
www.EBooksWorld.ir

www.EBooksWorld.ir

World Headquarters
Jones & Bartlett Learning
5 Wall Street
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To
contact Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website,
www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations,
professional associations, and other qualified organizations. For details and specific discount information, contact
the special sales department at Jones & Bartlett Learning via the above contact information or send an email to
specialsales@jblearning.com.

Copyright © 2015 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system,
without written permission from the copyright owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that
of Jones & Bartlett Learning, LLC. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement or
recommendation by Jones & Bartlett Learning, LLC and such reference shall not be used for advertising or
product endorsement purposes. All trademarks displayed are the trademarks of the parties noted herein.
Foundations of Algorithms, Fifth Edition is an independent publication and has not been authorized, sponsored,
or otherwise approved by the owners of the trademarks or service marks referenced in this product.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or
participate in the activities represented in the images. Any screenshots in this product are for educational and
instructive purposes only. Any individuals and scenarios featured in the case studies throughout this product may be
real or fictitious, but are used for instructional purposes only.

Production Credits
Executive Publisher: William Brottmiller
Publisher: Cathy L. Esperti
Acquisitions Editor: Laura Pagluica
Editorial Assistant: Brooke Yee
Director of Production: Amy Rose
Associate Production Editor: Sara Fowles
Marketing Manager: Cassandra Peterson
VP, Manufacturing and Inventory Control: Therese Connell
Composition: diacriTech
Cover Design: Kristin E. Parker
Director of Photo Research and Permissions: Amy Wrynn
Cover Image: © satori13/iStock/Thinkstock (top and bottom); © mastaka/iStock/Thinkstock (title background)
Printing and Binding: Edwards Brothers Malloy
Cover Printing: Edwards Brothers Malloy

Library of Congress Cataloging-in-Publication Data
Neapolitan, Richard E., author.
Foundations of algorithms.

www.EBooksWorld.ir

mailto:info@jblearning.com
http://www.jblearning.com
http://www.jblearning.com
mailto:specialsales@jblearning.com

—Fifth edition / Richard Neapolitan, PhD, Northwestern University.
p ; cm
Includes bibliographical references and index.
ISBN 978-1-284-04919-0 (pbk.)
1. Algorithms. 2. Constructive mathematics. 3. Computational complexity. I. Title.
QA9.58.N43 2015
518’.1—dc23

2013050988

6048
Printed in the United States of America
18 17 16 15 14 10 9 8 7 6 5 4 3 2 1

www.EBooksWorld.ir

In memory of my friend Jack, who made life fun
Richard E. Neapolitan

www.EBooksWorld.ir

Preface
This fifth edition of Foundations of Algorithms retains the features that made the
previous editions successful. As in those editions, I still use pseudocode and not
actual C++ code. The presentation of complex algorithms using all the details of any
programming language would only cloud the students’ understanding of the
algorithms. Furthermore, the pseudocode should be understandable to someone
versed in any high-level language, which means it should avoid details specific to
any one language as much as possible. Significant deviations from C++ are discussed
on pages 5–7 of the text. This text is about designing algorithms, complexity analysis
of algorithms, and computational complexity (analysis of problems). It does not
cover other types of analyses, such as analysis of correctness. My motivation for
writing this book was my inability to find a text that rigorously discusses complexity
analysis of algorithms, yet is accessible to computer science students at mainstream
universities such as Northeastern Illinois University. The majority of Northeastern’s
students have not studied calculus, which means that they are not comfortable with
abstract mathematics and mathematical notation. The existing texts that I know of use
notation that is fine for a mathematically sophisticated student, but is a bit terse for
Northeastern’s student body.

To make this text more accessible, I do the following:

• assume that the student’s mathematics background includes only college algebra
and discrete structures;

• use more English description than is ordinarily used to explain mathematical
concepts;

• give more detail in formal proofs than is usually done;
• provide many examples.

This text is targeted to a one-semester upper-level undergraduate or graduate
course in the design and analysis of algorithms. It is intended to provide students with
a basic of understanding of how to write and analyze algorithms and to impart to them
the skills needed to write algorithms using the standard algorithm design strategies.
Previously, these included divide-and-conquer, dynamic programming, the greedy
approach, backtracking, and branch-and-bound. However, in recent years the use of
genetic algorithms has become increasingly important to the computer scientist. Yet a
student would only be introduced to such algorithms if the student took a course
related to artificial intelligence. There is nothing inherent in genetic algorithms that
relegates them to the domain of artificial intelligence. So, to better provide a
repertoire of current useful techniques, I have added a chapter on genetic algorithms
and genetic programming in this edition.

Because the vast majority of complexity analysis requires only a knowledge of

www.EBooksWorld.ir

finite mathematics, in most of the discussions I am able to assume only a background
in college algebra and discrete structures. That is, for the most part, I do not find it
necessary to rely on any concepts learned only in a calculus course. Often students
without a calculus background are not yet comfortable with mathematical notation.
Therefore, wherever possible, I introduce mathematical concepts (such as “big O”)
using more English description and less notation than is ordinarily used. It is no mean
task finding the right mix of these two; a certain amount of notation is necessary to
make a presentation lucid, whereas too much vexes many students. Judging from
students’ responses, I have found a good mix.

This is not to say that I cheat on mathematical rigor. I provide formal proofs for all
results. However, I give more detail in the presentation of these proofs than is usually
done, and I provide a great number of examples. By seeing concrete cases, students
can often more easily grasp a theoretical concept. Therefore, if students who do not
have strong mathematical backgrounds are willing to put forth sufficient effort, they
should be able to follow the mathematical arguments and thereby gain a deeper grasp
of the subject matter. Furthermore, I do include material that requires knowledge of
calculus (such as the use of limits to determine order and proofs of some theorems).
However, students do not need to master this material to understand the rest of the
text. Material that requires calculus is marked with a symbol in the table of
contents and in the margin of the text; material that is inherently more difficult than
most of the text but that requires no extra mathematical background is marked with a

 symbol.

Prerequisites
As mentioned previously, I assume that the student’s background in mathematics
includes only college algebra and finite mathematics. The actual mathematics that is
required is reviewed in Appendix A. For computer science background, I assume that
the student has taken a data structures course. Therefore, material that typically
appears in a data structures text is not presented here.

Chapter Contents
For the most part, I have organized this text by technique used to solve problems,
rather than by application area. I feel that this organization makes the field of
algorithm design and analysis appear more coherent. Furthermore, students can more
readily establish a repertoire of techniques that they can investigate as possible ways
to solve a new problem. The chapter contents are as follows:

www.EBooksWorld.ir

• Chapter 1 is an introduction to the design and analysis of algorithms. It includes
both an intuitive and formal introduction to the concept of order.

• Chapter 2 covers the divide-and-conquer approach to designing algorithms.
• Chapter 3 presents the dynamic programming design method. I discuss when

dynamic programming should be used instead of divide-and-conquer.
• Chapter 4 discusses the greedy approach and ends with a comparison of the

dynamic programming and greedy approaches to solving optimization problems.
• Chapters 5 and 6 cover backtracking and branch-and-bound algorithms

respectively.
• In Chapter 7 I switch from analyzing algorithms to computational complexity,

which is the analysis of problems. I introduce computation complexity by
analyzing the Sorting Problem. I chose that problem because of its importance,
because there are such a large variety of sorting algorithms, and, most
significantly, because there are sorting algorithms that perform about as well as the
lower bound for the Sorting Problem (as far as algorithms that sort only by
comparisons of keys). After comparing sorting algorithms, I analyze the problem of
sorting by comparisons of keys. The chapter ends with Radix Sort, which is a
sorting algorithm that does not sort by comparison keys.

• In Chapter 8 I further illustrate computational complexity by analyzing the
Searching Problem. I analyze both the problem of searching for a key in a list and
the Selection Problem, which is the problem of finding the kth-smallest key in a
list.

• Chapter 9 is devoted to intractability and the theory of NP. To keep this text
accessible yet rigorous, I give a more complete discussion of this material than is
usually given in an algorithms text. I start out by explicitly drawing the distinction
between problems for which polynomial-time algorithms have been found,
problems that have been proven to be intractable, and problems that have not been
proven to be intractable but for which polynomial-time algorithms have never been
found. I then discuss the sets P and NP, NP-complete problems, and NP-equivalent
problems. I have found that students are often left confused if they do not explicitly
see the relationships among these sets. I end the chapter with a discussion of
approximation algorithms.

• Chapter 10 covers genetic algorithms and genetic programming. I provide both the
theory and practical applications such as a financial trading algorithm.

• Chapter 11 covers number-theoretic algorithms, including Euclid’s algorithm, and
the new polynomial-time algorithm for determining whether a number is prime.

• Chapter 12 covers an introduction to parallel algorithms, including parallel
architectures and the PRAM model.

• Appendix A reviews the mathematics that is necessary for understanding the text.
• Appendix B covers techniques for solving recurrences. The results in Appendix B

are used in our analyses of divide-and-conquer algorithms in Chapter 2.

www.EBooksWorld.ir

• Appendix C presents a disjoint set data structure that is needed to implement two
algorithms in Chapter 4.

Pedagogy
To motivate the student, I begin each chapter with a story that relates to the material
in the chapter. In addition, I use many examples and end the chapters with ample
exercises, which are grouped by section. Following the section exercises are
supplementary exercises that are often more challenging.

To show that there is more than one way to attack a problem, I solve some
problems using more than one technique. For example, I solve the Traveling
Salesperson Problem using dynamic programming, branch-and-bound, and an
approximation algorithm. I solve the 0-1 Knapsack Problem using dynamic
programming, backtracking, and branch-and-bound. To further integrate the material, I
present a theme that spans several chapters, concerning a salesperson named Nancy
who is looking for an optimal tour for her sales route.

Course Outlines
As mentioned previously this text is intended for an upper-level undergraduate or
graduate course in algorithms.

In a one semester course I recommend covering the following material in this
order:

Chapter 1: All
Appendix B: Sections B.1, B.3
Chapter 2: Sections 2.1–2.5, 2.8
Chapter 3: Sections 3.1–3.4, 3.6
Chapter 4: Sections 4.1, 4.2, 4.4
Chapter 5: Sections 5.1, 5.2, 5.4, 5.6, 5.7
Chapter 6: Sections 6.1, 6.2
Chapter 7: Sections 7.1–7.5, 7.7, 7.8.1, 7.8.2, 7.9
Chapter 8: Sections 8.1.1, 8.5.1, 8.5.2
Chapter 9: Sections 9.1–9.4
Chapter 10: Sections 10.1–10.3.2

Chapters 2-6 contain several sections, each solving a problem using the design
method presented in the chapter. I cover the ones of most interest to us, but you are
free to choose any of the sections.

www.EBooksWorld.ir

You may not be able to cover any of Chapters 11 and 12. However, the material in
Chapter 12 is quite accessible once students have studies the first ten chapters.
Students with a solid mathematics background, such as that obtained by studying
calculus, should be able to read Chapter 11 on their own.

Instructor Resources
An Instructor’s Manual, PowerPoint presentations, and complete solutions manual
are available for qualified instructors. Jones & Bartlett Learning reserves the right to
evaluate all requests.

Acknowledgments
I would like to thank all those individuals who read the original manuscript and
provided many useful suggestions. In particular, I thank my colleagues William
Bultman, Jack Hade, Mary and Jim Kenevan, Stuart Kurtz, Don La Budde, and
Miguel Vian, all of whom quite readily and thoroughly reviewed whatever was asked
of them. I further thank the academic and professional peer reviewers, who made this
a far better text through their insightful critiques. Many of them certainly did a much
more thorough job than we would have expected. They include David D. Berry,
Xavier University; David W. Boyd, Valdosta State University; Vladimir Drobot, San
Jose State University; Dan Hirschberg, University of California at Irvine; Xia Jiang,
Northeastern Illinois University; Raghu Karinthi, West Virginia University; Peter
Kimmel, Northeastern Illinois University; C. Donald La Budde, Northeastern Illinois
University; Y. Daniel Liang, Indiana Purdue University at Fort Wayne; David
Magagnosc, Drexel University; Robert J. McGlinn, Southern Illinois University at
Carbondale; Laurie C. Murphy, University of Mississippi; Paul D. Phillips, Mount
Mercy College; H. Norton Riley, California State Polytechnic University, Pomona;
Majid Sarrafzadeh, Northwestern University; Cliff Shaffer, Virginia Polytechnical
Institute and State University; Nancy Van Cleave, Texas Tech University; and William
L. Ziegler, State University of New York, Binghamton. Finally, I would like to thank
Taylor and Francis, in particular Randi Cohen, for allowing me to include material
from my 2012 text Contemporary Artificial Intelligence in this text’s new Chapter
10, titled Genetic Algorithms and Genetic Programming.

Errors

www.EBooksWorld.ir

There are sure to be some errors in an endeavor of this magnitude. If you find any
errors or have any suggestions for improvements, I would certainly like to hear from
you. Please send your comments to Rich Neapolitan. Email: RE-
Neapolitan@neiu.edu. Thanks.

R. N.

www.EBooksWorld.ir

mailto:RE-Neapolitan@neiu.edu

Contents

Preface

About the Author

1 Algorithms: Efficiency, Analysis, and Order
1.1 Algorithms
1.2 The Importance of Developing Efficient

Algorithms
1.2.1 Sequential Search Versus Binary Search
1.2.2 The Fibonacci Sequence

1.3 Analysis of Algorithms
1.3.1 Complexity Analysis
1.3.2 Applying the Theory
1.3.3 Analysis of Correctness

1.4 Order
1.4.1 An Intuitive Introduction to Order
1.4.2 A Rigorous Introduction to Order

 1.4.3 Using a Limit to Determine Order
1.5 Outline of This Book

Exercises

2 Divide-and-Conquer
2.1 Binary Search
2.2 Mergesort
2.3 The Divide-and-Conquer Approach

www.EBooksWorld.ir

2.4 Quicksort (Partition Exchange Sort)
2.5 Strassen’s Matrix Multiplication Algorithm
2.6 Arithmetic with Large Integers

2.6.1 Representation of Large Integers:
Addition and Other Linear-Time
Operations

2.6.2 Multiplication of Large Integers
2.7 Determining Thresholds
2.8 When Not to Use Divide-and-Conquer

Exercises

3 Dynamic Programming
3.1 The Binomial Coefficient
3.2 Floyd’s Algorithm for Shortest Paths
3.3 Dynamic Programming and Optimization

Problems
3.4 Chained Matrix Multiplication
3.5 Optimal Binary Search Trees
3.6 The Traveling Salesperson Problem
3.7 Sequence Alignment

Exercises

4 The Greedy Approach
4.1 Minimum Spanning Trees

4.1.1 Prim’s Algorithm
4.1.2 Kruskal’s Algorithm
4.1.3 Comparing Prim’s Algorithm with

Kruskal’s Algorithm
4.1.4 Final Discussion

www.EBooksWorld.ir

4.2 Dijkstra’s Algorithm for Single-Source Shortest
Paths

4.3 Scheduling
4.3.1 Minimizing Total Time in the System
4.3.2 Scheduling with Deadlines

4.4 Huffman Code
4.4.1 Prefix Codes
4.4.2 Huffman’s Algorithm

4.5 The Greedy Approach versus Dynamic
Programming: The Knapsack Problem

4.5.1 A Greedy Approach to the 0-1 Knapsack
Problem

4.5.2 A Greedy Approach to the Fractional
Knapsack Problem

4.5.3 A Dynamic Programming Approach to
the 0-1 Knapsack Problem

4.5.4 A Refinement of the Dynamic
Programming Algorithm for the
0-1 Knapsack Problem

Exercises

5 Backtracking
5.1 The Backtracking Technique
5.2 The n-Queens Problem
5.3 Using a Monte Carlo Algorithm to Estimate the

Efficiency of a Backtracking Algorithm
5.4 The Sum-of-Subsets Problem
5.5 Graph Coloring
5.6 The Hamiltonian Circuits Problem
5.7 The 0-1 Knapsack Problem

www.EBooksWorld.ir

5.7.1 A Backtracking Algorithm for the 0-1
Knapsack Problem

5.7.2 Comparing the Dynamic Programming
Algorithm and the Backtracking
Algorithm for the 0-1 Knapsack
Problem

Exercises

6 Branch-and-Bound
6.1 Illustrating Branch-and-Bound with the 0-1

Knapsack Problem
6.1.1 Breadth-First Search with Branch-and-

Bound Pruning
6.1.2 Best-First Search with Branch-and-

Bound Pruning
6.2 The Traveling Salesperson Problem

 6.3 Abductive Inference (Diagnosis)
Exercises

7 Introduction to Computational Complexity: The
Sorting Problem

7.1 Computational Complexity
7.2 Insertion Sort and Selection Sort
7.3 Lower Bounds for Algorithms that Remove at

Most One Inversion per Comparison
7.4 Mergesort Revisited
7.5 Quicksort Revisited
7.6 Heapsort

www.EBooksWorld.ir

7.6.1 Heaps and Basic Heap Routines
7.6.2 An Implementation of Heapsort

7.7 Comparison of Mergesort, Quicksort, and
Heapsort

7.8 Lower Bounds for Sorting Only by Comparison
of Keys

7.8.1 Decision Trees for Sorting Algorithms
7.8.2 Lower Bounds for Worst-Case Behavior
7.8.3 Lower Bounds for Average-Case

Behavior
7.9 Sorting by Distribution (Radix Sort)

Exercises

8 More Computational Complexity: The Searching
Problem

8.1 Lower Bounds for Searching Only by
Comparisons of Keys

8.1.1 Lower Bounds for Worst-Case Behavior
8.1.2 Lower Bounds for Average-Case

Behavior
8.2 Interpolation Search
8.3 Searching in Trees

8.3.1 Binary Search Trees
8.3.2 B-Trees

8.4 Hashing
8.5 The Selection Problem: Introduction to

Adversary Arguments
8.5.1 Finding the Largest Key
8.5.2 Finding Both the Smallest and Largest

Keys
www.EBooksWorld.ir

8.5.3 Finding the Second-Largest Key
8.5.4 Finding the kth-Smallest Key
8.5.5 A Probabilistic Algorithm for the

Selection Problem
Exercises

9 Computational Complexity and Intractability: An
Introduction to the Theory of NP

9.1 Intractability
9.2 Input Size Revisited
9.3 The Three General Problem Categories

9.3.1 Problems for Which Polynomial-Time
Algorithms Have Been Found

9.3.2 Problems That Have Been Proven to Be
Intractable

9.3.3 Problems That Have Not Been Proven
to Be Intractable but for Which
Polynomial-Time Algorithms
Have Never Been Found

9.4 The Theory of NP
9.4.1 The Sets P and NP
9.4.2 NP-Complete Problems
9.4.3 NP-Hard, NP-Easy, and NP-Equivalent

Problems
9.5 Handling NP-Hard Problems

9.5.1 An Approximation Algorithm for the
Traveling Salesperson Problem

9.5.2 An Approximation Algorithm for the
Bin-Packing Problem

Exercises
www.EBooksWorld.ir

10 Genetic Algorithms and Genetic Programming
10.1 Genetics Review
10.2 Genetic Algorithms

10.2.1 Algorithm
10.2.2 Illustrative Example
10.2.3 The Traveling Salesperson Problem

10.3 Genetic Programming
10.3.1 Illustrative Example
10.3.2 Artificial Ant
10.3.3 Application to Financial Trading

10.4 Discussion and Further Reading
Exercises

11 Number-Theoretic Algorithms
11.1 Number Theory Review

11.1.1 Composite and Prime Numbers
11.1.2 Greatest Common Divisor
11.1.3 Prime Factorization
11.1.4 Least Common Multiple

11.2 Computing the Greatest Common Divisor
11.2.1 Euclid’s Algorithm
11.2.2 An Extension to Euclid’s Algorithm

11.3 Modular Arithmetic Review
11.3.1 Group Theory
11.3.2 Congruency Modulo n
11.3.3 Subgroups

11.4 Solving Modular Linear Equations
11.5 Computing Modular Powers
11.6 Finding Large Prime Numbers

11.6.1 Searching for a Large Prime
www.EBooksWorld.ir

11.6.2 Checking if a Number Is Prime
11.7 The RSA Public-Key Cryptosystem

11.7.1 Public-Key Cryptosystems
11.7.2 The RSA Cryptosystem
Exercises

12 Introduction to Parallel Algorithms
12.1 Parallel Architectures

12.1.1 Control Mechanism
12.1.2 Address-Space Organization
12.1.3 Interconnection Networks

12.2 The PRAM Model
12.2.1 Designing Algorithms for the CREW

PRAM Model
12.2.2 Designing Algorithms for the CRCW

PRAM Model
Exercises

Appendix A Review of Necessary Mathematics 565
A.1 Notation

A.2 Functions
A.3 Mathematical Induction
A.4 Theorems and Lemmas
A.5 Logarithms

A.5.1 Definition and Properties of
Logarithms

A.5.2 The Natural Logarithm
A.6 Sets
A.7 Permutations and Combinations

www.EBooksWorld.ir

A.8 Probability
A.8.1 Randomness
A.8.2 The Expected Value
Exercises

Appendix B Solving Recurrence Equations: With
Applications to Analysis of Recursive
Algorithms

B.1 Solving Recurrences Using Induction
B.2 Solving Recurrences Using the Characteristic

Equation
B.2.1 Homogeneous Linear Recurrences
B.2.2 Nonhomogeneous Linear Recurrences
B.2.3 Change of Variables (Domain

Transformations)
B.3 Solving Recurrences by Substitution
B.4 Extending Results for n, a Power of a Positive

Constant b, to n in General
B.5 Proofs of Theorems

Exercises

Appendix C Data Structures for Disjoint Sets

References

Index

www.EBooksWorld.ir

About the Author

Richard E. Neapolitan, PhD, North-western University
Richard Neapolitan is a professor in the Division of Biomedical Informatics,
Department of Preventive Medicine, Northwestern University Feinberg School of
Medicine. His research interests include probability and statistics, artificial
intelligence, cognitive science, and applications of probabilistic modeling to fields
such as medicine, biology, and finance. Dr. Neapolitan has given talks and conducted
seminars throughout the world, including Australia and Hungary. His online tutorial
concerning causal learning has been viewed over 10,000 times and has a 5-star rating
(see http://videolectures.net/kdd/).

Dr. Neapolitan is a prolific author and has published in the most prestigious,
widely used broad area of reasoning under uncertainty. He has written six books,
including the seminal 1989 Bayesian network text, Probabilistic Reasoning in
Expert Systems; this textbook, Foundations of Algorithms (1996, 1998, 2003, 2011,
2013), which has been translated into several languages and is one of the most
widely-used algorithms texts worldwide; Learning Bayesian Networks (2004);
Probabilistic Methods for Financial and Marketing Informatics (2007);
Probabilistic Methods for Bioinformatics (2009); and Contemporary Artificial
Intelligence (2012). His approach to textbook writing is innovative; his books have
the reputation of making difficult concepts easy to understand while still remaining
rigorous and thought-provoking.

www.EBooksWorld.ir

http://videolectures.net/kdd/

Chapter 1

Algorithms: Efficiency, Analysis, and
Order

This text is about techniques for solving problems using a computer. By “technique”
we do not mean a programming style or a programming language but rather the
approach or methodology used to solve a problem. For example, suppose Barney
Beagle wants to find the name “Collie, Colleen” in the phone book. One approach is
to check each name in sequence, starting with the first name, until “Collie, Colleen”
is located. No one, however, searches for a name this way. Instead, Barney takes
advantage of the fact that the names in the phone book are sorted and opens the book
to where he thinks the C’s are located. If he goes too far into the book, he thumbs
back a little. He continues thumbing back and forth until he locates the page
containing “Collie, Colleen.” You may recognize this second approach as a modified
binary search and the first approach as a sequential search. We discuss these
searches further in Section 1.2. The point here is that we have two distinct
approaches to solving the problem, and the approaches have nothing to do with a
programming language or style. A computer program is simply one way to implement
these approaches.

Chapters 2 through 6 discuss various problem-solving techniques and apply those
techniques to a variety of problems. Applying a technique to a problem results in a
step-by-step procedure for solving the problem. This step-by-step procedure is
called an algorithm for the problem. The purpose of studying these techniques and
their applications is so that, when confronted with a new problem, you have a
repertoire of techniques to consider as possible ways to solve the problem. We will
often see that a given problem can be solved using several techniques but that one
technique results in a much faster algorithm than the others. Certainly, a modified
binary search is faster than a sequential search when it comes to finding a name in a
phone book. Therefore, we will be concerned not only with determining whether a

www.EBooksWorld.ir

problem can be solved using a given technique but also with analyzing how efficient
the resulting algorithm is in terms of time and storage. When the algorithm is
implemented on a computer, time means CPU cycles and storage means memory. You
may wonder why efficiency should be a concern, because computers keep getting
faster and memory keeps getting cheaper. In this chapter, we discuss some
fundamental concepts necessary to the material in the rest of the text. Along the way,
we show why efficiency always remains a consideration, regardless of how fast
computers get and how cheap memory becomes.

1.1 Algorithms
So far we have mentioned the words “problem,” “solution,” and “algorithm.” Most
of us have a fairly good idea of what these words mean. However, to lay a sound
foundation, let’s define these terms concretely.

A computer program is composed of individual modules, understandable by a
computer, that solve specific tasks (such as sorting). Our concern in this text is not the
design of entire programs, but rather the design of the individual modules that
accomplish the specific tasks. These specific tasks are called problems. Explicitly,
we say that a problem is a question to which we seek an answer. Examples of
problems follow.

Example 1.1
The following is an example of a problem:

Sort a list S of n numbers in nondecreasing order. The answer is the numbers in
sorted sequence.

By a list we mean a collection of items arranged in a particular sequence. For
example,

is a list of six numbers in which the first number is 10, the second is 7, and so on. In
Example 1.1 we say the list is to be sorted in “nondecreasing order” instead of
increasing order to allow for the possibility that the same number may appear more
than once in the list.

Example 1.2
The following is an example of a problem:

www.EBooksWorld.ir

Determine whether the number x is in the list S of n numbers. The answer is yes if
x is in S and no if it is not.

A problem may contain variables that are not assigned specific values in the
statement of the problem. These variables are called parameters to the problem. In
Example 1.1 there are two parameters: S (the list) and n (the number of items in S). In
Example 1.2 there are three parameters: S, n, and the number x. It is not necessary in
these two examples to make n one of the parameters because its value is uniquely
determined by S. However, making n a parameter facilitates our descriptions of
problems.

Because a problem contains parameters, it represents a class of problems, one for
each assignment of values to the parameters. Each specific assignment of values to
the parameters is called an instance of the problem. A solution to an instance of a
problem is the answer to the question asked by the problem in that instance.

Example 1.3
An instance of the problem in Example 1.1 is

The solution to this instance is [5, 7, 8, 10, 11, 13].

Example 1.4
An instance of the problem in Example 1.2 is

The solution to this instance is, “yes, x is in S.”

We can find the solution to the instance in Example 1.3 by inspecting S and
allowing the mind to produce the sorted sequence by cognitive steps that cannot be
specifically described. This can be done because S is so small that at a conscious
level, the mind seems to scan S rapidly and produce the solution almost immediately
(and therefore one cannot describe the steps the mind follows to obtain the solution).
However, if the instance had a value of 1,000 for n, a person would not be able to
use this method, and it certainly would not be possible to convert such a method of
sorting numbers to a computer program. To produce a computer program that can
solve all instances of a problem, we must specify a general step-by-step procedure
for producing the solution to each instance. This step-by-step procedure is called an

www.EBooksWorld.ir

algorithm. We say that the algorithm solves the problem.

Example 1.5
An algorithm for the problem in Example 1.2 is as follows. Starting with the first
item in S, compare x with each item in S in sequence until x is found or until S is
exhausted. If x is found, answer yes; if x is not found, answer no.

We can communicate any algorithm in the English language as we did in Example
1.5. However, there are two drawbacks to writing algorithms in this manner. First, it
is difficult to write a complex algorithm this way, and even if we did, a person would
have a difficult time understanding the algorithm. Second, it is not clear how to create
a computer language description of an algorithm from an English language
description of it.

Because C++ is a language with which students are currently familiar, we use a
C++-like pseudocode to write algorithms. Anyone with programming experience in
an Algol-like imperative language such as C, Pascal, or Java should have no
difficulty with the pseudocode.

We illustrate the pseudocode with an algorithm that solves a generalization of the
problem in Example 1.2. For simplicity, Examples 1.1 and 1.2 were stated for
numbers. However, in general we want to search and sort items that come from any
ordered set. Often each item uniquely identifies a record, and therefore we commonly
call the items keys. For example, a record may consist of personal information about
an individual and have the person’s social security number as its key. We write
searching and sorting algorithms using the defined data type keytype for the items. It
means the items are from any ordered set.

The following algorithm represents the list S by an array and, instead of merely
returning yes or no, returns x’s location in the array if x is in S and returns 0
otherwise. This particular searching algorithm does not require that the items come
from an ordered set, but we still use our standard data type keytype.

Algorithm 1.1
Sequential Search
Problem: Is the key x in the array S of n keys?
Inputs (parameters): positive integer n, array of keys S indexed from 1 to n, and a key
x.
Outputs: location, the location of x in S (0 if x is not in S).

www.EBooksWorld.ir

The pseudocode is similar, but not identical, to C++. A notable exception is our
use of arrays. C++ allows arrays to be indexed only by integers starting at 0. Often
we can explain algorithms more clearly using arrays indexed by other integer ranges,
and sometimes we can explain them best using indices that are not integers at all. So
in pseudocode we allow arbitrary sets to index our arrays. We always specify the
ranges of indices in the Inputs and Outputs specifications for the algorithm. For
example, in Algorithm 1.1 we specified that S is indexed from 1 to n. Since we are
used to counting the items in a list starting with 1, this is a good index range to use for
a list. Of course, this particular algorithm can be implemented directly in C++ by
declaring

and simply not using the S[0] slot. Hereafter, we will not discuss the implementation
of algorithms in any particular programming language. Our purpose is only to present
algorithms clearly so they can be readily understood and analyzed.

There are two other significant deviations from C++ regarding arrays in
pseudocode. First, we allow variable-length two-dimensional arrays as parameters
to routines. See, for example, Algorithm 1.4 on page 8. Second, we declare local
variable-length arrays. For example, if n is a parameter to procedure example, and
we need a local array indexed from 2 to n, we declare

The notation S[2..n] means an array S indexed from 2 to n is strictly pseudocode;
that is, it is not part of the C++ language.

Whenever we can demonstrate steps more succinctly and clearly using
mathematical expressions or English-like descriptions than we could using actual

www.EBooksWorld.ir

C++ instructions, we do so. For example, suppose some instructions are to be
executed only if a variable x is between the values low and high. We write

Suppose we wanted the variable x to take the value of variable y and y to take the
value of x. We write

Besides the data type keytype, we often use the following, which also are not
predefined C++ data types:

Data Type Meaning

index An integer variable used as an index.

number A variable that could be defined as integral (int) or real (float).

bool A variable that can take the values “true” or “false.”

We use the data type number when it is not important to the algorithm whether the
numbers can take any real values or are restricted to the integers.

Sometimes we use the following nonstandard control structure:

This means repeat the code n times. In C++ it would be necessary to introduce an
extraneous control variable and write a for loop. We only use a for loop when we
actually need to refer to the control variable within the loop.

When the name of an algorithm seems appropriate for a value it returns, we write
the algorithm as a function. Otherwise, we write the algorithm as a procedure (void
function in C++) and use reference parameters (that is, parameters that are passed by
address) to return values. If the parameter is not an array, it is declared with an
ampersand (&) at the end of the data type name. For our purposes, this means that the
parameter contains a value returned by the algorithm. Because arrays are
automatically passed by reference in C++ and the ampersand is not used in C++
when passing arrays, we do not use the ampersand to indicate that an array contains
values returned by thc algorithm. Instead, since the reserved word const is used in
C++ to prevent modification of a passed array, we use const to indicate that the array
does not contain values returned by the algorithm.

In general, we avoid features peculiar to C++ so that the pseudocode is accessible

www.EBooksWorld.ir

to someone who knows only another high-level language. However, we do write
instructions like i++, which means increment i by 1.

If you do not know C++, you may find the notation used for logical operators and
certain relational operators unfamiliar. This notation is as follows:

More example algorithms follow. The first shows the use of a function. While
procedures have the keyword void before the routine’s name, functions have the data
type returned by the function before the routine’s name. The value is returned in the
function via the return statement.

Algorithm 1.2
Add Array Members
Problem: Add all the numbers in the array S of n numbers.
Inputs: positive integer n, array of numbers S indexed from 1 to n.
Outputs: sum, the sum of the numbers in S.

We discuss many sorting algorithms in this text. A simple one follows.

Algorithm 1.3
Exchange Sort
Problem: Sort n keys in nondecreasing order.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.

www.EBooksWorld.ir

 The instruction

exchange S [i] and S [j] ;

means that S[i] is to take the value of S[j], and S[j] is to take the value of S[i]. This
command looks nothing like a C++ instruction; whenever we can state something
more simply by not using the details of C++ instructions we do so. Exchange Sort
works by comparing the number in the ith slot with the numbers in the (i + 1)st
through nth slots. Whenever a number in a given slot is found to be smaller than the
one in the ith slot, the two numbers are exchanged. In this way, the smallest number
ends up in the first slot after the first pass through for-i loop, the second-smallest
number ends up in the second slot after the second pass, and so on.

The next algorithm does matrix multiplication. Recall that if we have two 2 × 2
matrices,

their product C = A × B is given by

For example,

In general, if we have two n × n matrices A and B, their product C is given by

Directly from this definition, we obtain the following algorithm for matrix
multiplication.

www.EBooksWorld.ir

Algorithm 1.4
Matrix Multiplication
Problem: Determine the product of two n × n matrices.
Inputs: a positive integer n, two-dimensional arrays of numbers A and B, each of
which has both its rows and columns indexed from 1 to n.
Outputs: a two-dimensional array of numbers C, which has both its rows and columns
indexed from 1 to n, containing the product of A and B.

1.2 The Importance of Developing Efficient Algorithms
Previously we mentioned that, regardless of how fast computers become or how
cheap memory gets, efficiency will always remain an important consideration. Next
we show why this is so by comparing two algorithms for the same problem.

• 1.2.1 Sequential Search Versus Binary Search
Earlier we mentioned that the approach used to find a name in the phone book is a
modified binary search, and it is usually much faster than a sequential search. Next
we compare algorithms for the two approaches to show how much faster the binary
search is.

We have already written an algorithm that does a sequential search— namely,
Algorithm 1.1. An algorithm for doing a binary search of an array that is sorted in
nondecreasing order is similar to thumbing back and forth in a phone book. That is,
given that we are searching for x, the algorithm first compares x with the middle item
of the array. If they are equal, the algorithm is done. If x is smaller than the middle

www.EBooksWorld.ir

item, then x must be in the first half of the array (if it is present at all), and the
algorithm repeats the searching procedure on the first half of the array. (That is, x is
compared with the middle item of the first half of the array. If they are equal, the
algorithm is done, etc.) If x is larger than the middle item of the array, the search is
repeated on the second half of the array. This procedure is repeated until x is found
or it is determined that x is not in the array. An algorithm for this method follows.

Algorithm 1.5
Binary Search
Problem: Determine whether x is in the sorted array S of n keys.
Inputs: positive integer n, sorted (nondecreasing order) array of keys S indexed from
1 to n, a key x.
Outputs: location, the location of x in S (0 if x is not in S).

Let’s compare the work done by Sequential Search and Binary Search. For focus
we will determine the number of comparisons done by each algorithm. If the array S
contains 32 items and x is not in the array, Algorithm 1.1 (Sequential Search)
compares x with all 32 items before determining that x is not in the array. In general,
Sequential Search does n comparisons to determine that x is not in an array of size n.
It should be clear that this is the largest number of comparisons Sequential Search
ever makes when searching an array of size n. That is, if x is in the array, the number
of comparisons is no greater than n.

www.EBooksWorld.ir

Next consider Algorithm 1.5 (Binary Search). There are two comparisons of x
with S[mid] in each pass through the while loop (except when x is found). In an
efficient assembler language implementation of the algorithm, x would be compared
with S[mid] only once in each pass, the result of that comparison would set the
condition code, and the appropriate branch would take place based on the value of
the condition code. This means that there would be only one comparison of x with
S[mid] in each pass through the while loop. We will assume the algorithm is
implemented in this manner. With this assumption, Figure 1.1 shows that the
algorithm does six comparisons when x is larger than all the items in an array of size
32. Notice that 6 = lg 32 + 1. By “lg” we mean log2. The log2 is encountered so often
in analysis of algorithms that we reserve the special symbol lg for it. You should
convince yourself that this is the largest number of comparisons Binary Search ever
does. That is, if x is in the array, or if x is smaller than all the array items, or if x is
between two array items, the number of comparisons is no greater than when x is
larger than all the array items.

Suppose we double the size of the array so that it contains 64 items. Binary Search
does only one comparison more because the first comparison cuts the array in half,
resulting in a subarray of size 32 that is searched. Therefore, when x is larger than all
the items in an array of size 64, Binary Search does seven comparisons. Notice that 7
= lg 64 + 1. In general, each time we double the size of the array we add only one
comparison. Therefore, if n is a power of 2 and x is larger than all the items in an
array of size n, the number of comparisons done by Binary Search is lg n + 1.

Table 1.1 compares the number of comparisons done by Sequential Search and
Binary Search for various values of n, when x is larger than all the items in the array.
When the array contains around 4 billion items (about the number of people in the
world), Binary Search does only 33 comparisons, whereas Sequential Search
compares x with all 4 billion items. Even if the computer was capable of completing
one pass through the while loop in a nanosecond (one billionth of a second),
Sequential Search would take 4 seconds to determine that x is not in the array,
whereas Binary Search would make that determination almost instantaneously. This
difference would be significant in an online application or if we needed to search for
many items.
Figure 1.1 The array items that Binary Search compares with x when x is larger than all the items in an array of
size 32. The items are numbered according to the order in which they are compared.

• Table 1.1 The number of comparisons done by Sequential Search and Binary Search when x is larger than all the
array items

Array Size Number of Comparisons
by Sequential Search

Number of Comparisons
by Binary Search

www.EBooksWorld.ir

128 128 8
1,024 1,024 11

1,048,576 1,048,576 21
4,294,967,296 4,294,967,296 33

For convenience, we considered only arrays whose sizes were powers of 2 in the
previous discussion of Binary Search. In Chapter 2 we will return to Binary Search
as an example of the divide-and-conquer approach, which is the focus of that chapter.
At that time we will consider arrays whose sizes can be any positive integer.

As impressive as the searching example is, it is not absolutely compelling because
Sequential Search still gets the job done in an amount of time tolerable to a human
life span. Next we will look at an inferior algorithm that does not get the job done in
a tolerable amount of time.

• 1.2.2 The Fibonacci Sequence
The algorithms discussed here compute the nth term of the Fibonacci sequence,
which is defined recursively as follows:

Computing the first few terms, we have

There are various applications of the Fibonacci sequence in computer science and
mathematics. Because the Fibonacci sequence is defined recursively, we obtain the
following recursive algorithm from the definition.

Algorithm 1.6
nth Fibonacci Term (Recursive)
Problem: Determine the nth term in the Fibonacci sequence.
Inputs: a nonnegative integer n.
Outputs: fib, the nth term of the Fibonacci sequence.

www.EBooksWorld.ir

By “nonnegative integer” we mean an integer that is greater than or equal to 0,
whereas by “positive integer” we mean an integer that is strictly greater than 0. We
specify the input to the algorithm in this manner to make it clear what values the input
can take. However, for the sake of avoiding clutter, we declare n simply as an integer
in the expression of the algorithm. We will follow this convention throughout the text.

Although the algorithm was easy to create and is understandable, it is extremely
inefficient. Figure 1.2 shows the recursion tree corresponding to the algorithm when
computing fib(5). The children of a node in the tree contain the recursive calls made
by the call at the node. For example, to obtain fib(5) at the top level we need fib(4)
and fib(3); then to obtain fib(3) we need fib(2) and fib(l), and so on. As the tree
shows, the function is inefficient because values are computed over and over again.
For example, fib(2) is computed three times.

How inefficient is this algorithm? The tree in Figure 1.2 shows that the algorithm
computes the following numbers of terms to determine fib(n) for 0 ≤ n ≤ 6:

n Number of Terms Computed

0 1

1 1

2 3

3 5

4 9

5 15

6 25

The first six values can be obtained by counting the nodes in the subtree rooted at
fib(n) for 1 ≤ n ≤ 5, whereas the number of terms for fib(6) is the sum of the nodes in
the trees rooted at fib(5) and fib(4) plus the one node at the root. These numbers do
not suggest a simple expression like the one obtained for Binary Search. Notice,
however, that in the case of the first seven values, the number of terms in the tree
more than doubles every time n increases by 2. For example, there are nine terms in
the tree when n = 4 and 25 terms when n = 6. Let’s call T(n) the number of terms in
the recursion tree for n. If the number of terms more than doubled every time n

www.EBooksWorld.ir

increased by 2, we would have the following for n even:
Figure 1.2 The recursion tree corresponding to Algorithm 1.6 when computing the fifth Fibonacci term.

Because T(0) = 1, this would mean T(n) > 2n/2. We use induction to show that this is
true for n ≥ 2 even if n is not even. The inequality does not hold for n = 1 because
T(1) = 1, which is less than 21/2. Induction is reviewed in Section A.3 in Appendix A.

 Theorem 1.1

If T(n) is the number of terms in the recursion tree corresponding to Algorithm 1.6,
then, for n ≥ 2,

Proof: The proof is by induction on n.
Induction base: We need two base cases because the induction step assumes the

www.EBooksWorld.ir

results of two previous cases. For n = 2 and n = 3, the recursion in Figure 1.2 shows
that

Induction hypothesis: One way to make the induction hypothesis is to assume that the
statement is true for all m < n. Then, in the induction step, show that this implies that
the statement must be true for n. This technique is used in this proof. Suppose for all
m such that 2 ≤ m < n

Induction step: We must show that T(n) > 2n/2. The value of T(n) is the sum of T(n −
1) and T(n − 2) plus the one node at the root. Therefore,

We established that the number of terms computed by Algorithm 1.6 to determine
the nth Fibonacci term is greater than 2n/2. We will return to this result to show how
inefficient the algorithm is. But first let’s develop an efficient algorithm for
computing the nth Fibonacci term. Recall that the problem with the recursive
algorithm is that the same value is computed over and over. As Figure 1.2 shows,
fib(2) is computed three times in determining fib(5). If when computing a value, we
save it in an array, then whenever we need it later we do not need to recompute it.
The following iterative algorithm uses this strategy.

Algorithm 1.7
nth Fibonacci Term (Iterative)
Problem: Determine the nth term in the Fibonacci sequence.
Inputs: a nonnegative integer n.
Outputs: fib2, the nth term in the Fibonacci sequence.

www.EBooksWorld.ir

Algorithm 1.7 can be written without using the array f because only the two most
recent terms are needed in each iteration of the loop. However, it is more clearly
illustrated using the array.

To determine fib2(n), the previous algorithm computes every one of the first n + 1
terms just once. So it computes n + 1 terms to determine the nth Fibonacci term.
Recall that Algorithm 1.6 computes more than 2n/2 terms to determine the nth
Fibonacci term. Table 1.2 compares these expressions for various values of n. The
execution times are based on the simplifying assumption that one term can be
computed in 10−9 second. The table shows the time it would take Algorithm 1.7 to
compute the nth term on a hypothetical computer that could compute each term in a
nanosecond, and it shows a lower bound on the time it would take to execute
Algorithm 1.7. By the time n is 80, Algorithm 1.6 takes at least 18 minutes. When n is
120, it takes more than 36 years, an amount of time intolerable compared with a
human life span. Even if we could build a computer one billion times as fast,
Algorithm 1.6 would take over 40,000 years to compute the 200th term. This result
can be obtained by dividing the time for the 200th term by one billion. We see that
regardless of how fast computers become, Algorithm 1.6 will still take an intolerable
amount of time unless n is small. On the other hand, Algorithm 1.7 computes the nth
Fibonacci term almost instantaneously. This comparison shows why the efficiency of
an algorithm remains an important consideration regardless of how fast computers
become.

• Table 1.2 A comparison of Algorithms 1.6 and 1.7

www.EBooksWorld.ir

Algorithm 1.6 is a divide-and-conquer algorithm. Recall that the divide-and-
conquer approach produced a very efficient algorithm (Algorithm 1.5: Binary
Search) for the problem of searching a sorted array. As shown in Chapter 2, the
divide-and-conquer approach leads to very efficient algorithms for some problems,
but very inefficient algorithms for other problems. Our efficient algorithm for
computing the nth Fibonacci term (Algorithm 1.7) is an example of the dynamic
programming approach, which is the focus of Chapter 3. We see that choosing the
best approach can be essential.

We showed that Algorithm 1.6 computes at least an exponentially large number of
terms, but could it be even worse? The answer is no. Using the techniques in
Appendix B, it is possible to obtain an exact formula for the number of terms, and the
formula is exponential in n. See Examples B.5 and B.9 in Appendix B for further
discussion of the Fibonacci sequence.

1.3 Analysis of Algorithms
To determine how efficiently an algorithm solves a problem, we need to analyze the
algorithm. We introduced efficiency analysis of algorithms when we compared the
algorithms in the preceding section. However, we did those analyses rather
informally. We will now discuss terminology used in analyzing algorithms and the
standard methods for doing analyses. We will adhere to these standards in the
remainder of the text.

• 1.3.1 Complexity Analysis
When analyzing the efficiency of an algorithm in terms of time, we do not determine
the actual number of CPU cycles because this depends on the particular computer on
which the algorithm is run. Furthermore, we do not even want to count every

www.EBooksWorld.ir

instruction executed, because the number of instructions depends on the programming
language used to implement the algorithm and the way the programmer writes the
program. Rather, we want a measure that is independent of the computer, the
programming language, the programmer, and all the complex details of the algorithm
such as incrementing of loop indices, setting of pointers, and so forth. We learned that
Algorithm 1.5 is much more efficient than Algorithm 1.1 by comparing the numbers of
comparisons done by the two algorithms for various values of n, where n is the
number of items in the array. This is a standard technique for analyzing algorithms. In
general, the running time of an algorithm increases with the size of the input, and the
total running time is roughly proportional to how many times some basic operation
(such as a comparison instruction) is done. We therefore analyze the algorithm’s
efficiency by determining the number of times some basic operation is done as a
function of the size of the input.

For many algorithms it is easy to find a reasonable measure of the size of the input,
which we call the input size. For example, consider Algorithms 1.1 (Sequential
Search), 1.2 (Add Array Members), 1.3 (Exchange Sort), and 1.5 (Binary Search). In
all these algorithms, n, the number of items in the array, is a simple measure of the
size of the input. Therefore, we can call n the input size. In Algorithm 1.4 (Matrix
Multiplication), n, the number of rows and columns, is a simple measure of the size
of the input. Therefore, we can again call n the input size. In some algorithms, it is
more appropriate to measure the size of the input using two numbers. For example,
when the input to an algorithm is a graph, we often measure the size of the input in
terms of both the number of vertices and the number of edges. Therefore, we say that
the input size consists of both parameters.

Sometimes we must be cautious about calling a parameter the input size. For
example, in Algorithms 1.6 (nth Fibonacci Term, Recursive) and 1.7 (nth Fibonacci
Term, Iterative), you may think that n should be called the input size. However, n is
the input; it is not the size of the input. For this algorithm, a reasonable measure of the
size of the input is the number of symbols used to encode n. If we use binary
representation, the input size will be the number of bits it takes to encode n, which is
lg n + 1 . For example,

Therefore, the size of the input n = 13 is 4. We gained insight into the relative
efficiency of the two algorithms by determining the number of terms each computes as
a function of n, but still n does not measure the size of the input. These considerations
will be important in Chapter 9, where we will discuss the input size in more detail.
Until then, it will usually suffice to use a simple measure, such as the number of items
in an array, as the input size.

After determining the input size, we pick some instruction or group of instructions

www.EBooksWorld.ir

such that the total work done by the algorithm is roughly proportional to the number
of times this instruction or group of instructions is done. We call this instruction or
group of instructions the basic operation in the algorithm. For example, x is
compared with an item S in each pass through the loops in Algorithms 1.1 and 1.5.
Therefore, the compare instruction is a good candidate for the basic operation in each
of these algorithms. By determining how many times Algorithms 1.1 and 1.5 do this
basic operation for each value of n, we gained insight into the relative efficiencies of
the two algorithms.

In general, a time complexity analysis of an algorithm is the determination of how
many times the basic operation is done for each value of the input size. Although we
do not want to consider the details of how an algorithm is implemented, we will
ordinarily assume that the basic operation is implemented as efficiently as possible.
For example, we assume that Algorithm 1.5 is implemented such that the comparison
is done just once in each pass through the while loop. In this way, we analyze the
most efficient implementation of the basic operation.

There is no hard-and-fast rule for choosing the basic operation. It is largely a
matter of judgment and experience. As already mentioned, we ordinarily do not
include the instructions that make up the control structure. For example, in Algorithm
1.1, we do not include the instructions that increment and compare the index in order
to control the passes through the while loop. Sometimes it suffices simply to consider
one pass through a loop as one execution of the basic operation. At the other extreme,
for a very detailed analysis, one could consider the execution of each machine
instruction as doing the basic operation once. As mentioned earlier, because we want
our analyses to remain independent of the computer, we will never do that in this text.

At times we may want to consider two different basic operations. For example, in
an algorithm that sorts by comparing keys, we often want to consider the comparison
instruction and the assignment instruction each individually as the basic operation. By
this we do not mean that these two instructions together compose the basic operation,
but rather that we have two distinct basic operations, one being the comparison
instruction and the other being the assignment instruction. We do this because
ordinarily a sorting algorithm does not do the same number of comparisons as it does
assignments. Therefore, we can gain more insight into the efficiency of the algorithm
by determining how many times each is done.

Recall that a time complexity analysis of an algorithm determines how many times
the basic operation is done for each value of the input size. In some cases the number
of times it is done depends not only on the input size, but also on the input’s values.
This is the case in Algorithm 1.1 (Sequential Search). For example, if x is the first
item in the array, the basic operation is done once, whereas if x is not in the array, it
is done n times. In other cases, such as Algorithm 1.2 (Add Array Members), the
basic operation is always done the same number of times for every instance of size n.
When this is the case, T(n) is defined as the number of times the algorithm does the

www.EBooksWorld.ir

basic operation for an instance of size n. T(n) is called the every-case time
complexity of the algorithm, and the determination of T(n) is called an every-case
time complexity analysis. Examples of every-case time compiexity analyses follow.

Analysis of Algorithm 1.2
 Every-Case Time Complexity (Add Array Members)

Other than control instructions, the only instruction in the loop is the one that adds an
item in the array to sum. Therefore, we will call that instruction the basic operation.
Basic operation: the addition of an item in the array to sum.
Input size: n, the number of items in the array.
Regardless of the values of the numbers in the array, there are n passes through the
for loop. Therefore, the basic operation is always done n times and

Analysis of Algorithm 1.3
 Every-Case Time CompIexity (Exchange Sort)

As mentioned previously, in the case of an algorithm that sorts by comparing keys,
we can consider the comparison instruction or the assignment instruction as the basic
operation. We will analyze the number of comparisons here.
Basic operation: the comparison of S[j] with S[i].
Input size: n, the number of items to be sorted.

We must determine how many passes there are through the for-j loop. For a given n
there are always n − 1 passes through the for-i loop. In the first pass through the for-
i loop, there are n − 1 passes through the for-j loop, in the second pass there are n −
2 passes through the for-j loop, in the third pass there are n−3 passes through the
for-j loop, … , and in the last pass there is one pass through the for-j loop.
Therefore, the total number of passes through the for-j loop is given by

The last equality is derived in Example A.1 in Appendix A.

www.EBooksWorld.ir

Analysis of Algorithm 1.4
 Every-Case Time CompIexity (Matrix Multiplication)
The only instruction in the innermost for loop is the one that does a multiplication
and an addition. It is not hard to see that the algorithm can be implemented in such a
way that fewer additions are done than multiplications. Therefore, we will consider
only the multiplication instruction to be the basic operation.
Basic operation: multiplication instruction in the innermost for loop.
Input size: n, the number of rows and columns.

There are always n passes through the for-i loop, in each pass there are always n
passes through the for-j loop, and in each pass through the for-j loop there are
always n passes through the for-k loop. Because the basic operation is inside the for-
k loop,

As discussed previously, the basic operation in Algorithm 1.1 is not done the same
number of times for all instances of size n. So this algorithm does not have an every-
case time complexity. This is true for many algorithms. However, this does not mean
that we cannot analyze such algorithms, because there are three other analysis
techniques that can be tried. The first is to consider the maximum number of times the
basic operation is done. For a given algorithm, W(n) is defined as the maximum
number of times the algorithm will ever do its basic operation for an input size of n.
So W(n) is called the worst-case time complexity of the algorithm, and the
determination of W(n) is called a worst-case time complexity analysis. If T(n)
exists, then clearly W(n) = T(n). The following is an analysis of W(n) in a case in
which T(n) does not exist.

Analysis of Algorithm 1.1
 Worst-Case Time Complexity (Sequential Search)
Basic operation: the comparison of an item in the array with x.
Input size: n, the number of items in the array.

The basic operation is done at most n times, which is the case if x is the last item in
the array or if x is not in the array. Therefore,

Although the worst-case analysis informs us of the absolute maximum amount of

www.EBooksWorld.ir

time consumed, in some cases we may be more interested in knowing how the
algorithm performs on the average. For a given algorithm, A(n) is defined as the
average (expected value) of the number of times the algorithm does the basic
operation for an input size of n (see Section A.8.2 in Appendix A for a discussion of
average). A(n) is called the average-case time complexity of the algorithm, and the
determination of A(n) is called an average-case time complexity analysis. As is the
case for W(n), if T(n) exists, then A(n) = T(n).

To compute A(n), we need to assign probabilities to all possible inputs of size n. It
is important to assign probabilities based on all available information. For example,
our next analysis will be an average-case analysis of Algorithm 1.1. We will assume
that if x is in the array, it is equally likely to be in any of the array slots. If we know
only that x may be somewhere in the array, our information gives us no reason to
prefer one array slot over another. Therefore, it is reasonable to assign equal
probabilities to all array slots. This means that we are determining the average
search time when we search for all items the same number of times. If we have
information indicating that the inputs will not arrive according to this distribution, we
should not use this distribution in our analysis. For example, if the array contains first
names and we are searching for names that have been chosen at random from all
people in the United States, an array slot containing the common name “John” will
probably be searched more often than one containing the uncommon name “Felix”
(see Section A.8.1 in Appendix A for a discussion of randomness). We should not
ignore this information and assume that all slots are equally likely.

As the following analysis illustrates, it is usually harder to analyze the average
case than it is to analyze the worst case.

Analysis of Algorithm 1.1
 Average-Case Time Complexity (Sequential Search)
Basic operation: the comparison of an item in the array with x.

Input size: n, the number of items in the array.

We first analyze the case in which it is known that x is in S, where the items in S are
all distinct, and where we have no reason to believe that x is more likely to be in one
array slot than it is to be in another. Based on this information, for 1 ≤ k ≤ n, the
probability that x is in the kth array slot is 1/n. If x is in the kth array slot, the number
of times the basic operation is done to locate x (and, therefore, to exit the loop) is k.
This means that the average time complexity is given by

www.EBooksWorld.ir

The third step in this quadruple equality is derived in Example A.1 of Appendix A.
As we would expect, on the average, about half the array is searched.

Next we analyze the case in which x may not be in the array. To analyze this case we
must assign some probability p to the event that x is in the array. If x is in the array,
we will again assume that it is equally likely to be in any of the slots from 1 to n. The
probability that x is in the kth slot is then p/n, and the probability that it is not in the
array is 1 − p. Recall that there are k passes through the loop if x is found in the kth
slot, and n passes through the loop if x is not in the array. The average time
complexity is therefore given by

The last step in this triple equality is derived with algebraic manipulations. If p = 1,
A(n) = (n + 1)/2, as before, whereas if p = 1/2, A(n) = 3n/4 + 1/4. This means that
about 3/4 of the array is searched on the average.

Before proceeding, we offer a word of caution about the average. Although an
average is often referred to as a typical occurrence, one must be careful in
interpreting the average in this manner. For example, a meteorologist may say that a
typical January 25 in Chicago has a high of 22◦ F because 22◦ F has been the average
high for that date over the past 80 years. The paper may run an article saying that the
typical family in Evanston, Illinois earns $50,000 annually because that is the
average income. An average can be called “typical” only if the actual cases do not
deviate much from the average (that is, only if the standard deviation is small). This
may be the case for the high temperature on January 25. However, Evanston is a
community with families of diverse incomes. It is more typical for a family to make
either $20,000 annually or $100,000 annually than to make $50,000. Recall in the
previous analysis that A(n) is (n + 1)/2 when it is known that x is in the array. This is
not the typical search time, because all search times between 1 and n are equally
typical. Such considerations are important in algorithms that deal with response time.
For example, consider a system that monitors a nuclear power plant. If even a single
instance has a bad response time, the results could be catastrophic. It is therefore
important to know whether the average response time is 3 seconds because all
response times are around 3 seconds or because most are 1 second and some are 60
seconds.

A final type of time complexity analysis is the determination of the smallest
number of times the basic operation is done. For a given algorithm, B(n) is defined

www.EBooksWorld.ir

as the minimum number of times the algorithm will ever do its basic operation for an
input size of n. So B(n) is called the best-case time complexity of the algorithm, and
the determination of B(n) is called a best-case time complexity analysis. As is the
case for W(n) and A(n), if T(n) exists, then B(n) = T(n). Let’s determine B(n) for
Algorithm 1.1.

Analysis of Algorithm 1.1
 Best-Case Time Complexity (Sequential Search)
Basic operation: the comparison of an item in the array with x.
Input size: n, the number of items in the array.

Because n ≥ 1, there must be at least one pass through the loop, If x = S[1], there will
be one pass through the loop regardless of the size of n. Therefore,

For algorithms that do not have every-case time complexities, we do worst-case
and average-case analyses much more often than best-case analyses. An average-case
analysis is valuable because it tells us how much time the algorithm would take when
used many times on many different inputs. This would be useful, for example, in the
case of a sorting algorithm that was used repeatedly to sort all possible inputs. Often,
a relatively slow sort can occasionally be tolerated if, on the average, the sorting
time is good. In Section 2.4 we will see an algorithm, named Quicksort, that does
exactly this. It is one of the most popular sorting algorithms. As noted previously, an
average-case analysis would not suffice in a system that monitored a nuclear power
plant. In this case, a worst-case analysis would be more useful because it would give
us an upper bound on the time taken by the algorithm. For both the applications just
discussed, a best-case analysis would be of little value.

We have discussed only the analysis of the time complexity of an algorithm. All the
same considerations just discussed also pertain to analysis of memory complexity,
which is an analysis of how efficient the algorithm is in terms of memory. Although
most of the analyses in this text are time complexity analyses, we will occasionally
find it useful to do a memory complexity analysis.

In general, a complexity function can be any function that maps the positive
integers to the nonnegative reals. When not referring to the time complexity or
memory complexity for some particular algorithm, we will usually use standard
function notation, such as f(n) and g(n), to represent complexity functions.

Example 1.6

www.EBooksWorld.ir

The functions

are all examples of complexity functions because they all map the positive integers to
the nonnegative reals.

• 1.3.2 Applying the Theory
When applying the theory of algorithm analysis, one must sometimes be aware of the
time it takes to execute the basic operation, the overhead instructions, and the control
instructions on the actual computer on which the algorithm is implemented. By
“overhead instructions” we mean instructions such as initialization instructions
before a loop. The number of times these instructions execute does not increase with
input size. By “control instructions” we mean instructions such as incrementing an
index to control a loop. The number of times these instructions execute increases with
input size. The basic operation, overhead instructions, and control instructions are all
properties of an algorithm and the implementation of the algorithm. They are not
properties of a problem. This means that they are usually different for two different
algorithms for the same problem.

Suppose we have two algorithms for the same problem with the following every-
case time complexities: n for the first algorithm and n2 for the second algorithm. The
first algorithm appears more efficient. Suppose, however, a given computer takes
1,000 times as long to process the basic operation once in the first algorithm as it
takes to process the basic operation once in the second algorithm. By “process” we
mean that we are including the time it takes to execute the control instructions.
Therefore, if t is the time required to process the basic operation once in the second
algorithm, 1,000t is the time required to process the basic operation once in the first
algorithm. For simplicity, let’s assume that the time it takes to execute the overhead
instructions is negligible in both algorithms. This means the times it takes the
computer to process an instance of size n are n × 1,000t for the first algorithm and n2

× t for the second algorithm. We must solve the following inequality to determine
when the first algorithm is more efficient:

Dividing both sides by nt yields

www.EBooksWorld.ir

If the application never had an input size larger than 1,000, the second algorithm
should be implemented. Before proceeding, we should point out that it is not always
so easy to determine precisely when one algorithm is faster than another. Sometimes
we must use approximation techniques to analyze the inequalities obtained by
comparing two algorithms.

Recall that we are assuming that the time it takes to process the overhead
instructions is negligible. If this were not the case, these instructions would also have
to be considered to determine when the first algorithm would be more efficient.

• 1.3.3 Analysis of Correctness
In this text, “analysis of an algorithm” means an efficiency analysis in terms of either
time or memory. There are other types of analyses. For example, we can analyze the
correctness of an algorithm by developing a proof that the algorithm actually does
what it is supposed to do. Although we will often informally show that our
algorithms are correct and will sometimes prove that they are, you should see
Dijkstra (1976), Gries (1981), or Kingston (1990) for a comprehensive treatment of
correctness.

1.4 Order
We just illustrated that an algorithm with a time complexity of n is more efficient than
one with a time complexity of n2 for sufficiently large values of n, regardless of how
long it takes to process the basic operations in the two algorithms. Suppose now that
we have two algorithms for the same problem and that their every-case time
complexities are 100n for the first algorithm and 0.01n2 for the second algorithm.
Using an argument such as the one just given, we can show that the first algorithm
will eventually be more efficient than the second one. For example, if it takes the
same amount of time to process the basic operations in both algorithms and the
overhead is about the same, the first algorithm will be more efficient if

Dividing both sides by 0.01n yields

If it takes longer to process the basic operation in the first algorithm than in the
second, then there is simply some larger value of n at which the first algorithm
becomes more efficient.

www.EBooksWorld.ir

Algorithms with time complexities such as n and 100n are called linear-time
algorithms because their time complexities are linear in the input size n, whereas
algorithms with time complexities such as n2 and 0.01n2 are called quadratic-time
algorithms because their time complexities are quadratic in the input size n. There is
a fundamental principle here. That is, any linear-time algorithm is eventually more
efficient than any quadratic-time algorithm. In the theoretical analysis of an
algorithm, we are interested in eventual behavior. Next we will show how algorithms
can be grouped according to their eventual behavior. In this way we can readily
determine whether one algorithm’s eventual behavior is better than another’s.

• 1.4.1 An Intuitive Introduction to Order
Functions such as 5n2 and 5n2 + 100 are called pure quadratic functions because
they contain no linear term, whereas a function such as 0.1n2 + n + 100 is called a
complete quadratic function because it contains a linear term. Table 1.3 shows that
eventually the quadratic term dominates this function. That is, the values of the other
terms eventually become insignificant compared with the value of the quadratic term.
Therefore, although the function is not a pure quadratic function, we can classify it
with the pure quadratic functions. This means that if some algorithm has this time
complexity, we can call the algorithm a quadratic-time algorithm. Intuitively, it seems
that we should always be able to throw away low-order terms when classifying
complexity functions. For example, it seems that we should be able to classify 0.1n3

+ 10n2 + 5n + 25 with pure cubic functions. We will soon establish rigorously that
we can do this. First let’s try to gain an intuitive feel for how complexity functions
are classified.

The set of all complexity functions that can be classified with pure quadratic
functions is called Θ(n2), where Θ is the Greek capital letter “theta.” If a function is a
member of the set Θ(n2), we say that the function is order of n2. For example, because
we can throw away low-order terms,

which means that g(n) is order of n2. As a more concrete example, recall from
Section 1.3.1 that the time complexity for Algorithm 1.3 (Exchange Sort) is given by
T(n) = n(n − 1)/2. Because

throwing away the lower-order term n/2 shows that T(n) ∈ Θ(n2).

• Table 1.3 The quadratic term eventually dominates

www.EBooksWorld.ir

n 0.1n2 0.1n2 + n + 100

10 10 120

20 40 160

50 250 400

100 1,000 1,200

1,000 100,000 101,100

When an algorithm’s time complexity is in Θ(n2), the algorithm is called a
quadratic-time algorithm or a Θ(n2) algorithm. We also say that the algorithm is
Θ(n2). Exchange Sort is a quadratic-time algorithm.

Similarly, the set of complexity functions that can be classified with pure cubic
functions is called Θ(n3), and functions in that set are said to be order of n3, and so
on. We will call these sets complexity categories. The following are some of the
most common complexity categories:

In this ordering, if f(n) is in a category to the left of the category containing g(n), then
f(n) eventually lies beneath g(n) on a graph. Figure 1.3 plots the simplest members of
these categories: n, ln n, n ln n, and so on. Table 1.4 shows the execution times of
algorithms whose time complexities are given by these functions. The simplifying
assumption is that it takes 1 nanosecond (10−9 second) to process the basic operation
for each algorithm. The table shows a possibly surprising result. One might expect
that as long as an algorithm is not an exponential-time algorithm, it will be adequate.
However, even the quadratic-time algorithm takes 31.7 years to process an instance
with an input size of 1 billion. On the other hand, the Θ(n ln n) algorithm takes only
29.9 seconds to process such an instance. Ordinarily an algorithm has to be Θ(n ln n)
or better for us to assume that it can process extremely large instances in tolerable
amounts of time. This is not to say that algorithms whose time complexities are in the
higher-order categories are not useful. Algorithms with quadratic, cubic, and even
higher-order time complexities can often handle the actual instances that arise in
many applications.

Before ending this discussion, we stress that there is more information in knowing
a time complexity exactly than in simply knowing its order. For example, recall the
hypothetical algorithms, discussed earlier, that have time complexities of 100n and
0.01n2. If it takes the same amount of time to process the basic operations and execute
the overhead instructions in both algorithms, then the quadratic-time algorithm is
more efficient for instances smaller than 10,000. If the application never requires
instances larger than this, the quadratic-time algorithm should be implemented. If we
knew only that the time complexities were in Θ(n) and Θ(n2), respectively, we would
not know this. The coefficients in this example are extreme, and in practice they are

www.EBooksWorld.ir

often less extreme. Furthermore, there are times when it is quite difficult to determine
the time complexities exactly. Therefore, we are sometimes content to determine only
the order.

• 1.4.2 A Rigorous Introduction to Order
The previous discussion imparted an intuitive feel for order (Θ). Here we develop
theory that enables us to define order rigorously. We accomplish this by presenting
two other fundamental concepts. The first is “big O.”
Figure 1.3 Growth rates of some common complexity functions.

Definition

www.EBooksWorld.ir

For a given complexity function f(n), O(f(n)) is the set of complexity functions g(n)
for which there exists some positive real constant c and some nonnegative integer
N such that for all n ≥ N,

If g(n) ∈ O(f(n)), we say that g(n) is big O of f(n). Figure 1.4(a) illustrates “big
O.” Although g(n) starts out above cf(n) in that figure, eventually it falls beneath
cf(n) and stays there. Figure 1.5 shows a concrete example. Although n2 + 10n is
initially above 2n2 in that figure, for n ≥ 10

• Table 1.4 Execution times for algorithms with the given time complexities

Figure 1.4 Illustrating “big O,” Ω, and Θ.

We can therefore take c = 2 and N = 10 in the definition of “big O” to conclude that

If, for example, g(n) is in O(n2), then eventually g(n) lies beneath some pure
quadratic function cn2 on a graph. This means that if g(n) is the time complexity for
some algorithm, eventually the running time of the algorithm will be at least as fast as

www.EBooksWorld.ir

quadratic. For the purposes of analysis, we can say that eventually g(n) is at least as
good as a pure quadratic function. “Big O” (and other concepts that will be
introduced soon) are said to describe the asymptotic behavior of a function because
they are concerned only with eventual behavior. We say that “big O” puts an
asymptotic upper bound on a function.
Figure 1.5 The function n2 + 10n eventually stays beneath the function 2n2.

The following examples illustrate how to show “big O.”

Example 1.7
We show that 5n2 ∈ O(n2). Because, for n ≥ 0,

we can take c = 5 and N = 0 to obtain our desired result.

Example 1.8
Recall that the time complexity of Algorithm 1.3 (Exchange Sort) is given by

Because, for n ≥ 0,

we can take c = 1/2 and N = 0 to conclude that T(n) ∈ O(n2).

www.EBooksWorld.ir

A difficulty students often have with “big O” is that they erroneously think there is
some unique c and unique N that must be found to show that one function is “big O”
of another. This is not the case at all. Recall that Figure 1.5 illustrates that n2 + 10n
∈ O(n2) using c = 2 and N = 10. Alternatively, we could show it as follows.

Example 1.9
We show that n2 + 10n ∈ O(n2). Because, for n ≥ 1,

we can take c = 11 and N = 1 to obtain our result.

In general, one can show “big O” using whatever manipulations seem most
straightforward.

Example 1.10
We show that n2 ∈ O(n2 + 10n). Because, for n ≥ 0,

we can take c = 1 and N = 0 to obtain our result.

The purpose of this last example is to show that the function inside “big O” does
not have to be one of the simple functions plotted in Figure 1.3. It can be any
complexity function. Ordinarily, however, we take it to be a simple function like
those plotted in Figure 1.3.

Example 1.11
We show that n ∈ O(n2). Because, for n ≥ 1,

we can take c = 1 and N = 1 to obtain our result.

This last example makes a crucial point about “big O.” A complexity function need
not have a quadratic term to be in O(n2). It need only eventually lie beneath some
pure quadratic function on a graph. Therefore, any logarithmic or linear complexity
function is in O(n2). Similarly, any logarithmic, linear, or quadratic complexity

www.EBooksWorld.ir

function is in O(n3), and so on. Figure 1.6(a) shows some exemplary members of
O(n2).

Just as “big O” puts an asymptotic upper bound on a complexity function, the
following concept puts an asymptotic lower bound on a complexity function.
Figure 1.6 The sets O(n2), Ω(n2), Θ(n2). Some exemplary members are shown.

Definition
For a given complexity function f(n), Ω(f(n)) is the set of complexity functions
g(n) for which there exists some positive real constant c and some nonnegative
integer N such that, for all n ≥ N,

The symbol Ω is the Greek capital letter “omega.” If g(n) ∈ Ω(f(n)), we say that
g(n) is omega of f(n). Figure 1.4(b) illustrates Ω. Some examples follow.

Example 1.12
We show that 5n2 ∈ Ω(n2). Because, for n ≥ 0,

we can take c = 1 and N = 0 to obtain our result.

Example 1.13
We show that n2 + 10n ∈ Ω(n2). Because, for n ≥ 0, n2 + 10n ≥ n2,

we can take c = 1 and N = 0 to obtain our result.

www.EBooksWorld.ir

Example 1.14
Consider again the time complexity of Algorithm 1.3 (Exchange Sort). We show that

For n ≥ 2,

Therefore, for n ≥ 2,

which means we can take c = 1/4 and N = 2 to obtain our result.

As is the case for “big O,” there are no unique constants c and N for which the
conditions in the definition of Ω hold. We can choose whichever ones make our
manipulations easiest.

If a function is in Ω(n2), then eventually the function lies above some pure
quadratic function on a graph. For the purposes of analysis, this means that eventually
it is at least as bad as a pure quadratic function. However, as the following example
illustrates, the function need not be a quadratic function.

Example 1.15
We show that n3 ∈ Ω(n2). Because, if n ≥ 1,

we can take c = 1 and N = 1 to obtain our result.

Figure 1.6(b) shows some exemplary members of Ω(n2)
If a function is in both O(n2) and Ω(n2) we can conclude that eventually the

function lies beneath some pure quadratic function on a graph and eventually it lies
above some pure quadratic function on a graph. That is, eventually it is at least as
good as some pure quadratic function and eventually it is at least as bad as some pure
quadratic function. We can therefore conclude that its growth is similar to that of a
pure quadratic function. This is precisely the result we want for our rigorous notion
of order. We have the following definition.

www.EBooksWorld.ir

Definition
For a given complexity function f(n),

This means that Θ(f(n)) is the set of complexity functions g(n) for which there
exists some positive real constants c and d and some nonnegative integer N such
that, for all n ≥ N,

If g(n) ∈ Θ(f(n)), we say that g(n) is order of f(n).

Example 1.16
Consider once more the time complexity of Algorithm 1.3. Examples 1.8 and 1.14
together establish that

This means that T(n) ∈ O(n2) ∩ Ω(n2) = Θ(n2)

Figure 1.6(c) depicts that Θ(n2) is the intersection of O(n2) and Ω(n2), whereas
Figure 1.4(c) illustrates Θ. Notice in Figure 1.6(c) that the function 5n + 7 is not in
Ω(n2), and the function 4n3 + 3n2 is not in O(n2). Therefore, neither of these functions
is in Θ(n2). Although intuitively this seems correct, we have not yet proven it. The
following example shows how such a proof proceeds.

Example 1.17
We show that n is not in Ω(n2) by using proof by contradiction. In this type of proof
we assume something is true—in this case, that n ∈ Ω(n2)—and then we do
manipulations that lead to a result that is not true. That is, the result contradicts
something known to be true. We then conclude that what we assumed in the first place
cannot be true.

Assuming that n ∈ Ω(n2) means we are assuming that there exists some positive
constant c and some nonnegative integer N such that, for n ≥ N,

If we divide both sides of this inequality by cn, we have, for n ≥ N,

www.EBooksWorld.ir

However, for any n > 1/c, this inequality cannot hold, which means that it cannot hold
for all n ≥ N. This contradiction proves that n is not in Ω(n2).

We have one more definition concerning order that expresses relationships such as
the one between the function n and the function Ω(n2).

Definition
For a given complexity function f(n), o(f(n)) is the set of all complexity functions
g(n) satisfying the following: For every positive real constant c there exists a
nonnegative integer N such that, for all n ≥ N,

If g(n) ∈ o(f(n)), we say that g(n) is small o of f(n). Recall that “big O” means
there must be some real positive constant c for which the bound holds. This definition
says that the bound must hold for every real positive constant c. Because the bound
holds for every positive c, it holds for arbitrarily small c. For example, if g(n) ∈
o(f(n)), there is an N such that, for n > N,

We see that g(n) becomes insignificant relative to f(n) as n becomes large. For the
purposes of analysis, if g(n) is in o(f(n)), then g(n) is eventually much better than
functions such as f(n). The following examples illustrate this.

Example 1.18
We show that

Let c > 0 be given. We need to find an N such that, for n ≥ N,

If we divide both sides of this inequality by cn, we get

Therefore, it suffices to choose any N ≥ 1/c.

www.EBooksWorld.ir

Notice that the value of N depends on the constant c. For example, if c = 0.00001,
we must take N equal to at least 100,000. That is, for

Example 1.19
We show that n is not in o(5n). We will use proof by contradiction to show this.

 If n ∈ o(5n), then there must exist some N such that, for n ≥ N,

This contradiction proves that n is not in o(5n).

The following theorem relates “small o” to our other asymptotic notation.

 Theorem 1.2
If g(n) ∈ o(f(n)), then

That is, g(n) is in O(f(n)) but is not in Ω(f(n)).
Proof: Because g(n) ∈ o(f(n)), for every positive real constant c there exists an N
such that, for all n ≥ N,

which means that the bound certainly holds for some c. Therefore,

We will show that g(n) is not in Ω(f (n)) using proof by contradiction. If g(n) ∈
Ω(f(n)), then there exists some real constant c > 0 and some N1 such that, for all n ≥
N1,

But, because g(n) ∈ o(f(n)), there exists some N2 such that, for all n ≥ N2,

Both inequalities would have to hold for all n greater than both N1 and N2. This
contradiction proves that g(n) cannot be in Ω(f(n)).

www.EBooksWorld.ir

You may think that o(f(n)) and O(f(n))−Ω(f(n)) must be the same set. This is not
true. There are unusual functions that are in O(f(n)) − Ω(f(n)) but that are not in
o(f(n)). The following example illustrates this.

Example 1.20
Consider the function

It is left as an exercise to show that

Example 1.20, of course, is quite contrived. When complexity functions represent
the time complexities of actual algorithms, ordinarily the functions in O(f(n)) −
Ω(f(n)) are the same ones that are in o(f(n)).

Let’s discuss Θ further. In the exercises we establish that

For example,

This means that Θ separates complexity functions into disjoint sets. We will call
these sets complexity categories. Any function from a given category can represent
the category. For convenience, we ordinarily represent a category by its simplest
member. The previous complexity category is represented by Θ(n2).

The time complexities of some algorithms do not increase with n. For example,
recall that the best-case time complexity B(n) for Algorithm 1.1 is 1 for every value
of n. The complexity category containing such functions can be represented by any
constant, and for simplicity we represent it by Θ(1).

The following are some important properties of order that make it easy to
determine the orders of many complexity functions. They are stated without proof.
The proofs of some will be derived in the exercises, whereas the proofs of others
follow from results obtained in the next subsection. The second result we have
already discussed. It is included here for completeness.

Properties of Order:
1. g(n) ∈ O(f(n)) if and only if f(n) ∈ Ω(g(n)).

www.EBooksWorld.ir

2. g(n) ∈ Θ(f(n)) if and only if f(n) ∈ Θ(g(n)).
3. If b > 1 and a > 1, then loga n ∈ Θ(logb n).

This implies that all logarithmic complexity functions are in the same complexity
category. We will represent this category by Θ(lg n).

4. If b > a > 0, then

This implies that all exponential complexity functions are not in the same
complexity category.

5. For all a > 0

This implies that n! is worse than any exponential complexity function.
6. Consider the following ordering of complexity categories:

where k > j > 2 and b > a > 1. If a complexity function g(n) is in a category that
is to the left of the category containing f(n), then

7. If c ≥ 0, d > 0, g(n) ∈ O(f(n)), and h(n) ∈ Θ(f(n)), then

Example 1.21
Property 3 states that all logarithmic complexity functions are in the same complexity
category. For example,

This means that the relationship between log4 n and lg n is the same as the one
between 7n2 + 5n and n2.

Example 1.22
Property 6 states that any logarithmic function is eventually better than any
polynomial, any polynomial is eventually better than any exponential function, and
any exponential function is eventually better than the factorial function. For example,

www.EBooksWorld.ir

Example 1.23
Properties 6 and 7 can be used repeatedly. For example, we can show that 5n + 3 lg
n + 10n lg n + 7n2 ∈ Θ(n2), as follows. Repeatedly applying Properties 6 and 7, we
have

which means

which means

which means

In practice, we do not repeatedly appeal to the properties, but rather we simply
realize that we can throw out low-order terms.

If we can obtain the exact time complexity of an algorithm, we can determine its
order simply by throwing out low-order terms. When this is not possible, we can
appeal back to the definitions of “big O” and Ω to determine order. For example,
suppose for some algorithm we are unable to determine T(n) [or W(n), A(n), or B(n)]
exactly. If we can show that

by appealing directly to the definitions, we can conclude that T(n) ∈ Θ(f(n)).
Sometimes it is fairly easy to show that T(n) ∈ O(f(n)) but difficult to determine

whether T(n) is in Ω(f (n)). In such cases we may be content to show only that T(n)
∈ O(f(n)), because this implies that T(n) is at least as good as functions such as f(n).
Similarly, we may be content to learn only that T(n) ∈ Ω(f(n)), because this implies
that T(n) is at least as bad as functions such as f(n).

Before closing, we mention that many authors say

Both mean the same thing—namely, that f(n) is a member of the set Θ(n2). Similarly,
it is common to write

www.EBooksWorld.ir

You are referred to Knuth (1973) for an account of the history of “order” and to
Brassard (1985) for a discussion of the definitions of order given here. Our
definitions of “big O,” Ω, and Θ are, for the most part, standard. There are, however,
other definitions of “small o.” It is not standard to call the sets Θ(n), Θ(n2), and so
on, “complexity categories.” Some authors call them “complexity classes,” although
this term is used more often to refer to the sets of problems discussed in Chapter 9.
Other authors do not give them any particular name at all.

 • 1.4.3 Using a Limit to Determine Order
We now show how order can sometimes be determined using a limit. This material is
included for those familiar with limits and derivatives. Knowledge of this material is
not required elsewhere in the text.

 Theorem 1.3
We have the following:

Proof: The proof is left as an exercise.

Example 1.24
Theorem 1.3 implies that

because

Using Theorem 1.3 in Example 1.24 is not very exciting because the result could
have easily been established directly. The following examples are more interesting.

www.EBooksWorld.ir

Example 1.25
Theorem 1.3 implies that, for b > a > 0,

because

The limit is 0 because 0 < a/b < 1.
This is Property 4 in the Properties of Order (near the end of Section 1.4.2).

Example 1.26
Theorem 1.3 implies that, for a > 0,

If a ≤ 1, the result is trivial. Suppose that a > 1. If n is so large that

then

Because a > 1, this implies that

This is Property 5 in the Properties of Order.

The following theorem, whose proof can be found in most calculus texts, enhances
the usefulness of Theorem 1.3.

 Theorem 1.4

L’Hôpital’s Rule If f(x) and g(x) are both differentiable with derivatives f′(x) and g
′(x), respectively, and if

www.EBooksWorld.ir

then

whenever the limit on the right exists.

Theorem 1.4 holds for functions of real valuables, whereas our complexity
functions are functions of integer variables. However, most of our complexity
functions (for example, lg n, n, etc.) are also functions of real variables. Furthermore,
if a function f(x) is a function of a real variable x, then

where n is an integer, whenever the limit on the right exists. Therefore, we can apply
Theorem 1.4 to complexity analysis, as the following examples illustrate.

Example 1.27
Theorems 1.3 and 1.4 imply that

because

Example 1.28
Theorems 1.3 and 1.4 imply that, for b > 1 and a > 1,

because

This is Property 3 in the Properties of Order.

www.EBooksWorld.ir

1.5 Outline of This Book
We are now ready to develop and analyze sophisticated algorithms. For the most
part, our organization is by technique rather than by application area. As noted
earlier, the purpose of this organization is to establish a repertoire of techniques that
can be investigated as possible ways to approach a new problem. Chapter 2
discusses a technique called “divide-and-conquer.” Chapter 3 covers dynamic
programming. Chapter 4 addresses “the greedy approach.” In Chapter 5, the
backtracking technique is presented. Chapter 6 discusses a technique related to
backtracking called “branch-and-bound.” In Chapters 7 and 8, we switch from
developing and analyzing algorithms to analyzing problems themselves. Such an
analysis, which is called a computational complexity analysis, involves determining
a lower bound for the time complexities of all algorithms for a given problem.
Chapter 7 analyzes the Sorting Problem, and Chapter 8 analyzes the Searching
Problem. Chapter 9 is devoted to a special class of problems. That class contains
problems for which no one has ever developed an algorithm whose time complexity
is better than exponential in the worst case. Yet no one has ever proven that such an
algorithm is not possible. It turns out that there are thousands of such problems and
that they are all closely related. The study of these problems has become a relatively
new and exciting area of computer science. In Chapter 10 we revert back to
developing algorithms. However, unlike the methods presented in Chapters 2–6, we
discuss algorithms for solving a certain type of problem. That is, we discuss number-
theoretic algorithms, which are algorithms that solve problems involving the integers.
All of the algorithms discussed in the first nine chapters are developed for a
computer containing a single processor that executes a single sequence of
instructions. Owing to the drastic reduction in the price of computer hardware, there
has been a recent increase in the development of parallel computers. Such computers
have more than one processor, and all the processors can execute instructions
simultaneously (in parallel). Algorithms written for such computers are called
“parallel algorithms.” Chapter 11 is an introduction to such algorithms.

EXERCISES

Sections 1.1
1. Write an algorithm that finds the largest number in a list (an array) of n numbers.
2. Write an algorithm that finds the m smallest numbers in a list of n numbers.
3. Write an algorithm that prints out all the subsets of three elements of a set of n

elements. The elements of this set are stored in a list that is the input to the

www.EBooksWorld.ir

algorithm.
4. Write an Insertion Sort algorithm (Insertion Sort is discussed in Section 7.2) that

uses Binary Search to find the position where the next insertion should take
place.

5. Write an algorithm that finds the greatest common divisor of two integers.
6. Write an algorithm that finds both the smallest and largest numbers in a list of n

numbers. Try to find a method that does at most 1.5n comparisons of array items.
7. Write an algorithm that determines whether or not an almost complete binary tree

is a heap.

Sections 1.2
8. Under what circumstances, when a searching operation is needed, would

Sequential Search (Algorithm 1.1) not be appropriate?
9. Give a practical example in which you would not use Exchange Sort (Algorithm

1.3) to do a sorting task.

Sections 1.3
10. Define basic operations for your algorithms in Exercises 1–7, and study the

performance of these algorithms. If a given algorithm has an every-case time
complexity, determine it. Otherwise, determine the worst-case time complexity.

11. Determine the worst-case, average-case, and best-case time complexities for the
basic Insertion Sort and for the version given in Exercise 4, which uses Binary
Search.

12. Write a Θ(n) algorithm that sorts n distinct integers, ranging in size between 1
and kn inclusive, where k is a constant positive integer. (Hint: Use a knelement
array.)

13. Algorithm A performs 10n2 basic operations, and algorithm B performs 300 ln n
basic operations. For what value of n does algorithm B start to show its better
performance?

14. There are two algorithms called Alg1 and Alg2 for a problem of size n. Alg1
runs in n2 microseconds and Alg2 runs in 100n log n microseconds. Alg1 can be
implemented using 4 hours of programmer time and needs 2 minutes of CPU time.
On the other hand, Alg2 requires 15 hours of programmer time and 6 minutes of
CPU time. If programmers are paid 20 dollars per hour and CPU time costs 50
dollars per minute, how many times must a problem instance of size 500 be
solved using Alg2 in order to justify its development cost?

www.EBooksWorld.ir

Sections 1.4
15 Show directly that f(n) = n2 + 3n3 ∈ Θ(n3). That is, use the definitions of O and Ω

to show that f(n) is in both O(n3) and Ω(n3).

16. Using the definitions of O and Ω, show that

17. Using the Properties of Order in Section 1.4.2, show that

18. Let p(n) = aknk + ak−1nk−1 + · · · + a1n + a0, where ak > 0. Using the Properties of
Order in Section 1.4.2, show that p(n) ∈ Θ(nk).

19. The function f(x) = 3n2 +10n log n+1000n+4 log n+9999 belongs in which of the
following complexity categories:
(a) θ(lg n)
(b) θ(n2 log n)
(c) θ(n)
(d) θ(n lg n)
(e) θ(n2)
(f) None of these

20. The function f(x) = (log n)2 + 2n + 4n + log n + 50 belongs in which of the
following complexity categories:
(a) θ(lg n)
(b) θ((log n)2)
(c) θ(n)
(d) θ(n lg n)
(e) θ(n(lg n)2)
(f) None of these

21. The function f(x) = n + n2 + 2n + n4 belongs in which of the following complexity
categories:
(a) θ(n)
(b) θ(n2)
(c) θ(n3)
(d) θ(n lg n)
(e) θ(n4)
(f) None of these

www.EBooksWorld.ir

22. Group the following functions by complexity category.

23. Establish Properties 1, 2, 6, and 7 of the Properties of Order in Section 1.4.2.

24. Discuss the reflexive, symmetric, and transitive properties for asymptotic
comparisons (O, Ω, Θ, o).

25. Suppose you have a computer that requires 1 minute to solve problem instances
of size n = 1,000. Suppose you buy a new computer that runs 1,000 times faster
than the old one. What instance sizes can be run in 1 minute, assuming the
following time complexities T(n) for our algorithm?
(a) T(n) = n
(b) T(n) = n3

(c) T(n) = 10n

26. Derive the proof of Theorem 1.3.

27. Show the correctness of the following statements.
(a) lg n ∈ O (n)
(b) n ∈ O (n lg n)
(c) n lg n ∈ O(n2)
(d) 2n ∈ Ω 5ln n
(e) lg3 n ∈ (n0.5)

Additional Exercises
28. Presently we can solve problem instances of size 30 in 1 minute using algorithm

A, which is a Θ(2n) algorithm. On the other hand, we will soon have to solve
problem instances twice this large in 1 minute. Do you think it would help to buy
a faster (and more expensive) computer?

29. Consider the following algorithm:

(a) What is the output when n = 2, n = 4, and n = 6?
(b) What is the time complexity T(n)? You may assume that the input n is

www.EBooksWorld.ir

divisible by 2.

30. Consider the following algorithm:

(a) What is the output when n = 6, n = 8, and n = 10?
(b) What is the time complexity T(n)? You may assume that the input n is

divisible by 2.

31. Consider the following algorithm:

(a) What is the output when n = 4, n = 16, n = 32?
(b) What is the time complexity T(n). You may assume that n is divisible 4.

32. What is the time complexity T(n) of the nested loops below? For simplicity, you
may assume that n is a power of 2. That is, n = 2k for some positive integer k.

33. Give an algorithm for the following problem and determine its time complexity.
Given a list of n distinct positive integers, partition the list into two sublists, each
of size n/2, such that the difference between the sums of the integers in the two
sublists is maximized. You may assume that n is a multiple of 2.

34. What is the time complexity T(n) of the nested loops below? For simplicity, you
may assume that n is a power of 2. That is, n = 2k for some positive integer k.

www.EBooksWorld.ir

35. Consider the following algorithm:

(a) If n = 5 and the array A contains 2, 5, 3, 7, and 8, what is the output?
(b) What is the time complexity T(n) of the algorithm?
(c) Try to improve the efficiency of the algorithm.

36. Consider the following algorithm:

(a) What is the best case time complexity of the algorithm (assuming n > 1)?
(b) What is the worst case time complexity of the algorithm?
(c) Try to improve the efficiency of the algorithm.
(d) What property holds for the array A if the algorithm returns 0?
(e) What property holds for the array A if the algorithm returns 1?

37. Give a Θ(lg n) algorithm that computes the remainder when xn is divided by p.
For simplicity, you may assume that n is a power of 2. That is, n = 2k for some
positive integer k.

www.EBooksWorld.ir

38. Explain in English what functions are in the following sets.
(a) nO(1)

(b)

(c)

39. Show that the function f (n) = | n2 = sin n| is in neither O(n) nor Ω(n).

40. Justify the correctness of the following statements assuming that f(n) and g(n) are
asymptotically positive functions.
(a) f (n) + g (n) ∈ O (max (f (n)) , g (n))
(b) f2(n) ∈ Ω(f(n))
(c) f(n) + o(f(n)) ∈ Θ(f(n)), where o(f(n)) means any function g(n) ∈ o(f(n))

41. Give an algorithm for the following problem. Given a list of n distinct positive
integers, partition the list into two sublists, each of size n/2, such that the
difference between the sums of the integers in the two sublists is minimized.
Determine the time complexity of your algorithm. You may assume that n is a
multiple of 2.

42. Algorithm 1.7 (nth Fibonacci Term, Iterative) is clearly linear in n, but is it a
linear-time algorithm? In Section 1.3.1 we defined the input size as the size of the
input. In the case of the nth Fibonacci term, n is the input, and the number of bits
it takes to encode n could be used as the input size. Using this measure, the size of
64 is lg 64 = 6, and the size of 1,024 is lg 1,024 = 10. Show that Algorithm 1.7 is
exponential-time in terms of its input size. Show further that any algorithm for
computing the nth Fibonacci term must be an exponential-time algorithm because
the size of the output is exponential in the input size. (See Section 9.2 for a
related discussion of the input size.)

43. Determine the time complexity of Algorithm 1.6 (nth Fibonacci Term, Recursive)
in terms of its input size (see Exercise 34).

44. Can you verify the correctness of your algorithms for Exercises 1 to 7?

www.EBooksWorld.ir

Chapter 2

Divide-and-Conquer

Our first approach to designing algorithms, divide-and-conquer, is patterned after the
brilliant strategy employed by the French emperor Napoleon in the Battle of
Austerlitz on December 2, 1805. A combined army of Austrians and Russians
outnumbered Napoleon’s army by about 15,000 soldiers. The Austro-Russian army
launched a massive attack against the French right flank. Anticipating their attack,
Napoleon drove against their center and split their forces in two. Because the two
smaller armies were individually no match for Napoleon, they each suffered heavy
losses and were compelled to retreat. By dividing the large army into two smaller
armies and individually conquering these two smaller armies, Napoleon was able to
conquer the large army.

The divide-and-conquer approach employs this same strategy on an instance of a
problem. That is, it divides an instance of a problem into two or more smaller
instances. The smaller instances are usually instances of the original problem. If
solutions to the smaller instances can be obtained readily, the solution to the original
instance can be obtained by combining these solutions. If the smaller instances are
still too large to be solved readily, they can be divided into still smaller instances.
This process of dividing the instances continues until they are so small that a solution
is readily obtainable.

The divide-and-conquer approach is a top-down approach. That is, the solution to
a top-level instance of a problem is obtained by going down and obtaining solutions
to smaller instances. The reader may recognize this as the method used by recursive
routines. Recall that when writing recursion, one thinks at the problem-solving level
and lets the system handle the details of obtaining the solution (by means of stack
manipulations). When developing a divide-and-conquer algorithm, we usually think
at this level and write it as a recursive routine. After this, we can sometimes create a
more efficient iterative version of the algorithm.

We now introduce the divide-and-conquer approach with examples, starting with

www.EBooksWorld.ir

Binary Search.

2.1 Binary Search
We showed an iterative version of Binary Search (Algorithm 1.5) in Section 1.2.
Here we present a recursive version because recursion illustrates the top-down
approach used by divide-and-conquer. Stated in divide-and-conquer terminology,
Binary Search locates a key x in a sorted (nondecreasing order) array by first
comparing x with the middle item of the array. If they are equal, the algorithm is
done. If not, the array is divided into two subarrays, one containing all the items to
the left of the middle item and the other containing all the items to the right. If x is
smaller than the middle item, this procedure is then applied to the left subarray.
Otherwise, it is applied to the right subarray. That is, x is compared with the middle
item of the appropriate subarray. If they are equal, the algorithm is done. If not, the
subarray is divided in two. This procedure is repeated until x is found or it is
determined that x is not in the array.

The steps of Binary Search can be summarized as follows.

If x equals the middle item, quit. Otherwise:

1. Divide the array into two subarrays about half as large. If x is smaller than the
middle item, choose the left subarray. If x is larger than the middle item, choose
the right subarray.

2. Conquer (solve) the subarray by determining whether x is in that subarray.
Unless the subarray is sufficiently small, use recursion to do this.

3. Obtain the solution to the array from the solution to the subarray.

Binary Search is the simplest kind of divide-and-conquer algorithm because the
instance is broken down into only one smaller instance, so there is no combination of
outputs. The solution to the original instance is simply the solution to the smaller
instance. The following example illustrates Binary Search.

Example 2.1
Suppose x = 18 and we have the following array:

1. Divide the array: Because x < 25, we need to search

www.EBooksWorld.ir

2. Conquer the subarray by determining whether x is in the subarray. This is
accomplished by recursively dividing the subarray. The solution is:

Yes, x is in the subarray.

3. Obtain the solution to the array from the solution to the subarray:
Yes, x is in the array.

In Step 2 we simply assumed that the solution to the subarray was available. We
did not discuss all the details involved in obtaining the solution because we wanted
to show the solution at a problem-solving level. When developing a recursive
algorithm for a problem, we need to

• Develop a way to obtain the solution to an instance from the solution to one or
more smaller instances.

• Determine the terminal condition(s) that the smaller instance(s) is (are)
approaching.

• Determine the solution in the case of the terminal condition(s).

We need not be concerned with the details of how the solution is obtained (in the
case of a computer, by means of stack manipulations). Indeed, worrying about these
details can sometimes hinder one’s development of a complex recursive algorithm.
For the sake of concreteness, Figure 2.1 shows the steps done by a human when
searching with Binary Search.

A recursive version of Binary Search now follows.

Algorithm 2.1
Binary Search (Recursive)
Problem: Determine whether x is in the sorted array S of size n.
Inputs: positive integer n, sorted (nondecreasing order) array of keys S indexed from
1 to n, a key x.
Outputs: location, the location of x in S (0 if x is not in S).

www.EBooksWorld.ir

Notice that n, S, and x are not parameters to function location. Because they
remain unchanged in each recursive call, there is no need to make them parameters.
In this text only the variables, whose values can change in the recursive calls, are
made parameters to recursive routines. There are two reasons for doing this. First, it
makes the expression of recursive routines less cluttered. Second, in an actual
implementation of a recursive routine, a new copy of any variable passed to the
routine is made in each recursive call. If a variable’s value does not change, the copy
is unnecessary. This waste could be costly if the variable is an array. One way to
circumvent this problem would be to pass the variable by address. Indeed, if the
implementation language is C++, an array is automatically passed by address, and
using the reserved word const guarantees the array cannot be modified. However,
including all of this in our pseudocode expression of recursive algorithms again
serves to clutter them and possibly diminish their clarity.
Figure 2.1 The steps done by a human when searching with Binary Search. (Note: x = 18.)

www.EBooksWorld.ir

Each of the recursive algorithms could be implemented in a number of ways,
depending on the language used for the implementation. For example, one possible
way to implement them in C++ would be pass all the parameters to the recursive
routine; another would be to use classes; and yet another would be to globally define
the parameters that do not change in the recursive calls. We will illustrate how to
implement the last one since this is the alternative consistent with our expression of
the algorithms. If we did define S and x globally and n was the number of items in S,
our top-level call to function location in Algorithm 2.1 would be as follows:

locationout = location (1 , n) ;

Because the recursive version of Binary Search employs tail-recursion (that is, no
operations are done after the recursive call), it is straightforward to produce an
iterative version, as was done in Section 1.2. As previously discussed, we have
written a recursive version because recursion clearly illustrates the divide-and-
conquer process of dividing an instance into smaller instances. However, it is
advantageous in languages such as C++ to replace tail-recursion by iteration. Most
importantly, a substantial amount of memory can be saved by eliminating the stack
developed in the recursive calls. Recall that when a routine calls another routine, it
is necessary to save the first routine’s pending results by pushing them onto the stack
of activation records. If the second routine calls another routine, the second routine’s
pending results must also be pushed onto the stack, and so on. When control is
returned to a calling routine, its activation record is popped from the stack and the
computation of the pending results is completed. In the case of a recursive routine,
the number of activation records pushed onto the stack is determined by the depth

www.EBooksWorld.ir

reached in the recursive calls. For Binary Search, the stack reaches a depth that in the
worst case is about lg n + 1.

Another reason for replacing tail-recursion by iteration is that the iterative
algorithm will execute faster (but only by a constant multiplicative factor) than the
recursive version because no stack needs to be maintained. Because most modern
LISP dialects compile tail-recursion to iterative code, there is no reason to replace
tail-recursion by iteration in these dialects.

Binary Search does not have an every-case time complexity. We will do a worst-
case analysis. We already did this informally in Section 1.2. Here we do the analysis
more rigorously. Although the analysis refers to Algorithm 2.1, it pertains to
Algorithm 1.5 as well. If you are not familiar with techniques for solving recurrence
equations, you should study Appendix B before proceeding.

Analysis of Algorithm 2.1
 Worst-Case Time Complexity (Binary Search, Recursive)

In an algorithm that searches an array, the most costly operation is usually the
comparison of the search item with an array item. Thus, we have the following:
Basic operation: the comparison of x with S [mid].
Input size: n, the number of items in the array.

We first analyze the case in which n is a power of 2. There are two comparisons of x
with S [mid] in any call to function location in which x does not equal S [mid].
However, as discussed in our informal analysis of Binary Search in Section 1.2, we
can assume that there is only one comparison, because this would be the case in an
efficient assembler language implementation. Recall from Section 1.3 that we
ordinarily assume that the basic operation is implemented as efficiently as possible.

As discussed in Section 1.2, one way the worst case can occur is when x is larger
than all array items. If n is a power of 2 and x is larger than all the array items, each
recursive call reduces the instance to one exactly half as big. For example, if n = 16,
then mid = (1 + 16) /2 = 8. Because x is larger than all the array items, the top eight
items are the input to the first recursive call. Similarly, the top four items are the
input to the second recursive call, and so on. We have the following recurrence:

If n = 1 and x is larger than the single array item, there is a comparison of x with that
item followed by a recursive call with low > high. At this point the terminal
condition is true, which means that there are no more comparisons. Therefore, W (1)

www.EBooksWorld.ir

is 1. We have established the recurrence

This recurrence is solved in Example B.1 in Appendix B. The solution is

If n is not restricted to being a power of 2, then

where y means the greatest integer less than or equal to y. We show how to
establish this result in the exercises.

2.2 Mergesort
A process related to sorting is merging. By two-way merging we mean combining
two sorted arrays into one sorted array. By repeatedly applying the merging
procedure, we can sort an array. For example, to sort an array of 16 items, we can
divide it into two subarrays, each of size 8, sort the two subarrays, and then merge
them to produce the sorted array. In the same way, each subarray of size 8 can be
divided into two subarrays of size 4, and these subarrays can be sorted and merged.
Eventually, the size of the subarrays will become 1, and an array of size 1 is trivially
sorted. This procedure is called “Mergesort.” Given an array with n items (for
simplicity, let n be a power of 2), Mergesort involves the following steps:

1. Divide the array into two subarrays each with n/2 items.
2. Conquer (solve) each subarray by sorting it. Unless the array is sufficiently

small, use recursion to do this.
3. Combine the solutions to the subarrays by merging them into a single sorted

array.

The following example illustrates these steps.

Example 2.2
Suppose the array contains these numbers in sequence:

www.EBooksWorld.ir

1. Divide the array:

2. Sort each subarray:

3. Merge the subarrays:

Figure 2.2 The steps done by a human when sorting with Mergesort.

In Step 2 we think at the problem-solving level and assume that the solutions to the
subarrays are available. To make matters more concrete, Figure 2.2 illustrates the
steps done by a human when sorting with Mergesort. The terminal condition occurs
when an array of size 1 is reached; at that time, the merging begins.

www.EBooksWorld.ir

Algorithm 2.2
Mergesort
Problem: Sort n keys in nondecreasing sequence.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.

Before we can analyze Mergesort, we must write and analyze an algorithm that
merges two sorted arrays.

Algorithm 2.3
Merge
Problem: Merge two sorted arrays into one sorted array.
Inputs: positive integers h and m, array of sorted keys U indexed from 1 to h, array of
sorted keys V indexed from 1 to m.
Outputs: an array S indexed from 1 to h + m containing the keys in U and V in a single
sorted array.

www.EBooksWorld.ir

• Table 2.1 An example of merging two arrays U and V into one array S∗

*Items compared are in boldface.

Table 2.1 illustrates how procedure merge works when merging two arrays of size
4.

Analysis of Algorithm 2.3
Worse-Case Time Complexity (Merge)

As mentioned in Section 1.3, in the case of algorithms that sort by comparing keys,

www.EBooksWorld.ir

the comparison instruction and the assignment instruction can each be considered the
basic operation. Here we will consider the comparison instruction. When we discuss
Mergesort further in Chapter 7, we will consider the number of assignments. In this
algorithm, the number of comparisons depends on both h and m. We therefore have
the following:
Basic operation: the comparison of U [i] with V [j].
Input size: h and m, the number of items in each of the two input arrays.

The worst case occurs when the loop is exited, because one of the indices— say, i—
has reached its exit point h + 1 whereas the other index j has reached m, 1 less than
its exit point. For example, this can occur when the first m − 1 items in V are placed
first in S, followed by all h items in U, at which time the loop is exited because i
equals h + 1. Therefore,

We can now analyze Mergesort.

Analysis of Algorithm 2.2
 Worst-Case Time Complexity (Mergesort)
The basic operation is the comparison that takes place in merge. Because the number
of comparisons increases with h and m, and h and m increase with n, we have the
following:
Basic operation: the comparison that takes place in merge.
Input size: n, the number of items in the array S.

The total number of comparisons is the sum of the number of comparisons in the
recursive call to mergesort with U as the input, the number of comparisons in the
recursive call to mergesort with V as the input, and the number of comparisons in the
top-level call to merge. Therefore,

We first analyze the case where n is a power of 2. In this case,

www.EBooksWorld.ir

Our expression for W(n) becomes

When the input size is 1, the terminal condition is met and no merging is done.
Therefore, W (1) is 0. We have established the recurrence

This recurrence is solved in Example B.19 in Appendix B. The solution is

For n not a power of 2, we will establish in the exercises that

where y and y are the smallest integer ≥ y and the largest integer ≤ y, respectively.
It is hard to analyze this case exactly because of the floors () and ceilings ().
However, using an induction argument like the one in Example B.25 in Appendix B,
it can be shown that W(n) is nondecreasing. Therefore, Theorem B.4 in that appendix
implies that

An in-place sort is a sorting algorithm that does not use any extra space beyond
that needed to store the input. Algorithm 2.2 is not an in-place sort because it uses the
arrays U and V besides the input array S. If U and V are variable parameters (passed
by address) in merge, a second copy of these arrays will not be created when merge
is called. However, new arrays U and V will still be created each time mergesort is
called. At the top level, the sum of the numbers of items in these two arrays is n. In
the top-level recursive call, the sum of the numbers of items in the two arrays is
about n/2; in the recursive call at the next level, the sum of the numbers of items in
the two arrays is about n/4; and, in general, the sum of the numbers of items in the
two arrays at each recursion level is about one-half of the sum at the previous level.
Therefore, the total number of extra array items created is about n (1 + 1/2 + 1/4 + · ·
·) = 2n.

Algorithm 2.2 clearly illustrates the process of dividing an instance of a problem
into smaller instances because two new arrays (smaller instances) are actually
created from the input array (original instance). Therefore, this was a good way to

www.EBooksWorld.ir

introduce Mergesort and illustrate the divide-and-conquer approach. However, it is
possible to reduce the amount of extra space to only one array containing n items.
This is accomplished by doing much of the manipulation on the input array S. The
following method for doing this is similar to the method used in Algorithm 2.1
(Binary Search, Recursive).

Algorithm 2.4
Mergesort 2
Problem: Sort n keys in nondecreasing sequence.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.

Following our convention of making only variables, whose values can change in
recursive calls, parameters to recursive routines, n and S are not parameters to
procedure mergesort2. If the algorithm were implemented by defining S globally and
n was the number of items in S, the top-level call to mergesort2 would be as
follows:

mergesort2 (1 , n) ;

The merging procedure that works with mergesort2 follows.

Algorithm 2.5
Merge 2
Problem: Merge the two sorted subarrays of S created in Mergesort 2.
Inputs: indices low, mid, and high, and the subarray of S indexed from low to high.
The keys in array slots from low to mid are already sorted in nondecreasing order, as
are the keys in array slots from mid + 1 to high.

www.EBooksWorld.ir

Outputs: the subarray of S indexed from low to high containing the keys in
nondecreasing order.

2.3 The Divide-and-Conquer Approach
Having studied two divide-and-conquer algorithms in detail, you should now better
understand the following general description of this approach.

The divide-and-conquer design strategy involves the following steps:

1. Divide an instance of a problem into one or more smaller instances.
2. Conquer (solve) each of the smaller instances. Unless a smaller instance is

sufficiently small, use recursion to do this.
3. If necessary, combine the solutions to the smaller instances to obtain the solution

to the original instance.

The reason we say “if necessary” in Step 3 is that in algorithms such as Binary
Search Recursive (Algorithm 2.1) the instance is reduced to just one smaller
instance, so there is no need to combine solutions.

More examples of the divide-and-conquer approach follow. In these examples we
will not explicitly mention the steps previously outlined. It should be clear that we

www.EBooksWorld.ir

are following them.

2.4 Quicksort (Partition Exchange Sort)
Next we look at a sorting algorithm, called “Quicksort,” that was developed by
Hoare (1962). Quicksort is similar to Mergesort in that the sort is accomplished by
dividing the array into two partitions and then sorting each partition recursively. In
Quicksort, however, the array is partitioned by placing all items smaller than some
pivot item before that item and all items larger than the pivot item after it. The pivot
item can be any item, and for convenience we will simply make it the first one. The
following example illustrates how Quicksort works.

Example 2.3
Suppose the array contains these numbers in sequence:

1. Partition the array so that all items smaller than the pivot item are to the left of it
and all items larger are to the right:

2. Sort the subarrays:

After the partitioning, the order of the items in the subarrays is unspecified and is a
result of how the partitioning is implemented. We have ordered them according to
how the partitioning routine, which will be presented shortly, would place them. The
important thing is that all items smaller than the pivot item are to the left of it, and all
items larger are to the right of it. Quicksort is then called recursively to sort each of
the two subarrays. They are partitioned, and this procedure is continued until an array
with one item is reached. Such an array is trivially sorted. Example 2.3 shows the

www.EBooksWorld.ir

solution at the problem-solving level. Figure 2.3 illustrates the steps done by a human
when sorting with Quicksort. The algorithm follows.

Algorithm 2.6
Quicksort
Problem: Sort n keys in nondecreasing order.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.

Following our usual convention, n and S are not parameters to procedure
quicksort. If the algorithm were implemented by defining S globally and n was the
number of items in S, the top-level call to quicksort would be as follows:

quicksort (1 , n) ;

Figure 2.3 The steps done by a human when sorting with Quicksort. The subarrays are enclosed in rectangles
whereas the pivot points are free.

www.EBooksWorld.ir

The partitioning of the array is done by procedure partition. Next we show an
algorithm for this procedure.

Algorithm 2.7
Partition
Problem: Partition the array S for Quicksort.
Inputs: two indices, low and high, and the subarray of S indexed from low to high.
Outputs: pivotpoint, the pivot point for the subarray indexed from low to high.

• Table 2.2 An example of procedure partition∗

www.EBooksWorld.ir

∗ Items compared are in boldface. Items just exchanged appear in squares.

Procedure partition works by checking each item in the array in sequence.
Whenever an item is found to be less than the pivot item, it is moved to the left side
of the array. Table 2.2 shows how partition would proceed on the array in Example
2.3.

Next we analyze Partition and Quicksort.

Analysis of Algorithm 2.7
 Every-Case Time Complexity (Partition)
Basic operation: the comparison of S [i] with pivotitem.
Input size: n = high − low + 1, the number of items in the subarray.

Because every item except the first is compared,

We are using n here to represent the size of the subarray, not the size of the array S. It
represents the size of S only when partition is called at the top level.

Quicksort does not have an every-case complexity. We will do worst-case and
average-case analyses.

Analysis of Algorithm 2.6
 Worst-Case Time Complexity (Quicksort)
Basic operation: the comparison of S [i] with pivotitem in partition.
Input size: n, the number of items in the array S.

Oddly enough, it turns out that the worst case occurs if the array is already sorted in

www.EBooksWorld.ir

nondecreasing order. The reason for this should become clear. If the array is already
sorted in nondecreasing order, no items are less than the first item in the array, which
is the pivot item. Therefore, when partition is called at the top level, no items are
placed to the left of the pivot item, and the value of pivotpoint assigned by partition
is 1. Similarly, in each recursive call, pivotpoint receives the value of low.
Therefore, the array is repeatedly partitioned into an empty subarray on the left and a
subarray with one less item on the right. For the class of instances that are already
sorted in nondecreasing order, we have

We are using the notation T(n) because we are presently determining the every-case
complexity for the class of instances that are already sorted in nondecreasing order.
Because T(0) = 0, we have the recurrence

This recurrence is solved in Example B.16 in Appendix B. The solution is

We have established that the worst case is at least n (n − 1) /2. Although intuitively it
may now seem that this is as bad as things can get, we still need to show this. We
will accomplish this by using induction to show that, for all n,

Induction base: For n = 0

Induction hypothesis: Assume that, for 0 ≤ k < n,

Induction step: We need to show that

For a given n, there is some instance with size n for which the processing time is
W(n). Let p be the value of pivotpoint returned by partition at the top level when this

www.EBooksWorld.ir

instance is processed. Because the time to process the instances of size p − 1 and n
− p can be no more than W(p − 1) and W(n − p), respectively, we have

The last inequality is by the induction hypothesis. Algebraic manipulations can show
that for 1 ≤ p ≤ n this last expression is

This completes the induction proof.

We have shown that the worst-case time complexity is given by

The worst case occurs when the array is already sorted because we always choose
the first item for the pivot item. Therefore, if we have reason to believe that the array
is close to being sorted, this is not a good choice for the pivot item. When we discuss
Quicksort further in Chapter 7, we will investigate other methods for choosing the
pivot item. If we use these methods, the worst case does not occur when the array is
already sorted. But the worst-case time complexity is still n (n − 1) /2.

In the worst case, Algorithm 2.6 is no faster than Exchange Sort (Algorithm 1.3).
Why then is this sort called Quicksort? As we shall see, it is in its average-case
behavior that Quicksort earns its name.

Analysis of Algorithm 2.6
 Average-Case Time Complexity (Quicksort)
Basic operation: the comparison of S [i] with pivotitem in partition
Input size: n, the number of items in the array S.

We will assume that we have no reason to believe that the numbers in the array are in
any particular order, and therefore that the value of pivotpoint returned by partition
is equally likely to be any of the numbers from 1 through n. If there was reason to
believe a different distribution, this analysis would not be applicable. The average
obtained is, therefore, the average sorting time when every possible ordering is
sorted the same number of times. In this case, the average-case time complexity is
given by the following recurrence:

www.EBooksWorld.ir

In the exercises we show that

Plugging this equality into Equality 2.1 yields

Multiplying by n we have

Applying Equality 2.2 to n − 1 gives

Subtracting Equality 2.3 from Equality 2.2 yields

which simplifies to

If we let

we have the recurrence

Like the recurrence in Example B.22 in Appendix B, the approximate solution to this
recurrence is given by

www.EBooksWorld.ir

which implies that

Quicksort’s average-case time complexity is of the same order as Mergesort’s time
complexity. Mergesort and Quicksort are compared further in Chapter 7 and in Knuth
(1973).

2.5 Strassen’s Matrix Multiplication Algorithm
Recall that Algorithm 1.4 (Matrix Multiplication) multiplied two matrices strictly
according to the definition of matrix multiplication. We showed that the time
complexity of its number of multiplications is given by T(n) = n3, where n is the
number of rows and columns in the matrices. We can also analyze the number of
additions. As you will show in the exercises, after the algorithm is modified slightly,
the time complexity of the number of additions is given by T(n) = n3 − n2. Because
both of these time complexities are in Θ(n3), the algorithm can become impractical
fairly quickly. In 1969, Strassen published an algorithm whose time complexity is
better than cubic in terms of both multiplications and additions/subtractions. The
following example illustrates his method.

Example 2.4
Suppose we want the product C of two 2 × 2 matrices, A and B. That is,

Strassen determined that if we let

the product C is given by

www.EBooksWorld.ir

In the exercises, you will show that this is correct.

To multiply two 2 × 2 matrices, Strassen’s method requires seven multiplications
and 18 additions/subtractions, whereas the straightforward method requires eight
multiplications and four additions/subtractions. We have saved ourselves one
multiplication at the expense of doing 14 additional additions or subtractions. This is
not very impressive, and indeed it is not in the case of 2 × 2 matrices that Strassen’s
method is of value. Because the commutativity of multiplications is not used in
Strassen’s formulas, those formulas pertain to larger matrices that are each divided
into four submatrices. First we divide the matrices A and B, as illustrated in Figure
2.4. Assuming that n is a power of 2, the matrix A11, for example, is meant to
represent the following submatrix of A:

Using Strassen’s method, first we compute

where our operations are now matrix addition and multiplication. In the same way,
we compute M2 through M7. Next we compute

and C12, C21, and C22. Finally, the product C of A and B is obtained by combining the
four submatrices Cij. The following example illustrates these steps.

Figure 2.4 The partitioning into submatrices in Strassen’s algorithm.

Example 2.5
Suppose that

www.EBooksWorld.ir

Figure 2.5 illustrates the partitioning in Strassen’s method. The computations
proceed as follows:

Figure 2.5 The partitioning in Strassen’s algorithm with n = 4 and values given to the
matrices.

When the matrices are sufficiently small, we multiply in the standard way. In this
example, we do this when n = 2. Therefore,

After this, M2 through M7 are computed in the same way, and then the values of C11,
C12, C21, and C22 are computed. They are combined to yield C.

Next we present an algorithm for Strassen’s method when n is a power of 2.

Algorithm 2.8
Strassen
Problem: Determine the product of two n × n matrices where n is a power of 2.
Inputs: an integer n that is a power of 2, and two n × n matrices A and B.
Outputs: the product C of A and B.

www.EBooksWorld.ir

The value of threshold is the point at which we feel it is more efficient to use the
standard algorithm than it would be to call procedure strassen recursively. In Section
2.7 we discuss a method for determining thresholds.

Analysis of Algorithm 2.8
 Every-Case Time Complexity Analysis of Number of Multiplications (Strassen)
Basic operation: one elementary multiplication.
Input size: n, the number of rows and columns in the matrices.

For simplicity, we analyze the case in which we keep dividing until we have two 1 ×
1 matrices, at which point we simply multiply the numbers in each matrix. The actual
threshold value used does not affect the order. When n = 1, exactly one multiplication
is done. When we have two n × n matrices with n > 1, the algorithm is called exactly
seven times with an (n/2) × (n/2) matrix passed each time, and no multiplications are
done at the top level. We have established the recurrence

This recurrence is solved in Example B.2 in Appendix B. The solution is

Analysis of Algorithm 2.8

www.EBooksWorld.ir

 Every-Case Time Complexity Analysis of Number of Additions/Subtractions
(Strassen)

Basic operation: one elementary addition or subtraction.
Input size: n, the number of rows and columns in the matrices.

Again we assume that we keep dividing until we have two 1 × 1 matrices. When n =
1, no additions/subtractions are done. When we have two n × n matrices with n > 1,
the algorithm is called exactly seven times with an (n/2) × (n/2) matrix passed in
each time, and 18 matrix additions/subtractions are done on (n/2) × (n/2) matrices.
When two (n/2) × (n/2) matrices are added or subtracted, (n/2)2 additions or
subtractions are done on the items in the matrices. We have established the
recurrence

This recurrence is solved in Example B.20 in Appendix B. The solution is

When n is not a power of 2, we must modify the previous algorithm. One simple
modification is to add sufficient numbers of columns and rows of 0s to the original
matrices to make the dimension a power of 2. Alternatively, in the recursive calls we
could add just one extra row and one extra column of 0s whenever the number of
rows and columns is odd. Strassen (1969) suggested the following, more complex
modification. We embed the matrices in larger ones with 2km rows and columns,
where k = lg n − 4 and m = n/2k + 1. We use Strassen’s method up to a threshold
value of m and use the standard algorithm after reaching the threshold. It can be
shown that the total number of arithmetic operations (multiplications, additions, and
subtractions) is less than 4.7n2.81.

Table 2.3 compares the time complexities of the standard algorithm and Strassen’s
algorithm for n a power of 2. If we ignore for the moment the overhead involved in
the recursive calls, Strassen’s algorithm is always more efficient in terms of
multiplications, and for large values of n, Strassen’s algorithm is more efficient in
terms of additions/subtractions. In Section 2.7 we will discuss an analysis technique
that accounts for the time taken by the recursive calls.

• Table 2.3A comparison of two algorithms that multiply n × n matrices

Standard Algorithm Strassen’s Algorithm

www.EBooksWorld.ir

Multiplications n3 n2.81

Additions/Subtractions n3 – n2 6n2.81 – 6n2

Shmuel Winograd developed a variant of Strassen’s algorithm that requires only
15 additions/subtractions. It appears in Brassard and Bratley (1988). For this
algorithm, the time complexity of the additions/subtractions is given by

Coppersmith and Winograd (1987) developed a matrix multiplication algorithm
whose time complexity for the number of multiplications is in O (n2.38). However, the
constant is so large that Strassen’s algorithm is usually more efficient.

It is possible to prove that matrix multiplication requires an algorithm whose time
complexity is at least quadratic. Whether matrix multiplications can be done in
quadratic time remains an open question; no one has ever created a quadratic-time
algorithm for matrix multiplication, and no one has proven that it is not possible to
create such an algorithm.

One last point is that other matrix operations such as inverting a matrix and finding
the determinant of a matrix are directly related to matrix multiplication. Therefore,
we can readily create algorithms for these operations that are as efficient as
Strassen’s algorithm for matrix multiplication.

2.6 Arithmetic with Large Integers
Suppose that we need to do arithmetic operations on integers whose size exceeds the
computer’s hardware capability of representing integers. If we need to maintain all
the significant digits in our results, switching to a floating-point representation would
be of no value. In such cases, our only alternative is to use software to represent and
manipulate the integers. We can accomplish this with the help of the divide-and-
conquer approach. Our discussion focuses on integers represented in base 10.
However, the methods developed can be readily modified for use in other bases.

• 2.6.1 Representation of Large Integers: Addition and
Other Linear-Time Operations

A straightforward way to represent a large integer is to use an array of integers, in
which each array slot stores one digit. For example, the integer 543,127 can be
represented in the array S as follows:

www.EBooksWorld.ir

To represent both positive and negative integers we need only reserve the high-order
array slot for the sign. We could use 0 in that slot to represent a positive integer and 1
to represent a negative integer. We will assume this representation and use the
defined data type large integer to mean an array big enough to represent the integers
in the application of interest.

It is not difficult to write linear-time algorithms for addition and subtraction,
where n is the number of digits in the large integers. The basic operation consists of
the manipulation of one decimal digit. In the exercises you are asked to write and
analyze these algorithms. Furthermore, linear-time algorithms can readily be written
that do the operation

where u represents a larger integer, m is a nonnegative integer, divide returns the
quotient in integer division, and rem returns the remainder. This, too, is done in the
exercises.

• 2.6.2 Multiplication of Large Integers
A simple quadratic-time algorithm for multiplying large integers is one that mimics
the standard way learned in grammar school. We will develop one that is better than
quadratic time. Our algorithm is based on using divide-and-conquer to split an n-
digit integer into two integers of approximately n/2 digits. Following are two
examples of such splits.

In general, if n is the number of digits in the integer u, we will split the integer into
two integers, one with n/2 and the other with n/2 , as follows:

With this representation, the exponent m of 10 is given by

If we have two n-digit integers

www.EBooksWorld.ir

their product is given by

We can multiply u and v by doing four multiplications on integers with about half
as many digits and performing linear-time operations. The following example
illustrates this method.

Example 2.6
Consider the following:

Recursively, these smaller integers can then be multiplied by dividing them into yet
smaller integers. This division process is continued until a threshold value is
reached, at which time the multiplication can be done in the standard way.

Although we illustrate the method using integers with about the same number of
digits, it is still applicable when the number of digits is different. We simply use m =
n/2 to split both of them, where n is the number of digits in the larger integer. The

algorithm now follows. We keep dividing until one of the integers is 0 or we reach
some threshold value for the larger integer, at which time the multiplication is done
using the hardware of the computer (that is, in the usual way).

Algorithm 2.9
Large Integer Multiplication
Problem: Multiply two large integers, u and v.
Inputs: large integers u and v.
Outputs: prod, the product of u and v.

www.EBooksWorld.ir

Notice that n is an implicit input to the algorithm because it is the number of digits
in the larger of the two integers. Remember that divide, rem, and × represent linear-
time functions that we need to write.

Analysis of Algorithm 2.9
 Worst-Case Time Complexity (Large Integer Multiplication)
We analyze how long it takes to multiply two n-digit integers.
Basic operation: The manipulation of one decimal digit in a large integer when
adding, subtracting, or doing divide 10m, rem 10m, or × 10m. Each of these latter three
calls results in the basic operation being done m times.
Input size: n, the number of digits in each of the two integers.

The worst case is when both integers have no digits equal to 0, because the recursion
only ends when threshold is passed. We will analyze this case.

Suppose n is a power of 2. Then x, y, w, and z all have exactly n/2 digits, which
means that the input size to each of the four recursive calls to prod is n/2. Because m
= n/2, the linear-time operations of addition, subtraction, divide 10m, rem 10m, and ×
10m all have linear-time complexities in terms of n. The maximum input size to these
linear-time operations is not the same for all of them, so the determination of the
exact time complexity is not straightforward. It is much simpler to group all the
linear-time operations in the one term cn, where c is a positive constant. Our
recurrence is then

www.EBooksWorld.ir

The actual value s at which we no longer divide the instance is less than or equal to
threshold and is a power of 2, because all the inputs in this case are powers of 2.

For n not restricted to being a power of 2, it is possible to establish a recurrence like
the previous one but involving floors and ceilings. Using an induction argument like
the one in Example B.25 in Appendix B, we can show that W(n) is eventually
nondecreasing. Therefore, Theorem B.6 in Appendix B implies that

Our algorithm for multiplying large integers is still quadratic. The problem is that
the algorithm does four multiplications on integers with half as many digits as the
original integers. If we can reduce the numbers of these multiplications, we can
obtain an algorithm that is better than quadratic. We do this in the following way.
Recall that function prod must determine

and we accomplished this by calling function prod recursively four times to compute

If instead we set

then

This means we can get the three values in Expression 2.4 by determining the
following three values:

To get these three values we need to do only three multiplications, while doing some
additional linear-time additions and subtractions. The algorithm that follows
implements this method.

Algorithm 2.10
Large Integer Multiplication 2
Problem: Multiply two large integers, u and v.
Inputs: large integers u and v.
Outputs: prod2, the product of u and v.

www.EBooksWorld.ir

 Analysis of Algorithm 2.10
 Worst-Case Time Complexity (Large Integer Multiplication 2)
We analyze how long it takes to multiply two n-digit integers.
Basic operation: The manipulation of one decimal digit in a large integer when
adding, subtracting, or doing divide 10m, rem 10m, or × 10m. Each of these latter three
calls results in the basic operation being done m times.
Input size: n, the number of digits in each of the two integers.

The worst case happens when both integers have no digits equal to 0, because in this
case the recursion ends only when the threshold is passed. We analyze this case.

• Table 2.4 Examples of the number of digits in x + y in Algorithm 2.10

If n is a power of 2, then x, y, w, and z all have n/2 digits. Therefore, as Table 2.4
illustrates,

www.EBooksWorld.ir

This means we can have the following input sizes for the given function calls:

Because m = n/2, the linear-time operations of addition, subtraction, divide 10m, rem
10m, and × 10m all have linear-time complexities in terms of n. Therefore, W(n)
satisfies

where s is less than or equal to threshold and is a power of 2, because all the inputs
in this case are powers of 2. For n not restricted to being a power of 2, it is possible
to establish a recurrence like the previous one but involving floors and ceilings.
Using an induction argument like the one in Example B.25 in Appendix B, we can
show that W(n) is eventually nondecreasing. Therefore, owing to the left inequality in
this recurrence and Theorem B.6, we have

Next we show that

To that end, let

Using the right inequality in the recurrence, we have

Because W(n) is nondecreasing, so is W′ (n). Therefore, owing to Theorem B.6 in
Appendix B,

www.EBooksWorld.ir

and so

Combining our two results, we have

Using Fast Fourier Transforms, Borodin and Munro (1975) developed a
 algorithm for multiplying large integers. The survey article (Brassard,

Monet, and Zuffelatto, 1986) concerns very large integer multiplication.
It is possible to write algorithms for other operations on large integers, such as

division and square root, whose time complexities are of the same order as that of the
algorithm for multiplication.

2.7 Determining Thresholds
As discussed in Section 2.1, recursion requires a fair amount of overhead in terms of
computer time. If, for example, we are sorting only eight keys, is it really worth this
overhead just so we can use a Θ(n lg n) algorithm instead of a Θ(n2) algorithm? Or
perhaps, for such a small n, would Exchange Sort (Algorithm 1.3) be faster than our
recursive Mergesort? We develop a method that determines for what values of n it is
at least as fast to call an alternative algorithm as it is to divide the instance further.
These values depend on the divide-and-conquer algorithm, the alternative algorithm,
and the computer on which they are implemented. Ideally, we would like to find an
optimal threshold value of n. This would be an instance size such that for any
smaller instance it would be at least as fast to call the other algorithm as it would be
to divide the instance further, and for any larger instance size it would be faster to
divide the instance again. However, as we shall see, an optimal threshold value does
not always exist. Even if our analysis does not yield an optimal threshold value, we
can use the results of the analysis to pick a threshold value. We then modify the
divide-and-conquer algorithm so that the instance is no longer divided once n
reaches that threshold value; instead, the alternative algorithm is called. We have
already seen the use of thresholds in Algorithms 2.8, 2.9, and 2.10.

To determine a threshold, we must consider the computer on which the algorithm is
implemented. This technique is illustrated using Mergesort and Exchange Sort. We
use Mergesort’s worst-case time complexity in this analysis. So we are actually
trying to optimize the worst-case behavior. When analyzing Mergesort, we
determined that the worst case is given by the following recurrence:

www.EBooksWorld.ir

Let’s assume that we are implementing Mergesort 2 (Algorithm 2.4). Suppose that on
the computer of interest the time Mergesort 2 takes to divide and recombine an
instance of size n is 32n µs, where µs stands for micro-seconds. The time to divide
and recombine the instance includes the time to compute the value of mid, the time to
do the stack operations for the two recursive calls, and the time to merge the two
subarrays. Because there are several components to the division and recombination
time, it is unlikely that the total time would simply be a constant times n. However,
assume that this is the case to keep things as simple as possible. Because the term n
− 1 in the recurrence for W(n) is the recombination time, it is included in the time
32n µs. Therefore, for this computer, we have

for Mergesort 2. Because only a terminal condition check is done when the input size
is 1, we assume that W (1) is essentially 0. For simplicity, we initially limit our
discussion to n being a power of 2. In this case we have the following recurrence:

The techniques in Appendix B can be used to solve this recurrence. The solution is

Suppose that on this same computer Exchange Sort takes exactly

to sort an instance of size n. Sometimes students erroneously believe that the optimal
point where Mergesort 2 should call Exchange Sort can now be found by solving the
inequality

The solution is

Students sometimes believe that it is optimal to call Exchange Sort when n < 591 and
to call Mergesort 2 otherwise. This analysis is only approximate because we base it
on n being a power of 2. But more importantly it is incorrect, because it only tells us
that if we use Mergesort 2 and keep dividing until n = 1, then Exchange Sort is better
for n < 591. We want to use Mergesort 2 and keep dividing until it is better to call

www.EBooksWorld.ir

Exchange Sort, rather than divide the instance further. This is not the same as dividing
until n = 1, and therefore the point at which we call Exchange Sort should be less
than 591. That this value should be less than 591 is a bit hard to grasp in the abstract.
The following concrete example, which determines the point at which it is more
efficient to call Exchange Sort rather than dividing the instance further, should make
the matter clear. From now on, we no longer limit our considerations to n being a
power of 2.

Example 2.7
We determine the optimal threshold for Algorithm 2.5 (Mergesort 2) when calling
Algorithm 1.3 (Exchange Sort). Suppose we modify Mergesort 2 so that Exchange
Sort is called when n ≤ t for some threshold t. Assuming the hypothetical computer
just discussed, for this version of Mergesort 2,

We want to determine the optimal value of t. That value is the value for which the top
and bottom expressions in Equality 2.5 are equal, because this is the point where
calling Exchange Sort is as efficient as dividing the instance further. Therefore, to
determine the optimal value of t, we must solve

Because t/2 and t/2 are both less than or equal to t, the execution time is given by
the top expression in Equality 2.5 if the instance has either of these input sizes.
Therefore,

Substituting these equalities into Equation 2.6 yields

In general, in an equation with floors and ceilings, we can obtain a different solution
when we insert an odd value for t than when we insert an even value for t. This is the
reason there is not always an optimal threshold value. Such a case is investigated
next. In this case, however, if we insert an even value for t, which is accomplished
by setting t/2 and t/2 both equal to t/2, and solve Equation 2.7, we obtain

www.EBooksWorld.ir

If we insert an odd value for t, which is accomplished by setting t/2 equal to (t − 1)
/2 and t/2 equal to (t + 1) /2 and solve Equation 2.7, we obtain

Therefore, we have an optimal threshold value of 128.

Next we give an example where there is no optimal threshold value.

Example 2.8
Suppose for a given divide-and-conquer algorithm running on a particular computer
we determine that

where 16n µs is the time needed to divide and recombine an instance of size n.
Suppose on the same computer a certain iterative algorithm takes n2 µs to process an
instance of size n. To determine the value t at which we should call the iterative
algorithm, we need to solve

Because t/2 ≤ t, the iterative algorithm is called when the input has this size, which
means that

Therefore, we need to solve

If we substitute an even value for t (by setting t/2 = t/2) and solve, we get

If we substitute an odd value for t (by setting t/2 = (t + 1) /2) and solve, we get

Because the two values of t are not equal, there is no optimal threshold value. This
means that if the size of an instance is an even integer between 64 and 70, it is more
efficient to divide the instance one more time, whereas if the size is an odd integer
between 64 and 70, it is more efficient to call the iterative algorithm. When the size
is less than 64, it is always more efficient to call the iterative algorithm. When the

www.EBooksWorld.ir

size is greater than 70, it is always more efficient to divide the instance again. Table
2.5 illustrates that this is so.

• Table 2.5 Various instance sizes illustrating that the threshold is 64 for n even and 70 for n odd in Example 2.8

n n2

62 3844 3875

63 3969 4080

64 4096 4096

65 4225 4307

68 4624 4556

69 4761 4779

70 4900 4795

71 5041 5024

2.8 When Not to Use Divide-and-Conquer
If possible, we should avoid divide-and-conquer in the following two cases:

1. An instance of size n is divided into two or more instances each almost of size
n.

2. An instance of size n is divided into almost n instances of size n/c, where c is a
constant.

The first partitioning leads to an exponential-time algorithm, where the second leads
to a nΘ(lg n) algorithm. Neither of these is acceptable for large values of n. Intuitively,
we can see why such partitionings lead to poor performance. For example, the first
case would be like Napoleon dividing an opposing army of 30,000 soldiers into two
armies of 29,999 soldiers (if this were somehow possible). Rather than dividing his
enemy, he has almost doubled their number! If Napoleon did this, he would have met
his Waterloo much sooner.

As you should now verify, Algorithm 1.6 (nth Fibonacci Term, Recursive) is a
divide-and-conquer algorithm that divides the instance that computes the nth term into
two instances that compute respectively the (n − 1)st term and the (n − 2)nd term.
Although n is not the input size in that algorithm, the situation is the same as that just
described concerning input size.

That is, the number of terms computed by Algorithm 1.6 is exponential in n,
whereas the number of terms computed by Algorithm 1.7 (nth Fibonacci Term,
Iterative) is linear in n.

www.EBooksWorld.ir

Sometimes, on the other hand, a problem requires exponentiality, and in such a
case there is no reason to avoid the simple divide-and-conquer solution. Consider the
Towers of Hanoi problem, which is presented in Exercise 17. Briefly, the problem
involves moving n disks from one peg to another given certain restrictions on how
they may be moved. In the exercises you will show that the sequence of moves,
obtained from the standard divide-and-conquer algorithm for the problem, is
exponential in terms of n and that it is the most efficient sequence of moves given the
problem’s restrictions. Therefore, the problem requires an exponentially large
number of moves in terms of n.

EXERCISES

Sections 2.1
1. Use Binary Search, Recursive (Algorithm 2.1) to search for the integer 120 in the

following list (array) of integers. Show the actions step by step.

2. Suppose that, even unrealistically, we are to search a list of 700 million items
using Binary Search, Recursive (Algorithm 2.1). What is the maximum number of
comparisons that this algorithm must perform before finding a given item or
concluding that it is not in the list?

3. Let us assume that we always perform a successful search. That is, in Algorithm
2.1 the item x can always be found in the list S. Improve Algorithm 2.1 by
removing all unnecessary operations.

4. Show that the worst-case time complexity for Binary Search (Algorithm 2.1) is
given by

when n is not restricted to being a power of 2. Hint: First show that the
recurrence equation for W(n) is given by

To do this, consider even and odd values of n separately. Then use induction to
solve the recurrence equation.

5. Suppose that, in Algorithm 2.1 (line 4), the splitting function is changed to mid =
low;. Explain the new search strategy. Analyze the performance of this strategy
and show the results using order notation.

www.EBooksWorld.ir

6. Write an algorithm that searches a sorted list of n items by dividing it into three
sublists of almost n/3 items. This algorithm finds the sublist that might contain
the given item and divides it into three smaller sublists of almost equal size. The
algorithm repeats this process until it finds the item or concludes that the item is
not in the list. Analyze your algorithm and give the results using order notation.

7. Use the divide-and-conquer approach to write an algorithm that finds the largest
item in a list of n items. Analyze your algorithm, and show the results in order
notation.

Sections 2.2
8. Use Mergesort (Algorithms 2.2 and 2.4) to sort the following list. Show the

actions step by step.

9. Give the tree of recursive calls in Exercise 8.

10. Write for the following problem a recursive algorithm whose worst-case time
complexity is not worse than Θ(n ln n). Given a list of n distinct positive
integers, partition the list into two sublists, each of size n/2, such that the
difference between the sums of the integers in the two sublists is maximized. You
may assume that n is a multiple of 2.

11. Write a nonrecursive algorithm for Mergesort (Algorithms 2.2 and 2.4).

12. Show that the recurrence equation for the worst-case time complexity for
Mergesort (Algorithms 2.2 and 2.4) is given by

when n is not restricted to being a power of 2.

13. Write an algorithm that sorts a list of n items by dividing it into three sublists of
about n/3 items, sorting each sublist recursively and merging the three sorted
sublists. Analyze your algorithm, and give the results under order notation.

Sections 2.3
14. Given the recurrence relation

www.EBooksWorld.ir

find T(625).

15. Consider algorithm solve given below. This algorithm solves problem P by
finding the output (solution) O corresponding to any input I.

Assume g (n) basic operations for partitioning and combining and no basic
operations for an instance of size 1.
(a) Write a recurrence equation T(n) for the number of basic operations needed to

solve P when the input size is n.
(b) What is the solution to this recurrence equation if g (n) ∈ Θ(n)? (Proof is not

required.)
(c) Assuming that g (n) = n2, solve the recurrence equation exactly for n = 27.
(d) Find the general solution for n a power of 3.

16. Suppose that, in a divide-and-conquer algorithm, we always divide an instance of
size n of a problem into 10 subinstances of size n/3, and the dividing and
combining steps take a time in Θ(n2) . Write a recurrence equation for the running
time T(n), and solve the equation for T(n).

17. Write a divide-and-conquer algorithm for the Towers of Hanoi problem. The
Towers of Hanoi problem consists of three pegs and n disks of different sizes.
The object is to move the disks that are stacked, in decreasing order of their size,
on one of the three pegs to a new peg using the third one as a temporary peg. The
problem should be solved according to the following rules: (1) when a disk is
moved, it must be placed on one of the three pegs; (2) only one disk may be
moved at a time, and it must be the top disk on one of the pegs; and (3) a larger
disk may never be placed on top of a smaller disk.
(a) Show for your algorithm that S (n) = 2n − 1. (Here S (n) denotes the number

of steps (moves), given an input of n disks.)
(b) Prove that any other algorithm takes at least as many moves as given in part

(a).

18. When a divide-and-conquer algorithm divides an instance of size n of a problem

www.EBooksWorld.ir

into subinstances each of size n/c, the recurrence relation is typically given by

where g (n) is the cost of the dividing and combining processes, and d is a
constant. Let n = ck.
(a) Show that

(b) Solve the recurrence relation given that g(n) ∈ Θ(n).

Sections 2.4
19. Use Quicksort (Algorithm 2.6) to sort the following list. Show the actions step by

step.

20. Give the tree of recursive calls in Exercise 19.

21. Show that if

then

This result is used in the discussion of the worst-case time complexity analysis
of Algorithm 2.6 (Quicksort).

22. Verify the following identity

This result is used in the discussion of the average-case time complexity analysis
of Algorithm 2.6 (Quicksort).

23. Write a nonrecursive algorithm for Quicksort (Algorithm 2.6). Analyze your
algorithm, and give the results using order notation.

24. Assuming that Quicksort uses the first item in the list as the pivot item:
(a) Give a list of n items (for example, an array of 10 integers) representing the

www.EBooksWorld.ir

worst-case scenario.
(b) Give a list of n items (for example, an array of 10 integers) representing the

best-case scenario.

Sections 2.5
25 Show that the number of additions performed by Algorithm 1.4 (Matrix

Multiplication) can be reduced to n3 − n2 after a slight modification of this
algorithm.

26. In Example 2.4, we gave Strassen’s product of two 2 × 2 matrices. Verify the
correctness of this product.

27. How many multiplications would be performed in finding the product of two 64 ×
64 matrices using the standard algorithm?

28. How many multiplications would be performed in finding the product of two 64 ×
64 matrices using Strassen’s method (Algorithm 2.8)?

29. Write a recurrence equation for the modified Strassen’s algorithm developed by
Shmuel Winograd that uses 15 additions/subtractions instead of 18. Solve the
recurrence equation, and verify your answer using the time complexity shown at
the end of Section 2.5.

Sections 2.6
30. Use Algorithm 2.10 (Large Integer Multiplication 2) to find the product of 1253

and 23,103.

31. How many multiplications are needed to find the product of the two integers in
Exercise 30?

32. Write algorithms that perform the operations
where u represents a large integer, m is a nonnegative integer, divide returns the
quotient in integer division, and rem returns the remainder. Analyze your
algorithms, and show that these operations can be done in linear time.

33. Modify Algorithm 2.9 (Large Integer Multiplication) so that it divides each n-
digit integer into
(a) three smaller integers of n/3 digits (you may assume that n = 3k).
(b) four smaller integers of n/4 digits (you may assume that n = 4k).
Analyze your algorithms, and show their time complexities in order notation.

www.EBooksWorld.ir

Sections 2.7
34. Implement both Exchange Sort and Quicksort algorithms on your computer to sort

a list of n elements. Find the lower bound for n that justifies application of the
Quicksort algorithm with its overhead.

35. Implement both the standard algorithm and Strassen’s algorithm on your computer
to multiply two n × n matrices (n = 2k). Find the lower bound for n that justifies
application of Strassen’s algorithm with its overhead.

36. Suppose that on a particular computer it takes 12n2 µs to decompose and
recombine an instance of size n in the case of Algorithm 2.8 (Strassen). Note that
this time includes the time it takes to do all the additions and subtractions. If it
takes n3 µs to multiply two n × n matrices using the standard algorithm,
determine thresholds at which we should call the standard algorithm instead of
dividing the instance further. Is there a unique optimal threshold?

Sections 2.8
37. Use the divide-and-conquer approach to write a recursive algorithm that

computes n!. Define the input size (see Exercise 36 in Chapter 1), and answer the
following questions. Does your function have an exponential time complexity?
Does this violate the statement of case 1 given in Section 2.8?

38. Suppose that, in a divide-and-conquer algorithm, we always divide an instance of
size n of a problem into n subinstances of size n/3, and the dividing and
combining steps take linear time. Write a recurrence equation for the running time
T(n), and solve this recurrence equation for T(n). Show your solution in order
notation.

Additional Exercises
39. Implement both algorithms for the Fibonacci Sequence (Algorithms 1.6 and

1.7). Test each algorithm to verify that it is correct. Determine the largest number
that the recursive algorithm can accept as its argument and still compute the
answer within 60 seconds. See how long it takes the iterative algorithm to
compute this answer.

40. Write an efficient algorithm that searches for a value in an n × m table (two-
dimensional array). This table is sorted along the rows and columns—that is,

www.EBooksWorld.ir

41. Suppose that there are n = 2k teams in an elimination tournament, in which there
are n/2 games in the first round, with the n/2 = 2k−1 winners playing in the second
round, and so on.
(a) Develop a recurrence equation for the number of rounds in the tournament.
(b) How many rounds are there in the tournament when there are 64 teams?
(c) Solve the recurrence equation of part (a).

42. A tromino is a group of three unit squares arranged in an L-shape. Consider the
following tiling problem: The input is an m × m array of unit squares where m is
a positive power of 2, with one forbidden square on the array. The output is a
tiling of the array that satisfies the following conditions:

 Every unit square other than the input square is covered by a tromino.
 No tromino covers the input square.
 No two trominos overlap.
 No tromino extends beyond the board.

Write a divide-and-conquer algorithm that solves this problem.

43. Consider the following problem:
(a) Suppose we have nine identical-looking coins numbered 1 through 9 and only

one of the coins is heavier than the others. Suppose further that you have one
balance scale and are allowed only two weighings. Develop a method for
finding the heavier counterfeit coin given these constraints.

(b) Suppose we now have an integer n (that represents n coins) and only one of
the coins is heavier than the others. Suppose further that n is a power of 3 and
you are allowed log3 n weighings to determine the heavier coin. Write an
algorithm that solves this problem. Determine the time complexity of your
algorithm.

44. Write a recursive Θ(n lg n) algorithm whose parameters are three integers x, n,
and p, and which computes the remainder when xn is divided by p. For simplicity,
you may assume that n is a power of 2—that is, that n = 2k for some positive
integer k.

45. Use the divide-and-conquer approach to write a recursive algorithm that finds the
maximum sum in any contiguous sublist of a given list of n real values. Analyze
your algorithm, and show the results in order notation.

www.EBooksWorld.ir

Chapter 3

Dynamic Programming

Recall that the number of terms computed by the divide-and-conquer algorithm for
determining the nth Fibonacci term (Algorithm 1.6) is exponential in n. The reason is
that the divide-and-conquer approach solves an instance of a problem by dividing it
into smaller instances and then blindly solving these smaller instances. As discussed
in Chapter 2, this is a top-down approach. It works in problems such as Mergesort,
where the smaller instances are unrelated. They are unrelated because each consists
of an array of keys that must be sorted independently. However, in problems such as
the nth Fibonacci term, the smaller instances are related. For example, as shown in
Section 1.2, to compute the fifth Fibonacci term we need to compute the fourth and
third Fibonacci terms. However, the determinations of the fourth and third Fibonacci
terms are related in that they both require the second Fibonacci term. Because the
divide-and-conquer algorithm makes these two determinations independently, it ends
up computing the second Fibonacci term more than once. In problems where the
smaller instances are related, a divide-and-conquer algorithm often ends up
repeatedly solving common instances, and the result is a very inefficient algorithm.

Dynamic programming, the technique discussed in this chapter, takes the
opposite approach. Dynamic programming is similar to divide-and-conquer in that an
instance of a problem is divided into smaller instances. However, in this approach
we solve small instances first, store the results, and later, whenever we need a result,
look it up instead of recomputing it. The term “dynamic programming” comes from
control theory, and in this sense “programming” means the use of an array (table) in
which a solution is constructed. As mentioned in Chapter 1, our efficient algorithm
(Algorithm 1.7) for computing the nth Fibonacci term is an example of dynamic
programming. Recall that this algorithm determines the nth Fibonacci term by
constructing in sequence the first n+1 terms in an array f indexed from 0 to n. In a
dynamic programming algorithm, we construct a solution from the bottom up in an
array (or sequence of arrays). Dynamic programming is therefore a bottom-up

www.EBooksWorld.ir

approach. Sometimes, as in the case for Algorithm 1.7, after developing the algorithm
using an array (or sequence of arrays), we are able to revise the algorithm so that
much of the originally allocated space is not needed.

The steps in the development of a dynamic programming algorithm are as follows:

1. Establish a recursive property that gives the solution to an instance of the
problem.

2. Solve an instance of the problem in a bottom-up fashion by solving smaller
instances first.

To illustrate these steps, we present another simple example of dynamic programming
in Section 3.1. The remaining sections present more advanced applications of
dynamic programming.

3.1 The Binomial Coefficient
The binomial coefficient, which is discussed in Section A.7 in Appendix A, is given
by

For values of n and k that are not small, we cannot compute the binomial coefficient
directly from this definition because n! is very large even for moderate values of n.
In the exercises we establish that

We can eliminate the need to compute n! or k! by using this recursive property. This
suggests the following divide-and-conquer algorithm.

Algorithm 3.1
Binomial Coefficient Using Divide-and-Conquer
Problem: Compute the binomial coefficient.
Inputs: nonnegative integers n and k, where k ≤ n.
Outputs: bin, the binomial coefficient

www.EBooksWorld.ir

Like Algorithm 1.6 (nth Fibonacci Term, Recursive), this algorithm is very
inefficient. In the exercises you will establish that the algorithm computes

terms to determine The problem is that the same instances are solved in each

recursive call. For example, bin (n − 1, k − 1) and bin (n − 1, k) both need the result
of bin (n − 2, k − 1), and this instance is solved separately in each recursive call. As
mentioned in Section 2.8, the divide-and-conquer approach is always inefficient
when an instance is divided into two smaller instances that are almost as large as the
original instance.

A more efficient algorithm is developed next using dynamic programming. A
recursive property has already been established in Equality 3.1. We will use that
property to construct our solution in an array B, where B [i] [j] will contain The

steps for constructing a dynamic programming algorithm for this problem are as
follows:

1. Establish a recursive property. This has already been done in Equality 3.1.
Written in terms of B, it is

2. Solve an instance of the problem in a bottom-up fashion by computing the rows
in B in sequence starting with the first row.

Step 2 is illustrated in Figure 3.1. (You may recognize the array in that figure as
Pascal’s triangle.) Each successive row is computed from the row preceding it using
the recursive property established in Step 1. The final value computed, B [n] [k], is

 Example 3.1 illustrates these steps. Notice in the example that we compute only

the first two columns. The reason is that k = 2 in the example, and in general we need
to compute the values in each row only up to the kth column. Example 3.1 computes B

www.EBooksWorld.ir

[0] [0] because the binomial coefficient is defined for n = k = 0. Therefore, an
algorithm would perform this step even though the value is not needed in the
computation of other binomial coefficients.
Figure 3.1 The array B used to compute the binomial coefficient.

Example 3.1
Compute B [4] [2] =

Compute row 0: {This is done only to mimic the algorithm exactly.}
{The value B [0] [0] is not needed in a later computation.}

Compute row 1:

Compute row 2:

Compute row 3:

www.EBooksWorld.ir

Compute row 4:

Example 3.1 computes increasingly larger values of the binomial coefficient in
sequence. At each iteration, the values needed for that iteration have already been
computed and saved. This procedure is fundamental to the dynamic programming
approach. The following algorithm implements this approach in computing the
binomial coefficient.

Algorithm 3.2
Binomial Coefficient Using Dynamic Programming
Problem: Compute the binomial coefficient.
Inputs: nonnegative integers n and k, where k ≤ n.
Outputs: bin2, the binomial coefficient

The parameters n and k are not the size of the input to this algorithm. Rather, they
are the input, and the input size is the number of symbols it takes to encode them. We
discussed a similar situation in Section 1.3 regarding algorithms that compute the nth
Fibonacci term. However, we can still gain insight into the efficiency of the algorithm
by determining how much work it does as a function for n and k. For given n and k,
let’s compute the number of passes through the for-j loop. The following table shows
the number of passes for each value of i:

www.EBooksWorld.ir

The total number of passes is therefore given by

Applying the result in Example A.1 in Appendix A, we find that this expression
equals

By using dynamic programming instead of divide-and-conquer, we have developed
a much more efficient algorithm. As mentioned earlier, dynamic programming is
similar to divide-and-conquer in that we find a recursive property that divides an
instance into smaller instances. The difference is that in dynamic programming we
use the recursive property to iteratively solve the instances in sequence, starting with
the smallest instance, instead of blindly using recursion. In this way we solve each
smaller instance just once. Dynamic programming is a good technique to try when
divide-and-conquer leads to an inefficient algorithm.

The most straightforward way to present Algorithm 3.2 was to create the entire
two-dimensional array B. However, once a row is computed, we no longer need the
values in the row that precedes it. Therefore, the algorithm can be written using only
a one-dimensional array indexed from 0 to k. This modification is investigated in the
exercises. Another improvement to the algorithm would be to take advantage of the
fact that

3.2 Floyd’s Algorithm for Shortest Paths
A common problem encountered by air travelers is the determination of the shortest
way to fly from one city to another when a direct flight does not exist. Next we
develop an algorithm that solves this and similar problems. First, let’s informally
review some graph theory. Figure 3.2 shows a weighted, directed graph. Recall that
in a pictorial representation of a graph the circles represent vertices, and a line from
one circle to another represents an edge (also called an arc). If each edge has a
direction associated with it, the graph is called a directed graph or digraph. When
drawing an edge in such a graph, we use an arrow to show the direction. In a digraph
there can be two edges between two vertices, one going in each direction. For
example, in Figure 3.2 there is an edge from v1 to v2 and an edge from v2 to v1. If the
edges have values associated with them, the values are called weights and the graph

www.EBooksWorld.ir

is called a weighted graph. We assume here that these weights are nonnegative.
Although the values are ordinarily called weights, in many applications they
represent distances. Therefore, we talk of a path from one vertex to another. In a
directed graph, a path is a sequence of vertices such that there is an edge from each
vertex to its successor. For example, in Figure 3.2 the sequence [v1, v4, v3] is a path
because there is an edge from v1 to v4 and an edge from v4 to v3. The sequence [v3, v4,
v1] is not a path because there is no edge from v4 to v1. A path from a vertex to itself
is called a cycle. The path [v1, v4, v5, v1] in Figure 3.2 is a cycle. If a graph contains a
cycle, it is cyclic; otherwise, it is acyclic. A path is called simple if it never passes
through the same vertex twice. The path [v1, v2, v3] in Figure 3.2 is simple, but the
path [v1, v4, v5, v1, v2] is not simple. Notice that a simple path never contains a
subpath that is a cycle. The length of a path in a weighted graph is the sum of the
weights on the path; in an unweighted graph it is simply the number of edges in the
path.
Figure 3.2 A weighted, directed graph.

A problem that has many applications is finding the shortest paths from each vertex
to all other vertices. Clearly, a shortest path must be a simple path. In Figure 3.2
there are three simple paths from v1 to v3—namely [v1, v2, v3], [v1, v4, v3], and [v1, v2,
v4, v3]. Because [v1, v4, v3] is the shortest path from v1 to v3. As mentioned previously,
one common application of shortest paths is determining the shortest routes between
cities.

The Shortest Paths problem is an optimization problem. There can be more than
one candidate solution to an instance of an optimization problem. Each candidate
solution has a value associated with it, and a solution to the instance is any candidate
solution that has an optimal value. Depending on the problem, the optimal value is
either the minimum or the maximum. In the case of the Shortest Paths problem, a
candidate solution is a path from one vertex to another, the value is the length of the
path, and the optimal value is the minimum of these lengths.

Because there can be more than one shortest path from one vertex to another, our
problem is to find any one of the shortest paths. An obvious algorithm for this
problem would be to determine, for each vertex, the lengths of all the paths from that
vertex to each other vertex, and to compute the minimum of these lengths. However,

www.EBooksWorld.ir

this algorithm is worse than exponential-time. For example, suppose there is an edge
from every vertex to every other vertex. Then a subset of all the paths from one
vertex to another vertex is the set of all those paths that start at the first vertex, end at
the other vertex, and pass through all the other vertices. Because the second vertex on
such a path can be any of n − 2 vertices, the third vertex on such a path can be any of
n − 3 vertices, … , and the second-to-last vertex on such a path can be only one
vertex, the total number of paths from one vertex to another vertex that pass through
all the other vertices is

which is worse than exponential. We encounter this same situation in many
optimization problems. That is, the obvious algorithm that considers all possibilities
is exponential-time or worse. Our goal is to find a more efficient algorithm.

Using dynamic programming, we create a cubic-time algorithm for the Shortest
Paths problem. First we develop an algorithm that determines only the lengths of the
shortest paths. After that we modify it to produce shortest paths as well. We represent
a weighted graph containing n vertices by an array W where

Because vertex vj is said to be adjacent to vi if there is an edge from vi to vj, this
array is called the adjacency matrix representation of the graph. The graph in Figure
3.2 is represented in this manner in Figure 3.3. The array D in Figure 3.3 contains the
lengths of the shortest paths in the graph. For example, D [3] [5] is 7 because 7 is the
length of a shortest path from v3 to v5. If we can develop a way to calculate the values
in D from those in W, we will have an algorithm for the Shortest Paths problem. We
accomplish this by creating a sequence of n+1 arrays D(k), where 0 ≤ k ≤ n and where
Figure 3.3 W represents the graph in Figure 3.2 and D contains the lengths of the shortest paths. Our algorithm
for the Shortest Paths problem computes the values in D from those in W.

D(k) [i] [j] = length of a shortest path from vi to vj using only vertices in the set {v1, v2,

www.EBooksWorld.ir

… , vk} as intermediate vertices.

Before showing why this enables us to compute D from W, let’s illustrate the
meaning of the items in these arrays.

Example 3.2
We will calculate some exemplary values of D(k) [i] [j] for the graph in Figure 3.2.

The last value computed, D(5) [2] [5], is the length of a shortest path from v2 to v5

that is allowed to pass through any of the other vertices. This means that it is the
length of a shortest path.

Because D(n) [i] [j] is the length of a shortest path from vi to vj that is allowed to
pass through any of the other vertices, it is the length of a shortest path from vi to vj.
Because D(0) [i] [j] is the length of a shortest path that is not allowed to pass through
any other vertices, it is the weight on the edge from v1 to vj. We have established that

Therefore, to determine D from W we need only find a way to obtain D(n) from D(0).
The steps for using dynamic programming to accomplish this are as follows:

www.EBooksWorld.ir

1. Establish a recursive property (process) with which we can compute D(k) from
D(k−1).

2. Solve an instance of the problem in a bottom-up fashion by repeating the
process (established in Step 1) for k = 1 to n. This creates the sequence

We accomplish Step 1 by considering two cases:

Case 1. At least one shortest path from vi to vj, using only vertices in {v1, v2, … , vk}
as intermediate vertices, does not use vk. Then

An example of this case in Figure 3.2 is that

because when we include vertex v5, the shortest path from v1 to v3 is still [v1, v4, v3].

Case 2. All shortest paths from vi to vj, using only vertices in {v1, v2, … , vk} as
intermediate vertices, do use vk. In this case any shortest path appears as in Figure
3.4. Because vk cannot be an intermediate vertex on the subpath from vi to vk, that
subpath uses only vertices in {v1, v2, … , vk−1} as intermediates. This implies that the
subpath’s length must be equal to D(k−1) [i] [k] for the following reasons: First, the
subpath’s length cannot be shorter because D(k−1) [i] [k] is the length of a shortest path
from v1 to vk using only vertices in {v1, v2, … , vk−1} as intermediates. Second, the
subpath’s length cannot be longer because if it were, we could replace it in Figure
3.4 by a shortest path, which contradicts the fact that the entire path in Figure 3.4 is a
shortest path. Similarly, the length of the subpath from vk to vj in Figure 3.4 must be
equal to D(k−1) [k] [j]. Therefore, in the second case
Figure 3.4 The shortest path uses vk.

www.EBooksWorld.ir

An example of the second case in Figure 3.2 is that

Because we must have either Case 1 or Case 2, the value of D(k) [i] [j] is the
minimum of the values on the right in Equalities 3.3 and 3.4. This means that we can
determine D(k) from D(k−1) as follows:

We have accomplished Step 1 in the development of a dynamic programming
algorithm. To accomplish Step 2, we use the recursive property in Step 1 to create
the sequence of arrays shown in Expression 3.2. Let’s do an example showing how
each of these arrays is computed from the previous one.

Example 3.3
Given the graph in Figure 3.2, which is represented by the adjacency matrix W in
Figure 3.3, some sample computations are as follows (recall that D(0) = W):

Once the whole array D(1) is computed, the array D(2) is computed. A sample
computation is

After computing all of D(2), we continue in sequence until D(5) is computed. This final
array is D, the lengths of the shortest paths. It appears on the right in Figure 3.3.

Next we present the algorithm developed by Floyd (1962) and known as Floyd’s
algorithm. Following the algorithm, we explain why it uses only one array D besides
the input array W.

www.EBooksWorld.ir

Algorithm 3.3
Floyd’s Algorithm for Shortest Paths
Problem: Compute the shortest paths from each vertex in a weighted graph to each of
the other vertices. The weights are nonnegative numbers.
Inputs: A weighted, directed graph and n, the number of vertices in the graph. The
graph is represented by a two-dimensional array W, which has both its rows and
columns indexed from 1 to n, where W [i] [j] is the weight on the edge from the ith
vertex to the jth vertex.
Outputs: A two-dimensional array D, which has both its rows and columns indexed
from 1 to n, where D [i] [j] is the length of a shortest path from the ith vertex to the
jth vertex.

We can perform our calculations using only one array D because the values in the
kth row and the kth column are not changed during the kth iteration of the loop. That
is, in the kth iteration the algorithm assigns

which clearly equals D [i] [k], and

which clearly equals D [k] [j]. During the kth iteration, D [i] [j] is computed from
only its own value and values in the kth row and the kth column. Because these
values have maintained their values from the (k − 1)st iteration, they are the values
we want. As mentioned before, sometimes after developing a dynamic programming
algorithm, it is possible to revise the algorithm to make it more efficient in terms of
space.

Next we analyze Floyd’s Algorithm.

www.EBooksWorld.ir

Analysis of Algorithm 3.3
 Every-Case Time Complexity (Floyd’s Algorithm for Shortest Paths)
Basic operation: The instruction in the for-j loop.
Input size: n, the number of vertices in the graph.

We have a loop within a loop within a loop, with n passes through each loop. So

The following modification to Algorithm 3.3 produces shortest paths.

Algorithm 3.4
Floyd’s Algorithm for Shortest Paths 2
Problem: Same as in Algorithm 3.3, except shortest paths are also created.
Additional outputs: an array P, which has both its rows and columns indexed from 1
to n, where

Figure 3.5 shows the array P that is created when the algorithm is applied to the

www.EBooksWorld.ir

graph in Figure 3.2.
The following algorithm produces a shortest path from vertex vq to vr using the

array P.
Figure 3.5 The array P produced when Algorithm 3.4 is applied to the graph in Figure 3.2.

Algorithm 3.5
Print Shortest Path
Problem: Print the intermediate vertices on a shortest path from one vertex to another
vertex in a weighted graph.
Inputs: the array P produced by Algorithm 3.4, and two indices, q and r, of vertices
in the graph that is the input to Algorithm 3.4.

Outputs: the intermediate vertices on a shortest path from vq to vr.

Recall the convention established in Chapter 2 of making only variables, whose
values can change in the recursive calls, inputs to recursive routines. Therefore, the
array P is not an input to path. If the algorithm were implemented by defining P
globally, and we wanted a shortest path from vq to vr, the top-level call to path would
be as follows:

www.EBooksWorld.ir

path (q , r) ;

Given the value of P in Figure 3.5, if the values of q and r were 5 and 3,
respectively, the output would be

These are the intermediate vertices on a shortest path from v5 to v3.
In the exercises we establish that W(n) ∈ Θ(n) for Algorithm 3.5.

3.3 Dynamic Programming and Optimization Problems
Recall that Algorithm 3.4 not only determines the lengths of the shortest paths but
also constructs shortest paths. The construction of the optimal solution is a third step
in the development of a dynamic programming algorithm for an optimization problem.
This means that the steps in the development of such an algorithm are as follows:

1. Establish a recursive property that gives the optimal solution to an instance of
the problem.

2. Compute the value of an optimal solution in a bottom-up fashion.
3. Construct an optimal solution in a bottom-up fashion.

Steps 2 and 3 are ordinarily accomplished at about the same point in the algorithm.
Because Algorithm 3.2 is not an optimization problem, there is no third step.

Although it may seem that any optimization problem can be solved using dynamic
programming, this is not the case. The principle of optimality must apply in the
problem. That principle can be stated as follows:

Definition
The principle of optimality is said to apply in a problem if an optimal solution to
an instance of a problem always contains optimal solutions to all substances.

The principle of optimality is difficult to state and can be better understood by
looking at an example. In the case of the Shortest Paths problem we showed that if vk

is a vertex on an optimal path from vi to vj, then the subpaths from vi to vk and from vk

to vj must also be optimal. Therefore, the optimal solution to the instance contains
optimal solutions to all subinstances, and the principle of optimality applies.

If the principle of optimality applies in a given problem, we can develop a
recursive property that gives an optimal solution to an instance in terms of optimal
solutions to subinstances. The important but subtle reason why we can then use

www.EBooksWorld.ir

dynamic programming to construct an optimal solution to an instance is that the
optimal solutions to the subinstances can be any optimal solutions. For example, in
the case of the Shortest Paths problem, if the subpaths are any shortest paths, the
combined path will be optimal. We can therefore use the recursive property to
construct optimal solutions to increasingly large instances from the bottom up. Each
solution along the way will always be optimal.

Although the principle of optimality may appear obvious, in practice it is
necessary to show that the principle applies before assuming that an optimal solution
can be obtained using dynamic programming. The following example shows that it
does not apply in every optimization problem.

Example 3.4
Consider the Longest Paths problem of finding the longest simple paths from each
vertex to all other vertices. We restrict the Longest Paths problem to simple paths
because with a cycle we can always create an arbitrarily long path by repeatedly
passing through the cycle. In Figure 3.6 the optimal (longest) simple path from v1 to v4

is [v1, v3, v2, v4]. However, the subpath [v1, v3] is not an optimal (longest) path from v1

to v3 because
Figure 3.6 A weighted, directed graph with a cycle.

Therefore, the principle of optimality does not apply. The reason for this is that the
optimal paths from v1 to v3 and from v3 to v4 cannot be strung together to give an
optimal path from v1 to v4. Doing this would create a cycle rather than an optimal
path.

The remainder of this chapter is concerned with optimization problems. When

www.EBooksWorld.ir

developing the algorithms, we will not explicitly mention the steps outlined earlier. It
should be clear that they are being followed.

3.4 Chained Matrix Multiplication
Suppose we want to multiply a 2 × 2 matrix times a 3 × 4 matrix as follows:

The resultant matrix is a 2 × 4 matrix. If we use the standard method of multiplying
matrices (that is, the one obtained from the definition of matrix multiplication), it
takes three elementary multiplications to compute each item in the product. For
example, the first item in the first column is given by

Because there are 2 × 4 = 8 entries in the product, the total number of elementary
multiplication is

In general, to multiply an i × j matrix times a j × k matrix using the standard method,
it is necessary to do

Consider the multiplication of the following four matrices:

The dimension of each matrix appears under the matrix. Matrix multiplication is an
associative operation, meaning that the order in which we multiply does not matter.
For example, A(B (CD)) and (AB) (CD) both give the same answer. There are five
different orders in which we can multiply four matrices, each possibly resulting in a
different number of elementary multiplications. In the case of the previous matrices,
we have the following number of elementary multiplications for each order.

www.EBooksWorld.ir

The third order is the optimal order for multiplying the four matrices.
Our goal is to develop an algorithm that determines the optimal order for

multiplying n matrices. The optimal order depends only on the dimensions of the
matrices. Therefore, besides n, these dimensions would be the only input to the
algorithm. The brute-force algorithm is to consider all possible orders and take the
minimum, as we just did. We will show that this algorithm is at least exponential-
time. To this end, let tn be the number of different orders in which we can multiply n
matrices: A1, A2, … , An. A subset of all the orders is the set of orders for which A1 is
the last matrix multiplied. As illustrated below, the number of different orders in this
subset is tn−1, because it is the number of different orders with which we can multiply
A2 through An:

A second subset of all the orders is the set of orders for which An is the last matrix
multiplied. Clearly, the number of different orders in this subset is also tn−1.
Therefore,

Because there is only one way to multiply two matrices, t2 = 1. Using the techniques
in Appendix B, we can solve this recurrence to show that

It is not hard to see that the principle of optimality applies in this problem. That is,
the optimal order for multiplying n matrices includes the optimal order for
multiplying any subset of the n matrices. For example, if the optimal order for
multiplying six particular matrices is

then

must be the optimal order for multiplying matrices A2 through A4. This means we can
use dynamic programming to construct a solution.

Because we are multiplying the (k − 1)st matrix, Ak−1, times the kth matrix, Ak, the
number of columns in Ak−1 must equal the number of rows in Ak. For example, in the
product discussed earlier, the first matrix has three columns and the second has three
rows. If we let d0 be the number of rows in A1 and dk be the number of columns in Ak

for 1 ≤ k ≤ n, the dimension of Ak is dk−1 × dk. This is illustrated in Figure 3.7.
As in the previous section, we will use a sequence of arrays to construct our

solution. For 1 ≤ i ≤ j ≤ n, let

www.EBooksWorld.ir

M [i] [j] = minimum number of multiplications needed to multiply Ai through Aj, if i <
j.

M [i] [i] = 0.

Before discussing how we will use these arrays, let’s illustrate the meanings of the
items in them.
Figure 3.7 The number of columns in Ak−1 is the same as the number of rows

Example 3.5
Suppose we have the following six matrices:

To multiply A4, A5, and A6, we have the following two orders and numbers of
elementary multiplications:

Therefore,

The optimal order for multiplying six matrices must have one of these
factorizations:

1. A1 (A2A3A4A5A6)
2. (A1A2) (A3A4A5A6)
3. (A1A2A3) (A4A5A6)
4. (A1A2A3A4) (A5A6)
5 (A1A2A3A4A5) A6

www.EBooksWorld.ir

where inside each parentheses the products are obtained according to the optimal
order for the matrices inside the parentheses. Of these factorizations, the one that
yields the minimum number of multiplications must be the optimal one. The number
of multiplications for the kth factorization is the minimum number needed to obtain
each factor plus the number needed to multiply the two factors. This means that it
equals

We have established that

There is nothing in the preceding argument that restricts the first matrix to being A1 or
the last matrix to being A6. For example, we could have obtained a similar result for
multiplying A2 through A6. Therefore, we can generalize this result to obtain the
following recursive property when multiplying n matrices. For 1 ≤ i ≤ j ≤ n

A divide-and-conquer algorithm based on this property is exponential-time. We
develop a more efficient algorithm using dynamic programming to compute the values
of M [i] [j] in steps. A grid similar to Pascal’s triangle is used (see Section 3.1). The
calculations, which are a little more complex than those in Section 3.1, are based on
the following property of Equality 3.5: M [i] [j] is calculated from all entries on the
same row as M [i] [j] but to the left of it, along with all entries in the same column as
M [i] [j] but beneath it. Using this property, we can compute the entries in M as
follows: First we set all those entries in the main diagonal to 0; next we compute all
those entries in the diagonal just above it, which we call diagonal 1; next we compute
all those entries in diagonal 2; and so on. We continue in this manner until we
compute the only entry in diagonal 5, which is our final answer, M [1] [6]. This
procedure is illustrated in Figure 3.8 for the matrices in Example 3.5. The following
example shows the calculations.

Example 3.6
Suppose we have the six matrices in Example 3.5. The steps in the dynamic
programming algorithm follow. The results appear in Figure 3.8.
Compute diagonal 0:

Compute diagonal 1:

www.EBooksWorld.ir

Figure 3.8 The array M developed in Example 3.5. M [1] [4], which is circled, is computed from the pairs of
entries indicated

The values of M [2] [3], M [3] [4], M [4] [5], and M [5] [6] are computed in the
same way. They appear in Figure 3.8.
Compute diagonal 2:

The values of M [2] [4], M [3] [5], and M [4] [6] are computed in the same way and
are shown in Figure 3.8.
Compute diagonal 3:

www.EBooksWorld.ir

The values of M [2] [5] and M [3] [6] are computed in the same manner and are
shown in Figure 3.8.

Compute diagonal 4:

The entries in diagonal 4 are computed in the same manner and are shown in Figure
3.8.

Compute diagonal 5:

Finally, the entry in diagonal 5 is computed in the same manner. This entry is the
solution to our instance; it is the minimum number of elementary multiplications, and
its value is given by

The algorithm that follows implements this method. The dimensions of the n
matrices—namely, the values of d0 through dn—are the only inputs to the algorithm.
Matrices themselves are not inputs because the values in the matrices are irrelevant
to the problem. The array P produced by the algorithm can be used to print the
optimal order. We discuss this after analyzing Algorithm 3.6.

Algorithm 3.6
Minimum Multiplications
Problem: Determining the minimum number of elementary multiplications needed to
multiply n matrices and an order that produces that minimum number.
Inputs: the number of matrices n, and an array of integers d, indexed from 0 to n,
where d [i − 1] × d [i] is the dimension of the ith matrix.
Outputs: minmult, the minimum number of elementary multiplications needed to
multiply the n matrices; a two-dimensional array P from which the optimal order can
be obtained. P has its rows indexed from 1 to n − 1 and its columns indexed from 1
to n. P [i] [j] is the point where matrices i through j are split in an optimal order for
multiplying the matrices.

www.EBooksWorld.ir

Next we analyze Algorithm 3.6.

Analysis of Algorithm 3.6
 Every-Case Time Complexity (Minimum Multiplications)
Basic operation: We can consider the instructions executed for each value of k to be
the basic operation. Included is a comparison to test for the minimum.
Input size: n, the number of matrices to be multiplied.

We have a loop within a loop within a loop. Because j = i + diagonal, for given
values of diagonal and i, the number of passes through the k loop is

For a given value of diagonal, the number of passes through the for-i loop is n −
diagonal. Because diagonal goes from 1 to n − 1, the total number of times the basic
operation is done equals

In the exercises we establish that this expression equals

Next we show how an optimal order can be obtained from the array P. The values

www.EBooksWorld.ir

of that array, when the algorithm is applied to the dimensions in Example 3.5, are
shown in Figure 3.9. The fact that, for example, P [2] [5] = 4 means that the optimal
order for multiplying matrices A2 through A5 has the factorization

where inside the parentheses the matrices are multiplied according to the optimal
order. That is, P [2] [5], which is 4, is the point where the matrices should be split to
obtain the factors. We can produce an optimal order by visiting P [1] [n] first to
determine the top-level factorization. Because n = 6 and P [1, 6] = 1, the top-level
factorization in the optimal order is

Next we determine the factorization in the optimal order for multiplying A2 through
A6 by visiting P [2] [6]. Because the value of P [2] [6] is 5, that factorization is

We now know that the factorization in the optimal order is

where the factorization for multiplying A2 through A5 must still be determined. Next
we look up P [2] [5] and continue in this manner until all the factorizations are
determined. The answer is

Figure 3.9 The array P produced when Algorithm 3.6 is applied to the dimensions in Example 3.5.

The following algorithm implements the method just described.

Algorithm 3.7
Print Optimal Order
Problem: Print the optimal order for multiplying n matrices.
Inputs: Positive integer n, and the array P produced by Algorithm 3.6. P [i] [j] is the

www.EBooksWorld.ir

point where matrices i through j are split in an optimal order for multiplying those
matrices.
Outputs: the optimal order for multiplying the matrices.

Following our usual convention for recursive routines, P and n are not inputs to
order, but are inputs to the algorithm. If the algorithm were implemented by defining
P and n globally, the top-level call to order would be as follows:

order (1 , n) ;

When the dimensions are those in Example 3.5, the algorithm prints the following:

There are parentheses around the entire expression because the algorithm puts
parentheses around every compound term. In the exercises we establish for
Algorithm 3.7 that

Our Θ(n3) algorithm for chained matrix multiplication is from Godbole (1973).
Yao (1982) developed methods for speeding up certain dynamic programming
solutions. Using those methods, it is possible to create a Θ(n2) algorithm for chained
matrix multiplication. Hu and Shing (1982, 1984) describe a Θ(n lg n) algorithm for
chained matrix multiplication.

3.5 Optimal Binary Search Trees
Next we obtain an algorithm for determining the optimal way of organizing a set of
items in a binary search tree. Before discussing what kind of organization is
considered optimal, let’s review such trees. For any node in a binary tree, the subtree

www.EBooksWorld.ir

whose root is the left child of the node is called the left subtree of the node. The left
subtree of the root of the tree is called the left subtree of the tree. The right subtree
is defined analogously.

Definition
A binary search tree is a binary tree of items (ordinarily called keys), that come
from an ordered set, such that

1. Each node contains one key.
2. The keys in the left subtree of a given node are less than or equal to the key in

that node.
3. The keys in the right subtree of a given node are greater than or equal to the

key in that node.

Figure 3.10 shows two binary search trees, each with the same keys. In the tree on
the left, look at the right subtree of the node containing “Ralph.” That subtree contains
“Tom,” “Ursula,” and “Wally,” and these names are all greater than “Ralph”
according to an alphabetic ordering. Although, in general, a key can occur more than
once in a binary search tree, for simplicity we assume that the keys are distinct.
Figure 3.10 Two binary search trees.

The depth of a node in a tree is the number of edges in the unique path from the
root to the node. This is also called the level of the node in the tree. Usually we say
that a node has a depth and that the node is at a level. For example, in the tree on the
left in Figure 3.10, the node containing “Ursula” has a depth of 2. Alternatively, we
could say that the node is at level 2. The root has a depth of 0 and is at level 0. The
depth of a tree is the maximum depth of all nodes in the tree. The tree on the left in

www.EBooksWorld.ir

Figure 3.10 has a depth of 3, whereas the tree on the right has a depth of 2. A binary
tree is called balanced if the depth of the two subtrees of every node never differ by
more than 1. The tree on the left in Figure 3.10 is not balanced because the left
subtree of the root has a depth of 0, and the right subtree has a depth of 2. The tree on
the right in Figure 3.10 is balanced.

Ordinarily, a binary search tree contains records that are retrieved according to the
values of the keys. Our goal is to organize the keys in a binary search tree so that the
average time it takes to locate a key is minimized. (See Section A.8.2 for a
discussion of the average.) A tree that is organized in this fashion is called optimal.
It is not hard to see that, if all keys have the same probability of being the search key,
the tree on the right in Figure 3.10 is optimal. We are concerned with the case where
the keys do not have the same probability. An example of this case would be a search
of one of the trees in Figure 3.10 for a name picked at random from people in the
United States. Because “Tom” is a more common name than “Ursula,” we would
assign a greater probability to “Tom.” (See Section A.8.1 in Appendix A for a
discussion of randomness.)

We will discuss the case in which it is known that the search key is in the tree. A
generalization to the case where it may not be in the tree is investigated in the
exercises. To minimize the average search time, we need to know the time complexity
of locating a key. Therefore, before proceeding, let’s write and analyze an algorithm
that searches for a key in a binary search tree. The algorithm uses the following data
types:

This declaration means that a node pointer variable is a pointer to a nodetype
record. That is, its value is the memory address of such a record.

Algorithm 3.8
Search Binary Tree
Problem: Determine the node containing a key in a binary search tree. It is assumed
that the key is in the tree.
Inputs: a pointer tree to a binary search tree and a key keyin.
Outputs: a pointer p to the node containing the key.

www.EBooksWorld.ir

The number of comparisons done by procedure search to locate a key is called the
search time. Our goal is to determine a tree for which the average search time is
minimal. As discussed in Section 1.2, we assume that comparisons are implemented
efficiently. With this assumption, only one comparison is done in each iteration of the
while loop in the previous algorithm. Therefore, the search time for a given key is

where depth (key) is the depth of the node containing the key. For example, because
the depth of the node containing “Ursula” is 2 in the left tree in Figure 3.10, the
search time for “Ursula” is

Let Key1, Key2, … , Keyn be the n keys in order, and let pi be the probability that
Keyi is the search key. If ci is the number of comparisons needed to find Keyi in a
given tree, the average search time for that tree is

This is the value we want to minimize.

Example 3.7
Figure 3.11 shows the five different trees when n = 3. The actual values of the keys
are not important. The only requirement is that they be ordered. If

www.EBooksWorld.ir

the average search times for the trees in Figure 3.11 are:

1. 3 (0.7) + 2 (0.2) + 1 (0.1) = 2.6
2. 2 (0.7) + 3 (0.2) + 1 (0.1) = 2.1
3. 2 (0.7) + 1 (0.2) + 2 (0.1) = 1.8
4. 1 (0.7) + 3 (0.2) + 2 (0.1) = 1.5
5. 1 (0.7) + 2 (0.2) + 3 (0.1) = 1.4

The fifth tree is optimal.
Figure 3.11 The possible binary search trees when there are three keys.

In general, we cannot find an optimal binary search tree by considering all binary
search trees because the number of such trees is at least exponential in n. We prove
this by showing that if we just consider all binary search trees with a depth of n − 1,
we have an exponential number of trees. In a binary search tree with a depth of n − 1,
the single node at each of the n − 1 levels beyond the root can be either to the left or
to the right of its parent, which means there are two possibilities at each of those
levels. This means that the number of different binary search trees with a depth of n
− 1 is 2n−1.

Dynamic programming will be used to develop a more efficient algorithm. To that

www.EBooksWorld.ir

end, suppose that keys Keyi through Keyj are arranged in a tree that minimizes

where cm is the number of comparisons needed to locate Keym in the tree. We will
call such a tree optimal for those keys and denote the optimal value by A [i] [j].
Because it takes one comparison to locate a key in a tree containing one key, A [i] [i]
= pi.

Example 3.8
Suppose we have three keys and the probabilities in Example 3.7. That is,

To determine A [2] [3] we must consider the two trees in Figure 3.12. For those two
trees we have the following:

1. 1 (p2) + 2 (p3) = 1 (0.2) + 2 (0.1) = 0.4
2. 2 (p2) + 1 (p3) = 2 (0.2) + 1 (0.1) = 0.5

The first tree is optimal, and

Figure 3.12 The binary search trees composed of Key2 and Key3.

Notice that the optimal tree obtained in Example 3.8 is the right subtree of the root
of the optimal tree obtained in Example 3.7. Even if this tree was not the exact same
one as that right subtree, the average time spent searching in it would have to be the
same. Otherwise, we could substitute it for that subtree, resulting in a tree with a
smaller average search time. In general, any subtree of an optimal tree must be
optimal for the keys in that subtree. Therefore, the principle of optimality applies.
Figure 3.13 Optimal binary search tree given that Keyk is at the root.

www.EBooksWorld.ir

Next, let tree 1 be an optimal tree given the restriction that Key1 is at the root, tree
2 be an optimal tree given the restriction that Key2 is at the root, … , tree n be an
optimal tree given the restriction that Keyn is at the root. For 1 ≤ k ≤ n, the subtrees of
tree k must be optimal, and therefore the average search times in these subtrees are as
depicted in Figure 3.13. This figure also shows that for each m ≠ k it takes exactly
one more comparison (the one at the root) to location Keym in tree k than it does to
locate that key in the subtree that contains it. This one comparison adds 1 × pm to the
average search time for Keym in tree k. We’ve established that the average search
time for tree k is given by

which equals

Because one of the k trees must be optimal, the average search time for the optimal
tree is given by

where A [1] [0] and A [n + 1] [n] are defined to be 0. Although the sum of the
probabilities in this last expression is clearly 1, we have written it as a sum because
we now wish to generalize the result. To that end, there is nothing in the previous
discussion that requires that the keys be Key1 through Keyn. That is, in general, the
discussion pertains to Keyi through Keyj, where i < j. We have therefore derived the
following:

www.EBooksWorld.ir

Using Equality 3.6, we can write an algorithm that determines an optimal binary
search tree. Because A [i] [j] is computed from entries in the ith row but to the left of
A [i] [j] and from entries in the jth column but beneath A [i] [j], we proceed by
computing in sequence the values on each diagonal (as was done in Algorithm 3.6).
Because the steps in the algorithm are so similar to those in Algorithm 3.6, we do not
include an example illustrating these steps. Rather, we simply give the algorithm
followed by a comprehensive example showing the results of applying the algorithm.
The array R produced by the algorithm contains the indices of the keys chosen for the
root at each step. For example, R [1] [2] is the index of the key in the root of an
optimal tree containing the first two keys, and R [2] [4] is the index of the key in the
root of an optimal tree containing the second, third, and fourth keys. After analyzing
the algorithm, we will discuss how to build an optimal tree from R.

Algorithm 3.9
Optimal Binary Search Tree
Problem: Determine an optimal binary search tree for a set of keys, each with a given
probability of being the search key.
Inputs: n, the number of keys, and an array of real numbers p indexed from 1 to n,
where p [i] is the probability of searching for the ith key.
Outputs: A variable minavg, whose value is the average search time for an optimal
binary search tree; and a two-dimensional array R from which an optimal tree can be
constructed. R has its rows indexed from 1 to n+1 and its columns indexed from 0 to
n. R [i] [j] is the index of the key in the root of an optimal tree containing the ith
through the jth keys.

www.EBooksWorld.ir

Analysis of Algorithm 3.9
 Every-Case Time Complexity (Optimal Binary Search Tree)
Basic operation: The instructions executed for each value of k. They include a
comparison to test for the minimum. The value of does not need to be

computed from scratch each time. In the exercises you will find an efficient way to
compute these sums.
Input size: n, the number of keys.

The control of this algorithm is almost identical to that in Algorithm 3.6. The only
difference is that, for given values of diagonal and i, the basic operation is done
diagonal+1 times. An analysis like the one of Algorithm 3.6 establishes that

The following algorithm constructs a binary tree from the array R. Recall that R
contains the indices of the keys chosen for the root at each step.

www.EBooksWorld.ir

Algorithm 3.10
Build Optimal Binary Search Tree
Problem: Build an optimal binary search tree.
Inputs: n, the number of keys, an array Key containing the n keys in order, and the
array R produced by Algorithm 3.9. R [i] [j] is the index of the key in the root of an
optimal tree containing the ith through the jth keys.
Outputs: a pointer tree to an optimal binary search tree containing the n keys.

The instruction p = new nodetype gets a new node and puts its address in p.
Following our convention for recursive algorithms, the parameters n, Key, and R are
not inputs to function tree. If the algorithm were implemented by defining n, Key, and
R globally, a pointer root to the root of an optimal binary search tree is obtained by
calling tree as follows:

root = tree (1, n);

We did not illustrate the steps in Algorithm 3.9 because it is similar to Algorithm
3.6 (Minimum Multiplications). Likewise, we will not illustrate the steps in
Algorithm 3.10 because this algorithm is similar to Algorithm 3.7 (Print Optimal
Order). Rather, we provide one comprehensive example showing the results of
applying both Algorithms 3.9 and 3.10.

Example 3.9
Supposed we have the following values of the array Key:

www.EBooksWorld.ir

and

The arrays A and R produced by Algorithm 3.9 are shown in Figure 3.14, and the tree
created by Algorithm 3.10 is shown in Figure 3.15. The minimal average search time
is 7/4.
Figure 3.14 The arrays A and R, produced when Algorithm 3.9 is applied to the instance in Example 3.9.

Notice that R [1] [2] could be 1 or 2. The reason is that either of these indices
could be the index of the root in an optimal tree containing only the first two keys.
Therefore, both of these indices give the minimum value of A [1] [2] in Algorithm
3.9, which means that either could be chosen for R [1] [2].
Figure 3.15 The tree produced when Algorithms 3.9 and 3.10 are applied to the instance in Example 3.9.

The previous algorithm for determining an optimal binary search tree is from
Gilbert and Moore (1959). A Θ(n2) algorithm can be obtained using the dynamic
programming speed-up method in Yao (1982).

www.EBooksWorld.ir

3.6 The Traveling Salesperson Problem
Suppose a salesperson is planning a sales trip that includes 20 cities. Each city is
connected to some of the other cities by a road. To minimize travel time, we want to
determine a shortest route that starts at the salesperson’s home city, visits each of the
cities once, and ends up at the home city. This problem of determining a shortest
route is called the Traveling Salesperson problem.

An instance of this problem can be represented by a weighted graph, in which each
vertex represents a city. As in Section 3.2, we generalize the problem to include the
case in which the weight (distance) going in one direction can be different from the
weight going in another direction. Again we assume that the weights are nonnegative
numbers. Figures 3.2 and 3.16 show such weighted graphs. A tour (also called a
Hamiltonian circuit) in a directed graph is a path from a vertex to itself that passes
through each of the other vertices exactly once. An optimal tour in a weighted,
directed graph is such a path of minimum length. The Traveling Salesperson problem
is to find an optimal tour in a weighted, directed graph when at least one tour exists.
Because the starting vertex is irrelevant to the length of an optimal tour, we will
consider v1 to be the starting vertex. The following are the three tours and lengths for
the graph in Figure 3.16:

The last tour is optimal. We solved this instance by simply considering all
possible tours. In general, there can be an edge from every vertex to every other
vertex. If we consider all possible tours, the second vertex on the tour can be any of n
−1 vertices, the third vertex on the tour can be any of n − 2 vertices, … , the nth
vertex on the tour can be only one vertex. Therefore, the total number of tours is

Figure 3.16 The optimal tour is [v1, v3, v4, v2, v1].

Figure 3.17 The adjacency matrix representation W of the graph in Figure 3.16.

www.EBooksWorld.ir

which is worse than exponential.
Can dynamic programming be applied to this problem? Notice that if vk is the first

vertex after v1 on an optimal tour, the subpath of that tour from vk to v1 must be a
shortest path from vk to v1 that passes through each of the other vertices exactly once.
This means that the principle of optimality applies, and we can use dynamic
programming. To that end, we represent the graph by an adjacency matrix W, as was
done in Section 3.2. Figure 3.17 shows the adjacency matrix representation of the
graph in Figure 3.16. Let

Example 3.10
For the graph in Figure 3.16,

Notice that {v1, v2, v3, v4} uses curly braces to represent a set, whereas [v1, v2, v3, v4]
uses square brackets to represent a path. If A = {v3}, then

If A = {v3, v4}, then

Because V − {v1, vj} contains all the vertices except v1 and vj and the principle of
optimality applies, we have

www.EBooksWorld.ir

and, in general for i ≠ 1 and vi not in A,

We can create a dynamic programming algorithm for the Traveling Salesperson
problem using Equality 3.7. But first, let’s illustrate how the algorithm would
proceed.

Example 3.11
Determine an optimal tour for the graph represented in Figure 3.17. First consider the
empty set:

Next consider all sets containing one element:

Similarly,

Next consider all sets containing two elements:

Similarly,

Finally, compute the length of an optimal tour:

www.EBooksWorld.ir

The dynamic programming algorithm for the Traveling Salesperson problem
follows.

Algorithm 3.11
The Dynamic Programming Algorithm for the Traveling Salesperson Problem
Problem: Determine an optimal tour in a weighted, directed graph. The weights are
nonnegative numbers.
Inputs: a weighted, directed graph, and n, the number of vertices in the graph. The
graph is represented by a two-dimensional array W, which has both its rows and
columns indexed from 1 to n, where W [i] [j] is the weight on the edge from ith vertex
to the jth vertex.
Outputs: a variable minlength, whose value is the length of an optimal tour, and a
two-dimensional array P from which an optimal tour can be constructed. P has its
rows indexed from 1 to n and its columns indexed by all subsets of V − {v1}. P [i]
[A] is the index of the first vertex after vi on a shortest path from vi to v1 that passes
through all vertices in A exactly once.

www.EBooksWorld.ir

Before showing how an optimal tour can be obtained from the array P, we analyze
the algorithm. First we need a theorem:

 Theorem 3.1

For all n ≥ 1

Proof: It is left as an exercise to show that

Therefore,

The last equality is obtained by applying the result found in Example A.10 in
Appendix A.

The analysis of Algorithm 3.11 follows.

Analysis of Algorithm 3.11
 Every-Case Time and Space Complexity (The Dynamic Programming

Algorithm for the Traveling Salesperson Problem)
Basic operation: The time in both the first and last loops is insignificant compared to
the time in the middle loop because the middle loop contains various levels of
nesting. Therefore, we will consider the instructions executed for each value of vj to
be the basic operation. They include an addition instruction.
Input size: n, the number of vertices in the graph.

For each set A containing k vertices, we must consider n − 1 − k vertices, and for
each of these vertices, the basic operation is done k times. Because the number of

www.EBooksWorld.ir

subsets A of V −{v1} containing k vertices is equal to the total number of times
the basic operation is done is given by

It is not hard to show that

Substituting this equality into Equality 3.8, we have

Finally, applying Theorem 3.1, we have

Because the memory used in this algorithm is also large, we will analyze the memory
complexity, which we call M (n). The memory used to store the arrays D [vi] [A] and
P [vi] [A] is clearly the dominant amount of memory. So we will determine how large
these arrays must be. Because V − {v1} contains n − 1 vertices, we can apply the
result in Example A.10 in Appendix A to conclude that it has 2n−1 subsets A. The first
index of the arrays D and P ranges in value between 1 and n. Therefore,

At this point you may be wondering what we have gained, because our new
algorithm is still Θ(n22n) The following example shows that even an algorithm with
this time complexity can sometimes be useful.

Example 3.12
Ralph and Nancy are both competing for the same sales position. The boss tells them
on Friday that, starting on Monday, whoever can cover the entire 20-city territory
faster will get the position. The territory includes the home office, and they must
return to the home office when they are done. There is a road from every city to every
other city. Ralph figures he has the whole weekend to determine his route; so he
simply runs the brute-force algorithm that considers all (20 − 1)! tours on his
computer. Nancy recalls the dynamic programming algorithm from her algorithms
course. Figuring she should take every advantage she can, she runs that algorithm on
her computer. Assuming that the time to process the basic instruction in Nancy’s

www.EBooksWorld.ir

algorithm is 1 microsecond, and that it takes 1 microsecond for Ralph’s algorithm to
compute the length of each tour, the time taken by each algorithm is given
approximately by the following:

Dynamic programming algorithm: (20 − 1) (20 − 2) 220−3 µs = 45 seconds.

We see that even a Θ(n22n)algorithm can be useful when the alternative is a factorial-
time algorithm. The memory used by the dynamic programming algorithm in this
example is

Although this is quite large, it is feasible by today’s standards.
Using the Θ(n22n) algorithm to find the optimal tour is practical only because n is

small. If, for example, there were 60 cities, that algorithm, too, would take many
years.

Let’s discuss how to retrieve an optimal tour from the array P. We don’t give the
algorithm; rather, we simply illustrate how it would proceed. The members of the
array P needed to determine an optimal tour for the graph represented in Figure 3.16
are:

We obtain an optimal tour as follows:

The optimal tour is, therefore,

No one has ever found an algorithm for the Traveling Salesperson problem whose
worst-case time complexity is better than exponential. Yet no one has ever proved
that such an algorithm is not possible. This problem is one of a large class of closely
related problems that share this property and are the focus of Chapter 9.

www.EBooksWorld.ir

3.7 Sequence Alignment
We show an application of a dynamic program to molecular genetics, namely a

homologous DNA sequence alignment. First, we briefly review some concepts in
genetics.

A chromosome is a long, threadlike macromolecule consisting of the compound
deoxyribonucleic acid (DNA). Chromosomes are the carriers of biologically
expressed hereditary characteristics. DNA is composed of two complementary
strands, each strand consisting of a sequence of nucleotides. A nucleotide contains a
pentose sugar (deoxyribose), a phosphate group, and a purine or pyrimidine base.
The purines, adenine (A) and guanine (G), are similar in structure, as are the
pyrimidines, cytosine (C) and thymine (T). The strands are joined together by
hydrogen bonds between pairs of nucleotides. Adenine always pairs with thymine
and guanine always pairs with cytosine. Each pair of these is called a canonical base
pair (bp), and A, G, C, and T are called bases.

A section of DNA is depicted in Figure 3.18. The strands actually twist around
each other to form a right-handed double helix. However, for our purposes, we need
only consider them as character strings as shown. It is believed that a chromosome is
just one long DNA molecule.

A DNA sequence is a section of DNA, and a site is the location of each base pair
in the sequence. A DNA sequence can undergo a substitution mutation that means
one nucleotide is substituted by another, an insertion mutation that means a base pair
is inserted in the sequence, and a deletion mutation that means a base pair is deleted
from the sequence.

Consider the same DNA sequence in every individual in a particular population
(species). In each generation, each site in the sequence has a probability of
undergoing a mutation in each gamete that produces an individual for the next
generation. A possible result is substitution at a given site of one base by another
base in the entire population (or much of it). Another possible result would be that a
speciation event eventually occurs, which means that the members of the species
separate into two different species. In this case, the total substitutions that eventually
occur in one of the species can be quite different from those that occur in the other
species. This means that the sequences in individuals, taken from each of the two
species, may be quite different. We say that the sequences have diverged. The
corresponding sequences from the two species are called homologous sequences. In
a phylogenetic tree inference, we are interested in comparing homologous sequences
from different species and estimating their distance in an evolutionary sense.
Figure 3.18 A section of DNA.

When we compare homologous sequences from two individuals in two different

www.EBooksWorld.ir

species, we must first align the sequences because one or both of the sequences may
have undergone insertion and/or deletion mutations since they diverged. For example,
an alignment of the first introns of the human and owl monkey insulin genes results in
a 196-nucleotide sequence in which 163 of the sites do not have a gap in either
sequence.

Example 3.13
Suppose we have the following homologous sequences:

We could align them in many ways. The following shows two possible alignments:

When we include a dash (−) in an alignment, this is called inserting a gap. It
indicates that either the sequence with the gap has undergone a deletion or the other
sequence has undergone an insertion.

Which alignment in the previous example is better? Both have five matching base
pairs. The top alignment has two mismatched base pairs, but at the expense of
inserting four gaps. On the other hand, the bottom alignment has three mismatched
base pairs but at the expense of inserting only two gaps. In general, it is not possible
to say which alignment is better without first specifying the penalty for a mismatch
and the penalty for a gap. For example, suppose we say a gap has a penalty of 1 and a
mismatch has a penalty of 3. We call the sum of all the penalties in an alignment the
cost of the alignment. Given these penalty assignments, the top alignment in Example
3.13 has a cost of 10, whereas the bottom one has a cost of 11. So, the top one is
better. On the other hand, if we say a gap has a penalty of 2 and a mismatch has a
penalty of 1, it is not hard to see that the bottom alignment has a smaller cost and is
therefore better.

Once we do specify the penalties for gaps and mismatches, it is possible to
determine the optimal alignment. However, doing this by checking all possible
alignments is an intractable task. Next, we develop an efficient dynamic programming
algorithm for the sequence alignment problem.

For the sake of concreteness, we assume the following:

www.EBooksWorld.ir

 The penalty for a mismatch is 1.
 The penalty for a gap is 2.

First, we represent the two sequences in arrays as follows:

Let opt(i, j) be the cost of the optimal alignment of the subsequences x[i..9] and
y[j..7]. Then opt(0, 0) is the cost of the optimal alignment of x[0..9] and y[0..7],
which is the alignment we want to perform. This optimal alignment must start with
one of the following.

1. x[0] is aligned with y[0]. If x[0] = y[0] there is no penalty at the first alignment
site, whereas if x[0] ≠ y[0] there is a penalty of 1.

2. x[0] is aligned with a gap and there is a penalty of 2 at the first alignment site.
3. y[0] is aligned with a gap and there is a penalty of 2 at the first alignment site.

Suppose the optimal alignment Aopt of x[0..9] and y[0..7] has x[0] aligned with
y[0]. Then this alignment contains within it an alignment B of x[1..9] and y[1..7].
Suppose this is not the optimal alignment of these two subsequences. Then there is
some other alignment C that has a smaller cost. Thus, alignment C, along with
aligning x[0] with y[0], will yield an alignment of x[0..9] and y[0..7] and has a
smaller cost than Aopt. So, alignment B must be the optimal alignment of x[1..9] and
y[1..7]. Similarly, if the optimal alignment of x[0..9] and y[0..7] has x[0] aligned with
a gap, then that alignment contains within it the optimal alignment of x[1..9] and
y[0..7], and if the optimal alignment of x[0..9] and y[0..7] has y[0] aligned with a
gap, then that alignment contains within it the optimal alignment of x[0..9] and y[1..7].

Example 3.14
Suppose the following is an optimal alignment of x[0..9] and y[0..7]:

Then the following must be an optimal alignment of x[1..9] and y[1..7]:

www.EBooksWorld.ir

If we let penalty = 0 if x[0] = y[0] and 1 otherwise, we have established the
following recursive property:

opt(0, 0) = min(opt(1, 1) + penalty, opt(1, 0) + 2, opt(0, 1) + 2).

Although we illustrated this recursive property starting at the 0th position in both
sequences, it clearly holds if we start at arbitrary positions. So, in general,

To complete the development of a recursive algorithm, we need terminal
conditions. Let m be the length of sequence x and n be the length of sequence y. If we
have passed the end of sequence x (i = m), and we are at the jth position in sequence
y, where j < n, then we must insert n − j gaps. So, one terminal condition is

Similarly, if we have passed the end of sequence y (j = n), and we are at the ith
position in sequence x, where i < m, then we must insert m − i gaps. So, another
terminal condition is

We now have the following divide-and-conquer algorithm:

Algorithm 3.12
Sequence Alignment Using Divide-and-Conquer
Problem: Determine an optimal alignment of two homologous DNA sequences.
Inputs: A DNA sequence x of length m and a DNA sequence y of length n. The
sequences are represented in arrays.
Outputs: The cost of an optimal alignment of the two sequences.

www.EBooksWorld.ir

The top-level call to the algorithm is

Note that this algorithm only gives the cost of an optimal alignment; it does not
produce one. It could be modified to also produce one. However, we will not pursue
that here because the algorithm is very inefficient and is therefore not the one we
would actually use. It is left as an exercise to show that it has exponential-time
complexity.

The problem is that many subinstances are evaluated more than once. For example,
to evaluate opt(0, 0) at the top level, we need to evaluate opt(1, 1), opt(1, 0), and
opt(0, 1). To evaluate opt(1, 0) in the first recursive call, we need to evaluate opt(2,
1), opt(2, 0), and opt(1, 1). The two evaluations of opt(1, 1) will unnecessarily be
done independently.
Figure 3.19 The array used to find the optimal alignment.

www.EBooksWorld.ir

To solve the problem using dynamic programming, we create an m + 1 by n + 1
array, as shown in Figure 3.19 for the current instance. Note that we include one extra
character in each sequence which is a gap. The purpose of this is to give our upward
iteration scheme a starting point. We want to compute and store opt(i, j) in the ijth
slot of this array. Recall that we have the following equalities:

Note that we have put the current instance’s values of m and n in the formulas. If we
are in the bottom row of the array, we use Equality (2) to compute opt(i, j); if we are
in the rightmost column, we use Equality (3); otherwise, we use Equality (1). Note in
Equality (1) that each array item’s value can be computed from the value of the array
item to the right of it, the value of the array item underneath it, and the value of the
array item underneath and to the right of it. For example, we illustrate in Figure 3.19
that opt(6, 5) is computed from opt(6, 6), opt(7, 5), and opt(7, 6).

Therefore, we can compute all values in the array in Figure 3.19 by first computing
all values on Diagonal 1, then computing all values on Diagonal 2, then computing all
values on Diagonal 3, and so on. We illustrate the computations for the first three
diagonals:

www.EBooksWorld.ir

 Diagonal 1:

 Diagonal 2:

 Diagonal 3:

Figure 3.20 shows the array after all the values are computed. The value of the
optimal alignment is opt(0, 0), which is 7.

Next, we show how the optimal alignment can be retrieved from the completed
array. First, we must obtain the path that led to opt(0, 0). We do this by starting in the
upper-left corner of the array and retracing our steps. We look at the three array items
that could have led to opt(0, 0) and choose the one that gives the correct value. We
then repeat this procedure with the chosen item. Ties are broken arbitrarily. We do
this until we arrive in the lower-right corner. The path obtained is highlighted in
Figure 3.20. We show how the first few values in the path were obtained. First,
denote the array slot that occupies the ith row and the jth column by [i][j]. Then
proceed as follows:

1. Choose array slot [0][0].
2. Find second array item in the path.

(a) Check array slot [0][1]. Since we move to the left from this slot, to arrive
at array slot [0][0], a gap is inserted that means 2 is added to the cost. We
have that

Figure 3.20 The completed array used to find the optimal alignment.

www.EBooksWorld.ir

(b) Check array slot [1][0]. Since we move up from this slot to arrive at array
slot [0][0], a gap is inserted that means 2 is added to the cost. We have that

(c) Check array slot [1][1]. Since we move diagonally from this slot to arrive
at array slot [0][0], the value of penalty is added to the cost. Since x[0] =
A and y[0] = T, penalty = 1. We have that

Thus, the second array slot in the path is [1][1].

Alternatively, we could create the path while storing the entries in the array. That
is, each time we store an array element we create a pointer back to the array element
that determined its value.

Once we have the path, we retrieve the alignment as follows (note that the
sequences are generated in reverse order).

1. Starting in the bottom-right corner of the array, we follow the high-lighted path.
2. Every time we make a diagonal move to arrive at array slot [i][j], we place the

character in the ith row into the x sequence and we place the character in the jth
column into the y sequence.

3. Every time we make a move directly up to arrive at array slot [i][j], we place
the character in the ith row into the x sequence, and we place a gap into the y
sequence.

www.EBooksWorld.ir

4. Every time we make a move directly to the left to arrive at array slot [i][j], we
place the character in the jth column into the y sequence, and we place a gap
into the x sequence.

If you follow this procedure for the array in Figure 3.20, we will obtain the
following optimal alignment:

Note that if we assigned different penalties, we might obtain a different optimal
alignment. Li (1997) discusses the assignment of penalties.

It is left as an exercise to write the dynamic programming algorithm for the
sequence alignment problem. This algorithm for sequence alignment, which is
developed in detail in Waterman (1984), is one of the most widely used sequence
alignment methods. It is used in sophisticated sequence alignment systems such as
BLAST (Bedell, 2003) and DASH (Gardner-Stephen and Knowles, 2004). This
section is based on material in Neapolitan (2009). That text discusses molecular
evolutionary genetics in much more detail.

EXERCISES

Sections 3.1
1. Establish Equality 3.1 given in this section.
2. Use induction on n to show that the divide-and-conquer algorithm for the

Binomial Coefficient problem (Algorithm 3.1), based on Equality 3.1, computes
 terms to determine

3. Implement both algorithms for the Binomial Coefficient problem (Algorithms 3.1
and 3.2) on your system and study their performances using different problem
instances.

4. Modify Algorithm 3.2 (Binomial Coefficient Using Dynamic Programming) so
that it uses only a one-dimensional array indexed from 0 to k.

Sections 3.2
5. Use Floyd’s algorithm for the Shortest Paths problem 2 (Algorithm 3.4) to

construct the matrix D, which contains the lengths of the shortest paths, and the
matrix P, which contains the highest indices of the intermediate vertices on the

www.EBooksWorld.ir

shortest paths, for the following graph. Show the actions step by step.

6. Use the Print Shortest Path algorithm (Algorithm 3.5) to find the shortest path
from vertex v7 to vertex v3, in the graph of Exercise 5, using the matrix
P found in that exercise. Show the actions step by step.

7. Analyze the Print Shortest Path algorithm (Algorithm 3.5) and show that it has a
linear-time complexity.

8. Implement Floyd’s algorithm for the Shortest Paths problem 2 (Algorithm 3.4) on
your system, and study its performance using different graphs.

9. Can Floyd’s algorithm for the Shortest Paths problem 2 (Algorithm 3.4) be
modified to give just the shortest path from a given vertex to another specified
vertex in a graph? Justify your answer.

10. Can Floyd’s algorithm for the Shortest Paths problem 2 (Algorithm 3.4) be used
to find the shortest paths in a graph with some negative weights? Justify your
answer.

Sections 3.3
11. Find an optimization problem in which the principle of optimality does not apply

and therefore that the optimal solution cannot be obtained using dynamic
programming. Justify your answer.

Sections 3.4
12. List all of the different orders in which we can multiply five matrices A, B, C, D,

and E.

13. Find the optimal order, and its cost, for evaluating the product A1 × A2 × A3 × A4

× A5, where

www.EBooksWorld.ir

Show the final matrices M and P produced by Algorithm 3.6.

14. Implement the Minimum Multiplications algorithm (Algorithm 3.6) and the Print
Optimal Order algorithm (Algorithm 3.7) on your system, and study their
performances using different problem instances.

15. Show that a divide-and-conquer algorithm based on Equality 3.5 has an
exponential-time complexity.

16. Consider the problem of determining the number of different orders in which n
matrices can be multiplied.
(a) Write a recursive algorithm that takes an integer n as input and solves this

problem. When n equals 1 the algorithm returns 1.
(b) Implement the algorithm and show the output of the algorithm for n = 2, 3, 4,

5, 6, 7, 8, 9, and 10.

17. Establish the equality

This is used in the every-case time complexity analysis of Algorithm 3.6.

18. Show that to fully parenthesize an expression having n matrices we need n−1
pairs of parentheses.

19. Analyze Algorithm 3.7 and show that it has a linear-time complexity.

20. Write an efficient algorithm that will find an optimal order for multiplying n
matrices A1 × A2 × · · · × An, where the dimension of each matrix is 1 × 1, 1 × d,
d × 1, or d × d for some positive integer d. Analyze your algorithm and show the
results using order notation.

Sections 3.5
21. How many different binary search trees can be constructed using six distinct

keys?

22. Create the optimal binary search tree for the following items, where the
probability occurrence of each word is given in parentheses: CASE (.05), ELSE
(.15), END (.05), IF (.35), OF (.05), THEN (.35).

www.EBooksWorld.ir

23. Find an efficient way to compute which is used in the Optimal Binary

Search Tree algorithm (Algorithm 3.9).

24. Implement the Optimal Binary Search Tree algorithm (Algorithm 3.9) and the
Build Optimal Binary Search Tree algorithm (Algorithm 3.10) on your system,
and study their performances using different problem instances.

25. Analyze Algorithm 3.10, and show its time complexity using order notation.

26. Generalize the Optimal Binary Search Tree algorithm (Algorithm 3.9) to the case
in which the search key may not be in the tree. That is, you should let qi, in which
i = 0, 1, 2, … , n, be the probability that a missing search key can be situated
between Keyi and Keyi+1. Analyze your generalized algorithm and show the
results using order notation.

27. Show that a divide-and-conquer algorithm based on Equality 3.6 has an
exponential time complexity.

Sections 3.6
28. Find an optimal circuit for the weighted, direct graph represented by the

following matrix W. Show the actions step by step.

29. Write a more detailed version of the Dynamic Programming algorithm for the
Traveling Salesperson problem (Algorithm 3.11).

30. Implement your detailed version of Algorithm 3.11 from Exercise 27 on your
system and study its performance using several problem instances.

Sections 3.7
31. Analyze the time complexity of Algorithm opt, which appears in Section 3.7.

32. Write the dynamic programming algorithm for the sequence alignment problem.

33. Assuming a penalty of 1 for a mismatch and a penalty of 2 for a gap, use the
dynamic programming algorithm to find an optimal alignment of the following
sequences:

www.EBooksWorld.ir

Additional Exercises
34. Like algorithms for computing the nth Fibonacci term (see Exercise 34 in Chapter

1), the input size in Algorithm 3.2 (Binomial Coefficient Using Dynamic
Programming) is the number of symbols it takes to encode the numbers n and k.
Analyze the algorithm in terms of its input size.

35. Determine the number of possible orders for multiplying n matrices A1, A2, … ,
An.

36. Show that the number of binary search trees with n keys is given by the formula

37. Can you develop a quadratic-time algorithm for the Optimal Binary Search Tree
problem (Algorithm 3.9)?

38. Use the dynamic programming approach to write an algorithm to find the
maximum sum in any contiguous sublist of a given list of n real values. Analyze
your algorithm, and show the results using order notation.

39. Let us consider two sequences of characters S1 and S2. For example, we could
have S1 = A$CMA*MN and S2 = AXMC4ANB. Assuming that a subsequence of a
sequence can be constructed by deleting any number of characters from any
positions, use the dynamic programming approach to create an algorithm that
finds the longest common subsequence of S1 and S2. This algorithm returns the
maximum-length common subsequence of each sequence.

www.EBooksWorld.ir

Chapter 4

The Greedy Approach

Charles Dickens’ classic character Ebenezer Scrooge may well be the most greedy
person ever, fictional or real. Recall that Scrooge never considered the past or future.
Each day his only drive was to greedily grab as much gold as he could. After the
Ghost of Christmas Past reminded him of the past and the Ghost of Christmas Future
warned him of the future, he changed his greedy ways.

A greedy algorithm proceeds in the same way as Scrooge did. That is, it grabs data
items in sequence, each time taking the one that is deemed “best” according to some
criterion, without regard for the choices it has made before or will make in the future.
One should not get the impression that there is something wrong with greedy
algorithms because of the negative connotations of Scrooge and the word “greedy.”
They often lead to very efficient and simple solutions.

Like dynamic programming, greedy algorithms are often used to solve optimization
problems. However, the greedy approach is more straightforward. In dynamic
programming, a recursive property is used to divide an instance into smaller
instances. In the greedy approach, there is no division into smaller instances. A
greedy algorithm arrives at a solution by making a sequence of choices, each of
which simply looks the best at the moment. That is, each choice is locally optimal.
The hope is that a globally optimal solution will be obtained, but this is not always
the case. For a given algorithm, we must determine whether the solution is always
optimal.

A simple example illustrates the greedy approach. Joe, the sales clerk, often
encounters the problem of giving change for a purchase. Customers usually don’t
want to receive a lot of coins. For example, most customers would be aggravated if
he gave them 87 pennies when the change was $0.87. Therefore, his goal is not only
to give the correct change, but to do so with as few coins as possible. A solution to
an instance of Joe’s change problem is a set of coins that adds up to the amount he
owes the customer, and an optimal solution is such a set of minimum size. A greedy

www.EBooksWorld.ir

approach to the problem could proceed as follows. Initially there are no coins in the
change. Joe starts by looking for the largest coin (in value) he can find. That is, his
criterion for deciding which coin is best (locally optimal) is the value of the coin.
This is called the selection procedure in a greedy algorithm. Next he sees if adding
this coin to the change would make the total value of the change exceed the amount
owed. This is called the feasibility check in a greedy algorithm. If adding the coin
would not make the change exceed the amount owed, he adds the coin to the change.
Next he checks to see if the value of the change is now equal to the amount owed.
This is the solution check in a greedy algorithm. If the values are not equal, Joe gets
another coin using his selection procedure and repeats the process. He does this until
the value of the change equals the amount owed or he runs out of coins. In the latter
case, he is not able to return the exact amount owed. The following is a high-level
algorithm for this procedure.

In the feasibility check, when we determine that adding a coin would make the
change exceed the amount owed, we learn that the set obtained by adding that coin
cannot be completed to give a solution to the instance. Therefore, that set is
unfeasible and is rejected. An example application of this algorithm appears in
Figure 4.1. Again, the algorithm is called “greedy” because the selection procedure
simply consists of greedily grabbing the next-largest coin without considering the
potential drawbacks of making such a choice. There is no opportunity to reconsider a
choice. Once a coin is accepted, it is permanently included in the solution; once a
coin is rejected, it is permanently excluded from the solution. This procedure is very
simple, but does it result in an optimal solution? That is, in the Change problem,
when a solution is possible, does the solution provided by the algorithm contain the
minimum number of coins necessary to give the correct change? If the coins consist of
U.S. coins (penny, nickel, dime, quarter, half dollar) and if there is at least one type
of each coin available, the greedy algorithm always returns an optimal solution when
a solution exists. This is proven in the exercises. There are cases other than those
involving standard U.S. coins for which the greedy algorithm produces optimal
solutions. Some of these also are investigated in the exercises. Notice here that if we
include a 12-cent coin with the U.S. coins, the greedy algorithm does not always give
an optimal solution. Figure 4.2 illustrates this result. In that figure, the greedy
solution contains five coins, whereas the optimal solution, which consists of a dime,

www.EBooksWorld.ir

nickel, and penny, contains only three coins.
Figure 4.1 A greedy algorithm for giving change.

As this Change problem shows, a greedy algorithm does not guarantee an optimal
solution. We must always determine whether this is the case for a particular greedy
algorithm. Sections 4.1, 4.2, 4.3, and 4.4 discuss problems for which the greedy
approach always yields an optimal solution. Section 4.5 investigates a problem in
which it does not. In that section, we compare the greedy approach with dynamic
programming to illuminate when each approach might be applicable. We close here
with a general outline of the greedy approach. A greedy algorithm starts with an
empty set and adds items to the set in sequence until the set represents a solution to an
instance of a problem. Each iteration consists of the following components:
Figure 4.2 The greedy algorithm is not optimal if a 12-cent coin is included.

www.EBooksWorld.ir

• A selection procedure chooses the next item to add to the set. The selection is
performed according to a greedy criterion that satisfies some locally optimal
consideration at the time.

• A feasibility check determines if the new set is feasible by checking whether it
is possible to complete this set in such a way as to give a solution to the
instance.

• A solution check determines whether the new set constitutes a solution to the
instance.

4.1 Minimum Spanning Trees
Suppose an urban planner wants to connect certain cities with roads so that it is
possible for someone to drive from any city to any other city. If there are budgetary
restrictions, the planner may want to do this with the minimum amount of road. We
will develop an algorithm that solves this and similar problems. First, let’s
informally review more graph theory. Figure 4.3(a) shows a connected, weighted,
undirected graph G. We assume here that the weights are nonnegative numbers. The
graph is undirected because the edges do not have direction. This is represented
pictorially by an absence of arrows on the edges. Because the edges do not have

www.EBooksWorld.ir

direction, we say an edge is between two vertices. A path in an undirected graph is a
sequence of vertices such that there is an edge between each vertex and its successor.
Because the edges have no direction, there is a path from vertex u to vertex v if and
only if there is a path from v to u. Therefore, for undirected graphs we simply say that
there is a path between two vertices. An undirected graph is called connected if
there is a path between every pair of vertices. All the graphs in Figure 4.3 are
connected. If we removed the edge between v2 and v4 from the graph in Figure 4.3(b),
the graph would no longer be connected.
Figure 4.3 A weighted graph and three subgraphs.

In an undirected graph, a path from a vertex to itself, which contains at least three
vertices and in which all intermediate vertices are distinct, is called a simple cycle.
An undirected graph with no simple cycles is called acyclic. The graphs in Figure
4.3(c) and (d) are acyclic, whereas the ones in Figure 4.3(a) and (b) are not. A tree
(technically, a free tree) is an acyclic, connected, undirected graph. The graphs in
Figure 4.3(c) and (d) are trees. With this definition, no vertex is singled out as the

www.EBooksWorld.ir

root, and a rooted tree is defined as a tree with one vertex designated as the root.
Therefore, a rooted tree is what is often called a tree (as was done in Section 3.5).

Consider the problem of removing edges from a connected, weighted, undirected
graph G to form a subgraph such that all the vertices remain connected and the sum of
the weights on the remaining edges is as small as possible. Such a problem has
numerous applications. As mentioned earlier, in road construction we may want to
connect a set of cities with a minimum amount of road. Similarly, in
telecommunications we may want to use a minimal length of cable, and in plumbing
we may want to use a minimal amount of pipe. A subgraph with minimum weight
must be a tree, because if a subgraph were not a tree, it would contain a simple cycle,
and we could remove any edge on the cycle, resulting in a connected graph with a
smaller weight. To illustrate this, look at Figure 4.3. The subgraph in Figure 4.3(b) of
the graph in Figure 4.3(a) cannot have minimum weight because if we remove any
edge on the simple cycle [v3, v4, v5, v3], the subgraph remains connected. For
example, we could remove the edge connecting v4 and v5, resulting in a connected
graph with a smaller weight.

A spanning tree for G is a connected subgraph that contains all the vertices in G
and is a tree. The trees in Figure 4.3(c) and (d) are spanning trees for G. A connected
subgraph of minimum weight must be a spanning tree, but not every spanning tree has
minimum weight. For example, the spanning tree in Figure 4.3(c) does not have
mininum weight, because the spanning tree in Figure 4.3(d) has a lesser weight. An
algorithm for our problem must obtain a spanning tree of minimum weight. Such a
tree is called a minimum spanning tree. The tree in Figure 4.3(d) is a minimum
spanning tree for G. A graph can have more than one minimum spanning tree. There is
another one for G, which you may wish to find.

To find a minimum spanning tree by the brute-force method of considering all
spanning trees is worse than exponential in the worst case. We will solve the
problem more efficiently using the greedy approach. First we need the formal
definition of an undirected graph.

Definition
An undirected graph G consists of a finite set V whose members are called the
vertices of G, together with a set E of pairs of vertices in V. These pairs are called
the edges of G. We denote G by

We will denote members of V by vi and the edge between vi and vj by

www.EBooksWorld.ir

Example 4.1
For the graph in Figure 4.3(a),

The order in which we list the vertices to denote an edge is irrelevant in an
undirected graph. For example, (v1, v2) denotes the same edge as (v2, v1). We have
listed the vertex with the lower index first.

A spanning tree T for G has the same vertices V as G, but the set of edges of T is a
subset F of E. We will denote a spanning tree by T = (V , F). Our problem is to find a
subset F of E such that T = (V , F) is a minimum spanning tree for G. A high-level
greedy algorithm for the problem could proceed as follows:

This algorithm simply says “select an edge according to some locally optimal
consideration.” There is no unique locally optimal property for a given problem. We
will investigate two different greedy algorithms for this problem, Prim’s algorithm
and Kruskal’s algorithm. Each uses a different locally optimal property. Recall that
there is no guarantee that a given greedy algorithm always yields an optimal solution.
One must prove whether or not this is the case. We will prove that both Prim’s and
Kruskal’s algorithms always produce minimum spanning trees.

• 4.1.1 Prim’s Algorithm
Prim’s algorithm starts with an empty subset of edges F and a subset of vertices Y
initialized to contain an arbitrary vertex. We will initialize Y to {v1}. A vertex
nearest to Y is a vertex in V −Y that is connected to a vertex in Y by an edge of

www.EBooksWorld.ir

minimum weight. (Recall from Chapter 3 that weight and distance terminology are
used interchangeably for weighted graphs.) In Figure 4.3(a), v2 is nearest to Y when Y
= {v1}. The vertex that is nearest to Y is added to Y and the edge is added to F. Ties
are broken arbitrarily. In this case, v2 is added to Y, and (v1, v2) is added to F. This
process of adding nearest vertices is repeated until Y = V . The following is a high-
level algorithm for this procedure:

The selection procedure and feasibility check are done together because taking the
new vertex from V − Y guarantees that a cycle is not created. Figure 4.4 illustrates
Prim’s algorithm. At each step in that figure, Y contains the shaded vertices and F
contains the shaded edges.

The high-level algorithm works fine for a human creating a minimum spanning tree
for a small graph from a picture of the graph. The human merely finds the vertex
nearest to Y by inspection. However, for the purposes of writing an algorithm that can
be implemented in a computer language, we need to describe a step-by-step
procedure. To this end, we represent a weighted graph by its adjacency matrix. That
is, we represent it by an n × n array W of numbers where
Figure 4.4 A weighted graph (in upper-left corner) and the steps in Prim’s algorithm for that graph. The vertices
in Y and the edges in F are shaded at each step.

www.EBooksWorld.ir

Figure 4.5 The array representation W of the graph in Figure 4.3(a).

www.EBooksWorld.ir

The graph in Figure 4.3(a) is represented in this manner in Figure 4.5. We maintain
two arrays, nearest and distance, where, for i = 2, … , n,

Because at the start Y = {v1}, nearest[i] is initialized to 1 and distance[i] is
initialized to the weight on the edge between v1 and vi. As vertices are added to Y ,
these two arrays are updated to reference the new vertex in Y nearest to each vertex
outside of Y . To determine which vertex to add to Y , in each iteration we compute
the index for which distance[i] is the smallest. We call this index vnear. The vertex
indexed by vnear is added to Y by setting distance[vnear] to −1. The following
algorithm implements this procedure.

Algorithm 4.1
Prim’s Algorithm
Problem: Determine a minimum spanning tree.
Inputs: integer n ≥ 2, and a connected, weighted, undirected graph containing n
vertices. The graph is represented by a two-dimensional array W, which has both its
rows and columns indexed from 1 to n, where W [i] [j] is the weight on the edge
between the ith vertex and the jth vertex.
Outputs: set of edges F in a minimum spanning tree for the graph.

www.EBooksWorld.ir

Analysis of Algorithm 4.1
 Every-Case Time Complexity (Prim’s Algorithm)
Basic operation: There are two loops, each with n−1 iterations, inside the repeat
loop. Executing the instructions inside each of them can be considered to be doing the
basic operation once.
Input size: n, the number of vertices.

Because the repeat loop has n − 1 iterations, the time complexity is given by

Clearly, Prim’s algorithm produces a spanning tree. However, is it necessarily
minimal? Because at each step we select the vertex nearest to Y , intuitively it seems
that the tree should be minimal. However, we need to prove whether or not this is the

www.EBooksWorld.ir

case. Although greedy algorithms are often easier to develop than dynamic
programming algorithms, usually it is more difficult to determine whether or not a
greedy algorithm always produces an optimal solution. Recall that for a dynamic
programming algorithm we need only show that the principle of optimality applies.
For a greedy algorithm we usually need a formal proof. Next we give such a proof
for Prim’s algorithm.

Let an undirected graph G = (V , E) be given. A subset F and E is called
promising if edges can be added to it so as to form a minimum spanning tree. The
subset {(v1, v2) , (v1, v3)}, in Figure 4.3(a) is promising, and the subset {(v2, v4)} is
not promising.

 Lemma 4.1
Let G = (V , E) be a connected, weighted, undirected graph; let F be a promising
subset of E; and let Y be the set of vertices connected by the edges in F. If e is an
edge of minimum weight that connects a vertex in Y to a vertex in V − Y , then F ∪
{e} is promising.

Proof: Because F is promising, there must be some set of edges F′ such that

and (V , F′) is a minimum spanning tree. If e ∈ F′, then

which means F ∪ {e} is promising and we’re done. Otherwise, because (V , F′) is a
spanning tree, F′ ∪ {e} must contain exactly one simple cycle and e must be in the
cycle. Figure 4.6 illustrates this. The simple cycle is [v1, v2, v4, v3]. As can be seen in
Figure 4.6, there must be another edge e′ ∈ F′ in the simple cycle that also connects
a vertex in Y to one in V −Y . If we remove e′ from F′ ∪ {e}, the simple cycle
disappears, which means that we have a spanning tree. Because e is an edge of
minimum weight that connects a vertex in Y to one in V − Y , the weight of e must be
less than or equal to the weight of e′(in fact, they must be equal). So

Figure 4.6 A graph illustrating the proof in Lemma 4.1. The edges in F′ are shaded in color.

www.EBooksWorld.ir

is a minimum spanning tree. Now

because e′ cannot be in F (recall that edges in F connect only vertices in Y .)
Therefore, F ∪ {e} is promising, which completes the proof.

 Theorem 4.1

Prim’s algorithm always produces a minimum spanning tree.

Proof: We use induction to show that the set F is promising after each iteration of the
repeat loop.

Induction base: Clearly the empty set ∅ is promising.

Induction hypothesis: Assume that, after a given iteration of the repeat loop, the set
of edges so far selected—namely, F—is promising.

Induction step: We need to show that the set F ∪ {e} is promising, where e is the
edge selected in the next iteration. Because the edge e selected in the next iteration is
an edge of minimum weight that connects a vertex in Y to one on V − Y , F ∪ {e} is
promising, by Lemma 4.1. This completes the induction proof.

By the induction proof, the final set of edges is promising. Because this set

www.EBooksWorld.ir

consists of the edges in a spanning tree, that tree must be a minimum spanning tree.

• 4.1.2 Kruskal’s Algorithm
Kruskal’s algorithm for the Minimum Spanning Tree problem starts by creating
disjoint subsets of V , one for each vertex and containing only that vertex. It then
inspects the edges according to nondecreasing weight (ties are broken arbitrarily). If
an edge connects two vertices in disjoint subsets, the edge is added and the subsets
are merged into one set. This process is repeated until all the subsets are merged into
one set. The following is a high-level algorithm for this procedure.

Figure 4.7 illustrates Kruskal’s algorithm.
To write a formal version of Kruskal’s algorithm, we need a disjoint set abstract

data type. Such a data type is implemented in Appendix C. Because that
implementation is for disjoint subsets of indices, we need only refer to the vertices
by index to use the implementation. The disjoint set abstract data type consists of data
types index and set pointer, and routines initial, find, merge, and equal, such that if
we declare

Figure 4.7 A weighted graph (in upper-left corner) and the steps in Kruskal’s algorithm for that graph.

www.EBooksWorld.ir

then

• initial(n) initializes n disjoint subsets, each of which contains exactly one of the
indices between 1 and n.

• p = find(i) makes p point to the set containing index i.
• merge(p, q) merges the two sets, to which p and q point, into the set.
• equal(p, q) returns true if p and q both point to the same set.

The algorithm follows.

Algorithm 4.2
Kruskal’s Algorithm

www.EBooksWorld.ir

Problem: Determine a minimum spanning tree.
Inputs: integer n ≥ 2, positive integer m, and a connected, weighted, undirected graph
containing n vertices and m edges. The graph is represented by a set E that contains
the edges in the graph along with their weights.
Outputs: F, a set of edges in a minimum spanning tree.

The while loop is exited when there are n−1 edges in F, because there are n − 1
edges in a spanning tree.

Analysis of Algorithm 4.2
 Worst-Case Time-Complexity (KruskaI’s Algorithm)
Basic operation: a comparison instruction.
Input size: n, the number of vertices, and m, the number of edges.

There are three considerations in this algorithm:

1. The time to sort the edges. We obtained a sorting algorithm in Chapter 2
(Mergesort) that is worst-case Θ(m lg m). In Chapter 7 we will show, for
algorithms that sort by comparison of keys, that it is not possible to improve on
this performance. Therefore, the time complexity for sorting the edges is given by

2. The time in the while loop. The time it takes to manipulate the disjoint sets is

www.EBooksWorld.ir

dominant in this loop (because everything else is constant). In the worst case,
every edge is considered before the while loop is exited, which means there are
m passes through the loop. Using the implementation called Disjoint Set Data
Structure II in Appendix C, the time complexity for m passes through a loop that
contains a constant number of calls to routines find, equal, and merge is given by

where the basic operation is a comparison instruction.
3. The time to initialize n disjoint sets. Using the disjoint set data structure

implementation mentioned previously, the time complexity for the initialization is
given by

Because m ≥ n−1, the sorting and the manipulations of the disjoint sets dominate
the initialization time, which means that

It may appear that the worst case has no dependence on n. However, in the worst
case, every vertex can be connected to every other vertex, which would mean
that

Therefore, we can also write the worst case as follows:

It is useful to use both expressions for the worst case when comparing Kruskal’s
algorithm with Prim’s algorithm.

We need the following lemma to prove that Kruskal’s algorithm always produces
an optimal solution.

 Lemma 4.2
Let G = (V , E) be a connected, weighted, undirected graph; let F be a promising
subset of E; and let e be an edge of minimum weight in E − F such that F ∪ {e} has
no simple cycles. Then F ∪ {e} is promising.
Proof: The proof is similar to the proof of Lemma 4.1. Because F is promising, there
must be some set of edges F′ such that

www.EBooksWorld.ir

and (V , F′) is a minimum spanning tree. If e ∈ F′, then

which means that F ∪ {e} is promising and we’re done. Otherwise, because (V , F′)
is a spanning tree, F′ ∪ {e} must contain exactly one simple cycle and e must be in
the cycle. Because F ∪{e} contains no simple cycles, there must be some edge e′ ∈
F′ that is in the cycle and that is not in F. That is, e′ ∈ E − F . The set F ∪ {e′} has
no simple cycles because it is a subset of F′. Therefore, the weight of e is no greater
than the weight of e′. (Recall that we assumed e is an edge of minimum weight in E −
F such that F ∪{e} has no cycles.) If we remove e′ from F′ ∪ {e}, the simple cycle
in this set disappears, which means we have a spanning tree. Indeed

is a minimum spanning tree because, as we have shown, the weight of e is no greater
than the weight of e′. Because e′ is not in F,

Therefore, F ∪ {e} is promising, which completes the proof.

 Theorem 4.2

Kruskal’s algorithm always produces a minimum spanning tree.
Proof: The proof is by induction, starting with the empty set of edges. You are asked
to apply Lemma 4.2 to complete the proof in the exercises.

• 4.1.3 Comparing Prim’s Algorithm with Kruskal’s
Algorithm

We obtained the following time complexities:

Prim’s Algorithm: T(n) ∈ Θ(n2)

Kruskal’s Algorithm: W (m, n) ∈ Θ(m lg m) and W (m, n) ∈ Θ(n2 lg n)

We also showed that in a connected graph

www.EBooksWorld.ir

For a graph whose number of edges m is near the low end of these limits (the graph is
very sparse), Kruskal’s algorithm is Θ(n lg n), which means that Kruskal’s algorithm
should be faster. However, for a graph whose number of edges is near the high end
(the graph is highly connected), Kruskal’s algorithm is Θ(n2 lg n), which means that
Prim’s algorithm should be faster.

• 4.1.4 Final Discussion
As mentioned before, the time complexity of an algorithm sometimes depends on the
data structure used to implement it. Using heaps, Johnson (1977) created a Θ(m lg n)
implementation of Prim’s algorithm. For a sparse graph, this is Θ(n lg n), which is an
improvement over our implementation. But for a dense graph, it is Θ(n2 lg n), which
is slower than our implementation. Using the Fibonacci heap, Fredman and Tarjan
(1987) developed the fastest implementation of Prim’s algorithm. Their
implementation is Θ(m + n lg n). For a sparse graph, this is Θ(n lg n), and for a
dense graph it is Θ(n2) .

Prim’s algorithm originally appeared in Jarník (1930) and was published by its
namesake in Prim (1957). Kruskal’s algorithm is from Kruskal (1956). The history of
the Minimum Spanning Tree problem is discussed in Graham and Hell (1985). Other
algorithms for the problem can be found in Yao (1975) and Tarjan (1983).

4.2 Dijkstra’s Algorithm for Single-Source Shortest
Paths

In Section 3.2, we developed a Θ(n3) algorithm for determining the shortest paths
from each vertex to all other vertices in a weighted, directed graph. If we wanted to
know only the shortest paths from one particular vertex to all the others, that
algorithm would be overkill. Next we will use the greedy approach to develop a
Θ(n2) algorithm for this problem (called the Single-Source Shortest Paths problem).
This algorithm is due to Dijkstra (1959). We present the algorithm, assuming that
there is a path from the vertex of interest to each of the other vertices. It is a simple
modification to handle the case where this is not so.

This algorithm is similar to Prim’s algorithm for the Minimum Spanning Tree
problem. We initialize a set Y to contain only the vertex whose shortest paths are to
be determined. For focus, we say that the vertex is v1. We initialize a set F of edges
to being empty. First we choose a vertex v that is nearest to v1, add it to Y , and add
the edge < v1, v > to F. (By < v1, v > we mean the directed edge from v1 to v.) That
edge is clearly a shortest path from v1 to v. Next we check the paths from v1 to the
vertices in V − Y that allow only vertices in Y as intermediate vertices. A shortest of

www.EBooksWorld.ir

these paths is a shortest path (this needs to be proven). The vertex at the end of such a
path is added to Y , and the edge (on the path) that touches that vertex is added to F.
This procedure is continued until Y equals V , the set of all vertices. At this point, F
contains the edges in shortest paths. The following is a high-level algorithm for this
approach.

Figure 4.8 illustrates Dijkstra’s algorithm. As was the case for Prim’s algorithm,
the high-level algorithm works only for a human solving an instance by inspection on
a small graph. Next we give a detailed algorithm. For this algorithm, the weighted
graph is represented by a two-dimensional array exactly as was done in Section 3.2.
This algorithm is very similar to Algorithm 4.1 (Prim’s). The difference is that
instead of the arrays nearest and distance, we have arrays touch and length, where
for i = 2, … , n,

touch[i] = index of vertex v in Y such that the edge <v, vi> is the last edge on the
current shortest path from v1 to vi using only vertices in Y as
intermediates.

length[i] = length of the current shortest path from v1 to vi using only vertices in Y
as intermediates.

The algorithm follows.

Algorithm 4.3
Dijkstra’s Algorithm
Problem: Determine the shortest paths from v1 to all other vertices in a weighted,
directed graph.
Inputs: integer n ≥ 2, and a connected, weighted, directed graph containing n vertices.
The graph is represented by a two-dimensional array W, which has both its rows and
columns indexed from 1 to n, where W [i] [j] is the weight on the edge from the ith
vertex to the jth vertex.

www.EBooksWorld.ir

Figure 4.8 A weighted, directed graph (in upper-left corner) and the steps in Dijkstra’s algorithm for that graph.
The vertices in Y and the edges in F are shaded in color at each step.

Outputs: set of edges F containing edges in shortest paths.

www.EBooksWorld.ir

Because we are assuming that there is a path from v1 to every other vertex, the
variable vnear has a new value in each iteration of the repeat loop. If this were not
the case, the algorithm, as written, would end up adding the last edge over and over
until n − 1 iterations of the repeat loop were completed.

Algorithm 4.3 determines only the edges in the shortest paths. It does not produce
the lengths of those paths. These lengths could be obtained from the edges.
Alternatively, a simple modification of the algorithm would enable it to compute the
lengths and store them in an array as well.

The control in Algorithm 4.3 is identical to that in Algorithm 4.1. Therefore, from
the analysis of that Algorithm 4.1, we know for Algorithm 4.3 that

Although we do not do it here, it is possible to prove that Algorithm 4.3 always
produces shortest paths. The proof uses an induction argument similar to the one used
to prove that Prim’s algorithm (Algorithm 4.1) always produces a minimum spanning
tree.

As is the case for Prim’s algorithm, Dijkstra’s algorithm can be implemented using

www.EBooksWorld.ir

a heap or a Fibonacci heap. The heap implementation is Θ(m lg n), and the Fibonacci
heap implementation is Θ(m + n lg n), where m is the number of edges. See Fredman
and Tarjan (1987) for this latter implementation.

4.3 Scheduling
Suppose a hair stylist has several customers waiting for different treatments (e.g.,
simple cut, cut with shampoo, permanent, hair coloring). The treatments don’t all take
the same amount of time, but the stylist knows how long each takes. A reasonable
goal would be to schedule the customers in such a way as to minimize the total time
they spend both waiting and being served (getting treated). Such a schedule is
considered optimal. The time spent both waiting and being served is called the time
in the system. The problem of minimizing the total time in the system has many
applications. For example, we may want to schedule users’ access to a disk drive to
minimize the total time they spend waiting and being served.

Another scheduling problem occurs when each job (customer) takes the same
amount of time to complete but has a deadline by which it must start to yield a profit
associated with the job. The goal is to schedule the jobs to maximize the total profit.
We will consider scheduling with deadlines after discussing the simpler scheduling
problem of minimizing the total time in the system.

• 4.3.1 Minimizing Total Time in the System
A simple solution to minimizing the total time in the system is to consider all possible
schedules and take the minimum. This is illustrated in the following example.

Example 4.2
Suppose there are three jobs and the service times for these jobs are

The actual time units are not relevant to the problem. If we schedule them in the order
1, 2, 3, the times spent in the system for the three jobs are as follows:

Job Time in the System
1 5 (service time)
2 5 (wait for job 1) + 10 (service time)
3 5 (wait for job 1) + 10 (wait for job 2) + 4 (service time)

The total time in the system for this schedule is

www.EBooksWorld.ir

This same method of computation yields the following list of all possible
schedules and total times in the system:

Schedule Total Time in the System

[1, 2, 3] 5 + (5 + 10) + (5 + 10 + 4) = 39

[1, 3, 2] 5 + (5 + 4) + (5 + 4 + 10) = 33

[2, 1, 3] 10 + (10 + 5) + (10 + 5 + 4) = 44

[2, 3, 1] 10 + (10 + 4) + (10 + 4 + 5) = 43

[3, 1, 2] 4 + (4 + 5) + (4 + 5 + 10) = 32

[3, 2, 1] 4 + (4 + 10) + (4 + 10 + 5) = 37

Schedule [3, 1, 2] is optimal with a total time of 32.

Clearly, an algorithm that considers all possible schedules is factorialtime. Notice
in the previous example that an optimal schedule occurs when the job with the
smallest service time (job 3, with a service time of 4) is scheduled first, followed by
the job with the second-smallest service time (job 1, with a service time of 5),
followed finally by the job with the largest service time (job 2, with a service time of
10). Intuitively, it seems that such a schedule would be optimal because it gets the
shortest jobs out of the way first. A high-level greedy algorithm for this approach is
as follows:

We wrote this algorithm in the general form of the greedy approach to show that it
is indeed a greedy algorithm. However, clearly all the algorithm does is sort the jobs
according to service time. Its time complexity is therefore given by

Although intuitively it seems that the schedule created by this algorithm is optimal,
this supposition needs to be proved. The following theorem proves the stronger result
that this schedule is the only optimal one.

www.EBooksWorld.ir

 Theorem 4.3

The only schedule that minimizes the total time in the system is one that schedules
jobs in nondecreasing order by service time.

Proof: For 1 ≤ i ≤ n − 1, let ti be the service time for the ith job scheduled in some
particular optimal schedule (one that minimizes the total time in the system). We need
to show that the schedule has the jobs scheduled in nondecreasing order by service
time. We show this using proof by contradiction. If they are not scheduled in
nondecreasing order, then for at least one i where 1 ≤ i ≤ n − 1,

We can rearrange our original schedule by interchanging the ith and (i + 1)st jobs. By
doing this, we have taken ti units off the time the (i + 1)st job (in the original
schedule) spends in the system. The reason is that it no longer waits while the ith job
(in the original schedule) is being served. Similarly, we have added ti+1 units to the
time the ith job (in the original schedule) spends in the system. Clearly, we have not
changed the time that any other job spends in the system. Therefore, if T is the total
time in the system in our original schedule and T′ is the total time in the rearranged
schedule,

Because ti > ti+1,

which contradicts the optimality of our original schedule.

It is straightforward to generalize our algorithm to handle the Multiple-Server
Scheduling problem. Suppose there are m servers. Order those servers in an arbitrary
manner. Order the jobs again by service time in nondecreasing order. Let the first
server serve the first job, the second server the second job, … , and the mth server
the mth job. The first server will finish first because that server serves the job with
the shortest service time. Therefore, the first server serves the (m + 1)st job.
Similarly, the second server serves the (m + 2)nd job, and so on. The scheme is as
follows:

www.EBooksWorld.ir

Clearly, the jobs end up being processed in the following order:

That is, the jobs are processed in nondecreasing order by service time.

• 4.3.2 Scheduling with Deadlines
In this scheduling problem, each job takes one unit of time to finish and has a
deadline and a profit. If the job starts before or at its deadline, the profit is obtained.
The goal is to schedule the jobs so as to maximize the total profit. Not all jobs have
to be scheduled. We need not consider any schedule that has a job scheduled after its
deadline because that schedule has the same profit as one that doesn’t schedule the
job at all. We call such a schedule impossible. The following example illustrates this
problem.

Example 4.3
Suppose we have the following jobs, deadlines, and profits:

Job Deadline Profit

1 2 30

2 1 35

3 2 25

4 1 40

When we say that job 1 has a deadline of 2, we mean that job 1 can start at time 1 or
time 2. There is no time 0. Because job 2 has a deadline of 1, that job can start only
at time 1. The possible schedules and total profits are as follows:

Schedule Total Profit

[1, 3] 30 + 25 = 55

[2, 1] 35 + 30 = 65

[2, 3] 35 + 25 = 60

[3, 1] 25 + 30 = 55

www.EBooksWorld.ir

[4, 1] 40 + 30 = 70

[4, 3] 40 + 25 = 65

Impossible schedules have not been listed. For example, schedule [1, 2] is not
possible, and is therefore not listed, because job 1 would start first at time 1 and take
one unit of time to finish, causing job 2 to start at time 2. However, the deadline for
job 2 is time 1. Schedule [1, 3], for example, is possible because job 1 is started
before its deadline, and job 3 is started at its deadline. We see that schedule [4, 1] is
optimal with a total profit of 70.

To consider all schedules, as is done in Example 4.3, takes factorial time. Notice
in the example that the job with the greatest profit (job 4) is included in the optimal
schedule, but the job with the second-greatest profit (job 2) is not. Because both jobs
have deadlines equal to 1, both cannot be scheduled. Of course, the one with the
greatest profit is the one scheduled. The other job scheduled is job 1, because its
profit is greater than that of job 3. This suggests that a reasonable greedy approach to
solving the problem would be to first sort the jobs in nonincreasing order by profit,
and next inspect each job in sequence and add it to the schedule if it is possible.
Before we can create even a high-level algorithm for this approach, we need some
definitions.

A sequence is called a feasible sequence if all the jobs in the sequence start by
their deadlines. For example, [4, 1] is a feasible sequence in Example 4.3, but [1, 4]
is not a feasible sequence. A set of jobs is called a feasible set if there exists at least
one feasible sequence for the jobs in the set. In Example 4.3, {1, 4} is a feasible set
because the scheduling sequence [4, 1] is feasible, whereas {2, 4} is not a feasible
set because no scheduling sequence allows both jobs to start by their deadlines. Our
goal is to find a feasible sequence with maximum total profit. We call such a
sequence an optimal sequence and the set of jobs in the sequence an optimal set of
jobs. We can now present a high-level greedy algorithm for the Scheduling with
Deadlines problem.

www.EBooksWorld.ir

The following example illustrates this algorithm.

Example 4.4
Suppose we have the following jobs, deadlines, and profits:

Job Deadline Profit

1 3 40

2 1 35

3 1 30

4 3 25

5 1 20

6 3 15

7 2 10

We have already sorted the jobs before labeling them. The previous greedy algorithm
does the following:

1. S is set to ∅.
2. S is set to {1} because the sequence [1] is feasible.
3. S is set to {1, 2} because the sequence [2, 1] is feasible.
4. {1, 2, 3} is rejected because there is no feasible sequence for this set. 5. S is set

to {1, 2, 4} because the sequence [2, 1, 4] is feasible.
6. {1, 2, 4, 5} is rejected because there is no feasible sequence for this set.
7. {1, 2, 4, 6} is rejected because there is no feasible sequence for this set.
8. {1, 2, 4, 7} is rejected because there is no feasible sequence for this set.

The final value of S is {1, 2, 4}, and a feasible sequence for this set is [2, 1, 4].
Because jobs 1 and 4 both have deadlines of 3, we could use the feasible sequence
[2, 4, 1] instead.

Before proving that this algorithm always produces an optimal sequence, let’s
write a formal version of it. To do this, we need an efficient way to determine
whether a set is feasible. To consider all possible sequences is not acceptable
because it would take factorial time to do this. The following lemma enables us to
check efficiently whether or not a set is feasible.

 Lemma 4.3
Let S be a set of jobs. Then S is feasible if and only if the sequence obtained by

www.EBooksWorld.ir

ordering the jobs in S according to nondecreasing deadlines is feasible.
Proof: Suppose S is feasible. Then there exists at least one feasible sequence for the
jobs in S. In this sequence, suppose that job x is scheduled before job y, and job y has
a smaller (earlier) deadline than job x. If we interchange these two jobs in the
sequence, job y will still start by its deadline because it will have started even
earlier. And, because the deadline for job x is larger than the deadline for job y and
the new time slot given to job x was adequate for job y, job x will also start by its
deadline. Therefore, the new sequence will still be feasible. We can prove that the
ordered sequence is feasible by repeatedly using this fact while we do an Exchange
Sort (Algorithm 1.3) on the original feasible sequence. In the other direction, of
course, S is feasible if the ordered sequence is feasible.

Example 4.5
Suppose we have the jobs in Example 4.4. To determine whether {1, 2, 4, 7) is
feasible, Lemma 4.3 says we need only check the feasibility of the sequence

The deadline of each job has been listed under the job. Because job 4 is not
scheduled by its deadline, the sequence is not feasible. By Lemma 4.3, the set is not
feasible.

The algorithm follows. It is assumed that the jobs have already been sorted by
profit in nonincreasing order, before being passed to the algorithm. Because the
profits are needed only to sort the jobs, they are not listed as parameters of the
algorithm.

Algorithm 4.4
Scheduling with Deadlines
Problem: Determine the schedule with maximum total profit given that each job has a
profit that will be obtained only if the job is scheduled by its deadline.
Inputs: n, the number of jobs, and array of integers deadline, indexed from 1 to n,
where deadline[i] is the deadline for the ith job. The array has been sorted in
nonincreasing order according to the profits associated with the jobs.
Outputs: an optimal sequence J for the jobs.

www.EBooksWorld.ir

Before analyzing this algorithm, let’s apply it.

Example 4.6
Suppose we have the jobs in Example 4.4. Recall that they had the following
deadlines:

Job Deadline

1 3

2 1

3 1

4 3

5 1

6 3

7 2

Algorithm 4.4 does the following:

1. J is set to [1].
2. K is set to [2, 1] and is determined to be feasible.

J is set to [2, 1] because K is feasible.
3. K is set to [2, 3, 1] and is rejected because it is not feasible.
4. K is set to [2, 1, 4] and is determined to be feasible.

J is set to [2, 1, 4] because K is feasible.
5. K is set to [2, 5, 1, 4] and is rejected because it is not feasible.
6. K is set to [2, 1, 6, 4] and is rejected because it is not feasible.
7. K is set to [2, 7, 1,4] and is rejected because it is not feasible.

The final value of J is [2, 1, 4].

www.EBooksWorld.ir

Analysis of Algorithm 4.4
 Worst-Case Time Complexity (Scheduling with Deadlines)
Basic operation: We need to do comparisons to sort the jobs, we need to do more
comparisons when we set K equal to J with job i added, and we need to do
comparisons to check if K is feasible. Therefore, a comparison instruction is the
basic operation.
Input size: n, the number of jobs.

It takes a time of Θ(n lg n) to sort the jobs before passing them to the procedure. In
each iteration of the for-i loop, we need to do at most i − 1 comparisons to add the
ith job to K, and at most i comparisons to check if K is feasible. Therefore, the worst
case is

The first equality is obtained in Example A.1 in Appendix. Because this time
dominates the sorting time,

Finally, we prove that the algorithm always gives an optimal solution.

 Theorem 4.4

Algorithm 4.4 always produces an optimal set of jobs.
Proof: The proof is by induction on the number of jobs n.
Induction base: Clearly, the theorem holds if there is one job.
Induction hypothesis: Suppose the set of jobs that our algorithm obtains from the first
n jobs is optimal for the first n jobs.
Induction step: We need to show that the set of jobs our algorithm obtains from the
first n+1 jobs is optimal for the first n+1 jobs. To that end, let A be the set of jobs that
our algorithm obtains from the first n+1 jobs and let B be an optimal set of jobs
obtained from the first n + 1 jobs. Furthermore, let job(k) be the kth job in our sorted
list of jobs.

There are two cases:

Case 1. B does not include job (n + 1).
In this case B is a set of jobs obtained from the first n jobs. However, by the

www.EBooksWorld.ir

induction hypothesis, A includes an optimal set of jobs obtained from the first n jobs.
Therefore, the total profit of the jobs in B can be no greater than the total profit of the
jobs in A, and A must be optimal.

Case 2. B includes job (n + 1).
Suppose A includes job (n + 1). Then

where B′ is a set obtained from the first n jobs and A′ is the set our algorithm obtains
from the first n jobs. By the induction hypothesis, A′ is optimal for the first n jobs.
Therefore,

where profit (n + 1) is the profit of job (n + 1) and profit (A) is the total profit of the
jobs in A. Since B is optimal for the first n + 1 jobs, we can conclude that A is also.

Suppose A does not include job (n + 1). Consider the time slot occupied by job (n
+ 1) in B. If that slot was available when our algorithm considered job (n + 1), it
would schedule that job. Therefore, that time slot must be given to some job, say job
(i1), in A. If job (i1) is in B, then whatever slot it occupies in B must be occupied by
some job, say job (i2), in A because otherwise our algorithm could have put job (i1)
in that slot and job (n + 1) in job (i1)’s slot. Clearly, job (i2) is not equal to job (i1) or
job (n + 1). If job (i2) is in B, then whatever time slot it occupies in B must be
occupied by some job, say job (i3), in A because otherwise our algorithm could have
put job (i2) in that slot, job (i1) in job (i2)’s slot, and job (n + 1) in job (i1)’s slot.
Clearly, job (i3) is not equal to job (i2), job (i1), or job (n + 1). We can repeat this
argument indefinitely. Since the schedules are finite, we must therefore eventually
arrive at a job, say job (ik), which is in A and not in B. Otherwise, A ⊆ B, which
means our algorithm could have scheduled job (n + 1) with the jobs in A. We can
modify B by placing job (i1) in job (n + 1)’s slot, job (i2) in job (i1)’s slot, …, and
job (ik) in job (ik−1)’s slot. We have effectively replaced job (n + 1) by job (ik) in B.
Because the jobs are sorted in nondecreasing order, job (ik)’s profit is at least as
great as job (n + 1)’s profit. So we have a set of jobs that has a total profit at least as
great as the total profit of the jobs in B. However, this set is obtained from the first n
jobs. Therefore, by the induction hypothesis, its total profit can be no greater than the
total profit of the jobs in A, which means A is optimal.

Using Disjoint Set Data Structure III, which is presented in Appendix C, it is
possible to create a Θ(n lg m) version of procedure schedule (in Algorithm 4.4),
where m is the minimum of n and the largest of the deadlines for the n jobs. Because

www.EBooksWorld.ir

the time to sort is still in Θ(n lg n), the entire algorithm is Θ(n lg n). This
modification will be discussed in the exercises.

4.4 Huffman Code
Even though the capacity of secondary storage devices keeps getting larger and their
cost keeps getting smaller, the devices continue to fill up due to increased storage
demands. Given a data file, it would therefore be desirable to find a way to store the
file as efficiently as possible. The problem of data compression is to find an
efficient method for encoding a data file. Next, we discuss the encoding method,
called Huffman code, and a greedy algorithm for finding a Huffman encoding for a
given file.

A common way to represent a file is to use a binary code. In such a code, each
character is represented by a unique binary string, called the codeword. A fixed-
length binary code represents each character using the same number of bits. For
example, suppose our character set is {a, b, c}. Then we could use 2 bits to code
each character, since this gives us four possible codewords and we need only three.
We could code as follows:

Given this code, if our file is

our encoding is

We can obtain a more efficient coding using a variable-length binary code. Such a
code can represent different characters using different numbers of bits. In the current
example, we can code one of the characters as 0. Since ‘b’ occurs most frequently, it
would be most efficient to code ‘b’ using this codeword. However, then ‘a’ could not
be coded as ‘00’ because we would not be able to distinguish one ‘a’ from two ‘b’s.
Furthermore, we would not want to code ‘a’ as ‘01’ because when we encountered a
0, we could not determine if it represented a ‘b’ or the beginning of an ‘a’ without
looking beyond the current digit. So we could code as follows:

Given this code, File 4.1 would be encoded as

With this encoding it takes only 13 bits to represent the file, whereas the previous one
took 18 bits. It is not hard to see that this encoding is optimal given that it is the

www.EBooksWorld.ir

minimum number of bits necessary to represent the file with a binary character code.
Given a file, the Optimal Binary Code problem is to find a binary character code

for the characters in the file, which represents the file in the least number of bits.
First we discuss prefix codes, and then we develop Huffman’s algorithm for solving
this problem.
Figure 4.9 Binary tree corresponding to Code 4.2.

• 4.4.1 Prefix Codes
One particular type of variable-length code is a prefix code. In a prefix code no
codeword for one character constitutes the beginning of the codeword for another
character. For example, if 01 is the code word for ‘a’, then 011 could not be the
codeword for ‘b’. Code 4.2 is an example of a prefix code. A fixed-length code is
also a prefix code. Every prefix code can be represented by a binary tree whose
leaves are the characters that are to be encoded. The binary tree corresponding to
Code 4.2 appears in Figure 4.9. The advantage of a prefix code is that we need not
look ahead when parsing the file. This is readily apparent from the tree
representation of the code. To parse, we start at the first bit on the left in the file and
the root of the tree. We sequence through the bits, and go left or right down the tree
depending on whether a 0 or 1 is encountered. When we reach a leaf, we obtain the
character at that leaf; then we return to the root and repeat the procedure starting with
the next bit in sequence.

Example 4.7
Suppose our character set is {a, b, c, d, e, f} and each character appears in the file
the number of times indicated in Table 4.1. That table also shows three different
codes we could use to encode the file. Let’s compute the number of bits for each
encoding:

We see that Code C2 is an improvement on the fixed-length code C1, but C3

www.EBooksWorld.ir

(Huffman) is even better than C2. As we shall see in the next subsection, C3 is
optimal. The binary trees corresponding to Codes C2 and C3 appear in Figures
4.10(a) and (b), respectively. The frequency of each character appears with the
character in the tree.

• Table 4.1 Three codes for the same file. C3 is optimal.

Figure 4.10 The binary character code for Code C2 in Example 4.7 appears in (a), while the one for Code C3
(Huffman) appears in (b).

As can be seen from the preceding example, the number of bits it takes to encode a
file given the binary tree T corresponding to some code is given by

where {v1, v2, … vn} is the set of characters in the file, frequency(vi) is the number of
times vi occurs in the file, and depth(vi) is the depth of vi in T.

• 4.4.2 Huffman’s Algorithm
Huffman developed a greedy algorithm that produces an optimal binary character

www.EBooksWorld.ir

code by constructing a binary tree corresponding to an optimal code. A code
produced by this algorithm is called a Huffman code. We present a high-level
version of the algorithm. However, because it involves constructing a tree, we need
to be more detailed than in our other high-level algorithms. In particular, we first
have the following type declaration:

Furthermore, we need to use a priority queue. In a priority queue, the element with
the highest priority is always removed next. In this case, the element with the highest
priority is the character with the lowest frequency in the file. A priority queue can be
implemented as a linked list, but more efficiently as a heap (See Section 7.6 for a
discussion of heaps.) Huffman’s algorithm now follows.

n = number of characters in the file;

Arrange n pointers to nodetype records in a priority queue PQ as follows: For each
pointer p in PQ

The priority is according to the value of frequency, with lower frequencies having
higher priority.

If a priority queue is implemented as a heap, it can be initialized in θ(n) time.
Furthermore, each heap operation requires θ(lg n) time. Since there are n−1 passes
through the for-i loop, the algorithm runs in θ(n lg n) time.

Next we show an example of applying the preceding algorithm.

www.EBooksWorld.ir

Figure 4.11 Given the file whose frequencies are shown in Table 4.1, this shows the state of the subtrees,
constructed by Huffman’s algorithm, after each pass through the for-i loop. The first tree is the state before the
loop is entered.

Example 4.8
Suppose our character set is {a, b, c, d, e, f} and each character appears in the file
the number of times indicated in Table 4.1. Figure 4.11 shows the set of trees,
constructed by the algorithm, after each pass through the for-i loop. The first set in
the figure is before the loop is entered. The value stored at each node is the value of
the frequency field in the node. Note that the final tree is the one in Figure 4.10(b).

Next we prove that the algorithm always produces an optimal binary character
code. We start with a lemma:

 Lemma 4.4
The binary tree corresponding to an optimal binary prefix code is full. That is, every

www.EBooksWorld.ir

nonleaf has two children.
Proof: The proof is left as an exercise.

Before proceeding, we need some terminology. Two nodes are called siblings in a
tree if they have the same parent. A branch with root v in tree T is the subtree whose
root is v. We now prove the optimality of Huffman’s algorithm.

 Theorem 4.5

Huffman’s algorithm produces an optimal binary code.
Proof: The proof is by induction. Assuming the set of trees obtained in the ith step are
branches in a binary tree corresponding to an optimal code, we show that the set of
trees obtained in the (i + 1)st step are also branches in a binary tree corresponding to
an optimal code. We conclude then that the binary tree produced in the (n − 1)st step
corresponds to an optimal code.

Induction base: Clearly, the set of single nodes obtained in the 0 th step are branches
in a binary tree corresponding to an optimal code.

Induction hypothesis: Assume the set of trees obtained in the ith step are branches in
a binary tree corresponding to an optimal code. Let T be that tree.

Induction step: Let u and v be the roots of the trees combined in the (i + 1)st step of
Huffman’s algorithm. If u and v are siblings in T, then we are done because the set of
trees obtained in the (i + 1)st step of Huffman’s algorithm are branches in T.

Otherwise, without loss of generality, assume u is at a level in T at least as low as
v. As before, let frequency(v) be the sum of the frequencies of the characters stored
at the leaves of the branch rooted at v. Due to Lemma 4.4, u has some sibling w in T.
Let S be the set of trees that exist after the ith step in Huffman’s algorithm. Clearly,
the branch in T whose root is w is one of the trees in S or contains one of those trees
as a subtree. In either case, since the tree whose root is v was chosen by Huffman’s
algorithm in this step,

Furthermore, in T

We can create a new binary tree T′ by swapping the positions of the branches rooted
at v and w in T. This is depicted in Figure 4.12. It is not hard to see from Equality 4.3
and the previous two inequalities that

www.EBooksWorld.ir

Figure 4.12 The branches rooted at v and w are swapped.

which means the code corresponding to T′ is optimal. Clearly, the set of trees
obtained in the (i + 1)st step of Huffman’s algorithm are branches in T′.

4.5 The Greedy Approach versus Dynamic
Programming: The Knapsack Problem

The greedy approach and dynamic programming are two ways to solve optimization
problems. Often a problem can be solved using either approach. For example, the
Single-Source Shortest Paths problem is solved using dynamic programming in
Algorithm 3.3 and is solved using the greedy approach in Algorithm 4.3. However,
the dynamic programming algorithm is overkill in that it produces the shortest paths
from all sources. There is no way to modify the algorithm to produce more efficiently
only shortest paths from a single source because the entire array D is needed
regardless. Therefore, the dynamic programming approach yields a Θ(n3) algorithm
for the problem, whereas the greedy approach yields a Θ(n2) algorithm. Often when
the greedy approach solves a problem, the result is a simpler, more efficient
algorithm.

On the other hand, it is usually more difficult to determine whether a greedy
algorithm always produces an optimal solution. As the Change problem shows, not
all greedy algorithms do. A proof is needed to show that a particular greedy
algorithm always produces an optimal solution, whereas a counterexample is needed
to show that it does not. Recall that in the case of dynamic programming we need
only determine whether the principle of optimality applies.

To illuminate further the differences between the two approaches, we will present
two very similar problems, the 0-1 Knapsack problem and the Fractional Knapsack
problem. We will develop a greedy algorithm that successfully solves the Fractional
Knapsack problem but fails in the case of the 0-1 Knapsack problem. Then we will

www.EBooksWorld.ir

successfully solve the 0-1 Knapsack problem using dynamic programming.

• 4.5.1 A Greedy Approach to the 0-1 Knapsack Problem
An example of this problem concerns a thief breaking into a jewelry store carrying a
knapsack. The knapsack will break if the total weight of the items stolen exceeds
some maximum weight W. Each item has a value and a weight. The thief’s dilemma is
to maximize the total value of the items while not making the total weight exceed W.
This problem is called the 0-1 Knapsack problem. It can be formalized as follows.

Suppose there are n items. Let

where wi, pi, and W are positive integers. Determine a subset A of S such that

The brute-force solution is to consider all subsets of the n items; discard those
subsets whose total weight exceeds W; and, of those remaining, take one with
maximum total profit. Example A.10 in Appendix A shows that there are 2n subsets of
a set containing n items. Therefore, the brute-force algorithm is exponential-time.

An obvious greedy strategy is to steal the items with the largest profit first; that is,
steal them in nonincreasing order according to profit. This strategy, however, would
not work very well if the most profitable item had a large weight in comparison to its
profit. For example, suppose we had three items, the first weighing 25 pounds and
having a profit of $10, and the second and third each weighing 10 pounds and having
a profit of $9. If the capacity W of the knapsack was 30 pounds, this greedy strategy
would yield only a profit of $10, whereas the optimal solution is $18.

Another obvious greedy strategy is to steal the lightest items first. This strategy
fails badly when the light items have small profits compared with their weights.

To avoid the pitfalls of the previous two greedy algorithms, a more sophisticated
greedy strategy is to steal the items with the largest profit per unit weight first. That
is, we order the items in nonincreasing order according to profit per unit weight, and
select them in sequence. An item is put in the knapsack if its weight does not bring the
total weight above W. This approach is illustrated in Figure 4.13. In that figure, the
weight and profit for each item are listed by the item, and the value of W, which is
30, is listed in the knapsack. We have the following profits per unit weight:
Figure 4.13 A greedy solution and an optimal solution to the 0-1 Knapsack problem.

www.EBooksWorld.ir

Ordering the items by profit per unit weight yields

As can be seen in the figure, this greedy approach chooses item1 and item3, resulting
in a total profit of $190, whereas the optimal solution is to choose item2 and item3,
resulting in a total profit of $200. The problem is that after item1 and item3 are
chosen, there are 5 pounds of capacity left, but it is wasted because item2 weighs 10
pounds. Even this more sophisticated greedy algorithm does not solve the 0-1
Knapsack problem.

• 4.5.2 A Greedy Approach to the Fractional Knapsack
Problem

In the Fractional Knapsack problem, the thief does not have to steal all of an item, but
rather can take any fraction of the item. We can think of the items in the 0-1 Knapsack
problem as being gold or silver ingots and the items in the Fractional Knapsack
problem as being bags of gold or silver dust. Suppose we have the items in Figure
4.13. If our greedy strategy is again to choose the items with the largest profit per unit
weight first, all of item1 and item3 will be taken as before. However, we can use the
5 pounds of remaining capacity to take 5/10 of item2. Our total profit is

Our greedy algorithm never wastes any capacity in the Fractional Knapsack problem
as it does in the 0-1 Knapsack problem. As a result, it always yields an optimal
solution. You are asked to prove this in the exercises.

www.EBooksWorld.ir

• 4.5.3 A Dynamic Programming Approach to the 0-1
Knapsack Problem

If we can show that the principle of optimality applies, we can solve the 0-1
Knapsack problem using dynamic programming. To that end, let A be an optimal
subset of the n items. There are two cases: either A contains itemn or it does not. If A
does not contain itemn, A is equal to an optimal subset of the first n − 1 items. If A
does contain itemn, the total profit of the items in A is equal to pn plus the optimal
profit obtained when the items can be chosen from the first n − 1 items under the
restriction that the total weight cannot exceed W − wn. Therefore, the principle of
optimality applies.

The result just obtained can be generalized as follows. If for i > 0 and w > 0, we
let P [i][w] be the optimal profit obtained when choosing items only from the first i
items under the restriction that the total weight cannot exceed w,

The maximum profit is equal to P [n] [W]. We can determine this value using a two-
dimensional array P whose rows are indexed from 0 to n and whose columns are
indexed from 0 to W. We compute the values in the rows of the array in sequence
using the previous expression for P [i] [w]. The values of P [0] [w] and P [i] [0] are
set to 0. You are asked to actually write the algorithm in the exercises. It is
straightforward that the number of array entries computed is

• 4.5.4 A Refinement of the Dynamic Programming
Algorithm for the 0-1 Knapsack Problem

The fact that the previous expression for the number of array entries computed is
linear in n can mislead one into thinking that the algorithm is efficient for all
instances containing n items. This is not the case. The other term in that expression is
W, and there is no relationship between n and W. Therefore, for a given n, we can
create instances with arbitrarily large running times by taking arbitrarily large values
of W. For example, the number of entries computed is in Θ(n × n!) if W equals n!. If
n = 20 and W = 20!, the algorithm will take thousands of years to run on a modern-
day computer. When W is extremely large in comparison with n, this algorithm is
worse than the brute-force algorithm that simply considers all subsets.

The algorithm can be improved so that the worst-case number of entries computed
is in Θ(2n). With this improvement, it never performs worse than the brute-force

www.EBooksWorld.ir

algorithm and often performs much better. The improvement is based on the fact that
it is not necessary to determine the entries in the ith row for every w between 1 and
W. Rather, in the nth row we need only determine P [n] [W]. Therefore, the only
entries needed in the (n − 1)st row are the ones needed to compute P [n] [W].
Because

the only entries needed in the (n − 1)st row are

We continue to work backward from n to determine which entries are needed. That
is, after we determine which entries are needed in the ith row, we determine which
entries are needed in the (i − 1)st row using the fact that

We stop when n = 1 or w ≤ 0. After determining the entries needed, we do the
computations starting with the first row. The following example illustrates this
method.

Example 4.9
Suppose we have the items in Figure 4.13 and W = 30. First we determine which
entries are needed in each row.

Determine entries needed in row 3:
We need

Determine entries needed in row 2:
To compute P [3] [30], we need

Determine entries needed in row 1:
To compute P [2] [30], we need

To compute P [2] [10], we need

Next we do the computations.

www.EBooksWorld.ir

Compute row 1:

Therefore,

Compute row 2:

Compute row 3:

This version of the algorithm computes only seven entries, whereas the original
version would have computed (3) (30) = 90 entries.

Let’s determine how efficient this version is in the worst case. Notice that we
compute at most 2i entries in the (n − i)th row. Therefore, at most the total number of
entries computed is

This equality is obtained in Example A.3 in Appendix A. It is left as an exercise to
show that the following is an instance for which about 2n entries are computed (the
profits can have any values):

www.EBooksWorld.ir

Combining these two results, we can conclude that the worst-case number of entries
computed is in

The previous bound is in terms of only n. Let’s also obtain a bound in terms of n
and W combined. We know that the number of entries computed is in O (nW), but
perhaps this version avoids ever reaching this bound. This is not the case. In the
exercises you will show that if n = W + 1 and wi = 1 for all i, then the total number of
entries computed is about

The first equality is obtained in Example A.1 in Appendix A, and the second derives
from the fact that n = W +1 in this instance. Therefore, this bound is reached for
arbitrarily large values of n and W, which means the worst-case number of entries
computed is in

Combining our two results, the worst-case number of entries computed is in

We do not need to create the entire array to implement the algorithm. Instead, we can
store just the entries that are needed. The entire array exists only implicitly. If the
algorithm is implemented in this manner, the worst-case memory usage has these
same bounds.

We could write a divide-and-conquer algorithm using the expression for P [i] [w]
that was used to develop the dynamic programming algorithm. For this algorithm the
worst-case number of entries computed is also in Θ(2n). The main advantage of the
dynamic programming algorithm is the additional bound in terms of nW. The divide-
and-conquer algorithm does not have this bound. Indeed, this bound is obtained
because of the fundamental difference between dynamic programming and divide-
and-conquer. That is, dynamic programming does not process the same instance more
than once. The bound in terms of nW is very significant when W is not large in
comparison with n.

As is the case for the Traveling Salesperson problem, no one has ever found an
algorithm for the 0-1 Knapsack problem whose worst-case time complexity is better
than exponential, yet no one has proven that such an algorithm is not possible. Such
problems are the focus of Chapter 9.

EXERCISES

www.EBooksWorld.ir

Sections 4.1
1. Show that the greedy approach always finds an optimal solution for the Change

problem when the coins are in the denominations D0, D1, D2, … , Di for some
integers i > 0 and D > 0.

2. Use Prim’s algorithm (Algorithm 4.1) to find a minimum spanning tree for the
following graph. Show the actions step by step.

3. Consider the following array:

(a) Starting with vertex v4, trace through Prim’s algorithm to find a minimum
spanning tree for the graph represented by the array shown here.

(b) Show the set of edges that comprise the minimum spanning tree.
(c) What is the cost of the minimum spanning tree?

4. Draw a graph that has more than one minimum spanning tree.
5. Implement Prim’s algorithm (Algorithm 4.1) on your system, and study its

performance using different graphs.
6. Modify Prim’s algorithm (Algorithm 4.1) to check if an undirected, weighted

graph is connected. Analyze your algorithm and show the results using order
notation.

7. Use Kruskal’s algorithm (Algorithm 4.2) to find a minimum spanning tree for the
graph in Exercise 2. Show the actions step by step.

www.EBooksWorld.ir

8. Implement Kruskal’s algorithm (Algorithm 4.2) on your system, and study its
performance using different graphs.

9. Do you think it is possible for a minimum spanning tree to have a cycle? Justify
your answer.

10. Assume that in a network of computers any two computers can be linked. Given a
cost estimate for each possible link, should Algorithm 4.1 (Prim’s algorithm) or
Algorithm 4.2 (Kruskal’s algorithm) be used? Justify your answer.

11. Apply Lemma 4.2 to complete the proof of Theorem 4.2.

Sections 4.2
12. Use Dijkstra’s algorithm (Algorithm 4.3) to find the shortest path from vertex v5

to all the other vertices for the graph represented by the array in Exercise 3.
Show the actions step by step.

13. Use Dijkstra’s algorithm (Algorithm 4.3) to find the shortest paths from the vertex
v4 to all the other vertices of the graph in Exercise 2. Show the actions step by
step. Assume that each undirected edge represents two directed edges with the
same weight.

14. Implement Dijkstra’s algorithm (Algorithm 4.3) on your system, and study its
performance using different graphs.

15. Modify Dijkstra’s algorithm (Algorithm 4.3) so that it computes the lengths of the
shortest paths. Analyze the modified algorithm and show the results using order
notation.

16. Modify Dijkstra’s algorithm (Algorithm 4.3) so that it checks if a directed graph
has a cycle. Analyze your algorithm and show the results using order notation.

17. Can Dijkstra’s algorithm (Algorithm 4.3) be used to find the shortest paths in a
graph with some negative weights? Justify your answer.

18. Use induction to prove the correctness of Dijkstra’s algorithm (Algorithm 4.3).

Sections 4.3
19. Consider the following jobs and service times. Use the algorithm in Section 4.3.1

to minimize the total amount of time spent in the system.
Job Service Time

1 7

2 3

3 10

www.EBooksWorld.ir

4 5

20. Implement the algorithm in Section 4.3.1 on your system, and run it on the
instance in Exercise 17.

21. Write an algorithm for the generalization of the Single-Server Scheduling
problem to the Multiple-Server Scheduling problem in Section 4.3.1. Analyze
your algorithm and show the results using order notation.

22. Consider the following jobs, deadlines, and profits. Use the Scheduling with
Deadlines algorithm (Algorithm 4.4) to maximize the total profit.

Job Deadline Profit

1 2 40

2 4 15

3 3 60

4 2 20

5 3 10

6 1 45

7 1 55

23. Consider procedure schedule in the Scheduling with Deadlines algorithm
(Algorithm 4.4). Let d be the maximum of the deadlines for n jobs. Modify the
procedure so that it adds a job as late as possible to the schedule being built, but
no later than its deadline. Do this by initializing d + 1 disjoint sets, containing the
integers 0, 1, … , d. Let small (S) be the smallest member of set S. When a job is
scheduled, find the set S containing the minimum of its deadline and n. If small
(S) = 0, reject the job. Otherwise, schedule it at time small (S), and merge S with
the set containing small (S) − 1. Assuming we use Disjoint Set Data Structure III
in Appendix C, show that this version is θ (n lg m), where m is the minimum of d
and n.

24. Implement the algorithm developed in Exercise 21.

25. Suppose we minimize the average time to store n files of lengths l1, l2, … , ln on a
tape. If the probability of requesting file k is given by pk, the expected access
time to load these n files in the order k1, k2, … , kn is given by the formula

The constant C represents parameters such as the speed of the drive and the
recording density.
(a) In what order should a greedy approach store these files to guarantee

minimum average access time?
(b) Write the algorithm that stores the files, analyze your algorithm, and show the

www.EBooksWorld.ir

results using order notation.

Sections 4.4
26. Use Huffman’s algorithm to construct an optimal binary prefix code for the letters

in the following table.

27. Use Huffman’s algorithm to construct an optimal binary prefix code for the letters
in the following table.

28. Decode each bit string using the binary code in Exercise 24.
(a) 01100010101010
(b) 1000100001010
(c) 11100100111101
(d) 1000010011100

29. Encode each word using the binary code in Exercise 25.
(a) rise
(b) exit
(c) text
(d) exercise

30. A code for a, b, c, d, e is given by a:00, b:01, c:101, d:x 10, e:yz 1, where x, y, z
are in 0,1. Determine x, y and z so that the given code is a prefix code.

31. Implement Huffman’s algorithm, and run it on the problem instances of Exercise
24 and 25.

32. Show that a binary tree corresponding to an optimal binary prefix code must be
full. A full binary tree is a binary tree such that every node is either a leaf or it
has two children.

33. Prove that for an optimal binary prefix code, if the characters are ordered so that
their frequencies are nonincreasing, then their codeword lengths are
nondecreasing.

34. Given the binary tree corresponding to a binary prefix code, write an algorithm
that determines the codewords for all the characters. Determine the time
complexity of your algorithm.

www.EBooksWorld.ir

Sections 4.5
35. Write the dynamic programming algorithm for the 0-1 Knapsack problem.

36. Use a greedy approach to construct an optimal binary search tree by considering
the most probable key, Keyk, for the root, and constructing the left and right
subtrees for Key1, Key2, … , Keyk−1 and Keyk+1, Keyk+2, … , Keyn recursively in
the same way.
(a) Assuming the keys are already sorted, what is the worst-case time complexity

of this approach? Justify your answer.
(b) Use an example to show that this greedy approach does not always find an

optimal binary search tree.

37. Suppose we assign n persons to n jobs. Let Cij be the cost of assigning the ith
person to the jth job. Use a greedy approach to write an algorithm that finds an
assignment that minimizes the total cost of assigning all n persons to all n jobs.
Analyze your algorithm and show the results using order notation.

38. Use the dynamic programming approach to write an algorithm for the problem of
Exercise 26. Analyze your algorithm and show the results using order notation.

39. Use a greedy approach to write an algorithm that minimizes the number of record
moves in the problem of merging n files. Use a two-way merge pattern. (Two
files are merged during each merge step.) Analyze your algorithm, and show the
results using order notation.

40. Use the dynamic programming approach to write an algorithm for Exercise

28. Analyze your algorithm and show the results using order notation.

41. Prove that the greedy approach to the Fractional Knapsack problem yields an
optimal solution.

42 Show that the worst-case number of entries computed by the refined dynamic
programming algorithm for the 0-1 Knapsack problem is in Ω(2n). Do this by
considering the instance in which W = 2n −2 and wi = 2i−1 for 1 ≤ i ≤ n.

43. Show that in the refined dynamic programming algorithm for the 0-1 Knapsack
problem, the total number of entries computed is about (W + 1) × (n + 1) /2, when
n = W + 1 and wi = 1 for all i.

Additional Exercises
44. Show with a counterexample that the greedy approach does not always yield an

optimal solution for the Change problem when the coins are U.S. coins and we do

www.EBooksWorld.ir

not have at least one of each type of coin.

45. Prove that a complete graph (a graph in which there is an edge between every
pair of vertices) has nn−2 spanning trees. Here n is the number of vertices in the
graph.

46. Use a greedy approach to write an algorithm for the Traveling Salesperson
problem. Show that your algorithm does not always find a minimum-length tour.

47. Prove that the algorithm for the Multiple-Server Scheduling problem of Exercise
19 always finds an optimal schedule.

48. Without constructing a Huffman tree, generate Huffman code for a given set of
characters.

49. Generalize Huffman’s algorithm to ternary code words and prove that it yields
optimal ternary codes.

50. Show that if the characters are sorted according to their frequencies, then the
Huffman tree can be constructed in linear time.

www.EBooksWorld.ir

Chapter 5

Backtracking

If you were trying to find your way through the well-known maze of hedges by
Hampton Court Palace in England, you would have no choice but to follow a
hopeless path until you reached a dead end. When that happened, you’d go back to a
fork and pursue another path. Anyone who has ever tried solving a maze puzzle has
experienced the frustration of hitting dead ends. Think how much easier it would be if
there were a sign, positioned a short way down a path, that told you that the path led
to nothing but dead ends. If the sign were positioned near the beginning of the path,
the time savings could be enormous, because all forks after that sign would be
eliminated from consideration. This means that not one but many dead ends would be
avoided. There are no such signs in the famous maze of hedges or in most maze
puzzles. However, as we shall see, they do exist in backtracking algorithms.

Backtracking is very useful for problems such a the 0-1 Knapsack problem.
Although in Section 4.5.3 we found a dynamic programming algorithm for this
problem that is efficient if the capacity W of the knapsack is not large, the algorithm
is still exponential-time in the worst case. The 0-1 Knapsack problem is in the class
of problems discussed in Chapter 9. No one has ever found algorithms for any of
those problems whose worst-case time complexities are better than exponential, but
no one has ever proved that such algorithms are not possible. One way to try to
handle the 0-1 Knapsack problem would be to actually generate all the subsets, but
this would be like following every path in a maze until a dead end is reached. Recall
from Section 4.5.1 that there are 2n subsets, which means that this brute-force method
is feasible only for small values of n. However, if while generating the subsets we
can find signs that tell us that many of them need not be generated, we can often avoid
much unnecessary labor. This is exactly what a backtracking algorithm does.

www.EBooksWorld.ir

Backtracking algorithms for problems such as the 0-1 Knapsack problem are still
exponential-time (or even worse) in the worst case. They are useful because they are
efficient for many large instances, not because they are efficient for all large
instances. We return to the 0-1 Knapsack problem in Section 5.7. Before that, we
introduce backtracking with a simple example in Section 5.1 and solve several other
problems in the other sections.

5.1 The Backtracking Technique
Backtracking is used to solve problems in which a sequence of objects is chosen
from a specified set so that the sequence satisfies some criterion. The classic
example of the use of backtracking is in the n-Queens problem. The goal in this
problem is to position n queens on an n×n chessboard so that no two queens threaten
each other; that is, no two queens may be in the same row, column, or diagonal. The
sequence in this problem is the n positions in which the queens are placed, the set
for each choice is the n2 possible positions on the chessboard, and the criterion is
that no two queens can threaten each other. The n-Queens problem is a generalization
of its instance when n = 8, which is the instance using a standard chessboard. For the
sake of brevity, we will illustrate backtracking using the instance when n = 4.

Backtracking is a modified depth-first search of a tree (here “tree” means a rooted
tree). So let’s review the depth-first search before proceeding. Although the depth-
first search is defined for graphs in general, we will discuss only searching of trees,
because backtracking involves only a tree search. A preorder tree traversal is a
depth-first search of the tree. This means that the root is visited first, and a visit to a
node is followed immediately by visits to all descendants of the node. Although a
depth-first search does not require that the children be visited in any particular order,
we will visit the children of a node from left to right in the applications in this
chapter.

Figure 5.1 shows a depth-first search of a tree performed in this manner. The
nodes are numbered in the order in which they are visited. Notice that in a depth-first
search, a path is followed as deeply as possible until a dead end is reached. At a
dead end we back up until we reach a node with an unvisited child, and then we
again proceed to go as deep as possible.
Figure 5.1 A tree with nodes numbered according to a depth-first search.

www.EBooksWorld.ir

There is a simple recursive algorithm for doing a depth-first search. Because we
are presently interested only in preorder traversals of trees, we give a version that
specifically accomplishes this. The procedure is called by passing the root at the top
level.

This general-purpose algorithm does not state that the children must be visited in
any particular order. However, as mentioned previously, we visit them from left to
right.

Now let’s illustrate the backtracking technique with the instance of the n-Queens
problem when n = 4. Our task is to position four queens on a 4×4 chessboard so that
no two queens threaten each other. We can immediately simplify matters by realizing
that no two queens can be in the same row. The instance can then be solved by
assigning each queen a different row and checking which column combinations yield
solutions. Because each queen can be placed in one of four columns, there are 4 × 4
× 4 × 4 = 256 candidate solutions.

We can create the candidate solutions by constructing a tree in which the column
choices for the first queen (the queen in row 1) are stored in level-1 nodes in the tree
(recall that the root is at level 0), the column choices for the second queen (the queen
in row 2) are stored in level-2 nodes, and so on. A path from the root to a leaf is a
candidate solution (recall that a leaf in a tree is a node with no children). This tree is
called a state space tree. A small portion of it appears in Figure 5.2. The entire tree
has 256 leaves, one for each candidate solution. Notice that an ordered pair < i, j > is

www.EBooksWorld.ir

stored at each node. This ordered pair means that the queen in the ith row is placed in
the jth column.

To determine the solutions, we check each candidate solution (each path from the
root to a leaf) in sequence, starting with the leftmost path. The first few paths checked
are as follows:

Notice that the nodes are visited according to a depth-first search in which the
children of a node are visited from left to right. A simple depth-first search of a state
space tree is like following every path in a maze until you reach a dead end. It does
not take advantage of any signs along the way. We can make the search more efficient
by looking for such signs. For example, as illustrated in Figure 5.3(a), no two queens
can be in the same column. Therefore, there is no point in constructing and checking
any paths in the entire branch emanating from the node containing <2, 1> in Figure
5.2. (Because we have already placed queen 1 in column 1, we cannot place queen 2
there.) This sign tells us that this node can lead to nothing but dead ends. Similarly, as
illustrated in Figure 5.3(b), no two queens can be on the same diagonal. Therefore,
there is no point in constructing and checking the entire branch emanating from the
node containing <2, 2> in Figure 5.2.
Figure 5.2 A portion of the state space tree for the instance of the n-Queens problem in which n = 4. The ordered
pair <i, j >, at each node means that the queen in the ith row is placed in the j th column. Each path from the root
to a leaf is a candidate solution.

www.EBooksWorld.ir

Figure 5.3 Diagram showing that if the first queen is placed in column 1, the second queen cannot be placed in
column 1 (a) or column 2 (b).

Backtracking is the procedure whereby, after determining that a node can lead to
nothing but dead ends, we go back (“backtrack”) to the node’s parent and proceed
with the search on the next child. We call a node nonpromising if when visiting the
node we determine that it cannot possibly lead to a solution. Otherwise, we call it
promising. To summarize, backtracking consists of doing a depth-first search of a
state space tree, checking whether each node is promising, and, if it is nonpromising,
backtracking to the node’s parent. This is called pruning the state space tree, and the
subtree consisting of the visited nodes is called the pruned state space tree. A
general algorithm for the backtracking approach is as follows:

The root of the state space tree is passed to checknode at the top level. A visit to a
node consists of first checking whether it is promising. If it is promising and there is
a solution at the node, the solution is printed. If there is not a solution at a promising
node, the children of the node are visited. The function promising is different in each
application of backtracking. We call it the promising function for the algorithm. A
backtracking algorithm is identical to a depth-first search, except that the children of
a node are visited only when the node is promising and there is not a solution at the
node. (Unlike the algorithm for the n-Queens problem, in some backtracking
algorithms a solution can be found before reaching a leaf in the state space tree.) We
have called the backtracking procedure checknode rather than backtrack because
backtracking does not occur when the procedure is called. Rather, it occurs when we

www.EBooksWorld.ir

find that a node is nonpromising and proceed to the next child of the parent. A
computer implementation of the recursive algorithm accomplishes backtracking by
popping the activation record for a nonpromising node from the stack of activation
records.

Next we use backtracking to solve the instance of the n-Queens problem when n =
4.

Example 5.1
Recall that the function promising is different for each application of backtracking.
For the n-Queens problem, it must return false if a node and any of the node’s
ancestors place queens in the same column or diagonal. Figure 5.4 shows a portion of
the pruned state space tree produced when backtracking is used to solve the instance
in which n = 4. Only the nodes checked to find the first solution are shown. Figure
5.5 shows the actual chessboards. A node is marked with a cross in Figure 5.4 if it is
nonpromising. Similarly, there is a cross in a nonpromising position in Figure 5.5.
The color-shaded node in Figure 5.4 is the one where the first solution is found. A
walk-through of the traversal done by backtracking follows. We refer to a node by the
ordered pair stored at that node. Some of the nodes contain the same ordered pair, but
you can tell which node we mean by traversing the tree in Figure 5.4 while we do the
walk-through.
Figure 5.4 A portion of the pruned state space tree produced when backtracking is used to solve the instance of
the n-Queens problems in which n = 4. Only the nodes checked to find the first solution are shown. That solution is
found at the color-shaded node. Each nonpromising node is marked with a cross.

www.EBooksWorld.ir

Figure 5.5 The actual chessboard positions that are tried when backtracking is used to solve the instance of the n-
Queens problem in which n = 4. Each nonpromising position is marked with a cross.

www.EBooksWorld.ir

At this point the first solution has been found. It appears in Figure 5.5(k), and the
node at which it is found is shaded in Figure 5.4.

Notice that a backtracking algorithm need not actually create a tree. Rather, it only
needs to keep track of the values in the current branch being investigated. This is the
way we implement backtracking algorithms. We say that the state space tree exists
implicitly in the algorithm because it is not actually constructed.

A node count in Figure 5.4 shows that the backtracking algorithm checks 27 nodes
before finding a solution. In the exercises you will show that, without backtracking, a
depth-first search of the state space tree checks 155 nodes before finding that same
solution.

You may have observed that there is some inefficiency in our general algorithm for
backtracking (procedure checknode). That is, we check whether a node is promising
after passing it to the procedure. This means that activation records for nonpromising
nodes are unnecessarily placed on the stack of activation records. We could avoid
this by checking whether a node is promising before passing it. A general algorithm
for backtracking that does this is as follows:

www.EBooksWorld.ir

The node passed at the top level to the procedure is again the root of the tree. We call
this procedure expand because we expand a promising node. A computer
implementation of this algorithm accomplishes backtracking from a nonpromising
node by not pushing an activation record for the node onto the stack of activation
records.

In explaining algorithms in this chapter, we use the first version of the algorithm
(procedure checknode) because we have found that this version typically produces
algorithms that are easier to understand. The reason is that one execution of
checknode consists of the steps done when visiting a single node. That is, it consists
of the following steps. Determine if the node is promising. If it is promising, then if
there is a solution at the node, print the solution; otherwise, visit its children. On the
other hand, one execution of expand involves doing the same steps for all children of
a node. After seeing the first version of an algorithm, it is not hard to write the
second version.

Next we will develop backtracking algorithms for several problems, starting with
the n-Queens problem. In all these problems, the state space tree contains an
exponentially large or larger number of nodes. Backtracking is used to avoid
unnecessary checking of nodes. Given two instances with the same value of n, a
backtracking algorithm may check very few nodes for one of them but the entire state
space tree for the other. This means that we will not obtain efficient time
complexities for our backtracking algorithms as we did for the algorithms in the
preceding chapters. Therefore, instead of the types of analyses done in those
chapters, we will analyze our backtracking algorithms using the Monte Carlo
technique. This technique enables us to determine whether we can expect a given
backtracking algorithm to be efficient for a particular instance. The Monte Carlo
technique is discussed in Section 5.3.

5.2 The n-Queens Problem
We have already discussed the goal in the n-Queens problem. The promising function

www.EBooksWorld.ir

must check whether two queens are in the same column or diagonal. If we let col(i)
be the column where the queen in the ith row is located, then to check whether the
queen in the kth row is in the same column, we need to check whether

Next let’s see how to check the diagonals. Figure 5.6 illustrates the instance in which
n = 8. In that figure, the queen in row 6 is being threatened in its left diagonal by the
queen in row 3, and in its right diagonal by the queen in row 2. Notice that

That is, for the queen threatening from the left, the difference in the columns is the
same as the difference in the rows. Furthermore,

That is, for the queen threatening from the right, the difference in the columns is the
negative of the difference in the rows. These are examples of the general result that if
the queen in the kth row threatens the queen in the ith row along one of its diagonals,
then

Next we present the algorithm.
Figure 5.6 The queen in row 6 is being threatened in its left diagonal by the queen in row 3 and in its right diagonal
by the queen in row 2.

 Algorithm 5.1

www.EBooksWorld.ir

The Backtracking Algorithm for the n-Queens Problem
Problem: Position n queens on a chessboard so that no two are in the same row,
column, or diagonal.
Inputs: positive integer n.
Outputs: all possible ways n queens can be placed on an n × n chessboard so that no
two queens threaten each other. Each output consists of an array of integers col
indexed from 1 to n, where col[i] is the column where the queen in the ith row is
placed.

When an algorithm consists of more than one routine, we do not order the routines
according to the rules of any particular programming language. Rather, we just
present the main routine first. In Algorithm 5.1, that routine is queens. Following the
convention discussed in Section 2.1, n and col are not inputs to the recursive routine
queens. If the algorithm were implemented by defining n and col globally, the top-
level call to queens would be

www.EBooksWorld.ir

Algorithm 5.1 produces all solutions to the n-Queens problem because that is how
we stated the problem. We stated the problem this way to eliminate the need to exit
when a solution is found. This makes the algorithm less cluttered. In general, the
problems in this chapter can be stated to require one, several, or all solutions. In
practice, the one that is done depends on the needs of the application. Most of our
algorithms are written to produce all solutions. It is a simple modification to make
the algorithms stop after finding one solution.

It is difficult to analyze Algorithm 5.1 theoretically. To do this, we have to
determine the number of nodes checked as a function of n, the number of queens. We
can get an upper bound on the number of nodes in the pruned state space tree by
counting the number of nodes in the entire state space tree. This latter tree contains 1
node at level 0, n nodes at level 1, n2 nodes at level 2, … , and nn nodes at level n.
The total number of nodes is

This equality is obtained in Example A.4 in Appendix A. For the instance in which n
= 8, the state space tree contains

This analysis is of limited value because the whole purpose of backtracking is to
avoid checking many of these nodes.

Another analysis we could try is to obtain an upper bound on the number of
promising nodes. To compute such a bound, we can use the fact that no two queens
can ever be placed in the same column. For example, consider the instance in which
n = 8. The first queen can be positioned in any of the eight columns. Once the first
queen is positioned, the second can be positioned in at most seven columns; once the
second is positioned, the third can he positioned in at most six columns; and so on.
Therefore, there are at most

Generalizing this result to an arbitrary n, there are at most

This analysis does not give us a very good idea as to the efficiency of the
algorithm for the following reasons: First, it does not take into account the diagonal
check in function promising. Therefore, there could be far less promising nodes than
this upper bound. Second, the total number of nodes checked includes both promising
and nonpromising nodes. As we shall see, the number of nonpromising nodes can be
substantially greater than the number of promising nodes.

www.EBooksWorld.ir

A straightforward way to determine the efficiency of the algorithm is to actually
run the algorithm on a computer and count how many nodes are checked. Table 5.1
shows the results for several values of n. The back-tracking algorithm is compared
with two other algorithms for the n-Queens problem. Algorithm 1 is a depth-first
search of the state space tree without backtracking. The number of nodes it checks is
the number in the state space tree. Algorithm 2 uses only the fact that no two queens
can be in the same row or in the same column. Algorithm 2 generates n! candidate
solutions by trying the row-1 queen in each of the n columns, the row-2 queen in each
of the n − 1 columns not occupied by the first queen, the row-3 queen in each of the n
− 2 columns not occupied by either of the first two queens, and so on. After
generating a candidate solution, it checks whether two queens threaten each other in a
diagonal. Notice that the advantage of the back-tracking algorithm increases
dramatically with n. When n = 4, Algorithm 1 checks less than six times as many
nodes as the backtracking algorithm, and the backtracking algorithm seems slightly
inferior to Algorithm 2. But when n = 14, Algorithm 1 checks almost 32 million times
as many nodes as does the backtracking algorithm, and the number of candidate
solutions generated by Algorithm 2 is about 230 times the number of nodes checked
by backtracking. We have listed the number of promising nodes in Table 5.1 to show
that many of the nodes checked can be nonpromising. This means that our second way
of implementing backtracking (procedure expand, which is discussed in Section 5.1)
can save a significant amount of time.

• Table 5.1 An illustration of how much checking is saved by backtracking in the n-Queens problem ∗

Actually running an algorithm to determine its efficiency (as was done to create
Table 5.1) is not really an analysis. We did this to illustrate how much time
backtracking can save. The purpose of an analysis is to determine ahead of time
whether an algorithm is efficient. In the next section we show how the Monte Carlo
technique can be used to estimate the efficiency of a backtracking algorithm.

Recall that in our state space tree for the n-Queens problem we use the fact that no
two queens can be in the same row. Alternatively, we could create a state space tree
that tries every queen in each of the n2 board positions. We would backtrack in this
tree whenever a queen was placed in the same row, column, or diagonal as a queen

www.EBooksWorld.ir

already positioned. Every node in this state space tree would have n2 children, one
for each board position. There would be (n2)n leaves, each representing a different
candidate solution. An algorithm that backtracked in this state space tree would find
no more promising nodes than our algorithm finds, but it would still be slower than
ours because of the extra time needed to do a row check in function promising and
because of the extra nonpromising nodes that would be investigated (that is, any node
that attempted to place a queen in a row that was already occupied). In general, it is
most efficient to build as much information as possible into the state space tree.

The time spent in the promising function is a consideration in any backtracking
algorithm. That is, our goal is not strictly to cut down on the number of nodes
checked; rather, it is to improve overall efficiency. A very time-consuming promising
function could offset the advantage of checking fewer nodes. In the case of Algorithm
5.1, the promising function can be improved by keeping track of the sets of columns,
of left diagonals, and of right diagonals controlled by the queens already placed. In
this way, it is not necessary to check whether the queens already positioned threaten
the current queen. We need only check if the current queen is being placed in a
controlled column or diagonal. This improvement is investigated in the exercises.

5.3 Using a Monte Carlo Algorithm to Estimate the
Efficiency of a Backtracking Algorithm

As mentioned previously, the state space tree for each of the algorithms presented in
the following sections contains an exponentially large or larger number of nodes.
Given two instances with the same value of n, one of them may require that very few
nodes be checked, whereas the other requires that the entire state space tree be
checked. If we had an estimate of how efficiently a given backtracking algorithm
would process a particular instance, we could decide whether using the algorithm on
that instance was reasonable. We can obtain such an estimate using a Monte Carlo
algorithm.

Monte Carlo algorithms are probabilistic algorithms. By a probabilistic
algorithm, we mean one in which the next instruction executed is sometimes
determined at random according to some probability distribution. (Unless otherwise
stated, we assume that probability distribution is the uniform distribution.) By a
deterministic algorithm, we mean one in which this cannot happen. All the
algorithms discussed so far have been deterministic algorithms. A Monte Carlo
algorithm estimates the expected value of a random variable, defined on a sample
space, from its average value on a random sample of the sample space. (See Section
A.8.1 in Appendix A for a discussion of sample spaces, random samples, random
variables, and expected values.) There is no guarantee that the estimate is close to the

www.EBooksWorld.ir

true expected value, but the probability that it is close increases as the time available
to the algorithm increases.

We can use a Monte Carlo algorithm to estimate the efficiency of a backtracking
algorithm for a particular instance as follows. We generate a “typical path” in the tree
consisting of the nodes that would be checked given that instance, and then estimate
the number of nodes in this tree from the path. The estimate is an estimate of the total
number of nodes that would be checked to find all solutions. That is, it is an estimate
of the number of nodes in the pruned state space tree. The following conditions must
be satisfied by the algorithm in order for the technique to apply:

1. The same promising function must be used on all nodes at the same level in the
state space tree.

2. Nodes at the same level in the state space tree must have the same number of
children.

Notice that Algorithm 5.1 (The Backtracking Algorithm for the n-Queens Problem)
satisfies these conditions.

The Monte Carlo technique requires that we randomly generate a promising child
of a node according to the uniform distribution. By this we mean that a random
process is used to generate the promising child. (See Section A.8.1 in Appendix A
for a discussion of random processes.) When implementing the technique on a
computer, we can generate only a pseudorandom promising child. The technique is as
follows:

• Let m0 be the number of promising children of the root.
• Randomly generate a promising node at level 1. Let m1 be the number of

promising children of this node.
• Randomly generate a promising child of the node obtained in the previous step.

Let m2 be the number of promising children of this node.
.

.

.

• Randomly generate a promising child of the node obtained in the previous step.
Let mi be the number of promising children of this node.

.

.

.

This process continues until no promising children are found. Because we assume
that nodes at the same level in the state space tree all have the same number of
children, mi is an estimate of the average number of promising children of nodes at
level i. Let

www.EBooksWorld.ir

Because all ti children of a node are checked and only the mi promising children have
children that are checked, an estimate of the total number of nodes checked by the
backtracking algorithm to find all solutions is given by

A general algorithm for computing this estimate follows. In this algorithm, a variable
mprod is used to represent the product m0m1 · · · mi−1 at each level.

 Algorithm 5.2
Monte CarIo Estimate
Problem: Estimate the efficiency of a backtracking algorithm using a Monte Carlo
algorithm.
Inputs: an instance of the problem that the backtracking algorithm solves.
Outputs: an estimate of the number of nodes in the pruned state space tree produced
by the algorithm, which is the number of the nodes the algorithm will check to find all
solutions to the instance.

A specific version of Algorithm 5.2 for Algorithm 5.1 (The Backtracking
Algorithm for the n-Queens Problem) follows. We pass n to this algorithm because n
is the parameter to Algorithm 5.1.

www.EBooksWorld.ir

 Algorithm 5.3
Monte Carlo Estimate for Algorithm 5.1 (The Backtracking Algorithm for the n-
Queens Problem)
Problem: Estimate the efficiency of Algorithm 5.1.
Inputs: positive integer n.
Outputs: an estimate of the number of nodes in the pruned state space tree produced
by Algorithm 5.1, which is the number of the nodes the algorithm will check before
finding all ways to position n queens on an n×n chessboard so that no two queens
threaten each other.

When a Monte Carlo algorithm is used, the estimate should be run more than once,
and the average of the results should be used as the actual estimate. Using standard
methods from statistics, one can determine a confidence interval for the actual
number of nodes checked from the results of the trials. As a rule of thumb, around 20
trials are ordinarily sufficient. We caution that although the probability of obtaining a
good estimate is high when the Monte Carlo algorithm is run many times, there is
never a guarantee that it is a good estimate.

The n-Queens problem has only one instance for each value of n. This is not so for

www.EBooksWorld.ir

most problems solved with backtracking algorithms. The estimate produced by any
one application of the Monte Carlo technique is for one particular instance. As
discussed before, given two instances with the same value of n, one may require that
very few nodes be checked whereas the other requires that the entire state space tree
be checked.

The estimate obtained using a Monte Carlo estimate is not necessarily a good
indication of how many nodes will be checked before the first solution is found. To
obtain only one solution, the algorithm may check a small fraction of the nodes it
would check to find all solutions. For example, Figure 5.4 shows that the two
branches that place the first queen in the third and fourth columns, respectively, need
not be traversed to find only one solution.

5.4 The Sum-of-Subsets Problem
Recall our thief and the 0-1 Knapsack problem from Section 4.5.1. In this problem,
there is a set of items the thief can steal, and each item has its own weight and profit.
The thief’s knapsack will break if the total weight of the items in it exceeds W.
Therefore, the goal is to maximize the total value of the stolen items while not making
the total weight exceed W . Suppose here that the items all have the same profit per
unit weight. Then an optimal solution for the thief would simply be a set of items that
maximized the total weight, subject to the constraint that its total weight did not
exceed W . The thief might first try to determine whether there was a set whose total
weight equaled W, because this would be best. The problem of determining such sets
is called the Sum-of-Subsets problem.

Specifically, in the Sum-of-Subsets problem, there are n positive integers
(weights) wi and a positive integer W. The goal is to find all subsets of the integers
that sum to W. As mentioned earlier, we usually state our problems so as to find all
solutions. For the purposes of the thief’s application, however, only one solution
need be found.

Example 5.2
Suppose that n = 5, W = 21, and

Because

www.EBooksWorld.ir

the solutions are {w1, w2, w3}, {w1, w5}, and {w3, w4}.

Figure 5.7 A state space tree for instances of the Sum-of-Subsets problem in which n = 3.

This instance can be solved by inspection. For larger values of n, a systematic
approach is necessary. One approach is to create a state space tree. A possible way
to structure the tree appears in Figure 5.7. For the sake of simplicity, the tree in this
figure is for only three weights. We go to the left from the root to include w1, and we
go to the right to exclude w1. Similarly, we go to the left from a node at level 1 to
include w2, and we go to the right to exclude w2, etc. Each subset is represented by a
path from the root to a leaf. When we include wi, we write wi on the edge where we
include it. When we do not include wi, we write 0.

Example 5.3
Figure 5.8 shows the state space tree for n = 3, W = 6, and

At each node, we have written the sum of the weights that have been included up to
that point. Therefore, each leaf contains the sum of the weights in the subset leading
to that leaf. The second leaf from the left is the only one containing a 6. Because the
path to this leaf represents the subset {w1, w2}, this subset is the only solution.

If we sort the weights in nondecreasing order before doing the search, there is an
obvious sign telling us that a node is nonpromising. If the weights are sorted in this
manner, then wi+1 is the lightest weight remaining when we are at the ith level. Let
weight be the sum of the weights that have been included up to a node at level i. If

www.EBooksWorld.ir

wi+1 would bring the value of weight above W, then so would any other weight
following it. Therefore, unless weight equals W (which means that there is a solution
at the node), a node at the ith level is nonpromising if
Figure 5.8 A state space tree for the Sum-of-Subsets problem for the instance in Example 5.3. Stored at each
node is the total weight included up to that node.

There is another, less obvious sign telling us that a node is nonpromising. If, at a
given node, adding all the weights of the remaining items to weight does not make
weight at least equal to W, then weight could never become equal to W by expanding
beyond the node. This means that if total is the total weight of the remaining weights,
a node is nonpromising if

The following example illustrates these backtracking strategies.

Example 5.4
Figure 5.9 shows the pruned state space tree when backtracking is used with n = 4, W
= 13, and

The only solution is found at the node shaded in color. The solution is {w1, w2 , w4}.
The nonpromising nodes are marked with crosses. The nodes containing 12, 8, and 9
are nonpromising because adding the next weight (6) would make the value of weight
exceed W. The nodes containing 7, 3, 4, and 0 are nonpromising because there is not
enough total weight remaining to bring the value of weight up to W. Notice that a leaf
in the state space tree that does not contain a solution is automatically nonpromising

www.EBooksWorld.ir

because there are no weights remaining that could bring weight up to W. The leaf
containing 7 illustrates this. There are only 15 nodes in the pruned state space tree,
whereas the entire state space tree contains 31 nodes.

Figure 5.9 The pruned state space tree produced using backtracking in Example 5.4. Stored at each node is the
total weight included up to that node. The only solution is found at the shaded node. Each nonpromising node is
marked with a cross.

When the sum of the weights included up to a node equals W , there is a solution at
that node. Therefore, we cannot get another solution by including more items. This
means that if

we should print the solution and backtrack. This backtracking is provided
automatically by our general procedure checknode because it never expands beyond
a promising node where a solution is found. Recall that when we discussed
checknode we mentioned that some backtracking algorithms sometimes find a
solution before reaching a leaf in the state space tree. This is one such algorithm.

Next we present the algorithm that employs these strategies. The algorithm uses an
array include. It sets include[i] to “yes” if w[i] is to be included and to “no” if it is
not.

 Algorithm 5.4

www.EBooksWorld.ir

The Backtracking Algorithm for the Sum-of-Subsets Problem
Problem: Given n positive integers (weights) and a positive integer W, determine all
combinations of the integers that sum to W.
Inputs: positive integer n, sorted (nondecreasing order) array of positive integers w
indexed from 1 to n, and a positive integer W.
Outputs: all combinations of the integers that sum to W.

Following our usual convention, n, w, W, and include are not inputs to our
routines. If these variables were defined globally, the top-level call to
sum_of_subsets would be as follows:

where initially

Recall that a leaf in the state space tree that does not contain a solution is
nonpromising because there are no weights left that could bring the value of weight
up to W. This means that the algorithm should not need to check for the terminal
condition i = n. Let’s verify that the algorithm implements this correctly. When i = n,
the value of total is 0 (because there are no weights remaining). Therefore, at this
point

which means that

www.EBooksWorld.ir

is true only if weight ≥ W. Because we always keep weight ≤ W, we must have
weight = W . Therefore, when i = n, function promising returns true only if weight =
W . But in this case there is no recursive call because we found a solution. Therefore,
we do not need to check for the terminal condition i = n. Notice that there is never a
reference to the nonexistent array item w[n + 1] in function promising because of our
assumption that the second condition in an or expression is not evaluated when the
first condition is true.

The number of nodes in the state space tree searched by Algorithm 5.4 is equal to

This equality is obtained in Example A.3 in Appendix A. Given only this result, the
possibility exists that the worst case could be much better than this. That is, it could
be that for every instance only a small portion of the state space tree is searched.
This is not the case. For each n, it is possible to construct an instance for which the
algorithm visits an exponentially large number of nodes. This is true even if we want
only one solution. To this end, if we take

there is only one solution {Wn}, and it will not be found until an exponentially large
number of nodes are visited. As stressed before, even though the worst case is
exponential, the algorithm can be efficient for many large instances. In the exercises,
you are asked to write programs using the Monte Carlo technique to estimate the
efficiency of Algorithm 5.4 on various instances.

Even if we state the problem so as to require only one solution, the Sum-of-
Subsets problem, like the 0-1 Knapsack problem, is in the class of problems
discussed in Chapter 9.

5.5 Graph Coloring
The m-Coloring problem concerns finding all ways to color an undirected graph
using at most m different colors, so that no two adjacent vertices are the same color.
We usually call the m-Coloring problem a unique problem for each value of m.
Figure 5.10 Graph for which there is no solution to the 2-Coloring problem. A solution to the 3-Coloring problem
for this graph is shown in Example 5.5.

www.EBooksWorld.ir

Example 5.5
Consider the graph in Figure 5.10. There is no solution to the 2-Coloring problem for
this graph because, if we can use at most two different colors, there is no way to
color the vertices so that no adjacent vertices are the same color. One solution to the
3-Coloring problem for this graph is as follows:

There are a total of six solutions to the 3-Coloring problem for this graph. However,
the six solutions are only different in the way the colors are permuted. For example,
another solution is to color v1 color 2, v2 and v4 color 1, and v3 color 3.

An important application of graph coloring is the coloring of maps. A graph is
called planar if it can be drawn in a plane in such a way that no two edges cross
each other. The graph at the bottom of Figure 5.11 is planar. However, if we were to
add the edges (v1, v5) and (v2, v4) it would no longer be planar. To every map there
corresponds a planar graph. Each region in the map is represented by a vertex. If one
region is adjacent to another region, we join their corresponding vertices by an edge.
Figure 5.11 shows a map at the top and its planar graph representation at the bottom.
The m-Coloring problem for planar graphs is to determine how many ways the map
can be colored, using at most m colors, so that no two adjacent regions are the same
color.

A straightforward state space tree for the m-Coloring problem is one in which
each possible color is tried for vertex v1 at level 1, each possible color is tried for
vertex v2 at level 2, and so on until each possible color has been tried for vertex vn at
level n. Each path from the root to a leaf is a candidate solution. We check whether a
candidate solution is a solution by determining whether any two adjacent vertices are
the same color. To avoid confusion, remember in the following discussion that

www.EBooksWorld.ir

“node” refers to a node in the state space tree and “vertex” refers to a vertex in the
graph being colored.
Figure 5.11 Map (top) and its planar graph representation (bottom).

We can backtrack in this problem because a node is nonpromising if a vertex that
is adjacent to the vertex being colored at the node has already been colored the color
that is being used at the node. Figure 5.12 shows a portion of the pruned state space
tree that results when this backtracking strategy is applied to a 3-coloring of the
graph in Figure 5.10. The number in a node is the number of the color used on the
vertex being colored at the node. The first solution is found at the shaded node.
Nonpromising nodes are labeled with crosses. After v1 is colored color 1, choosing
color 1 for v2 is nonpromising because v1 is adjacent to v2. Similarly, after v1, v2, and
v3 have been colored colors 1, 2, and 3, respectively, choosing color 1 for v4 is
nonpromising because v1 is adjacent to v4.
Figure 5.12 A portion of the pruned state space tree produced using backtracking to do a 3-coloring of the graph
in Figure 5.10. The first solution is found at the shaded node. Each nonpromising node is marked with a cross.

www.EBooksWorld.ir

Next we present an algorithm that solves the m-Coloring problem for all values of
m. In this algorithm the graph is represented by an adjacency matrix, as was done in
Section 4.1. However, because the graph is unweighted, each entry in the matrix is
simply true or false depending on whether or not there is an edge between the two
vertices.

 Algorithm 5.5
The Backtracking Algorithm for the m-Coloring Problem
Problem: Determine all ways in which the vertices in an undirected graph can be
colored, using only m colors, so that adjacent vertices are not the same color.
Inputs: positive integers n and m, and an undirected graph containing n vertices. The
graph is represented by a two-dimensional array W, which has both its rows and
columns indexed from 1 to n, where W [i] [j] is true if there is an edge between ith
vertex and the jth vertex and false otherwise.
Outputs: all possible colorings of the graph, using at most m colors, so that no two
adjacent vertices are the same color. The output for each coloring is an array vcolor
indexed from 1 to n, where vcolor [i] is the color (an integer between 1 and m)
assigned to the ith vertex.

www.EBooksWorld.ir

Following our usual convention, n, m, W , and vcolor are not inputs to either
routine. In an implementation of the algorithm, the routines would be defined locally
in a simple procedure that had n, m, and W as inputs, and vcolor defined locally. The
top level call to m_coloring would be

m_coloring (0).

The number of nodes in the state space tree for this algorithm is equal to

This equality is obtained in Example A.4 in Appendix A. For a given m and n, it is
possible to create an instance that checks at least an exponentially large number of
nodes (in terms of n). For example, if m is only 2, and we take a graph in which vn

has an edge to every other node, and the only other edge is one between vn−2 and vn−1,
then no solution exists, but almost every node in the state space tree will be visited to
determine this. As with any backtracking algorithm, the algorithm can be efficient for
a particular large instance. The Monte Carlo technique described in Section 5.3 is
applicable to this algorithm, which means that it can be used to estimate the

www.EBooksWorld.ir

efficiency for a particular instance.
In the exercises, you are asked to solve the 2-Coloring problem with an algorithm

whose worst-case time complexity is not exponential in n. For m ≥ 3, no one has ever
developed an algorithm that is efficient in the worst case. Like the Sum-of-Subsets
problem and the 0-1 Knapsack problem, the m-Coloring problem for m ≥ 3 is in the
class of problems discussed in Chapter 9. This is the case even if we are looking for
only one m-coloring of the graph.

5.6 The Hamiltonian Circuits Problem
Recall Example 3.12, in which Nancy and Ralph were competing for the same sales
position. The one who could cover all 20 cities in the sales territory the fastest was
to win the job. Using the dynamic programming algorithm, with a time complexity
given by

Nancy found a shortest tour in 45 seconds. Ralph tried computing all 19! tours.
Because his algorithm takes over 3,800 years, it is still running. Of course, Nancy
won the job. Suppose she did such a good job that the boss doubled her territory,
giving her a 40-city territory. In this territory, however, not every city is connected to
every other city by a road. Recall that we assumed that Nancy’s dynamic
programming algorithm took 1 microsecond to process its basic operation. A quick
calculation shows that it would take this algorithm

to determine a shortest tour for the 40-city territory. Because this amount of time is
intolerable, Nancy must look for another algorithm. She reasons that perhaps it is too
hard to find an optimal tour, so she becomes content with just finding any tour. If there
were a road from every city to every other city, any permutation of cities would
constitute a tour. However, recall that this is not the case in Nancy’s new territory.
Therefore, her problem now is to find any tour in a graph. This problem is called the
Hamiltonian Circuits problem, named after Sir William Hamilton, who suggested it.
The problem can be stated for either a directed graph (the way we stated the
Traveling Salesperson problem) or an undirected graph. Because it is usually stated
for an undirected graph, this is the way we will state it here. As applied to Nancy’s
dilemma, this means that there is a unique two-way road connecting two cities when
they are connected at all.

Specifically, given a connected, undirected graph, a Hamiltonian Circuit (also
called a tour) is a path that starts at a given vertex, visits each vertex in the graph
exactly once, and ends at the starting vertex. The graph in Figure 5.13(a) contains the

www.EBooksWorld.ir

Hamiltonian Circuit [v1, v2, v8, v7, v6, v5, v4, v3, v1], but the one in Figure 5.13(b) does
not contain a Hamiltonian Circuit. The Hamiltonian Circuits problem determines the
Hamiltonian Circuits in a connected, undirected graph.

A state space tree for this problem is as follows. Put the starting vertex at level 0
in the tree; call it the zeroth vertex on the path. At level 1, consider each vertex other
than the starting vertex as the first vertex after the starting one. At level 2, consider
each of these same vertices as the second vertex, and so on. Finally, at level n − 1,
consider each of these same vertices as the (n − 1)st vertex.
Figure 5.13 The graph in (a) contains the Hamiltonian Circuit [v1, v2, v8, v7, v6, v5, v4, v3, v2]; the graph in (b)
contains no Hamiltonian Circuit.

The following considerations enable us to backtrack in this state space tree:

1. The ith vertex on the path must be adjacent to the (i − 1)st vertex on the path.
2. The (n − 1)st vertex must be adjacent to the 0th vertex (the starting one).
3. The ith vertex cannot be one of the first i − 1 vertices.

The algorithm that follows uses these considerations to backtrack. This algorithm
is hard-coded to make v1 the starting vertex.

www.EBooksWorld.ir

 Algorithm 5.6
The Backtracking Algorithm for the Hamiltonian Circuits Problem
Problem: Determine all Hamiltonian Circuits in a connected, undirected graph.
Inputs: positive integer n and an undirected graph containing n vertices. The graph is
represented by a two-dimensional array W, which has both its rows and columns
indexed from 1 to n, where W [i] [j] is true if there is an edge between the ith vertex
and the jth vertex and false otherwise.
Outputs: For all paths that start at a given vertex, visit each vertex in the graph
exactly once, and end up at the starting vertex. The output for each path is an array of
indices vindex indexed from 0 to n − 1, where vindex[i] is the index of the ith vertex
on the path. The index of the starting vertex is vindex[0].

Following our convention, n, W, and vindex are not inputs to either routine. If these
variables were defined globally, the top-level called to hamiltonian would be as
follows:

www.EBooksWorld.ir

The number of nodes in the state space tree for this algorithm is

which is much worse than exponential. This equality is obtained in Example A.4 in
Appendix A. Although the following instance does not check the entire state space
tree, it does check a worse-than-exponential number of nodes. Let the only edge to v1

be one from v2, and let all the vertices other than v1 have edges to each other. There is
no Hamiltonian Circuit for the graph, and the algorithm will check a worse-than-
exponential number of nodes to learn this.

Returning to Nancy’s dilemma, the possibility exists that the backtracking
algorithm (for the Hamiltonian Circuits problem) will take even longer than the
dynamic programming algorithm (for the Traveling Salesperson problem) to solve
her particular 40-city instance. Because the conditions for using the Monte Carlo
technique are satisfied in this problem, Nancy can use that technique to estimate the
efficiency for her instance. However, the Monte Carlo technique estimates the time to
find all circuits. Because Nancy needs only one circuit, she can have the algorithm
stop when the first circuit is found (if there is a circuit). You are encouraged to
develop an instance when n = 40, estimate how quickly the algorithm should find all
circuits in the instance, and run the algorithm to find one circuit. In this way you can
create your own ending to the story.

Even if we want only one tour, the Hamiltonian Circuits problem is in the class of
problems discussed in Chapter 9.

5.7 The 0-1 Knapsack Problem
We solved this problem using dynamic programming in Section 4.5. Here we solve it
using backtracking. After that we compare the backtracking algorithm with the
dynamic programming algorithm.

• 5.7.1 A Backtracking Algorithm for the 0-1 Knapsack
Problem

Recall that in this problem we have a set of items, each of which has a weight and a
profit. The weights and profits are positive integers. A thief plans to carry off stolen
items in a knapsack, and the knapsack will break if the total weight of the items
placed in it exceeds some positive integer W. The thief’s objective is to determine a

www.EBooksWorld.ir

set of items that maximizes the total profit under the constraint that the total weight
cannot exceed W.

We can solve this problem using a state space tree exactly like the one in the Sum-
of-Subsets problem (see Section 5.4). That is, we go to the left from the root to
include the first item, and we go to the right to exclude it. Similarly, we go to the left
from a node at level 1 to include the second item, and we go to the right to exclude it,
and so on. Each path from the root to a leaf is a candidate solution.

This problem is different from the others discussed in this chapter in that it is an
optimization problem. This means that we do not know if a node contains a solution
until the search is over. Therefore, we back-track a little differently. If the items
included up to a node have a greater total profit than the best solution so far, we
change the value of the best solution so far. However, we may still find a better
solution at one of the node’s descendants (by stealing more items). Therefore, for
optimization problems we always visit a promising node’s children. The following is
a general algorithm for backtracking in the case of optimization problems.

The variable best has the value of the best solution found so far, and value (v) is the
value of the solution at the node. After best is initialized to a value that is worse than
the value of any candidate solution, the root is passed at the top level. Notice that a
node is promising only if we should expand to its children. Recall that our other
algorithms also call a node promising if there is a solution at the node.

Next we apply this technique to the 0-1 Knapsack problem. First let’s look for
signs telling us that a node is nonpromising. An obvious sign that a node is
nonpromising is that there is no capacity left in the knapsack for more items.
Therefore, if weight is the sum of the weights of the items that have been included up
to some node, the node is nonpromising if

It is nonpromising even if weight equals W because, in the case of optimization
problems, “promising” means that we should expand to the children.

We can use considerations from the greedy approach to find a less obvious sign.
Recall that this approach failed to give an optimal solution to this problem in Section
4.5. Here we will only use greedy considerations to limit our search; we will not
develop a greedy algorithm. To that end, we first order the items in nonincreasing

www.EBooksWorld.ir

order according to the values of pi/wi, where wi and pi are the weight and profit,
respectively, of the ith item. Suppose we are trying to determine whether a particular
node is promising. No matter how we choose the remaining items, we cannot obtain a
higher profit than we would obtain if we were allowed to use the restrictions in the
Fractional Knapsack problem from this node on. (Recall that in this problem the thief
can steal any fraction of an item taken.) Therefore, we can obtain an upper bound on
the profit that could be obtained by expanding beyond that node as follows. Let profit
be the sum of the profits of the items included up to the node. Recall that weight is the
sum of the weights of those items. We initialize variables bound and totweight to
profit and weight, respectively. Next we greedily grab items, adding their profits to
bound and their weights to totweight, until we get to an item that if grabbed would
bring totweight above W. We grab the fraction of that item allowed by the remaining
weight, and we add the value of that fraction to bound. If we are able to get only a
fraction of this last weight, this node cannot lead to a profit equal to bound, but
bound is still an upper bound on the profit we could achieve by expanding beyond
the node. Suppose the node is at level i, and the node at level k is the one that would
bring the sum of the weights above W. Then

If maxprofit is the value of the profit in the best solution found so far, then a node at
level i is nonpromising if

We are using greedy considerations only to obtain a bound that tells us whether we
should expand beyond a node. We are not using it to greedily grab items with no
opportunity to reconsider later (as is done in the greedy approach).

Before presenting the algorithm, we show an example.

Example 5.6
Suppose that n = 4, W = 16, and we have the following:

www.EBooksWorld.ir

We have already ordered the items according to pi/wi. For simplicity, we chose
values of pi and wi that make pi/wi an integer. In general, this need not be the case.
Figure 5.14 shows the pruned state space tree produced by using the backtracking
considerations just discussed. The total profit, total weight, and bound are specified
from top to bottom at each node. These are the values of the variables profit, weight,
and bound mentioned in the previous discussion. The maximum profit is found at the
node shaded in color. Each node is labeled with its level and its position from the
left in the tree. For example, the shaded node is labeled (3, 3) because it is at level 3
and it is the third node from the left at that level. Next we present the steps that
produced the pruned tree. In these steps we refer to a node by its label.
Figure 5.14 The pruned state space tree produced using backtracking in Example 5.6. Stored at each node from
top to bottom are the total profit of the items stolen up to the node, their total weight, and the bound on the total
profit that could be obtained by expanding beyond the node. The optimal solution is found at the node shaded in
color. Each nonpromising node is marked with a cross.

1. Set maxprofit to $0.
2. Visit node (0, 0) (the root).

www.EBooksWorld.ir

(a) Compute its profit and weight.

(b) Compute its bound. Because 2 + 5 + 10 = 17, and 17 > 16, the value of W ,
the third item would bring the sum of the weights above W. Therefore, k = 3,
and we have

(c) Determine that the node is promising because its weight 0 is less than 16, the
value of W , and its bound $115 is greater than $0, the value of maxprofit.

3. Visit node (1, 1).
(a) Compute its profit and weight.

(b) Because its weight 2 is less than or equal to 16, the value of W, and its profit
$40 is greater than $0, the value of maxprofit, set maxprofit to $40.

(c) Compute its bound. Because 2 + 5 + 10 = 17, and 17 > 16, the value of W , the
third item would bring the sum of the weights above W. Therefore, k = 3, and
we have

(d) Determine that the node is promising because its weight 2 is less than 16, the
value of W, and its bound $115 is greater than $0, the value of maxprofit.

4. Visit node (2, 1).
(a) Compute its profit and weight.

www.EBooksWorld.ir

(b) Because its weight 7 is less than or equal to 16, the value of W, and its profit
$70 is greater than $40, the value of maxprofit, set maxprofit to $70.

(c) Compute its bound.

(d) Determine that the node is promising because its weight 7 is less than 16, the
value of W , and its bound $115 is greater than $70, the value of maxprofit.

5. Visit node (3, 1).
(a) Compute its profit and weight.

(b) Because its weight 17 is greater than 16, the value of W, maxprofit does not
change.

(c) Determine that it is nonpromising because its weight 17 is greater than or
equal to 16, the value of W.

(d) The bound for this node is not computed, because its weight has determined it
to be nonpromising.

6. Backtrack to node (2, 1).
7. Visit node (3, 2).

(a) Compute its profit and weight. Because we are not including item 3,

(b) Because its profit $70 is less than or equal to $70, the value of maxprofit,
maxprofit does not change.

(c) Compute its bound. The fourth weight would not bring the sum of the items
above W, and there are only four items. Therefore, k = 5, and

(d) Determine that the node is promising because its weight 7 is less than 16, the
value of W, and its bound $80 is greater than $70, the value of maxprofit.

www.EBooksWorld.ir

(From now on we leave the computations of profits, weights, and bounds as
exercises. Furthermore, when maxprofit does not change, we will not mention it.)

8. Visit node (4, 1).
(a) Compute its profit and weight to be $80 and 12.
(b) Because its weight 12 is less than or equal to 16, the value of W, and its profit

$80 is greater than $70, the value of maxprofit, set maxprofit to $80.
(c) Compute its bound to be $80.
(d) Determine that it is nonpromising because its bound $80 is less than or equal

to $80, the value of maxprofit. Leaves in the state space tree are
automatically nonpromising because their bounds are always less than or
equal to maxprofit.

9. Backtrack to node (3, 2).
10. Visit node (4, 2).

(a) Compute its profit and weight to be $70 and 7.
(b) Compute its bound to be $70.
(c) Determine that the node is nonpromising because its bound $70 is less than or

equal to $80, the value of maxprofit.

11. Backtrack to node (1, 1).
12. Visit node (2, 2).

(a) Compute its profit and weight to be $40 and 2.
(b) Compute its bound to be $98.
(c) Determine that it is promising because its weight 2 is less than 16, the value

of W , and its bound $98 is greater than $80, the value of maxprofit.

13. Visit node (3, 3).
(a) Compute its profit and weight to be $90 and 12.
(b) Because its weight 12 is less than or equal to 16, the value of W , and its

profit $90 is greater than $80, the value of maxprofit, set maxprofit to $90.
(c) Compute its bound to be $98.
(d) Determine that it is promising because its weight 12 is less than 16, the value

of W , and its bound $98 is greater than $90, the value of maxprofit.

14. Visit node (4, 3).
(a) Compute its profit and weight to be $100 and 17.
(b) Determine that it is nonpromising because its weight 17 is greater than or

equal to 16, the value of W .

www.EBooksWorld.ir

(c) The bound for this node is not computed because its weight has determined it
to be nonpromising.

15. Backtrack to node (3, 3).
16. Visit node (4, 4).

(a) Compute its profit and weight to be $90 and 12.
(b) Compute its bound to be $90.
(c) Determine that it is nonpromising because its bound $90 is less than or equal

to $90, the value of maxprofit.

17. Backtrack to node (2, 2).
18. Visit node (3, 4).

(a) Compute its profit and weight to be $40 and 2.
(b) Compute its bound to be $50.
(c) Determine that the node is nonpromising because its bound $50 is less than or

equal to $90, the value of maxprofit.

19. Backtrack to root.
20. Visit node (1, 2).

(a) Compute its profit and weight to be $0 and 0.
(b) Compute its bound to be $82.
(c) Determine that the node is nonpromising because its bound $82 is less than or

equal to $90, the value of maxprofit.

21. Backtrack to root.
(a) Root has no more children. We are done.

There are only 13 nodes in the pruned state space tree, whereas the entire state space
tree has 31 nodes.

Next we present the algorithm. Because this is an optimization problem, we have
the added task of keeping track of the current best set of items and the total value of
their profits. We do this in an array bestset and a variable maxprofit. Unlike the other
problems in this chapter, we state this problem so as to find just one optimal solution.

 Algorithm 5.7
The Backtracking Algorithm for the 0-1 Knapsack ProbIem

www.EBooksWorld.ir

Problem: Let n items be given, where each item has a weight and a profit. The
weights and profits are positive integers. Furthermore, let a positive integer W be
given. Determine a set of items with maximum total profit, under the constraint that
the sum of their weights cannot exceed W .
Inputs: Positive integers n and W ; arrays w and p, each indexed from 1 to n, and each
containing positive integers sorted in nonincreasing order according to the values of
p [i] /w [i].
Outputs: an array bestset indexed from 1 to n, where the values of bestset[i] is “yes”
if the ith item is included in the optimal set and is “no” otherwise; an integer
maxprofit that is the maximum profit.

www.EBooksWorld.ir

Following our usual convention, n, w, p, W , maxprofit, include, bestset, and
numbest are not inputs to either routine. If these variables were defined globally, the
following code would produce the maximum profit and a set that has that profit:

Recall that leaves in the state space tree are automatically nonpromising because
their bounds cannot be greater than maxprofit. Therefore, we should not need a check
for the terminal condition that i = n in function promising. Let’s confirm that our
algorithm does not need to do this check. If i = n, bound does not change from its
initial value profit. Because profit is less than or equal to maxprofit, the expression
bound>maxprofit is false, which means that function promising returns false.

Our upper bound does not change value as we repeatedly proceed to the left in the
state space tree until we reach the node at level k. (This can he seen by looking again
at the first few steps in Example 5.6.) Therefore, each time a value of k is
established, we can save its value and proceed to the left without calling function
promising until we reach the node at the (k − 1)st level. We know that the left child
of this node is nonpromising because including the kth item would bring the value of
weight above W . Therefore, we proceed only to the right from this node. It is only
after a move to the right that we need to call function promising and determine a new
value of k. In the exercises you are asked to write this improvement.

The state space tree in the 0-1 Knapsack problem is the same as that in the Sum-of-
Subsets problem. As shown in Section 5.4, the number of nodes in that tree is

Algorithm 5.7 checks all nodes in the state space tree for the following instances. For
a given n, let W = n, and

The optimal solution is to take only the nth item, and this solution will not be found
until we go all the way to the right to a depth of n − 1 and then go left. Before the
optimal solution is found, however, every nonleaf will be found to be promising,
which means that all nodes in the state space tree will be checked. Because the
Monte Carlo technique applies in this problem, it can be used to estimate the
efficiency of the algorithm for a particular instance.

• 5.7.2 Comparing the Dynamic Programming

www.EBooksWorld.ir

Algorithm and the Backtracking Algorithm for
the 0-1 Knapsack Problem

Recall from Section 4.5 that the worst-case number of entries that is computed by the
dynamic programming algorithm for the 0-1 Knapsack problem is in O (minimum (2n,
nW)). In the worst case, the backtracking algorithm checks Θ (2n) nodes. Owing to
the additional bound of nW , it may appear that the dynamic programming algorithm
is superior. However, in backtracking algorithms the worst case gives little insight
into how much checking is usually saved by backtracking. With so many
considerations, it is difficult to analyze theoretically the relative efficiencies of the
two algorithms. In cases such as this, the algorithms can be compared by running
them on many sample instances and seeing which algorithm usually performs better.
Horowitz and Sahni (1978) did this and found that the back-tracking algorithm is
usually more efficient than the dynamic programming algorithm.

Horowitz and Sahni (1974) coupled the divide-and-conquer approach with the
dynamic programming approach to develop an algorithm for the 0-1 Knapsack
problem that is O (2n/2) in the worst case. They showed that this algorithm is usually
more efficient than the backtracking algorithm.

EXERCISES

Sections 5.1 and 5.2
1. Show the first two solutions to the n-Queens problem for n = 6 and n = 7 (two

solutions for each) using the Backtracking algorithm.

2. Apply the Backtracking algorithm for the n-Queens problem (Algorithm 5.1) to
the problem instance in which n = 8, and show the actions step by step. Draw the
pruned state space tree produced by this algorithm up to the point where the first
solution is found.

3. Write a backtracking algorithm for the n-Queens problem that uses a version of
procedure expand instead of a version of procedure checknode.

4. Write an algorithm that takes an integer n as input and determines the total
number of solutions to the n-Queens problem.

5. Show that, without backtracking, 155 nodes must be checked before the first
solution to the n = 4 instance of the n-Queens problem is found (in contrast to the
27 nodes in Figure 5.4).

6. Implement the Backtracking algorithm for the n-Queens problem (Algorithm 5.1)

www.EBooksWorld.ir

on your system, and run it on problem instances in which n = 4, 8, 10, and 12.

7. Improve the Backtracking algorithm for the n-Queens problem (Algorithm 5.1) by
having the promising function keep track of the set of columns, of left diagonals,
and of right diagonals controlled by the queens already placed.

8. Modify the Backtracking algorithm for the n-Queens problem (Algorithm 5.1) so
that, instead of generating all possible solutions, it finds only a single solution.

9. Suppose we have a solution to the n-Queens problem instance in which n = 4.
Can we extend this solution to find a solution to the problem instance in which n
= 5? Can we then use the solutions for n = 4 and n = 5 to construct a solution to
the instance in which n = 6 and continue this dynamic programming approach to
find a solution to any instance in which n > 4? Justify your answer.

10. Find at least two instances of the n-Queens problem that have no solutions.

Section 5.3
11. Implement algorithm 5.3 (Monte Carlo estimate for the Backtracking algorithm

for the n-Queens problem) on your system, run it 20 times on the problem
instance in which n = 8, and find the average of the 20 estimates.

12. Modify the Backtracking algorithm for the n-Queens problem (Algorithm 5.1) so
that it finds the number of nodes checked for an instance of a problem, run it on
the problem instance in which n = 8, and compare the result against the average
of Exercise 9.

Section 5.4
13. Use the Backtracking algorithm for the Sum-of-Subsets problem (Algorithm 5.4)

to find all combinations of the following numbers that sum to W = 52:

Show the actions step by step.

14. Implement the Backtracking algorithm for the Sum-of-Subsets problem
(Algorithm 5.4) on your system, and run it on the problem instance of Exercise
11.

15. Write a backtracking algorithm for the Sum-of-Subsets problem that does not sort
the weights in advance. Compare the performance of this algorithm with that of
Algorithm 5.4.

16. Modify the Backtracking algorithm for the Sum-of-Subsets problem (Algorithm

www.EBooksWorld.ir

5.4) so that, instead of generating all possible solutions, it finds only a single
solution. How does this algorithm perform with respect to Algorithm 5.4?

17. Use the Monte Carlo technique to estimate the efficiency of the Backtracking
algorithm for the Sum-of-Subsets problem (Algorithm 5.4).

Section 5.5
18. Use the Backtracking algorithm for the m-Coloring problem (Algorithm 5.5) to

find all possible colorings of the graph below using the three colors red, green,
and white. Show the actions step by step.

19. Suppose that to color a graph properly we choose a starting vertex and a color to
color as many vertices as possible. Then we select a new color and a new
uncolored vertex to color as many more vertices as possible. We repeat this
process until all the vertices of the graph are colored or all the colors are
exhausted. Write an algorithm for this greedy approach to color a graph of n
vertices. Analyze this algorithm and show the results using order notation.

20. Use the algorithm of Exercise 17 to color the graph of Exercise 16.

21. Suppose we are interested in minimizing the number of colors used in coloring a
graph. Does the greedy approach of Exercise 17 guarantee an optimal solution?
Justify your answer.

22. Construct a connected graph containing n vertices for which the 3-Coloring
Backtracking algorithm will take exponential time to discover that the graph is
not 3-colorable.

23. Compare the performance of the Backtracking algorithm for the m-Coloring
problem (Algorithm 5.5) and the greedy algorithm of Exercise 17. Considering
the result(s) of the comparison and your answer to Exercise 19, why might one be
interested in using an algorithm based on the greedy approach?

24. Write an algorithm for the 2-Coloring problem whose time complexity is not
worst-case exponential in n.

25. List some of the practical applications that are representable in terms of the m-

www.EBooksWorld.ir

Coloring problem.

Section 5.6
26. Use the Backtracking algorithm for the Hamiltonian Circuits problem (Algorithm

5.6) to find all possible Hamiltonian Circuits of the following graph.

Show the actions step by step.

27. Implement the Backtracking algorithm for the Hamiltonian Circuits problem
(Algorithm 5.6) on your system, and run it on the problem instance of Exercise
26.

28. Change the starting vertex in the Backtracking algorithm for the Hamiltonian
Circuits problem (Algorithm 5.6) in Exercise 27 and compare its performance
with that of Algorithm 5.6.

29. Modify the Backtracking algorithm for the Hamiltonian Circuits problem
(Algorithm 5.6) so that, instead of generating all possible solutions, it finds only
a single solution. How does this algorithm perform with respect to Algorithm
5.6?

30. Analyze the Backtracking algorithm for the Hamiltonian Circuits problem
(Algorithm 5.6) and show the worst-case complexity using order notation.

31. Use the Monte Carlo Technique to estimate the efficiency of the Backtracking
algorithm for the Hamiltonian Circuits problem (Algorithm 5.6).

Section 5.7
32. Compute the remaining values and bounds after visiting node (4, 1) in Example

5.6 (Section 5.7.1).

33. Use the Backtracking algorithm for the 0-1 Knapsack problem (Algorithm 5.7) to
maximize the profit for the following problem instance. Show the actions step by

www.EBooksWorld.ir

step.

34. Implement the Backtracking algorithm for the 0-1 Knapsack problem (Algorithm
5.7) on your system, and run it on the problem instance of Exercise 30.

35. Implement the dynamic programming algorithm for the 0-1 Knapsack problem
(see Section 4.5.3) and compare the performance of this algorithm with the
Backtracking algorithm for the 0-1 Knapsack problem (Algorithm 5.7) using large
instances of the problem.

36. Improve the Backtracking algorithm for the 0-1 Knapsack problem (Algorithm
5.7) by calling the promising function after only a move to the right.

37. Use the Monte Carlo technique to estimate the efficiency of the Backtracking
algorithm for the 0-1 Knapsack problem (Algorithm 5.7).

Additional Exercises
38. List three more applications of backtracking.

39. Modify the Backtracking algorithm for the n-Queens problem (Algorithm 5.1) so
that it produces only the solutions that are invariant under reflections or rotations.

40. Given an n × n × n cube containing n3 cells, we are to place n queens in the cube
so that no two queens challenge each other (so that no two queens are in the same
row, column, or diagonal). Can the n-Queens algorithm (Algorithm 5.1) be
extended to solve this problem? If so, write the algorithm and implement it on
your system to solve problem instances in which n = 4 and n = 8.

41. Modify the Backtracking algorithm for the Sum-of-Subsets (Algorithm 5.4) to
produce the solutions in a variable-length list.

42. Explain how we can use the Backtracking algorithm for the m-Coloring problem
(Algorithm 5.5) to color the edges of the graph of Exercise 16 using the same
three colors so that edges with a common end receive different colors.

43. Modify the Backtracking algorithm for the Hamiltonian Circuits problem
(Algorithm 5.6) so that it finds a Hamiltonian Circuit with minimum cost for a
weighted graph. How does your algorithm perform?

www.EBooksWorld.ir

44. Modify the Backtracking algorithm for the 0-1 Knapsack problem (Algorithm 5.7)
to produce a solution in a variable-length list.

www.EBooksWorld.ir

Chapter 6

Branch-and-Bound

We’ve provided our thief with two algorithms for the 0-1 Knapsack problem: the
dynamic programming algorithm in Section 4.5 and the backtracking algorithm in
Section 5.7. Because both these algorithms are exponential-time in the worst case,
they could both take many years to solve our thief’s particular instance. In this
chapter, we provide our thief with yet another approach, called branch-and-bound.
As we shall see, the branch-and-bound algorithm developed here is an
improvement on the backtracking algorithm. Therefore, even if the other two
algorithms fail to solve our thief’s instance efficiently, the branch-and-bound
algorithm might do so.

The branch-and-bound design strategy is very similar to backtracking in that a state
space tree is used to solve a problem. The differences are that the branch-and-bound
method (1) does not limit us to any particular way of traversing the tree and (2) is
used only for optimization problems. A branch-and-bound algorithm computes a
number (bound) at a node to determine whether the node is promising. The number is
a bound on the value of the solution that could be obtained by expanding beyond the
node. If that bound is no better than the value of the best solution found so far, the
node is nonpromising. Otherwise, it is promising. Because the optimal value is a
minimum in some problems and a maximum in others, by “better” we mean smaller
or larger, depending on the problem. As is the case for backtracking algorithms,
branch-and-bound algorithms are ordinarily exponential-time (or worse) in the worst
case. However, they can be very efficient for many large instances.

The backtracking algorithm for the 0-1 Knapsack problem in Section 5.7 is
actually a branch-and-bound algorithm. In that algorithm, the promising function
returns false if the value of bound is not greater than the current value of maxprofit. A
backtracking algorithm, however, does not exploit the real advantage of using branch-
and-bound. Besides using the bound to determine whether a node is promising, we

www.EBooksWorld.ir

can compare the bounds of promising nodes and visit the children of the one with the
best bound.
Figure 6.1 A breadth-first search of a tree. The nodes are numbered in the order in which they are visited. The
children of a node are visited from left to right.

In this way we often can arrive at an optimal solution faster than we would by
methodically visiting the nodes in some predetermined order (such as a depth-first
search). This approach is called best-first search with branch-and-bound pruning.
The implementation of the approach is a simple modification of another methodical
approach called breadth-first search with branch-and-bound pruning. Therefore,
even though this latter technique has no advantage over depth-first search, in Section
6.1 we will first solve the 0-1 Knapsack problem using a breadth-first search. This
will enable us to more easily explain best-first search and use it to solve the 0-1
Knapsack problem. Sections 6.2 and 6.3 apply the best-first search approach to two
more problems.

Before proceeding, we review breadth-first search. In the case of a tree, a
breadth-first search consists of visiting the root first, followed by all nodes at level
1, followed by all nodes at level 2, and so on. Figure 6.1 shows a breadth-first
search of a tree in which we proceed from left to right. The nodes are numbered
according to the order in which they are visited.

Unlike depth-first search, there is no simple recursive algorithm for breadth-first
search. However, we can implement it using a queue. The algorithm that follows
does this. The algorithm is written specifically for trees because presently we are
interested only in trees. We insert an item at the end of the queue with a procedure
called enqueue, and we remove an item from the front with a procedure called
dequeue.

www.EBooksWorld.ir

If you are not convinced that this procedure produces a breadth-first search, you
should walk through an application of this algorithm to the tree in Figure 6.1. In that
tree, as mentioned previously, a node’s children are visited from left to right.

6.1 Illustrating Branch-and-Bound with the 0-1
Knapsack problem

We show how to use the branch-and-bound design strategy by applying it to the 0-1
Knapsack problem. First we discuss a simple version called breadth-first search
with branch-and-bound pruning. After that, we show an improvement on the simple
version called best-first search with branch-and-bound pruning.

• 6.1.1 Breadth-First Search with Branch-and-Bound
Pruning

Let’s demonstrate this approach with an example.

Example 6.1
Suppose we have the instance of the 0-1 Knapsack problem presented in Exercise
5.6. That is, n = 4, W = 16, and we have the following:

www.EBooksWorld.ir

As in Example 5.6, the items have already been ordered according to pi/wi. Using
breadth-first search with branch-and-bound pruning, we proceed exactly as we did
using backtracking in Example 5.6, except that we do a breadth-first search instead of
a depth-first search. That is, we let weight and profit be the total weight and total
profit of the items that have been included up to a node. To determine whether the
node is promising, we initialize totweight and bound to weight and profit,
respectively, and then greedily grab items, adding their weights and profits to
totweight and bound, until we reach an item whose weight would bring totweight
above W . We grab the fraction of that item allowed by the available weight, and add
the profit of that fraction to bound. In this way, bound becomes an upper bound on the
amount of profit we could obtain by expanding beyond the node. If the node is at
level i, and the node at level k is the one whose weight would bring the weight above
W , then

and

A node is nonpromising if this bound is less than or equal to maxprofit, which is the
value of the best solution found up to that point. Recall that a node is also
nonpromising if

The pruned state space tree produced using a breadth-first search on the instance in
this example, with branches pruned using the bounds indicated above, is shown in
Figure 6.2. The values of profit, weight, and bound are specified from top to bottom
at each node. The node shaded in color is where the maximum profit is found. The
nodes are labeled according to their levels and positions from the left in the tree.

Because the steps are so similar to those in Example 5.6, we will not walk through
them. We mention only a few important points. We refer to a node by its level and
position from the left in the tree. First, notice that nodes (3, 1) and (4, 3) have bounds
of $0. A branch-and-bound algorithm decides whether to expand beyond a node by
checking whether its bound is better than the value of the best solution found so far.
Therefore, when a node is nonpromising because its weight is not less than W, we set
its bound to $0. In this way, we ensure that its bound cannot be better than the value
of the best solution found so far. Second, recall that when backtracking (depth-first
search) was used on this instance, node (1, 2) was found to be nonpromising and we
did not expand beyond the node.

www.EBooksWorld.ir

Figure 6.2 The pruned state space tree produced using breadth-first search with branch-and-bound pruning in
Example 6.1. Stored at each node from top to bottom are the total profit of the items stolen up to that node, their
total weight, and the bound on the total profit that could be obtained by expanding beyond the node. The node
shaded in color is the one at which an optimal solution is found.

However, in the case of a breadth-first search, this node is the third node visited.
At the time it is visited, the value of maxprofit is only $40. Because its bound $82
exceeds maxprofit at this point, we expand beyond the node. Last of all, in a simple
breadth-first search with branch-and-bound pruning, the decision of whether or not to
visit a node’s children is made at the time the node is visited. That is, if the branches
to the children are pruned, they are pruned when the node is visited. Therefore, when
we visit node (2, 3), we decide to visit its children because the value of maxprofit at
that time is only $70, whereas the bound for the node is $82. Unlike a depth-first
search, in a breadth-first search the value of maxprofit can change by the time we
actually visit the children. In this case, maxprofit has a value of $90 by the time we
visit the children of node (2, 3). We then waste our time checking these children. We
avoid this in our best-first search, which is described in the next subsection.

Now that we have illustrated the technique, we present a general algorithm for
breadth-first search with branch-and-bound pruning. Although we refer to the state
space tree T as the input to this general-purpose algorithm, in actual applications the
state space tree exists only implicitly. The parameters of the problem are the actual
inputs to the algorithm and determine the state space tree T .

www.EBooksWorld.ir

This algorithm is a modification of the breadth-first search algorithm presented at
the beginning of this chapter. In this algorithm, however, we expand beyond a node
(visit a node’s children) only if its bound is better than the value of the current best
solution. The value of the current best solution (the variable best) is initialized to the
value of the solution at the root. In some applications, there is no solution at the root
because we must be at a leaf in the state space tree to have a solution. In such cases,
we initialize best to a value that is worse than that of any solution. The functions
bound and value are different in each application of
breadth_first_branch_and_bound. As we shall see, we often do not actually write a
function value. We simply compute the value directly.

Next we present a specific algorithm for the 0-1 Knapsack problem. Because we
do not have the benefit of recursion (which means we do not have new variables
being created at each recursive call), we must store all the information pertinent to a
node at that node. Therefore, the nodes in our algorithm will be of the following type:

 Algorithm 6.1
The Breadth-First Search with Branch-and-Bound Pruning Algorithm for the 0-1
Knapsack problem
Problem: Let n items be given, where each item has a weight and a profit. The
weights and profits are positive integers. Furthermore, let a positive integer W be

www.EBooksWorld.ir

given. Determine a set of items with maximum total profit, under the constraint that
the sum of their weights cannot exceed W .
Inputs: positive integers n and W , arrays of positive integers w and p, each indexed
from 1 to n, and each of which is sorted in nonincreasing order according to the
values of p [i] /w [i].
Outputs: an integer maxprofit that is the sum of the profits in an optimal set.

We do not need to check whether u.profit exceeds maxprofit when the current item

www.EBooksWorld.ir

is not included because, in this case, u.profit is the profit associated with u’s parent,
which means that it cannot exceed maxprofit. We do not need to store the bound at a
node (as depicted in Figure 6.2) because we have no need to refer to the bound after
we compare it with maxprofit.

Function bound is essentially the same as function promising in Algorithm 5.7.
The difference is that we have written bound according to guidelines for creating
branch-and-bound algorithms, and therefore bound returns an integer. Function
promising returns a boolean value because it was written according to backtracking
guidelines. In our branch-and-bound algorithm, the comparison with maxprofit is
done in the calling procedure. There is no need to check for the condition i = n in
function bound because in this case the value returned by bound is less than or equal
to maxprofit, which means that the node is not put in the queue.

Algorithm 6.1 does not produce an optimal set of items; it only determines the sum
of the profits in an optimal set. The algorithm can be modified to produce an optimal
set as follows. At each node we also store a variable items, which is the set of items
that have been included up to the node, and we maintain a variable bestitems, which
is the current best set of items. When maxprofit is set equal to u.profit, we also set
bestitems equal to u.items.

• 6.1.2 Best-First Search with Branch-and-Bound
Pruning

In general, the breadth-first search strategy has no advantage over a depth-first search
(backtracking). However, we can improve our search by using our bound to do more
than just determine whether a node is promising. After visiting all the children of a
given node, we can look at all the promising, unexpanded nodes and expand beyond
the one with the best bound. Recall that a node is promising if its bound is better than
the value of the best solution found so far. In this way, we often arrive at an optimal
solution more quickly than if we simply proceeded blindly in a predetermined order.
The example that follows illustrates this method.

Example 6.2
Suppose we have the instance of the 0-1 Knapsack problem in Example 6.1. A best-
first search produces the pruned state space tree in Figure 6.3. The values of profit,
weight, and bound are again specified from top to bottom at each node in the tree.
The node shaded in color is where the maximum profit is found. Next we show the
steps that produced this tree. We again refer to a node by its level and its position
from the left in the tree. Values and bounds are computed in the same way as in
Examples 5.6 and 6.1. We do not show the computations while walking through the

www.EBooksWorld.ir

steps. Furthermore, we only mention when a node is found to be nonpromising; we do
not mention when it is found to be promising.

The steps are as follows:

1. Visit node (0, 0) (the root).
(a) Set its profit and weight to $0 and 0.
(b) Compute its bound to be $115. (See Example 5.6 for the computation.)
(c) Set maxprofit to 0.

2. Visit node (1, 1).
(a) Compute its profit and weight to be $40 and 2.
(b) Because its weight 2 is less than or equal to 16, the value of W, and its profit

$40 is greater than $0, the value of maxprofit, set maxprofit to $40.
(c) Compute its bound to be $115.

3. Visit node (1, 2).
(a) Compute its profit and weight to be $0 and 0.
(b) Compute its bound to be $82.

Figure 6.3 The pruned state space tree produced using best-first search with branch-and-bound pruning in
Example 6.2. Stored at each node from top to bottom are the total profit of the items stolen up to the node, their
total weight, and the bound on the total profit that could be obtained by expanding beyond the node. The node
shaded in color is the one at which an optimal solution is found.

4. Determine promising, unexpanded node with the greatest bound.
(a) Because node (1, 1) has a bound of $115 and node (1, 2) has a bound of $82,

www.EBooksWorld.ir

node (1, 1) is the promising, unexpanded node with the greatest bound. We
visit its children next.

5. Visit node (2, 1).
(a) Compute its profit and weight to be $70 and 7.
(b) Because its weight 7 is less than or equal to 16, the value of W , and its profit

$70 is greater than $40, the value of maxprofit, set maxprofit to $70.
(c) Compute its bound to be $115.

6. Visit node (2, 2).
(a) Compute its profit and weight to be $40 and 2.
(b) Compute its bound to be $98.

7. Determine promising, unexpanded node with the greatest bound.
(a) That node is node (2, 1). We visit its children next.

8. Visit node (3, 1).
(a) Compute its profit and weight to be $120 and 17.
(b) Determine that it is nonpromising because its weight 17 is greater than or

equal to 16, the value of W. We make it nonpromising by setting its bound to
$0.

9. Visit node (3, 2).
(a) Compute its profit and weight to be $70 and 7.
(b) Compute its bound to be $80.

10. Determine promising, unexpanded node with the greatest bound.
(a) That node is node (2, 2). We visit its children next.

11. Visit node (3, 3).
(a) Compute its profit and weight to be $90 and 12.
(b) Because its weight 12 is less than or equal to 16, the value of W, and its profit

$90 is greater than $70, the value of maxprofit, set maxprofit to $90.
(c) At this point, nodes (1, 2) and (3, 2) become nonpromising because their

bounds, $82 and $80 respectively, are less than or equal to $90, the new
value of maxprofit.

(d) Compute its bound to be $98.
12. Visit node (3, 4).

(a) Compute its profit and weight to be $40 and 2.
(b) Compute its bound to be $50.
(c) Determine that it is nonpromising because its bound $50 is less than or equal

to $90, the value of maxprofit.
13. Determine promising, unexpanded node with the greatest bound.

www.EBooksWorld.ir

(a) The only unexpanded, promising node is node (3, 3). We visit its children
next.

14. Visit node (4, 1).
(a) Compute its profit and weight to be $100 and 17.
(b) Determine that it is nonpromising because its weight 17 is greater than or

equal to 16, the value of W . We set its bound to $0.
15. Visit node (4, 2).

(a) Compute its profit and weight to be $90 and 12.
(b) Compute its bound to be $90.
(c) Determine that it is nonpromising because its bound $90 is less than or equal

to $90, the value of maxprofit. Leaves in the state space tree are
automatically nonpromising because their bounds cannot exceed maxprofit.

Because there are now no promising, unexpanded nodes, we are done.

Using best-first search, we have checked only 11 nodes, which is 6 less than the
number checked using breadth-first search (Figure 6.2) and 2 less than the number
checked using depth-first search (see Figure 5.14). A savings of 2 is not very
impressive; however, in a large state space tree, the savings can be very significant
when the best-first search quickly hones in on an optimal solution. It must be
stressed, however, that there is no guarantee that the node that appears to be best will
actually lead to an optimal solution. In Example 6.2, node (2, 1) appears to be better
than node (2, 2), but node (2, 2) leads to the optimal solution. In general, best-first
search can still end up creating most or all of the state space tree for some instances.

The implementation of best-first search consists of a simple modification to
breadth-first search. Instead of using a queue, we use a priority queue. Recall that
priority queues were discussed in Section 4.4.2. A general algorithm for the best-first
search algorithm follows. Again, the tree T exists only implicitly. In the algorithm,
insert (PQ, v) is a procedure that adds v to the priority queue PQ, whereas remove
(PQ, v) is a procedure that removes the node with the best bound and assigns its
value to v.

www.EBooksWorld.ir

Besides using a priority queue instead of a queue, we have added a check
following the removal of a node from the priority queue. The check determines if the
bound for the node is still better than best. This is how we determine that a node has
become nonpromising after visiting the node. For example, node (1, 2) in Figure 6.3
is promising at the time we visit it. In our implementation, this is when we insert it in
PQ. However, it becomes nonpromising when maxprofit takes the value $90. In our
implementation, this is before we remove it from PQ. We learn this by comparing its
bound with maxprofit after removing it from PQ. In this way, we avoid visiting
children of a node that becomes nonpromising after it is visited.

The specific algorithm for the 0-1 Knapsack problem follows. Because we need
the bound for a node at insertion time, at removal time, and to order the nodes in the
priority queue, we store the bound at the node. The type declaration is as follows:

 Algorithm 6.2
The Best-First Search with Branch-and-Bound Pruning Algorithm for the 0-1
Knapsack problem
Problem: Let n items be given, where each item has a weight and a profit. The
weights and profits are positive integers. Furthermore, let a positive integer W be
given. Determine a set of items with maximum total profit, under the constraint that

www.EBooksWorld.ir

the sum of their weights cannot exceed W .
Inputs: positive integers n and W , arrays of positive integers w and p, each indexed
from 1 to n, and each of which is sorted in nonincreasing order according to the
values of p [i] /w [i].
Outputs: an integer maxprofit that is the sum of the profits of an optimal set.

Function bound is the one in Algorithm 6.1.

6.2 The Traveling Salesperson Problem
In Example 3.12, Nancy won the sales position over Ralph because she found an
optimal tour for the 20-city sales territory in 45 seconds using a Θ (n22n) dynamic
programming algorithm to solve the Traveling Sales-person problem. Ralph used the
brute-force algorithm that generates all 19! tours. Because the brute-force algorithm
takes over 3,800 years, it is still running. We last saw Nancy in Section 5.6 when her
sales territory was expanded to 40 cities. Because her dynamic programming

www.EBooksWorld.ir

algorithm would take more than six years to find an optimal tour for this territory, she
became content with just finding any tour. She used the backtracking algorithm for the
Hamiltonian Circuits problem to do this. Even if this algorithm did find a tour
efficiently, that tour could be far from optimal. For example, if there were a long,
winding road of 100 miles between two cities that were 2 miles apart, the algorithm
could produce a tour containing that road even if it were possible to connect the two
cities by a city that is a mile from each of them. This means Nancy could be covering
her territory very inefficiently using the tour produced by the backtracking algorithm.
Given this, she might decide that she better go back to looking for an optimal tour. If
the 40 cities were highly connected, having the backtracking algorithm produce all
the tours would not work, because there would be a worst-than-exponential number
of tours. Let’s assume that Nancy’s instructor did not get to the branch-and-bound
technique in her algorithms course (this is why Nancy settled for any tour in Section
5.6). After going back to her algorithms text and discovering that the branch-and-
bound technique is specifically designed for optimization problems, Nancy decides
to apply it to the Traveling Salesperson problem. She might proceed as follows.

Recall that the goal in this problem is to find the shortest path in a directed graph
that starts at a given vertex, visits each vertex in the graph exactly once, and ends up
back at the starting vertex. Such a path is called an optimal tour. Because it does not
matter where we start, the starting vertex can simply be the first vertex. Figure 6.4
shows the adjacency matrix representation of a graph containing five vertices, in
which there is an edge from every vertex to every other vertex, and an optimal tour
for that graph.

An obvious state space tree for this problem is one in which each vertex other than
the starting one is tried as the first vertex (after the starting one) at level 1, each
vertex other than the starting one and the one chosen at level 1 is tried as the second
vertex at level 2, and so on. A portion of this state space tree, in which there are five
vertices and in which there is an edge from every vertex to every other vertex, is
shown in Figure 6.5. In what follows, the term “node” means a node in the state
space tree, and the term “vertex” means a vertex in the graph. At each node in Figure
6.5, we have included the path chosen up to that node. For simplicity, we have
denoted a vertex in the graph simply by its index. A node that is not a leaf represents
all those tours that start with the path stored at that node. For example, the node
containing [1, 2, 3] represents all those tours that start with the path [1, 2, 3]. That is,
it represents the tours [1, 2, 3, 4, 5, 1] and [1, 2, 3, 5, 4, 1]. Each leaf represents a
tour. We need to find a leaf that contains an optimal tour. We stop expanding the tree
when there are four vertices in the path stored at a node because, at that time, the fifth
one is uniquely determined. For example, the far-left leaf represents the tour [1, 2, 3,
4, 5, 1] because once we have specified the path [1, 2, 3, 4], the next vertex must be
the fifth one.
Figure 6.4 Adjacency matrix representation of a graph that has an edge from every vertex to every other vertex

www.EBooksWorld.ir

(left), and the nodes in the graph and the edges in an optimal tour (right).

Figure 6.5 A state space tree for an instance of the Traveling Salesperson problem in which there are five
vertices. The indices of the vertices in the partial tour are stored at each node.

To use best-first search, we need to be able to determine a bound for each node.
Because of the objective in the 0-1 Knapsack problem (to maximize profit while
keeping the total weight from exceeding W), we computed an upper bound on the
amount of profit that could be obtained by expanding beyond a given node, and we
called a node promising only if its bound was greater than the current maximum
profit. In this problem, we need to determine a lower bound on the length of any tour
that can be obtained by expanding beyond a given node, and we call the node
promising only if its bound is less than the current minimum tour length. We can

www.EBooksWorld.ir

obtain a bound as follows. In any tour, the length of the edge taken when leaving a
vertex must be at least as great as the length of the shortest edge emanating from that
vertex. Therefore, a lower bound on the cost (length of the edge taken) of leaving
vertex v1 is given by the minimum of all the nonzero entries in row 1 of the adjacency
matrix, a lower bound on the cost of leaving vertex v2 is given by the minimum of all
the nonzero entries in row 2, and so on. The lower bounds on the costs of leaving the
five vertices in the graph represented in Figure 6.4 are as follows:

Because a tour must leave every vertex exactly once, a lower bound on the length of a
tour is the sum of these minimums. Therefore, a lower bound on the length of a tour is

This is not to say that there is a tour with this length. Rather, it says that there can be
no tour with a shorter length.

Suppose we have visited the node containing [1, 2] in Figure 6.5. In that case we
have already committed to making v2 the second vertex on the tour, and the cost of
getting to v2 is the weight on the edge from v1 to v2, which is 14. Any tour obtained by
expanding beyond this node, therefore, has the following lower bounds on the costs
of leaving the vertices:

To obtain the minimum for v2 we do not include the edge to v1, because v2 cannot
return to v1. To obtain the minimums for the other vertices we do not include the edge
to v2, because we have already been at v2. A lower bound on the length of any tour,
obtained by expanding beyond the node containing [1, 2], is the sum of these
minimums, which is

To further illustrate the technique for determining the bound, suppose we have
visited the node containing [1, 2, 3] in Figure 6.5. We have committed to making v2

the second vertex and v3 the third vertex. Any tour obtained by expanding beyond this
node has the following lower bounds on the costs of leaving the vertices:

www.EBooksWorld.ir

To obtain the minimums for v4 and v5 we do not consider the edges to v2 and v3,
because we have already been to these vertices. The lower bound on the length of
any tour we could obtain by expanding beyond the node containing [1, 2, 3] is

In the same way, we can obtain a lower bound on the length of a tour that can be
obtained by expanding beyond any node in the state space tree, and we use these
lower bounds in our best-first search. The following example illustrates this
technique. We will not actually do any calculations in the example. They would be
done as just illustrated.

Example 6.3
Given the graph in Figure 6.4 and using the bounding considerations outlined
previously, a best-first search with branch-and-bound pruning produces the tree in
Figure 6.6. The bound is stored at a nonleaf, whereas the length of the tour is stored
at a leaf. We show the steps that produced the tree. We initialize the value of the best
solution to ∞ (infinity) because there is no candidate solution at the root. (Candidate
solutions exist only at leaves in the state space tree.) We do not compute bounds for
leaves in the state space tree because the algorithm is written so as not to expand
beyond leaves. When referring to a node, we refer to the partial tour stored at the
node. This is different from the way we referred to a node when illustrating the 0-1
Knapsack problem.

The steps are as follows:

1. Visit node containing [1] (the root).
(a) Compute bound to be 21.
(b) Set minlength to ∞.
{This is a lower bound on the}
{length of a tour.}

2. Visit node containing [1, 2].
(a) Compute bound to be 31.

3. Visit node containing [1, 3].
(a) Compute bound to be 22.

4. Visit node containing [1, 4].

www.EBooksWorld.ir

(a) Compute bound to be 30.
5. Visit node containing [1, 5].

(a) Compute bound to be 42.
6. Determine promising, unexpanded node with the smallest bound.

(a) That node is the node containing [1, 3]. We visit its children next.
7. Visit node containing [1, 3, 2].

(a) Compute bound to be 22.
Figure 6.6 The pruned state space tree produced using best-first search with branch-and-bound pruning in
Example 6.3. At each node that is not a leaf in the state space tree, the partial tour is at the top and the bound on
the length of any tour that could be obtained by expanding beyond the node is at the bottom. At each leaf in the
state space tree, the tour is at the top and its length is at the bottom. The node shaded in color is the one at which
an optimal tour is found.

8. Visit node containing [1, 3, 4].
(a) Compute bound to be 27.

9. Visit node containing [1, 3, 5].
(a) Compute bound to be 39.

10. Determine promising, unexpanded node with the smallest bound.
(a) That node is the node containing [1, 3, 2]. We visit its children next.

11. Visit node containing [1,3,2,4].
(a) Because this node is a leaf, compute tour length to be 37.
(b) Because its length 37 is less than ∞, the value of minlength, set minlength to

www.EBooksWorld.ir

37.
(c) The nodes containing [1, 5] and [1, 3, 5] become nonpromising because their

bounds 42 and 39 are greater than or equal to 37, the new value of minlength.
12. Visit node containing [1, 3, 2, 5].

(a) Because this node is a leaf, compute tour length to be 31.
(b) Because its length 31 is less than 37, the value of minlength, set minlength to

31.
(c) The node containing [1, 2] becomes nonpromising because its bound 31 is

greater than or equal to 31, the new value of minlength.
13. Determine promising, unexpanded node with the smallest bound.

(a) That node is the node containing [1, 3, 4]. We visit its children next.
14. Visit node containing [1, 3, 4, 2].

(a) Because this node is a leaf, compute tour length to be 43.
15. Visit node containing [1, 3, 4, 5].

(a) Because this node is a leaf, compute tour length to be 34.
16. Determine promising, unexpanded node with the smallest bound.

(a) The only promising, unexpanded node is the node containing [1, 4]. We visit
its children next.

17. Visit node containing [1, 4, 2].
(a) Compute bound to be 45.
(b) Determine that the node is nonpromising because its bound 45 is greater than

or equal to 31, the value of minlength.
18. Visit node containing [1, 4, 3].

(a) Compute bound to be 38.
(b) Determine that the node is nonpromising because its bound 38 is greater than

or equal to 31, the value of minlength.
19. Visit node containing [1, 4, 5].

(a) Compute bound to be 30.
20. Determine promising, unexpanded node with the smallest bound.

(a) The only promising, unexpanded node is the node containing [1, 4, 5]. We
visit its children next.

21. Visit node containing [1, 4, 5, 2].
(a) Because this node is a leaf, compute tour length to be 30.
(b) Because its length 30 is less than 31, the value of minlength, set minlength to

30.
22. Visit node containing [1, 4, 5, 3].

www.EBooksWorld.ir

(a) Because this node is a leaf, compute tour length to be 48.
23. Determine promising, unexpanded node with the smallest bound.

(a) There are no more promising, unexpanded nodes. We are done.

We have determined that the node containing [1, 4, 5, 2], which represents the tour
[1,4, 5, 2, 3, 1], contains an optimal tour, and that the length of an optimal tour is 30.

There are 17 nodes in the tree in Figure 6.6, whereas the number of nodes in the
entire state space tree is 1 + 4 + 4 × 3 + 4 × 3 × 2 = 41.

We will use the following data type in the algorithm that implements the strategy
used in the previous example:

The field path contains the partial tour stored at the node. For example, in Figure 6.6
the value of path for the far left child of the root is [1, 2]. The algorithm follows.

 Algorithm 6.3
The Best-First Search with Branch-and-Bound Pruning Algorithm for the
Traveling Salesperson problem
Problem: Determine an optimal tour in a weighted, directed graph. The weights are
nonnegative numbers.
Inputs: a weighted, directed graph, and n, the number of vertices in the graph. The
graph is represented by a two-dimensional array W , which has both its rows and
columns indexed from 1 to n, where W [i] [j] is the weight on the edge from the ith
vertex to the jth vertex.
Outputs: variable minlength, whose value is the length of an optimal tour, and
variable opttour, whose value is an optimal tour.

www.EBooksWorld.ir

You are asked to write functions length and bound in the exercises. Function
length returns the length of the tour u.path, and function bound returns the bound for a
node using the considerations discussed.

A problem does not necessarily have a unique bounding function. In the Traveling
Salesperson problem, for example, we could observe that every vertex must be
visited exactly once, and then use the minimums of the values in the columns in the
adjacency matrix instead of the minimums of the values in the rows. Alternatively, we
could take advantage of both the rows and the columns by noting that every vertex
must be entered and exited exactly once. For a given edge, we could associate half of
its weight with the vertex it leaves and the other half with the vertex it enters. The
cost of visiting a vertex is then the sum of the weights associated with entering and
exiting it. For example, suppose we are determining the initial bound on the length of
a tour. The minimum cost of entering v2 is obtained by taking 1/2 of the minimum of

www.EBooksWorld.ir

the values in the second column. The minimum cost of exiting v2 is obtained by taking
1/2 of the minimum of the values in the second row. The minimum cost of visiting v2

is then given by

Using this bounding function, a branch-and-bound algorithm checks only 15 vertices
in the instance in Example 6.3.

When two or more bounding functions are available, one bounding function may
produce a better bound at one node whereas another produces a better bound at
another node. Indeed, as you are asked to verify in the exercises, this is the case for
our bounding functions for the Traveling Sales-person problem. When this is the
case, the algorithm can compute bounds using all available bounding functions, and
then use the best bound. However, as discussed in Chapter 5, our goal is not to visit
as few nodes as possible, but rather to maximize the overall efficiency of the
algorithm. The extra computations done when using more than one bounding function
may not be offset by the savings realized by visiting fewer nodes.

Recall that a branch-and-bound algorithm might solve one large instance
efficiently but check an exponential (or worse) number of nodes for another large
instance. Returning to Nancy’s dilemma, what is she to do if even the branch-and-
bound algorithm cannot solve her 40-city instance efficiently? Another approach to
handling problems such as the Traveling Salesperson problem is to develop
approximation algorithms. Approximation algorithms are not guaranteed to yield
optimal solutions, but rather yield solutions that are reasonably close to optimal.
They are discussed in Section 9.5. In that section we return to the Traveling
Salesperson problem.

 6.3 Abductive Inference (Diagnosis)
This section requires knowledge of discrete probability theory and Bayes’ theorem.

An important problem in artificial intelligence and expert systems is determining
the most probable explanation for some findings. For example, in medicine we want
to determine the most probable set of diseases, given a set of symptoms. In the case
of an electronic circuit, we want to find the most probable explanation for a failure at
some point in the circuit. Another example is the determination of the most probable
causes for the failure of an automobile to function properly. This process of
determining the most probable explanation for a set of findings is called abductive
inference.

For the sake of focus, we use medical terminology. Assume that there are n
diseases, d1, d2, … , dn, each of which may be present in a patient. We know that the

www.EBooksWorld.ir

patient has a certain set of symptoms S. Our goal is to find the set of diseases that are
most probably present. Technically, there could be two or more sets that are probably
present. However, we often discuss the problem as if a unique set is most probably
present.

The Bayesian network has become a standard for representing probabilistic
relationships such as those between diseases and symptoms. It is beyond our scope to
discuss belief networks here. They are discussed in detail in Neapolitan (1990,
2003) and Pearl (1988). For many Bayesian network applications, there exist
efficient algorithms for determining the prior probability (before any symptoms are
discovered) that a particular set of diseases contains the only diseases present in the
patient. These algorithms are also discussed in Neapolitan (1990, 2003) and Pearl
(1988). Here we will simply assume that the results of the algorithms are available to
us. For example, these algorithms can determine the prior probability that d1, d3, and
d6 are the only diseases present in the patient. We will denote this probability by

where

These algorithms can also determine the probability that d1, d3, and d6 are the only
diseases present, conditional on the information that the symptoms in S are present.
We will denote this conditional probability by

Given that we can compute these probabilities (using the algorithms mentioned
previously), we can solve the problem of determining the most probable set of
diseases (conditional on the information that some symptoms are present) using a
state space tree like the one in the 0-1 Knapsack problem. We go to the left of the root
to include d1, and we go to the right to exclude it. Similarly, we go to the left of a
node at level 1 to include d2, and we go to the right to exclude it, and so on. Each leaf
in the state space tree represents a possible solution (that is, the set of diseases that
have been included up to that leaf). To solve the problem, we compute the
conditional probability of the set of diseases at each leaf, and determine which one
has the largest conditional probability.

To prune using best-first search, we need to find a bounding function. The
following theorem accomplishes this for a large class of instances.

 Theorem 6.1
If D and D’ are two sets of diseases such that

www.EBooksWorld.ir

Proof: According to Bayes’ theorem,

The first inequality is by the assumption in this theorem, and the second follows from
the fact that any probability is less than or equal to 1. This proves the theorem.

For a given node, let D be the set of diseases that have been included up to that
node, and for some descendant of that node, let D’ be the set of diseases that have
been included up to that descendant. Then D ⊆ D’. Often it is reasonable to assume
that

The reason is that usually it is at least as probable that a patient has a set of diseases
as it is that the patient has that set plus even more diseases. (Recall that these are
prior probabilities before any symptoms are observed.) If we make this assumption,
by Theorem 6.1,

Therefore, p (D) /p (S) is an upper bound on the conditional probability of the set of
diseases in any descendant of the node. The following example illustrates how this
bound is used to prune branches.

Example 6.4
Suppose there are four possible diseases d1, d2, d3, and d4 and a set of symptoms S.
The input to this example would also include a Bayesian network containing the
probabilistic relationships among the diseases and the symptoms. The probabilities
used in this example would be computed from this Bayesian network using the
methods discussed earlier. These probabilities are not computed elsewhere in this
text. We assign arbitrary probabilities to illustrate the best-first search algorithm.

www.EBooksWorld.ir

When using the results from one algorithm (in this case, the one for doing inference in
a belief network) in another algorithm (in this case, the best-first search algorithm), it
is important to recognize where the first algorithm supplies results that can simply be
assumed in the second algorithm.

Figure 6.7 is the pruned state space tree produced by a best-first search.
Probabilities have been given arbitrary values in the tree. The conditional
probability is at the top and the bound is at the bottom in each node. The node shaded
in color is the one at which the best solution is found. As was done in Section 6.1,
nodes are labeled according to their depth and position from the left in the tree. The
steps that produce the tree follow. The variable best is the current best solution,
whereas p (best | S) is its conditional probability. Our goal is to determine a value of
best that maximizes this conditional probability. It is also assumed arbitrarily that
Figure 6.7 The pruned state space tree produced using best-first search with branch-and-bound pruning in
Example 6.4. At each node, the conditional probability of the diseases included up to that node is at the top, and the
bound on the conditional probability that could be obtained by expanding beyond the node is at the bottom. The
node shaded in color is the one at which an optimal set is found.

1. Visit node (0, 0) (the root).
(a) Compute its conditional probability. {∅ is the empty set. This means that no

www.EBooksWorld.ir

diseases are present.}

(b) Set

(c) Compute its prior probability and bound.

2. Visit node (1, 1).
(a) Compute its conditional probability.

(b) Because 0.4 > p (best|S), set

(c) Compute its prior probability and bound.

3. Visit node (1, 2).
(a) Its conditional probability is simply that of its parent—namely, 0.1.
(b) Its prior probability and bound are simply those of its parent— namely, 0.9

and 90.
4. Determine promising, unexpanded node with the largest bound.

(a) That node is node (1, 2). We visit its children next.
5. Visit node (2, 3).

(a) Compute its conditional probability.

(b) Compute its prior probability and bound.

6. Visit node (2, 4).
(a) Its conditional probability is simply that of its parent—namely, 0.1.

www.EBooksWorld.ir

(b) Its prior probability and bound are simply those of its parent— namely, .9 and
90.

7. Determine promising, unexpanded node with the largest bound.
(a) That node is node (2, 4). We visit its children next.

8. Visit node (3, 3).
(a) Compute its conditional probability.

(b) Compute its conditional probability and bound.

(c) Determine that it is nonpromising because its bound .2 is less than or equal to
.4, the value of p (best|S).

9. Visit node (3, 4).
(a) Its conditional probability is simply that of its parent—namely, 0.1.
(b) Its prior probability and bound are simply those of its parent– namely, 0.9 and

90.
10. Determine promising, unexpanded node with the largest bound.

(a) That node is node (3, 4). We visit its children next.
11. Visit node (4, 3).

(a) Compute its conditional probability.

(b) Because 0.6 > p (best|S), set

(c) Set its bound to 0 because it is a leaf in the state space tree.
(d) At this point, the node (2, 3) becomes nonpromising because its bound 0.5 is

less than or equal to 0.6, the new value of p (best|S).
12. Visit node (4, 4).

(a) Its conditional probability is simply that of its parent—namely, 0.1.
(b) Set its bound to 0 because it is a leaf in the state space tree.

13. Determine promising, unexpanded node with the largest bound.
(a) That node is node (1, 1). We visit its children next.

14. Visit node (2, 1).
(a) Compute its conditional probability.

www.EBooksWorld.ir

(b) Compute its prior probability and bound.

(c) Determine that it is nonpromising because its bound 0.3 is less than or equal
to 0.6, the value of p (best|S).

15. Visit node (2, 2).
(a) Its conditional probability is simply that its parent–namely, 0.4.
(b) Its prior probability and bound are simply those of its parent–namely, 0.009

and 0.9.
16. Determine promising, unexpanded node with the greatest bound.

(a) The only promising, unexpanded node is node (2, 2). We visit its children
next.

17. Visit node (3, 1).
(a) Compute its conditional probability.

(b) Compute its prior probability and bound.

(c) Determine that it is nonpromising because its bound 0.1 is less than or equal
to 0.6, the value of p (best|S).

18. Visit node (3, 2).
(a) Its conditional probability is simply that of its parent—namely, 0.4.
(b) Its prior probability and found are simply those of its parent— namely, 0.009

and 0.9.
19. Determine promising, unexpanded node with the largest bound.

(a) The only promising, unexpanded node is node (3, 2). We visit its children
next.

20. Visit node (4, 1).
(a) Compute its conditional probability.

(b) Because 0.65 > p (best|S), set

www.EBooksWorld.ir

(c) Set its bound to 0 because it is a leaf in the state space tree.
21. Visit node (4, 2).

(a) Its conditional probability is simply that of its parent—namely, 0.4.
(b) Set its bound to 0 because it is a leaf in the state space tree.

22. Determine promising, unexpanded node with the largest bound.
(a) There are no more promising, unexpanded nodes. We are done.

We have determined that the most probable set of diseases is {d1, d4} and that p (d1,
d4|S) = 0.65.

A reasonable strategy in this problem would be to initially sort the diseases in
nonincreasing order according to their conditional probabilities. There is no
guarantee, however, that this strategy will minimize the search time. We have not
done this in Example 6.4, and 15 nodes were checked. In the exercises, you establish
that if the diseases were sorted, 23 nodes would be checked.

Next we present the algorithm. It uses the following declaration:

The field D contains the indices of the diseases included up to the node. One of the
inputs to this algorithm is a Bayesian network BN. As mentioned previously, a
Bayesian network represents the probabilistic relationships among diseases and
symptoms. The algorithms referenced at the beginning of this section can compute the
necessary probabilities from such a network.

The following algorithm was developed by Cooper (1984):

 Algorithm 6.4
Cooper’s Best-First Search with Branch-and-Bound Pruning Algorithm for
Abductive Inference
Problem: Determine a most probable set of diseases (explanation) given a set of
symptoms. It is assumed that if a set of diseases D is a subset of a set of diseases D’,
then p (D’) ≤ p (D).
Inputs: positive integer n, a Bayesian network BN representing the probabilistic
relationships among n diseases and their symptoms, and a set of symptoms S.

www.EBooksWorld.ir

Outputs: a set best containing the indices of the diseases in a most probable set
(conditional on S), and a variable pbest that is the probability of best given S.

The notation p (D) stands for the prior probability of D, p (S) stands for the prior
probability of S, and p (D|S) stands for the conditional probability of D given S.
These values would be computed from the Bayesian network BN using the algorithms
referenced at the beginning of this section.

We have written the algorithm strictly according to our guidelines for writing best-

www.EBooksWorld.ir

first search algorithms. An improvement is possible. There is no need to call function
bound for the right child of a node. The reason is that the right child contains the
same set of diseases as the node itself, which means that its bound is the same.
Therefore, the right child is pruned only if, at the left child, we change pbest to a
value greater than or equal to this bound. We can modify our algorithm to prune the
right child when this happens and to expand to the right child when it does not
happen.

Like the other problems described in this chapter, the problem of Abductive
Inference is in the class of problems discussed in Chapter 9.

If there is more than one solution, the preceding algorithm only produces one of
them. It is straightforward to modify the algorithm to produce all the best solutions. It
is also possible to modify it to produce the m most probable explanations, where m
is any positive integer. This modification is discussed in Neapolitan (1990).
Furthermore, Neapolitan (1990) analyzes the algorithm in detail.

EXERCISES

Section 6.1
1. Use Algorithm 6.1 (The Breadth-First Search with Branch-and-Bound Pruning

algorithm for the 0-1 Knapsack problem) to maximize the profit for the following
problem instance. Show the actions step by step.

2. Implement Algorithm 6.1 on your system and run it on the problem instance of
Exercise 1.

3. Modify Algorithm 6.1 to produce an optimal set of items. Compare the
performance of your algorithm with that of Algorithm 6.1.

4. Use Algorithm 6.2 (The Best-First Search with Branch-and-Bound Pruning
algorithm for the 0-1 Knapsack problem) to maximize the profit for the problem
instance of Exercise 1. Show the actions step by step.

5. Implement Algorithm 6.2 on your system and run it on the problem instance of
Exercise 1.

www.EBooksWorld.ir

6. Compare the performance of Algorithm 6.1 with that of Algorithm 6.2 for large
instances of the problem.

Section 6.2
7. Use Algorithm 6.3 (The Best-First Search with Branch-and-Bound Pruning

Algorithm for the Traveling Salesperson problem) to find an optimal tour and the
length of the optimal tour for the graph below.

Show the actions step by step.

8. Use Algorithm 6.3 to find an optimal tour for the graph whose adjacency matrix
is given by the following array. Show your actions step by step.

9. Write functions length and bound used in Algorithm 6.3.

10. Consider the Traveling Salesperson problem.
(a) Write the brute-force algorithm for this problem that considers all possible

tours.
(b) Implement the algorithm and use it to solve instances of size 6, 7, 8, 9, 10, 15,

and 20.
(c) Compare the performance of this algorithm to that of Algorithm 6.3 using the

instances developed in (b).

11. Implement Algorithm 6.3 on your system, and run it on the problem instance of
Exercise 7. Use different bounding functions and study the results.

12. Compare the performance of your dynamic programming algorithm (see Section

www.EBooksWorld.ir

3.6, Exercise 27) for the Traveling Salesperson problem with that of Algorithm
6.3 using large instances of the problem.

Section 6.3
13. Revise Algorithm 6.4 (Cooper’s Best-First Search with Branch-and-Bound

Pruning algorithm for Abductive Inference) to produce the m most probable
explanations, where m is any positive integer.

14. Show that if the diseases in Example 6.4 were sorted in nonincreasing order
according to their conditional probabilities, the number of nodes checked would
be 23 instead of 15. Assume that p(d4) = 0.008 and p (d4, d1) = 0.007.

15. A set of explanations satisfies a comfort measure p if the sum of the probabilities
of the explanations is greater than or equal to p. Revise Algorithm 6.4 to produce
a set of explanations that satisfies p, where 0 ≤ p ≤ 1. Do this with as few
explanations as possible.

16. Implement Algorithm 6.4 on your system. The user should be able to enter an
integer m, as described in Exercise 11, or a comfort measure p, as described in
Exercise 13.

Additional Exercises
17. Can the branch-and-bound design strategy be used to solve the problem discussed

in Exercise 34 in Chapter 3? Justify your answer.

18. Write a branch-and-bound algorithm for the problem of scheduling with deadlines
discussed in Section 4.3.2.

19. Can the branch-and-bound design strategy be used to solve the problem discussed
in Exercise 26 in Chapter 4? Justify your answer.

20. Can the branch-and-bound design strategy be used to solve the Chained Matrix
Multiplication problem discussed in Section 3.4? Justify your answer.

21. List three more applications of the branch-and-bound design strategy.

www.EBooksWorld.ir

Chapter 7

Introduction to Computational
Complexity: The Sorting Problem

We presented a quadratic-time sorting algorithm (Exchange Sort) in Section 1.1. If
computer scientists had been content with this sorting algorithm, many applications
would now be running significantly slower and others would not be possible at all.
Recall from Table 1.4 that it would take years to sort 1 billion keys using a
quadratic-time algorithm. More efficient sorting algorithms have been developed. In
particular, in Section 2.2 we saw Mergesort, which is Θ (n lg n) in the worst case.
Although this algorithm could not sort 1 billion items so quickly that the time would
be imperceptible to a human, Table 1.4 shows that it could sort the items in an amount
of time that would be tolerable in an offline application. Suppose someone wanted 1
billion items to be sorted almost immediately in an online application. That person
might labor for many hours or even many years trying to develop a linear-time or
better sorting algorithm. Wouldn’t that individual be distraught to learn, after
devoting a lifetime of work to this effort, that such an algorithm was not possible?
There are two approaches to attacking a problem. One is to try to develop a more
efficient algorithm for the problem. The other is to try to prove that a more efficient
algorithm is not possible. Once we have such a proof, we know that we should quit
trying to obtain a faster algorithm. As we shall see, for a large class of sorting
algorithms, we have proven that an algorithm better than Θ (n lg n) is not possible.

7.1 Computational Complexity

www.EBooksWorld.ir

The preceding chapters were concerned with developing and analyzing algorithms
for problems. We often used different approaches to solve the same problem with the
hope of finding increasingly efficient algorithms for the problem. When we analyze a
specific algorithm, we determine its time (or memory) complexity or the order of its
time (or memory) complexity. We do not analyze the problem that the algorithm
solves. For example, when we analyzed Algorithm 1.4 (Matrix Multiplication), we
found that its time complexity was n3. However, this does not mean that the problem
of matrix multiplication requires a Θ (n3) algorithm. The function n3 is a property of
that one algorithm; it is not necessarily a property of the problem of matrix
multiplication. In Section 2.5 we developed Strassen’s matrix multiplication
algorithm with a time complexity in Θ (n2.81). . Furthermore, we mentioned that a Θ
(n2.38) variation of the algorithm has been developed. An important question is
whether it is possible to find an even more efficient algorithm.

Computational complexity, which is a field that runs hand-in-hand with algorithm
design and analysis, is the study of all possible algorithms that can solve a given
problem. A computational complexity analysis tries to determine a lower bound on
the efficiency of all algorithms for a given problem. At the end of Section 2.5, we
mentioned that it has been proven that the problem of matrix multiplication requires
an algorithm whose time complexity is in Ω (n2). It was a computational complexity
analysis that determined this. We state this result by saying that a lower bound for the
problem of matrix multiplication is Ω (n2). This does not mean that it must algorithm
for matrix multiplication. It means only that is impossible to create one that is better
than Θ (n2). Because our best algorithm is Θ (n2.38) and our lower bound is Ω (n2) , it
is worthwhile to continue investigating the problem. The investigation can proceed in
two directions. On one hand, we can try to find a more efficient algorithm using
algorithm design methodology, while on the other hand we can try to obtain a greater
lower bound using computational complexity analysis. Perhaps someday we will
develop an algorithm that is better than Θ (n2.38), or perhaps someday we will prove
that there is a lower bound greater than Ω (n

2). In general, our goal for a given
problem is to determine a lower of Ω (f (n)) and develop a Θ (f (n)) algorithm for the
problem. Once we have done this, we know that, except for improving the constant,
we cannot improve on the algorithm any further.

Some authors use the term “computational complexity analysis” to include both
algorithm and problem analysis. Thoughout this text, when we refer to computational
complexity analysis, we mean just problem analysis.

We introduce computational complexity analysis by studying the Sorting problem.
There are two reasons for choosing this problem. First, quite a few algorithms have
been devised that solve the problem. By studying and comparing these algorithms, we
can gain insight into how to choose among several algorithms for the same problem
and how to improve a given algorithm. Second, the problem of sorting is one of the
few problems for which we have been successful in developing algorithms whose

www.EBooksWorld.ir

time complexities are about as good as our lower bound. That is, for a large class of
sorting algorithms, we have determined a lower bound of Ω (n lg n) and we have
developed Ω (n lg n) algorithms. Therefore, we can say that we have solved the
Sorting problem as far as this class of algorithms is concerned.

The class of sorting algorithms for which we have obtained algorithms about as
good as our lower bound includes all algorithms that sort only by comparison of
keys. As discussed at the beginning of Chapter 1, the word “key” is used because
records obtain a unique identifier, called key, that is an element of an ordered set.
Given that records are arranged in some arbitrary sequence, the sorting task is to
rearrange them so that they are in order according to the values of the keys. In our
algorithms, the keys are stored in an array, and we do not refer to the nonkey fields.
However, it is assumed that these fields are rearranged along with the key.
Algorithms that sort only by comparisons of keys can compare two keys to
determine which is larger, and can copy keys, but cannot do other operations on them.
The sorting algorithms we have encountered so far (Algorithms 1.3, 2.4, and 2.6) fall
into this class.

In Sections 7.2 through 7.8, we discuss algorithms that sort only by comparisons of
keys. Specifically, Section 7.2 discusses Insertion Sort and Selection Sort, two of the
most efficient quadratic-time sorting algorithms. In Section 7.3 we show that, as long
as we limit ourselves to a restriction in Insertion Sort and Selection Sort, we cannot
improve on quadratic time. Sections 7.4 and 7.5 revisit our Θ (n lg n) sorting
algorithms, Mergesort and Quicksort. Section 7.6 presents another Θ (n lg n) sorting
algorithm, Heapsort. In Section 7.7 we compare our three Θ (n lg n) sorting
algorithms. Section 7.8 shows the proof that Ω (n lg n) is a lower bound for
algorithms that sort by comparing keys. In Section 7.9 we discuss Radix Sort, which
is a sorting algorithm that does not sort by comparing keys.

We analyze the algorithms in terms of both the number of comparisons of keys and
the number of assignments of records. For example, in Algorithm 1.3 (Exchange
Sort), the exchange of S [i] and S [j] can be implemented as follows:

This means that three assignments of records are done to accomplish one exchange.
We analyze the number of assignments of records because, when the records are
large, the time taken to assign a record is quite costly. We also analyze how much
extra space the algorithms require besides the space needed to store the input. When
the extra space is a constant (that is, when it does not increase with n, the number of
keys to be sorted), the algorithm is called an in-place sort. Finally, we assume that
we are always sorting in nondecreasing order.
Figure 7.1 An example illustrating what Insertion Sort does when i = 6 and j = 2 (top). The array before inserting,

www.EBooksWorld.ir

and (bottom) the insertion step.

7.2 Insertion Sort and Selection Sort
An insertion sort algorithm is one that sorts by inserting records in an existing sorted
array. An example of a simple insertion sort is as follows. Assume that the keys in the
first i − 1 array slots are sorted. Let x be the value of the key in the ith slot. Compare
x in sequence with the key in the (i − 1)st slot, the one in the (i − 2)nd slot, etc., until
a key is found that is smaller than x. Let j be the slot where that key is located. Move
the keys in slots j +1 through i − 1 to slots j +2 through i, and insert x in the (j + 1)st
slot. Repeat this process for i = 2 through i = n. Figure 7.1 illustrates this sort. An
algorithm for this sort follows:

 Algorithm 7.1
Insertion Sort
Problem: Sort n keys in nondecreasing order.
Inputs: positive integer n; array of keys of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.

www.EBooksWorld.ir

Analysis of Algorithm 7.1
 Worst-Case Time Complexity Analysis of Number of Comparisons of Keys

(Insertion Sort)

Basic operation: the comparison of S [j] with x.

Input size: n, the number of keys to be sorted.

For a given i, the comparison of S [j] with x is done most often when the while loop
is exited because j becomes equal to 0. Assuming the second condition in an &&
expression is not evaluated when the first condition is false, the comparison of S [j]
with x is not done when j is 0. Therefore, this comparison is done at most i−1 times
for a given i. Because i ranges in value from 2 to n, the total number of comparisons
is at most

It is left as an exercise to show that, if the keys are originally in nonincreasing order
in the array, this bound is achieved. Therefore,

Analysis of Algorithm 7.1
 Average-Case Time Complexity Analysis of Number of Comparisons of Keys

www.EBooksWorld.ir

(Insertion Sort)

For a given i, there are i slots in which x can be inserted. That is, x can stay in the ith
slot, go in the (i − 1)st slot, go in the (i − 2)nd slot, etc. Because we have not
previously inspected x or used it in the algorithm, we have no reason to believe that
it is more likely to be inserted in any one slot than in any other. Therefore, we assign
equal probabilities to each of the first i slots. This means that each slot has the
probability 1/i. The following list shows the number of comparisons done when x is
inserted in each slot.

The reason the number of comparisons is i−1 and not i when x is inserted in the first
slot is that the first condition in the expression controlling the while loop is false
when j = 0, which means that the second condition is not evaluated. For a given i, the
average number of comparisons needed to insert x is

Therefore, the average number of comparisons needed to sort the array is

The last equality is obtained using the results of Examples A.1 and A.9 in Appendix
A and doing some algebraic manipulations. We have shown that

Next we analyze the extra space usage.

Analysis of Algorithm 7.1

www.EBooksWorld.ir

 Analysis of Extra Space Usage (Insertion Sort)

The only space usage that increases with n is the size of the input array S. Therefore,
the algorithm is an in-place sort, and the extra space is in Θ (1).

In the exercises, you are asked to show that the worst-case and average-case time
complexities for the number of assignments of records done by Insertion Sort are
given by

Next we compare Insertion Sort with the other quadratic-time algorithm
encountered in this text—namely, Exchange Sort (Algorithm 1.3). Recall that the
every-case time complexity of the number of comparisons of keys in Exchange Sort is
given by

In the exercises, you are asked to show that the worst-case and average-case time
complexities for the number of assignments of records done by Exchange Sort are
given by

Clearly, Exchange Sort is an in-place sort.
Table 7.1 summarizes our results concerning Exchange Sort and Insertion Sort. We

see from this table that in terms of comparisons of keys, Insertion Sort always
performs at least as well as Exchange Sort and, on the average, performs better. In
terms of assignments of records, Insertion Sort performs better both in the worst-case
and on the average. Because both are in-place sorts, Insertion Sort is the better
algorithm. Notice that another algorithm, Selection Sort, is also included in Table
7.1. This algorithm is a slight modification of Exchange Sort and removes one of the
disadvantages of Exchange Sort. We present it next.

• Table 7.1 Analysis summary for Exchange Sort, Insertion Sort, and Selection Sort

www.EBooksWorld.ir

 Algorithm 7.2
Selection Sort
Problem: Sort n keys in nondecreasing order.
Inputs: positive integer n; array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.

Clearly, this algorithm has the same time complexity as Exchange Sort in terms of
comparisons of keys. However, the assignments of records are significantly different.
Instead of exchanging S [i] and S [j] every time S [j] is found to be smaller than S [i],
as Exchange Sort does (see Algorithm 1.3), Selection Sort simply keeps track of the
index of the current smallest key among the keys in the ith through the nth slots. After
determining that record, it exchanges it with the record in the ith slot. In this way, the
smallest key is placed in the first slot after the first pass through the for-i loop, the
second smallest key is put in the second slot after the second pass, and so on. The
result is the same as that of Exchange Sort. However, by doing only one exchange at
the bottom of the for-i loop, we have made the number of exchanges exactly n − 1.
Because three assignments are needed to do an exchange, the every-case time

www.EBooksWorld.ir

complexity of the number of assignments of records done by Selection Sort is given
by

Recall that the average-case number of assignments of records for Exchange Sort
is about 3n2/4. Therefore, on the average, we’ve replaced quadratic time with linear
time. Exchange Sort sometimes does better than Selection Sort. For example, if the
records are already sorted, Exchange Sort does no assignments of records.

How does Selection Sort compare with Insertion Sort? Look again at Table 7.1. In
terms of comparisons of keys, Insertion Sort always performs at least as well as
Selection Sort and, on the average, performs better. However, Selection Sort’s time
complexity in terms of assignments of records is linear whereas Insertion Sort’s is
quadratic. Recall that linear time is much faster than quadratic time when n is large.
Therefore, if n is large and the records are big (so that the time to assign a record is
costly), Selection Sort should perform better.

Any sorting algorithm that selects records in order and puts them in their proper
positions is called a selection sort. This means that Exchange Sort is also a selection
sort. Another selection sort, called Heapsort, is presented in Section 7.6. Algorithm
7.2, however, has been honored with the name “Selection Sort.”

The purpose of comparing Exchange Sort, Insertion Sort, and Selection Sort was to
introduce a complete comparison of sorting algorithms as simply as possible. In
practice, none of these algorithms is practical for extremely large instances because
all of them are quadratic-time in both the average case and the worst case. Next we
show that as long as we limit ourselves to algorithms in the same class as these three
algorithms, it is not possible to improve on quadratic time as far as comparisons of
keys are concerned.

7.3 Lower Bounds for Algorithms that Remove at Most
One Inversion per Comparison

After each comparison, Insertion Sort either does nothing or moves the key in the jth
slot to the (j + 1)st slot. By moving the key in the jth slot up one slot, we have
remedied the fact that x should come before that key. However, this is all that we
have accomplished. We show that all sorting algorithms that sort only by
comparisons of keys, and accomplish such a limited amount of rearranging after each
comparison, require at least quadratic time. We obtain our results under the
assumption that the keys to be sorted are distinct. Clearly, the worst-case bound still
holds true with this restriction removed because a lower bound on the worst-case
performance of inputs from some subsets of inputs is also a lower bound when all
inputs are considered.

www.EBooksWorld.ir

In general, we are concerned with sorting n distinct keys that come from any
ordered set. However, without loss of generality, we can assume that the keys to be
sorted are simply the positive integers 1, 2, …, n, because we can substitute 1 for the
smallest key, 2 for the second smallest, and so on. For example, suppose we have the
alpha input [Ralph, Clyde, Dave]. We can associate 1 with Clyde, 2 with Dave, and 3
with Ralph to obtain the equivalent input [3, 1, 2]. Any algorithm that sorts these
integers only by comparisons of keys would have to do the same number of
comparisons to sort the three names.

A permutation of the first n positive integers can be thought of as an ordering of
those integers. Because there are n! permutations of the first n positive integers (see
Section A.7), there are n! different orderings of those integers. For example, the
following six permutations are all the orderings of the first three positive integers:

This means that there are n! different inputs (to a sorting algorithm) containing n
distinct keys. These six permutations are the different inputs of size 3.

We denote a permutation by [k1, k2, … , kn]. That is, ki is the integer at the ith
position. For the permutation [3, 1, 2], for example,

An inversion in a permutation is a pair

For example, the permutation [3, 2, 4, 1, 6, 5] contains the inversions (3, 2), (3, 1),
(2, 1), (4, 1), and (6, 5). Clearly, a permutation contains no inversions if and only if it
is the sorted ordering [1, 2, … , n]. This means that the task of sorting n distinct keys
is the removal of all inversions in permutation. We now state the main result of this
section.

 Theorem 7.1
Any algorithm that sorts n distinct keys only by comparisons of keys and removes at
most one inversion after each comparison must in the worst case do at least

and, on the average, do at least

Proof: To establish the result for the worst case, we need only show that there is a

www.EBooksWorld.ir

permutation with n (n − 1) /2 inversions, because when that permutation is the input,
the algorithm will have to remove that many inversions and therefore do at least that
many comparisons. Showing that [n, n − 1, … , 2, 1] is such a permutation is left as
an exercise.

To establish the result for the average case, we pair the permutation [kn, kn−1, … ,
k1] with the permutation [k1, k2, … , kn]. This permutation is called the transpose of
the original permutation. For example, the transpose of [3, 2, 4, 1, 5] is [5, 1, 4, 2, 3].
It is not hard to see that if n > 1, each permutation has a unique transpose that is
distinct from the permutation itself. Let

r and s be integers between 1 and n such that s > r.

Given a permutation, the pair (s, r) is an inversion in either the permutation or its
transpose but not in both. Showing that there are n (n − 1) /2 such pairs of integers
between 1 and n is left as an exercise. This means that a permutation and its
transpose have exactly n (n − 1) /2 inversions between them. So the average number
of inversions in a permutation and its transpose is

Therefore, if we consider all permutations equally probable for the input, the average
number of inversions in the input is also n (n − 1) /4. Because we assumed that the
algorithm removes at most one inversion after each comparison, on the average it
must do at least this many comparisons to remove all inversions and thereby sort the
input.

Insertion Sort removes at most the inversion consisting of S [j] and x after each
comparison, and therefore this algorithm is in the class of algorithms addressed by
Theorem 7.1. It is slightly more difficult to see that Exchange Sort and Selection Sort
are also in this class. To illustrate that this is the case, we present an example using
Exchange Sort. First, recall that the algorithm for Exchange Sort is as follows:

Suppose that currently the array S contains the permutation [2, 4, 3, 1] and we are
comparing 2 with 1. After that comparison, 2 and 1 will be exchanged, thereby

www.EBooksWorld.ir

removing the inversions (2, 1), (4, 1), and (3, 1). However, the inversions (4, 2) and
(3, 2) have been added, and the net reduction in inversions is only one. This example
illustrates the general result that Exchange Sort always has a net reduction of at most
one inversion after each comparison.

Because Insertion Sort’s worst-case time complexity is n (n − 1) /2 and its
average-case time complexity is about n2/4, it is about as good as we can hope to do
(as far as comparisons of keys are concerned) with algorithms that sort only by
comparisons of keys and remove at most one inversion after each comparison. Recall
that Mergesort (Algorithms 2.2 and 2.4) and Quicksort (Algorithm 2.6) have time
complexities that are better than this. Let’s reinvestigate these algorithms to see how
they differ from ones such as Insertion Sort.

7.4 Mergesort Revisited
Mergesort was introduced in Section 2.2. Here we show that it sometimes removes
more than one inversion after a comparison. Then, we show how it can be improved.

As mentioned in the proof of Theorem 7.1, algorithms that remove at most one
inversion after each comparison will do at least n (n − 1) /2 comparisons when the
input is in reverse order. Figure 7.2 illustrates how Mergesort 2 (Algorithm 2.4)
handles such an input. When the subarrays [3 4] [1 2] are merged, the comparisons
remove more than one inversion. After 3 and 1 are compared, 1 is put in the first
array slot, thereby removing the inversions (3, 1) and (4, 1).
Figure 7.2 Mergesort sorting an input that is in reverse order.

www.EBooksWorld.ir

After 3 and 2 are compared, 2 is put in the second array slot, thereby removing the
inversions (3, 2) and (4, 2).

Recall that the worst-case time complexity of Mergesort’s number of
comparisons of keys is given by

when n is a power of 2, and in general, it is in Θ (n lg n).
We have gained significantly by developing a sorting algorithm that sometimes

removes more than one inversion after a comparison. Recall from Section 1.4.1 that
Θ (n lg n) algorithms can handle very large inputs, whereas quadratic-time
algorithms cannot.

Using the method of “generating functions” for solving recurrence, we can show
that the average-case time complexity of Mergesort’s number of comparison of
keys, when n is a power of 2, is given by

Although that method is not discussed in Appendix B, it can be found in Sahni
(1988). The average case is not much better than the worst case.

It is left as an exercise to show that the every-case time complexity of the number
of assignments of records done by Mergesort is given approximately by

www.EBooksWorld.ir

Next we analyze the space usage for Mergesort.

Analysis of Algorithm 7.2
 Analysis of Extra Space Usage (Mergesort 2)
As discussed in Section 2.2, even the improved version of Mergesort given in
Algorithm 2.4 requires an entire additional array of size n. Furthermore, while the
algorithm is sorting the first subarray, the values of mid, mid+1, low, and high need
to be stored in the stack of activation records. Because the array is always split in the
middle, this stack grows to a depth of lg n . The space for the additional array of
records dominates, which means that in every case the extra space usage is in Θ (n)
records. By “in Θ (n) records” we mean that the number of records is in Θ (n).

Improvements of Mergesort
We can improve the basic Mergesort algorithm in three ways. One is a dynamic
programming version of Mergesort, another is a linked version, and the third is a
more complex merge algorithm.

For the first improvement, look again at the example of applying Mergesort in
Figure 2.2. If you were going to do a mergesort by hand, you would not need to
divide the array until singletons were reached. Rather you could simply start with
singletons, merge the singletons into groups of two, then into groups of four, and so
on until the array was sorted. We can write an iterative version of Mergesort that
mimics this method, and we can thereby avoid the overhead of the stack operations
needed to implement recursion. Notice that this is a dynamic programming approach
to Mergesort. The algorithm for this version follows. The loop in the algorithm treats
the array size as a power of 2. Values of n that are not powers of 2 are handled by
going through the loop 2 lg n times but simply not merging beyond n.

 Algorithm 7.3
Mergesort 3 (Dynamic Programming Version)
Problem: Sort n keys in nondecreasing order.
Inputs: positive integer n; array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.

www.EBooksWorld.ir

With this improvement, we can also decrease the number of assignments of
records. The array U, which is defined locally in procedure merge2 (Algorithm 2.5),
can be defined locally in mergesort3 as an array indexed from 1 to n. After the first
pass through the repeat loop, U will contain the items in S with pairs of singletons
merged. There is no need to copy these items back to S, as is done at the end of
merge2 . Instead, in the next pass through the repeat loop, we can simply merge the
items in U into S. That is, we reverse the roles of the two arrays. In each subsequent
pass we keep reversing the roles. It is left as an exercise to write versions of
mergesort3 and merge3 that do this. In this way we reduce the number of assignments
of records from about 2n lg n to about n lg n. We have established that the every-
case time complexity of the number of assignments of records done by Algorithm
7.3 is given approximately by

The second improvement of Mergesort is a linked version of the algorithm. As
discussed in Section 7.1, the Sorting problem ordinarily involves sorting of records
according to the values of their keys. If the records are large, the amount of extra
space used by Mergesort can be considerable. We can reduce the extra space by
adding a link field to each record. We then sort the records into a sorted linked list by
adjusting the links rather than by moving the records. This means that an extra array
of records need not be created. Because the space occupied by a link is considerably
less than that of a large record, the amount of space saved is significant. Furthermore,
there will be a time savings because the time required to adjust links is less than that
needed to move large records. Figure 7.3 illustrates how the merging is
accomplished using links. The algorithm that follows contains this modification. We
present Mergesort and Merge as one algorithm because we need not analyze them
further. Mergesort is written recursively for the sake of readability. Of course, the
iterative improvement mentioned previously can be implemented along with this

www.EBooksWorld.ir

improvement. If we used both iteration and links, the improvement of repeatedly
reversing the roles of U and S would not be included because no extra array is
needed when linked lists are merged. The data type for the items in the array S in this
algorithm is as follows:
Figure 7.3 Merging using links. Arrows are used to show how the links work. The keys are letters to avoid
confusion with indices.

 Algorithm 7.4
Mergesort 4 (Linked Version)
Problem: Sort n keys in nondecreasing order.
Inputs: positive integer n; array of records, S, of the type just given, indexed from 1
to n.
Outputs: the array S with the values in the key field sorted in nondecreasing order.
The records are in an ordered linked list using the link field.

www.EBooksWorld.ir

It is not necessary to check whether list1 or list2 is 0 on entry to merge4 because
mergesort4 never passes an empty list to merge4 . As was the case for Algorithm 2.4
(Mergesort 2), n and S are not inputs to mergesort4 . The top level call would be

mergesort4 (1, n, listfront);

After execution, listfront would contain the index of the first record in the sorted list.
After sorting, we often want the records to be in sorted sequence in contiguous

array slots (that is, sorted in the usual way) so that we can access them quickly by the
key field using Binary Search (Algorithm 2.1). Once the records have been sorted

www.EBooksWorld.ir

according to the links, it is possible to rearrange them so that they are in sorted
sequence in contiguous array slots using an in-place, Θ (n) algorithm. In the exercises
you are asked to write such an algorithm.

This improvement of Mergesort accomplishes two things. First, it replaces the
need for n additional records with the need for only n links. That is, we have the
following:

Analysis of Algorithm 7.4
 Analysis of Extra Space Usage (Mergesort 4)

In every case, the extra space usage is in Θ (n) links. By “in Θ (n) links” we mean
that the number of links is in Θ (n).

Second, it reduces the time complexity of the number of assignments of records to
0 if we do not need to have the records ordered in contiguous array slots and to Θ (n)
if we do.

The third improvement of Mergesort is a more complex merge algorithm that is
presented in Huang and Langston (1988). That merge algorithm is also Θ (n) but with
a smalI, constant amount of additional space.

7.5 Quicksort Revisited
As a refresher, let’s first repeat the algorithm for Quicksort:

Although its worst-case time complexity is quadratic, we saw in Section 2.4 that
the average-case time complexity of Quicksort’s number of comparisons of keys is
given by

which is not much worse than Mergesort. Quicksort has the advantage over

www.EBooksWorld.ir

Mergesort in that no extra array is needed. However, it is still not an in-place sort
because, while the algorithm is sorting the first subarray, the first and last indices of
the other subarray need to be stored in the stack of activation records. Unlike
Mergesort, we have no guarantee that the array will always be split in the middle. In
the worse case, partition may repeatedly split the array into an empty subarray on the
right and a subarray with one less item on the left. In this way, n − 1 pairs of indices
will end up being stacked, which means that the worst-case extra space usage is in
Θ(n). It is possible to modify Quicksort so that the extra space usage is at most about
lg n. Before showing this and other improvements of Quicksort, let’s discuss the time
complexity of the number of assignments of records by Quicksort.

In the exercises, you are asked to establish that the average number of exchanges
performed by Quicksort is about 0.69 (n + 1) lg n. Assuming that three assignments
are done to perform one exchange, the average-case time complexity of the number
of assignments of records done by Quicksort is given by

Improvements of the Basic Quicksort Algorithm
We can reduce the extra space usage of Quicksort in five different ways. First, in
procedure quicksort, we determine which subarray is larger and always stack that
one while the other is sorted. The following is an analysis of the space used by this
version of quicksort.

 Analysis of Extra Space Usage (Improved Quicksort)

In this version, the worst-case space usage occurs when partition splits the array
exactly in half each time, resulting in a stack depth about equal to lg n. Therefore, the
worst-case space usage is in Θ (lg n) indices.

Second, as discussed in the exercises, there is a version of partition that cuts the
average number of assignments of records significantly. For that version, the
average-case time complexity of the number of assignments of records done by
Quicksort is given by

Third, each of the recursive calls in procedure quicksort causes low, high, and
pivotpoint to be stacked. A good deal of the pushing and popping is unnecessary.
While the first recursive call to quicksort is being processed, only the values of
pivotpoint and high need to be saved on the stack. While the second recursive call is
being processed, nothing needs to be saved. We can avoid the unnecessary operations

www.EBooksWorld.ir

by writing quicksort iteratively and manipulating the stack in the procedure. That is,
we do explicit stacking instead of stacking by recursion. You are asked to do this in
the exercises.

Fourth, as discussed in Section 2.7, recursive algorithms such as Quicksort can be
improved by determining a threshold value at which the algorithm calls an iterative
algorithm instead of dividing an instance further.

Finally, as mentioned in the worst-case analysis of Algorithm 2.6 (Quicksort), the
algorithm is least efficient when the input array is already sorted. The closer the input
array is to being sorted, the closer we are to this worst-case performance. Therefore,
if there is reason to believe that the array may be close to already being sorted, we
can improve the performance by not always choosing the first item as the pivot item.
One good strategy to use in this case is to choose the median of S [low], S[L (low +
high) /2], and S [high] for the pivot point. Of course, if we have no reason to
believe that there is any particular structure in the input array, choosing any item for
the pivot item is, on the average, just as good as choosing any other item. In this case,
all we really gain by taking the median is the guarantee that one of the subarrays will
not be empty (as long as the three values are distinct).

7.6 Heapsort
Unlike Mergesort and Quicksort, Heapsort is an in-place Θ (n lg n) algorithm. First
we review heaps and describe basic heap routines needed for sorting using heaps.
Then we show how to implement these routines.

• 7.6.1 Heaps and Basic Heap Routines
Recall that the depth of a node in a tree is the number of edges in the unique path from
the root to that node, the depth d of a tree is the maximum depth of all nodes in the
tree, and a leaf in a tree is any node with no children (see Section 3.5). An internal
node in a tree is any node that has at least one child. That is, it is any node that is not
a leaf. A complete binary tree is a binary tree that satisfies the following conditions:

• All internal nodes have two children.
• All leaves have depth d.

An essentially complete binary tree is a binary tree that satisfies the following
conditions:

• It is a complete binary tree down to a depth of d − 1.
• The nodes with depth d are as far to the left as possible.

www.EBooksWorld.ir

Although essentially complete binary trees are difficult to define, it is straightforward
to grasp their properties from a picture. Figure 7.4 shows an essentially complete
binary tree.

We can now define a heap. A heap is an essentially complete binary tree such that
Figure 7.4 An essentially complete binary tree.

Figure 7.5 A heap.

• The values stored at the nodes come from an ordered set.
• The value stored at each node is greater than or equal to the values stored at its

children. This is called the heap property.

Figure 7.5 shows a heap. Because we are presently interested in sorting, we will
refer to the items stored in the heap as keys.

Suppose that somehow we have arranged the keys that are to be sorted in a heap. If
we repeatedly remove the key stored at the root while maintaining the heap property,
the keys will be removed in nonincreasing sequence. If, while removing them, we
place them in an array starting with the nth slot and going down to the first slot, they
will be sorted in nondecreasing sequence in the array. After removing the key at the
root, we can restore the heap property by replacing the key at the root with the key
stored at the bottom node (by “bottom node” we mean the far-right leaf), deleting the
bottom node, and calling a procedure siftdown that “sifts” the key now at the root
down the heap until the heap property is restored. The sifting is accomplished by
initially comparing the key at the root with the larger of the keys at the children of the
root. If the key at the root is smaller, the keys are exchanged. This process is repeated

www.EBooksWorld.ir

down the tree until the key at a node is not smaller than the larger of the keys at its
children. Figure 7.6 illustrates this procedure. High-level pseudocode for it is as
follows:

Figure 7.6 Procedure siftdown sifts 6 down until the heap property is restored.

High-level pseudocode for a function that removes the key at the root and restores the
heap property is as follows:

Given a heap of n keys, the following is high-level pseudocode for a procedure
that places the keys in sorted sequence into an array S.

www.EBooksWorld.ir

The only task remaining is to arrange the keys in a heap in the first place. Let’s
assume that they have been arranged in an essentially complete binary tree that does
not necessarily have the heap property (we will see how to do this in the next
subsection). We can transform the tree into a heap by repeatedly calling siftdown to
perform the following operations: First, transform all subtrees whose roots have
depth d−1 into heaps; second, transform all subtrees whose roots have depth d − 2
into heaps; … finally, transform the entire tree (the only subtree whose root has depth
0) into a heap.
Figure 7.7 Using siftdown to make a heap from an essentially complete binary tree. After the steps shown, the
right subtree, whose root has depth d – 2, must be made into a heap, and finally the entire tree must be made into a
heap.

This process is illustrated in Figure 7.7 and is implemented by the procedure
outlined in the following high-level pseudocode.

www.EBooksWorld.ir

Finally, we present high-level pseudocode for Heapsort (it is assumed that the
keys are already arranged in an essentially complete binary tree in H):

It may seem that we were not telling the truth earlier because this Heapsort
algorithm does not appear to be an in-place sort. That is, we need extra space for the
heap. However, next we implement a heap using an array. We show that the same
array that stores the input (the keys to be sorted) can be used to implement the heap,
and that we never simultaneously need the same array slot for more than one purpose.

• 7.6.2 An Implementation of Heapsort
We can represent an essentialIy complete binary tree in an array by storing the root in
the first array slot, the root’s left and right children in the second and third slots,
respectively, the left and right children of the root’s left child in the fourth and fifth
array slots, and so on. The array representation of the heap in Figure 7.5 is shown in
Figure 7.8. Notice that the index of the left child of a node is twice that of the node,
and the index of the right child is 1 greater than twice that of the node. Recall that in
the high-level pseudocode for Heapsort, we required that the keys initially be in an
essentially complete binary tree. If we place the keys in an array in an arbitrary
order, they will be structured in some essentially complete binary tree according to
the representation just discussed. The following low-level pseudocode uses that
representation.
Figure 7.8 The array representation of the heap in Figure 7.5.

www.EBooksWorld.ir

 Heap Data Structure

www.EBooksWorld.ir

We can now give an algorithm for Heapsort. The algorithm assumes that the keys to
be sorted are already in H.S. This automatically structures them in an essentially
complete binary tree according to the representation in Figure 7.8. After the
essentially complete binary tree is made into a heap, the keys are deleted from the
heap starting with the nth array slot and going down to the first array slot. Because
they are placed in sorted sequence in the output array in that same order, we can use
H.S as the output array with no possibility of overwriting a key in the heap. This
strategy gives us the in-place algorithm that follows.

 Algorithm 7.5
Heapsort
Problem: Sort n keys in nondecreasing order.
Inputs: positive integer n, array of n keys stored in an array implementation H of a
heap.
Outputs: the keys in nondecreasing order in the array H.S.

Analysis of Algorithm 7.5

www.EBooksWorld.ir

 Worst-Case Time CompIexity Analysis of Number of Comparisons of Keys
(Heapsort)

Basic instruction: the comparisons of keys in procedure siftdown.
Input size: n, the number of keys to be sorted.
Procedures makeheap and removekeys both call siftdown. We analyze these
procedures separately. We do the analysis for n a power of 2 and then use Theorem
B.4 in Appendix B to extend the result to n in general.

Analysis of makeheap
Let d be the depth of the essentially complete binary tree that is the input. Figure 7.9
illustrates that when n is a power of 2, the depth d of the tree is lg n, there is exactly
one node with that depth, and that node has d ancestors. When the heap is
constructed, all the keys in ancestors of the node with level d will possibly be sifted
through one more node (that is, the node with level d) than they would be sifted
through if that node were not there. All other keys would be sifted through the same
number of nodes as they would be if that node were not there. We first obtain an
upper bound on the total number of nodes through which all keys would be sifted if
the node with depth d were not there. Because that node has d ancestors and the key
at each of these ancestors will possibly be sifted through one more node, we can add
d to this upper bound to obtain our actual upper bound on the total number of nodes
through which all keys are sifted. To that end, if the node with depth d were not there,
each key initially at a node with depth d − 1 would be sifted through 0 nodes when
the heap was constructed; each key initially at a node with depth d − 2 would be
sifted through at most one node; and so on until finally the key at the root would be
sifted through at most d−1 nodes. It is left as an exercise to show that, when n is a
power of 2, there are 2j nodes with depth j for 0 ≤ j < d. For n a power of 2, the
following table shows the number of nodes with each depth and at most the number of
nodes through which a key at that depth would be sifted (if the node with depth d
were not there):
Figure 7.9 An illustration using n = 8, showing that if an essentially complete binary tree has n nodes and n is a
power of 2, then the depth d of the tree is lg n, there is one node with depth d, and that node has d ancestors. The
three ancestors of that node are marked “A.”

www.EBooksWorld.ir

Therefore, the number of nodes through which all keys would be sifted, if the node
with depth d were not there, is at most

The last equality is obtained by applying results in Examples A.3 and A.5 in
Appendix A and doing some algebraic manipulations. Recall that we need to add d to
this bound to obtain the actual upper bound on the total number of nodes through
which all keys are sifted. Therefore, the actual upper bound is

The second equality is a result of the fact that d = lg n when n is a power of 2. Each
time a key is sifted through one node, there is one pass through the while loop in
procedure siftdown. Because there are two comparisons of keys in each pass through
that loop, the number of comparisons of keys done by makeheap is at most

It is a somewhat surprising result that the heap can be constructed in linear time. If
we could remove the keys in linear time, we would have a linear-time sorting
algorithm. As we shall see, however, this is not the case.

Analysis of removekeys
www.EBooksWorld.ir

Figure 7.10 illustrates the case in which n = 8 and d = lg 8 = 3. As shown in Figure
7.10(a) and (b), when the first and fourth keys are each removed, the key moved to
the root sifts through at most d − 1 = 2 nodes. Clearly, the same thing happens for the
two keys between the first and the fourth. Therefore, when the first four keys are
removed, the key moved to the root sifts through at most two nodes. As shown in
Figure 7.10(c) and (d), when each of the next two keys is removed, the key moved to
the root sifts through at most d − 2 = 1 node. Finally, Figure 7.10(e) shows that, when
the next key is removed, the key moved to the root sifts through 0 nodes. Clearly,
there is also no sifting when the last key is removed. The total number of nodes
through which all keys are sifted is at most
Figure 7.10 Removing the keys from a heap with eight nodes. The removal of the first key is depicted in (a); the
fourth in (b); the fifth in (c); the sixth in (d); and the seventh in (e). The key moved to the root is sifted through the
number of nodes shown on the right.

www.EBooksWorld.ir

It is not hard to see that this result can be extended to n an arbitrary power of 2.
Because each time a key is sifted through one node, there is one pass through the
while loop in procedure siftdown, and, because there are two comparisons of keys in
each pass through that loop, the number of comparisons of keys done by removekeys
is at most

The first equality is obtained by applying the result in Example A.5 in Appendix A
and doing some algebraic manipulations, whereas the second results from the fact
that d = lg n when n is a power of 2.

Combining the Two Analyses
The combined analyses of makeheap and removekeys show that the number of
comparisons of keys in heapsort is at most

when n is a power of 2. Showing that there is a case in which we have this number of
comparisons is left as an exercise. Therefore, for n a power of 2,

It is possible to show that W (n) is eventually nondecreasing. Therefore, Theorem
B.4 in Appendix B implies that, for n in general,

It appears to be difficult to analyze Heapsort’s average-case time complexity
analytically. However, empirical studies have shown that its average case is not
much better than its worse case. This means that the average-case time complexity of
the number of comparisons of keys done by Heapsort is approximated by

In the exercises, you are asked to establish that the worst-case time complexity of
the number of assignments of records done by Heapsort is approximated by

As is the case for the comparisons of keys, Heapsort does not do much better than
this on the average.

Finally, as already discussed, we have the following space usage.

www.EBooksWorld.ir

Analysis of Algorithm 7.5
 Analysis of Extra Space Usage (Heapsort)

Heapsort is an in-place sort, which means that the extra space is in Θ (1).

As mentioned in Section 7.2, Heapsort is an example of a selection sort because it
sorts by selecting records in order and placing them in their proper sorted positions.
It is the call to removekeys that places a record in its proper sorted position.

7.7 Comparison of Mergesort, Quicksort, and Heapsort
Table 7.2 summarizes our results concerning the three algorithms. Because Heapsort
is, on the average, worse than Quicksort in terms of both comparisons of keys and
assignments of records, and because Quicksort’s extra space usage is minimal,
Quicksort is usually preferred to Heapsort. Because our original implementation of
Mergesort (Algorithms 2.2 and 2.4) uses an entire additional array of records, and
because Mergesort always does about three times as many assignments of records as
Quicksort does on the average, Quicksort is usually preferred to Mergesort even
though Quicksort does slightly more comparisons of keys on the average. However,
the linked implementation of Mergesort (Algorithm 7.4) eliminates almost all the
disadvantages of Mergesort. The only disadvantage remaining is the additional space
used for Θ (n) extra links.

• Table 7.2 Analysis summary for Θ (n lg n) sorting algorithms*

*Entries are approximate; the average cases for Mergesort and Heapsort are slightly better than the worst cases.
†If it is required that the records be in sorted sequence in contiguous array slots, the worst case is in Θ (n).

7.8 Lower Bounds for Sorting Only by Comparison of
www.EBooksWorld.ir

Keys
We have developed Θ (n lg n) sorting algorithms, which represent a substantial
improvement over quadratic-time algorithms. A good question is whether we can
develop sorting algorithms whose time complexities are of even better order. We
show that, as long as we limit ourselves to sorting only by comparisons of keys, such
algorithms are not possible.

Although our results still hold if we consider probabilistic sorting algorithms, we
obtain the results for deterministic sorting algorithms. (See Section 5.3 for a
discussion of probabilistic and deterministic algorithms.) As done in Section 7.3, we
obtain our results under the assumption that the n keys are distinct. Furthermore, as
discussed in that section, we can assume that the n keys are simply the positive
integers 1, 2, … , n, because we can substitute 1 for the smallest key, 2 for the second
smallest, and so on.

• 7.8.1 Decision Trees for Sorting Algorithms
Consider the following algorithm for sorting three keys.

We can associate a binary tree with procedure sortthree as follows. We place the
comparison of a and b at the root. The left child of the root contains the comparison
that is made if a < b, whereas the right child contains the comparison that is made if a
≥ b. We proceed downward, creating nodes in the tree until all possible comparisons
done by the algorithm are assigned nodes. The sorted keys are stored at the leaves.
Figure 7.11 shows the entire tree. This tree is called a decision tree because at each
node a decision must be made as to which node to visit next. The action of procedure
sortthree on a particular input corresponds to following the unique path from the root

www.EBooksWorld.ir

to a leaf, determined by that input. There is a leaf in the tree for every permutation of
three keys, because the algorithm can sort every possible input of size 3.

A decision tree is called valid for sorting n keys if, for each permutation of the n
keys, there is a path from the root to a leaf that sorts that permutation. That is, it can
sort every input of size n. For example, the decision tree in Figure 7.11 is valid for
sorting three keys, but would no longer be valid if we removed any branch from the
tree. To every deterministic algorithm for sorting n keys, there corresponds at least
one valid decision tree. The decision tree in Figure 7.11 corresponds to procedure
sortthree, and the decision tree in Figure 7.12 corresponds to Exchange Sort when
sorting three keys. (You are encouraged to verify this.) In that tree, a, b, and c are
again the initial values of S [1], S [2], and S [3]. When a node contains, for example,
the comparison “c < b,” this does not mean that Exchange Sort compares S [3] with S
[2] at that point; rather, it means that Exchange Sort compares the array item whose
current value is c with the one whose current value is b. In the tree in Figure 7.12,
notice that the level-2 node containing the comparison “b < a” has no right child. The
reason is that a “no” answer to that comparison contradicts the answers obtained on
the path leading to that node, which means that its right child could not be reached by
making a consistent sequence of decisions starting at the root. Exchange Sort makes
an unnecessary comparison at this point, because Exchange Sort does not “know” that
the answer to the question must be “yes.” This often happens in suboptimal sorting
algorithms. We say that a decision tree is pruned if every leaf can be reached from
the root by making a consistent sequence of decisions. The decision tree in Figure
7.12 is pruned, whereas it would not be pruned if we added a right child to the node
just discussed, even though it would still be valid and would still correspond to
Exchange Sort. Clearly, to every deterministic algorithm for sorting n keys there
corresponds a pruned, valid decision tree. Therefore, we have the following lemma.
Figure 7.11 The decision tree corresponding to procedure sortthree.

www.EBooksWorld.ir

Figure 7.12 The decision tree corresponding to Exchange Sort when sorting three keys.

 Lemma 7.1
To every deterministic algorithm for sorting n distinct keys there corresponds a
pruned, valid, binary decision tree containing exactly n! leaves.

Proof: As just mentioned, there is a pruned, valid decision tree corresponding to any
algorithm for sorting n keys. When all the keys are distinct, the result of a comparison
is always “<” or “>.” Therefore, each node in that tree has at most two children,
which means that it is a binary tree. Next we show that it has n! leaves. Because there
are n! different inputs that contain n distinct keys and because a decision tree is valid
for sorting n distinct keys only if it has a leaf for every input, the tree has at least n!
leaves. Because there is a unique path in the tree for each of the n! different inputs
and because every leaf in a pruned decision tree must be reachable, the tree can have
no more than n! leaves. Therefore, the tree has exactly n! leaves.

Using Lemma 7.1, we can determine bounds for sorting n distinct keys by
investigating binary trees with n! leaves. We do this next.

• 7.8.2 Lower Bounds for Worst-Case Behavior
To obtain a bound for the worst-case number of comparisons of keys, we need the
following lemma.

 Lemma 7.2
The worst-case number of comparisons done by a decision tree is equal to its depth.

www.EBooksWorld.ir

Proof: Given some input, the number of comparisons done by a decision tree is the
number of internal nodes on the path followed for that input. The number of internal
nodes is the same as the length of the path. Therefore, the worst-case number of
comparisons done by a decision tree is the length of the longest path to a leaf, which
is the depth of the decision tree.

By Lemmas 7.1 and 7.2, we need only find a lower bound on the depth of a binary
tree containing n! leaves to obtain our lower bound for the worst-case behavior. The
required lower bound on depth is found by means of the following lemmas and
theorems.

 Lemma 7.3
Proof: We show first that

Clearly, if a binary tree is not complete, we can create a new binary tree from the
original tree by adding leaves such that the new tree has more leaves than the original
tree and has the same depth as the original tree. Therefore it suffices to obtain
Equality 7.1 for complete binary trees. Actually, for complete binary trees, we will
obtain equality. The proof is by induction.

Induction base: The (complete) binary tree with depth 0 has one node that is both the
root and the only leaf. Therefore, for this tree, the number of
leaves m equals 1, and

Induction hypothesis: Assume that for the complete binary tree with depth d,

where m is the number of leaves.

Induction step: We need to show that, for the complete binary tree with depth d + 1,

where m’ is the number of leaves. We can obtain the complete binary tree with depth
d + 1 from the complete binary tree with depth d by giving each leaf in this latter tree
exactly two children, which are then the only leaves in the new tree. Therefore,

Owing to this equality and the induction hypothesis, we have

www.EBooksWorld.ir

which completes the induction proof.
Taking the lg of both sides of Inequality 7.1 yields

Because d is an integer, this implies

 Theorem 7.2
Any deterministic algorithm that sorts n distinct keys only by comparisons of keys
must in the worst case do at least

Proof: By Lemma 7.1, to any such algorithm there corresponds a pruned, valid,
binary decision tree containing n! leaves. By Lemma 7.3, the depth of that tree is
greater than or equal to lg (n!) . The theorem now follows, because Lemma 7.2 says
that any decision tree’s worst-case number of comparisons is given by its depth.

How does this bound compare with the worst-case performance of Mergesort—
namely, n lg n − (n − 1)? Lemma 7.4 enables us to compare the two.

 Lemma 7.4
For any positive integer n,

Proof: The proof requires knowledge of integral calculus. We have

www.EBooksWorld.ir

 Theorem 7.3
Any deterministic algorithm that sorts n distinct keys only by comparisons of keys
must in the worst case do at least

Proof: The proof follows from Theorem 7.2 and Lemma 7.4.

We see that Mergesort’s worst-case performance of n lg n − (n − 1) is close to
optimal. Next we show that this also holds for its average-case performance.

• 7.8.3 Lower Bounds for Average-Case Behavior
We obtain our results under the assumption that all possible permutations are equally
likely to be the input.

If the pruned, valid, binary decision tree corresponding to a deterministic sorting
algorithm for sorting n distinct keys contains any comparison nodes with only one
child (as is the case for the tree in Figure 7.12), we can replace each such node by its
child and prune the child to obtain a decision tree that sorts using no more
comparisons than did the original tree. Every nonleaf in the new tree will contain
exactly two children. A binary tree in which every nonleaf contains exactly two
children is called a 2-tree. We summarize this result with the following lemma.

 Lemma 7.5
To every pruned, valid, binary decision tree for sorting n distinct keys, there
corresponds a pruned, valid decision 2-tree that is at least as efficient as the original
tree.

Proof: The proof follows from the preceding discussion.

The external path length (EPL) of a tree is the total length of all paths from the
root to the leaves. For example, for the tree in Figure 7.11,

Recall that the number of comparisons done by a decision tree to reach a leaf is the
length of the path to the leaf. Therefore, the EPL of a decision tree is the total number
of comparisons done by the decision tree to sort all possible inputs. Because there
are n! different inputs of size n (when all keys are distinct) and because we are

www.EBooksWorld.ir

assuming all inputs to be equally likely, the average number of comparisons done by
a decision tree for sorting n distinct keys is given by

This result enables us to prove an important lemma. First we define minEPL(m) as
the minimum of the EPL of 2-trees containing m leaves. The lemma now follows.

 Lemma 7.6
Any deterministic algorithm that sorts n distinct keys only by comparisons of keys
must on the average do at least

Proof: Lemma 7.1 says that to every deterministic algorithm for sorting n distinct
keys there corresponds a pruned, valid, binary decision tree containing n leaves.
Lemma 7.5 says that we can convert that decision tree to a 2-tree that is at least as
efficient as the original tree. Because the original tree has n! leaves, so must the 2-
tree we obtain from it. The lemma now follows from the preceding discussion.

By Lemma 7.6, to obtain a lower bound for the average case, we need only find a
lower bound for minEPL(m), which is accomplished by means of the following four
lemmas.

 Lemma 7.7
Any 2-tree that has m leaves and whose EPL equals minEPL(m) must have all of its
leaves on at most the bottom two levels.

Proof: Suppose that some 2-tree does not have all of its leaves on the bottom two
levels. Let d be the depth of the tree, let A be a leaf in the tree that is not on one of the
bottom two levels, and let k be the depth of A. Because nodes at the bottom level
have depth d,

We show that this tree cannot minimize the EPL among trees with the same number of
leaves, by developing a 2-tree with the same number of leaves and a lower EPL. We
can do this by choosing a nonleaf B at level d − 1 in our original tree, removing its
two children, and giving two children to A, as illustrated in Figure 7.13. Clearly, the
new tree has the same number of leaves as the original tree. In our new tree, neither A
nor the children of B are leaves, but they are leaves in our old tree. Therefore, we

www.EBooksWorld.ir

have decreased the EPL by the length of the path to A and by the lengths of the two
paths to B’s children. That is, we have decreased the EPL by

In our new tree, B and the two new children of A are leaves, but they are not leaves in
our old tree. Therefore, we have increased the EPL by the length of the path to B and
the lengths of the two paths to A’s new children. That is, we have increased the EPL
by

The net change in the EPL is

Figure 7.13 The trees in (a) and (b) have the same number of leaves, but the tree in (b) has a smaller EPL.

The inequality occurs because k ≤ d − 2. Because the net change in the EPL is
negative, the new tree has a smaller EPL. This completes the proof that the old tree
cannot minimize the EPL among trees with the same number of leaves.

 Lemma 7.8

www.EBooksWorld.ir

Any 2-tree that has m leaves and whose EPL equals minEPL(m) must have

and have no other leaves, where d is the depth of the tree.

Proof: Because Lemma 7.7 says that all leaves are at the bottom two levels and
because nonleaves in a 2-tree must have two children, it is not hard to see that there
must be 2d − 1 nodes at level d − 1. Therefore, if r is the number of leaves at level d −
1, the number of nonleaves at that level is 2d − 1 − r. Because nonleaves in a 2-tree
have exactly two children, for every nonleaf at level d − 1, there are two leaves at
level d. Because these are the only leaves at level d, the number of leaves at level d
is equal to 2 (2d − 1 − r). Because Lemma 7.7 says that all leaves are at level d or d
− 1,

Simplifying yields

Therefore, the number of leaves at level d is

 Lemma 7.9
For any 2-tree that has m leaves and whose EPL equals minEPL(m), the depth d is
given by

Proof: We prove the case where m is a power of 2. The proof of the general case is
left as an exercise. If m is a power of 2, then, for some integer k,

Let d be the depth of a minimizing tree. As in Lemma 7.8, let r be the number of
leaves at level d − 1. By that lemma,

Because r ≥ 0, we must have d ≥ k. We show that assuming d > k leads to a
contradiction. If d > k, then

Because r ≤ m, this means that r = m, and all leaves are at level d − 1. But there must
be some leaves at level d. This contradiction implies that d = k, which means that r =

www.EBooksWorld.ir

0. Because r = 0,

which means that d = lg m. Because lg m = lg m when m is a power of 2, this
completes the proof.

 Lemma 7.10
For all integers m ≥ 1

Proof: By Lemma 7.8, any 2-tree that minimizes this EPL must have 2d leaves at level
d−1, have 2m−2d leaves at level d, and have no other leaves. We therefore have

Therefore, by Lemma 7.9,

If m is a power of 2, this expression clearly equals m lg m, which equals m lg m ,
which equals m lg m in this case. If m is not a power of 2, then lg m = lg m + 1.
So, in this case,

This inequality occurs because, in general, 2m > 2 lg m . This completes the proof.

Now that we have a lower bound for minEPL(m), we can prove our main result.

 Theorem 7.4
Any deterministic algorithm that sorts n distinct keys only by comparisons of keys
must on the average do at least

Proof: By Lemma 7.6, any such algorithm must on the average do at least

By Lemma 7.10, this expression is greater than or equal to

www.EBooksWorld.ir

The proof now follows from Lemma 7.4.

We see that Mergesort’s average-case performance of about n lg n − 1.26n is near
optimal for algorithms that sort only by comparisons of keys.

7.9 Sorting by Distribution (Radix Sort)
In the preceding section, we showed that any algorithm that sorts only by
comparisons of keys can be no better than Θ (n lg n). If we know nothing about the
keys except that they are from an ordered set, we have no choice but to sort by
comparing the keys. However, when we have more knowledge we can consider other
sorting algorithms. By using additional information about the keys, we next develop
one such algorithm.

Suppose we know that the keys are all nonnegative integers represented in base
10. Assuming that they all have the same number of digits, we can first distribute
them into distinct piles based on the values of the leftmost digits. That is, keys with
the same leftmost digit are placed in the same pile. Each pile can then be distributed
into distinct piles based on the values of the second digits from the left. Each new
pile can then be distributed into distinct piles based on the values of the third digits
from the left, and so on. After we have inspected all the digits, the keys will be
sorted. Figure 7.14 illustrates this procedure, which is called sorting by
distribution, because the keys are distributed into piles.

A difficulty with this procedure is that we need a variable number of piles.
Suppose instead that we allocate precisely 10 piles (one for each decimal digit), we
inspect digits from right to left, and we always place a key in the pile corresponding
to the digit currently being inspected. If we do this, the keys still end up sorted as
long as we obey the following rule: On each pass, if two keys are to be placed in the
same pile, the key coming from the leftmost pile (in the previous pass) is placed to
the left of the other key. This procedure is illustrated in Figure 7.15. As an example
of how keys are placed, notice that after the first pass, key 416 is in a pile to the left
of key 317. Therefore, when they are both placed in the first pile in the second pass,
key 416 is placed to the left of key 317. In the third pass, however, key 416 ends up
to the right of key 317 because it is placed in the fourth pile, whereas key 317 is
placed in the third pile. In this way, the keys end up in the correct order according to
their rightmost digits after the first pass, in the correct order according to their two
rightmost digits after the second pass, and in the correct order according to all three
digits after the third pass, which means they are sorted.

www.EBooksWorld.ir

Figure 7.14 Sorting by distribution while inspecting the digits from left to right.

Figure 7.15 Sorting by distribution while inspecting the digits from right to left.

This sorting method precedes computers, having been the method used on the old
card-sorting machines. It is called radix sort because the information used to sort the
keys is a particular radix (base). The radix could be any number base, or we could
use the letters of the alphabet. The number of piles is the same as the radix. For
example, if we were sorting numbers represented in hexadecimal, the number of piles
would be 16; if we were sorting alpha keys represented in the English alphabet, the

www.EBooksWorld.ir

number of piles would be 26 because there are 26 letters in that alphabet.
Because the number of keys in a particular pile changes with each pass, a good

way to implement the algorithm is to use linked lists. Each pile is represented by a
linked list. After each pass, the keys are removed from the lists (piles) by coalescing
them into one master linked list. They are ordered in that list according to the lists
(piles) from which they were removed. In the next pass, the master list is traversed
from the beginning, and each key is placed at the end of the list (pile) to which it
belongs in that pass. In this way, the rule just given is obeyed. For readability, we
present this algorithm under the assumption that the keys are nonnegative integers
represented in base 10. It can be readily modified to sort keys in other radix
representations without affecting the order of the time complexity. We need the
following declarations for the algorithm.

 Algorithm 7.6
Radix Sort
Problem: Sort n nonnegative integers, represented in base 10, in nondecreasing
order.
Inputs: linked list masterlist of n nonnegative integers, and an integer numdigits,
which is the maximum number of decimal digits in each integer.
Outputs: the linked list masterlist containing the integers in nondecreasing order.

www.EBooksWorld.ir

Next we analyze the algorithm.

Analysis of Algorithm 7.6
 Every-Case Time Complexity (Radix Sort)

Basic operation: Because there are no comparisons of keys in this algorithm, we
need to find a different basic operation. In an efficient implementation of coalesce,
the lists that contain the piles would have pointers to both their beginnings and their
ends so that we can readily add each list to the end of the previous one without
traversing the list. Therefore, in each pass through the for loop in that procedure, a
list is added to the end of masterlist by simply assigning an address to one pointer
variable. We can take that assignment as the basic operation. In procedure distribute,
we can take any or all of the instructions in the while loop as the basic operations.
Therefore, to have a unit consistent with coalesce, we choose the one that adds a key
to the end of a list by assigning an address to a pointer variable.

www.EBooksWorld.ir

Input size: n, the number of integers in masterlist, and numdigits, the maximum
number of decimal digits in each integer.
Traversal of the entirety of masterlist always requires n passes through the while
loop in distribute. Addition of all the lists to masterlist always requires ten passes
through the for loop in coalesce. Each of these procedures is called numdigits times
from radixsort. Therefore,

This is not a Θ (n) algorithm because the bound is in terms of numdigits and n. We
can create arbitrarily large time complexities in terms of n by making numdigits
arbitrarily large. For example, because 1,000,000,000 has 10 digits, it will take Θ
(n2) time to sort 10 numbers if the largest one is 1,000,000,000. In practice, the
number of digits is ordinarily much smaller than the number of numbers. For
example, if we are sorting 1,000,000 social security numbers, n is 1,000,000
whereas numdigits is only 9. It is not hard to see that, when the keys are distinct, the
best-case time complexity of Radix Sort is in Θ (n lg n), and ordinarily we achieve
the best case.

Next we analyze the extra space used by Radix Sort.

Analysis of Algorithm 7.6
 Analysis of Extra Space Usage (Radix Sort)

No new nodes are ever allocated in the algorithm because a key is never needed
simultaneously in masterlist and in a list representing a pile. This means that the only
extra space is the space needed to represent the keys in a linked list in the first place.
Therefore, the extra space is in Θ (n) links. By “in Θ (n) links” we mean that the
number of links is in Θ (n).

EXERCISES

Sections 7.1 and 7.2
1. Implement the Insertion Sort algorithm (Algorithm 7.1), run it on your system, and

study its best-case, average-case, and worst-case time complexities using
several problem instances.

2. Show that the maximum number of comparisons performed by the Insertion Sort
algorithm (Algorithm 7.1) is achieved when the keys are input in nonincreasing

www.EBooksWorld.ir

order.

3. Show that the worst-case and average-case time complexities for the number of
assignments of records performed by the Insertion Sort algorithm (Algorithm
7.1) are given by

4. Show that the worst-case and average-case time complexities for the number of
assignments of records performed by the Exchange Sort algorithm (Algorithm
1.3) are given by

5. Compare the best-case time complexities of Exchange Sort (Algorithm 1.3) and
Insertion Sort (Algorithm 7.1).

6. Is Exchange Sort (Algorithm 1.3) or Insertion Sort (Algorithm 7.1) more
appropriate when we need to find in nonincreasing order the k largest (or in
nondecreasing order the k smallest) keys in a list of n keys? Justify your answer.

7. Rewrite the Insertion Sort algorithm (Algorithm 7.1) as follows. Include an extra
array slot S[0] that has a value smaller than any key. This eliminates the need to
compare j with 0 at the top of the while loop. Determine the exact time
complexity of this version of the algorithm. Is it better or worse than the time
complexity of Algorithm 7.1? Which version should be more efficient? Justify
your answer.

8. An algorithm called Shell Sort is inspired by Insertion Sort’s ability to take
advantage of the order of the elements in the list. In Shell Sort, the entire list is
divided into noncontiguous sublists whose elements are a distance h apart for
some number h. Each sublist is then sorted using Insertion Sort. During the next
pass, the value of h is reduced, increasing the size of each sublist. Usually the
value of each h is chosen to be relatively prime to its previous value. The final
pass uses the value 1 for h to sort the list. Write an algorithm for Shell Sort,
study its performance, and compare the result with the performance of Insertion
Sort.

Section 7.3
9. Show that the permutation [n, n − 1, … , 2, 1] has n (n − 1) inversions.

10. Give the transpose of the permutation [2, 5, 1, 6, 3, 4], and find the number of
inversions in both permutations. What is the total number of inversions?

www.EBooksWorld.ir

11. Show that there are n (n − 1) /2 inversions in a permutation of n distinct ordered
elements with respect to its transpose.

12. Show that the total number of inversions in a permutation and its transpose is n (n
− 1) /2. Use this to find the total number of inversions in the permutation in
Exercise 10 and its transpose.

Section 7.4 (See also exercises for Section 2.2.)
13. Implement the different Mergesort algorithms discussed in Section 2.2 and

Section 7.4, run them on your system, and study their best-case, average-case, and
worst-case performances using several problem instances.

14. Show that the time complexity for the number of assignments of records for the
Mergesort algorithm (Algorithms 2.2 and 2.4) is approximated by T (n) = 2n lg n.

15. Write an in-place, linear-time algorithm that takes as input the linked list
constructed by the Mergesort 4 algorithm (Algorithm 7.4) and stores the records
in the contiguous array slots in nondecreasing order according to the values of
their keys.

16. Use the divide-and-conquer approach to write a nonrecursive Mergesort
algorithm. Analyze your algorithm, and show the results using order notation.
Note that it will be necessary to explicitly maintain a stack in your algorithm.

17. Implement the nonrecursive Mergesort algorithm of Exercise 16, run it on your
system using the problem instances of Exercise 13, and compare the results to the
results of the recursive versions of Mergesort in Exercise 13.

18. Write a version of mergesort3 (Algorithm 7.3), and a corresponding version of
merge3, that reverses the rolls of two arrays S and U in each pass through the
repeat loop.

Section 7.5 (See also exercises for Section 2.4.)
19. Implement the Quicksort algorithm (Algorithm 2.6) discussed in Section 2.4, run

it on your system, and study its best-case, average-case, and worst-case
performances using several problem instances.

20. Show that the time complexity for the average number of exchanges performed by
the Quicksort algorithm is approximated by 0.69 (n ± 1) lg n.

21. Write a nonrecursive Quicksort algorithm. Analyze your algorithm, and show the
results using order notation. Note that it will be necessary to explicitly maintain a
stack in your algorithm.

www.EBooksWorld.ir

22. Implement the nonrecursive Quicksort algorithm of Exercise 21, run it on your
system using the same problem instances you used in Exercise 20, and compare
the results to the results of the recursive version of Quicksort in Exercise 20.

23. The following is a faster version of procedure partition, which is called by
procedure quicksort.

Show that with this partition procedure, the time complexity for the number of
assignments of records performed by Quicksort is given by

Show further that the average-case time complexity for the number of
comparisons of keys is about the same as before.

24. Give two instances for which Quicksort algorithm is the most appropriate choice.

25. Another way to sort a list by exchanging out-of-order keys is called Bubble Sort.
Bubble Sort scans adjacent pairs of records and exchanges those found to have
out-of-order keys. After the first time through the list, the record with the largest
key (or the smallest key) is moved to its proper position. This process is done
repeatedly on the remaining, unsorted part of the list until the list is completely
sorted. Write the Bubble Sort algorithm. Analyze your algorithm, and show the
results using order notation. Compare the performance of the Bubble Sort
algorithm to those of Insertion Sort, Exchange Sort, and Selection Sort.

Section 7.6
www.EBooksWorld.ir

26. Write an algorithm that checks if an essentially complete binary tree is a heap.
Analyze your algorithm and show the results using order notation.

27. Show that there are 2j nodes with depth j for j < d in a heap having n (a power of
2) nodes. Here d is the depth of the heap.

28. Show that a heap with n nodes has n/2 leaves.

29. Implement the Heapsort algorithm (Algorithm 7.5), run it on your system, and
study its best-case, average-case, and worst-case performances using several
problem instances.

30. Show that there is a case for Heapsort in which we get the worst-case time
complexity of W (n) ≈ 2n lg n ∈ Θ (n lg n).

31. Show that the worst-case time complexity of the number of assignments of
records for Heapsort is approximated by W (n) ≈ n lg n.

32. Modify Heapsort so that it stops after it finds the k largest keys in non-increasing
order. Analyze your algorithm, and show the results using order notation.

Section 7.7
33. List all the advantages and disadvantages of all the sorting algorithms discussed

in this chapter based on the comparisons of keys and the assignments of records.

34. Run the implementations of all the sorting algorithms discussed in this chapter on
your system using several problem instances. Use the results, and the information
provided in Exercise 33, to give a detailed comparison of these sorting
algorithms.

35. Among Selection Sort, Insertion Sort, Mergesort, Quicksort, and Heapsort, which
algorithm would you choose in each list-sorting situation below? Justify your
answers.
(a) The list has several hundred records. The records are quite long, but the keys

are very short.
(b) The list has about 45,000 records. It is necessary that the sort be completed

reasonably quickly in all cases. There is barely enough memory to hold the
45,000 records.

(c) The list has about 45,000 records, but it starts off only slightly out of order.
(d) The list has about 25,000 records. It is desirable to complete the sort as

quickly as possible on the average, but it is not critical that the sort be
completed quickly in every single case.

36. Give at least two instances for each of the sorting algorithms (based on the

www.EBooksWorld.ir

comparisons of keys) discussed in this chapter for which the algorithm is the most
appropriate choice.

Section 7.8
37. Write a linear-time sorting algorithm that sorts a permutation of integers 1 through

n, inclusive. (Hint: Use an n-element array.)

38. Does the linear-time performance of your algorithm in Exercise 37 violate the
lower bound for sorting only by comparisons of keys? Justify your answer.

39. Prove the general case of Lemma 7.9 when the number of leaves m is not a power
of 2.

Section 7.9
40. Implement the Radix Sort algorithm (Algorithm 7.6), run it on your system, and

study its best-case, average-case, and worst-case performances using several
problem instances.

41. Show that when all the keys are distinct the best-case time complexity of Radix
Sort (Algorithm 7.6) is in Θ (n lg n).

42. In the process of rebuilding the master list, the Radix Sort algorithm (Algorithm
7.6) wastes a lot of time examining empty sublists when the number of piles
(radix) is large. Is it possible to check only the sublists that are not empty?

Additional Exercises
43. Write an algorithm that sorts a list of n elements in nonincreasing order by finding

the largest and smallest elements and exchanges those elements with the elements
in the first and last positions. Then the size of the list is reduced by 2, excluding
the two elements that are already in the proper positions, and the process is
repeated on the remaining part of the list until the entire list is sorted. Analyze
your algorithm and show the results using order notation.

44. Implement the Quicksort algorithm using different strategies for choosing a pivot
item, run it on your system, and study its best-case, average-case, and worst-case
performances for different strategies using several problem instances.

45. Study the idea of designing a sorting algorithm based on a ternary heap. A ternary
heap is like an ordinary heap except that each internal node has three children.

www.EBooksWorld.ir

46. Suppose we are to find the k smallest elements in a list of n elements, and we are
not interested in their relative order. Can a linear-time algorithm be found when k
is a constant? Justify your answer.

47. Suppose we have a very large list stored in external memory that needs to be
sorted. Assuming that this list is too large for internal memory, what major
factor(s) should be considered in designing an external sorting algorithm?

48. Classify the sorting algorithms discussed in this chapter based on the ideas
behind the algorithms. For example, Heapsort and Selection Sort find the largest
(or smallest) key and exchange it with the last (or first) element according to the
desired order.

49. A stable sorting algorithm is one that preserves the original order of equal keys.
Which of the sorting algorithms discussed in this chapter are stable? Which are
unstable? Justify your answer.

50. Which of the sorting algorithms identified as unstable in Exercise 49 can easily
be changed to stable sorting algorithms?

www.EBooksWorld.ir

Chapter 8

More Computational Complexity: The
Searching Problem

Recall from the beginning of Chapter 1 that Barney Beagle could find Colleen
Collie’s phone number quickly using a modified binary search. Barney may now be
wondering if he could develop an even faster method for locating Colleen’s number.
We analyze the Searching problem next to determine whether this is possible.

Like sorting, searching is one of the most useful applications in computer science.
The problem is usually to retrieve an entire record based on the value of some key
field. For example, a record may consist of personal information, whereas the key
field may be the social security number. Our purpose here is similar to that in the
preceding chapter. We want to analyze the problem of searching and show that we
have obtained searching algorithms whose time complexities are about as good as
our lower bounds. Additionally, we want to discuss the data structures used by the
algorithms and to discuss when a data structure satisfies the needs of a particular
application.

In Section 8.1, we obtain lower bounds for searching for a key in an array only by
comparisons of keys (as we did for sorting in the preceding chapter), and we show
that the time complexity of Binary Search (Algorithms 1.5 and 2.1) is as good as the
bounds. In searching for a phone number, Barney Beagle actually uses a modification
of Binary Search called “Interpolation Search,” which does more than just compare
keys. That is, when looking for Colleen Collie’s number, Barney does not start in the
middle of the phone book, because he know that the names beginning with C are near
the front. He “interpolates” and starts near the front of the book. We present
Interpolation Search in Section 8.2. In Section 8.3, we show that an array does not

www.EBooksWorld.ir

meet other needs (besides the searching) of certain applications. Therefore, although
Binary Search is optimal, the algorithm cannot be used for some applications because
it relies on an array implementation. We show that trees do meet these needs, and we
discuss tree searching. Section 8.4 concerns searching when it is not important that
the data ever be retrieved in sorted sequence. We discuss hashing in Section 8.4.
Section 8.5 concerns a different searching problem, the Selection problem. This
problem is to find the kth-smallest (or kth-largest) key in a list of n keys. In Section
8.5 we introduce adversary arguments, which are another means of obtaining bounds
for the performance of all algorithms that solve a problem.

8.1 Lower Bounds for Searching Only by Comparisons
of Keys

The problem of searching for a key can be described as follows: Given an array S
containing n keys and a key x, find an index i such that x = S [i] if x equals one of the
keys; if x does not equal one of the keys, report failure.

Binary Search (Algorithms 1.5 and 2.1) is very efficient for solving this problem
when the array is sorted. Recall that its worst-case time complexity is lg n + 1. Can
we improve on this performance? We will see that as long as we limit ourselves to
algorithms that search only by comparisons of keys, such an improvement is not
possible. Algorithms that search for a key x in an array only by comparisons of keys
can compare keys with each other or with the search key x, and they can copy keys,
but they cannot do other operations on them. To assist their search, however, they can
use the knowledge that the array is sorted (as is done in Binary Search). As we did in
Chapter 7, we will obtain bounds for deterministic algorithms. Our results still hold
if we consider probabilistic algorithms. Furthermore, as in Chapter 7, we assume that
the keys in the array are distinct.

As we did for deterministic sorting algorithms, we can associate a decision tree
with every deterministic algorithm that searches for a key x in an array of n keys.
Figure 8.1 shows a decision tree corresponding to Binary Search when searching
seven keys, and Figure 8.2 shows a decision tree corresponding to Sequential Search
(Algorithm 1.1). In these trees, each large node represents a comparison of an array
item with the search key x, and each small node (leaf) contains a result that is
reported. When x is in the array, we report an index of the item that it equals, and
when x is not in the array, we report an “F” for failure. In Figures 8.1 and 8.2, s1

through s7 are the values such that
Figure 8.1 The decision tree corresponding to Binary Search when searching seven keys.

www.EBooksWorld.ir

Figure 8.2 The decision tree corresponding to Sequential Search when searching seven keys.

We assume that a searching algorithm never changes any array values, so these are
still the values after the search is completed.

Each leaf in a decision tree for searching n keys for a key x represents a point at
which the algorithm stops and reports an index i such that x = si or reports failure.

www.EBooksWorld.ir

Every internal node represents a comparison. A decision tree is called valid for
searching n keys for a key x if for each possible outcome there is a path from the root
to a leaf that reports that outcome. That is, there must be paths for x = si for 1 ≤ i ≤ n
and a path that leads to failure. The decision tree is called pruned if every leaf is
reachable. Every algorithm that searches for a key x in an array of n keys has a
corresponding pruned, valid decision tree. In general, a searching algorithm need not
always compare x with an array item. That is, it could compare two array items.
However, because we are assuming that all keys are distinct, the outcome will be
equality only when x is being compared. In the cases of both Binary Search and
Sequential Search, when the algorithm determines that x equals an array item, it stops
and returns the index of the array item. An inefficient algorithm may continue to do
comparisons when it determines that x equals an array item and return the index later.
However, we can replace such an algorithm with one that stops at this point and
returns the index. The new algorithm will be at least as efficient as the original one.
Therefore, we need only consider pruned, valid decision trees for searching n
distinct keys for a key x in which equality leads to a leaf that returns an index.
Because there are only three possible results of a comparison, a deterministic
algorithm can take at most three different paths after each comparison. This means
that each comparison node in the corresponding decision tree can have at most three
children. Because equality must lead to a leaf that returns an index, at most two of the
children can be comparison nodes. Therefore, the set of comparison nodes in the tree
constitutes a binary tree. See the sets of large nodes in Figures 8.1 and 8.2 for
examples.

• 8.1.1 Lower Bounds for Worst-Case Behavior
Because every leaf in a pruned, valid decision tree must he reachable, the worst-case
number of comparisons done by such a tree is the number of nodes in the longest path
from the root to a leaf in the binary tree consisting of the comparison nodes. This
number is the depth of the binary tree plus 1. Therefore, to establish a lower bound
on the worst-case number of comparisons, we need only establish a lower bound on
the depth of the binary tree consisting of the comparison nodes. Such a bound is
established by means of the following lemmas and theorem.

 Lemma 8.1
If n is the number of nodes in a binary tree and d is the depth, then

Proof: We have

www.EBooksWorld.ir

because there can be only one root, at most two nodes with depth 1, 22 nodes with
depth 2, … , and 2d nodes with depth d. Applying the result in Example A.3 in
Appendix A yields

which means that

Although the next lemma seems obvious, it is not easy to prove rigorously.

 Lemma 8.2
To be a pruned, valid decision tree for searching n distinct keys for a key x, the
binary tree consisting of the comparison nodes must contain at least n nodes.

Proof: Let si for 1 ≤ i ≤ n be the values of the n keys. First we show that every si must
be in at least one comparison node (that is, it must be involved in at least one
comparison). Suppose that for some i this is not the case. Take two inputs that are
identical for all keys except the ith key and are different for the ith key. Let x have the
value of si in one of the inputs. Because si is not involved in any comparisons and all
the other keys are the same in both inputs, the decision tree must behave the same for
both inputs. However, it must report i for one of the inputs, and it must not report i for
the other. This contradiction shows that every si must be in at least one comparison
node.

Because every si must be in at least one comparison node, the only way we could
have less than n comparison nodes would be to have at least one key si involved only
in comparisons with other keys—that is, one si that is never compared with x.
Suppose we do have such a key. Take two inputs that are equal everywhere except
for si, with si being the smallest key in both inputs. Let x be the ith key in one of the
inputs. A path from a comparison node containing si must go in the same direction for
both inputs, and all the other keys are the same in both inputs. Therefore, the decision
tree must behave the same for the two inputs. However, it must report i for one of
them and must not report i for the other. This contradiction proves the lemma.

 Theorem 8.1

www.EBooksWorld.ir

Any deterministic algorithm that searches for a key x in an array of n distinct keys
only by comparisons of keys must in the worst case do at least

Proof: Corresponding to the algorithm, there is a pruned, valid decision tree for
searching n distinct keys for a key x. The worst-case number of comparisons is the
number of nodes in the longest path from the root to a leaf in the binary tree
consisting of the comparison nodes in that decision tree. This number is the depth of
the binary tree plus 1. Lemma 8.2 says that this binary tree has at least n nodes.
Therefore, by Lemma 8.1, its depth is greater than or equal to lg n . This proves the
theorem.

Recall from Section 2.1 that the worst-case number of comparisons done by
Binary Search is lg n + 1. Therefore, Binary Search is optimal as far as its worst-
case performance is concerned.

• 8.1.2 Lower Bounds for Average-Case Behavior
Before discussing bounds for the average case, let’s do an average-case analysis of
Binary Search. We have waited until now to do this analysis because the use of the
decision tree facilitates the analysis. First we need a definition and a lemma.

A binary tree is called a nearly complete binary tree if it is complete down to a
depth of d − 1. Every essentially complete binary tree is nearly complete, but not
every nearly complete binary tree is essentially complete, as illustrated in Figure 8.3.
(See Section 7.6 for definitions of complete and essentially complete binary trees.)

Like Lemma 8.2, the following lemma appears to be obvious but is not easy to
prove rigorously.

 Lemma 8.3
The tree consisting of the comparison nodes in the pruned, valid decision tree
corresponding to Binary Search is a nearly complete binary tree.
Proof: The proof is done by induction on n, the number of keys. Clearly, the tree
consisting of the comparison nodes is a binary tree containing n nodes, one for each
key. Therefore, we can do the induction on the number of nodes in this binary tree.
Figure 8.3 (a) An essentially complete binary tree. (b) A nearly complete but not essentially complete binary tree.

www.EBooksWorld.ir

Induction base: A binary tree containing one node is nearly complete.
Induction hypothesis: Assume that for all k < n the binary tree containing k nodes is
nearly complete.
Induction step: We need to show that the binary tree containing n nodes is nearly
complete. We do this separately for odd and even values of n.

If n is odd, the first split in Binary Search splits the array into two sub-arrays each
of size (n − 1/2). Therefore, both the left and right subtrees are the binary tree
corresponding to Binary Search when searching (n − 1) /2 keys, which means that, as
far as structure is concerned, they are the same tree. They are nearly complete, by the
induction hypothesis. Because they are the same nearly complete tree, the tree in
which they are the left and right subtrees is nearly complete.

If n is even, the first split in Binary Search splits the array into a subarray of size
n/2 on the right and a subarray of size (n/2) − 1 on the left. To enable us to speak
concretely, we will discuss the case in which the odd number of keys is on the left.
The proof is analogous when the odd number of keys is on the right. When the odd
number is on the left, the left and right subtrees of the left subtree are the same tree
(as discussed previously). One subtree of the right subtree is also that same tree (you
should verify this). Because the right subtree is nearly complete (by the induction
hypothesis) and because one of its subtrees is the same tree as the left and right
subtrees of the left subtree, the entire tree must be nearly complete. See Figure 8.4 for
an illustration.
Figure 8.4 The binary tree consisting of the comparison nodes in the decision tree corresponding to Binary Search
when n = 12. Only the vaIues of the keys are shown at the nodes. Subtrees A, B, and C all have the same
structure.

www.EBooksWorld.ir

We can now do an average-case analysis of Binary Search.

Analysis of Algorithm 8.1
 Average-Case Time CompIexity (Binary Search, Recursive)
Basic operation: the comparison of x with S [mid].
Input size: n, the number of items in the array.

First, we analyze the case in which we know that x is in the array. We do this analysis
under the assumption that x is equally likely to be in each of the array slots. Let’s call
the total number of nodes in the path from the root to a node the node distance to that
node, and the sum of the node distances to all nodes the total node distance (TND)
of a tree. Notice that the distance to a node is 1 greater than the length of the path
from the root to the node. For the binary tree consisting of the comparison nodes in
Figure 8.1,

It is not hard to see that the total number of comparisons done by Binary Search’s
decision tree to locate x at all possible array slots is equal to the TND of the binary
tree consisting of the comparison nodes in that decision tree. Given the assumption
that all slots are equally probable, the average number of comparisons required to
locate x is therefore TND/n. For simplicity, let’s initially assume that n = 2k − 1 for
some integer k. Lemma 8.3 says that the binary tree consisting of the comparison
nodes in the decision tree corresponding to Binary Search is nearly complete. It is
not hard to see that if a nearly complete binary tree contains 2k − 1 nodes, it is a
complete binary tree. The binary tree consisting of the comparison nodes in Figure
8.1 illustrates the case in which k = 3. In a complete binary tree, the TND is given by

www.EBooksWorld.ir

The second-to-last equality is obtained by applying the result from Example A.5 in
Appendix A. Because 2k = n + 1, the average number of comparisons is given by

For n in general, the average number of comparisons is bounded approximately by

The average is near the lower bound if n is a power of 2 or is slightly greater than a
power of 2, and the average is near the upper bound if n is slightly smaller than a
power of 2. You are shown how to establish this result in the exercises. Intuitively,
Figure 8.1 shows why this is so. If we add just one node so that the total number of
nodes is 8, lg n jumps from 2 to 3, but the average number of comparisons hardly
changes.

Next, we analyze the case in which x may not be in the array. There are 2n + 1
possibilities: x could be less than all the items, between any two of the items, or
greater than all the items. That is, we could have

We analyze the case in which each of these possibilities is equally likely. For
simplicity, we again initially assume that n = 2k − 1 for some integer k. The total
number of comparisons for the successful searches is the TND of the binary tree
consisting of the comparison nodes. Recall that this number equals (k − 1) 2k + 1.
There are k comparisons for each of the n + 1 unsuccessful searches (see Figure 8.1).
The average number of comparisons is therefore given by

Because 2k = n + 1, we have

www.EBooksWorld.ir

For n in general, the average number of comparisons is bounded approximately by

The average is near the lower bound if n is a power of 2 or is slightly greater than a
power of 2, and the average is near the upper bound if n is slightly smaller than a
power of 2. You are asked to establish this result in the exercises.

Binary Search’s average-case performance is not much better than its worst case.
We can see why this is so by looking again at Figure 8.1. In that figure, there are more
result nodes at the bottom of the tree (where the worst case occurs) than there are in
the rest of the tree. This is true even if we don’t consider unsuccessful searches.
(Notice that all of the unsuccessful searches are at the bottom of the tree.)

Next we prove that Binary Search is optimal in the average case given the
assumptions in the previous analysis. First, we define minTND(n) as the minimum of
the TND for binary trees containing n nodes.

 Lemma 8.4
The TND of a binary tree containing n nodes is equal to minTND (n) if and only if the
tree is nearly complete.

Proof: First we show that if a tree’s TND = minTND (n), the tree is nearly complete.
To that end, suppose that some binary tree is not nearly complete. Then there must be
some node, not at one of the bottom two levels, that has at most one child. We can
remove any node A from the bottom level and make it a child of that node. The
resulting tree will still be a binary tree containing n nodes. The number of nodes in
the path to A in that tree will be at least 1 less than the number of nodes in the path to
A in the original tree. The number of nodes in the paths to all other nodes will be the
same. Therefore, we have created a binary tree containing n nodes with a TND
smaller than that of our original tree, which means that our original tree did not have
a minimum TND.

It is not hard to see that the TND is the same for all nearly complete binary trees
containing n nodes. Therefore, every such tree must have the minimum TND.

 Lemma 8.5
Suppose that we are searching n keys, the search key x is in the array, and all array
slots are equally probable. Then the average-case time complexity for Binary Search
is given by

www.EBooksWorld.ir

Proof: As discussed in the average-case analysis of Binary Search, the average-case
time complexity is obtained by dividing by n the TND of the binary tree consisting of
the comparison nodes in its corresponding decision tree. The proof follows from
Lemmas 8.3 and 8.4.

 Lemma 8.6
If we assume that x is in the array and that all array slots are equally probable, the
average-case time complexity of any deterministic algorithm that searches for a key x
in an array of n distinct keys is bounded below by

Proof: As shown in Lemma 8.2, every array item si must be compared with x at least
once in the decision tree corresponding to the algorithm. Let ci be the number of
nodes in the shortest path to a node containing a comparison of si with x. Because
each key has the same probability 1/n of being the search key x, a lower bound on the
average-case time complexity is given by

It is left as an exercise to show that the numerator in this last expression is greater
than or equal to minTND (n).

 Theorem 8.2

Among deterministic algorithms that search for a key x in an array of n distinct keys
only by comparison of keys, Binary Search is optimal in its average-case
performance if we assume that x is in the array and that all array slots are equally
probable. Therefore, under these assumptions, any such algorithm must on the
average do at least approximately

Proof: The proof follows from Lemmas 8.5 and 8.6 and the average-case time
complexity analysis of Binary Search.

www.EBooksWorld.ir

It is also possible to show that Binary Search is optimal in its average-case
performance if we assume that all 2n+1 possible outcomes (as discussed in the
average-case analysis of Binary Search) are equally likely.

We established that Binary Search is optimal in its average-case performance
given specific assumptions about the probability distribution. For other probability
distributions, it may not be optimal. For example, if the probability was 0.9999 that x
equaled S [1], it would be optimal to compare x with S [1] first. This example is a bit
contrived. A more real-life example would be a search for a name picked at random
from people in the United States. As discussed in Section 3.5, we would not consider
the names “Tom” and “Ursula” to be equally probable. The analysis done here is not
applicable, and other considerations are needed. Section 3.5 addresses some of these
considerations.

8.2 Interpolation Search
The bounds just obtained are for algorithms that rely only on comparisons of keys.
We can improve on these bounds if we use some other information to assist in our
search. Recall that Barney Beagle does more than just compare keys to find Colleen
Collie’s number in the phone book. He does not start in the middle of the phone book,
because he knows that the C’s are near the front. He “interpolates” and starts near the
front. We develop an algorithm for this strategy next.

Suppose we are searching 10 integers, and we know that the first integer ranges
from 0 to 9, the second from 10 to 19, the third from 20 to 29, … , and the tenth from
90 to 99. Then we can immediately report failure if the search key x is less than 0 or
greater than 99, and, if neither of these is the case, we need only compare x with S [1
+ x/10]. For example, we would compare x = 25 with S [1 + 25/10] = S [3]. If
they were not equal, we would report failure.

We usually do not have this much information. However, in some applications it is
reasonable to assume that the keys are close to being evenly distributed between the
first one and the last one. In such cases, instead of checking whether x equals the
middle key, we can check whether x equals the key that is located about where we
would expect to find x. For example, if we think 10 keys are close to being evenly
distributed from 0 to 99, we would expect to find x = 25 about in the third position,
and we would compare x first with S [3] instead of S [5]. The algorithm that
implements this strategy is called Interpolation Search. As in Binary Search, low is
set initially to 1 and high to n. We then use linear interpolation to determine
approximately where we feel x should be located. That is, we compute

www.EBooksWorld.ir

For example, if S [1] = 4 and S [10] = 97, and we were searching for x = 25,

Other than the different way of computing mid and some extra book-keeping, the
Interpolation Search algorithm proceeds like Binary Search (Algorithm 1.5).

 Algorithm 8.1
Interpolation Search
Problem: Determine whether x is in the sorted array S of size n.
Inputs: positive integer n, and sorted (nondecreasing order) array of numbers S
indexed from 1 to n.
Outputs: the location i of x in S; 0 if x is not in S.

If the keys are close to being evenly spaced, Interpolation Search homes in on the
possible location of x more quickly than does Binary Search. For instance, in the
preceding example, if x = 25 were less than S [3], Interpolation Search would reduce
the instance of size 10 to one of size 2, whereas Binary Search would reduce it to one
of size 4.

Suppose that the keys are uniformly distributed between S [1] and S [n]. By this
we mean that the probability of a randomly chosen key being in a particular range
equals its probability of being in any other range of the same length. If this were the

www.EBooksWorld.ir

case, we would expect to find x at approximately the slot determined by Interpolation
Search, and therefore we would expect Interpolation Search to outperform Binary
Search on the average. Indeed, under the assumptions that the keys are uniformly
distributed and that the search key x is equally likely to be in each of the array slots,
it is possible to show that the average-case time complexity of Interpolation Search
is given by

If n equals one billion, lg (lg n) is about 5, whereas lg n is about 30.
A drawback of Interpolation Search is its worst-case performance. Suppose again

that there are 10 keys and their values are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 100. If x were
10; mid would repeatedly be set to low, and x would be compared with every key. In
the worst case, Interpolation Search degenerates to a sequential search. Notice that
the worst case happens when mid is repeatedly set to low. A variation of
Interpolation Search called Robust Interpolation Search remedies this situation by
establishing a variable gap such that mid − low and high − mid are always greater
than gap. Initially we set

and we compute mid using the previous formula for linear interpolation. After that
computation, the value of mid is possibly changed with the following computation:

In the example where x = 10 and the 10 keys are 1, 2, 3, 4, 5, 6, 7, 8, 9, and 100, gap
would initially be mid would initially be 1, and we would
obtain

In this way we guarantee that the index used for the comparison is at least gap
positions away from low and high. Whenever the search for x continues in the
subarray containing the larger number of array elements, the value of gap is doubled,
but it is never made greater than half the number of array elements in that subarray.
For instance, in the previous example, the search for x continues in the larger
subarray (the one from S [5] to S [10]). Therefore, we would double gap, except that
in this case the subarray contains only six array elements, and doubling gap would
make it exceed half the number of array elements in the subarray. We double gap in
order to quickly escape from large clusters. When x is found to lie in the subarray
containing the smaller number of array elements, we reset gap to its initial value.

Under the assumptions that the keys are uniformly distributed and that the search
key x is equally likely to be in each of the array slots, the average-case time
complexity for Robust Interpolation Search is in Θ(lg(lg n)). Its worst-case time

www.EBooksWorld.ir

complexity is in Θ((lg n)2), which is worse than Binary Search but much better than
Interpolation Search.

There are quite a few extra computations in Robust Interpolation Search relative to
Interpolation Search and in Interpolation Search relative to Binary Search. In
practice, one should analyze whether the savings in comparisons justifies this
increase in computations.

The searches described here are also applicable to words, because words can
readily be encoded as numbers. We can therefore apply the modified binary search
method to searching the phone book.

8.3 Searching in Trees
We next discuss that even though Binary Search and its variations, Interpolation
Search and Robust Interpolation Search, are very efficient, they cannot be used in
many applications because an array is not an appropriate structure for storing the data
in these applications. Then we show that a tree is appropriate for these applications.
Furthermore, we show that we have Θ (lg n) algorithms for searching trees.

By static searching we mean a process in which the records are all added to the
file at one time and there is no need to add or delete records later. An example of a
situation in which static searching is appropriate is the searching done by operating
systems commands. Many applications, however, require dynamic searching, which
means that records are frequently added and deleted. An airline reservation system is
an application that requires dynamic searching, because customers frequently call to
schedule and cancel reservations.

An array structure is inappropriate for dynamic searching, because when we add a
record in sequence to a sorted array, we must move all the records following the
added record. Binary Search requires that the keys be structured in an array, because
there must be an efficient way to find the middle item. This means that Binary Search
cannot be used for dynamic searching. Although we can readily add and delete
records using a linked list, there is no efficient way to search a linked list. Therefore,
linked lists do not satisfy the searching needs of a dynamic searching application. If it
is necessary to retrieve the keys quickly in sorted sequence, direct-access storage
(hashing) will not work (hashing is discussed in the next section). Dynamic searching
can be implemented efficiently using a tree structure. First we discuss binary search
trees. After that, we discuss B-trees, which are an improvement on binary search
trees. B-trees are guaranteed to remain balanced.

Our purpose here is to further analyze the problem of searching. Therefore, we
only touch on the algorithms pertaining to binary search trees and B-trees. These
algorithms are discussed in detail in many data structures texts, such as Kruse (1994).

www.EBooksWorld.ir

• 8.3.1 Binary Search Trees
Binary search trees were introduced in Section 3.5. However, the purpose there was
to discuss a static searching application. That is, we wanted to create an optimal tree
based on the probabilities of searching for the keys. The algorithm that builds the tree
(Algorithm 3.9) requires that all the keys be added at one time, which means that the
application requires static searching. Binary search trees are also appropriate for
dynamic searching. Using a binary search tree, we can usually keep the average
search time low, while being able to add and delete keys quickly. Furthermore, we
can quickly retrieve the keys in sorted sequence by doing an in-order traversal of the
tree. Recall that in an in-order traversal of a binary tree, we traverse the tree by first
visiting all the nodes in the left subtree using an in-order traversal, then visiting the
root, and finally visiting all the nodes in the right subtree using an in-order traversal.

Figure 8.5 shows a binary search tree containing the first seven integers. The
search algorithm (Algorithm 3.8) searches the tree by comparing the search key x
with the value at the root. If they are equal, we are done. If x is smaller, the search
strategy is applied to the left child. If x is larger, the strategy is applied to the right
child. We proceed down the tree in this fashion until x is found or it is determined
that x is not in the tree. You may have noticed that when we apply this algorithm to
the tree in Figure 8.5, we do the same sequence of comparisons as done by the
decision tree (see Figure 8.1) corresponding to Binary Search. This illustrates a
fundamental relationship between Binary Search and binary search trees. That is, the
comparison nodes in the decision tree, corresponding to Binary Search when
searching n keys, also represent a binary search tree in which Algorithm 3.8 does the
same comparisons as Binary Search. Therefore, like Binary Search, Algorithm 3.8 is
optimal for searching n keys when it is applied to that tree.

We can efficiently add keys to and delete keys from the tree in Figure 8.5. For
example, to add the key 5.5 we simply proceed down the tree, going to the right if 5.5
is greater than the key at a given node, and to the left otherwise, until we locate the
leaf containing 5. We then add 5.5 as the right child of that leaf. As previously
mentioned, the actual algorithms for adding and deleting can be found in Kruse
(1994).
Figure 8.5 A binary search tree containing the first seven integers.

Figure 8.6 A skewed binary search tree containing the first seven integers.

www.EBooksWorld.ir

The drawback of binary search trees is that when keys are dynamically added and
deleted, there is no guarantee that the resulting tree will be balanced. For example, if
the keys are all added in increasing sequence, we obtain the tree in Figure 8.6. This
tree, which is called a skewed tree, is simply a linked list. An application of
Algorithm 3.8 to this tree results in a sequential search. In this case, we have gained
nothing by using a binary search tree instead of a linked list.

If the keys are added at random, intuitively it seems that the resulting tree will be
closer to a balanced tree much more often than it will be closer to a linked list. (See
Section A.8.1. in Appendix A for a discussion of randomness.) Therefore, on the
average, we would expect an efficient search time. Indeed, we have a theorem to that
effect. First we explain the result in the theorem. The theorem obtains an average
search time for inputs containing n keys under the assumption that all inputs are
equally probable. By this we mean that every possible ordering of n keys has the
same probability of being the input to the algorithm that builds the tree. For example,
if n = 3 and s1 < s2 < s3 are the three keys. these inputs are all equally probable:

Notice that two inputs can result in the same tree. For example, [s2, s3, s1] and [s2, s1,
s3] result in the same tree—namely, the one with s2 at the root, s1 on the left, and s3 on
the right. These are the only two inputs that produce that tree. Sometimes a tree is
produced by only one input. For example, the tree produced by the input [s1, s2, s3] is
produced by no other input. It is the inputs, not the trees, that are assumed to he
equiprobable. Therefore, each of the inputs listed has probability , the tree
produced by the inputs [s2, s3, s1] and [s2, s1, s3] has probability ⅓ , and the tree
produced by the input [s1, s2, s3] has probability . We also assume that the search key
x is equally probable to be any of the n keys. The theorem now follows.

www.EBooksWorld.ir

 Theorem 8.3
Under the assumptions that all inputs are equally probable and that the search key x is
equally probable to be any of the n keys, the average search time over all inputs
containing n distinct keys, using binary search trees, is given approximately by

Proof: We obtain the proof under the assumption that the search key x is in the tree. In
the exercises, we show that the result still holds if we remove this restriction, as long
as we consider each of the 2n + 1 possible outcomes to be equally probable. (These
outcomes are discussed in the average-case analysis of Binary Search in Section
8.1.2.)

Consider all binary search trees containing n keys that have the kth-smallest key at
the root. Each of these trees has k − 1 nodes in its left subtree and n − k nodes in its
right subtree. The average search time for the inputs that produce these trees is given
by the sum of the following three quantities:

• The average search time in the left subtrees of such trees times the probability of
x being in the left subtree

• The average search time in the right subtrees of such trees times the probability
of x being in the right subtree

• The one comparison at the root

The average search time in the left subtrees of such trees is A (k − 1), and the
average search time in the right subtrees is A (n − k). Because we have assumed that
the search key x is equally probable to be any of the keys, the probabilities of x being
in the left and right subtrees are, respectively,

If we let A (n|k) denote the average search time over all inputs of size n that produce
binary search trees with the kth-smallest key at the root, we have established that

Because all inputs are equally probable, every key has the same probability of
being the first key in the input and therefore the key at the root. Therefore, the average
search time over all inputs of size n is the average of A (n|k) as k goes from 1 to n.
We have then

www.EBooksWorld.ir

If we set C (n) = nA (n) and substitute C (n) /n in the expression for A (n), we obtain

Simplifying yields

The initial condition is

This recurrence is almost identical to the one for the average case of Quicksort
(Algorithm 2.6). Mimicking the average-case analysis for Quicksort yields

which means that

You must be careful not to misinterpret the result in Theorem 8.3. This theorem
does not mean that the average search time for a particular input containing n keys is
about 1.38 lg n. A particular input could produce a tree that degenerates into the one
in Figure 8.6, which means that the average search time is in Θ (n). Theorem 8.3 is
for the average search time over all inputs containing n keys. Therefore, for any given
input containing n keys, it is probable that the average search time is in Θ (lg n) but it
could be in Θ (n). There is no guarantee of an efficient search.

• 8.3.2 B-Trees
In many applications, performance can be severely degraded by a linear search time.
For example, the keys to records in large databases often cannot all fit in a
computer’s high-speed memory (called “RAM,” for “random access memory”) at one
time. Therefore, multiple disk accesses are needed to accomplish the search. (Such a
search is called an external search, whereas when all the keys are simultaneously in
memory it is called an internal search.) Because disk access involves the
mechanical movement of read/write heads and RAM access involves only electronic
data transfer, disk access is orders of magnitude slower than RAM access. A linear-

www.EBooksWorld.ir

time external search could therefore prove to be unacceptable, and we would not
want to leave such a possibility to chance.

One solution to this dilemma is to write a balancing program that takes as input an
existing binary search tree and outputs a balanced binary search tree containing the
same keys. The program is then run periodically. Algorithm 3.9 is an algorithm for
such a program. That algorithm is more powerful than a simple balancing algorithm
because it is able to consider the probability of each key being the search key.

In a very dynamic environment, it would be better if the tree never became
unbalanced in the first place. Algorithms for adding and deleting nodes while
maintaining a balanced binary tree were developed in 1962 by two Russian
mathematicians, G. M. Adel’son-Vel’skii and E. M. Landis. (For this reason,
balanced binary trees are often called AVL trees.) These algorithms can be found in
Kruse (1994). The addition and deletion times for these algorithms are guaranteed to
be Θ (lg n), as is the search time.

In 1972, R. Bayer and E. M. McCreight developed an improvement over binary
search trees called B-trees. When keys are added to or deleted from a B-tree, all
leaves are guaranteed to remain at the same level, which is even better than
maintaining balance. The actual algorithms for manipulating B-trees can be found in
Kruse (1994). Here we illustrate only how we can add keys while keeping all leaves
at the same level.

B-trees actually represent a class of trees, of which the simplest is a 3–2 tree. We
illustrate the process of adding nodes to such trees. A 3–2 tree is a tree with the
following properties:

• Each node contains one or two keys.
• If a nonleaf contains one key, it has two children, whereas if it contains two

keys, it has three children.
• The keys in the left subtree of a given node are less than or equal to the key

stored at that node.
• The keys in the right subtree of a given node are greater than or equal to the key

stored at that node.
• If a node contains two keys, the keys in the middle subtree of the node are

greater than or equal to the left key and less than or equal to the right key.
• All leaves are at the same level.

Figure 8.7(a) shows a 3–2 tree, and the remainder of that figure shows how a new
key is added to the tree. Notice that the tree remains balanced because the tree grows
in depth at the root instead of at the leaves. Similarly, when it is necessary to delete a
node, the tree shrinks in depth at the root. In this way, all leaves always remain at the
same level, and the search, addition, and deletion times are guaranteed to be in Θ (lg
n). Clearly, an in-order traversal of the tree retrieves the keys in sorted sequence. For

www.EBooksWorld.ir

these reasons, B-trees are used in most modern database management systems.
Figure 8.7 The way a new key is added to a

8.4 Hashing
Suppose the keys are integers from 1 to 100, and there are about 100 records. An
efficient method for storing the records is to create an array S of 100 items and store
the record whose key is equal to i in S [i]. The retrieval is immediate, with no
comparisons of keys being done. This same strategy can be used if there are about
100 records and the keys are nine-digit social security numbers. However, in this
case the strategy is very inefficient in terms of memory because an array of 1 billion
items is needed to store only 100 records. Alternatively, we could create an array of
only 100 items indexed from 0 to 99, and “hash” each key to a value from 0 and 99. A

www.EBooksWorld.ir

hash function is a function that transforms a key to an index, and an application of a
hash function to a particular key is called “hashing the key.” In the case of social
security numbers, a possible hash function is

(% returns the remainder when key is divided by 100.) This function simply returns
the last two digits of the key. If a particular key hashes to i, we store the key and its
record at S [i]. This strategy does not store the keys in sorted sequence, which means
that it is applicable only if we never need to retrieve the records efficiently in sorted
sequence. If it is necessary to do this, one of the methods discussed previously should
be used.

If no two keys hash to the same index, this method works fine. However, this is
rarely the case when there are a substantial number of keys. For example, if there are
100 keys and each key is equally likely to hash to each of the 100 indices, the
probability of no two keys hashing to the same index is

We are almost certain that at least two keys will hash to the same index. Such an
occurrence is called a collision or hash clash. There are various ways to resolve a
collision. One of the best ways is through the use of open hashing (also called open
addressing). With open hashing we create a bucket for each possible hash value and
place all the keys that hash to a value in the bucket associated with that value. Open
hashing is usually implemented with linked lists. For example, if we hash to the last
two digits of a number, we create an array of pointers Bucket that is indexed from 0
to 99. All of those keys that hash to i are placed in a linked list starting at Bucket [i].
This is illustrated in Figure 8.8.
Figure 8.8 An illustration of open hashing. Keys with the same last two digits are in the same bucket.

The number of buckets need not equal the number of keys. For example, if we hash

www.EBooksWorld.ir

to the last two digits of a number, the number of buckets must be 100. However, we
could store 100, 200, 1000, or any number of keys. Of course, the more keys we
store, the more likely we are to have collisions. If the number of keys is greater than
the number of buckets, we are guaranteed to have collisions. Because a bucket stores
only a pointer, not much space is wasted by allocating a bucket. Therefore, it is often
reasonable to allocate at least as many buckets as there are keys.

When searching for a key, it is necessary to do a sequential search through the
bucket (linked list) containing the key. If all the keys hash to the same bucket, the
search degenerates into a sequential search. How likely is this to happen? If there are
100 keys and 100 buckets, and a key is equally likely to hash to each of the buckets,
the probability of the keys all ending up in the same bucket is

Therefore, it is almost impossible for all the keys to end up in the same bucket. What
about the chances of 90, 80, 70, or any other large number of keys ending up in the
same bucket? Our real interest should be how likely it is that hashing will yield a
better average search than Binary Search. We show that if the file is reasonably large,
this too is almost a certainty. But first we show how good things can be with hashing.

Intuitively, it should be clear that the best thing that can happen is for the keys to be
uniformly distributed in the buckets. That is, if there are n keys and m buckets, each
bucket contains n/m keys. Actually, each bucket will contain exactly n/m keys only
when n is a multiple of m. When this is not the case, we have an approximately
uniform distribution. The following theorems show what happens when the keys are
uniformly distributed. For simplicity, they are stated for an exact uniform distribution
(that is, for the case in which n is a multiple of m).

 Theorem 8.4
If n keys are uniformly distributed in m buckets, the number of comparisons in an
unsuccessful search is given by n/m.

Proof: Because the keys are uniformly distributed, the number of keys in each bucket
is n/m, which means that every unsuccessful search requires n/m comparisons.

 Theorem 8.5
If n keys are uniformly distributed in m buckets and each key is equally likely to be

www.EBooksWorld.ir

the search key, the average number of comparisons in a successful search is given by

Proof: The average search time in each bucket is equal to the average search time
when doing a sequential search of n/m keys. The average-case analysis of Algorithm
1.1 in Section 1.3 shows that this average equals the expression in the statement of
the theorem.

The following example applies Theorem 8.5.

Example 8.1
If the keys are uniformly distributed and n = 2m, every unsuccessful search requires
only 2m/m = 2 comparisons, and the average number of comparisons for a successful
search is

When the keys are uniformly distributed, we have a very small search time.
However, even though hashing has the possibility of yielding such exceptionally good
results, one might argue that we should still use Binary Search to guarantee that the
search does not degenerate into something close to a sequential search. The
following theorem shows that if the file is reasonably large, the chances of hashing
being as bad as Binary Search are very small. The theorem assumes that a key is
equally likely to hash to each of the buckets. When social security numbers are
hashed to their last two digits, this criterion should be satisfied. However, not all
hash functions satisfy this criterion. For example, if names are hashed to their last
letters, the probability of hashing to “th” is much greater than that of hashing to “qz,”
because many more names end in “th.” A data structures text such as Kruse (1994)
discusses methods for choosing a good hash function. Our purpose here is to analyze
how well hashing solves the Searching problem.

 Theorem 8.6
If there are n keys and m buckets, the probability that at least one bucket contains at
least k keys is less than or equal to

www.EBooksWorld.ir

given the assumption that a key is equally likely to hash to any bucket.

Proof: For a given bucket, the probability of any specific combination of k keys
ending up in that bucket is (1/m)k, which means that the probability that the bucket
contains at least the keys in that combination is (1/m)k. In general, for two events S
and T ,

Therefore, the probability that a given bucket contains at least k keys is less than or
equal to the sum of the probabilities that it contains at least the keys in each distinct
combination of k keys. Because (n k)distinct combinations of k keys can be obtained
from n keys (see Section A.7 in Appendix A), the probability that any given bucket
contains at least k keys is less than or equal to

The theorem now follows from Expression 8.1 and the fact that there are m buckets.

Recall that the average search time for Binary Search is about lg n. Table 8.1
shows the bounds on the probabilities of at least one bucket containing at least lg n
keys and 2 lg n keys for several values of n. It is assumed in the table that n = m.
Even when n is only 128, the chances of the search time ever exceeding 2 lg n are
less than 1 in a billion. For n = 1024, the chances of the search time ever exceeding 2
lg n are less than 3 in 10 million billion. For n = 65, 536, the chances of the search
time ever exceeding lg n are about 3 in 1 billion. The probability of dying in a single
trip in a jet plane is about 6 in 1 million, and the probability of dying in an auto
accident during an average year of driving is about 270 in 1 million. Yet many
humans do not take serious measures to avoid these activities. The point is that, to
make reasonable decisions, we often neglect exceptionally small probabilities as if
they were impossibilities. Because for large n we can be almost certain of obtaining
better performance using hashing instead of Binary Search, it is reasonable to do so.
We amusingly recall that in the 1970s a certain computer manufacturer routinely
talked data-processing managers into buying expensive new hardware by describing
a catastrophe that would take place if a contrived scenario of usage occurred. The
flaw in their argument, which the data-processing managers often overlooked, was
that the probability of this scenario occurring was negligible. Risk aversion is a
matter of personal preference. Therefore, an exceedingly risk-averse individual may
choose not to take a 1-in-a-billion or even a 3-in-10-million-billion chance.

www.EBooksWorld.ir

However, the individual should not make such a choice without giving serious
deliberation to whether such a decision truly models the individual’s attitude toward
risk. Methods for doing such an analysis are discussed in Clemen (1991).

• Table 8.1Upper Bounds on the Probability That at Least One Bucket Contains at Least k Keys*

*It is assumed that the number of keys n equals the number of buckets.

8.5 The Selection Problem: Introduction to Adversary
Arguments

So far we’ve discussed searching for a key x in a list of n keys. Next we address a
different searching problem called the Selection problem. This problem is to find
the kth-largest (or kth-smallest) key in a list of n keys. We assume that the keys are in
an unsorted array (the problem is trivial for a sorted array). First we discuss the
problem for k = 1, which means that we are finding the largest (or smallest) key. Next
we show that we can simultaneously find the smallest and largest keys with fewer
comparisons than would be necessary if each were found separately. Then we
discuss the problem for k = 2, which means that we are finding the second-largest (or
second-smallest) key. Finally, we address the general case.

• 8.5.1 Finding the Largest Key
The following is a straightforward algorithm for finding the largest key.

 Algorithm 8.2
Find Largest Key
Problem: Find the largest key in the array S of size n.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: variable large, whose value is the largest key in S.

www.EBooksWorld.ir

Clearly, the number of comparisons of keys done by the algorithm is given by

Intuitively, it seems impossible to improve on this performance. The next theorem
establishes that this is so. We can think of an algorithm that determines the largest key
as a tournament among the keys. Each comparison is a match in the tournament, the
larger key is the winner of the comparison, and the smaller key is the loser. The
largest key is the winner of the tournament. We use this terminology throughout this
section.

 Theorem 8.7
Any deterministic algorithm that can find the largest of n keys in every possible input
only by comparisons of keys must in every case do at least

Proof: The proof is by contradiction. That is, we show that if the algorithm does
fewer than n − 1 comparisons for some input of size n, the algorithm must give the
wrong answer for some other input. To that end, if the algorithm finds the largest key
by doing at most n − 2 comparisons for some input, at least two keys in that input
never lose a comparison. At least one of those two keys cannot be reported as the
largest key. We can create a new input by replacing (if necessary) that key with a key
that is larger than all keys in the original input. Because the results of all comparisons
will be the same as for the original input, the new key will not be reported as the
largest, which means that the algorithm will give the wrong answer for the new input.
This contradiction proves that the algorithm must do at least n − 1 comparisons for
every input of size n.

www.EBooksWorld.ir

You must be careful to interpret Theorem 8.7 correctly. It does not mean that every
algorithm that searches only by comparisons of keys must do at least n − 1
comparisons to find the largest key. For example, if an array is sorted, we can find
the largest key without doing any comparisons simply by returning the last item in the
array. However, an algorithm that returns the last item in an array can find the largest
key only when the largest key is the last item. It cannot find the largest key in every
possible input. Theorem 8.7 concerns algorithms that can find the largest key in every
possible input.

Of course, we can use an analogous version of Algorithm 8.2 to find the smallest
key in n − 1 comparisons and an analogous version of Theorem 8.7 to show that n −
1 is a lower bound for finding the smallest key.

• 8.5.2 Finding Both the Smallest and Largest Keys
A straightforward way to find the smallest and largest keys simultaneously is to
modify Algorithm 8.2 as follows.

 Algorithm 8.3
Find Smallest and Largest Keys
Problem: Find the smallest and largest keys in an array S of size n.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: variables small and large, whose values are the smallest and largest keys in
S.

www.EBooksWorld.ir

Using Algorithm 8.3 is better than finding the smallest and largest keys
independently, because for some inputs the comparison of S [i] with large is not done
for every i. Therefore, we have improved on the everycase performance. But
whenever S [1] is the smallest key, that comparison is done for all i. Therefore, the
worst-ease number of comparisons of keys is given by

which is exactly the number of comparisons done if the smallest and largest keys are
found separately. It may seem that we cannot improve on this performance, but we
can. The trick is to pair the keys and find which key in each pair is smaller. This can
be done with about n/2 comparisons. We can then find the smallest of all the smaller
keys with about n/2 comparisons and the largest of all the larger keys with about n/2
comparisons. In this way, we find both the smallest and largest keys with only about
3n/2 total comparisons. An algorithm for this method follows. The algorithm assumes
that n is even.

 Algorithm 8.4
Find Smallest and Largest Keys by Pairing Keys
Problem: Find the smallest and largest keys in an array S of size n.
Inputs: positive even integer n, array of keys S indexed from 1 to n.
Outputs: variables small and large, whose values are the smallest and largest keys in
S.

www.EBooksWorld.ir

It is left as an exercise to modify the algorithm so that it works when n is odd and
to show that its number of comparison of keys is given by

Can we improve on this performance? We show that the answer is “no.” We do not
use a decision tree to show this because decision trees do not work well for the
Selection problem. The reason is as follows. We know that a decision tree for the
Selection problem must contain at least n leaves because there are n possible
outcomes. Lemma 7.3 says that if a binary tree has n leaves, its depth is greater than
or equal to lg n . Therefore, our lower bound on the number of leaves gives us a
lower bound of lg n comparisons in the worst case. This is not a very good lower
bound, because we already know that it takes at least n − 1 comparisons just to find
the largest key (Theorem 8.7). Lemma 8.1 is no more useful because we can only
readily establish that there must be n − 1 comparison nodes in the decision tree.
Decision trees do not work well for the Selection problem because a result can be in

www.EBooksWorld.ir

more than one leaf. Figure 8.9 shows the decision tree for Algorithm 8.2 (Find
Largest Key) when n = 4. There are four leaves that report 4 and two that report 3.
The number of comparisons done by the algorithm is 3 rather than lg n = lg 4 = 2. We
see that lg n is a weak lower bound.
Figure 8.9 The decision tree corresponding to Algorithm 8.2 when n = 4.

We use another method, called an adversary argument, to establish our lower
bound. An adversary is an opponent or foe. Suppose you are in the local singles bar
and an interested stranger asked you the tired question, “What’s your sign?” This
means that the person wants to know your astrological sign. There are 12 such signs,
each corresponding to a period of approximately 30 days. If, for example, you were
born August 25, your sign would be Virgo. To make this stale encounter more
exciting, you decide to spice things up by being an adversary. You tell the stranger to
guess your sign by asking yes/no questions. Being an adversary, you have no intention
of disclosing your sign—you simply want to force the stranger to ask as many
questions as possible. Therefore, you always provide answers that narrow down the
search as little as possible. For example, suppose the stranger asks, “Were you born
in summer?” Because a “no” answer would narrow the search to nine months and a
“yes” answer would narrow it to three months, you answer “no.” If the stranger then
asks, “Were you born in a month with 31 days?” you answer “yes,” because more
than half of the nine possible months remaining have 31 days. The only requirement
of your answers is that they be consistent with ones already given. For example, if the
stranger forgets that you said you were not born in summer and later asks if you were
born in July, you could not answer “yes” because this would not be consistent with
your previous answers. Inconsistent answers have no sign (birthday) satisfying them.
Because you answer each question so as to leave the maximum number of remaining
possibilities and because your answers are consistent, you force the stranger to ask
as many questions as possible before reaching a logical conclusion.

www.EBooksWorld.ir

Suppose some adversary’s goal is to make an algorithm work as hard as possible
(as you did with the stranger). At each point where the algorithm must make a
decision (for example, after a comparison of keys), the adversary tries to choose a
result of the decision that will keep the algorithm going as long as possible. The only
restriction is that the adversary must always choose a result that is consistent with
those already given. As long as the results are consistent, there must be an input for
which this sequence of results occurs. If the adversary forces the algorithm to do the
basic instruction f (n) times, then f (n) is a lower bound on the worst-case time
complexity of the algorithm.

We use an adversary argument to obtain a lower bound on the worst-case number
of comparisons needed to find both the largest and smallest keys. This argument first
appeared in Pohl (1972). To establish that bound, we can assume that the keys are
distinct. We can do this because a lower bound on the worst-case time complexity for
a subset of inputs (those with distinct keys) is a lower bound on the worst-case time
complexity when all inputs are considered. Before presenting the theorem, we show
our adversary’s strategy. Suppose we have some algorithm that solves the problem of
finding the smallest and largest keys only by comparisons of keys. If all the keys are
distinct, at any given time during the execution of the algorithm a given key has one of
the following states:

State Description of State
X The key has not been involved in a comparison.
L The key has lost at least one comparison and has never won.
W The key has won at least one comparison and has never lost.
WL The key has won at least one comparison and has lost at least one.

We can think of these states as containing units of information. If a key has state X,
there are zero units of information. If a key has state L or W, there is one unit of
information because we know that the key has either lost or won a comparison. If a
key has state WL, there are two units of information because we know that the key
has both won and lost comparisons. For the algorithm to establish that one key small
is smallest and another key large is largest, the algorithm must know that every key
other than small has won a comparison and every key other than large has lost a
comparison. This means that the algorithm must learn

units of information.

• Table 8.2 Our Adversary’s Strategy for Foiling an Algorithm That Finds the Smallest and Largest Keys*

www.EBooksWorld.ir

*The keys si and sj are being compared.

Because the goal is to make the algorithm work as hard as possible, an adversary
wants to provide as little information as possible with each comparison. For
example, if the algorithm first compares s2 and s1, it doesn’t matter what an adversary
answers, because two units of information are supplied either way. Let’s say the
adversary answers that s2 is larger. The state of s2 then changes from X to W, and the
state of s1 changes from X to L. Suppose the algorithm next compares s3 and s1. If an
adversary answers that s1 is larger, the state of s1 changes from L to WL and the state
of s3 changes from X to L. This means that two units of information are disclosed.
Because only one unit of information is disclosed by answering that s3 is larger, we
have our adversary give this answer. Table 8.2 shows an adversary strategy that
always discloses a minimal amount of information. When it doesn’t matter which key
is answered, we have simply chosen the first one in the comparison. This strategy is
all we need to prove our theorem. But first let’s show an example of how our
adversary would actually use the strategy.

Example 8.2
Table 8.3 shows our adversary’s strategy for foiling Algorithm 8.3 for an input size
of 5. We have assigned values to the keys that are consistent with the answers.
Assigning such values is not really necessary, but the adversary must keep track of
the order of the keys imposed by the answers, so that a consistent answer can be
given when both keys have state WL. An easy way to do this is to assign values.
Furthermore, assigning values illustrates that a consistent set of answers does indeed
have an input associated with it. Other than the order determined by the adversary’s
strategy, the answers are arbitrary. For example, when s3 is declared larger than s1,
we give s3 the value 15. We could have given it any value greater than 10.

www.EBooksWorld.ir

• Table 8.3 Our Adversary’s Answers in Attempting to Foil Algorithm 8.3 for an Input Size of 5

Notice that after s3 is compared with s2, we change the value of s3 from 15 to 30.
Remember that the adversary has no actual input when presented with the algorithm.
An answer (and therefore an input value) is constructed dynamically whenever our
adversary is given the decision the algorithm is currently making. It is necessary to
change the value of s3 from 15 because s2 is larger than 15 and our adversary’s
answer is that s3 is larger than s2.

After the algorithm is done, s1 has lost to all other keys and s5 has won over all
other keys. Therefore, s1 is smallest and s5 is largest. The input constructed by our
adversary has s1 as the smallest key because this is an input that makes Algorithm 8.3
work hardest. Notice that eight comparisons are done in Table 8.3, and the worst-
case number of comparisons done by Algorithm 8.3 when the input size is 5 is given
by

This means that our adversary succeeds in making Algorithm 8.3 work as hard as
possible when the input size is 5.

When presented with a different algorithm for finding the largest and smallest keys,
our adversary will provide answers that try to make that algorithm work as hard as
possible. You are encouraged to determine the adversary’s answers when presented
with Algorithm 8.4 (Find Smallest and Largest Keys by Pairing Keys) and some input
size.

When developing an adversary strategy, our goal is to make algorithms for solving
some problem work as hard as possible. A poor adversary may not actually achieve
this goal. However, regardless of whether or not the goal is reached, the strategy can
be used to obtain a lower bound on how hard the algorithms must work. Next we do
this for the adversary strategy just described.

www.EBooksWorld.ir

 Theorem 8.8
Any deterministic algorithm that can find both the smallest and the largest of n keys in
every possible input only by comparisons of keys must in the worst case do at least
the following numbers of comparisons of keys:

Proof: We show that this is a lower bound on the worst case by showing that the
algorithm must do at least this many comparisons when the keys are distinct. As noted
previously, the algorithm must learn 2n − 2 units of information to find both the
smallest and largest keys. Suppose we present our adversary with the algorithm.
Table 8.2 shows that our adversary provides two units of information in a single
comparison only when both keys have not been involved in previous comparisons. If
n is even, this can be the case for at most

which means that the algorithm can get at most 2 (n/2) = n units of information in this
way. Because our adversary provides at most one unit of information in the other
comparisons, the algorithm must do at least

additional comparisons to get all the information it needs. Our adversary therefore
forces the algorithm to do at least

comparisons of keys. It is left as an exercise to analyze the case in which n is odd.

Because Algorithm 8.4 does the number of comparisons in the bound in Theorem
8.8, that algorithm is optimal in its worst-case performance. We have chosen a
worthy adversary because we have found an algorithm that performs as well as the
bound it provides. We know therefore that no other adversary could provide a larger
bound.

Example 8.2 illustrates why Algorithm 8.3 is suboptimal. In that example,
Algorithm 8.3 takes eight comparisons to learn eight units of information, whereas an
optimal algorithm would take only six comparisons. Table 8.3 shows that the second
comparison is useless because no information is learned.

When adversary arguments are used, the adversary is sometimes called an oracle.

www.EBooksWorld.ir

Among ancient Greeks and Romans, an oracle was an entity with great knowledge
that answered questions posed by humans.

• 8.5.3 Finding the Second-Largest Key
To find the second-largest key, we can use Algorithm 8.2 (Find Largest Key) to find
the largest key with n − 1 comparisons, eliminate that key, and then use Algorithm
8.2 again to find the largest remaining key with n − 2 comparisons. Therefore, we
can find the second-largest key with 2n − 3 comparisons. We should be able to
improve on this, because many of the comparisons done when finding the largest key
can be used to eliminate keys from contention for the second largest. That is, any key
that loses to a key other than the largest cannot be the second largest. The Tournament
method, described next, uses this fact.

The Tournament method is so named because it is patterned after the method
used in elimination tournaments. For example, to determine the best college
basketball team in the United States, 64 teams compete in the NCAA Tournament.
Teams are paired and 32 games are played in the first round. The 32 victors are
paired for the second round and 16 games are played. This process continues until
only two teams remain for the final round. The winner of the single game in that
round is the champion. It takes lg 64 = 6 rounds to determine the champion.

For simplicity, assume that the numbers are distinct and that n is a power of 2. As
is done in the NCAA Tournament, we pair the keys and compare the pairs in rounds
until only one round remains. If there are eight keys, there are four comparisons in the
first round, two in the second, and one in the last. The winner of the last round is the
largest key. Figure 8.10 illustrates the method. The Tournament method directly
applies only when n is a power of 2. When this is not the case, we can add enough
items to the end of the array to make the array size a power of 2. For example, if the
array is an array of 53 integers, we add 11 elements, each with value −∞, to the end
of the array to make the array contain 64 elements. In what follows, we will simply
assume that n is a power of 2.

Although the winner in the last round is the largest key, the loser in that round is
not necessarily the second largest. In Figure 8.10, the second-largest key (16) loses
to the largest key (18) in the second round. This is a difficulty with many actual
tournaments because the two best teams do not always meet in the championship
game. Anyone familiar with the American football Super Bowl is well aware of this.
To find the second-largest key, we can keep track of all the keys that lose to the
largest key, and then use Algorithm 8.2 to find the largest of those. But how can we
keep track of those keys when we do not know in advance which key is the largest?
We can do this by maintaining linked lists of keys, one for each key. After a key loses
a match, it is added to the winning key’s linked list. It is left as an exercise to write

www.EBooksWorld.ir

an algorithm for this method. If n is a power of 2, there are n/2 comparisons in the
first round, n/22 in the second round, … , and n/2lg n = 1 in the last round. The total
number of comparisons in all the rounds is given by
Figure 8.10 The Tournament

The second-to-last equality is obtained by applying the result in Example A.4 in
Appendix A. This is the number of comparisons needed to complete the tournament.
(Notice that we find the largest key with an optimal number of comparisons.) The
largest key will have been involved in lg n matches, which means that there will be
lg n keys in its linked list. If we use Algorithm 8.2, it takes lg n − 1 comparisons to
find the largest key in this linked list. That key is the second largest key. Therefore,
the total number of comparisons needed to find the second largest key is

It is left as an exercise to show that, for n in general,

This performance is a substantial improvement over using Algorithm 8.2 twice to
find the second-largest key. Recall that it takes 2n − 3 comparisons to do it that way.
Can we obtain an algorithm that does even fewer comparisons? We use an adversary
argument to show that we cannot.

 Theorem 8.9
Any deterministic algorithm that can find the second largest of n keys in every
possible input only by comparisons of keys must in the worst case do at least

www.EBooksWorld.ir

Proof: To determine that a key is second largest, an algorithm must determine that it is
the largest of the n − 1 keys besides the largest key. Let m be the number of
comparisons won by the largest key. None of these comparisons is useful in
determining that the second-largest key is the largest of the remaining n − 1 keys.
Theorem 8.7 says that this determination requires at least n − 2 comparisons.
Therefore, the total number of comparisons is at least m + n − 2. This means that, to
prove the theorem, an adversary only needs to force the algorithm to make the largest
key compete in at least lg n comparisons. Our adversary’s strategy is to associate a
node in a tree with each key. Initially, n single-node trees are created, one for each
key. Our adversary uses the trees to give the result of the comparison of si and sj as
follows:

• If both si and sj are roots of trees containing the same number of nodes, the
answer is arbitrary. The trees are combined by making the key that is declared
smaller a child of the other key.

• If both si and sj are roots of trees, and one tree contains more nodes than the
other, the root of the smaller tree is declared smaller, and the trees are combined
by making that root a child of the other root.

• If si is a root and sj is not, sj is declared smaller and the trees are not changed.
• If neither si nor sj is a root, the answer is consistent with previously assigned

values and the trees are not changed.

Figure 8.11 shows how trees would be combined when our adversary is presented
with the Tournament method and an instance of size 8. When the choice is arbitrary,
we make the key with the larger index the winner. Only the comparisons up to
completion of the tournament are shown. After that, more comparisons would be
done to find the largest of the keys that lost to the largest key, but the tree would be
unchanged.

Let sizek be the number of nodes in the tree rooted at the largest key immediately
after the kth comparison won by that key. Then

because the number of nodes in a defeated key’s tree can be no greater than the
number of nodes in the victor’s tree. The initial condition is size0 = 1.
Figure 8.11 The trees created by our adversary in Theorem 8.9 when presented with the Tournament method and
an input size of 8.

www.EBooksWorld.ir

We can solve this recurrence using the techniques in Appendix B to conclude that

If a key is a root when the algorithm stops, it has never lost a comparison.
Therefore, if two trees remain when the algorithm stops, two keys have never lost a
comparison. At least one of those keys is not reported as the second-largest key. We
can create a new input with all the other values the same, but with the values of the
two roots changed so that the key that we know is not reported as the second largest
is indeed the second-largest key. The algorithm would give the wrong answer for that

www.EBooksWorld.ir

input. So when the algorithm stops, all n keys must be in one tree. Clearly, the root of
that tree must be the largest key. Therefore, if m is the total number of comparisons
won by the largest key,

The last equality derives from the fact that m is an integer. This proves the theorem.

Because the Tournament method performs as well as our lower bound, it is
optimal. We have again found a worthy adversary. No other adversary could produce
a greater bound.

In the worst case, it takes at least n − 1 comparisons to find the largest key and at
least n + lg n − 2 comparisons to find the second-largest key. Any algorithm that
finds the second-largest key must also find the largest key, because to know that a key
is second largest, we must know that it has lost one comparison. That loss must be to
the largest key. Therefore, it is not surprising that it is harder to find the second-
largest key.

• 8.5.4 Finding the kth-Smallest Key
In general, the Selection problem entails finding the kth-largest or kth-smallest key.
So far, we’ve discussed finding the largest key, because it has seemed more
appropriate for the terms used. That is, it seems appropriate to call the largest key a
winner. Here we discuss finding the kth-smallest key because it makes our algorithms
more lucid. For simplicity, we assume that the keys are distinct.

One way to find the kth-smallest key in Θ (n lg n) time is to sort the keys and return
the kth key. We develop a method that requires fewer comparisons.

Recall that procedure partition in Algorithm 2.7, which is used in Quicksort
(Algorithm 2.6), partitions an array so that all keys smaller than some pivot item
come before it in the array and all keys larger than that pivot item come after it. The
slot at which the pivot item is located is called the pivotpoint. We can solve the
Selection problem by partitioning until the pivot item is at the kth slot. We do this by
recursively partitioning the left subarray (the keys smaller than the pivot item) if k is
less than pivotpoint, and by recursively partitioning the right subarray if k is greater
than pivot-point. When k = pivotpoint, we’re done. This divide-and-conquer
algorithm solves the problem by this method.

www.EBooksWorld.ir

 Algorithm 8.5
Selection
Problem: Find the kth-smallest key in array S of n distinct keys.
Inputs: positive integers n and k where k ≤ n, array of distinct keys S indexed from 1
to n.
Outputs: the kth-smallest key in S. It is returned as the value of function selection.

As with our recursive functions in previous chapters, n and S are not inputs to
function selection. The top-level call to that function would be

As in Quicksort (Algorithm 2.6), the worst case occurs when the input to each
recursive call contains one less item. This happens, for example, when the array is

www.EBooksWorld.ir

sorted in increasing order and k = n. Algorithm 8.5 therefore has the same worst-case
time complexity as Algorithm 2.6, which means that the worst-case time complexity
of the number of comparisons of keys done by Algorithm 8.5 is given by

Although the worst case is the same as that of Quicksort, we show next that
Algorithm 8.5 performs much better on the average.

 Analysis of Algorithm 8.5
 Average-Case Time Complexity (Selection)
Basic operation: the comparison of S [i] with pivotitem in partition.
Input size: n, the number of items in the array.

We assume that all inputs are equally likely. This means that we assume that all
values of k are entered with equal frequency and all values of pivotpoint are returned
with equal frequency. Let p stand for pivotpoint. There are n outcomes for which
there is no recursive call (that is, if p = k for k = 1, 2, … , n). There are two
outcomes for which 1 is the input size in the first recursive call (that is, if p = 2 with
k = 1, or p = n − 1 with k = n). There are 2(2) = 4 outcomes for which 2 is the input
size in the first recursive call (that is, if p = 3 with k = 1 or 2, or p = n − 2 with k = n
− 1 or n). Listed below are the numbers of outcomes for all the input sizes:

It is not hard to see that, for each of these input sizes, all allowable values of k
appear with equal frequency. Recall from the every-case analysis of Algorithm 2.7
that the number of comparisons in procedure partition is n − 1. Therefore, the
average is given by the following recurrence:

www.EBooksWorld.ir

Using the result in Example A.1 in Appendix A and the fact that A (0) = 0, and
simplifying, we have

Next we mimic the technique used in the average-case time complexity analysis of
Algorithm 2.6 (Quicksort). That is, we multiply the expression for A (n) by n2, apply
the expression to n − 1, subtract the expression for n − 1 from the one for n, and
simplify to obtain

Because A (0) = 0, we have the following recurrence:

This recurrence can be solved using induction, as described in Section B.1 in
Appendix B. The solution is

In the same way, we can use the recurrence to show that A (n) is bounded below by a
linear function. Therefore,

It is straightforward to use the recurrence for A (n) to show that, for large values of n,

On the average, Algorithm 8.5 (Selection) does only a linear number of
comparisons. Of course, the reason that this algorithm performs better on the average
than Algorithm 2.6 (Quicksort) is that Quicksort has two calls to partition, whereas
this algorithm has only one. However, they both degenerate into the same complexity
when the input to the recursive call is n − 1. (In this case, Quicksort inputs an empty
subarray on one side.) That time complexity is quadratic. If we could somehow
prevent this from happening in Algorithm 8.5, we should be able to improve on
worst-case quadratic time. Next we show how this is done.

The best thing would be if pivotpoint were to split the array in the middle, because
then the input would be cut in half in each recursive call. Recall that the median of n
distinct keys is the key such that half the keys are smaller and half are larger. (This is

www.EBooksWorld.ir

precise only if n is odd.) If we could always choose the median for pivotitem, we
would have optimal performance. But how can we determine the median? In
procedure partition, we could try calling function selection with an input consisting
of the original array and k equal to about half the size of that array. And yet this will
not help because we end up back in selection with an instance of the same size as our
original instance. However, the following maneuver does work. Assume for the
moment that n is an odd multiple of 5. (We need not use 5; this is discussed at the end
of the section.) We divide the n keys into n/5 groups of keys, each containing five
keys. We find the median of each of these groups directly. As you are asked to show
in the exercises, this can be done with six comparisons. We then call function
selection to determine the median of the n/5 medians. The median of the medians is
not necessarily the median of the n keys, but, as Figure 8.12 shows, it is reasonably
close. In that figure, the keys to the left of the smallest median (keys 2 and 3) must be
less than the median of the medians, and the keys to the right of the largest median
(keys 18 and 22) must be greater than the median of the medians. In general, the keys
to the right of the smallest median (keys 8 and 12) and the keys to the left of the
largest median (keys 6 and 14) could lie on either side of the median of medians.
Notice that there are
Figure 8.12 Each bar represents a key. We do not know if the boldfaced keys are less than or greater than the
median of the medians.

keys that could be on either side of the median of the medians. It is not hard to see
that, whenever n is an odd multiple of 5, there are

keys that could lie on either side of the median of the medians. Therefore, there are at
most

www.EBooksWorld.ir

keys on one side of the median of the medians. We return to this result when we
analyze the algorithm that uses this strategy. First we present the algorithm.

 Algorithm 8.6
Selection Using the Median
Problem: Find the kth-smallest key in the array S of n distinct keys.
Inputs: positive integers n and k where k ≤ n, array of distinct keys S indexed from 1
to n.
Outputs: the kth-smallest key in S. It is returned as the value of function select.

www.EBooksWorld.ir

In Algorithm 8.6, unlike our other recursive algorithms, we show a simple function
that calls our recursive function. The reason is that this simple function needs to be
called in two places with different inputs. That is, it is called in procedure partition2
with T being the input, and globally as follows:

We also made the array an input to the recursive function selection2 because the
function is called to process both the global array S and the local array T .

www.EBooksWorld.ir

Next we analyze the algorithm.

 Analysis of Algorithm 8.6
 Worst-Case Time CompIexity (Selection Using the Median)
Basic operation: the comparison of S [i] with pivotitem in partition2.
Input size: n, the number of items in the array.

For simplicity, we develop a recurrence assuming that n is an odd multiple of 5. The
recurrence approximately holds for n in general. The components in the recurrence
are as follows.

• The time in function selection2 when called from function selection2. As
already discussed, if n is an odd multiple of 5, at most

end up on one side of pivotpoint, which means that this is the worst-case number
of keys in the input to this call to selection2.

• The time in function selection2 when called from procedure partition2. The
number of keys in the input to this call to selection2 is n/5.

• The number of comparisons required to find the medians. As mentioned
previously, the median of five numbers can be found by making six comparisons.
When n is a multiple of 5, the algorithm finds the median of exactly n/5 groups
of five numbers. Therefore, the total number of comparisons required to find the
medians is 6n/5.

• The number of comparisons required to partition the array. This number is n
(assuming an efficient implementation of the comparison).

We have established the following recurrence:

It is possible to show that the approximate equality holds even when n is not an odd
multiple of 5. Of course, W (n) does not really have nonintegral inputs. However,
considering such inputs simplifies our analysis. The recurrence does not suggest any
obvious solution that can be used in an induction argument. Furthermore, it is not
solvable by any of the other techniques in Appendix B. However, we can use a
technique called constructive induction to obtain a candidate solution that can be
used in an induction argument. That is, because we suspect that W (n) is linear, let’s

www.EBooksWorld.ir

assume that W (m) ≤ cm for all m < n and for some constant c. Then the recurrence
implies that

Because we want to be able to conclude that W (n) ≤ cn, we need to solve

to determine a value of c that would work in an induction argument. The solution is

We then choose the smallest value of c that satisfies the inequality and proceed
forward with a formal induction argument to show that when n is not small, the
worst-case time complexity is approximately bound as follows:

Clearly, the inequality holds for n ≤ 5. It is left as an exercise to complete the
induction argument. Theorem 8.7 says that linear time is required just to solve the
case where k = 1. We can conclude that

We have successfully solved the Selection problem with an algorithm that is
linear-time in the worst case. As mentioned previously, we did not have to divide the
array into groups of size 5 to do this. If m is the group size, any odd value of m ≥ 5
yields a linear-time complexity. We now present the reason. Establishing the results
we state is left for the exercises. For an arbitrary m, the recurrence for the worst-case
time complexity is given by

where a is a positive constant. The sum of the coefficients of n in the expressions on
the right is

It is straightforward that the expression on the right is less than 1 if and only if m > 3.
It is possible to show that the recurrence

describes a linear equation if p + q < 1. Therefore, Recurrence 8.2 describes a linear

www.EBooksWorld.ir

equation for all m ≥ 5.
When m = 3, Recurrence 8.2 is as follows:

Using induction, it is possible to show that for this recurrence

Therefore, 5 is the smallest odd value of n that yields linear performance.
When m = 7, 9, or 11, the upper bound c on the time complexity is slightly smaller

than when m = 5. The value of c increases very slowly as m increases beyond 11. For
m not small, it is possible to show that c is approximated by 4 lg m. For example, if
m = 100, the constant is about 4 lg 100 = 26.6.

Our linear-time algorithm for the Selection problem is from Blum, Floyd, Pratt,
Rivest, and Tarjan (1973). The original version is more complex, but its number of
comparisons of keys is only about 5.5n.

Hyafil (1976) has shown that a lower bound for finding the kth-smallest key in a
set of n keys for k > 1 is given by

The proof can also be found in Horowitz and Sahni (1978). Notice that Theorem 8.9
is a special case of this result.

Other selection algorithms and lower bounds can be found in Schonhage, Paterson,
and Pippenger (1976) and in Fussenegger and Gabow (1976).

• 8.5.5 A Probabilistic Algorithm for the Selection
Problem

In obtaining lower bounds for algorithms, we have assumed the algorithms to be
deterministic, but we mentioned that those bounds also hold for probabilistic
algorithms. We close this discussion by presenting a probabilistic algorithm for the
Selection problem to illustrate when such an algorithm is useful.

Section 5.3 presented a probabilistic algorithm—namely, a Monte Carlo algorithm
for approximating the efficiency of a backtracking algorithm. Recall that a Monte
Carlo algorithm does not necessarily give the correct answer. Rather, it provides an
estimate of that answer, and the probability that the estimate is close to the correct
answer increases as the time available to the algorithm increases. Here we show a
different kind of probabilistic algorithm, called a Sherwood algorithm.

A Sherwood algorithm always gives the correct answer. Such an algorithm is

www.EBooksWorld.ir

useful when some deterministic algorithm runs much faster on the average than it
does in the worst case. Recall that this is true of Algorithm 8.5 (Selection). The
worst-case quadratic time is achieved in that algorithm when the pivotpoint for a
particular input is repeatedly close to low or high in the recursive calls. This
happens, for example, when the array is sorted in increasing order and k = n.
Because this is not the case for most inputs, the algorithm’s average performance is
linear. Suppose that, for a particular input, we choose the pivot item at random
according to a uniform distribution. Then, when the algorithm is run for that input, the
pivotpoint is more likely to be away from the endpoints than close to them.
(Randonmess is reviewed in Section A.8 in Appendix A.) Therefore, linear
performance is more likely. Because the number of comparisons is linear when
averaged over all inputs, intuitively it seems that the expected value of the number of
comparisons of keys done for a particular input should be linear when the pivot item
is chosen at random according to a uniform distribution. We prove that this is the
case, but first we stress the difference between this expected value and the average
value obtained for Algorithm 8.5. Assuming that all possible inputs are presented in
equal numbers, the average number of comparisons done by Algorithm 8.5 is linear.
For any given input, Algorithm 8.5. always does the same number of comparisons,
which is quadratic for some inputs. The Sherwood algorithm we are about to present
does not do the same number of comparisons each time it executes on a given input.
For any given input, it sometimes does a linear number of comparisons and
sometimes does a quadratic number. However, if the algorithm is run many times
using the same input, we can expect the average of the running times to be linear.

You may ask why we would want to use such an algorithm when Algorithm 8.6
(Selection Using the Median) guarantees linear performance. The reason is that
Algorithm 8.6 has a high constant because of the overhead needed for approximating
the median. For a given input, our Sherwood algorithm runs faster on the average than
Algorithm 8.6. The decision about whether to use Algorithm 8.6 or the Sherwood
algorithm depends on the needs of the particular application. If better average
performance is most important, we should use the Sherwood algorithm. If, on the
other hand, quadratic performance can never be tolerated, we should use Algorithm
8.6. We stress again the advantage of the Sherwood algorithm over Algorithm 8.5
(Selection). As long as the inputs are uniformly distributed, Algorithm 8.5 also
performs better on the average than Algorithm 8.6. However, in some particular
application, the inputs may always be ones that approach the worst case in Algorithm
8.5. In such an application, Algorithm 8.5 always exhibits quadratic-time
performance. The Sherwood algorithm avoids this difficulty in any application by
choosing the pivot item at random according to a uniform distribution.

Next we present the probabilistic (Sherwood) algorithm.

www.EBooksWorld.ir

 Algorithm 8.7
ProbabiIistic Selection
Problem: Find the kth-smallest key in array S of n distinct keys.
Inputs: positive integers n and k where k ≤ n, array of distinct keys S indexed from 1
to n.
Outputs: the kth-smallest key in S. It is returned as the value of function selection3.

Algorithm 8.7 differs from Algorithm 8.5 only in its random choice of the pivot
item. Next we prove that the expected value of the number of comparisons is linear
for any input. This analysis must be different from the average-case analysis of
Algorithm 8.5 (Selection), because in that analysis we assumed that all values of k
are entered with equal frequency. We want to obtain a linear-time expected value for
each input. Because each input has a specific value of k, we can’t assume that all
values of k occur with equal frequency. We show that, independent of k, the expected
value is linear.

www.EBooksWorld.ir

 Analysis of Algorithm 8.7
 Expected-Value Time Complexity (Probabilistic Selection)
Basic operation: the comparison of S [i] with pivotitem in partition.
Input size: n, the number of items in the array.

Given that we are looking for the kth-smallest key in an input of size n, the following
table shows the size of the input and the new value of k in the first recursive call for
each value of pivotpoint.

Because all values of pivotpoint are equally likely, we have the following recurrence
for the expected value:

We can analyze this recurrence using constructive induction as we did in the worst-
case analysis of Algorithm 8.6. That is, because we suspect that the recurrence is
linear, we look for a value of c such that an induction argument should prove E (n, k)
≤ cn. This time, we show the induction argument, but we leave as an exercise the
determination that c = 4 is the smallest constant that would work.

Induction base: Because no comparisons are done for n = 1,

Induction hypothesis: Suppose that, for all m < n and all k ≤ m,

Induction step: We need to show that, for all k ≤ n,

By the recurrence and the induction hypothesis,

www.EBooksWorld.ir

We have that

The third equality is obtained by twice applying the result of Example A.1 in
Appendix A. The last inequality derives from the fact that, in general, k (n − k) ≤
n2/4. Plugging the result just obtained into Inequality 8.3, we have

We have shown that, independent of the value of k,

EXERCISES

Section 8.1
1. Let us assume that a search does not start at the beginning of a list when the

Sequential Search algorithm (Algorithm 1.1) is used, but rather starts wherever
the list index was left at the termination of the preceding search. Let us further
assume that the item for which we are searching is selected randomly and
independently of the destinations of previous searches. Under these assumptions,
what would be the average number of comparisons?

2. Let S and T be two arrays of m and n elements, respectively. Write an algorithm
that finds all the common elements and stores them in an array U. Show that this
can be done in Θ (n + m) time.

3. Improve the Binary Search algorithm (Algorithm 1.5) assuming a successful

www.EBooksWorld.ir

search. Analyze your algorithm and show the results using order notation.

4. Show that, if x is in the array and is equally probable to be in each of the array
slots, the average-case time complexity for Binary Search (Algorithm 1.5) is
bounded approximately by

Hint: By Lemma 8.4, for some k, n − (2k − 1) is the number of nodes at the
bottom level. The contribution to the TND for those nodes is equal to (n − 2k −
1) (k + 1). Add this expression to (k − 1) 2k + 1 (the formula established in the
average-case analysis of Binary Search) to obtain the TND for the decision tree.

5. Suppose that all of the following 2n + 1 possibilities are equally probable:

Show that the average-case time complexity of the Binary Search algorithm
(Algorithm 1.5) is bounded approximately by

Hint: See the hint for Exercise 4.

6. Complete the proof of Lemma 8.6.

Section 8.2
7. Implement the Binary Search, Interpolation Search, and Robust Interpolation

Search algorithms on your system and study their best-case, average-case, and
worst-case performances using several problem instances.

8. Show that the average-case time complexity of Interpolation Search is in Θ(lg (lg
n)), assuming the keys are uniformly distributed and that search key x is equally
probable to be in each of the array slots.

9. Show that the worst-case time complexity of Interpolation Search is in Θ (lg n)
2,

assuming the keys are uniformly distributed and that search key x is equally
probable to be in each of the array slots.

Section 8.3
10. Write an algorithm that finds the largest key in a binary search tree. Analyze your

www.EBooksWorld.ir

algorithm, and show the results using order notation.

11. Theorem 8.3 states that, for a successful search, the average search time over all
inputs containing n keys, using binary search trees, is in Θ (lg n). Show that this
result still holds if we consider an unsuccessful search as well.

12. Write an algorithm that deletes a node from a binary search tree considering all
possible cases. Analyze your algorithm and show the results using order notation.

13. Write an algorithm that creates a 3–2 tree from a list of keys. Analyze your
algorithm and show the results using order notation.

14. Write an algorithm that lists all the keys in a 3–2 tree in their natural order.
Analyze your algorithm and show the results using order notation.

Section 8.4
15. Another clash (collision) resolution strategy is linear probing. In this strategy, all

the elements are stored in the array of buckets (hash table). In the case of a clash,
the table is searched for the next available (free) bucket. Show how linear
probing resolves clashes that occur in the problem instance of Figure 8.8. (Linear
probing is also known as closed hashing.)

16. Discuss the advantages and disadvantages of the two clash resolution strategies,
open hashing and linear probing (see Exercise 15).

17. Write an algorithm to delete an element from a hash table that uses linear probing
as its clash resolution strategy. Analyze your algorithm and show the results using
order notation.

18. A rehashing scheme known as double hashing uses a second hash function in case
of a clash. If the first hash function is h and the second hash function is s, the
entire sequence of positions of the hash table that will be checked for an
available bucket is given by the following equality, where pi is the ith position in
the sequence:

(% returns the remainder when the first operand is divided by the second.)
Define a second hash function for the problem instance of Figure 8.8 and show
the table after all the keys have been inserted into the hash table.

Section 8.5
19. Modify Algorithm 8.4 (Find Smallest and Largest Keys by Pairing Keys) so that

www.EBooksWorld.ir

it works when n (the number of keys in the given array) is odd and show that its
time complexity is given by

20. Complete the proof of Theorem 8.8. That is, show that a deterministic algorithm
that finds the smallest and largest of n keys only by comparisons of keys must in
the worst case do at least (3n − 3) /2 comparisons if n is odd.

21. Write an algorithm for the method discussed in Section 8.5.3 for finding the
second-largest key in a given array.

22. Show that for n in general, the total number of comparisons needed by the method
discussed in Section 8.5.3 for finding the second-largest key in a given array is

23. Show that the median of five numbers can be found by making six comparisons.

24. Use induction to show that the worst-case time complexity of Algorithm 8.6
(Selection Using the Median) is bounded approximately as follows:

25. Show that for an arbitrary m (group size), the recurrence for the worst-case time
complexity of Algorithm 8.6 (Selection Using the Median) is given by

where a is a constant. This is Recurrence 8.2 in Section 8.5.4.

26. Use induction to show that W (n) ∈ Ω (n lg n) for the following recurrence. This
is Recurrence 8.2 in Section 8.5.4 where m (group size) is 3.

27. Show that the constant c in the inequality

in the expected-value time complexity analysis of Algorithm 8.7 (Probabilistic
Selection) cannot be less than 4.

28. Implement Algorithms 8.5, 8.6, and 8.7 (Selection algorithms for finding the kth-
smallest key in an array) on your system and study their best-case, average-case,
and worst-case performances using several problem instances.

29. Write a probabilistic algorithm that determines whether an array of n elements

www.EBooksWorld.ir

has a majority element (the element that appears the most). Analyze your
algorithm and show the results using order notation.

Additional Exercises
30. Suppose a very large sorted list is stored in external storage. Assuming that this

list cannot be brought into internal memory, develop a searching algorithm that
looks for a key in this list. What major factor(s) should be considered when an
external search algorithm is developed? Define the major factor(s), analyze your
algorithm, and show the results using order notation.

31. Discuss the advantages of using each of the following instead of the other:
(a) A binary search tree with a balancing mechanism
(b) A 3–2 tree

32. Give at least two examples of situations in which hashing is not appropriate.

33. Let S and T be two arrays of n numbers that are already in nondecreasing order.
Write an algorithm that finds the median of all 2n numbers whose time complexity
is in Θ (lg n).

34. Write a probabilistic algorithm that factors any integer using the functions prime
and factor. Function prime is a boolean function that returns “true” if a given
integer is a prime number and returns “false” if it is not. Function factor is a
function that returns a nontrivial factor of a given composite integer. Analyze your
algorithm, and show the results using order notation.

35. List the advantages and disadvantages of all the searching algorithms discussed in
this chapter.

36. For each of the searching algorithms discussed in this chapter, give at least two
examples of situations in which the algorithm is the most appropriate.

www.EBooksWorld.ir

Chapter 9

Computational Complexity and
Intractability: An Introduction to the
Theory of NP

Consider the following scenario based on a story in Garey and Johnson (1979).
Suppose you work in industry, and your boss gives you the task of finding an efficient
algorithm for some problem very important to the company. After laboring long hours
on the problem for over a month, you make no headway at all toward an efficient
algorithm. Giving up, you return to your boss and ashamedly announce that you
simply can’t find an efficient algorithm. Your boss threatens to fire you and replace
you with a smarter algorithm designer. You reply that perhaps it is not that you’re
stupid, but rather that an efficient algorithm is not possible. Reluctantly, your boss
gives you another month to prove that this is the case. After a second month of
burning the midnight oil trying to prove this, you are unsuccessful. At this point
you’ve failed to obtain an efficient algorithm and you’ve failed to prove that such an
algorithm is not possible. You are on the verge of being fired, when you recall that
some of the greatest computer scientists have worked on creating an efficient
algorithm for the Traveling Salesperson problem, but nobody has ever developed one
whose worst-case time complexity is better than exponential. Furthermore, no one
has ever proven that such an algorithm is not possible. You see one last glimmer of
hope. If you could prove that an efficient algorithm for the company’s problem would
automatically yield an efficient algorithm for the Traveling Salesperson problem, it
would mean that your boss is asking you to accomplish something that has eluded
some of the greatest computer scientists. You ask for a chance to prove this, and your

www.EBooksWorld.ir

boss reluctantly agrees. After only a week of effort, you do indeed prove that an
efficient algorithm for the company’s problem would automatically yield an efficient
algorithm for the Traveling Salesperson problem. Rather than being fired, you’re
given a promotion because you have saved the company a lot of money. Your boss
now realizes that it would not be prudent to continue to expend great effort looking
for an exact algorithm for the company’s problem and that other avenues, such as
looking for an approximate solution, should be explored.

What we have just described is exactly what computer scientists have successfully
done for the last 25 years. We have shown that the Traveling Salesperson problem
and thousands of other problems are equally hard in the sense that if we had an
efficient algorithm for any one of them, we would have efficient algorithms for all of
them. Such an algorithm has never been found, but it’s never been proven that one is
not possible. These interesting problems are called NP-complete and are the focus
of this chapter. A problem for which an efficient algorithm is not possible is said to
be “intractable.” In Section 9.1 we explain more concretely what it means for a
problem to be intractable. Section 9.2 shows that when we are concerned with
determining whether or not a problem is intractable, we must be careful about what
we call the input size in an algorithm. Section 9.3 discusses three general categories
in which problems can be grouped as far as intractability is concerned. The
culmination of this chapter, Section 9.4, discusses the theory of NP and NP-complete
problems. Section 9.5 shows ways of handling NP-complete problems.

9.1 Intractability
The dictionary defines intractable as “difficult to treat or work.” This means that a
problem in computer science is intractable if a computer has difficulty solving it.
This definition is too vague to be of much use to us. To make the notion more
concrete, we now introduce the concept of a “polynomial-time algorithm.”

Definition
A polynomial-time algorithm is one whose worst-case time complexity is
bounded above by a polynomial function of its input size. That is, if n is the input
size, there exists a polynomial p (n) such that

Example 9.1
Algorithms with the following worst-case time complexities are all polynomial-time.

www.EBooksWorld.ir

Algorithms with the following worst-case time complexities are not polynomial-time.

Notice that n lg n is not a polynomial in n. However, because

it is bounded by a polynomial in n, which means that an algorithm with this time
complexity satisfies the criterion to be called a polynomial-time algorithm.

In computer science, a problem is called intractable if it is impossible to solve it
with a polynomial-time algorithm. We stress that intractability is a property of a
problem; it is not a property of any one algorithm for that problem. For a problem to
be intractable, there must be no polynomial-time algorithm that solves it. Obtaining a
nonpolynomial-time algorithm for a problem does not make it intractable. For
example, the brute-force algorithm for the Chained Matrix Multiplication problem
(see Section 3.4) is nonpolynomial-time. So is the divide-and-conquer algorithm that
uses the recursive property established in Section 3.4. However, the dynamic
programming algorithm (Algorithm 3.6) developed in that section is Θ (n3). The
problem is not intractable, because we can solve it in polynomial-time using
Algorithm 3.5.

In Chapter 1 we saw that polynomial-time algorithms are usually much better than
algorithms that are not polynomial-time. Looking again at Table 1.4, we see that if it
takes 1 nanosecond to process the basic instructions, an algorithm with a time
complexity of n3 will process an instance of size 100 in 1 millisecond, whereas an
algorithm with a time complexity of 2n will take billions of years.

We can create extreme examples in which a nonpolynomial-time algorithm is
better than a polynomial-time algorithm for practical input sizes. For example, if n =
1, 000, 000,

Furthermore, many algorithms whose worst-case time complexities are not
polynomials have efficient running times for many actual instances. This is the case
for many backtracking and branch-and-bound algorithms. Therefore, our definition of
intractable is only a good indication of real intractability. In any particular case, a
problem for which we have found a polynomial-time algorithm could possibly be
more difficult to handle, as far as practical input sizes are concerned, than one for
which we cannot find such an algorithm.

There are three general categories of problems as far as intractability is
concerned:

www.EBooksWorld.ir

1. Problems for which polynomial-time algorithms have been found
2. Problems that have been proven to be intractable
3. Problems that have not been proven to be intractable, but for which polynomial-

time algorithms have never been found

It is a surprising phenomenon that most problems in computer science seem to fall
into either the first or third category.

When we are determining whether an algorithm is polynomial-time, it is necessary
to be careful about what we call the input size. Therefore, before proceeding, let’s
discuss the input size further. (See Section 1.3 for our initial discussion of the input
size.)

9.2 Input Size Revisited
So far it has usually sufficed to call n the input size in our algorithms because n has
been a reasonable measure of the amount of data in the input. For example, in the
case of sorting algorithms, n, the number of keys to be sorted, is a good measure of
the amount of data in the input. So we called n the input size. However, we must not
inadvertently call n the input size in an algorithm. Consider the following algorithm,
which determines whether a positive integer n is prime.

The number of passes through the while loop in this prime-checking algorithm is
clearly in Θ(n½). However, is it a polynomial-time algorithm? The parameter n is the
input to the algorithm; it is not the size of the input. That is, each value of n
constitutes an instance of the problem. This is unlike a sorting algorithm, for example,
in which n is the number of keys and the instance is the n keys. If the value of n is the
input and not the size of the input in function prime, what is the size of the input? We
return to this question after we define input size more concretely than we did in
Section 1.3.

www.EBooksWorld.ir

Definition
For a given algorithm, the input size is defined as the number of characters it takes
to write the input.

This definition is not different from that given in Section 1.3. It is only more specific
about how we measure the size of the input. To count the characters it takes to write
the input, we need to know how the input is encoded. Suppose that we encode it in
binary, which is used inside computers. Then the characters used for the encoding are
binary digits (bits), and the number of characters it takes to encode a positive integer
x is lg x + 1. For example, 31 = 111112 and lg 31 + 1 = 5. We simply say that it
takes about lg x bits to encode a positive integer x in binary. Suppose that we use
binary encoding and we wish to determine the input size for an algorithm that sorts n
positive integers. The integers to be sorted are the inputs to the algorithm. Therefore,
the input size is the count of the number of bits it takes to encode them. If the largest
integer is L, and we encode each integer in the number of bits needed to encode the
largest, then it takes about lg L bits to encode each of them. The input size for the n
integers is therefore about n lg L. Suppose that instead we choose to encode the
integers in base 10. Then the characters used for the encoding are decimal digits, it
takes about log L characters to encode the largest, and the input size for the n integers
is about n log L. Because

an algorithm is polynomial-time in terms of one of these input sizes if and only if it is
polynomial-time in terms of the other.

If we restrict ourselves to “reasonable” encoding schemes, then the particular
encoding scheme used does not affect the determination of whether an algorithm is
polynomial-time. There does not seem to be a satisfactory formal definition of
“reasonable.” However, for most algorithms we usually agree on what is reasonable.
For example, for any algorithm in this text, any base other than 1 could be used to
encode an integer without affecting whether or not the algorithm is polynomial-time.
We would therefore consider any such encoding system to be reasonable. Encoding in
base 1, which is called the unary form, would not be considered reasonable.

In the preceding chapters, we simply called n, the number of keys to be sorted, the
input size in our sorting algorithms. Using n as the input size, we showed that the
algorithms are polynomial-time. Do they remain polynomial-time when we are
precise about the input size? Next we illustrate that they do. When we are being
precise about input size, we also need to be more precise (than we were in Section
1.3.1) about the definition of worst-case time complexity. The precise definition
follows.

www.EBooksWorld.ir

Definition
For a given algorithm, W (s) is defined as the maximum number of steps done by
the algorithm for an input size of s. W (s) is called the worst-case time complexity
of the algorithm.

A step can be considered the equivalent of one machine comparison or assignment,
or, to keep the analysis machine-independent, one bit comparison or assignment. This
definition is not different from that given in Section 1.3. It is only more specific about
the basic operation. That is, according to this definition, each step constitutes one
execution of the basic operation. We used s instead of n for the input size because (1)
the parameter n to our algorithms is not always a measure of the input size (e.g., in
the prime-checking algorithm presented at the start of this section) and (2) when n is
a measure of the input size, it is not ordinarily a precise measure of it. According to
the definition just given, we must count all the steps done by the algorithm. Let’s
illustrate how we can do this, while still avoiding the details of the implementation,
by analyzing Algorithm 1.3 (Exchange Sort). For simplicity, assume that the keys are
positive integers and that there are no other fields in the records. Look again at
Algorithm 1.3. The number of steps done to increment loops and do branching is
bounded by a constant c times n2. If the integers are sufficiently large, they cannot be
compared or assigned in one step by the computer. We saw a similar situation when
we discussed large integer arithmetic in Section 2.6. Therefore, we should not
consider one key comparison or assignment as one step. To keep our analysis
machine-independent, we consider one step to be either one bit comparison or one
bit assignment. Therefore, if L is the largest integer, it takes at most lg L steps to
compare one integer or to assign one integer. When we analyzed Algorithm 1.3 in
Sections 1.3 and 7.2, we saw that in the worst-case Exchange Sort does n (n − 1) 2
comparisons of keys and 3n (n − 1) /2 assignments to sort n positive integers.
Therefore, the maximum number of steps done by Exchange Sort is no greater than

Let’s use s = n lg L as the input size. Then

www.EBooksWorld.ir

We have shown that Exchange Sort remains polynomial-time when we are precise
about the input size. We can obtain similar results for all the algorithms, which we’ve
shown to be polynomial-time using imprecise input sizes. Furthermore, we can show
that the algorithms, which we’ve shown to be nonpolynomial-time (e.g., Algorithm
3.11), remain nonpolynomial-time when we are precise about the input size. We see
that when n is a measure of the amount of data in the input, we obtain correct results
concerning whether an algorithm is polynomial-time by simply using n as the input
size. Therefore, when this is the case, we continue to use n as the input size.

We return now to the prime-checking algorithm. Because the input to the algorithm
is the value of n, the input size is the number of characters it takes to encode n.
Recall that if we are using base 10 encoding, it takes log n + 1 characters to encode
n. For example, if the number is 340, it takes 3 decimal digits, not 340, to encode it.
In general, if we are using base 10 encoding, and if we set

then s is approximately the size of the input. In the worst-case, there are n1/2 − 1
passes through the loop in function prime. Because n = 10s, the worst-case number of
passes through the loop is about 10s/2. Because the total number of steps is at least
equal to the number of passes through the loop, the time complexity is nonpolynomial.
If we use binary encoding, it takes about lg n characters to encode n. Therefore, if we
use binary encoding,

is about equal to the input size, and the number of passes through the loop is about
equal to 2r/2. The time complexity is still nonpolynomial. The result remains
unchanged as long as we use a “reasonable” encoding scheme. We mentioned
previously that we would not consider unary encoding “reasonable.” If we used that
encoding scheme, it would take n characters to encode the number n. For example,
the number 7 would be encoded as 1111111. Using this encoding, the prime-checking
algorithm has a polynomial time complexity. So we see that our results do change if
we stray from a “reasonable” encoding system.

In algorithms such as the prime-checking algorithm, we call n a magnitude in the
input. We’ve seen other algorithms whose time complexities are polynomials in terms
of magnitude(s) but are not polynomials in terms of size. The time complexity of
Algorithm 1.7 for computing the nth Fibonacci term is in Θ(n). Because n is a
magnitude in the input and lg n measures the size of the input, the time complexity of
Algorithm 1.7 is linear in terms of magnitudes but exponential in terms of size. The
time complexity of Algorithm 3.2 for computing the binomial coefficient is in Θ(n2).
Because n is a magnitude in the input and lg n measures the size of the input, the time
complexity of Algorithm 3.2 is quadratic in terms of magnitudes but exponential in
terms of size. The time complexity of the dynamic programming algorithm for the 0-1

www.EBooksWorld.ir

Knapsack problem discussed in Section 4.5.4 is in Θ(nW). In this algorithm, n is a
measure of size because it is the number of items in the input. However, W is a
magnitude because it is the maximum capacity of the knapsack; lgW measures the size
of W. This algorithm’s time complexity is polynomial in terms of magnitudes and
size, but it is exponential in terms of size alone.

An algorithm whose worse-case time complexity is bounded above by a
polynomial function of its size and magnitudes is called pseudopolynomialtime.
Such an algorithm can often be quite useful because it is inefficient only when
confronted with instances containing extremely large numbers. Such instances might
not pertain to the application of interest. For example, in the 0-1 Knapsack problem,
we might often be interested in cases where W is not extremely large.

9.3 The Three General Problem Categories
Next we discuss the three general categories in which problems can be grouped as
far as intractability is concerned.

• 9.3.1 Problems for Which Polynomial-Time Algorithms
Have Been Found

Any problem for which we have found a polynomial-time algorithm falls in this first
category. We have found Θ(n lg n) algorithms for sorting, a Θ(lg n) algorithm for
searching a sorted array, a Θ(n2.38) algorithm for matrix multiplication, a Θ(n3)
algorithm for chained matrix multiplication, and so on. Because n is a measure of the
amounts of data in the inputs to these algorithms, they are all polynomial-time. The
list goes on and on. There are algorithms that are not polynomial-time for many of
these problems. We’ve already mentioned that this is the case for the Chained Matrix
Multiplication algorithm. Other problems for which we have developed polynomial-
time algorithms, but for which the obvious brute-force algorithms are nonpolynomial,
include the Shortest Paths problem, the Optimal Binary Search Tree problem, and the
Minimum Spanning Tree problem.

• 9.3.2 Problems That Have Been Proven to Be Intractable
There are two types of problems in this category. The first type are problems that
require a nonpolynomial amount of output. Recall from Section 5.6 the problem of
determining all Hamiltonian Circuits. If there was an edge from every vertex to every
other vertex, there would be (n − 1)! such circuits. To solve the problem, an

www.EBooksWorld.ir

algorithm would have to output all of these circuits, which means that our request is
not reasonable. We noted in Chapter 5 that we were stating the problems so as to ask
for all solutions because we could then present less-cluttered algorithms, but that
each algorithm could easily be modified to solve the problem that asks for only one
solution. The Hamiltonian Circuits problem that asks for only one circuit clearly is
not a problem of this type. Although it is important to recognize this type of
intractability, problems such as these ordinarily pose no difficulty. It is usually
straightforward to recognize that a nonpolynomial amount of output is being
requested, and once we recognize this, we realize that we are simply asking for more
information than we could possibly use. That is, the problem is not defined
realistically.

The second type of intractability occurs when our requests are reasonable (that is,
when we are not asking for a nonpolynomial amount of output) and we can prove that
the problem cannot be solved in polynomial time. Oddly enough, we have found
relatively few such problems. The first ones were undecidable problems. These
problems are called “undecidable” because it can be proven that algorithms that
solve them cannot exist. The most well-known of these is the Halting problem. In this
problem we take as input any algorithm and any input to that algorithm, and decide
whether or not the algorithm will halt when applied to that input. In 1936, Alan
Turing showed that this problem is undecidable. In 1953, A. Grzegorczyk developed
a decidable problem that is intractable. Similar results are discussed in Hartmanis
and Stearns (1965). However, these problems were “artificially” constructed to have
certain properties. In the early 1970s, some natural decidable decision problems
were proven to be intractable. The output for a decision problem is a simple “yes” or
“no” answer. Therefore, the amount of output requested is certainly reasonable. One
of the most well-known of these problems is Presburger Arithmetic, which was
proven intractable by Fischer and Rabin in 1974. This problem, along with the proof
of intractability, can be found in Hopcroft and Ullman (1979).

All problems that to this date have been proven intractable have also been proven
not to be in the set NP, which is discussed in Section 9.4. However, most problems
that appear to be intractable are in the set NP. We discuss these problems next. As
noted earlier, it is a somewhat surprising phenomenon that relatively few problems
have been proven to be intractable, and it was not until the early 1970s that a natural
decidable problem was proven intractable.

• 9.3.3 Problems That Have Not Been Proven to Be
Intractable but for Which Polynomial-Time
Algorithms Have Never Been Found

This category includes any problem for which a polynomial-time algorithm has never

www.EBooksWorld.ir

been found, but yet no one has ever proven that such an algorithm is not possible. As
already discussed, there are many such problems. For example, if we state the
problems so as to require one solution, the 0-1 Knapsack problem, the Traveling
Salesperson problem, the Sum-of-Subsets problem, the m-Coloring problem for m ≥
3, the Hamiltonian Circuits problem, and the problem of abductive inference in a
Bayesian network all fall into this category. We have found branch-and-bound
algorithms, backtracking algorithms, and other algorithms for these problems that are
efficient for many large instances. That is, there is a polynomial in n that bounds the
number of times the basic operation is done when the instances are taken from some
restricted subset. However, no such polynomial exists for the set of all instances. To
show this, we need only find some infinite sequence of instances for which no
polynomial in n bounds the number of times the basic operation is done. Recall that
we did this for the backtracking algorithms in Chapter 5.

There is a close and interesting relationship among many of the problems in this
category. The development of this relationship is the purpose of the next section.

9.4 The Theory of NP

It is more convenient to develop the theory if we originally restrict ourselves to
decision problems. Recall that the output of a decision problem is a simple “yes” or
“no” answer. Yet when we introduced (in Chapters 3, 4, 5, and 6) some of the
problems mentioned previously, we presented them as optimization problems, which
means that the output is an optimal solution. Each optimization problem, however,
has a corresponding decision problem, as the examples that follow illustrate.

Example 9.2
Traveling Salesperson Problem
Let a weighted, directed graph be given. Recall that a tour in such a graph is a path
that starts at one vertex, ends at that vertex, and visits all the other vertices in the
graph exactly once, and that the Traveling Salesperson Optimization problem is to
determine a tour with minimal total weight on its edges.

The Traveling Salesperson Decision problem is to determine for a given positive
number d whether there is a tour having total weight no greater than d. This problem
has the same parameters as the Traveling Salesperson Optimization problem plus the
additional parameter d.

Example 9.3
0-1 Knapsack Problem

www.EBooksWorld.ir

Recall that the 0-1 Knapsack Optimization problem is to determine the maximum
total profit of the items that can be placed in a knapsack given that each item has a
weight and a profit, and that there is a maximum total weight W that can be carried in
the sack.

The 0-1 Knapsack Decision problem is to determine, for a given profit P,
whether it is possible to load the knapsack so as to keep the total weight no greater
than W, while making the total profit at least equal to P. This problem has the same
parameters as the 0-1 Knapsack Optimization problem plus the additional parameter
P.

Example 9.4
Graph-Coloring Problem
The Graph-Coloring Optimization problem is to determine the minimum number of
colors needed to color a graph so that no two adjacent vertices are colored the same
color. That number is called the chromatic number of the graph.

The Graph-Coloring Decision problem is to determine, for an integer m, whether
there is a coloring that uses at most m colors and that colors no two adjacent vertices
the same color. This problem has the same parameters as the Graph-Coloring
Optimization problem plus the additional parameter m.

Example 9.5
Clique Problem
A clique in an undirected graph G = (V, E) is a subset W of V such that each vertex in
W is adjacent to all the other vertices in W. For the graph in Figure 9.1, {v2, v3, v4} is
a clique, whereas {v1, v2, v3} is not a clique because v1 is not adjacent to v3. A
maximal clique is a clique of maximal size. The only maximal clique in the graph in
Figure 9.1 is {v1, v2, v4, v5}.

The Clique Optimization problem is to determine the size of a maximal clique for
a given graph.

The Clique Decision problem is to determine, for a positive integer k, whether
there is a clique containing at least k vertices. This problem has the same parameters
as the Clique Optimization problem plus the additional parameter k.

We have not found polynomial-time algorithms for either the decision problem or
the optimization problem in any of these examples. However, if we could find a
polynomial-time algorithm for the optimization problem in any one of them, we
would also have a polynomial-time algorithm for the corresponding decision
problem. This is so because a solution to an optimization problem produces a

www.EBooksWorld.ir

solution to the corresponding decision problem. For example, if we learned that the
total weight of an optimal tour for a particular instance of the Traveling Salesperson
Optimization problem was 120, the answer to the corresponding decision problem
would be “yes” for
Figure 9.1 The maximal clique is {v1, v2, v4, v5}.

and “no” otherwise. Similarly, if we learned that the optimal profit for an instance of
the 0-1 Knapsack Optimization problem was $230, the answer to the corresponding
decision problem would be “yes” for

and “no” otherwise.
Because a polynomial-time algorithm for an optimization problem automatically

produces a polynomial-time algorithm for the corresponding decision problem, we
can initially develop our theory considering only decision problems. We do this next,
after which we return to optimization problems. At that time, we will see that usually
we can show that an optimization problem is even more closely related to its
corresponding decision problem. That is, for many decision problems (including the
problems in the previous examples), it’s been shown that a polynomial-time
algorithm for the decision problem would yield a polynomial-time algorithm for the
corresponding optimization problem.

• 9.4.1 The Sets P and NP

First we consider the set of decision problems that can be solved by polynomial-time
algorithms. We have the following definition.

Definition
P is the set of all decision problems that can be solved by polynomial-time
algorithms.

www.EBooksWorld.ir

What problems are in P? All decision problems for which we have found
polynomial-time algorithms are certainly in P. For example, the problem of
determining whether a key is present in an array, the problem of determining whether
a key is present in a sorted array, and the decision problems corresponding to the
optimization problems in Chapters 3 and 4 for which we have found polynomial-time
algorithms, are all in P. However, could some decision problem for which we have
not found a polynomial-time algorithm also be in P? For example, could the
Traveling Salesperson Decision problem be in P? Even though no one has ever
created a polynomial-time algorithm that solves this problem, no one has ever proven
that it cannot be solved with a polynomial-time algorithm. Therefore, it could
possibly be in P. To know that a decision problem is not in P, we have to prove that
it is not possible to develop a polynomial-time algorithm for it. This has not been
done for the Traveling Salesperson Decision problem. These same considerations
hold for the other decision problems in Examples 9.2 to 9.5.

What decision problems are not in P? Because we do not know whether the
decision problems in Examples 9.2 to 9.5 are in P, each of these may not be in P. We
simply do not know. Furthermore, there are thousands of decision problems in this
same category. That is, we do not know whether they are in P. Garey and Johnson
(1979) discuss many of them. There are actually relatively few decision problems
that we know for certain are not in P. These problems are decision problems for
which we have proven that polynomial-time algorithms are not possible. We
discussed such problems in Section 9.3.2. As noted there, Presburger Arithmetic is
one of the most well-known.

Next we define a possibly broader set of decision problems that includes the
problems in Examples 9.2 to 9.5. To motivate this definition, let’s first discuss the
Traveling Salesperson Decision problem further. Suppose someone claimed to know
that the answer to some instance of this problem was “yes.” That is, the person said
that, for some graph and number d, a tour existed in which the total weight was no
greater than d. It would be reasonable for us to ask the person to “prove” this claim
by actually producing a tour with a total weight no greater than d. If the person then
produced something, we could write the algorithm that follows to verify whether
what they produced was a tour with weight no greater than d. The input to the
algorithm is the graph G, the distance d, and the string S that is claimed to be a tour
with weight no greater than d.

www.EBooksWorld.ir

This algorithm first checks to see whether S is indeed a tour. If it is, the algorithm
then adds the weights on the tour. If the sum of the weights is no greater than d, it
returns “true.” This means that it has verified that yes, there is a tour with total weight
no greater than d, and we know that the answer to the decision problem is “yes.” If S
is not a tour or the sum of the weights exceeds d, the algorithm returns “false.”
Returning false means only that this claimed tour is not a tour with total weight no
greater than d. It does not mean that such a tour does not exist, because there might be
a different tour with total weight no greater than d.

It is left as an exercise to implement the algorithm more concretely and show that it
is polynomial-time. This means that, given a candidate tour, we can verify in
polynomial time whether this candidate proves that the answer to our decision
problem is “yes.” If the proposed tour turns out not to be a tour or to have total length
greater than d (perhaps the person was bluffing), we have not proven that the answer
must be “no” to our decision problem. Therefore, we are not talking about being able
to verify that the answer to our decision problem is “no” in polynomial time.

It is this property of polynomial-time verifiability that is possessed by the
problems in the set NP, which we define next. This does not mean that these
problems can necessarily be solved in polynomial time. When we verify that a
candidate tour has total weight no greater than d, we are not including the time it took
to find that tour. We are only saying that the verification part takes polynomial time.
To state the notion of polynomial-time verifiability more concretely, we introduce the
concept of a nondeterministic algorithm. We can think of such an algorithm as
being composed of the following two separate stages:

1. Guessing (Nondeterministic) Stage: Given an instance of a problem, this stage
simply produces some string S. The string can be thought of as a guess at a
solution to the instance. However, it could just be a string of nonsense.

2. Verification (Deterministic) Stage: The instance and the string S are the input to
this stage. This stage then proceeds in an ordinary deterministic manner either
(1) eventually halting with an output of “true,” which means that it has been
verified that the answer for this instance is “yes,” (2) halting with an output of
“false,” or (3) not halting at all (that is, going into an infinite loop). In these latter
two cases, it has not been verified that the answer for this instance is “yes.” As
we shall see, for our purposes these two cases are indistinguishable.

Function verify does the verification stage for the Traveling Salesperson Decision
problem. Notice that it is an ordinary deterministic algorithm. It is the guessing stage
that is nondeterministic. This stage is called nondeterministic because unique step-
by-step instructions are not specified for it. Rather, in this stage, the machine is
allowed to produce any string in an arbitrary matter. A “nondeterministic stage” is
simply a definitional device for the purpose of obtaining the notion of polynomial-

www.EBooksWorld.ir

time verifiability. It is not a realistic method for solving a decision problem.
Even though we never actually use a nondeterministic algorithm to solve a

problem, we say that a nondeterministic algorithm “solves” a decision problem if:

1. For any instance for which the answer is “yes,” there is some string S for which
the verification stage returns “true.”

2. For any instance for which the answer is “no,” there is no string for which the
verification stage returns “true.”

Figure 9.2 The tour [v1, v3, v2, v4, v1] has total weight no greater than 15.

The following table shows the results of some input strings S to function verify
when the instance is the graph in Figure 9.2 and d is 15.

S Output Reason

[v1; v2; v3; v4; v1] False Total weight is greater than 15

[v1; v4; v2; v3; v1] False S is not a tour

#@12*&%a1\ False S is not a tour

[v1; v3; v2; v4; v1] True S is a tour with total weight no greater than 15

The third input illustrates that S can just be a string of nonsense (as discussed
previously).

In general, if the answer for a particular instance is “yes,” function verify returns
“true” when one of the tours with total weight no greater than d is the input.
Therefore, Criterion 1 for a nondeterministic algorithm is satisfied. On the other
hand, function verify only returns “true” when a tour with total weight no greater than
d is the input. Therefore, if the answer for an instance is “no,” function verify does
not return “true” for any value of S, which means that Criterion 2 is satisfied. A
nondeterministic algorithm that simply generates strings in the guessing state and
calls function verify in the verification stage therefore “solves” the Traveling
Salesperson Decision problem. Next we define what is meant by a polynomial-time
nondeterministic algorithm.

www.EBooksWorld.ir

Definition
A polynomial-time nondeterministic algorithm is a nondeterministic algorithm
whose verification stage is a polynomial-time algorithm.

Now we can define the set NP.

Definition
NP is the set of all decision problems that can be solved by polynomial-time
nondeterministic algorithms.

Note that NP stands for “nondeterministic polynomial.” For a decision problem to
be in NP, there must be an algorithm that does the verification in polynomial time.
Because this is the case for the Traveling Salesperson Decision problem, that
problem is in NP. It must he stressed that this does not mean that we necessarily have
a polynomial-time algorithm that solves the problem. Indeed, we do not presently
have one for the Traveling Salesperson Decision problem. If the answer for a
particular instance of that problem were “yes,” we might try all tours in the
nondeterministic stage before trying one for which verify returns “true.” If there were
an edge from every vertex to every other vertex, there would be (n − 1)! tours.
Therefore, if all tours were tried, the answer would not be found in polynomial time.
Furthermore, if the answer for an instance were “no,” solving the problem using this
technique would absolutely require that all tours be tried. The purpose of introducing
the concepts of nondeterministic algorithms and NP is to classify algorithms. There
are usually better algorithms for actually solving a problem than an algorithm that
generates and verifies strings. For example, the branch-and-bound algorithm for the
Traveling Salesperson problem (Algorithm 6.3) does generate tours, but it avoids
generating many of the tours by using a bounding function. Therefore, it is much better
than an algorithm that blindly generates tours.

What other decision problems are in NP? In the exercises you are asked to
establish that the other decision problems in Examples 9.2 to 9.5 are all in NP.

Furthermore, there are thousands of other problems that no one has been able to
solve with polynomial-time algorithms but that have been proven to be in NP because
polynomial-time nondeterministic algorithms have been developed for them. (Many
of these problems appear in Garey and Johnson, 1979.) Finally, there is a large
number of problems that are trivially in NP. That is, every problem in P is also in
NP. This is trivially true because any problem in P can be solved by a polynomial-
time algorithm. Therefore, we can merely generate any nonsense in the
nondeterministic stage and run that polynomial-time algorithm in the deterministic

www.EBooksWorld.ir

stage. Because the algorithm solves the problem by answering “yes” or “no,” it
verifies that the answer is “yes” (for an instance where it is “yes”) given any input
string S.

What decision problems are not in NP? Curiously, the only decision problems that
have been proven not to be in NP are the same ones that have been proven to be
intractable. That is, the Halting problem, Presburger Arithmetic, and the other
problems discussed in Section 9.3.2 have been proven not to be in NP. Again, we
have found relatively few such problems.

Figure 9.3 shows the set of all decision problems. Notice that in this figure NP
contains P as a proper subset. However, this may not be the case. That is, no one has
ever proven that there is a problem in NP that is not in P. Therefore, NP − P may
be empty. Indeed, the question of whether P equals NP is one of the most intriguing
and important questions in computer science. This question is important, because, as
we have already mentioned, most decision problems we have developed are in NP.
Therefore, if P = NP, we would have polynomial-time algorithms for most known
decision problems.
Figure 9.3 The set of all decision problems.

To show that P ≠ NP we would have to find a problem in NP that is not in P,
whereas to show that P = NP we would have to find a polynomial-time algorithm for
each problem in NP. Next we see that this latter task can be greatly simplified. That
is, we show that it is necessary to find a polynomial-time algorithm for only one of a
large class of problems. In spite of this great simplification, many researchers doubt
that P equals NP.

• 9.4.2 NP-Complete Problems

www.EBooksWorld.ir

The problems in Examples 9.2 to 9.5 may not all appear to have the same difficulty.
For example, our dynamic programming algorithm (Algorithm 3.11) for the Traveling
Salesperson problem is worst-case Θ(n22n). On the other hand, our dynamic
programming algorithm (in Section 4.4) for the 0-1 Knapsack problem is worst-case
Θ(2n). Furthermore, the state space tree in the branch-and-bound algorithm
(Algorithm 6.3) for the Traveling Salesperson problem has (n − 1)! leaves, whereas
the one in the branch-and-bound algorithm (Algorithm 6.2) for the 0-1 Knapsack
problem has only about 2n+1 nodes. Finally, our dynamic programming algorithm for
the 0-1 Knapsack problem is Θ(nW), which means that it is efficient as long as the
capacity W of the sack is not extremely large. In light of all this, it seems that perhaps
the 0-1 Knapsack problem is inherently easier than the Traveling Salesperson
problem. We show that in spite of this, these two problems, the other problems in
Examples 9.2 to 9.5, and thousands of other problems are all equivalent in the sense
that if any one is in P, they all must be in P. Such problems are called NP-complete.
To develop this result, we first describe a problem that is fundamental to the theory
of NP-completeness—the problem of CNF-Satisfiability.

Example 9.6
CNF-Satisfiability Problem
A logical (Boolean) variable is a variable that can have one of two values: true or
false. If x is a logical variable, is the negation of x. That is, x is true if and only if
is false. A literal is a logical variable or the negation of a logical variable. A clause
is a sequence of literals separated by the logical or operator (∨). A logical
expression in conjunctive normal form (CNF) is a sequence of clauses separated
by the logical and operator (∧). The following is an example of a logical expression
in CNF:

The CNF-Satisfiability Decision problem is to determine, for a given logical
expression in CNF, whether there is some truth assignment (some set of assignments
of true and false to the variables) that makes the expression true.

Example 9.7
For the instance

the answer to CNF-Satisfiability is “yes,” because the assignments x1 = true, x2 =
false, and x3 = false make the expression true. For the instance

www.EBooksWorld.ir

the answer to CNF-Satisfiability is “no,” because no assignment of truth values
makes the expression true.

It is easy to write a polynomial-time algorithm that takes as input a logical
expression in CNF and a set of truth assignments to the variables and verifies
whether the expression is true for that assignment. Therefore, the problem is in NP.
No one has ever found a polynomial-time algorithm for this problem, and no one has
ever proven that it cannot be solved in polynomial time. So we do not know if it is in
P. The remarkable thing about this problem is that in 1971, Stephen Cook published a
paper proving that if CNF-Satisfiability is in P, then P = NP. (A variation of this
theorem was published independently by L. A. Levin in 1973.) Before we can state
the theorem rigorously, we need to develop a new concept—namely, the concept of
polynomial-time reducibility.
Figure 9.4 Algorithm tran is a transformation algorithm that maps each instance x of decision problem A to an
instance y of decision problem B. Together with the algorithm for decision problem B, it yields an algorithm for
decision problem A.

Suppose we want to solve decision problem A and we have an algorithm that
solves decision problem B. Suppose further that we can write an algorithm that
creates an instance y of problem B from every instance x of problem A such that an
algorithm for problem B answers “yes” for y if and only if the answer to problem A is
“yes” for x. Such an algorithm is called a transformation algorithm and is actually
a function that maps every instance of problem A to an instance of problem B. We can
denote it as follows:

The transformation algorithm combined with an algorithm for problem B yields an
algorithm for problem A. Figure 9.4 illustrates this.

The following example has nothing to do with the theory of NP-completeness. We
present it because it is a simple example of a transformation algorithm.

Example 9.8

www.EBooksWorld.ir

A Transformation Algorithm
Let our first decision problem be: Given n logical variables, does at least one of
them have the value “true”? Let our second decision problem be: Given n integers, is
the largest of them positive? Let our transformation be:

where k1 is 1 if x1 is true and ki is 0 if xi is false. An algorithm for our second
problem returns “yes” if and only if at least one ki is 1, which is the case if and only
if at least one xi is true. Therefore, an algorithm for the second problem returns “yes”
if and only if at least one xi is true, which means that our transformation is successful,
and we can solve the first problem using an algorithm for the second problem.

We have the following definition pertaining to the concepts just developed.

Definition
If there exists a polynomial-time transformation algorithm from decision problem A
to decision problem B, problem A is polynomial-time many-one reducible to
problem B. (Usually we just say that problem A reduces to problem B.) In symbols,
we write

We say “many-one” because a transformation algorithm is a function that may map
many instances of problem A to one instance of problem B. That is, it is a many-one
function.

If the transformation algorithm is polynomial-time and we have a polynomial-time
algorithm for problem B, intuitively it seems that the algorithm for problem A that
results from combining the transformation algorithm and the algorithm for problem B
must be a polynomial-time algorithm. For example, it is clear that the transformation
algorithm in Example 9.8 is polynomial-time. Therefore, it seems that if we run that
algorithm followed by some polynomial-time algorithm for the second problem, we
are solving the first problem in polynomial time. The following theorem proves that
this is so.

 Theorem 9.1
If decision problem B is in P and

www.EBooksWorld.ir

then decision problem A is in P.
Proof: Let p be a polynomial that bounds the time complexity of the polynomial-time
transformation algorithm from problem A to problem B, and let q be a polynomial that
bounds the time complexity of a polynomial-time algorithm for B. Suppose we have
an instance of problem A that is of size n. Because at most there are p (n) steps in the
transformation algorithm, and at worst that algorithm outputs a symbol at each step,
the size of the instance of problem B produced by the transformation algorithm is at
most p (n). When that instance is the input to the algorithm for problem B, this means
that there are at most q [p (n)] steps. Therefore, the total amount of work required to
transform the instance of problem A to an instance of problem B and then solve
problem B to get the correct answer for problem A is at most

which is a polynomial in n.

Next we define NP-complete.

Definition
A problem B is called NP-complete if both of the following are true:

1. B is in NP.
2. For every other problem A in NP,

By Theorem 9.1, if we could show that any NP-complete problem is in P, we
could conclude that P = NP. In 1971 Stephen Cook managed to find a problem that
is NP-complete. The following theorem states his result.

 Theorem 9.2
(Cook’s Theorem) CNF-Satisfiability is NP-complete.
Proof: The proof can be found in Cook (1971) and in Garey and Johnson (1979).

Although we do not prove Cook’s theorem here, we mention that the proof does not
consist of reducing every problem in NP individually to CNF-Satisfiability. If this
were the case, whenever a new problem in NP was discovered, it would be
necessary to add its reduction to the proof. Rather, the proof exploits common

www.EBooksWorld.ir

properties of problems in NP to show that any problem in this set must reduce to
CNF-Satisfiability.

Once this ground-breaking theorem was proven, many other problems were proven
to be NP-complete. These proofs rely on the following theorem.

 Theorem 9.3
A problem C is NP-complete if both of the following are true:

1. C is in NP.
2. For some other NP-complete problem B,

Proof: Because B is NP-complete, for any problem A in NP, A ∝ B. It is not hard to
see that reducibility is transitive. Therefore, A ∝ C. Because C is in NP, we can
conclude that C is NP-complete.

By Cook’s theorem and Theorem 9.3, we can show that a problem is NP-complete
by showing that it is in NP and that CNF-Satisfiability reduces to it. These reductions
are typically much more complex than the one given in Example 9.7. We give one
such reduction next.

Example 9.9
We show that the Clique Decision problem is NP-complete. It is left as an exercise to
show it is in NP by writing a polynomial-time verification algorithm for this
problem. Therefore, we need only show that

to conclude that the problem is NP-complete. First recall that a clique in an
undirected graph is a subset of vertices such that each vertex in the subset is adjacent
to all the other vertices in the subset, and that the Clique Decision problem is to
determine for a graph and a positive integer k whether the graph has a clique
containing at least k vertices. Let

be a logical expression in CNF, where each Ci is a clause of B, and let x1, x2, …, xn

be the variables in B. Transform B to a graph G = (V, E), as follows:

www.EBooksWorld.ir

A sample construction of G is shown in Figure 9.5. It is left
as an exercise to show that this transformation is
polynomial-time. Therefore, we need only show that B is
CNF-Satisfiable if and only if G has a clique of size at least
k. We do this next.

1. Show that if B is CNF-Satisfiable, G has a clique of size at least k: If B is CNF-
Satisfiable, there are truth assignments for x1, x2, …, xn such that each clause is
true with these assignments. This means that with these assignments there is at
least one literal in each Ci that is true. Pick one such literal from each Ci. Then
let

Clearly, V′ forms a clique in G of size k.

Figure 9.5 The graph G in Example 9.9 when B = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ 2 ∨ x3).

2. Show that if G has a clique of size at least k, B is CNF-Satisfiable: Because there
cannot be an edge from a vertex (y, i) to a vertex (z, i), the indices in the vertices
in a clique must all be different. Because there are only k different indices, this
means that a clique can have at most k vertices. So if G has a clique (V′, E′) of
size at least k, the number of vertices in V′ must be exactly k. Therefore, if we set

S contains k literals. Furthermore, S contains a literal from each of the k clauses,
because there is no edge connecting (y, i) and (z, i) for any literals y and z and
index i. Finally, S cannot contain both a literal y and its complement y, because
there is no edge connecting (y, i) and (y, j) for any i and j. Therefore, if we set

www.EBooksWorld.ir

and assign arbitrary truth values to variables not in S, all clauses in B are true.
Therefore, B is CNF-Satisfiable.

Recall the Hamiltonian Circuits problem from Section 5.6. The Hamiltonian
Circuits Decision problem is to determine whether a connected, undirected graph
has at least one tour (a path that starts at one vertex, visits each vertex in the graph
once, and ends up at the starting vertex). It is possible to show that

The reduction is even more tedious than the one given in the previous example and
can be found in Horowitz and Sahni (1978). It is left as an exercise to write a
polynomial-time verification algorithm for this problem. Therefore, we can conclude
that the Hamiltonian Circuits Decision problem is NP-complete.

Now that we know that the Clique Decision problem and the Hamiltonian Circuits
Decision problem are NP-complete, we can show that some other problem in NP is
NP-complete by showing that the Clique Decision problem or the Hamiltonian
Circuits Decision problem reduces to that problem (by Theorem 9.3). That is, we do
not need to return to CNF-Satisfiability for each proof of NP-completeness. More
sample reductions follow.

Example 9.10
Consider a variant of the Traveling Salesperson Decision problem in which the graph
is undirected. That is, given a weighted, undirected graph and a positive number d,
determine whether there is an undirected tour having total weight no greater than d.
Clearly, the polynomial-time verification algorithm given earlier for the usual
Traveling Salesperson problem also works for this problem. Therefore the problem
is in NP, and we need only show that some NP-complete problem reduces to it to
conclude that it is NP-complete. We show that

Transform an instance (V, E) of the Hamiltonian Circuits Decision problem to the
instance (V, E′) of the Traveling Salesperson (Undirected) Decision problem that has
the same set of vertices V, has an edge between every pair of vertices, and has the
following weights:

www.EBooksWorld.ir

An example of this transformation is shown in Figure 9.6. Clearly, (V, E) has a
Hamiltonian Circuit if and only if (V, E′) has a tour with total weight no more than n,
where n is the number of vertices in V. It is left as an exercise to complete this
example by showing that the transformation is polynomial-time.
Figure 9.6 The transformation algorithm in Example 9.10 maps the undirected graph on the left to the weighted,
undirected graph on the right.

Example 9.11
We have already written a polynomial-time verification algorithm for the usual
Traveling Salesperson Decision problem. Therefore, this problem is in NP, and we
can show that it is NP-complete by showing that

Transform an instance (V, E) of the Traveling Salesperson (Undirected) Decision
problem to the instance (V, E′) of the Traveling Salesperson problem that has the
same set of vertices V and has the edges u, v and v, u both in E′ whenever (u,
v) is in E. The directed weights of u, v and v, u are the same as the
undirected weight of (u, v). Clearly, (V, E) has an undirected tour with total weight
no greater than d if and only if (V, E′) has a directed tour with total weight no greater
than d. It is left as an exercise to complete this example by showing that the
transformation is polynomial-time.

As mentioned previously, thousands of problems, including the other problems in
Examples 9.2 to 9.5, have been shown to be NP-complete using reductions like those
just given. Garey and Johnson (1979) contains many sample reductions and lists over
300 NP-complete problems.

The State of NP

www.EBooksWorld.ir

Figure 9.3 shows P as a proper subset of NP, but, as mentioned previously, they may
be the same set. How does the set of NP-complete problems fit into the picture?
First, by definition, it is a subset of NP. Therefore, Presburger Arithmetic, the
Halting problem, and any other decision problems that are not in NP are not NP-
complete.

A decision problem that is in NP and is not NP-complete is the trivial decision
problem that answers “yes” for all instances (or answers “no” for all instances). This
problem is not NP-complete because it is not possible to transform a nontrivial
decision problem to it.

If P = NP, the situation is as depicted on the left in Figure 9.7. If P ≠ NP, the
situation is as depicted on the right in that figure. That is, if P ≠ NP, then

where NP-complete denotes the set of all NP-complete problems. This is so because
if some problem in P were NP-complete, Theorem 9.1 would imply that we could
solve any problem in NP in polynomial time.
Figure 9.7 The set NP is either as depicted on the left or as depicted on the right.

Notice that Figure 9.7 (on the right) says that the Graph Isomorphism problem may
be in

This problem concerns graph isomorphism, which is defined as follows. Two graphs
(undirected or directed) G = (V, E) and G′ = (V′, E′) are called isomorphic if there is
a one-to-one function f from V onto V′ such that for every v1 and v2 in V, the edge (u,
v) is in E if and only if the edge (f(u) , f(v)) is in E′. The Graph Isomorphism problem
is as follows:

Example 9.12

www.EBooksWorld.ir

Graph Isomorphism Problem
Given two graphs G = (V, E) and G′ = (V′, E′), are they isomorphic?

The directed graphs in Figure 9.8 are isomorphic owing to the function

It is left as an exercise to write a polynomial-time verification algorithm for the
Graph Isomorphism problem, and thereby show it is in NP. A straightforward
algorithm for this problem is to check all n! one-to-one onto mappings, where n is the
number of vertices. This algorithm has worse than exponential time complexity. No
one has ever found a polynomial-time algorithm for this problem; yet no one has ever
proven it is NP-complete. Therefore, we do not know whether it is in P and we do
not know whether it is NP-complete.

No one has been able to prove that there is a problem in NP that is neither in P nor
NP-complete (such a proof would automatically prove that P ≠ NP). However, it has
been proved that, if P ≠ NP, such a problem must exist. This result, which is stated
on the right in Figure 9.7, is formalized in the following theorem.
Figure 9.8 These graphs are isomorphic.

 Theorem 9.4
If P ≠ NP, the set

is not empty.
Proof: The proof follows from a more general result that can be found in Ladner
(1975).

www.EBooksWorld.ir

Complementary Problems
Notice the similarity between the following two problems.

Example 9.13
Primes Problem
Given a positive integer n, is n a prime number?

Example 9.14
Composite Numbers Problem
Given a positive integer n, are there integers m > 1 and k > 1 such that n = mk?

The Primes problem is the one solved by the algorithm at the beginning of Section
9.2. It is the complementary problem to the Composite Numbers problem. In general,
the complementary problem to a decision problem is the problem that answers
“yes” whenever the original problem answers “no” and answers “no” whenever the
original problem answers “yes.” Another example of a complementary problem
follows.

Example 9.15
Complementary Traveling Salesperson Decision Problem

Given a weighted graph, and a positive number d, is there no tour with total weight
no greater than d?

Clearly, if we found an ordinary deterministic polynomial-time algorithm for a
problem, we would have a deterministic polynomial-time algorithm for its
complementary problem. For example, if we could determine in polynomial-time
whether a number was composite, we would also be determining whether it was
prime. However, finding a polynomial-time non-deterministic algorithm for a
problem does not automatically produce a polynomial-time nondeterministic
algorithm for its complementary. That is, showing that one is in NP does not
automatically show that the other is in NP. In the case of the Complementary
Traveling Salesperson problem, the algorithm would have to be able to verify in
polynomial time that no tour with weight no greater than d exists. This is substantially
more complex than verifying that a tour has weight no greater than d. No one has ever
found a polynomial-time verification algorithm for the Complementary Traveling
Salesperson Decision Problem. Indeed, no one has ever shown that the
complementary problem to any known NP-complete problems is in NP. On the other

www.EBooksWorld.ir

hand, no one has ever proven that some problem is in NP whereas its complementary
problem is not in NP. The following result has been obtained.

 Theorem 9.5
If the complementary problem to any NP-complete problem is in NP, the
complementary problem to every problem in NP is in NP.
Proof: The proof can be found in Garey and Johnson (1979).

Let’s discuss the Graph Isomorphism and Primes problem further. As mentioned in
the previous subsection, no one has ever found a polynomial-time algorithm for the
Graph Isomorphism problem, yet no one has proven that it is NP-complete. Until
recently, the same was true of the Primes problem. However, in 2002 Agrawal et al.
developed a polynomial-time algorithm for the Primes problem. We present that
algorithm in Section 10.6. Before than, in 1975 Pratt had shown the Primes problem
to be in NP, and it straightforward to show its complementary problem (the
Composite Numbers problem) is in NP. Similarly, the Linear Programming problem
and its complementary problem were both shown to be in NP before Chachian
(1979) developed a polynomial-time algorithm for it. On the other hand, no one has
been able to show the complementary problem to the Graph Isomorphism problem is
in NP. Given these results, it seems more likely that the Graph Isomorphism problem
will be shown to be NP-complete than that we will find a polynomial-time algorithm
for it. On the other hand, it may be in the set NP − (P ∪ NP-complete).

• 9.4.3 NP-Hard, NP-Easy, and NP-Equivalent Problems
So far we have discussed only decision problems. Next we extend our results to
problems in general. Recall that Theorem 9.1 implies that if decision problem A is
polynomial-time many-one reducible to problem B, then we could solve problem A in
polynomial time using a polynomial-time algorithm for problem B. We generalize this
notion to nondecision problems with the following definition.

Definition
If problem A can be solved in polynomial time using a hypothetical polynomial
time algorithm for problem B, then problem A is polynomial-time Turing
reducible to problem B. (Usually we just say A Turing reduces to B.) In symbols,
we write

www.EBooksWorld.ir

This definition does not require that a polynomial-time algorithm for problem B
exist. It only says that if one did exist, problem A would also be solvable in
polynomial time. Clearly, if A and B are both decision problems, then

Next we extend the notion of NP-completeness to nondecision problems.

Definition
A problem B is called NP-hard if, for some NP-complete problem A,

It is not hard to see that Turing reductions are transitive. Therefore, all problems in
NP reduce to any NP-hard problem. This means that if a polynomial-time algorithm
exists for any NP-hard problem, then P = NP.

What problems are NP-hard? Clearly, every NP-complete problem is NP-hard.
Therefore, we ask instead what nondecision problems are NP-hard. Earlier we noted
that if we could find a polynomial-time algorithm for an optimization problem, we
would automatically have a polynomial-time algorithm for the corresponding
decision problem. Therefore, the optimization problem corresponding to any NP-
complete problem is NP-hard. The following example formally uses the definition of
Turing reducibility to show this result for the Traveling Salesperson problem.

Example 9.16
The Traveling Salesperson Optimization Problem Is NP -hard

Suppose we had a hypothetical polynomial-time algorithm for the Traveling
Salesperson Optimization problem. Let the instance of the Traveling Salesperson
Decision problem containing the graph G and positive integer d be given. Apply the
hypothetical algorithm to the graph G to obtain the optimal solution mindist. Then our
answer for the instance of the decision problem would be “no” if d ≤ mindist and
“yes” otherwise. Clearly, the hypothetical polynomial-time algorithm for the
optimization problem, along with this extra step, gives the answer to the decision
problem in polynomial time. Therefore,

What problems are not NP-hard? We do not know if there is any such problem.

www.EBooksWorld.ir

Indeed, if we were to prove that some problem was not NP-hard, we would be
proving that P ≠ NP. The reason is that if P = NP, then each problem in NP would be
solvable by a polynomial-time algorithm. Therefore, we could solve each problem in
NP, using a hypothetical polynomial-time algorithm for any problem B, by simply
calling the polynomial-time algorithm for each problem. We don’t even need the
hypothetical algorithm for problem B. Therefore, all problems would be NP-hard.

On the other hand, any problem for which we have found a polynomial-time
algorithm may not be NP-hard. Indeed, if we were to prove that some problem for
which we had a polynomial-time algorithm was NP-hard, we would be proving that
P = NP. The reason is that we would then have an actual rather than a hypothetical
polynomial-time algorithm for some NP-hard problem. Therefore, we could solve
each problem in NP in polynomial-time using the Turing reduction from the problem
to the NP-hard problem.

Figure 9.9 illustrates how the set of NP-hard problems fits into the set of all
problems.
Figure 9.9 The set of all problems.

If a problem is NP-hard, it is at least as hard (in terms of our hopes of finding a
polynomial-time algorithm) as the NP-complete problems. For example, the
Traveling Sales Optimization problem is at least as hard as the NP-complete
problems. However, is the reverse necessarily true? That is, are the NP-complete
problems at least as hard as the Traveling Salesperson Optimization problem? NP-
hardness does not imply this. We need another definition.

Definition
A problem A is called NP-easy if, for some problem B in NP,

Clearly, if P = NP, then a polynomial-time algorithm exists for all NP-easy

www.EBooksWorld.ir

problems. Notice that our definition of NP-easy is not exactly symmetrical with our
definition of NP-hard. It is left as an exercise to show that a problem is NP-easy if
and only if it reduces to an NP-complete problem.

What problems are NP-easy? Obviously, the problems in P, the problems in NP,
and nondecision problems for which we have found polynomial-time algorithms are
all NP-easy. The optimization problem, corresponding to an NP-complete decision
problem, can usually be shown to be NP-easy. However, it is not trivial to do this, as
the following example illustrates.

Example 9.17
The Traveling Salesperson Optimization problem is NP-easy. To establish this result,
we introduce the following problem.

Traveling Salesperson Extension Decision Problem
Let an instance of the Traveling Salesperson Decision problem be given, where the
number of vertices in the graph is n and the integer is d. Furthermore, let a partial
tour T consisting of m distinct vertices be given. The problem is to determine
whether T can be extended to a complete tour having total weight no greater than d.
The parameters for this problem are the same as those for the Traveling Salesperson
Decision problem plus the partial tour T.

It is not hard to show that the Traveling Salesperson Extension Decision problem
is in NP. Therefore, in order to obtain our desired result, we need only show that

To that end, let polyalg be a hypothetical polynomial-time algorithm for the Traveling
Salesperson Extension Decision problem. The inputs to polyalg are a graph, a partial
tour, and a distance. Let an instance G of size n of the Traveling Salesperson
Optimization problem be given. Let the vertices in the instance be

and set

If mindist is the total weight of the edges in an optimal tour, then

Because any vertex can be the first vertex on our tour, we can make v1 the first vertex.

www.EBooksWorld.ir

Consider the following call:

The partial tour that is the input to this call is simply [v1], which is the partial tour
before we ever leave v1. The smallest value of d for which this call could return
“true” is d = dmin, and if there is a tour, the call will definitely return “true” if d =
dmax. If it returns “false” for d = dmax, then mindist = ∞. Otherwise, using a binary
search, we can determine the smallest value of d for which polyalg returns “true”
when G and [v1] are the inputs. That value is mindist. This means that we can
compute mindist in at most about lg(dmax) calls to polyalg, which means that we can
compute mindist in polynomial time.

Once we know the value of mindist, we use polyalg to construct an optimal tour in
polynomial time, as follows. If mindist = ∞, there are no tours, and we are done.
Otherwise, say that a partial tour is extendible if it can be extended to a tour having
total weight equal to mindist. Clearly, [v1] is extendible. Because [v1] is extendible,
there must be at least one vi such that [v1, vi] is extendible. We can determine such a vi

by calling polyalg at most n − 2 times, as follows:

where 2 ≤ i ≤ n − 1. We stop when we find an extendible tour or when i reaches n −
1. We need not check the last vertex, because, if the others all fail, the last vertex
must be extendible.

In general, given an extendible partial tour containing m vertices, we can find an
extendible partial tour containing m + 1 vertices with at most n − m − 1 calls to
polyalg. So we can build an optimal tour with at most the following number of calls
to polyalg:

This means that we can also construct an optimal tour in polynomial time, and we
have a polynomial-time Turing reduction.

Similar proofs have been established for the other problems in Examples 9.2 to
9.5 and for the optimization problems corresponding to most NP-complete decision
problems. We have the following definition concerning such problems.

Definition
A problem is called NP-equivalent if it is both NP-hard and NP-easy.

Clearly, P = NP if and only if polynomial-time algorithms exist for all NP-

www.EBooksWorld.ir

equivalent problems.
We see that originally restricting our theory to decision problems causes no

substantial loss in generality, because we can usually show that the optimization
problem, corresponding to an NP-complete decision problem, is NP-equivalent. This
means that finding a polynomial-time algorithm for the optimization problem is
equivalent to finding one for the decision problem.

Our goal has been to provide a facile introduction to the theory of NP. For a more
thorough introduction, you are referred to the text we have referenced several times
—namely, Garey and Johnson (1979). Although that text is quite old, it is still one of
the best comprehensive introductions to the NP theory. Another good introductory text
is Papadimitriou (1994).

9.5 Handling NP-Hard Problems
In the absence of polynomial-time algorithms for problems known to be NP-hard,
what can we do about solving such problems? We presented one way in Chapters 5
and 6. The backtracking and branch-and-bound algorithms for these problems are all
worst-case nonpolynomial-time. However, they are often efficient for many large
instances. Therefore, for a particular large instance of interest, a backtracking or
branch-and-bound algorithm may suffice. Recall from Section 5.3 that the Monte
Carlo technique can be used to estimate whether a given algorithm would be efficient
for a particular instance. If the estimate shows that it probably would be, we can try
using the algorithm to solve that instance.

Another approach is to find an algorithm that is efficient for a subclass of instances
of an NP-hard problem. For example, the problem of probabilistic inference in a
Bayesian network, discussed in Section 6.3, is NP-hard. In general, a Bayesian
network consists of a directed acyclic graph and a probability distribution.
Polynomial-time algorithms have been found for the subclass of instances in which
the graph is singly connected. A directed, acyclic graph is singly connected if there
is no more than one path from any vertex to any other vertex. Pearl (1988) and
Neapolitan (1990, 2003) discuss these algorithms.

A third approach, investigated here, is to develop approximation algorithms. An
approximation algorithm for an NP-hard optimization problem is an algorithm that
is not guaranteed to give optimal solutions, but rather yields solutions that are
reasonably close to optimal. Often we can obtain a bound that gives a guarantee as to
how close a solution is to being optimal. For example, we derive an approximation
algorithm that gives a solution, which we will call minapprox, to a variant of the
Traveling Salesperson Optimization problem. We show that

www.EBooksWorld.ir

where mindist is the optimal solution. This does not mean that minapprox is always
almost twice mindist. For many instances, it may be much closer or even equal to
mindist. Rather, this means that we are guaranteed that minapprox will never be as
great as twice mindist. We develop this algorithm and an improvement on it next.
Then we further illustrate approximation algorithms by deriving one for another
problem.

• 9.5.1 An Approximation Algorithm for the Traveling
Salesperson Problem

Our algorithm will be for the following variant of the problem.

Example 9.18
Traveling Salesperson Problem with Triangular Inequality
Let a weighted, undirected graph G = (V, E) be given such that

1. There is an edge connecting every two distinct vertices.
2. If W (u, v) denotes the weight on the edge connecting vertex u to vertex v, then,

for every other vertex y,

The second condition, called the triangular inequality, is depicted in Figure 9.10. It
is satisfied if the weights represent actual distances (“as the crow flies”) between
cities. Recall that weight and distance terminology are used interchangeably for
weighted graphs. The first condition implies that there is a two-way road connecting
every city to every other city.

The problem is to find the shortest path (optimal tour) starting and ending at the
same vertex and visiting each other vertex exactly once. It can be shown that this
variant of the problem is also NP-hard.

Notice that the graph in this variant of the problem is undirected. If we remove any
edge from an optimal tour for such a graph, we have a spanning tree for the graph.
Therefore, the total weight of a minimum spanning tree must be less than the total
weight of an optimal tour. We can use Algorithm 4.1 or 4.2 to obtain a minimum
spanning tree in polynomial time. By going twice around the spanning tree, we can
convert it to a path that visits every city. This is illustrated in Figure 9.11. A graph is
depicted in Figure 9.11(a), a minimum spanning tree for the graph in Figure 9.11(b),
and the path obtained by going twice around the tree in Figure 9.11(c). As the figure
shows, the resulting path may visit some vertices more than once. We can convert the

www.EBooksWorld.ir

path to one that does not do this by taking “shortcuts.” That is, we traverse the path,
starting at some arbitrary vertex, and visit each unvisited vertex in sequence. When
there is more than one unvisited vertex adjacent to the current vertex in the tree, we
simply visit the closest one. If the only vertices adjacent to the current vertex have
already been visited, we bypass them by means of a shortcut to the next unvisited
vertex. The triangular inequality guarantees that the shortcut will not lengthen the
path. Figure 9.11(d) shows the tour obtained using this technique. In that figure, we
started with the bottom vertex on the left. Notice that the tour obtained is not optimal.
However, if we start with the top left vertex, we obtain an optimal tour.
Figure 9.10 The triangular inequality implies that the “distance” from u to v is no greater than the “distance” from
u to y plus the “distance” from y to v.

Figure 9.11 Obtaining an approximation to an optimal tour from a minimum spanning tree.

www.EBooksWorld.ir

The method just outlined can be summarized in the following steps:

1. Determine a minimum spanning tree.
2. Create a path that visits every city by going twice around the tree.
3. Create a path that does not visit any vertex twice (that is, a tour) by taking

shortcuts.

In general, the tour obtained using this method is not necessarily optimal
regardless of the starting vertex. However, the following theorem gives us a
guarantee as to how close the tour is to being optimal.

 Theorem 9.6
Let mindist be the total weight of an optimal tour and minapprox be the total weight
of the tour obtained using the method just described. Then

Proof: As we have already discussed, the total weight of a minimum spanning tree is
less than mindist. Because the total weight of minapprox is no more than the total

www.EBooksWorld.ir

weight of two minimum spanning trees, the theorem follows.

It is possible to create instances that show that minapprox can be made arbitrarily
close to 2 × mindist. Therefore, in general, the bound obtained in Theorem 9.6 is the
best we can do.

We can obtain an even better approximation algorithm for this problem as follows.
First obtain a minimum spanning tree as done above. Then consider the set V′ of all
vertices that touch an odd number of edges. It is not hard to show that there must be
an even number of such vertices. Pair up the vertices in V′ so that each vertex is
paired with precisely one other vertex. Such a creation of vertex pairs is called a
matching for V′. Add the edge connecting each vertex pair to the spanning tree.
Because each vertex then has an even number of edges touching it, the resultant path
visits every city. Furthermore, the total number of edges in this path is no greater than
(and often is less than) the total number that would he obtained by simply going twice
around the tree. Figure 9.12(a) shows a minimum spanning tree, and Figure 9.12(b)
shows the path obtained from that tree with one possible matching. Figure 9.12(c)
shows a tour obtained after shortcuts are taken.
Figure 9.12 A tour obtained using a matching.

A minimal weight matching for V′ is one such that the total weight of the edges
obtained from the matching is minimal. Lawler (1976) shows how to obtain a
minimal weight matching in polynomial time. We therefore can approximately solve
the variant of the Traveling Salesperson problem given in Example 9.17 in
polynomial-time using the following steps:

1. Obtain a minimum spanning tree.
2. Obtain a minimal weight matching of the vertices in V′, where V′ is the set of

vertices in the spanning tree that touch an odd number of edges.
3. Create a path that visits every vertex by adding the edges connecting matched

vertices to the tree.

www.EBooksWorld.ir

4. Obtain a path that does not visit any vertex twice (that is, a tour) by taking
shortcuts.

Figure 9.11 illustrates these steps without showing any actual weights. The
following theorem shows that this method gives a better bound than the first method
presented in this section.

 Theorem 9.7
Let mindist be the total weight of an optimal tour and minapprox2 be the total weight
of the tour obtained using the method of minimal weight matching. Then

Proof: Let V′ be the set of all vertices that touch an odd number of edges. Convert an
optimal tour to a path connecting only the vertices in V′ by bypassing vertices not in V
′. By the triangular inequality, the total weight of this path can be no greater than
mindist. Furthermore, this path provides us with two matchings for the vertices in V′,
as follows. Choose an arbitrary vertex in V′ and match it with the vertex on one side
of it in the path. Then continue to match adjacent vertices in pairs going in this same
direction. This is one match. Next match the initial vertex with the vertex on the other
side of it in the path, and continue to match adjacent vertices going in the other
direction. This is a second match. Because the edges in the two matches comprise all
the edges in the path, the sum of the total weights of the two matches is equal to the
weight of the path. Therefore, at least one of the matches has total weight no greater
than half the weight of the path. Because the weight of this path is no greater than
mindist, and because the weight of any matching is at least as great as the weight of a
minimal weight matching, we have

where minmatch is the weight of a minimal weight matching. Recall that the weight
of a minimum spanning tree is less than mindist. Because the edges obtained in Step
3 of the method of minimal weight matching consist of the edges in a spanning tree
and the edges obtained from a minimal matching, the total weight of those edges is
less than 1.5 × mindist. The theorem now follows, because the total weight of the
edges in the final tour obtained in Step 4 is no greater than the weight of those
obtained in Step 3.

It is possible to create instances for which the approximation can be made

arbitrarily close to 1.5 × mindist. Therefore, in general, there is no better bound for
this algorithm than the one obtained in Theorem 9.7.

Recall that our salesperson Nancy was last trying to find an optimal tour for her

www.EBooksWorld.ir

40-city sales territory using a branch-and-bound algorithm (Algorithm 6.3) for the
Traveling Salesperson problem. Because that algorithm is worst-case
nonpolynomial-time, it may take many years to solve her particular instance. If the
distances between Nancy’s cities satisfy the assumptions in the Traveling
Salesperson with Triangular Inequality problem, she finally has an alternative that is
sure to work. That is, she can use the method of minimal weight matching to obtain a
good approximation to an optimal tour in polynomial time.

• 9.5.2 An Approximation Algorithm for the Bin-Packing
Problem

We introduce the following new problem.

Example 9.19
Bin-Packing Problem

Let n items with sizes

be given, and suppose we are to pack the items in bins, where each bin has a capacity
of 1. The problem is to determine the minimum number of bins necessary to pack all
the items.

This problem has been shown to be NP-hard. A very simple approximation
algorithm for this problem is called “first fit.” The first-fit strategy places an item in
the first bin in which it fits. If it does not fit in a bin, a new bin is started. Another
good idea is to pack the items in nonincreasing order.
Therefore, our strategy is called nonincreasing first fit. It can be described by the
following high-level algorithm:

www.EBooksWorld.ir

Figure 9.13 shows a result of applying this algorithm. Notice that it consists of a
greedy algorithm within a greedy algorithm. That is, we greedily grab items, and for
each item we greedily grab bins. It is left as an exercise to write a detailed version of
this algorithm and show that it is Θ(n2). Notice that the solution in Figure 9.12 is not
optimal. We could fit the items in only three bins if we placed the size 0.5 item, the
size 0.3 item, and one of the size 0.2 items in the second bin, and placed the two size
0.4 items and one of the size 0.2 items in the third bin.

Next we obtain a bound for how close the approximate solution is to an optimal
solution. The bound is obtained in Theorem 9.8. The proof of that theorem requires
the following two lemmas.

 Lemma 9.1
Let opt be the optimal number of bins for a given instance of the Bin-Packing
problem. Any item that is placed by the nonincreasing first-fit strategy in an extra bin
(that is, in a bin with index greater than opt) has size at most equal to 1/3.
Figure 9.13 A result of applying nonincreasing first fit.

 Proof: Let i be the index of the first item placed in bin opt + 1. Because the items
are sorted in nonincreasing order, it suffices to show that

Suppose by way of contradiction that si > 1/3. Then

which means that all those bins with indices no greater than opt contain at most two
items each. If every one of those bins contained two items, in an optimal solution
there would have to be two of the first i − 1 items in every bin. But because their
sizes are all greater than , there would be no room for si in one of the bins.
Therefore, at least one bin with index no greater than opt contains only one item. If
every bin with index no greater than opt contained only one item, no two of them

www.EBooksWorld.ir

could fit in a bin together and the ith item could not fit with any one of them
(otherwise, our algorithm would have placed it with one of them). But then an
optimal solution would require more than opt bins. Therefore, at least one bin with
index no greater than opt contains two items.

We show that there is some j such that 0 < j < opt for which the first j bins contain
one item each and the remaining opt − j bins contain two items each. If this were not
the case, there would be bins Bk and Bm with k < m such that Bk contained two items
and Bm contained one item. However, because the items are packed in nonincreasing
order, the item packed in Bm would be no larger than the first item packed in Bk, and
si would be no larger than the second item packed in Bk. Therefore, the sum of the
sizes of the item in Bm and si would be no greater than the sum of the sizes of the two
items in Bk, which means that si would fit in Bm. Therefore, the conjecture above
(concerning j) must be true, and the bins appear as depicted in Figure 9.14.

Let an optimal solution be given. In such a solution, the first j items are in j distinct
bins, because if any of them could fit together in a bin, our method would have put
them together. Furthermore, items

are in the remaining opt−j bins, because none of them can fit with the first j items.
Because our algorithm places two of each of these items in opt − j bins, there must
be 2 × (opt − j) of these items. Because we assumed that the size of each of these
items is greater than 1/3, there cannot be three of them in any of one of the remaining
opt − j bins, which means that there must be exactly two items in each of these bins.
Because we assumed that the size of si is also greater than 1/3, it cannot fit in the opt
− j bins containing two items each. Furthermore, it cannot fit in one of the bins
containing one of the first j items, because if it could fit with one of those items our
algorithm would have placed it with that item. Because we assumed that this is an
optimal solution, si must be in one of the bins, which means that we have a
contradiction, and our lemma is proven.
Figure 9.14 If si > 1/3, our algorithm would pack the bins like this.

www.EBooksWorld.ir

 Lemma 9.2
Let opt be the optimal number of bins for an instance of the Bin-Packaging

problem. The number of items placed by the nonincreasing first fit strategy in extra
bins is at most opt − 1.
Proof: Because all the objects fit in opt bins,

Suppose by way of contradiction that our approximation algorithm does put opt items
into extra bins. Let z1, z2, … , zopt be the sizes of those items, and, for 1 ≤ i ≤ opt, let
toti be the total size that our algorithm puts in bin Bi. It must be true that

because otherwise the item of size zi could have been put in Bi. We therefore have

which contradicts what we showed at the beginning of the proof. This contradiction
proves the lemma.

 Theorem 9.8
Let opt be the optimal number of bins for an instance of the Bin-Packing problem,
and let approx be the number of bins used by the nonincreasing first fit algorithm.
Then

www.EBooksWorld.ir

Proof: By Lemmas 9.1 and 9.2, the nonincreasing first-fit algorithm puts at most opt
− 1 items, each of size at most in extra bins. Therefore, the number of extra bins is
at most

where k = 0, 1, or 2. Taking the largest possible value of k, we conclude that the
number of extra bins is less than or equal to (opt + 1)/3, which means that

and therefore

This ratio is maximized if opt = 1. However, when opt = 1, our approximation
algorithm uses only one bin and therefore is optimal. This means that we can take opt
= 2 to maximize the ratio and conclude that

It is possible to create instances of arbitrarily large size for which the ratio is
exactly 3/2. Therefore, in general, we cannot improve on the bound obtained in
Theorem 9.8.

One way to gain further insight into the quality of an approximation algorithm is to
run empirical tests comparing the solutions obtained from the approximation with the
optimal solutions. Our approximation algorithm for the Bin-Packing problem has
been extensively tested for large values of n. You may wonder how this is possible
when we have no polynomial-time algorithm that guarantees an optimal solution,
which means that we cannot determine an optimal solution for a large value of n in a
tolerable amount of time. Indeed, if we had such an algorithm we would not bother
with an approximation algorithm in the first place. The answer to this paradox is that
in the case of the Bin-Packing problem we do not need to actually compute optimal
solutions to gain insight into the quality of the approximations. Instead, we can
compute the amount of unused space (the empty space) in the bins used by the
approximation algorithm. The number of extra bins used by that algorithm can be no
more than the amount of unused space. This is so because we can rearrange the items
in our approximate solution so that they are in an optimal number of bins, leaving the
extra bins empty. The amount of unused space in this optimal solution plus the total
space in the extra bins is equal to the amount of unused space in our approximate

www.EBooksWorld.ir

solution. Therefore, because the total space in the extra bins equals the number of
extra bins, the number of extra bins can be no greater than the amount of unused space
in our approximate solution.

In an empirical study in which the input size was 128,000 and the item sizes were
uniformly distributed between 0 and 1, our approximation algorithm used on the
average about 64,000 bins, and on the average had about 100 units of unused space.
This means that on the average the number of extra bins is bounded by 100 in the
instances in this study. Theorem 9.8 implies, for an approximate solution of 64,000,
that

which means opt ≥ 42, 666, and that the number of extra bins is no greater than
21,334. We see that the empirical study indicates that on the average, our algorithm
performs much better than the upper bound.

For any particular instance of interest, we can compute the amount of unused space
in the solution produced by the approximation algorithm. In this way we can
determine how well the algorithm performs for that instance.

For more examples of approximation algorithms, you are again referred to Garey
and Johnson (1979).

EXERCISES

Sections 9.1 to 9.3
1. List three problems that have polynomial-time algorithms. Justify your answer.
2. Give a problem and two encoding schemes for its input. Express its performance

using your encoding schemes.
3. Show that a graph problem using the number of vertices as the measure of the

size of an instance is polynomially equivalent to one using the number of edges
as the measure of the size of an instance.

4. In which of the three general categories discussed in Section 9.3 does the
problem of computing the nth Fibonacci term belong? Justify your answer.

5. A graph has an Euler Circuit if and only if (a) the graph is connected and (b) the
degree of every vertex is even. Find a lower bound for the time complexity of all
algorithms that determine if a graph has an Euler Circuit. In which of the three
general categories discussed in Section 9.3 does this problem belong? Justify
your answer.

6. List at least two problems that belong in each of the three general categories
discussed in Section 9.3.

www.EBooksWorld.ir

Section 9.4
7. Implement the verification algorithm for the Traveling Salesperson Decision

problem discussed in Section 9.4.1 on your system, and study its polynomial-
time performance.

8. Establish that the problems in Examples 9.2 to 9.5 are in NP.
9. Write a polynomial-time verification algorithm for the Clique Decision problem.

10. Show that the reduction of the CNF-Satisfiability problem to the Clique Decision
problem can be done in polynomial time.

11. Write a polynomial-time verification algorithm for the Hamiltonian Circuits
Decision problem.

12. Show that the reduction of the Hamiltonian Circuits Decision problem to the
Traveling Salesperson (Undirected) Decision problem can be done in
polynomial time.

13. Show that the reduction of the Traveling Salesperson (Undirected) Decision
problem to the Traveling Salesperson Decision problem can be done in
polynomial time.

14. Show that a problem is NP-easy if and only if it reduces to an NP-complete
problem.

15. Suppose that problem A and problem B are two different decision problems.
Furthermore, assume that problem A is polynomial-time many-one reducible to
problem B. If problem A is NP-complete, is problem B NP-complete? Justify
your answer.

16. When all instances of the CNF-Satisfiability problem have exactly three literals
per clause, it is called the 3-Satisfiability problem. Knowing that the 3-
Satisfiability problem is NP-complete, show that the Graph 3-Coloring problem
is also NP-complete.

17. Show that if a problem is not in NP, it is not NP-easy. Therefore, Presburger
Arithmetic and the Halting problem are not NP-easy.

Section 9.5
18. Implement the approximation algorithms for the Traveling Salesperson problem,

run them on your system, and study their performances using several problem
instances.

19. Write a detailed algorithm of the approximation algorithm for the Bin-Packing
problem given in Section 9.5.2, and show that its time complexity is in Θ(n2)

20. For the Sum-of-Subsets problem discussed in Chapter 5, can you develop an
approximation algorithm that runs in polynomial time?

www.EBooksWorld.ir

21. Can you develop an approximation algorithm for the CNF-Satisfiability problem
by stating it as an optimization problem—that is, by finding a truth assignment of
the literals in the expression that makes the maximum possible number of clauses
true?

Additional Exercises
22. Can an algorithm be a polynomial-time algorithm for a problem using one

encoding scheme and be an exponential-time algorithm for the same problem
using another encoding scheme? Justify your answer.

23. Write a more concrete algorithm for function verify composite given in Section
9.4.2 and analyze it to show that it is a polynomial-time algorithm.

24. Write a polynomial-time algorithm that checks if an undirected graph has a
Hamiltonian Circuit, assuming that the graph has no vertex with degree
exceeding 2.

25. Is the Towers of Hanoi problem an NP-complete problem? Is it an NP-easy
problem? Is it an NP-hard problem? Is it an NP-equivalent problem? Justify your
answers. This problem is presented in Exercise 17 in Chapter 2.

26. Given a list of n positive integers (n even), divide the list into two sublists such
that the difference between the sums of the integers in the two sublists is
minimized. Is this problem an NP-complete problem? Is this problem an NP-
hard problem?

www.EBooksWorld.ir

Chapter 10

Genetic Algorithms and Genetic
Programming

Evolution is the process of change in the genetic makeup of populations. Natural
selection is the process by which organisms possessing traits that better enable them
to adapt to environmental pressures survive and reproduce in greater numbers than
other similar organisms, thereby increasing the existence of those favorable traits in
future generations.

Evolutionary computation endeavors to obtain approximate solutions to problems
such as optimization problems using the evolutionary mechanisms involved in natural
selection as its paradigm. The four areas of evolutionary computation are genetic
algorithms, genetic programming, evolutionary programming, and evolutionary
strategies. The first two areas are discussed in detail in the chapter. First, we briefly
review genetics to provide a proper context for these algorithms.

10.1 Genetics Review
This brief review assumes that you have seen this material before. For an
introduction to genetics, see An Introduction to Genetic Analysis (Griffiths et al.,
2007) or Essential Genetics (Hartl and Jones, 2006).

An organism is an individual form of life such as a plant or animal. A cell is the
basic structural and functional unit of an organism. Chromosomes are the carriers of
biologically expressed hereditary characteristics. A genome is a complete set of
chromosomes in an organism. The human genome contains 23 chromosomes. A
haploid cell contains one genome; that is, it contains one set of chromosomes. So a
human haploid cell contains 23 chromosomes. A diploid cell contains two genomes;
that is, it contains two sets of chromosomes. Each chromosome in one set is matched
with a chromosome in the other set. This pair of chromosomes is called a
homologous pair. Each chromosome in the pair is called a homolog. So a human
diploid cell contains 2 × 23 = 46 chromosomes. One homolog comes from each
parent.

A somatic cell is one of the cells in the body of the organism. A haploid organism
is an organism with somatic cells that are haploid. A diploid organism is an organism

www.EBooksWorld.ir

with somatic cells that are diploid. Humans are diploid organisms.
A gamete is a mature sexual reproductive cell that unites with another gamete to

become a zygote, which eventually grows into a new organism. A gamete is always
haploid. The gamete produced by a male is called a sperm, whereas the gamete that
is produced by the female is called an egg. Germ cells are precursors of gametes.
They are diploid.

In diploid organisms, each adult produces a gamete, the two gametes combine to
form a zygote, and the zygote grows to become a new adult. This process is called
sexual reproduction. Unicellular haploid organisms commonly reproduce asexually
by a process called binary fission. The organism simply splits into two new
organisms. So, each new organism has the exact same genetic content as the original
organism. Some unicellular haploid organisms reproduce sexually by a process
called fusion. Two adult cells first combine to form what is called a transient
diploid meiocyte. The transient diploid meiocyte contains a homologous pair of
chromosomes, one from each parent. A child can obtain a given homolog from each
parent, so the children are not genetic copies of the parents. For example, if the
genome size is 3, there are 23 = 8 different chromosome combinations that a child
could have.

Chromosomes consist of the compound deoxyribonucleic acid (DNA). DNA is
composed of four basic molecules called nucleotides. Each nucleotide contains a
pentose sugar (deoxyribose), a phosphate group, and a purine or pyrimidine base.
The purines, adenine (A) and guanine (G), are similar in structure, as are the
pyrimidines, cytosine (C) and thymine (T). DNA is a macromolecule composed of
two complementary strands, each of which consists of a sequence of nucleotides. The
strands are joined together by hydrogen bonds between pairs of nucleotides. Adenine
always pairs with thymine, and guanine always pairs with cytosine. Each such pair is
called a canonical base pair (bp), and A, G, C, and T are called bases.

A section of DNA is depicted in Figure 10.1. You may recall from your biology
course that the strands twist around each other to form a righthanded double helix.
However, for our computational purposes, we need only consider them as character
strings, as shown in Figure 10.1.

A gene is a section of a chromosome, often consisting of thousands of base pairs;
the size of genes varies a great deal. Genes are responsible for both the structure and
the processes of an organism. The genotype of an organism is its genetic makeup,
while the phenotype of an organism is its appearance, which results from the
interaction of the genotype and the environment.
Figure 10.1 A section of DNA.

www.EBooksWorld.ir

An allele is any of several forms of a gene, usually arising through mutation.
Alleles are responsible for hereditary variation.

Example 10.1
The bey2 gene on chromosome 15 is responsible for eye color in humans. There is
one allele for blue eyes, which we call BLUE, and one for brown eyes, which we
call BROWN. As is the case for all genes, an individual gets one allele from each
parent. The BLUE allele is recessive. This means that if an individual receives one
BLUE allele and one BROWN allele, that individual will have brown eyes. The only
way the individual can have blue eyes is if the individual has two BLUE alleles. We
also say that the brown allele is dominant.

Because a human gamete has 23 chromosomes and each of these chromosomes can
come from either genome, there are 223 = 8, 388, 608 different genetic combinations a
parent can pass on to his or her offspring. Actually, there are many more than this.
During meiosis (the cell division that produces gametes), each chromosome
duplicates itself and aligns with its homolog. The duplicates are called chromatids.
Often there is an exchange of corresponding segments of genetic material between the
homologous chromatids facing each other. This exchange is called crossing-over and
is illustrated in Figure 10.2.

Sometimes during cell division, errors occur in the DNA replication process.
These errors are called mutations. Mutations can occur in either somatic cells or
germ cells. It is believed that mutations in germ cells are the source of all variation in
evolution. On the other hand, mutations in a somatic cell can affect an organism (e.g.,
cause cancer) but have no effect on its offspring.

In a substitution mutation, one nucleotide is simply replaced by another. An
insertion mutation occurs when a section of DNA is added to a chromosome; a
deletion mutation occurs when a section of DNA is removed from a chromosome.

Evolution is the process of change in the genetic makeup of populations. It is
believed that the changes in genetic makeup are due to mutations. As noted earlier,
natural selection is the process by which organisms possessing traits that better
enable them to adapt to environmental pressures such as predators, changes in
climate, or competition for food or mates will survive and reproduce in greater
numbers than other similar organisms, thereby increasing the existence of those
favorable traits in future generations. So, natural selection can result in an increase in
the relative frequencies of alleles that impart these favorable traits to the individual.
The process of the change in allele relative frequencies due to chance only is called
genetic drift. There is some disagreement in the scientific community about whether
natural selection or genetic drift is more responsible for evolutionary change (Li,

www.EBooksWorld.ir

1997).
Figure 10.2 An illustration of crossing-over.

10.2 Genetic Algorithms
First, we describe the basic genetic algorithm; then, we provide two applications.

• 10.2.1 Algorithm
Genetic algorithms use fusion in haploid organisms as a model. Candidate solutions
to a problem are represented by haploid individuals in a population. Each individual
has one chromosome. The alphabet for the chromosome is not A, G, C, and T as in
actual organisms, but rather consists of characters that represent solutions. In each
generation, a certain number of fit individuals are allowed to reproduce. Individuals
representing better solutions are more fit. The chromosomes from two fit individuals
then line up and exchange genetic material (substrings of the problem solution) by
crossing-over. Furthermore, mutations may occur. This results in the next generation
of individuals. The process is repeated until some terminal condition is met. The
following is high-level pseudocode for a general genetic algorithm.

www.EBooksWorld.ir

When selecting individuals based on fitness, we do not necessarily simply choose
the most fit individuals. Rather, we may employ both exploitation and exploration. In
general, when evaluating candidate regions of a search space to investigate, by
exploitation we mean to exploit knowledge already obtained by concentrating on
regions that look good; by exploration we mean looking for new regions without
regard for how good they currently appear. In the case of choosing individuals, we
could explore by choosing a random individual with probability and exploit by
choosing a fit individual with probability 1 – .

• 10.2.2 Illustrative Example
Suppose our goal is to find the value of x that maximizes

where x is restricted to being an integer. Of course the sine function has its maximum
value of 1 at π/2, which means x = 128 maximizes the function. Therefore, there is no
practical reason to develop an algorithm to solve this problem. However, we do so
to illustrate the various aspects of such algorithms. The following steps are used to
develop the algorithm.

1. Choose an alphabet to represent solutions to the problem. Because candidate
solutions are simply integers in the range 0 to 255, we can represent each
individual (candidate solution) using 8 bits. For example, the integer 189 is
represented as

www.EBooksWorld.ir

2. Decide how many individuals make up a population. In general, there can be
thousands of individuals. In this simple example, we will use 8 individuals.

3. Decide how to initialize the population. Often this is done at random. We will
generate 8 numbers at random from the range 0 to 255. Possible initial values
appear in Table 10.1.

4. Decide how to evaluate fitness. Because our goal is to maximize f(x) =
sin(xπ/256), the fitness of individual x is simply the value of this function.

5. Decide which individuals to select for reproduction. We will combine
exploration with exploitation here. The fitnesses are normalized by dividing each
fitness by the sum of all the fitnesses, which is 5.083, to yield normalized
fitnesses. In this way, the normalized fitnesses add up to 1. These normalized
fitnesses are then used to determine cumulative fitness values, which provide a
wedge on a roulette wheel for each individual based on its fitness. This is shown
in Table 10.1. For example, the second individual has a normalized fitness of
.093 and that individual is assigned the wedge corresponding to the interval
(.144, .237], which has width .093. We then generate a random number from the
interval (0, 1]. That number will fall in the range assigned to precisely one
individual, and this is the individual chosen. This process is performed 8 times.

• Table 10.1 Initial Population of Individuals and Their Fitnesses

Suppose the individuals chosen for reproduction are the ones that appear in
Table 10.2. Note that an individual can appear more than once, and the
likelihood of how often it appears depends on its fitness.

6. Determine how to perform crossovers and mutations. First, we randomly pair
individuals, resulting in 4 pairs. For each pair, we randomly select two points
along the individuals. Genetic material between the crossover points is
exchanged. Table 10.3 shows possible results. Note that if the second point
appears before the first point in the individual, crossover is performed by
wrapping around. The third pair of individuals in Table 10.3 illustrates this case.
Based on the values in Tables 10.1 and 10.3, the average fitness before

www.EBooksWorld.ir

crossover is .635, while that after crossover is .792. Furthermore, after
crossover, two individuals have fitnesses above .99.

• Table 10.2 Individuals Chosen for Reproduction

• Table 10.3 Parents and Children Resulting from Crossover

Next, we determine how to perform mutations. For each bit in each individual, we
decide at random whether to flip the bit (change 0 to 1 or 1 to 0). Mutation
probabilities are commonly in the range .01 to .001.

7. Decide when to terminate. We can terminate when some maximum number of
generations is attained, when some allotted amount of time has expired, when the
fitness of the most fit individual reaches a certain level, or when one of these
conditions is met. In this example, we can terminate when either 10,000
generations are produced or when the fitness exceeds .999.

Note that Steps 2, 3, 5, and 7 are generic in the sense that we can apply the strategies
mentioned to most problems.

www.EBooksWorld.ir

• 10.2.3 The Traveling Salesperson Problem
The Traveling Salesperson Problem (TSP) is a well-known NP-hard problem. NP-
hard problems are a class of problems for which no one has ever developed a
polynomial-time algorithm, but no one has ever shown that such an algorithm is not
possible.

Suppose a salesperson is planning a sales trip to n cities. Each city is connected to
some of the other cities by a road. To minimize travel time, we want to find a shortest
route (called a tour) that starts at the salesperson’s home city, visits each of the cities
once, and ends up at the home city. The problem of determining a shortest tour is the
TSP. Note that the starting city is irrelevant to the shortest tour.

The TSP problem is represented by a weighted directed graph in which the
vertices represent the cities and the weights on the edges represent road lengths. In
general, the graph in an instance of the TSP need not be complete, meaning a graph in
which there is an edge from every vertex to every other vertex. Furthermore, if the
edges vi → vj and vj → vi are both in the graph, their weights need not be the same. In
addition to application to transportation scheduling, the TSP has been applied to
problems such as scheduling of a machine to drill holes in a circuit board and DNA
sequencing.

Next, we show three genetic algorithms for the TSP.

Order Crossover
Order crossover is presented first. (Note: Only the steps that are different from those
that appear Section 10.2.2 are shown).

1. Choose an alphabet to represent solutions to the problem. A straightforward
representation of a solution to the TSP is to label the vertices 1 through n and list
the vertices in the order visited. For example, if there are 9 vertices, [2 1 3 9 5 4
8 7 6] represents that we visit vertex v1after v2, v3 after v2,…, and v2 after v6.
Again, the starting vertex is irrelevant.

• Table 10.4 An Example of Order Crossover

4. The fitness is the length of the tour, where tours with shorter lengths are more fit.
6. Determine how to perform crossovers and mutations. As before, individuals are

randomly paired and, for each pair, two points are randomly selected along the
individuals. We call the segment between those points the pick. We must ensure
the results of a crossover are legitimate tours, which means each city must be

www.EBooksWorld.ir

listed only once. Therefore, we cannot simply exchange picks. In order
crossover, the pick in the child has the same value as the pick in the parent,
whereas the nonpick area is filled in from values in the other parent, omitting
values that are not already present, in the order in which those values appear in
the other parent, starting from the other parent’s pick. These values are called its
template. Table 10.4 illustrates this. Notice that child c1 has value [9 5 4] for the
pick, just as parent p1. The pick for parent p2 is [6 8 9]. The template from this
parent is constructed by starting at site 6 and in sequence listing all cities that are
not in [9 5 4]. This is done with wraparound. Thus, the template is [6 8 7 1 3 2].
These values are copied in order into the nonpick area of child c2.
If the graph is not complete, we need to check whether the new child represents
an actual tour, and if it does not, reject the crossover.
As far as mutations, we cannot just mutate a site by changing a given vertex to
another vertex because a vertex would then appear twice. We can, however,
mutate by interchanging two vertices or reversing the order of a subset of
vertices. However, if the graph is not complete, we must make certain that the
result represents an actual tour.

Nearest Neighbor Crossover
The Nearest Neighbor Algorithm (NNA) for the TSP is a greedy algorithm. The
NNA starts with an arbitrary vertex to initiate a tour and then repeatedly adds the
closest unvisited vertex to the partial tour until a tour is completed. The NNA
assumes the graph is complete; otherwise it may not result in a tour. The algorithm
follows.

Algorithm 10.1
Nearest Neighbor Algorithm (NNA) for the Traveling Salesperson Problem
Problem: Determine an optimal tour in a weighted, undirected graph. The weights are
non-negative numbers.
Inputs: A weighted, undirected graph G, and n, the number of vertices in G.
Outputs: A variable tour containing an ordered list of the vertices in G.

www.EBooksWorld.ir

Figure 10.3(a) shows an instance of the TSP where the undirected edges represent
that there is a directed edge with the given weight in both directions, Figure 10.3(b)
shows the shortest tour, Figure 10.3(c) shows the tour obtained when we apply the
NNA starting at v4, and Figure 10.3(d) shows the tour obtained when we apply the
NNA starting at v1. Note that this latter tour is the optimal one.

Next, we present Nearest Neighbor Crossover (NNX), which was developed in
2010 by Süral et al. The steps shown are the ones used by those researchers when
evaluating the algorithm.

1. Choose an alphabet to represent solutions to the problem. The representation is
the same as that for order crossover, which appears at the beginning of Section
10.2.3.

2. Decide how many individuals make up a population. Population sizes of 50 and
100 were used.

3. One technique tried was to initialize the entire initial population at random. A
second technique was to initialize half of the population at random and the other
half using a hybrid technique involving NNX and the Greedy Edge Algorithm
(discussed next).

4. Decide how to evaluate fitness. The fitness is the same as that for order
crossover.

Figure 10.3 An instance of the TSP illustrating the NNA.

www.EBooksWorld.ir

5. Decide which individuals to select for reproduction. The top 50% of individuals
ordered according to fitness are allowed to reproduce. Four copies of each of
these individuals are put in a pool. Then pairs of parents are randomly selected
without replacement from the pool.

6. Determine how to perform crossovers and mutations. In NNX, two parents
produce only one child. Therefore the process is not really crossover;
nevertheless, we call it that. The parents first combine to form a union graph,
which is a graph containing the edges in both parents. This process is illustrated
in Figure 10.4. Then, NNA is applied to the union graph. This is also shown in
Figure 10.4. In that figure, we applied NNA starting with vertex v6, and we
obtained a child that is more fit than either parent. Now we must also show that
if we start at v1, this does not happen. If we start at v3, we reach a dead end at
v1and do not obtain a tour. If the chosen vertex does not result in a tour, we can
try other vertices until one does. If no starting vertex results in a tour, we can
make other edges in the complete graph eligible for our tour.
Note that because 4 copies of each parent are used and each pair of parents
produces 1 offspring, the child generation is twice as large as the number of
parents allowed to reproduce. However, because only half of the parents are
allowed to do so, the size of the population stays the same in each generation.

Figure 10.4 The union graph is formed and then the NNA is applied to that graph starting a vertex v6.

www.EBooksWorld.ir

Mutations are performed as follows. Two vertices are selected at random, and
the subpath connecting the two vertices is reversed. This is illustrated in Figure
10.5, where the vertices selected are v1and v7. There are two versions of
mutation. In version M1, the mutation is applied only to the best offspring in each
generation. In version M2, it is applied to all offspring.
As a variation, a stochastic version of NNX would choose the next edge incident
to the current vertex probabilistically. The chance of being chosen would be
inversely proportional to the length of the edge. It is possible to increase
population diversity by doing this and thereby increase the portion of the search
space investigated. However, Süral et al. (2010) found that this stochastic
technique performed significantly worse than the deterministic version, and they
did not include this in their final testing, which we discuss shortly.

www.EBooksWorld.ir

Figure 10.5 A mutation in which the subpath connecting vertices v1and v7is reversed.

7. Decide when to terminate. The algorithm terminates when the average fitness in
two successive generations is the same or when 500 generations are produced.

The NNA and NNX are very similar to Dikstra’s algorithm for the Shortest Paths
Problem, and like that algorithm take θ(n2) time, where n is the number of vertices.

Greedy Edge Crossover
In the Greedy Edge Algorithm (GEA), we first sort the edges in nondecreasing
sequence. We then greedily add edges to the tour, starting with the first edge, while
making certain that no vertex has more than two edges touching it and that no cycle
smaller than n is created. The GEA assumes the graph is complete; otherwise it may
not result in a tour. The algorithm follows.

Algorithm 10.2
Greedy Edge Algorithm (GEA) for the Traveling Salesperson Problem
Problem: Determine an optimal tour in a weighted, undirected graph. The weights are
non-negative numbers.
Inputs: A weighted, undirected graph G, and n, the number of vertices in G.
Outputs: A variable tour containing a set of edges in an optimal tour.

www.EBooksWorld.ir

Figure 10.6 illustrates the GEA using the same instance as in Figure 10.3.
The Greedy Edge Crossover Algorithm (GEX) (also in Süral et al., 2010) has all

the same steps as NNX except for the sixth step, which we show next.
6. Determine how to perform crossovers and mutations. As in NNX, in the GEX the

parents first combine to form a union graph. Then the GEA is applied to the
edges in this union graph. If this process does not result in a tour, the remaining
edges in a tour are obtained by applying the GEA to the complete graph. This
process, however, will result in little exploration and therefore high edge
preservation and possible early convergence to a low-quality solution. To
increase exploration, the first half of the new tour can be taken from the union
graph and the second half from the complete graph. In initial investigations, this
version performed much better than the one that took as many edges as possible
from the union graph. This is the version that was used in the evaluation
discussed next.

The NNA and NNX are very similar to Kruskal’s algorithm for the Minimum
Spanning Tree Problem, and like that algorithm take θ(n2log n) and θ(m log m) time,
where n is the number of vertices and m is the number of edges.
Figure 10.6 An instance of the TSP illustrating the Greedy Edge Algorithm.

www.EBooksWorld.ir

Evaluation
As is the case for many heuristic algorithms, genetic algorithms do not have provably
correct properties. Therefore, we evaluate them by investigating their performance
on a number of instances of the problem. Süral et al. (2010) did this as follows for
NNX and the GEX.

First, they obtained 10 instances of the TSP from the TSPLIB, which represent
distances between real cities; the distances are symmetric (the same in both
directions). The largest instance had n (the number of cities) = 226. They
investigated versions of NNX and the GEX using no mutations, mutations M1
(discussed earlier), and mutations M2 (discussed earlier). Furthermore, they tried
initialing the first population at random (R) and initializing using a hybrid technique

www.EBooksWorld.ir

(H) based on nearest neighbor and greedy edge heuristics. For each combination of
mutation type and initialization type, they ran each of the algorithms 30 times on each
of the 10 instances, making a total of 300 runs. The algorithm was coded in ANSIC
and ran on a Pentium IV 1600 MHz machine with 256 MB RAM running RedHat
Linux 8.0.

Table 10.5 shows the averages over all 300 runs. The headings in that table denote
the following:

• Algorithm: The algorithm used.
• Mutation: The type of mutation used. “No M” denotes no mutations. • Init. Pop.:

Whether the population was initialized at random (R) or using hybrid
initialization (H).

• Dev: Percent deviation of the final best solution from the optimal solution.
• #Gen: Number of generations until convergence.
• Time: Time in seconds until convergence.

We see from Table 10.5 that NNX performed much better than the GEX, that
mutation M2 performed the best of the mutations, and that hybrid initialization did not
result in much better performance than random initialization. The researchers then
investigated whether using NNX with various percentage usage of the GEX might
improve performance. Table 10.5 also shows these results. When, for example, it
says 50% NNX and 50% GEX, it means that 50% of the time the next population was
generated using NNX and the other 50% of the time it was generated using the GEX.
Slight improvement over pure NNX was observed in the case of mutation M2 for the
higher percentages of NNX usage.

Based on these results, the researchers concluded that using mixtures of the two
algorithms was not worth the increased computational time. Further experiments
were performed using only NNX by itself.

Using only NNX with random initialization but with a population size of 100, they
obtained the results in Table 10.6. Note that for mutation M2, the average percent
deviation is 0.35 and the average time is 26.2. Looking again at Table 10.5, we see
that using this same combination with a population size of 50, the average percent
deviation is 0.55 and the average time is 5.52. This increase in accuracy should be
worth the increased time.

Next, the researchers investigated larger instances from the TSPLIB in which 318
≤ n ≤ 1748. Having concluded that hybrid initialization is also not worth additional
time, they ran NNX 10 times on each of these instances with random initialization
and a population size of 100. Table 10.7 shows the results. Curiously, on the large-
problem instances, mutation M2 did not do much better than mutation M2 but
required substantially more computation time. Looking again at Table 10.6, we see
that in the case of small instances M2 performed much better than M1 with little

www.EBooksWorld.ir

increased computational cost.

• Table 10.5 Average Results Over 30 Runs on Each of 10 Small-Problem Instances Where Population Size Is 50

• Table 10.6 Average Results Over 30 Replications of 10 Small-Problem Instances Where Population Size Is 100
and the Initial Population Is Generated at Random

www.EBooksWorld.ir

• Table 10.7 Average Results Over 10 Replications of 15 Large-Problem Instances Where Population Size Is 100
and Initial Population Is Generated at Random

• Table 10.8 A Comparison of NNX to Two Other Heurisic Algorithms for the TSP for 10 Problem Instances

Simply testing a heuristic algorithm on a number of instances does not show if it as
an advancement. We need to see how it fares relative to previously existing heuristic
algorithms. Süral et al. (2010) compared NNX to the heuristic TSP algorithms Meta-
RaPS (DePuy et al., 2005) and ESOM (Leung et al., 2004) using 10 benchmark TSP
instances. Table 10.8 shows the results. Either NNX-M1 (mutation M1) or NNX-M2
(mutation M2) performed the best for every problem instance.

10.3 Genetic Programming
Whereas in genetic algorithms the “chromosome” or “individual” represents a
solution to a problem, in genetic programing the individual represents a program

www.EBooksWorld.ir

that solves a problem. The fitness function for the individual in some way measures
how well the program solves the problem. We start with an initial population of
programs, allow the more fit programs to reproduce by crossover, perform mutations
on the population of children, and then repeat this process until some terminal
condition is met. The high-level algorithm for this procedure is exactly the same as
the one for genetic algorithms. However, we show it next for completeness.

The individuals (programs) in a genetic program are represented by trees; in each
node there is either a terminal symbol or a function symbol. If a node is a function
symbol, its arguments are its children. As an example, suppose you have the
following mathematical expression (program):

Its tree structure representation appears in Figure 10.7.

• 10.3.1 Illustrative Example
A simple way to illustrate genetic programming is to show an application that learns
a function y = f(x) from pairs of points (xi, yi) known to satisfy the function. For
example, suppose we have the pairs of points in Table 10.9.
Figure 10.7 A tree representing Equation 10.1.

www.EBooksWorld.ir

These points were actually generated from the function

However, assume that we do not know this and are trying to discover the function.
Steps for developing a genetic program for this discovery problem are as follows:

1. Decide on the terminal set T. Let the terminal set include the symbol x and the
integers between −5 and 5.

2. Decide on the function set F. Let the function set be the symbols +, −, ×, and /.
Note that we could include other functions such as sin, cos, etc. if desired.

3. Decide how many individuals make up a population. Our population size will be
600.

4. Decide how to initialize the population. Each initial individual is created by a
process called growing the tree. First, a symbol is randomly generated from T
∪ F. If it is a terminal symbol, we stop and our tree consists of a single node
containing this symbol. If it is a function symbol, we randomly generate children
for the symbol. We continue down the tree, randomly generating symbols and
stopping at terminal symbols. For example, the tree in Figure 10.7 would be
obtained by the following random generation of symbols: First, the symbol / is
generated, followed by the values of + and − for its children. The children
generated for + are x and 2. We stop at each of these children. The children
generated for − are 5 and ×. We stop at the 5, and finally generate the children 3
and x for the ×.

• Table 10.9 We Want to Learn a Function That Describes the Relationship between x and y Based on These 10
Points

x y

0 0

.1 .005

www.EBooksWorld.ir

.2 .020

.3 .045

.4 .080

.5 .125

.6 .180

.7 .245

.8 .320

.9 .405

5. Decide on a fitness function. The fitness function will be the square error. That

is, the fitness of function f(x) is as follows:

where each (xi, yi) is a point in Table 10.9. Functions with smaller errors are
more fit.

6. Decide which individuals to select for reproduction. A 4-individual tournament
selection process is used. In the tournament selection process, n individuals
are randomly selected from the population. In this case, n = 4. We say that these
n individuals enter a tournament in which the n/2 most fit of them win and the n/2
least fit lose. The n/2 winners are allowed to reproduce to produce n/2 children.
These children replace the n/2 losers in the population for the next generation. In
this case, the 2 winners reproduce twice to produce 2 children who replace the 2
losers.
A small tournament size results in low selection process, whereas a high
tournament size results in high pressure.

7. Decide how to perform crossovers and mutations. Crossover between two
individuals will be performed by exchanging randomly selected subtrees. Such a
crossover is illustrated in Figure 10.8. Mutations are performed by randomly
selecting a node and replacing the subtree at that node by a growing a new
subtree. Mutations are randomly performed on 5% of the offspring.

8. Decide when to terminate. Terminate when the square error of the most fit
individual is 0 or when 100 generations have been produced.

Figure 10.8 Crossover by exchanging subtrees.

www.EBooksWorld.ir

Banzhaf et al. (1998) applied the technique just presented to the data in Table 10.9.
The following shows the most fit individual in the first 4 generations:

The most fit individual expanded to a very large tree by generation 3 but shrunk back
down to the correct solution (the function generating the data) by generation 4.

• 10.3.2 Artificial Ant
Consider the problem of developing a robotic ant that navigates along a trail of food.
Figure 10.9 shows such a trail, called the “Sante Fe trail.” Each black square

www.EBooksWorld.ir

represents one pellet of food; there are 89 such squares.
Figure 10.9 The Santa Fe trail. Each black square reprsents a pellet of food.

The ant starts at the square labeled “start” facing right, and its goal is to arrive at the
square labeled “89” after visiting all 89 black squares (thereby eating all the food on
the trail) in as few time steps as possible. Notice that there are a number of gaps
along the trail. This problem in a example of planning problem.

The ant has one sensor as follows:
food_ahead: Has value True if there is food in the square the ant is facing; otherwise
has value False.

There are three different actions the ant can execute in each time slot:

right: The ant turns right by 90o(without moving).
left: The ant turns left by 90o(without moving).
move: The ant moves forward into the square it is facing. If the square contains
food, the ant eats the food, thereby eliminating the food from the square and
erasing it from the trail.

Koza (1992) developed the following genetic programming algorithm for this
problem.

1. Decide on the terminal set T. The terminal set contains the actions the ant can
take. That is,

2. Decide on the function set F. The function set is as follows:

www.EBooksWorld.ir

(a) if_food_ahead(instruction1, instruction2);
(b) do2(instruction1, instruction2);
(c) d03(instruction1, instruction2, instruction3);
The first function executes instruction1 if food ahead is true; otherwise it
executes instruction2. The second function unconditionally executes
instruction1 and instruction2. The third function unconditionally executes
instruction1, instruction2, and instruction3. For example,

causes the ant to turn right and then move ahead.
3. Decide how many individuals make up a population. The population size is 500.
4. Decide how to initialize the population. Each initial individual is created by

growing the tree (See Section 10.3.1).
5. Decide on a fitness function. It is assumed that each action (right, left, move)

takes one time step, and each individual is allowed 400 time steps. Each
individual starts in the upper left-hand square facing east. Fitness is defined as
the number of food pellets consumed in the allotted time. The maximum fitness is
89.

6. Decide which individuals to select for reproduction.
7. Decide how to perform crossovers and mutations. Crossover between two

individuals will be performed by exchanging randomly selected subtrees. Such a
crossover is illustrated in Figure 10.8. Mutations are performed by randomly
selecting a node and replacing the subtree at that node by growing a new subtree.
Mutations are randomly performed on 5% of the offspring.

8. Decide when to terminate. Terminate when one individual has a fitness of 89 or
some maximum amount of iterations is reached.

In each iteration, each individual in the population (program) is run repeatedly
until 400 time steps are performed. The individual’s fitness is then evaluated. In one
particular run, Koza (1992) obtained an individual with a fitness equal to 89 in the
22nd generation. That individual appears in Figure 10.10. The average fitness of
individuals in generation 0 was 3.5, while the most fit individual in generation 0 had
a fitness of 32.

• 10.3.3 Application to Financial Trading
An important decision facing everyone who invests in the stock and other financial
markets is whether to buy, sell, or hold on a given day. There have been many efforts

www.EBooksWorld.ir

to develop automated systems that make this decision for us. Farnsworth et al. (2004)
developed such a system using genetic programming. Their system makes an
investment decision based on values of market indicators on a given day. We discuss
that system next.
Figure 10.10 The individual in generation 22 with a fitness equal to 89.

Developing the Trading System
First, we show the eight steps used to create the system.

1. Decide on the terminal set T. The terminal symbols are the market indicators. The
researchers tried and tested various indicators before deciding on the ones to
include in the final system. We only present the final ones. They are as follows:
(a) The S&P 500 is a market index based on 500 leading companies in leading

industries of the U.S. economy. For a given day, the indicator based on the
S&P 500 is as follows:

www.EBooksWorld.ir

where S&P 500todayis the value of the S&P500 on the current day, S&P
500avgis the average value over the past 200 days, and S&P 500σ is the
standard deviation over the past 200 days.
We denote this indicator simply as SP 500.

(b) The k-day Exponential Moving Average (EMA) for a security is a
weighted average of the security over the past k days.
The Moving Average Convergence/Divergence (MACD) of a security x
is as follows:

The MACD is considered a momentum indicator. When it is positive,
traders say upside momentum is increasing; when it is negative, they say
downside momentum is increasing.
A second indicator used in this system is MACD(S&P 500), which we
denote simply as MACD.

(c) The indicator MACD9 is the 9-day EMA of the MACD of the S&P 500.
(d) Let Diff be the difference of the number of advancing and declining

securities. That McClennan Oscillator (MCCL) is as follows:

Traders consider the market overbought when MCCL > 100 and oversold
when MCCL < −100.
We denote this indicator simply as MCCL

(e) The indicators SP 500lag, MACDlag, MACD9lag, and MCCLlag are the
values of those indicators on the previous day.

(f) Other terminal symbols include real constants in the interval [−1, 1]. All
indicator values were normalized to the interval [−1, 1].

2. Decide on the function set F. Function symbols include +, − and ×, and the
following control structures:
(a) if x > 0 then y else z. This structure is represented in the tree with the symbol

IF having the children x, y, and z.
(b) if x > w then y else z. This structure is represented in the tree with the symbol

IFGT having the children x, w, y, and z.
3. Decide how many individuals make up a population. Various population sizes

were tried. Sizes smaller than 500 were ineffectual, whereas ones around 2500
had good results.

4. Decide how to initialize the population. Each initial individual was created by

www.EBooksWorld.ir

growing the tree as discussed in Section 10.3.1. The maximum number of levels
allowed was 4 and the maximum number of total nodes allowed was 24. This
restriction was also enforced in future populations. The purpose of these
limitations was to avoid overfitting, which occurs when the tree matches the
training data very closely but has limited predictive value for unseen data.

5. Decide on a fitness function. Data was obtained on the S&P closing prices from
April 4, 1983 to June 18, 2004. A given tree analyzes the first 4750 days of this
data. The tree starts with $1 on the first day. If the tree returns a value greater
than 0 on a given day, a buy signal is generated; otherwise a sell signal is
generated. All the current money is always invested or withdrawn when there is
a buy or a sell. There are no partial investments. If the tree was in the market on
the previous day and a buy signal is generated, no action is taken. Similarly, if
the tree was out of the market on the previous day and a sell signal is generated,
no action is taken. When the 4750 days of trading are complete, the initial dollar
is subtracted so that the final value represents profit. To further avoid overfitting,
a fitness penalty proportional to the total number of transactions was imposed.

6. Decide which individuals to select for reproduction. The population is sorted
according to fitness. The bottom 25% are “killed off” and replaced by more fit
individuals.

7. Decide how to perform crossovers and mutations. Crossover between two
individuals is performed by exchanging randomly selected subtrees. Node
mutations are done by randomly selecting a few nodes and randomly changing
their values to nodes that take the same arguments. Mutations to function nodes
change operations, and mutations to terminal nodes change indicator or constant
values. Tree mutations are performed by randomly selecting a subtree and
replacing it by a new random subtree.
The top 10% of the population are left unchanged; 50% are randomly selected
for crossover with individuals from the top 10%; 20% are selected for node
mutations; 10% are selected for tree mutations; and 10% are killed and randomly
replaced.

8. Decide when to terminate. The maximum number of generations was in the 300–
500 range.

Figure 10.11 shows a tree that survived as the most fit tree in one particular run.
Figure 10.11 A tree that survived as most fit in one run and performed well in an evaluation.

www.EBooksWorld.ir

Evaluation
Recall that data was obtained on the S&P closing prices from April 4, 1983 to June
18, 2004, and the first 4750 days of these data were used to determine the fitness and
thereby learn a system. The remaining 500 days were used to evaluate a system by
computing its fitness based on these data. The system represented by the tree in
Figure 10.11 had an evaluation fitness of 0.397. The buy-and-hold strategy in
investing is simply to buy a security and hold on to it. Based on the evaluation data,
the buy-and-hold strategy only had a fitness of 0.1098.

10.4 Discussion and Further Reading
The remaining two areas of evolutionary computation are evolutionary programming
and evolution strategies. Evolutionary programming is similar to genetic algorithms
in that it uses a population of candidate solutions to evolve into an answer to a
specific problem. Evolutionary programming differs in that its focus is on developing
behavioral models of the observable systems interaction with the environment. Fogel
(1994) presents this approach. Evolution strategies model problem solutions as
species. Rechenberg (1994) says that the field of evolution strategies is based on the
evolution of evolution. See Kennedy and Eberhart (2001) for a complete introduction
to all four areas of evolutionary computation.

EXERCISES

Section 10.1
1. Describe the difference between sexual reproduction in diploid organisms,

binary fission in haploid organisms, and fusion in haploid organisms.

www.EBooksWorld.ir

2. Suppose a diploid organism has 10 chromosomes in one of its genomes.
(a) How many chromosomes are in each of its somatic cells?
(b) How many chromosomes are in each of its gametes?

3. Suppose two adult haploid organisms reproduce by fusion.
(a) How many children will be produced?
(b) Will the genetic content of the children all be the same?

4. Consider the eye color of a human being as determined by the bey2 gene. Recall
that the allele for brown eyes is dominant. For each of the following parent allele
combinations, determine the eye color of the individual.

Father Mother

BLUE BLUE

BLUE BROWN

BROWN BLUE

BROWN BROWN

Section 10.2
5. Consider Table 10.1. Suppose the fitnesses of the 8 individuals are .61, .23, .85,

.11, .27, .36, .55, and .44. Compute the normed fitnesses and the cumulative
normed fitnesses.

6. Suppose we perform basic crossover as illustrated in Table 10.3, the parents are
01101110 and 11010101, and the starting and ending points for crossover are 3
and 7. Show the two children produced.

7. Implement the genetic algorithm for finding the value of x that maximizes f(x) =
sin(xπ/256), which is discussed in Section 10.2.2.

8. Consider the instance of the TSP in Figure 10.12. Assume the weights in both
directions on an edge are the same. Find the shortest tour.

9. Suppose we perform order crossover, the parents are 3 5 2 1 4 6 8 7 9 and 5 3 2
6 9 1 8 7 4, and the starting and ending points for the pick are 4 and 7. Show the
two children produced.

10. Consider the instance of the TSP in Figure 10.12. Apply the Nearest Neighbor
Algorithm starting with each of the vertices. Do any of them yield the shortest
tour?

11. Form the union graph of the two tours shown in Figure 10.13, and apply the
Nearest Neighborhood Algorithm to the resultant graph starting at vertex v5.

12. Apply the Greedy Edge Algorithm to the instance of the TSP in Figure 10.12.
Does it yield a shortest tour?

www.EBooksWorld.ir

Figure 10.12 An instance of TSP.

Figure 10.13 Two tours.

Section 10.3
13. Consider the two trees in Figure 10.8. Show the new trees that would be obtained

if we exchanged the subtree starting with the “4” in the left tree with the subtree
starting with the “+” in the right tree.

14. Consider the individual (program) in Figure 10.10. Show the moves produced by
that program when negotiating the Santa Fe trail for the first 10 time steps.

15. Implement the genetic programming algorithm for the Santa Fe trail discussed in
Section 10.3.2.

Original material from Contemporary Artificial Intelligence, Taylor & Francis Books, Inc. used with permission.

www.EBooksWorld.ir

Chapter 11

Number-Theoretic Algorithms
Suppose Bob wants to send Alice a secret love note over the Internet, but he is afraid
some of his friends might intercept the message and read it. If he could encode the
message so that it appears as gibberish and only Alice could decode the gibberish
back to the original message, he would not need to fear his friends intercepting the
message. Number-theoretic algorithms can help Bob develop a system for doing this.
We discuss such algorithms next.

Number theory is the branch of mathematics concerned with the properties of the
integers. Number-theoretic algorithms are algorithms that solve problems involving
the integers. For example, a number-theoretic algorithm might find the greatest
common divisor of two integers. After reviewing basic number theory in Section
11.1, we present Euclid’s algorithm for finding the greatest common divisor in
Section 11.2. Next, Section 11.3 reviews modular arithmetic, Section 11.4 shows an
algorithm for solving modular linear equations, and Section 11.5 develops an
algorithm for computing modular powers. Section 11.6 concerns algorithms for
determining whether a number is prime. An important application of number-
theoretic algorithms is in cryptography, which is the discipline concerned with
encrypting a message sent from one party to another, so that someone who intercepts
the message will not be able to decode it. In Section 11.7 we present the Rivest-
Shamir-Adelman (RSA) public-key cryptosystem, which is a system that does this.

Before proceeding, we note that in this chapter we revert back to developing
algorithms as we did in Chapters 2 through 6. However, unlike the methods presented
in those chapters, number-theoretic algorithms are concerned with solving a certain
type of problem (namely ones involving the integers); they are not algorithms that
share a common technique.

11.1 Number Theory Review
We review some basic elements of number theory.

• 11.1.1 Composite and Prime Numbers
The set

www.EBooksWorld.ir

is called the set of integers. For any two integers n, h ∈ Z, we say h divides n,
denoted h|n, if there is some integer k such that n = kh. If h|n, we also say n is
divisible by h, n is a multiple of h, and h is a divisor or factor of n.

Example 11.1
We have that 4|20 since 20 = (5) (4). The integer 3 does not divide 20 since there

is no integer k such that 20 = (k) (3).

Example 11.2
The divisors of 12 are

An integer n > 1 whose only positive divisors are 1 and n is called a prime
number or simply a prime. A prime number has no factors. An integer n > 1 that is
not prime is called a composite number. A composite number has at least one factor.

Example 11.3
The first 10 primes are

Example 11.4
The integer 12 is composite because it has the divisors 2, 3, 4, and 6. The integer 4

is composite because it has the divisor 2.

• 11.1.2 Greatest Common Divisor
If h|n and h|m, then h is called a common divisor of n and m. If n and m are not both
zero, the greatest common divisor of n and m, denoted gcd(n, m), is the largest
integer that divides both of them.

www.EBooksWorld.ir

Example 11.5
The positive divisors of 24 are

and the positive divisors of 30 are

So the common positive divisors of 24 and 30 are

and the value of gcd(24, 30) is 6.

We have the following theorems concerning common divisors:

 Theorem 11.1
If h|n and h|m, then for any integers i and j

Proof: Since h|n and h|m, there exist integers k and l such that n = kh and m = lh.
Therefore,

which means h| (in + jm).

Before proceeding, we need more definitions. For any two integers n and m,
where m ≠ 0, the quotient q of n divided by m is given by

and the remainder r of dividing n by m is given by

The remainder is denoted n mod m. It is not hard to see that if m > 0 then 0 ≤ r < m,
and if m < 0 then m < r ≤ 0. So we have

www.EBooksWorld.ir

The division algorithm says not only that the integers q and r in Equality 11.1 exist
but also that they are unique.

Example 11.6
The following table shows some quotients and remainders:

 Theorem 11.2
Let n and m be integers, not both 0, and let

That is, d is the smallest positive linear combination of n and m. Then

Proof: Let i and j be the integers that yield the minimal value d. That is, d = in + jm.
Furthermore, let q and r be the quotient and remainder respectively, of dividing n by
d. Then owing to Equality 11.1 and the fact that d is positive,

We therefore have

which means that r is a linear combination of n and m. Since d is the smallest
positive linear combination of n and m and r < d, we conclude r = 0, which means
d|n. Similarly, d|m. Therefore, d is a common divisor of m and n, which means

Since the gcd(n, m) divides both n and m, and d = in + jm, Theorem 11.1 implies

www.EBooksWorld.ir

gcd(n, m)|d. We conclude

Combining these last two inequalities, we have d = gcd(n, m).

Example 11.7
We have that gcd(12, 8) = 4, and

 Corollary 11.1
Suppose n and m are integers, not both 0. Then every common divisor of n and m is a
divisor of gcd(n, m). That is, if h|n and h|m, then

Proof: By the preceding theorem, gcd(n, m) is a linear combination of n and m. The
proof now follows from Theorem 11.1.

Example 11.8
As shown in Example 11.5, the common positive divisors of 24 and 30 are

and the value of gcd(24, 30) is 6. As the previous corollary implies, 1, 2, 3, and 6 all
divide 6.

 Theorem 11.3
Suppose we have integers n ≥ 0 and m > 0. If we let r = nmodm, then

If n = 0, r = m and the equality obviously holds. Otherwise, we will show that gcd(n,
m) and gcd(m, r) each divide each other. It is left as an exercise to show that two

www.EBooksWorld.ir

positive integers divide each other if and only if they are equal, which will complete
the proof of the theorem. First we show gcd(n, m)| gcd(m, r). If we let d′ = gcd(n, m),
then d′|n and d′|m. Furthermore,

where q is the quotient of n divided by m, which means n is a linear combination of
m and r. Theorem 11.1 therefore implies d″|n. Since d″|m and d″|n, Corollary 11.1
implies

which completes the proof of this direction. Next show gcd(m, r)| gcd(n, m). If we let
d″ = gcd(m, r), then d″|m and d″|r. Furthermore,

where q is the quotient of n divided by m, which means n is a linear combination of
m and r. Theorem 11.1 therefore implies d″|n. Since d″|m and d″|n, Corollary 11.1
implies

which completes the proof of this direction.

Example 11.9
According to the previous theorem,

because 16 = 64 mod 24. We can continue in this manner to determine gcd(64, 24).
That is,

• 11.1.3 Prime Factorization
Every integer greater than one can be written as a unique product of primes. We next

www.EBooksWorld.ir

develop theory that proves this assertion.
Two integers n and h, not both zero, are called relatively prime if gcd(n, h) = 1.

Example 11.10
The integers 12 and 25 are relatively prime because gcd(12, 25) = 1. The integers

12 and 15 are not relatively prime because gcd(12, 15) = 3.

 Theorem 11.4
If h and m are relatively prime, and h divides nm, then h divides n. That is, gcd(h, m)
= 1 and h|nm implies h|n.
Proof: Theorem 11.2 implies there are integers i and j such that

Multiplying this equality by n yields

Clearly, h divides the first term on the left-hand side of this equality, and, since h|nm,
h also divides the second term. Therefore, h divides the left-hand side, which means
h divides n.

Example 11.11
The integers 9 and 4 are relatively prime, 9|72, and 72 = 18 × 4. As the previous
theorem implies, 9|18.

 Corollary 11.2

Given integers n, m, and prime integer p, if p|nm, then p|n or p|m (inclusive).
Proof: The proof follows easily from Theorem 11.4.

www.EBooksWorld.ir

The theorem that follows is called the unique factorization theorem and the
fundamental theorem of arithmetic.

 Theorem 11.5
Every integer n > 1 has a unique factorization as a product of prime numbers. That is,

where p1 < p2 < · · · < pj are primes, and this representation of n is unique. The
integer ki is called the order of pi in n.

Proof: We use induction to prove such a representation exists.
Induction base: We have 2 = 21.
Induction hypothesis: Suppose all integers m such that 2 ≤ m < n can be written as a
product of prime numbers.
Induction step: If n is prime, then n = n1 is our representation. Otherwise, n is
composite, which means there exists integers m, h > 1 such that

Clearly m, h < n. Therefore, by the induction hypothesis, m and h can each be written
as a product of primes. That is,

Since n = mh,

We obtain our desired representation by grouping primes that are equal and arranging
the terms according to increasing values of the primes. This completes the induction
proof.

The fact that the product is unique follows from Corollary 11.2 and is left as an
exercise.

Example 11.12
We have that

www.EBooksWorld.ir

The previous theorem says the representation on the right-hand side of this equality is
unique.

 Theorem 11.6
The gcd(n, m) is a product of the primes that are common to n and m, where the
power of each prime in the product is the smaller of its orders in n and m.
Proof: The proof is left as an exercise.

Example 11.13
We have 300 = 22 × 31 × 52 and 1,125 = 32 × 53. So gcd(300, 1,125) = 20 × 31 × 52 =
75.

• 11.1.4 Least Common Multiple
A concept similar to that of the greatest common divisor is that of the least common
multiple. If n and m are both nonzero, the least common multiple of n and m,
denoted lcm(n, m), is the smallest positive integer that they both divide.

Example 11.14
The lcm(6, 9) = 18 because 6|18, 9|18, and there is no smaller positive integer that
they both divide.

 Theorem 11.7
The lcm(n, m) is a product of the primes that are common to n and m, where the
power of each prime in the product is the larger of its orders in n and m.
Proof: The proof is left as an exercise.

Example 11.15
We have 12 = 22 ×31 and 45 = 32 ×51. So lcm(12, 45) = 22 ×32 ×51 = 180.

www.EBooksWorld.ir

11.2 Computing the Greatest Common Divisor
Theorem 11.6 gives us a straightforward way to compute the greatest common
divisor of two such integers. We simply find the unique factorizations for the two
integers, determine which primes they have in common, and determine the greatest
common divisor to be a product whose terms are these common primes, where the
power of each prime in the product is the smaller of its orders in the two integers.
Example 11.13 illustrated this. Another example follows:

Example 11.16
We have

So

The problem with the previous technique is that it is not easy to find the unique
factorization of an integer. You would have had some difficulty factoring the integers
in the previous example if we had not given you the factorization. Now imagine the
difficulty if the integers had 25 digits instead of 7. Indeed, no one has ever found a
polynomial-time algorithm for determining the factorization of an integer. Next we
show a more efficient way to compute the greatest common divisor.

• 11.2.1 Euclid’s Algorithm
Theorem 11.1 gives us a straightforward method for determining the greatest common
divisor of two integers. Example 11.9 illustrates the method. Namely, to find the
gcd(n, m) we recursively apply the equality in the theorem until m = 0, and then we
return n. This method is called Euclid’s algorithm because it was developed by
Euclid around 300 B.C. The algorithm follows:

Algorithm 11.1
Euclid’s Algorithm
Problem: Compute the greatest common divisor of a positive integer and a

www.EBooksWorld.ir

nonnegative integer.
Inputs: a positive integer n and a nonnegative integer m.
Outputs: the greatest common divisor of n and m.

Example 11.17
We find the greatest common divisor of the numbers in Example 11.16 using
Algorithm 11.1.

It seemed pretty easy for us to compute the greatest common divisor using Euclid’s
algorithm. Let’s analyze Algorithm 11.1 to see just how easy it is. First we need a
lemma and a theorem.

 Lemma 11.1
If n > m ≥ 1 and the call gcd(n, m) (in Algorithm 11.1) results in k recursive calls
where k ≥ 1, then

where fk is the kth number in the Fibonacci sequence.
Proof: The proof is by induction.
Induction base: Suppose the call gcd(n, m) results in 1 recursive call. Since m ≥ 1

Since n > m, we have n ≥ 2, which means

www.EBooksWorld.ir

Induction hypothesis: Assume the lemma is true if k − 1 recursive calls are made.
Induction step: Show the lemma is true if k ≥ 2 recursive calls are made. We need to
show

The first recursive call is gcd(m, n mod m). Since there are k recursive calls in all,
this call must require k − 1 recursive calls. Since k ≥ 2, there is at least one more
recursive call, which means n mod m ≥ 1. Therefore, since m > n mod m, the
conditions of the induction hypothesis are satisfied, which means

So we’ve arrived at one of the inequalities we needed to show. Towards showing the
other, we have

where q is the quotient of dividing n by m. Since n > m, q ≥ 1. Inequality 11.2 and
Equality 11.3 therefore imply

This completes the proof.

 Theorem 11.8
(Lamé) For every integer k ≥ 1 if n > m ≥ 1 and m ≤ fk, the kth number in the
Fibonacci sequence, then the call gcd(n, m) (in Algorithm 11.1) results in less than k
recursive calls.
Proof: The proof follows immediately from the previous lemma.

Next we analyze Algorithm 11.1. Recall from Section 9.2 that in numeric
algorithms, the number(s) that is the input is not the input size. Rather, the input size is
the number of characters it takes to write the input. If we use binary encoding, the
input size is the number of bits it takes to encode the number(s), which is about equal
to the lg of the number(s).

 Analysis of Algorithm 11.1

 Worst-Case Time Complexity (Euclid’s Algorithm)

www.EBooksWorld.ir

Basic operation: one bit manipulation in the computation of a remainder.
Input size: the number of bits s it takes to encode n and the number of bits t it takes to
encode m. That is,

Without loss of generality, we will analyze the case where 1 ≤ m < n. That is, if m =
n, there will be no recursive calls, while if m > n, the first recursive call will be
gcd(m, n), which means the first argument is larger.
We will not determine the exact time complexity. Rather we will first show the
number of recursive calls Calls(s, t) is Θ(t), and then we will find a bound for the
worst-case time complexity.
First we show Calls(s, t) is in O(t). Assuming m ≥ 2, let fk be the number in the
Fibonacci sequence such that

In Example B.9 in Section B.2.1 we show that

Either k − 1 is odd or k − 2 is odd. Without loss of generality, assume k − 1 is odd.
Owing to Equality 11.5 and Inequality 11.4, we have

Owing to Equality 11.4, Theorem 11.8 implies

Inequalities 11.6 and 11.7 imply that

It is left as an exercise to show that the call gcd(fk+1, fk) requires exactly k − 1
recursive calls. We conclude that

where W calls(s, t) is the worst-case number of recursive calls for input size s, t.
For each recursive call, we compute one remainder. It is left as an exercise to show
that, if we use the standard long division algorithm (as discussed in Section 2.6) to
compute the remainder, the worst case number of bit manipulations needed to
compute r = n mod m for m < n is bounded above by

www.EBooksWorld.ir

where q is the quotient of dividing n by m, and c is a constant. We will show if r > 0,
then, for the input size sufficiently larger, the worst case number of bit manipulations
needed to compute r is bounded above by

To that end, since q = (n − r)/m and 1 ≤ r < m,

This last inequality along with Relation 11.9 establishes Bound 11.10. Owing to this
bound, the total number of bit manipulations needed to compute all remainders in all
recursive calls is bounded above by

Relation 11.8 implies the number of recursive calls is bounded above by dt, where d
is a constant greater than 0. This means the number of terms in Bound 11.11 is
bounded above by dt. Therefore, since n > m > r > m mod r > · · · (where the dots
denote the remaining terms in Bound 11.11), we conclude from Bound 11.11 that

• 11.2.2 An Extension to Euclid’s Algorithm
Theorem 11.1 entails that there are integers i and j such that

Knowledge of these integers will be important to our algorithm for solving modular
linear equations in the next section. Next we modify Algorithm 11.1 to also produce
these integers. In this version we make gcd a variable because so doing makes the

www.EBooksWorld.ir

proof of the correctness of the algorithm more transparent.

 Algorithm 11.2
Euclid’s Algorithm 2
Problem: Compute the greatest common divisor of a positive integer and a
nonnegative integer.
Inputs: a positive integer n and a nonnegative integer m.
Outputs: the greatest common divisor gcd of n and m, and integers i and j such that
gcd = in + jm.

Algorithm 11.2 clearly has the same time complexity as Algorithm 11.1. So we
need only prove it is correct. Before doing this, we show an example of applying it.

Example 11.18
Table 11.1 illustrates the flow of Algorithm 11.2 when the top-level call is

The values returned at the top level are gcd = 6, i = −2, and j = 3.

Next we prove Algorithm 11.2 is correct.

• Table 11.1 The values determined by Algorithm 11.2 when n = 42 and m = 30. The top-level call is labeled 0; the
three recursive calls are labeled 1–3. The arrows show the order in which the values are determined.

www.EBooksWorld.ir

 Theorem 11.9
The values of i and j returned by Algorithm 11.2 are integers such that

Proof: The proof is by induction.
Induction base: In the last recursive call m = 0, which means the gcd(n, m) = n. Since
the values of i and j are assigned values 1 and 0, respectively, in that call, we have
that

Induction hypothesis: Assume in the kth recursive call the values determined for i and
j are such that

Then the values returned by that call for i′ and j′ [to the (k − 1)st recursive call] are
values such that

Induction step: We have for the (k − 1)st call that

The second to the last equality is due to the induction hypothesis, and the last equality
is owing to Theorem 11.3.

www.EBooksWorld.ir

Notice that the value Algorithm 11.2 returns for j in the final recursive call can be
any integer. We choose 0 for simplicity. Choosing a different integer yields a different
(i, j) pair with the gcd(n, m) = in + jm.

11.3 Modular Arithmetic Review
We develop modular arithmetic within the context of group theory. So first we review
that theory.

• 11.3.1 Group Theory
A closed binary operation ∗ on a set S is a rule for combining two elements of S to
yield another element of S. We have the following definition:

Definition
A group G = (S, ∗) is a set S together with a closed binary operation ∗ on S
satisfying the following:

1. * is associative. That is, for all a, b, c ∈ S

2. There is an identity element e in S. That is, for each a ∈ S

3. For each a ∈ S there exists an inverse element a′ such that

Example 11.19
The integers Z with addition constitute a group. The identity element is 0, and the
inverse of a is −a.

Example 11.20
The nonzero real numbers with multiplication constitute a group. The identity element
is 1, and the inverse of a is 1/a.

www.EBooksWorld.ir

Example 11.21
Let S = (a, b, e) and assign

It is left as an exercise to show (S, ∗) is a group.

Can an element in a group have more than one inverse? The theorem that follows
shows the answer is no.

 Theorem 11.10
The inverse of each element in a group is unique.
Proof: Suppose a′ and a″ are both inverses of a. Then

However,

We conclude from the previous two equalities that a′ = a″.

 Theorem 11.11
If there exists elements a and b in a group such that a ∗ b = a or b ∗ a = a, then b is
the identity element e in the group.
Proof: If a ∗ b = a then

where a′ is the inverse of a. However,

Combining these two equalities proves this case. The other case is proved in the

www.EBooksWorld.ir

same way.

The last theorem establishes the result that the identity element in a group is
unique.

A group G = (S, ∗) is said to be commutative (or abelian) if for all a, b ∈ S,

A group G = (S, ∗) is said to be finite if S contains a finite number of elements. The
groups in Examples 11.19, 11.20, and 11.21 are all commutative, while only the one
in Example 11.21 is finite.

• 11.3.2 Congruency Modulo n
We start with a definition.

Definition
Let m and k be integers and n be a positive integer. If n|(m − k) we say m is
congruent to k modulo n, and we write

Example 11.22
Since 5|(33 − 18),

Recall m mod n gives the remainder when m is divided by n. The following
theorem shows we can recognize congruence using the mod function.

 Theorem 11.12
We have that m ≡ k mod n if and only if

Proof: The proof is left as an exercise.

www.EBooksWorld.ir

Example 11.23
We already know 33 ≡ 18 mod 5. As the preceding theorem implies, 33 mod 5 = 18
mod 5 = 3.

The following theorem concerning congruency will be needed in Section 11.7
when we develop the RSA cryptosystem.

 Theorem 11.13

Suppose n1, n2, … , nj are pairwise relatively prime and

Then for all integer m and k,

if and only if, for 1 ≤ i ≤ j,

Proof: Suppose, for 1 ≤ i ≤ j, that

Then there exist integers h1, h2, … , hj such that

It is left as an exercise to use Theorem 11.4 to show that this equality and the fact that
n1, n2, … , nj are pairwise relatively prime implies

where c is an integer. We then have

Since c is an integer, this means m ≡ k mod n.
In the other direction, if m ≡ k mod n, then there is an integer h such that

www.EBooksWorld.ir

Therefore,

which means, for each i, m−k is a multiple of ni. This completes the proof.

Example 11.24
The integers 2, 5, and 9 are pairwise relatively prime, and

Since 2 × 5 × 9 = 90, the previous theorem implies

Next we show congruency modulo n is an equivalence relation.

 Theorem 11.14
For any positive integer n, congruency modulo n is an equivalence relation on the set
of all integers. That is,

1. (reflexivity)

2. (symmetry)

3. (transitivity)

Proof: The proof is left as an exercise.

The set of all integers congruent to m modulo n is called the equivalence class
modulo n containing m. Since congruency is an equivalence relation, any integer in
a given class determines the class. For a given integer m, it is the set

www.EBooksWorld.ir

Example 11.25
The equivalence class modulo 5 containing 13 is

We denote the equivalence class modulo n containing m by [m]n. So the
equivalence class in the preceding example is denoted [13]5. It can also be denoted
[3]5, [8]5, and so on. Usually we denote an equivalence class using the smallest
nonnegative integer in the class. So the equivalence class in the preceding example is
usually denoted [3]5. The set of all equivalence classes modulo n is denoted Zn. That
is,

Example 11.26
We have

For two members of Zn we define addition as follows:

For this definition to make sense, the result must not depend on which members of
[m]n and [k]n we choose. We show that next. We need to show that if

To that end, there exists integers i and j such that

So

which means s + t ∈ [m + k]n.

Example 11.27
We have

www.EBooksWorld.ir

 Theorem 11.15
For every positive integer n, (Zn, +) is a finite commutative group.
Proof: The associativity and commutivity of + follows readily from the associativity
and commutivity of + for the integers. The identity element is [0]5. The additive
inverse of [m]n is [n − m]n = [−m]n since

Example 11.28
Consider the group (Z5, +). Recall

The additive inverse of [1]5 is [5 − 1]5 = [4]5. Note that

Similarly, the additive inverse of [2]5 is [3]5. Note that

For two members of Zn we define multiplication as follows:

For this definition to make sense, the result must not depend on which members of
[m]n and [k]n we choose. We need to show that if

It is left as an exercise to show this.

Example 11.29
We have

Now (Zn, ×) is not always a group because there exists n (namely nonprimes) for
which not every element in Zn has a multiplicative inverse. That is, if we let [1]n be
the identity element, there exists [m]n such that there is no k for which [m]n × [k]n =

www.EBooksWorld.ir

[1]n.

Example 11.30
Consider

Suppose [6]9 has a multiplicative inverse [k]9. Then

which means there exists an integer i such that

Therefore, Theorem 11.2 implies 1 is the gcd(6, 9), which clearly is not the case.

The problem in the previous example is that 6 and 9 are not relatively prime. It
seems if we include only numbers relatively prime to n, we will have a group. The
next theorem proves this is so. First we develop notation for this set. Let

Clearly if n is prime, then Z∗n = Zn − {[0]n}. It is not hard to see that one member of
[m]n is relatively prime to n if and only if all members are. So we need only look at
the first n − 1 integers to determine the members of Z∗n.

Example 11.31
We have that

 Theorem 11.16
For every positive integer n, (Z∗

n, ×) is a finite commutative group.
Proof: Owing to Corollary 11.2 any divisor of m×k must be either a divisor of m or
of k. Therefore, if m and k are each relative prime to n, m × k is relatively prime to
n, which means × is a closed binary operation on Z∗n. The associativity and
commutivity of × follows readily from the associativity and commutivity of × for the
integers. The identity element is [1]n. If m is relatively prime to n, Theorem 11.2

www.EBooksWorld.ir

says there exists integers i and j such that

which means

So [j]n is the inverse of [m]n.

Example 11.32
For the group (Z∗

9, ×), we have the following multiplicative inverses:

 Theorem 11.17
The number of elements in Z∗n is given by Euler’s totient function, which is

where the product is over all primes that divide n, including n if n is prime.
Proof: The proof can be found in Graham et al. (1989).

Note, if p is prime, that

Example 11.33
The number of elements in Z*

9 is

which can be verified by counting in Example 11.31.

www.EBooksWorld.ir

Example 11.34
The number of elements in Z∗

60 is

Example 11.35
Since 7 is prime, the number of elements in Z∗

7 is

• 11.3.3 Subgroups
If G = (S, ∗) is a group, S′ ⊆ S, and G′ = (S′, ∗) is a group, then G′ is said to be a
subgroup of G. It is called a proper subgroup if S′ ≠ S.

Example 11.36
For E, the set of even integers, and Z, the set of integers, (E, +) is a proper subgroup
of (Z, +).

Before proceeding, we develop some useful notation. Given a group G = (S, ∗),
and a ∈ S with inverse a′, for k > 0 we define

Suppose we have a group G = (S, ∗) and a subset S′ ⊆ S such that for every a, b
∈ S′, a ∗ b ∈ S′. Then S′ is said to be closed relative to ∗.

 Theorem 11.18
Suppose we have a finite group G = (S, ∗), and a nonempty subset S′ ⊆ S, which is
closed relative to ∗. Then (S′, ∗) is a subgroup of G.
Proof: Clearly, associativity holds. Let a ∈ S′. It is left as an exercise to show that
since G is finite, there exist integers k, m ≥ 1 such that

www.EBooksWorld.ir

Multiplying both sides of this equality by the inverse of ak yields

where e is the identity element. Since S′ is closed, this means e is in S′. Next we
show the inverse of every a ∈ S′ is in S′. As just shown, for every such a there is an
m such that e = am. If m = 1, a = e, which means the inverse of a is e, and we already
know e is in S′. Otherwise,

which means am−1 is the unique inverse of a. However, since S′ is closed, am−1 is in S
′. This completes the proof.

 Theorem 11.19
(Lagrange) Suppose we have a finite group G = (S, ∗), and a subgroup G′ = (S′, ∗) of
G. Then

where |S| denotes the number of elements in S.
Proof: The proof can be found in Jacobson (1951).

Example 11.37
Consider the group (Z12, +). It is left as an exercise to show that if

then (S′, +) is a subgroup of (Z12, +). We have |S′| = 4, |Z12| = 12, and 4|12 as the
previous theorem implies.

 Corollary 11.3
If G′ = (S′, ∗) is a proper subgroup of G = (S, ∗), then

Proof: The proof follows immediately from the preceding theorem.

www.EBooksWorld.ir

Suppose we have a finite group G = (S, ∗), and a ∈ S. Let

Clearly, a is closed under ∗. So, because of Theorem 11.18, (a, ∗) is a
subgroup of G. This group is called the subgroup generated by a. If the subgroup
generated by a is G, we call a a generator of G.

Example 11.38
Consider the group (Z6, +). We have

The previous example illustrates that once we obtain the identity element when
generating the subgroup, we can stop because we will only repeat items already
generated. The next theorem obtains this result. First we need a definition. Given a
group, the order of group element a, denoted ord(a), is the least positive integer t
such that at = e, where e is the identity element.

 Theorem 11.20
Suppose we have a finite group G = (S, ∗) and a ∈ S. Let t = ord(a). Then the
subgroup a generated by a consists of the following t distinct elements:

Proof: First we show these elements are distinct. Suppose for 1 ≤ k < j ≤ t we have

Since j > k,

where i ≥ 1: Owing to these last two equalities and Theorem 11.11, we have ai = e.
Since i < t, we have a contradiction. Next we show there are no other elements in this
subgroup. If k > t, then there exist positive integers q and r such that

We then have

www.EBooksWorld.ir

If r = 0, ar = e = at; otherwise 1 ≤ r < t. This completes the proof.

Owing to the previous theorem, we have

where t = ord(a), Note that the number of elements in a is ord(a).

Example 11.39
Consider the group (Z6, +). We have

and

Clearly,

So [1]6 is a generator of Z6.

Example 11.40
Consider the group (Z∗9, ×). Recall

We have

It is left as an exercise to show that

So [2]9 is a generator of Z∗9.,

Example 11.41

www.EBooksWorld.ir

Consider the group (Z∗7, ×). Recall that

We have

 Corollary 11.4
Suppose we have a finite group G = (S, *) and a ∈ S. Let t = ord(a). Consider the
sequence

Two elements ai and aj in this sequence are equal if and only if

This implies the sequence is cyclic with period t, and t is the smallest period for
the sequence. That is, for 0 ≤ k < t and all i ≥ 0,

and t is the smallest number with this property.
Proof: The proof follows from the previous theorem and is left as an exercise.

Example 11.42
Consider the group (Z∗5, ×). This table shows the powers of [4]5:

whereas this table shows the powers of [3]5:

In this group, ord([4]5) = 2 and ord([3]5) = 4. Note the cyclical nature of the powers
relative to these orders as implied by Corollary 11.4. Note further that [3]5 is a
generator of Z∗

5.

 Corollary 11.5

www.EBooksWorld.ir

Suppose we have a finite group G = (S, ∗) with identity element e. Then for all a ∈
S,

where |S| denotes the number of elements in S.

Proof: From Theorem 11.20, the number of elements in the subgroup a generated
by a is ord(a). Therefore, from Theorem 11.19, |S| = ord(a) × k for some integer k,
and so

which completes the proof.

 Theorem 11.21
(Euler) For any integer n > 1, for all [m]n ∈ Z∗

n,

Proof: The proof follows immediately from Theorem 11.17 and Corollary 11.5.

Example 11.43
Consider the group (Z∗20, ×). We have that

and

as the previous theorem implies.

 Theorem 11.22
(Fermat) If p is prime, then for all [m]p ∈ Z∗

p,

www.EBooksWorld.ir

Proof: The proof follows from the previous theorem and the fact that ϕ(p) = p − 1 if
p is prime.

Example 11.44
Consider the group . We have that

as the previous theorem implies.

 11.4 Solving Modular Linear Equations

Next we discuss solving the modular equation

for x, where x is an equivalence class modulo n, and m, n > 0. We will apply this
result in Section 11.7 when we develop the RSA cryptosystem.

Let [m]n be the subgroup generated by [m]n relative to the group (Zn+). Since
[m]n= {[0]n, [m]n, [2m]n,…}, Equation 11.12 has a solution if and only if

Example 11.45
Consider the group (Z8, +). Since

the equation

has a solution if and only if [k]8 is [0]8, [6]8, [4]8, or [2]8. For example, solutions to

are x = [2]8 and x = [6]8.

The following theorem tells us precisely the elements of the set [m]n

 Theorem 11.23

www.EBooksWorld.ir

Consider the group (Zn, +). For any [m]n Zn, we have that

where d = gcd(n, m). This means

Proof: First show [d]n [m]n. Owing to Theorem 11.2, there exists integers i
and j such that

Owing to the previous equality, for any integer k,

which means [kd]n = [kim]n, and therefore [kd]n [m]n, We conclude that [d]n
 [m]n.

Next show [m]n [d]n. Since d|m, there is an integer i such that m = id.
Therefore, for any integer k,

which means [km]n [d]n. We conclude [m]n [d]n.
The final result follows from the results just established and Theorem 11.20.

 Corollary 11.6
The equation

has a solution if and only if d|k, where d = gcd(n, m).
Furthermore, if the equation has a solution, it has d solutions.

Proof: As mentioned at the beginning of this section, the equation has a solution if and
only if

Since Theorem 11.23 implies

this means the equation has a solution if and only d|k′ for some k′ [k]n. Since [k]n is
an equivalence class modulo n and d|n, clearly d|k′ for one k′ [k]n if and only if it
does so for all members of [k]n. This proves the first part of the corollary.

www.EBooksWorld.ir

As to the second part, according to Theorem 11.23, ord([m]n) = n/d. Therefore,
owing to Corollary 11.4, the sequence

has period n/d and the first n/d items are distinct. This means, if [k]n [m]n, that
[k]n appears exactly d times in the set

Clearly, each of these appearances is owing to a different member of Zn. This
completes the proof.

 Corollary 11.7
The equation

has a solution for every equivalence class [k]n if and only if gcd(n, m) = 1
Furthermore, if this is the case, each [k]n has a unique solution.
Proof: The proof follows immediately from Corollary 11.6.

 Corollary 11.8
The equivalence class [m]n has a multiplicative inverse modulo n if and only if
gcd(n, m) = 1. That is, the equation

has a solution if and only if gcd(n, m) = 1. Furthermore, if it has an inverse, that
inverse is unique.
Proof: The proof follows immediately from Corollary 11.6. The uniqueness actually
also follows from Theorem 11.16.

Example 11.46
Consider the group (Z8, +). Since gcd(8, 6) = 2, according to Theorem 11.23,

which agrees with our result in Example 11.45. Owing to Corollary 11.6, the

www.EBooksWorld.ir

equation

has exactly two solutions when [k]8 is any member of [6] 8. In Example 11.45, we
noted the two solutions when [k]8 = [4]8 are x = [2]8 and x = [6]8.

Example 11.47
Consider again the group (Z8, +). Since gcd(8, 5) = 1, according to Theorem 11.23,

According to Corollary 11.7, the equation

has exactly one solution when [k]8 is any member of [5] 8. For example, when [k]8

= [3]8, the solution is x = [7]8.

Example 11.48
Consider Z9. Since gcd(9, 6) = 3, Corollary 11.8 implies [6]9 does not have a
multiplicative inverse modulo 9. Since gcd(9, 5) = 1, Corollary 11.8 implies [5]9

does have a multiplicative inverse modulo 9. That inverse is [2]9.

 Theorem 11.24
Let d = gcd(n, m) and let i and j be integers such that

(We know from Theorem 11.2 that such i and j exist.) Suppose further d|k. Then the
equation

has solution

Proof: Owing to Equality 11.13, we have

www.EBooksWorld.ir

Since is an integer, we can multiply both sides of this equality by , yielding

which means

This proves the theorem.

Example 11.49
Consider the equation

We have gcd(8, 6) = 2,

and 2|4. Therefore, the previous theorem implies the equation

has solution

 Theorem 11.25
Suppose the equation

is solvable, x = [j]n is one solution, and d = gcd(n, m). Then the d distinct solutions
of this equation are

Proof: Owing to Corollary 11.6, there are exactly d solutions. Clearly,

www.EBooksWorld.ir

So the d modulo classes in Expression 11.14 are all distinct. We complete the
theorem by showing each of these classes is a solution to the equation. Since [j]n is a
solution of

Therefore, for l = 0, 1, · · ·, d − 1,

which means is also a solution to the equation.

Example 11.50
In Example 11.49, we showed that one solution of

is [6]8. Since gcd(8, 6) = 2, the previous theorem implies the other solution is

Corollary 11.6, Theorem 11.24, and Theorem 11.25 enable us to write a simple
algorithm for solving modular linear equations. That is, we first employ Corollary
11.6 to see if a solution exists. If one does, we then use Theorem 11.24 to find one
solution and Theorem 11.25 to find the other solutions. The algorithm follows:

 Algorithm 11.3
Solve Modular Linear Equation
Problem: Find all solutions to a modular linear equation
Inputs: positive integers m and n, and integer k.
Outputs: if the equation [m]n x = [k]n is solvable, all solutions to it.

www.EBooksWorld.ir

The input size in Algorithm 11.3 is the number of bits it takes to encode the input,
which is given by

The time complexity includes the time complexity of Algorithm 11.2 (Euclid’s
Algorithm 2), which we already know is O(st), plus the time complexity of the for-l
loop. Since d can be as large as m or n, this time complexity is worst-case
exponential in terms of the input size. However, we can do nothing about this since
the problem requires that we compute and display an exponential number of values in
the worst case.

 11.5 Computing Modular Powers

For an element [m]n Zn and nonnegative integer k, the problem of computing

is called the problem of computing modular powers. Examples 11.43 and 11.44
showed the computation of some modular powers. Another example follows.

Example 11.51
Consider Z20. We have

In Example 11.51 we determined the power simply by taking 7 to the 11th power.
Clearly, this method has exponential time complexity in terms of the input size
(approximately the logarithms of the numbers). Next we develop a more efficient
algorithm.

The algorithm requires we represent k as a binary number. Let

www.EBooksWorld.ir

be the ordered set of binary digits in that representation. For example, since the
binary representation of 13 is 1101, if k = 13,

The algorithm now follows. We say that the algorithm uses the method of repeated
squaring. The reason is obvious.

 Algorithm 11.4
Compute Modular Power
Problem: For an element [m]n Zn and nonnegative integer k, compute ([m]n)k.
Inputs: positive integer n, and nonnegative integers m and k.
Outputs: ([m]n)k.

Next we show an example of applying Algorithm 11.4.

Example 11.52
Suppose

Since the binary representation of 45 is 101101,

Table 11.2 shows the state of a after each iteration of the for-i loop in Algorithm 11.4
given this input. The final value of a, namely [147]257, is the value of ([5]257)45.

In Table 11.2, ki is the value determined by the high-order j − i + 1 bits in the

www.EBooksWorld.ir

binary representation of k. That is,

• Table 11.2 The state of a after each iteration of the for-i loop in Algorithm 11.4 when n = 257, m = 5, and k =
45. The third row shows the value determined by the high-order j − i + 1 bits in the binary representation of k .

For example,

Clearly, k0 = k. We will use these variables to prove the correctness of the algorithm,
which we do next.

 Theorem 11.26
After each iteration of the for-i loop in Algorithm 11.4,

Since k0 = k, this means the final value of a is ([m]n)k.
Proof: The proof is by induction.
Induction base: We assume a minimal binary representation; so the high-order bit bj

equals 1. Therefore,

Before entering the for-i loop, a = [1]n. Since bj equals 1, the if condition is true in
the first iteration, which means the instruction a = a × [m]n executes. Therefore, we
have

after the first iteration.
Induction hypothesis: Suppose after the iteration with index value i that

Induction step: We need to show that, after the iteration with index value (i − 1),

There are two cases: If bi−1 = 0, clearly

www.EBooksWorld.ir

Since the condition in the if statement is false, only the instruction a = a2 changes the
value of a. Since by the induction hypothesis the previous value of a is ([m]n)ki, we
have

after this iteration.
If bi−1 = 1, clearly

Since the condition in the if statement is true, the instruction a = a×[m]n also
executes. So in this case,

after this iteration.

It is straightforward that, if we let s be the number of bits it takes to encode the
input, the time complexity of Algorithm 11.4 is in O(s3).

11.6 Finding Large Prime Numbers
Finding large prime numbers is necessary to the success of the RSA public-key
cryptosystem, which is discussed in Section 11.7. After discussing searching for a
large prime number, we show an algorithm for testing whether a number is prime.

• 11.6.1 Searching for a Large Prime
To find a large prime number, we randomly select integers of the appropriate size and
test whether each selected integer is prime until one is found to be prime. When we
use this method, an important consideration is the likelihood of finding a prime when
an integer is chosen at random.

The prime distribution theorem, which we give next, enables us to approximate
this likelihood.

The prime distribution function π(n) is the number of primes that are less than or
equal to n. For example, π(12) = 5 since there are five primes, namely 2, 3, 5, 7, and
11, that are less than or equal to 12. The prime number theorem shown in Theorem
11.27, gives an approximation of π(n).

www.EBooksWorld.ir

 Theorem 11.27
We have that

Proof: The proof can be found in Hardy and Wright (1960).

Owing to the previous theorem, for large values of n we can use n/ ln n as an
estimate of the number of primes less than or equal to n. Therefore, if we randomly
choose an integer between 1 and n according to the uniform distribution, the
probability of it being prime is about

Example 11.53
If we randomly choose an integer between 1 and n = 1016 according to the uniform
distribution, the probability of it being prime is about

Suppose we choose 200 such numbers at random. The probability of them all not
being prime is then about

Example 11.54
If we randomly choose an integer between 1 and n = 10100 according to the uniform
distribution, the probability of it being prime is about

Suppose we choose 200 such numbers at random. The probability of them all not
being prime is then about

As noted at the beginning of this section, to find a large prime number we

www.EBooksWorld.ir

randomly select numbers in the appropriate range, and we then check them for being
prime until one is found to be prime. We see from the previous examples that it
should not take very long (relative to the size of the numbers in the range) to find a
prime. Next we discuss how we check whether a number is prime.

 • 11.6.2 Checking if a Number Is Prime
At the beginning of Section 9.2 we showed a straightforward algorithm for
determining if a number is prime. However, as discussed in that section, the
algorithm has exponential-time complexity in the worst case. So it cannot be used to
check large numbers. Note that this inefficient algorithm finds a factor of the number
if it is composite. So the algorithm can be used (repeatedly) to factor a number.

Until recently no one had ever found a polynomial-time algorithm for the prime-
checking problem, and many thought it to be NP-complete. The standard efficient
algorithm for prime-checking was a Monte Carlo algorithm called the Miller-Rabin
Randomized Primality Test, which appeared in Rabin (1980). If a number is prime,
then this algorithm says the number is always prime. However, very rarely, the
algorithm will declare a composite number to be prime. This happens so rarely, that
the algorithm could essentially be counted upon for accuracy. The Miller-Rabin
algorithm does not find a factor of the number if it determines the number is
composite. So it cannot be used for factoring.

Finally, in 2002, Agrawal et al. succeeded in developing a polynomial-time
algorithm for the prime-checking problem. That algorithm is described here.

A Polynomial-Time Algorithm
First we need further results from number theory.

Definition
Let f(x) and g(x) be polynomials with integral coefficients. If the coefficients of
each power of x are congruent modulo n, we say that f(x) and g(x) are congruent
modulo n, and we write

Example 11.55
We have

www.EBooksWorld.ir

because

Example 11.56
We have

because

Missing powers are assumed to have coefficient 0.

Example 11.57
We have

because

Example 11.58
We have

because

www.EBooksWorld.ir

This last example illustrates something interesting. Owing to Theorem 11.22, for
all integers x,

but yet the polynomials x5 and x are not congruent modulo 5.

Next we show a theorem that gives a straightforward way to determine whether a
number is prime. But first we need a lemma.

 Lemma 11.2
If n is prime then for all integers m,

Proof: We have that

Therefore,

Since n is prime, clearly for 1 < i ≤ n − 1,

Therefore, for each i the coefficient of xi in Equality 11.15 is congruent to 0 modulo
n. So we only need to show

If n = 2

The last step is owing to the fact that either m or m + 1 is even. If n > 2, then n is odd
and therefore

www.EBooksWorld.ir

Now if m is a multiple of n, then m ≡ 0 mod n. Otherwise, owing to Theorem 11.22,
(−mn−1 + 1) ≡ 0 mod n. This completes the proof.

 Theorem 11.28
Suppose m and n are relatively prime. Then n is prime if and only if

Proof: Owing to Lemma 11.2, the congruence is satisfied if n is prime.

In the other direction, suppose n is composite. Let q be a factor of n and let k be
the order of q in n. It is left as an exercise to show Since n is relatively
prime to m, clearly qk is relatively prime to (−m)n−q. Therefore, does
not contain qk as a factor, which means it is not congruent to 0 modulo n. However,
this expression is one of the coefficients in Equality 11.15. This completes the proof.

Example 11.59
The numbers 9 and 2 are relatively prime. As Theorem 11.28 implies,

since

Example 11.60
The numbers 9 and 4 are relatively prime and 4 is not prime. Theorem 11.28 implies

It is left as an exercise to expand the exponent and illustrate this result.

Theorem 11.28 yields a straightforward algorithm for determining if a number is
prime. That is, given an integer n, we choose an integer m relatively prime to n and

www.EBooksWorld.ir

determine whether Congruence 11.16 is satisfied. However, since we need to
evaluate n + 1 coefficients in the left-hand side of Congruence 11.16, this algorithm
has exponential time complexity. We do a ‘trick’ to improve on this. However, first
we need more definitions.

As is the case for integers, the mod function returns the remainder when one
polynomial is divided by the other. That is,

is the polynomial that is the remainder when f(x) is divided by g(x). The following
example illustrates this idea.

Example 11.61
Since

then

Now suppose f(x), g(x), and h(x) are polynomials with integral coefficients. If

we write

Example 11.62
We have that

and

So

www.EBooksWorld.ir

Example 11.63
We have that

and

So

Example 11.64
We have that

and

So

The previous examples illustrate the truth of the following theorem:

 Theorem 11.29
Suppose n and r are prime. Then for all integers m,

Proof: The proof follows from Lemma 11.2 and is left as an exercise.

If the previous theorem said that n is prime if and only if Congruence 11.17 were
satisfied, we would immediately be able to improve on using Congruence 11.16 to

www.EBooksWorld.ir

test whether a number was prime. That is, the computation of (xn − m) mod(xr − 1) is
trivial, and Knuth (1998) develops an algorithm for computing (x − m)n mod (xr − 1),
which uses fast Fourier multiplication and whose time complexity is in .
So, if Theorem 11.29 were ‘if and only if’ and r were small, we could fairly quickly
replace the determination of Congruence 11.16 to that of a congruence involving far
fewer coefficients. The following example illustrates this.

 Example 11.65
Suppose we want to determine whether 11 is prime and Theorem 11.29 is ‘if and
only if.’ Choose m = 4 and r = 3. We have

and

We now check whether

instead of checking whether

So we have reduced the problem of testing for 12 congruencies to that of testing for
three.

The problem in this procedure is that Theorem 11.29 is not ‘if and only if’ even if
we choose m relatively prime to n. That is, some composites will satisfy Congruence
11.17 for certain values of m and r, where m is relatively prime to n. So if we simply
check whether the congruence is satisfied for particular values, a composite may pass
the test. We solve this problem by choosing an appropriate r and checking for several
values of m. In this way, no composites will be found to be prime, and we still have a
polynomial-time algorithm. After presenting the algorithm, we obtain these results.
Before we do this, we need some additional notation.

Recall that the order of group element a, denoted ord(a), is the least positive
integer t such that at = e, where e is the identity element. Given the group

 is then the least positive integer t such that ([n]r)t = [1]r. That is, it
is the least positive integer such that

www.EBooksWorld.ir

We call this the order of n modulo r and we denote it as ordr(n).

 Algorithm 11.5
Polynomial Determine Prime
Problem: Determine whether an integer is prime.
Inputs: an integer n > 1.
Outputs: if n is prime, true; if n is composite, false.

Correctness of the Algorithm
Next we prove the algorithm is correct. First we prove the algorithm always
determines that a prime is prime.

 Theorem 11.30

www.EBooksWorld.ir

If a prime number is the input to Algorithm 11.5, the algorithm returns true.
Proof: If n is prime, then for all r < n,

which means false cannot be returned in the first while loop. Since n and r are prime,
owing to Theorem 11.29, false cannot be returned in the second
while loop. We conclude the algorithm exits with the last instruction, and that
instruction returns true.

It is more difficult to prove the algorithm always determines a composite number
to be composite. We do that next. First we need the following two lemmas, which
generalize Lemma 11.2 and Theorem 11.29.

 Lemma 11.3
Suppose g(x) is a polynomial with integer coefficients and n is prime. Then

Proof: Let

Then

Furthermore, the coefficient of xi in [g(x)]n is

Case 1: i ≠ jn for any j. Then, as can be seen from Equality 11.18, the coefficient of
xi in g(xn) is 0. Furthermore, as can be seen from Equality 11.19, ij ≠ n for all j in all
of the terms that comprise bi. However, then n divides each term, which means n|bi,
and bi ≡ 0 mod n. This proves this case.
Case 2: i = jn for some j where 0 ≤ j ≤ d. Then, as can be seen from Equality 11.18,
the coefficient of xi in g(xn) is aj. Furthermore, if we take ij = n, we have jij = jn = i.
Therefore, as can be seen from Equality 11.19, one of the terms in bi is

For each of the other terms in bi, clearly we will have ik ≠ n for every k, which means
n divides the term, and the term is congruent to 0 modulo n. This case now follows
from the fact that Theorem 11.22 says

www.EBooksWorld.ir

This completes the proof.

 Lemma 11.4
Suppose g(x) is a polynomial with integer coefficients, and n and r are prime. Then

Proof: The proof follows from the previous lemma and is left as an exercise.

We also need the following lemmas:

 Lemma 11.5
If r and q are prime, q divides r − 1, and q ≥ 4√rlg n, then q|ordr(n) if and only if

Proof: If we let t = ordr(n), then, owing to the fact that r is prime, Theorem 11.17,
and Theorem 11.19, there exists an integer k such that r − 1 = tk. Since q divides r −
1 and q is prime, Corollary 11.2 implies q|t or q|k. Now we prove the ‘if and only
if’:

Suppose and by way of contradiction, suppose q. Since q|t or q|k, this
means q|k. Therefore, since r − 1 = tk, there exists an integer j such that r − 1 = tjq,
which means (r − 1) /q = tj. However, then we have which means

This contradiction proves q|t.
In the other direction, suppose q divides t. Since q ≥ 4√rlgn,

Since t = ordr(n), this means

which completes the proof.

www.EBooksWorld.ir

 Lemma 11.6
If n is composite, q is prime, and q divides q|ordr(n), then there is a prime factor p of
n such that

Proof: Let p1, p2,…, pk be the prime factors of n. It is left as an exercise to show

where lcm is the least common multiple. Since q|ordr(n) and q is prime, Theorem
11.7 implies there is some pi such that q|ordr(pi). This completes the proof.

Our proof of the next theorem relies heavily on the following lemma. The proof of
this lemma requires algebra that is beyond the scope of this text. For the reader
familiar with abstract algebra, we present the results that prove this lemma at the end
of this section. Now we merely state it.

 Lemma 11.7
Suppose the second while loop in Algorithm 11.5 is exited because switch is true. If
p is as in Lemma 11.6, and we let l = 2√rlg n , then there is a polynomial

with the following property: If we let

then
1. Jg(x) is closed under multiplication.
2. There is an integer such that for

then

Proof: See the end of this section.

We can now prove our main result.

 Theorem 11.31

www.EBooksWorld.ir

If a composite number is the input to Algorithm 11.5, the algorithm returns false.
Proof: If the number is composite and the first while loop is abruptly ended owing to
the return statement in it, false is returned and we are done. If the first while loop is
exited because r = n − 1, then n must be prime. So we will assume a composite is
entered and the first while loop is exited because switch is true. Then, owing to
Lemma 11.5, q divides ordr(n). Suppose by way of contradiction that the algorithm
returns true. Then, owing to the second while loop, for 1 ≤ m ≤ l = 2√rlg n ,

which means

where p is as in Lemma 11.6. Therefore, each term (x−m) in g(x) in Lemma 11.7
individually satisfies Congruence 11.20, which means

Therefore, n Jg(x) where Jg(x) is as defined in Lemma 11.7. Furthermore, p Jg(x)

owing to Lemma 11.4, and trivially 1 Jg(x).
Now consider the set

Owing to Part 1 of Lemma 11.7, E ∈ Jg(x). Furthermore,

Therefore, by the pigeonhole principle, there are two elements nip j and nhpk in E
with i ≠ h or j ≠ k such that

So, owing to Part 2 of Lemma 11.7, we have

where a is as in that lemma. Since p|n, n is composite, and i, j ≤ √r ,

Similarly, since h, k ≤ √r ,

However, since a > n2√r/2, Congruence 11.21 therefore implies

www.EBooksWorld.ir

Since p|n and either i ≠ h or j ≠ k, this last equality implies for some integer s ≥ 1
that

However, in the first step of the algorithm we checked whether n is of the form ps for
s ≥ 2. Therefore, s = 1 and n is prime. This contradiction proves the theorem.

Time Complexity of the Algorithm
Next we discuss the time complexity of Algorithm 11.5. First we need some lemmas
and a theorem.

 Lemma 11.8
Let qm be the largest prime factor of m. Then there exists a positive constant c and
integer N such that for n > N

Proof: The proof can be found in Baker and Harman (1996).

 Lemma 11.9
Let π(m) be the number of primes less than or equal to m. Then for m ≥ 1,

Proof: The proof can be found in Apostol (1997).

 Lemma 11.10
Given positive integers m and n, the product

has at most m2 lg n prime factors.
Proof: Each term has at most m lg n prime factors, and there are m terms.

 Theorem 11.32

www.EBooksWorld.ir

There exists positive constants c1 and c2 and integer N such that for every n > N there
is a prime r in the interval

such that the largest prime factor q of r − 1 satisfies

Proof: For the moment, let c1 and c2 be arbitrary positive integers. Owing to Lemma
11.8. there exists a positive constant c and integer N such that for c2 (lg n)6 > N,

It is left as an exercise to show that Equality 11.22 implies

If we let m = c1 (lg n)6 in Lemma 11.9, we obtain, after some manipulations, that the
number of primes less than or equal to c1 (lg n)6 is no greater than

Combining Inequalities 11.22 and 11.23, we obtain that the number of primes p in the
interval

satisfying

is greater than or equal to

Call such primes special primes. Recall that c1 and c2 were arbitrary positive
integers. Now choose c1 ≥ 46. We then have, for any special prime p,

www.EBooksWorld.ir

The first inequality is owing to Inequalities 11.24 and 11.25, and the second is owing
to Inequality 11.25.

Now choose c2 so that . We then have for n > N that the
number of special primes is greater than or equal to

Now let x = c2 (lg n)6. Then

Owing to Lemma 11.10, the product

has at most x2/3 lg n prime factors. Therefore, due to Inequalities 11.27 and 11.28,
there is at least one special prime r that does not divide .

We will show that r satisfies the conditions of the theorem. Clearly, r satisfies the
first two conditions owing to Inequalities 11.24 and 11.26. So if we let q = qr−1, we
need only show

To that end, suppose

Then Therefore, since r does not divide , we only need to show

to obtain a contradiction. Since Inequality 11.25 says , we only need
to show

www.EBooksWorld.ir

However, this last inequality does hold, due to Inequality 11.24. This contradiction
completes the proof.

Analysis of Algorithm 11.5
 Worst-Case Time Complexity (Polynomial Determine Prime)

Basic operation: one-bit manipulation.
Input size: the number of bits s it takes to encode n, which is given by

To determine whether n is of the form kj, the number of roots checked is in O(s). That
is, we need to check n1/2, n1/3,…, n1/m, where m = lg n . Using the brute-force
technique discussed in Section 2.6, the time complexity of checking each root is in
O(s2). Therefore, the total time complexity of this determination is in

Owing to Theorem 11.32, the number of passes through the first while loop is in
O(s6). Let’s discuss the work done in each pass. Since r < n, if we use Algorithm
11.1, the time complexity of the computation of the gcd(n, r) is in O(s2). Suppose we
use the algorithm presented at the beginning of Section 9.2 to determine if r is prime
and to find the largest prime factor of r − 1. There are at most r1/2 passes through the
while loop in that algorithm, and, using the brute-force technique discussed in Section
2.6, the time complexity of the computation of the remainder in each pass is in O(s2).
Therefore, the total time complexity is in O(r1/2s2), which means, owing to Theorem
11.32, that time complexity is in O(s3s2) = O(s5). Again using the techniques in
Section 2.6, the time complexity of incrementing r and of checking the exit condition
in the first while loop is in O(s2). Therefore, the total time complexity of the first
while loop is in

Since r < c(lg n)6, it is possible to obtain a tighter bound than the one just developed.
However, as we shall see, the second while loop dominates our final bound anyway.

The number of passes through the second while loop is in O(r1/2s), which means,
owing to Theorem 11.32, that the number of passes is in O(s3s) = O(s4). As we
mentioned following Theorem 11.29, the time complexity of the congruence
determination in that loop is in O(rs2) if we use Fast Fourier multiplication, which
means, again owing to Theorem 11.32, that time complexity is in O(s6s2) = O(s8).
Therefore, the total time complexity of the second while loop is in

www.EBooksWorld.ir

We conclude that

Agrawal et al. (2002) note that in practice Algorithm 11.5 might be much faster
than the bound just obtained. Indeed, they prove that, if a conjecture they make is true,
a heuristic time complexity for the algorithm is in O(s6).

 Results that Prove Lemma 11.7
Next we state the lemmas that prove Lemma 11.7. The section requires knowledge of
abstract algebra. First we explain our notation. Given a ring R, we denote the
corresponding polynomial ring by R[x]. For example, the polynomial ring
corresponding to Zn is denoted by Zn[x]. Given a ring R and an ideal L in R, the
factor ring consisting of the forms {r + l: l L} is denoted R/L. Furthermore, if r R,
and L is the ideal consisting of all multiples of r, we denote R/L by R/r. For example,
Zn could be denoted by Z/n. As another example, given a polynomial ring R(x) and
polynomial f(x) R(x), the factor ring determined by the ideal consisting of all
multiples of f(x) is denoted R(x)/f(x). Given a prime p, we will be interested in the
ring (actually field) Zp, the polynomial ring Zp[x], and the factor ring Zp[x]/h(x).

We have the following lemmas, which we state without proof. The proofs use
standard algebraic manipulations, can be developed in sequence, and can be found in
Agrawal et al. (2002).

 Lemma 11.11
Let p and r be prime with p ≠ r.

1. If h(x) is a factor of xr − 1, and m ≡ k mod r, then

2. If we let ordr(p) be the order of p modulo r, then (xr − 1)/(x − 1) factors into
polynomials, which are irreducible over Zp and which have degree ordr(p).

Suppose the second while loop in Algorithm 11.5 is exited because switch is true,
p is as in Lemma 11.6, and we let l = 2√r lg n . Owing to Part 2 of the preceding
lemma, there is a polynomial h(x), which is a factor of xr − 1, is irreducible over Zp,
and has degree ordr(p). The following lemmas all assume the second while loop in
Algorithm 11.5 is exited because switch is true, p is as in Lemma 11.6, h(x) is the
polynomial just described, and l = 2√r lg n .

www.EBooksWorld.ir

 Lemma 11.12
In Zp[x]/h(x), let G be the group generated by the l binomials

That is,

Then G is cyclic and

where |G| is the number of elements in G.

 Lemma 11.13
Let G be the group in the previous lemma, g(x) be a generator of G, and ag be the
order of g(x) in Zp[x]/h(x). Then

Proof: Since l = 2√r lg n and q ≥ 4√r lgn, we have q ≥ 2l. Since Lemma 11.6 says
q|ordr(p), this means ordr(p) ≥ 2l. Owing to the previous lemma, we then have

The proof now follows from the fact that g(x) is a generator of G.

 Lemma 11.14
Let g(x) be as in the previous lemma. Then the set

is closed under multiplication.

www.EBooksWorld.ir

 Lemma 11.15
Let g(x), ag, and Jg(x) be as in the previous lemmas. Then for all m, k Jg(x), if

then

It is straightforward that Lemma 11.7 follows from the preceding lemmas if we let
a = ag.

11.7 The RSA Public-Key Cryptosystem
Recall the situation discussed at the beginning of this chapter concerning Bob
wanting to send Alice a secret love note over the Internet. We noted that if he could
encode the message so that it appears as gibberish and only Alice could decode the
gibberish back to the original message, he would not need to fear his friends
intercepting the message. Public-key cryptosystems enable Bob to do this. After
describing such systems, we present the RSA public-key cryptosystem.

• 11.7.1 Public-Key Cryptosystems
A public-key cryptosystem consists of a set of permissible messages, a set of
participants such that each participant has a public key and a secret key, and a
network for sending messages among the participants. The set of permissible
messages might include all character sequences of some given length or less. If we
let

then each participant x’s public key pkeyx and secret key skeyx determine functions
pubx and secx, respectively, from M to M, which are inverses of each other. That is,
for each b M

Now the public keys of all participants are known to all the participants, but the
secret key of x is known only to x. So, for example, if Bob wants to send Alice a
secret love note b, he and Alice do the following:

1. Bob computes c = pubAlice(b) using Alice’s public key, pkeyAlice. The message c

www.EBooksWorld.ir

is called ciphertext. It is unreadable.
2. Bob sends ciphertext c to Alice.
3. Alice computes b = secAlice(c) using her secret key skeyAlice.

Example 11.66
Suppose Bob wants to send Alice the message ‘I love you.’ The steps are as follows:

1. Bob computes

Suppose the result is ‘@!##% * (!’.
2. Bob sends this message to Alice. Bob’s friends see ‘@!##% * (!’.
3. Alice computes

The application of pubAlice in Step 1 is called encryption, while the application of
secAlice in Step 3 is called decryption. These steps are illustrated in Figure 11.1.
Note that since only Alice knows secAlice, only she can decode the ciphertext c back
to the original message b. So Bob’s friends see only the ciphertext.

This method will work as long as it is not possible (or at least it is very difficult)
to determine skeyx from pkeyx. Next we show a system that makes it very difficult to
do so.
Figure 11.1 Bob encrypts his message b using Alice’s public key, and Alice decrypts it using her secret key.
Bob’s friends see only the ciphertext c.

• 11.7.2 The RSA Cryptosystem
The RSA cryptosystem relies on the facts that we can find large primes fairly readily,
but we have no efficient method for factoring a large number. After presenting the
method, we discuss these facts further.

The System
In the RSA public-key cryptosystem, each participant creates his public key and

www.EBooksWorld.ir

secret key according to the following steps:
1. Select two very large prime numbers, p and q. The number of bits needed to

represent p and q might be 1024.
2. Compute

The formula for ϕ(n) is owing to Theorem 11.17.
3. Select a small prime number g that is relatively prime to ϕ(n).
4. Using Algorithm 11.3, compute the multiplicative inverse [h]ϕ(n) of [g]ϕ(n). That is,

Owing to Corollary 11.8, this inverse exists and is unique.
5. Let pkey = (n, g) by the public key, and skey = (n, h) be the secret key.

The set of permissible messages is Zn. The function corresponding to the public key
pkey = (n, g) is

where b Zn, and the function corresponding to the secret key skey = (n, h) is

The values of these functions can be computed using Algorithm 11.5.
For this system to be correct, the functions corresponding to the public and secret

keys must be inverses of each other. Next we prove this is the case.

 Theorem 11.33

The functions in Equalities 11.29 and 11.30 are inverses of each other.
Proof: Owing to Equalities 11.29 and 11.30, for any b Zn

So we need to show only that

To that end, let m b. (Recall b Zn.) Then mgh bgh. We will show

Since g and h are multiplicative inverses modulo ϕ(n) = (p − 1)(q − 1),

www.EBooksWorld.ir

which means there is an integer k such that

There are two cases.
Case 1: Assume [m]p ≠ [0]p. We then have

The third equality above is due to Theorem 11.22.
Case 2: If [m]p = [0]p,

So we’ve established Equality 11.31. Similarly,

Owing to Equalities 11.31 and 11.32,

and

Due to Theorem 11.13, we therefore have

which means

This completes the proof.

 Discussion
As mentioned previously, the success of the RSA cryptosystem relies on the facts that
we can find large primes fairly readily, but we have no efficient method for factoring
a large number. That is, we can find a large prime as follows. First, we randomly
choose integers of the appropriate size. As discussed at the beginning of Section
11.6.1, it should not take very long even to find a fairly large prime. For each integer

www.EBooksWorld.ir

chosen, we can then use Algorithm 11.5, which is polynomial-time, to check whether
the number is prime. We do this until we find two large primes. As discussed in
Section 11.6.2, even before Algorithm 11.5 was developed, the Miller-Rabin
Randomized Primality Test was used to efficiently check with a very low error rate
whether a number was prime. Indeed, the Miller-Rabin Randomized Primality Test
may still be the algorithm of choice for prime checking since its time complexity is in
O(es3), where s is the number of bits it takes to encode the input, and e is an integer
chosen such that the probability the algorithm makes an error is no greater than 2−e.
So if we choose e to be only 40, the probability of an error is no greater than 2−40 = 9.
094 9 × 10−13.

On the other hand, no one has ever found a polynomial-time algorithm for factoring
a number. The possibility exists that one could find the value of h in the secret key
skey = (n, h) without factoring n. However, no one has found an efficient way to do
this either. Currently we can achieve security with the RSA cryptosystem if integers
containing around 1024 or more bits are used.

EXERCISES

Section 11.1
1. Find the positive divisors of the following integers.

(a) 72
(b) 31
(c) 123

2. Prove that if h|m and m|n, then h|n.
3. Show that two integers divide each other if and only if they are equal.
4. Let p and q be two prime numbers. If p = q + 2, then p and q are called “twin

prime numbers.” Find two pairs of twin prime numbers.
5. Prove that gcd(n, m) = gcd(m, n).
6. Prove that if m and n are both even, then gcd (m, n) = 2 gcd (m/2, n/2).
7. Prove that if n ≥ m > 0, then gcd (m, n) = gcd (m, n − m).
8. Prove that if p is a prime number and 0 < h < p, then gcd(p, h) = 1.
9. Use Corollary 11.2 to show that the prime factorization of an integer, as

discussed in Theorem 11.5, is unique.
10. Write each of the following integers as a product of prime numbers.

(a) 123
(b) 375

www.EBooksWorld.ir

(c) 927
11. Prove Theorem 11.6.
12. Prove Theorem 11.7.
13. Prove that for positive integers m and n, gcd(m, n) = lcm(m, n) iff m = n.

Section 11.2
14. Illustrate the flow of Algorithm 11.1 when the top-level call is gcd (68, 40).
15. Write an iterative version of Algorithm 11.1. Your algorithm should only use a

constant amount of memory [i.e., the space complexity function is in θ(1)].
16. Write an algorithm that uses Algorithm 11.1 to express a rational number in its

lowest terms. You may assume that this rational number is given in the form of a
fraction m/n where m and n are integers.

17. Illustrate the flow of Algorithm 11.2 when the top-level call is Euclid
(64,40,gcd,i,j).

18. Write an algorithm that uses subtraction to compute the greatest common divisor.
(See Exercise 7.) Analyze your algorithm.

Section 11.3
19. Show that (S, *) of Example 11.21 is a group.
20. Prove Theorem 11.12.
21. The following was left as an exercise in the proof of Theorem 11.13. Show that

there exists an integer c such that h1 = cn2n3 · · · nj.
22. Prove Theorem 11.14.
23. Show that if s [m]n and t [k]n, then s × t [m × k]n.
24. Show that if G=(S, *) is a finite group and a S, then there exists integers k,m ≥ 1

such that ak = akam.
25. Show that if S={[0]12,[3]12,[6]12,[9]12}, then (S,+) is a subgroup of (Z12,+).
26. Use Theorem 11.19 to prove Corollary 11.3.

27. Consider the group . Show that .

Section 11.4
28. Solve the following modular equations.

(a) [8]10 x = [4]10 (b) [4]17 x ≡ [5]17

29. Implement Algorithm 11.3 and run it on various problem instances.

www.EBooksWorld.ir

30. Find all solutions to the equations [1]7 x = [3]7 and [12]9 x = [6]9.

Section 11.5
31. Compute ([3]73)12 by raising 3 to the 12th power.
32. Compute ([7]73)15 by raising 7 to the 15th power.
33. Use Algorithm 11.4 to compute ([3]73)12.
34. Use Algorithm 11.4 to compute ([7]73)15.
35. Implement Algorithm 11.4, and run it on various problem instances.

Section 11.6
36. Find the number of prime numbers that are less than or equal to 100.
37. If an integer between 1 and 10,000 is randomly chosen according to the uniform

distribution, approximately what is the probability of it being prime?
38. Suppose we randomly choose 100 numbers between 1 and 10,000 according to

the uniform distribution. Approximately, what is the probability of all of them
not being prime?

39. Show that if n is prime and 1 < k ≤ n − 1, then B(n,k) ≡ 0 mod n, where B(n,k)
denotes the binomial coefficient.

40. Show that if q is a factor of n and k is the order of q in n, then qk where B(n,q)
denotes the binomial coefficient.

41. Are 9x3 + 2x and x2− 4 congruent modulo 2?
42. Show that (x − 9)4 is not congruent to (x4 − 9) modulo 4.
43. Show that (x − 5)3 is congruent to (x3 − 5) modulo 3.

44. Prove Theorem 11.29.
45. Implement Algorithm 11.5 and run it on different problem instances.
46. Use Lemma 11.3 to prove Lemma 11.4.
47. The following was left as an exercise in the proof of Lemma 11.6. Show

ordr(n)|lcm(ordr(p1), ordr(p2),…,ordr(pk)).
48. Use Inequality 11.22 to obtain the inequality that follows it.

Section 11.7
49. What is the difference between a public key and a secret key?
50. Consider an RSA cryptosystem using p = 7, q = 11 and g = 13.

(a) Compute n.

www.EBooksWorld.ir

(b) Compute ϕ.
(c) Find h.

51. Consider an RSA cryptosystem using p = 23, q = 41 and g = 3. Encipher the
message [847]943.

52. Use the RSA cryptosystem of Exercise 51 to decrypt the encrypted message found
in that exercise.

53. In an RSA cryptosystem, show that if ϕ(n) can be discovered, then the
cryptosystem may be compromised.

Additional Exercises
54. Prove that there are infinitely many prime numbers.
55. Show that the gcd operator is associative. That is, for all integers m, n, and h, we

have gcd (m, gcd(n, h)) = gcd (gcd(m, n),h).
56. Prove that if m is odd and n is even, then gcd (m, n) = gcd (m, n/2).
57. Prove that if m and n are both odd, then gcd (m, n) = gcd ((m − n)/2, n). 58. Find

the necessary condition to have equation mx ≡ my mod n imply x ≡ y mod n.
59. Assuming that p is a prime number, find the solutions of the equation x2 = [1]p.
60. In an RSA cryptosystem, let p and q be the large primes, let n = pq, and let pub

be the public key. Show that pub(a)pub(b) is congruent to pub(ab) modulo n.

www.EBooksWorld.ir

Chapter 12

Introduction to Parallel Algorithms

Suppose you want to build a fence in your backyard and it’s necessary to dig 10 deep
holes, one for each fence post. Realizing that it would be a laborious and unpleasant
task to individually dig the 10 holes in sequence, you look for some alternative. You
remember how Mark Twain’s famous character Tom Sawyer tricked his friends into
helping him whitewash a fence by pretending it was fun. You decide to use the same
clever ruse, but you update it a bit. You pass out flyers to your health-conscious
neighbors announcing a hole-digging contest in your backyard. Whoever is most fit
should be able to dig a hole fastest and therefore win the contest. You offer some
insignificant first prize, such as a six-pack of beer, knowing that the prize is not really
important to your neighbors. Rather, they just want to prove how fit they are. On
contest day, 10 strong neighbors simultaneously dig 10 holes. This is called digging
the holes in parallel. You have saved yourself a lot of work and completed the hole
digging much faster than you would have done by digging them in sequence by
yourself.

Just as you can complete the hole-digging job faster by having friends work in
parallel, often a computer can complete a job faster if it has many processors
executing instructions in parallel. (A processor in a computer is a hardware
component that processes instructions and data.) So far we have discussed only
sequential processing. That is, all of the algorithms we’ve presented have been
designed to be implemented on a traditional sequential computer. Such a computer
has one processor executing instructions in sequence, similar to your digging the 10
holes in sequence by yourself. These computers are based on the model introduced
by John von Neumann. As Figure 12.1 illustrates, this model consists of a single
processor, called the central processing unit (CPU), and memory. The model takes a
single sequence of instructions and operates on a single sequence of data. Such a
computer is called a single instruction stream, single data stream (SISD) computer,

www.EBooksWorld.ir

and is popularly known as a serial computer.
Many problems could be solved much faster if a computer had many processors

executing instructions simultaneously (in parallel). This would be like having your 10
neighbors dig the 10 holes at the same time. For example, consider the Bayesian
network introduced in Section 6.3. Figure 12.2 shows such a network. Each vertex in
that network represents a possible condition of a patient. There is an edge from one
vertex to another if having the condition at the first vertex could cause one to have the
condition at the second vertex. For example, the top-right vertex represents the
condition of being a smoker, and the edge emanating from that vertex means that
smoking can cause lung cancer. A given cause does not always result in its potential
effects. Therefore, the probability of each effect given each of its causes also needs
to be stored in the network. For example, the probability (0.5) of being a smoker is
stored at the vertex containing “Smoker.” The probability (0.1) of having lung cancer,
given that one is a smoker, and the probability (0.01) of having lung cancer, given that
one is not a smoker, are stored at the vertex containing “Lung cancer.” The
probability (0.99) of having a positive chest x-ray, given that one has both
tuberculosis and lung cancer, along with the probabilities of having a positive chest
x-ray, given the other three combinations of values of its causes, are stored at the
vertex containing “Positive chest x-ray.” The basic inference problem in a Bayesian
network is to determine the probability of having the conditions at all remaining
vertices when it is learned that the conditions at certain vertices are present. For
example, if a patient was known to be a smoker and to have had a positive chest x-
ray, we might want to know the probabilities that the patient had lung cancer, had
tuberculosis, had shortness of breath, and had recently visited Asia. Pearl (1986)
developed an inference algorithm for solving this problem. In this algorithm, each
vertex sends messages to its parents and children. For example, when it is learned
that the patient has a positive chest x-ray, the vertex for “Positive chest x-ray” sends
messages to its parents “Tuberculosis” and “Lung cancer.” When each of these
vertices receives its message, the probability of the condition at the vertex is
computed, and the vertex then sends messages to its parents and other children. When
these vertices receive messages, the new probabilities of the conditions at the
vertices are computed, and the vertices then send messages. The message-passing
scheme terminates at roots and leaves. When it is learned that the patient is also a
smoker, another message stream begins at that vertex. A traditional sequential
computer can compute the value of only one message or one probability at a time.
The value of the message to “Tuberculosis” could be computed first, then the new
probability of tuberculosis, then the value of the message to “Lung cancer,” then its
probability, and so on.
Figure 12.1 A traditional serial computer.

www.EBooksWorld.ir

Figure 12.2 A Bayesian network.

If each vertex had its own processor that was capable of sending messages to the
processors at the other vertices, when it is learned that the patient has a positive
chest x-ray, we could first compute and send the messages to “Tuberculosis” and
“Lung cancer.” When each of these vertices received its message, it could
independently compute and send messages to its parents and other children.
Furthermore, if we also know that the patient was a smoker, the vertex containing
“Smoker” could simultaneously be computing and sending a message to its child.
Clearly, if all this were taking place simultaneously, the inference could be done
much more quickly. A Bayesian network used in actual applications often contains
hundreds of vertices, and the inferred probabilities are needed immediately. This
means that the time savings could be quite significant.

What we have just described is an architecture for a particular kind of parallel
computer. Such computers are called “parallel” because each processor can execute
instructions simultaneously (in parallel) with all the other processors. The cost of
processors has decreased dramatically over the past three decades. Currently, the
speed of an off-the-shelf microprocessor is within one order of magnitude of the
speed of the fastest serial computer. However, microprocessors cost many orders of
magnitude less. Therefore, by connecting microprocessors as described in the
previous paragraph, it is possible to obtain computing power faster than the fastest
serial computer for substantially less money. There are many applications that can
benefit significantly from parallel computation. Applications in artificial intelligence

www.EBooksWorld.ir

include the Bayesian Network problem described previously, inference in neural
networks, natural language understanding, speech recognition, and machine vision.
Other applications include database query processing, weather prediction, pollution
monitoring, analysis of protein structures, and many more.

There are many ways to design parallel computers. Section 12.1 discusses some of
the considerations necessary in parallel design and some of the most popular parallel
architectures. Section 12.2 shows how to write algorithms for one particular kind of
parallel computer, called a PRAM (for “parallel random access machine”). As we
shall see, this particular kind of computer is not very practical. However, the PRAM
model is a straightforward generalization of the sequential model of computation.
Furthermore, a PRAM algorithm can be translated into algorithms for many practical
machines. So PRAM algorithms serve as a good introduction to parallel algorithms.

12.1 Parallel Architectures
The construction of parallel computers can vary in each of the following three ways:

1. Control mechanism
2. Address-space organization
3. Interconnection network

• 12.1.1 Control Mechanism
Each processor in a parallel computer can operate either under the control of a
centralized control unit or independently under the control of its own control unit.
The first kind of architecture is called single instruction stream, multiple data
stream (SIMD). Figure 12.3(a) illustrates an SIMD architecture. The interconnection
network depicted in the figure represents the hardware that enables the processors to
communicate with each other. Interconnection networks are discussed in Section
12.1.3. In an SIMD architecture, the same instruction is executed synchronously by
all processing units under the control of the central control unit. Not all processors
must execute an instruction in each cycle; any given processor can be switched off in
any given cycle.

Parallel computers, in which each processor has its own control unit, are called
multiple instruction stream, multiple data stream (MIMD) computers. Figure
12.3(b) illustrates an MIMD architecture. MIMD computers store both the operating
system and the program at each processor.

SMID computers are suited for programs in which the same set of instructions is
executed on different elements of a data set. Such programs are called data parallel
programs. A drawback of SIMD computers is that they cannot execute different

www.EBooksWorld.ir

instructions in the same cycle. For example, suppose the following conditional
statement is being executed:

Figure 12.3 (a) A single instruction stream, multiple data stream (SIMD) architecture. (b) A multiple instruction
stream, multiple data stream (MIMD) architecture.

Any processor that finds x ≠ y (recall that the processors are processing different
data elements) must do nothing while the processors that find x = y are executing
instructions A. Those that find x = y must then be idle while the others are executing
instructions B.

In general, SIMD computers are best suited to parallel algorithms that require
synchronization. Many MIMD computers have extra hardware that provides
synchronization, which means that they can emulate SIMD computers.

• 12.1.2 Address-Space Organization
Processors can communicate with each other either by modifying data in a common
address space or by passing messages. The address space is organized differently
according to the communication method used.

Shared-Address-Space Architecture
In a shared-address-space architecture, the hardware provides for read and write

www.EBooksWorld.ir

access by all processors to a shared address space. Processors communicate by
modifying data in the shared address space. Figure 12.4(a) depicts a shared-address-
space architecture in which the time it takes each processor to access any word in
memory is the same. Such a computer is called a uniform memory access (UMA)
computer. In a UMA computer, each processor may have its own private memory, as
shown in Figure 12.4(a). This private memory is used only to hold local variables
necessary for the processor to carry out its computations. None of the actual input to
the algorithm is in the private area. A drawback of a UMA computer is that the
interconnection network must simultaneously provide access for every processor to
the shared memory. This can significantly slow down performance. Another
alternative is to provide each processor with a portion of the shared memory. This is
illustrated in Figure 12.4(b). This memory is not private, as is the local memory in
Figure 12.4(a). That is, each processor has access to the memory stored at another
processor. However, it has faster access to its own memory than to memory stored at
another processor. If most of a processor’s accesses are to its own memory,
performance should be good. Such a computer is called a nonuniform memory
access (NUMA) computer.
Figure 12.4 (a) A uniform memory access (UMA) computer. (b) A nonuniform memory access (NUMA)
computer.

Message-Passing Architecture
In a message-passing architecture, each processor has its own private memory that
is accessible only to that processor. Processors communicate by passing messages to
other processors rather than by modifying data elements. Figure 12.5 shows a

www.EBooksWorld.ir

message-passing architecture. Notice that Figure 12.5 looks much like Figure
12.4(b). The difference is in the way in which the interconnection network is wired.
In the case of the NUMA computer, the interconnection network is wired to allow
each processor access to the memory stored at the other processors, whereas in the
message-passing computer it is wired to allow each processor to send a message
directly to each of the other processors.
Figure 12.5 A message-passing architecture. Each processor’s memory is accessible only to that processor.
Processors communicate by passing messages to each other through the interconnection network.

• 12.1.3 Interconnection Networks
There are two general categories of interconnection networks: static and dynamic.
Static networks are typically used to construct message-passing architectures,
whereas dynamic networks are typically used to construct shared-address-space
architectures. We discuss each of these types of networks in turn.

Static Interconnection Networks
A static interconnection network contains direct links between processors and are
sometimes called direct networks. There are several different types of static
interconnection networks. Let’s discuss some of the most common ones. The most
efficient, but also the most costly, is a completely connected network, which is

www.EBooksWorld.ir

illustrated in Figure 12.6(a). In such a network, every processor is directly linked to
every other processor. Therefore, a processor can send a message to another
processor directly on the link to that processor. Because the number of links is
quadratic in terms of the number of processors, this type of network is quite costly.

In a star-connected network, one processor acts as the central processor. That is,
every other processor has a link only to that processor. Figure 12.6(b) depicts a star-
connected network. In a star-connected network, a processor sends a message to
another processor by sending the message to the central processor, which in turn
routes the message to the receiving processor.
Figure 12.6 (a) A completely connected network. (b) A star-connected network. (c) A bounded-degree network
of degree 4.

In a bounded-degree network of degree d, each processor is linked to at most d
other processors. Figure 12.6(c) shows a bounded-degree network of degree 4. In a
bounded-degree network of degree 4, a message can be passed by sending it first
along one direction and then along the other direction until it reaches its destination.

A slightly more complex, but popular, static network is the hypercube. A zero-
dimensional hypercube consists of a single processor. A one-dimensional hypercube
is formed by linking the processors in two zero-dimensional hypercubes. A two-
dimensional hypercube is formed by linking each processor in a one-dimensional
hypercube to one processor in another one-dimensional hypercube. Recursively, a (d
+ 1)-dimensional hypercube is formed by linking each processor in a d-dimensional
hypercube to one processor in another d-dimensional hypercube. A given processor
in the first hypercube is linked to the processor occupying the corresponding position
in the second hypercube. Figure 12.7 illustrates hypercube networks.

It should be clear that the reason why static networks are ordinarily used to
implement message-passing architectures is that the processors in such networks are
directly linked, enabling the flow of messages.

Dynamic Interconnection Networks
In a dynamic interconnection network, processors are connected to memory through
a set of switching elements. One of the most straightforward ways to do this is to use
a crossbar switching network. In such a network, p processors are connected to m

www.EBooksWorld.ir

memory banks using a grid of switching elements, as shown in Figure 12.8. If, for
example, processor3 can currently access membank2, the switch at the grid position
circled in Figure 12.8 is closed (closing the switch completes the circuit, enabling
the flow of electricity). This network is called “dynamic” because the connection
between a processor and a memory bank is made dynamically when a switch is
closed. A crossbar switching network is nonblocking. That is, the connection of one
processor to a given memory bank does not block the connection of another
processor to another memory bank. Ideally, in a crossbar switching network there
should be a bank for every word in memory. However, this is clearly impractical.
Ordinarily, the number of banks is at least as large as the number of processors, so
that, at a given time, every processor is capable of accessing at least one memory
bank. The number of switches in a crossbar switching network is equal to pm.
Therefore, if we require that m be greater than or equal to p, the number of switches
is greater than or equal to p2. As a result, crossbar switching networks can become
quite costly when the number of processors is large.
Figure 12.7 Hypercube networks.

Figure 12.8 A crossbar switching network. There is a switch at every position on the grid. The circled switch is
closed, enabling the flow of information between processor3 and membank2, when the third processor is currently
allowed to access the second memory bank.

www.EBooksWorld.ir

Other dynamic interconnection networks, which will not be discussed here,
include bus-based networks and multistage interconnection networks.

It should be clear why dynamic interconnection networks are ordinarily used to
implement shared-address-space architectures. That is, in such networks each
processor is allowed to access every word in memory but cannot send a direct
message to any of the other processors.

The introduction to parallel hardware presented here is based largely on the
discussion in Kumar, Grama, Gupta, and Karypis (1994). The reader is referred to
that text for a more thorough introduction and, in particular, for a discussion of bus-
based and multistage interconnection networks.

12.2 The PRAM Model
As discussed in the preceding section, quite a few different parallel architectures are
possible, and computers have actually been manufactured with many of these
architectures. All serial computers, on the other hand, have the architecture shown in
Figure 12.1, which means that the von Neumann model is a universal model for all
serial computers. The only assumption that was made in designing the algorithms in
the previous chapters was that they would run on a computer conforming to the von
Neumann model. Therefore, each of these algorithms has the same time complexity
regardless of the programming language or computer used to implement the
algorithm. This has been a key factor in the impressive growth of the application of
serial computers.

It would be useful to find a universal model for parallel computation. Any such
model must first be sufficiently general to capture the key features of a large class of
parallel architectures. Second, algorithms designed according to this model must

www.EBooksWorld.ir

execute efficiently on actual parallel computers. No such model is currently known,
and it seems unlikely that one will be found.

Although no universal model is currently known, the parallel random access
machine (PRAM) computer has become widely used as a theoretical model for
parallel machines. A PRAM computer consists of p processors, all of which have
uniform access to a large shared memory. Processors share a common clock but may
execute different instructions in each cycle. Therefore, a PRAM computer is a
synchronous, MIMD, UMA computer. This means that Figures 12.3(b) and 12.4(a)
depict the architecture of a PRAM computer, whereas Figure 12.8 shows a possible
interconnection network for such a machine. As already noted, it would be quite
costly to actually construct such a computer. However, the PRAM model is a natural
extension of the serial model of computation. This makes the PRAM model
conceptually easy to work with when developing algorithms. Furthermore, algorithms
developed for the PRAM model can be translated into algorithms for many of the
more practical computers. For example, a PRAM instruction can be simulated in
Θ(lg p) instructions on a bounded-degree network, where p is the number of
processors. Additionally, for a large class of problems, PRAM algorithms are
asymptotically as fast as algorithms for a hypercube. For these reasons, the PRAM
model serves as a good introduction to parallel algorithms.

In a shared-memory computer such as a PRAM, more than one processor can try to
read from or write to the same memory location simultaneously. There are four
versions of the PRAM model depending on how concurrent memory accesses are
handled.

1. Exclusive-read, exclusive-write (EREW). In this version, no concurrent reads
or writes are allowed. That is, only one processor can access a given memory
location at a given time. This is the weakest version of the PRAM computer,
because it allows minimal concurrency.

2. Exclusive-read, concurrent-write (ERCW). In this version, simultaneous write
operations are allowed, but not simultaneous read operations.

3. Concurrent-read, exclusive-write (CREW). In this version, simultaneous read
operations are allowed, but not simultaneous write operations.

4. Concurrent-read, concurrent-write (CRCW). In this version, both
simultaneous read and write operations are allowed.

We discuss algorithmic design for the CREW PRAM model and the CRCW PRAM
model. First we address the CREW model, then we show how more efficient
algorithms can sometimes be developed using the CRCW model. Before proceeding,
let’s discuss how we present parallel algorithms. Although programming languages
for parallel algorithms exist, we will use our standard pseudocode with some
additional features, which will be described next.

Just one version of the algorithm is written, and after compilation it is executed by

www.EBooksWorld.ir

all processors simultaneously. Therefore, each processor needs to know its own
index while executing the algorithm. We will assume that the processors are indexed
P1, P2, P3, etc., and that the instruction

 p = index of this processor;
returns the index of a processor. A variable declared in the algorithm could be a

variable in shared memory, which means that it is accessible to all processors, or it
could be in private memory (see Figure 12.4a). In this latter case, each processor has
its own copy of the variable. We use the key word local when declaring a variable of
this type.

All our algorithms will be data-parallel algorithms, as discussed in Section
12.1.1. That is, the processors will execute the same set of instructions on different
elements of a data set. The data set will be stored in shared memory. If an instruction
assigns the value of an element of this data set to a local variable, we call this a read
from shared memory, whereas if it assigns the value of a local variable to an element
of this data set, we call this a write to shared memory. The only instructions we use
for manipulating elements of this data set are reads from and writes into shared
memory. For example, we never directly compare the values of two elements of the
data set. Rather, we read their values into variables in local memory and then
compare the values of those variables. We will allow direct comparisons to
variables like n, the size of the data set. A data-parallel algorithm consists of a
sequence of steps, and every processor starts each step at the same time and ends
each step at the same time. Furthermore, all processors that read during a given step
read at the same time, and all processors that write during a given step write at the
same time.

Finally, we assume that as many processors as we want are always available to us.
In practice, as already noted, this is often an unrealistic assumption.

The following algorithm illustrates these conventions. We are assuming that there
is an array of integers S, indexed from 1 to n, in shared memory and that n
processors, indexed from 1 to n, are executing the algorithm in parallel.

All of the values in the array S are read into n different local variables temp

www.EBooksWorld.ir

simultaneously. Then the values in the n variables temp are all written back out to S
simultaneously. Effectively, every element in S is given the value of its predecessor
(with wraparound). Figure 12.9 illustrates the operation of the algorithm. Notice that
each processor always has access to the entire array S because S is in shared
memory. So the pth processor can write to the (p + 1)st array slot.

There is only one step in this simple algorithm. When there is more than one step,
we write loops such as the following:

Figure 12.9 Application of procedure example.

There are various ways this loop can be implemented. One way is to have a
separate control unit do the incrementing and testing. It would issue instructions
telling the other processors when to read, when to execute instructions on local
variables, and when to write. Inside the loop, we sometimes do calculations on a
variable that always has the same value for all processors. For example, Algorithms
12.1 and 12.3 both execute the instruction

where size has the same value for all processors. To make it clear that each
processor does not need its own copy of such a variable, we will declare the
variable as a variable in shared memory. The instruction can be implemented by
having a separate control unit execute it. We won’t discuss implementation further.
Rather, we proceed to writing algorithms.

• 12.2.1 Designing Algorithms for the CREW PRAM Model
We illustrate CREW PRAM algorithms with the following exemplary problems.

Finding the Largest Key in an Array
Theorem 8.7 proves that it takes at least n − 1 comparisons to find the largest key
only by comparisons of keys, which means that any algorithm for the problem,
designed to run on a serial computer, must be Θ(n). Using parallel computation, we
can improve on this running time. The parallel algorithm still must do at least n − 1
comparisons. But by doing many of them in parallel, it finishes sooner. We develop
this algorithm next.

www.EBooksWorld.ir

Recall that Algorithm 8.2 (Find Largest Key) finds the largest key in optimal time
as follows:

This algorithm cannot benefit from using more processors because the result of each
iteration of the loop is needed for the next iteration. Recall from Section 8.5.3 the
Tournament method for finding the largest key. This method pairs the numbers into
groups of two and finds the largest (winner) of each pair. Then it pairs the winners
and finds the largest of each of these pairs. It continues until only one key remains.
Figure 8.10 illustrates this method. A sequential algorithm for the Tournament method
has the same time complexity as Algorithm 8.2. However, this method can benefit
from using more processors. For example, suppose you wish to find the largest of
eight keys using this method. You have to determine each of four winners in the first
round in sequence before proceeding to the second round. If you have the help of
three friends, each of you can simultaneously determine one of the winners of the first
round. This means that the first round can be completed four times as fast. After that
round, two of you can rest while the other two perform the comparisons in the second
round. In the final round, only one of you needs to do a comparison.

Figure 12.10 illustrates how a parallel algorithm for this method proceeds. We
need only half as many processors as array elements. Each processor reads two array
elements into local variables first and second. It then writes the larger of first and
second into the first of the array slots from which it has read. After three such rounds,
the largest key ends up in S [1]. Each round is a step in the algorithm. In the example
shown in Figure 12.10, n = 8 and there are lg 8 = 3 steps. Algorithm 12.1 is an
algorithm for the actions illustrated in Figure 12.10. Notice that this algorithm is
written as a function. When a parallel algorithm is written as a function, it is
necessary that at least one processor return a value and that all processors that do
return values return the same value.
Figure 12.10 Use of parallel processors to implement the Tournament method for finding the largest key.

www.EBooksWorld.ir

 Algorithm 12.1
Parallel Find Largest Key
Problem: Find the largest key in an array S of size n.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the value of the largest key in S.
Comment: It is assumed that n is a power of 2 and that we have n/2 processors
executing the algorithm in parallel. The processors are indexed from 1 to n/2 and the

www.EBooksWorld.ir

command “index of this processor” returns the index of a processor.

We used the high-level pseudocode “if (this processor needs to execute in this
step)” in order to keep the algorithm as lucid as possible. In Figure 12.10 we see that
the processors used in a given step are the ones for which

for some integer k (notice that size doubles in value in each step). Therefore, the
actual check of whether the processor should execute is

Alternatively, we can simply allow all the processors to execute in each step. The
ones that need not execute simply do useless comparisons. For example, in the
second round, processor P2 compares the value of S [3] with the value of S [5] and
writes the larger value into S [3]. Even though this is unnecessary, P2 may as well be
doing it because nothing is gained by keeping P2 idle. The important things are that
the processors that should be executing are executing and that the other processors
are not changing the values of memory locations needed by the ones that should be
executing. The only problem presented by allowing unneeded processors to execute
instructions is that sometimes they end up referring to array elements outside the
range of S. For example, in the previous algorithm, P4 refers to S [9] in the second
round. This can be handled by simply padding S with additional slots. We end up
wasting space this way, but we save time by eliminating the check of whether the
processor should be executing.

When analyzing a parallel algorithm, we do not analyze the total amount of work
done by the algorithm. Rather, we analyze the total amount of work done by any one
processor because this gives us a good idea of how fast the computer will process
the input. Because each processor does about lg n passes through the for-step loop in

www.EBooksWorld.ir

Algorithm 12.1, we have

This is a substantial improvement over the sequential algorithm.

Applications of Dynamic Programming
Many dynamic programming applications are amenable to parallel design because
often the entries in a given row or diagonal can all be computed simultaneously. We
illustrate this approach by rewriting the algorithm for the binomial coefficient
(Algorithm 3.2) as a parallel algorithm. In this algorithm, the entries in a given row
of Pascal’s triangle (see Figure 3.1) are computed in parallel.

 Algorithm 12.2
Parallel Binomial Coefficient
Problem: Compute the binomial coefficient.
Inputs: nonnegative integers n and k, where k ≤ n.
Outputs: the binomial coefficient .

Comment: It is assumed that we have k + 1 processors executing the algorithm in
parallel. The processors are indexed from 0 to k, and the command “index of this
processor” returns the index of a processor.

www.EBooksWorld.ir

The control statement in Algorithm 3.2

is replaced in this algorithm by the control statement

because all k processors execute in each pass through the for-i loop. Instead of
sequentially computing the values of B [i] [j] with j ranging from 0 to minimum (i, k),
the parallel algorithm has the processors that are indexed from 0 to minimum (i, k)
simultaneously computing the values.

Clearly, there are n + 1 passes through a loop in our parallel algorithm. Recall that
there are Θ(nk) passes through a loop in the sequential algorithm (Algorithm 3.2).

Recall from Exercise 3.4 that it is possible to implement Algorithm 3.2 using only
a one-dimensional array B that is indexed from 0 to k. This modification is very
straightforward in the case of the parallel algorithm, because on entry to the ith pass
through the for-i loop the entire (i − 1)st row of Pascal’s triangle can be read from B
into the k local pairs of variables first and second. Then, on exit, the entire ith row
can be written into B. The pseudocode is as follows:

Parallel Sorting
Recall the dynamic programming version of Mergesort 3 (Algorithm 7.3). That
algorithm simply starts with the keys as singletons, merges pairs of keys into sorted
lists containing two keys, merges pairs of those lists into sorted lists containing four
keys, and so on. That is, it does the merging depicted in Figure 2.2. This is very
similar to using the Tournament method to find the maximum. That is, we can do the
merging at each step in parallel. The following algorithm implements this method.
Again, for simplicity, it is assumed that n is a power of 2. When this is not the case,
the array size can be treated as a power of 2, but merging is not done beyond n. The
dynamic programming version of Mergesort 3 (Algorithm 7.3) shows how to do this.

www.EBooksWorld.ir

 Algorithm 12.3
Parallel Mergesort
Problem: Sort n keys in nondecreasing order.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the array S containing the keys in nondecreasing order.
Comment: It is assumed that n is a power of 2 and that we have n/2 processors
executing the algorithm in parallel. The processors are indexed from 1 to n/2, and the
command “index of this processor” returns the index of a processor.

The check of whether a processor should execute in a given step is the same as the

www.EBooksWorld.ir

check in Algorithm 12.1. That is, we need to do the following check:

Recall that we can reduce the number of assignments of records in the single-
processor iterative version of Mergesort (Algorithm 7.3) by reversing the roles of U
and S in each pass through the for loop. That same improvement can be done here. If
this were done, U would have to be an array, indexed from 1 to n, in shared memory.
We present the basic version of parmerge for the sake of simplicity.

The time complexity of this algorithm is not obvious. Therefore, we do a formal
analysis.

 Analysis of Algorithm 12.3
 Worst-Case Time Complexity

Basic operation: the comparison that takes place in parmerge.
Input size: n, the number of keys in the array.

This algorithm does exactly the same number of comparisons as does the ordinary
sequential Mergesort. The difference is that many of them are done in parallel. In the
first pass through the for-step loop, n/2 pairs of arrays, each containing only one key,
are merged simultaneously. So the worst-case number of comparisons done by any
processor is 2 − 1 = 1 (see the analysis of Algorithm 2.3 in Section 2.2). In the
second pass, n/4 pairs of arrays, each containing two keys, are merged
simultaneously. So the worst-case number of comparisons is 4−1 = 3. In the third
pass, n/8 pairs of arrays, each containing four keys, are merged simultaneously. So
the worst-case number of comparisons is 8 − 1 = 7. In general, in the ith pass, n/2i

pairs of arrays, each containing 2i−1 keys, are merged simultaneously, and the worst-
case number of comparisons is 2i − 1. Finally, in the last pass, two arrays, each
containing n/2 keys, are merged, which means that the worst-case number of
comparisons in this pass is n − 1. The total worst-case number of comparisons done
by each processor is given by

The last equality is derived from the result in Example A.3 in Appendix A and some
algebraic manipulations.

We have successfully done parallel sorting by comparisons of keys in linear time,

www.EBooksWorld.ir

which is a significant improvement over the Θ(n lg n) required by sequential sorting.
It is possible to improve our parallel merging algorithm so that parallel mergesorting
is done in time. This improvement is discussed in the exercises. Even this
is not optimal, because parallel sorting can be done in Θ(lg n) time. See Kumar,
Grama, Gupta, and Karypis (1994) or Akl (1985) for a thorough discussion of
parallel sorting.

• 12.2.2 Designing Algorithms for the CRCW PRAM Model
Recall that CRCW stands for concurrent-read, concurrent-write. Unlike concurrent
reads, concurrent writes must somehow be resolved when two processors try to
write to the same memory location in the same step. The most frequently used
protocols for resolving such conflicts are as follows:

• Common. This protocol allows concurrent writes only if all the processors are
attempting to write the same values.

• Arbitrary. This protocol picks an arbitrary processor as the one allowed to
write to the memory location.

• Priority. In this protocol, all the processors are organized in a predefined
priority list, and only the one with the highest priority is allowed to write.

• Sum. This protocol writes the sum of the quantities being written by the
processors. (This protocol can be extended to any associative operator defined
on the quantities being written.)

Figure 12.11 Application of Algorithm 12.4. Only T [3] ends up equal to 1, because S [3] is the largest key and
therefore is the only key never to lose a comparison.

We write an algorithm for finding the largest key in an array that works with
common-write, arbitrary-write, and priority-write protocols and that is faster than
the one given previously for the CREW model (Algorithm 12.1). The algorithm
proceeds as follows. Let the n keys be in an array S in shared memory. We maintain a

www.EBooksWorld.ir

second array T of n integers in shared memory, and initialize all elements in T to 1.
Next we assume that we have n (n − 1)/2 processors indexed as follows:

In parallel, we have all the processors compare S [i] with S [j]. In this way, every
element in S is compared with every other element in S. Each processor writes a 0
into T [i] if S [i] loses the comparison and a 0 into T [j] if S [j] loses. Only the largest
key never loses a comparison. Therefore, the only element of T that remains equal to
1 is the one that is indexed by k such that S [k] contains the largest key. So the
algorithm need only return the value of S [k] such that T [k] = 1. Figure 12.11
illustrates these steps, and the algorithm follows. Notice in the algorithm that when
more than one processor writes to the same memory location, they all write the same
value. This means that the algorithm works with common-write, arbitrary-write, and
priority-write protocols.

Algorithm 12.4
Parallel CRCW Find Largest Key
Problem: Find the largest key in an array S of n keys.
Inputs: positive integer n, array of keys S indexed from 1 to n.
Outputs: the value of the largest key in S.
Comment: It is assumed that n is a power of 2 and that we have n (n − 1)/2
processors executing the algorithm in parallel. The processors are indexed as

and the command “first index of this processor” returns the value of i, whereas the
command “second index of this processor” returns j.

www.EBooksWorld.ir

There is no loop in this algorithm, which means that it finds the largest key in
constant time. This is quite impressive, because it means that we could find the
largest of 1,000,000 keys in the same amount of time required to find the largest of
only 10 keys. However, this optimal time complexity has been bought at the expense
of quadratic-time processor complexity. We would need about 1,000,0002/2
processors to find the largest of 1,000,000 keys.

This chapter has served only as a brief introduction to parallel algorithms. A
thorough introduction requires a text of its own. One such text is Kumar, Grama,
Gupta, and Karypis (1994).

EXERCISES

Section 12.1
1. If we assume that one person can add two numbers in ta time, how long will it

take that person to add two n × n matrices, if we consider the operation of
addition as the basic operation? Justify your answer.

2. If we have two people add numbers and it takes ta time for one person to add two
numbers, how long will the two people take to add two n × n matrices, if we

www.EBooksWorld.ir

consider the operation of addition as the basic operation? Justify your answer.
3. Consider the problem of adding two n × n matrices. If it takes ta time for one

person to add two numbers, how many people do we need to minimize the total
time spent to get the final answer? What will be the minimum amount of time
needed to find the answer, if we assume that we have enough people? Justify
your answers.

4. Assuming that one person can add two numbers in ta time, how long will it take
that person to add all n numbers of a list, if we consider the operation of addition
as the basic operation? Justify your answer.

5. If we have two people add n numbers in a list and it takes ta time for one person
to add two numbers, how long will it take the two people to add all n numbers in
the list, if we consider the operation of addition as the basic operation and
include tp time for passing the result of an addition from one person to the other?
Justify your answer.

6. Consider the problem of adding n numbers in a list. If it takes ta time for one
person to add two numbers and it takes no time to pass the result of an addition
from one person to another, how many people do we need to minimize the total
time spent to get the final answer? What will be the minimum amount of time
needed to find the answer, if we assume we have enough people? Justify your
answer.

Section 12.2
7. Write a CREW PRAM algorithm for adding all n numbers in a list in Θ(lg n)

time.
8. Write a CREW PRAM algorithm that uses n2 processors to multiply two n × n

matrices. Your algorithm should perform better than the standard Θ(n3)-time
serial algorithm.

9. Write a PRAM algorithm for Quicksort using n processors to sort a list of n
elements.

10. Write a sequential algorithm that implements the Tournament method to find the
largest key in an array of n keys. Show that this algorithm is no more efficient
than the standard sequential algorithm.

11. Write a PRAM algorithm using n3 processors to multiply two n×n matrices. Your
algorithm should run in Θ(lg n) time.

12. Write a PRAM algorithm for the Shortest Paths problem of Section 3.2. Compare
the performance of your algorithm against the performance of Floyd’s algorithm
(Algorithm 3.3).

13. Write a PRAM algorithm for the Chained Matrix Multiplication problem of

www.EBooksWorld.ir

Section 3.4. Compare the performance of your algorithm against the performance
of the Minimum Multiplications algorithm (Algorithm 3.6).

14. Write a PRAM algorithm for the Optimal Binary Search Tree problem of Section
3.5. Compare the performance of your algorithm against the performance of the
Optimal Binary Search Tree algorithm (Algorithm 3.9).

Additional Exercises
15. Consider the problem of adding the numbers in a list of n numbers. If it takes ta (n

− 1) time for one person to add all n numbers, is it possible for m people to
compute the sum in less than [ta (n − 1)] /m time? Justify your answer.

16. Write a PRAM algorithm that runs in Θ((lg n)2) time for the problem of
mergesorting. (Hint: Use n processors, and assign each processor to a key to
determine the position of the key in the final list by binary searching.)

17. Write a PRAM algorithm for the Traveling Salesperson problem of Section 3.6.
Compare the performance of your algorithm against the performance of the
Traveling Salesperson algorithm (Algorithm 3.11).

www.EBooksWorld.ir

Appendix A

Review of Necessary Mathematics
Except for the material that is marked or , this text does not require that you
have a strong background in mathematics. In particular, it is not assumed that you
have studied calculus. However, a certain amount of mathematics is necessary for the
analysis of algorithms. This appendix reviews that necessary mathematics. You may
already be familiar with much or all of this material.

A.1 Notation
Sometimes we need to refer to the smallest integer that is greater than or equal to a
real number x. We denote that integer by x . For example,

We call x the ceiling for x. For any integer n, n = n. We also sometimes need to
refer to the largest integer that is less than or equal to a real number x. We denote that
integer by x . For example,

We call x the floor for x. For any integer n, n = n.
When we are able to determine only the approximate value of a desired result, we

use the symbol ≈, which means “equals approximately.” For example, you should be
familiar with the number π, which is used in the computation of the area and
circumference of a circle. The value of π is not given by any finite number of decimal
digits because we could go on generating more digits forever. (Indeed, there is not
even a pattern as there is in Because the first six digits of π are
3.14159, we write

We use the symbol ≠ to mean “does not equal.” For example, if we want to state
that the values of the variables x and y are not equal, we write

www.EBooksWorld.ir

Often we need to refer to the sum of like terms. This is straightforward if there are
not many terms. For example, if we need to refer to the sum of the first seven positive
integers, we simply write

If we need to refer to the sum of the squares of the first seven positive integers, we
simply write

This method works well when there are not many terms. However, it is not
satisfactory if, for example, we need to refer to the sum of the first 100 positive
integers. One way to do this is to write the first few terms, a general term, and the
last term. That is, we write

If we need to refer to the sum of the squares of the first 100 positive integers, we
could write

Sometimes when the general term is clear from the first few terms, we do not bother
to write that term. For example, for the sum of the first 100 positive integers we
could simply write

When it is instructive to show some of the terms, we write out some of them.
However, a more concise method is to use the Greek letter Σ, which is pronounced
sigma. For example, we use Σ to represent the sum of the first 100 positive integers
as follows:

This notation means that while the variable i is taking values from 1 to 100, we are
summing its values. Similarly, the sum of the squares of the first 100 positive integers
can be represented by

Often we want to denote the case in which the last integer in the sum is an arbitrary
integer n. Using the methods just illustrated, we can represent the sum of the first n
positive integers by

www.EBooksWorld.ir

Similarly, the sum of the squares of the first n positive integers can be represented by

Sometimes we need to take the sum of a sum. For example,

Similarly, we can take the sum of a sum of a sum, and so on.
Finally, we sometimes need to refer to an entity that is larger than any real number.

We call that entity infinity and denote it by ∞. For any real number x, we have

A.2 Functions
Very simply, a function f of one variable is a rule or law that associates with a value
x a unique value f(x). For example, the function f that associates the square of a real
number with a given real number x is

A function determines a set of ordered pairs. For example, the function f(x) = x2

determines all the ordered pairs (x, x2). A graph of a function is the set of all ordered
pairs determined by the function. The graph of the function f(x) = x2 appears in Figure
A.1.

The function

is defined only if x ≠ 0. The domain of a function is the set of values for which the
function is defined. For example, the domain of f(x) = 1/x is all real numbers other
than 0, whereas the domain of f(x) = x2 is all real numbers.
Figure A.1 The graph of the function f(x) = x2. The ordered pair (2, 4) is illustrated.

www.EBooksWorld.ir

Notice that the function

can assume only nonnegative values. By “nonnegative values” we mean values
greater than or equal to 0, whereas by “positive values” we mean values strictly
greater than 0. The range of a function is the set of values that the function can
assume. The range of f(x) = x2 is the nonnegative reals, the range of f(x) = 1/x is all
real numbers other than 0, and the range of f(x) = (1/x)2 is all positive reals. We say
that a function is from its domain and to its range. For example, the function f(x) = x2

is from the reals to the nonnegative reals.

A.3 Mathematical Induction
Some sums equal closed-form expressions. For example,

We can illustrate this equality by checking it for a few values of n, as follows:

Figure A.2 If the first domino is knocked over, all the dominoes will fall.

www.EBooksWorld.ir

However, because there are an infinite number of positive integers, we can never
become certain that the equality holds for all positive integers n simply by checking
individual cases. Checking individual cases can inform us only that the equality
appears to be true. A powerful tool for obtaining a result for all positive integers n is
mathematical induction.

Mathematical induction works in the same way as the domino principle. Figure
A.2 illustrates that, if the distance between two dominoes is always less than the
height of the dominoes, we can knock down all the dominoes merely by knocking
over the first domino. We are able to do this because:

1. We knock over the first domino.
2. By spacing the dominoes so that the distance between any two of them is always

less than their height, we guarantee that if the nth domino falls, the (n + 1)st
domino will fall.

If we knock over the first domino, it will knock over the second, the second will
knock over the third, and so on. In theory, we can have an arbitrarily large number of
dominoes, and they all will fall.

An induction proof works in the same way. We first show that what we are trying
to prove is true for n = 1. Next we show that if it is true for an arbitrary positive
integer n, it must also be true for n + 1. Once we have shown this, we know that
because it is true for n = 1, it must be true for n = 2; because it is true for n = 2, it
must be true for n = 3; and so on, ad infinitum (to infinity). We can therefore conclude
that it is true for all positive integers n. When using induction to prove that some
statement concerning the positive integers is true, we use the following terminology:

The induction base is the proof that the statement is true for n = 1 (or some other
initial value).
The induction hypothesis is the assumption that the statement is true for an
arbitrary n ≥ 1 (or some other initial value).
The induction step is the proof that if the statement is true for n, it must also be
true for n + 1.

www.EBooksWorld.ir

The induction base amounts to knocking over the first domino, whereas the induction
step shows that if the nth domino falls, the (n + 1)st domino will fall.

Example A.1
We show, for all positive integers n, that

Induction base: For n = 1,

Induction hypothesis: Assume, for an arbitrary positive integer n, that

Induction step: We need to show that

To that end,

In the induction step, we highlight the terms that are equal by the induction
hypothesis. We often do this to show where the induction hypothesis is being applied.
Notice what is accomplished in the induction step. By assuming the induction
hypothesis that

and doing some algebraic manipulations, we arrive at the conclusion that

www.EBooksWorld.ir

Therefore, if the hypothesis is true for n, it must be true for n + 1. Because in the
induction base we show that it is true for n = 1, we can conclude, using the domino
principle, that it is true for all positive integers n.

You may wonder why we thought that the equality in Example A.1 might be true in
the first place. This is an important point. We can often derive a possibly true
statement by investigating some cases and making an educated guess. This is how the
equality in Example A.1 was originally conceived. Induction can then be used to
verify that the statement is true. If it is not true, of course, the induction proof fails. It
is important to realize that it is never possible to derive a true statement using
induction. Induction comes into play only after we have already derived a possibly
true statement. In Section 8.5.4, we discuss constructive induction, which is a
technique that can help us discover a true statement.

Another important point is that the initial value need not be n = 1. That is, the
statement may be true only if n ≥ 10. In this case the induction base would be n = 10.
In some cases our induction base is n = 0. This means we are proving the statement to
be true for all nonnegative integers.

More examples of induction proofs follow.

Example A.2
We show, for all positive integers n, that

Induction base: For n = 1,

Induction hypothesis: Assume, for an arbitrary positive integer n, that

Induction step: We need to show that

To that end,

www.EBooksWorld.ir

In the next example, the induction base is n = 0.

Example A.3
We show, for all nonnegative integers n, that

In summation notation, this equality is

Induction base: For n = 0,

Induction hypothesis: Assume, for an arbitrary nonnegative integer n, that

Induction step: We need to show that

To that end,

www.EBooksWorld.ir

Example A.3 is a special case of the result in the next example.

Example A.4
We show, for all nonnegative integers n and real numbers r ≠ 1, that

The terms in this sum are called a geometric progression.
Induction base: For n = 0,

Induction hypothesis: Assume, for an arbitrary nonnegative integer n, that

Induction step: We need to show that

To that end,

Sometimes results that can be obtained using induction can be established more
readily in another way. For instance, the preceding example showed that

Instead of using induction, we can multiply the expression on the left in the preceding
equality by the denominator on the right and simplify, as follows:

www.EBooksWorld.ir

Dividing both sides of this equality by r − 1 gives the desired result.
We present one more example of induction.

Example A.5
We show, for all positive integers n, that

Induction base: For n = 1,

Induction hypothesis: Assume, for an arbitrary positive integer n, that

Induction step: We need to show that

To that end,

Another way to make the induction hypothesis is to assume that the statement is
true for all k greater than or equal to the initial value and less than n, and then, in the
induction step, prove that it is true for n. We do this in the proof of Theorem 1.1 in
Section 1.2.2.

Although our examples have all involved the determination of closed-form
expressions for sums, there are many other induction applications. We encounter

www.EBooksWorld.ir

some of them in this text.

A.4 Theorems and Lemmas
The dictionary defines a theorem as a proposition that sets forth something to be
proved. It has the same meaning in mathematics. Each of the examples in the
preceding section could be stated as a theorem, whereas the induction proof
constitutes a proof of the theorem. For example, we could state Example A.1 as
follows:

 Theorem A.1
For all integers n > 0, we have

Proof: The proof would go here. In this case, it would be the induction proof used in
Example A.1.

Usually the purpose of stating and proving a theorem is to obtain a general result
that can be applied to many specific cases. For example, we can use Theorem A.1 to
quickly calculate the sum of the first n integers for any positive integer n.

Sometimes students have difficulty understanding the difference between a theorem
that is an “if” statement and one that is an “if and only if” statement. The following
two theorems illustrate this difference.

 Theorem A.2
For any real number x, if x > 0, then x2 > 0.
Proof: The theorem follows from the fact that the product of two positive numbers is
positive.

The reverse of the implication stated in Theorem A.2 is not true. That is, it is not
true that if x2 > 0, then x > 0. For example,

and −3 is not greater than 0. Indeed, the square of any negative number is greater than
0. Therefore, Theorem A.2 is an example of an “if ” statement.
When the reverse implication is also true, the theorem is an “if and only if ”
statement, and it is necessary to prove both the implication and the reverse
implication. The following theorem is an example of an “if and only if ” statement.

www.EBooksWorld.ir

 Theorem A.3
For any real number x, x > 0 if and only if 1/x > 0.
Proof: Prove the implication. Suppose that x > 0. Then

because the quotient of two positive numbers is greater than 0.
Prove the reverse implication. Suppose that 1/x > 0. Then

again because the quotient of two positive numbers is greater than 0.

The dictionary defines a lemma as a subsidiary proposition employed to prove
another proposition. Like a theorem, a lemma is a proposition that sets forth
something to be proved. However, we usually do not care about the proposition in
the lemma for its own sake. Rather, when the proof of a theorem relies on the truth of
one or more auxiliary propositions, we often state and prove lemmas concerning
those propositions. We then employ those lemmas to prove the theorem.

A.5 Logarithms
Logarithms are one of the mathematical tools used most in analysis of algorithms. We
briefly review their properties.

• A.5.1 Definition and Properties of Logarithms
The common logarithm of a number is the power to which 10 must be raised to
produce the number. If x is a given number, we denote its common logarithm by log x.

Example A.6
Some common logarithms follow:

Recall that the value of any nonzero number raised to the 0th power is 1.

www.EBooksWorld.ir

In general, the logarithm of a number x is the power to which another number a,
called the base, must be raised to produce x. The number a can be any positive
number other than 1, whereas x must be positive. That is, there is no such thing as the
logarithm of a negative number or of 0. In symbols, we write loga x.

Example A.7
Some examples of loga x follow:

Notice that the last result in Example A.7 is for a number that is not an integral
power of the base. Logarithms exist for all positive numbers, not just for integral
powers of the base. A discussion of the meaning of the logarithm when the number is
not an integral power of the base is beyond the scope of this appendix. We note here
only that the logarithm is an increasing function. That is,

Therefore,

We saw in Example A.7 that log27 is about 2.807, which is between 2 and 3.
Listed below are some important properties of logarithms that are useful in the

analysis of algorithms.

Some Properties of Logarithms (In all cases, a > 1, b > 1, x > 0, and y > 0):
1. loga1 = 0
2. alogax = x
3. loga (xy) = logax + loga y
4.

5. loga xy = ylogax
6. xlogay = ylogax

7.

www.EBooksWorld.ir

Example A.8
Some examples of applying the previous properties follow:

Because many calculators have a log function (recall that log means log10), the last
two results in Example A.8 show how one can use a calculator to compute a
logarithm for an arbitrary base. (This is how we computed them.)

We encounter the logarithm to base 2 so often in analysis of algorithms that we
give it its own simple symbol. That is, we denote log2 x by lg x. From now on, we
use this notation.

• A.5.2 The Natural Logarithm
You may recall the number e, whose value is approximately 2.718281828459. Like
π, the number e cannot be expressed exactly by any finite number of decimal digits,
and indeed there is not even a repeating pattern of digits in its decimal expansion. We
denote loge x by ln x, and we call it the natural logarithm of x. For example,

You may wonder where we got this answer. We simply used a calculator that has an
ln function. Without studying calculus, it is not possible to understand how the natural
logarithm is computed and why it is called “natural.” Indeed, when we merely look at
e, the natural logarithm appears most unnatural. Although a discussion of calculus is
beyond our present scope (except for some material marked), we do want to explore
one property of the natural logarithm that is important to the analysis of algorithms.
With calculus it is possible to show that ln x is the area under the curve 1/x that lies

www.EBooksWorld.ir

between 1 and x. This is illustrated in the top graph in Figure A.3 for x = 5. In the
bottom graph in that figure, we show how that area can be approximated by summing
the areas of rectangles that are each one unit wide. The graph shows that the
approximation to ln 5 is

Notice that this area is always larger than the true area. Using a calculator, we can
determine that

The area of the rectangles is not a very good approximation to ln 5. However, by the
time we get to the last rectangle (the one between the x-values 4 and 5), the area is
not much different from the area under the curve between x = 4 and x = 5. This is not
the case for the first rectangle. Each successive rectangle gives a better
approximation than its predecessor. Therefore, when the number is not small, the sum
of the areas of the rectangles is close to the value of the natural logarithm. The
following example shows the usefulness of this result.
Figure A.3 The shaded area in the top graph is ln 5. The combined area of the shaded rectangles in the bottom
graph is an approximation to ln 5.

www.EBooksWorld.ir

Example A.9
Suppose we wish to compute

There is no closed-form expression for this sum. However, in accordance with the
preceding discussion, if n is not small,

When n is not small, the value of 1/n is negligible in comparison with the sum.
Therefore, we can also add that term to get the result

We will use this result in some of our analyses. In general, it is possible to show that

A.6 Sets
Informally, a set is a collection of objects. We denote sets by capital letters such as S,
and, if we enumerate all the objects in a set, we enclose them in braces. For example,

is the set containing the first four positive integers. The order in which we list the
objects is irrelevant. This means that

are the same set—namely, the set of the first four positive integers. Another example
of a set is

This is the set of the names of the days in the week. When a set is infinite, we can
represent the set using a description of the objects in the set. For example, if we want
to represent the set of positive integers that are integral multiples of 3, we can write

Alternatively, we can show some items and a general item, as follows:

www.EBooksWorld.ir

The objects in a set are called elements or members of the set. If x is an element of
the set S, we write x S. If x is not an element of S, we write x S. For example,

We say that the sets S and T are equal if they have the same elements, and we write S
= T. If they are not equal, we write S ≠ T. For example,

If S and T are two sets such that every element in S is also in T, we say that S is a
subset of T, and we write S T. For example,

Every set is a subset of itself. That is, for any set S, S ⊆ S. If S is a subset of T that is
not equal to T, we say that S is a proper subset of T, and we write S ⊂ T. For
example,

For two sets S and T, the intersection of S and T is defined as the set of all
elements that are in both S and T. We write S ∩ T. For example,

For two sets S and T, the union of S and T is defined as the set of all elements that
are in either S or T. We write S T. For example,

For two sets S and T, the difference between S and T is defined as the set of all
elements that are in S but not in T. We write S − T. For example,

The empty set is defined as the set containing no elements. We denote the empty set
by Ø.

The universal set U is defined as the set consisting of all elements under
consideration. This means that if S is any set we are considering, then S ⊆ U. For
example, if we are considering sets of positive integers, then

A.7 Permutations and Combinations

www.EBooksWorld.ir

Suppose we have four balls marked A, B, C, and D in an urn or container, and two
balls will be drawn from the urn. To win a lottery, we must pick the balls in the order
in which they are drawn. To gain insight into the likelihood of our winning, we
should determine how many outcomes are possible. The possible outcomes are:

The outcomes AB and BA, for example, are different because we must pick the balls
in the correct order. We have listed 12 different outcomes. However, can we be sure
that these are all the outcomes? Notice that we arranged the outcomes in four rows
and three columns. Each row corresponds to a distinct choice for the first ball; there
are four such choices. Once we have made that choice, the second letters in the
entries in a row correspond to the remaining distinct choices for the second ball;
there are three such choices. The total number of outcomes is therefore

This result can be generalized. For example, if we have four balls and three are
drawn, the first ball can be any one of four; once the first ball is drawn, the second
ball can be any of three; and once the second ball is drawn, the third ball can be any
of two. The number of outcomes is therefore

In general, if we have n balls, and we are picking k of them, the number of possible
outcomes is

This is called the number of permutations of n objects taken k at a time. If n = 4 and k
= 3, this formula yields

which is the result already obtained. If n = 10 and k = 5, the formula yields

If k = n, we are picking all the balls. This is simply called the number of
permutations of n objects. The previous formula shows that it is given by

Recall that for a positive integer n, n! is defined as the integer times all the positive
integers less than it, the value of 0! is defined to be 1, and n! is not defined for
negative integers.

www.EBooksWorld.ir

Next consider a lottery that we can win by merely picking the correct balls. That
is, we do not have to get the order right. Suppose again that there are four balls
marked A, B, C, and D, and two are drawn. Each outcome in this lottery corresponds
to two outcomes in the previous lottery. For example, the outcomes AB and BA in the
other lottery are both the same for the purposes of this lottery. We will call this
outcome

Because two outcomes in the previous lottery correspond to one outcome in this
lottery, we can determine how many outcomes there are in this lottery by dividing the
number of outcomes in the previous lottery by 2. This means that there are

outcomes in this lottery. The six distinct outcomes are

Suppose now that three balls are drawn from the urn containing the four balls
marked A, B, C, and D, and we do not have to get the order right. Then the following
outcomes are all the same for the purposes of this lottery:

These outcomes are simply the permutations of three objects. Recall that the number
of such permutations is given by 3! = 6. To determine how many distinct outcomes
there are in this lottery, we need to divide by 3! the number of distinct outcomes in
the lottery, where the order does matter. That is, there are

outcomes in this lottery. They are

In general, if there are n balls and k balls are drawn and the order does not matter,
the number of distinct outcomes is given by

This is called the number of combinations of n objects taken k at a time. Because

www.EBooksWorld.ir

the formula for the number of combinations of n objects taken k at a time is usually
shown as

Using this formula, the number of combinations of eight objects taken three at a time
is given by

The Binomial theorem, which is proven in algebra texts, states that for any
nonnegative integer n and real numbers a and b,

Because the number of combinations of n objects taken k at a time is the coefficient
of akbn−k in this expression, that number is called the binomial coefficient. We will
denote it

Example A.10
We show that the number of subsets, including the empty set, of a set containing n
items is 2n. For 0 ≤ k ≤ n, the number of subsets of size k is the number of
combinations of n objects taken k at a time, which is .This means that the total
number of subsets is

The second-to-last equality is by the Binomial theorem.

A.8 Probability
You may recall using probability theory in situations such as drawing a ball from an
urn, drawing the top card from a deck of playing cards, and tossing a coin. We call
the act of drawing a ball, drawing the top card, or tossing a coin an experiment. In
general, probability theory is applicable when we have an experiment that has a set
of distinct outcomes that we can describe. The set of all possible outcomes is called
a sample space or population. Mathematicians usually say “sample space,” whereas
social scientists usually say “population” (because they study people). We use these

www.EBooksWorld.ir

terms interchangeably. Any subset of a sample space is called an event. A subset
containing only one element is called an elementary event.

Example A.11
In the experiment of drawing the top card from an ordinary deck of playing cards, the
sample space contains the 52 different cards. The set

is an event, and the set

is an elementary event. There are 52 elementary events in the sample space.

The meaning of an event (subset) is that one of the elements in the subset is the
outcome of the experiment. In Example A.11, the meaning of the event S is that the
card drawn is any one of the four kings, and the meaning of the elementary event E is
that the card drawn is the king of hearts.

We measure our certainty that an event contains the outcome of the experiment with
a real number called the probability of the event. The following is a general
definition of probability when the sample space is finite.

Definition
Suppose we have a sample space containing n distinct outcomes:

A function that assigns a real number p (S) to each event S is called a probability
function if it satisfies the following conditions:

1. 0 ≤ p (ei) ≤ 1 for 1 ≤ i ≤ n
2. p (e1) + p (e2) + · · · + p (en) = 1
3. For each event S that is not an elementary event, p (S) is the sum of the

probabilities of the elementary events whose outcomes are in S. For example,
if

The sample space along with the function p is called a probability space.

Because we define probability as a function of a set, we should write p ({ei})
instead of p (ei) when referring to the probability of an elementary event. However,

www.EBooksWorld.ir

to avoid clutter, we do not do this. In the same way, we do not use the braces when
referring to the probability of an event that is not elementary. For example, we write
p (e1, e2, e7) for the probability of the event {e1, e2, e7}.

We can associate an outcome with the elementary event containing that outcome,
and therefore we can speak of the probability of an outcome. Clearly, this means the
probability of the elementary event containing the outcome.

The simplest way to assign probabilities is to use the Principle of Indifference.
This principle says that outcomes are to be considered equiprobable if we have no
reason to expect or prefer one over the other. According to this principle, when there
are n distinct outcomes, the probability of each of them is the ratio 1/n.

Example A.12
Suppose we have four balls marked A, B, C, and D in an urn, and the experiment is to
draw one ball. The sample space is {A, B, C, D}, and, according to the Principle of
Indifference,

The event {A, B} means that either ball A or ball B is drawn. Its probability is given
by

Example A.13
Suppose we have the experiment of drawing the top card from an ordinary deck of
playing cards. Because there are 52 cards, according to the Principle of Indifference,
the probability of each card is . For example,

The event

means that the card drawn is a king. Its probability is given by

www.EBooksWorld.ir

Sometimes we can compute probabilities using the formulas for permutations and
combinations given in the preceding section. The following example shows how this
is done.

Example A.14
Suppose there are five balls marked A, B, C, D, and E in an urn, and the experiment
is to draw three balls and the order does not matter. We will compute p(A and B and
C). Recall that by “A and B and C” we mean the outcome that A, B, and C are picked
in any order. To determine the probability using the Principle of Indifference, we
need to compute the number of distinct outcomes. That is, we need the number of
combinations of five objects taken three at a time. Using the formula in the preceding
section, that number is given by

Therefore, according to the Principle of Indifference,

which is the same as the probabilities of the other nine outcomes.

Too often, students, who do not have the opportunity to study probability theory in
depth, are left with the impression that probability is simply about ratios. It would be
unfair, even in this cursory overview, to give this impression. In fact, most important
applications of probability have nothing to do with ratios. To illustrate, we give two
simple examples.

A classic textbook example of probability involves tossing a coin. Because of the
symmetry of a coin, we ordinarily use the Principle of Indifference to assign
probabilities. Therefore, we assign

On the other hand, we could toss a thumbtack. Like a coin, a thumbtack can land in
two ways. It can land on its flat end (head) or it can land with the edge of the flat end
(and the point) touching the ground. We assume that it cannot land only on its point.
These two ways of landing are illustrated in Figure A.4. Using coin terminology, we
will call the flat end “heads” and the other outcome “tails.” Because the thumbtack
lacks symmetry, there is no reason to use the Principle of Indifference and assign the
same probability to heads and tails. How then do we assign probabilities? In the case
of a coin, when we say , we are implicitly assuming that if we tossed the
coin 1,000 times, it should land on its head about 500 times. Indeed, if it only landed

www.EBooksWorld.ir

on its head 100 times, we would become suspicious that it was unevenly weighted
and that the probability was not . This notion of repeatedly performing the same
experiment gives us a way of actually computing a probability. That is, if we repeat
an experiment many times, we can be fairly certain that the probability of an outcome
is about equal to the fraction of times the outcome actually occurs. (Some
philosophers actually define probability as the limit of this fraction as the number of
trials approaches infinity.) For example, one of our students tossed a thumbtack
10,000 times and it landed on its flat end (heads) 3,761 times. Therefore, for that
tack,
Figure A.4 The two ways a thumbtack can land. Because of the asymmetry of a thumbtack, these two ways do
not necessarily have the same probability.

We see that the probabilities of the two events need not be the same, but that the
probabilities still sum to 1. This way of determining probabilities is called the
relative frequency approach to probability. When probabilities are computed from
the relative frequency, we use the ≈ symbol because we cannot be certain that the
relative frequency is exactly equal to the probability regardless of how many trials
are performed. For example, suppose we have two balls marked A and B in an urn
and we repeat the experiment of picking one ball 10,000 times. We cannot be certain
that the ball marked A will be picked exactly 5,000 times. It may be picked only
4,967 times. Using the Principle of Indifference, we would have

whereas using the relative frequency approach we would have

The relative frequency approach is not limited to experiments with only two
possible outcomes. For example, if we had a six-sided die that was not a perfect
cube, the probabilities of the six elementary events could all be different. However,
they would still sum to 1. The following example illustrates this situation.

Example A.15
Suppose we have an asymmetrical six-sided die, and in 1,000 throws we determine
that the six sides come up the following numbers of times:

www.EBooksWorld.ir

Then

By Condition 3 in the definition of a probability space,

This is the probability that either a 2 or a 3 comes up in a throw of the die.

There are other approaches to probability, not the least of which is the notion of
probability as a degree of belief in an outcome. For example, suppose the Chicago
Bears were going to play the Dallas Cowboys in a football game. At the time this text
is being written, one of its authors has little reason to believe that the Bears would
win. Therefore, he would not assign equal probabilities to each team winning.
Because the game could not be repeated many times, he could not obtain the
probabilities using the relative frequency approach. However, if he was going to bet
on the game, he would want to access the probability of the Bears winning. He could
do so using the subjectivistic approach to probability. One way to access
probabilities using this approach is as follows: If a lottery ticket for the Bears
winning cost $1, an individual would determine how much he or she felt the ticket
should be worth if the Bears did win. One of the authors feels that it would have to
be worth $5. This means that he would be willing to pay $1 for the ticket only if it
would be worth at least $5 in the event that the Bears won. For him, the probability
of the Bears winning is given by

That is, the probability is computed from what he believes would be a fair bet. This
approach is called “subjective” because someone else might say that the ticket would
need to be worth only $4. For that person, p(Bears win) = 0.25. Neither person
would be logically incorrect. When a probability simply represents an individual’s

www.EBooksWorld.ir

belief, there is no unique correct probability. A probability is a function of the
individual’s beliefs, which means it is subjective. If someone believed that the
amount won should be the same as the amount bet (that is, that the ticket should be
worth $2), then for that person

We see that probability is much more than ratios. You should read Fine (1973) for
a thorough coverage of the meaning and philosophy of probability. The relative
frequency approach to probability is discussed in Neapolitan (1992). The expression
“Principle of Indifference” first appeared in Keynes (1948) (originally published in
1921). Neapolitan (1990) discusses paradoxes resulting from use of the Principle of
Indifference.

• A.8.1 Randomness
Although the term “random” is used freely in conversation, it is quite difficult to
define rigorously. Randomness involves a process. Intuitively, by a random process
we mean the following. First, the process must be capable of generating an arbitrarily
long sequence of outcomes. For example, the process of repeatedly tossing the same
coin can generate an arbitrarily long sequence of outcomes that are either heads or
tails. Second, the outcomes must be unpredictable. What it means to be
“unpredictable,” however, is somewhat vague. It seems we are back where we
started; we have simply replaced “random” with “unpredictable.”

In the early part of the 20th century, Richard von Mises made the concept of
randomness more concrete. He said that an “unpredictable” process should not allow
a successful gambling strategy. That is, if we chose to bet on an outcome of such a
process, we could not improve our chances of winning by betting on some
subsequence of the outcomes instead of betting on every outcome. For example,
suppose we decided to bet on heads in the repeated tossing of a coin. Most of us feel
that we could not improve our chances by betting on every other toss instead of on
every toss. Furthermore, most of us feel that there is no other “special” subsequence
that could improve our chances. If indeed we could not improve our chances by
betting on some subsequence, then the repeated tossing of the coin would be a
random process. As another example, suppose that we repeatedly sampled
individuals from a population that contained individuals with and without cancer and
that we put each sampled individual back into the population before sampling the
next individual. (This is called sampling with replacement.) Let’s say we chose to
bet on cancer. If we sampled in such a way as to never give preference to any
particular individual, most of us feel that we would not improve our chances by
betting only on some subsequence instead of betting every time. If indeed we could

www.EBooksWorld.ir

not improve our chances by betting on some subsequence, then the process of
sampling would be random. However, if we sometimes gave preference to
individuals who smoked by sampling every fourth time only from smokers, and we
sampled the other times from the entire population, the process would no longer be
random because we could improve our chances by betting every fourth time instead
of every time.

Intuitively, when we say that “we sample in such a way as to never give preference
to any particular individual,” we mean that there is no pattern in the way the sampling
is done. For example, if we were sampling balls with replacement from an urn, we
would never give any ball preference if we shook the urn vigorously to thoroughly
mix the balls before each sample. You may have noticed how thoroughly the balls are
mixed before they are drawn in state lotteries. When sampling is done from a human
population, it is not as easy to ensure that preference is not given. The discussion of
sampling methods is beyond the scope of this appendix.

Von Mises’ requirement of not allowing a successful gambling strategy gives us a
better grasp of the meaning of randomness. A predictable or nonrandom process
does allow a successful gambling strategy. One example of a nonrandom process is
the one mentioned above in which we sampled every fourth time from smokers. A
less obvious example concerns the exercise pattern of one of the authors. He prefers
to exercise at his health club on Tuesday, Thursday, and Sunday, but if he misses a
day he makes up for it on one of the other days. If we were going to bet on whether he
exercises on a given day, we could do much better by betting every Tuesday,
Thursday, and Sunday than by betting every day. This process is not random.

Even though Von Mises was able to give us a better understanding of randomness,
he was not able to create a rigorous, mathematical definition. Andrei Kolmogorov
eventually did so with the concept of compressible sequences. Briefly, a finite
sequence is defined as compressible if it can be encoded in fewer bits than it takes to
encode every item in the sequence. For example, the sequence

which is simply “1 0” repeated 16 times, can be represented by

Because it takes fewer bits to encode this representation than it does to encode every
item in the sequence, the sequence is compressible. A finite sequence that is not
compressible is called a random sequence. For example, the sequence

is random because it does not have a more efficient representation. Intuitively, a
random sequence is one that shows no regularity or pattern.

According to the Kolmogorov theory, a random process is a process that generates
a random sequence when the process is continued long enough. For example, suppose

www.EBooksWorld.ir

we repeatedly toss a coin, and associate 1 with heads and 0 with tails. After six
tosses we may see the sequence

but, according to the Kolmogorov theory, eventually the entire sequence will show no
such regularity. There is some philosophical difficulty with defining a random
process as one that definitely generates a random sequence. Many probabilists feel
that it is only highly probable that the sequence will be random, and that the
possibility exists that the sequence will not be random. For example, in the repeated
tossing of a coin, they believe that, although it is very unlikely, the coin could come
up heads forever. As mentioned previously, randomness is a difficult concept. Even
today there is controversy over its properties.

Let’s discuss how randomness relates to probability. A random process determines
a probability space (see definition given at the beginning of this section), and the
experiment in the space is performed each time the process generates an outcome.
This is illustrated by the following examples.

Example A.16
Suppose we have an urn containing one black ball and one white ball, and we
repeatedly draw a ball and replace it. This random process determines a probability
space in which

We perform the experiment in the space each time we draw a ball.

Example A.17
The repeated throwing of the asymmetrical six-sided die in Example A.15 is a
random process that determines a probability space in which

We perform the experiment in the space each time we throw the die.

Example A.18

www.EBooksWorld.ir

Suppose we have a population of n people, some of whom have cancer, we sample
people with replacement, and we sample in such a way as to never give preference to
any particular individual. This random process determines a probability space in
which the population is the sample space (recall that “sample space” and
“population” can be used interchangeably) and the probability of each person being
sampled (elementary event) is 1/n. The probability of a person with cancer being
sampled is

Each time we perform the experiment, we say that we sample (pick) a person at
random from the population. The set of outcomes in all repetitions of the experiment
is called a random sample of the population. Using statistical techniques, it can be
shown that if a random sample is large, then it is highly probable that the sample is
representative of the population. For example, if the random sample is large, and of
the people sampled have cancer, it is highly probable that the fraction of people in
the population with cancer is close to .

Example A.19
Suppose we have an ordinary deck of playing cards, and we turn over the cards in
sequence. This process is not random, and the cards are not picked at random. This
nonrandom process determines a different probability space each time an outcome is
generated. On the first trial, each card has a probability of . On the second trial, the
card turned over in the first trial has a probability of 0 and each of the other cards has
a probability of , and so on.

Suppose we repeatedly draw the top card, replace it, and shuffle once. Is this a
random process and are the cards picked at random? The answer is no. The magician
and statistician Persi Diaconis has shown that the cards must be shuffled seven times
to thoroughly mix them and make the process random (see Aldous and Diaconis,
1986).

Although von Mises’ notion of randomness is intuitively very appealing today, his
views were not widely held at the time he developed his theory (in the early part of
the 20th century). His strongest opponent was the philosopher K. Marbe. Marbe held
that nature is endowed with a memory. According to his theory, if tails comes up 15
consecutive times in repeated tosses of a fair coin—that is, a coin for which the
relative frequency of heads is 0.5—the probability of heads coming up on the next
toss is increased because nature will compensate for all the previous tails. If this
theory were correct, we could improve our chances of winning by betting on heads
only after a long sequence of tails. Iverson et al. (1971) conducted experiments that
substantiated the views of von Mises and Kolmogorov. Specifically, their

www.EBooksWorld.ir

experiments showed that coin tosses and dice throws do generate random sequences.
Today few scientists subscribe to Marbe’s theory, although quite a few gamblers
seem to.

Von Mises’ original theory appeared in von Mises (1919) and is discussed more
accessibly in von Mises (1957). A detailed coverage of compressible sequences and
random sequences can be found in Van Lambalgen (1987). Neapolitan (1992) and
Van Lambalgen (1987) both address the difficulties in defining a random process as
one that definitely generates a random sequence.

• A.8.2 The Expected Value
We introduce the expected value (average) with an example.

Example A.20
Suppose we have four students with heights of 68, 72, 67, and 74 inches. Their
average height is given by

Suppose now that we have 1,000 students whose heights are distributed according
to the following percentages:

To compute the average height, we could first determine the height of each student
and proceed as before. However, it is much more efficient to simply obtain the
average as follows:

Notice that the percentages in this example are simply probabilities obtained using
the Principle of Indifference. That is, the fact that 20% of the students are 66 inches
tall means that 200 students are 66 inches tall, and if we pick a student at random
from the 1,000 students, then

www.EBooksWorld.ir

In general, the expected value is defined as follows.

Definition
Suppose we have a probability space with the sample space

and each outcome ei has a real number f(ei) associated with it. Then f(ei) is called a
random variable on the sample space, and the expected value, or average, of f(ei)
is given by

Random variables are called “random” because random processes can determine
the values of random variables. The terms “chance variable” and “stochastic
variable” are also used. We use “random variable” because it is the most popular.

Example A.21
Suppose we have the asymmetrical six-sided die in Example A.15. That is,

Our sample space consists of the six different sides that can come up, a random
variable on this sample space is the number written on the side, and the expected
value of this random variable is

If we threw the die many times, we would expect the average of the numbers showing
up to equal about 3.48.

A sample space does not have a unique random variable defined on it. Another
random variable on this sample space might be the function that assigns 0 if an odd
number comes up and 1 if an even number comes up. The expected value of this
random variable is

www.EBooksWorld.ir

Example A.22
Suppose the 1,000 students in Example A.20 are our sample space. The height, as
computed in Example A.20, is one random variable on this sample space. Another
one is the weight. If the weights are distributed according to the following
percentages:

the expected value of this random variable is

EXERCISES

Section A.1
1. Determine each of the following

(a) [2.8]
(b) [−10.42]
(c) [4.2]
(d) [−34.92]
(f) [2π]

2. Show that [n] = − [−n].
3. Show that, for any real x,

4. Show that for any integers a > 0, b > 0, and n,

www.EBooksWorld.ir

5. Write each of the following using summation (sigma) notation.
(a) 2 + 4 + 6 + · · · + 2 (99) + 2 (100)
(b) 2 + 4 + 6 + · · · + 2 (n − 1) + 2n
(c) 3 + 12 + 27 + · · · + 1200

6. Evaluate each of the following sums.

Section A.2
7. Graph the function What are the domain and range of this function?
8. Graph the function f(x) = (x – 2) / (x + 5). What are the domain and range of this

function?
9. Graph the function f(x) = x . What are the domain and range of this function?

10. Graph the function f(x) = x . What are the domain and range of this function?

Section A.3
11. Use mathematical induction to show that, for all integers n > 0,

12. Use mathematical induction to show that n2 − n is even for any positive integer
n.

13. Use mathematical induction to show that, for all integers n > 4,

www.EBooksWorld.ir

14. Use mathematical induction to show that, for all integers n > 0,

Section A.4
15. Prove that if a and b are both odd integers, a + b is an even integer. Is the reverse

implication true?

16. Prove that a + b is an odd integer if and only if a and b are not both odd or both
even integers.

Section A.5
17. Determine each of the following.

(a) log 1, 000 (b) log 100, 000
(c) log4 64
(d)

(e) log5 125
(f) log 23
(g) lg (16 × 8)
(h) log (1,000/100, 000)
(i) 2lg 125

18. Graph f(x) = 2x and g (x) = lg x on the same coordinate system.

19. Give the values of x for which x2 + 6x + 12 > 8x + 20.

20. Give the values of x for which x > 500 lg x.

21. Show that f(x) = 23 lg x is not an exponential function.

22. Show that, for any positive integer n,

23. Find a formula for lg (n!) using Stirling’s approximation for n!,

for large n.

www.EBooksWorld.ir

Section A.6
24. Let U = {2, 4, 5, 6, 8, 10, 12}, S = {2, 4, 5, 10}, and T = {2, 6, 8, 10}. (U is the

universal set.) Determine each of the following.
(a) S T
(b) S ∩ T
(c) S – T
(d) T – S
(e) ((S ∩ T) S)
(f) U − S (called the complement of S)

25. Given that the set S contains n elements, show that S has 2n subsets.

26. Let |S| stand for the number of elements in S. Show the validity of

27. Show that the following are equivalent.
(a) S ⊂ T
(b) S ∩ T = S
(c) S T = T

Section A. 7
28. Determine the number of permutations of 10 objects taken six at a time.

29. Determine the number of combinations of 10 objects taken six at a time. That is,
determine

30. Suppose there is a lottery in which four balls are drawn from an urn containing
10 balls. A winning ticket must show the balls in the order in which they are
drawn. How many distinguishable tickets exist?

31. Suppose there is a lottery in which four balls are drawn from a bin containing 10
balls. A winning ticket must merely show the correct balls without regard for the
order in which they are drawn. How many distinguishable tickets exist?

32. Use mathematical induction to prove the Binomial theorem, given in Section A.7.

33. Show the validity of the following identity.

www.EBooksWorld.ir

34. Assume that we have k1 objects of the first kind, k2 objects of the second kind,…,
and km objects of the mth kind, where k1 + k2 + · · · + km = n. Show that the number
of distinguishable permutations of these n objects is equal to

35. Let f(n, m) be the number of ways to distribute n identical objects into m sets,
where the ordering of the sets matters. For example, if n = 4, m = 2, and our set of
objects is {A, A, A, A}, the possible distributions are as follows:
1. {A, A, A, A}, Ø
2. {A, A, A}, {A}
3. {A, A}, {A, A}
4. {A}, {A, A, A}
5. Ø, {A, A, A, A}
We see that f(4, 2) = 5. Show that in general

Hint: Not that the set of all such distributions consists of all those that have n A’s
in the first slot, all those that have n − 1 A’s in the first slot,..., and all those that
have 0 A’s in the first slot. The use induction on m.

36. Show the validity of the following identity.

Section A.8
37. Suppose we have the lottery in Exercise 30. Assume all possible tickets are

printed and all tickets are distinct.
(a) Compute the probability of winning if one ticket is purchased.
(b) Compute the probability of winning if seven tickets are purchased.

38. Suppose a poker hand (five cards) is dealt from an ordinary deck (52 cards).
(a) Compute the probability of the hand containing four aces.
(b) Compute the probability of the hand containing four of a kind.

39. Suppose a fair six-sided die (that is, the probability of each side turning up is)

www.EBooksWorld.ir

is to be rolled. The player will receive an amount of dollars equal to the number
of dots that turn up, except when five or six dots turn up, in which case the player
will lose $5 or $6, respectively.
(a) Compute the expected value of the amount of money the player will win or

lose.
(b) If the game is repeated 100 times, compute the most money the player will

lose, the most money the player will win, and the amount the player can
expect to win or lose.

40. Assume we are searching for an element in a list of n distinct elements. What is
the average (expected) number of comparisons required when the Sequential
Search algorithm (linear search) is used?

41. What is the expected number of movements of elements in a delete operation on
an array of n elements?

www.EBooksWorld.ir

Appendix B

Solving Recurrence Equations: With
Applications to Analysis of Recursive
Algorithms
The analysis of recursive algorithms is not as straightforward as it is for iterative
algorithms. Ordinarily, however, it is not difficult to represent the time complexity of
a recursive algorithm by a recurrence equation. The recurrence equation must then be
solved to determine the time complexity. We discuss techniques for solving such
equations and for using the solutions in the analysis of recursive algorithms.

B.1 Solving Recurrences Using Induction
Mathematical induction is reviewed in Appendix A. Here we show how it can be
used to analyze some recursive algorithms. We consider first a recursive algorithm
that computes n!.

Algorithm B.1
Factorial
Problem: Determine n! = n (n − 1) (n − 2) · · · (3) (2) (1) when n ≥ 1.
0! = 1
Inputs: a nonnegative integer n.
Outputs: n!.

To gain insight into the efficiency of this algorithm, let’s determine how many times
this function does the multiplication instruction for each value of n. For a given n, the
number of multiplications done is the number done when fact (n − 1) is computed

www.EBooksWorld.ir

plus the one multiplication done when n is multiplied by fact (n − 1). If we represent
the number of multiplications done for a given value of n by tn, we have established
that

An equation such as this is called a recurrence equation because the value of the
function at n is given in terms of the value of the function at a smaller value of n. A
recurrence by itself does not represent a unique function. We must also have a starting
point, which is called an initial condition. In this algorithm, no multiplications are
done when n = 0. Therefore, the initial condition is

We can compute tn for larger values of n as follows:

Continuing in this manner gives us more and more values of tn, but it does not enable
us to compute tn, for an arbitrary n without starting at 0. We need an explicit
expression for tn. Such an expression is called a solution to the recurrence equation.
Recall that it is not possible to find a solution using induction. Induction can only
verify that a candidate solution is correct. (Constructive induction, which is
discussed in Section 8.5.4, can help us discover a solution.) We can obtain a
candidate solution to this recurrence by inspecting the first few values. An inspection
of the values just computed indicates that

is the solution. Now that we have a candidate solution, we can use induction to try to
prove that it is correct.
Induction base: For n = 0,

Induction hypothesis: Assume, for an arbitrary positive integer n, that

Induction step: We need to show that

If we insert n + 1 in the recurrence, we get

www.EBooksWorld.ir

This completes the induction proof that our candidate solution tn is correct. Notice
that we highlight the terms that are equal by the induction hypothesis. We often do this
in induction proofs to show where the induction hypothesis is being applied.
There are two steps in the analysis of a recursive algorithm. The first step is
determining the recurrence; the second step is solving it. Our purpose here is to show
how to solve recurrences. Determining the recurrences for the recursive algorithms in
this text is done when we discuss the algorithms. Therefore, in the remainder of this
appendix we do not discuss algorithms; rather, we simply take the recurrences as
given. We now present more examples of solving recurrences using induction.

Example B.1
Consider the recurrence

The first few values are

It appears that

We use induction to prove that this is correct.
Induction base: For n = 1,

Induction hypothesis: Assume, for an arbitrary n > 0 and n a power of 2, that

Induction step: Because the recurrence is only for powers of 2, the next value to
consider after n is 2n. Therefore, we need to show that

If we insert 2n in the recurrence, we get

www.EBooksWorld.ir

Example B.2
Consider the recurrence

The first few values are

It appears that

We use induction to prove that this is correct.
Induction base: For n = 1,

Induction hypothesis: Assume, for an arbitrary n > 0 and n a power of 2, that

Induction step: We need to show that

If we insert 2n in the recurrence, we get

This completes the induction proof. Finally, because

the solution to this recurrence is usually given as

Example B.3
Consider the recurrence

www.EBooksWorld.ir

The first few values are

There is no obvious candidate solution suggested by these values. As mentioned
earlier, induction can only verify that a solution is correct. Because we have no
candidate solution, we cannot use induction to solve this recurrence. However, it can
be solved using the technique discussed in the next section.

B.2 Solving Recurrences Using the Characteristic Equation
We develop a technique for determining the solutions to a large class of recurrences.

• B.2.1 Homogeneous Linear Recurrences

Definition
A recurrence of the form

where k and the ai terms are constants, is called a homogeneous linear recurrence
equation with constant coefficients.

Such a recurrence is called “linear” because every term ti appears only to the first
power. That is, there are no terms such as t2n−i, tn−itn−j, and so on. However, there is
the additional requirement that there be no terms tc(n−i), where c is a positive constant
other than 1. For example, there may not be terms such as tn/2, t3(n−4), etc. Such a
recurrence is called “homogeneous” because the linear combination of the terms is
equal to 0.

Example B.4
The following are homogeneous linear recurrence equations with constant

www.EBooksWorld.ir

coefficients:

Example B.5
The Fibonacci sequence, which is discussed in Subsection 1.2.2, is defined as
follows:

If we subtract tn−1 and tn−2 from both sides, we get

which shows that the Fibonacci sequence is defined by a homogeneous linear
recurrence.

Next we show how to solve a homogeneous linear recurrence.

Example B.6
Suppose we have the recurrence

Notice that if we set

then

Therefore, tn = rn is a solution to the recurrence if r is a root of

Because

www.EBooksWorld.ir

the roots are r = 0, and the roots of

These roots can be found by factoring:

The roots are r = 3 and r = 2. Therefore,

are all solutions to the recurrence. We verify this for 3n by substituting it into the left
side of the recurrence, as follows:

With this substitution, the left side becomes

which means that 3n is a solution to the recurrence.
We have found three solutions to the recurrence, but we have more solutions,

because if 3n and 2n are solutions, then so is

where c1 and c2 are arbitrary constants. This result is obtained in the exercises.
Although we do not show it here, it is possible to show that these are the only
solutions. This expression is therefore the general solution to the recurrence. (By
taking c1 = c2 = 0, the trivial solution tn = 0 is included in this general solution.) We
have an infinite number of solutions, but which one is the answer to our problem?
This is determined by the initial conditions. Recall that we had the initial conditions

These two conditions determine unique values of c1 and c2 as follows. If we apply
the general solution to each of them, we get the following two equations in two
unknowns:

These two equations simplify to

www.EBooksWorld.ir

The solution to this system of equations is c1 = 1 and c2 = −1. Therefore, the solution
to our recurrence is

If we had different initial conditions in the preceding example, we would get a
different solution. A recurrence actually represents a class of functions, one for each
different assignment of initial conditions. Let’s see what function we get if we use the
initial conditions

with the recurrence given in Example B.6. Applying the general solution in Example
B.6 to each of these conditions yields

These two equations simplify to

The solution to this system is c1 = 0 and c2 = 1. Therefore, the solution to the
recurrence with these initial conditions is

Equation B.1 in Example B.6 is called the characteristic equation for the recurrence.
In general, this equation is defined as follows.

Definition
The characteristic equation for the homogeneous linear recurrence equation with
constant coefficients

is defined as

The value of r0 is simply 1. We write the term as r0 to show the relationship
between the characteristic equation and the recurrence.

Example B.7

www.EBooksWorld.ir

The characteristic equation for the recurrence appears below it:

We use an arrow to show that the order of the characteristic equation is k (in this
case, 2).

The steps used to obtain the solution in Example B.6 can be generalized into a
theorem. To solve a homogeneous linear recurrence with constant coefficients, we
need only refer to the theorem. The theorem follows, and its proof appears near the
end of this appendix.

 Theorem B.1
Let the homogeneous linear recurrence equation with constant coefficients

be given. If its characteristic equation

has k distinct solutions r1, r2,…, rk, then the only solutions to the recurrence are

where the ci terms are arbitrary constants.

The values of the k constants ci are determined by the initial conditions. We need k
initial conditions to uniquely determine k constants. The method for determining the
values of the constants is demonstrated in the following examples.

Example B.8
We solve the recurrence

1. Obtain the characteristic equation:

www.EBooksWorld.ir

2. Solve the characteristic equation:

The roots are r = 4 and r = −1.
3. Apply Theorem B.1 to get the general solution to the recurrence:

4. Determine the values of the constants by applying the general solution to the
initial conditions:

These values simplify to

The solution to this system is c1 = 1/5 and c2 = −1/5.
5. Substitute the constants into the general solution to obtain the particular solution:

Example B.9
We solve the recurrence that generates the Fibonacci sequence:

1. Obtain the characteristic equation:

2. Solve the characteristic equation:
From the formula for the solution to a quadratic equation, the roots of this
characteristic equation are

3. Apply Theorem B.1 to get the general solution to the recurrence:

www.EBooksWorld.ir

4. Determine the values of the constants by applying the general solution to the
initial conditions:

These equations simplify to

Solving this system yields c1 = 1/√5 and c2 = −1/√5.
5. Substitute the constants into the general solution to obtain the particular solution:

Although Example B.9 provides an explicit formula for the nth Fibonacci term, it
has little practical value, because the degree of precision necessary to represent √5
increases as n increases.
Theorem B.1 requires that all k roots of the characteristic equation be distinct. The
theorem does not allow a characteristic equation of the following form:

Because the term r −2 is raised to the third power, 2 is called a root of multiplicity 3
of the equation. The following theorem allows for a root to have a multiplicity. The
proof of the theorem appears near the end of this appendix.

 Theorem B.2
Let r be a root of multiplicity m of the characteristic equation for a homogeneous
linear recurrence with constant coefficients. Then

are all solutions to the recurrence. Therefore, a term for each of these solutions is

www.EBooksWorld.ir

included in the general solution (as given in Theorem B. 1) to the recurrence.

Example applications of this theorem follow.

Example B.10
We solve the recurrence

1. Obtain the characteristic equation:

2. Solve the characteristic equation:

The roots are r = 1 and r = 3, and r = 3 is a root of multiplicity 2.
3. Apply Theorem B.2 to get the general solution to the recurrence:

We have included terms for 3n and n3n because 3 is a root of multiplicity 2.
4. Determine the values of the constants by applying the general solution to the

initial conditions:

These values simplify to

Solving this system yields c1 = −1, c2 = 1, and c3 =
5. Substitute the constants into the general solution to obtain the particular solution:

www.EBooksWorld.ir

Example B.11
We solve the recurrence

1. Obtain the characteristic equation:

2. Solve the characteristic equation:

The roots are r = 3 and r = 1, and the root 1 has multiplicity 2.
3. Apply Theorem B.2 to obtain the general solution to the recurrence:

4. Determine the values of the constants by applying the general solution to the
initial conditions:

These equations simplify to

Solving this system yields c1 = 0, c2 = 1, and c3 = 1.
5. Substitute the constants into the general solution to obtain the particular solution:

www.EBooksWorld.ir

• B.2.2 Nonhomogeneous Linear Recurrences

Definition
A recurrence of the form

where k and the ai terms are constants and f(n) is a function other than the zero
function, is called a nonhomogeneous linear recurrence equation with constant
coefficients.

By the zero function, we mean the function f(n) = 0. If we used the zero function, we
would have a homogeneous linear recurrence equation. There is no known general
method for solving a nonhomogeneous linear recurrence equation. We develop a
method for solving the common special case

where b is a constant and p (n) is a polynomial in n.

Example B.12
The recurrence

is an example of Recurrence B.2 in which k = 1, b = 4, and p (n) = 1.

Example B.13
The recurrence

is an example of Recurrence B.2 in which k = 1, b = 4, and p (n) = 8n + 7.

The special case shown in Recurrence B.2 can be solved by transforming it into a
homogeneous linear recurrence. The next sample illustrates how this is done.

Example B.14
We solve the recurrence

www.EBooksWorld.ir

The recurrence is not homogeneous because of the term 4n on the right. We can get rid
of that term as follows:

1. Replace n with n − 1 in the original recurrence so that the recurrence is
expressed with 4n−1 on the right:

2. Divide the original recurrence by 4 so that the recurrence is expressed in another
way with 4n−1 on the right:

3. Our original recurrence must have the same solutions as these versions of it.
Therefore, it must also have the same solutions as their difference. This means
we can get rid of the term 4n−1 by subtracting the recurrence obtained in Step 1
from the recurrence obtained in Step 2. The result is

We can multiply by 4 to get rid of the fractions:

This is a homogeneous linear recurrence equation, which means that it can be solved
by applying Theorem B.1. That is, we solve the characteristic equation

obtain the general solution

and use the initial conditions t0 = 0 and t1 = 4 to determine the particular solution:

In Example B.14, the general solution has the terms

The first term comes from the characteristic equation that would be obtained if the
recurrence were homogeneous, whereas the second term comes from the
nonhomogeneous part of the recurrence—namely, b. The polynomial p (n) in this

www.EBooksWorld.ir

example equals 1. When this is not the case, the manipulations necessary to transform
the recurrence into a homogeneous one are more complex. However, the outcome is
simply to give b a multiplicity in the characteristic equation for the resultant
homogeneous linear recurrence. This result is given in the theorem that follows. The
theorem is stated without proof. The proof would follow steps similar to those in
Example B.14.

 Theorem B.3
A nonhomogeneous linear recurrence of the form

can be transformed into a homogeneous linear recurrence that has the characteristic
equation

where d is the degree of p (n). Notice that the characteristic equation is composed of
two parts:

1. The characteristic equation for the corresponding homogeneous recurrence
2. A term obtained from the nonhomogeneous part of the recurrence

If there is more than one term like bnp (n) on the right side, each one contributes a
term to the characteristic equation.

Before applying this theorem, we recall that the degree of a polynomial p (n) is the
highest power of n. For example,

Now let’s apply Theorem B.3.

Example B.15
solve the recurrence

1. Obtain the characteristic equation for the corresponding homogeneous equation:

www.EBooksWorld.ir

2. Obtain a term from the nonhomogeneous part of the recurrence:

The term from the nonhomogeneous part is

3. Apply Theorem B.3 to obtain the characteristic equation from the terms obtained
in Steps 1 and 2. The characteristic equation is

After obtaining the characteristic equation, proceed exactly as in the linear
homogeneous case:

4. Solve the characteristic equation:

The roots are r = 3 and r = 4, and the root r = 4 has multiplicity 2.
5. Apply Theorem B.2 to get the general solution to the recurrence:

We have three unknowns, but only two initial conditions. In this case, we must find
another initial condition by computing the value of the recurrence at the next-largest
value of n. In this case, that value is 2. Because

and t1 = 12,

In the exercises you are asked to (6) determine the values of the constants and (7)
substitute the constants into the general solution to obtain

Example B.16
We solve the recurrence

www.EBooksWorld.ir

1. Obtain the characteristic equation for the corresponding homogeneous
recurrence:

2. Obtain a term from the nonhomogeneous part of the recurrence:

The term is

3. Apply Theorem B.3 to obtain the characteristic equation from the terms obtained
in Steps 1 and 2. The characteristic equation is

4. Solve the characteristic equation:

The root is r = 1, and it has a multiplicity of 3.
5. Apply Theorem B.2 to get the general solution to the recurrence:

We need two more initial conditions:

In the exercises you are asked to (6) determine the values of the constants and (7)
substitute the constants into the general solution to obtain

Example B.17

www.EBooksWorld.ir

We solve the recurrence

1. Determine the characteristic equation for the corresponding homogeneous
recurrence:

2. This is a case in which there are two terms on the right. As Theorem B.3 states,
each term contributes to the characteristic equation, as follows:

The two terms are

3. Apply Theorem B.3 to obtain the characteristic equation from all the terms:

You are asked to complete this problem in the exercises.

• B.2.3 Change of Variables (Domain Transformations)
Sometimes a recurrence that is not in the form that can be solved by applying
Theorem B.3 can be solved by performing a change of variables to transform it into a
new recurrence that is in that form. The technique is illustrated in the following
examples. In these examples, we use T (n) for the original recurrence, because tk is
used for the new recurrence. The notation T (n) means the same things as tn—namely,
that a unique number is associated with each value of n.

Example B.18
We solve the recurrence

www.EBooksWorld.ir

Recall that we already solved this recurrence using induction in Section B.1. We
solve it again to illustrate the change of variables technique. The recurrence is not in
the form that can be solved by applying Theorem B.3 because of the term n/2. We can
transform it into a recurrence that is in that form as follows. First, set

Second, substitute 2k for n in the recurrence to obtain

Next, set

in Recurrence B.3 to obtain the new recurrence,

This new recurrence is in the form that can be solved by applying Theorem B.3.
Therefore, applying that theorem, we can determine its general solution to be

The general solution to our original recurrence can now be obtained with the
following two steps:

1. Substitute T(2k) for tk in the general solution to the new recurrence:

2. Substitute n for 2k and lg n for k in the equation obtained in Step 1:

Once we have the general solution to our original recurrence, we proceed as usual.
That is, we use the initial condition T (1) = 1, determine a second initial condition,
and then compute the values of the constants to obtain

Example B.19
www.EBooksWorld.ir

We solve the recurrence

Recall that we were unable to solve this recurrence using induction in Example B.3.
We solve it here with a change of variables. First, substitute 2k for n to yield

Next, set

in this equation to obtain

Apply Theorem B.3 to this new recurrence to obtain

Perform the steps that give the general solution to the original recurrence:
1. Substitute T (2k) for tk in the general solution to the new recurrence:

2. Substitute n for 2k and lg n for k in the equation obtained in Step 1:

Now proceed as usual. That is, use the initial condition T (1) = 0, determine two
more initial conditions, and then compute the values of the constants. The solution is

Example B.20
We solve the recurrence

www.EBooksWorld.ir

Substitute 2k for n in the recurrence to yield

Set

in Recurrence (B.4) to obtain

This recurrence does not look exactly like the kind required in Theorem B.3, but we
can make it look like that as follows:

Now apply Theorem B.3 to this new recurrence to obtain

Perform the steps that give the general solution to the original recurrence:
1. Substitute T (2k) for tk in the general solution to tk:

2. Substitute n for 2k and lg n for k in the equation obtained in Step 1:

Use the initial condition T (1) = 0, determine a second initial condition, and then
compute the values of the constants. The solution is

B.3 Solving Recurrences by Substitution
Sometimes a recurrence can be solved using a technique called substitution. You can
try this method if you cannot obtain a solution using the methods in the last two
sections. The following examples illustrate the substitution method.

www.EBooksWorld.ir

Example B.21
We solve the recurrence

In a sense, substitution is the opposite of induction. That is, we start at n and work
backward:

We then substitute each equality into the previous one, as follows:

The last equality is the result in Example A.1 in Appendix A.

The recurrence in Example B.21 could be solved using the characteristic equation.
The recurrence in the following example cannot.

Example B.22
We solve the recurrence

First, work backward from n:

www.EBooksWorld.ir

Then substitute each equation into the previous one:

for n not small. The approximate equality is obtained from Example A.9 in Appendix
A.

B.4 Extending Results for n, a Power of a Positive Constant
b, to n in General

It is assumed in the material that follows that you are familiar with the material in
Chapter 1.
In the case of some recursive algorithms, we can readily determine the exact time
complexity only when n is a power of some base b, where b is a positive constant.
Often the base b is 2. This is true in particular for many divide-and-conquer
algorithms (see Chapter 2). Intuitively, it seems that a result that holds for n a power
of b should approximately hold for n in general. For example, if for some algorithm
we establish that

www.EBooksWorld.ir

for n a power of 2, it seems that for n in general we should be able to conclude that

It turns out that usually we can draw such a conclusion. Next we discuss situations in
which this is the case. First we need some definitions. These definitions apply to
arbitrary functions whose domains and ranges are any subsets of the real numbers,
but we state them for complexity functions (that is, functions that map the positive
integers to the positive reals) because these are the functions that interest us here.

Definition
A complexity function f(n) is called strictly increasing if f(n) always gets larger
as n gets larger. That is, if n1 > n2, then

The function shown in Figure B.1(a) is strictly increasing. (For clarity, the domains
of the functions in Figure B.1 are all the nonnegative reals.) Many of the functions we
encounter in algorithm analysis are strictly increasing for nonnegative values of n.
For example, lg n, n, n lg n, n2, and 2n are all strictly increasing as long as n is
nonnegative.

Definition
A complexity function f(n) is called nondecreasing if f(n) never gets smaller as n
gets larger. That is, if n1 > n2, then

Figure B.1 Four functions.

www.EBooksWorld.ir

Any strictly increasing function is nondecreasing, but a function that can level out is
nondecreasing without being strictly increasing. The function shown in Figure B.1(b)
is an example of such a function. The function in Figure B.1(c) is not nondecreasing.
The time (or memory) complexities of most algorithms are ordinarily nondecreasing
because the time it takes to process an input usually does not decrease as the input
size becomes larger. Looking at Figure B.1, it seems that we should be able to extend
an analysis for n a power of b to n in general as long as the function is
nondecreasing. For example, suppose we have determined the values of f(n) for n a
power of 2. In the case of the function in Figure B.1(c), anything can happen between,
say, 23 = 8 and 24 = 16. Therefore, nothing can be concluded about the behavior of the
function between 8 and 16 from the values at 8 and 16. However, in the case of a
nondecreasing function f(n), if 8 ≤ n ≤ 16 then

So it seems that we should be able to determine the order of f(n) from the values of
f(n) for n a power of 2. What seems to be true intuitively can indeed be proven for a
large class of functions. Before giving a theorem stating this, we recall that order has
to do only with long-range behavior. Because initial values of a function are
unimportant, the theorem requires only that the function be eventually nondecreasing.
We have the following definition:

www.EBooksWorld.ir

Definition
A complexity function f(n) is called eventually nondecreasing if for all n past
some point the function never gets smaller as n gets larger. That is, there exists an
N such that if n1 > n2 > N, then

Any nondecreasing function is eventually nondecreasing. The function shown in
Figure 3.1(d) is an example of an eventually nondecreasing function that is not
nondecreasing. We need the following definition before we give the theorem for
extending the results for n a power of b:

Definition
A complexity function f(n) is called smooth if f(n) is eventually nondecreasing and
if

Example B.23
The functions lg n, n, n lg n, and nk, where k ≥ 0, are all smooth. We show this for lg
n. In the exercises you are asked to show it for the other functions. We have already
noted that lg n is eventually nondecreasing. As to the second condition, we have

Example B.24
The function 2n is not smooth, because the Properties of Order in Section 1.4.2 in
Chapter 1 imply that

Therefore,

We now state the theorem that enables us to generalize results obtained for n a
power of b. The proof appears near the end of this appendix.

www.EBooksWorld.ir

 Theorem B.4
Let b ≥ 2 be an integer, let f(n) be a smooth complexity function, and let T (n) be an
eventually nondecreasing complexity function. If

then

Furthermore, the same implication holds if Θ is replaced by “big O,” Ω, or “small
o.”

By “T (n) Θ(f(n)) for n a power of b,” we mean that the usual conditions for Θ
are known to hold when n is restricted to being a power of b. Notice in Theorem B.4
the additional requirement that f(n) be smooth.

Next we apply Theorem B.4

 Example B.25
Suppose for some complexity function we establish that

When n is a power of 2, we have the recurrence in Example B.18. Therefore, by that
example,

Because lg n is smooth, we need only show that T (n) is eventually nonde-creasing in
order to apply Theorem B.4 to conclude that

One might be tempted to conclude that T (n) is eventually nondecreasing from the fact
that lg n + 1 is eventually nondecreasing. However, we cannot do this because we
know only that T (n) = lg n + 1 when n is a power of 2. Given only this fact, T (n)
could exhibit any possible behavior in between powers of 2.

We show that T (n) is eventually nondecreasing by using induction to establish for
n ≥ 2 that if 1 ≤ k < n, then

Induction base: For n = 2,

www.EBooksWorld.ir

Therefore,

Induction hypothesis: One way to make the induction hypothesis is to assume that the
statement is true for all m ≤ n. Then, as usual, we show that it is true for n + 1. This
is the way we need it to be stated here. Let n be an arbitrary integer greater than or
equal to 2. Assume for all m ≤ n that if k < m, then

Induction step: Because in the induction hypothesis we assumed for k < n that

we need only show that

To that end, it is not hard to see that if n ≥ 1, then

Therefore, by the induction hypothesis,

Using the recurrence, we have

and we are done.

Finally, we develop a general method for determining the order of some common
recurrences.

 Theorem B.5
Suppose a complexity function T (n) is eventually nondecreasing and satisfies

www.EBooksWorld.ir

where b ≥ 2 and k ≥ 0 are constant integers, and a, c, and d are constants such that a
> 0, c > 0, and d ≥ 0. Then

Furthermore, if, in the statement of the recurrence,

is replaced by

then Result B.5 holds with “big O” or Ω, respectively, replacing Θ.
We can prove this theorem by solving the general recurrence using the

characteristic equation and then applying Theorem B.4. Example applications of
Theorem B.5 follow.

Example B.26
Suppose that T (n) is eventually nondecreasing and satisfies

By Theorem B.5, because 8 < 42,

Example B.27
Suppose that T (n) is eventually nondecreasing and satisfies

By Theorem B.5, because 9 > 31,

www.EBooksWorld.ir

Theorem B.5 was stated in order to introduce an important theorem as simply as
possible. It is actually the special case, in which the constant s equals 1, of the
following theorem.

 Theorem B.6
Suppose that a complexity function T (n) is eventually nondecreasing and satisfies

where s is a constant that is a power of b, b ≥ 2 and k ≥ 0 are constant integers, and
a, c, and d are constants such that a > 0, c > 0, and d ≥ 0. Then the results in Theorem
B.5 still hold.

Example B.28
Suppose that T (n) is eventually nondecreasing and satisfies

By Theorem B.6, because 8 = 23,

This concludes our discussion of techniques for solving recurrences. Another
technique is to use “generating functions” to solve recurrences. This technique is
discussed in Sahni (1988). Bentley, Haken, and Sax (1980) provide a general method
for solving recurrences arising from the analysis of divide-and-conquer algorithms
(see Chapter 2).

B.5 Proofs of Theorems
The following lemma is needed to prove Theorem B.1.

www.EBooksWorld.ir

 Lemma B.1
Suppose we have the homogeneous linear recurrence

If r1 is a root of the characteristic equation

then

is a solution to the recurrence.

Proof: If, for i = n − k,..., n, we substitute ri
1 for ti in the recurrence, we obtain

Therefore, r1
n is a solution to the recurrence.

Proof of Theorem B.1 It is not hard to see that, for a linear homogeneous recurrence,
a constant times any solution and the sum of any two solutions are each solutions to
the recurrence. We can therefore apply Lemma B.1 to conclude that, if

are the k distinct roots of the characteristic equation, then

where the ci terms are arbitrary constants, is a solution to the recurrence. Although
we do not show it here, one can prove that these are the only solutions.

 Proof of Theorem B.2 We prove the case where the multiplicity m equals 2. The
case of a larger m is a straightforward generalization. Let r1 be a root of multiplicity
2. Set

where q′ (r) means the first derivative. If we substitute for ti in the recurrence, we
obtain u (r1). Therefore, if we can show that u (r1) = 0, we can conclude that
is a solution to the recurrence, and we are done. To this end, we have

www.EBooksWorld.ir

Therefore, to show that u (r1) = 0, we need only show that p (r1) and p′ (r1) both
equal 0. We show this as follows. Because r1 is a solution of multiplicity 2 of the
characteristic equation p (r), there exists a v (r) such that

Therefore,

and p (r1) and p′ (r1) both equal 0. This completes the proof.
 Proof of Theorem B.4 We obtain the proof for “big O.” Proofs for Ω and Θ can be

established in a similar manner. Because T (n) O (f(n)) for all n such that n is a
power of b, there exist a positive c1 and a nonnegative integer N1 such that, for n > N1

and n a power of b,

For any positive integer n, there exists a unique k such that

It is possible to show, in the case of a smooth function, that, if b ≥ 2, then

That is, if this condition holds for 2, it holds for any b > 2. Therefore, there exist a
positive constant c2 and a nonnegative integer N2 such that, for n > N2,

Therefore, if bk≥ N2,

Because T (n) and f(n) are both eventually nondecreasing, there exists an N3, such
that, for m > n > N3,

Let r be so large that

If n > br and k is the value corresponding to n in Inequality B.7, then

www.EBooksWorld.ir

Therefore, by Inequalities B.6, B.7, B.8, and B.9, for n > br,

which means that

EXERCISES

Section B.1
1. Use induction to verify the candidate solution to each of the following recurrence

equations.
(a) tn = 4tn−1 for n > 1

t1 = 3
The candidate solution is tn = 3 (4n−1).

(b) tn = tn−1 + 5 for n > 1
t1 = 2

The candidate solution is tn = 5n − 3.
(c) tn = tn−1 + n for n > 1

t1 = 1
The candidate solution is

(d) tn = tn−1 + n2 for n > 1
t1 = 1

The candidate solution is

(e)

The candidate solution is
(f) tn = 3tn−1 + 2n for n > 1

t1 = 1
The candidate solution is

(g)

The candidate solution is tn = 5

(h) tn = ntn−1 for n > 0

www.EBooksWorld.ir

t0 = 1
The candidate solution is tn = n!.

2. Write a recurrence equation for the nth term of the sequence 2, 6, 18, 54,..., and
use induction to verify the candidate solution sn = 2 (3n−1)

3. The number of moves (mn for n rings) needed in the Towers of Hanoi problem
(see Exercise 17 in Chapter 2) is given by the following recurrence equation

Use induction to show that the solution to this recurrence equation is mn = 2n − 1.
4. The following algorithm returns the position of the largest element in the array S.

Write a recurrence equation for the number of comparisons tn needed to find the
largest element. Use induction to show that the equation has the solution tn = n −
1.

The top-level call is
max position (1, n).

5. The ancient Greeks were very interested in sequences resulting from geometric
shapes such as the following triangular numbers:

Write a recurrence equation for the nth term in this sequence, guess a solution,
and use induction to verify your solution.

6. Into how many regions do n lines divide a plane so that every pair of lines
intersect, but no more than two lines intersect at a common point? Write a
recurrence equation for the number of regions for n lines, guess a solution for
your equation, and use induction to verify your solution.

www.EBooksWorld.ir

7. Show that is the solution to the following recurrence equation:

8. Write and implement an algorithm that computes the value of the following
recurrence, and run it using different problem instances. Use the results to guess
a solution for this recurrence, and use induction to verify your solution.

Section B.2
9. Indicate which recurrence equations in the problems for Section B.1 fall into

each of the following categories.
(a) Linear equations
(b) Homogeneous equations
(c) Equations with constant coefficients
10. Find the characteristic equations for all of the recurrence equations in Section

B.1 that are linear with constant coefficients.
11. Show that if f(n) and g (n) are both solutions to a linear homogeneous

recurrence equation with constant coefficients, then so is c × f(n) + d × g(n),
where c and d are constants.

12. Solve the following recurrence equations using the characteristic equation.

13. Complete the solution to the recurrence equation given in Example B.15.
14. Complete the solution to the recurrence equation given in Example B.16.
15. Solve the following recurrence equations using the characteristic equation.

www.EBooksWorld.ir

16. Complete the solution to the recurrence equation given in Example B. 17.
17. Show that the recurrence equation

can be written as

18. Solve the recurrence equation in Exercise 17. The solution gives the number
of derangements (nothing is in its right place) of n objects.

19. Solve the following recurrence equations using the characteristic equation.

Section B.3
20. Solve the recurrence equations in Exercise 1 using the substitution method.

www.EBooksWorld.ir

Section B.4
21. Show that
(a) f(n) = n3 is a strictly increasing function.
(b) g (n) = 2n3 − 6n2 is an eventually nondecreasing function.
22. What can we say about a function f(n) that is both nondecreasing and

nonincreasing for all values of n?
23. Show that the following functions are smooth.
(a) f(n) = n lg n
(b) g (n) = nk, for all k ≥ 0.
24. Assuming in each case that T (n) is eventually nondecreasing, use Theorem

B.5 to determine the order of the following recurrence equations.

25. Assuming in each case that T (n) is eventually nondecreasing, use Theorem
B.6 to determine the order of the following recurrence equations:

26. We know that the recurrence

has solution

in the case a > c, provided that g (n) Θ(n). Prove that the recurrence has the
same solution if we assume that

www.EBooksWorld.ir

www.EBooksWorld.ir

Appendix C

Data Structures for Disjoint Sets
Kruskal’s algorithm (Algorithm 4.2 in Section 4.1.2) requires that we create disjoint
subsets, each containing a distinct vertex in a graph, and repeatedly merge the subsets
until all the vertices are in the same set. To implement this algorithm, we need a data
structure for disjoint sets. There are many other useful applications of disjoint sets.
For example, they can be used in Section 4.3 to improve the time complexity of
Algorithm 4.4 (Scheduling with Deadlines).

Recall that an abstract data type consists of data objects along with permissible
operations on those objects. Before we can implement a disjoint set abstract data
type, we need to specify the objects and operations that are needed. We start with a
universe U of elements. For example, we could have

We then want a procedure makeset that makes a set out of a member of U. The
disjoint sets in Figure C.1(a) should be created by the following calls:

We need a type set_pointer and a function find such that if p and q are of type
set_pointer and we have the calls

then p should point to the set containing B, and q should point to the set containing C.
This is illustrated in Figure C.1(a). We also need a procedure merge to merge two
sets into one. For example, if we do

our sets in Figure C.1(a) should become the sets in Figure C.1(b). Given the disjoint
sets in Figure C.1(b), if we have the call

we should obtain the result shown in Figure C.1(c). Finally, we need a routine
equal to check whether two sets are the same set. For example, if we have the sets in
Figure C.1(b), and we have the calls

www.EBooksWorld.ir

then equal(p, q) should return true and equal(p, r) should return false.
We have specified an abstract data type whose objects consist of elements in a
universe and disjoint sets of those elements, and whose operations are makeset, find,
merge, and equal.
Figure C.1 An example of a disjoint set data structure.

Figure C.2 The inverted tree representation of a disjoint set data structure.

One way to represent disjoint sets is to use trees with inverted pointers. In these trees
each nonroot points to its parent, whereas each root points to itself. Figure C.2(a)
shows the trees corresponding to the disjoint sets in Figure C.1(a), and Figure C.2(b)
shows the trees corresponding to the disjoint sets in Figure C.1(b). To implement
these trees as simply as possible, we assume that our universe contains only indices
(integers). To extend this implementation to another finite universe, we need only
index the elements in that universe. We can implement the trees using an array U,
where each index to U represents one index in the universe. If an index i represents a
nonroot, the value of U [i] is the index representing its parent. If an index i represents
a root, the value of U [i] is i. For example, if there are 10 indices in our universe, we

www.EBooksWorld.ir

store them in an array of indices U indexed from 1 to 10.
To initially place all the indices in disjoint sets, we set

for all i. The tree representation of 10 disjoint sets and the corresponding array
implementation are shown in Figure C.3(a). An example of a merge is illustrated in
Figure C.3(b). When the sets {4} and {10} are merged, we make the node containing
10 a child of the node containing 4. This is accomplished by setting U [10] = 4. In
general, when we merge two sets, we first determine which tree has the larger index
stored at its root. We then make that root a child of the root of the other tree. Figure
C.3(c) shows the tree representation and corresponding array implementation after
several merges have been done. At this point there are only three disjoint sets. An
implementation of the routines follows. For the sake of notational simplicity, both
here and in the discussion of Kruskal’ s algorithm (see Section 4.1.2), we do not list
our universe U as a parameter to the routines.

 Disjoint Set Data Structure I

www.EBooksWorld.ir

The value returned by the call find(i) is the index stored at the root of the tree
containing i. We have included a routine initial that initializes n disjoint sets,
because such a routine is often needed in algorithms that use disjoint sets.
In many algorithms that use disjoint sets, we initialize n disjoint sets, and then do m
passes through a loop (the values of n and m are not necessarily equal). Inside the
loop there are a constant number of calls to routines equal, find, and merge. When
analyzing the algorithm, we need the time
Figure C.3 The array implementation of the inverted tree representation of a disjoint set data structure.

www.EBooksWorld.ir

complexities of both the initialization and the loop in terms of n and m. Clearly, the
time complexity for routine initial is in

Because order is not affected by a multiplicative constant, we can assume that
routines equal, find, and merge are each called just once in each of the m passes
through the loop. Clearly, equal and merge run in constant time. Only function find
contains a loop. Therefore, the order of the time complexity of all the calls is
dominated by function find. Let’s count the worst-case number of times the

www.EBooksWorld.ir

comparison in find is done. Suppose, for example, that m = 5. The worst case
happens if we have this sequence of merges:

and, after each merge, we call find looking for index 6. (The actual sets were written
as the inputs to merge for illustration.) The final tree and array implementation are
shown in Figure C.4. The total number of times the comparison in find is done is

Generalizing this result to an arbitrary m, we have that the worst-case number of
comparisons is equal to

We did not consider function equal because that function has no effect on the number
of times the comparison in function find is done.
Figure C.4 An example of the worst case for Disjoint Data Structure I when m = 5.

Figure C.5 In the new way of merging, we make the root of the tree with the smaller depth a child of the root of
the other tree.

www.EBooksWorld.ir

The worst case occurs when the order in which we do the merging results in a tree
whose depth is one less than the number of nodes in the tree. If we modify procedure
merge so that this cannot happen, we should improve the efficiency. We can do this
by keeping track of the depth of each tree, and, when merging, always making the tree
with the smaller depth the child. Figure C.5 compares our old way of merging with
this new way. Notice that the new way results in a tree with a smaller depth. To
implement this method, we need to store the depth of the tree at each root. The
following implementation does this.

 Disjoint Set Data Structure II

www.EBooksWorld.ir

It can be shown that the worst-case number of comparisons done in m passes
through a loop containing a constant number of calls to routines equal, find, and
merge is in

In some applications it is necessary to locate efficiently the smallest member of a
set. Using our first implementation, this is straightforward, because the smallest
member is always at the root of the tree. In our second implementation, however, this

www.EBooksWorld.ir

is not necessarily so. We can easily modify that implementation to return the smallest
member efficiently by storing a variable smallest at the root of each tree. This
variable contains the smallest index in the tree. The following implementation does
this.

 Disjoint Set Data Structure III

www.EBooksWorld.ir

We have included only the routines that differ from those in Disjoint Set Data
Structure II. Function small returns the smallest member of a set. Because function
small has constant running time, the worst-case number of comparisons done in m
passes through a loop containing a constant number of calls to routines equal, find,
merge, and small is the same as that of Disjoint Set Data Structure II. That is, it is in

Using a technique called path compression, it is possible to develop an
implementation whose worst-case number of comparisons, in m passes through a
loop, is almost linear in m. This implementation is discussed in Brassard and Bratley
(1988).

www.EBooksWorld.ir

References

Adel’son-Vel’skii, G. M., and E. M. Landis. 1962. An algorithm for the organization
of information. Doklady Akademii Nauk SSSR 146:263–266.

Agrawal, A., N. Kayal, and N. Saxena. 2002. Not yet published. Available at
http://www.cse.iitk.ac.in/news/primality.html.

Akl, S. 1985. Parallel sorting. Orlando, Fl.: Academic Press.

Aldous, D., and P. Diaconis. 1986. Shuffling cards and stopping times. The American
Mathematical Monthly 93:333–347.

Apostol, T. M. 1997. Introduction to analytic number theory. New York: Springer-
Verlag.

Baker, R. C., and G. Harman. 1996. The Brun-Titchmarsh Theorem on average.
Proceedings of a conference in honor of Heini Halberstam 1:39–103.

Banzhaf, W. P. Nordin, R. E. Keller, and F. D. Francone, Genetic Programming An
Introduction, Morgan Kaufmann, 1998.

Bayer, R., and C. McCreight. 1972. Organization and maintenance of large ordered
indexes. Acta Informatica 1, no. 3:173–189.

Bedell, J., I. Korf and M. Yandell. 2003. BLAST, O’Reilly & Associates, Inc.

Bentley, J. L., D. Haken, and J. B. Saxe. 1980. A general method for solving divide-
and-conquer recurrences. SIGACT News 12, no. 3:36–44.

Blum, M., R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. 1973. Time bounds
for selection. Journal of Computer and System Sciences 7, no. 4:448–461.

Borodin, A. B., and J. I. Munro. 1975. The computational complexity of algebraic
and numeric problems. New York: American Elsevier.

Brassard, G. 1985. Crusade for better notation. SIGACT News 17, no. 1: 60–64.

Brassard, G., and P. Bratley. 1988. Algorithmics: Theory and practice. Englewood
Cliffs, N.J.: Prentice Hall.

Brassard, G., S. Monet, and D. Zuffellato. 1986. L’arithmétique des très grands
entiers. TSI: Technique et Science Informatiques 5, no. 2:89–102.

Chacian, L. G. 1979. A polynomial algorithm for linear programming. Doklady Adad.

www.EBooksWorld.ir

http://www.cse.iitk.ac.in/news/primality.html

Nauk U.S.S.R. 224, no. 5: 1093–1096.

Clemen, R. T. 1991. Making hard decisions. Boston: PWS-Kent.

Cook, S. A. 1971. The complexity of theorem proving procedures. Proceedings of
3rd annual ACM symposium on the theory of computing, 151–158. New York:
ACM.

Cooper, G. F. 1984. “NESTOR”: A computer-based medical diagnostic that
integrates causal and probabilistic knowledge. Technical Report HPP-84-48,
Stanford, Cal.: Stanford University.

Coppersmith, D., and S. Winograd. 1987. Matrix multiplication via arithmetic
progressions. Proceedings of 19th annual ACM symposium on the theory of
computing, 1–6. New York: ACM.

DePuy, G. W., R. J. Moraga, and G. E. Whitehouse, “Meta-RaPS: A Simple and
Effective Approach for Solving the Traveling Salesman Problem,” Transportation
Research Part E, Vol. 41, No. 2, 2005.

Dijkstra, E. W. 1959, A note on two problems in connexion with graphs. Numerische
Mathematik 1:269–271.

———. 1976. A discipline of programming. Englewood Cliffs, N.J.: Prentice-Hall.

Farnsworth, G. V., J. A. Kelly, A. S. Othling, and R. J. Pryor, “Successful Technical
Trading Agents Using Genetic Programming,” Technical Report # SAND2004-4774,
Sandia National Laboratories, Albuquerque, NM, 2004.

Fine, T. L. 1973. Theories of probability. New York: Academic Press.

Fischer, M. J., and M. O. Rabin. 1974. “Super-exponential complexity of Presburger
Arithmetic.” In Complexity of computation, R. M. Karp, ed., 27–41. Providence,
R.I.: American Mathematical Society.

Floyd, R. W. 1962. Algorithm 97: Shortest path. Communications of the ACM 5, no.
6:345.

Fogel, D. B., “Evolutionary Programming in Perspective: The Top-Down View,” in
Zurada, J. M., R. J. Marks II, and C. J. Robinson (Eds.): Computational
Intelligence: Imitating Life, IEEE Press, 1994.

Fredman, M. L., and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved
network optimization problems. Journal of the ACM 34, no. 3: 596–615.

Fussenegger, F., and H. Gabow. 1976. Using comparison trees to derive lower
bounds for selection problems. Proceedings of 17th annual IEEE symposium on the

www.EBooksWorld.ir

foundations of computer science, 178–182. Long Beach, Cal.: IEEE Computer
Society.

Gardner-Stephen, P. and G. Knowles. 2004. “DASH: Localizing Dynamic
Programming for Order of Magnitude Faster, Accurate Sequence Alignment.” In
Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference.

Garey, M. R., and D. S. Johnson. 1979. Computers and intractability. New York: W.
H. Freeman.

Gilbert, E. N., and E. F. Moore. 1959. Variable length encodings. Bell System
Technical Journal 38, no. 4:933–968.

Godbole, S. 1973. On efficient computation of matrix chain products. IEEE
Transactions on Computers C-22, no. 9:864–866.

Graham, R. L., D. E. Knuth, and O. Patashnik. 1989. Concrete mathematics.
Reading, Mass.: Addision-Wesley.

Graham, R. L., and P. Hell. 1985. On the history of the minimum spanning tree
problem. Annals of the History of Computing 7, no. 1:43–57.

Gries, D. 1981. The science of programming. New York: Springer-Verlag.

Griffiths, J. F., S. R. Wessler, R. C. Lewontin, and S. B. Carroll, An Introduction to
Genetic Analysis, W. H. Freeman and Company, 2007.

Grzegorczyk, A. 1953. Some classes of recursive functions. Rosprawy Matematyzne
4. Mathematical Institute of the Polish Academy of Sciences.

Hardy, G. H., and E. M. Wright. 1960. The theory of numbers. New York: Oxford
University Press.

Hartl, D. L., and E. W. Jones, Essential Genetics, Jones and Bartlett, 2006.

Hartmanis, J., and R. E. Stearns. 1965. On the computational complexity of
algorithms. Transactions of the American Mathematical Society 117: 285–306.

Hoare, C. A. R. 1962. Quicksort. Computer Journal 5, no. 1:10–15.

Hopcroft, J. E., and J. D. Ullman. 1979. Introduction to automata theory,
languages, and computation. Reading, Mass.: Addison-Wesley.

Horowitz, E., and S. Sahni. 1974. Computing partitions with applications to the
knapsack problem. Journal of the ACM 21:277–292.

———. 1978. Fundamentals of computer algorithms. Woodland Hills, Cal.:
Computer Science Press.

www.EBooksWorld.ir

Hu, T. C., and M. R. Shing. 1982. Computations of matrix chain products, Part 1.
SIAM Journal on Computing 11, no. 2:362–373.

———. 1984. Computations of matrix chain products, Part 2. SIAM Journal on
Computing 13, no. 2:228–251.

Huang, B. C., and M. A. Langston. 1988. Practical in-place merging.
Communications of the ACM 31:348–352.

Hyafil, L. 1976. Bounds for selection. SIAM Journal on Computing 5, no. 1: 109–
114.

Iverson, G. R., W. H. Longcor, F. Mosteller, J. P. Gilbert, and C. Youtz. 1971. Bias
and runs in dice throwing and recording: A few million throws. Psychometrika
36:1–19.

Jacobson, N. 1951. Lectures in abstract algebra. New York: D. Van Nostrand
Company.

Jarník, V. 1930. 0 jistém problému minimàlnim. Praca Moravské Prirodovedecké
Spolecnosti 6:57–63.

Johnson, D. B. 1977. Efficient algorithms for shortest paths in sparse networks.
Journal of the ACM 24, no. 1:1–13.

Kennedy, J., and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, 2001.

Keynes, J. M. 1948. A treatise on probability. London: Macmillan. (Originally
published in 1921.)

Kingston, J. H. 1990. Algorithms and data structures: Design, correctness, and
analysis. Reading, Mass.: Addison-Wesley.

Knuth, D. E. 1998. The art of computer programming, vol. II: Seminumerical
algorithms. Reading, Mass.: Addison-Wesley.

Koza, J., Genetic Programming, MIT Press, 1992.

———. 1973. The art of programming, Volume III: Sorting and searching.
Reading, Mass.: Addison-Wesley.

———. 1976. Big omicron and big omega and big theta. SIGACT News 8, no. 2:18–
24.

Kruse, R. L. 1994. Data structures and program design. Englewood Cliffs, N.J.:
Prentice Hall.

Kruskal, J. B., Jr. 1956. On the shortest spanning subtree of a graph and the traveling

www.EBooksWorld.ir

salesman problem. Proceedings of the American Mathematical Society 7, no. 1:48–
50.

Kumar, V., A. Grama, A. Gupta, and G. Karypis. 1994. Introduction to parallel
computing. Redwood City, Cal.: Benjamin Cummings.

Ladner, R. E. 1975. On the structure of polynomial time reducibility. Journal of the
ACM 22:155–171.

van Lambalgen, M. 1987. Random sequences. Ph.D. diss., University of Amsterdam.

Lawler, E. L. 1976. Combinatorial optimization: Networks and matroids. New
York: Holt, Rinehart and Winston.

Leung, K. S., H. D. Jin, and Z. B. Xu, “An Expanding Self-Organizing Neural
Network for the Traveling Salesman Problem,” Neurocomputing, Vol. 62, 2004.

Levin, L. A. 1973. Universal sorting problems. Problemy Peredaci, Informacii
9:115–116 (in Russian). English translation in Problems of Information
Transmission 9:265–266.

Li, W. 1997. Molecular Evolution, Sinauer Associates.

von Mises, R. 1919. Grundlagen der Wahrscheinlichkeitsrechnung. Mathematische
Zeitschrft 5:52–99.

———. 1957. Probability, statistics, and truth. London: George, Allen & Unwin.
(Originally published in Vienna in 1928.)

Neapolitan, R. E. 1990. Probabilistic reasoning in expert systems. New York:
Wiley.

———. 1992. A limiting frequency approach to probability based on the weak law
of large numbers. Philosophy of Science 59, no. 3:389–407.

———. 2003. Learning Bayesian Networks. Prentice Hall.

———. 2009. Probabilistic Method for Bioinformatics. Burlington, Mass.: Morgan
Kaufmann.

Papadimitriou, C. H. 1994. Computational complexity. Reading, Mass.: Addison-
Wesley.

Pearl, J. 1986. Fusion, propagation, and structuring in belief networks. Artificial
Intelligence 29, no. 3:241–288.

———. 1988. Probabilistic reasoning in intelligent systems. San Mateo, Cal.:
Morgan Kaufmann.

www.EBooksWorld.ir

Pratt, V. 1975. Every prime number has a succinct certificate. SIAM Journal on
Computing 4, no. 3:214–220.

Prim, R. C. 1957. Shortest connection networks and some generalizations. Bell
System Technical Journal 36:1389–1401.

Rabin, MO. 1980. Probabilistic algorithms for primality testing. Journal of Number
Theory 12: 128-138.

Rechenberg, I., Evolution Strategies, in Zurada, J. M., R. J. Marks II, and C. J.
Robinson (Eds.): Computational Intelligence: Imitating Life, IEEE Press, 1994.

Sahni, S. 1988. Concepts in discrete mathematics. North Oaks, Minn.: The Camelot
Publishing Company.

Schonhage, A., M. Paterson, and N. Pippenger. 1976. Finding the median. Journal of
Computer and System Sciences 13, no. 2:184–199.

Strassen, V. 1969. Gaussian elimination is not optimal. Numerische Mathematik
13:354–356.

Süral, H., N. E. Özdemirel, I. Önder, and M. S. Turan, “An Evolutionary Approach
for the TSP and the TSP with Backhauls,” in Tenne, Y., and C. K. Goh (Eds.):
Computational Intelligence in Expensive Optimization Problems, Springer-Verlag,
2010.

Tarjan, R. E. 1983. Data structures and network algorithms, Philadelphia: SIAM.

Turing, A. 1936. On computable numbers, with an application to the
Entscheidungsproblem. Proceeding of the London Mathematical Society 2, no. 42:
230–265.

———. 1937. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society 2, no. 43:
544–546.

Waterman, M. S. 1984. “General Methods of Sequence Comparisons.” Mathematical
Biology, 46.

Yao, A. C. 1975. An O(|E|log log|V |) algorithm for finding minimum spanning trees.
Information Processing Letters 4, no. 1:21–23.

Yao, F. 1982. Speed-up in dynamic programming. SIAM Journal on Algebraic and
Discrete Methods 3, no. 4:532–540.

www.EBooksWorld.ir

INDEX
The index that appeared in the print version of this title was intentionally removed from the eBook. Please
use the search function on your eReading device to search for terms of interest. For your reference, the
terms that appear in the print index are listed below.

A
abductive inference

best-first search with branch-and-bound pruning
definition

abelian (commutative)
abstract data type
acyclic graph

definition of
undirected graph

Add Array Members
algorithm
every-case time complexity
input size

addition
of large integers

address-space organization
message-passing architecture
shared-address-space architecture

adjacency matrix
of graph

adjacent
adjacent vertex
adversary argument
Agrawal, A.
algorithms,. See also specific algorithms

analysis of
approximations. See approximation algorithm
compute modular power
correctness of
definition of
deterministic
efficient, importance in developing
exercises
genetic. See genetic algorithms
linear-time
nondeterministic
polynomial determine prime
polynomial-time
probabilistic
pseudopolynomial-time
quadratic-time
solve modular linear equation
sorting, decision trees for
time complexity of
transformation
writing, drawbacks to

www.EBooksWorld.ir

allele
analysis of correctness
Apostol, T.M.
approximation algorithm

for Bin-Packing problem
Traveling Salesperson problem

arbitrary write protocol
arc (edge)
arithmetic, with large integers

addition
linear-time operations
multiplication

array implementation for disjoint set data structure
arrays
artificial ant
asymptotic behavior
asymptotic lower bound
asymptotic upper bound
average
average-case analysis
average-case time complexity analysis

binary search recursive
lower bounds
Quicksort

AVL trees

B
B(n) (best-case time complexity)
B-trees
backtracking

definition
dynamic programming algorithm and
efficiency, estimating
exercises
for the Hamiltonian Circuits problem
for the m-Coloring problem
for n-Queens problem
for Sum-of-Subsets problem
technique
0-1 Knapsack problem

Baker, R.C
balanced, binary search trees
bases

induction. See induction base
basic operation. See also under specific algorithms
Bayer, R.
Bayesian network

definition
elements of
for parallel computers

Bentley, J.L.
best-case time complexity (B(n))
best-first search with branch-and-bound pruning

for abductive inference
definition

www.EBooksWorld.ir

pruned state space tree
Traveling Salesperson problem
for 0-1 Knapsack problem

big O
Bin-Packing problem, approximation algorithm for
binary code
binary fission
Binary Search

algorithm
average-case performance
basic operation
hashing and
input size
lower bounds
searching in trees
vs. Sequential Search
time complexity

Binary Search Recursive
average-case time complexity analysis
worst-case time complexity

binary search trees
balanced
depth of node
depth of tree
level of node
nearly complete
optimal
search key
with three keys

Binomial Coefficient
using divide-and-conquer
using dynamic programming

binomial theorem
Blum, M.
bool, data type
Borodin, A. B.
bottom node
bottom-up approach

dynamic programming as
bound
bounded-degree network
branch
branch-and-bound algorithm
branch-and-bound pruning

abductive inference
exercises
Traveling Salesperson problem
0-1 Knapsack problem

Brassard, G.
Bratley, P.
breadth-first search
breadth-first search with branch-and-bound pruning

dequeue
pruned state space tree
0-1 Knapsack problem

www.EBooksWorld.ir

brute-force algorithm
brute-force method
Build Optimal Binary Search Tree
buy-and-hold strategy

C
C++
calls(s,t)
candidate solution
canonical base pair (bp)
ceiling
cell
central processing unit (CPU)
Chachian, L.G.
chained matrix multiplication
change of variables for solving recurrences
Change problem

greedy algorithm for
characteristic equation

solving recurrences using
checknode
chromatic number
chromatids
chromosomes
ciphertext
clause
Clemen, R.T.
clique

definition of
maximal
problem

Clique Decision problem
Clique Optimization problem
closed binary operation
CNF. See conjunctive normal form
CNF-Satisfaction problem
CNF-Satisfiability, as NP-complete
CNF-Satisfiability Decision problem
coalesce
codeword
col(i)
collision (hash clash)
combinations
common divisor
common logarithms
common write protocol
commutative (abelian)
complete
complete binary tree
complete quadratic functions
completely connected network
complexity analysis
complexity categories
complexity function

eventually nondecreasing

www.EBooksWorld.ir

nondecreasing
order
smooth
strictly increasing

composite numbers
Composite Numbers problem
compressible sequences
computational complexity

analysis
exercises

compute modular power
computer programs, for problemsolving
concurrent-read, concurrent-write (CRCW)
concurrent-read, exclusive-write (CREW)
conditional probability
congruency modulo n
conjunctive normal form (CNF)
connected, undirected graph
constant coefficients

with homogeneous linear recurrences
with nonhomogeneous linear recurrences

constructive induction
control instructions
Cook, Stephen
Cook’s Theorem
Cooper, G.F.
CPU. See central processing unit
CRCW. See concurrent-read, concurrent-write
CRCW PRAM algorithms
CREW. See concurrent-read, exclusive-write
criterion
crossbar switching network
crossing-over
cryptography
cycle
cyclic graph

D
(d + 1)-dimensional hypercube
data compression
data-parallel algorithms
data parallel programs
data structures for disjoint sets. See disjoint set data
data types
decision tree

definition of
pruned
for sorting algorithms
valid

decryption
deletion mutation
deoxyribonucleic acid (DNA)

sequence
depth-first search
depth of node

www.EBooksWorld.ir

depth of tree
dequeue
deterministic algorithm
Diaconis, Persi
difference
digraph
Dijkstra, E.W.
Dijkstra’s algorithm
diploid cell
diploid organism
direct networks
directed graph. See digraph
disjoint set data

inverted trees and array
implementation

Kruskal’s algorithm
path compression
structure I
structure II
structure III

divide-and-conquer algorithm
divide-and-conquer approach

Binary Search
exercises
threshold determinations
as top-down approach
when not to use

divisibility, of integers
division algorithm
divisor (factor)
DNA. See deoxyribonucleic acid
domain, of function
domain transformations
dominant
dynamic interconnection networks
dynamic programming

and backtracking algorithm
binomial coefficient
as bottom-up approach
chained matrix multiplication
exercises
Floyd’s algorithm for shortest paths
vs. greedy approach
optimal binary search trees
and optimization problems
PRAM model applications
refinement, for 0 1 Knapsack problem
sequence alignment
to 0-1 Knapsack problem

Dynamic Programming
Mergesort 3
for Traveling Salesperson Problem

dynamic searching

E

www.EBooksWorld.ir

e
edge (arc)
egg
elementary event
elements, of sets
EMA. See Exponential Moving Average
empty set
encryption
enqueue
EPL. See external path length
equivalence class modulo n containing m
essentially complete binary tree
Euclid’s algorithm

extension to
worst-case time complexity

Euclid’s algorithm 2
Euler’s totient function
event
eventually nondecreasing
every-case time complexity analysis

Floyd’s algorithm for shortest paths
Minimum Multiplications
Number of Additions/Subtractions
Optimal Binary Search Tree
Partition
Prim’s algorithm
Strassen
Traveling Salesperson Problem

evolution
evolution strategies
evolutionary computation
evolutionary programming
Exchange Sort

algorithm
decision tree
every-case time complexity
input size
in threshold determination
time complexity

exclusive-read, concurrent-write (ERCW)
exclusive-read, exclusive-write (EREW)
expand
expected value
exploitation
exploration
Exponential Moving Average (EMA)
external path length (EPL)
external search
extra space usage

Mergesort 4
Quicksort

F
factorial
feasibility check

www.EBooksWorld.ir

for greedy algorithm
feasible sequence
Fermat
Fibonacci heap
Fibonacci sequence

k th number in
nth

Fibonacci term
financial trading, application to
find smallest and largest key
find smallest and largest keys by pairing keys
finding largest key

in array
finite
first-fit strategy
fixed-length binary code
floor
Floyd, R.W.
Floyd’s Algorithm

for Shortest Paths
for Shortest Paths 2

for loop
Fractional Knapsack problem

greedy approach to
Fredman, M.L.
function symbol
functions,. See also complexity function

complete quadratic
domain of
Euler’s totient
graph of
hash
probability
promising
quadratic
range of

fundamental theorem of arithmetic
fusion
Fussenegger, F.

G
Gabow, H.
gamete
Garey, M.R.
GEA. See Greedy Edge Algorithm
gene
generator
generic
genetic algorithms

example
exercises
TSP. See Traveling Salesperson problem

genetic drift
genetic programming

application to financial trading

www.EBooksWorld.ir

artificial ant
evaluation
exercises
illustrative example
trading system, developing

genetics review
genome
genotype
geometric progression
germ cells
GEX. See Greedy Edge Crossover Algorithm
Gilbert, E.N.
Godbole, S.
Graham, R.L.
Grama, A.
graph coloring
Graph-Coloring problem
Graph Isomorphism problem
graph theory
graphs

acyclic
adjacency matrix of
cyclic
digraph
of functions
planar
union
weighted, directed

greatest common divisor
greedy algorithm

definition of
Dijkstra’s algorithm for Single-Source Shortest Paths
vs. dynamic programming
exercises
feasibility check
for giving change
Huffman code
minimum spanning trees
scheduling
selection procedure
solution check

Greedy Edge Algorithm (GEA) for the Traveling Sales-person Problem
Greedy Edge Crossover Algorithm (GEX)
group, definition of
group theory
growing the tree
guessing (nondeterministic) stage
Gupta, A.

H
Haken, D.
Halting problem
Hamilton, William
Hamiltonian Circuit
Hamiltonian Circuits Decision problem

www.EBooksWorld.ir

Hamiltonian Circuits problem
haploid cell
haploid organism
Hardy, G.H.
Harman, G.
hash clash (collision)
hash function
hashing
hashing the key
heap
heap data structure
heap property
Heapsort

algorithm
average-case time complexity
compared with Mergesort and Quicksort
exercises
extra space usage
high-level pseudocode
implementation
worst-case time complexity analysis of number of comparison keys

Hell, P.
homogeneous linear recurrences

with constant coefficients
homolog
homologous pair
homologous sequences
Horowitz, E.
Hu, T.C.
Huang, B.C.
Huffman code
Huffman’s algorithm
Hyafil, L.
hypercube networks

I
identity element
implicitly
in-order traversal
in-place sort
index

as data type
of processor

individuals
chosen for reproduction
initial population of

induction
vs. substitution
using to solve recurrences

induction base
induction hypothesis
induction step
infinity
initial condition
input size. See also under specific algorithms

www.EBooksWorld.ir

intractability and
inputs for algorithm
inserting a gap
insertion mutation
Insertion Sort

average-case time complexity analysis
exercises
extra space usage analysis
worst-case time complexity analysis

instance of problem
integers
interconnection networks

dynamic
static

internal node
internal search
Interpolation Search

algorithm
robust

intersection
intractability

Halting problem
input size and
problem

inversion
inverted tree representation for disjoint set data structure
isomorphic
Iverson, G.R.

J
Jacobson, N.
Johnson, D.B.
Johnson, D.S.

K
k-day Exponential Moving Average (EMA)
Karypis, G.
keys

in binary search tree
definition of

keytype
Knuth, D.E.
Kolmogorov, Andrei
Kruse, R.L.
Kruskal, J.B. Jr.
Kruskal’s algorithm

disjoint subsets
for Minimum Spanning Tree Problem
vs. Prim’s algorithm
worst-case time complexity analysis

Kumar, V.

L
Lagrange
Landis, E.M.

www.EBooksWorld.ir

Langston, M.A.
large-integer
Large Integer Multiplication
Large Integer Multiplication 2
leaf
least common multiple
left subtree of node
lemmas
length, path
L’Hôpital’s Rule
linear recurrences

homogeneous
nonhomogeneous

linear-time algorithms
LISP
list, definition of
literal
ln x
logarithms

common
definition of
natural
properties of

logical (Boolean) variable
loser
lower bounds

for algorithms that remove most one inversion per comparison
for average-case behavior
exercises
for searching only by comparison keys

for average-case behavior
for worst-case behavior

for sorting only by comparison keys
for worst-case behavior

M
m-Coloring problem
MACD. See Moving Average Convergence/Divergence
magnitude in prime-checking algorithm
makeheap
Marbe, K.
masterlist
matching
mathematical induction

principle of
mathematics, review of

combinations
exercises
functions
lemmas
logarithms. See logarithms
mathematical induction
notation
permutations
probability. See probability

www.EBooksWorld.ir

sets
theorems

Matrix Multiplication
algorithm
every-case time complexity
input size

maximal clique
maxprofit
McClennan Oscillator (MCCL)
McCreight, E.M.
median

definition of
selection using the median

meiosis
members, of sets
memory complexity
Merge

in-place sort
worst-case time complexity

Merge 2
Mergesort

average-case time complexity
compared with Heapsort and Quicksort
every-case time complexity
exercises
improvements of
removal of more than one inversion after comparison
worst-case time complexity

Mergesort 2
extra space usage analysis

Mergesort 3
Mergesort 4 (Linked Version)
Message-passing architecture
Miller-Rabin Randomized Primality Test
MIMD. See multiple instruction stream, multiple data stream
minapprox
mindist
minEPL(m)
minimal weight matching
Minimum Multiplications

every-case time complexity
optimal order

Minimum Spanning Tree Problem, Kruskal’s algorithm for
minimum spanning trees

definition of
Kruskal’s algorithm
optimal tour
Prim’s algorithm

minTND(n)
Mises, Richard von
mod function
modular arithmetic review

congruency modulo n
group theory
subgroups

www.EBooksWorld.ir

modular linear equations, solving
modular powers, computing
Monet, S.
Monte Carlo algorithm
Monte Carlo Estimate

for backtracking algorithm for the n-Queens problem
to estimate efficiency of backtracking algorithm

Monte Carlo technique
Moore, E.F.
Moving Average Convergence/Divergence (MACD)
multiple instruction stream, multiple data stream (MIMD)
multiplication
of large integers
Munro, J. I.
mutations

N
n-Queens problem

backtracking algorithm for
natural logarithms
natural selection
Neapolitan, R.E.
Nearest Neighbor Algorithm (NNA) for Traveling Salesperson problem
Nearest Neighbor Crossover (NNX)
nearly complete binary tree
Neumann, John von
NNA. See Nearest Neighbor Algorithm
NNX. See Nearest Neighbor Crossover
node
node distance
node mutations
nondecreasing
nondeterministic algorithm
nondeterministic polynomial (NP)

definition of
sets of

nonhomogeneous linear recurrence with constant coefficients
nonincreasing first fit
nonnegative integer
nonpromising node
nonuniform memory access (NUMA)
notation
NP. See nondeterministic polynomial
NP-complete

complementary problems
Cook’s Theorem
definition of
graph isomorphism problem
problems, handling of
state of

NP-easy
NP-equivalent
NP-hard
NP-hard problems

handling of

www.EBooksWorld.ir

NP theory
nth Fibonacci Term Iterative

algorithm
input size

nth Fibonacci Term Recursive
algorithm
input size

nucleotides
NUMA. See nonuniform memory access
number as data type
number-theoretic algorithms

compute modular power
definition of
exercises
polynomial determine prime
solve modular linear equation

number theory
composite numbers
definition of
Euclid’s algorithm
greatest common divisor
least common multiple
prime factorization
prime numbers

numdigits

O
omega (Ωf(n))
open hashing (addressing)
Optimal Binary Search Tree

every-case time complexity analysis
optimal sequence
optimal set of jobs
optimal threshold value
optimal tour
optimal value
optimality, principle of
optimization problems

dynamic programming and
oracle
order

complexity functions
determining, using limit for
of group element
intuitive introduction to
properties of
rigorous introduction to

order crossover
organism
outputs for algorithm
overfitting
overhead instructions

P
P, sets of

www.EBooksWorld.ir

Papadimitriou, C.H.
parallel algorithms
parallel architectures

address-space organization
control mechanism
interconnection networks

parallel binomial coefficient
parallel computers,. See also parallel architectures
parallel CRCW find largest key
parallel find largest key
Parallel Mergesort
parallel random access machine (PRAM),. See also PRAM Model
parallel sorting

algorithm
parameters
Partition
partition
Pascal’s triangle
Paterson, M.
path

in undirected graph
path compression
Pearl, J.
permutations
phenotype
pick
Pippenger, N.
pivot item
pivotpoint
planar graphs
planning problem
Polynomial Determine Prime

algorithm
worst-case time complexity

polynomial-time algorithms
input size
and intractability

polynomial-time many-one reducible
polynomial-time nondeterministic algorithms
polynomial-time reducibility
polynomial-time Turing reducible
polynomial-time verifiability
population

at random from
positive integer
PRAM. See parallel random access machine
PRAM Model

CRCW algorithms
dynamic programming applications

Pratt, V.
prefix codes
preorder
Presburger Arithmetic
Prim, R.C.
prime-checking algorithm, magnitude

www.EBooksWorld.ir

prime distribution function (π(n))
prime factorization
prime number theorem
prime numbers

definition of
large, finding

Primes problem
Prim’s algorithm

every-case time complexity
vs. Kruskal’s algorithm
theorem

Principle of Indifference
principle of optimality
Print Optimal Order
Print Shortest Path
priority queue
priority write protocol
probabilistic algorithms
probabilistic selection

algorithm
expected-value time complexity

probability
conditional
expected value
Principle of Indifference and
randomness and
relative frequency approach
subjectivistic approach

probability function
probability space
problem-solving techniques
problems

definition of
example of

procedure
process
processor
profit
promising function
promising node
promising subset
proof by contradiction
proper subgroup
proper subset
properties of order
pruned
pruned state space tree

best-first search with
branch-and-bound

breadth-first search with
branch-and-bound pruning

for Traveling Salesperson problem
pruning
pseudocode
pseudopolynomial-time algorithm

www.EBooksWorld.ir

public key
public-key cryptosystems

definition of
RSA public-key cryptosystem

pure quadratic functions
purines
pyrimidines

Q
quadratic functions

complete
pure

quadratic-time algorithms (Θ(n2) algorithm)
Quicksort

average-case analysis
average-case time complexity
compared with Heapsort and Mergesort
exercises
extra space usage
improved
partition exchange sort
recursive calls
worst-case time complexity analysis

quotient

R
Radix Sort

algorithm
every-case time complexity
extra space usage

RAM. See random access memory
random access memory (RAM)
random process
random sample
random sequence
random variable
randomness, probability and
range, of function
read from shared memory
recurrence equations

solving
change of variables technique for
by substitution
using characteristic equation
using induction

recursion tree
reference parameters
reflexivity
relative frequency approach to probability
relatively prime
remainder
removekeys
repeating squaring method
return statement
right subtree of node

www.EBooksWorld.ir

Rivest, R.L.
Robust Interpolation Search
root of multiplicity
rooted tree
RSA cryptosystem
RSA public-key cryptosystem

S
Sahni, S.
sample space
sampling with replacement
Sante Fe trail
scheduling

impossible
minimizing total time in system
time in system

scheduling with deadlines
algorithm
worst-case time complexity

Schonhage, A.
Search Binary Tree
search key
search time
searching

B-trees
breadth-first search with branch-and-bound pruning
dynamic
internal
static
for trees
binary search trees

secret key
selection

algorithm
average-case time complexity

selection problem
adversary argument
definition of
exercises
find smallest and largest key
find smallest and largest keys by pairing keys
finding largest key
finding the k th-smallest key
finding the second-largest key
probabilistic algorithm

selection procedure, for greedy algorithm
Selection Sort
selection using the median

worst-case time complexity
sequence
sequence alignment

divide-and-conquer algorithm
Sequential Search

average-case time complexity
basic operation

www.EBooksWorld.ir

best-case time complexity
vs. binary search
input size
worst-case time complexity

serial computer, traditional
sets
sexual reproduction
shared-address-space architecture
Sherwood algorithm
Shing, M.R.
siblings
Siftdown
sigma
simple cycle, undirected graph
simple path
single instruction stream, single data stream (SISD)
Single-Source Shortest Paths, Dijkstra’s algorithm for
SISD. See single instruction stream, single data stream
site
skewed tree
small o
smooth
solution

to instance
problem

solution check, for greedy algorithm
solve modular linear equation
somatic cell
sort only by comparisons of keys
sorting algorithms

decision trees for
Mergesort 4 (Linked Version)

sorting, by distribution
sorting task
spanning tree
sperm
star-connected network
state space tree

definition
m-Coloring problem
Sum-of-Subsets problem
for Traveling Salesperson problem

static interconnection network
static searching
step
storage
Strassen, V.
Strassen’s Matrix Multiplication
strictly increasing
subgroups

closed
definition of
generated by a
proper

subjectivistic approach

www.EBooksWorld.ir

subset
substitution

vs. induction
for solving recurrences

substitution mutation
Sum-of-Subsets problem
sum write protocol
symmetry

T
tail-recursion
Tarjan, R.E.
template
terminal symbol
theorems

definition of
proofs of

theory of algorithm analysis, application of
tree
thresholds, determining
time
time complexity analysis
time in the system
TND. See total node distance
top-down approach
total node distance (TND)
total weight
totweight
tour
tournament method
tournament selection process
trading system, developing
transformation algorithm
transient diploid meiocyte
transitivity
transpose
Traveling Salesperson problem (TSP)

best-first search with branch-and-bound pruning for
branch-and-bound algorithm
branch-and-bound pruning
Complementary Decision problem
Decision problem
description of
Dynamic Programming Algorithm
evaluation
Extension Decision problem
Greedy Edge Algorithm
Nearest Neighbor Algorithm
NP theory and
Optimization problem

approximation algorithm
as NP-hard

order crossover
state space tree
with triangular inequality

www.EBooksWorld.ir

tree mutations
tree, undirected graph
triangular inequality
TSP. See Traveling Salesperson problem
Turing reductions
2-tree
two-way merging
typical path

U
UMA. See uniform memory access
undirected graph

acyclic
connected
definition of
path in
rooted tree
simple cycle
spanning tree
tree
weighted

uniform memory access (UMA)
union
union graph
unique factorization theorem
universal set

V
valid
variable-length binary code
variables
verification (deterministic) stage
vertex
vertices
vnear
void function

W
weight
weighted directed graph
weighted graph
while loop
winner
Winograd, S.
worst-case behavior, lower bounds
worst-case time complexity analysis

Binary Search Recursive
Euclid’s algorithm
Kruskal’s algorithm
Large Integer Multiplication
Large Integer Multiplication 2
Merge
Mergesort
polynomial determine prime
Quicksort

www.EBooksWorld.ir

scheduling with deadlines
selection using the median

Wright, E.M.

Y
Yao, A.C.
Yao, F.

Z
0-1 Knapsack problem

backtracking algorithm
best-first search with branch-and-bound pruning
breadth-first search with branch-and-bound pruning
Decision problem
dynamic programming algorithm and backtracking algorithm
dynamic programming approach to
greedy approach to
as NP-complete problem
Optimization problem
refinement, dynamic

programming algorithm for
time complexity

Zuffelatto, D.
zygote

www.EBooksWorld.ir

	Title Page
	Copyright
	Dedication
	Contents
	Preface
	About the Author
	1 Algorithms: Efficiency, Analysis, and Order
	1.1 Algorithms
	1.2 The Importance of Developing Efficient Algorithms
	1.2.1 Sequential Search Versus Binary Search
	1.2.2 The Fibonacci Sequence

	1.3 Analysis of Algorithms
	1.3.1 Complexity Analysis
	1.3.2 Applying the Theory
	1.3.3 Analysis of Correctness

	1.4 Order
	1.4.1 An Intuitive Introduction to Order
	1.4.2 A Rigorous Introduction to Order
	1.4.3 Using a Limit to Determine Order

	1.5 Outline of This Book
	Exercises

	2 Divide-and-Conquer
	2.1 Binary Search
	2.2 Mergesort
	2.3 The Divide-and-Conquer Approach
	2.4 Quicksort (Partition Exchange Sort)
	2.5 Strassen’s Matrix Multiplication Algorithm
	2.6 Arithmetic with Large Integers
	2.6.1 Representation of Large Integers: Addition and Other Linear-Time Operations
	2.6.2 Multiplication of Large Integers

	2.7 Determining Thresholds
	2.8 When Not to Use Divide-and-Conquer
	Exercises

	3 Dynamic Programming
	3.1 The Binomial Coefficient
	3.2 Floyd’s Algorithm for Shortest Paths
	3.3 Dynamic Programming and Optimization Problems
	3.4 Chained Matrix Multiplication
	3.5 Optimal Binary Search Trees
	3.6 The Traveling Salesperson Problem
	3.7 Sequence Alignment
	Exercises

	4 The Greedy Approach
	4.1 Minimum Spanning Trees
	4.1.1 Prim’s Algorithm
	4.1.2 Kruskal’s Algorithm
	4.1.3 Comparing Prim’s Algorithm with Kruskal’s Algorithm
	4.1.4 Final Discussion

	4.2 Dijkstra’s Algorithm for Single-Source Shortest Paths
	4.3 Scheduling
	4.3.1 Minimizing Total Time in the System
	4.3.2 Scheduling with Deadlines

	4.4 Huffman Code
	4.4.1 Prefix Codes
	4.4.2 Huffman’s Algorithm

	4.5 The Greedy Approach versus Dynamic Programming: The Knapsack Problem
	4.5.1 A Greedy Approach to the 0-1 Knapsack Problem
	4.5.2 A Greedy Approach to the Fractional Knapsack Problem
	4.5.3 A Dynamic Programming Approach to the 0-1 Knapsack Problem
	4.5.4 A Refinement of the Dynamic Programming Algorithm for the 0-1 Knapsack Problem
	Exercises

	5 Backtracking
	5.1 The Backtracking Technique
	5.2 The n-Queens Problem
	5.3 Using a Monte Carlo Algorithm to Estimate the Efficiency of a Backtracking Algorithm
	5.4 The Sum-of-Subsets Problem
	5.5 Graph Coloring
	5.6 The Hamiltonian Circuits Problem
	5.7 The 0-1 Knapsack Problem
	5.7.1 A Backtracking Algorithm for the 0-1 Knapsack Problem
	5.7.2 Comparing the Dynamic Programming Algorithm and the Backtracking Algorithm for the 0-1 Knapsack Problem
	Exercises

	6 Branch-and-Bound
	6.1 Illustrating Branch-and-Bound with the 0-1 Knapsack Problem
	6.1.1 Breadth-First Search with Branch-and-Bound Pruning
	6.1.2 Best-First Search with Branch-and-Bound Pruning

	6.2 The Traveling Salesperson Problem
	6.3 Abductive Inference (Diagnosis)
	Exercises

	7 Introduction to Computational Complexity: The Sorting Problem
	7.1 Computational Complexity
	7.2 Insertion Sort and Selection Sort
	7.3 Lower Bounds for Algorithms that Remove at Most One Inversion per Comparison
	7.4 Mergesort Revisited
	7.5 Quicksort Revisited
	7.6 Heapsort
	7.6.1 Heaps and Basic Heap Routines
	7.6.2 An Implementation of Heapsort

	7.7 Comparison of Mergesort, Quicksort, and Heapsort
	7.8 Lower Bounds for Sorting Only by Comparison of Keys
	7.8.1 Decision Trees for Sorting Algorithms
	7.8.2 Lower Bounds for Worst-Case Behavior
	7.8.3 Lower Bounds for Average-Case Behavior

	7.9 Sorting by Distribution (Radix Sort)
	Exercises

	8 More Computational Complexity: The Searching Problem
	8.1 Lower Bounds for Searching Only by Comparisons of Keys
	8.1.1 Lower Bounds for Worst-Case Behavior
	8.1.2 Lower Bounds for Average-Case Behavior

	8.2 Interpolation Search
	8.3 Searching in Trees
	8.3.1 Binary Search Trees
	8.3.2 B-Trees

	8.4 Hashing
	8.5 The Selection Problem: Introduction to Adversary Arguments
	8.5.1 Finding the Largest Key
	8.5.2 Finding Both the Smallest and Largest Keys
	8.5.3 Finding the Second-Largest Key
	8.5.4 Finding the kth-Smallest Key
	8.5.5 A Probabilistic Algorithm for the Selection Problem
	Exercises

	9 Computational Complexity and Intractability: An Introduction to the Theory of NP
	9.1 Intractability
	9.2 Input Size Revisited
	9.3 The Three General Problem Categories
	9.3.1 Problems for Which Polynomial-Time Algorithms Have Been Found
	9.3.2 Problems That Have Been Proven to Be Intractable
	9.3.3 Problems That Have Not Been Proven to Be Intractable but for Which Polynomial-Time Algorithms Have Never Been Found

	9.4 The Theory of NP
	9.4.1 The Sets P and NP
	9.4.2 NP-Complete Problems
	9.4.3 NP-Hard, NP-Easy, and NP-Equivalent Problems

	9.5 Handling NP-Hard Problems
	9.5.1 An Approximation Algorithm for the Traveling Salesperson Problem
	9.5.2 An Approximation Algorithm for the Bin-Packing Problem
	Exercises

	10 Genetic Algorithms and Genetic Programming
	10.1 Genetics Review
	10.2 Genetic Algorithms
	10.2.1 Algorithm
	10.2.2 Illustrative Example
	10.2.3 The Traveling Salesperson Problem

	10.3 Genetic Programming
	10.3.1 Illustrative Example
	10.3.2 Artificial Ant
	10.3.3 Application to Financial Trading

	10.4 Discussion and Further Reading
	Exercises

	11 Number-Theoretic Algorithms
	11.1 Number Theory Review
	11.1.1 Composite and Prime Numbers
	11.1.2 Greatest Common Divisor
	11.1.3 Prime Factorization
	11.1.4 Least Common Multiple

	11.2 Computing the Greatest Common Divisor
	11.2.1 Euclid’s Algorithm
	11.2.2 An Extension to Euclid’s Algorithm

	11.3 Modular Arithmetic Review
	11.3.1 Group Theory
	11.3.2 Congruency Modulo n
	11.3.3 Subgroups

	11.4 Solving Modular Linear Equations
	11.5 Computing Modular Powers
	11.6 Finding Large Prime Numbers
	11.6.1 Searching for a Large Prime
	11.6.2 Checking if a Number Is Prime

	11.7 The RSA Public-Key Cryptosystem
	11.7.1 Public-Key Cryptosystems
	11.7.2 The RSA Cryptosystem
	Exercises

	12 Introduction to Parallel Algorithms
	12.1 Parallel Architectures
	12.1.1 Control Mechanism
	12.1.2 Address-Space Organization
	12.1.3 Interconnection Networks

	12.2 The PRAM Model
	12.2.1 Designing Algorithms for the CREW PRAM Model
	12.2.2 Designing Algorithms for the CRCW PRAM Model
	Exercises

	Appendix A Review of Necessary Mathematics 565 A.1 Notation
	A.2 Functions
	A.3 Mathematical Induction
	A.4 Theorems and Lemmas
	A.5 Logarithms
	A.5.1 Definition and Properties of Logarithms
	A.5.2 The Natural Logarithm

	A.6 Sets
	A.7 Permutations and Combinations
	A.8 Probability
	A.8.1 Randomness
	A.8.2 The Expected Value
	Exercises

	Appendix B Solving Recurrence Equations: With Applications to Analysis of Recursive Algorithms
	B.1 Solving Recurrences Using Induction
	B.2 Solving Recurrences Using the Characteristic Equation
	B.2.1 Homogeneous Linear Recurrences
	B.2.2 Nonhomogeneous Linear Recurrences
	B.2.3 Change of Variables (Domain Transformations)

	B.3 Solving Recurrences by Substitution
	B.4 Extending Results for n, a Power of a Positive Constant b, to n in General
	B.5 Proofs of Theorems
	Exercises

	Appendix C Data Structures for Disjoint Sets
	References
	Index

