called, the Person constructs an
instance of MakeCoffeeAtHome
and uses it to make coffee

www.EBooksWorld.ir

100

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

public void Drink (Coffee coffee)
{
}

In this listing there’s a class called MakeCoffeeAtHome that makes coffee, and a class
called Person that constructs the coffee maker and calls it to get coffee. This code is
very tightly coupled—the Person class is in complete control of the coffee-making.
The downside is that Person is in complete control, which means that if anything
changes, we’ll have to change the Person class. For example, another developer might
add a constructor to the MakeCoffeeAtHome class so that it takes a logger to track the
amount of coffee being drunk—if that happened, this code would break. Similarly, if
we wanted to change to buying coffee from the local coffee shop instead of making it
ourselves, we’d need to rewrite our Person class. Another consequence of the code
being tightly coupled is that we can’t unit-test the Person class in isolation; we can
only test it with the MakeCoffeeAtHome class.

It would be better if we could invert the control and make it the responsibility of
something else to construct the coffee maker and pass it to the Person. This is shown
in the following listing.

Listing 4.10 Changing Person to take a coffee maker as a constructor argument

public class Person The coffee maker is no longer

{ constructed by the Person.
MakeCoffeeAtHome coffeeMaker; Instead it’s passed in to the
public Person (MakeCoffeeAtHome coffeeMaker) constructor.

{

coffeeMaker = coffeeMaker;

}

{ to the constructor is

public void WakeUp () The coffee maker passed
used to make coffee.

Drink (coffeeMaker .MakeCoffee()) ;

This is a bit better—we’ve given up control of constructing the MakeCoffeeAtHome
class, so that if the class needs to change its constructor, the Person class doesn’t
break. Let’s take this one step further in the next listing and use an interface, so that
Person becomes easier to unit-test.

Listing 4.11 Passing an interface to the Person constructor argument

public Interface IMakeCoffee An interface used to
¢ define something that

Coffee MakeCoffee(); can make coffee

www.EBooksWorld.ir

Expanding on our Hello World app 101

public class MakeCoffeeAtHome : IMakeCoffee
{ The MakeCoffeeAtHome

class implements this

public Coffee MakeCoffee() .
interface.

{
}
}

public class Person The Person class no longer cares

{ about the actual type of the coffee
IMakeCoffee coffeeMaker; maker. It just needs something that
public Person(IMakeCoffee coffeeMaker) implements the IMakeCoffee to be
{ passed in to the constructor, and it

coffeeMaker = coffeeMaker; can use this to make coffee.

}

This is better—we have an IMakeCoffee interface that’s passed to the Person class. We
can now unit-test the Person class in isolation by mocking the interface. We can also
now change from making coffee at home to buying it from a coffee shop without
changing the Person class; we just need a different implementation of the IMakeCof-
fee interface, as in the following listing.

Listing 4.12 A different implementation of the IMakeCof fee interface

public class CoffeeShop : IMakeCoffee

¢ CoffeeShop also implements the

) IMakeCoffee interface, so Person
public Coffee MakeCoffee() could be constructed using this,
{ and when it makes coffee, the
} coffee shop would be making it.

So far so good. We’ve inverted control of the coffee maker to somewhere else, and this
is one of the key parts of the inversion of control (IoC) design pattern—giving up con-
trol of how your code is wired together. The question now is where has this control
gone to? Passing IMakeCoffee in as a constructor parameter is all well and good, but
what is going to do this? Where in the code do we call this constructor?

What we need is a magic box. Something we can ask to give us a Person and have it
create the Person automagically. All it would need to know is which coffee maker to
use. We could tell it once to use a CoffeeShop when an instance of IMakeCoffee is
needed, and then whenever we ask for a Person, we’d get one created using Cof-
feeShop as the constructor parameter. The Person doesn’t care what’s used to con-
struct it, only that it’s constructed with something that implements IMakeCoffee.
Once we’ve told the magic box to use a CoffeesShop, we can stop thinking about how
to construct the Person and just have one created for us.

The good news is that we can use an inversion of control container to do this hard
work for us. This is a container class that you can think of as the magic box. You tell it
what types you have (this is referred to as registering types), and when you ask for an
instance of a type, it will look at the constructor of that type, create anything it needs,
and pass them in when constructing the type you wanted. Essentially, it injects the

www.EBooksWorld.ir

102

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

dependency at construction time, so this concept is referred to as dependency injec-
tion—using a tool such as an IoC container to push dependencies into a class either by
using constructor parameters (constructor injection) or by setting properties after
construction. Figure 4.14 shows this.

CoffeeShop is registered as Ask for an instance of Person.

implementing IMakeCoffee. /

\ loC container—the magic box!

-
CoffeeShop —————{:) IMakeCoffee

User
Person
public Person Person
(IMakeCoffee mc)
4

Person’s constructor needs an IMakeCoffee. An instance of Person comes
CoffeeShop implements this interface, so an out, constructed using an
instance of CoffeeShop is passed in. instance of CoffeeShop.

Figure 4.14 The magic box that is an loC container—you tell it what types you have, and
when you ask for an instance of a type, any dependencies are resolved and then injected into
the constructor of the type you’ve requested.

Let’s think about this in terms of our Hello World app. If you compile the code with
the changes we made to the FirstViewModel, you’ll notice that it compiles with no
problems. We’ve added a new constructor parameter but this doesn’t break the code.
This is because MvvmCross uses an IoC container for everything it does. You never

explicitly create a view or a view model yourself; instead, you rely on the builtin
MvvmCross IoC container to do it for you. The built-in MvvmCross startup code will
find all your view models and register them inside the IoC container, so you don’t
have to do anything with them. Remember the App.cs file with its call to Register-
NavigationServiceAppStart<ViewModels.FirstViewModel> ()? This tells the Mvvm-
Cross framework that when the app starts up it needs to do the following:

Create this view model by requesting it from the container.

Create the corresponding view by finding a class with the same name as the view

model (but with a View suffix).

Set the view model on the view to be the view model from the container.

Show the view.

www.EBooksWorld.ir

Expanding on our Hello World app 103

MvvmCross.Platform.Exceptions.MvxloCResolveException has been thrown

Failed to resolve parameter for parameter textToSpeech of type
ITextToSpeech when creating
HelloCrossPlatformWorld.Core.ViewModels.FirstViewModel

Show Details

Figure 4.15 The exception thrown when MvvmCross can’t resolve a type from its
loC container

Our code compiles fine, but will it run? Nope. If you try it, the app will throw an Mvx-
IoCResolveException, as shown in figure 4.15.

The MvxIoCResolveException type tells us that the MvwvmCross framework was
unable to resolve a type from the IoC container. The exception message tells us that
the exception occurred when constructing the FirstViewModel class as it couldn’t
find an implementation of ITextToSpeech in the container to use as the constructor
parameter. These exception messages are pretty easy to debug—they clearly state
which parameter type is missing and which class was being constructed when it failed
to find the type.

This is easy enough to fix—we need to register an instance of this interface with
the IoC container before the view model is created. The text-to-speech plugin has a
static class CrossTextToSpeech with a Current property that returns an implementa-
tion of the ITextToSpeech interface. We can register this in the container so that
every time this interface is requested, this static instance is returned.

The place to do this is inside the cross-platform application class, which lives in the
root folder of the HelloCrossPlatform.Core project in a class called App inside a file
called App.cs. This App class derives from MvxApplication, an MvwmCross base applica-
tion class that handles cross-platform application setup. The following listing shows the
code change you need to make to the App class, so go ahead and update your code.

Listing 4.13 Adding registration of the text-to-speech plugin to the App class

using MvvmCross.Platform; <
using MvvmCross.Platform.IoC;
using Plugin.TextToSpeech;

A new using directive to give
access to the static Mvx loC

container
namespace HelloCrossPlatformwWorld.Core AHOﬂWFHGWlﬁmg
(directive, giving access to
public class App : MvxApplication the text-to-speech plugin

{
public override void Initialize()
{

Mvx.RegisterSingleton (CrossTextToSpeech.Current) ;

} The CrossTextToSpeech.Current

} static instance of ITextToSpeech

) is registered in the Mvx
container as a singleton.

www.EBooksWorld.ir

104

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

This change calls RegisterSingleton on the Mvx container, passing the static instance
of the ITextToSpeech interface. RegisterSingleton tells the container that we only
ever want one instance of this interface—every time it’s requested, it will always return
the same instance. Every time our view model is created, we get a new view model, but
the same instance of the text-to-speech plugin gets passed to the constructor.

Now when our app starts up and the FirstViewModel is created, the container will
find the ITextToSpeech instance and pass it into the constructor. We’ve inverted con-
trol of how our view model interacts with the text-to-speech plugin by taking it away
from the view model and putting it inside our framework.

FINDING OUT HOW TO USE A PLUGIN OR NUGET PACKAGE When you’re using a
NuGet package for the first time, the hardest thing can be finding out how it
works and how to use it. Most good NuGet packages are documented either
on their own website or via a ReadMe inside the GitHub repo for the source.
There’s usually a link to this documentation shown in the NuGet package
manager. For the textto-speech plugin, the docs are on GitHub at
https://github.com/jamesmontemagno/TextToSpeechPlugin.

This is a very powerful pattern. MvvmCross registers any view model derived from
MvxViewModel as part of its default startup, and we registered the ITextToSpeech
interface in the container manually. As a result, any time the view model is needed, it’s
created with the right constructor parameter. By registering everything we need via an
interface inside an IoC container, we end up with loosely coupled code. This isn’t just
limited to view models—ideally this should be used in your model layer as well. This
allows you to easily write unit tests against any class you want, mocking all the inter-
faces as you need them.

loC all the things!

One other awesome thing to be aware of is that you don’t have to register inside your
core project—you can just as easily register inside your platform-specific code. This
way you can provide access to platform-specific code via an interface.

A popular example of this would be a dialog service—something you can call to show
a message popup to the user. You could define an interface for this inside your core
project and create two platform-specific implementations, one in iOS and one in
Android. Each implementation would use the relevant platform-specific code to show
a message popup.

Once you have the core interface and two platform-specific implementations, you can
register them inside the platform-specific part of the application layer. In addition to
the cross-platform MvxApplication class, MvwmCross also has some platform-spe-
cific setup code derived from MvxAndroidSetup on Android and MvxIosSetup On
i0S. You can find these inside the two Setup.cs files, one in the root of the Android
app, the other in the root of the iOS app, and in there you can register classes in the
Mvx container. At runtime your core project references the interface, and this is
resolved to the platform-specific version.

www.EBooksWorld.ir

4.2.5

Expanding on our Hello World app 105

Now that our core code is set up, let’s add a button to the UI, connect that to our com-
mand, and make the app really say, “Hello!”

Wiring up the Android Ul

There are two steps in wiring up the Android Ul—first, add a button to the UI, and
then wire it up to match the changes we’ve made. We’ll start with the UL

Start by opening up the FirstView.axml resource from the layout resource folder
(figure 4.16). To wire up the new changes, you need to change the binding in the
EditText and TextView to use the renamed Name property, and add a button to speak
“Hello.” The following listing shows the changes to the two elements inside Linear-
Layout and the new element you need for the button.

¥ [layout
Erat\i | Figure 4.16 The structure of the layout
irstView.axm folder inside the resources folder of the
|§| SplashScreen.axml Android app project, showing the location of
@ toolbar.axml the FirstView.axml layout file

Listing 4.14 The changes inside LinearLayout from line 20 onwards

<LinearLayout
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent">

<EditText The binding for the EditText
android:layout_width="match_parent" is changed to the new Name
android:layout_height="wrap_content" property.
android:textSize="40dp"
local:MvxBind="Text Name" /> 4 |

<TextView
android:layout_width="match_parent"
android:layout_height="wrap_content" The binding for the TextView
android:textSize="40dp" is changed to the new Name
local :MvxBind="Text Name" /> | property.

<Button <

This button is new and is
bound to the new
SayHelloCommand that you
just added to your view model.

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:textSize="40dp"

android:text="Say Hello"

local :MvxBind="Click SayHelloCommand"/>
</LinearLayout>

Changing from Hello to Name updates the binding to look for a property on the view
model called Name instead of one called Hello. This matches the name change we’ve
just made.

The button binds something called Click to something called SayHelloCommand.
MvvmCross is smart enough to know that Click is an event, so it expects this to be
bound to an ICommand. At runtime when the button is tapped, the Click eventis fired
and Execute is called on the command.

www.EBooksWorld.ir

106

4.2.6

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

THERE’S A DESIGNER YOU CAN USE IF YOU DON'T LIKE XML The designer tab is
just that—a visual designer for laying out your Ul You can use it to add the
button: just drag it on from the toolbar, and you should be able to position it
in the LinearLayout below the other controls. You can then set the text and
textSize in the Properties window and only dive into the XML to add the
MvxBind attribute.

If you build and run this (but don’t build all as you’ll 555 4:Android_Acceleraiec x38
get a compiler error for the iOS project that we’ll fix
later), you'll see the new UI with the new button [RASAEEREREELEE
(shown in figure 4.17). Enter your name, tap the Say

Hello button, and assuming you have the volume Jim |
turned up, you’ll hear the app saying hello to you! Jim |
Exciting stuff, getting an app to talk using shared

code (unless you're in a crowded coffee shop and SAY HELLO
everyone is now staring at you). To prove it’s shared,

lets get iOS talking to us as well.
Figure 4.17 The new Android app

w’.”.ng up the jos ul with its Say Hello button

Setting up the Android Ul is pretty easy—just add another node to the XML. I’d love
to be able to say iOS was just as easy, but that would be a lie. iOS is a downright pain
when it comes to the UL It used to be easy when there were only one or two screen
resolutions, but now that there are multiple iPhone and iPad screen sizes, it’s hard.

When there was only one screen size, everything was based on a concept called
Jrames—you’d set the exact pixel location and size of every control (essentially defin-
ing where the frame of the control would be). The first retina iPhones were also
easy—you used the same “pixels,” and the OS just doubled everything. Now that there
are a few more resolutions and screen sizes, everything uses something called autolay-
out, where you specify a set of rules called constraints for each control, and the layout is
calculated based on these rules and the size of the screen.

For example, you could set a constraint saying “make my button use half the screen
width and be fixed to the left side halfway up.” On every screen size, the button would
be in the same place relative to the screen—on the left side halfway up, regardless of
the height of the screen. This does make for nice lay-
outs, but setting these rules can be painful. I'll cover this v B Views

in more detail in chapter 11, so for now just follow these [0] FirstView.cs
“simple” instructions to get a new button on the screen. [+ Firstview.storyboard
Open the FirstView.storyboard file from the iOS FirstView.designer.cs

project’s Views folder (figure 4.18). We’ll talk about sto-
ryboards in more detail in chapter 11, but for now think
of it as a visual designer for your view. This will show the

Figure 4.18 The structure of
the Views folder in the iOS app
project, showing the location of
view as a large white box displaying the text entry con- the FirstView storyboard

trol and label.

www.EBooksWorld.ir

Expanding on our Hello World app 107

When the designer opens up, go to the toolbox. On Visual Studio for Mac, this
should appear as a tabbed pad on the right side. If it’s not there, you can open it using
View > Pads > Toolbox. On Visual Studio for Windows, it should be docked on the left.
If it’s not there, you can show it using View > Toolbox.

Type button into the search bar on the toolbox, and drag a button to below the text
entry control, as in figure 4.19.

Click here to enter constraint editing mode
Main. storyboard /‘ T Toolbox Eer

Bl c ==

Carrier 5 |- ¢ Controls

Label

Figure 4.19 Dragging a button to the storyboard

Once the button is there, click the Constraint editing mode button to enter a mode where
you can set the constraints. This will change the highlighting so you have a set of I-bar han-
dles around the button instead of the circle handles.This is shown in figure 4.20.

Carrier = 100% -
Label
F”TG’””:
[Buton [JE
! ey i
o=
,,,,,,, = _

b ston E\

These T-bar handles '~~~ ! e These I-bar handles
are used to set spacing . \ are used to set
for the four edges. This square handle is used to set the width and height.

horizontal or vertical center.

Figure 4.20 The constraint handles for constraining the size, distance to other controls, and
center alignment

www.EBooksWorld.ir

108

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

Once these handles are visible, you can drag them to create the constraints. As you
drag them, you’ll see various widgets in the view either light up or be highlighted with
dashed lines. These are guides that show what you can constrain the properties of the
button to. Essentially, these constraints allow you to fix the position of the button, its
size, or its center point relative to other widgets, or relative to the screen. The high-
lights on screen show you what you can set that particular constraint to.

To get your button looking nice and sitting below the text field for all screen sizes,
you’ll have to constrain three things—the top of the button, its width, and its horizon-
tal center:

Drag the top T-bar handle (the one that looks like a very short T on the top in
the middle) over the text entry box. The top, middle, and bottom of the text
entry box and label will turn to dashed green lines, with the one that the mouse
is over highlighted in blue. Drop the T-bar on the bottommost dashed line of
the text entry box. This sets a top constraint of a certain distance from the bot-
tom of the text entry box. Don’t worry about the value of this distance for now.

Drag the bottommost I-bar handle (the one that looks like an I on its side or a
squashed H, not the one that looks like an upside-down T) onto the text entry
box above. When you do this, the screen will turn blue and the other controls
will be green. When you drag it over the text entry box, that will turn blue and
the rest of the screen will be green—this is the time to release the mouse button
or trackpad. This sets a width constraint to match the width of the text entry box.
Drag the square handle in the middle of the button to the middle of the screen
width-ways, just below the button. The screen will change so the outline of the
other controls are dashed green lines, with two other dashed green lines down
the horizontal middle and across the vertical middle of the view. Drop it on the
green line down the horizontal middle. This will constrain the middle of the
button to the middle of the screen.

Figure 4.21 shows these steps.

When you’re done, the button will have an orange highlight to it, as shown in fig-
ure 4.22. This is the designer’s way of telling you the button will be in a different place
atruntime. You can fix this by telling the designer to position the control based on the
constraints. To do this, exit constraint editing mode by clicking the Frame Editing
Mode button (the first button in the constraints section), then update the frames
using the Update Constraints From Frames button (the last button in the constraints
section). The button you’ve added should resize to be the same width as the text entry
box, sitting slightly below it.

The constraints themselves will be shown in the Layout tab of the Properties pad,
which can be shown in Visual Studio for Mac using View > Pads > Properties if it’s not
already displayed on the right side. On Windows it’s in the Properties window, which
should be docked on the right side, but if not you can display it using View > Proper-
ties Window. These tabs show the layout rules applied. The top spacing to the text

www.EBooksWorld.ir

Expanding on our Hello World app 109

Label

I. Drag from the top T-bar to the ————~+ . @ e
bottom dashed line in the text field. sBustondl

The dashed line will turn from green

to blue when the cursor is over it.

This sets the top constraint. It anch&b
the top of the button to the bottom

of the text field with fixed spacing
between them.

2. Drag the bottom I-bar to the middle
of the text field.

The screen will go green as you drag,
the text field will turn blue when the
and cursor is over it. (Colors are @ ‘
removed here for clarity.) L

This sets the width constraint. It tells \)@K

the button to always be the same width
as the text field.

Carrier 2 23% Ik

Label

3. Drag the center square handle over
the vertical dashed line in the center
of the view.

Bu.on
This sets the horizontal position
constraint, telling the button to @

always have its center in the center
of the screen.

Figure 4.21 The three steps to set up the constraints—set the top constraint, the width constraint,
and the horizontal center constraint.

Click the Update Frames Based on Constraints button to update
the designer and show what it will look like at runtime.

[carriar = T i 0% -

Label

Before updating frames After updating frames

Figure 4.22 Lay out the constraints and click the Update Frames to Match Constraints button to see
what the view will look like at runtime.

www.EBooksWorld.ir

110

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

field is set to a constant value, the width of the button is set to the width of the text
field, and the horizontal center of the button is set to the center of the superview—
that’s the view that contains it (in this case, the whole screen).

If you followed the previous instructions, you should have constraints like those
shown in figure 4.23. The value in the Top Space To constraint may be different from
the 14 shown in the figure because this value depends on where you dropped the but-
ton, but the rest should be the same. If yours doesn’t match, the easiest fix is to delete
the button and try again.

Use the Layout tab to see the contraints.

o [

[y Widget [7] Layout (3) Events

Arrange
Preserve Superview Margins
Faollow Readable Width
Layout Margins Default o N .
- The top of the button is constrained to 14 points
Constraints

/ (in this case) from the bottom of the text field.
[Top Space to: Text Field - TextField P
- Equal: 14

The width of the button is constrained to the
- Width to: Text Field - Textfield »—— width of the text field.

— Equal: O
Align CenterX to: Superview The X center (horizontal center) is constrained
Equal: 0 - to the center of the Superview—the view

that contains this control.

Figure 4.23 The constraints showing in the Properties pad

Once the layout is defined, you can set the text and the name of the button in the
Widget tab of the Properties pad. Set the Name property in the Identify section to “Say-
HelloButton” and the Title property in the Button section to “Say Hello”. Setting the
title updates what’s shown in the button; setting the name will create a property in the
code-behind for that button. You can see these values set in figure 4.24.

Let’s now bind this new button in the view to the command on the FirstView-
Model in our core project. If you open FirstView.cs and look in the ViewDidLoad
method, you’ll see the code that binds the original Hello property to Ul widgets.
Make the changes in the following listing to bind the existing controls to the new Name
property, and to wire up the button to the SayHelloCommand.

www.EBooksWorld.ir

Expanding on our Hello World app 111

E Properties O x

Use the Widget tab to see

the widget’s properties. ——* | R Widget| [Layout () Events

Identity

Name ‘SayHeIIoButton

Class ‘

If you enter a name here, a el ‘ |
new property will be created Fesiersiien [0 ‘ |
in the FirstView.designer.cs o
file with that name and with Localization ID 3
the type UlButton. —
Type System
State Config = Default
Title Plain
Set the text to display
in the button here. =~ ———— | Say Helld |
CAant ‘c.._a-.—. 1T - T |

Figure 4.24 Setting the widget properties for the button

Listing 4.15 Updated ViewDidLoad method, binding the new properties and button

public override void ViewDidLoad () The Label is bound to

{ your new Name property.
base.ViewDidLoad () ;
var set = this.CreateBindingSet<FirstView, FirstViewModel> () ;
set.Bind(Label) .To(vm => vm.Name) ; <
set.?}ng(;‘ex:f‘iilg) t.i‘o (va:> vm;Name)é . ll<c o The TextField is
set.Bind(SayHelloButton) .To(vm => vm.SayHelloCommand) ; boundtoyour
set.2Apply () ; Ih UlButt d new Name

} € hew utton name property.

SayHelloButton is bound to
your new SayHelloCommand.

As with the UITextField and UILabel, MvwmCross has some smarts around UIButton—
the underlying type of a button on iOS. The standard event you’ll wire up to on a
UIButton is TouchUpInside, so by default this event is bound to the command. You can
override this if you want, by explicitly specifying it, but in this case you want the default,
so you don’t need to give an event name.

And that’s it—there’s no logic as such because everything is in the core project.
There’s just new Ul bits and some binding. If you run this now, enter your name, and
tap the Say Hello button, you’ll hear your app say hello to you!

www.EBooksWorld.ir

112

CHAPTER 4 Hello again, MVVM—understanding and enhancing our simple MVVM app

One thing to notice with the text-to-speech is that when you make the call to speak,
it returns immediately and the Ul isn’t locked up while the app is talking. You can test
this out by editing the text while the app is talking. Unfortunately, this isn’t always the
case—it’s very easy to call a method in your command that takes a long time to run
(such as hitting a web service), and if you aren’t careful, your UI will be unresponsive
during this call. Even worse, your app could be terminated by the OS if it’s unrespon-
sive for too long. I'll discuss this in more detail and look at how you can handle multi-
ple threads in your apps in the next chapter.

Summary
In this chapter you learned that

MvvmCross apps are built using the different layers of MVVM, and MvvmCross
has code for each layer, such as the base view-model and command types, bind-
ing, and support for view-model-first navigation.

Plugins can provide extra device-specific functionality to your apps that’s acces-
sible from your cross-platform code.

Inversion of control is a great pattern that allows you to define loose coupling
between classes, making it easier to change them without breaking existing
code, and making the classes easier to unit test.

Having a mobile app talk to you with only a few lines of cross-platform code is
really cool!

You also learned how to

Find and add plugins easily using the NuGet package manager.

Add new controls to an Android UI by making simple changes to an XML file
(although you can use the designer).

Add new controls on iOS and position them using constraints through the
designer, giving a really nice UI layout at the cost of complexity.

Easily wire up controls to your view model using binding, allowing the same
code to be called from UI widgets on both iOS and Android.

www.EBooksWorld.ir

What are we (a)waiting for? An
introduction to mulitithreading
Jor Xamanin apps

This chapter covers

= What is a thread, and what is multithreading?

= What the Ul thread is, and why it’s special

= Using tasks to run code on background threads

= Using async and await to make your code cleaner

When building apps, you always want to give your users the best experience possible.
The world of mobile apps is highly competitive, with app users willing to drop your
app for a competitor if you offer them a bad experience. There are many ways to
provide this bad experience, but one of the worst is having an app with a slow, lag-
ging UI, or one that locks up and becomes unresponsive. Fortunately, fixing apps
that lag or lock up is relatively easy, and in this chapter we’ll look at ways to do this.

This chapter takes a dive into multithreaded code for mobile apps, covering the
Ul thread, Task, and async/await. If you're an experienced C# Ul developer

113

www.EBooksWorld.ir

114

5.1

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

(maybe from years of building desktop WPF apps), you’ve used tasks before, and if all
your code uses async and await, you can feel free to skip this chapter. If your experi-
ence of multithreaded code is not Ul-based, or not in C#, then read on! There are
some quirks to be aware of when writing Uls that use multiple threads, and there are
some awesome tools in the C# toolbox that can help.

Why do we need multithreaded code?

Think about an email app (something you probably use on a regular basis). This app
shows your current emails, and as you're using it, it will go off to your email provider
and download any new emails. All this happens seamlessly—the UI of the app is
responsive at all times, allowing you to read and delete messages at the same time as
the app is fetching or sending new emails.

This is a nice app experience, and something most app users take for granted.
Apps will download data without interrupting what you’re doing as a user, maybe giv-
ing some feedback to show you that it’s doing something in the background, or show-
ing some dummy data while the app starts up. Figure 5.1 shows some examples of this.

News People Travel News People Travel News People Travel

Loading

Lauren Ipsum
Auckland

Loving the beach today!

Posted 4 hours ago Loading...

Aarti Effem
Wellington

Qut for lunch

Posted 5 hours ago

Lauren Ipsum
Auckland

Dummy loading data Progress dialog at the top Progress dialog over
of the list being reloaded the whole screen

Figure 5.1 Apps performing operations in the background, such as loading data, usually
have some kind of indicator showing that something’s happening.

USERS CAN NOTICE ANYTHING LONGER THAN ABOUT 100-200 MS Studies have
been done into what users perceive as a noticeable lag, and they’ve found that
anything over around 100-200 ms is noticeable as a brief delay. Microsoft now
recommends that anything taking longer than 200 ms be done in the back-
ground, and they’ve followed this philosophy in the .NET framework, making
anything longer than that async. Google and Apple recommend anything lon-
ger than 100 ms be run in the background. You can read more on this in

www.EBooksWorld.ir

Why do we need multithreaded code? 115

Jakob Nielsen’s “Response Times: The 3 Important Limits” article on the
Nielsen Norman Group website: www.nngroup.com/articles/response-times-
3-important-limits/.

You may have also seen apps that don’t provide such a nice experience and lock up
the UI for a short while. If they lock it up for too long, you may have killed the app
yourself, or in the case of Android seen a nice dialog that offers to kill it on your
behalf. This is something that we, as app developers, want to avoid.

The basic principle is simple—keep the screen and widgets working while you’re
loading data in the background. But what does this mean? What is “the background,”
and how can we as app developers load data in this way?

Let’s start by taking a quick look at the problem before we look at the solution. For
the purposes of illustration, we’ll look at our Hello Cross-Platform World app from
chapter 4. In this app we bound a command in the view model to a button, to say
hello to the user. But let’s pretend that before the app can say hello to the user, it
needs to make a call to a web service to do something.

Making a call to a web service from a mobile app can be slow, especially over a poor
cellular connection (remember, millions of smartphone users are based in the devel-
oping world, where network speeds are much slower than the 4G that some countries
have). We’ll change our code to call a method that does nothing for a few seconds, to
simulate this long call to a web service.

Make the following change in FirstViewModel, inside the FirstViewModel.cs file in
the HelloCrossPlatformWorld.Core project.

Listing 5.1 Adding a long-running method to simulate a slow web service call

i System. Th di .Tasks; . . .
HEHG BYSEER. Shreading . Tasts A new using directive allows
public class FirstViewModel : MvxViewModel the code to use Task in the

{ new method.
x'zc;id SayHello () In the SayHello method, the code calls a
{ new MakeLongWebServiceCall method to
MakeLongWebServiceCall () simulate a long-running web service call.
textToSpeech.Speak ($"Hello {Name}");
} The new method simulating
void MakeLongWebServiceCall () the long web service call
{
Task.Delay (TimeSpan.FromSeconds (5)) .Wait () ; Waits for 5 seconds (don’t
} worry too much about how
} this works, we’ll look at it

later in this chapter).

Make this change and run the app (either on iOS or Android). If you tap the Say
Hello button, you’ll see the whole app lock up for five seconds before it says hello to
you. If you type in the text box, nothing will happen for those five seconds; the text
will only appear after the five seconds are up. If this was an email client, and it locked

www.EBooksWorld.ir

www.nngroup.com/articles/response-times-3-important-limits/
www.nngroup.com/articles/response-times-3-important-limits/

116

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

up for that much time while downloading an email, it would be a very bad experience.
If that happened while a user was trying to delete the current email, and nothing hap-
pened when they tapped the Delete button, they might tap it again, and again, and
again. Once the app became responsive again, these multiple taps might turn into
multiple deletes, deleting too many emails. Not a good experience.

Let’s take this a bit further and imagine that our app needed to make many calls to
this web service, taking even longer. Change the timeout to 60 seconds using the code
in the following listing and run this on Android (notiOS this time).

Listing 5.2 Increasing the timeout to 60 seconds

{ increased from 5 seconds

void MakeLongWebServiceCall () The timespan is now
4 to 60 seconds.

Task.Delay (TimeSpan.FromSeconds (60)) .Wait () ;
}

Not only will your app be unresponsive for a really long time, but the OS will step in
and tell the user that the app isn’t responding, asking them if they want to wait or
close the app (figure 5.2).

5554:Android_Accelerated_x86

HelloCrossPlatformWorld.Droid isn't
responding.

Do you want to close it?

Figure 5.2 On Android, if an app
blocks for a long time, the user is told
and given a choice of waiting for it to
be responsive again, or closing it.

Most users will tap OK at this point to close the app. If this happens too often, few
users will come back to your app. Instead they’ll download and use a competitor’s app.
Only Android gives this option—on iOS the app just locks up.

In the email app example, emails are downloaded in the background while the
app is still usable. Ideally we’d want to do the same thing in our app—our long-run-
ning web service call should happen in the background so that the app remains
responsive.

www.EBooksWorld.ir

5.2

5.2.1

What are threads? 117

But what do we mean when we say we want things happening in the background?
How can we use this “background” to run code? The answer lies in the world of
threads and multithreaded code.

What are threads?

As regular app users, we’ve all seen things happening in the background—tweets
downloading while we’re reading other tweets, and emails appearing while we’re writ-
ing new emails. You've probably heard of threads and multithreaded code, but what
do these terms mean? Before we look into how we can get our apps to remain respon-
sive while making long web service calls, let’s look at what a thread actually is.

Buying coffee

Imagine you head out to buy coffee for your team at work, and you go to a really slow,
inefficient coffee shop that only has one person working in it. You queue up, and
when it’s your turn you give your order to the barista, one coffee at a time. You order
one coffee, the barista makes it, you order the next, the barista makes it, you order the
next, and so on, and so on. Once you have your coffees you pay for them. You end up
standing there for a long time getting bored, and either you finally get your coffees or
you leave. Either way you’re not happy because you were gone from the office for such
along time (and maybe even less happy because you got bored waiting and didn’t end
up with any coffee in return for your efforts). It’s not just you—the people behind you
in the queue might also get bored and leave before they’ve even ordered (figure 5.3).

Figure 5.3 When you’re waiting for a large coffee order in a badly run coffee shop, you might just
give up before you get your coffee.

Lots of
coffee
please

Let’s look at a timeline of how this might happen, as shown in figure 5.4. As you can
see, there’s a lot of waiting around for each coffee to be made before you can finally
pay and take your coffees. You order, wait, order, wait, order, wait...

How could the coffee shop improve? The first thing they could do would be to take
your order up front, then make your coffees, and then call you once they’re done. You
place your order, leave your name, and have time to yourself to read the news or surf

www.EBooksWorld.ir

118

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

@
Ask for i Get Ask for - Get Order more
w T - S fotwhite | AL | st white coffee... Pay
Pl
[)
i Make latte Make flat white Make more Take
coffee... money

Time /l/

Figure 5.4 Ordering one coffee at a time and having it made, then ordering another takes a long time.

the internet. Then, when your coffees are ready, the barista would call out your name
and you’d pick up your coftfees. Figure 5.5 shows the timeline of this approach.

This is slightly better—it still takes the same amount of time to get your coffees,
but at least you're not as bored as before, and you’re less likely to give up and leave
before you get your coffee. This is no better for the rest of the queue, though. Those
poor, thirsty people will have to wait just as long for a tasty caffeinated beverage.

What else could the coffee shop do? How about adding more people? If they
employed another barista, the coffee could be made a bit quicker. One barista could
take the order, and the other could make the coffee. Figure 5.6 shows the timeline for
this better scenario.

This doesn’t make it better for us, but makes it a bit better for the other custom-
ers—they can now order while our coffee is being made, and they can also go off and
do other things while they wait. It’s better because customers aren’t waiting in line
bored for so long, but it still takes the same amount of time to make everyone’s coffee.

Let’s have one more go at making it better by adding additional baristas, as shown
in figure 5.7. This is even better—not only can all the customers place their orders
and then do whatever they like, instead of standing in a queue, but multiple coffees
can be made at the same time, meaning each customer gets their coffee quicker.

[)
Order) . Collect
w everything Free time doing other stuff coffee Pay
[)
1 Take Make latte Make flat white Make Call Take
. order more coffee... | name money

Time /l/

Figure 5.5 If you can place your coffee order up front, you’re free to do other stuff while it’s being made.

www.EBooksWorld.ir

What are threads?

[]
Order
everything

[]

Orde.r Free time doing other stuff Collect Pay

everything coffee
Take Take Free time doing other stuff call Take
money

Make
more coffee...

Make latte Make flat white

— T [_"II!.
g
o
@
[e]
a
@
=l
[
3
D

Time /l/

Figure 5.6 Having two baristas means that one can take orders while the other makes coffee.

Orde.r Free time doing other stuff Collect Pay
everything coffee
Order)) Collect
everything Free time doing other stuff coffee Pay
Take Take Free time doing other stuff Call Take Call Take
order order name money name money
— Make latte Make
more coffee...
L= Make flat white Make
more coffee...
Ls| Make espresso Make
more coffee...

Time /l/

Figure 5.7 Having multiple baristas to make coffee means the orders can be made more quickly.

www.EBooksWorld.ir

119

120

5.2.2

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

This is a great model for a coffee shop—and coincidentally a great model for software
as well.

So what is a thread?

You can think of the staff members in the coffee shop as different threads—each one
is working on a separate thing at the same time. They have a series of tasks to do, and
they do them in order (a thread, like a barista, can only do one thing at a time). When
they have nothing to do, they just stand there doing nothing, waiting for something
else to do.

In computing terms, a thread is a thread of execution—a way for an app to split
the code it’s executing into one or more simultaneously running tasks. When an app
runs, it runs using at least one but usually more threads. Every application, be it a
mobile app, desktop app, console app, or website, runs in at least one thread. Justas a
coffee shop with no staff wouldn’t be able to make any coffee, there’s no way for your
code to run without a thread.

An email app will have one thread for the user interface, which will run the UI
code allowing the user to interact with a list of emails, tap one to read it, write a reply,
or perform other tasks the user wants to do, as shown in figure 5.8. It will also have
one or more background threads for talking to the email provider—downloading
emalils or sending ones you’ve just written. These background threads will only inter-
rupt the thread that runs the UI when they need to, such as when a new email has

I. All user interactions are handled quickly by the Ul thread,
as it’s not running any long-running actions.

(] 4)
Scroll Open Close
emails email email
Ul | Update Show Show Update
thread | display email email list email list
Background Poll for new emails
thread bl
j Time
2. The background thread is responsible 3. When an email is downloaded, the background
for long-running actions like loading thread interrupts the Ul thread just long enough
emails from the email provider. for the Ul to be updated to show the new emails.

Figure 5.8 In an email app there will be a Ul thread that keeps the Ul responsive and a background
thread to download emails.

www.EBooksWorld.ir

5.2.3

What are threads? 121

been downloaded and the list of emails needs to be updated. Think of an email app as
the server in our coffee shop example, but serving up emails instead of coffee. The
baristas are running around in the background fetching emails instead of drinks,
sending them, doing whatever tasks are needed, and only interrupting the server
when they need to (such as letting the server know when an email has been down-
loaded, instead of when a coffee is ready).

This division of work into multiple threads isn’t something that happens automati-
cally. You need to explicitly tell your app to use multiple threads, in the same way that
a coffee shop has to employ multiple baristas to make coffee. Mullithreaded is the term
that describes code that uses multiple threads to handle its workload. Our ideal coffee
shop is multithreaded—it has multiple baristas (threads) creating coffee at the same
time (executing code at the same time).

Multiple threads don’t always mean multiple things are happening at once

If you have two threads executing code, this code may or may not be running at the
same time.

Your mobile device probably has a multicore processor, which means it has a chip
that you can think of as being more than one chip glued together. It can have two bits
of code running at the same time by having multiple cores running different code—
one core runs one thread and one runs the other.

In addition, though, it can run multiple threads on the same processor by giving one
thread a bit of processing time, and then pausing it and giving the other thread some
processor time. It's smart, so if one thread has to wait on something, like reading
from the network, it can use that waiting time to run the other thread.

If you're feeling geeky and want to learn more, Google “preemptive multitasking”.

A quick roundup
Let’s take a quick moment to review all this, as it’s important stuff:

All code runs in a thread, and a thread runs code in sequence.
An app can have multiple threads, each running different code at the same
time.

This sounds simple, but the devil’s in the details. Threading is actually a massive topic
(with scary terms like mutexes, semaphores, and critical sections), worthy of a book in its
own right. Luckily for us C# programmers, we don’t need to worry too much about
these details. But there are a few basic concepts you’ll need to know about, and a few
language constructs to learn about that encapsulate all the hard stuff, allowing us
developers to get on and write code.

What you really need to know about are the two different types of threads (UI and
background threads), tasks, and async/await. Let’s start with the two types of threads.

www.EBooksWorld.ir

122

5.3

53.1

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

Ul thread and background threads

In our coffee shop, we have two different types of employees—a server who interacts
with the customer, and baristas who take instructions from the server and make cof-
fee. In our email app example there are two types of threads—one that runs the user
interface (UI), and one or more that perform operations in the background, such as
fetching emails. All mobile apps are the same as the email app, having these two types
of threads. These thread types, like the two types of coffee shop employees, are actu-
ally very distinct and have very different characteristics.

The Ul thread

The UI thread is something you hear a lot about when you’re building applications
with a user interface. It’s the main thread inside your app (you’ll often hear the Ul
thread referred to as the main thread)—the server at the counter who takes your coffee
order. When buying coffee, you only interact with one person who takes your order
and calls you when your coffee is ready, and it’s the same with the UI thread. When
your user interacts with the user interface of your app, they’re interacting with the Ul
thread. If that one server is busy doing something else, you can’t interact with them to
order coffee until they’re free. The same goes for the UI thread—if it’s busy, you can’t
do anything else on that thread until it’s free.

The UI thread has a simple but important job—running the user interface. It’s
responsible for everything the Ul does. If you type a letter into a text box, the Ul
thread detects the keypress, runs the code to draw the new character on the screen,
and raises the text-changed event. If you update a control, the Ul thread is responsi-
ble for updating the screen, including calculating how controls should be laid out and
what should be shown. The Ul thread runs animations, transitions between views, and
shows popups. Every interaction with the user via the screen and every change to the
screen is handled by this one thread.

You never need to create the Ul thread—it’s created for you by the OS when your
app starts up, and it stays around till your app is closed.

A barista can only do one thing at a time. If a coffee shop has a single barista who
makes one coffee at a time, the customer has to wait for each coffee to be made. In
the same way, a thread can only do one thing at a time. It runs its tasks sequentially, so
the thread can’t do the next task until the previous task is complete, even if one task
takes a long time (figure 5.9).

The UI thread works using a queue of messages that it processes in order, and
these messages can come from the OS or from your code. When you touch a control
or type text, the OS detects this, creates a message, and sends it to the Ul thread. The
UI thread then handles the message when it’s finished with the previous messages in
its queue.

This is easy enough to demonstrate—launch the modified Hello Cross-Platform
World app that you changed earlier in this chapter, enter some text, tap the Say Hello
button, and enter more text while the app isn’t responding. Try this on iOS, or if you

www.EBooksWorld.ir

UI thread and background threads 123

[)
Tap a . See Ul Enter . See text Do more
button Wait update text Wait change things...
W
Do something Update the text box Handle
more things...

Time /l/

Figure 5.9 The Ul thread handles input from the user sequentially, so it has to finish handling one
input before it can handle another.

prefer to do it on Android reduce the wait time from 60 seconds down to about 20 sec-
onds to avoid the OS warning message. You’ll see the Ul lock up for the wait time, and
as you type, nothing will appear on screen. When the wait has finished, you’ll sud-
denly see everything you’ve typed appear in the text box.

When you tap on the button, a message is raised by the operating system, which is
then handled by the UI thread, raising the click event (figure 5.10). This event was
bound to a command defined using an Action, which means the Action is also run on
the Ul thread. Our action paused for a few seconds, meaning the UI thread was also
paused for a few seconds. For those few seconds, the Ul was totally unresponsive
because it was busy in the pause. It can only do one thing at a time, so if it’s busy wait-
ing, it can’t respond to the messages from the OS in response to user input. Every-

[)
Tap Enter . . . See text
button text Wait—UI is unresponsive change
Message | Button-tap Key-press
queue | message message

Ul ' . Update the
thread Button-click event executes long-running command text box

Time

Figure 5.10 The Ul thread handles messages from the OS resulting from user interactions,
and if it takes too long to handle a message, the Ul appears unresponsive.

www.EBooksWorld.ir

124

5.3.2

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

thing to do with the UI has to wait. Once the time is up and the command finishes,
the UI can then carry on processing the next message in its queue.

IF A BUTTON DOESN'T WORK, USERS WILL TAP IT TILL IT DOES If an app freezes,
users are likely to hammer the buttons or keyboard repeatedly until the app
responds, leading to your app handling all these events when the UI thread is
freed up. This could lead to app behavior that the user doesn’t expect—if they
tap a Delete button in an email client and the app doesn’t respond, they could
tap it a few more times and end up deleting more emails than they expected.

The Ul thread lives as long as your app does, and your app only lives as long as the UI
thread. If an exception is thrown inside the UI thread and it’s not handled, the thread
is terminated and your app dies. For example, in an email app, if a connection to the
server can’t be established and an exception is thrown on the UI thread and not han-
dled properly, the app would die. Obviously this isn’t a good thing. It leads to one sim-
ple rule—don’t allow uncaught exceptions on the UI thread.

In the previous chapters, we looked at the layers of MVVM, and the UI fits very
much into the view layer. Threads, however, don’t fit into these nice simple layers—
they can span all layers. You can run code in the UI thread that starts in the view (such
as in a button click), then runs code in the view-model layer (such as the command
that handles the click), which then makes a call into the model layer. The code in
each layer will run in the UI thread. If this code is fast (less than 100-200 ms), this
isn’t a problem, but ideally anything slower shouldn’t be in the UI thread, but should
instead be run in a background thread to remove any obvious lag or lock-up in the UL

Background threads

The UI thread is the single thread that runs the user interface. Background threads,
on the other hand, are threads that perform tasks in the background, such as down-
loading emails. These are our baristas—they’re given something to do by the server,
and they go off and do it, only interrupting the server when they need do, such as after
the coffees are made. In the same way, you can fire off background threads from your
UI, and these go off and do their thing, only interrupting the Ul thread if they need to,
such as when an email is downloaded and the Ul needs to update to show this.

Unlike the UI thread, background threads can be created, run code, and die with-
out killing the app. If a background thread is locked up doing something, the app
remains responsive. If it takes multiple minutes to download your email, nothing locks
up in your app (and no nasty messages are displayed on Android asking the user if
they want to close the app).

Also unlike the UI thread, you have to explicitly create background threads in your
code. Luckily for us as C# developers, this isn’t as hard as you might think, and once
again it follows the model of our coffee shop.

www.EBooksWorld.ir

5.4

Using tasks to run code in the background 125

Using tasks to run code in the background

So far we’ve established that you ask the server for coffee, and then the baristas make
it. Let’s dig a bit deeper into this.

You order a number of coffees, and the server takes the order and writes each item
down on a ticket. These tickets are passed over to the baristas who actually handle
them, usually by pinning them to a board. Each ticket represents a task for the baristas
to do—for example, make coffee, make tea, or warm up a muffin. The baristas handle
these tasks one by one, and once they’re finished they put the item on the counter so
the server can see that the order is progressing and then call you once everything is
done. The server creates tasks; the baristas handle these tasks and let the server know
when they’re done.

This model works for one barista, two baristas, three, four ... as many as you have
space for (figure 5.11). Baristas themselves could also create tasks for other people,
such as the person who washes the dishes—shouting through to them to ask for more
cups when they get low. The barista carries on making coffee while the dishwasher is
preparing the clean cups, so no one is waiting. Baristas could even give tasks to the
server, such as asking them to check an order, interrupting the server’s ability to inter-
act with customers while they complete the task given to them.

You can also think of an email app as something that would create tickets inter-
nally to track work to be done. For example, once the app loads it will create a ticket
to download a list of new emails that will be handled by something. Once this list is
downloaded, it can create tickets to download the full contents of each new email.

I. The server writes tickets for all the 2. The first barista picks up the
coffees that need to be made and first ticket and is given the task
passes them to the baristas. of making a latte.

. o N

Tickets latte

'l o Latte |

Order two Take i :
coffees order b !

' Flat]

'| white

flat white

/

3. The second barista picks up the
second ticket and is given the task
of making a flat white.

[)
o Make %
n

Figure 5.11 When you order coffee from the server, they give the baristas different tasks to
do, such as making a latte or a flat white.

www.EBooksWorld.ir

126

54.1

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

In C# you can create “tickets” and pin them to the .NET equivalent of the pin board
so that something can pick them up and run them. These tickets are called tasks, and
they’re handed out by a task scheduler to be run on either a background thread or
the UI thread.

Task and Task<T>

In our coffee shop there are tasks that get assigned to baristas or dishwashers or the
server. In the .NET framework there are also tasks, represented by a class called Task
(which lives in the System.Threading.Tasks namespace). This class is similar to a
command in that it wraps an action that can be run. Unlike a command, these actions
can only be run once, and they’re not triggered by a user action but by a task sched-
uler that triggers the action on an appropriate thread. There’s also Task<T>, which
wraps a func that returns an instance of T. This is used if you need to get a return value
from your task, such as a list of emails downloaded from an email server.

When a server creates a ticket for a cup of coffee, the next available barista will
pick up this ticket and make the coffee (this is like a Task<T> with a return value of a
cup of coffee). The scheduling of coffee making is handled by the board that the tick-
ets are pinned to—baristas grab the next available ticket and start making the coffee.
If each coffee takes the same amount of time to make, the baristas will end up taking
tickets in turns, but if one coffee takes longer than another, one barista might end up
taking two or three tickets in a row before the other barista is finished making the
slower coffee and is available to pick up a ticket.

In this example, the pin board is a task scheduler. Tasks are created against a par-
ticular task scheduler, and this scheduler runs them on the relevant thread. By
default, tasks use a scheduler that runs the tasks on a background thread (we’ll look at
another task scheduler later in this chapter). The default task scheduler has a pool of
background threads and uses the next available one to run the next task—just as the
next available barista picks up the next coffee ticket. This abstracts away a lot of com-
plications, including creating and managing threads. You don’t have to do anything
yourself—the task scheduler does it all for you.

You can create a Task by just newing up an instance and passing it an Action to
run as the constructor parameter. For Task<T>, you pass it a Func<T>. Once it’s cre-
ated, you can call Start () to run it. Task even has a static factory method, Run, that
takes an Action or Func<T> as a parameter, creates the Task or Task<T>, and runs it
automatically. By default, these new tasks will all run in a background thread because
they use the default task scheduler (figure 5.12).

Earlier in this chapter we tweaked the Hello Cross-Platform World app to wait for a
short while before speaking, to simulate a long-running web service call. This locked
up the UI, so let’s change the code to use a Task to run the long call in the back-
ground. Make the code changes shown in the following listing, and run the app.

www.EBooksWorld.ir

Using tasks to run code in the background 127

I. Tasks are created using the 2. The task scheduler allocates 3. The tasks are run on multiple
default task scheduler. the tasks to the next available background threads.
background thread.
Fetch
Tasks email
| Fetch |:
Create E email E Task
— —_—
tasks h] scheduler
' | Send new |
i email]
------------- Send new
email

Figure 5.12 The task scheduler takes tasks and runs them on the appropriate thread.

Listing 5.3 Keeping the Ul responsive by using a task

void SayHello ()
{

var task = new Task(() => MakeLongWebServiceCall()) ; <
The task task.Start(); The existing call to
is started. i i
textToSpeech.Speak ($"Hello {Name}"); MakeLongWebSerwceCaII s

converted to an Action and is passed
to the constructor of the Task.

}
If you tap the Say Hello button now, you’ll see that the app remains responsive during
the wait. You’ll also hear the app say hello to you straight away.

In this code you’re creating a Task that will use the default task scheduler so it’ll
run on a background thread, and you’re passing it an Action to run. The call to Start
will tell the task scheduler to start running this task in the background. This call
returns immediately—it doesn’t wait for the Task to complete. The construction of the
Task happens on the Ul thread (remember, the command that calls SayHello is called
from a button tap, which is handled on the UI thread), but the execution happens in
the background, which is why the rest of the method runs straightaway (figure 5.13).
We can simplify the code by using the static Task.Run method, which wraps the con-
struction and starts it in one call, as shown in the following listing.

Listing 5.4 Creating a new task and running it, instead of using the Sstart method

void SayHello()

{
Task.Run(() => MakeLongWebServiceCall()) ; Task.Run is the same
textToSpeech.Speak ($"Hello {Name}"); as cr.eating a task and
calling Start.

www.EBooksWorld.ir

128

5.4.2

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

[]
Tap Hear
button words
Ul Create Say
thread task hello

Task | Schedule

scheduler task
Backgi;?zgg Run task
Time

Figure 5.13 Running a task executes its code on a background thread.

This is a nice pattern, but what if we wanted the app to say hello after the long method
has finished? For example, in an email app we’d want code that would go off to the
emalil provider and download emails, and once they're downloaded it would tell the
user, in true Tom Hanks/Meg Ryan style, that they’ve got mail. If the message came
before the emails were downloaded, you’d have an unhappy app user.

Again, as C# developers we can do this easily, using task continuations.

Chaining tasks

Suppose one of our baristas needs both clean cups and more coffee beans, with the
cups being more urgent—they have only two cups, but enough beans for five more
cups of coffee. They could ask a dishwasher to get them both, one after the other—get
some clean cups then get some more beans. The task to fetch more cups comes first,
and once it’s complete the dishwasher can collect more beans (figure 5.14).

In an email app we’d want to do something similar—first the app would log in,
then it would download a list of all the new emails, and then it would start download-
ing the content of the new emails. All these tasks have to happen in order (after all,
the app can’t download the content of the emails before it knows which new emails to
get content for) and they must happen in the background so that the UI remains
responsive.

We can do this with our tasks in code: create a task to run some code, and tell it
that once it’s complete, another task should be run to execute other code. This is
thanks to a method on Task—Continuewith. This method takes an Action<Task> as

www.EBooksWorld.ir

Using tasks to run code in the background 129

Ask for Ask for beans

cups after cups Cups Beans

Get cups Get beans

=halle =pie

Time

Figure 5.14 Tasks can be chained, such as asking a dishwasher to bring more cups and
then fetch more coffee beans.

its parameter and returns a new Task to run that action. This new Task starts as soon
as the original Task is complete, and the original Task is passed to the action as its
parameter. If the original task was a Task<T>, the ContinueWith would take an
Action<Task<T>> as its parameter. In this action, you can add the code you want to
run after the task is complete. This is often referred to as task continuation.

We can use this in our example app to say hello to the user after the long-running
method has completed. The following listing shows the code for this, so make this
change and run the app.

Listing 5.5 After a task has completed, it can start running another task

void SayHello()
{
Task.Run(() => MakeLongWebServiceCall())
.ContinueWith(t =>

ContinueWith takes an
Action<Task>, passing the
Task that it was called on
into the action. The action

{ here contains the code to
textToSpeech.Speak ($"Hello {Name}"); say hello to the user.

1)

As expected, the app will say hello to the user after a delay (feel free to adjust the
delay in MakeLonglebServiceCall to something like 5 seconds to speed up your wait-
ing time). During this delay, the app will remain responsive because everything is hap-
pening on a background thread, thanks to the default task scheduler.

Like Task<T>, ContinueWith can also create a task with a return value, so it can
return Task<T> instead of just Task. To do this, instead of passing in an Action<Task>
or Action<Task<T>>, you can pass in a Func<Task, T> or Func<Task<T>, TResult>.
These continuations, just like tasks, can have a return value, but they run in the back-
ground.

How do we get the return value from a task if it’s not like a method that returns a
value? We can get it from the task’s Result.

www.EBooksWorld.ir

130

5.5

5.5.1

5.5.2

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

Task results

In our coffee shop, some tasks have a result that comes back to the creator of the task,
and some don’t. If a barista is tasked with making coffee, the result is a cup of coffee
passed back to the server. If a dishwasher is tasked with cleaning up the floor, there’s
no result to pass back.

Tasks in G# are the same, and you can set the type of result by using a type argu-
ment. Task has no result and is like the dishwasher mopping the floor. Task<T> has a
result of type T and is like the barista making coffee. This Result is only available once
the task is finished—you can’t get a cup of coffee before the barista has made it.

An email app could create a task to download a list of all the new emails that need
to be downloaded. This list could be returned in the result of the task, and it would be
iterated through in other tasks to download the contents of each email.

There are three ways to get the result of a task: keep polling to see if it has finished,
force the task to wait, or use a continuation.

Polling to see if the task has finished

You can periodically poll the Task<T>, checking the IsCompleted property, and if it’s
true, the task has finished and you can get the Result (figure 5.15).

Ul | Finished Finished Finished Finished Get
thread yet? yet? yet? yet? result
No No No Yes
Background Poll for new emails
thread

Time

Figure 5.15 Tasks can be continuously polled to see if they’ve finished.

This isn’t always ideal as you need to run code to do the polling. This technique isn’t
often used.

Waiting on the task

Task has a method called Wait that blocks until the task is finished, and you can call
this to force your code to wait until the task has finished, as shown in figure 5.16. This
often isn’t ideal as it defeats the purpose of running tasks by using blocking code, but
sometimes it’s useful. It’s something that must be avoided on the Ul thread, of course,
or you’ll end up with an unresponsive app.

A good example of using this approach would be when preloading data, such as an
email. An email app could quickly load the sender and subject details of all new emails
and then kick off a task to load the contents of each email. If the email is downloaded

www.EBooksWorld.ir

Task results 131

Ul | Create Wait on Wait with an Handle
thread task task unresponsive UL... result
Task | Schedule Task
scheduler task finished
Background
thread Run task
Time

Figure 5.16 Waiting on a task blocks until the task has finished

before the user taps on it to view the contents, the app can just show the contents. If
the email hasn’t fully downloaded, the app could show a progress dialog while calling
Wait on a background thread (so the Ul remains responsive). Once the email is fully
downloaded, the Wait call will return and the app can show the email’s contents.

YOU'VE SEEN WAIT BEFORE Wait might sound familiar because we’ve used it
before. In the MakeLongWebServiceCall method in the examples we’ve been
working through, there was a call that was waited—Task.Delay (Time-
Span.FromSeconds (5)) .Wait () ;.

Task.Delay is a factory method that creates and returns a new Task that
does nothing but wait for a period of time (in the first version of this method,
this was b seconds). The call to Wait blocks until this new task is finished, so
until the 5 second delay is up.

Task.Delay can be useful if you want something to run after a fixed period
of time, such as polling for new emails every minute.

5.5.3 Getting the result from a continuation

The best way to get the result is by using a continuation—if you’re interested in the
Result of a Task<T>, it’s usually because you want to do something with the result as
soon as the original task has completed (figure 5.17).

When you use Continueliith, the continuation task isn’t started until the previous
task has finished, and the Action<Task<T>> that you pass in is called using the now-
finished task as its parameter. At this point, you can access the Result.

In our hypothetical email app we could use this for the user login—once the task
that logs the user in to their email provider finishes, it will often return some kind of
authorization token that can be passed to a continuation to be used to load emails for
that user.

www.EBooksWorld.ir

132

5.54

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

I. A continuation is 2. The first task finishes, and the
created on the task. continuation is run with the
\ first task as its parameter.
Ul | Create Create
thread task nexttask [T T TTTTTTTTTTTTTTOTTT :
Task | Schedule Schedule E
scheduler task next task '
A]
Background Handle
thread Runtask — po-oe " result
Time

Figure 5.17 Continuations are a good way to handle the result of a task because they run
after the task is complete and have access to the result of the original task.

Task exceptions

When a barista makes coffee, we naturally think of the happy path—they’re tasked
with making our coffee, and we get it once it’s made. There’s also the sad path—the
coffee machine is broken, there are no more beans, or the barista has had enough
and quits on the spot. These sad paths lead to the result of no coffee and an apology
from the server.

The same could happen in our email app—it could go off to the email provider to
get email, but if the device has no connection, the result wouldn’t be a list of new
emails; instead it would be a loss-of-connection message.

These sad paths are exceptions. We try to run a task, make coffee, or download
email, and something goes wrong so our task isn’t completed as expected. We don’t
have a result, and we have a reason for the failure. The same happens with C# tasks—
if they don’t succeed due to an exception, we don’t have a result. Instead we have a
Jailed task—also referred to as a faulted task.

When a task completes due to an exception, the IsCompleted property is set to
true, and so is the IsFaulted property. In addition, the Exception property is set to
an AggregateException, wrapping the exception thrown inside the task. If you don’t
do anything with this exception, it will be rethrown on the finalizer thread (a thread
used by the garbage collector), causing your app to terminate. There are a couple of
things you can do to stop this from happening:

Call the wait method on the task, and this method call will rethrow the excep-
tion so you can handle it appropriately.

www.EBooksWorld.ir

5.6

Updating the UI 133

= Access the Exception property—even if you do nothing with it, just reading the
value will stop the exception from being rethrown on the finalizer thread.

The right thing to do is to catch these exceptions and handle them gracefully, but
problems arise if you use a continuation. How can you tell the continuation that some-
thing has failed? You could catch the exception and report the failure via the Result,
using a value that has an explicit meaning of failure, but this isn’t always the best or
easiest way.

Instead, the better way is not to catch the exception at all. A task is complete once
the code is finished, either because the code has all run successfully, or because there
was an unhandled exception. Either way, IsCompleted will be true because the code
has completed. In the case of an exception, however, the Result will be the default
value for the type (for example, null for classes, 0 for numbers), the IsFaulted prop-
erty will be set to true, and the Exception property will be set to an AggregateExcep-
tion that wraps the exception that was thrown. If the code finished without an
exception, IsFaulted will be false and the Exception property will be null. We can
use these values in our continuation to see how the task ended and act accordingly.
The following listing shows some pseudocode for this.

Listing 5.6 Checking whether a task failed with an unhandled exception

public void DoSomething ()

{ Checks to see if the task
Task.Run(() => DoSomethingThatCanThrow()) ended due to an exception
.ContinueWith(t =>
{ If the task did end due
if (t.IsFaulted) QJ to an exception, reports
ShowException (t.Exception) ; the exception
else
S If there wasn’t an
1) exception, carries on
} with the continuation

Your code should always check to see if the task faulted, and if it did, you should
always access the Exception property at least once. If you do this, you can ensure that
the exception isn’t rethrown when the task is finalized, killing your app.

Updating the Ul

In our coffee shop, the server is the single point of interaction. The customer gives
their order to the server, the server gets the baristas to make the coffee, and the server
calls the customer once the coffee is ready and hands it over (figure 5.18). This is
good from a customer perspective—they can go off and do whatever they want, and
once their coffees are ready, one person calls them and they collect their coffees. If
every time a barista finished making a single coffee they called the customer, a cus-
tomer who ordered multiple coffees would be going back and forth between reading
the news and collecting coffee.

www.EBooksWorld.ir

134

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

[J
Order Collect
coffee coffee

@

= Take Get
ﬁ order coffee
@

Figure 5.18 Only one server

Make coffee interacts with customers: they hand
off tasks to baristas who make coffee
and then take back control to hand
the coffee to the customer.

Time

In our coffee shop, the server is the one point of contact with the customer. The same
is true of the Ul—only the UI thread can update the UL It’s the only thread that can
update controls, change layouts, or load new screens. This is enforced; if you try to
update the UI from a background thread using a task, you’ll get an exception. For
example, if a task is run to download all new emails in an email app, the app’s UI will
need to be updated once the task is done to show these new emails. The code to
update the UI will need to be on the UI thread—if it’s inside the download task, and
therefore running on a background thread, it will crash the UL

Let’s see this in action. We’ll jump up a layer from the view model to the view and
knock up a simple code example to show this by updating the iOS UI from a task.
Revert all the changes you’ve made to FirstViewlModel in this chapter, and then in
FirstView (inside FirstView.cs in the Views folder of the HelloCrossPlatform-
World.iOS project) make the change shown in the following listing.

Listing 5.7 Updating the Ul from a background thread will give an exception

using System.Threading.Tasks; Add this new using directive
e at the start of the file.
public override void ViewDidLoad()

¢ At the end of the existing ViewDidLoad

o) method, add this code to create a new task,
Task.Run(() => DoSomething()) ;

and execute it on a background thread
} calling the new DoSomething method.
void DoSomething () < The new method that’s
{ run in the task

Task.Delay (TimeSpan.FromSeconds (5)) .Wait () ;

TextField.Text = "Foo'; After a delay, the Ul is updated
} by setting the Text property on
the TextField.

www.EBooksWorld.ir

5.6.1

Updating the UI 135

This code looks like it does something in the background and then updates the Ul to
show “Foo”. But if you run the iOS app, it won’t do quite what you might expect.

If you are using Xcode 8 with the iOS 10 SDK, you’ll get a nice exception, shown in
figure 5.19.

UIKit.UlIKitThreadAccessException has been thrown

UIKit Consistency error: you are calling a UIKit method that can only be
invoked from the Ul thread.

Show Details

Figure 5.19 Updating the iOS Ul from a background thread gives a thread-access
exception.

This exception tells us that we’re on the wrong thread. We’re calling a UIKit method
that can only be invoked from the UI thread (UIKit is the name Apple gives to the
classes that it uses for Uls).

If you are using Xcode 9, then, instead of an exception, nothing will happen.
Xcode 9 has moved the checks from exceptions in code to a Main Thread Checker,
which is both a standalone app as well as a tool integrated into the Xcode debugger.
At the time of writing, this tool hasn’t been integrated into the Xamarin debugger.
The upside of this change is that your app won’t crash if a UI control is updated off
the UI thread. The downside is that UI updates might be missed.

How can we update the UI from code running on a background thread?

The Ul task scheduler

In our coffee shop we have two types of people who can do work. We have a server
who deals with customer interaction, and baristas and dishwashers who work behind
the scenes to make coffee, make tea, or wash cups. These two groups are very distinct
and have very specific roles and limitations. You only have one server as a single point
of contact for the customer, but the behind the scenes staff can scale based on
demand—you’d need more baristas during the morning coffee rush than at the end
of the day.

You can think of threads in a similar way. When a thread is created, it lives inside a
synchronization context. A synchronization context is a group of one or more threads
that share the same characteristics, so if some code can run on one thread inside that
context, it can run on any thread. This is just like our coffee shop staff—all baristas
have the same characteristics and can make coffee, but only the server can interact
with the customer. When the task scheduler executes a task, it does so using a particu-
lar synchronization context, just as tasks in our coffee shop are given to specific peo-
ple. Baristas pick up tasks to make coffee, dishwashers pick up tasks to get more cups,
and the server picks up tasks to give the finished coffee to the customers.

By default, a task will be scheduled by the default task scheduler, which will

use threads from the default synchronization context (also referred to as the thread pool

www.EBooksWorld.ir

136

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

synchronization context), which means it runs the tasks using one of the many pooled
background threads available. These background threads are created for you by the
task scheduler, so there’s nothing you need to do in your code to use them. These
threads share the same characteristics—they all run in the background, and they’re
all stopped when the UI thread stops. This is the default type of thread used when
you create a task using Task.Run or you construct a new instance of Task or Task<T>.

There’s another synchronization context that’s of interest to us—the UI thread
synchronization context. This context contains only one thread, the UI thread. Unlike
the default synchronization context, which is used by the default task scheduler, the
UI thread synchronization context isn’t easily available from a static property. Instead
we have to use a static method on the TaskScheduler class, FromCurrentSynchroni-
zationContext (). This will always return the synchronization context for the current
thread that it’s called on. If you call this from a task running in the background, you’ll
get back the default scheduler, but if you call it from the UI thread, you’ll get back a
task scheduler that you can use to run your tasks on the UI thread (figure 5.20).

I. A continuation is created on the 2. The task finishes, and the
task to update the text using the continuation is run back
Ul thread task scheduler. on the Ul thread.
ul Create | j __________________ . Handle
thread task result
Task | Schedule
scheduler task
Background
thread Run task
Time

Figure 5.20 Continuations can be run on any task scheduler, so they can be set to run back on the
Ul thread.

This task scheduler will put your code onto the message queue that the Ul thread pro-
cesses. Your code will sit in this queue behind any other messages that the UI thread is
already processing, such as Ul events. Once the messages in front have been pro-
cessed (if any), your code will be run.

MARSHALING YOUR CODE ONTO THE Ul THREAD You'’ll often hear the term mar-
shaling when talking about multithreaded code. Marshaling essentially means
running code on a different thread—so, for example, when you run a task
using the UI task scheduler, you’'re marshaling your code onto the UI thread.

www.EBooksWorld.ir

5.6.2

Updating the UI 137

The usual pattern here is to create a task on the Ul thread that does some work in the
background, and use a task continuation to execute some more code back on the Ul
thread by telling the continuation which task scheduler to use. The following listing
shows how to do this.

Listing 5.8 Using the Ul task scheduler allows the Ul to be updated from a task

public override void ViewDidLoad () VVhencaMngConﬁnueVth,you
{ can pass in a task scheduler that

- you can use to run the task.
var scheduler =

TaskScheduler.FromCurrentSynchronizationContext () ; <t
Task.Run(() => DoSomethingLong())
.ContinueWith(t => TextField.Text = "Foo", scheduler); <+———

}

void DoSomethingLong ()

(The Ul update has been removed

from the DoSomething method as

Task.Delay (TimeSpan.FromSeconds (5)) .Wait () ; it’s now in the continuation.

If you make this change, build, and run this, once again everything will work. Let’s
break this down into steps:

1 The UI thread requests the task scheduler for the current synchronization con-
text, which will be the task scheduler for the UI thread.

2 The Ul thread creates and runs a task.

3 The Ul thread sets up a task continuation, giving it an action to run and passing
in the Ul thread task scheduler. FromCurrentSynchronizationContext is evalu-
ated before the task is set up, so it would be called on the UI thread and the
resulting value would be passed to the call to ContinueWith, which sets up the
continuation.

4 The default task scheduler runs the first action on a background thread.

5 When this action is complete, the UI task scheduler runs the continuation
action.

Using the power of MVVM

If you have a view model with a command that’s bound to a UI control, such as a but-
ton, when the user clicks the button, the code inside the command is run on the Ul
thread. By using continuations that use the UI task scheduler, you can write code
inside your command that executes on a background thread and then comes back to
the calling thread to perform any actions that will cause the UI to be updated.
Depending on the MVVM framework you’re using, though, you may not need to
worry too much about marshaling your code back onto the UI thread.

One way that you can cause the UI to update is by property-changed notifica-
tions—you bind a UI control to a property on the view model, update the property,

www.EBooksWorld.ir

138 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

raise a property-changed notification, and the UI will update. This UI update has to
be done on the UI thread.

Luckily, all the good MVVM frameworks take care of this. In the binding layer, the
property-changed event is detected, the value to set is read, and the binding layer will
run the UI update on the Ul thread, regardless of what thread is used to raise the
property-changed notification (figure 5.21). You can see this by changing your code to
update the property on the view model instead of updating the Ul directly. If you do
this from a background thread, you can see the UI update with no exception being
thrown. The following listing shows this change.

Ul Create Update
thread task task
The binding layer will
automatically marshal
Task | Schedule < the Ul update onto
scheduler task the Ul thread.
Raise
Background Run task property-changed
thread -
notification
Time

Figure 5.21 When a property-changed event is detected, the binding layer will marshal the call to
update the Ul onto the Ul thread automatically.

Listing 5.9 Binding automatically marshals property changes into the Ul thread

public override void ViewDidLoad()

{

~— var vmm = (FirstViewModel)ViewModel;

Task.Run(() => DoSomethingLong())
.ContinueWith(t => vm.Name = "Foo");

The continuation is no longer
run using the Ul task scheduler.
From the background thread,
the Name property on the view
model can be set, and the
binding handles updating the Ul
on the right thread.

}

Each view derived from an MvvmCross base view
(such as MvxViewController or MvxActivity) has a
ViewModel property that gets the view model for
this view. It’s of type IMvxViewModel, so it needs to
be cast to the type of your view model.

If you make this change and run the app, you'll see the UI update. This is one of the
powers of a good framework like MvwmCross—abstracting away the hard stuff, leaving
you to focus on what your code should do instead of the complexities of how it should
be done.

www.EBooksWorld.ir

5.7

5.7.1

Async and await 139

AVOID THE CAST TO FIRSTVIEWMODEL BY USING GENERICS The MvvmCross base
views are also available in a generic form that takes a type argument for the
view-model type. If you use these, the ViewModel property will be of the cor-
rect type and you won’t need the cast to FirstViewModel. To see this in
action, change the base type of the iOS view to MvxViewController<First-
ViewModel>. You can then change the continuation to be Continuewith (t =>
ViewModel .Name = "Foo");.

It’s pretty clear that tasks are really rather useful. They allow you to package up some
code and fire it off to be run on another thread. Then you can create another task to
be run back on the calling thread once the first one completes. This is quite a popu-
lar pattern with UI apps—run code x in the background, and then run code y back
on the UI thread. It’s not perfect, and the way you handle return values and excep-
tions either by waiting on the task to complete or using a continuation can be down-
right clunky.

The good news for us G# developers is that, as a part of C# 5, Microsoft has added
cool new features to make this a whole lot easier—async and await.

Async and await

In C# 5.0 two new keywords were added, async and await. These don’t do anything in
terms of code; instead, they're compiler hints, telling the compiler to handle code
marked with these keywords differently. Asyncis short for asynchronous—code that can
run multiple things at the same time. You’ll often hear of multithreaded code
referred to as asynchronous code.

The async and await keywords

The aim of the async and await keywords is to enable you to take the pattern of “run
code x in the background then run code y back on the current synchronization con-
text” and simplify it. You mark a method as async, and when you call other async
methods from this method, you mark the calls to run them with await. The await
tells the compiler that somewhere in the method that you’re calling, some work will
be done on a background thread using a task, and to hold off running the rest of the
calling method until the awaited method has finished what it’s doing. In the mean-
time, the current thread can process other code, and once the awaited method com-
pletes, the rest of the calling method finishes.

AWAIT DOESN'T CREATE A BACKGROUND THREAD FOR YOU There’s a common
misconception around async and await that they will actually run your code
in the background. This isn’t the case. Before we start digging into this in
more detail, it’s important to be aware of this.

Let’s start with a simple code example in the view layer inside our iOS app. We’ll make
the app wait and then update the Ul Start by changing the FirstView class, in First-
View.cs in the HelloCrossPlattormWorld.iOS project, by reverting the previous
changes made in this chapter and making the change shown in the following listing.

www.EBooksWorld.ir

140

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

Listing 5.10 Running tasks in background doesn’t affect when rest of code runs

public override void ViewDidLoad () The existing binding code
{

o Task.Delay is called to run a
Task.Delay (TimeSpan.FromSeconds (5)) ; background task to wait for 5 seconds.
TextField.Text = "Foo";

} 4—‘ The text field on the Ul is updated.

Read through the flow of this method. The OS calls a number of lifecycle methods
when screens are displayed—methods that are called when a screen appears, disap-
pears, or goes to other states. One of these lifecycle methods on iOS is ViewDidLoad,
which is called by the OS as soon as the view has fully loaded and is shown on screen.
This call runs on the UI thread as you've already seen, and it sets up the bindings in
the existing code that we haven’t changed, starts a task that waits for 5 seconds in the
background, and then updates the UI (figure 5.22). If you run this code, you’d see
what you expect—the UI shows “Foo” in the text field straightaway because the wait
happens in a task—off on another thread.

. ViewDidLoad |
Ul Start Create Update Exit
thread | method task text method

Background

thread Delay for 5 seconds

Time

Figure 5.22 Timeline of the ViewDidLoad method: the delay method starts, the
delay task is created and started on a background thread, the Ul is updated, and
the method ends.

It would be better if the UI were updated after the 5-second wait, but without the Ul
locking up for those 5 seconds. Let’s make a couple of small changes to this method to
achieve this in the following listing.

Listing 5.11 Adding async and await to our method

public override async void ViewDidLoad() The method is marked

{ with the async keyword.

await Task.Delay (TimeSpan.FromSeconds (5)) ; The call to Task.Delay is
TextField.Text = "Foo"; prefixed by await.

www.EBooksWorld.ir

Async and await 141

Make these code changes and run the code again. The app will start up, wait 5 sec-
onds, and then update the text field. During the 5 seconds before the text field is
updated, try to interact with the app to see if the app is responsive. You’ll notice that it
is. Unlike calling Wait on your task, which blocks the thread for the b seconds, this
doesn’t block. The call to ViewDidLoad by the OS returns as soon as the call to Delay
is made, and the rest of the method call is called back on the original (UI) thread
later (figure 5.23).

' ViewDidLoad ' 1 Continuation
Ul Start Create Exit Update
thread | method task method text

Background
thread

Delay for 5 seconds

Time

Figure 5.23 If you await the delay task, the ViewDidLoad method finishes as soon as
the await is called, with the remainder of the method being called in a continuation back
on the original thread.

The basic principle here is you can mark a method as async to tell the compiler that
you’re planning on using await in your method. Then you call await on a task (either
one you create or one that’s returned by a method) and the compiler, behind the
scenes, will take the rest of the code in the method and put it in a continuation using
the original synchronization context as the thread to run the continuation on.

AFTER AWAIT, THE CODE WILL RUN ON THE SAME SYNCHRONIZATION CONTEXT The
code before and after an await will run on the same synchronization context,
but not necessarily the same thread. The UI synchronization context has a
single thread, so if you await a method from the UI thread, the code that
comes after it will run on the UI thread; if you await from a background
thread, the code after the await may run on a different background thread.

You can think of the behavior of the code in listing 5.11 as analogous to the code in
the following listing.

Listing 5.12 await uses the original thread’s synchronization context

public override void ViewDidLoad ()

{
Task.Delay (TimeSpan.FromSeconds (5))

.ContinueWith(t => TextField.Text = "Foo",
TaskScheduler.FromCurrentSynchronizationContext ()) ;

www.EBooksWorld.ir

142 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

What’s the big upside to async and await? First, it makes your code much easier to
read. Imagine if instead of having one call to ContinueWith you had five. That would
be harder to read than just using await. Second, and probably most importantly, you
can use return values and exceptions as if there were no continuations involved.

Thinking again of our email app example, when the user launches the app, it needs
to call a web service to authenticate the user and then get back an authentication
token. Once authenticated, it needs to call another web service, passing the authenti-
cation token, to download a list of new emails, and then it needs to download the full
contents of each new email, again passing the authentication token. At each stage it
will want to update the UI: once you’re logged in it would show the emails, when it has
downloaded the list of new emails it will display a summary, and as each email is fully
downloaded the UI will be updated to show the details of each email. If at any time
these actions were to fail with an exception (such as if there was no network connectiv-
ity, a common occurrence with mobile apps), the code would need to stop download-
ing emails and handle the exception, maybe by showing a message to the user. The
following listing contains some pseudocode for this, using continuations.

Listing 5.13 Pseudocode for downloading emails and updating the Ul

public void HandleLogInAndDownloadEmails ()

{ Starts a task to log in
string token = null; . .
Task.Run(() => LogIn()) Creates a continuation

back on the Ul thread

.ContinueWith(tl => <
{
if (tl.IsFaulted ..
e srantte) . If the original task threw
ShowException (tl.Exception) ; A .
an exception, shows it
else
{
If th isinal UpdateUIAfterLogIn() ;
the original Task.Run(() => DownloadEmailList (token))

Starts a continuation
for downloading the
emails, and so on,

task didn’t throw
an exception,
updates the Ul

.ContinueWith(t2 =>
{

if (t2.IsFaulted) and so on
ShowException (t2.Exception) ;
else
{
UpdateUIWithNewEmails () ;
foreach (var email in t2.Result)
{
Task.Run(() => DownloadEmail (token, email))

.ContinuewWith(t3 =>
{
if (t3.IsFaulted)
ShowException (t3.Exception) ;
else
UpdateUIWithDownloadedEmails () ;
}, TaskScheduler.FromCurrentSynchronizationContext ()) ;

www.EBooksWorld.ir

Async and await 143

}, TaskScheduler.FromCurrentSynchronizationContext ()) ;

}

}, TaskScheduler.FromCurrentSynchronizationContext ()) ;

This is very complicated code, partly because we’re switching threads so often and
partly because we need to keep querying the Task passed into the continuation for
any exceptions and for the return value.

Not only can async and await remove the need for continuations, but they also
help with return values and exceptions. As you already know, you can call await on a
Task, but what’s powerful about await is that it can return the result of a Task<T>. If
you await a Task, there’s no return value, so the await doesn’t return anything, but if
you await a Task<T>, the return value of the call is an instance of T, the one returned
by the task. If your task throws an exception, it’s normally swallowed up and only made
available through the Exception property on the Task passed to the continuation. But
if you use async and await, the Exception gets thrown as if you weren’t in a task.

Let’s rewrite listing 5.13 to do this, as follows.

Listing 5.14 Using async and await to clean up our code

public async Task HandleLogInAndDownloadEmails () The method now returns
{ Task and is decorated with
Ery the async keyword.
. var token = await Task.Run(() => LogIn());
The token is UpdateUIAfterLogIn() ; <
f r:;uineﬂ var emails = await Task.Run(() => DownloadEmailList (token)) ;
tr|'1°ar:ks te‘,o :Isle UpdateUIWithNewErFaiI!_s (); . The Ul can be
await call. foreach (var email in emails) updated because
{ we’re back on the
await Task.Run(() => DownloadEmail (token, email)) ; calling thread (the
UpdateUIWithDownloadedEmails () ; Ul thread) after
} awaiting the task.
} We can continue
this pattern for the

5.7.2

{ in a try/catch because await takes

catch (Exception ex) The whole method can be wrapped rest of the method.
care of throwing any exceptions.

ShowException (ex) ;

The code in the preceding listing does the same as the code in listing 5.13, but it’s
cleaner and easier to read. It also seems to have a return type of Task, but it doesn’t
seem to return anything. Let’s look at why this is by looking at how we write async
methods.

Writing your own async methods

In the listings we’ve just looked at, the methods were marked with the async keyword,
which tells the compiler that the method will contain calls to await tasks. If you don’t

www.EBooksWorld.ir

144

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

have this keyword in your method, you can’t await. You can try this quickly by remov-
ing the async keyword from the ViewDidLoad method you changed earlier. Take it out
and your app won’t compile.

MARKING METHODS AS ASYNC

You can’t just mark any method as async—you can only use it on methods that have a
return type of void, Task, or Task<T>, and you can’t use it on methods without param-
eters or ref parameters. The async keyword isn’t part of the method signature, so you
can’t use it in interfaces, but you can add it when you’re overriding methods—you’ve
seen this already when you added it to the override of ViewDidLoad in the iOS app.
When you have an async method, the usual intent is for the caller to await it, and for
this to happen the method must have a return type of Task or Task<T>—remember,
you can only call await on a task, so if your method is a void method, there’s nothing
to await on.

When you mark the method as async, you don’t actually return an instance of Task
or Task<T>; you just return nothing or an instance of T, and the compiler does the rest
for you, wrapping everything in a task so that the method can be awaited. You saw this
in listing 5.14—the HandleLogInAndDownloadEmails method was marked as return-
ing a Task but it didn’t have an explicit return value.

You can mark a method that returns void as async, but this method can’t be
awaited as there’s no task to await. This isn’t normally an issue because there’s no
return value to worry about, but be aware that if you call an async void method, it
may not complete before the rest of your code runs because some parts of it will run
in the background. Ideally, you should never mark a void method as async unless you
have no other choice, such as with event handlers or overriding existing methods.

If you override a void method and make the override async, you need to be aware
that all the code won’t be finished before the method returns. For example, overrid-
ing a method like ViewDidLoad on the iOS view controller and making it async will
mean that the method will return once the first background task starts running. If you
had some code in it to set up the UI, such as creating bindings, and if this code comes
after the awaited task, it won’t be run until the task completes. This could mean that
your user will be using an app with a incomplete UI until the background task com-
pletes. It’s good practice to only await methods after all your Ul setup is complete, or
to show some form of progress to the user so they’'re aware something is happening
and that they need to wait.

Let’s take our last example and in the following listing write some async methods
to make the code cleaner.

Listing 5.15 Using async to make your code cleaner

load data are

async Task<string> LogIn() {} j The methods to
| marked as async.

async Task<IEnumerable<Email>> DownloadEmailList (string token)

async Task DownloadEmail (string token, string email) {}

www.EBooksWorld.ir

Async and await 145

public async Task HandleLogInAndDownloadEmails ()
{

try

{ There are no more
var token = await LogIn(); Q—‘ calls to Task.Run.
UpdateUIAfterLogIn() ;
var emails = await DownloadEmailList (token) ;
UpdateUIWithNewEmails () ;

foreach (var email in emails)

{
await DownloadEmail (token, email) ;
UpdateUIWithDownloadedEmails () ;

}
catch (Exception ex)
{

ShowException (ex) ;

In this listing, the code is a lot cleaner, and it’s now the responsibility of the methods
that are called to create the tasks that run in the background.

Remember, just using async and await won’t create the tasks for you—you're still
responsible for this, either directly by creating the task or indirectly by awaiting on
another method that creates a task. For example, in the case of hitting a web service,
there’s a NuGet package available from Microsoft called HttpClient that will do this
for you—it has some async methods that you can await that will create the task and
run the web call in the background, so all you need to do in your code is mark your
methods as async and await all the calls. This is one of the downsides of async and
await, you have to mark everything as async and return tasks. If your web service call
is buried ten calls down the call stack, all ten calls must be awaited and must return
tasks.

WHAT ABOUT ACTION AND FUNC? Just like methods, lambdas can be marked as
async, and can await tasks. This means you can create async actions and

funcs using the same keywords, using syntax like var myAction = new
Action(async () => await MyMethod()); or var myFunc = new
Func<int> (async () => await MyIntMethod());.

RETURNING TASKS INSTEAD OF USING ASYNC AND AWAIT

Async methods have a return type of Task or Task<T>, but you never actually return
the task yourself. Instead, you await other methods that return tasks and return the
relevant type, and the compiler weaves its magic over your code to manage all the
await statements and actually return a task at the end of the method that can be
awaited by the calling code.

www.EBooksWorld.ir

146

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

If you only have one call in your method that you await, and it’s the last (or only)
thing your method does, then instead of marking your method as async and awaiting
the call, you can simply return the task. See the following two listings.

Listing 5.16 Using an async method when you could return a Task

public async Task MakeCoffee()
{
await myCoffeeService.MakeCoffee();

In this code, the MakeCoffee method is async, but all it does is await a call to myCof-
feeService.MakeCoffee (). To write less code, you can drop the async modifier and
just return the result of the call instead of awaiting it.

Listing 5.17 Returning a Task instead of awaiting it

public Task MakeCoffee()
{
return myCoffeeService.MakeCoffee() ;

}

This code is functionally identical, and in fact is marginally faster. Using await means
the compiler has to generate code to track the threads in use and ensure that the code
after the await happens on the correct thread. And it has to do this for all async
methods in the current call stack. If you just return the task, this extra code is not
needed. It’s good practice to always return a task if your async method only awaits the
last method call.

CONFIGUREAWAIT

When you await a call to an async method, you’re telling the compiler that you want
to ensure that all code after the await runs on the same synchronization context as
the code before the await. The compiler creates code to capture the current synchro-
nization context, calls a method that’s awaited, and then runs the rest of the current
method using the original synchronization context. There’s a small compiler over-
head to this—capturing the synchronization context and switching back to it.

There are times, though, when you don’t care what thread the remainder of the
code in your current method runs on. For example, you might have a method that
awaits a database call, then does some CPU-intensive processing on the data, return-
ing results to a calling method that updates the Ul The processing can be done on
any thread—it’s only the update to the Ul that needs to happen on the Ul thread. The
following listing shows some pseudocode that illustrates this.

Listing 5.18 Performing a long calculation on the Ul thread

public async Task CalcAndUpdate ()

(From the Ul thread,
var result = await Calc(); await a call to Calc

www.EBooksWorld.ir

5.7.3

Async and await 147

myLabel.Text = result;

) v * v Back on the Ul thread,
update a label

public async Task Calc() .
{ From the Ul thread, await

var data = await LoadDatal() ; a call to LoadData

t Perf L Calculati dat ;
} return PerformLongCalculation (data) Back on the Ul thread,
perform a calculation

In this code, the call to the LoadData method will load data on a background thread,
and then Calc will switch back to the current synchronization context (the Ul thread)
to run the calculation. We don’t care which thread the PerformLongCalculation call
actually runs on, just that the label update happens on the Ul thread. What we can do
is make a call to a method to tell the compiler that we don’t want to switch synchroni-
zation contexts after the await, and the rest of the Calc method can run on whatever
thread LoadData used to run. We can do this using the ConfigureAwait method on
Task.

Listing 5.19 Using ConfigureAwait to avoid switching contexts

public async Task Calc() From the Ul
(thread, await a
call to LoadData

var data = await LoadData () .ConfigureAwait (false) ;

return PerformLongCalculation(data) ; QAAAW Onthesamethreadusedby

LoadData, perform a calculation

By calling ConfigureAwait (false), we're telling the compiler to remain on the same
thread used by the call we’re awaiting, but just for the remainder of the current
method, until another await. When we return to CalcAndUpdate, the code will switch
back to the calling synchronization context. Passing true to ConfigureAwait tells the
compiler that you do want to switch back to the original synchronization context—
which is the same as not calling it.

By identifying any awaited methods in code that will never need to interact with
the UI thread and marking them with ConfigureAwait, you can make a small perfor-
mance improvement. Not only does this save CPU time by avoiding storing the origi-
nal synchronization context and reverting back to it later, but if your code constantly
switches back to the Ul thread to do simple work that could be run on a background
thread, it can slow down your UL It’s generally a good idea to mark all calls you await
with ConfigureAwait in any classes that don’t interact with the UlI, such as classes in
your model layer.

Async commands

We’ve looked at building short, concise async methods that will await on other async
methods, which in turn will await on calls to something like HttpClient, which will
create tasks to hit a web service on a background thread. This is a nice pattern, but
how do we call our new async method in the first place? As you’ve already seen, we

www.EBooksWorld.ir

148 CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

can override a void method on our view, mark that as async, and await our new
method there. We could also wire up an event to a login button, mark the event han-
dler as async (remember, event handlers are always void methods), and await our
method. Neither of these is really MVVM, so instead we could jump down into the
view-model layer and call the method inside a command that we can bind to our view,
either on a button-click or other event, such as a screen loading. Because our method
is async, we need a new type of command—an async command.

As you’ve seen already, the commands in the view model start on the UI thread, so
to run code in the background you need to create tasks. Luckily for us, all the good
MVVM frameworks have asynchronous implementations of ICommand that we can use.
In the case of MvvmCross, there’s MvxAsyncCommand. Unlike MvxCommand, which takes
an Action as its parameter, MvxAsyncCommand takes a Func<Task>—a call that returns
as a task that can be awaited.

Let’s see this in action. First, revert all the changes you’ve made to FirstView in
the iOS app in this chapter, and make the changes shown in the following listing to
FirstViewModel.

Listing 5.20 Creating an async command

The command you’re creating is now
an MvxAsyncCommand, and it takes a
Func<Task>. You can pass it a
method that returns a Task.

The SayHello method is
marked as async and
returns a Task. Remember,
you don’t explicitly return

public FirstViewModel (ITextToSpeech textToSpeech) a"jnﬁanceOfTaSk—4he
{ compiler handles it for you.
this.textToSpeech = textToSpeech;
> SayHelloCommand = new MvxAsyncCommand(() => SayHello());
}
async Task SayHello() <

{

await Task.Delay (TimeSpan.FromSeconds (5)) ; Calling await on Task.Delay

textToSpeech.Speak ($"Hello {Name}"); will await the 5-second call.

After the 5-second delay, the
call to say hello is made.

If you run this and tap the button, you’ll get the 5-second delay before hearing the
app say hello, and at all times the app remains responsive. The method run by the
command is an async method that awaits the call to Task.Delay, which in turn delays
for 5 seconds on a background thread before running the code to say hello back on
the UI thread.

5.8 Make your app feel responsive

As you’ve seen so far, it’s relatively easy to make your app responsive by executing
long-running tasks on a background thread. Unfortunately, this isn’t enough to make
your app a five-star experience. Not only do you need to do things in the background,

www.EBooksWorld.ir

Make your app feel responsive 149

but you also need to show visible feedback to the user that something is happening, so
they know that they need to wait.

There are a few popular ways to show feedback: using some form of spinner con-
trol in line with your UI while allowing user interactions to continue, using progress
dialogs that cover the screen and block activity until the progress is complete, or show-
ing dummy loading data, as in figure 5.24. An email app might use all of these meth-
ods to show progress in different ways at different times. When the app starts up, it will
need to authenticate the user, so it might show dummy data while this is happening.
Then once you’re logged in, it could show your email list with a spinner at the top to
show that it’s loading more emails. Finally, if you tap a new email that hasn’t been fully
downloaded, it might show a progress dialog, showing that you’re blocked from read-
ing the email until it has fully downloaded.

News People Travel News People Travel News People Travel

Loading.

Lauren Ipsum
Auckland

Loving the beach today!

Posted 4 hours ago Loading...

Aarti Effem
Wellington

Out for lunch

Posted § hours ago

Lauren Ipsum
Auckland

Dummy loading data Progress dialog at the top Progress dialog over
of the list being reloaded the whole screen

Figure 5.24 If your app looks like it’s doing something during a long operation, the user will
be happier than if your app looks unresponsive.

How you display progress to the user is very much dependent on your app. On
Android there’s a ProgressDialog class that creates a dialog that sits in the middle of
the screen, very much like the third example in figure 5.24. On iOS you have to hand-
roll this or use a third-party component, but it has a simple property you can set to
show a spinner in the status bar. Creating pull-to-refresh lists is easy on both plat-
forms—it’s built into the various list controls or included in easily accessible helpers.
Creating dummy loading data is something you’ll need to write yourself, as it would be
specific to your app.

You should always think about how to give feedback to your user when doing work
in the background. If your app appears to be doing nothing when it’s loading, you

www.EBooksWorld.ir

150

5.9

CHAPTER 5 What are we (a)waiting for? An introduction to multithreading for Xamarin apps

probably need to add some user feedback. Ideally you should write this code in a plat-
form-specific class and expose the ability to show and hide progress indicators via an
interface that you make available to your view models via IoC, like the ITextToSpeech
interface in chapter 4. This way your commands can use it to show feedback, just like
in the following pseudocode.

Listing 5.21 Showing feedback to the user during a long-running command

An instance of IProgressService is passed in through constructor
injection and stored in a field. This interface has platform-specific
implementations to show some form of progress feedback to the user,
and to hide that feedback once the long-running action is complete.

public class MyViewModel : MvxViewModel
{

IProgressService progressService;

public MyViewModel (IProgressService progressService) «
{
this.progressService = progressService;
DoSomethingLongCommand = new MvxAsyncCommand(() => DoSomethingLong) ;

}
public ICommand DoSomethingLongCommand {get; private set;}

async Task DoSomethingLong ()
{

progressService.ShowProgressFeedback () ; . .

: Before a long-running action
try starts, the progress feedback
{ is shown to the user.

}
finally

{

progressService.HideProgressFeedback() ;

) After the long-running action is complete, the

progress feedback is hidden. This is done in a
finally block so that if the command throws an
exception, the feedback is still hidden.

It’s time to start building things

Over the last few chapters, we’ve gone through MVVM looking at the cross-platform
model and view model, the binding and the view. We’ve looked at property-changed
notifications and commands and seen how to run code in multiple threads. These are
important principles that make up the foundations of building high-quality cross-plat-
form mobile apps.

www.EBooksWorld.ir

Summary 151

Now you’re ready to start building apps for real. In the next part of this book we’ll
start looking at building an app from the ground up, starting with designing the app,
the UI, the user flows through the app, and the structure of the code.

Summary

In this chapter you learned

When building apps, you need to keep the Ul responsive or users will stop using
your apps. To do this, you can use tasks to write asynchronous code that runs in
background threads instead of on the main UI thread.

The UI thread is where everything on the Ul happens. Exceptions on this
thread can kill your app, and updating the UI from another thread will throw
exceptions.

C# has some awesome features that make it easy to write clean code that runs in
the background.

As well as keeping your Ul responsive, you need to show feedback to the user
that something is happening.

You also learned how to

Run code in a background thread using a Task.

Use continuations to run multiple tasks, including marshaling tasks back onto
the UI thread.

Handle exceptions thrown inside tasks using continuations.
Use async and await to make your code more readable.

www.EBooksWorld.ir

www.EBooksWorld.ir

Part 2

Buwilding apps

Now that you’re familiar with the MVVM design pattern and how it can be
used to build testable, reusable code, this part of the book expands on that
knowledge. It shows how you can build cross-platform apps on iOS and Android,
starting with the cross-platform code and moving on to platform-specific UI
code, taking a couple of example apps from design through to fully working
apps. This part moves up, layer by layer, though MVVM, before diving into the
Android and iOS Uls.

Chapter 6 introduces two example apps that will be built throughout the rest
of this part. It looks at how to design an app, focusing on what code goes in what
layer in the MVVM design pattern. Finally, it covers creating the solutions for the
example apps and looks at the project and application properties for a Xamarin
mobile app.

Chapter 7 focuses on the model layer. You’ll see how to build simple models
and more complex model layers with services and repositories, and you’ll learn
how to access SQLite databases and web services. It also introduces unit testing,
showing how easy it is to unit-test well-structured code.

Chapter 8 moves up a layer and covers view models. It considers how state
and behavior are represented, covering properties, commands, and value con-
version. It also shows how to test UI logic using unit testing.

Chapters 9 and 10 cover the view and application layers on Android, recycler
views for showing lists of data, and multiscreen navigation. It then shows how to
add polish to an app by creating app icons and splash screens.

Chapters 11 and 12 focus on iOS, working on the application and view layers
of the first example app, covering view controllers, UI controls, storyboards, and

www.EBooksWorld.ir

154 PART 2 Building apps

auto layout and constraints, table views, and multiscreen navigation. It then covers
app icons and launch screens.

After you've finished these chapters, you’ll have working iOS and Android apps
that will be made production-ready in the third part of this book.

www.EBooksWorld.ir

Designing MVVM
cross-platform apps

This chapter covers

= Preparing for building cross-platform apps by considering the
differences between iOS and Android

= Designing the flows a user will take in an app, including which
layer and which thread to use

= Creating the solution for an app

= Configuring the properties for your app, including SDK
versions and linker settings

In the first part of this book we looked at the foundations of an MVVM-based cross-
platform mobile app. We looked at what the different layers in MVVM are all about
and how to structure your code inside them. We also looked at how threads work in
mobile apps and how you can keep your apps responsive when performing long-
running actions. Now it’s time to think about how you can start building a cross-
platform mobile app.

As developers, we’re often tempted to start a new app by firing up our IDE and
clicking File > New Project. But a little planning goes a long way, so before we start

155

www.EBooksWorld.ir

156

6.1

CHAPTER 6 Designing MVVM cross-platform apps

creating any code, let’s first think about what we’re building and then think about
how to build it. Then we can create a new solution and look at how it differs from the
kinds of solutions most G# developers are used to.

Throughout this part of the book we’ll be looking at two app examples—one very
simple and one slightly more complex—and I'll use these apps to introduce the ideas
and concepts you’ll need to know to build production-quality cross-platform apps
using Xamarin and MVVM. In this chapter we’ll talk about designing these apps:
you’ll see how to create the solutions for them, and I’ll explain these solutions in
detail. The next few chapters will explain how you can build up your Xamarin apps
layer by layer, from the model, to the view model, to the view, looking at our two exam-
ple apps and at other features you can add to your apps in each layer.

Introduction to designing a cross-platform app

The Facebook app is popular on iOS and Android, catering to millions of users world-
wide. On both platforms it offers the same functionality, but the way it offers its fea-
tures is different on each platform. Figure 6.1 shows what these apps look like at the
time of writing.

Facebook on Android Facebook on iOS
Live Photo Check In
What's on your mind? .
What's on your mind?
STATUS PHOTO CHECK-IN

/l/

1
/I/
B = &

Figure 6.1 Apps like Facebook look and work differently on iOS and Android.

On Android, all the buttons are on the top of the screen. This is because Android has
its three navigation buttons at the bottom of the device, either as physical or software
buttons. If an app has buttons just above these navigation buttons, it’s too easy to acci-
dentally tap a navigation button when you meant to tap an app button, so Android
apps don’t have buttons on the bottom as a good design practice.

iOS, on the other hand, doesn’t have easy-to-tap buttons at the bottom—it has a
hardware home button, allowing the iOS Facebook app to have some of its buttons on
the bottom. These buttons are used to select different views: your news feed, market-
place, notifications, and settings. They're tab buttons, each one representing a
new tab in a tab control. (Tab controls consist of a number of pages indicated by tab

www.EBooksWorld.ir

Introduction to designing a cross-platform app 157

buttons in a bar, and tapping a tab button shows the page represented by that tab, sim-
ilar to the tabs on folders in a filing cabinet.)

On Android, swiping from right to left or left to right changes tabs; swiping on iOS
won’t change tabs, but swiping in the Facebook app will slide the screen out to show
the Messenger screen (making it look like the Messenger screen is below the main
screen—following the iOS human interface guidelines on depth). This is a simple but
important difference—Android has tabs at the top with swiping to change tabs,
whereas iOS has tabs at the bottom without swiping.

These differences may seem small, but they’re important. They involve navigation
paradigms that are common to each platform, making the apps consistent with other
apps on their own platforms, whether they’re apps that come with the OS or from
third parties. This means a new user can start using an app and already have an idea
how to navigate it.

With Xamarin you can build an app for multiple platforms in one Visual Studio
solution with lots of shared code, but you have to be careful with your Uls. You
shouldn’t always build identical apps on both platforms; instead, tailor the user inter-
face and user experience on each platform. You’ll want to maximize code reuse, but
not necessarily reuse the same Uls.

Luckily, some of this complexity is abstracted away from you—if you create tabs in
your apps using out-of-the-box tab controls, you'll get the appropriate behavior, as
shown in figure 6.2. The problems come when you need something that doesn’t come
from an out-of-the-box control.

Tabs on Android Tabs on iOS

/I/
1 1
=)

Figure 6.2 Using out-of-the-box controls ensures your app will have a consistent look and feel
with the rest of the 0S.

Google has released a Gmail app for both Android and iOS (figure 6.3). On iOS, to
write a new email you tap a button on the top toolbar. This is pretty standard for iOS
apps, using the top toolbar for action buttons. On Android it does something differ-
ent—instead of having a button on the top toolbar, it has a floating action button
(FAB). This is a round button near the bottom right of the screen (a little bit up from
the bottom to avoid the risk of accidentally tapping a navigation button), and it uses a

www.EBooksWorld.ir

158

CHAPTER 6 Designing MVVM cross-platform apps

Gmail on Android Gmail on iOS
Inbox Inbox Ve
Bob Hi from Bob Bob Hi from Bob
Mum Happy Birthday Mum Happy Birthday

@)

Figure 6.3 Android and iOS have different paradigms for the most popular action a user
might do—iOS uses toolbar buttons, whereas Android favors the floating action button.

shadow effect (referred to as elevation in Android-speak) so it looks like it’s floating
above the page. This is a standard Android Ul paradigm—a lot of Android apps use a
FAB for the most common action on a particular screen.

Mobile apps are constantly changing

At the time of writing, Gmail uses the iOS toolbar button and Android FAB. This may
change in future releases because Google is really trying to push its own design
standard. It's worth getting a few apps on different platforms and looking at their dif-
ferences to get an understanding of how apps can provide the same functionality in
different ways.

Android has also released a bottom-navigation component, to provide i0S-like tabs
at the bottom. This is pretty recent, but it may mean that Android apps will start to
support bottom navigation.

These differences aren’t provided for free by out-of-the-box controls. Instead, they're
different controls added in different ways. On iOS the developers had to explicitly
add a toolbar button, and on Android they had to add the FAB.

As developers of cross-platform apps, we have to keep these differences in mind.
It’s easy as a consumer to use one platform and get used to the way it works, but to be
a successful cross-platform developer, you’ll need to get used to both platforms so you
can always think of your Uls in terms of each platform.

www.EBooksWorld.ir

6.2

6.2.1

Designing the UI and user flows 159

With this in mind, let’s now start to think about the design for a couple of apps.
One will be a single-screen square root calculator. The other will be a multiscreen
counter app (an app that you can use to count different things, like how many cups of
coffee you’ve had). We’ll take both these apps through from design, to looking at the
code structure, to creating a new solution and structuring the code.

Designing the Ul and user flows

For the rest of this and the upcoming chapters, we’re going to focus our attention on
a couple of app examples. One is a simple square root calculator (like the example
from chapter 2), which we’ll call SquareRt, in keeping with the current trend for nam-
ing things by taking normal words and losing vowels. The other will be a counter app
supporting multiple counters, and we’ll call this one Countr. Let’s look at these in
turn and consider the design of their Uls and user flows. Later you’ll see how this
maps to the architecture of each app.

When I refer to the U, I'm referring to the user interface presented to the user. By
user flows, I'm referring to the user’s experience—the actions the user can take to flow
through the app, the interactions they have with the UI, and the results of these inter-
actions on screen.

SquareRt—a simple app for calculating square roots

The aim of this app is to let the user enter a number and then to calculate its square
root. It’s a fairly simple task, so we don’t need a complex Ul This is also the kind of
app that could be the same on both iOS and Android.

Apple requires high-quality apps

This is a simple app example for illustration, and not something that you should ever
build and try to submit to the app stores. Google has a fairly lax attitude toward the
quality of apps that can be submitted, whereas Apple is fairly draconian (although
both are strict about offensive material or copyright violations). If your app doesn’t do
anything of value (such as just calculating a square root), it’s very likely to be rejected
from the app store. According to Apple’s App Store guidelines, there are “lots of seri-
ous developers who don’t want their quality apps to be surrounded by amateur hour.”

You can read Apple’s “App Store Review Guidelines” at http://mng.bz/525T. The
Google guidelines are at http://mng.bz/KQbE.

Before we can start cutting code, we need to think about what to build. Thinking
about the Ul is a good way to divide up the code. We’re using MVVM after all, so we
need to consider the model layer, the views, and their corresponding view models.
Once we know what Ul we need, we can start to define our views, and then the view
models.

www.EBooksWorld.ir

http://mng.bz/525T
http://mng.bz/KQbE

160

CHAPTER 6 Designing MVVM cross-platform apps

A good way to define the Ul is to think about the user flows—what actions the user
will want to take, and what the results of these actions will be. Once you have these
actions, you can start to map them to the Ul and define what your Ul should look like.
Let’s draw a simple flowchart of the only user flow through the SquareRt app, shown
in figure 6.4.

Figure 6.4 The SquareRt app is pretty
simple, with only one flow that the user
can take.

User enters Square root Answer is
a number is calculated shown on Ul

This flow is very simple—the user can only use this app for one thing. They need a way
to enter a number, something in the app needs to calculate the square root, and then
the square root is presented to the user. The UI for this is relatively easy to imagine—
you need a way to enter the number, a way to kick off the calculation, and a way to
show the results. Figure 6.5 shows some options.

SquareRt SquareRt

SquareRt

400
20
00

40
'\’ 4

0

Square Root Calculate

I N
o | |o

Figure 6.5 Some possible Uls for SquareRt, a simple square root
calculation app

The first two Uls in figure 6.5 have a text box where the user
can enter the number, and a button that kicks off the calcu-
lation. The third removes the button—from a user perspec-
tive, if they’re entering a number, they obviously want to see
the square root, so the app could calculate it automatically 20
every time the value in the text box changes. This is a good 400
option to consider—the less the user has to do, the better
the experience.

We’re going to use the third Ul in this book (figure 6.6),
butit’s a good exercise to think about the other Uls, or to con-

sider other designs of your own, as we delve deeper into Figure 6.6 Our final Ul
designing this app. for the SquareRt app

www.EBooksWorld.ir

6.2.2

Designing the UI and user flows 161

Countr—an app for counting multiple things

The SquareRt app is a very simple example, but most apps are a lot more complicated.
Our second example is an app called Countr that allows the user to define multiple
counters, and to increment them whenever they want, such as to track the number of
cups of coffee they’ve had, or the number of times they’ve been out for a run. This
app will need to show multiple counters, will need the ability to add or delete a
counter, and will need a simple way to increment each counter. Figure 6.7 shows these

user flows.

User wants to Counters are All counters are
loaded from
see counters shown on Ul
storage
Counter is .
User adds User enters New counter is
. created and
a counter counter details shown on the Ul
stored
Counter is Counter is
User deletes removed from removed
a counter
storage from Ul
. Counter is Counter is
User increments)
a counter incremented updated on
and stored the Ul

Figure 6.7 The user flows for the Countr app—showing, adding, deleting, and
incrementing counters

Showing lists is a very popular thing to do in mobile apps. Think about the apps you
use most often—probably most of them deal with lists or grids of data. Email apps
show a list of emails, Facebook shows a list of posts, Twitter shows a list of tweets, mes-
saging apps like WhatsApp show lists of messages. In all these apps you have a scrolla-
ble list of data. You read what’s on the page and then “push” the items up by swiping
up on the screen to see what’s below. This is a popular paradigm, so we’ll use it for our
Countr app, with the main part of the UI showing a list of counters.

As you’ve already seen, Gmail on iOS and Android have different ways for the user
to create a new email—a toolbar button on iOS and a FAB on Android. We’ll follow
this convention in our app with the iOS version having a toolbar button to add a new
counter, and the Android version having a FAB to do the same thing.

Often apps with lists use swiping to delete—email apps allow you to swipe an email
to the left to display a Delete button below the email, which you can tap to delete. This
paradigm would be good for deleting counters.

Another thing you see with lists is buttons against each item, allowing you to per-
form some action, such as retweeting a tweet in the Twitter app or liking a post in

www.EBooksWorld.ir

162

6.2.3

CHAPTER 6 Designing MVVM cross-platform apps

Facebook. Again, this is a popular paradigm, so we’ll use this in our Countr app to
increment a counter.

Unlike with our simple SquareRt app, the Countr app will have different Uls on
iOS and Android, at least when it comes to adding counters. This is something you
always have to keep in mind—Xamarin allows you to build cross-platform apps, but
you should always build the Uls in a way that’s right for each platform. Cross-platform
core, and a platform-specific UIL. Don’t be tempted to build one UI for both plat-
forms—if it goes against the standard UI of one platform, it will only confuse users.

Figure 6.8 shows the different Uls we can use for this app on both iOS and
Android.

iOS Android
Countr Add Cancel New Counter Done Countr —< New Counter v
Coffees 4 + Coffees 4 +
Runs 1 + Counter Name Runs 1 . Counter Name
Tap Add Tap (+)

)

Figure 6.8 i0S and Android Uls for the Countr app with different Ul conventions on each platform,
such as an Add button in the toolbar on i0S, but a FAB on Android

Defining user flows and Uls

We’ve just looked at the user flows for our two example apps. But the hard part can be
defining these flows, so how do you go about doing it? I like to use these steps:

Start by thinking about the high-level actions that the user will want to use your
app for, such as counting something.

From these high-level actions, think about how they can get the app in a state
where they can perform these actions, such as adding a counter so that they can
count something, and showing all the counters to see what they can count.
Think about the ancillary tasks they might want to perform around this state,
such as deleting a counter.

Think about the steps the user takes to perform each task or action, such as
viewing counters, and the end results, such as seeing the counters.

Think about the general tasks your app needs to do in order to go from the
starting point to the end result, such as loading counters from some kind of
storage.

By following these steps, you should be able to build some simple flowcharts for your
app, like the ones you’ve seen already. The flowchart should start with the high-level

www.EBooksWorld.ir

Designing the UI and user flows 163

action the user’s trying to achieve, starting from the place in your app where the user
will likely be when they kick off these actions. Then it should go through one or more
steps to achieve this action, either user-based steps (something the user has to do) or
system steps (something the app does). Finally, it ends with a result that may or may
not involve the user.

Figure 6.9 shows a simple example. The user wants to see counters, and the end
result is that the counters are shown. The step required to get there is to load counters
from storage.

Figure 6.9 The steps for showing

Counters are All counters counters—the user wants to see them,
User wants to)
see counters Ioactied from are ShSIWN the app loads them, the app displays
storage on them to the user.

Once you have these flows, it’s easy to start mapping them to a Ul Your UI needs to
provide a way to kick off each flow and provide the result. In this example, the UI
needs a way to kick off loading the counters from some kind of storage when it’s
opened and then showing all the counters. This means you need a UI with a control
that can show a collection of data, and the normal way to do this is using a vertically
scrolling list control. When you’re thinking about how to represent tasks and results
on your app’s UI, take a look at how other apps do it—sometimes there are standard
ways, like lists, that you can use to make your app easy to use. After all, if you’re using
a popular UI paradigm, your users will probably already be used to it, so they’ll be
comfortable in your app.

The Countr example demonstrates that you can create cross-platform apps that
have the same user flows, but with different Uls. I can’t stress enough how important it
is to always consider the differences between the Ul paradigms on iOS and Android.
Using Xamarin, you can build cross-platform apps, but that doesn’t mean your apps
have to be exactly the same on both platforms. It’s worth spending time getting to
know how each platform works so that when you design your apps, you can keep these
differences in mind—even if the difference is as simple as using a FAB on Android
and a toolbar button on iOS.

There are many opinions about how to build a mobile app with a good user expe-
rience—the topic is worthy of a book in its own right (such as Usability Matters by Matt
Lacey, Manning, May 2018), but as a simple starting point I recommend looking at
your app the way we’ve looked at our two examples. Start by considering the user
flows—think about the interactions your user will have with your app. Then think
about how you can map those interactions to the Ul in a way that makes sense on each
platform. It’s also good to think about how the user can achieve each flow in as few
steps as possible, in a way that makes sense on each platform.

We’ve now designed the user flows and sketched out the Uls, so let’s look at con-
verting these into an architecture that follows the MVVM design pattern.

www.EBooksWorld.ir

164

6.3

6.3.1

CHAPTER 6 Designing MVVM cross-platform apps

Architecting the app

Now that we’ve worked out what the UI i0S ! Android
should be, it’s time to start thinking about - ! -
the architecture. As you've seen in the pre- IAPP i
. ayer
ceding chapters, there are three layers and C# (NET Standard)
two thread types to think of. You have to T
. . 1
consider what goes in the model layer, Ul layer c# || o View
what goes in the view-model layer, and TR T .
. . —_— Binding Ik
what goes in the view layer. And for the = p=mmmm—s=
. . Ul logic View
code in the model and view-model layers, layer C# (NET Standard) |
you need to consider what code needs to
run on the Ul thread and what can run in
the background. i
8 IB”.S'”eSS C# (NET Standard) | Model
ogic layer

Which layer?

As you start thinking about the structure of
your code, you need to consider which lay- Figure 6.10 MVVM has three layers, with the
ers the different parts of the code go in. view layer being platform-s!)ecific and the view-

. . model and model layers being cross-platform.
Think back to the layer diagrams from pre-
vious chapters, as shown in figure 6.10.
Remember that the code responsible for Ul interactions encompasses the view layer,
the view-model layer, and the binding—the view is the platform-specific UI widgets,
and the view model is the cross-platform UI logic bound to the view.

SQUARERT

For SquareRT, we want as much code as possible in the model and view-model layers.
This is cross-platform code that’s shared between the Android and iOS apps, and we
only want to write it once and reuse it on both platforms.

Let’s see how the SquareRt app code can be divided up between layers. We can take the user
flow we've defined and map it across the layers. This is shown in figure 6.11.

What we see from this exercise is that we need one view with a control that a user
can enter text into and one control to show the result. We also need a corresponding
view model that can bind to those controls, and a model layer that can do the calcula-
tion. This very quickly leads to three classes that are the main structure of our app, as
shown in figure 6.12.

COUNTR
Let’s repeat the same exercise with our Countr app, mapping the flows we’ve already
defined into our three MVVM layers. This is shown in figures 6.13 and 6.14.

www.EBooksWorld.ir

Architecting the app
iOS ' Android
o Lot || o |
layer !
| C# (.NET Standard) |
____________________i_ ___
Uayer | Gt ||| ot | view
1
"""" Stk
"""""" t_______E_n_nql_n_g_______'----------- Userenters |"~~7 Answeris |~
Ul logic View a number shown on Ul
layer | C# (.NET Standard) model \ /
Business Square root
logic layer Szl Sty Model is calculated

Figure 6.11 User flows can map to the MVVM layers, with user interactions
spanning the view and view-model layers.

App
layer

layer

Business

Android

.
.
Lo |

C#|

| C# (.NET Standard) |

165

View | SquareRtView |
'''''''' |
oo Binding ST Userenters [~~~ Answeris |[~~~"""""""TTTTTTTTTooC
View a number shown on Ul :
| C# (.NET Standard) model W | SquareRtViewModel |
C# (.NET Standard) Model Square root | SquareRtCalculator |

logic layer

is calculated

Figure 6.12 Once you’ve mapped user flows to the MVVM layers, you can map classes to these as well.

Userwants to |~

see counters

All counters | ----

are shown
on Ul

User adds

a counter

User enters
counter details

New counter
is shown
on the Ul

Counters are
loaded from
storage

Counter is
created and

stored

Figure 6.13 Mapping showing and adding counters to the view, view-model, and model layers

www.EBooksWorld.ir

166

CHAPTER 6 Designing MVVM cross-platform apps

View
------------------ Counteris |------- User ----| Counteris f--
User deletes .
View removed increments updated
a counter P list t the U
model rom lis a counter on the
Counters is Counter is
Model removed incremented
from storage and stored

Figure 6.14 Mapping incrementing and deleting counters to the view, view-model, and
model layers

Again, just like with SquareRt, you can see a pattern of classes in these layers. We need
to display a list of counters that can be manipulated (such as adding and deleting
them), so we need a view and view model for the UlI, as well as some kind of service
class in the model layer that stores and retrieves the counters from some kind of stor-
age. We also need something in the UI to add a new counter and enter its details, so
we need a view and view model for this new counter. This gives us the classes shown in
figure 6.15.

View | CountersView | | CounterView |
View : :
CountersViewModel CounterViewModel
model
| CountersService | Figure 6.15 The Countr app maps
Model to a set of view, view-model, and
| Counter | model layer classes.

DIVIDING APPS INTO LAYERS
Once you’ve worked out your user flows, it should be obvious which parts of the flow
involve the UI and which parts don’t. Any direct interaction with the user needs some
kind of UI, and anything else doesn’t. This means it’s relatively simple to map user
flows to the MVVM layers. Anything that involves the Ul lives in the view and view-
model layers (the Ul in the view layer, and the state and behavior in view models), and
the core business logic lives in the model layer. Your flow could switch between layers as
many times as necessary—user does x, app does yin the background, it asks the user to
confirm on the Ul thread, does zin the background, and then shows the user a result.
The process of adding a counter needs something in the Ul layer that the user can
interact with to start the add flow, such as an Add button in the view and a command
to handle it in a view model. Next, the user needs to give the counter a name, so there
needs to be some kind of UI, such as a new screen with a text box where the user can
enter the name, and a corresponding view model to get this name. Then the app
needs to create the counter and store it somewhere, and this is handled in the model
layer. Finally, the user needs to see the new counter in the list, so the UI for showing

www.EBooksWorld.ir

6.3.2

Architecting the app 167

the list of counters needs to be updated, which means an update in a list of counters
stored in a view model, which is reflected in a view.

Which thread?

We’ve divided our example apps up into layers to match the MVVM design pattern, so
the next thing to do is think about multithreading. As you saw in the previous chapter,
it’s important that our app remains responsive, so we should start thinking now about
what thread our code runs on.

There’s a very simple rule to follow here—if the UI lags or is unresponsive for
more than about 200 ms, the user will notice a perceptible lag. More than this and it
feels like the app has locked up, and it can take only a few seconds before a user is fed
up waiting and kills your app. You should always run any action that could take more
than about 100 ms on a background thread.

Of course, this isn’t always easy to judge, especially when you're in the process of
developing your app. Most developers have high-powered versions of the latest and
greatest devices, but most users don’t. What takes 50 ms on your top-of-the-range
iPhone 7 might take 500 ms on an old iPhone 4s. Making a web call might be almost
instantaneous when calling a development web service running on your development
machine and accessing it over WiFi, but it might take multiple seconds in the real
world using 3G.

Here are some good basic guidelines:

Always test on a poor device—you can pick up older devices for not very much
money, either through clearance sales or secondhand from sites like eBay or
Craigslist. It’s worth having a device with the lowest specs you want to support
for testing.

Always assume anything involving the network will run slowly, so always make
network calls on a background thread.

When storing anything locally, or retrieving anything from a database such as
SQLite (a popular mobile database that comes as part of iOS and Android) or
from a file, always do this in the background.

If you’re not sure, do it in the background.

A good way to work out which code needs to run on the UI thread or a background
thread is to take each task and ask yourself a few questions: does it involve the UI, does
it need external resources, is it slow? Figure 6.16 shows a flowchart for this.

If you map your user flows by following this flowchart, you should be able to easily
work out in which thread your code should be run.

ANDROID HAS A TOOL THAT CAN HELP CHECK YOUR CODE Android has a strict
mode that you can enable to get feedback on your code, to see if it’s running
in the correct thread. You can use this to get feedback about whether an
action is taking too long on the UI thread. There are more details on Strict-
Mode in the Android developer’s reference: http://mng.bz/nDIb5.

www.EBooksWorld.ir

http://mng.bz/nDI5

168

CHAPTER 6 Designing MVVM cross-platform apps

. Does this use Does this take Ul thread or
Does this No No No
involvethe U2 " external resources |——| more than 100 ms |——» background
: (DB, web)? on a slow device? thread
Yes Yes Yes
Background Background
Ul thread thread thread

Figure 6.16 If your code involves the Ul, it needs to run on the Ul thread, but if it uses external
resources or is slow, it should run on a background thread.

When using third-party code, such as NuGet packages or Xamarin components, it’s
always good to check whether the code has any async methods. For example, if you
use HttpClient from the System.Net.Http namespace in the .NET Framework, you’ll
see it has methods like GetAsync, which returns a Task<HttpResponseMessage>.
Whenever an async method is exposed, you can usually be sure that internally it will
create a Task to run long-running actions on a background thread. You can await this
from the UI thread, and your app should remain responsive because the HttpClient
handles the threading for you. Obviously, there are no guarantees, so it’s good to
check the behavior first.

Let’s now think about the threading requirements of our example apps. We’ll take
each user flow and consider what needs to happen to achieve it. From there, we can
work out if each part of the flow needs to run on a background thread.

SQUARERT

The user flow for the SquareRt app has three parts—two that involve the Ul (getting
the initial number and showing the result), and one that involves a calculation.
Although this is a relatively complex calculation, it’s pretty quick—it will run in frac-
tions of a millisecond, so we don’t have to think about background threads at all.
Everything can run on the UI thread (figure 6.17).

COUNTR
Unlike SquareRt, Countr does a bit more than just a single calculation. It includes a
simple calculation—incrementing a counter, which could be run on the UI thread

User enters Square root Answer is
Ul thread .
a number is calculated shown on Ul
Background
thread

Figure 6.17 The SquareRt app doesn’t do anything that needs to run in a
background thread.

www.EBooksWorld.ir

6.3.3

Architecting the app 169

without any issues—but “storage” is the key word in these user flows when thinking
about threading. We haven’t discussed the storage of data yet (we’ll look at storage in
the next chapter), but any kind of storage involves making a call to something poten-
tially slow. If you write to a SQLite database, or a file, or a web service, it’s good prac-
tice to do it in a background thread to shield your UI from anything that might make
it unresponsive.

FILESYSTEM ACCESS CAN BE SLOW It’s often assumed that saving files by writ-
ing to flash memory in a mobile app is fast, because the hardware involved is
pretty quick. Although this is generally true, the flash memory has a filesystem
on top of it that may not be the best at handling concurrency. If it’s busy per-
forming a large file operation, such as saving a downloaded update, your fast
disk access might wait a short time before running, making the save take lon-
ger than expected.

In the user flows, you can do anything that involves the UI on the UI thread, and any-
thing that involves storage on a background thread. Even though the calculation to
increment a counter is fast, we still need to think about doing it on a background
thread because the result of the calculation will need to be stored. Figure 6.18 shows
how the incrementing of a counter would be handled across the UI thread and a back-
ground thread.

] Counter is
User increments
Ul thread slihotin up?:;eglon
\ Counter is /
Bac:ground incremented
thread and stored

Figure 6.18 The Countr app needs to access storage, so it’s better to do this on
a background thread before coming back to the Ul thread to display the results.

Mapping code to layers and threads

We’ve looked at how to map user flows onto MVVM layers and threads, and this is a
good exercise to go through as you start out building cross-platform mobile apps. Fig-
ure 6.19 shows a layout you can use to help map your user flows and code. Print out or
photocopy a few copies, or grab the SVG version from this book’s Git repository to use
with your favorite drawing tool if you’d like to save paper.

You should start by thinking about the distinct actions your user would want to per-
form with your app, as we’ve discussed. Then break them apart into separate steps—
what would a user do step by step, and what would the app do step by step. Draw these
flows on the diagram, thinking about which layer each should go into—UI interac-
tions go on the view layer with the corresponding view model, and steps the app takes

www.EBooksWorld.ir

CHAPTER 6 Designing MVVM cross-platform apps

170

View Ul thread
Ul thread
View Model
Background thread
Ul thread
Model
Background thread

Figure 6.19 To help work out which layer or thread to use, try mapping your user flows on this diagram.

www.EBooksWorld.ir

6.4

Creating the solutions 171

internally go in the model layer. As you put things into the view-model and model lay-
ers, think about the threading—should they be on the UI thread or a background
thread? Steps that need external resources or that are slow always go on a background
thread.

Have a go at mapping our two example apps using this diagram and the flows
defined earlier (check appendix A to see how I did it). Then think about your own
app ideas and try mapping those. If you’ve used MVVM before and built Ul-based
apps, you might find that you already think about these layers and threads automati-
cally, so you don’t need to use this diagram. But if this is all new to you, it’s a good ref-
erence point.

Now that we’ve thought about how to put the code in the correct layers and
threads, we’re ready to create our solutions. It’s time to fire up Visual Studio on your
platform of choice and get ready to code!

Creating the solutions

Once you’ve created a rough app architecture based on the sort of classes you want,
what layer those classes represent, and what thread your code should run on, it’s time
to fire up your IDE and create the actual solutions. In the rest of this chapter, we’re
going to create solutions much like we built the Hello Cross-Platform World example
in earlier chapters. Then we’ll look at at some new concepts that are important in
mobile app development—app property files, SDK versions, and linking.

Everything in the remainder of this chapter is relevant to both SquareRt and
Countr, and over the next few chapters we’ll start writing the code to turn the new
solutions into fully working apps. We’ll just be creating the solution for SquareRt
here, but everything we’ll discuss is relevant to both apps, so repeat the process for
Countr when you're done with SquareRt.

The first thing to do is to create a new solution. We’ll be using the same Visual Stu-
dio extension we used in chapter 2 and creating the same project type. Name your
project SquareRt (or come up with your own name, of course). In Visual Studio for
Mac, create an MvvmCross Single Page Native Application from the Other > .NET sec-
tion. On Windows, choose MvvmCross Single Page Native Application under Visual
G# > MvvmCross, and delete the Universal Windows and WPF projects.

Now that you have your solution, let’s take a look at some of the ways that the pro-
jects in this solution will differ from what you’ve seen before in C# projects, such as
desktop or ASP.NET web applications. Mobile apps are different from other C# appli-
cations—they run on devices with limited hardware and with an OS that changes dra-
matically every year. This means your apps need to be very aware of the OS version
and what APIs are available, as well as be as small as possible. They also expose a whole
raft of properties to the OS and app stores via a file in the app package that provides
information about your app. Let’s start by looking at how these app properties are set.

www.EBooksWorld.ir

172

6.5

6.5.1

CHAPTER 6 Designing MVVM cross-platform apps

Application properties

When you build and ship your mobile app, you have to bundle some information
inside your app. This is used by both the relevant app store and the OS to get informa-
tion about your app, such as its name, icon, supported OS version, and app version
number. Both iOS and Android ship an XML file containing this information.

We’ll look at a number of these properties here, but not the app icon. Mobile
apps have to run on devices of all shapes and sizes, so there are some complications
when it comes to images, and we’ll look at these for Android in chapter 9 and iOS in
chapter 11.

Android manifest

The AndroidManifest.xml file in the Properties folder of the solution is shipped with
your app package and provides information about your app to the Google Play Store
and the Android OS. This includes which SDK version you’re targeting (more on this
later in the chapter), what permissions your app needs, the app’s name, its version,
ID, and icon. In a native Java Android application built using Android Studio from
Google, the manifest will also contain information about the classes that make up
your app.

Luckily, as Xamarin developers, we don’t need to worry about explicitly adding this
information to the manifest XML file. Instead we mark the relevant classes with attri-
butes, and these get added automatically to the copy of the manifest file that’s pack-
aged inside the compiled application at build time. Again, this will be covered in
chapter 9, but you may have seen this already in the FirstView activity in the First-
View.cs file in the Views folder of the Android app—this class was marked with an
Activity attribute ([Activity(Label = "..")]), indicating that at build time it
should be added to the manifest as an activity with a particular label.

Although this is an XML file, there’s really no need to manually edit the XML.
Visual Studio comes with an editor for this: you can access it in Visual Studio for Mac
from the Project Options dialog or by double-clicking the AndroidManifest.xml file in
the Properties folder (figure 6.20); on Windows you can access it from the project
Properties tab (right-click the app and select Properties). If you open it by double-
clicking the file in the Solution Pad in Visual Studio for Mac, it opens in a tab with two
subtabs—one to edit the file using the same editor as the Project Options dialog, and
the other showing the raw XML (figure 6.20). In Visual Studio, double-clicking the
file in the Solution Explorer opens a tab with just the raw XML.

There are several items of interest to us now:

Application name
Package name
Version number
Version name

Required permissions

www.EBooksWorld.ir

Application properties 173

The AndroidManifest.xml file lives in the Properties folder.

. o 0 » Ol oebug » [J Vigual Studio En...rise 2017 for Mac O Fress B oo
E m soten S e e
|8 ¥ . Squarefit (master) I - 1
| » [SquareRt.Core e — |
| [SquareRt.Droid Package name |com. =
; Getting Started > —
| 14 Connected Services icon | fic_launch o
;’ * 1) Feferences
Ii [Components Application theme | @style/MyTheme
| » [Packages : g
!i » B Assats Version number |1
Lot Version name 1.0 |
Minimum Android version Override - Android 4.0.3 (API level 15) Boe
» [ln Resources —
» [Views Target Android version Automatic - use target framework version (API 25) e e
[{i) DebugTrace.cs
Tl LinkerPleasainclude cs Install location auto s o
[} Setup.cs q 1
[0 SplashScreen.cs. i
» " SquireRtios ‘AccessCoarselocation
‘AccessFineLocation

[Fitter Parmissions
Lg. iter Perrmissions 1

(CHTSTENE Source Changes Blame Log Merge
@ Breakpoints 4 TestResuts @ Emors o Tasks BN Package Console

Figure 6.20 The Android Manifest file in the Solution Pad and in the editor

APPLICATION NAME

The application name is the name of your application both in the Google Play Store
and on your device. You'll notice in figure 6.20 that this is set to @string/Application-
Name, which is a resource reference. You’'ll see these a lot in Android apps—rather
than hard-code a value, you reference a resource. These resources are in the
Resources folder, which contains a subfolder called values containing an XML file,
string.xml. If you open this file, you’ll see the following.

Listing 6.1 strings.xml contains strings that can be used anywhere in your app

<?xml version="1.0" encoding="utf-8"?>
<resources> The version name

<string name="VersionName">1.0</string> of the application

<string name="ApplicationName">SquareRt</string>
</resources>

The name of the
application

If you want to rename the app, you can edit the value of ApplicationName in this
XML file, and the app will automatically be renamed next time you compile.

www.EBooksWorld.ir

174

CHAPTER 6 Designing MVVM cross-platform apps

We’ll cover these more in chapter 9, but the main reason for using resource files
for storing values is so that you can localize your app easily. In this example we only
have one strings.xml file, but you can have multiple resources based on the locale of
the app’s user—one file for U.S. English users, one for Chinese users, one for French
users, and so on. By containing all your strings in one file, it’s easy to get your app
translated—there’s only one XML file to translate. Localization is outside the scope of
this book, but you can find more information in Android’s “Localizing with
Resources” API guide: http://mng.bz/fb7Y.

PACKAGE NAME
The package name is the unique name for your application package, and it’s used to
identify your app on the Google Play Store. When you want to push app updates to
the store, this package name identifies which app is being updated. The normal form
for this name is to use your company or personal domain name reversed, suffixed with
an identifier for your app. For example, if I were creating this app for publication,
I’d have a package name of io.jimbobbennett.squarert. Once your app has been
published to the store, you can’t change this value, or the Play store will think you’re
publishing a different app.

Unlike the application name, there’s no need to define this in the strings.xml file
because this will never change to match a locale. Once this name is set and your app is
published, you can’t change it, so be sure to set it correctly before publishing.

VERSION NUMBER

This is the version number of your package (also referred to in the XML as the ver-
sion code). This number is used by the Google Play Store and the device to track
upgrades—if the package on the store has a higher version number than the one on
the device, the app can be upgraded. You can only push to the store an updated pack-
age with a higher version number than the one already in the store—it doesn’t have to
be 1 higher, you can increment it by however much you want, it just needs to be
higher.

There’s a limit on this number—it’s a large limit (2,100,000,000 to be exact), but it
can easily be reached if you use automated build tools that increment this number or
set it to values based on the current time or source code revision number. Once it’s
reached, you can no longer upgrade your app, so be careful with large numbers.

VERSION NAME

This is your internal version name for your app, and it’s a string that can be set in the
manifest or in the string.xml resource file, as shown earlier in listing 6.1. Most devel-
opers use a multipart version so that they can internally track releases. You can set this
to whatever is relevant to you.

REQUIRED PERMISSIONS

When you’re building mobile apps, you can closely integrate your app with the fea-
tures of the device as well as with other apps that come built into the OS, such as a
camera, contacts, and calendars. Obviously, there are privacy concerns with this—you

www.EBooksWorld.ir

http://mng.bz/fb7Y

6.5.2

Application properties 175

wouldn’t want a malicious app accessing your private details and uploading them to a
server somewhere, so both Android and iOS require your app to request permissions
from the user before you can do certain things. Android has a changing permission
model—on older OS versions, you’d specify the permissions you needed in the appli-
cation manifest, and at install time the user would be prompted to give your app these
permissions (and, at update time, if your app needed new permissions, the user would
be asked to confirm them before updating). In newer versions of the Android OS, you
can also ask for some permissions at runtime, explicitly popping up a dialog asking
the user’s consent before doing something.

The required permissions section allows you to request permissions up front by
ticking the boxes against the permissions that your app requires. These permissions
are shown to the user at install time, and the user has to agree to them before your
app can be installed. It’s always good to request as few permissions as you need, or
users might refuse to install your app. Certainly any permissions that don’t appear rel-
evant will cause a user to pause before installing. For example, our SquareRt app
doesn’t need permissions to access the user’s contacts or photos, and seeing a request
for these permissions would definitely make a user refuse to install the app!

iOS info.plist

Like Android, iOS also has a properties file that ships with the app package, called
info.plist (plistis short for property list). The info.plist file can be edited using a built-in
editor by double-clicking the file (figure 6.21), or on Visual Studio on Windows from
the iOS App project Properties tab.

The info.plist file in the iOS app contains the application settings that the OS
needs to know about, such as the name, icons, supported orientations (portrait or
landscape). This is an XML file that you can modify directly if you're so inclined, but
Visual Studio has an editor that makes it easy to manipulate. The editor has three tabs:
Application, which allows you to change the main application settings; Advanced,
which configures things like the document types your app supports for extensions or
URL types so your app can handle being launched for links; and Source, which is a
key/value type editor for editing raw values without having to interact with the XML.
The XML syntax isn’t simple—you have to define nodes based on types, so you need
to know what type to use for what value. This editor is a great help, and even the
Source tab makes it easy for you by using the right types automatically.

Unlike Android, permissions aren’t requested here. Instead, some permissions are
granted by default (such as internet access) and others are requested at runtime.

These are the fields we care about:

Application name
Bundle identifier
Version

Build

Devices

Device orientations

www.EBooksWorld.ir

176

CHAPTER 6 Designing MVVM cross-platform apps

e o | O » O pebug »] Visual Studio En..rse 2017 for Mac Q-
& Solution S (& 3 into.plist « N e B
£ v - oo masten * identity
" SquareRt Core
i : _: Application Name: SquareRLiOS
% w || SquareRtiDS Bundle identifier: com.companyname.SquareRt.i0S
off Kt Sencinsh version: |1.0 7]
4 11 Connected Services :
i » 1 References Build: |1.0 @
E 3 Componants * Deployment Info
5 » |1 Packages
11 Assets xcassets Deployment Target: |9.0 =
* I Propartien Device family: Unversal el
» [l Resources
» [Views Main Interface: [
% = Device Orientations: Portrait
[5] Enttiements.piist Upside Down
T
[0} LinkerPioasainciude.cs Landscape Left
Main.cs
g Landscape Right
Status Bar Style: Default d
Hide status bar

mmmcmmw

@ Breakpoints 4 TestResults @ Emors o Tasks @ Package Console

The info.plist file lives in the root of the i0S app.

Figure 6.21 The iOS info.plist file in the Solution Pad and the editor

APPLICATION NAME

As the name suggests, this is the application name that will be shown in the app store,
and by default it’s used as the name on the iOS SpringBoard. Unlike Android, you
can’t reference a string resource for this; it has to be set in the info.plist file on the
Application tab. You can, however, localize it. See the “iOS Localization” Xamarin doc-
umentation for more information: http://mng.bz/6B91.

On the i0OS SpringBoard, your app really doesn’t have much space to display a
name, and if the name is too long, it’ll be truncated and end with ellipses. You can
usually get 12 characters or so, but your app name might be longer.

Luckily the display name shown for your app on the SpringBoard can be different
from the one shown on the store, so you can shorten it to fit. To change this, flip to
the Source tab and you’ll see a couple of values—Bundle Display Name and Bundle
Name. Bundle Name is the name of your app on the app store, and Bundle Display
Name is the name on the SpringBoard. You could set your bundle name to “SquareRt
Square Root Calculator”, and set the display name to “SquareRt”. Be aware, though,
that if you update the Application Name on the Application tab, both of these values
will be updated to match.

www.EBooksWorld.ir

http://mng.bz/6B91

6.6

SDK versions 177

BUNDLE IDENTIFIER

The bundle identifier is a unique identifier for your app, and it’s essentially the same
as the Android package name—even down to the convention of using a reversed
domain name suffixed with the app name. Once it’s set on the app store, the bundle
identifier can’t be changed, and ideally you won’t want to ever change it. Your app is
signed with a certificate and a private key based on this bundle identifier, so if you
change the identifier, the signing profiles won’t work and will need to be re-created.
We’ll walk through doing this in chapter 13, but be warned, it’s not a nice process!

VERSION

Version is a string representation of a three-part version number (usually something like
major.minor.revision, such as 1.0.4) and it must be incremented each time you update
the app on the store. This is the public version number that’s shown on the store.

BuiLb
Confusingly, iOS has a second one-, two-, or three-part version number that’s used to
define the build number. This is an internal build number, so it’s not shown in iTunes,
but it is used to determine if the app has been updated—just like the version code on
Android. For example, if you're working on a release you want to publicly call 2.5.3,
you’d submit an app with the version set to 2.5.3 and the build set to anything you like,
such as 1. If this version gets rejected by Apple, you’d fix the issue and then upload a
build with the same version (2.5.3) but a different build (such as 2) so that the public
version stays the same but iTunes will know that you’ve submitted a new version.
Although this build number can consist of up to three parts, it’s usually simpler to
use a single build number and increment it with every build.

DEVICES

This field allows you to chose the type of device you want to target—iPhone, iPad, or
both. This means that you can target a particular platform—for example, if you’re
building an app that only makes sense on a larger device, you can limit it just to iPad.

DEVICE ORIENTATIONS

All mobile devices can be easily rotated, and a good app should work well in all orien-
tations or it should be locked to one orientation (something you see a lot in games—
they only work in landscape). By ticking the different boxes, you can choose which
orientations to support.

SDK versions

Every year at Apple’s WWDC (Worldwide Developers Conference) the senior VPs at
Apple unveil the new and awesome features of the next version of iOS—the operating
system for iPhones, iPads, and iPod Touches. The iPhone has been around for ten
years and has seen eleven different versions of the OS in that time, going from a
game-changing phone to a pocket supercomputer. The same is true for Android—
fourteen versions of the OS in eight years. Currently the operating systems have a
major update at least every year (more often for minor updates), and each update

www.EBooksWorld.ir

178

CHAPTER 6 Designing MVVM cross-platform apps

brings a whole range of new APIs that you can use and deprecates older ones. Each
OS release comes with a newer version of the SDK providing these APIs, so new OS
releases are often referred to as new SDKs. This is different from the previous OS
models that G# developers would be used to—new Windows versions come out every
few years, and updates to the .NET Framework are also few and far between (although
this is a model that’s changing, with Windows 10 having regular updates).

As a developer, you want to use the latest features where possible, but you still want
to support older devices potentially running older OS versions. Supporting older OS
versions is less of a concern on i0OS, where within weeks of a new OS being released,
the majority of users update, but it’s a big concern on Android. When Google released
Android, it was open source, so device manufacturers added their own features to the
OS before passing it to the carriers who also sometimes added their own features. This
means that when Google releases a new version of Android, or even a security patch,
not every device can install the update straightaway. Instead they have to wait for the
manufacturer to update their version, and possibly for the carrier to issue an update
as well. For new devices this does happen, but for older devices that are no longer
made, the updates may never be available. This results in the Android ecosystem
being particularly fragmented.

i0S 10 was released in September 2016, and by November it was on 79% of devices
(figure 6.22), 10S 9 was on 17%, and the remaining 4% were on older OS versions
(data from Mixpanel, https://mixpanel.com/trends/). This means most app devel-
opers can target the most recent two versions (i0S 9 and 10 at the time of writing),
and not worry about their app working on earlier versions.

On the other side of the mobile fence, the picture is not so rosy—Android Nougat
has been out for the same length of time but is on less than 1% of devices (figure
6.23), with the majority being on Marshmallow, Lollipop, and even 19% of users on
KitKat. Not only are users on older versions, but most of these users won’t be able to
upgrade—for example, I have a two-year-old tablet purchased from a major retailer in

K (19%)

L (31%) Others (6%)

i0S 10 / N (1%)
(79%) i0S 9

(17%)

Others
(4%) M (43%)
Figure 6.22 iOS users upgrade often, with Figure 6.23 Android users don’t (or can’t)
79% of users being on the latest i0S version upgrade as often as i0OS users, with 1% being on the
two months after launch. latest Android version two months after launch.

www.EBooksWorld.ir

https://mixpanel.com/trends/

6.6.1

SDK versions 179

the UK that’s running Android Lollipop and will never be updated. This means that,
as cross-platform mobile developers, we need to support a lot more versions of
Android than we do of iOS.

Android SDK versions and the SDK manager

When you install Xamarin, it will also install the Android SDK for you. These are the
libraries and tools used by Xamarin to compile Android apps, and they’re the same
tools that the native development IDE (Android Studio) uses.

You can see what’s installed by going to Tools > SDK Manager from Visual Studio
for Mac, or going to Tools > Android > Android SDK Manager from Visual Studio in
Windows. This will load the Android SDK Manager, showing what versions of the
Android tools and SDKs are installed, as well as the images for creating Android emu-
lators. From here you can download new SDKs, download new emulator images, and
update the versions of the build tools.

One of the downsides of Xamarin development is that there are a lot of moving
pieces, some controlled by Xamarin, and others not (such as the Android SDKs). This
means it’s easy to get weird errors just by using combinations of the different tools that
don’t quite work together. As a general rule, I find it better to keep the SDK up to date
with the latest stable version.

Android SDKs are referred to in three different ways—by version number, by API
level (which can cover multiple version numbers), or by alphabetical confectionary-
based nickname (with some names covering multiple API levels). This is as confusing
as it sounds, and developers will mix and match their terminology. Google only sup-
ports (as in, provides security patches for) KitKat and above, and at the time of writing
the latest version generally available is Nougat (with Oreo being rolled out to a limited
set of Google devices). Table 6.1 shows how the names match up to API levels and to
versions for the most recent versions.

Table 6.1 The different Android code names, API levels, and versions
for the most recent and popular versions

Name API level Version
Jelly Bean 16-18 4.1-4.3.1
KitKat 19 4.4-4.4.4
Lollipop 21-22 5.0-5.1.1
Marshmallow 23 6.0-6.0.1
Nougat 24-25 7.0-7.1.1
Oreo 26 8.0

www.EBooksWorld.ir

180

CHAPTER 6 Designing MVVM cross-platform apps

IMPROVEMENTS WITH APPCOMPAT AND GOOGLE PLAY SERVICES It’s not all bad
in the Android world. Google is working to back-port new features to older
Android versions using a thing called AppCompat (providing libraries for
using newer features on old OS versions) and by moving out a lot of the core
APIs into a set of Google services called Google Play Services. This means you
can still access newer features on older devices. This will be covered more in
chapter 9.

SETTING THE ANDROID SDK VERSION FOR THE APP
As already mentioned, the APIs available to Android developers change over time.
Nothing is ever deleted; instead, out-of-date APIs are marked as obsolete and new
APIs are added. For example, Android has a text-to-speech class, TextToSpeech
(http://mng.bz/T5u2). This has a method on it called Speak with two overrides. One
override was added in API 21, and the other was deprecated as of API 21. Not only was
it deprecated, but it also no longer works on devices running Lollipop (API 21) or
above.

When you build a Xamarin Android app, you can choose three different Android
SDK versions—the one to build against, the minimum your app should support, and
the target version that your app is intended to run against:

The minimum API is used at install time—the Google Play store won’t let users
install an app that has the minimum set to a version higher than the device is
using.

The build version is the SDK that’s used when compiling, so you can only use
APIs that are available in that version.

The target version is used at runtime to ensure that everything works smoothly.

With the TextToSpeech API, if you wanted to use it in an app that supports KitKat and
above, you’d need to set your minimum version to API 19, and then compile against a
later version. This way your app will run on any device with KitKat and above, but
you’d be able to call both APIs. Xamarin only binds the libraries from API 15 and
above—you can target older versions if you want, and your app should run, but the
compiler won’t check that APIs that don’t exist on those versions aren’t called.
Obviously there’s a problem here—there are two different overrides of a method:
one that only runs on APIs 19 and 20, and one that only runs on APIs 21 and above.
What can you do? First, when a method is deprecated, it’s marked with the C#
Obsolete attribute, so if you’re compiling against a later SDK, you’ll get a compiler
warning if you call this method. This can really help you see what’s no longer available,
and this is a good reason to have warnings set to errors on your release builds! Second,
you can query the SDK version at runtime and call different code depending on which
OS version you’re running against. The following listing shows an example of this.

www.EBooksWorld.ir

http://mng.bz/T5u2

SDK versions 181

Listing 6.2 Checking the current Android SDK

if (Android.0S.Build.VERSION.SdkInt >= Android.O0S.BuildVersionCodes.Lollipop)

{
// Do things the Lollipop way T Checks to see if the current OS has
) an SDK version of Lollipop or later

else
{

// Do things the pre-Lollipop way
}

A check is made against the current OS build, and if it’s Lollipop or later, one code
branch is run. If not, another is run. In the Lollipop and higher branch, the new Speak
method is called; in the branch for versions prior to Lollipop, the old override can be
called (and wrapped in an appropriate #pragma directive to suppress the warning).

Warnings should be errors in release builds

Warnings are the compiler’s way of suggesting something might be wrong, such as a
field being declared but not used, a variable being compared to itself in an if state-
ment, or a deprecated API being used.

To keep your code clean, it's advisable to set all warnings as errors for your release
builds so that you can’t compile an app for release without fixing all warnings. You
can set this by ticking Treat Warnings as Errors in the Compile tab of the project Prop-
erties tab (project Options dialog for Visual Studio for Mac) for release builds. For
debug builds, this doesn’t matter so much, because it's easy to get warnings during
development that you’ll clean up once your code is ready.

If you get a warning that you want to ignore instead of having it as an error (such as
calling an obsolete API inside an SDK version check), you can wrap the offending line
of code in a directive to tell the compiler to ignore it:

#pragma warning disable < Tells the compiler to

// call obsolete code here ignore all warnings

#pragma warning restore .
prag g Tells the compiler to from here onwards

stop ignoring warnings
from here onwards

You can read more about this in Microsoft’s C# Guide, at http://mng.bz/8fOK.

Let’s look at this example in the context of the three different versions:

= Target framework—This is the version of the Android SDK you’re compiling
against. You can only use APIs that are available in this version. If you use an
API that wasn’t introduced until a later version, your app won’t compile. Nor-
mally this is set to Use Latest Installed Platform, which means that it will com-
pile against the latest version that’s installed from the Android SDK manager.

www.EBooksWorld.ir

http://mng.bz/8f0K

182

CHAPTER 6 Designing MVVM cross-platform apps

Minimum Android version—This is the lowest Android version that your app will
support. Your app won’t be available to devices with a lower version, so those
users won’t be able to install it from the Google Play store. This doesn’t mean
that there are any compiler checks to ensure it will work—you can have your
target as a later version and call APIs that aren’t available in the minimum ver-
sion. In this case your app will crash, so you need to make sure that if you call
any newer APIs, you use runtime SDK checks, like the one shown in listing 6.2.

Target Android version—This is the version of the SDK that you’ve tested your
application against. This tells the Android OS not to enable any compatibility
behaviors to help your app work. This is outside the scope of this book, and it’s
easiest to leave this as Automatic, to use the same version as the target framework.

SETTING THE SDK VERSIONS USING VISUAL STUDIO FOR MAC

The target framework is a compiler setting, so this is set in the project options. You
can access this by double-clicking on your project in the Solution Pad (SquareRt
.Droid or Countr.Droid for this chapter’s examples), or by right-clicking the project,
selecting Options, and then selecting the General tab from the Build section (figure
6.24).

e Project Options - SquareRt.Droid
* General
@ Main Settings
| ~ Build

Target framework: Use latest installed platform (7.0) i
T

£ Custnm Cammande

General

The SDK to compile against can be selected here. It’s
usually good to leave it as Use Latest Installed Platform.

Figure 6.24 The SDK to compile against can be chosen from the Project Options.

The minimum Android version and target SDK version aren’t used at compile time.
Instead, they’re checked at install time and runtime, which means they need to be set
in the Android manifest file (figure 6.25).

The two settings we care about in this file are the Minimum Android Version and
Target Android Version. The minimum should be set to the lowest version you want to
support. Unless there’s a particular API your app needs to use, I recommend setting this
to KitKat to target the most devices. This is the default setting for new Xamarin Android
apps. The target should be left as Automatic to use the latest installed platform.

SETTING THE SDK VERSIONS USING VISUAL STUDIO FOR WINDOWS
Unlike Visual Studio for Mac, Windows Visual Studio doesn’t have an explicit editor for
the AndroidManifest.xml file. Instead you can set the SDK versions from the project

www.EBooksWorld.ir

SDK versions 183

. o) 0 » O Debug» [] Visual Studio En..rise 2017 for Mac
[® Solution =+ & ¥ AndroldManifest.xmi * B
E ¥ [SquareRt (master it [=
R reme [@urion
2 ¥ SquareRt.Droid Package name com.companyname,SquareRt
H + Getting Started
£ Connected Services ication icon i fic_ -
4 » [0 References
5 I3 Components lication theme @styl Theme
i' Version number |1
S
Version name 1.0
m cs i Android version Owerride - Android 4.0.3 (AP level 15) | =
* [Resources
» B Views Target Android version Automatic - use target framework version (API 25) |~ I
[} DebugTrace.cs
[} LinkerPleaseinciude.cs Install location auto |~ L
[l Setup.cs PR —
[0} SplashScreen.cs ﬂ FER
» | SquareRLiOS AccessCoarselLocation
! AccessFineLocation

Learn more about AndroidManifest. xmi

mm Changes Blame Log Merge

@ Breakpoints 4 TestResuts @ Errors + Tasks [l Package Console

The minimum supported Android version
and the target versions are set here.

Figure 6.25 The Android manifest editor

Properties tab (figure 6.26). Open these by right-clicking the project in the Solution
Explorer (SquareRt.Droid or Countr.Droid in this chapter) and selecting Properties, or
by selecting the project and pressing Alt-Enter. From the properties, select the Appli-
cation tab to configure the Target Framework to compile against, and select the
Android Manifest tab to configure the minimum and target SDK versions.

RUNNING AGAINST A PARTICULAR SDK VERSION

When Xamarin is installed, it will install the Android SDK for you. In the process, it
will install some system images for different Android devices and create emulators for
them using a version of the SDK that may not be the latest. The installed version may
vary over time, so it’s always worth installing the latest available stable SDK (at the time
of writing this is 26—Oreo). Each year Google will roll out a new version starting with
a beta version of the SDK, so unless you need to test against this beta, you should avoid
installing and using it.

At the time of writing, Xamarin creates emulators running Marshmallow (API 23).
This means that when you run your Android app, you can run it on an emulator tar-
geting Marshmallow (figure 6.27)—you already did this back in chapter 2 when test-
ing out the Hello Cross-Platform World app.

www.EBooksWorld.ir

184 CHAPTER 6 Designing MVVM cross-platform apps

The SDK to compile against can be selected here.
It’s usually good to leave it as Use Latest Platform.

SquareRtDroid & X v
N/A
Android Manifest
ndroid Mani N/A
Android Options
Build Assembly Name: Default Namespace:
Build Events SquareRt Droid SquareRt Droid
Reference Paths
Compile using Android version: (Target Framework)
Use Latest Platform (Android 7.1 (Nougat)) v
SquareRt.Droid # X -
Application o A
Android Manifest N/A

Android Options
Build

Build Events
Reference Paths

Minimum Android version:
Android 4.0.3 (API Level 15 - lce Cream Sandwich) -

Target Android version:
Use Compile using SDK version yz -4

The target Android to compile against can ~ The minimum Android version
be selected here. It’s usually good to leave to target is selected here.
it as Use Compile using SDK Version.

Figure 6.26 The Visual Studio Android properties

You can find more information on configuring emulators in the “Android SDK Emu-
lator” section of the Xamarin documentation, including how to create emulators
using different versions of the SDK (http://mng.bz/4CZX).

Ed (@] = [C] SquareRt.Droid > [] Debug » [] Android_Accelerated x86 (API 23)

Select a target device or emulator for debugging
from here. In this example, the selected emulator
is running API 23 — Android Marshmallow.

Figure 6.27 Setting the target Android device

www.EBooksWorld.ir

http://mng.bz/4CZX

6.6.2

SDK versions 185

iOS SDK versions

Setting iOS SDK versions is much, much simpler than Android. For starters, the OS
names match the SDK versions, and there’s only one version number, not a version
number, API level, and highly sugary codename. When you build iOS apps, you always
build against the latest SDK; the only option you have is to choose the minimum ver-
sion that your app will support. On iOS you only need to support two versions—the
latest and the previous. This will cover a large proportion of the iOS user base. This is
helped by the fact that Apple supplies the latest SDK version and will only accept sub-
missions of apps to the store using a recent version of the SDK.

Where Android has an SDK manager to allow you to install multiple versions of the
Android SDK, iOS has a much simpler model. Apple always wants you to use the latest
SDK version, and that’s pretty much all you can install. Every time you update Xcode
(Apple’s development environment that contains the tools Xamarin needs to build
iOS apps) you always get the latest SDK to compile against, and the macOS App Store
will always try to keep you on the latest version of Xcode. The way to compile against
older versions of the SDK is to install older versions of Xcode, something that Apple
doesn’t support.

That’s compiling taken care of—you always compile against the latest version of
the SDK. As with Android, though, your apps can run on older versions of the SDK.
You can control the minimum version that’s supported, and you can check at runtime
what OS your app is running on and call the relevant APIs.

SETTING THE MINIMUM SUPPORTED SDK

To control the minimum supported version, you can set the Deployment Target in your
iOS app’s info.plist file. This file lives in the root of the iOS app, and if you double-click
it, it will open in a property editor. You can edit the raw XML if you want, butit’s a com-
plicated schema, so it’s easier to use the property editor.

The field of interest here is the Deployment Target. From this drop-down list you
can choose the minimum iOS version to support (figure 6.28). Once this is set, your
app will only be able to be installed and run on devices running that version of iOS or
higher. Users on a lower version won’t be able to install your app.

As with Android, APIs don’t go away when a new version of the OS SDK is
released—they’re always available, but they’re deprecated when they’re no longer sup-
ported. Again, as with Android, you can see if you're using a deprecated API by check-
ing for compiler warnings. You can also check the OS version at runtime and call the
relevant version of the API depending on what OS version your app is running under,
as shown in listing 6.3.

www.EBooksWorld.ir

186 CHAPTER 6 Designing MVVM cross-platform apps

Select the minimum iOS version to
target by choosing a Deployment Target.

® o » D 3 Dm.] Visual Studio En..sise 2077 for Mac Qv Press ‘% tose
5 8 souon S s a B
5 ¥ i SquareRt (master) ¥ Identity g
* [SquareRt.Core o !
» !—_m Application Name: -_&_"P_r;uuk_m__ R ———
E - :—‘w Bundie Identifier: |n_am.uompnﬂym.5qulram.los |
A g St Version: 1.0 | @
4 '3 Connected Services |
g D Aewons Bl |1.0 jo
g) Componants * Deployment Info
i » 1) Packages . —
1 Assets.xcassets Deployment Target: |9.0 n
» I Popaios Device family: Universal [~]
* [Resources 4 =
» [Views Main Interface: | S
[0l AppDelegate.cs ¥
o Device Orientations: [Portrait
[0 LinkerPigasainciude.cs ¥ Landscape Left
[0 Main.cs
) #) Landscape Right |
Status Bar Style: Default B
Hide status bar
LU L ELl Advanced Source Changes Log Merge
@ Breskpoints 4 TestResults @ Emors + Tasks @ Package Console

Figure 6.28 The Deployment Target can be set in the info.plist file.

Listing 6.3 Checking the current i0S SDK

if (UIDevice.CurrentDevice.CheckSystemVersion (9,0)) Check to see if

{ the current 0S
// Code that uses features from Xamarin.iOS 9.0 and later is i0S 9 or later

}

else

{
// Code to support earlier i0OS versions

}

RUNNING AGAINST THE 10S SDK

When you launch your iOS app against the simulator, the simulator will default to
using the latest iOS version you have installed. This is because Xcode always installs the
latest versions of the SDK only, by default. If you want to test on earlier versions, you
can download simulators using Xcode, but you’re limited in how far back you can go—
at the time of writing, iOS 10 has been out for a couple of months, and the oldest sim-
ulator you can install is one running iOS 8.1. To install older versions from Xcode, go
to Xcode > Preferences and select the Components tab. This is shown in figure 6.29.

www.EBooksWorld.ir

®
i

Linking 187

& Components

@ « ¢ o / B w &

General Accounts Behaviors Mavig.aﬂnn Fonts & Colors Text Editing Key Bindings Source Control Components Locations \
Simulators Documentation
Simulator Size
+) i0S 10.0 Simulator 1.89 GB
(#) 105 9.3 Simulator 1.53 GB
& 1108 9.2 Simulator 1.49 GB
4 i0S 9.1 Simulator 1.49 GB
+) 108 9.0 Simulator 1.46 GB
4 i0S 8.4 Simulator 1.37 GB
+)i0S 8.3 Simulator 1.36 GB
4 i0S 8.2 Simulator 1.32GB
'+ 108 8.1 Simulator 117 GB
+) tvOS 9.2 Simulator 1.06 GB
+) tvOS 9.1 Simulator 997.3 MB
4+ tvOS 9.0 Simulator 983.9 MB
+) watchOS 2.2 Simulator 1.05 GB
Check for and install simulator and documentation updates automatically Check and Install Now

Figure 6.29 Xcode can download and install older versions of the simulator, but only recent versions are available.

6.7

You can also test against older versions using physical devices, but you’ll need to have
these devices already configured with the OS you want to use, as Apple doesn’t make
older versions of the OS available to download.

Linking

Mobile apps run on pretty constrained hardware. Mobile devices have less power, less
memory, less storage, and unreliable networking. This means your mobile apps need
to be optimized for a mobile environment: they need to be small so they don’t eat up
space (important on a device with only 16 GB of storage) and so they can be down-
loaded over a cellular connection without eating into users’ data plans too much.

For desktop developers, app size isn’t normally a consideration, but for mobile it’s
important, especially as there isn’t a .NET Framework available in the OS like there is
on Windows. Instead, your apps must ship everything they need to run, all self-con-
tained in one package—be it your code, NuGet packages, or the relevant bits of the
.NET Framework. This means your apps could potentially be huge. They could take up
a lot of space on the device (which could be a problem with a bottom-of-the-range

www.EBooksWorld.ir

188

6.7.1

CHAPTER 6 Designing MVVM cross-platform apps

device with only 8 or 16 GB of storage), and they could be too large to download over

a cellular connection, reducing the chance of users installing your app (for example,

Apple won’t allow users to download apps over 100 MB via cellular connections).
Luckily you can make your apps considerably smaller with the help of linking.

Linking the apps

Our coffee shop, from examples in previous chapters, has been particularly successful,
and it’s time to move to larger premises. Moving is hard work, so we’ll get the profes-
sionals involved. When our coffee shop moves, not everything comes with it—we only
want to move the things we need to reestablish our coffee shop elsewhere. We can
leave behind the blinds, the carpets, and the shelves. We need to decide which things
we really need and provide a list to the movers, so they take what’s needed and leave
the rest behind. This way the moving truck can be smaller, and our moving costs are
reduced.

This is something we also want to do to our code. When we build our apps and
ship them to our users, such as via an app store, we want our apps to be as small as pos-
sible, making them quicker to download and install—something that’s very important
for users who have expensive mobile data plans with no access to WiFi. Just like when
we move our coffee shop, we want to package up what’s needed for our app to run
and no more. We can do this using the linker.

The Xamarin tooling contains a linker that’s run on your code automatically after
compilation. The linker looks at the code you use and bundles that into the final app,
stripping out everything that’s not used (figure 6.30). It does this on a method, prop-
erty, field, and event basis, so even if you use string in multiple places, if you never
use the Substring method, the linker can strip out that one method and leave the
methods you do use.

MyClass

public string UnusedMethod () | Thelinkerlooksforany

O code that isn’t explicitly
private string_unusedField; referenced anywhere.

public bool CalledMethod()
(}

Linker

MyClass

public bool CalledMethod ()
(}

2. Any code not used is stripped T~ o~

out of the final binary.

Figure 6.30 The linker strips out any code that’s not explicitly used.

www.EBooksWorld.ir

6.7.2

Linking 189

Linking is configurable and can be turned off. It can just be used on the SDK to strip
out unused code from the OS SDK and relevant .NET Framework, or it can be used
everywhere to strip unused code from your assemblies and any NuGet packages.

This is a common concept with languages like C++, but it’s not used with C#—
there’s no SDK to strip out because the .NET Framework is part of the OS, and desk-
top PCs don’t have the hardware constraints of mobile devices.

Linker options

The linker can be configured on the iOS and Android app projects—it’s relevant for
your final apps, so it’s not something that can be configured on class libraries.

For Android, to configure the linker in Visual Studio for Mac, go to the project
options by double-clicking the Android app project in the Solution Pad, or by right-
clicking it and selecting Options. From there, select the Android Build tab on the left,
and then select the Linker tab in the right pane.

On Windows go to the project properties by right-clicking the project in the Solu-
tion Explorer and selecting Properties, or by selecting it and pressing Alt-Enter. From
the Properties tab, select the Android Options tab on the left, and then select the
Linker tab in the right pane (figures 6.31 and 6.32).

L] Project Options - SquareRt.Droid
g - A Android linker settings

- Bulld
| Configuration: Debug (Activel| | Platform: Any CPU|

I Genersl
oc: General Linker Advanced
-) Linker
:mw Linker Behaviour Dont Link
Assembly Signing
ansemibhies:
@ Output Ignore
© Code Analysis
LTI e
| 1 1w T " i =
i # Android Applcation m:ﬁn‘:ﬁ::lmmzzmxlmnﬂﬂs ey misst
Angroid Package Signing
e *
*® e e otions -]
¥ Detauit athar
rare Configurstion: Active (Debug) = Pattern rve oy OO =
* Source Code
3 NET Naming Policies hioace ST N‘ — Active
» [5] Code Formatting mm
- Build Events Liriker properties.
I Name Canventions =
* Vorslon Suwtrel Reference Paths N“‘ .
& Commit Message Style - .
| @
Additional supported encodings:
Ocx
[Mideast
[Rare
[West
[Othes

Figure 6.31 The Android linker settings

www.EBooksWorld.ir

190

CHAPTER 6 Designing MVVM cross-platform apps
Linker behavior:
Supported architectures: K Eeamismon: SRk Gl i]
Link All
HttpClient implementation: yu) i]

Figure 6.32 Linker settings, showing the options

For iOS you can configure the linker from the iOS Build tab of the project settings
(figure 6.33).

Th
(Wind

e setting we’re interested in here is called Linker Behavior (Mac) or Linking
ows), and it has three settings, available on a per-configuration (for example,

Debug or Release) basis:

= Don’t link—Don’t do any linking, leaving everything in place. This is the default

setting for debug builds and it leads to large apps but faster build times. This
isn’t recommended for release builds.

IF YOUR BREAKPOINTS AREN’T BEING HIT, CHANGE THE LINKER SETTINGS There’s a
known issue at the time of writing with Xamarin Android apps where if you use
Don’t Link, sometimes your breakpoints won’t get hit when debugging. If this
happens to you, change the linker settings to Link Framework SDKs Only.

Link Framework SDKs Only (Link SDK Assemblies Only on Visual Studio for Mac)—
This setting will perform linking on all the assemblies provided by the .NET
Framework and Xamarin SDKs. It won’t link any of your code, or any NuGet
packages or external code you use. This is pretty safe, as it’s unlikely you’ll be

* General

i0S Build
€ Main Settings
* Build
. Configuration; Debug (Active)_| Platfrm: iPhoneSimulator| |
© Custom Commands Code Generation & Runtime
L1 Snevauntionn SOK version: Defaul B
& Compiler
@ Assembly Signing Linker behavior: Dan't Link |~
o -
05 IPA Options
i05 On-Demand Rescurces General Advanced
105 Bundie Signing SDK Options
05 Run Options i o . .
i 2 i0S linker settings
Applicabion
Buidd Linker Options
Build Events Linker behavior: Don't fink
Reference Paths

Figure 6.33 The iOS linker settings

www.EBooksWorld.ir

6.7.3

Linking 191

accessing framework SDKs via reflection, and it removes most of the code you
won’t be using, leading to small final app sizes.

Link all—This setting will run the linker over everything—your own code,
NuGet packages you use, and all the framework SDKs. This provides the small-
est final packages but it risks removing things you’ll need if you do any reflec-
tion. It’s the preferred option for release builds, but you’ll need to thoroughly
test your app to make sure nothing is stripped out that’s needed.

Stopping the linker from doing too much

When our coffee shop moves, we have to tell the movers what to move. When doing
this it’s easy to miss something—we could tell them to move a coffee machine, but
neglect to tell them to move the power leads and pipes. Similarly, when we link, the
linker relies on explicit calls to public methods, properties, and events to know what
to keep. It’s easy to use something without an explicit call, and the linker could strip
that out, leading to a crash at runtime. The usual culprit for this is reflection—where
we find a property or method based on its name and invoke it. Unfortunately, for
developers who use MVVM, reflection is used a lot. You can bind a property by name,
and this can be the only reference to it. The linker looks for references, doesn’t
understand that the string representation is a reference to the property, and
removes it.
Fortunately you can control the linker using a couple of techniques:

Explicitly use the public property, method, or event somewhere
Use the Preserve attribute

EXPLICITLY USE THE PUBLIC PROPERTY, METHOD, OR EVENT

By explicitly using the property or method, the linker will see the usage and will leave
it in. This doesn’t have to be functional code, just a reference somewhere. MvwmCross
uses this technique. It ensures code isn’t stripped out by the linker by using a file
called LinkerPleaseInclude.cs containing a class that uses code that would be refer-
enced by reflection. If you look in the root of the iOS and Android projects, you'll see
this file (figure 6.34).

USE THE PRESERVE ATTRIBUTE
The Preserve attribute can be added to a class, or to the members on a class, to tell
the linker to not strip out code. If you set this at the class level, you need to set the
AllMembers property to true to ensure that all members are preserved. The following
listing shows this in action.

www.EBooksWorld.ir

192

CHAPTER 6 Designing MVVM cross-platform apps

Solution Solution
¥ (] SquareRt (master) ¥ (| SquareRt (master)
» [] SquareRt.Core » [] SquareRt.Core
» ["] SquareRt.Droid v [7] SquareRt.Droid
v 7] SquareRtiOS & Getting Started
& Getting Started Connected Services
'3 Connected Services » |1 References
» ') References '3 Components
['n Components » 1 Packages
» [Packages . > [l Assets
LinkerPleaselnclude.cs
B3 Assets.xcassets contains code to stop » I Properties
» [l Properties the linker from stripping out » |5 Resources
» [lu Resources certain code that’s only » I Views
> B Views accessed by reflection. [@) DebugTrace.cs
0L Aovoscatcs
[0) DebugTrace.cs [0 setup.cs
[Entitlements.plist (0] SplashScreen.cs
= Info.plist » [SquareRtIOS
[0] LinkerPleaselnclude.cs
[0] Main.cs
[0 setup.cs

Figure 6.34 MvvmCross provides a class that prevents certain methods, properties, and events
from being stripped out by the linker.

Listing 6.4 Using the [Preserve] attribute to control the linker

[Preserve (AllMembers=true)]
public class MyClass
{

Setting AllMembers to true when
using the [Preserve] attribute
means everything in the class will

, remain after linking.

If a class is used but has one member
that’s only accessed via reflection, this
property can have the attribute set to
ensure it’s not stripped out by the linker.

public class MyOtherClass
{

[Preserve]
public int MyProperty {get;set;}

Unfortunately, this isn’t an attribute that’s available to .NET Standard libraries.
Instead, there are two versions of this attribute—one on iOS (Xamarin.i0S.Founda-
tion .Preserve) and one on Android (Android.Runtime.Preserve). To use thisin a
NET Standard library, you'll need to define the attribute yourself. When you link an
iOS app, the linker won’t strip out anything with an attribute called Preserve on it,

www.EBooksWorld.ir

Summary 193

regardless of the namespace of that attribute. On Android, it specifically looks for an
attribute in the Android.Runtime namespace called Preserve.

The simplest way to preserve code in a .NET Standard library is to define
Android.Runtime.Preserve yourself in your core project and use that—the name-
space matches, so the Android linker will use it, and the name matches, so the iOS
linker will use it. This is, unfortunately, over-complicated, so hopefully Xamarin will
improve on this in the future. The following listing shows an example implementation.

Listing 6.5 The [Preserve] attribute isn’t available in .NET standard

——1 namespace Android.Runtime
{
public sealed class PreserveAttribute : System.Attribute <G
{
public bool AllMembers;
}

} The AllMembers field
. . can be set to true . .
The at.trlbute.should be in the when using this The attribute ¢_:Iass name is
Android.Runtime namespace to attribute on a class to PreserveAttribute, so you
ensure it works on Android, which ensure all members can reference it just by
cares about the namespace, and are preserved. using [Preserve] without the
on i0S, which does not. attribute suffix.

You can find more information about linking in the Xamarin developer docs:

= Linking on iOS—http://mng.bz/dbb5a
= Linking on Android—http://mng.bz/v7x1

You now have your solutions at the ready, you’ve worked out what code you need in
which layer and what code should run in the background and UI threads. You’ve also
seen some of the new features of Xamarin iOS and Android apps. Now you’re ready to
start coding the app proper. In the next chapter we’ll dive right into the core project
and start writing the cross-platform models and view models.

Summary

In this chapter you learned

= i0S apps are different from Android apps, so you should think about your Ul in
terms of the platform your app is running on.

= By thinking about the user flows up front, you can start to build up a picture of
the classes you’ll need and what threads your code can run on.

= Unlike other C# apps, iOS and Android have OSs and SDKs that change regu-
larly, so you need to code for different OS versions if you want to use the latest
features.

= iOS users mainly use the latest two OS versions, whereas Android users have a
wide range of OS versions.

www.EBooksWorld.ir

http://mng.bz/d55a
http://mng.bz/v7x1

194 CHAPTER 6 Designing MVVM cross-platform apps

Linking reduces your app size, but it can cause problems with code that’s not
explicitly used but instead is accessed via reflection.

Mobile apps are shipped with a properties file that provides information on
your app to the relevant app store and OS.

You also learned how to

Map your user flows to the different layers of MVVM.

Map your user flows to different threads.

Configure your app’s properties.

Select appropriate SDK versions for compiling and running your app.
Configure linking to ensure your app is as small as possible, while not removing
any code you need.

www.EBooksWorld.ir

Building cross-platform models

This chapter covers

Creating simple model layers
Creating and running unit-test projects to test your models

Structuring more complex model layers with services,
repositories, and data models

Using an ORM to access SQLite
What REST services and JSON are
Accessing web services from .NET Standard libraries

In the last chapter we started planning our mobile apps—we looked at the user
flows, thought about the Uls, worked out what code would be in each layer, and
thought about the threads our code should run on. Then we created a solution and
took a look at some of the options and settings available in mobile apps. We talked
about two apps: SquareRt (a simple square-root calculator) and Countr (an app for
counting things).

Now we’re going to get our hands dirty and write some code. In this chapter
we’re going to look at the model layer—looking at ways to build simple and more
complex cross-platform model layers, thinking about testing our code, and discuss-
ing databases and web services. Everything in this chapter is cross-platform—after

195

www.EBooksWorld.ir

196

7.1

CHAPTER 7 Building cross-platform models

all, the big reason for using Xamarin is to share code and write all the business and UI
logic once. The examples will be relevant to both SquareRt and Countr, so by follow-
ing these examples you’ll be able to build up the model layer of both of these apps.

If you're planing on coding along with this chapter, please make sure you’ve cre-
ated the relevant solutions as described in the previous chapter, or use the precreated
ones in the Git repository that accompanies this book.

Building simple model layers

The model layer is a cross-platform layer that represents your data, your business
logic, and your access to external resources such as databases or web services (figure
7.1). For some apps, the model layer is pretty thin, with only very basic logic. For oth-
ers, it’s much more in depth. One thing to remember, though, is that this layer should
be built in a way that makes sense to your domain—it should use classes, names, and
data types that make sense from a business perspective, not ones that necessarily make
sense from a Ul perspective.

ioS ' Android
App | c# |:| c# |
layer !
| C# (.NET Standard) |
_____________________ i____________________
Ul layer | C# |:| C# | View
e e
soeeeooceed | Binding | e---eoe-
Ul logic View
layer | C# (.NET Standard) model
|S:is(:r|]:;:r C# (NET Standard) Model Figure 7.1 The model layer in an
MVVM-based mobile app is written
using cross-platform code.

As you’ve already seen, view models map one-to-one with views (so for FooView you’d
have FooViewModel), but they don’t have to map one-to-one to a model class (so
there’s no need to have FooModel). Instead, you can create classes in the model that
provide data and business logic across multiple views and view models.

In the last chapter we looked at the user flow for the SquareRt app—the app is so
simple it only has one. Figure 7.2 shows what we came up with. This app is simple—it
only needs one thing in the model layer, the SquareRtCalculator. The sole job of this
class is to take a number and calculate its square root.

Let’s create this class now. Create a new class inside the SquareRt.Core project and
call it SquareRtCalculator. To do this, right-click the SquareRt.Core project (remem-
ber, models are cross-platform, so they’ll be in the cross-platform core projects), select
Add > New File (for Mac) or Add > New Item (on Windows), select a file type of Class,

www.EBooksWorld.ir

Building simple model layers 197

i0S ' Android
1
wp ot |I| ot |
layer :
| C# (.NET Standard) |
____________________ : e e
1
Ul layer | C# |i| C# | View | SquareRtView |
'''''' ikl
""""" J;_______B_'DE"_”_Q_______,"““““' Userenters |[~77 Answeris |77~ """TTTTTTTTTTTTooOT
Ul logic NET dard View a number shown on Ul | SquareRtViewModel |
layer C# (NET Standard) |)54e \ /
Business | oy (NET Standard) | Model Square root [saquarertcalculator |
logic layer is calculated

Figure 7.2 The user flow for SquareRt that we mapped to classes in chapter 6

and enter the class name (figure 7.3). As this is a simple project, I won’t put this in a
folder. I’ll just put it in the root of the project.
The following listing shows the simple implementation of this class.

Listing 7.1 Implementing the SquareRtCalculator class

using System; This new class is in the

SquareRt.Core namespace.
namespace SquareRt.Core
¢ The Calculate method uses

. the System.Math.Sqrt
1{)ub11c class SquareRtCalculator method for the calculation.

public double Calculate(double number) => Math.Sqgrt (number) ;

Add e Sarm - Sepusar vl C T *
v Fla @ \natuhed St by Dot . AR Iy W P
r— * Vsl C0 3 - .
@] et ciem gy Clans oo L o s g
T PISSE DA Ky Chas: D . A .
(e — . Cf fomrme Vet
. b Wb o
e praceen B e ol
- e
ST i | D) temtemiton e
.v'. Ermpty Sinect -0 it Wi 0
e LY oo Voo
BT ey it P
A3 g p——
[R] oot s -
£ conrn i
) e e s
LT sesrroe e
Cancel trw - .
Cht b 1 o s gt bl e,
e e
[hai [t |

Figure 7.3 Adding the SquareRtCalculator class in Visual Studio for Mac (left) and Windows (right)

www.EBooksWorld.ir

198

CHAPTER 7 Building cross-platform models

So far, so simple—we have a class that uses a .NET Framework library to do the calcu-
lation for us. But we’re not finished here. We have one more thing to do. Back in
chapter 4 we discussed testability, including the concept of using interfaces instead of
concrete implementations. We looked at IoC containers and saw how we could regis-
ter classes by interface and then inject those implementations as dependencies in
other classes—for example, we could register our SquareRtCalculator using an
ISquareRtCalculator interface and pass that in when constructing a view model, as
shown in figure 7.4.

SquareRtCalculator is registered Ask for an instance of
as implementing ISquareRtCalculator. SquareRtViewModel.

) -

/ loC container—the magic box!

———————
SquareRtCalculator ———(:)ISquareRtCalculator

User

SquareRtViewModel

SquareRtViewModel

public SquareRtViewModel

(ISquareRtCalculator calc) K\\\

SquareRtViewModel’s constructor needs an An instance of SquareRtViewModel
ISquareRtCalculator, and SquareRtCalculator comes out, constructed using an
implements this interface, so an instance of instance of ISquareRtCalculator.

SquareRtCalculator is passed in.

Figure 7.4 Using an loC container to pass instances of ISquareRtCalculator wherever
they’re needed

This is an important concept and one we shouldn’t neglect here, despite the simplic-
ity of our model layer. We need to expose our calculator through an interface and reg-
ister it with the IoC container. We can start by extracting an interface from our
SquareRtCalculator class, and then we can register it in the container.

Create a new file called ISquareRtCalculator in the same place as the SquareRt-
Calculator class. The following listing shows the code for this.

Listing 7.2 The ISquareRtCalculator interface

namespace SguareRt.Core <
{

This new interface is in the
SquareRt.Core namespace, the same
as the SquareRtCalculator class.

public interface ISquareRtCalculator

{

This new interface has the

Calculate method on it.

double Calculate(double number) ;
}

www.EBooksWorld.ir

7.2

Unit testing 199

Once the interface is declared, the SquareRtCalculator class needs to implement it,
as shown in the next listing.

Listing 7.3 SquareRtCalculator now implements our new interface

public class SquareRtCalculator : ISquareRtCalculator <%W SquareRthcuhtor

now implements
ISquareRtCalculator.

The final step is to register this in the IoC container. To do this you need to modify the
App class in App.cs in the SquareRt.Core project, as shown in the next listing.

Listing 7.4 Adding registration of the ISquareRtCalculator

using MyvmCross. Platform; A new using directive gives access
using MvvmCross.Platform.IoC; to the static Mvx loC container.

namespace SquareRt.Core
{

public class App : MvvmCross.Core.ViewModels.MvxApplication

{

public override void Initialize() A call is made to the Mvx
{ container to construct a new
CreatableTypes () instance of SquareRtCalculator
.EndingWith("Service") and register it using its

.AsInterfaces () ISquareRtCalculator interface.

.RegisterAsLazySingleton() ;
Mvx.ConstructAndRegisterSingleton<ISquareRtCalculator,
SquareRtCalculator>() ;
RegisterNavigationServiceAppStart<ViewModels.FirstViewModel> () ;

—

We now have an interface, a class that implements it, and we’ve registered it in our
container. Although this example is simple, you’ll use this basic pattern again and
again when constructing your apps, so it’s a good habit to get into right off the bat.

When writing code, it’s always nice to be able to run it and see what happens. The
problem here is that we’ve written code in the model layer only—it’s not wired up to a
view model and view, so there’s no way to manually test that our code works through a
mobile app. We could wait until our app is complete to do our testing, but it would be
better to test this code as soon as it’s written. What we need is unit testing.

Unit testing

When making coffee using an industrial coffee machine in a coffee shop, you always
need to ensure that your coffee maker is working in tip-top condition. If it’s not up to
scratch, you could end up with nasty-tasting coffee, or worse, hot steam shooting out
at people. This is why you need to test the machine to make sure it’s working before
you can make the first cup of coffee each day. That’s not easy to do manually—testing

www.EBooksWorld.ir

200

CHAPTER 7 Building cross-platform models

things like water pressure is hard without special tools. It’s a long process to do prop-
erly, and being long and boring it’s prone to human error.

Luckily, coffee machines have automated tests built in, so when they’re first turned
on they’ll check things like the water pressure, whether they have beans, and anything
else they need to ensure they’re working correctly. This automated testing is much
more reliable than human tests, it happens daily, with some tests, such as checking for
beans running continuously, and it allows the baristas to get on with making fantastic
hot drinks without worrying. This is something we can also do with our code—instead
of waiting until our app is complete to test its functionality manually in a way that’s
prone to human error, we can use unit testing to write automated tests that can be run
on a regular basis, ensuring not only that our code works but that it stays working.

Unit testing is a technique whereby you write some test code to check that your
code is working correctly. Unit refers to a small runnable unit of code, which is usually
taken to mean one public member on a class, such as a method or a property. You
want your units to be as small as possible, testing one thing and one thing only. Your
tests shouldn’t cover more than one unit of code, and they should only validate one or
two things—this way, if a test fails, it’s immediately obvious which unit of code is failing
under what scenario. If you write one huge test that tests a multitude of inputs and
outputs, it’s hard to spot what the actual problem is.

The purpose of unit testing is to test units of code in isolation with multiple inputs
to ensure that they’re working as expected, and that they keep working as expected.
Not only can you write unit tests to check your code now, but you can run these on a
regular basis (manually or, ideally, using a CI server) to ensure that your code contin-
ues to work even after other changes are made to the code base. After all, fixing a bug
while you’re writing your code has a minimal impact on when your code is released or
on your customers’ opinions of your app. If a bug makes it to your released app, how-
ever, it can take much longer to get a fix out to your users, leading to a poor customer
experience and bad reviews on app stores.

Unit testing is a huge topic, and one well worth mastering. A full discussion of this
topic would take a book in itself, and indeed many good books have been written on this
topic, such as The Art of Unit Testing, Second Edition, by Roy Osherove (Manning, 2013).

To test the Calculate method of our SquareRtCalculator, we could wait till we've
built the entire app and test it manually, but that’s not the best way to do it. By the
time the app is built, we could have forgotten how we wrote the code, making it slower
to fix any bugs. We could even have handed the app over to another member of the
team, who wouldn’t know our code. We’d also have to manually test a number of pos-
sible calculations to ensure that they were all working, which is time consuming and
potentially boring to do manually. And, of course, every time we tweak the app and
rerelease it, we’d have to test it all over again. This sounds extreme for a simple calcu-
lator, which will probably work the first time, but for more complex apps (the kind
you’d be likely to build in the real world), testing all of your code automatically as
you’re writing it is a huge time saver.

www.EBooksWorld.ir

7.2.1

Unit testing 201

Creating a unit-test project

Before you can write unit tests, you need a new project inside your solution that can
contain all your tests. It's common practice to put your tests in a separate project,
rather than inside the project you're testing, so that the tests aren’t shipped with your
final app. A unit-test project is a simple class library—just like the SquareRt.Core
project. The only difference is that it uses a unit-testing framework to define code as
tests that can be run, either using command-line tools, CI servers, or directly inside
Visual Studio.

Unit-testing frameworks are NuGet packages that provide attributes that you can use
to indicate that a particular method is a unit test, as well as classes and methods that
allow you to validate that your code is correct. They may also include extensions that
provide features to your IDE, allowing you to run tests and track passes and failures.

There are a number of popular frameworks (such as xUnit—https://github.com/
xunit/xunit), all open source and available for free with their own upsides and down-
sides. For this book I'll use one called NUnit (https://nunit.org), as it comes built into
Visual Studio for Mac and it’s easy to use from Visual Studio.

CREATING A UNIT-TEST PROJECT IN VISUAL STUDIO FOR MAC

Visual Studio for Mac works with NUnit support out of the box, and it even ships with
a project template you can use to create a unit-test project with NUnit support. To cre-
ate a unit-test project, right-click the solution and select Add > Add New Project. From
the New Project dialog box, select Other > .NET on the left side, select NUnit Library
Project from the middle section, and click Next. On the next screen, enter the project
name as SquareRt. Core. Tests and click Create (figure 7.5). This will create a new project
and then automatically download and install the NUnit NuGet package. The project
will have a dummy test file in it called Test.cs, which you can delete.

o Prisest) b 11

e

v
By gt e
B e o Tt
Sarnis Lo Taura cxze

Pt N [Bt Con Tots

St

Locstion | Mt et el o Craem Tl Brue

15 Comiow 8 et ety i 10 oot demanery

-

[ou 1] |

Figure 7.5 Adding a new NUnit library project

www.EBooksWorld.ir

https://github.com/xunit/xunit
https://github.com/xunit/xunit
https://github.com/xunit/xunit
https://nunit.org

202

CHAPTER 7 Building cross-platform models

This project will need to reference the SquareRt.Core project to be able to test it, so
right-click the References folder in the SquareRt.Core.Tests project, select Edit Refer-
ences, and in the Projects tab, check the box next to SquareRt.Core (figure 7.6).

Check the box here to add a reference
to the SquareRt.Core project.

All Packages Projects Net Assembly Q search (X

Selected references:
Project Directory
Ul
v [SquareRt.Core Users/JimB
. Droid target Versionsy7.1) fUsers/JimBenr D nunit. framework
5 RLIOS ible target : Xamarin.iOS, Version=v1.0) [Users/JimBenr
D SquareRt.Core

Figure 7.6 Adding a reference to another project

CREATING A UNIT-TEST PROJECT IN VISUAL STUDIO FOR WINDOWS

Getting Visual Studio for Windows to work with NUnit is a little bit more work than
for the Mac. By default, it wants to use the Microsoft unit-testing framework, but I pre-
fer to use NUnit, as this is available on both Windows and Mac. To enable NUnit,
you’ll need to install another extension—go to Tools > Extensions and Updates, select
Online in the list on the left, and search for NUnit. From the list in the middle, select
the NUnit 3 Test Adapter (note the version number 3 in the name) and click the
Download button (figure 7.7). Follow the onscreen instructions, and then restart
Visual Studio.

Install the NUnit Test Adapter to use
the latest version of NUnit (3.x).

Extensions and Updates ? x
b instalied Sort by: Relevance - [ramid x|+
. @ NUnit 3 Test Adapter 2 & Crastui by Toge Sandutiom
4 Visual Studio Gall Nunit 3 adapter for running tests in Visual Studio, Works with Nunit Version: 16.1.0
Search Results - : b M!?nﬂ
b Controls NBE Nunit Test Project Template Rating: « « © © * (9 Votes)
b Templates A project that containg nunit tests. More Information
b Tools Report Extension to Microsoft
¥ Samples Gallery 0 NUnit Templates for Visual Studio
Provides Visual Studio project and item templates for NUnit 3 along with
¥ Updates (3] code snippets
NUnit Test Adapter
Nunit adapter for integrated test execubion under Visual Studie 2012 {all Run All | Run_ = | Playhst:ANT
wupdates), Visual Studio 2013 (all updates). and the Visual Studio 2015 P..
A Eallad Tasss /T

Use the NUnit Test Adapter to support NUnit 2
(the version of Visual Studio for Mac uses).

Figure 7.7 Adding the NUnit 3 extension to Visual Studio. You can also add the NUnit 2 extension to
support NUnit projects created by Visual Studio for Mac.

www.EBooksWorld.ir

Unit testing 203

A NUMBER OF POPULAR VISUAL STUDIO EXTENSIONS ALSO PROVIDE WAYS TO RUN
TESTS If you use extensions such as ReSharper from JetBrains (www.jetbrains
.com/resharper/) or CodeRush from DevExpress (www.devexpress.com/
products/coderush/), you already have the ability to run NUnit tests without
installing another extension. You'll see all your tests and be able to run them
from the relevant ReSharper or CodeRush Test Runner window. See the docs
for these extensions for more details.

NUNIT CURRENTLY HAS TWO VERSIONS IN REGULAR USE NUnit has been grow-
ing and evolving for a number of years now, and at the time of writing, 3.5 is
the latest version. Version 3 has a number of incompatibilities with version 2
in the way the tools that run the tests work. When you create a new unit-test
project in Visual Studio for Mac, it will default to using NUnit 2.6.4, which
can’t be run in Visual Studio using the NUnit 3 test adapter. The “fix” is to
either upgrade the NUnit NuGet packages in the test project to the latest ver-
sion, or to use the NUnit Test Adapter extension (note the lack of NUnit
version number in the name), which supports NUnit 2 in Visual Studio.

Once you’ve added the extension, create a new project by right-clicking the solution
and selecting Add > New Project. Select Visual G# from the tree on the left, select
Class Library (.NET Framework) from the list in the middle, enter the project name
as SquareRt.Core. Tests, and click OK (figure 7.8). Although there’s a new project type
under Visual C# > Tests called NUnit Test Project, it’s not advisable to use this, as the
resulting project won’t work in Visual Studio for Mac. It’s always good to create proj-
ects that work in both, as you never know what environment other developers in your
team might want to use in the future.

P Recent

Add New Project ? X

.NET Framework 4.6.1

» Sort by: Default - Search (Ctrl+E)

Mame: SqaureRt.Core.Tests

Location: Y\Gitlab\bennett2\code\Chapter 7\SquareRt-SimpleMadel

4 Installed Type: Visual C#
4 Visual C# A project for creating a C# class library
Windows Universal @ ASP.NET Core Web Application Visual C# (.dll)
Windows Classic Desktop
Web @ I ASP.NET Web Application (NET Frame... Visual C#
NET Core y
NET Standard < 7 > Azure Functions Visual C#
Android (<]
Cloud _] Shared Project Visual C#
Cross-Platform c*
“ﬁ Class Library (Legacy Portable Visual C#
b Extensibility e I 2 he 2/)
"o cs
n F :
Not finding what you are looking for? fﬂi! Class Library (Universal Windows) Visual C#
) -
et Sudiollistalis Eii Windmws Runtima Camnnnent (linive Viaial C#

Browse...

o

Cancel

Figure 7.8 Creating a new class library project to put our NUnit tests into

www.EBooksWorld.ir

www.jetbrains.com/resharper/
www.jetbrains.com/resharper/
www.jetbrains.com/resharper/
www.devexpress.com/products/coderush/
www.devexpress.com/products/coderush/
www.devexpress.com/products/coderush/

204 CHAPTER 7 Building cross-platform models

WE'RE CREATING A .NET FRAMEWORK LIBRARY, NOT A .NET STANDARD LIBRARY
This is a .NET Framework library, rather than a .NET Standard library. At the
time of writing, .NET Standard is still new and the tooling isn’t quite perfect.
If you create a .NET Standard library, your tests won’t show up in the test
explorer, and they won’t be able to be run using Visual Studio for Mac. This
tooling is constantly being improved, however, so by the time you read this,
the .NET Standard unit test libraries may well work fully.

The project will contain a default Classl.cs class file, which you can delete. You’ll then
need to add the NUnit NuGet packages to this project manually by right-clicking the
newly created SquareRt.Core.Tests project and selecting Manage NuGet Packages.
Search for NUnit in the browse tab and install the latest version (figure 7.9).

RiCalculatorTests.cs
Browse Installed Updates NuGet Package Manager: SquareRt.Core.Tests
[nunit x]:| ¢ [Include prerelease Package source: nugetorg -

@ NUnit
(). NUnit by charlie Pocle, 7.21M downloads
)

@ w35
W NUnit is & unit testing framework for all NET languages with a strong TDD focus. Installed: | 35.0

Version: 341 - Update

(@) NUnit.Runners by chariie Poole, 1.18M downloads V350

Figure 7.9 Install the NUnit package into your test project.

This project will need to reference the SquareRt.Core project to be able to test it, so
right-click the References folder in the SquareRt.Core.Tests project, select Add Refer-
ence, and from the Projects tab check the box next to SquareRt.Core (figure 7.10).

Check the box here to add a reference
to the SquareRt.Core project.

Reference Manager - SquareRt.Core.Ts ? x
b Assemblies Search Projects (Ctri+E) P~
a

Projects Path ot

Y:\GitLab\bennett2\code\ T e

Seann ¥AGitLab\bennettZ\code\i
b Shared Project SquareRtiOs YAGitLab\bennett?\code\l
b COM
b Browse

“ »

Figure 7.10 Adding a reference to the SquareRt.Core project from the SquareRt.Core.Tests project

www.EBooksWorld.ir

7.2.2

Unit testing 205

Creating your first test

There is a huge range of techniques developers can use to build unit tests, and we’re
not going to go into too much depth here. Instead we’ll focus on a simple way to cre-
ate tests.

Once you have created the SquareRt.Core. Tests project, it’s time to create a first
unit-test class to test the calculator. We’ll start with a simple test to see if it can correctly
calculate the square root of 4. Create a new class in the root of the unit-test project
called SquareRtCalculatorTests. Add the code in the following listing to this class.

Listing 7.5 A first unit-test class for the square-root calculator
A new using directive to
access the NUnit code

{ The TestFixture attribute tells NUnit
[TestFixture] that this class is a test fixture.

using NUnit.Framework;

namespace SquareRt.Core.Tests

public class SquareRtCalculatorTests An instance of the
{ ISquareRtCalculator
ISquareRtCalculator calc;
[SetUp] The SetUp attribute tells NUnit to run
public void SetUp() | this method before each and every test.
{
// hrrange In the SetUp method, the
calc = new SquareRtCalculator(); instance of ISquareRtCalculator is
} set to a new SquareRtCalculator.
[Test]
public void Calculate_4_Returns2() The Test attribute marks a method
{ as a unit test that can be run.
// Act
var squareRoot = calc.Calculate(4); <—— The square root is calculated.
// Assert

Assert.AreEqual (2, squareRoot) ; Assert AreEquaI is an NUnit

static method that will check
two values and throw an
} exception if they’re different.

First you create one-unit test class for each model class that you want to test, usually
named something like ClassNameTests—in this case we’re testing the SquareRt-
Calculator class, so we have a test class called SquareRtCalculatorTests. This class is
decorated with the TestFixture attribute from NUnit, which marks this class as one
that contains unit tests (classes that contain unit tests are referred to as test fixtures).
Visual Studio has test runners that will look for classes in your solution that are
marked with this attribute, and will allow you to run the tests defined in these classes.

Second, you need to define any setup or tear-down code. This is code that’s run
before and after each test and is encapsulated in methods that return void, that take
no parameters, and that are marked with either the SetUp or TearDown attributes. In

www.EBooksWorld.ir

206

CHAPTER 7 Building cross-platform models

this case you don’t need any clean-up code, but you're doing some setup—to save on
creating a new instance of the SquareRtCalculator in every test method, you’'re creat-
ing itin the setup. This reduces the amount of identical code you’d have to write, and
if you ever change the constructor on the SquareRtCalculator class, you’d only have
to fix up the setup method instead of fixing a multitude of tests. This instance is
stored in a field of type ISquareRtCalculator—storing this as the interface is inten-
tional. Good unit tests should test the exposed interface of a class because it’s this
interface that would be passed to other classes (such as a view model), so if you test
the interface, you can be sure you’re testing all the members exposed to the classes
that’ll use this.

Finally you need to create the tests themselves. These are methods with a void
return type (or async Task if your test will be testing asynchronous code that you
want to await), and they don’t take any parameters. They're also marked with the
Test attribute, and it’s this that tells the test runner that the method is a unit test. In
these methods you write any code that you want to test, and the way to flag a test as
failing is by throwing an exception.

This standard structure of a test fixture with multiple tests that are set up, run, and
then torn down is shown in figure 7.11.

For all tests in the fixture

Set up
If test throws an exception
then fail, otherwise pass
Start test —»| Test fixture Run test Get results
Tear down

Figure 7.11 Test fixtures can contain multiple tests, with setup run before each test, and
tear down run after.

The standard way to write a test is arrange, act, asserl: set up your code, perform an
action, and then verify that the result of the action is correct:

Arrange—This is where you set up your test. This setup includes creating any
classes you need and setting a relevant state. In this example, there’s minimal
setup—just creating a class—but in a lot of tests there might be other setup. For
example, if you were testing that a Name property correctly concatenates a
FirstName and LastName, your arrange step would be setting the values on the
FirstName and LastName properties.

www.EBooksWorld.ir

Unit testing 207

Act—This is where you perform the action under test, and it should ideally be a
single code statement, or, if necessary, the smallest number of statements possi-
ble. This is what you’re testing, so if this fails you want it to be immediately obvi-
ous what has failed, making it easier to debug and fix.

Assert—Once the unit of code has been run, you need to evaluate the results,
outputs, or side effects of your code to ensure that the code ran successfully.
You assert that what you expect has happened, such as a calculation returning
the correct result or correctly modifying an object’s state. The way you assert
something is to check the relevant condition, and if the condition isn’t met,
throw an exception. NUnit has a static Assert class that can do this for you,
with methods to perform various assertions that throw exceptions if the asser-
tions fail.

A good test will ideally have only one assertion because the test should only
check one thing, but sometimes it’s more practical to have more than one. For
example, if you’re testing a SetName (string firstName, string lastName)
method that sets both the first and last names of an object, you might want to
write two assertions: one to assert that the first name is set correctly, and one to
assert that the last name is set. These should be kept to a minimum, though, as
you want to always be able to link a test failure back to a specific scenario to
make debugging easier.

In the case of our test, we’re setting up the SquareRtCalculator in the setup method
(arrange), we’re calculating the square root of 4 (act), and we’re verifying that the
result is 2 (assert). The verification is done using the Assert static class that comes
from NUnit, using its AreEqual method that takes two values and throws an exception
if they’re different. We can create more tests that follow this pattern to test other val-
ues, as shown in table 7.1.

Table 7.1 Our tests follow the pattern of arrange, act, assert

Arrange
Create Calculate(0) Assert result is O
SquareRtCalculator
Create Calculate(4) Assert result is 2

SquareRtCalculator

NAMING YOUR TESTS It’s often said that the two hardest things in program-
ming are cache invalidation, naming things, and off-by-one errors. This is true
with unit tests, where naming your tests can be hard. Ideally the test name
should describe the test and contribute in part to documenting the behavior
of the class under test. TestCalculate would be a bad name for our test, but
Calculate_4_Returns2 describes the test as using the Calculate method and
passing in 4 with the expectation that the method will return 2. This is a good
patten to follow: UnitOfWork_sStateUnderTest_ExpectedBehavior. Don’t

www.EBooksWorld.ir

208

CHAPTER 7 Building cross-platform models

worry about the length of the name—it’s better to have a longer, more
descriptive test name than a shorter confusing one. You can read more about
test naming in Roy Osherove’s “Naming standards for unit tests” blog entry at
http://mng.bz/qzym.

RUNNING YOUR TESTS IN VISUAL STUDIO FOR MAC
To run your tests, you can do one of two things—run them directly from the file, or
run them via the Unit Tests pad.

If you want to run unit tests directly from your code, you need to enable editor—
unit-test integration from the application Preferences by going to Visual Studio > Pref-
erences, selecting the Text Editor > Source Analysis tab on the left, and ticking Enable
Text Editor Unit Test Integration (figure 7.12).

Tick the Enable Text Editor Unit Test
Integration box to be able to run unit
tests from inside the code editor.

o Preferences
» Environment
| » Projects
» Publishing
¥ Text Editor
General
EH Markers and Rulers
» % Behavior
E IntelliSense
[¥] color Theme
[=] Code Snippets
& Language Bundles
@ c#

[©) XML Schemas

Source Analysis

Enable source analysis of open files

Enable text editor unit test integration

cocer ([N

Figure 7.12 To run unit tests from inside the code editor, an option in the
preferences needs to be set.

After enabling this, if you look at your test fixture code, you’ll notice empty circles in
the left margin next to the class declaration for your test fixture, as well as in line with
each test method. You can click the circle next to the class declaration to run all the
tests in the fixture, or the circle by an individual test to run just that test (figure 7.13).
Selecting Run will run the tests and highlight success or failure with either a green cir-
cle with a tick in it if the test passes or a red circle with a lightning bolt in it for failure.
Selecting Debug will run your test through the debugger, so that you can set break-
points to debug any issues in your code. Select in Test Pad will open another pad that

www.EBooksWorld.ir

http://mng.bz/qzym

Unit testing 209

Empty circles indicate a test that hasn’t been run.
Green means the test passed on the last run, and
red means the last run failed.

< 2 quareRtCalculatorTests.cs

¢ SquareRtCalculatorTests » [l Calculate_4_Returns2()

Click the circle at the 1 using NUnit.Framework;
ttest-fixture level to 2
run or debug all tests 3 namespace SquareRt.Core.Tests
in the fixture. 4 {
XZ [TestFixture]
o public class SquareRtCalculatorTests
7 {
8 private ISquareRtCalculator _calc;
b
10 [setup]
11 public void SetUp()
12 {
Click the circle at 13 _calc = new SquareRtCalculator();
the test level to 14 }
run or debug an 15
individual test. \g [Test]
{ Run alculate_4_Returns2()
18
19 Debug Root = _calc.Calculate(4);
20 Selectin Test Pad Equal(2, squareRoot);
21 g
22 }
23 }

Figure 7.13 Unit tests can be run using the circles next to the test classes or methods.

shows all the tests in your solution hierarchically by namespace, so that you can run all
tests or any selection you want.

The other option is to run your tests from the Unit Tests pad directly, which you
can view by selecting View > Pads > Unit Tests, or by selecting View > Test to have
Visual Studio change to a unit-testing layout, with the Unit Tests and Test Results pads
showing. You can then run your tests by double-clicking on them in the test pad.

RUNNING YOUR TESTS IN VISUAL STUDIO FOR WINDOWS

To run your tests in Visual Studio, click the Test menu and select Run > All Tests. This
will build your solution and then run all the tests it can find in a new Test Explorer
window that will appear on the left side. From there you can see all the tests and can
run or debug each one by right-clicking it (figure 7.14). If you can’t see the Test
Explorer, you can show it by selecting Test > Windows > Test Explorer.

www.EBooksWorld.ir

210

7.2.3

CHAPTER 7 Building cross-platform models

You can run all tests using Run All. Or you can run only
failed tests or tests that haven’t been run yet, or repeat
the last run, using options from the Run dropdown.

s e SquareRtCalculatorTests.cs # X
Bz~ 2 search P - [EsquareRtCoreTests = *; SquareR

1 using NUnit.Framework;
Configure continuous integration - 2
Setup continuous integration(Cl) builds to 3 - inamespace SquareRt.Core.Tests
test cantinuously after every code change. 4 {
Bt b 5 [TestFixture]
UL EA TS SEAIFY 6 - public class SquareRtCalculatorTests
Run All | Run.. = | Playlist: All Tests « 7 {
8 private ISquareRtCalculator _calc;
4 SquareRtCalculatorTests (1) g
alculate_4_Returns! = 1Setup]
Run Selected Tests jublic void SetUp()
Debug Selected Tests I
Group By " _calc = new SquareRtCalculator();
Add to Playlist »
0 Copy Cri+C [Test]
4 lublic void Calculate_4_Returns2()
& Select All CrisA .
Open Test var squareRoot = _calc.Calculate(4);
Y T Assert.AreEqual(2, squareRoot);
21 }
22 }
23 }

Individual tests can be selected and run or debugged.

Figure 7.14 Visual Studio can run tests in Text Explorer.

What do these tests tell you?

If you run the SquareRtCalculatorTests fixture tests, you should see them all pass—
also referred to as going green. Unit-test results are often shown using green for pass
and red for fail, and you’ll often hear the colors used to define pass and fail states. If a
developer you’re working with tells you your tests are red, it means you have some fail-
ures. (If you want to see what a failure looks like, try changing the expected result
from 2 to something else, and run the test again.) This test tells you that your calcula-
tor can successfully calculate a square root using one input.

It would be easy to add more tests to cover more inputs, to both ensure that your
code works, and to explore different inputs. A good example would be to write a unit
test for —1. The square root of —1 is 7, an imaginary number, and this is represented as
double.NaN in C# (NaN means “not a number’—something that can’t be repre-
sented by a simple decimal number). By writing a test for this, you could see what the
output is and make a decision about how you’re going to represent this in your Ul—
maybe by always showing 0 as the result for negative numbers. Calculating the square
root of —1 is the kind of thing a user would do to play with your app, but it’s some-
thing that, as a developer, it’s easy to forget to consider if you were just doing manual

www.EBooksWorld.ir

7.3

7.3.1

Building more complex model layers 211

testing. By automating testing using unit tests, you're more likely to consider the
inputs to your code and cover edge cases.

USE TEST CASES TO COVER MULTIPLE INPUTS You can test multiple inputs and
outputs using a single test method by defining multiple test cases. These are
test methods that take parameters defining the inputs and expected outputs
and then test against these. They have a different attribute on the method—
they use multiple TestCase attributes, which are created with a list of values
that get passed to the method for each test. You can read more on the Test-
Case attribute in the NUnit docs at http://mng.bz/Vj2M.

Unit tests don’t just make it easier for you to focus on one method when testing so
that you cover the possible inputs and outputs, they give you another very important
thing—cross-platform testing of your model layer. You use MVVM to share large
amounts of cross-platform code, and by decoupling the UI from the logic, you can
write unit tests to test large portions of your code, reducing the amount of slow, labori-
ous manual testing that you’d need to do. This is what you’re seeing here—you’ve
written some cross-platform code once, and unit-tested it. You don’t have to manually
test that the calculations work, just that the Ul is wired up correctly. If you hadn’t used
MVVM and instead had wired up a button directly to the calculation code, you
wouldn’t have been able to test this except manually. If you’d written your app using
Swift on iOS and Java on Android, you’d have had to write this unit test twice.

IN REAL APPS THE LOGIC IS MORE COMPLEX THAN A SIMPLE CALL TO MATH.SQRT
This is a simple example of a method that makes a direct call to a system func-
tion, but it illustrates the principles. In a real-world app, your logic in the
model layer could be more complex, so you'd want to test a variety of inputs
and outputs. Thanks to MVVM and Xamarin, you can test complex model-
layer logic using unit tests, and test it once.

Building more complex model layers

The SquareRt app has a simple model layer, but our Countr app needs something a bit

more complex—including the ability to store counters somewhere. As a refresher, let’s

look at the Countr user flows that we discussed in chapter 6. Figure 7.15 shows these.
Let’s look at a popular way to structure more complex model layers using services,

data models, and repositories.

Services, data models, and repositories

In our hypothetical coffee shop, we have baristas that can turn beans, water, and
optionally milk into a delicious beverage. Beans are stored in cupboards behind the
counter, milk is in the fridge, and there are taps to provide a good supply of water. If a
customer comes in and orders an espresso, a number of things happen:

The barista gets some beans out of a bag in a cupboard.
The barista puts the beans in a grinder, and takes out ground coffee.

www.EBooksWorld.ir

http://mng.bz/Vj2M

212

CHAPTER 7 Building cross-platform models

Counters are
User wants to loaded from All counters are
see counters shown on Ul
storage
Counter is .
User adds User enters New counter is
. created and
a counter counter details shown on the Ul
stored
nter i nter i
User deletes " E;m\]/ tg frsm cﬁo::] t\? ds
a counter emoved1ro €move:
storage from Ul
User increments . Counter is Counter is
2 counter incremented updated on
and stored the Ul

Figure 7.15 The user flows for the Countr app: showing, adding,
deleting, and incrementing counters

The barista puts the ground coffee into the espresso maker, which is plumbed
into the main water supply, puts a cup under the spout, and taps a button.
The espresso maker pushes hot water through the grounds and streams coffee
into the cup.
The barista hands over your coffee.

We can break this down into three categories—entities (coffee beans, cups), places

where entities are stored (cupboards), manipulators of entities (barista, espresso
machine). These lists are shown in table 7.1.

Table 7.2 Grouping our coffee shop into entities, storage, and manipulators

Entities Storage Manipulators
Beans Cupboard Grinder
Milk Fridge Steamer
Water Pipes Barista
Cups Coffee machine

Let’s think about our Countr app in similar terms. We have an entity in the form of a
class that represents a counter. We need a place to store the counters, and something
to manipulate the counters, such as getting them all, adding new ones, removing
them, or incrementing them. A common pattern for doing this is to use a set of data
model classes, services, and data repositories:

www.EBooksWorld.ir

Building more complex model layers 213

Data models—Data models are classes for simple data objects—objects that have
properties to represent state, but few if any methods. These should map to the
real-world entities that your app is concerned with.

Services—Service classes provide the business logic that acts upon those data
models, such as creating them from different data, performing calculations,
uploading or downloading them from web services, or persisting them to repos-
itories.

Repositories—Repositories are used to persist the data models, usually to a local
database such as SQLite.

Table 7.3 Grouping our Countr app into entities, storage, and manipulators

Entities (data models) Storage (repositories) Manipulators (services)

Counter CountersRepository CountersService

Our MVVM model layer needs to expose state and behavior to the views via the view
models. Our services are the entry point into the model layer from the view models. If
we have a CountersViewModel that shows a list of Counter objects on the Counters-
View, it would use CountersService to retrieve a list of counters, which would ulti-
mately come from the CountersRepository. When a new Counter is created, it would
be created via the service, which in turn would store the new counter in the reposi-
tory. Figure 7.16 shows these two flows in action through the layers.

CountersView la—| CountersViewModel |«m| CountersService |«w| CountersRepository |e—m|

Get counters Get counters Get counters
Show counters) :
from service from repository from database
Show counters
Return counters Return counters Return counters
on screen
Create counter
Create counter Save counter
Add counter . . and save to
using service . to database
repository
Show new
counter Return counter Return counter
on screen

Figure 7.16 The counters view talks to the view model, which in turn talks to the service, which talks to the
repository, which stores and retrieves data from a database.

www.EBooksWorld.ir

214

7.3.2

CHAPTER 7 Building cross-platform models

By having separate services and repositories, we get a really good separation in our
code, with each layer being relatively thin so it’s much, much easier to unit-test. This
is one of the key goals of using the MVVM design pattern. It also means that in a
larger app you can share services between view models, and share repositories
between services.

For example, when creating a new email in an email app, you'd have a view and
view model for the new email screen, and this view model would access a service to
provide a list of contacts to help the user fill in the To and CC fields. You could also
have a service that provides access to the user’s photos or other documents for adding
attachments. The contacts service could also be used on a screen that shows your
inbox, putting pictures beside the sender of each email.

This model also applies to our Countr app—we can use a counters service to not
only get the list of counters to display on the main screen, but when the user adds a
new counter, the view and view model for an add-counter screen would also use the
same service to construct and store the new counter.

Let’s now build our service and repository, starting at the bottom with a database
and data models, and working our way up through the repository to the service.

Accessing databases

A repository is a class that provides the ability to store and retrieve data from some
kind of storage, and the most popular storage mechanism on mobile is a database
called SQLite (www.sqlite.org). SQLite is a small, fast, file-based, open source database
that has been around for over 15 years, and it comes embedded in iOS and Android.
Other databases are available (such as Realm—https://realm.io), but SQLite is the
most popular because it’s built into the OS. SQLite is very low level with a C API, but
there are C# wrappers for this API as well as some really nice open source ORM
(object-relational mapping) layers that you can use. ORM is a layer that abstracts data-
base tables, columns, and rows away from you—instead of worrying about how to
structure your data in the database, you can create tables based on a class, and per-
form basic CRUD (create, read, update, and delete) operations just by passing
instances of your class around, or by requesting data by class type.

The best ORM for SQLite, by far, is SQLite-Net (not to be confused with
SQLite. NET—it has a hyphen in the name instead of a period) from Frank Krueger.
It’s available in a NuGet package called SQLite-Net-Pcl, which you should add to all
the projects in the Countr solution (on Windows you can do this at the solution level,
but on Mac you have to add it to the individual projects one by one).

There are many different SQLite packages available, so make sure you install the
correct one! Also, be aware that despite the package having PCL in its name, in the
latest versions it’s a .NET Standard library, not a PCL. This book was written using ver-
sion 1.4.118, so install that version, although the latest version may also work. In Visual
Studio for Mac you can select the version from the drop-down list at the bottom right;
on Windows you can select it from the package settings at the right (figure 7.17).

www.EBooksWorld.ir

https://realm.io
www.sqlite.org

Building more complex model layers 215

SQite-Netpel - G Dmm Package source: mugetorg ST
© sqlite-net-pcl
) salite-net-pel by Frank A Krueger, 425K downloads rsi
SQLite-net Official Portable Library is the easy way to access sqlite from NET apps.
Verslon: Latest stable 14118 - imstall
o Add Packages
J Gtisie: Wiot Golane [~ [QL SOLite-NET PCL D |

i

s n open source and light
o o T Voo, and
‘storage for NET, i

{

-pel-acp 860 w-—:—-dw
° SQUIE-net Portable Library s the sasy way 19 access salits from NET saps. " pop—
Author Frari A Kruoger
Published TRIRNT
SOLite-Net, Extensions. Readers. 19 Dimlsndy =
@ This package contains an extension for salite-net that let you query datatase — Yiew Licanes
with a reader, Froject Page Vist Page
Dependencons
‘SOLite.Net.Core-PCL 283,575 Neraa ey e
@ A NET ™ inal 3
Version 14118 [~]
Show pre-release packages Close Add Peckage

When installing SQLite-Net-PCL, set the version
to 1.4.118, although the latest version may work.

Figure 7.17 The best ORM is SQLite-Net-PCL, but there are a number of NuGet packages available
with SQLite in the name, so be sure to install the correct one with the correct version.

We first need to define classes that can store the data we need to persist. Then we’ll
create a repository that can persist and retrieve those classes. This repository will, in
turn, use SQLite-Net to automatically create the relevant tables for us.

STORING MODELS IN THE DATABASE

For the Countr app, you need to be able to store counters and update them when the
counter is incremented. To do this, you need a class to represent the counter with a
name and a current value. Usually a class like this would be considered a data model as
it models data (not to be confused with the model layer), so you can create a folder in
the Countr.Core project called Models (right-click and select Add > New Folder).
Then, add a new class in this folder called Counter. The following listing shows the
contents of this class.

Listing 7.6 A simple data class to represent a counter

using SQLite; <

The using directive gives access
namespace Countr.Core.Models to the SQLite-Net classes.
{

public class Counter

{
[PrimaryKey, AutoIncrement]
public int? Id { get; set; }

The Id property is an auto-
incrementing primary key.

public string Name { get; set; }

www.EBooksWorld.ir

216

CHAPTER 7 Building cross-platform models

public int Count { get; set; }

}

This class contains a Name property to store the name of the counter, and a Count
property to store the current value. It also has an Id property that’s marked with some
attributes that come from SQLite-Net and that provide instructions on how the table
for this class should be set up. When this class is stored in a SQLite table, it will go into
a table called Counter (tables are named by SQLite-Net to match the class name that’s
stored in them) that has three columns that map one-to-one with the public proper-
ties: an int column called Id, a string column called Name, and another int column
called Count. Table 7.4 shows the structure of this table with some example counters
already added to it.

Table 7.4 The Counter table, showing some example counters that a user
might create when they use the app

(primary key)

1 “Cups of coffee” 14
2 “Gym sessions” 8
3 “Cakes” 2

You need a primary key column (a column that contains a unique key that you can use
to reference each counter), and ideally you don’t want to manage this yourself. This is
what the attributes on the Id property provide. The PrimaryKey attribute tells SQLite
to make this column the primary key, so it’s the unique ID used to reference individ-
ual counters, and the AutoIncrement attribute tells SQLite to automatically set the
value of this ID to the next available value when a new row is added. For example, if
you have three counters in the database with IDs 0, 1, and 2, and you add a new
counter, it would have its Id value automatically set to 3 when it’s added to the table.
This value is an int?—a nullable int. That’s because 0, the default value of an int, is a
valid ID. If the ID was an int and you created and saved a new counter, SQLite
wouldn’t know if it was a new counter or an update to a counter with an ID of 0.
Because you’re using an int?, the default value is null, so SQLite will know to insert
the counter.

All these properties have public getters and setters, and this is by design. There’s
also no constructor, so the compiler automatically creates a default (parameterless)
one for you. The way SQLite-Net works when loading data from a table is to construct
an object using its default constructor, and then set the properties via reflection using
the values from the columns. If you didn’t have a default constructor, SQLite-Net
couldn’t create the object, and if the properties didn’t have public setters, the values
couldn’t be set. When an object is saved, SQLite-Net uses reflection as well—the get-
ters need to be public so that the ORM can get the values to write to the columns in

www.EBooksWorld.ir

Building more complex model layers 217

the table. It’s fine to add a custom constructor, just as long as you add a parameterless
one as well (the compiler won’t create a default constructor automatically if another
constructor is defined).

CREATING A REPOSITORY
Now that you have a data model, you need to set up a repository to store and retrieve
models from a database. By using SQLite-Net, you can deal with your data models
directly without having to manually store these objects across different columns in dif-
ferent tables. This makes the repository fairly simple.

Create a Repositories folder in the Countr.Core project, and add a new interface there
called ICountersRepository. The following listing shows the code for the interface.

Listing 7.7 The interface to the counters repository—simple and easy to understand

using System.Collections.Generic;
using System.Threading.Tasks;
using Countr.Core.Models;

namespace Countr.Core.Repositories
{
public interface ICountersRepository
{
Task Save (Counter counter) ;
Task<List<Counter>> GetAll();
Task Delete (Counter counter) ;

}

This is a very simple interface that encapsulates the basic operations you’ll want to do
to maintain a store of counters—save a counter (either saving a new one or updating
an existing one), get them all, or delete one.

But when calling save, how do you know if you’re creating a new counter or updat-
ing an existing one? The same with delete—how do you know which one to delete?
The answer relies on the 14 field on the Counter—the field marked with the Primary-
Key attribute. SQLite uses this primary key as the unique identifier of a row in a table,
so if you save a counter with an Id of 2, it will check for an existing row in the table
with the Id column set to 2. If it finds one, it will update that row to match the values
on the counter being saved; if not, it will create a new row. The same happens with
delete: if you delete a counter with an Id of 7, it will look for a row in the table with
that Id to delete; if there isn’t one, nothing will happen.

Let’s create the CountersRepository class now and set up SQLite. Then we’ll
implement the interface.

SQLite is very easy to set up—you create a connection to a database file by passing
it a filename, and the SQLite engine will create a database file if one with that name
doesn’t exist, or open it if it does. There’s a small catch, though—where to store the
database file. NET Standard libraries contain APIs to reference the filesystem, but the
filesystem is different on iOS and Android, with different paths for storing local files.

www.EBooksWorld.ir

218

CHAPTER 7 Building cross-platform models

Luckily, there’s a Xamarin plugin that gives you a single method to call to get the path
for storing local data and that returns the correct value on each platform. To install
this plugin, install the PCLStorage NuGet package into all the projects in the solution
(figure 7.18). The code in this book was written against version 1.0.2, so use this ver-
sion if you have any problems.

[N) Add Packages
Official NuGet Gallery Q, PCLStorage (2]
e B “emd - <
PCLStorage
PCL Storage provides a consistent, portable
set of local ﬂleplﬂ APls for NET,
Phone, Windows Xamarin.iOS,

PCLSpecialFolder 4,358 platform .NET libraries and apps.

PCL SpecialFolder provides access to the local file. It includes easy accessto a d PCLStorage
special folders. |s based on the PCLStorage. A D Plai

Figure 7.18 The PCLStorage NuGet package gives access to the filesystem from .NET Standard
libraries.

Now that you have this plugin installed, you can use it to provide a path for your
SQLite-Net database connection. Create a new class called CountersRepository and
add the following code.

Listing 7.8 Setting up the connection to a SQLite database

using System.IO;
using Countr.Core.Models; A using directive to bring in
using PCLStorage; 4 the file storage plugin
using SQLite;
This is the connection to

the database—async so
you can use async/await.

namespace Countr.Core.Repositories
{
public class CountersRepository

{ This path comes from

readonly SQLiteAsyncConnection connection; thef“epmgh1and

public CountersRepository () Pr°ﬁde5thgpatht°
{ the 0S-specific local
var local = FileSystem.Current.LocalStorage.Path; storage.
— ~ var datafile = Path.Combine(local, "counters.db3");
connection = new SQLiteAsyncConnection(datafile); <«
connection.GetConnection () .CreateTable<Counter> () ;
} .
} SQLite
} CreateTable will look for a table connections
that matches the given type, and _are created
All SOLite database fil create it if it doesn’t exist. pointing to the
QLite database files database file.

use the .db3 extension.

www.EBooksWorld.ir

Building more complex model layers 219

The SQLiteAsyncConnection class gives you an asynchronous connection to the data-
base, allowing you to use async methods that you can await—these methods will han-
dle spawning tasks to run the database interactions from the calling thread. The only
downside is that it doesn’t provide any synchronous methods—something you need to
create the tables in the constructor of this repository. You can get a non-async version
of the connection from the async connection using the GetConnection() method,
and you can use this to create the table synchronously. This constructor will be called
during app startup while the app is on the splash screen, and it will be very fast, so
there should be no noticeable app slowdown for the user. Obviously, if you wanted to
do more complex database creation work, or migration between different database
structures, you should do this on a background thread while displaying something to
the user so they don’t think their app has locked up—maybe by adding an Init
method to the class, which gets called on a background thread during app startup.

Now that you have have your connection, let’s implement the repository interface.
The following listing shows the implementation. All the async methods call a single
async method on the SQLite connection, so instead of marking your methods as async
and awaiting the calls, you can just return the tasks directly.

Listing 7.9 The implementation of the ICountersRepository interface

using System.Collections.Generic;

. ; This class now
using System.Threading.Tasks;

implements the
ICountersRepository

public class CountersRepository : ICountersRepository interface.
{
public Task Save (Counter counter) ?aves?counterbx
(inserting or updating
return connection.InsertOrReplaceAsync (counter) ; <}47'tbaSEd°" its Id
}
public Task<List<Counter>> GetAll () Retrieves all the rows
{ from the table and
return connection.Table<Counter> () .ToListAsync () ; <ch°nven5thm“t°alwt
}
public Task Delete (Counter counter) Deletes the counter
(with an Id that matches
return connection.DeleteAsync (counter) ; the one passed in

As you can see from this simple implementation, SQLite-Net makes your life really
easy when it comes to interacting with databases. This leads to an obvious question—if
it’s so easy to interact with databases, and each method in the repository is a single
SQLite-Net call, then why would you even bother creating a repository in the first
place? The answer is, once again, unit testing. You can’t easily unit-test code that inter-
acts with a database directly—you’d need a SQLite database. Although you can get

www.EBooksWorld.ir

220

CHAPTER 7 Building cross-platform models

implementations of SQLite on Mac and Windows (the platforms that your unit tests
run on), they’re different from the implementation that runs on a device, and you’d
need a lot of setup code to create and configure these databases for each unit test. It’s
easier to create a very thin repository layer that you can mock out in unit tests. You
can’t test the repository, but you can mock it to test the services that use it.

YOU CAN UNIT-TEST SQLITE BY USING ON-DEVICE UNIT TESTS Xamarin provides a
way to run unit tests on a physical iOS and Android device or emulator. This
means you can write unit tests (or, more correctly, integration tests, as they test
the integration between your app code and the database) against a SQLite
database if you want to. You can find more details in the Xamarin iOS unit
testing guide at http://mng.bz/0tv6 and the Android troubleshooting guide
at http://mng.bz/mMWa.

Now that you have your repository, you need to register it in the IoC container.
You’ve seen already that you can easily register individual classes inside the container,
but MvwmCross has a simple way to automatically register multiple classes that are
similarly named. If you open App.cs from the Countr.Core project, you'll see the fol-
lowing line.

Listing 7.10 MvvmCross projects register all services into the 10C container by default

CreatableTypes ()
.EndingWith ("Service")
.AsInterfaces|()
.RegisterAsLazySingleton() ;

This tells MvwmCross to look inside the current assembly and find all classes with
names that end with Service and register them as singletons based on their interface
(registering them as lazy singletons to be precise, meaning they’re only constructed the
first time they’re accessed). Because it’s a common pattern to have service class names
end in Service, MvwvmCross projects are set up to automatically register them, by
default. You can extend this to include repositories by adding a copy of the same code
but with a different name, as follows.

Listing 7.11 Automatically registering all repositories into the loC container

CreatableTypes ()
.EndingWith ("Repository")
.AsInterfaces()
.RegisterAsLazySingleton() ;

Once you’ve added this line, there’s no need to explicitly register your Counters-
Repository—MvvmCross will search the assembly, find the repository based on its name
ending in Repository, getits interface, and register the class against its interface.

www.EBooksWorld.ir

http://mng.bz/0tv6
http://mng.bz/mMWa

Building more complex model layers 221

7.3.3 Adding a service layer

You have your data model (the Counter class) and your repository layer (the
CountersRepository class). Now you need to add a service layer on top. The view
models will interact with the services in this layer, which in turn will use the reposito-
ries to store and retrieve data. As a reminder, figure 7.19 shows these layers.

CountersView la—w| CountersViewModel |« CountersService |«m| CountersRepository le—m

Figure 7.19 The layers in the Countr app

CREATING THE SERVICE

You need to create a new counter service that your view models can interact with, so
let’s start with the interface, as always. Create a Services folder, and in that folder cre-
ate a new interface called ICountersService, as in the following listing.

Listing 7.12 The interface for the counters service

using System.Collections.Generic;
using System.Threading.Tasks;
using Countr.Core.Models;

namespace Countr.Core.Services
{
public interface ICountersService
{
Task<Counter> AddNewCounter (string name) ;
Task<List<Counter>> GetAllCounters() ;
Task DeleteCounter (Counter counter) ;
Task IncrementCounter (Counter counter);

Methods to create, delete,
and get all the counters

A method to increment
the counter

The first three methods on this service are fairly self-explanatory—they allow the call-
ers to get, save, and delete counters. The fourth method is a bit different—it incre-
ments a counter. It may seem odd to be incrementing a counter from a service when
the Count value on the counter could be manipulated directly, but there’s a good rea-
son for this. If the Count property is 0 and is updated directly to 1, then the Counter
instance is updated, and this new count of 1 is held in memory. If the app dies and is
reloaded, what would the counter show? It would show 0 again. You need to persist all
changes to the repository to ensure that when the app restarts and all counters are
loaded, the correct values are available. By having the service control the increment-
ing of counters, it can ensure that the new values are always persisted to the database.

www.EBooksWorld.ir

222

CHAPTER 7 Building cross-platform models

Now you have your interface. Let’s create the service, and then implement the
interface. Create a new class called CountersService. The following listing shows the
initial code for it.

Listing 7.13 The initial implementation of the counters service

using Countr.Core.Repositories;

The repository comes
from a constructor
parameter and is
stored in a field.

namespace Countr.Core.Services

{
public class CountersService

{

readonly ICountersRepository repository;

public CountersService (ICountersRepository repository)
{

this.repository = repository;

Having the ICountersRepository interface as a constructor parameter for Counters-
Service tells the MvwmCross IoC container to pass in whatever implementation of the
ICountersRepository it has to this constructor when the class is created.

Let’s wire up the rest of the class now. Add the following code.

Listing 7.14 Implementing the ICountersService interface

using System.Collections.Generic;
using System.Threading.Tasks;
using Countr.Core.Models;

A new counter is created
from a name, stored in the
repository, then returned.

public class CountersService : ICountersService

{

public async Task<Counter> AddNewCounter (string name)

{
var counter = new Counter { Name = name };
await repository.Save(counter) .ConfigureAwait (false) ;
return counter;

}

public Task<List<Counter>> GetAllCounters () Getting all counters
{ returns all counters

from the repository.

return repository.GetAll(); <

}

public Task DeleteCounter (Counter counter)

{ Deleting a counter deletes
return repository.Delete(counter) ; it from the repository.

}

www.EBooksWorld.ir

Building more complex model layers 223

public Task IncrementCounter (Counter counter)

{ . .
Incrementing a counter will increment

the Count property and then update
the counter in the repository.

counter.Count += 1;
return repository.Save (counter) ;

Most of this code should be fairly self-explanatory. AddNewCounter constructs a new
counter based on the name given, saves it to the repository, and returns it. Increment-
Counter increments the Count value on the given counter and saves the incremented
version to the repository. GetAllCounters gets all counters from the repository, and
DeleteCounter deletes a counter from the repository. IncrementCounter, GetAll-
Counters, and DeleteCounter just return the tasks from the async methods they
call on the repository. AddNewCounter is marked as async and uses Configure-
Await (false) to tell the compiler that after the call to Save, the rest of the code in
the method can stay on the same thread that Save used to do its work.

We’re done with the model layer now—you have a repository that manages count-
ers using a SQLite database and a service layer that encapsulates all your interactions
with counters. But like the model layer for SquareRt, how can you test this? You could
wait until the app is built, but it’s better to write some unit tests, so that not only can
you test the code now, you can test your code again and again and again to ensure you
don’t break anything in the future. You can’t easily unit-test the repository, but you
can test your service.

UNIT-TESTING YOUR SERVICE LAYER

Before you can think about unit testing, you need to create a unit-test project. Create a
new project called Countr.Core.Tests in the same way as you did the SquareRt .Core. Tests
project—either using a new NUnit Library Project in Visual Studio for Mac or by creat-
ing a new .NET Framework Class Library in Visual Studio and adding the NUnit NuGet
package. Once the project is created, add a reference to the Countr.Core project.

As we’ve discussed, you can’t easily unit-test code that talks to a database, so you
can’t test your repository. Although the service doesn’t interact directly with a data-
base, it does use the repository, which in turn uses a database, so how can you unit-
test this?

What you need to do is not use your implementation of the repository. Instead, you
need to use a dummy implementation—one that not only doesn’t talk to a SQLite data-
base, but ideally one that you can control. For example, to test that the Increment-
Counter method on the service is working correctly, you need to ensure that it not only
increments the Count property, but that it saves the incremented value to the reposi-
tory—this checks that you haven’t got the save and increment lines the wrong way
around. If you have a repository that you can control, you could perform some kind of
assertion on the call to Save to ensure that the incremented counter is saved.

There’s a great pattern for creating dummy implementations, called mocking. In this
technique, you create an implementation of an interface and have complete control on

www.EBooksWorld.ir

224 CHAPTER 7 Building cross-platform models

Counter

ICountersRepository

Mock<ICountersRepository> CountersRepository

Unit test Production app

Figure 7.20 Mocking is a simple technique allowing you to unit-test without worrying about
dependencies.

a test-by-test basis, allowing you to configure what the methods on the interface do and
return, and also verify that the methods are called (figure 7.20).

There are a number of great open source tools to help with this, my favorite being
Moq (https://github.com/Moq). To install Moq, add the Moq NuGet package to the
Countr.Core.Tests project (figure 7.21).

e~ e Add Packages
- Official NuGet Gallery a (6. Mog @)_
Mog
is the most ar and
::;hgﬁmﬂwgggrﬂETmuﬂw
id Mogq
s Moaq.Contrib 59,902 Author Daniel Cazzulino, kzu

Figure 7.21 Installing the Moq NuGet package gives you a simple way to mock interfaces in your unit tests.

Add a new folder called Services to the test project, and then add a CountersService-
Tests class. The following listing shows the initial implementation of this class.

Listing 7.15 The initial implementation of the unit tests for the counters service

using NUnit.Framework;

using Mog;

using Countr.Core.Repositories;
using Countr.Core.Services;

namespace Countr.Core.Tests.Services
{
[TestFixture]
public class CountersServiceTests
{
ICountersService service;
Mock<ICountersRepository> repo;

www.EBooksWorld.ir

https://github.com/Moq

Building more complex model layers 225

[SetUp]
public void SetUp () In the test fixture setup, a new

(mock repository is created so

P
repo = new Mock<ICountersRepository> () ; that it’s ready for each test.

service = new CountersService (repo.Object) ; .
A new instance of the

CountersService created
using the mock object.

The Mock<ICountersRepository> field is a mock of the ICountersRepository inter-
face. It has a property called Object that’s an ICountersRepository interface, which
you can pass to the constructor of the CountersService.

What’s powerful about this mock is what happens when you call the methods on
the interface. By default, these methods will do nothing and will return the default
value for the return type (for example, if you call the GetAllCounters method, it will
return null), but you can override this behavior. You can set up methods to return
whatever you want, perform actions when they’re called, or throw exceptions—this
can be for all calls to a method, or only when it’s called with specific parameters. You
can also get a count of how many times a method is called—either the total of all calls,
or a count of different calls with different parameters.

Let’s start with a simple set of tests for the IncrementCounter method. You want to
test two things—that the counter is incremented, and that the incremented value is
stored. Here’s the code for these two tests.

Listing 7.16 Testing the IncrementCounter method

using System.Threading.Tasks;
using Countr.Core.Models;

[Test]

public async Task IncrementCounter_IncrementsTheCounter () <t

{
// Arrange Instead of returning void,
var counter = new Counter { Count = 0 }; these tests are async Task
// Act methods, so they can await
await service.IncrementCounter (counter) ; async methods on the service.
// Assert
Assert.AreEqual (1, counter.Count) ; This asserts that the counter

} now has a Count of 1.

[Test]

public async Task IncrementCounter_SavesTheIncrementedCounter() <———-

{

// Arrange . .
This verifies that the Save

var counter = new Counter { Count = 0 }; h

// Act method was called with a
await service.IncrementCounter (counter) ; counter with a Count of 1.
// Assert

repo.Verify(r => r.Save(It.Is<Counter>(c => c.Count == 1)),
Times.Once()) ;

www.EBooksWorld.ir

226

CHAPTER 7 Building cross-platform models

These two tests cover the basics of the IncrementCounter method. The Increment-
Counter_IncrementsTheCounter test ensures that the counter has an incremented
Count after the method has finished—a nice, simple sanity check. The interesting test
is the IncrementCounter_SavesTheIncrementedCounter test. This uses a method on
the mock repository called Verify that verifies that a method has been called. Let’s
look at the two arguments passed to Verify.

The first argument, r — r.Save (It.Is<Counter>(c — c.Count == 1)) is used to
define which method is being verified. It’s a lambda expression where the parameter is
the interface for the mock (in this case, the ICountersRepository interface), and you
call the method that you want to verify. You then specify what the parameters you’re ver-
ifying are. They can be fixed values, or you can use the static It class from Moq, which
allows you to specify certain conditions about the parameter. You can use It.IsAny<T>
to specify any value of type T, or use It.Is<T>(Func<T, bool>) to check for specific
properties of the instance of T. In this case we’re using It.Is<Counter>(c — c.Count
== 1) to say that we want to verify that this method was called using an instance of
Counter that has a Count property set to 1. This is a very important part of this test—you
need to ensure that the incremented value is saved, and that’s what the check for a
count of 1 is doing. If the service code saved the counter before incrementing it, this test
would fail because the counter passed to Save would have a value of 0.

The second argument, Times.Once(), is the number of times this method was
called with the given criteria. You don’t have to specify this argument, and if you
don’t, it verifies that the method was called at least once (with no upper limit on how
many times it was called). Here we’re saying it should be called only once. After all,
there’s no point in calling this method more than once. There are a number of alter-
natives, such as Times.Never, to ensure that the method is never called, or variants
that allow you to set the minimum, maximum, or exact number of times the method
must be called.

Table 7.5 shows a breakdown of these two tests. They both have the same arrange
and act—creating a counter with a count of 0 and incrementing it—but the assertions
are different. One test asserts that the count of the counter has incremented, and the
other test asserts that the new value has been saved.

Table 7.5 The arrange, act, and assert for the CountersService tests

Arrange

Create a counter with | _service.IncrementCounter (counter) | Assert the counter’'s count is
a count of O now 1

Create a counter with | _service.IncrementCounter (counter) | Asserta counter with a count
a count of O of 1 is saved to the repository

This is powerful testing functionality—you can’t unit-test the repository, but you can
ensure that your services make the correct calls to it.

www.EBooksWorld.ir

Building more complex model layers 227

The other thing you can do is control the return value from the different methods
on the interface using the Setup method. The following listing shows a test to verify
the GetAllCounters method on the service.

Listing 7.17 Testing the GetAllCounters method
using System.Collections.Generic;
[Test]
public async Task GetAllCounters_ReturnsAllCountersFromTheRepository ()
{
// Arrange
var counters = new List<Counter>

{

new Counter {Name = "Counterl" },

new Counter {Name = "Counter2" } Sets up the GetAll
1; method to return a
repo.Setup (r => r.GetAll()).ReturnsAsync (counters) ; defined list of counters
// Act
var results = await service.GetAllCounters(); Asserts that the
// Assert collections contain
CollectionAssert.AreEqual (results, counters) ; the same items

The setup method allows you to set up the behavior of a method on the interface. You
specify the criteria for the method in the same way as the Verify method, and then
you can specify callbacks or the value that the method returns. Returns specifies the
return value of a normal method, and ReturnsAsync, which we’re using here, speci-
fies the return value of an async method. CollectionAssert is an NUnit helper class
that can assert on collections, and we’re using it here to assert that the results of the
call to GetAllCounters returns a collection that matches the collection returned from
the repository. Table 7.6 shows a breakdown of this test.

Table 7.6 The arrange, act, and assert the Return all counters tests

Arrange
Set up a list of counters to _service.GetAllCounters () | Assert that the counters returned
be returned from GetAl1l on from the service are the same as
the repository the counters set up as the return

value for the GetAl1l method on
the repository

MOQ CAN ALSO BE USED TO SET UP PROPERTIES Setup is used to set up meth-
ods. For properties there’s a pair of similar methods: SetupGet and SetupSet
to set up the getter and setter for a property.

There’s plenty more on the service that needs to be tested, and as an exercise you can
think up some more tests that would cover all the methods of the service. Run these
tests now, though, and enjoy watching them pass.

www.EBooksWorld.ir

228

7.3.4

CHAPTER 7 Building cross-platform models

Once again, we’ve written one set of unit tests that allow us to test code that will
run on both iOS and Android. This is something we couldn’t do if we’d just wired up
events on the Ul to code, or if we wrote our apps using Java and Objective-C/Swift.

Accessing web services

So far we’ve looked at a simple model layer for our SquareRt app, and a more com-
plex model layer for Countr that uses a SQLite database to save data. Calculations and
data persistence are popular things to have in the model layer, but there’s one other
thing a lot of model layers do that we should look at—making web service calls. Many
apps have some kind of service running over the internet to provide data—email apps
download and send emails via an email server, and social media apps like Facebook
and Twitter download and send posts or tweets over the internet.

By far the most popular way to do this is using REST services over HTTP. These are
stateless services whereby different URLs represent resources that you can interact
with using CRUD operations. You send HTTP verbs that describe the action you want
to do: send a GET request to a URL to request data, POST to create data, PUT to update
data, or DELETE to delete data. The URL you use describes details about the resource
you want to interact with; you can include a body with your request, such as the data to
PUT; you can use HTTP headers to specify details about the request, such as authoriza-
tion details; and you can add query parameters to the URL. Query parameters are a
way of passing information to a GET request using just a URL instead of sending a body
of data. You can send information to the HTTP request using JSON (a lightweight way
to represent data) or XML, and get results back as JSON or XML. J[SON is becoming
the most popular as it’s simple and lightweight. This is shown in figure 7.22.

HTTP GET request HTTP PUT request

URL: URL:
/messages/1 /messages/2
Headers: GET PUT Headers:
ApiKey: "e5d7ab20" ApiKey: "e5d7ab20"
Body: Body:
Empty {
"idv: 1,
"message": "Hi!"

HTTP GET response ’

Status code:

200 https://api.mycompany.io HTTP pUT response
I{Body. Status code:
) 200
vidv: 1,
"message": "Hi!" Body:
} Empty

Figure 7.22 REST APIs allow you to send requests to URLs using HTTP verbs, and to get data back.

www.EBooksWorld.ir

Building more complex model layers 229

REST APIs are a huge topic in themselves, and they’re outside the scope of this book,
but we’ll look at how to call a simple REST API and interpret the data from the model
layer. For a more detailed look at REST APIs, I recommend Irresistible APIs by Kirsten
L. Hunter (Manning, 2016).

UsING MICROSOFT BING’S SEARCH APl TO CALCULATE A SQUARE ROOT

When you’re building a commercial app, you may well have a set of REST services pro-
vided by your company or client that your app will need to interact with. There are
also many third-party APIs that your app can use to incorporate a wide variety of func-
tionality: performing calculations, manipulating images, getting data such as govern-
ment records, and using artificial intelligence services. One such service is Microsoft
Bing—the search engine from Microsoft. Not only can it search the web much like
other popular search engines, such as Google, but it can also be used for calculations.
You can try this out by going to Bing.com and searching for “square root 4”.

Microsoft has made a REST service for Bing available to developers to use inside
their apps, allowing a large number of searches per month for only a few dollars (and
a lot more searches per month if you’re willing to pay more). We can use this API in
our SquareRt app to calculate square roots instead of using System.Math.Sqrt.

Microsoft has a large number of APIs available to developers as part of its Azure
cloud, from simple searches to a whole host of artificial intelligence tools. You can see
all of these services from Microsoft’s Cognitive Services website at http://mng.bz/B97v.
You’'ll need an Azure account to use these services, so if you don’t have one, click Free
Account, then Start Free, and follow the instructions to sign up. You’ll need a credit
card to sign up, but this is only used for verification, and at the time of writing you get
$200 worth of credit just for signing up. You can also sign up using Visual Studio Devel-
oper Essentials at www.visualstudio.com/dev-essentials/?WT.mc_id=xamarininaction-
book-jabenn to get $25 a month in credit for a year.

Once you're signed in, head to the Azure portal at portal.azure.com. Click New on
the left side (if the menu on the left is minimized, the New option is a green plus
sign), select AI + Cognitive Services in the Azure Marketplace list that appears, and
then click Bing Search APIs.

Each thing on Azure that you sign up for (such as access to a cognitive service API,
a virtual machine, or a database) is referred to as a resource. All resources are part of
resource groups—Ilogical groupings of resources that you can manage together. For
example, when you’re finished using a set of resources, you can delete the resource
group to remove all resources in one go. You’ll need to configure the Bing Search
APIs resource and make it part of a resource group.

Start by entering a name for this resource, such as SquareRt, select your Azure sub-
scription, set the pricing tier to S1 (this works out to $3 a month at the time of writ-
ing). You’ll then need to create a new resource group to put this resource into, so
ensure Create New is selected under Resource Group, and enter a name such as
SquareRt (figure 7.23).

www.EBooksWorld.ir

www.visualstudio.com/dev-essentials/?WT.mc_id=xamarininaction-book-jabenn
www.visualstudio.com/dev-essentials/?WT.mc_id=xamarininaction-book-jabenn
portal.azure.com
http://mng.bz/B97v

230

CHAPTER 7 Building cross-platform models

* Name

Enter the name for

SquareRt v your resource.

* Subscription

Pay-As-You-Go v
Select the Azure subscription

e for thi
* Pricing tier (View full pricing details) s :zeu;ticti)':;til::esource and

S1 (10 Calls per second, 1K Calls per month) v

J
* Resource group
* ' Create new Use existing
Create a new resource grou
SquareRt v group,

\ give it a name, and set the
resource group location to the
closest one to your location.

* Resource group location @

Australia Southeast v

* I confirm I have read and understood the
notice below.

|:| Pin to dashboard

AA/\/ Click Create to create
reate utomation options the resource.

Figure 7.23 Configuring the new Bing search API resource

Each resource group is run from a data center somewhere in the world, and you can
configure which data center to use from the Resource Group Location drop-down.
Choose the one closest to your physical location, read the terms and conditions at the
bottom, and tick the box to confirm you’ve read them. Finally, click the Create button
to create the resource.

Once the resource is created, you’ll see an overview page with details about the new
SquareRt resource. From here, select Resource Management > Keys on the left to see
some API keys that you can use to access these services from your own apps (figure 7.24).

Now that you have your API keys, you can use them to calculate square roots using
the Bing web service. When you make a call using this service, you get results back as a
JSON object. Because Bing search is a general-purpose API, you don’t just get back a
single number; instead you get back an object that contains the details of the
response, serialized as JSON. I've used the term JSONa lot, so who is this Jason fellow?

www.EBooksWorld.ir

Building more complex model layers 231

' ,O Search (Ctrl+/) i {0 Regenerate Keyl {3 Regenerate Key2
. Notice: It may take up to 10 minutes for the newly
RESOURCE MANAGEMENT (re)generated keys to take effect.
Keys NAME
&4 Quick start SquareRt |

() Pricing tier
KEY 1

Y Properties r !
' & 4fecb6700b4448de8694442d0975be2f E

~ [P P

This is the APl key you can use to access this service from your app.
Use the blue button next to the key to copy it to your clipboard.

Figure 7.24 The Microsoft cognitive service APIs use API keys to control access.

JSON
JSON stands for JavaScript Object Notation, and it’s a simple, lightweight way of serializ-
ing data to a string. You can read more about it at www.json.org, but essentially it’s a
way of storing data in a string as a set of key-value pairs, and the value can be either a
single value such as a string or number, or it can be another set of key-value pairs to
represent another object. You can even represent lists of objects. Each string contain-
ing an object or an array of similarly typed objects is referred to as a JSON document
(you may have heard of document databases such as MongoDB—these store JSON
documents as indexable and searchable objects).

The following listing shows a JSON representation of an object that would come
back from a call to the Bing search API, with figure 7.25 showing a summary of the
objects that it represents.

Listing 7.18 A JSON document representing the results of a Bing calculation search

"_type": "SearchResponse",

"computation": {
"id": "https://api.cognitive.microsoft.com/api/v5/#Computation",
"expression": "sqgrt(40)",
"value": "6.32455532"

1,

"rankingResponse": {

"mainline": {
"items": [
{
"answerType": "Computation",
"value": {

www.EBooksWorld.ir

www.json.org

232

CHAPTER 7 Building cross-platform models

"id": "https://api.cognitive.microsoft.com/api/v5/#Computation"
}
}
]
}
}
}
computation
JSON document object
_type : string id : string
computation : object expression : string
rankingResponse : object value : number
|

item objects

V4 answerType : string
v value : object

object object

mainline : object items : array ——»

I

I

I

' \
! .

rankingResponse mainline ! apesea=h ==

I

I

I

I

]

AJ

I

I

i

: —id : string
I

I .
! value object

Figure 7.25 Overview of the JSON document returned from the Bing search service

The curly braces ({ and }) represent an object, with the properties of the object
defined as a set of key-value pairs. The property name is the key, and it’s defined as a
string. The value is defined after the colon (:) as either a string representation of a
value, such as a string or a number, as an object wrapped in braces, or as an array
stored inside square brackets ([and]). The document in listing 7.18 consists of an
outer object (in JSON, objects don’t have named types) with three properties:

_type—A string

computation—An object with three properties (id, expression, and value)
rankingResponse—An object that has a property called mainline, which is an
object with a property called items, which is an array of objects, each having an
answerType and value property, value being another object

JSON seems pretty complex, and parsing a string representation like this is a lot of
work. Luckily, once again someone else has done the hard work for us, and you can
install a NuGet package to take the complexities away. Newtonsoft.]Json, also known as
Json.NET, is not only the most installed NuGet package ever (at the time of writing, it
has been installed over 42 million times), but it provides a simple way to convert from
JSON to G# classes and vice versa. Json.NET can also do value conversions, so if your

www.EBooksWorld.ir

Building more complex model layers 233

C# class has a field of type double, it will look at the string value in the JSON and con-
vert it to a decimal number—such as converting "6.32455532" in the preceding JSON
document to a double value of 6.32455532. If you want to have any interaction with
JSON data, I strongly advise you to use Json.NET to make your life much easier.

We’ll use it here, so install the Newtonsoft.Json NuGet package. The code in this
book was written against version 10.0.3, but later versions should work (figure 7.26).

Newtonsoft.Json

Json.NET isa lar high-performance
Jxmhmmémﬁnﬁg

Id Newtonsoft.Json

Figure 7.26 Adding the Newtonsoft.Json NuGet package

You saw an example JSON response from the Bing search API in listing 7.18, so let’s
think about a class that could encapsulate this data. All we really need is the computa-
tion’s value, so what do we need to do to get this?

We need to define a class hierarchy that matches the J[SON document, just focus-
ing on what we need—in this case, a class that has a property called computation of a
type that has a property called value. One good thing Json.NET does is only deserial-
ize the values you have in your classes, ignoring all the others. This is good for us
because we only need the value property from the computation object. It would be a
pain to have to implement all the classes and properties in this JSON document just
for one field. This also prevents our app from breaking if new fields are added to the
JSON, such as if you add extra data that’s only used by a later version of your app.

We can define this in code by adding two new classes to the SquareRt project called
Computation and SquareRootResponse. The following listing shows these classes.

Listing 7.19 Classes that represent the JSON response from the Bing search API

The Computation class wraps the object

represented by the “computation” key The Value field will map
in the JSON document. to the “value” property.
public class Computation The SquareRootResponse
{] class encapsulates the outer
public double Value { get; set; } object in the JSON response.
}
public class SquareRootResponse I::]S%’FEE;::::: m';';:f:dr%(f
{))) property called “Computation”.
public Computation Computation { get; set; }

}

Using Json.NET, you can deserialize a string containing a JSON document to a class
that you can specify. It will take the properties in the JSON document and map them
to properties in the class based on the properties’ names. It’s also smart enough to

www.EBooksWorld.ir

234

CHAPTER 7 Building cross-platform models

ignore case (JSON uses lowercase for the first letter of each property, whereas C# by
convention uses uppercase). If you were to deserialize the [SON document in listing
7.18 to a SquareRootResponse, it would map the computation property in the JSON
document to the Computation property on the class, and map the properties of the
object assigned to the computation object to the properties on the Computation class.
Figure 7.27 shows this mapping.

JSON document C# classes
e \
I
I : SquareRootResponse
: _type :
: computation :
: rankingResponse 1
I
: : Computation
I
. i
: id !
]
: expression 1
: value : double value
. i
L 1

Figure 7.27 The JSON properties are mapped to the properties of C# classes
based on their names.

It’s fairly simple to map other [SON documents to classes—all you need to do is build
a hierarchy of classes with properties that map to the [SON document. These proper-
ties don’t need to be strings—they can be classes in their own right, as demonstrated
by SquareRootResponse, or they can be data types such as numbers, like the Value
property of Computation. In the JSON, this is a string, but we’re mapping it to a dou-
ble and Json.NET takes care of the conversion.

Now we have a class that encapsulates what we need from the response. Let’s wire
this up to an HTTP call.

MAKING WEB SERVICE CALLS

When making a call to a web service, you need to use the device-specific network
stack—both iOS and Android have classes that can interact with web services that are
specific to the individual OS. The good news for us C# developers is that this is such a
normal thing to do that Xamarin and Microsoft have made sure the part of the NET
Framework that allows easy interaction with HTTP endpoints is available in .NET
Standard libraries. This means you can hit web services from your core projects.

To make a call to a web service from a .NET Standard library, you can use Http-
Client—a class that under the hood uses the native network stack to make calls to
web services. This class has methods to make all the possible HTTP calls—GET, POST,
PUT, and DELETE.

To calculate a square root, you need to make a GET call to the Bing service. Bing, by
default, is a search engine, so you can create a URL that searches for the square root
of a particular number, and you can then specify that instead of a simple web search,
you’re interested in a performing a calculation. There are a whole host of options for

www.EBooksWorld.ir

Building more complex model layers 235

this API, and you can read more on it in Microsoft’s Web Search API Reference at
http://mng.bz/4KQ3.

HttpClient, like a lot of modern .NET Framework classes, uses async and await,
so the first thing to do is change our ISquareRtCalculator interface to support this.
The following listing shows the changes to the interface.

Listing 7.20 Updating the square-root calculator interface to use async and await

using System.Threading.Tasks;

public interface ISquareRtCalculator
{
Task<double> Calculate(double number) ;

}

You also need to update the implementation of this calculator to not only use
async/await, but to make a call to the Bing search API to calculate the square root.

Listing 7.21 Making a web service call from the square-root calculator

using System.Net.Http;

using System.Threading.Tasks; Creates a new

using Newtonsoft.Json; instance of HttpClient
- to interact with web
public class SquareRtCalculator : ISquareRtCalculator services

{
readonly HttpClient httpClient = new HttpClient() ;

public SquareRtCalculator ()

{ Sets the API key on the
httpClient.DefaultRequestHeaders headers—this would be one of
.Add ("Ocp-Apim-Subscription-Key", the keys assigned to your Bing

"your API key"); search API subscription

public async Task<double> Calculate (double number)
{
—> var url = "https://api.cognitive.microsoft.com/bing/v5.0/search?" +
$"g=sqgrt ({number}) &responseFilter=Computation";
———I> var response = await httpClient.GetAsync (url).ConfigureAwait (false) ;
var json = awailt response.Content.ReadAsStringAsync ().ConfigureAwait (false); <
var squareRt =
JsonConvert.DeserializeObject<SquareRootResponse> (json) ;
return squareRt.Computation.Value; <—

}

) Converts the JSON

document to your

Makes an HTTP GET call new classes

to get the response

Gets the content of the
Specifies the URL of the Returns.the value of the response as a string
endpoint to use for the search calculation from the |SON containing a JSON document

www.EBooksWorld.ir

http://mng.bz/4KQ3

236

CHAPTER 7 Building cross-platform models

This is a complicated set of calls, so let’s break it down line by line.

readonly HttpClient httpClient = new HttpClient();

This creates a new instance of the HTTP client class that you use to interact with
web services. You don’t need to create a new one for every request—you can
reuse the same one.

_httpClient.Defaul tRequestHeaders.Add ("Ocp-Apim-Subscription-Key",
"<your API key>");’

This adds a header that includes the API key to all the HTTP requests. You
should replace <your API key> with one of the API keys assigned to your
account when you set up your Bing search subscription.

var url = "https://api.cognitive.microsoft.com/bing/v5.0/search
?g=sqgrt ({number}) &responseFilter=Computation";

This is the URL used to perform searches against the Bing APIL. It sends a
request to https://api.cognitive.microsoft.com/bing/v5.0/search using a cou-
ple of query parameters. The standard way to send query parameters is using
the ? operator followed by queries in the form of key=value, separated using
the & character. In this example, you’re sending a query with the first parameter
set to "g=sqgrt (<number>) " (where <number> is the number passed in to the
Calculate method), which is the same as entering a search query of
'sqrt (<number>) ', into Bing. The second parameter is "responseFilter=
Computation", which tells Bing to run a computation instead of a search. This is
broken down in figure 7.28.

var response = await httpClient.GetAsync (url) .ConfigureAwait (false);
This will make the call to the web service and get a response object. This
response has a couple of interesting properties: StatusCode and Content. The
status code is the HTTP status code, so 200 for success, 404 if a URL isn’t valid,
or 418 if the endpoint is a teapot and you’ve sent a request to brew coffee (yes,
really). Anything in the 200 range is success, and anything in the 400 range is
an error. You can read more about the possible status codes on Wikipedia

Second query parameter:

First query parameter: key is responseFilter,
Web service URL key is q, value is sqrt(40) value is Computation
}\ N O >\ N O } A

https://.../search?g=sqgrt (40) &responseFilter=Computation

< Y
The ? indicates the end of the URL The & separates multiple
and the start of the query parameters. query parameters.

Figure 7.28 HTTP requests can be suffixed with a ? followed by query parameters as
multiple key=value pairs separated by an &.

www.EBooksWorld.ir

https://api.cognitive.microsoft.com/bing/v5.0/

Building more complex model layers 237

(http://mng.bz/dfmF). This call will throw an exception if it times out, or if the
status code is in the 400 range. Here we’re not handling exceptions for the sake
of brevity, but in production code you should handle all possible exceptions
from this call.

This is an async method, and the implementation of HttpClient will use
background threads to do its work. When you call await httpClient.Get-
Async (url), a new task is created and run to make the call to the web service on
a background thread. ConfigureAwait (false) tells the compiler to keep using
this background thread to run the rest of the method until the next await.
var json =

await response.Content.ReadAsStringAsync () .ConfigureAwait (false);
The response contains the J[SON for the search result, so this call will read the
content as a string that you can then deserialize to an object. Again, like Get-
Async, this will create a task to download the response on a background thread,
and the call to ConfigureAwait (false) will keep the rest of this method on
that background thread.
var squareRt =

JsonConvert.DeserializeObject<SquareRootResponse> (json) ;

Once you have the string response, you can use the static JsonConvert class
from Json.NET to deserialize the string into an instance of the SquareRoot-
Response class, and you can get the calculated value from there.

The end result of this code is that you’ve sent a request to the Bing search API to cal-
culate a square root, and you’ve received a response that you can convert from JSON
to a set of C# classes that you can use to get the result as a double. Let’s test this out.

TESTING THIS CALL

Our unit tests are designed to test the methods on our classes, so as long as the inter-
face doesn’t change, the unit tests should still pass. This is one of the great things
about unit testing—you can refactor your implementations, and assuming you haven’t
made any errors when refactoring, your unit tests should work. We can prove this
here—you’ve changed the implementation of the Calculate method, so your tests
should still work.

HttpClient is implemented in all platforms, including Mac and Windows, so there
are no technical problems calling it from a unit test. In the real world you wouldn’t
necessarily do this in a unit test—instead you’d wrap the web service calls in another
class and mock it out (as we did for the database), but we’ll do it here as a simple way
to call the method and prove that the code works.

You can’t just run your test and have it work, though, because you did change the
interface slightly. You made the method async, so you need to tweak the test to be
async as well. Make the test return async Task, and await the Calculate call, as
shown in the following listing.

www.EBooksWorld.ir

http://mng.bz/dfmF

238

74

CHAPTER 7 Building cross-platform models

Listing 7.22 Making the Calculate_4_Returns2 test async

using System.Threading.Tasks;

.[ri‘ést] The test now returns async Task so
that you can use await.

public async Task Calculate_4_Returns2 ()
{

// Act The Calculate call is async, so
var squareRoot = await calc.Calculate(4); you need to await it.
// Assert

Assert.AreEqual (2, squareRoot) ;

You’ll also need to install the Newtonsoft.Json NuGet package into the unit-test pro-
ject. Once this package is installed, you should be able to run this test and have it
work, validating that the Bing API can correctly calculate square roots!

THERE’S A LOT OF BOILERPLATE CODE THAT YOU CAN AVOID When dealing with
web services, there’s a lot of boilerplate code you end up writing again and
again and again. To avoid this, there’s a NuGet package that allows you to
write a simple interface to your web service, decorating methods with attri-
butes to say which REST calls these methods map to, and the package will
build a class to implement the actual HTTP calls. This package is called Refit,
and it can be found at https://github.com/paulcbetts/refit. I highly recom-
mend trying this out, as it simplifies your code when dealing with REST APIs.

Now that you’ve tested your code, it’s worth deleting the Bing Search API resource
from your Azure account to avoid paying any more than you have to. You can do this
in one of two ways: by deleting the resource itself, or by deleting the whole resource
group. To delete the resource, select it in the Azure portal and click the Delete button
at the top, and then click Yes when asked to confirm. Deleting the entire resource
group follows the same process—select it and click the Delete resource group button,
but this time you’ll need to type in the resource group name to confirm the deleting,
making it harder to accidentally delete a resource group.

A quick recap

We’ve implemented a couple of different model types in this chapter: a simple one
and a more complex one. We’ve also looked at how you can interact with databases
and web services, and we’ve used a few NuGet packages along the way. Table 7.7 sums
up the NuGet packages we’ve used.

Table 7.7 The NuGet packages used in this chapter

NuGet package Description
NUnit Unit-testing framework
SQLite-Net-Pcl ORM for SQLite databases

www.EBooksWorld.ir

https://github.com/paulcbetts/refit

A quick recap 239

Table 7.7 The NuGet packages used in this chapter (continued)

NuGet package Description

PCLStorage .NET Standard-based filesystem access

Moqg Mocking tools for unit testing

Newtonsoft.Json Tools for serializing and deserializing C# classes to JSON

We’ve also created a few interfaces and classes for our SquareRt and Countr apps.
Table 7.8 lists them for the SquareRt app, and table 7.9 covers the ones for the
Countr app.

Table 7.8 Classes and interfaces we’ve created for the SquareRt app

Name Description

ISquareRtCalculator The interface for the calculation logic

SquareRtCalculator The implementation for the square-root calculation
logic (either using a direct calculation or the Bing
search services)

SquareRtCalculatorTests Unit tests for the square-root calculator

SquareRootResponse Class to represent the JSON response document
from the Bing search request

Computation Class to represent the computation section of the
JSON response document from the Bing search
request

Table 7.9 Classes and interfaces we’ve created for the Countr app

Name Description

Counter A data-model class for a counter

ICountersRepository The interface to a repository for storing and retrieving
counters

CountersRepository The interface of a repository for storing and retrieving

counters from a SQLite database

ICountersService The interface to a service that handles counters, includ-
ing reading from and writing to the repository and incre-
menting values

CountersService The implementation of the service that handles counters

CountersServiceTests Unit tests for the counters service

www.EBooksWorld.ir

240

CHAPTER 7 Building cross-platform models

This is our model layer done. In the next chapter we’ll move up a layer to the view
models.

Summary
In this chapter you learned

Model layers can be simple or more complex, and they can include any busi-
ness logic you need, such as calculations.

Unit tests are a great way to test code without having to build an entire app.
SQLite provides a simple, file-based database that you can access from a .NET
Standard library.

NET Standard libraries don’t have file access, so you need a plugin to allow you
cross-platform access to the filesystem.

Complex model layers are better split into data models, repositories, and services.
HttpClient provides a nice, cross-platform way to interact with web services.

If your web service returns a status code of 418, it’s actually a teapot.

You also learned how to

Create a unit-test project and run tests in that project

Set up a SQLite database, create tables, and set up a class to store inside a table
Mock interfaces to make it easier to unit-test dependencies between classes
Use the Bing search API to calculate square roots

www.EBooksWorld.ir

8.1

Bwilding cross-plaiform
view models

This chapter covers

Creating simple and master/detail view models

Adding state to view models using single-value and
collection properties

Adding behavior to view models when properties change
and using commands

Communicating between components using messaging
View-model navigation

In the previous chapter we built the cross-platform model layers for our two apps,
SquareRt and Countr. We looked at how you can wrap up your model layer in ser-
vices and repositories that can be shared among different view models. Now it’s
time to move up a layer and start coding the view models.

The view-model layer

Like the model layer, the view-model layer is a cross-platform layer (figure 8.1). The
difference is that whereas the model layer represents your data and business logic

241

www.EBooksWorld.ir

242

811

CHAPTER 8 Building cross-platform view models

in a way that makes sense to your domain (for example, using services), the view-
model layer represents the state and behavior of your UI and is written in a way that
makes sense to your view layer.

ioS ' Android
App | i |:| i |
layer :
| C# (.NET Standard) |
_____________________ i____________________
Ul layer | C# |:| C# | View
i
------------!h Binding _: -----------
Ullogic [— View
layer | C# (.NET Standard) model
___ Figure 8.1 The view-model
. layer in an MVVM-based
Business
logic layer C# (.NET Standard) Model mobile app is written using
cross-platform code.

This means that, in general, you have one view model per view, so for FoovView you'd
have FooviewModel, for BarView you’'d have BarViewModel, and so on. This is very dif-
ferent from the model layer, where you have data models that represent the entities in
your business layer, and services and repositories to manipulate and store those enti-
ties. After all, different views can show or interact with the same entities.

Throughout this chapter, we’ll be looking at the responsibilities of the view model,
including the following:

Encapsulating state from the model layer and representing it in a way that
makes sense to the view layer

Providing value conversion between data in the model layer and the view layer
Providing a way for the view layer to trigger behavior via commands or via prop-
erties changing

Making the behavior in the model layer accessible to the view layer

In chapter 6 we looked at the user flows for our two apps, SquareRt and Countr. Let’s
review these again, and look at the state and behavior that the different view models
need to represent.

The view-model layer inside SquareRt

The SquareRt app is very simple and only has one user flow: a user enters a number,
and the square root is calculated. Figure 8.2 shows this flow and the classes you need
to implement it.

We’ve wrapped the calculation code in the model layer in the previous chapter,
SquareRtCalculator, and we also designed a Ul for it. Let’s now think about how you
can wire this UI up to the model via a view model by looking at state and behavior.

www.EBooksWorld.ir

The view-model layer 243

View | SquareRtView |
"""""" Userenters [~~7| Answeris [~~~ "~~~ """""7TTTTToToTs
View a number shown on Ul | SquareRtViewModel |
model \ /
Model _Square root | SquareRtCalculator |
is calculated

Figure 8.2 The only user flow in SquareRt, and the view, view-model,
and calculator classes that you need to implement it

STATE

The first thing to think about is state—what data you show on screen. In this app the
state is represented by two numbers: one for input that the user can edit (the number
that the square root will be calculated from), and one for output that’s read-only (the
square root result). It’s these two pieces of state that we need to represent in the view
model, as shown in figure 8.3.

The output—the result

/’ of the calculation will be
20 + shown here.

\ « The input—the square

root of this number will

be calculated.
Figure 8.3 The state that will be
represented by the view model

One thing to bear in mind is that the values used in the calculations are of type double,
whereas most text-entry controls deal with raw text and so have string values. This
means we’ll have to perform value conversion in the view-model layer.

BEHAVIOR

Once you have an idea of the state that you need to represent, you need to think
about the behavior. The behavior here is also very simple: when the input number is
changed, the app needs to calculate the new square root and update the result prop-
erty on the UL This is shown in figure 8.4.

Although it’s normal to handle behavior using commands, sometimes it’s more
appropriate to handle simple behavior by using properties, such as when the value of
one property is directly dependent on the value of another. In this case, the trigger
for the behavior is one property changing, so there’s no need to wrap this up in a
command.

www.EBooksWorld.ir

244

8.1.2

CHAPTER 8 Building cross-platform view models

SquareRt SquareRt SquareRt

2 6.325 20

o~

As the input property changes, the output will be recalculated.

Figure 8.4 The behavior that the view model will need to implement

The simple rule of thumb here is that if one property is dependent on the value of
another, it’s usually easier to implement the behavior as part of the property change.
If the behavior is triggered by an explicit user action, use a command.

The view-model layer inside Countr

SquareRt is a very simple app, but Countr is a bit more complicated. Rather than hav-
ing one simple user flow, it has four as shown in figure 8.5.

Counters are

User wants to loaded f All counters are
see counters oaded from shown on Ul
storage
User adds User enters Counter is New counter is
. created and
a counter counter details shown on the Ul
stored
User deletes Countg;is Counter(iis
a counter removed from remove
storage from Ul
Figure 8.5 The user flows for
User increments . Counter is Counter is the counter app—showing,
2 counter incremented updated on adding, deleting, and
and stored the Ul

incrementing counters

We also have a slightly more complicated Ul, with two screens. Following the pattern of
one view model per screen, we’ll need to have two view models—one for the screen
showing the list of counters, and one for the screen to add a new counter (figure 8.6).

You’ll probably notice that this app, with one view model (and therefore one view)
that shows a list of data, and another view model (and view) for creating, viewing, or
editing an item, has a similar pattern to several other apps you use on a regular basis.

www.EBooksWorld.ir

The view-model layer 245

View | CountersView | | CounterView |
View . :
CountersViewModel CounterViewModel
model
| CountersService | Figure 8.6 The Countr app maps
Model to a set of views, view models, and
| Counter | model-layer classes.

For example, in an email app you’d have one view showing a list of emails in a mail-
box, such as your inbox or sent mails. When you tap a button to write a new email, a
new screen will appear where you can write your email. Once this email is sent, it’ll
appear in the list of sent mail. Tapping on an email in the inbox will show a new
screen with the contents of that email, as shown in figure 8.7. The same is true in an
address book app—these apps normally show a master list of people by name, and
when you tap a name it shows the details about that person. If you tap a button to cre-
ate a new contact, you get a new screen to create the contact, and once you’re done, it
appears in the master list.

Detail view models in

Master view/view model the master list Detail view/view model
Inbox Inbox Bob
Bob Hi from Bob Bob Hi from Bob Hi from Bob

Mum Happy Birthday Hi there, just wanted to drop
you a line to see how you

are doing.

Mum Happy Birthday

Mail me back!

Bob

l Reply H Forward H Delete]

Figure 8.7 Master/detail apps have a master list in one view and a detail view for seeing, editing,
or creating an individual item.

Similarly CountersViewModel will contain a list of counters, which will each be repre-
sented by CounterViewModel instances that wrap each counter.

This pattern is called master/detail, and it refers to a master list that shows high-
lights of all the items your app needs to show, and a detail screen that can be used to
view or edit the details for a single item, or can be used to add a new item.

The normal navigation pattern for adding new items is via a button (on iOS this is
normally on the toolbar; on Android it can be a toolbar button or a floating action
button), which displays a blank detail screen where you can enter the details. This

www.EBooksWorld.ir

246

CHAPTER 8 Building cross-platform view models

detail screen will usually have Save and Cancel buttons in the toolbar. If your app sup-
ports viewing more details or editing an item, the normal navigation pattern is to tap
on the item in the list, and this will navigate to the detail screen, with a back button at
the top left so you can go back to the list. Details usually slide in from right to left on
top of the list and slide back out from left to right when done, mimicking papers
stacking up and unstacking.

In the Countr app we’ll use the master/detail pattern. The master list will show the
list of all counters, and the detail screen will be for adding new counters (figure 8.8).
If, in the future, we wanted to expand our app to support editing counters (such as
changing the name) or viewing more details (viewing when counts were increased, or
reports broken down by day, week, month), we could use the same pattern with a
detail screen containing all this info.

The master list of all the
counters stored in the app

\ Counter Add Cancel New Counter Done
Coffees 4 +
Runs 1 + Counter Name
Each counter is represented by an When a new counter is created,
instance of the detail view model. the detail view model is used.

Figure 8.8 The Countr app has a list of counters and a detail screen to add a new counter.

A popular technique for creating the view-model classes for master/detail apps is to
stick with two view models—a master view model that contains a list of instances of the
detail view model. The detail view model will contain all the state and behavior
needed by the detail screen.

STATE

The app will need two view models: CountersViewModel and CounterViewModel. The
state represented by CountersViewModel is a collection of counters that will be dis-
played on screen in a list. Each counter will be represented by an instance of Counter-
ViewModel, which has state in the form of the name and current count of the counter.
Both of these values will be read-only here, but we can also use CounterViewModel for
the add-new-counter screen, where the name will be set. This is shown in figure 8.9.

www.EBooksWorld.ir

Alistofall —
the counters

Each counter shows its name and count.

Figure 8.9 The state that will be represented by the two view models: a master view model and

a detail view model

BEHAVIOR

The view-model layer

Counter Add

Cancel New Counter

Done

Coffees 4

+

Runs 1

+

Counter Name

The name can be set for a new counter.

247

The two view models for this app have different behaviors, all triggered by user inter-
actions. This means you can implement behavior via commands, unlike SquareRt,

which will use property changes to trigger behavior (figure 8.10).

For CountersviewModel, the master view model, you’ll need to add behavior for an
Add button—this will need to navigate to a new screen so the user can set up a new
counter. For CounterViewModel, the detail view model, you’ll need to add behavior
for the Done button, which will navigate back to the master view after creating a new
counter, and for a Cancel button, which will navigate back to the master view without

Swiping the
counter deletes it.

Tapping the Add
button shows the
new counter screen.

Tapping Cancel will close
the screen and not create
a new counter.

Tapping Done
will create a

.

Counter Add

Cancel New Counter

Done

Coffees 4

+

Runs 1

+

Tapping the +]
button increments
the counter.

S

Counter Name

Figure 8.10 The behavior for the master and detail view models

www.EBooksWorld.ir

248

8.2

821

CHAPTER 8 Building cross-platform view models

creating a new counter. You'll also need to add behavior that’s used by the items in the
master list, allowing the user to increment or delete a counter.

Adding state and behavior to SquareRt

Now that we’ve reviewed the state and behavior for both of our apps, let’s write some
code to implement them, starting with the SquareRt app. Launch the SquareRt solu-
tion from chapter 7—use the version that does the calculation itself rather than the
one that uses the Bing API, because it will be much faster to run.

State inside SquareRt

The first thing we need to do is create the view model for the SquareRt app. Add a
new class called SquareRtViewModel to the ViewModels folder. The following listing
shows the initial code for this class.

Listing 8.1 Taking the calculator interface as a constructor parameter

using MvvmCross.Core.ViewModels;

{ from the MvvmCross base

namespace SquareRt.Core.ViewModels The view model is derived
MvxViewModel view model.

public class SquareRtViewModel
{

readonly ISquareRtCalculator calculator;

public SquareRtViewModel (ISquareRtCalculator calculator)
{

this.calculator = calculator: The constructor takes an instance
) of the square root calculator.

Once you've added this class, you can delete the FirstViewModel class. This class is
also referred to in the App class, inside the Initialize method. Inside this method, a
call is made to RegisterNavigationServiceAppStart to register the FirstViewModel
as the startup view model for the app. We’ll look at this call in detail later in this chap-
ter, but for now change this call to use the new SquareRtViewModel so that the project
compiles, as shown in the following listing.

Listing 8.2 Setting the app startup view model to be your new view model

public override void Initialize()

{

RegisterNavigationServiceAppStart<ViewModels.SquareRtViewModel> () ;

This class derives from MvxViewModel, the base view-model class from MvvmCross,
which provides features such as property-changed notifications.

www.EBooksWorld.ir

Adding state and behavior to SquareRt 249

You need to add a couple of properties to the view model to represent the value
you’ll calculate the square root of, and the result of the calculation. Although these
are simple properties, you do have to put some thought into how to create them. View
models are responsible for value conversion, converting values from a format that’s
relevant to the view to a format that’s relevant to the model layer, and vice versa. This
model layer deals with double values. In contrast, the UI has a text-entry control for
entering the input, as well as a label control to show the result, and these kind of Ul
controls usually deal with string values.

You have two choices here—perform the value conversion inside the properties, or
do it in a value converter. Let’s look at both in turn.

VALUE CONVERSION INSIDE PROPERTIES
You have two properties to consider: one for the input and one for the result. The
result will be calculated when you implement the behavior inside the view model, so if
you're going to perform value conversion inside the properties, you can also convert
the result value to a string as soon as it has been calculated. This means you can make
a simple string property for the result.

The following listing shows this property, so add this to the view model.

Listing 8.3 string property uses a backing field and notifies when the value changes

string result; Both the backing field and

public string Result property are of type string.

(The getter just returns the
get { return result; } < value of the backing field.

The setter uses SetProperty

private set { SetProperty(ref result, value); }
to update the field.

}

This Result property is a simple string property with a string backing field. The get-
ter just returns the field value, so there’s nothing too exciting here. The setter is pri-
vate (after all, you’ll be calculating the value inside the view model, so there’s no need
to make the setter public), and it uses SetProperty to update the value. SetProperty
is a helper method provided by MvvmCross; it will check the existing value against the
new value, and if it has changed, it will update the value and raise the property-
changed event. If the value hasn’t changed, nothing happens.

PROPERTY-CHANGED NOTIFICATIONS ARE USED TO UPDATE THE Ul The reason for
raising a property-changed notification is to tell the binding layer that the
property’s value has changed, so the Ul should be updated. The binding layer
will re-read the property and set the new value on the relevant UI widget.

The SetProperty method will also return a Boolean—true if the value was different
and the property was updated, or false if the value was the same, and so wasn’t
updated. This is helpful if you want to perform other actions when the value changes.
For example, in a class with a Name property that concatenates FirstName and LastName,

www.EBooksWorld.ir

250

CHAPTER 8 Building cross-platform view models

if the call to SetProperty inside the FirstName or LastName properties returns true,
then your view model can raise a property-changed notification for Name.

The result property is easy, but for the input property you actually have to do some
conversion. Helpfully, the .NET Framework provides a selection of ways to make this
conversion easy. One of these is the System.Convert static class, which has methods
that perform all kinds of conversions between the different primitive types, such as
double, int, long, and string. The following listing shows this in action.

Listing 8.4 Converting from a string to a double and vice versa

using System;

double number; The property is of type string, but
public string Number the backing field is a double

{ The property getter converts
get { return Convert.ToString (number); } from a double to a string.

set { SetProperty(ref number, Convert.ToDouble(value)); }

The property setter converts
from a string to a double.

This is very much like the Result property, except the property is a string and con-
verts to and from a double backing field, which is of the right type to pass to the calcu-
lator in order to calculate the square root. This is shown in figure 8.11.

. Number entered See number
View
| string Number |
View Convert to Conyen to
model double string

Figure 8.11 Value

| Couble FeeE | conversion inside a property

In this example, you’re not doing any validation, so if the value passed to Number isn’t
a number, such as the string "Not a Number", then the conversion would throw a
FormatException. Ideally you should always add validation before converting values,
but in this instance it shouldn’t be too much of a problem because when we construct
the Ul in the next couple of chapters, we’ll restrict the text-entry controls to only
allow numbers.

www.EBooksWorld.ir

Adding state and behavior to SquareRt 251

There are many ways to string a double

There are many ways to represent a number as a string. For example, the number
1,234.56789 can be represented in a number of ways:

1,234.56789
1234.56789
1,234.56789000

All of these are valid, but they’re not necessarily the format you want. When convert-
ing a number to a string, you can use format specifiers to dictate how the number
should be represented. Standard format specifiers are available, and you can create
custom formats if you need to. You can read all about formatting types in Microsoft’s
“Formatting Types in .NET” article at http://mng.bz/1ljv.

You should also consider locale. In the U.S., a decimal point is a period (.), whereas
in some European countries it's a comma (,). In the U.S., 1,000 means one thou-
sand, but in Denmark it’s one. You can read about supporting different locales when
converting to strings using the CultureInfo class in Microsoft’s documentation of
the Double.ToString method (http://mng.bz/LpJO).

UNIT-TESTING YOUR VALUE CONVERSION

In chapter 7 we discussed how our models couldn’t be tested manually because we
don’t yet have a working app, and the same applies to our view models. We can’t test
these manually, so we need to write some unit tests.

You can do this now by creating a ViewModels folder in the SquareRt.Core.Tests
project and adding a new test fixture class called SquareRtViewModelTests. You’ll be
mocking out the ISquareRtCalculator interface, so just like with the Countr tests in
the previous chapter, you'll need to add the Moq NuGet package (figure 8.12). In addi-
tion, your view model derives from an MvvmCross base class, so you'll need to add the
MvvmCross NuGet package as well (figure 8.13), making sure that the version of the
MvvmCross NuGet package that you add matches the version used in your core project.

e Add Packages
Official NuGet Gallery w LO. Mog ®)
Mog
is the most popular and friend
Mmgdng framework for NET y
id Mogq
Author Daniel Cazzulino, kzu

w1 Moag.Contrib 59,902

Figure 8.12 Adding the Moq NuGet package to the unit-test project

www.EBooksWorld.ir

http://mng.bz/1Ijv
http://mng.bz/LpJ0

252 CHAPTER 8 Building cross-platform view models

[NN] Add Packages

J Ofcial hluGet Caltery

___ (QMemerss o)

MvvmCross

MvvmCross is the .NET MVVM framewark
for cross-platform solutions, including
Xamarin 108, Xamarin Android, Xamarin
Forms, Windows and Mac.

Figure 8.13 Adding the MvvmCross NuGet package to the unit-test project

The following listing shows the initial implementation of this test fixture.

Listing 8.5 Creating a view model from a mock calculator

using Mog;
using NUnit.Framework;
using SquareRt.Core.ViewModels;

namespace SquareRt.Core.Tests.ViewModels
{
[TestFixture]
public class SquareRtViewModelTests
{
Mock<ISquareRtCalculator> calculator;

. . A mock calculator
SquareRtViewModel viewModel;

is created and used
[SetUp] to construct the
public void SetUp/() view model.
{
calculator = new Mock<ISquareRtCalculator>();
viewModel = new SquareRtViewModel (calculator.Object) ;

In the SetUp method of this test fixture class, you initialize a mock ISquareRtCalculator
and create an instance of the view model using the mock that you can test in your test
methods. You can only test the Number property at the moment—the Result property
has a private setter so you can’t test it until you add behavior later in this chapter.

The following listing shows an example test to verify that you can get and set a
string value on the Number property correctly.

Listing 8.6 Verifing that the Number getter returns same value passed to the setter

[Test]
public void Number_ConvertsToAndFromDoubleCorrectly ()
{

// Act

viewModel .Number = "1234.4321";

// Assert

Assert.AreEqual ("1234.4321", viewModel.Number) ;

www.EBooksWorld.ir

Adding state and behavior to SquareRt 253

This is a simple test, and if you run it, it should pass with no problems. If you want to
see what happens if the string isn’t a valid number, change the test to pass in a differ-
ent string that is not a valid number.

Another thing to test here is the property-changed notifications. It’s a good sanity
check to ensure that the property raises a changed notification if the value changes, so
the next listing is a quick test to do this.

Listing 8.7 Verifing a property-changed notification is raised when the number changes

[Test]

public void SettingNumber_ RaisesPropertyChanged ())

(Wires up the
// Arrange PropertyChanged
var propertyChangedRaised = false; event
viewModel . PropertyChanged +=

(s, e) => propertyChangedRaised = (e.PropertyName == "Number") ;

// Act
viewModel.Number = "1"; g Updates the Number property
// Assert

Assert.IsTrue (propertyChangedRaised) ; Checks that the property-

changed event was fired

An easy way to test the PropertyChanged event is to wire up the event to a handler that
sets a bool flag to true if the event is raised with a property name that matches the
property you're interested in. The name of the property that changed comes from the
PropertyName property of the event args.

If you run this, you’d expect the test to pass. Try it and see what happens. What
you’ll actually see is that this test fails...

This is a result of the way MvvmCross handles property changes. When you raise a
property-changed event, the Ul needs to be updated, and as you saw back in chapter 5
this must happen on the UI thread. Rather than forcing you to always update proper-
ties on the Ul thread (something that’s hard to do in a view model), most MVVM
frameworks help you out by marshaling these events onto the UI thread. This is what’s
happening here—MvvmCross is helpfully raising the property-changed event on the
UI thread using a dispatcher, a class whose sole purpose is to run code for you on the
UI thread (figure 8.14). When you run your code inside an app running on iOS or
Android, the MvwmCross setup code creates this dispatcher automatically based on
your app’s UI thread. Inside unit tests there’s no UI thread and no dispatcher, so
there’s nothing to run the code to raise your event.

There are a couple of workarounds. One is to create a mock dispatcher object and
set MvwmCross up to use it, but this is too much hard work for our needs right now.
Luckily there’s a simple shortcut—you can set a flag on your view model to raise the
property-changed events on the current thread, rather than using a dispatcher. This is

www.EBooksWorld.ir

254

CHAPTER 8 Building cross-platform view models

I. The SquareRtViewModel calls 2. RaisePropertyChanged() 3. The dispatcher is set up when
RaisePropertyChanged(). is a method on the base the app starts up, so it uses
MvxViewModel, and this calls the app’s Ul thread. If the view
through to the dispatcher. model is created in a unit test,

there is no Ul thread to use.

Any thread | SquareRtViewModel |—m MvxViewModel |—w IMvxViewDispatcher

4. If the dispatcher has a Ul thread to run on, the PropertyChanged
event is raised on the Ul thread; otherwise the event is not raised
as it has no thread to run on.

Figure 8.14 MvvmCross view models raise property-changed events using a dispatcher.

good enough for our tests, so make the change to the Setup method shown in the fol-
lowing listing, and re-run the test.

Listing 8.8 Raising the property-changed events on the current thread

viewModel = new SquareRtViewModel (calculator.Object) ;
viewModel.ShouldAlwaysRaiseInpcOnUserInterfaceThread (false) ;

Tells the view model to raise
the property-changed events
on the current thread

You should now see the test pass.

VALUE CONVERSION USING A VALUE CONVERTER

We’ve looked at value conversion inside a property, and you’ve seen how you can con-
vert a string from the Ul to a double to use in your calculation. You’ve also seen that
you’ll need to convert the result of the calculation to a string to set the result prop-
erty when you implement the behavior inside your view model.

This seems a bit more complicated than we might like, with conversions happen-
ing in multiple places. If we extended the app to include more calculations (such as
adding a cube-root converter), we’d have to duplicate the conversion code, meaning
more places for bugs, and more code to change if we wanted to make any improve-
ments. Ideally, we’d want to do this conversion in one place, and that place is a value
converter. We want to maximize code reuse—that’s why we’re building Xamarin apps
using MVVM after all!

We looked at value converters back in chapter 3, but as a recap, a value converter
is a class whose sole job is to convert from one type to another. They're used by the

www.EBooksWorld.ir

Adding state and behavior to SquareRt 255

binding layer to convert values from the type used by the view model to the type used
by the view, and vice versa. They have two methods: Convert and ConvertBack. Convert
converts from the view-model type to the view type, whereas ConvertBack converts
from the view type to the view-model type (figure 8.15). Value converters can use
types that are available in .NET Standard libraries, or they can be used for platform-
specific types. If they use platform-specific types, they need to live in the relevant iOS
and Android app projects, but if they use types available in .NET Standard libraries
(such as doubles and strings) they can live in the core project.

) Number entered See number
View
Value ConvertBack Convert
converter
Figure 8.15 Using a value
View | Seniila Tombe | convert_er to convert
model properties

Create a folder in the SquareRt.Core project called ValueConverters, and in that
folder create a DoubleToStringValueConverter class. The following listing shows the
code for this converter.

Listing 8.9 A value converter to go from doubles to strings

using System;
using System.Globalization;
using MvvmCross.Platform.Converters;

There is no standard value-
converter interface available
to Xamarin apps, so we’ll use
namespace SquareRt.Core.ValueConverters one provided by MvvmCross.
{
public class DoubleToStringValueConverter : IMvxValueConverter

{

public object Convert (object value, Type targetType,
object parameter, CultureInfo culture)

return System.Convert.ToString(value); <—— Converts the value to a string
}

public object ConvertBack (object value, Type targetType,
object parameter, CultureInfo culture)

Converts the value

back to a double

return System.Convert.ToDouble (value) ;
}

}

This converter implements an interface from MvvmCross, IMvxValueConverter,
which provides the same two methods that most value converters have: Convert and
ConvertBack. The implementation of this converter uses the same logic as you saw

www.EBooksWorld.ir

256 CHAPTER 8 Building cross-platform view models

earlier when converting values inside the view model itself, using the System.Convert
static class to perform the conversion.

UNIT-TESTING YOUR VALUE CONVERTER
You can now unit-test this converter to prove it works. Create a ValueConverters folder
in the SquareRt.Core.Tests project and add a new testfixture class DoubleTo-
StringValueConverterTests. The following listing shows the code for some tests for
converting and converting back.

Listing 8.10 Unit-testing the value converter

using NUnit.Framework;
using SquareRt.Core.ValueConverters;

namespace SquareRt.Core.Tests.ValueConverters
{

[TestFixture]

public class DoubleToStringValueConverterTests

{ Converts a double to a
[Test] string and ensures it’s
public void Convert_ConvertsADoubleToAString() converted correctly

{
// Arrange
var vc = new DoubleToStringValueConverter () ;

// Act
var converted = vc.Convert(123.456, null, null, null); <—
// Assert
Assert.AreEqual ("123.456", converted) ; P I
}
[Test]
public void ConvertBack_ConvertsAStringToADouble () Convensastﬁng
{ back to a double

and ensures it’s

// Arrange
converted correctly

var vc = new DoubleToStringValueConverter () ;
// Act

var converted = vc.ConvertBack("123.456", null, null,
// Assert

Assert.AreEqual (123.456, converted) ;

null) ;

}

If you run these tests, they should all pass.

Before you can use this value converter with your view model, you need to make
your view model use doubles only, with no conversion to or from strings. The next list-
ing shows the view-model properties.

Listing 8.11 For a value converter in the binding layer, properties should be doubles

double number; All properties and backing
public double Number fields are doubles.
{

www.EBooksWorld.ir

822

Adding state and behavior to SquareRt 257

get { return number; }

set { SetProperty(ref number, value); }
}
double result; All properties and backing
public double Result fields are doubles.

{
get { return result; }
set { SetProperty(ref result, value); }

You can also remove the unit tests for the view model that checked the conversion, and
change the test for the property changed to use the correct type. Delete the Number_
ConvertsToAndFromDoubleCorrectly test and change the assighment in SettingNumber_
RaisesPropertyChanged to set the view model to a double instead of a string. With
these changes made, the test should pass.

WHICH ONE TO USE

We’ve looked at value conversion inside properties and using value converters, so
which one should you use? As with all good programming questions, the answer is “it
depends.” A good rule of thumb is to think about how often this conversion needs to
happen, and how complicated it is:

If it needs to happen for multiple properties across multiple view models, a
value converter is the best bet.

If the conversion is slow (for example, involving a database lookup or a web ser-
vice call), you need to find a way to make it happen on a background thread, in
which case a value converter is out. Value converters are called by the binding
layer on the Ul thread, so they must be fast. In this situation, it would be better
to create a Task to convert the value on a background thread when the prop-
erty to be converted is set.

If the conversion involves multiple inputs, such as multiple properties, it’s eas-
ier to do the conversion on the properties inside the view model. Using a value
converter would be much more complex, as you’d need to pass multiple prop-
erties through.

If the view type is platform-specific, it has to be in a value converter.

It comes down to whatever fits best for your code. I personally like to do it inside prop-
erties where I can. If I find I'm repeating the code, I refactor it into a value converter.

Exposing behavior via property changes

Our SquareRt app is a simple one, with a single user flow. Every time the number is
changed, the square root should be calculated, and this behavior is simple enough to
execute every time the number changes, rather than waiting for an explicit user
action like tapping a Calculate button.

Let’s add the code to implement this behavior in the SquareRtViewModel. The fol-
lowing listing shows the code you need if you're doing value conversion inside the

www.EBooksWorld.ir

258

CHAPTER 8 Building cross-platform view models

properties, and listing 8.13 shows the code if you're doing the value conversion in a
value converter.

Listing 8.12 Calculating square as a string when Number property changes

public string Number

t After the number is set,

the result is calculated

get { return Convert.ToString (number); } andconvenedtoastﬁng

set
{
if (SetProperty(ref number, Convert.ToDouble(value)))
Result = Convert.ToString(calculator.Calculate (number)) ;

—

Listing 8.13 Calculating the square root whenever the Number property changes

public double Number
{
get { return number; }
set
{
if (SetProperty(ref number, value)) After the number is set,
Result = calculator.Calculate (number) ; the result is calculated.

—

In both cases, the resultis calculated and the property is updated. When the value is cal-
culated, it’s the Result property itself that gets updated, not the backing field. This way,
a property-changed event is raised, telling the UI to update and show the new value.

Now that we have the behavior defined, let’s write a couple of unit tests to verify
that the result is calculated and a property-changed event is raised whenever the num-
ber changes. The following listing shows these tests, which you can add to SquareRt-
ViewModelTests.

Listing 8.14 Ensuring that the result changes when the number is set

[Test]
public void SettingNumber_CalculatesResult ()
{

// Act

viewModel .Number = 4; Tests that the result
// Assert is calculated from
Assert.AreEqual (2, viewModel.Result) ; the number

}

[Test]
public void SettingNumber_RaisesPropertyChangedForResult ()
{

// Arrange

var propertyChangedRaised = false;

www.EBooksWorld.ir

Adding state and behavior to SquareRt 259

viewModel .PropertyChanged +=

(s, e) => propertyChangedRaised = (e.PropertyName == "Result");
// Act
viewModel .Number = 1; Verifies that a property-
// Assert changed notification is
Assert.IsTrue (propertyChangedRaised) ; raised for Result

If you run these tests, surprisingly they fail. That’s because we mocked the ISquareRt-
Calculator interface in the SetUp method. Mocks, by default, don’t do anything—
their properties are all default values for the type (0 for numbers, null for objects),
and all methods return the default values. In this case, the Calculate method is
returning a default value of 0 because we haven’t set it up.

Remember, this is a unit test—a test to verify a unit of code in isolation—and we’ve
mocked up the dependencies (in this case, the ISquareRtCalculator interface) so
that we have control inside our tests. For example, if you were using the version of the
square root calculator that used Bing search to calculate the square root instead of a
mock object, every unit test would take a while to run as it made a network call, slowing
down the tests. Also, running unit tests regularly (something that’s very good to do)
could easily exceed the number of Bing requests you can make at the lowest price tier,
so you’d have to pay more for each test to run. Mocks help eliminate these problems.

What you can do here is set up the mock to act the way you want and simulate the
expected behavior. Moq has a simple syntax where you can specify the behavior you
want for the methods and properties on your mock objects, either for all calls or for
specific calls, based on the parameters provided. This means that for the Calculate
method you could set it up to always return a specific value, or make it so that if you
call it with 4, it returns 2, or if you call it with 9 it returns 3, and so on. You could even
have it throw an exception if you call it with —1.

For these tests, we’ll set it up to always return 2. The following listing shows the
code changes you need to make.

Listing 8.15 Setting up the Calculate method to return 2 at the start of each test

[Test]
public void SettingNumber_CalculatesResult ()
{
// Arrange
calculator.Setup(c => c.Calculate(It.IsAny<double>()))
.Returns (2) ; %ﬁ
<. The Calculate method
} is set up so that if it’s
called with any
double value, it will
return 2.

[Test]
public void SettingNumber_ RaisesPropertyChangedForResult ()
{
// Arrange
calculator.Setup(c => c.Calculate(It.IsAny<double>()))
.Returns(2); %ﬁ

www.EBooksWorld.ir

260

8.3

83.1

CHAPTER 8 Building cross-platform view models

If you make these changes and run the tests, they should now pass.

Adding state and behavior to Countr

SquareRt is now all done, so open the Countr solution and we’ll turn our attention to
this app.

Single-value properties

Let’s start by looking at the CounterViewModel for the Countr app. This view model
needs to provide state for the name and count of a counter, backed up by an instance
of the Counter data model from the model layer.

Load up the Countr solution and create a new class in the ViewModels folder of
the Countr.Core project. The next listing shows the code for the first part of this
class—preparation.

Listing 8.16 The implementation of CounterViewModel wraps a Counter

using Countr.Core.Models; This view model
using MvvmCross.Core.ViewModels; derives from
MvxViewModel.

namespace Countr.Core.ViewModels
{

public class CounterViewModel : MvxViewModel<Counter> Th€VNWInoddlmes
{ an instance of Counter

to hold the state.

Counter counter; <

public override void Prepare(Counter counter)

. The Prepare method provides an

existing counter as a backing

this.counter = counter; ..
store for this view model.

This view model needs to represent a counter, so it makes sense to use an instance of
Counter as a backing store to hold this data. CounterViewModel has two jobs: in the
master list it represents an existing counter, and in the new counter detail view it rep-
resents a new counter (figure 8.16). For both jobs it needs to store and expose a
counter. Here you can take advantage of a slightly different base view-model class:
MvxViewModel<T>. This class provides an abstract Prepare (T parameter) method that
you override to prepare the view model and store the counter, and this method can be
called with either an existing counter or a new one.

You might think this is an odd way to do it. After all, for such a class you’d normally
have two constructors: a default one that creates a new counter, and one that takes an
existing counter as a parameter. You can’t do that here, though, because of the way
MvvmCross uses view models to navigate between views—something we’ll look at in
detail later on in this chapter.

Now that you have your Prepare method, let’s implement the Name and Count prop-
erties using the counter as a backing field. You won’t be able to use the SetProperty

www.EBooksWorld.ir

Adding state and behavior to Countr 261

CounterViewModel is used for CounterViewModel is also used
the items in the counters screen. for the new counter screen.
Counter Add Cancel New Counter Done
Coffees 4 +
Runs 1 + Counter Name

Figure 8.16 The counter view model has two uses—it’s an item in the list of
counters, and it’s the view model for the add-new-counter screen.

helper method here—it needs a reference to the underlying field so that it can both
read and write the value. In this case, there’s no underlying field, just a property on the
backing object that can’t be passed by reference. Here’s the code for this.

Listing 8.17 Wrapping the properties on the underlying counter

public string Name
{ The Name property getter returns

get { return counter.Name; } the value from the counter.

set
{
if (Name == value) return; The Name property setter checks to see if the value
counter.Name = value; has actually changed, and if so sets the value on the
RaisePropertyChanged() ; counter and raises a property-changed notification.
) ! J The Count property is read-only, so it
only has a getter that returns the
public int Count => counter.Count; value from the counter.

The getters for both the Name and Count properties are simple pass-through getters—
they just return the value on the underlying counter. The Count property is read-only
(it can only be edited via the + button, so it will be incremented using a command).
The Name property is not read-only as you’ll need to set it when creating a new
counter. It follows the standard logic you saw back in chapter 3—if the value hasn’t
actually changed, do nothing; if it has changed, update the property on the underly-
ing counter and raise a property-changed notification.

Let’s now write some unit tests to verify that we haven’t made any mistakes with this
view model. Create a ViewModels folder in the Countr.Core.Tests project and create a
new class in that folder called CounterViewModelTests. Once again, you’ll need to

www.EBooksWorld.ir

262

8.3.2

CHAPTER 8 Building cross-platform view models

add the MvvmCross NuGet package, so add this to the tests project now. The following
listing shows the the contents of the CounterViewModelTests class.

Listing 8.18 Unit-testing the simple pass-through properties on the view model

using NUnit.Framework;
using Countr.Core.ViewModels;
using Countr.Core.Models;

namespace Countr.Core.Tests.ViewModels
{
[TestFixture]
public class CounterViewModelTests
{

CounterViewModel viewModel;

[Setvp] . Creates a new
public void SetUp() counter view model
{ to use in all tests

viewModel = new CounterViewModel () ;
}

[Test] Creates a new
public void Name_ComesFromCounter () counter with a
{ defined name

// Arrange

var counter = new Counter { Name = "A Counter" };

// Act

viewModel .Prepare (counter) ; <

Prepares the
view model with
the counter

// Assert
Assert.AreEqual (counter.Name, viewModel.Name) ;

} Asserts that the name on the
) view model matches the counter

This is a simple sanity check to ensure that the counter is wired up correctly, and by
running this and watching it pass, you can see that everything is OK. As another sanity
check for the Count property, you can duplicate this test but verify that the count is
correctly passed through. You could also add a test to ensure that the property-
changed notification is raised when setting the Name property, just as we did for the
Number property of SquareRtViewModel. You can see examples in the source code that
accompanies this book.

We now have a working view model for a counter that we can use when creating a
new counter, as well as for the items in the list on the main view of the app.

Collections

We’ve looked at simple, single-value properties on our view model; now let’s turn our
attention to properties that represent collections of data. You've created one view
model to represent a counter, so now you need another view model to represent a list
of counters—CountersViewModel. Start by creating this class in the ViewModels
folder. The following listing shows the initial implementation.

www.EBooksWorld.ir

Adding state and behavior to Countr 263

Listing 8.19 Counters view model constructed using instance of counters service

using MvvmCross.Core.ViewModels;

: : This view model is derived
using Countr.Core.Services;

from the MvvmCross base

namespace Countr.Core.ViewModels view model.
{
public class CountersViewModel : MvxViewModel
{
readonly ICountersService service; The constructor
. . . . takes an
public CountersViewModel (ICountersService service) ICountersService
{))) instance, which
this.service = service; will be used to get
} all the counters.

Again this view model derives from MvxViewModel, and the constructor for the view
model takes an instance of ICountersService (the service in the model layer you cre-
ated in the last chapter), which it will use to load all the counters.

Now that you have your view model, you need to expose the list of counters. The
following listing shows the implementation of this.

Listing 8.20 Exposing counters as observable collection of counter view models

using System.Collections.ObjectModel;

The Counters property is
an ObservableCollection of
CounterViewModel.

public class CountersViewModel : MvxViewModel
{

public CountersViewModel (ICountersService service)
{

Counters = new ObservableCollection<CounterViewModel>(); <——

}

public ObservableCollection<CounterViewModel> Counters { get; } <

This view model exposes a collection of CounterViewModel instances. The collection
is exposed as an ObservableCollection. This is a collection type that implements
INotifyCollectionChanged, an interface that fires an event whenever the collection
is changed. We looked at observable collections in chapter 3, and figure 8.17 recaps
how they can be used.

When you create your views, you can bind this collection to some form of list con-
trol, and whenever the collection changes (such as when you add or delete counters)
the collection-changed event will be fired, causing the binding to update the UI. This
is a read-only property, and it’s initialized when the view model is created—the
instance of ObservableCollection won’t change, just the contents, so there’s no need
to ever change the property’s value or raise a property-changed event. Observable

www.EBooksWorld.ir

264

CHAPTER 8 Building cross-platform view models

Counter

The list is bound to a property called “Counters” on
the view model. The binding looks up a property on
Cakes 2+ the view model called “Counters” and finds it.

Coffees 1+

Runs 7+
The binding also listens for updates to the Counters

collection. When the collection changes, it updates
the list on the Ul.

* View Model

public
List _ _@ipgii_n_g_ _ ObservableCollection<CounterViewModel>
Counters {get;}

Figure 8.17 Collections can be bound to list controls, and when the collection
changes, the list control on the Ul is updated.

collections are ideal when your collection will change, but they’re not necessary if
your collection is fixed and will never change. In the latter case you can store the
items in any collection, such as a List<T>, and expose this property either as a list or
as an IEnumerable<T>.

This observable collection is exposed as a collection of counter view models. The
ICountersService exposes a method to get all the counters from the repository, but
that returns a collection of Counter objects. To make these available as the right type,
you can’t just expose the counters from the service directly. Instead you need to wrap
them in view models. You also need to make a call to the service to load these counters
in a background thread and then update the collection back on the UI thread, as
shown in figure 8.18. The UI can only be updated on the UI thread, so you should
ensure that every update to the observable collection happens on the UI thread.

Ideally, you’d have an async method in your view model that’s called from the UI
thread, and helpfully MvvmCross provides a method you can use, called Initialize.
The Initialize method is a virtual method in the MvxViewModel base class that’s
called by the MvvmCross framework, and it’s in overrides of this method that you set
up your view model.

User wants to All counters
Ul thread are shown
see counters
on Ul

Counters are
loaded
from storage

Background
thread

Figure 8.18 You can load counters on a background thread, but
you need to show them on the Ul thread.

www.EBooksWorld.ir

Adding state and behavior to Countr 265

All screens in your app, regardless of platform, will undergo a lifecycle—they’re
created, shown, hidden, and then destroyed. iOS and Android implement this lifecy-
cle differently, but the basic principle holds true on both platforms. As part of this life-
cycle, after the view has been created and shown, MvvmCross will call Initialize on
the corresponding view model on the UI thread, allowing you to write code to set up
the view model (we’ll look at this view lifecycle in more detail in chapters 9 and 10).
The following listing shows this method and how you can create your view models
inside it.

Listing 8.21 Creating counter view models from counters loaded from service

using System.Threading.Tasks;

bli id Task Initiali e e .
lzu tC override asyne Sas pitialize() Initialize comes from the MvxViewModel
. base class, and it awaits another method.
await LoadCounters() ;
}

public async Task LoadCounters ()
{

var counters = await service.GetAllCounters(); LoadCounters loads the

foreach (var counter in counters) counters from the service and

{ populates the observable
var viewModel = new CounterViewModel () ; collection with view models
viewModel . Prepare (counter) ; prepared with counters.

Counters.Add (viewModel) ;

In the LoadCounters method, you can make a call to the counters service to get all the
counters. Then, for each counter, you can create an instance of CountervViewModel,
prepared using that counter, which in turn is added to the observable collection. The
LoadCounters method will load the counters from a SQLite database (via the service
and repository), and this database access will be on a background thread. This means
that the UI could be fully visible before you’ve loaded your counters, but because
you're using an observable collection, every time you add a counter view model to the
collection, the Ul is updated.

The LoadCounters method gives us the first of the four user flows we identified for
the Countr app. It loads the counters from storage and makes them available to be
shown on the UI (figure 8.19).

No view model is complete without a unit test, so let’s create the fixture now. Cre-
ate a class called CountersvViewModelTests in the ViewModels folder of the
Countr.Core.Tests project. The following listing shows the initial implementation of

Figure 8.19 The first user flow in Countr,

Counters are All counters loading and showing counters, is
User wants to .
see counters loaded from are shown implemented by the LoadCounters
storage on Ul method on the view model.

www.EBooksWorld.ir

266

CHAPTER 8 Building cross-platform view models

this test fixture, creating a mock counters service and using that to create an instance
of the view model to test.

Listing 8.22 Creating an instance of the view model using a mock service

using Countr.Core.Services;
using Countr.Core.ViewModels;
using Mog;

using NUnit.Framework;

namespace Countr.Core.Tests.ViewModels
{
[TestFixture]
public class CountersViewModelTests Creates a moc_k
{ counters service
Mock<ICountersService> countersService;
CountersViewModel viewModel;

[SetUp] Uses the mock
public void SetUp() counters service
{ to create the

countersService = new Mock<ICountersService>(); <— view model

viewModel = new CountersViewModel (countersService.Object) ;

}

You can now test the LoadCounters method to simulate what would happen when this
view model is created by MvwvmCross in the app. The following listing shows an async
unit test (which returns async Task instead of void, so that you can await code inside
it) to test this method.

Listing 8.23 A test to ensure that the view model wraps the counters correctly

using System.Threading.Tasks;

using System.Collections.Generic;

using Countr.Core.Models;

[Test]

public async Task LoadCounters_CreatesCounters()
{

// Arrange

var counters = new List<Counter> .
(Sets up the counters service

to return some counters

new Counter{Name = "Counterl", Count=0},

new Counter{Name = "Counter2", Count=4},
}; Calls LoadCounters on
countersService.Setup(c => c.GetAllCounters()) the view model to create

_ReturnsAsync (counters) ; the counter view models

// Act
await viewModel.LoadCounters() ; <

www.EBooksWorld.ir

833

Adding state and behavior to Countr 267

// Assert

Assert.AreEqual (2, viewModel.Counters.Count) ;

Assert.AreEqual ("Counterl", viewModel.Counters[0].Name); | Asserts that the

Assert.AreEqual (0, viewModel.Counters[0].Count) ; counter view models

Assert.AreEqual ("Counter2", viewModel.Counters[1l].Name); | are created correctly
(

Assert.AreEqual (4, viewModel.Counters[1l].Count) ;

This test starts by creating a list of Counter instances with some dummy data. It then
sets up the mock counter service to return this list when GetAllCounters is called.
Finally, it awaits a call to LoadCounters, and asserts that the list of CountervViewModel
instances contains view models that match the canned data. Run this test now, and you
should see that it passes.

That’s all you need for this view model. This is a standard pattern for master view
models when building a master/detail style app. The master view model loads the
models for its items from a repository, wraps them all in instances of the detail view
model, and exposes them in a collection. If the collection of items can change, they
should be exposed in an observable collection so the UI can be notified of any
changes. If the collection can’t change, a simple IEnumerable<T> or List<T> is fine.

Exposing behavior using commands

SquareRt has very simplistic behavior that could be implemented inside properties.
Countr, on the other hand, has more complex behavior that’s triggered by user inter-
actions, and for this we need to use commands. We looked at commands back in chap-
ter 3, so let’s have a quick recap now.

Commands are objects that encapsulate the ability to execute a particular action,
with optionally the ability to control whether the action can be executed. They imple-
ment ICommand, an interface with an Execute method that executes the action
wrapped up in the command and a CanExecute method that tells you if the command
can be executed or not. You can bind these to user actions on the Ul, such as button
taps, so that when a button is tapped the command is executed. Commands allow you
to provide cross-platform handlers for UI widget events without having to resort to
platform-specific event handlers.

You can use commands for the remaining user flows in Countr. Let’s start by look-
ing at the simpler ones, beginning with incrementing a counter (figure 8.20). Count-
ers are not incremented directly; instead you use the CountersService to ensure the
incremented value is persisted to the repository (figure 8.21).

. Counter is Counter is
User increments . d dated . .
a counter incremente update Figure 8.20 The second user flow in
and stored on the Ul . .
Countr, incrementing a counter

www.EBooksWorld.ir

268

CHAPTER 8 Building cross-platform view models

View |

IncrementCounterCommand |
model

Increment

Service Increment counter Save counter

Figure 8.21 The counters service
increments a counter by first

Renosi incrementing the value and then
epository BN saving the newly incremented value.
The first thing to do is pass an ICountersService to the CounterViewModel.

Listing 8.24 Passing the counters service to the view model

using Countr.Core.Services; A readonly field to store
the ICountersService

public class CounterViewModel : MvxViewModel<Counter>

{

readonly ICountersService service; <

public CounterViewModel (ICountersService service) | The counters service is passed
{ in as a constructor parameter
this.service = service; and stored in the backing field.

—

You’ve changed the constructor, so you need to update the code that uses it in the
CountersViewModel, as in the following listing.

Listing 8.25 Counter service needs to be passed to the constructor

public async Task LoadCounters ()

{

The service is passed to
the constructor of the
CounterViewModel.

foreach (var counter in counters)
{

var viewModel = new CounterViewModel (service) ;

—

Now you have a service. The next listing creates a command that calls it to increment
the counter.

Listing 8.26 Adding a command to the counter view model to increment the counter

using System.Threading.Tasks;

public CounterViewModel (ICountersService service)

{

www.EBooksWorld.ir

Adding state and behavior to Countr 269

—&> IncrementCommand = new MvxAsyncCommand (IncrementCounter) ;

}

public IMvxAsyncCommand IncrementCommand { get; } 4—‘ Apublic property that

async Task IncrementCounter () exposes the command

{

awailt service.IncrementCounter (counter) ; The method called by the
RaisePropertyChanged(() => Count) ; command increments the
} counter using the service

and then raises a

Creates a new MvxAsyncCommand property-changed
wrapping a method notification for the count.

This is the first time you’ve used a command, so let’s break down what’s happening
here, line by line.

public IMvxAsyncCommand IncrementCommand { get; }

This is a public property exposing the command as an IMvxAsyncCommand
interface interface. This interface is derived from ICommand, the base inter-
face for all commands, but it has extra helper methods on it to run async code.
This public property can be bound to a button or similar UI widget.
IncrementCommand = new MvxAsyncCommand (IncrementCounter) ;

As we discussed in chapter 3, there’s no out-of-the-box implementation of
ICommand to use, but all MVVM frameworks provide an implementation. In this
case, we're using MvxAsyncCommand—an implementation of ICommand that
wraps an async method, and it’s this method that’s passed in to the constructor.
When Execute is called on the command, it will call the IncrementCounter
method on the calling thread (if this command is executed from a button tap,
the calling thread will be the UI thread). This command is async, but there’s no
way button-tap events can await commands, so it’s fire-and-forget. It will call the
code on the correct thread, but there’s no way of knowing when the Execute
method has finished. This isn’t a problem for events, butit’s a problem for unit-
testing, where you want to know that the command has completed before
asserting on anything. Helpfully, MvxAsyncCommand also implements IMvxAsync-
Command (which derives from ICommand) and has async versions of the com-
mand methods, such as ExecuteAsync, which will execute the command and
can be awaited. If you were calling a non-async method instead of an async
method for our command’s implementation, you could use MvxCommand.

The Execute and CanExecute methods on ICommand take an object parame-
ter, but in a lot of cases this parameter is null. MvxAsyncCommand and Mvx-
Command encapsulate this by taking methods as their constructor parameters
that have no parameters. If you want to handle a parameter, you can use Mvx-
AsyncCommand<T> and MvxCommand<T>, where the generic type parameter T is
the type of the parameter you expect the command to be called with, and
where the corresponding actions passed to the command constructor will need

www.EBooksWorld.ir

270

CHAPTER 8 Building cross-platform view models

to have parameters of type T. Using a typed parameter instead of object means
MvvmCross will handle the conversion for you, throwing an exception if the
command is called with the wrong parameter type.
= async Task IncrementCounter ()

This is the method called by the command. It’s an async method that will use
the service to increment the counter and save it to the SQLite database on a
background thread (thanks to the SQLite-Net implementation). Then it will
raise a property changed for the Counter property to tell the binding layer to
re-read the value. The value on the underlying counter will be incremented, so
the binding layer will read the new, incremented value and update the number
displayed on screen.

This command is implemented in our cross-platform view model, and it’s crying out

for some unit tests, so let’s add a couple. The following listing shows the code to add

to CounterViewModelTests.

Listing 8.27 Testing the increment command

using System.Threading.Tasks;
using Mog;
using Countr.Core.Services; Defines and

creates a mock

Mock<ICountersService> countersService; < counters service

[SetUp]
public void SetUp ()

{

}

that’s passed to
the view-model
constructor

countersService = new Mock<ICountersService>();
viewModel = new CounterViewModel(countersService.Object);%ﬁ
viewModel .ShouldAlwaysRaiseInpcOnUserInterfaceThread (false) ;
Ensures all property-

changed events are raised

on the current thread

[Test]
public async Task IncrementCounter_IncrementsTheCounter ()

{

}

Awaits the call to

// Act execute
await viewModel.IncrementCommand.ExecuteAsync () ; IncrementCommand
// Assert

countersService.Verify (s => s.IncrementCounter (It.IsAny<Counter>()));

Asserts that the

[Test] counter has been
public async Task IncrementCounter_ RaisesPropertyChanged () incremented by
{ the service

// Arrange
var propertyChangedRaised = false;
viewModel .PropertyChanged +=
(s, e) => propertyChangedRaised = (e.PropertyName == "Count") ;

Listens for property-
changed notifications to
the Count property

www.EBooksWorld.ir

Adding state and behavior to Countr 271

// Act

await viewModel.IncrementCommand.ExecuteAsync () ;

// Assert

Assert.IsTrue (propertyChangedRaised) ; Asserts that the property-
} changed notification has

Awaits the call to execute been raised

IncrementCommand

These tests take advantage of the ExecuteAsync method to await the execution of the
command asserting that the counter has been incremented by the service and that the
property-changed event has been raised. You don’t need to verify that the counter has
actually been incremented—you’ve verified that the increment method on the mock
service has been called, and you’ve also verified in other tests that the actual Increment-
Counter method on the CountersService works, so you can be pretty sure that this
code will all work together in your app and increment the counter.

You have your increment command, so the next command to look at is the one to
delete a counter (figure 8.22). In a lot of master/detail apps, users can delete items
from the list by swiping, so we’ll enable the same functionality here. This means you
need a command on CounterViewModel that allows it to delete itself. You've already
got everything you need in your view model, so the command is pretty simple, as
shown in the following listing.

Counter is Counter is
Uzeéoc:?:teetfs removed removed Figure 8.22 The third user flow
from storage from Ul in Countr, deleting a counter

Listing 8.28 A command in the counter view model to delete the counter

public CounterViewModel (ICountersService service)

{ Creates a new

- J MvxAsyncCommand
DeleteCommand = new MvxAsyncCommand (DeleteCounter) ; for deleting counters

} The public property
public IMvxAsyncCommand DeleteCommand { get; } for the command

async Task DeleteCounter ()
{ The command deletes the

await service.DeleteCounter (counter) ; counter from the service.

So far this command is pretty simple, and it’s not that different from what you’ve
already seen. It’s an async command that calls the counters service to delete the
counter. Once you've added this command, add a unit test for it. (If you get stuck,
there’s an example in the source code that accompanies this book.)

This isn’t quite the whole picture, though. This command deletes the counter from
the repository, and you know that if the counter is removed from the Observable-
Collection of counters held by the CountersvViewModel, the Ul will update, but we’re

www.EBooksWorld.ir

272

834

CHAPTER 8 Building cross-platform view models

missing the bit in between. How does the CountersViewModel know to remove the
counter from its collection? It doesn’t know, so you need to tell it, and the best way to
do that is via messaging.

Messaging

In our coffee shop, we have a server who takes coffee orders from customers and
writes them on slips of paper, which they pin up somewhere, and we have baristas who
pick up these pieces of paper in sequence and make the coffees. This is quite loosely
coupled—it doesn’t matter who pins the slips of paper up; the baristas just take them
and make the drinks, one after the other. As our coffee shop gets more popular, we
could employ multiple servers taking orders, or more baristas, and nothing needs to
change. We’ll just have more people pinning up slips of paper, and more people tak-
ing them off. The drinks are still made in order, and we still have a loose coupling
between server and barista.

We can follow a similar pattern in our apps by using a publish-subscribe model. In
our coffee shop we have servers publishing orders on slips of paper, and baristas sub-
scribing to these slips of paper. We can have parts of our app publishing messages and
other parts subscribing to those messages and responding accordingly (figure 8.23).

Publisher —» Subscriber
Messenger /
]
| Message |
Publisher —> \ Subscriber

Figure 8.23 A messenger allows different components of an app to publish or subscribe to messages.

M. e
I

We could do exactly this for the delete command—when the counter is deleted, a
message could be published to a queue of some description, and the counters view
model could subscribe to this queue, get the message that a counter has been deleted,
and update its collection accordingly, as shown in figure 8.24.

IMvxMessenger

CountersService CountersChangedMessage CountersViewModel

Figure 8.24 Using a messenger to send messages from the counters service to the counters view
model when the list of counters changes

Most MVVM frameworks provide a messaging service of some sort—something a class

can publish messages to and subscribe to messages from. MvwvmCross has one available
as another NuGet package, so add the MvvmCross.Plugin.Messenger NuGet package

www.EBooksWorld.ir

Adding state and behavior to Countr 273

[BN] Add Packages

Official NuGet Gallery |

[Quicross.plugin.messenger G))_]

MvvmCross.Plugin.Messenger

MvvmCross is the .NET MVVM framework
for cross-platform solutions, including
Xamarin 108, Xamarin Android, Xamarin
Forms, Windows and Mac.

Figure 8.25 Adding the MvvmCross Messenger plugin NuGet package to the Countr.Core project

(figure 8.25) to all the projects in the Countr solution, selecting the same version as
the other MvwmCross NuGet packages.

Messenger is an MvvmCross plugin component—an additional component that
provides extra useful functionality. Plugins are tightly integrated into MvvmCross;
they're even automatically registered in the IoC container just by adding the NuGet
package to your app (MvvmCross finds the plugins by using reflection and registers
them inside its startup code). You can use this Messenger plugin to publish messages
from your counters service when a counter is deleted. You can then subscribe to these
messages from the counters view model, and whenever you receive a message, you can
reload the counters.

When subscribing to messages, you need to be able to filter them so that you only
receive the ones you're interested in, and in the MvvmCross Messenger this is based
on the class type of the message. There’s a base message type, MvxMessage, and you
derive from this for each type of message you want to implement. You then publish a
message as an instance of your message class. On the subscriber side, you subscribe
based on a specific type, and you handle each received message either on the UI
thread or on a background thread.

To implement this, you’ll need to dip back down to the model layer briefly. Let’s
start by creating a message type. Add a new class to the Services folder called Counters-
ChangedMessage, and add the following code.

Listing 8.29 A message you can publish, telling anyone that the counters have changed

using MvvmCross.Plugins.Messenger;

namespace Countr.Core.Services This message derives
(from the MvxMessage

public class CountersChangedMessage : MvxMessage base class.

{
public CountersChangedMessage (object sender)
: base(sender)

The base class takes the sender
of the message as a constructor

0O parameter.

www.EBooksWorld.ir

274

CHAPTER 8 Building cross-platform view models

This class defines the message, so you can publish it whenever you delete a counter.
The following listing shows the changes to the CountersService.

Listing 8.30 Publishing the counters-changed message every time a counter is deleted

using MvvmCross.Plugins.Messenger;
The messenger comes from

a constructor parameter

readonly IMvxMessenger messenger; . .
and is stored in a field.

public CountersService (ICountersRepository repository,

IMvxMessenger messenger) This method now
(needs to be async
this.messenger = messenger; and to await the
’ ' Delete call.
} Whenever a
public async Task DeleteCounter (Counter counter) counter is
{ deleted, the
await repository.Delete(counter).ConfigureAwait (false); me$agew
messenger.Publish(new CountersChangedMessage (this)) ; published.

To use the Messenger, just add a constructor parameter of type IMvxMessenger to your
view model. The plugin is automatically registered in the IoC container, so you can just
add it as a constructor parameter, and it’ll automatically be populated when the IoC
container creates the counters service. Whenever a counter is deleted, the Publish
method is called with an argument of an instance of this new message type.

The original version of DeleteCounter used to just return the Task returned from
Delete, but now that you're doing work after this call, you need to mark the method
as async, await the call to Delete, and use ConfigureAwait (false), because it doesn’t
matter what thread the rest of the method runs on.

You now need to handle this message in the counters view model, as shown in the
next listing.

Listing 8.31 Subscribing to the new message type

using MvvmCross.Plugins.Messenger; A field to store a
subscription token

readonly MvxSubscriptionToken token;
The messenger comes from

public CountersViewModel (ICountersService service, a constructor parameter.
IMvxMessenger messenger)

Subscribes to all
CountersChangedMessage
messages on the Ul thread

token = messenger
. SubscribeOnMainThread<CountersChangedMessage>
(async m => await LoadCounters());

}

public async Task LoadCounters () LoadCounters has been
{ tweaked to clear all
Counters.Clear () ; counters before reloading.

www.EBooksWorld.ir

Adding state and behavior to Countr 275

In CountersViewModel you're subscribing on the main thread (the UI thread) for all
messages of type CountersChangedMessage, and when one is received, the Load-
Counters method is run. The code for LoadCounters has been changed slightly to
clear all counters before loading, so that you don’t keep adding the same counters to
the list again and again. You're not going to have many counters in the list, so clearing
and reloading all the counters shouldn’t be too slow.

This may seem like overkill, using a Messaging component to detect changes in the
counters service, when you could just add an event to the service that the view model
subscribes to. But there are advantages to using the Messenger plugin:

Weak subscription—You’ll notice that the SubscribeOnMainThread method
returns a MvxSubscriptionToken that you store as a field. Subscribing to mes-
sages is a weak subscription, in that the messenger doesn’t hold a reference to
the subscriber. This means that the garbage collector can collect your view
model whenever your code is finished with it; the Messenger won’t be holding a
reference that keeps the view model alive. If you’d used events, you’d have to
manually unsubscribe from the events before the garbage collector could col-
lect the view model, and this is something that’s easy to forget to do. The sub-
scription token keeps the subscription alive; as soon as the token is garbage
collected, the subscription ends. You can also unsubscribe at any time by dispos-
ing of the token using its Dispose method.

Threading—When you subscribe to a message, you can choose to handle the
messages on the Ul thread using SubscribeOnMainThread or a background
thread using SubscribeOnThreadPoolThread. This means you can handle mes-
sages using the appropriate thread. With CountersChangedMessage, you need
to handle it on the UI thread so that you can update the collection. If you’d
used an event for this, you’d need to find a way to ensure the event was always
handled on the UI thread—that’s not easy to do in your view models.

Loose coupling—By using a messenger instead of events, you can loosely couple
the publisher to the subscriber. This way, anything can subscribe to the mes-
sages and not care where the message came from. You could refactor your code
to publish the change messages from the repository instead of the service, and
everything would still work. You could add more view models or services that lis-
ten to the counters-changed message and respond accordingly, and they
wouldn’t need to know about the counters service.

Messages let parts of your app communicate without being tightly coupled

Messages are very powerful. You can create as many message types as you need
and add properties to them to help you pass data around. In this app there’s one
message type, and when it’s received you clear and reload all counters.

www.EBooksWorld.ir

276

CHAPTER 8 Building cross-platform view models

(continued)

For an app with only a few counters, this is fine, but for an app with a lot of items in
the master list, you'd probably want to be a bit smarter. For example, you could have
multiple message types. You could have one message type for a deleted item, with
a property on it identifying the item that was deleted. When this is received, just the
one item would be removed from the master list. You could then have another mes-
sage type for when a new item is created, with a property storing the item that was
added. When this is received, the new item could be added to the correct position in
the master list.

Now that you’ve added messages, it’s time for a unit test. The current unit tests
won’t compile with the new constructor parameter added to the view models, so you’ll
need to start by mocking out the messenger in both CountersViewModelTests and
CountersServiceTests. The following listing shows the code for doing this, so make
these changes to both unit tests.

Listing 8.32 Mocking out the messenger

using MvvmCross.Plugins.Messenger;

Mock<IMvxMessenger> messenger;

[SetUp]
public void SetUp()
{

messenger = new Mock<IMvxMessenger> () ;

}

After adding this code to both unit-test classes, add the messenger mock to the con-
structor calls for each view model by passing messenger.Object as the required
parameter. You can then test that the message is published when a counter is deleted
from the service by using the following code in CountersServiceTests.

Listing 8.33 Testing that the message is published when a counter is deleted

[SetUp]
public void SetUp()
{

Passes the mock to the

service = new CountersService(repo.Object, A
service constructor

messenger.Object) ;
}

[Test]

public async Task DeleteCounter_PublishesAMessage ()

{
// Act ?elet:; a counter
await service.DeleteCounter (new Counter()); rom the service

www.EBooksWorld.ir

Adding state and behavior to Countr 277

// Assert
messenger.Verify (m => m.Publish

J Verifies that the messenger
(It.IsAny<CountersChangedMessage>()));

publishes a message

You've verified that the service publishes a message, so now let’s verify that Counters-
ViewModel handles the message correctly. The first thing to do is set this up, as shown
in the following listing.

Listing 8.34 Setting up the messenger for unit-testing

using System;

Action<CountersChangedMessage> publishAction; .

An action to store
[Setup] the subscription
public void SetUp () Sets up the subscribe
{ method on the messenger

. so the action is stored
messenger = new Mock<IMvxMessenger> () ;
messenger.Setup (m => m.SubscribeOnMainThread
(It.IsAny<Action<CountersChangedMessage>> (),
It.IsAny<MvxReference> (),
It.IsAny<string>()))
.Callback<Action<CountersChangedMessage>,
MvxReference,
string>((a, m, s) => publishAction = a);

viewModel = new CountersViewModel (countersService.Object,
messenger .Object) ;

When the SubscribeOnMainThread method inside the view model is called, it’s passed
an Action<CountersChangedMessage>. In the unit test, you set up this method with a
callback that’s invoked whenever the SubscribeOnMainThread method is called, and
in this callback you store the action that’s passed to the method. This allows you to
simulate the messenger flow.

In the real messenger, the subscription action is stored, and when a message is
published, all subscription actions for that message type are called. In the unit test you
can simulate this by storing the subscription action and calling it to simulate a mes-
sage being published. The following listing shows the code for a unit test that uses this
approach.

Listing 8.35 Unit-testing that the counters are reloaded when a message is received

[Test]
public void ReceivedMessage_lLoadsCounters ()

{
Sets up a mock

return value from
GetAllCounters

// Arrange
countersService.Setup(s => s.GetAllCounters())
.ReturnsAsync (new List<Counter>()) ;

www.EBooksWorld.ir

278

8.3.5

CHAPTER 8 Building cross-platform view models

// Act
publishAction.Invoke (new CountersChangedMessage (this)) ;
// Assert
countersService.Verify (s => s.GetAllCounters()); .
} Y Verifies that after the

message is published, the

. . counters are reloaded
Calls the subscription action to

simulate a message being published

That’s three user flows down, one more to go—adding a new counter. This user flow
shows a new screen, so it’s time to look into view-model navigation.

Navigation

Back in chapter 3, we looked at two navigation patterns for MVVM: view-first and view-
model-first. View-first is where views drive navigation, with each view triggering the
loading of its view model, and where navigation consists of one view loading another.
View-modelfirst is where the view models drive navigation, with the view model trig-
gering which view is loaded, and where navigation is one view model showing another.

Like a lot of MVVM frameworks, MvwvmCross uses view-model-first navigation. The
first screen of the app to be shown is defined by registering the app’s start view model.
Showing and closing views is controlled by a navigation service that view models can
use. MvwmCross has a built-in presenter that will find the relevant view for a view model
based on its name, so when you show a view model, it will find the relevant view and
show that on screen.

You can think of navigating between screens as being like paper stacking up. Each
screen is like a sheet of paper, and when you navigate from one screen to another, the
new screen is stacked on top, like placing a new piece of paper on top of the stack.
When you close a screen, it comes back off the stack of paper, revealing the piece
underneath (figure 8.26). You’ll have seen this many times over in the apps you use,
such as email apps.

When you’re using MvvmCross, this is driven via the view models, so you navigate
from one view model to another, and the view for the new view model is stacked on
top. When you close a view model, the top view is removed from the stack. MvwvmCross
also allows you to pass data from one view model to the next as they stack up, although
it doesn’t have anything out of the box for passing data back as you close view models
off the top of the stack.

Our last user flow is adding a new counter, and this involves navigating from the
counters master list screen to a new counter detail screen at the tap of a button (fig-
ure 8.27). From this screen, the user can either cancel adding a new counter and nav-
igate back to the master list, or they can enter the name of the new counter, save it,
and navigate back.

Let’s start by looking at the MvvmCross navigation service.

www.EBooksWorld.ir

Adding state and behavior to Countr 279

Inbox Inbox Bob
Bob Hifrom Bob Bob HifromBob Hi from Bob
Mum Happy Birthday Mum Happy Birthday Hi there, just wanted to drop
you a line to see how you
are doing.
Mail me back!
Bob
| Reply | | Forward | | Delete |
I. Navigate to next view model 2. View appears on top of the current view

Figure 8.26 Navigation is like sheets of paper being stacked up and unstacked.

Counter is New counter
User adds User enters :
. created is shown
a counter counter details
and stored on the Ul

Figure 8.27 The final user flow in Countr, adding a new a counter

NAVIGATION SERVICE

MvvmCross has a built-in navigation service whose sole responsibility is to handle the
navigation between view models in your app, providing view-model-first navigation.
When you navigate to a view model, it will look up and navigate to the corresponding
view inside your platform-specific code based on its name (for example, navigating to
MyViewModel will cause it to look for a corresponding view called MyView). This naviga-
tion service is exposed via the IMvxNavigationService interface, which is automati-
cally registered inside the IoC container for you by the MvvmCross startup code. This
means you can import this interface into your view models and access navigation from
your cross-platform code.

This navigation service has a number of capabilities. You can use it to navigate to a
view model, navigate and pass data into the target view model, navigate and await a
result from the target view model, or close a view model to go back to the previous
view. You can also subscribe to events so you're notified when navigation happens.
MvvmCross even supports URI-based navigation, so you can create deep navigation
stacks with multiple levels (such as long signup flows) and navigate up and down with
ease. We’re only going to touch on a couple of features of the navigation service
here—navigating to a view model passing some data, and closing a view model to nav-
igate back—but you can read more about the MvvmCross navigation service in the
MvvmCross documentation at http://mng.bz/t]7a.

www.EBooksWorld.ir

http://mng.bz/tJ7a

280

CHAPTER 8 Building cross-platform view models

You navigate to a view model using the Navigate method on the navigation ser-
vice. There are a number of different variants of this, but the simplest takes a parame-
ter of the type of view model you want to navigate to. For example, Navigate (typeof
(MySecondViewlModel)) would navigate to the MySecondvViewModel view model. This is
an async method that you can await. When you call this method, it will

Create a new instance of the target view model, injecting all constructor param-
eters using the IoC container.

Call Prepare on the view model, passing in a parameter if needed.

Find the relevant view for the view model and create an instance of that.

Show the view, binding the view model to the view.

Call Initialize on the view model.

One of the other variants of interest to us is Navigate<TParameter> (Type type,
TParameter parameter). This will navigate to the view model with the type specified
in the first parameter, and prepare it with the parameter passed in. The target view
model needs to be derived from MvxViewModel<TParameter>, an abstract base class
that provides a method you have to override, called Prepare, which has a parameter of
TParameter. It’s this method that’s called to prepare the view model. This call to Prepare
happens on the Ul thread before the view has been created. After the view is created,
another method, Initialize, is called, and it’s an async method, so it’s a great place
to load data or perform other asynchronous tasks. You may recognize this base view
model—it’s the one we used for CounterViewModel, meaning you can navigate to this
view model and prepare it with a Counter.

The final method on the navigation service of interest to us is the Close method.
This method takes a view model to be closed, and it will close the view that shows the
given view model. This is normally called from inside a view model, passing this as
the parameter to close the current view model, but you can also use it to close other
view models if you need to. For example, if you’re showing a view model as a progress
dialog during a long-running action, you could close it from the calling view model.

SETTING THE STARTUP VIEW MODEL

To get the app navigation working correctly, the first thing you need to do is set up
your app start (listing 8.36). When the app is loaded, MvwmCross will first show a
splash screen while it’s initializing. Then it will find the startup view-model type, and
using its built-in presenter it’ll find the relevant type for the first view, create the view,
create the view model, and show the view.

For Countr, the master list is the first screen that you want to show, so the app
should start up using CountersViewModel. You can tell MvvmCross to use this view
model when the app starts up by registering it as the app start in the App class in the
core project. Delete the FirstViewModel class from the ViewModels folder, as you
don’t need it any more, and make the following change.

www.EBooksWorld.ir

Adding state and behavior to Countr 281

Listing 8.36 Setting up the counters view model as the app start

public override void Initialize()

{

RegisterNavigationServiceAppStart<ViewModels.CountersViewModel> () ;

Once you've deleted FirstViewModel, the iOS app will no longer compile, which
shouldn’t be too much of a problem because you’re not running the mobile apps at
this point, just verifying your code using unit tests. If you want to be able to success-
fully build everything, just comment out the whole ViewDidLoad method in the
FirstView class in the Views folder of the Countr.iOS app. We’ll be working on the
view layer for the iOS app in chapter 11.

NAVIGATING TO A NEW VIEW

Next you need to add a command to the master view model in order to show the
detail view. MvwmCross has a navigation service that handles the navigation between
view models. This service is exposed as the IMvxNavigationService interface, and it’s
automatically registered in the IoC container so you can easily add it as a constructor
parameter on the view model. Once you have access to this navigation service, you can
use it to show a different view model.

The following listing shows the code you need to add to the CountersviewModel.

Listing 8.37 Adding a command to show the counter view model

using Countr.Core.Models; Injects and stores an instance of
using MvvmCross.Core.Navigation; the MvvmCross navigation service
readonly IMvxNavigationService navigationService; <

public CountersViewModel (ICountersService service,
IMvxMessenger messenger,
IMvxNavigationService navigationService) <—

this.navigationService = navigationService; <
—> ShowAddNewCounterCommand = new MvxAsyncCommand (ShowAddNewCounter) ;

}

public IMvxAsyncCommand ShowAddNewCounterCommand { get; } <

async Task ShowAddNewCounter () A public property for

{ the new command
await navigationService.Navigate (typeof (CounterViewModel),

new Counter()); Shows the counter view
model, initialized with a
new counter

Creates the new

command

www.EBooksWorld.ir

282

Executes the
command

CHAPTER 8 Building cross-platform view models

This view model now takes an instance of the IMvxNavigationService interface as
part of its constructor and stores it in a field. This code also adds a new async com-
mand that uses the async Navigate method on the navigation service to navigate to
the CounterViewModel, passing a new Counter as the preparation parameter.

UNIT-TESTING NAVIGATION TO A NEW VIEW

As well as being a powerful way to navigate between view models, the navigation ser-
vice also allows for easy unit-testing. It’s made available via an interface, so it’s trivial to
mock out. You can easily verify that your new command shows the relevant view model
by adding some more tests to the CountersViewModelTests unit-test class, as follows.

Listing 8.38 Unit-testing the show-add-new-counter command

using MvvmCross.Core.Navigation;

... Creates a mock
Mock<IMvxNavigationService> navigationService; 4 | of the navigation
service
[SetUp]
public void SetUp ()
{
navigationService = new Mock<IMvxNavigationService>(); <t—
viewModel = new CountersViewModel (countersService.Object,
messenger .Object,
navigationService.Object) ;
) Passes the mock navigation

o service into the view model
[Test]
public async Task ShowAddNewCounterCommand_ShowsCounterViewModel ()
{
// Act
await viewModel.ShowAddNewCounterCommand.ExecuteAsync () ;
// Assert
navigationService.Verify(n => n.Navigate (typeof (CounterViewModel) ,
It.IsAny<Counter>(),
null));

Asserts that the correct view
model was navigated to

For this unit test you need to create a new mock of IMvxNavigationService, and once
it’s created, you pass it into the view model under test. You can then add a test to exe-
cute the new command using the ExecuteAsync method exposed by MvxAsync-
Command, and verify that it calls Navigate on the service to prove that the right view
model was navigated to. ExecuteAsync isn’t part of the standard ICommand interface;
instead, it’s a helper method on the MvwmCross commands, and it calls the underly-
ing async method passed to the constructor of the command, allowing you to await
the completion of the command.

www.EBooksWorld.ir

Adding state and behavior to Countr 283

CLOSING A VIEW AND NAVIGATING BACK

You now have the master view model set up as your app start, and you have a com-
mand that navigates to the counter view model using a new instance of Counter. The
next thing you need is to allow the user to cancel or save the new counter. To do this,
you need to add two commands to the counter view model. The following listing
shows the code you need to add to CounterViewModel.

Listing 8.39 Adding save and cancel commands to the view model
using MvvmCross.Core.Navigation;
readonly IMvxNavigationService navigationService; <+

public CounterViewModel (ICountersService service,
IMvxNavigationService navigationService) <

this.navigationService = navigationService; <«

Injects and stores
an instance of the

MvvmCross
navigation service

CancelCommand = new MvxAsyncCommand (Cancel) ;
SaveCommand = new MvxAsyncCommand (Save) ;

}

public IMvxAsyncCommand CancelCommand { get; 1}
public IMvxAsyncCommand SaveCommand { get; }

async Task Cancel () Closes the view model,
{ removing the view
await navigationService.Close(this); from the stack

}

async Task Save()

{
await service.AddNewCounter (counter.Name) ; Adds a new counter and then
await navigationService.Close(this); closes the view model

The cancel command just calls Close (a method on the IMvxNavigationService that
closes a view model) passing in the view model to close (the current view model). This
causes the presenter to remove the current view from the stack and show the previous
one. The save command uses the counters service to create a new counter, and then
closes the view model using the navigation service.

The CounterViewModel constructor has changed, so you’ll need to add the code in
listing 8.40 to pass the navigation service when creating instances of this view model
inside CountersViewModel.

Listing 8.40 Passing the navigation service to the counter view model

public async Task LoadCounters ()
{

foreach (var counter in counters)

www.EBooksWorld.ir

284

CHAPTER 8 Building cross-platform view models

var viewModel = new CounterViewModel (service,
navigationService) ;

Passes the navigation service
through to the
CounterViewModel constructor

This is almost everything you need. The only thing missing is code that shows the new
counter on the master view. You don’t need to worry about the counter view model
telling the counters view model that there’s a new counter. Instead you can use the
same pattern for adding as you did for deletes. You can change the service to publish a
message when a new counter is added, keeping the master list up to date. The follow-
ing listing shows the code to add to the counters service.

Listing 8.41 The master list will automatically update

public async Task<Counter> AddNewCounter (string name)

{ Once a counter is

R J saved, publish the
messenger.Publish (new CountersChangedMessage (this)); message
return counter;

UNIT-TESTING SAVING COUNTERS AND CLOSING VIEWS
You have your commands, so now you need to unit-test them. For the save command
you need to verify that the counter is saved to the counters service and that the view
model is closed. For the cancel command you need to verify that the counter isn’t
saved before the view model is closed. You can verify saving using the mock counters
service already set up in the unit tests, and you can verify closing the view model using
a mock navigation service.

The following code shows the test for the save command, so add it to the Counter-
ViewModelTests class.

Listing 8.42 Testing the save command

using MvvmCross.Core.Navigation;

Mock<IMvxNavigationService> navigationService;

Sets up the
.- mock
[SetUp] navigation
public void SetUp() service

{

navigationService = new Mock<IMvxNavigationService>();
viewModel = new CounterViewModel (countersService.Object,
navigationService.Object) ;

}

[Test]

www.EBooksWorld.ir

8.4

A quick roundup 285

public async Task SaveCommand_SavesTheCounter ()

{

// Arrange Executes the
var counter = new Counter { Name = "A Counter" }; command
viewModel .Prepare (counter) ;
// Act
await viewModel.SaveCommand.ExecuteAsync () ; Verifies that
// Assert the counter
countersService.Verify(c => c.AddNewCounter ("A Counter")) ; was saved
navigationService.Verify(n => n.Close(viewModel)) ;

) QT Verifies that the view

model was closed

The code to test the cancel command is nearly identical, except you need to verify
that the save wasn’t called, as shown in the following listing.

Listing 8.43 Testing the cancel command

[Test]
public void CancelCommand_DoesntSaveTheCounter ()
{

// Arrange

var counter = new Counter { Name = "A Counter" }; i
viewModel . Prepare (counter) ; Verifies that
// Act AddNewCounter

viewModel .CancelCommand.Execute () ; was never called

// Assert

countersService.Verify(c => c.AddNewCounter (It.IsAny<string>()),
Times.Never ()) ;

navigationService.Verify(n => n.Close(viewModel)) ;

A quick roundup

This is pretty much everything you need. You've created a number of new classes for
the two apps. Table 8.1 shows the classes for the SquareRt app, and table 8.2 shows
them for the Countr app.

Table 8.1 The classes and interfaces created for the SquareRt app

Name Description

SquareRtViewModel The view model for the square-root app containing
the state for the input number, the result, and the
behavior for performing the calculation whenever
the number changes. This class optionally con-
tains value conversion.

DoubleToStringValueConverter A value converter that convert from double val-
ues in the view model to string values used by
the view, and vice versa.

SquareRtViewModelTests Unit tests for SquareRtViewModel.

www.EBooksWorld.ir

286

CHAPTER 8 Building cross-platform view models

Table 8.1 The classes and interfaces created for the SquareRt app (continued)

Description

DoubleToStringValueConverterTests Unit tests for
DoubleToStringValueConverter.

Table 8.2 The classes and interfaces created for the Countr app

Name Description

CounterViewModel The view model representing an individual counter and the state of
the counter, such as its name and count, and encapsulating
behavior for incrementing and deleting a counter, as well as saving
a counter from a detail view and navigating back to the list view
when the user saves the new counter or cancels the creation.

CountersViewModel The view model representing the master list of counters, repre-
sented as an observable collection of CounterViewModel
instances. This observable collection will tell the view to update
whenever the list of counters changes. This view model also
encapsulates the behavior for navigating to a detail view to add a
new counter, as well as detecting changes in the list of counters
stored in the repository via a message.

CountersChangedMessage A message that’s published over the MvwmCross Messenger
whenever the list of messages stored in the repository changes,
such as when adding or deleting a counter.

CounterViewModelTests Unit tests for CounterviewModel.

CountersViewModelTests Unit tests for CountersviewModel.

You now have complete view models for both of the apps, covering the state and
behavior needed to implement all the user flows. You’ve also created unit tests to vali-
date your code.

The unit tests you’'ve built here are not only great validators for your code, they
allow you to simulate the Ul and verify that your app will work before you’ve even fin-
ished the app. When a property is changed, the binding layer will update the view, so
testing that a property-changed event is fired allows you to test that the Ul is updated.
By testing commands, you can verify what will happen when users tap buttons in the
UL By testing navigation, you can verify that your app will correctly flow from one view
to another. You can write unit tests that simulate everything a user can do with your
app, and most importantly you can write these tests just once. Xamarin is all about
building cross-platform mobile apps with large amounts of code sharing, and that’s
what you're seeing with these view models—you can write and unit-test the Ul logic
once, yet still use it to build apps that target both iOS and Android.

In the next chapters we’ll start building the platform-specific view layers, starting
with Android.

www.EBooksWorld.ir

Summary 287

Summary

In this chapter you learned

State and behavior can be easily unit-tested.

When the types used by the view are different from the model, you need to pro-
vide conversion either inside a property or in a value converter.

The master/detail pattern is a nice way to show lists of data, with a separate
screen that shows more details of an item in the list.

MvvmCross has lifecycle methods to let you know when your view model is
being shown, and it has a way to pass data to a view model before it’s shown.
Messaging is a great way to let parts of your app communicate with each other
in a loosely coupled way.

MvvmCross has a navigation service to handle view-model-first navigation.

You also learned how to

Add state to a view model

Convert property values both in place and using value converters

Unit-test properties and property-changed notifications

Implement behavior in commands

Create master and detail view models

Use messaging to communicate between classes in your apps in a loosely cou-
pled way

Navigate between view models, passing data using the MvvmCross navigation
service

Unit-test navigation

www.EBooksWorld.ir

Building stmple
Android views

This chapter covers

Android resources

Creating layout resources in the Designer and by editing
the source

Adding images to support multiple screen densities
Creating views using activities
The activity lifecycle

In the previous two chapters we built the model and view-model layers for our two
apps. Now it’s time to turn our attention to the view layer. This layer uses platform-
specific code, so we're going to look at it platform by platform—in this chapter and
the next, we’ll look at Android (figure 9.1), followed by iOS in chapters 11 and 12.
We’ll start here by looking at how to build an Android UI. Then we’ll build the UI
for SquareRt. In the next chapter we’ll look at Countr, and you’ll see a slightly more
advanced UI that uses recycler views to show lists of data, menus, and navigation.

288

www.EBooksWorld.ir

9.1

9.1.1

Building Android Uls

When building any Ul-based app on any

289

platform, you need to understand the con- i0OS | Android
cepts behind the app structure. Each plat- Acp | ci |i| c |
form has a different structure. On Android layer !
. .o . | C# (.NET Standard) |
you structure your apps using activities—sin- :
e — e
1
gle screens in your app that each represent a Ul layer ’ o H o | View
single focused thing that a user would want e é"é = d
G . . e inding ~ ~----------
to do. When building Android apps using Ullogic == = View
MVVM, an activity is the same as a view. layer | C# (NET Standard) | model
As well as containing code, Android apps
also contain resources. These are non-code Business | o, (NET Standard) Model

items, including images and XML files that ~ 'ogiclayer

define things such as constants, Ul styling,
and the layout of the Uls that can be used by

Figure 9.1 The view layer in an MVVM app

activities to create the screens that users see. is written in platform-specific code.

Building Android Uls

Let’s start by thinking about the SquareRt app—an app with a single view.
shows the UI that we’ll build.

Figure 9.2

When building a view, there are two parts to it: the activ-
. . quare|
ity that encapsulates the full screen view, and the actual UL

You can define Uls in code, but that’s not the normal way to
do it. Instead, the usual and easiest way is by using a layout
file—an XML file that defines which controls should be

shown on the UI and how they’re laid out. These are A ’

“inflated” by activities at runtime to create the UI that you
see on screen (note that this happens at runtime, not com-

pile time, so if your XML is wrong you may not know it until

20

your app is running and crashes). If you’ve done any HTML
or Windows desktop development using XAML, these lay- Figure 9.2 Th
out files should be similar to what you've seen before. SquareRt app

Material design

e Ul for the

Before we design a UI on Android, it’s worth looking into Google’s design guide-
lines—material design (https://material.io). These guidelines aren’t targeted specifi-
cally at mobile apps, but at apps for all screen sizes, be they websites, desktop apps, or
mobile apps, both on smaller screens like phones and larger devices like tablets, lap-
tops, desktops, or even TVs. You’ve probably already seen Google’s material design in

action—Google uses it for all their mobile apps, like Google Maps or Gmail.

Material design has three key concepts:

Material is the metapho—When you build your app, you should think about the

real-world materials that would be used if your app were a physical

www.EBooksWorld.ir

thing, and

https://material.io

290

CHAPTER 9 Building simple Android views

try to emulate that in the way users navigate
and the way the app is drawn. The main guide-
line here is to think in terms of pen and paper,
as this is a good metaphor for most apps.

For example, in a mail app, your inbox is
like a list on a piece of paper, and when you
select an email, another piece of paper would
move on top of it containing the mail message
(as shown in figure 9.3). By thinking in this
way, you can imagine a sense of depth: the
mail is on top of the list, so if it’s showing full
screen, it should appear by sliding over the
top; if it’s in a pop up, that pop up should have
an elevation above the list, shown on the flat
screen of your device using a shadow. When
you close it, you're pushing the paper away, off
the current stack.

Inbox | Bob
Hi from Bob

Bob

Mum Hi there, just wanted to drop
you a line to see how you
are doing.

Mail me back!

Bob

l Reply H Forward H Delete]

Figure 9.3 Use material such as a
stack of paper as a metaphor for
your design.

Bold, graphic, intentional—Your Ul should be crisp and clean, following the prin-
cipals of print-based design. It should use a well-defined color palette of com-
plementing and contrasting colors, have plenty of white space, and try to

provide emphasis for user actions, to help make it
obvious to users how they should interact with the
app. The meaning of any icons should be clear to
the user and should be consistent with other apps
or real-world actions.

A good example is the floating action button, a
popular pattern when building Android apps. This
is a crisp, round button with a contrasting color
and clear icon to make it stand out and indicate its
behavior. It’s used to provide a quick link to the
most popular action a user would want to take
during a particular activity. Thinking again about
our mail app, a floating Reply button when read-

Bob
Hi from Bob

Hi there, just wanted to drop
you a line to see how you
are doing.

Mail me back!

Bob

®

ing an email provides a quick way for the user to

Figure 9.4 Adistinct floating
action button is a clear way to

interact with the message they’re reading, as indicate a popular user action.

shown in figure 9.4.

Motion provides meaning—Your app should use the motion of on-screen compo-

nents to convey that a user-initiated action is happening, and to convey feed-

back to the user after the action is complete.

For example, when you tap an item in the mail app’s inbox, the message
you’ve selected could be opened by sliding it in on top of the inbox. This page

www.EBooksWorld.ir

9.1.2

Building Android Uls 291

moving across the screen reflects how you might pull a document from your
desk onto the stack of papers you're currently reading. It’s a motion that not
only indicates to the user that something has happened, but it tries to mimic
the real-world behavior of the material—in this case, paper. When the user taps
the floating Reply button, it could reduce its elevation as it’s being tapped, and
then spring back up again, mimicking the real-world behavior of a button (fig-
ure 9.5). It could even animate from there by changing from a floating circle to
a square that expands to become the reply activity, again using motion to show
the user that something has happened, representing the flow from tapping the

Reply button to writing a reply.
Figure 9.5 Screen objects

should move like real objects

Button moves down as it’s pressed, to help users feel comfortable
then springs back up. with them.

It’s highly recommended that you follow Google’s material design standards when
building an Android app. It makes your app look consistent with other Android apps,
and done well it can add an amazing sense of polish to your finished app—thousands
of hours of UX research has gone into creating material design. The Android controls
are already styled based on this standard, so you can adopt it easily.

Layout files

Let’s start by defining the UI in a layout file. Open the SquareRt solution from the
previous chapter, expand the SquareRt.Droid project, and set it as the startup project.
Then delete the dummy first view that was created automatically when you created the
new solution by deleting the Views\FirstView.cs, Views\BaseView.cs, and Resources\
layout\FirstView.axml files. You won’t need them.

To create the layout for your UI, head to the Resources\ayout folder and add a
new Android layout file called squarert_view.axml—you’ll find these under “Android”
in the Add New File dialog box.

USE LOWERCASE NAMES FOR XML FILES IN ANDROID The name may seem
odd—squarert_view, all in lowercase—but Android prefers lowercase for the
filenames of XML files. In some cases, if you refer to one XML resource from
another, the reference will fail if the name isn’t all in lowercase.

When this file opens up, it will be in a layout editor with two tabs—Designer and
Source tabs. The Designer gives you a design surface where you can add layouts and
controls from a toolbox and manipulate their properties. The Source code tab shows
the raw XML that makes up this layout.

www.EBooksWorld.ir

292

9.1.3

9.1.4

CHAPTER 9 Building simple Android views

The Designer can be a bit troublesome, giving errors when you try to display the
layout and taking a long time to render everything. It depends on the same capabili-
ties as the Google emulators installed with Xamarin—if your emulator works, the
Designer should work. Your app will need to build in order for the layouts to render,
so if you're having problems with the Designer, make sure you rebuild everything.

Layout files are a type of what Android refers to as resources—files that aren’t code
but are a part of your app.

Resources

Android apps are a mixture of two parts: code and resources. Resources are every-
thing in your app that’s not code, including images and XML files for defining lay-
outs, strings, colors, and constants. Resources in Xamarin apps are identical to
resources in native Java Android apps—you define them the same way, and you can
even reuse the content. For example, if you wanted to port a Java Android app to a
Xamarin app, you’d simply copy the entire resource directory over and use the
resources as is. The only thing you’d need to change is the file extensions for any lay-
out files. Although these are XML files, in Xamarin apps the file extension .axml is
used—this is so that the IDE can distinguish between layout files and normal XML
files, and load them in a visual designer instead of a raw XML editor.

Resource locations

All resources live in particular subfolders of the Resources folder, with the subfolder
names defining the types of resources. For example, all layout files must live in the
Resources\layout folder (or variants thereof); images live in Resources\drawable.
Android has a fixed set of resource folders, some of which are listed in table 9.1. You
can find the full list in the “App Resources” API guide: http://mng.bz/N41B.

Table 9.1 Available resource folders on Android

Folder Description

drawable Images such as .png files or vector images

mipmap Images used for the launcher icon only (the icon that’s shown on the Android home
screen). This is optional—you can always use the drawable folder for launcher
images. The reason for having a separate folder from drawable is that your launch
screen can use higher density images than your device.

layout Ul layouts
menu XML files that define menus and toolbars
values XML files containing constant values, including colors, strings, and styles. These files

are parsed, and the values defined in them can be retrieved easily in code.

www.EBooksWorld.ir

http://mng.bz/N41B

9.1.5

Building Android Uls 293

Resources are identified by resource references, which are constant values that are avail-
able in both C# code and inside XML. In C#, these resource references get converted
to constant values in an autogenerated file called Resource.designer.cs, which lives in
the root of the Resources folder. (You should never need to touch this file as it’s auto-
generated from the resources and is rewritten every time resources are changed.)
These C# constants are put into a hierarchy of Resource.<type>.<id>, whereas in
XML files these are named in the format @<type>\<id>. For example, if you have an
image file in the drawable folder called Line.png, the resource reference for this in
C# is Resource.Drawable.Line, and in XML it’s @drawable\Line.

Some resource files are self-contained resources in that the one file contains an
entire resource. These include images and layout files—each image is a single image,
and each layout file is a single layout. The resource reference for these kinds of files is
@<type>\<filename without extension> or Resource.<type>.<filename without
extension> in C# code (so @drawable\Line or Resource.Drawable.Line).

Other resource files contain multiple resources defined in XML, and the identifi-
ers for these are set based on the type of the resource and the value of a name attribute
on the resource. For example, if you open the Resources\alues\strings.xml file, it will
contain the following:

<string name="ApplicationName">SquareRt</string>

This defines a string resource called ApplicationName with the value of SquareRt,
and the reference for this will be @string\ApplicationName or Resource.String
.ApplicationName.

Editing layout files

You can edit layouts in two ways: using the Designer built into Visual Studio, or by edit-
ing the source XML directly.

The Designeris a drag-and-drop tool with a toolbox containing all the different con-
trols you can add, as well as a Properties window (referred to as the Properties pad in
Visual Studio for Mac) for configuring the views once they’re on the layout (figure
9.6). The Designer is based on the layout on a real device, and you can choose the
device type you want to use so you can see how your layout looks on various screen
sizes and orientations. You can even choose the API level to see how your app would
look on older or newer OS versions. The Designer is powerful, making it very easy to
build your layouts and see exactly what your app will look like.

If you prefer to edit the source XML by hand, you can use the tabs at the bottom of
the Designer to switch to the Source view and code up or tweak your layout manually.

If you look at the app in the Designer, it will seem pretty empty. If you flip to the
Source tab, you’ll see an XML file with a single element in it, as shown in figure 9.1.

www.EBooksWorld.ir

CHAPTER 9 Building simple Android views

You can choose the device type, OS version,
and orientation used to display the layout The toolbox contains all the views and view
you’re designing. groups that you can add to your layout.

[SouareRt.Droid » [] Debug » (] Visual Studic for Mac Preview Q- ¢
wiew,axmi LI D T Tookie

WISRL T -

L
L]
E D Devics: Newus 8 3 Version: Android 7.11 (v26] 2 Theme: MyTheme © !I:‘l - |- s 8 - Q =

QRQAQ |4 pu

= o o
| L§ @ Brankpoinis /@ Erers o Tasks

(/

You can flip between the designer and The Properties pad allows you to configure the
a source view for editing the raw XML. properties on the selected view in the layout.

Figure 9.6 The Designer can be used to visually position and configure the views and view groups
in your layout.

Listing 9.1 The contents of a new, blank layout file

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="match_parent" />

This layout file has a single LinearLayout element in it with a number of properties
from the android XML namespace set. This is one of the standard Android UI ele-
ments. There are two types of these Ul elements:

= Views (not to be confused with MVVM views) are controls—UI components tha