
Exploring
Advanced
Features in C#

Enhance Your Code and Productivity
—
Dirk Strauss

www.EBooksWorld.ir

Exploring Advanced
Features in C#

Enhance Your Code and Productivity

Dirk Strauss

www.EBooksWorld.ir

Exploring Advanced Features in C#: Enhance Your Code and Productivity

ISBN-13 (pbk): 978-1-4842-4855-3        ISBN-13 (electronic): 978-1-4842-4856-0 	
https://doi.org/10.1007/978-1-4842-4856-0

Copyright © 2019 by Dirk Strauss

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4855-3. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dirk Strauss
Uitenhage, South Africa

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-4856-0

I would like to dedicate this book to my wife Adele and my children
Tristan and Irénéé. Thank you for all your support and love.
You guys complete me and give me a reason to do what I do.

I love you forever and a day.

www.EBooksWorld.ir

v

Table of Contents

Chapter 1: C# 7 in Focus�� 1

Getting Started with Tuples�� 2

Changing the Default Positional Names for Tuple Values��� 4

Create Local Tuple Variables in the Return Data��� 5

Tuple Members as Discrete Variables��� 6

Instances of Tuple Variables��� 8

Inferring Tuple Element Names�� 11

The Ways to Deconstruct Tuples��� 12

Final Thoughts on Tuples�� 14

Pattern Matching��� 14

Using the Is Type Pattern Expression��� 20

Using Switch Pattern Matching Statements��� 22

Using When Clauses in Case Expressions�� 23

Checking for Nulls in Switch Statements��� 27

Using Out Variables�� 28

Discards�� 30

Using Local Functions�� 31

Generalized Async Return Types�� 36

So Why Should I Ever Want to Use Task<T>?��� 44

Throw Expressions��� 44

Discards��� 47

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

www.EBooksWorld.ir

vi

Tuples��� 47

Out Parameters��� 49

Standalone Discard�� 50

Pattern Matching�� 51

Wrapping Up�� 53

Chapter 2: Exploring C#��� 55

The History of C#�� 55

Using and Implementing Abstract Classes��� 58

Abstract Class Features�� 58

Abstract Methods��� 59

Abstract Properties��� 59

Using Abstract Classes��� 60

When Do I Use an Abstract Class?�� 63

Using and Implementing Interfaces��� 64

Creating the Abstract and Derived Classes�� 65

Creating the Interfaces��� 67

Implementing the Interfaces�� 68

Asynchronous Programming Using Async and Await��� 71

How Do I Write Async Methods?��� 71

Under the Hood��� 74

Some Final Tips�� 79

Making Use of Extension Methods��� 80

Checking If a String Is a Valid Integer��� 81

Extension Methods Are Lower Priority Than Instance Methods�� 83

Generics��� 85

Non-generic VehicleCarrier Class��� 86

Changing VehicleCarrier Class to Be Generic��� 89

Recap and More on Generics��� 92

Generics and Collections�� 92

Generic Interfaces�� 94

Table of Contents

www.EBooksWorld.ir

vii

Nullable Type�� 97

Some Characteristics of Nullable Types��� 97

Using Nullable Types�� 98

A Peek Inside Nullable<T>��� 99

Dynamic Type��� 102

Wrapping Up�� 104

Chapter 3: The New Features of C# 8.0��� �105

Nullable Reference Types��� 106

Enabling Nullable Reference Types�� 107

Recap��� 110

Recursive Patterns��� 111

Ranges and Indices�� 113

Switch Expressions�� 116

Should I Use Switch Expressions?��� 118

Property Patterns�� 119

Target-Typed New Expressions�� 120

Async Streams��� 121

Using Declarations��� 123

Wrapping Up�� 124

Chapter 4: Responsive Web Applications Using ASP.NET MVC������������������������������ 125

Creating Your ASP.NET MVC Application��� 126

Referencing jQuery and Bootstrap��� 132

Creating Bundles�� 135

Referencing Bundles in Views�� 136

Setting Up and Using SCSS�� 137

What Exactly Is SCSS?�� 142

Adding Our Custom CSS File to BundleConfig�� 144

Creating Models, Controllers, Views and Using Razor�� 145

What Is a Controller?�� 145

What Is a View?�� 146

Table of Contents

www.EBooksWorld.ir

viii

What Is a Model?�� 146

What Is Routing?�� 146

How Routing Works�� 147

Creating Your Model��� 149

Creating Your Controller�� 152

Creating Your View�� 154

What Is Razor?��� 157

How to Write Razor��� 158

Linking Everything Together��� 159

Add Styling��� 162

Add Some jQuery�� 164

Wrapping Up��� 166

Adding a Plugin�� 166

Installing Isotope�� 166

Making Isotope Work�� 170

Testing Your Responsive Layout Using Chrome��� 175

Starting with the Developer Tools��� 175

Breakpoints and Media Queries Using SCSS�� 176

Debugging Your jQuery Using Chrome Developer Tools��� 179

Wrapping Up�� 188

Chapter 5: Getting Started with .NET Core 3.0��� �189

Creating .NET Core Apps in Visual Studio 2019�� 190

What Is New in .NET Core 3.0�� 193

Windows Desktop��� 193

Support for C# 8.0�� 198

Default Executables�� 199

Fast Built-In JSON Support��� 201

Cryptography�� 202

Installing .NET Core 3.0 Preview on Linux with Snap�� 204

Create and Run an ASP.NET MVC App on Linux�� 205

Edit Your ASP.NET Core MVC App on Linux with Visual Studio Code�� 208

Table of Contents

www.EBooksWorld.ir

ix

Editing Your Project�� 209

Debug Your ASP.NET Core MVC Project with Visual Studio Code�� 212

Wrapping Up�� 219

Chapter 6: Being More Productive in Visual Studio��� 221

New Features in Visual Studio 2019�� 222

UI Improvements�� 222

Search Improvements�� 225

Cleaning Up Your Code��� 227

Debugging Improvements�� 230

Per-Monitor Aware Rendering�� 231

Free/Paid/Trial Extensions�� 232

Visual Studio Live Share�� 233

Sharing Your Code�� 234

When You Are Having Trouble Signing In�� 241

Sharing Terminals��� 244

Some Notes on Live Share��� 248

Refactorings and Code Fixes��� 249

Convert foreach to LINQ (VS2019 Only)�� 249

Convert to Interpolated String�� 253

Convert Anonymous Type to Class�� 253

Converting a Local Function to Method�� 256

Enable JavaScript Debugging in ASP.NET Projects�� 257

Exporting Your Editor Settings��� 262

Visual Studio IntelliCode Using AI�� 265

General Visual Studio Tips�� 271

Using Live Unit Tests��� 272

Generate Classes from XML and JSON��� 277

C# Interactive��� 279

Wrapping Up�� 281

Index�� 283

Table of Contents

www.EBooksWorld.ir

xi

About the Author

Dirk Strauss is a software developer and Microsoft

.NET MVP from South Africa with over 13 years of

programming experience. He has extensive experience in

SYSPRO Customization (an ERP system), with C# and web

development being his main focus. He currently works as

a full stack developer with Embrace. He studied at Nelson

Mandela University where he wrote software part time to

gain a better understanding of the technology. He remains passionate about writing

code and imparting what he learns with others.  

www.EBooksWorld.ir

xiii

About the Technical Reviewer

James McCaffrey works for Microsoft Research in Redmond,

Wash. James has a PhD in cognitive psychology and

computational statistics from the University of Southern

California, a BA in psychology, a BA in applied mathematics,

and an MS in computer science. He worked on several key

products including Azure and Bing. He is also the Senior

Technical Editor for Microsoft’s MSDN Magazine, the most

widely read technical journal in the world.  

www.EBooksWorld.ir

xv

Acknowledgments

I would like to thank the team at Apress for their dedication to this book and for giving

me the opportunity to write it.

I would also like to thank James McCaffrey for checking that I had dotted all the i’s,

crossed all the t’s, and that the code made sense. It is always a pleasure working with you.

Lastly, I would like to thank Dave Long for his guidance and mentorship. You have a

true passion for your art that inspires me to be a better developer. Kudos mate.

www.EBooksWorld.ir

xvii

Introduction

This book is primarily aimed at C# developers with some prior knowledge of writing

applications in C# with Visual Studio. It is focused on C# 7 but also takes a look at the

new features in C# 8 and .NET Core 3.0. In this book, we will

•	 Look at features of C# 7 such as tuples, local functions, and discards

•	 Explore abstract classes, implementing interfaces, using async and

await, nullable, and dynamic types

•	 Look at features of C# 8 such as nullable reference types, recursive

patterns, ranges, indices, switch expressions, and more

•	 Create responsive web apps using ASP.NET MVC. Using SASS,

jQuery, creating Models, Views, and Controllers. How to use Razor,

adding plugins, testing responsive layouts using Chrome, and

debugging jQuery using Chrome Developer Tools

•	 See what is new in .NET Core 3.0 and how to get up and running with

.NET Core 3.0 in a Snap

•	 Have a look at running your ASP.NET Core MVC app on Linux and

how to edit and debug it using Visual Studio Code

•	 Look at new features in Visual Studio 2019

•	 See how Visual Studio Live Share works

•	 Learn some refactoring and code fix tips in Visual Studio to make you

more productive

•	 See how you can bring Artificial Intelligence to Visual Studio by

making use of the powerful Visual Studio IntelliCode

If you are a developer that wants to keep on improving your skills, have a look at what

this book has to offer.

www.EBooksWorld.ir

1
© Dirk Strauss 2019
D. Strauss, Exploring Advanced Features in C#, https://doi.org/10.1007/978-1-4842-4856-0_1

CHAPTER 1

C# 7 in Focus
C# 7 was released in March 2017 as part of the release of Visual Studio 2017. As

mentioned on the .NET Blog by Mads Torgersen, C# 7 was focused on the consumption

of data, simplifying code and improving performance. The biggest features to come out

of C# 7 were tuples and pattern matching.

With tuples, developers can return more than one value from functions. Traditionally

C# has allowed developers to return multiple values from a single function by building a

structure and returning an instance of the structure.

You could also make use of out parameters which use the out keyword for each

value being returned from the function. With C# 7, tuples provide an additional way of

returning multiple values from a function.

The second big feature is pattern matching that can test if a value has a certain

shape and then do something with that data. In this chapter we will be looking at these

concepts and more. Here is what you can expect from this chapter:

•	 Getting started with tuples

•	 Pattern matching and deconstruction

•	 Using out variables

•	 Using local functions

•	 Generalized async return types

•	 Throw expressions

•	 Discards

C# 7 has so much to offer developers, it is definitely worth your while spending

some time getting to know the new language features better. Grab a cup of coffee (if you

don’t have a cup already) and let’s get started on our journey of discovering what C# 7

has to offer.

www.EBooksWorld.ir

2

Please note that I have used Visual Studio Enterprise 2019 Preview for the code and
screenshots in this book. You can download a copy from https://visualstudio.
microsoft.com. Alternatively, you can continue using Visual Studio 2017, but be
aware that you will not be able to run any of the code samples in the chapter on C# 8.0.

�Getting Started with Tuples
Exactly what makes tuples so great? As you know, returning multiple values from a function

is something you can already do in C#. Tuples simply give you another way to do this.

Create a class called TupleExample. Your Visual Studio project might look something

as in Figure 1-1.

Next, add a tuple-returning function to the class called GetGuitarType. In its

simplest form, a tuple-returning function looks as follows.

Listing 1-1.  Tuple-returning function

public (string, int) GetGuitarType()

{

 return ("Les Paul Studio", 6);

}

Figure 1-1.  Visual Studio Solution

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

https://visualstudio.microsoft.com
https://visualstudio.microsoft.com

3

All that this function does is return a tuple with a guitar type as a string and the

number of strings it has as an integer to the calling code. Because this code is in a class,

you would simply call it as follows.

Listing 1-2.  Calling tuple-returning function

TupleExample te = new TupleExample();

var guitarResult = te.GetGuitarType();

Debug.WriteLine(guitarResult.Item1);

Debug.WriteLine(guitarResult.Item2);

Because I am using a Windows Forms project to demonstrate the use of tuples, I am

simply writing out the result of the tuple to the output window in Visual Studio by using

Debug.WriteLine. You can do this whichever way you like to.

If you look at the output window, you will notice that the values returned from the

function are displayed.

The easiest way to return tuples is to use an implicit variable which is declared using

the var keyword. What is important to notice though is the use of the Item1 and Item2 in

the guitarResult variable. You will see that by default the values returned in the tuple

have been given positional names (Item1, Item2, Item3, etc.) depending on how many

values you are returning.

You will notice that when you dot on the guitarResult variable, the Intellisense brings

back the positional names of the tuple values.

Figure 1-2.  Output from the returned tuple

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

4

�Changing the Default Positional Names for Tuple Values
You might be wondering if it is possible to change the default positional names for the

tuple values. Luckily for us, the answer is a resounding yes. It is possible to include new

default member names as part of the return type declaration for the tuple function.

Start off by modifying the tuple function you created earlier and include logical

names for the members as follows.

Listing 1-3.  Adding member names to return type declaration

public (string GuitarType, int StringCount) GetGuitarType()

{

 return ("Les Paul Studio", 6);

}

For the string return type, I specified that it should be identified by the member

name GuitarType. For the integer return type, it will be identified as StringCount.

This time if you dot on the guitarResult variable, you will notice that the Item1 and

Item2 positional names have been replaced by the member names we defined in the

return type declaration.

Figure 1-3.  Positional names of the tuple variable

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

5

You can still use Item1, Item2, and so on to refer to the tuple values. That still works,

but now you can explicitly refer to the member names as follows.

Listing 1-4.  Reference member names for tuple values

TupleExample te = new TupleExample();

var guitarResult = te.GetGuitarType();

Debug.WriteLine(guitarResult.GuitarType);

Debug.WriteLine(guitarResult.StringCount);

This makes it much easier to refer to values returned by the tuple function and clears

up any confusion (and possible bugs) that would result by using the positional names.

�Create Local Tuple Variables in the Return Data
You can probably guess that by referring to the tuple member names as default member

names, you are able to define locally relevant names for them too. This is 100% correct.

Let me clarify the previous statement.

The member names you specified for the tuple values are only suggested names.

That is to say, the GuitarType and StringCount names are only suggested names. When

you work with the return value, you are able to specify locally relevant member names.

This means that if I do not want to call the members GuitarType and StringCount, then I

can change that.

Figure 1-4.  Member names replace positional names

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

6

By changing var guitarResult to (string BrandType, int GuitarStringCount)

guitarResult, you are able to override the suggested default member names declared

in the tuple return type declaration.

When you dot on the guitarResult variable, you will see that the member names

have changed accordingly.

This means that our calling code will need to change to reference the locally relevant

member names and will look as follows.

Listing 1-5.  Local tuple variables

TupleExample te = new TupleExample();

(string BrandType, int GuitarStringCount) guitarResult = te.GetGuitarType();

Debug.WriteLine(guitarResult.BrandType);

Debug.WriteLine(guitarResult.GuitarStringCount);

You do not have to be tied into the default member names as defined in the return

type declaration of the tuple function. Creating your own locally declared names gives

you a lot more flexibility when working with tuples.

�Tuple Members as Discrete Variables
C# 7 allows you to use tuple members as discrete variables. You will see that the code is

quite similar to creating local tuple variables. The only difference here is the omission

of the guitarResult variable. You will remember that our code used to assign the tuple

returned from the function into the guitarResult variable by doing the following.

Figure 1-5.  Local member names for tuple values

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

7

Listing 1-6.  Returning local tuple variables

(string BrandType, int GuitarStringCount) guitarResult = te.GetGuitarType();

With discrete variables we can simply drop the guitarResult variable to produce the

following code.

Listing 1-7.  Discrete tuple variables

(string BrandType, int GuitarStringCount) = te.GetGuitarType();

Putting all the code together, you will see that one can now use BrandType and

GuitarStringCount on their own.

Listing 1-8.  Using the discrete tuple variables

TupleExample te = new TupleExample();

(string BrandType, int GuitarStringCount) = te.GetGuitarType();

Debug.WriteLine(BrandType);

Debug.WriteLine(GuitarStringCount);

In C# we refer to this as deconstruction. You don’t need to explicitly declare the type

of each field in the parentheses either. You can declare implicitly typed variables for each

of the fields by using the var keyword.

Listing 1-9.  Implicitly typed variables using var

TupleExample te = new TupleExample();

var (BrandType, GuitarStringCount) = te.GetGuitarType();

Debug.WriteLine(BrandType);

Debug.WriteLine(GuitarStringCount);

In Listing 1-9 the var keyword was outside the parentheses. You are also allowed

to mix things up a bit by using the var keyword with any or all the variables that are

declared inside the parentheses. Consider the following code example.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

8

Listing 1-10.  Using var with some of the variables

TupleExample te = new TupleExample();

(string BrandType, var GuitarStringCount) = te.GetGuitarType();

Debug.WriteLine(BrandType);

Debug.WriteLine(GuitarStringCount);

If you think that discrete variables are fancy, you should check out instances of tuple

variables. Let’s see how to do this next.

�Instances of Tuple Variables
C# 7 allows you to use tuples as instance variables. This means that you can declare a

variable as a tuple. To illustrate this, start off by creating a method called PlayInstrument

that accepts a tuple as a parameter. All this will do is just output a line of text.

Listing 1-11.  The PlayInstrument method

private void PlayInstrument((string, int) instrumentToPlay)

{

 �Debug.WriteLine($"I am playing a {instrumentToPlay.Item1} with

{instrumentToPlay.Item2} strings");

}

You will need to create an enum called InstrumentType that has several instruments.

The enum is simply public enum InstrumentType { guitar, cello, violin } and is

used at the top of your class file. You can then use the enum in the following code along

with the instances of tuple variables.

Listing 1-12.  Using tuples as instance variables

string instrumentType = nameof(InstrumentType.guitar);

int strings = 12;

(string TypeOfInstrument, int NumberOfStrings) instrument = (instrumentType,

strings);

PlayInstrument(instrument);

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

9

You will notice that I pass an instance of the tuple variable called instrument to

the PlayInstrument method. Inside the PlayInstrument method, I refer to the tuple

values by using the positional names of the tuple values. I could also have written the

PlayInstrument method as follows.

Listing 1-13.  PlayInstrument method using custom member names

private void PlayInstrument((string instrument, int strings) instrumentToPlay)

{

 �Debug.WriteLine($"I am playing a {instrumentToPlay.instrument} with

{instrumentToPlay.strings} strings");

}

This is a more natural way of referencing the tuple values.

�Comparing Tuples

You can also compare tuple members. To illustrate this, let’s stay with the musical

instruments and compare the string counts of a guitar and a violin.

Start off by using the enum you created earlier and create the following tuple type

variables.

Listing 1-14.  Creating tuple type variables

string instrumentType1 = nameof(InstrumentType.guitar);

int stringsCount1 = 6;

(string TypeOfInstrument, int NumberOfStrings) instrument1 = (instrumentType1,

stringsCount1);

string instrumentType2 = nameof(InstrumentType.violin);

int stringsCount2 = 4;

(string TypeOfInstrument, int NumberOfStrings) instrument2 = (instrumentType2,

stringsCount2);

A violin and a guitar have different string counts. The guitar has six while the violin

only has four. Checking the equality of the count is as easy as using an if statement.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

10

Listing 1-15.  Comparing tuple members

if (instrument1.NumberOfStrings != instrument2.NumberOfStrings)

{

 �Debug.WriteLine($"A {instrument2.TypeOfInstrument} does not have the

same number of strings as a {instrument1.TypeOfInstrument}");

}

You can also compare the entire tuple variables with each other. Prior to version 7.3,

checking tuple equality used to require the Equals method.

Listing 1-16.  Comparing tuples before C# 7.3

if (!instrument1.Equals(instrument2))

{

 Debug.WriteLine("We are dealing with different instruments here.");

}

If you tried using == or != with tuple types, you would see an error.

To test tuple equality by using == or != you need to have C# 7.3 or greater. To use this

version of C#, you need to do the following:

	 1.	 Right-click the project and click Properties.

	 2.	 On the Build tab, click the Advanced button.

	 3.	 On the Advanced Build Settings, set the Language version to the

latest minor version.

This is enough to select C# 7.3 (in our case) to use in the project.

Figure 1-6.  Tuple equality error in C# 7.0

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

11

Take note that C# 8.0 (beta) is available in this list. This is because I am using Visual
Studio 2019 Preview. If you are using Visual Studio 2017, you will not see C# 8.0.

After you have selected your C# language version, swing back to your code and look

at the line we saw the error on earlier. The error has gone away. Personally I am not too

fond of using ! on the Equals method. It obscures the readability for me somewhat.

The line if (instrument1 != instrument2) reads more natural to me than if

(!instrument1.Equals(instrument2)).

�Inferring Tuple Element Names
Starting with C# 7.1, a small enhancement was made to the C# language to infer tuple

element names. Consider the following block of code.

Listing 1-17.  Inferring tuple element names

string instrumentType = nameof(InstrumentType.guitar);

int stringsCount = 6;

var instrument = (instrumentType, stringsCount);

When I dot on the instrument variable, the IntelliSense shows me the member

names inferred from the variables used to initialize the tuple.

Figure 1-7.  Selecting the C# language version

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

12

This is a welcome enhancement to C# 7, starting with version 7.1.

�The Ways to Deconstruct Tuples
The term tuple deconstruction simply means to take all the items in a tuple and splitting

them out in a single operation. In fact, the code listings in this section have already been

doing that.

You will hear the term frequently, as this refers to something that is done naturally

when working with tuples. The following figure illustrates the ways in which tuple

deconstruction can take place.

Figure 1-8.  Inferred member names

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

13

As you can see, there are essentially only four ways to perform tuple deconstruction.

There are actually only three ways, but I counted the two ways to use inference as
a separate deconstruction method.

These methods for deconstruction are

•	 Explicitly declaring each field’s type

•	 Inferring the type of each variable with a single var keyword

Figure 1-9.  Deconstructing tuples

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

14

•	 Inferring the type of the variables by mixing the var keyword with any

or all variable declarations

•	 Declaring variables and deconstructing the tuple into the previously

declared variables

For me, using a single var keyword is probably the most efficient way of

deconstructing a tuple. The other methods are a bit long-winded for my liking. I guess it

all comes down to personal preference really.

Whichever method you use to deconstruct a tuple, the fact that I can do that in a

single deconstruct operation is a welcome feature indeed.

�Final Thoughts on Tuples
Tuples definitely have a place in your everyday coding practice. Using them often will

help in understanding them better. Note that tuples can have more than just the two

members I have been using in the code examples. It would probably not be a good idea

to create a tuple with so many members that it becomes unwieldy to manage and work

with.

In C#, Tuple.Create allows a maximum of eight items. In practice this is usually

sufficient. But if you find yourself creating tuples with a lot of members, then perhaps

you need to consider using a class or a structure. It is incredible what some musicians

can achieve on a couple of stringed instruments. It is even more incredible what

developers can achieve with tuples.

�Pattern Matching
In C# 7, we now have the ability to use pattern matching. By using patterns, we can test if

a value has a certain shape and, if so, work with the information of that matching shape.

In fact, you are already using pattern matching algorithms when you use the if and

switch statements to test values. If the statements match, you take the matched value

and extract its information.

In C# 7 you can use new syntax elements which extend the is and switch statements

which you are already familiar with. Let’s start off with creating a new class called

PatternMatchingExample and adding our code to this class.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

15

I have created the following enums on the PatternMatchingExample class.

Listing 1-18.  Class enums

public enum UniversityCourses { Maths, Chemistry, Anatomy, LifeSkills }

public enum UniversityDegree { BA, BSc }

I am not going into detail for each class used in this example. You can download the

source code for this book and work with the examples as you need to.

For now, assume that we have the following objects:

•	 Person class

•	 Student class (which inherits from Person class)

•	 Lecturer class (which inherits from Person class)

•	 Alumnus class (which inherits from Person class)

•	 ExchangeStudent struct

The classes are all similar with slight differences which I’ll briefly highlight here. We

also have a struct for ExchangeStudent.

Figure 1-10.  PatternMatchingExample class

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

16

Strictly speaking, a Lecturer and Alumnus should probably inherit from a
Student instead of a Person class but I didn’t want to complicate things. After
all, this chapter isn’t dealing with inheritance.

As mentioned earlier, the Student class, Lecturer class, and Alumnus class all inherit

from the Person class. The Person class has the following code.

Listing 1-19.  Person class code

public class Person

{

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public int Age { get; set; }

}

The Student class has a property for the course that the student is enrolled in. It

also returns unique values from the StudentDetails method. The Student class has the

following definition.

Listing 1-20.  Student class code

public class Student : Person

{

 public int StudentNumber { get; }

 public UniversityCourses CourseEnrolledFor { get; }

 �public Student((string firstname, string lastname, int age)

personDetails, int studentNumber, UniversityCourses courseEnrolled)

 {

 FirstName = personDetails.firstname;

 LastName = personDetails.lastname;

 Age = personDetails.age;

 StudentNumber = studentNumber;

 CourseEnrolledFor = courseEnrolled;

 }

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

17

 �public (string fullName, int studentNum, string studentCourse)

StudentDetails()

 {

 �var studentDetails = ($"{FirstName} {LastName}", StudentNumber,

CourseEnrolledFor.ToString());

 return studentDetails;

 }

}

The other classes return different properties from the method that returns that

particular object’s details. The Lecturer class, for example, contains a property for the

course specialization that the lecturer teaches. Its details method however calculates and

returns the number of days that the lecturer has been employed. This is the code for the

Lecturer class.

Listing 1-21.  Lecturer class code

public class Lecturer : Person

{

 public int EmployeeNumber { get; }

 public string CourseSpecialization { get; }

 public DateTime DateEmployed { get; }

 �public Lecturer((string firstname, string lastname, int

age) personDetails, int employeeNumber, UniversityCourses

courseSpecialization, DateTime dateEmployed)

 {

 FirstName = personDetails.firstname;

 LastName = personDetails.lastname;

 Age = personDetails.age;

 EmployeeNumber = employeeNumber;

 CourseSpecialization = courseSpecialization.ToString();

 DateEmployed = dateEmployed;

 }

 �public (string fullName, int employeeNum, string courseSpecial, int

totalDayesEmployed) LecturerDetails()

 {

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

18

 �double lengthOfServiceInDays = DateTime.Now.Subtract(DateEmployed).

TotalDays;

 �var lecturerDetails = ($"{FirstName} {LastName}", EmployeeNumber,

CourseSpecialization, Convert.ToInt32(lengthOfServiceInDays));

 return lecturerDetails;

 }

}

The Alumnus has completed their degree, so the Alumnus class contains a property

for the degree that they obtained and the year they completed their degree. The Alumnus

class looks as follows.

Listing 1-22.  Alumnus class code

public class Alumnus : Person

{

 public int YearCompleted { get; }

 public UniversityDegree DegreeObtained { get; }

 �public Alumnus((string firstname, string lastname, int age)

personDetails, int yearStudiesCompleted, UniversityDegree degreeObtained)

 {

 FirstName = personDetails.firstname;

 LastName = personDetails.lastname;

 Age = personDetails.age;

 YearCompleted = yearStudiesCompleted;

 DegreeObtained = degreeObtained;

 }

 �public (string fullName, int yearCompleted, string degreeObtained)

AlumnusDetails()

 {

 �var alumnusDetails = ($"{FirstName} {LastName}", YearCompleted,

DegreeObtained.ToString());

 return alumnusDetails;

 }

}

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

19

Lastly, the ExchangeStudent is a struct and contains a property for the short course

they attended and the number of days left on their student visa. The ExchangeStudent

struct looks as follows.

Listing 1-23.  ExchangeStudent struct code

public struct ExchangeStudent

{

 public string FirstName { get; }

 public string LastName { get; }

 public string ShortCourse { get; }

 public DateTime VisaExpiryDate { get; }

 �public ExchangeStudent((string firstname, string lastname, int

age) personDetails, UniversityCourses shortCourse, DateTime

studentVisaExpiryDate)

 {

 FirstName = personDetails.firstname;

 LastName = personDetails.lastname;

 ShortCourse = shortCourse.ToString();

 VisaExpiryDate = studentVisaExpiryDate;

 }

 �public (string fullName, string shortCourse, int daysLeftOnVisa)

ExchangeStudentDetails()

 {

 double lenOfVisa = VisaExpiryDate.Subtract(DateTime.Now).TotalDays;

 �var exchangeDetails = ($"{FirstName} {LastName}", ShortCourse,

Convert.ToInt32(lenOfVisa));

 return exchangeDetails;

 }

}

If we have a specific object, we want to get the correct details for that object. You will

notice that we are returning the information from each class in a tuple.

The design of our classes isn’t important here. What is important is the way we

determine its shape and then, based on that, extract the data to work with. We will now

see how pattern matching works on each of these objects.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

20

�Using the Is Type Pattern Expression
Before C# 7 you would have had to test the type of the object using a series of if and is

statements. This is a classic type pattern and you are testing a variable to figure out what

type it is.

Based on the type of the variable, you perform a different action. An example of such

code would probably look like the following.

Listing 1-24.  Pre-C# 7 type testing

// Before C# 7

if (someperson is Student)

{

 var student = (Student)someperson;

 �return $"{student.StudentDetails().fullName} is enrolled for {student.

StudentDetails().studentCourse} with student number {student.

StudentDetails().studentNum}";

}

else if (someperson is Lecturer)

{

 var lecturer = (Lecturer)someperson;

 �return $"{lecturer.LecturerDetails().fullName} teaches {lecturer.

LecturerDetails().courseSpecial}";

}

else if (someperson is Alumnus)

{

 var alumnus = (Alumnus)someperson;

 �return $"{alumnus.AlumnusDetails().fullName} has completed {alumnus.

AlumnusDetails().degreeObtained} in {alumnus.AlumnusDetails().

yearCompleted}";

}

Fast forward to C# 7 and we have a simpler, more concise way of doing this. In the

following code, we are using the extended is expression that assigns a variable if the test

succeeds. The code looks as follows.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

21

Listing 1-25.  The is type pattern expression

// The is type pattern

if (someperson is Student student)

{

 �return $"{student.StudentDetails().fullName} is enrolled for {student.

StudentDetails().studentCourse} with student number {student.

StudentDetails().studentNum}";

}

else if (someperson is Lecturer lecturer)

{

 �return $"{lecturer.LecturerDetails().fullName} teaches {lecturer.

LecturerDetails().courseSpecial}";

}

else if (someperson is Alumnus alumnus)

{

 �return $"{alumnus.AlumnusDetails().fullName} has completed {alumnus.

AlumnusDetails().degreeObtained} in {alumnus.AlumnusDetails().

yearCompleted}";

}

else if (someperson is ExchangeStudent exchStudent)

{

 �return $"{exchStudent.ExchangeStudentDetails().fullName} has

{exchStudent.ExchangeStudentDetails().daysLeftOnVisa} days left on

Student Visa";

}

We now have a shortcut by using the is expression. This is because it does two

things. It tests the variable and it assigns it to a new variable. Also notice that I have

included the ExchangeStudent type which is a struct. This means that the new is

expression will happily work with value types (structs) and reference types (classes).

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

22

A side note on structs and classes: When creating a struct, the variable assigned
to the struct holds the struct’s actual data. When it is assigned to a new variable,
it is copied which gives the new variable a separate space in memory. The original
variable and the new variable now contain two separate copies of the same data.
This is what we call a value type.

A class is a reference type. A reference type contains a pointer to another memory
location that holds the data.

The extended is expression makes for somewhat shorter code and is more readable.

Another point to take note of is the newly created variable after each is expression. These

are only in scope and assigned when the pattern matching expressions return true results.

�Using Switch Pattern Matching Statements
In the previous section, we had a look at the is pattern matching expression. It

required if statements on each type you needed to check. This can become somewhat

cumbersome as it also only tests if the input matches a single type. This is where the

switch expression can come in handy.

Traditional switch statements only supported the constant pattern. It also only

supported numeric types and the string type. In C# 7 you can now use the type pattern.

This means that we can do the following.

Listing 1-26.  Switch pattern matching statements

// Using switch statements pattern matching

switch (someperson)

{

 case Student student:

 �return $"{student.StudentDetails().fullName} is enrolled for

{student.StudentDetails().studentCourse} with student number

{student.StudentDetails().studentNum}";

 case Lecturer lecturer:

 �return $"{lecturer.LecturerDetails().fullName} teaches {lecturer.

LecturerDetails().courseSpecial}";

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

23

 case Alumnus alumnus:

 �return $"{alumnus.AlumnusDetails().fullName} has completed

{alumnus.AlumnusDetails().degreeObtained} in {alumnus.

AlumnusDetails().yearCompleted}";

 case ExchangeStudent exchangeStudent:

 �return $"{exchangeStudent.ExchangeStudentDetails().fullName} has

{exchangeStudent.ExchangeStudentDetails().daysLeftOnVisa} days left

on Student Visa";

}

Whenever a case statement is evaluated to true, the code beneath it is run. In C# 7

the restrictions on variable types have been removed from switch expressions, and any

type may be used.

�Using When Clauses in Case Expressions
We can cater for special conditions by using a when clause on the case label. Let

us assume that we also want to identify senior alumni. These individuals will have

completed their course before 1976.

We can therefore use a when clause on the case label to check for this condition.

Consider then the following code listing.

Listing 1-27.  Using a when clause

// Using switch statements pattern matching

switch (someperson)

{

 case Student student:

 �return $"{student.StudentDetails().fullName} is enrolled for

{student.StudentDetails().studentCourse} with student number

{student.StudentDetails().studentNum}";

 case Lecturer lecturer:

 �return $"{lecturer.LecturerDetails().fullName} teaches {lecturer.

LecturerDetails().courseSpecial}";

 �case Alumnus alumnus when alumnus.YearCompleted <= 1975: // Note the

when keyword here

 return $"{alumnus.AlumnusDetails().fullName} is a senior Alumnus";

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

24

 case Alumnus alumnus:

 �return $"{alumnus.AlumnusDetails().fullName} has completed

{alumnus.AlumnusDetails().degreeObtained} in {alumnus.

AlumnusDetails().yearCompleted}";

 case ExchangeStudent exchangeStudent:

 �return $"{exchangeStudent.ExchangeStudentDetails().fullName} has

{exchangeStudent.ExchangeStudentDetails().daysLeftOnVisa} days left

on Student Visa";

}

If the YearCompleted value is <= 1975, we return a slightly different message to the

calling code.

If the code is slightly difficult to understand, consider downloading the source code
for the book and following along in Visual Studio.

Another interesting thing to note is that multiple case labels can be grouped together

under a single switch section. Consider the following code.

Listing 1-28.  Multiple case labels

// Using multiple case labels in switch statements

switch (someperson)

{

 �case Student student when student.CourseEnrolledFor == UniversityCourses.

Chemistry:

 �case Alumnus alumnus when alumnus.DegreeObtained == UniversityDegree.BSc:

 return "Chemistry and BSc excluded";

 case Student student:

 �return $"{student.StudentDetails().fullName} is enrolled for

{student.StudentDetails().studentCourse} with student number

{student.StudentDetails().studentNum}";

 case Lecturer lecturer:

 �return $"{lecturer.LecturerDetails().fullName} teaches {lecturer.

LecturerDetails().courseSpecial}";

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

25

 case Alumnus alumnus when alumnus.YearCompleted <= 1975:

 return $"{alumnus.AlumnusDetails().fullName} is a senior Alumnus";

 case Alumnus alumnus:

 �return $"{alumnus.AlumnusDetails().fullName} has completed {alumnus.

AlumnusDetails().degreeObtained} in {alumnus.AlumnusDetails().

yearCompleted}";

 case ExchangeStudent exchangeStudent:

 �return $"{exchangeStudent.ExchangeStudentDetails().fullName} has

{exchangeStudent.ExchangeStudentDetails().daysLeftOnVisa} days left

on Student Visa";

}

Here you see that we want to exclude the chemistry students and the BSc alumni.

The example of excluding those object types based on course enrolled for or degree

obtained is rather silly (i.e., probably not a great real-world example). It does however

highlight an important feature of the switch statements:

•	 I can apply multiple case labels to a single switch section.

•	 The order of each section matters.

So, what do I mean when I say that the order of the sections matter? Well consider

the effects of adding the code case Student student as the first case in the switch

statement. This will cause the case with the when clause for student never to be

evaluated.

In fact, the code in Listing 1-28 is already going to exclude senior alumni because

the first case label that excludes alumni based on the degree obtained will include any

senior alumni. Therefore, a senior alumnus that obtained a BSc degree will always be

excluded from the senior alumnus evaluation further down the switch statement. To

demonstrate this, consider the following objects.

Listing 1-29.  Alumnus objects

Alumnus alumnus = new Alumnus(("Gabby", "Salinger", 26), 2017,

UniversityDegree.BSc);

Alumnus senalumnus = new Alumnus(("Frank", "Greer", 74), 1970,

UniversityDegree.BSc);

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

26

Running the code and passing it two instances of the Alumnus class will result in the

output of Chemistry and BSc excluded for both objects. To overcome this issue, we can

add in the conditional logical AND operator.

The && operator is also known as a short-circuiting logical AND operator. It
computes the logical AND of the bool operands which evaluates to true if both
sides of the && evaluate to true. Therefore, if the first condition is false, the
expression short-circuits out immediately. This means that the second condition
will only be evaluated if the first condition is true.

To illustrate this and to allow the senior alumni to still be evaluated, modify your

switch statement as follows.

Listing 1-30.  Modified switch statement to cater for senior alumni

// Modified switch statement to cater for senior alumni

switch (someperson)

{

 �case Student student when student.CourseEnrolledFor ==

UniversityCourses.Chemistry:

 �case Alumnus alumnus when alumnus.DegreeObtained == UniversityDegree.

BSc && alumnus.YearCompleted > 1975:

 return "Chemistry and BSc excluded";

 case Student student:

 �return $"{student.StudentDetails().fullName} is enrolled for

{student.StudentDetails().studentCourse} with student number

{student.StudentDetails().studentNum}";

 case Lecturer lecturer:

 �return $"{lecturer.LecturerDetails().fullName} teaches {lecturer.

LecturerDetails().courseSpecial}";

 case Alumnus alumnus when alumnus.YearCompleted <= 1975:

 return $"{alumnus.AlumnusDetails().fullName} is a senior Alumnus";

 case Alumnus alumnus:

 �return $"{alumnus.AlumnusDetails().fullName} has completed

{alumnus.AlumnusDetails().degreeObtained} in {alumnus.

AlumnusDetails().yearCompleted}";

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

27

 case ExchangeStudent exchangeStudent:

 �return $"{exchangeStudent.ExchangeStudentDetails().fullName} has

{exchangeStudent.ExchangeStudentDetails().daysLeftOnVisa} days left

on Student Visa";

}

All that we have done is add && alumnus.YearCompleted > 1975 to the when clause

of the alumnus case label. Essentially, I am saying that the Alumnus object must only

be excluded when the alumnus obtained a BSc degree and the year that the degree was

obtained is after 1975.

If I used the same Alumnus objects in Listing 1-29 and ran my code, I would see

different results in the output window.

Listing 1-31.  Output window results

Chemistry and BSc excluded

Frank Greer is a senior Alumnus

While the first Alumnus object is excluded based on the degree obtained, the second

is passed through the case because the condition of having the degree obtained after

1975 was not met. Senior alumni are therefore still evaluated.

As you will see, the order of each section definitely matters. A general rule of thumb

is to keep the most restrictive case labels at the top of the switch statement while having

the most general case label at the end.

�Checking for Nulls in Switch Statements
We are able to check for null by adding a null case. This ensures that the argument

passed to the switch statement is not null. Consider the following code.

Listing 1-32.  Null case

// Cater for null

switch (someperson)

{

 case Student student:

 return $"{student.StudentDetails().fullName}";

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

28

 case Lecturer lecturer:

 return $"{lecturer.LecturerDetails().fullName}";

 case Alumnus alumnus:

 return $"{alumnus.AlumnusDetails().fullName}";

 case ExchangeStudent exchangeStudent:

 return $"{exchangeStudent.ExchangeStudentDetails().fullName}";

 case null:

 return $"{nameof(someperson)} cannot be null";

}

Passing a null object to this switch statement will result in the null case being

evaluated and the message someperson cannot be null returned.

Pattern matching is a fantastic way to control the flow of your code logic. Some

consider it to be syntactic sugar. Whatever your thoughts are on pattern matching, it’s

definitely great to be able to use it in C# 7.

�Using Out Variables
The out keyword in C# has been around for a while. Using out passes arguments by

reference. By default, all parameters in C# are passed by value unless you explicitly

include an out or ref modifier. In the past, you would have to declare a variable to use as

an out parameter.

This has changed in C# 7 and you are able to declare the variable right there where

you use it. Imagine that we wanted to test if a variable is a valid integer value. This is how

our code used to look before C# 7.

Listing 1-33.  Pre-C#7 code for out keyword

string num = "123";

int numParsed;

if (int.TryParse(num, out numParsed))

{

 Debug.WriteLine($"{num} is a valid integer");

}

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

29

else

{

 Debug.WriteLine($"{num} is not a valid integer");

}

We have this integer variable called numParsed that just sort of hangs around. In C# 7

we can now do the following.

Listing 1-34.  C# 7 code for out keyword

string num = "123";

if (int.TryParse(num, out int numParsed))

{

 Debug.WriteLine($"{num} is a valid integer");

}

else

{

 Debug.WriteLine($"{num} is not a valid integer");

}

Do you see the difference? Blink and you might miss it. We no longer have to declare

a funny loose standing variable that hangs around before our TryParse check.

It’s a small but welcome change to the C# language. Another point to note is that the

compiler is able to infer the type of the numParsed variable which means we can use the

var keyword too.

This just means that instead of using out int, we can use out var and achieve the

same results. Consider the following code listing.

Listing 1-35.  Using var with out

string num = "123";

if (int.TryParse(num, out var numParsed))

{

 Debug.WriteLine($"{num} is a valid integer");

}

else

{

 Debug.WriteLine($"{num} is not a valid integer");

}

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

30

Then there is another small addition in C# 7 that might have slipped past a few

developers out there. That is the inclusion of discards. It makes sense to discuss discards

now, seeing as it is supported in the context of out parameters.

�Discards
In C# 7, the language now supports discards. Think of these as dummy variables that

are temporary and will not be used in your application code. In other words, you don’t

actually care about the value assigned. Using discards is the same as using unassigned

variables because the variable itself does not contain a value.

This means that the discard variable may not even be allocated a storage space

which in turn reduces memory allocations. Discard variables are supported in the

following contexts within C# 7:

•	 Tuples and object deconstruction

•	 Pattern matching with is and switch

•	 The out parameters used in method calls

•	 Standalone discard variable when no other discard variable is in scope

To indicate that a variable is a discard, you need to assign it the underscore character

as its variable name. Taking the previous listing for the out parameter, we can make a

small change and use a discard variable. Consider the following code listing.

Listing 1-36.  Using discards with out parameters

string num = "123";

if (int.TryParse(num, out _))

{

 Debug.WriteLine($"{num} is a valid integer");

}

else

{

 Debug.WriteLine($"{num} is not a valid integer");

}

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

31

The only portion that I have changed is that I have replaced int.TryParse(num, out

var numParsed) with int.TryParse(num, out _). This is really nice and totally negates

the need for that unnecessary numParsed variable declaration.

I will be discussing discards later on in this chapter, so stick around. Next, we will be

having a look at what local functions are and how to use them in C# 7.

�Using Local Functions
Local functions are private methods that are nested in another method. The use of local

functions is quite common in functional languages. This has now been included in C# 7.

The use of local functions is really limited to the containing method. This means that

only the containing method can call the local function. The use of local functions should

therefore make sense within the confines of the containing member and should actually

only have value within the containing member.

For this reason, using local functions makes the intent of your code clearer to

someone reading it. This is because you will know that the local function is only callable

by the containing member and nowhere else. Local functions can be declared and called

from the following members:

•	 Methods, anonymous methods, and constructors

•	 Property accessors and event accessors

•	 Lambda expressions

•	 Finalizers

•	 Other local functions

Let’s have a look at an example of a local function. In this example I will be creating

classes for different objects. The local function will be added to my class constructor

and will calculate the volume of the shape. The constructor will be responsible for

determining the object description.

Start off by adding a class called LocalFunctionExample to your project. Then create

a constructor for this class. It is here that we will be adding all our code.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

32

Go ahead and create classes for objects you can calculate the volume for. I used the

following objects:

•	 Cube

•	 Pyramid

•	 Sphere

Each object differs obviously in shape; therefore, each class caters for the dimensions

needed to determine the volume of each object. Here is the code for the Cube class,

Pyramid class, and Sphere class.

Listing 1-37.  The object classes’ code

public class Cube

{

 public double Edge { get; }

 public Cube(double edgeLength)

 {

 Edge = edgeLength;

 }

}

Figure 1-11.  LocalFunctionExample class

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

33

public class Pyramid

{

 public double BaseLength { get; }

 public double BaseWidth { get; }

 public double Height { get; }

 �public Pyramid(double triangleBaseLength, double triangleBaseWidth,

double triangleHeight)

 {

 BaseLength = triangleBaseLength;

 BaseWidth = triangleBaseWidth;

 Height = triangleHeight;

 }

}

public class Sphere

{

 public double Radius { get; }

 public Sphere(double circleRadius)

 {

 Radius = circleRadius;

 }

}

Next, you need to create a constructor for your LocalFunctionExample class that will

contain the logic needed to determine the object description and the local function to

calculate the volume.

Pro tip T o create constructors quickly, type ctor and hit the Tab key twice. Visual
Studio will automatically insert the constructor for you.

Consider the following code for the LocalFunctionExample constructor.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

34

Listing 1-38.  The LocalFunctionExample class

public class LocalFunctionExample

{

 public double ObjectVolume { get; }

 public string ObjectType { get; }

 public LocalFunctionExample(object shapeObject)

 {

 double GetObjectVolume(object shape)

 {

 switch (shape)

 {

 case Cube square:

 return Math.Pow(square.Edge, 3.00);

 case Pyramid triangle:

 �return (triangle.BaseLength * triangle.BaseWidth *

triangle.Height) / 3;

 case Sphere sphere:

 return 4 * Math.PI * Math.Pow(sphere.Radius, 3) / 3;

 case null:

 return 0.0;

 }

 return 0.0;

 }

 ObjectVolume = GetObjectVolume(shapeObject);

 �ObjectType = ObjectVolume == 0.0 ? "Invalid Object Shape" :

shapeObject.GetType().Name;

 }

}

What you will notice is that I have added a local function called GetObjectVolume

that takes the object passed to the constructor and uses pattern matching to determine

what type of object we are working with.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

35

If any unrecognized shape is passed to the local function, the local function

will return a volume of 0.0 and this will result in the ternary conditional expression

displaying Invalid Object Shape as the ObjectType value.

To test the local function, add the following code and pass the objects to your

LocalFunctionExample class. Just use Debug.WriteLine to display the output from the

LocalFunctionExample class.

Listing 1-39.  Testing the local function

Cube cube = new Cube(5);

Pyramid pyramid = new Pyramid(5, 5, 5);

Sphere sphere = new Sphere(5);

Student student = new Student(("john", "doe", 22), 12345,

UniversityCourses.Anatomy);

This will result in the following lines displayed in the output window.

Listing 1-40.  Output

This is a Cube with a volume of 125

This is a Pyramid with a volume of 41,6666666666667

This is a Sphere with a volume of 523,598775598299

This is a Invalid Object Shape with a volume of 0

You can see that when we passed an unrecognized object to our constructor, the class

handled it with dropping through the switch statement and setting the volume to 0.0.

Here are a few more notes on local functions:

•	 All the local variables defined in the containing member can be

accessed from the local function.

•	 All the method parameters can be accessed from the local function.

•	 Local functions are private; therefore they can’t include access

modifiers.

•	 You can’t include the static keyword for local functions.

•	 You can’t apply attributes to local functions or its parameters.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

36

Local functions are quite nice when you want to use some functionality throughout

a method, where that functionality only applies to its containing member. You will also

notice that the local function was at the top of our constructor and the code that referred

to it (that calculated the volume) came after the local function.

The position of this doesn’t matter. You can just as easily call ObjectVolume =

GetObjectVolume(shapeObject); before the local function code and still achieve the

same output.

�Generalized Async Return Types
The functionality of async/await is widely used to avoid performance bottlenecks and

improve the responsiveness of your application. There is a slight issue though that

in certain situations, returning a Task object from async methods could introduce

performance issues.

This is especially evident when an async method returns a cached result or

completes in a synchronous fashion. We know that the supported return types are

Task<T>, Task, and void. In C# 7, the ValueTask type has been added to allow async

methods to return other types in addition to the types I mentioned a minute ago.

This feature is best illustrated with an example. I will simply use a console

application to illustrate the use of the ValueTask type. Before we can jump into writing

code, we need to install the NuGet package System.Threading.Tasks.Extensions so

that we can use the ValueTask<TResult> type.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

37

Once you have installed the NuGet package, you will see that System.Threading.

Tasks.Extensions is listed in your project references.

Figure 1-12.  NuGet Package Manager

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

38

Now we can start writing some code. The console application is a dummy share price

ticker for the NASDAQ. For the share prices, I will obviously be using dummy data, but

this should illustrate the performance gains of using the ValueTask type.

The application will loop 100 million times, but only read new stock information if

the cache period has been exceeded. Start off by creating a StockListing class that will

hold the stock information.

Listing 1-41.  The StockListing class

public class StockListing

{

 public string NASDAQTickerSymbol { get; }

 public decimal Open { get; }

 public decimal High { get; }

 public decimal Low { get; }

 public string MarketCap { get; }

 �public StockListing(string nasdaq, decimal open, decimal high, decimal

low, string marketCap)

Figure 1-13.  Console application references

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

39

 {

 NASDAQTickerSymbol = nasdaq;

 Open = open;

 High = high;

 Low = low;

 MarketCap = marketCap;

 }

}

The next class will simply use the Task<T> to return the result of the stock lookup.

The class includes a local function called GetShareDetails that reads the latest share

information.

If, however, the cache time has not expired, then the cached stock listings are

returned. The class code looks as follows.

Listing 1-42.  ShareService class

public class ShareService

{

 private readonly TimeSpan cacheTime = TimeSpan.FromSeconds(2);

 private DateTime lastRun = DateTime.Now;

 private IEnumerable<StockListing> cachedListings;

 public async Task<IEnumerable<StockListing>> GetStockDetails()

 {

 async Task<IEnumerable<StockListing>> GetShareDetails()

 {

 cachedListings = await Task.Run(() => new List<StockListing>

 {

 �new StockListing("AAPL", 157.50m, 158.52m, 154.55m,

"741,37B")

 �,new StockListing("AMZN", 1473.35m, 1513.47m, 1449.00m,

"722,71B")

 ,new StockListing("QCOM", 56.33m, 57.53m, 56.24m, "68,86B")

 });

 lastRun = DateTime.Now;

 WriteLine($"Get share details - {lastRun}");

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

40

 return cachedListings;

 }

 if (DateTime.Now - lastRun < cacheTime)

 {

 return cachedListings;

 }

 return await GetShareDetails();

 }

}

From the console application, we use the service in the following manner.

Listing 1-43.  Calling the service from the console application

static void Main(string[] args)

{

 var shareListing = new ShareService();

 for (int i = 0; i < 100_000_000; i++)

 {

 var result = shareListing.GetStockDetails().Result;

 }

 WriteLine($"Garbage collection occurred {GC.CollectionCount(0)} times");

 ReadLine();

}

All that this does is return the result and then output the number of times that the

garbage collection has taken place.

Take note that I have added using static System.Console to my using
statements. This allows me to drop the Console before the WriteLine and
ReadLine methods.

Running the application now produces the following result.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

41

The following is evident from the diagnostic tools:

•	 Process memory is around 12MB.

•	 The time it took to complete the process was 27,071 seconds.

The output to the console application screen also reported that garbage collection

occurred 1833 times in generation 0. Let’s go and improve the code in the ShareService

class and make use of the ValueTask type.

Figure 1-14.  Task<T> diagnostic results

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

42

Listing 1-44.  Improved ShareService class

public class ShareService

{

 private readonly TimeSpan cacheTime = TimeSpan.FromSeconds(2);

 private DateTime lastRun = DateTime.Now;

 private IEnumerable<StockListing> cachedListings;

 public ValueTask<IEnumerable<StockListing>> GetStockDetails()

 {

 async Task<IEnumerable<StockListing>> GetShareDetails()

 {

 cachedListings = await Task.Run(() => new List<StockListing>

 {

 new StockListing("AAPL", 157.50m, 158.52m, 154.55m, "741,37B")

 �,new StockListing("AMZN", 1473.35m, 1513.47m, 1449.00m,

"722,71B")

 ,new StockListing("QCOM", 56.33m, 57.53m, 56.24m, "68,86B")

 });

 lastRun = DateTime.Now;

 WriteLine($"Get share details - {lastRun}");

 return cachedListings;

 }

 if (DateTime.Now - lastRun < cacheTime)

 {

 return new ValueTask<IEnumerable<StockListing>>(cachedListings);

 }

 return new ValueTask<IEnumerable<StockListing>>(GetShareDetails());

 }

}

You will notice that I have replaced Task<IEnumerable<StockListing>> with

ValueTask<IEnumerable<StockListing>> and I have also removed the async keyword.

It makes sense to remove the async keyword, because most of the time the results will

be returned synchronously. Running the application a second time using the improved

code produces the following improved results.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

43

The following information is now evident from the diagnostic tools, and there is

definitely an improvement:

•	 Process memory is around 9MB (down from 12MB).

•	 The time it took to complete the process was 14,938 seconds (down

from 27,071 seconds on the previous run).

The output to the console application screen also reported that garbage collection

occurred 0 times in generation 0.

ValueTask is a value type. This means that by returning the cached stock listings, no

allocations occurred on the heap.

Figure 1-15.  ValueTask<T> diagnostic results

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

44

�So Why Should I Ever Want to Use Task<T>?
The default choice for asynchronous methods should be to return a Task or Task<T>.

If you want to use ValueTask<T> instead, you should only consider using it if there is a

performance gain in doing so.

�Throw Expressions
Before C# 7, we used throw statements. The use of throw expressions didn’t exist. It

sort of made sense, because using throw as an expression would always result in an

exception.

Whatever the reasoning was for not including throw expressions, the evolution of C#

has necessitated the inclusion of this feature. The inclusion of throw expressions is now

available in C# 7 in a limited set of contexts. These are

•	 In the body of an expression-bodied members

•	 In the body of a lambda expression

•	 As the second operand of the null-coalescing ?? operator

•	 As the second operand of the ternary conditional ? operator

Consider the following code listing.

Listing 1-45.  Null check in constructor

public class Square

{

 public int Side { get; }

 public string Description { get; }

 public Square(int side, string description)

 {

 if (description == null)

 {

 throw new ArgumentNullException(nameof(description));

 }

 Side = side;

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

45

 Description = description;

 }

}

Visual Studio now proposes a code improvement for us, because we can use a throw

expression here to simplify the code.

Clicking the lightbulb will suggest using a throw expression instead. The code is

therefore refactored to look as follows.

Listing 1-46.  Null check extension method

public class Square

{

 public int Side { get; }

 public string Description { get; }

 public Square(int side, string description)

 {

 Side = side;

 �Description = description ?? throw new ArgumentNullException

(nameof(description));

 }

}

Figure 1-16.  Visual Studio proposes simplified code

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

46

With the advent of expression-bodied members that extend to constructors in C# 7,

we are able to simplify code even more when we are dealing with a constructor that can

be changed to an expression body definition. Consider this code.

Listing 1-47.  A simple constructor

public class Rectangle

{

 public string Description { get; set; }

 public Rectangle(string description)

 {

 if (description == null)

 {

 throw new ArgumentNullException(nameof(description));

 }

 Description = description;

 }

}

Because we can apply expression-bodied members to constructors and because

throw expressions are available to expression-bodied members, we can greatly simplify

the code as follows.

Listing 1-48.  Expression-bodied constructor

public class Rectangle

{

 public string Description { get; set; }

 �public Rectangle(string description) => Description = description ??

throw new ArgumentNullException(nameof(description));

}

The constructor of our Rectangle class has been reduced to a single line of code.

Throw expressions are a necessary part of C# as it has evolved to what we have today.

Using throw expressions will not only make your code easier to understand but also

reduce the amount of code you have to write.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

47

�Discards
As I pointed out earlier, during the discussion of out parameters, C# 7 saw the introduction

of discards. This is a really welcome addition to the language. It allows you to tell the

compiler that you do not care about the value of a specific variable. Discards are therefore

dummy or temporary variables that are not going to be used at all in your application.

It therefore also makes sense that discards are unassigned and do not contain a

value, which in turn reduces memory allocations. To indicate that a variable is a discard,

you use the underscore _ as the variable name.

Take note that int _ for example is still a valid variable name and can therefore not
be used in the same scope as a discard.

Discards are supported in the following contexts:

•	 Tuples

•	 Pattern matching

•	 Out parameters

•	 Standalone as _ when no other _ is in scope

Also note that when a discard is used, you can’t read its value or use it in an

assignment. Remember that we mentioned earlier that a discard variable is not assigned

a value at all. Let’s have a look at a few use cases.

�Tuples
Previously in the chapter, we had a look at how to use tuples in C# 7. What we learned

was that tuples are a great way to return multiple values from a single method call. We

also had a look at local functions. You will remember that sometimes code has logic that

is only relevant to its enclosing method. In other words, it does not make sense to put the

code contained inside the local function in a standalone public method.

Let us have a look now at a usage scenario where we combine these two features of

C# 7 and then enhance it by using discards. The code example is a local function that

checks to see if a given value is greater than zero and less than 20. It is then flagged as

being in range. Consider the following code.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

48

Listing 1-49.  Using tuples without discards

private void UsingDiscards()

{

 // Local function

 (bool zeroCheck, bool maxCheck, bool inRangeCheck) DoSomething(int value)

 {

 bool blnAboveZero = false;

 bool blnBelowTwenty = false;

 bool blnInRange = false;

 if (value > 0)

 blnAboveZero = true;

 if (value <= 20)

 blnBelowTwenty = true;

 if (blnAboveZero && blnBelowTwenty)

 blnInRange = true;

 return (blnAboveZero, blnBelowTwenty, blnInRange);

 }

 var (isZero, isNotmax, inRange) = DoSomething(15);

}

The local function returns a tuple that has three Boolean variables for the above zero

check, the below 20 check, and the flag to mark the value as being in range or not.

Strictly speaking, the local function’s inRangeCheck value is good enough to tell us

that both the zero check and the max value check are true. I can therefore change the

code as follows.

Listing 1-50.  Using discards in tuples

private void UsingDiscards()

{

 // Local function

 (bool zeroCheck, bool maxCheck, bool inRangeCheck) DoSomething(int value)

 {

 bool blnAboveZero = false;

 bool blnBelowTwenty = false;

 bool blnInRange = false;

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

49

 if (value > 0)

 blnAboveZero = true;

 if (value <= 20)

 blnBelowTwenty = true;

 if (blnAboveZero && blnBelowTwenty)

 blnInRange = true;

 return (blnAboveZero, blnBelowTwenty, blnInRange);

 }

 var (_, _, blnValid) = DoSomething(15);

}

We can therefore just discard the zero check and max check values by using _ in the

deconstruction. In doing so, I am telling the compiler that I do not care what the first two

check values are of the variables returned by the tuple.

�Out Parameters
The enhancements to out parameters in C# 7 are quite welcome. Earlier in the chapter,

we had a look at how to use out parameters. What is clear is that we no longer need to

declare a standalone variable when using out parameters. This was quite evident when

we created the TryParse.

Note that out parameters are not only useful as the out parameter of a TryParse.
It can also add a lot of value when used in regular methods when you want a single
additional value back and using a tuple is somewhat of an overkill.

In TryParse specifically, the out parameter can be somewhat useless in some instances.

Discards provide a neat solution to this problem. Consider the following code listing.

Listing 1-51.  Using out parameters with discards

// Out parameters

if (bool.TryParse("true", out _))

 Debug.WriteLine("The string value is a valid boolean");

else

 Debug.WriteLine("The string value is not a valid boolean");

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

50

I’m not going to be using the out parameter at all. All I want to do is check if the value

is a valid Boolean or not. I can therefore tell the compiler that I do not care for the out

parameter and that it can be discarded.

�Standalone Discard
The discard can be used standalone to indicate that you want to ignore the variable.

You might be wondering when this is useful. Consider the following call to the

ExecuteCommand method.

Please note that the SQL query and SQL Connection String parameters are just
placeholders. You will need to add valid values here, otherwise the code will throw
an exception.

By default, it returns the number of rows affected by an UPDATE, INSERT, or DELETE

statement.

Listing 1-52.  Standalone discard variable

private void UsingDiscards()

{

 // Standalone discard

 _ = ExecuteCommand("[UPDATE table SQL]", "[sql connection string here]");

}

private int ExecuteCommand(string sql, string sqlConnectionString)

{

 using (SqlConnection conn = new SqlConnection(sqlConnectionString))

 {

 SqlCommand cmd = new SqlCommand(sql, conn);

 cmd.Connection.Open();

 return cmd.ExecuteNonQuery();

 }

}

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

51

In the call to the ExecuteCommand method, I used a discard variable to ignore the

number of rows affected. I know that using ExecuteCommand("[UPDATE table SQL]",

"[sql connection string here]"); without a variable assignment doesn’t return

anything (obviously), but I wanted to illustrate that using a discard variable _ essentially

does the same thing.

Another example would be to choose to ignore the Task object returned from the

async DoSomethingAsync method in the following console application code listing.

Listing 1-53.  Ignoring the Task object returned with discard

public static async Task DoSomethingAsync(int valueA, int valueB)

{

 WriteLine("Async started at: " + DateTime.Now);

 _ = Task.Run(() => valueA + valueB);

 await Task.Delay(5000);

 WriteLine("Async completed at: " + DateTime.Now);

}

Discards can be very beneficial if you want to improve your code readability and

the performance of your application. Admittedly, the reduced memory allocation from

using a single discard variable will most likely be small. For large applications, ignoring

unnecessary variables could make quite a difference indeed.

�Pattern Matching
If you think back to the section on pattern matching, you will remember that we used

an is expression to check if we were working with a Student, Lecturer, Alumnus, or

ExchangeStudent object.

Discards can be used with is expressions too. Consider the following code listing.

Listing 1-54.  Using discard with is expression

// Using discard with is expression

if (someperson is Student student)

{

 �return $"{student.StudentDetails().fullName} is enrolled for {student.

StudentDetails().studentCourse} with student number {student.

StudentDetails().studentNum}";

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

52

}

else if (someperson is Lecturer lecturer)

{

 �return $"{lecturer.LecturerDetails().fullName} teaches {lecturer.

LecturerDetails().courseSpecial}";

}

else if (someperson is Alumnus alumnus)

{

 �return $"{alumnus.AlumnusDetails().fullName} has completed {alumnus.

AlumnusDetails().degreeObtained} in {alumnus.AlumnusDetails().

yearCompleted}";

}

else if (someperson is ExchangeStudent exchStudent)

{

 �return $"{exchStudent.ExchangeStudentDetails().fullName} has

{exchStudent.ExchangeStudentDetails().daysLeftOnVisa} days left on

Student Visa";

}

else if (someperson is var _)

{

 return $"Invalid {nameof(someperson)} object passed.";

}

The last statement basically says that if I can’t match the class to anything, then I

don’t really know what I am dealing with. Assigning a variable here would not make

sense really, so I just use the discard variable and return a message to the calling code.

We can do exactly the same with a switch statement.

Listing 1-55.  Using discard with a switch

// Using discard with switch

switch (someperson)

{

 case Student student:

 return $"{student.StudentDetails().fullName}";

 case Lecturer lecturer:

 return $"{lecturer.LecturerDetails().fullName}";

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

53

 case Alumnus alumnus:

 return $"{alumnus.AlumnusDetails().fullName}";

 case ExchangeStudent exchangeStudent:

 return $"{exchangeStudent.ExchangeStudentDetails().fullName}";

 case var _:

 return $"Invalid {nameof(someperson)} object passed.";

}

The same reasoning is true for switches. If I don’t know what I am dealing with,

I can use a discard variable to return a message to the calling code to indicate that the

parameter passed didn’t match any of the expected objects.

�Wrapping Up
We have gone through quite a few features of C# 7. We started off with looking at tuples

and how to change the default positional names for the tuple values. We also had a look

at comparing tuples and how tuples can infer tuple element names.

We then took a look at pattern matching and how to use the is type pattern and

the switch pattern. We also saw how to use when clauses in case expressions as well as

checking for null.

The next section was a short look at out variables where I introduced discards and

discussed this briefly in the context of out variables.

Local functions were next and I showed you how this can benefit you when the code

you are using in your local function only applies to the containing member.

With generalized async return types, we saw that it definitely can improve the

performance of your application when used correctly. You will remember that

the suggested course of action is to use Task or Task<T> and that only after doing

performance testing should you consider using ValueTask<T>.

Throw expressions were then discussed, and you learned that the evolution of C#

necessitated the use of throw expressions in certain circumstances.

Lastly, we revisited discards in more detail as it pertained to tuples, out parameters,

pattern matching, and standalone discards.

Chapter 1 C# 7 in Focus

www.EBooksWorld.ir

55
© Dirk Strauss 2019
D. Strauss, Exploring Advanced Features in C#, https://doi.org/10.1007/978-1-4842-4856-0_2

CHAPTER 2

Exploring C#
This chapter will have a look at some of the features in C# that developers might

overlook. This is a statement I hear all too often when discussing a specific feature:

“I’ve heard of it but not used it before.”

Features such as abstract classes and interfaces. Do you know what the difference

is between the two and how you would use one over the other? How about lambda

expressions? Have you used this feature before in your everyday coding?

This chapter is all about exploring C# a little further. We will not be discussing C# 7

specific code, but rather features of the C# language in general. The following topics will

be discussed:

•	 Using and implementing abstract classes

•	 Using and implementing interfaces

•	 Asynchronous programming using async and await

•	 Making use of extension methods

•	 Generics

•	 Nullable type

•	 Dynamic type

Discussing the features of C# would be incomplete without a brief tour of the history

of the language. Let’s see how it all began.

�The History of C#
In January 1999, Anders Hejlsberg and his team started building this new language

called Cool. It stood for C-like Object Oriented Language but was renamed to C# by the

time the Professional Developers Conference was held in July 2000.

www.EBooksWorld.ir

56

It has been stated that the decision to change the name from Cool to C# was due to

certain trademark restrictions. Microsoft began work on finding another name, but one

that still had a reference to C.

As you know, the ++ operator in C# is used to increment a variable by 1. Seeing as

there was already a language called C++, the team at Microsoft needed to come up with

something different, but similar. Calling it C++++ would not work, but if you look at the

four + symbols, the # symbol can be seen as four + symbols strung together.

This meant that the next increment of this C-like Object Oriented Language would

be called C#. The reference to music is also interesting, especially when one considers

that the # is a musical notation that raises a note a semitone higher. Table 2-1 lists the

versions of C# as well as the features released in those versions.

Table 2-1.  C# Through the Years

C#
Version

Release
Date

.NET
Framework

Visual
Studio

Feature Overview

C# 1.0 Jan 2002 1.0 VS 2002 Classes, structs, interfaces, events, properties,

delegates, expressions, statements, attributes,

literals

C# 1.2 Apr 2003 1.1 VS 2003 Small enhancements, foreach loops now

called Dispose on IEnumerator when it

implemented IDisposable

C# 2.0 Nov 2005 2.0 VS 2005 Generics, partial types, anonymous methods,

nullable types, iterators, covariance and

contravariance. Enhancements to existing

features such as separate accessibility for

getter and setters, static classes, delegate

interface

C# 3.0 Nov 2007 3.0 and 3.5 VS 2008 Auto-implemented properties, anonymous

types, query expressions, lambda expressions,

expression trees, extension methods,

implicitly typed local variables, partial

methods, object and collection initializers

(continued)

Chapter 2 Exploring C#

www.EBooksWorld.ir

57

Table 2-1.  (continued)

C#
Version

Release
Date

.NET
Framework

Visual
Studio

Feature Overview

C# 4.0 Apr 2010 4 VS 2010 Dynamic binding, names/optional arguments,

generic covariant and contravariant,

embedded interop types

C# 5.0 Aug 2012 4.5 VS 2012

VS 2013

Asynchronous members (async and await),

caller info attributes

C# 6.0 Jul 2015 4.6 VS 2015 Static imports, exception filters, auto-property

initializers, expression-bodied members,

null propagator, string interpolation, nameof

operator, index initializers, await in catch/

finally, default values for getter-only properties

C# 7.0 Mar 2017 4.6.2 VS 2017 Out variables, tuples, discards, pattern

matching, local functions, throw expressions,

generalized async and return types, literal

syntax improvements, ref locals and returns,

more expression-bodied members

C# 7.1 Aug 2017 4.7 VS 2017 Async Main method, default literal

expressions, inferred tuple element names

C# 7.2 Nov 2017 4.7.1 VS 2017 Conditional ref expressions, private protected

access modifier, leading underscores

in numeric literals, non-trailing named

arguments, techniques for writing safe

efficient code

C# 7.3 May 2018 4.7.2 VS 2017 Reassign ref local variables, initializers on

stackalloc arrays, using fixed statement with

any type that supports a pattern, testing

tuple types with == and !=, using expression

variables in more locations

Chapter 2 Exploring C#

www.EBooksWorld.ir

58

For more information on the features of the different releases of C#, refer to the

Microsoft documentation at https://docs.microsoft.com.

Now that we have seen where we have come from, let’s look at some of the specific

features of C# as outlined at the beginning of the chapter.

�Using and Implementing Abstract Classes
Before we can have a look at abstract classes, we first need to take a look at the

abstract modifier and what that means. The abstract modifier simply tells you

that the thing that is being modified does not have a complete implementation. This

modifier can be used with

•	 Classes

•	 Methods

•	 Properties

•	 Indexers

•	 Events

When we use the abstract modifier in a class declaration, we are actually saying that

the class we are creating is only the basic base class of other classes.

This means that any members marked as abstract or that are included in the base

class have to be implemented by the derived classes (classes that use the base class). You

will also hear that abstract classes are also referred to as blueprints.

�Abstract Class Features
Abstract classes therefore have the following important features:

•	 You cannot create an instance of an abstract class.

•	 An abstract class can contain abstract methods and accessors.

•	 You cannot use the sealed modifier with abstract classes.

•	 If a non-abstract class is derived from an abstract class, the derived

class has to include the implementations of the abstract methods

and accessors.

Chapter 2 Exploring C#

www.EBooksWorld.ir

https://docs.microsoft.com

59

The reason that the sealed modifier cannot be used with an abstract class
is because the sealed modifier prevents class inheritance while the abstract
modifier requires that a class must be inherited.

�Abstract Methods
The use of the abstract modifier in a method or property declaration simply states

•	 The abstract method is implicitly a virtual method.

•	 You can only use abstract methods in abstract classes.

•	 Abstract methods have no implementation; therefore it has no

method body.

•	 You are not allowed to use the static or virtual modifiers in an

abstract method declaration.

What do we mean when we say that an abstract method has no implementation and

therefore no method body? Consider the following code listing.

Listing 2-1.  Abstract method declaration

public abstract void MyAbstractMethod();

This basically tells us that the derived class needs to implement this method and

provide the implementation for this method.

�Abstract Properties
When thinking about abstract methods, you will notice that abstract properties behave

in quite a similar way. The real difference is in the declaration and invocation syntax:

•	 You cannot use the abstract modifier on a static property.

•	 You can override the inherited abstract property in the derived class

by declaring a property that uses the override modifier.

All this will make more sense when looking at some code examples. Let’s illustrate

the use of abstract classes next.

Chapter 2 Exploring C#

www.EBooksWorld.ir

60

�Using Abstract Classes
To illustrate the use of abstract classes, I will create a very simplistic abstract class. It will

then be inherited and used in a derived class. Consider the following listing.

Listing 2-2.  Abstract class

abstract class AbstractBaseClass

{

 protected int _propA = 100;

 protected int _propB = 200;

 public abstract int PropA { get; }

 public abstract int PropB { get; }

 public abstract int PerformCalculationAB();

}

Now that we have our abstract class, let’s go and instantiate it. As Figure 2-1 shows

us, we have an error. Why would we have an error?

Aha! Remember that I stated earlier that we cannot instantiate an abstract class. The

compiler displays an error stating that you cannot create an instance of an abstract class.

We can however create a new class and derive it from the abstract class. Consider the

following code listing.

Figure 2-1.  Error on abstract class instantiation

Chapter 2 Exploring C#

www.EBooksWorld.ir

61

Listing 2-3.  Inheriting from an abstract class

class DerivedClass : AbstractBaseClass

{

}

We inherit from the abstract class in the derived class called DerivedClass. The

compiler then gives us another warning as seen in Figure 2-2.

The compiler is telling you that you need to implement the members of the abstract

class. Visual Studio will automatically be able to provide the implementation structure

for you when you click the lightbulb and click Implement Abstract Class. After doing this,

your code will look as in Listing 2-4.

Listing 2-4.  Implementing the abstract class

class DerivedClass : AbstractBaseClass

{

 public override int PropA => throw new NotImplementedException();

 public override int PropB => throw new NotImplementedException();

 public override int PerformCalculationAB()

 {

 throw new NotImplementedException();

 }

}

Figure 2-2.  Derived class implementations

Chapter 2 Exploring C#

www.EBooksWorld.ir

62

You will notice that the generated code will throw a NotImplementedException. This

makes sense because you haven’t actually provided any implementation for the code

and the compiler cannot guess what you want to do in your derived class. Let’s add some

code to our derived class as seen in Listing 2-5.

Listing 2-5.  Code implementation added

class DerivedClass : AbstractBaseClass

{

 public override int PropA => _propA;

 public override int PropB => _propB;

 public override int PerformCalculationAB()

 {

 _propA += 50;

 _propB += 100;

 return _propA + _propB;

 }

}

In the calling code, we can now instantiate the derived class and write out the values.

For this I simply used a console application that added using static System.
Console; to the using statements.

Listing 2-6.  Calling the derived class

static void Main(string[] args)

{

 DerivedClass d = new DerivedClass();

 WriteLine($"PropA before calculation {d.PropA}");

 WriteLine($"PropB before calculation {d.PropB}");

 WriteLine($"Perform calculation {d.PerformCalculationAB()}");

 WriteLine($"PropA after calculation {d.PropA}");

 WriteLine($"PropB after calculation {d.PropB}");

 ReadLine();

}

Chapter 2 Exploring C#

www.EBooksWorld.ir

63

Inspecting the output of the code we wrote, you will see that the default values for

the two properties are displayed. After performing the calculation, our property values

have changed.

Listing 2-7.  Output from code in derived class

PropA before calculation 100

PropB before calculation 200

Perform calculation 450

PropA after calculation 150

PropB after calculation 300

The output of the console application is not critical here. What I wanted to show you

is a working example of a derived class that inherits from the abstract class you created

earlier.

�When Do I Use an Abstract Class?
The code listings in the preceding section are a bit abstract (pun intended). Why not just

define a class as normal? When should you use an abstract class?

This is something that I think many developers might ponder, but the logic for using

abstract classes is quite simple once you understand a fundamental concept.

An abstract class acts like a common noun that describes the derived objects. This is

clearly illustrated when we consider the following description.

Sedan, SUV, pickup, and hatchback are all vehicles. Even though a sedan is quite

different from an SUV or a pickup, they all share the commonality of being vehicles.

Vehicles therefore must have an engine, a VIN, headlights, and so on. These (and

many more) would be the common traits between vehicles. We can therefore declare

an abstract class called Vehicle and give it these common traits that the derived classes

(the sedan, SUV, etc.) must implement.

It is therefore up to the derived class to add implementation to the abstract class

and then have additional properties and methods specific to the derived class only.

For example, the pickup will have a loading bay that the sedan will not have. A sedan

will have a boot space.

Chapter 2 Exploring C#

www.EBooksWorld.ir

64

While this example is rather simplistic, it illustrates the concept really well. A more

real-world example would be an ERP system that uses sales orders and purchase orders.

These are both orders, and we can define an abstract class called Order that defines an

order number, order status, order line count, and so on.

The derived classes SalesOrder and PurchaseOrder must both have these

properties, but only a sales order can have customer information while a purchase order

will contain supplier information.

Abstract classes therefore allow us to clearly define the commonality between closely

related derived objects.

�Using and Implementing Interfaces
In the previous section, we had a look at abstract classes. You will remember that I said

that abstract classes act like a common noun that describes the derived objects. When

referring to interfaces however, we are talking about the fact that interfaces contain

definitions that group related functionality. This means that the classes or structs that

implement an interface share a common bit of functionality.

Think back to our abstract class example of a vehicle. We said that cars, SUVs, etc.

are all vehicles. Therefore, the abstract Vehicle class tells us what common traits the

derived classes must implement. When referring to interfaces however, we are saying

that some or all of the derived classes share some sort of functionality. We can thus think

of interfaces as verbs that describe an action.

Let us assume that all vehicles must have a VIN. This is something that we can use to

check that no two vehicles have the same VIN.

A VIN is a unique vehicle identification number used in the automotive industry to
identify motor vehicles.

It is therefore safe to say that we can create an interface called IComparable that

will add the ability of comparing vehicle VINs. Then, we know that different vehicles

have different features. Usually the more you spend on a vehicle, the more features

they have. There are however certain features that only make sense on certain vehicles.

A differential lock (or difflock) is something that would only make sense on certain

vehicles such as an SUV.

Chapter 2 Exploring C#

www.EBooksWorld.ir

65

We can therefore safely say that creating an interface called IDiffLockable will add

the ability to determine if certain vehicles can have an automatic difflock or not.

Take note that by convention interfaces are usually created with names beginning
with an I.

Interfaces have the following properties:

•	 It’s like an abstract class; therefore any class or struct implementing

an interface must implement its members.

•	 You cannot directly instantiate an interface.

•	 Interface members are implemented by the class or struct that does

the implementation.

•	 Events, indexers, properties, and methods can all be contained in an

interface.

•	 Interfaces contain no implementation of methods.

•	 You are allowed to implement multiple interfaces on a class or struct.

•	 You are allowed to inherit from a base class and also implement

multiple interfaces.

Let us go ahead and create the two interfaces for our vehicle classes and take a closer

look at how we will use these interfaces.

�Creating the Abstract and Derived Classes
Let us go ahead and create an abstract class called Vehicle from which our derived

classes will inherit.

Listing 2-8.  The Vehicle abstract class

abstract class Vehicle

{

 protected int _wheelCount = 4;

 protected int _engineSize = 0;

Chapter 2 Exploring C#

www.EBooksWorld.ir

66

 protected string _vinNumber = "";

 public abstract string VinNumber { get; }

 public abstract int EngineSize { get; }

 public abstract int WheelCount { get; }

}

This abstract class is rather simplistic in nature, but its purpose is to provide the

members for implementation to the deriving classes called Car and SUV that we will create.

Listing 2-9.  Car class

class Car : Vehicle

{

 public override string VinNumber => _vinNumber;

 public override int EngineSize => _engineSize;

 public override int WheelCount => _wheelCount;

 public Car(string vinNumber, int engineSize, int wheelCount)

 {

 _vinNumber = vinNumber;

 _engineSize = engineSize;

 _wheelCount = wheelCount;

 }

}

Listing 2-10.  SUV class

class SUV : Vehicle

{

 public override string VinNumber => _vinNumber;

 public override int EngineSize => _engineSize;

 public override int WheelCount => _wheelCount;

 public SUV(string vinNumber, int engineSize, int wheelCount)

 {

Chapter 2 Exploring C#

www.EBooksWorld.ir

67

 _vinNumber = vinNumber;

 _engineSize = engineSize;

 _wheelCount = wheelCount;

 }

}

Now that we have created the abstract Vehicle class and the derived Car and SUV

classes, we can go ahead and create our interfaces.

�Creating the Interfaces
As mentioned earlier, we need to be able to compare the VINs of vehicles to ensure that

they are indeed unique numbers. For this purpose, we will be creating an IComparable

interface by using the interface keyword.

Listing 2-11.  IComparable interface

interface IComparable<T>

{

 bool VinNumberEqual(T obj);

}

This interface will therefore require any class or struct that implements this interface

to provide a definition for a method called VinNumberEqual that matched the signature

specified by the interface.

You will notice the use of the T type parameter in the IComparable interface. We
are working with a generic interface here, where the client code decides what type
of object we are comparing. This chapter discusses Generics later on.

In other words, any class that implements IComparable must contain a method

called VinNumberEqual. We also want to be able to specify if a vehicle has an automatic

difflock feature. For this, we will create an interface called IDiffLockable.

Chapter 2 Exploring C#

www.EBooksWorld.ir

68

Listing 2-12.  IDiffLockable interface

interface IDiffLockable

{

 bool AutomaticDiff { get; }

}

The same logic is therefore true with this interface. Implementing classes must provide

a property called AutomaticDiff that will enable or remove that feature from a vehicle.

�Implementing the Interfaces
We will now implement the IComparable interface on the Car class. The Car class already

inherits from the Vehicle abstract class. In order to implement IComparable, we need to

add it as follows.

Listing 2-13.  Implementing IComparable

class Car : Vehicle, IComparable<Car>

Visual Studio will now prompt you to implement the IComparable interface as can

be seen in Figure 2-3.

When you click the lightbulb and implement the interface, your code will look as follows.

Listing 2-14.  IComparable interface implemented on Car class

class Car : Vehicle, IComparable<Car>

{

 public override string VinNumber => _vinNumber;

Figure 2-3.  Visual Studio prompt to implement interface

Chapter 2 Exploring C#

www.EBooksWorld.ir

69

 public override int EngineSize => _engineSize;

 public override int WheelCount => _wheelCount;

 public Car(string vinNumber, int engineSize, int wheelCount)

 {

 _vinNumber = vinNumber;

 _engineSize = engineSize;

 _wheelCount = wheelCount;

 }

 public bool VinNumberEqual(Car car)

 {

 return VinNumber.Equals(car.VinNumber);

 }

}

The interface member VinNumberEqual is added to your class and defaults to throw

a NotImplementedException. To implement the interface method, add some code to

return a Boolean if the Car objects are equal. This allows us to check if the VIN of two

vehicles are equal by using the following code.

Listing 2-15.  Checking the VIN of two Car classes

Car car1 = new Car("VIN12345", 2, 4);

Car car2 = new Car("VIN12345", 2, 4);

WriteLine(car1.VinNumberEqual(car2) ? "ERROR: Vin numbers equal" : "Vin

numbers unique");

This simple example shows us how we can use an interface to add functionality to a

class, because classes and structs must implement the interface members.

But what about the SUV class? It needs to implement the IComparable and

IDiffLockable interfaces. We do this as follows.

Listing 2-16.  Implementing IComparable and IDiffLockable

class SUV : Vehicle, IComparable<SUV>, IDiffLockable

{

}

Chapter 2 Exploring C#

www.EBooksWorld.ir

70

Visual Studio now also prompts you to implement the interfaces on the SUV class. When

we have done this and added your implemented code, your class will look as follows.

Listing 2-17.  SUV class with implemented interfaces

class SUV : Vehicle, IComparable<SUV>, IDiffLockable

{

 public override string VinNumber => _vinNumber;

 public override int EngineSize => _engineSize;

 public override int WheelCount => _wheelCount;

 public bool AutomaticDiff { get; } = false;

 �public SUV(string vinNumber, int engineSize, int wheelCount, bool autoDiff)

 {

 _vinNumber = vinNumber;

 _engineSize = engineSize;

 _wheelCount = wheelCount;

 AutomaticDiff = autoDiff;

 }

 public bool VinNumberEqual(SUV suv)

 {

 return VinNumber.Equals(suv.VinNumber);

 }

}

We are implementing the VIN check and the automatic difflock feature.

Sometimes we will have a situation where two interfaces have the same
method, but with different implementations. This can easily lead to an incorrect
implementation of one or both of the interfaces. It is for this reason that we are
able to explicitly implement an interface member.

Being able to use interfaces allows you to extend the functionality of several classes

from a single interface. The thing of using an interface is that it could apply to one or more

(but not all) classes. This is evident in the fact that only IDiffLockable was implemented

on the SUV class, while IComparable was implemented on both the Car and SUV classes.

Chapter 2 Exploring C#

www.EBooksWorld.ir

71

�Asynchronous Programming Using Async and Await
Asynchronous programming will allow you to write code that can perform long running

tasks while still keeping your application responsive. With the introduction of async in

the .NET Framework 4.5, it eased the previously complicated approach to implementing

asynchronous functionality in your applications.

In this section, we will have a look at how to use async and await and how these can

benefit your development efforts.

�How Do I Write Async Methods?
To write async methods, the use of the async and await keywords is necessary. The

following points are the typical characteristics of asynchronous methods:

•	 The method signature must include the async modifier.

•	 The method must return Task<T>, Task, void, or ValueTask<T>.

•	 The method statements must include at least one await expression.

•	 By convention, your method names should end with Async.

To illustrate the concept of async code, you will create a Windows Forms project that

reads a large file and counts the lines it reads as it processes each line of text in the file.

For this purpose, I downloaded a large text file containing the text of War and
Peace. I then copied that text a few times to create a very large text file.

Our application will process the file and update a label on the UI to notify the user

how many lines have been read. Throughout this process, the application will remain

totally responsive.

The basic form design (Figure 2-4) includes a label for keeping track of the current

lines counted and another label that will display the total lines read once the process has

completed. It also has a button that is used to start the file read.

Chapter 2 Exploring C#

www.EBooksWorld.ir

72

In the code behind, you will add an async method called ReadFileAsync. It is here

that we will add our async file read logic.

Listing 2-18.  ReadFileAsync async method

private async Task<int> ReadFileAsync()

{

 var FileLines = new List<string>();

 int lineCount = 0;

 using (var reader = File.OpenText(@"C:\temp\big_file.txt"))

 {

 string line = string.Empty;

 �while ((line = await reader.ReadLineAsync().ConfigureAwait(false))

!= null)

 {

 FileLines.Add(line);

 lineCount += 1;

 if (lblLinesRead.InvokeRequired)

 {

 �lblLinesRead.Invoke(new Action(() => lblLinesRead.Text =

lineCount.ToString()));

 }

 else

 {

 lblLinesRead.Text = lineCount.ToString();

Figure 2-4.  Responsive form design

Chapter 2 Exploring C#

www.EBooksWorld.ir

73

 }

 }

 }

 return lineCount;

}

You will notice that I use the InvokeRequired method on the label control to
update the text property because we are on a different thread than the one the
label control was created on. If you try to update the text property on the label here
without using InvokeRequired, you will receive a cross-thread violation error.

Next you need to change the button click event to be async and call the await on the

ReadFileAsync method. The code will look as follows.

Listing 2-19.  Button click event

private async void btnReadBigFile_Click(object sender, EventArgs e)

{

 int linesInFile = await ReadFileAsync();

 lblCompletedLineCount.Text = linesInFile.ToString();

}

Run your application and click the Read Big File button (Figure 2-5) to start the

file read process. Notice that you can move your Windows Form around and resize it

throughout the file read process.

Figure 2-5.  Responsive file read application

Chapter 2 Exploring C#

www.EBooksWorld.ir

74

The Line Count label will only be updated at the completion of the file read process.

This is great, and we have a really simple async method. But what is happening in the

background? What is the compiler doing to make this all work?

�Under the Hood
Let us go ahead and use a decompiler to see the generated code for our async

ReadFileAsync method.

I am using a trial version of Redgate’s .NET Reflector to have a look at the compiler
generated code.

Looking back at our original async ReadFileAsync method, you will notice that it is

actually a pretty straightforward code (Figure 2-6). It conforms to the characteristics of

async methods as detailed earlier.

Figure 2-6.  Original async ReadFileAsync method

Chapter 2 Exploring C#

www.EBooksWorld.ir

75

Listing 2-20.  Compiler generated code for the async ReadFileAsync method

[CompilerGenerated]

private sealed class <ReadFileAsync>d_ 3 : |AsyncStateMachine

{

 // Fields

 public int <>1_state;

 public AsyncTaskMethodBuilder<int> <>t_builder;

 public Form1 <>4_ this;

 private Form1.<>c_DisplayClass3_0 <>8_1;

 private List<string> <FileLines>5_2;

 private StreamReader <reader>5_3;

 private string <line>5_4;

 private string <>s_5;

 private ConfiguredTaskAwaitable< string>.ConfiguredTaskAwaiter <>u_1;

 // Methods

 public <ReadFileAsync>d_3();

 private void MoveNext();

 [DebuggerHidden]

 private void SetStateMachine(|AsyncStateMachine stateMachine);

}

The code generated by the compiler however is a totally different beast. As a

start, the compiler actually generates a class. In the original code, we created a

method. Here we see that the compiler has created a sealed class that implements the

IAsyncStateMachine interface.

Then, all the variables in the ReadFileAsync method are now fields in the sealed

class. This means that the variables we created in the method are captured as fields in

the state machine which is used to manage the local state. If our ReadFileAsync method

had been passed a parameter, it too would be captured as a field in the sealed class.

Having a look further down, you will notice a method called MoveNext. The state

machine is coded into a MoveNext which is called for each step. This tracks an Integer

state with a variable called num and uses it to execute code.

Therefore, each time our code calls await, there will be another state and MoveNext

that manages the state of our async method.

Chapter 2 Exploring C#

www.EBooksWorld.ir

76

Listing 2-21.  MoveNext method for state machine

private void MoveNext()

{

 int num = this.<>1__state;

 try

 {

 if (num != 0)

 {

 this.<>8__1 = new Form1.<>c_DisplayClass3_0();

 this.<>8__1.<>4_this = this.<>4_ this;

 this.<FileLines>5__2 = new List<string>();

 this.<>8__1.lineCount = 0;

 this.<reader>5__3 = File.OpenText(@"C:\temp\big_file.txt");

 }

 try

 {

 ConfiguredTaskAwaitable<string>.ConfiguredTaskAwaiter awaiter;

 if (num == 0)

 {

 awaiter = this.<>u__1;

 �this.<>u__1 = new ConfiguredTaskAwaitable<string>.

ConfiguredTaskAwaiter();

 this.<>1__state = num = -1;

 }

 else

 {

 this.<line>5__4 = string.Empty;

 goto TR_0014;

 }

 TR_0010:

 this.<>s__5 = awaiter.GetResult();

 if ((this.<line>5__4 = this.<>s__5) != null)

 {

 this.<FileLines>5__2.Add(this.<line>5__4);

 this.<>8__1.lineCount++;

Chapter 2 Exploring C#

www.EBooksWorld.ir

77

 if (!this.<>4__this.lblLinesRead.InvokeRequired)

 {

 �this.<>4__this.lblLinesRead.Text = this.<>8__1.

lineCount.ToString();

 }

 else

 {

 Action method = this.<>8__1.<>9__0;

 if (this.<>8__1.<>9__0 == null)

 {

 Action local1 = this.<> 8__1.<>9__0;

 �method = this.<>8__1.<>9__0 = new Action(this.<>

8__1.<ReadFileAsync>b__0);

 }

 this.<>4__this.lblLinesRead.Invoke(method);

 }

 goto TR_0014;

 }

 else

 {

 this.<>s__5 = null;

 this.<line>5__4 = null;

 }

 goto TR_0003;

 TR_0014:

 while (true)

 {

 �awaiter = this.<reader>5__3.ReadLineAsync().

ConfigureAwait(false).GetAwaiter();

 if (awaiter.lsCompleted)

 {

 goto TR_0010;

 }

 else

 {

Chapter 2 Exploring C#

www.EBooksWorld.ir

78

 this.<>1__state = num = 0;

 this.<>u__1 = awaiter;

 Form1.<ReadFileAsync>d__3 stateMachine = this;

 �this.<>t__builder.AwaitUnsafeOnCompleted<ConfiguredTaskAwaitable<string>.

Configured

 }

 break;

 }

 return;

 }

 finally

 {

 if ((num < 0) && (this.<reader>5__3 != null))

 {

 this.<reader>5__3.Dispose();

 }

 }

 TR_0003:

 this.<reader>5__3 = null;

 int lineCount = this.<>8__1.lineCount;

 this.<>1__state = -2;

 this.<>t_builder.SetResult(lineCount);

 }

 catch (Exception exception)

 {

 this.<>1__state = -2;

 this.<>t_builder.SetException(exception);

 }

}

The whole MoveNext method is wrapped in a try / catch block. This means that

even if your async method does not have a try / catch handler, any exceptions are still

caught. This is how await is able to re-throw exceptions in the calling code.

Chapter 2 Exploring C#

www.EBooksWorld.ir

79

�Some Final Tips
The topic of async and await is very big, and there is a lot to learn. Most of this learning

will be done by writing the code and making the mistakes. Here are a few tips that might

help ease the learning curve.

�Avoid Using Wait()

It is generally considered best practice to avoid the use of Wait in the following situation.

Look at the following pseudo code listing.

Listing 2-22.  Using Wait

async Task PerformSomeLongRunningOperation()

{

 DoSomeWork(false).Wait();

}

async Task DoSomeWork(bool blnToggleIsOn)

{

 // Some work is done here

}

In our async PerformSomeLongRunningOperation method, we have a call to

DoSomeWork that passes a Boolean as parameter and calls Wait. Doing this gives us no

benefit of using async and await, because the Wait is blocking code.

Because the DoSomeWork async method is returning a Task, we should use await. Our

code then needs to change as follows.

Listing 2-23.  Using await

async Task PerformSomeLongRunningOperation()

{

 await DoSomeWork(false);

}

If we had to run the DoSomeWork async method synchronously for whatever reason,

we need to make use of GetAwaiter and GetResult as in the following code listing.

Chapter 2 Exploring C#

www.EBooksWorld.ir

80

Listing 2-24.  Using GetAwaiter and GetResult

async Task PerformSomeLongRunningOperation()

{

 DoSomeWork(false).GetAwaiter().GetResult();

}

Essentially GetAwaiter GetResult do the same thing as Wait (which is block), but

the only difference is that GetAwaiter GetResult will unwrap any exceptions thrown

inside the DoSomeWork method.

�Use ConfigureAwait(false) When Necessary

When working with Windows Form applications, the application uses a UI thread. This

means that the context is a UI context. The same is true for a web application. When

responding to ASP.NET requests, the context is an ASP.NET request context. If neither UI

nor request context is used, the thread pool is used.

If your code is not touching the UI, then using ConfigureAwait(false) tells the

async method not to resume on the context. It will then resume on a thread in the thread

pool. If it is set to true, then the code attempts to marshal the continuation back to the

original context.

�Making Use of Extension Methods
Since C# 3.0, extension methods have been making a huge difference in how I use my

code. I am able to add methods to existing types without creating a new derived type.

The C# Programming Guide describes extension methods as a special kind of static

method. The only difference is that they are called as if they were instance methods on

the type being extended (i.e., called by using instance method syntax).

But what exactly is a useful extension method? Let us have a look at an example of an

extension method.

Chapter 2 Exploring C#

www.EBooksWorld.ir

81

�Checking If a String Is a Valid Integer
The example I will use is quite a simple one. You are going to check if a string value is

a valid Integer. You start off by creating a static class that contains your static extension

method.

Take note that the first argument in the parentheses is a reference to what is being

extended. In other words, this String refers to the type that this extension method acts

on. It acts on strings.

That is really all there is to this extension method. It takes the value of the type

being extended and checks to see if it can be parsed as an integer. A true or false is then

returned to the calling code. Consider the following code listing.

Listing 2-25.  Extension method example

public static class ExtensionMethods

{

 public static bool IsValidInt(this String value)

 {

 bool blnValidInt = false;

 if (int.TryParse(value, out int result))

 {

 blnValidInt = true;

 }

 return blnValidInt;

 }

}

When calling the extension method IsValidInt on a string variable, you will notice

that the Intellisense labels it as a square with a down arrow (Figure 2-7). This denotes

an extension method in the Intellisense window. Hitting Alt+X while the Intellisense

window is open will show only extension methods. What is surprising is just how many

extension methods there are.

Chapter 2 Exploring C#

www.EBooksWorld.ir

82

Another thing to notice is that because you specified that the extension method only

extends string types, it will obviously not be available on other types such as Boolean,

etc. You did this by adding this String value to the extension method arguments.

If you wanted this extension method to extend another type, you need to specify this

in the signature of the extension method.

Listing 2-26.  Calling IsValidInt

string strInt = "123";

if (strInt.IsValidInt())

{

 WriteLine("Valid Integer");

}

else

{

 WriteLine("Not an Integer");

}

You can also pass additional arguments to an extension method. In the next

example, we want to return the integer value if it is a valid Integer. This can easily be

done with an out parameter as follows.

Figure 2-7.  Extension method Intellisense

Chapter 2 Exploring C#

www.EBooksWorld.ir

83

Listing 2-27.  Passing argument to an extension method

public static bool IsValidInt(this String value, out int integerValue)

{

 bool blnValidInt = false;

 integerValue = 0;

 if (int.TryParse(value, out int result))

 {

 blnValidInt = true;

 integerValue = result;

 }

 return blnValidInt;

}

This allows you to be very flexible with your usage of extension methods.

�Extension Methods Are Lower Priority Than
Instance Methods
One thing to take note of though is that extension methods have a lower priority than

instance methods defined in the type itself. Extension methods will extend a class or

interface, but won’t override them.

The compiler will always look for a match in the type’s instance methods when

encountering a method invocation. Thereafter, it will search for any extension methods

defined for the type.

From time to time, you might see an error that states that a type does not contain
a definition for a method you invoked and that no accessible extension method
accepting that type as a first argument could be found. This is the compiler trying
to find what you invoked, but can’t. It is also interesting that extension methods are
mentioned last.

This is best illustrated with an example. Go ahead and create the following class.

Chapter 2 Exploring C#

www.EBooksWorld.ir

84

Listing 2-28.  Class with DoSomething method

public class WorkerClass

{

 public void DoSomething()

 {

 Console.WriteLine("I am a method of the WorkerClass");

 }

}

Next, create an extension method called DoSomething.

Listing 2-29.  Extension method DoSomething

public static void DoSomething(this Car value)

{

 Console.WriteLine("I am an extension method");

}

Creating an instance of the class and running the code will display the text I am a

method of the WorkerClass.

Listing 2-30.  Calling the DoSomething method

WorkerClass worker = new WorkerClass();

worker.DoSomething();

This means that the extension method will never be called because the DoSomething

method of the class has a higher priority than the extension method, and the signatures

of both methods are the same.

If you had to change the signature of the DoSomething extension method, the

extension method will be called. Consider the following code listing.

Listing 2-31.  DoSomething method with changed signature

public static void DoSomething(this WorkerClass value, int iValue)

{

 Console.WriteLine($"I am an extension method with parameter {iValue}");

}

Chapter 2 Exploring C#

www.EBooksWorld.ir

85

If you called the extension method with worker.DoSomething(5); the console

application will output the text I am an extension method with parameter 5. This is

because the signatures of the DoSomething method on the class and the DoSomething

extension method are different.

�Generics
Generics have been with us since C# 2. The goal was to allow developers to reuse code

while maintaining type safety. Think of generics as a blueprint that will allow you to define

data structures that are type safe without the commitment of actually defining a type.

With generics, the calling code decides the type when instantiating a generic class,

for example. You will see later on that the generic class we create will allow a mix of types

to be collected.

You might not know it, but you have actually been using generics all along. Generics

are used in LINQ, Lists (Figure 2-8), Dictionaries, and so on. The code inside these

structures is focused on managing the code without having to worry about the type.

Think back to when you create a List<>. This uses generics and allows you to

specify the type when you create that list. You can create a list of integers just as easily as

creating a list of doubles or a list of your own custom classes.

By convention, T is used in generics to denote that something uses a generic type
parameter.

When creating a generic class, we can give it a generic type parameter that looks as

follows.

Listing 2-32.  VehicleCarrier of T

public class VehicleCarrier<T>

Figure 2-8.  List of T

Chapter 2 Exploring C#

www.EBooksWorld.ir

86

The T is used between angle brackets, and you can define more than one type

parameter. T is therefore used as a parameter of your class definition. We can also say

that T parametizes the types you will use inside the class.

You can do the same with arrays.

Listing 2-33.  Array of T

private T[] _loadbay;

Instead of defining an array of integers, you define an array of T. If used inside my

class, T will be the type passed to the class in the type parameter.

�Non-generic VehicleCarrier Class
Let me illustrate the benefit of using generics. In the following code listing, I have a class

that is used to hold a collection of Car objects.

Think of the vehicle carrier trucks used in the motor industry to transport vehicles.

In my VehicleCarrier class, I have a _capacity that just allows me to add a

specific number of Car objects to the _loadbay array. I can’t add more vehicles than the

maximum number defined in the capacity variable.

Listing 2-34.  Non-generic VehicleCarrier class

public class VehicleCarrier

{

 private Car[] _loadbay;

 private int _capacity;

 public VehicleCarrier(int capacity)

 {

 _loadbay = new Car[capacity];

 _capacity = capacity;

 }

 public void AddVehicle(Car vehicle)

 {

Chapter 2 Exploring C#

www.EBooksWorld.ir

87

 var loaded = _loadbay.Where(x => x != null).Count();

 if (loaded == _capacity)

 {

 �Console.WriteLine($"Vehicle Carrier filled to capacity

{_capacity}.");

 }

 else

 {

 _loadbay[loaded] = vehicle;

 }

 }

 public void GetAllVehicles()

 {

 foreach (Car vehicle in _loadbay)

 {

 �Console.WriteLine($"Vehicle with VIN number {vehicle.VinNumber}

loaded");

 }

 }

}

All that this VehicleCarrier class does is contain the collection of cars and passes

that around to other places in my code. When I need to inspect the carrier, I can output

all the VINs of the cars contained in the VehicleCarrier class. In order to use this class, I

can create a few Car objects and add these to a list.

Note, as mentioned earlier, you are already using generics here by using a List of T
in your code. In this situation, you are creating a List of Car.

This list is then added to my VehicleCarrier class in a foreach.

Listing 2-35.  Using non-generic VehicleCarrier class

//Without Generics

Car car1 = new Car("123", 2, 4);

Chapter 2 Exploring C#

www.EBooksWorld.ir

88

Car car2 = new Car("456", 3, 4);

Car car3 = new Car("789", 2, 4);

List<Car> carList = new List<Car>(new Car[] { car1, car2, car3 });

VehicleCarrier carrier = new VehicleCarrier(3);

foreach (var vehicle in carList)

{

 carrier.AddVehicle(vehicle);

}

carrier.GetAllVehicles();

When I call the GetAllVehicles method, the output of the class is simply the VINs of

each Car object contained in the VehicleCarrier class.

Listing 2-36.  Console window output from non-generic VehicleCarrier class

Vehicle with VIN number 123 loaded

Vehicle with VIN number 456 loaded

Vehicle with VIN number 789 loaded

The VehicleCarrier class (Figure 2-9) is a great way to collect and move Car objects

around, but unfortunately, I can only use it with Car objects.

Figure 2-9.  Error

Chapter 2 Exploring C#

www.EBooksWorld.ir

89

I would not be able to use my VehicleCarrier class to transport SUV objects. Doing

so would result in a compiler error. Our VehicleCarrier class is therefore very limiting

in its functionality. We can’t be flexible in its use, because it only accepts Car objects.

�Changing VehicleCarrier Class to Be Generic
Let’s make a few changes to the VehicleCarrier class in order to make it more flexible.

I will start off by adding a generic type parameter to my class. Here I am telling the

compiler that my class will use a type of T.

I am now able to define my _loadbay as an array of T. In fact, throughout my

VehicleCarrier class, I can replace the type Car with T.

The following code listing is the modified VehicleCarrier class and also contains a

jazzed-up GetAllVehicles method that uses pattern matching.

Listing 2-37.  Generic VehicleCarrier class

public class VehicleCarrier<T>

{

 private T[] _loadbay;

 private int _capacity;

 public VehicleCarrier(int capacity)

 {

 _loadbay = new T[capacity];

 _capacity = capacity;

 }

 public void AddVehicle(T vehicle)

 {

 var loaded = _loadbay.Where(x => x != null).Count();

 if (loaded == _capacity)

 {

 �Console.WriteLine($"Vehicle Carrier filled to capacity

{_capacity}.");

 }

 else

 {

Chapter 2 Exploring C#

www.EBooksWorld.ir

90

 _loadbay[loaded] = vehicle;

 }

 }

 public void GetAllVehicles()

 {

 foreach (T vehicle in _loadbay)

 {

 switch (vehicle)

 {

 case Car car:

 �Console.WriteLine($"{car.GetType().Name} with VIN

number {car.VinNumber} loaded");

 break;

 case SUV suv:

 �Console.WriteLine($"{suv.GetType().Name} with VIN

number {suv.VinNumber} loaded");

 break;

 default:

 Console.WriteLine($"Vehicle not determined");

 break;

 }

 }

 }

}

This allows me to create a list of SUV objects and pass that to my VehicleCarrier

class. I am no longer constrained to only using Car objects in my VehicleCarrier class.

Listing 2-38.  Using generic VehicleCarrier class

// With Generics

SUV suv1 = new SUV("123", 2, 4, false);

SUV suv2 = new SUV("456", 3, 4, false);

SUV suv3 = new SUV("789", 2, 4, false);

List<SUV> carList = new List<SUV>(new SUV[] { suv1, suv2, suv3 });

Chapter 2 Exploring C#

www.EBooksWorld.ir

91

VehicleCarrier<SUV> carrier = new VehicleCarrier<SUV>(3);

foreach (var vehicle in carList)

{

 carrier.AddVehicle(vehicle);

}

carrier.GetAllVehicles();

Calling the method GetAllVehicles returns the VINs of the SUV objects contained in

my class.

Listing 2-39.  Console window output from generic VehicleCarrier class

SUV with VIN number 123 loaded

SUV with VIN number 456 loaded

SUV with VIN number 789 loaded

This means that I am free to create a VehicleCarrier of Car and a VehicleCarrier

of SUV using the same VehicleCarrier class. See the benefit?

�Mix and Match

I am also able to mix and match by specifying that my VehicleCarrier class is used with

the type object. This allows me to create a List of Car and SUV objects and add that to

my VehicleCarrier class.

Listing 2-40.  Loading SUV and Car classes

SUV suv1 = new SUV("123", 2, 4, false);

Car car1 = new Car("456", 3, 4);

SUV suv3 = new SUV("789", 2, 4, false);

List<object> carList = new List<object>(new object[] { suv1, car1, suv3 });

VehicleCarrier<object> carrier = new VehicleCarrier<object>(3);

foreach (var vehicle in carList)

{

 carrier.AddVehicle(vehicle);

}

carrier.GetAllVehicles();

Chapter 2 Exploring C#

www.EBooksWorld.ir

92

I am now able to call the GetAllVehicles method that uses the switch statement and

pattern matching to output the VIN of the specific object it is dealing with.

Listing 2-41.  Generic VehicleCarrier class of object output

SUV with VIN number 123 loaded

Car with VIN number 456 loaded

SUV with VIN number 789 loaded

My generic VehicleCarrier of T is now totally generic and performant. It cuts down

on code duplication and allows me more flexibility in my application.

�Recap and More on Generics
When we end a class with angle brackets <> we call it a generic class. Generics, however,

do not stop there. We can also have generic structs, generic interfaces, and generic

delegates. As mentioned earlier, the T represents the type parameter. It defines what type

of data a generic class (for example) will be working with.

T is just a convention used, but you can use any name you wish. Sticking to the
convention of T is probably a good idea anyway.

T is therefore like a placeholder that can be used throughout the class in places that

we need to define types. This can be on fields, local variables, parameters passed to

methods, or return types from methods.

The calling code using a generic class is therefore responsible for defining the type

that will be used throughout the class by passing the type parameter. In our example this

was the VehicleCarrier<Car> portion of the code.

�Generics and Collections
Collections in C# manage and organize data. You are definitely aware of List, and if you

remember earlier, we saw that a List is generic. We can therefore think of a List as follows.

Chapter 2 Exploring C#

www.EBooksWorld.ir

93

Listing 2-42.  List of T

public class List<T>

{

 public void Add(T listItem);

}

We need to know when to use which collection to manage our data. This will

make sense if we want to be as efficient as possible. Here is a summary of the generic

collections and their uses.

�List<T>

The List<T> holds a collection of data types. When the list’s capacity is reached, it doubles

the capacity to accommodate more data. The List<T> can therefore grow as needed.

�Queue<T>

Think of the Queue<T> as a queue you would be standing in, inside of a bank. You might

get a little upset if someone comes into the bank after you, but gets assisted before you.

This is because you were first and have been waiting longer. Queue<T> is exactly the same.

It provides the Enqueue method to queue items and a Dequeue method to remove the

items in the order they were added in. We call this First In First Out or a FIFO collection.

�Stack<T>

When thinking of Stack<T> imagine a can of Pringles crisps. The crisp you see first when

opening the lid is the last crisp added to the can. The same is true for Stack<T>, because

it uses Last In First Out or LIFO. To accomplish this, it exposes the methods Push and

Pop. You push an item onto the stack and pop it off the stack from the top.

�HashSet<T>

If you require a collection to only contain unique items, you can use a HashSet<T>. It will

only allow unique items. In order to do this, the Add method returns a true or a false if

the add was successful or not. A HashSet<T> works well with value types. It is, however,

not too good with objects and reference types unless you create an instance of an object

and add that.

Chapter 2 Exploring C#

www.EBooksWorld.ir

94

�LinkedList<T>

The LinkedList<T> will give you more control over managing the items in the Linked

List. It does this by exposing a Next and a Previous method. It also provides flexible

inserts with methods such as AddFirst, AddLast, AddBefore, and AddAfter.

�Dictionary<TKey, TValue>

This is another collection that you might be used to working with. Dictionaries provide

quick lookups of data by using a key. A Dictionary therefore has a Key and a Value that

we call the key-value pair.

�SortedDictionary<TKey, TValue>

If you need to have a sorted collection of data, then consider the

SortedDictionary<TKey, TValue>. This generic collection knows how to sort the data

it contains right out of the box. Items are sorted by key. If your key is a string, then it will

sort your data alphabetically. You need to use a sorted dictionary if you are looking up

things often. It is optimized for addition and removal of data.

�SortedList<TKey, TValue>

If you need an efficient generic collection that also provides items stored within it as

sorted, consider using a SortedList<TKey, TValue>. A sorted list is optimized to use the

least amount of memory possible.

�SortedSet<T>

If you need a sorted collection that only allows unique items, you will need to use a

SortedSet<T>. Like the HashSet<T> we looked at earlier, it only allows unique items, but

sorted in order.

�Generic Interfaces
Generics also allow you to create generic interfaces. You will remember in the section

on interfaces that we created an IComparable generic interface. This time, we will create

an interface to define what the VehicleCarrier class does. This is useful if we need to

create other types of carriers that differ slightly in functionality.

Chapter 2 Exploring C#

www.EBooksWorld.ir

95

Imagine for a minute that we need a vehicle carrier that can dynamically add

vehicles and does not have a fixed capacity. Based on the previous section on Generics

and Collections, you might remember that a List<T> can help us here. Our generic

interface will look as follows.

Listing 2-43.  Generic ICarrier interface

public interface ICarrier<T>

{

 void AddVehicle(T value);

 void GetAllVehicles();

}

You will notice that the generic interface also takes a generic type parameter. Here

we are saying that this interface must require any class that implements it to have a

GetAllVehicles method and an AddVehicle method that accepts a value of T. Now we

are able to modify our existing VehicleCarrier class to implement ICarrier<T>.

Listing 2-44.  Modifying VehicleCarrier class

public class VehicleCarrier<T> : ICarrier<T>

{

}

We can also create a new DynamicCarrier class that will resize its capacity as more

vehicles are added to it. Consider the following code.

Listing 2-45.  DynamicCarrier<T> class implements ICarrier<T>

public class DynamicCarrier<T> : ICarrier<T>

{

 private List<T> _loadbay;

 public DynamicCarrier()

 {

 _loadbay = new List<T>();

 }

Chapter 2 Exploring C#

www.EBooksWorld.ir

96

 public void AddVehicle(T vehicle)

 {

 _loadbay.Add(vehicle);

 }

 public void GetAllVehicles()

 {

 foreach (T vehicle in _loadbay)

 {

 switch (vehicle)

 {

 case Car car:

 �Console.WriteLine($"{car.GetType().Name} with VIN

number {car.VinNumber} loaded");

 break;

 case SUV suv:

 �Console.WriteLine($"{suv.GetType().Name} with VIN

number {suv.VinNumber} loaded");

 break;

 default:

 Console.WriteLine($"Vehicle not determined");

 break;

 }

 }

 }

}

Because DynamicCarrier<T> implements ICarrier<T>, it must have the AddVehicle

and GetAllVehicles methods. I am now free to add logic to all classes that implement

ICarrier<T>, simply by adding to the interface itself. While VehicleCarrier<T> and

DynamicCarrier<T> both serve the same purpose (to transport vehicles), the logic

contained inside each is quite different.

For a recap on interfaces, refer to the section on interfaces at the beginning of this

chapter.

Chapter 2 Exploring C#

www.EBooksWorld.ir

97

�Nullable Type
In C#, all reference types such as strings and program-defined objects are nullable. In

fact, null is the default value of reference type variables. This means that while they

can be null, we actually need to see the null keyword as a literal that represents a null

reference. Put differently, something that does not refer to any object in .NET Framework.

With the release of C# 2.0, we were introduced to nullable value types. If you have

a look at the System.Nullable namespace (Figure 2-10), you will notice that we are

dealing with a generic type here.

This means that we can now create a Nullable<int> and assign any Integer value

from MinValue to MaxValue to it including null. The same is true for the rest of the

value types.

�Some Characteristics of Nullable Types
The following is true when we talk about nullable types in C#:

•	 Because reference types already support null, nullable types only

apply to value types.

•	 Nullable<T> can also be referred to as T?

•	 Because the value types can be nullable, you can use the HasValue

readonly property to test for null and then use the readonly Value

property to get its value.

•	 You can use the == and != operators with nullable types.

•	 C# 7.0 allows the use of pattern matching to check for null and get

the value.

•	 You can use the null-coalescing operator to check for null, and if

null, assign a value to the underlying type.

Figure 2-10.  System.Nullable<T>

Chapter 2 Exploring C#

www.EBooksWorld.ir

98

While we have defined what nullable types are, how exactly do we use them? More

importantly, why should we use them? Well sometimes you might expect a null to be

assigned to a value type in certain circumstances. Being able to define a value type as

nullable allows you to write better and safer code. Consider the following code listings.

�Using Nullable Types
In the following figure (Figure 2-11), you will see that I can assign a value to the iValue

integer as well as the nullable iValue2 integer. Trying to assign null to the iValue3

integer gives me a compiler error.

Consider the following logic when using a nullable value type of int. It checks to see if

the iValue2 variable has a value and, if so, assigns the value to the variable iValue.

Listing 2-46.  Checking a nullable type with HasValue

// Valid code

int iValue = 10;

int? iValue2 = null;

if (iValue2.HasValue)

{

 iValue = iValue2.Value;

}

else

{

 iValue = -1;

}

Figure 2-11.  iValue4 nullable type allows null

Chapter 2 Exploring C#

www.EBooksWorld.ir

99

In the preceding code listing, the console application will return a -1 because the

value of the iValue2 variable is null. Using the null-coalescing operator, we can simplify

the code tremendously by writing the preceding code block as follows.

Listing 2-47.  Using a null-coalescing operator

int? iValue2 = null;

int iValue = iValue2 ?? -1;

How snazzy is that? Our code has been reduced to two lines of code, and it does

exactly the same thing as in Listing 2-46. With C# 7.0 we are now able to use pattern

matching too. We can therefore do the following.

Listing 2-48.  Use pattern matching

int iValue = 10;

int? iValue2 = null;

if (iValue2 is int value)

{

 iValue = value;

}

else

{

 iValue = -1;

}

If the variable iValue2 is null (which in this case it is), the application will return -1.

If, however, the value is not null, the variable iValue will be set to the value of iValue2.

�A Peek Inside Nullable<T>
In the preceding sections, we had a look at some characteristics of Nullable<T> and how

to use Nullable<T>. But what actually makes it (for lack of a better word) tick?

Peeking under the hood, we see that Nullable<T> is a struct (Figure 2-12). We also

see the expected HasValue and Value properties discussed previously.

Chapter 2 Exploring C#

www.EBooksWorld.ir

100

Furthermore, you will notice the GetValueOrDefault method we often see

when working with LINQ. From the image in Figure 2-12, you will notice that it is an

overloaded method.

You can retrieve the value of the current Nullable<T> object or you can provide

a default value if my Nullable<T> object is indeed null. But what happens if the

Nullable<T> object is null but you do not provide a default value?

In that case, the default value of the underlying type is returned. To demonstrate this,

consider the following code.

Listing 2-49.  GetValueOrDefault

int iValue = 10;

int? iValue2 = null;

iValue = iValue2.GetValueOrDefault(-1);

WriteLine($"The value of iValue = {iValue}");

This code in Listing 2-49 will return the default value we provide which is -1. We

are providing it the default value that needs to be returned if the Nullable<T> object is

indeed null. Now remove the default value and run the code again.

Figure 2-12.  Under the hood of Nullable<T>

Chapter 2 Exploring C#

www.EBooksWorld.ir

101

Listing 2-50.  Default value of the underlying type

int iValue = 10;

int? iValue2 = null;

iValue = iValue2.GetValueOrDefault();

WriteLine($"The value of iValue = {iValue}");

The code in Listing 2-50 will return the default value of the underlying type. Because

the underlying type is an integer, the default value is 0. Table 2-2 shows the default values

of value types.

The default value of a struct would be produced by setting all the value type fields

to the default values of that specific type and setting all the reference type fields to null.

Starting with C# 7.1, you can use the default literal expression to initialize a variable

with the default value specific to its type.

Listing 2-51.  Using the default literal

bool? blnValue = default;

int? iVal = default;

double? dblValue = default;

decimal? decVal = default;

Table 2-2.  Default Values of Value Types

Default Value Type

0 int, byte, sbyte, short, uint, ulong, ushort

false bool

'\0' char

0M decimal

0.0D double

0.0F float

0L long

Chapter 2 Exploring C#

www.EBooksWorld.ir

102

WriteLine($"The default values are " +

 $"- blnValue = {blnValue.GetValueOrDefault()} " +

 $"- iVal = {iVal.GetValueOrDefault()} " +

 $"- dblValue = {dblValue.GetValueOrDefault()} " +

 $"- decVal = {decVal.GetValueOrDefault()}");

ReadLine();

The use of nullable types in C# definitely provides some benefit to you as a

developer. Being able to provide the underlying type with a default value also makes it

really easy to avoid surprises. This is especially true when working with data coming out

of a database.

�Dynamic Type
With the release of C# 4.0, developers were introduced to a new dynamic type. It’s a static

type, but dynamic objects bypass static type checking. Think of it acting like it has a type

object. It is best explained with some code examples.

Listing 2-52.  The dynamic type

dynamic dObject = "I am dynamic";

WriteLine($"dObject = {dObject}");

dObject = 1;

WriteLine($"dObject = {dObject}");

dObject = false;

WriteLine($"dObject = {dObject}");

dObject = 1.1;

WriteLine($"dObject = {dObject}");

The compiler does not know what type the variable is at compile time. It is also quite

logical then that there is no IntelliSense available on a dynamic type. Therefore, the type

of the dynamic variable will be determined at runtime. The code in Listing 2-52 will

produce the following output.

Chapter 2 Exploring C#

www.EBooksWorld.ir

103

Listing 2-53.  Dynamic output

dObject = I am dynamic

dObject = 1

dObject = False

dObject = 1,1

As you can imagine, pattern matching works rather well with dynamic variables. It

can be a simple if (dObject is int iValue) {} or a more elaborate case statement.

Listing 2-54.  Pattern matching with dynamic variable

switch (dObject)

{

 case int iObject:

 WriteLine($"dObject is an Integer {iObject}");

 break;

 case bool blnObject:

 WriteLine($"dObject is a bool {blnObject}");

 break;

 case string strObject:

 WriteLine($"dObject is a string {strObject}");

 break;

 case double dblObject:

 WriteLine($"dObject is a double {dblObject}");

 break;

 default:

 WriteLine($"dObject type can't be determined");

 break;

}

It is interesting to note that the dynamic type only exists at compile time. At runtime,

the dynamic type variables are compiled into variables of type object.

You are allowed to use dynamic in

•	 Fields

•	 Properties

•	 Parameters

Chapter 2 Exploring C#

www.EBooksWorld.ir

104

•	 Return types

•	 Local variables

You are also allowed to use dynamic as the target type of a conversion. Consider the

following code listing.

Listing 2-55.  Conversion to dynamic

dynamic dObj;

bool blnFalse = false;

dObj = (dynamic)blnFalse;

WriteLine($"dObj = {dObj}");

A new API called the dynamic language runtime (DLR) was added to the .NET

Framework 4. This API supports the dynamic type in C# and also the implementation of

dynamic programming languages, e.g., IronRuby.

�Wrapping Up
C# is a language that has grown a lot in the past couple of years. With C# 7 we have seen

quicker point releases that introduced new features and improvements that you can use

in your day-to-day development.

As a developer, it remains a challenge to stay up to date with what is new. Microsoft

has a fantastic resource in the form of online documentation at https://docs.

microsoft.com.

This chapter can never be complete because there is so much in the C# language that

it needs to cover. The limits of trying to do so in a single chapter are evident in the page

count. We had a look at abstract classes and what interfaces are. We then looked at async

and await and how these can help you create responsive applications. We also saw how

async and await work the magic they do by taking a peek at the state machine it creates.

I then illustrated the use of extension methods and what this feature can do for your

development. We also saw that generics play a big role in C# and that you have most

likely been using generics all along (think of List<T>).

Lastly, we took a slightly deeper dive into Nullable<T> and how it fits together as

well as a brief explanation of the dynamic type. In the next chapter, we will be taking a

look at the new features of C# 8.0.

Chapter 2 Exploring C#

www.EBooksWorld.ir

https://docs.microsoft.com
https://docs.microsoft.com

105
© Dirk Strauss 2019
D. Strauss, Exploring Advanced Features in C#, https://doi.org/10.1007/978-1-4842-4856-0_3

CHAPTER 3

The New Features of
C# 8.0
The design process of C# is open source. You can head over to the repository at https://

github.com/dotnet/csharplang and have a look at some of the discussions surrounding

the language design. In fact, the meetings documents make for fascinating reading.

Once you are in the GitHub repo, have a look at dotnet/csharplang/meetings for a
collection of documents organized by year.

The first thing that strikes me as obvious is that the thinking surrounding the C#

language is very structured and deliberate. All throughout the repository, you will see that

the last commit date is always quite recent. This therefore proves that the repository you

are looking at is a living document that you can follow along with and stay up to date with.

What about C# 8.0? Well the truth is that even as the C# team released the

incremental point releases for C# 7 (C# 7.1 to C# 7.3), they were also working on C# 8.0.

This chapter will have a look at the following new features in C# 8.0:

•	 Nullable reference types

•	 Recursive patterns

•	 Ranges and indices

•	 Switch expressions

•	 Target-typed new expressions

•	 Async streams

•	 Using declarations

www.EBooksWorld.ir

https://github.com/dotnet/csharplang
https://github.com/dotnet/csharplang

106

In order to follow along in code with the code listings I will illustrate in this chapter,

you will need a copy of Visual Studio 2019. At the time of writing this chapter, Visual

Studio 2019 Preview (Version 16.0.0 Preview 2.0) was available for download.

Make sure that if you are using the Preview of Visual Studio 2019, you have selected

C# 8.0 (beta) from the Advanced Build Settings (Figure 3-1). To do this, right-click the

project and select Properties. Then select the Build tab and then click the Advanced button.

Please note that some of the features illustrated in the following text might contain
slight variations between this preview and the final release of C# 8.0. At the time of
writing this book, the code in this chapter was syntactically correct.

To kick things off, let’s start looking at what nullable reference types are.

�Nullable Reference Types
If you think back to Chapter 2, we discussed nullable types. We said that all reference

types such as strings are nullable and that the default value of reference types is null.

With the release of C# 2.0, Microsoft introduced nullable value types.

Figure 3-1.  Advanced Build Settings

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

107

I am not going to rehash the difference between reference types and value types. I

will leave that up to you to read up about if you’re unsure. The fact that reference types

can now be nullable is something that (in my opinion) developers have needed for a

long time. The thinking behind making reference types nullable is to help developers

avoid NullReferenceException exceptions.

You will remember from the previous chapter that in order to mark a variable

as nullable, you need to use the type and ? when declaring a variable. For example,

int? represents a nullable int. Now you can do the same with reference types such as

string? to declare a nullable string.

What is great about this addition is that you can now express your design intent more

clearly. I can say that some variables could have a value while others must have a value.

�Enabling Nullable Reference Types
This feature is not enabled by default in C# 8.0. You have to opt into the nullable

reference types feature even if you are creating C# 8.0 applications. With the nullable

reference types feature switched on, all your reference variable declarations will become

non-nullable reference types. Therefore, you need to take note of this when enabling

nullable reference types.

Even with nullable reference types enabled, Visual Studio will only display a
warning when encountering a non-nullable reference type set to null.

This means that if you create a reference type (a string variable declaration, for

example) without enabling nullable reference types, you will not see any warnings.

Consider the following.

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

108

The warning displayed in Figure 3-2 is the variable assigned but never used warning.

To enable the nullable reference types feature in your applications, you need to add

a new pragma #nullable enable anywhere in your source file. This will turn on the

nullable reference types feature.

Figure 3-2.  No nullable reference type warning

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

109

The warning is displayed in the Error List (Figure 3-3). If you enable this feature on

an existing project, you might encounter a few of these warnings.

The pragma #nullable enable also supports disable to turn off the nullable
reference types feature.

If you need to enable nullable reference types for your entire project, open your

.csproj file and look for the LangVersion element.

Figure 3-3.  Nullable reference types turned on

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

110

Then you need to add <NullableReferenceTypes>true</NullableReferenceTypes>

just after the LangVersion element as can be seen in Figure 3-4.

�Recap
To recap, in C# 8.0 we now have nullable reference types and non-nullable reference

types. These enable you to tell the compiler exactly what your intent is with reference

type variables.

In order to enable nullable reference type variables in C# 8.0, you need to use a new

pragma #nullable. The compiler will interpret your intent in one of two ways. These are

as follows.

Figure 3-4.  Enable nullable reference types for project

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

111

�A Reference Type Variable Can’t Be Null

If reference type variables are not supposed to be null, the compiler will enforce that

rule to ensure that it is safe to use the variable without checking if it is null or not.

This means that the variable must be initialized to a non-null value. The variable can

therefore never be assigned a null value.

�A Reference Type Might Be Null

When we declare a nullable reference type variable, we are telling the compiler that the

possibility exists that the variable value could be null. The compiler will now enforce

different rules to ensure that you have checked for a null reference. You can therefore

initialize these variables with the default null.

�Recursive Patterns
Recursive patterns are a welcome addition to C#. You will remember that in C# 7, we saw

the introduction of pattern matching. C# 8.0 takes this a step further by allowing patterns

to contain other patterns. Consider the following class.

Listing 3-1.  Person class

public class Person

{

 public int Age { get; }

 public string Name { get; }

 public bool RegisteredToVote { get; set; }

 public Person(string name, int age, bool registered)

 {

 Name = name;

 Age = age;

 RegisteredToVote = registered;

 }

}

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

112

The class contains a Boolean to indicate if the person is registered to vote. Recursive

patterns will allow us to extract those persons that have not registered to vote by doing

the following.

Listing 3-2.  Recursive pattern

foreach (var person in personList)

{

 if (person is Person { RegisteredToVote: false })

 {

 WriteLine($"{person.Name} has not registered.");

 }

}

What we are saying here is that if an object in a list is of type Person and if that

person has the RegisteredToVote property set to false, display the name of the person.

You will also notice that Intellisense is available (Figure 3-5) if you need to add

another condition to the pattern. Add the following eligibility property to your class.

Listing 3-3.  Person class with eligibility property

public class Person

{

 public int Age { get; }

 public string Name { get; }

 public bool RegisteredToVote { get; set; }

 public bool EligibleToVote { get => Age > 18; }

 public Person(string name, int age, bool registered)

Figure 3-5.  IntelliSense available

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

113

 {

 Name = name;

 Age = age;

 RegisteredToVote = registered;

 }

}

We can now check to see if a person is not registered to vote, but only return those

people that are eligible to vote by doing the following.

Listing 3-4.  Returning only eligible people not registered

foreach (var person in personList)

{

 if (person is Person { RegisteredToVote: false, EligibleToVote: true })

 {

 WriteLine($"{person.Name} has not registered.");

 }

}

Recursive patterns allow you to be more flexible and allow for more expressive code.

�Ranges and Indices
Ranges and indices were designed in the first few months of 2018. What C# 8.0 allows us

to do with indexed data structures is grab a slice of the array, string, or span.

Listing 3-5.  An array of names

string[] names = { "Dirk", "Jane", "James", "Albert", "Sally" };

foreach (var name in names)

{

 // do something

}

Considering a standard array of names, we can iterate over the array in a foreach as

in the previous code listing. With C# 8.0, however, we can now easily pull out only a part

of the array as follows.

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

114

Listing 3-6.  Pulling out a part of the array

string[] names = { "Dirk", "Jane", "James", "Albert", "Sally" };

foreach (var name in names[1..4])

{

 // do something

}

This allows us to iterate over a portion of the names in the array. The 1..4 is actually a

range expression.

Please note that the endpoint of 4 in the preceding example is exclusive, which
means that the element 4 is not included in [1..4].

C# has adopted a C-style approach to arrays, so the endpoint being exclusive is

consistent with that approach. This means that in [1..4], the length of the slice we want is

4-1 = 3.

Another point to take note of is that the range expression does not have to form part

of the indexing operation. It can be pulled out into its own variable with its own type

called Range. This will allow the following code to be valid.

Listing 3-7.  Using the Range type

string[] names = { "Dirk", "Jane", "James", "Albert", "Sally" };

Range range = 1..4;

foreach (var name in names[range])

{

 // do something

}

In the preceding code example, the range expression was an integer 1..4. In reality,

they don’t have to be. In actual fact, they’re of a type called Index. The non-negative

integer values convert to Index.

Because the range expression is of type Index, you can create an Index by using the

new ^ operator.

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

115

Sometimes the new ^ operator is also referred to as the hat operator. Time will tell
what is going to stick when referring to the ^ operator.

The new ^ operator means from-end, and so 1..^1 means 1 from the end. You can

therefore have the following.

Listing 3-8.  Using the “from-end” operator

string[] names = { "Dirk", "Jane", "James", "Albert", "Sally" };

foreach (var name in names[1..^1])

{

 // do something

}

The ^1 essentially cuts off an element at the end of the array, returning an array with

the middle elements.

•	 Jane

•	 James

•	 Albert

There are some developers that argue that using ^ to mean from-end is confusing,

especially since ^ means from the beginning in regex. But as Mads Torgersen (design lead

for C#) commented, they decided to follow Python when working with from-beginning

and from-end arithmetic.

Range expressions can be written in a few ways. These are explained as follows:

•	 The expression ..^1 is the same as 0..^1

•	 The expression 1.. is the same as 1..^0

•	 The expression .. is the same as 0..^0

The expression 0..^0 returns everything in the array (for example) from beginning

to end. You can think of ^0 as the element right off the end.

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

116

�Switch Expressions
In C# 7.0 we saw the inclusion of patterns in switch statements. You will remember that

we had a look at pattern matching in Chapter 1. Consider the following class examples.

Listing 3-9.  Class examples

public class Human : Species

{

 public string Name { get; }

 public bool RegisteredToVote { get; set; }

 public bool EligibleToVote { get => Age > 18; }

 public Human(string name, bool registered)

 {

 Name = name;

 RegisteredToVote = registered;

 }

}

public class Mammal : Species

{

 public string Name { get; }

 public Mammal(string name)

 {

 Name = name;

 }

}

public class Reptile : Species

{

 public string Name { get; }

 public bool LaysEggs { get; }

 public Reptile(string name, bool laysEggs)

 {

 Name = name;

 LaysEggs = laysEggs;

 }

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

117

}

public class Species

{

 public int Age { get; set; }

}

The classes are really basic and if we wanted to use pattern matching in a switch

statement, we would typically do the following.

Listing 3-10.  C# 7.0 switch statement

Species species = new Reptile("Snake", true);

species.Age = 2;

switch (species)

{

 case Human h:

 WriteLine($"{h.Name} is a {nameof(Human)}");

 break;

 case Mammal m:

 WriteLine($"{m.Name} is a {nameof(Mammal)}");

 break;

 case Reptile r:

 WriteLine($"{r.Name} is a {nameof(Reptile)}");

 break;

 default:

 WriteLine("Species could not be determined");

 break;

}

This is a valid code, but becomes somewhat cumbersome to write. In C# 8.0 you will

be able to rewrite the code in the previous listing as follows.

Listing 3-11.  Switch expression

var result = species switch

{

 Human h => $"{h.Name} is a {nameof(Human)}",

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

118

 Mammal m => $"{m.Name} is a {nameof(Mammal)}",

 Reptile r => $"{r.Name} is a {nameof(Reptile)}",

 _ => "Species could not be determined"

};

WriteLine(result);

C# 8.0 introduces switch expressions where the cases are expressions. Think of it as a

lightweight version of switch statements.

You will notice that the default case uses a discard _ variable. Discards were
discussed in Chapter 1 of this book in case you need to recap.

You will notice that the case keyword and the : have been replaced by the lambda =>

arrow. Another thing to note is that the body is now an expression and the selected body

becomes the switch expression’s result.

�Should I Use Switch Expressions?
Personally, I find the switch expressions much nicer to read and write, especially when

formatted as in Figure 3-6. The results of more focused and succinct code are evident in

the fact that we reduced a 15-line case statement to only 7 lines of code.

If you want to write switches using less code and that is more expressive, consider

using switch expressions.

Figure 3-6.  More readable code

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

119

�Property Patterns
Let us expand on our switch expression to differentiate between reptiles that lay eggs

and reptiles that give birth to live young.

Yes, you get viviparous snakes that give birth to live young, e.g., green anacondas
and boa constrictors.

Include a case in the switch statement that will check when a reptile has a property

of LayEggs equal to true and output a different result based on that.

C# 8.0 will now allow the pattern to dig deeper into the value that is being pattern

matched. This means that you as a developer can make it a property pattern by adding

curly braces to apply to the value’s properties or fields. You can therefore rewrite the

switch expression in Figure 3-7 as follows.

C# 8.0 also allows more optional elements with type patterns. If we are dealing with a

Reptile that lays eggs, then we want its age. Here we can apply the var pattern to the Age

property.

Figure 3-7.  Checking for viviparous reptiles

Figure 3-8.  Switch expression with property pattern

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

120

Remember that var will always succeed and declares a new variable to hold the

value (Figure 3-9). Therefore, the variable age gets to contain the value of r.Age, and we

can drop r because it is never used (Figure 3-10).

All patterns including property patterns require the value to be non-null. Replacing

the fallback case with {} and null will deal with non-null patterns and nulls (Figure 3-11).

An empty property pattern is dealt with by {} and null will catch all the nulls.

�Target-Typed New Expressions
Microsoft has come a very long way from where they were to embracing the developer

community. The thought process surrounding developers and what they can mean to

the developer community at large is perfectly showcased in the following feature being

introduced in C# 8.0.

Figure 3-9.  Omitting Reptile r

Figure 3-10.  r can be dropped because it isn’t used

Figure 3-11.  Cater for non-null objects and null

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

121

This feature’s implementation was in fact contributed by Alireza Habibi, a member
of the community.

In the past, you would need to add the type when creating an array of Point, for example.

Listing 3-12.  Point array before C# 8.0

Point[] ps = { new Point(1, 4), new Point(3, 2), new Point(9, 5) };

With C# 8.0, you can now simply change the code in the previous listing to be as follows.

Listing 3-13.  Point array in C# 8.0

Point[] ps = { new (1, 4), new (3, 2), new (9, 5) };

The type is already given from the context. Therefore, in these situations, C# will

allow you to omit the type.

�Async Streams
Let us think back to async as discussed in Chapter 2. Asynchronous programming will

allow you to write code that can perform long running tasks while still keeping your

application responsive.

The basic idea is that we have these things called Tasks in .NET which represent a

promise as it were of some future result. We might have an async method as follows.

Listing 3-14.  Async method

static async Task Main(string[] args)

{

 var result = await GetSomethingAsync();

 WriteLine(result);

 ReadLine();

}

static async Task<int> GetSomethingAsync()

{

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

122

 await Task.Delay(1000);

 return 0;

}

You will notice that I am creating the Main method with the async modifier.

Async Main was introduced in C# 7.1 that now allows you to create the entry point
for your application with the async modifier. If your program returns an exit code,
you can declare a Main method that returns a Task<int> instead.

What is important to note here is the await operator. This allows you to insert a

suspension point in the execution of the code until the awaited task finishes what it is

busy with. This task therefore represents some ongoing work, and await can only be

used when the method is modified with the async keyword.

We call such a method (that uses the async modifier) that contains one or several

await expressions an async method. The code in the previous listing works fine for single

results, but what about a continuous stream of results?

Think of a database that is queried for data which it can’t return all at once. So, it

needs to stream it, and the data will arrive at the calling code at certain intervals. Your

code, however, wants to process this data in its own time. It is for this reason that C# 8.0

introduced IAsyncEnumerable<T> which is an asynchronous version of IEnumerable<T>.

With this, you can essentially write the following code.

Listing 3-15.  IAsyncEnumerable<T>

static IAsyncEnumerable<int> GetLotsAsync()

{

 await foreach(var item in GetSomethingAsync())

 {

 if (item > 8)

 yield return item;

 }

}

The code does an ordinary await, but you are able to use the usual language

constructs (for example, the foreach) to consume the data.

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

123

When yield return is reached inside an iterator method, expression is
returned and retains the current location in the code. If this code is run again, the
code execution is restarted from that location the next time the iterator is called. To
end the iteration, call yield break instead.

Think of this as an async iterator that combines async methods and iterator methods

that allows you to use await and yield return inside of it.

OBSERVABLES VS. ASYNC STREAMS

During an interview with Mads Torgersen, a remark was made that async streams feel

similar to observables or reactive extensions. Mads Torgersen explained that async streams

are basically a pull model where you as the developer ask for something and then get it.

Observables on the other hand use a push model when they have data.

With observables, the producer decides the timing of the data being delivered to the consumer.

In async streams the consumer decides when it’s ready to receive the data.

�Using Declarations
Another nice addition to C# 8.0 is the feature of simplifying using statements.

Traditionally, using statements introduce a level of nesting. Personally, I liked it, because

it always felt like the using statement clearly shows when the resource is going to be

cleaned up. This happens when the code execution moves past the closing curly brace.

Nevertheless, for simple cases, we now have using declarations in C# 8.0. Consider

the following code listing that has a using statement when working with a SQL

connection.

Listing 3-16.  using statement pre-C# 8.0

string tsql = "[SQL QRY]";

string sqlConnStr = "[SQL Connection String]";

using (var con = new SqlConnection(sqlConnStr))

{

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

124

 SqlCommand cmd = new SqlCommand(tsql, con);

 //..

}

The using statement will clean up the connection etc. as soon as the code execution

moves out of the using block. With C# 8.0, however, we can do the following.

Listing 3-17.  Using declaration in C# 8.0

string tsql = "[SQL QRY]";

string sqlConnStr = "[SQL Connection String]";

using var con = new SqlConnection(sqlConnStr);

SqlCommand cmd = new SqlCommand(tsql, con);

using declarations are just local variable declarations. The only difference is that it

now has a using keyword in front. The contents are therefore disposed of at the end of

the current statement block.

�Wrapping Up
The language features introduced in C# 8.0 are really exciting. I am sure that the C# team

will be refining these and adding more as time goes by. Another exciting development

is the speed at which point releases happen in C#. This is evident in the point releases

we saw in C# 7. It is a good idea to keep up to date with these releases, just in case they

decide to sneak in something really cool.

We had a look at nullable reference types that are now available, which allow

you to use string? to indicate nullability on a string, for example. We then took a

look at recursive patterns that allows patterns to contain other patterns. Ranges and

indices were discussed next, which allow you to grab a slice of an array, string, or

span. I then showed you how switch expressions work that can be seen as lightweight

switch statements. Target-typed new expressions allowed you to omit the type when

creating a Point array, because the type is given from the context. Async streams were

then discussed and allow you to use an asynchronous version of IEnumerable called

IAsyncEnumerable. Lastly, we had a look at using declarations that simplify using

statements by not introducing a level of nesting.

In the next chapter, we will have a look at how to create responsive web applications

using ASP.NET MVC, Bootstrap, jQuery, and SCSS.

Chapter 3 The New Features of C# 8.0

www.EBooksWorld.ir

125
© Dirk Strauss 2019
D. Strauss, Exploring Advanced Features in C#, https://doi.org/10.1007/978-1-4842-4856-0_4

CHAPTER 4

Responsive Web
Applications Using
ASP.NET MVC
Responsive web applications are essential in modern application development. Users

need to be able to view the content of your web application on any device. This means that

a web application needs to resize itself based on whatever device it is being viewed on.

In this chapter you will create a simple task management system that uses the

Bootstrap code framework to remain responsive. We will have a look at the following:

•	 Creating your ASP.NET MVC application

•	 Referencing jQuery and Bootstrap

•	 Setting up and using SCSS

•	 Creating models, controllers, views, and using Razor

•	 Adding a plugin

•	 Testing your responsive layout using Chrome

•	 Debugging your jQuery using Chrome Developer Tools

I will be using the latest version of Visual Studio 2019 that was available at the time of

writing this chapter.

www.EBooksWorld.ir

126

�Creating Your ASP.NET MVC Application
The new start window in Visual Studio 2019 does look quite a bit different. You will

notice that it now has five main sections. These are

•	 Open recent

•	 Clone or checkout code

•	 Open a project or solution

•	 Open a local folder

•	 Create a new project

Having your recent projects to the left that are pinned or unpinned is quite handy,

and this should tell you something about the new start window.

I will be going into more depth on this and other new features in Visual Studio
2019 in a later chapter, so keep an eye out for that.

The goal that the Visual Studio team had with the new start window was to give you

quick access to the most common ways you would access your code. For most it would

be cloning from a repository or opening an existing project as seen in Figure 4-1.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

127

For now, you will be creating a new project, so click that option to get going.

Figure 4-1.  Visual Studio 2019 New Project screen

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

128

Creating new projects is something that you are probably quite familiar with. The

new project dialog (as seen in Figure 4-2) has been cleaned up a bit and no longer

includes a table of contents style of nodes and sub-nodes.

It now includes a Recent project templates section that is similar to the Open recent

in the start window. For this project, we will be selecting an ASP.NET Web Application

using the .NET Framework.

Figure 4-2.  Select project template

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

129

After selecting the project template, you are allowed to configure your new project

(Figure 4-3). We are going to create a simple task management application that will

manage tasks and color code them according to some state we will be defining later on.

Also note that you can select the .NET Framework version in the last combo menu.

Figure 4-3.  Configuring your project

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

130

Next you will see the familiar project configuration screen where you can select

the type of web application you want to create (Figure 4-4). Select MVC here and don’t

worry about enabling Docker support or adding unit tests. We also don’t require any

authentication in this project.

Figure 4-4.  Selecting an MVC project

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

131

Visual Studio now goes ahead and creates your ASP.NET MVC application with all

the default boilerplate code. After it is finished, you should see the Solution Explorer

with the following project as in Figure 4-5. If you see this, then you are ready to start

creating your application.

Build your project and press F5 to run your project.

Figure 4-5.  The created project in Solution Explorer

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

132

If everything is set up correctly, you will see the default web application start up in

your browser.

�Referencing jQuery and Bootstrap
In your Solution Explorer, if you expand the App_Start folder, you will see a class called

BundleConfig. It is here that you will see references to CSS and JavaScript files.

Figure 4-6.  Running your ASP.NET MVC application

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

133

Bundling and minification improve request load time. They do this by reducing the
number of requests to the server, and in doing so reduce the size of the requested
assets.

You will notice that the RegisterBundles method contains references to the jQuery

and Bootstrap files stored in the Scripts folder. It also includes the stylesheets contained

in the Content folder.

Listing 4-1.  The BundleConfig class

public static void RegisterBundles(BundleCollection bundles)

{

 bundles.Add(new ScriptBundle("~/bundles/jquery")

 .Include("~/Scripts/jquery-{version}.js"));

 bundles.Add(new ScriptBundle("~/bundles/jqueryval")

 .Include("~/Scripts/jquery.validate*"));

 // Use the development version of Modernizr to develop

 // with and learn from. Then, when you're ready for

 // production, use the build tool at

 // https://modernizr.com to pick only the tests you need.

 bundles.Add(new ScriptBundle("~/bundles/modernizr")

 .Include("~/Scripts/modernizr-*"));

 bundles.Add(new ScriptBundle("~/bundles/bootstrap")

 .Include("~/Scripts/bootstrap.js"));

 bundles.Add(new StyleBundle("~/Content/css")

 .Include("~/Content/bootstrap.css",

 "~/Content/site.css"));

}

You will notice that we have a ScriptBundle for js files and a StyleBundle for our

css files. It is here in the ScriptBundle that we will be adding another reference to the

jquery-ui.min.js file.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

134

jQuery UI is a collection of UI controls, assets, widgets, and themes that are built
on top of the jQuery JavaScript library. Use this if you need to include some form of
user interaction.

In your browser, go to http://jqueryui.com/download/ and make your selections in

the Core, Interactions, Widgets, and Effects categories.

Figure 4-7.  Downloaded jQuery UI files

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

http://jqueryui.com/download/

135

I want to allow the user to drag elements (the task items in particular) around on the

web page. I therefore only need to include the draggable interaction, but I will go ahead

and include everything in case I need to use other interactions later on.

The two files I am interested in are jquery-ui.js and jquery-ui.min.js. Add these two

files to your Scripts folder of your project.

After you have added the files, you need to update your RegisterBundles method in

the BundleConfig class by adding an Include with the path to the minified file.

Listing 4-2.  Modified RegisterBundles method

bundles.Add(new ScriptBundle("~/bundles/jquery")

 .Include("~/Scripts/jquery-{version}.js")

 .Include("~/Scripts/jquery-ui.min.js"));

This will now create a bundle named ~/bundles/jquery and it will include all the

appropriate files you specify as well as the files matching the wild card {version} string.

�Creating Bundles
We can create bundles by specifying an array of strings in the Include method. Each

string is the virtual path to a resource. Here is an example of a StyleBundle specifying the

virtual paths to several CSS files.

Figure 4-8.  Adding the jQuery UI files

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

136

Listing 4-3.  A StyleBundle

bundles.Add(new StyleBundle("~/Content/css").Include(

 "~/Content/themes/base/jquery.ui.code.css",

 "~/Content/themes/base/jquery.ui.button.css",

 "~/Content/themes/base/jquery.ui.slider.css",

 "~/Content/themes/base/jquery.ui.tabs.css",

 "~/Content/themes/base/jquery.ui.datepicker.css",

 "~/Content/themes/base/jquery.ui.theme.css"));

Notice how all these CSS files are in the same directory? The Bundle class

also provides a method called IncludeDirectory. This allows you to modify your

StyleBundle to be more succinct.

Listing 4-4.  A StyleBundle using IncludeDirectory

bundles.Add(new StyleBundle("~/Content/css").IncludeDirectory(

 "~/Content/themes/base/"

 , "*.css"

 ,false));

I have specified a virtual directory path and also specified a search pattern to match

only the CSS files. The last parameter set to false specifies that subdirectories be

excluded from the search.

�Referencing Bundles in Views
We are going to be having a closer look at Views in a next section of this chapter. I need to

however mention here that bundles are referenced in a view using the Render method.

For CSS we use Styles.Render and for JavaScript we use Scripts.Render. Have a look

in the shared _Layout.cshtml view to see how the stylesheets and scripts are rendered.

The _Layout.cshtml view is shared among all other views (think of it as a master page in

old ASP.NET). These scripts and stylesheets referenced here are therefore included on all

pages for the site.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

137

�Setting Up and Using SCSS
Now that I have referenced the jQuery UI file, I want to create a custom stylesheet for

my application. For this I will create a .scss stylesheet. Create a folder called scss in your

project and add a new SCSS file called customstyles.scss to that folder.

When you have added the folder and file to your project, your solution should look as

in the next image.

Figure 4-9.  Add new SCSS stylesheet

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

138

You will notice that the Content folder contains our CSS files. This is logically where

we want to place our customstyles.css file. This CSS file will be generated from our scss

file created under the scss folder. To do this, we need to install a tool called Web Compiler

created by Mads Kristensen. Head on over to the Extensions menu in Visual Studio 2019

and click Extensions and Updates.

Figure 4-10.  Added scss folder and customstyles file

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

139

After you download the tool, Visual Studio 2019 will schedule the installation of Web

Compiler.

You need to close Visual Studio down before the installation of Web Compiler starts.

After Web Compiler is installed, start Visual Studio 2019. Have a look at the

customstyles.scss file we created earlier. It just contains the following code.

Figure 4-11.  Extensions and Updates

Figure 4-12.  Web Compiler installation

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

140

Listing 4-5.  Contents of customstyles.scss file

body {

}

We will be adding some styling code to this file in a moment, but first right-click the file

and click Web Compiler ➤ Compile file or hold down Shift+Alt+Q to compile the file into CSS.

The Web Compiler we installed earlier jumps into action and creates CSS files called

customstyles.css and customstyles.min.css for us. There is only one problem, the generated

CSS files are not in the correct folder. We want the generated CSS files in the Content

folder of our project.

Figure 4-13.  Generated CSS files

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

141

This is easily fixed. When the Web Compiler generated the CSS files, it also created

a file called compilerconfig.json for you in the project root. Go ahead and open the

compilerconfig.json file.

Listing 4-6.  Compiler configuration for the scss file

[

 {

 "outputFile": "scss/customstyles.css",

 "inputFile": "scss/customstyles.scss"

 }

]

You will notice that the file contains a setting for the output path for the generated

CSS file. The path is the same as the input file path. Modify your outputFile path as in

the next code listing.

Listing 4-7.  Modified Compiler configuration for the scss file

[

 {

 "outputFile": "Content/customstyles.css",

 "inputFile": "scss/customstyles.scss"

 }

]

When you save the compilerconfig.json file, another compilation is automatically done.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

142

This creates the CSS files in the correct Content folder. You can go ahead and delete the

CSS files under the scss folder. These will never be updated when we modify our scss file.

�What Exactly Is SCSS?
SCSS is an implementation of SASS (Syntactically Awesome Style Sheets). In fact, SASS

supports two types of syntax, namely, SCSS and SASS. The main difference between

SCSS and SASS is the use of curly braces and semicolons that SCSS uses. Being used to

C#, it makes more sense to use SCSS.

Figure 4-14.  Generated CSS files

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

143

SCSS is fully compliant with CSS, so all your existing code will still work. The benefits

of SCSS are

•	 Being able to use variables

•	 Allows nested syntax

•	 Allows the use of mixins

•	 Allows the use of partials to modularize code

•	 Being able to use @extend to inherit and extend classes

•	 Allows the use of functions

This allows you to split up the code to style your application and separate concerns

regarding specific styling in your application. Go ahead and add another scss file called

_variables.scss to your scss folder. Take note that you must include the underscore before

the filename to mark this as a partial scss file.

Figure 4-15.  The _variables.scss file

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

144

Add the following code to the _variables.scss file.

Listing 4-8.  The color variable for H2 tags

/* Header Colors */

$h2-color: #9DB941;

This is just a variable (denoted by a $ sign) that sets a value for the H2 elements in

your markup. Next, modify your customstyles.scss file as follows.

Listing 4-9.  Custom styling for H2 elements

@import "_variables.scss";

h2{

 color: $h2-color;

}

Here we are importing the _variables.scss partial file and then setting H2 element

colors to the value of the $h2-color variable. Save your scss files and have a look at the

customstyles.css file in the Content folder.

Listing 4-10.  The customstyles.css file

/* Header Colors */

h2 {

 color: #9DB941; }

The compiled CSS contains the $h2-color variable’s value for H2 elements. This is

the power that SCSS brings to your web application projects in Visual Studio.

You will notice that the Web Compiler didn’t create a variables.css file. This is

because it is marked as a partial file with the underscore character prefixing the

file name. We include it in the compiled CSS file with the @import keyword in the

customstyles.scss file.

�Adding Our Custom CSS File to BundleConfig
We need to include our custom CSS file in the BundleConfig class. Go ahead and edit

the RegisterBundles method and include the customstyles.css file. Our method currently

references the site.css file.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

145

Listing 4-11.  StyleBundle referencing site.css

bundles.Add(new StyleBundle("~/Content/css")

 .Include("~/Content/bootstrap.css",

 "~/Content/site.css"));

Change this to reference our custom CSS file by removing the site.css reference and

adding our customstyles.css reference instead.

Listing 4-12.  StyleBundle referencing customstyles.css

bundles.Add(new StyleBundle("~/Content/css")

 .Include("~/Content/bootstrap.css",

 "~/Content/customstyles.css"));

We have now successfully referenced the stylesheet that we will be using throughout

our application to style the elements as needed.

�Creating Models, Controllers, Views and Using
Razor
Before we can go and create views, we first need to create a model and a controller for

our Task application. The whole premise of MVC is to separate concerns based on the

role of each part of your application. As you probably know, MVC stands for Model,

View, and Controller. Let’s recap the responsibility of each section of MVC.

�What Is a Controller?
When the user makes a request to the browser, the controller determines what response

is sent back to the user. It is responsible for controlling the flow of logic within the ASP.

NET MVC application. You will notice that our application contained a HomeController

by default. It is merely a C# class that initially contains a few methods called Index,

About, and Contact. If you had to enter the URL Home/Index, then the controller would

invoke the Index method. It is here that you would add additional methods (or actions)

to match your views.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

146

�What Is a View?
If you have a look at the HomeController, you will notice that the methods each return

a View. Expanding the Views folder in your Solution Explorer, you will notice that it

contains a Home folder with three views that match the methods in the HomeController

class. The HomeController therefore will look for a view called Index when the Index

method is requested by the URL Home/Index. It is therefore important that you create

your views in the correct place. Calling Home/Index will look for the Index view located

at Views\Home\Index.cshtml. These views contain the markup for your web page.

�What Is a Model?
A model is also just a C# class that contains all of the application’s business logic,

any validation needed, as well as all the database logic. Using Entity Framework as a

database, for example, will have its logic contained in the Models folder. This means

that your View must only contain the code needed to display the data in the web page.

Your controller must only contain the minimum amount of code in order to select the

correct view and redirect the user to other actions. The model should contain the rest

of the code logic. A general rule of thumb is that if your controller is getting too complex

or contains a lot of code, then you need to consider moving that logic out to a model. In

most situations you should strive for skinny controllers and fat models.

�What Is Routing?
Those of you that come from ASP.NET will remember that creating an ASP.NET web page

meant that you needed a one-to-one match between the URL the user typed in and the

page that was being requested. What I mean by this is that if the user requested a page

called DisplayTasks.aspx, that page had to exist.

In ASP.NET MVC, this is not true. The URL that the user types in does not correspond

to the files in your application. With MVC the URL that the user enters is matched

up with an action (one of those methods mentioned earlier) in the controller. In the

HomeController of our application, we have the actions Index, About, and Contact.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

147

This mapping of browser requests to controller actions is what is called routing in

ASP.NET MVC. Incoming requests are routed to controller actions. This means that if the

user requests Home/Contact, then the Contact action on the HomeController will be run.

This also doesn’t mean that the Contact view is returned. Remember we said that the job

of the controller is to decide the flow of logic in the application? You could have different

contact views, and the controller will make the decision of which view to return based

on some logic (country of origin, for example). If the country of origin is one where

the native language is not English, then the controller can return a different view with

different contact details and in a different language.

�How Routing Works
The incoming requests are handled by ASP.NET via a routing table that is created when

your app starts for the first time. You can see this in the Global.asax.cs file in the root of

the project.

Figure 4-16.  The MVC design pattern

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

148

It is created in a method called Application_Start, and you will also notice that this

is where the bundles are registered too.

You will remember we said in a previous section that bundling and minification
improve request load times.

If you have a look in the RouteConfig.cs file in the App_Start folder, you will see that

our route table only consists of a single default route.

Figure 4-17.  Route table creation

Figure 4-18.  RegisterRoutes method

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

149

All incoming requests are broken up into three segments. You will notice that these

segments are the sections between the forward slashes.

The default route also gives your application the default values for the three

segments. This means that, by default, when your application starts up, it will go to the

default Home/Index route. The third section, the id, is marked as optional.

If you had to enter a URL in your browser of Task/Display, then based on the make

up of your default route, you will need to have a controller called TaskController that

contains an action (method) called Display. This, in a nutshell, is how routing works.

�Creating Your Model
Let’s start adding the meat of our Task application. We will start off by adding our model,

then creating our controller, and lastly design our view. This will give us a workable

application that we can expand to meet the needs of the design specification.

If you don’t have a folder in your solution called Models, create one and create a class

in that folder called Task.

Figure 4-19.  Route segments

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

150

When you have created your Task model, add the following code to your model.

Listing 4-13.  The Task model code

public class Task

{

 public int TaskID { get; set; }

 public string TaskTitle { get; set; }

 public string TaskBody { get; set; }

 public DateTime DueDate { get; set; }

}

We will simulate the database query by stubbing our data in a method called

GetTasks that returns a List<Task> object. Add the following code to your Task model.

Figure 4-20.  Creating the Task model

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

151

Listing 4-14.  GetTasks method

public List<Task> GetTasks()

{

 return new List<Task>()

 {

 new Task ()

 {

 TaskID = 1

 , TaskTitle = "Review MVC tutorials"

 , TaskBody = "Make some time to view MVA videos"

 , DueDate = DateTime.Now

 },

 new Task ()

 {

 TaskID = 2

 , TaskTitle = "Create Test Project"

 , TaskBody = "Create a test project for demo at work"

 , DueDate = DateTime.Now.AddDays(1)

 },

 new Task ()

 {

 TaskID = 3

 , TaskTitle = "Lunch with Mary"

 , TaskBody = "Remember to make lunch reservations"

 , DueDate = DateTime.Now.AddDays(2)

 },

 new Task ()

 {

 TaskID = 4

 , TaskTitle = "Car Service"

 , TaskBody = "Have the car serviced before trip to HQ"

 , DueDate = DateTime.Now.AddDays(3)

 }

 };

}

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

152

For now, we will rely on this method to return our Task objects, as if they were read

from a database. We now need to add the controller that will take care of our tasks. Let’s

do that next.

�Creating Your Controller
If you expand the Controllers folder, you will see the default HomeController that was

added for us when we created our application. It is in this Controllers folder that all our

controllers will live. Right-click the folder and add a new controller for tasks. For now,

just select to add an empty controller. Call the class TaskController, following the MVC

convention for controllers, and click the Add button.

Listing 4-15.  The default TaskController code

namespace Tasker.Controllers

{

 public class TaskController : Controller

 {

 // GET: Task

 public ActionResult Index()

 {

 return View();

 }

 }

}

The controller is created with the default code for the Index action. It doesn’t really

do much at this point, but is a nice scaffold from which you can work off of.

It is during this scaffolding process that we see something interesting happen. If you

expand your Views folder, you will notice a new folder called Task.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

153

This is Visual Studio telling you that the views you create for your TaskController

should live in the Task folder under Views. You will also notice the way MVC is

structured, which in my opinion is a very logical one. The TaskController needs a little

bit more code, which we will come back to. Right now, our application needs a view to

display the data coming from our controller. Let’s create one now.

Figure 4-21.  The created Model, Views, and Controllers

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

154

�Creating Your View
To display the data that we receive from our controller, we will be adding a view. It is

to this view that we will add the markup for our application. Right-click the Task folder

under the Views folder and click Add and then View.

We will be calling this view Index, so that the TaskController can map correctly to

this view. If the action in the controller was called something else, this view name would

have to match that action name in the controller.

We are also not going to select a template, but you could if you wanted to. If you

selected a template, you would then need to select the Task model we created earlier

and enter that in the Model class field.

A very basic view is created with the following markup.

Listing 4-16.  Basic view markup

@{

 ViewBag.Title = "Index";

}

<h2>Index</h2>

We need to expand this code slightly so that we can display our tasks in a logical way.

We need to get a count of the tasks we have in our model. Modify your code as follows.

Figure 4-22.  Add View

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

155

Listing 4-17.  Modified multi-statement block

@model IEnumerable<Tasker.Models.Task>

@{

 ViewBag.Title = "Index";

 var iTaskCount = 0;

 iTaskCount = Model.Count();

}

You will notice that the first line indicates that our Index view is strongly typed to our

Task class. The Razor view engine will now be able to understand that the Index view has

been passed a Task object. The benefit of this is that we can now access all the properties

of the model. More importantly, we can do this using Intellisense inside the markup of

the web page.

The next thing we are going to do is write the HTML code for our view. It is here that

you could be a bit more creative than I was. I had the idea of a Trello-type page where

you can freely move task items between columns.

We will be creating three columns called Pipeline, In progress, and Completed. Our

first column will contain the tasks and will look as follows.

Figure 4-23.  The first task column

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

156

As mentioned earlier, you can style the markup in any way you like. I opted to use a

three-column layout, so this is what I did. Consider the following image.

I have created three columns by using col-md-4 and have added Razor logic to the

first column only.

I have assumed some minimal familiarity with Bootstrap. If you want to read
more on the Bootstrap grid layouts, search for the Bootstrap grid examples on
https://getbootstrap.com.

I have also added a unique ID for one of the elements called inprogress. We will

need this later on when adding some scripting to our web page. Lastly, I have added

Razor syntax. Let’s expand a bit on what it is and how it works.

Figure 4-24.  Index view for Tasks

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

https://getbootstrap.com

157

�What Is Razor?
I want to pause here for a while and explain what Razor is. It is based on the C# language,

but also supports Visual Basic. It is a programming syntax that allows you to embed

server-based code in a web page. From the preceding image, you can see that we are left

with a page that contains two types of content. These are client content and server code.

The client content is all the markup that you are used to seeing in a web page. This is all

the HTML elements, JavaScript, CSS, and plain text.

Our CSS is going to be extracted out into the SCSS file that will compile into our
customstyles CSS stylesheet.

The server code is added in between the client content using Razor. The server

code (as the name suggests) is run before the page is sent to the browser. This is really

powerful, because it means that you can dynamically create client content based on

conditions in the server code. Consider the following logic.

Here you can see that we are dynamically creating the page heading, based on the

number of tasks we have.

Figure 4-25.  Use Razor to dynamically create client content

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

158

If your heading does not display, consider temporarily removing the navbar element
defined in the _Layout.cshtml file located in the Shared folder of your project.

We store the task count in a variable called iTaskCount. This variable can easily be

used in our page. We can mix it in between the HTML syntax and other Razor syntax.

When the variable is used on its own, you must prefix the variable with the @ symbol.

�How to Write Razor
The following is true for using Razor syntax in your web pages. When you want to add

Razor code to your page, you need to use the @ character. The @ character can be used to

start an inline expression, multi-statement block, or a single statement block.

Listing 4-18.  Single statement block

@{ var iTotal = 3; }

This single statement block can be used anywhere in your web page’s markup.

Next, if you need to define an inline expression, you need to do the following.

Listing 4-19.  Inline expression

<h2>You have @iTaskCount Tasks</h2>

This is really useful if you need to display variable values in your web page.

In the code sample, it is used to display the number of tasks. Lastly, you can use

multi-statement blocks.

Listing 4-20.  Multi-statement block

@{

 ViewBag.Title = "Index";

 var iTaskCount = 0;

 iTaskCount = Model.Count();

}

This is the code we modified in Listing 4-17. If you need to include several code

statements in your page, multi-statement blocks are the way to go.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

159

Remember that inside the @{ } block, the code statements must still end with a

semicolon. The only time that you do not have to include the semicolon is when you are

adding an inline expression.

The power of Razor is that it allows you to use variables directly on your web page

and mix the variable in between other HTML markup.

�Linking Everything Together
Before we can run our Task application, we need to link the bits we have written together.

We have created a model, a controller, and a view.

The complete Index view you have created needs to contain the following code.

Listing 4-21.  The Index view code

@model IEnumerable<Tasker.Models.Task>

@{

 ViewBag.Title = "Index";

 var iTaskCount = 0;

 iTaskCount = Model.Count();

}

@if (iTaskCount > 1)

{

 <h2>You have @iTaskCount Tasks</h2>

}

else if (iTaskCount > 0)

{

 <h2>You only have @iTaskCount Task</h2>

}

else

{

 <h2>You have no Tasks</h2>

}

<div class="container">

 <div class="row">

 <div class="col-md-4 task-pipeline">

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

160

 <div><h2>Pipeline</h2></div>

 @foreach (var item in Model)

 {

 <div class="task">

 <div class="task-id">

 @item.TaskID

 </div>

 <div class="task-title">

 @item.TaskTitle

 </div>

 <div class="task-body">

 @item.TaskBody

 </div>

 <div class="task-date">

 @item.DueDate.ToString("MMMM dd, yyyy")

 </div>

 </div>

 }

 </div>

 <div class="col-md-4 task-in-progress" id="inprogress">

 <div><h2>In progress</h2></div>

 </div>

 <div class="col-md-4 task-completed">

 <div><h2>Completed</h2></div>

 </div>

 </div>

</div>

Let’s swing back to our TaskController class and modify the code there to pass the

Task model to our view.

Listing 4-22.  Modified TaskController class

public class TaskController : Controller

{

 // GET: Task

 public ActionResult Index()

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

161

 {

 Task task = new Task();

 List<Task> tasks = task.GetTasks();

 return View(tasks);

 }

}

Next, I want to tell my application that when my application starts, the Index action

of my TaskController needs to be run. This will display the Index view we have just

completed. To do this, we need to change the default routing. Expand the App_Start

folder in your solution.

Figure 4-26.  RouteConfig class

Here you will see the following code.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

162

Listing 4-23.  Default routing

routes.MapRoute(

 name: "Default",

 url: "{controller}/{action}/{id}",

 defaults: new

 {

 controller = "Home"

 , action = "Index"

 , id = UrlParameter.Optional

 });

Here we are stating that the default controller is the HomeController and that the

default action in the HomeController needs to be Index. We want to change the default,

so modify your code to use the TaskController as the default instead.

Listing 4-24.  Modified default routing

routes.MapRoute(

 name: "Default",

 url: "{controller}/{action}/{id}",

 defaults: new

 {

 controller = "Task"

 , action = "Index"

 , id = UrlParameter.Optional

 });

After you have done this, you are ready to run your application. Pressing F5 will start

your application, and the Index view will be displayed. It is currently unstyled and looks

a bit ugly, so we need to fix that next.

�Add Styling
To add some styling to our application, we will be modifying the customstyles.scss file

we added earlier. You will recall that this file is compiled into the CSS file used in the

application. Edit the customstyles.scss file and add the following code to it.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

163

Listing 4-25.  Custom styling

.task {

 border: 1px solid blue;

 border-radius: 5px;

 padding: 5px;

 margin: 5px;

 .task-id {

 display: none;

 }

 .task-title {

 font-weight: bold;

 }

}

.task-pipeline, .task-in-progress, .task-completed {

 min-height: 500px;

}

.task-pipeline {

 background-color: powderblue;

}

.task-in-progress {

 background-color: thistle;

 z-index: -1;

}

.task-completed {

 background-color: plum;

 z-index: -1;

}

You will notice that these are the class names we added in the Index view for the Task

item. Save this file to ensure it compiles and run your application again. This time, you

will see that the styles are applied and that the page looks much better.

It is therefore logical that you should use this method of styling your application. As

mentioned in a previous section, SCSS provides some really powerful features that you

can use.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

164

�Add Some jQuery
In a previous section, we added the jQuery UI script files to the application. I did this

because I want to allow the user to drag the task items around on the web page. To add

the code, open the Index view of the task and add a scripts section to the code.

Listing 4-26.  Scripts section in Index view

@section scripts {

 <script type="text/javascript">

 $(function () {

 $(".task").draggable();

 });

 </script>

}

Build your project and run it again. You will now be able to click the task items and

drag them around on the web page.

Figure 4-27.  Drag task items around

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

165

This opens up a whole new dynamic to your web applications. Being able to add a

script section to your web page gives you the ability to add additional functionality to

your application that is not available out of the box.

But let’s have a closer look at this @section scripts block that we added to our

Index page. Swing back to the _Layout.cshtml page and scroll down to the bottom of the

page. You will see the following code.

Listing 4-27.  Rendering sections

@RenderSection("scripts", required: false)

The RenderSection, RenderBody, and RenderPage methods tell ASP.NET where to

add specific page elements. You will see that we have set a parameter to tell ASP.NET that

the scripts section is optional.

Lastly, you must remember that the section name specified in the _Layout.cshtml

shared view must match the name of the section containing your script in the Index.

cshtml view. If the names do not match, you will receive an error when running your

application.

Figure 4-28.  Section names must match

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

166

�Wrapping Up
This section has taken a bit of a roundabout way to explain views, models, controllers,

and Razor, but I felt that it was necessary to do this in order to give you a more whollistic

view (mind the pun) of what we are discussing.

�Adding a Plugin
Sometimes you might want to add additional functionality to a web application. Sure,

you can definitely roll your own, but why reinvent the wheel if the functionality exists in

a plugin? Let us assume that we wanted to filter our events to only display critical tasks.

Critical tasks are tasks that are due within 1 day. To provide this functionality, we will

look at a plugin called Isotope which is available from https://isotope.metafizzy.co/.

�Installing Isotope
The plugin allows you to provide filtering and sorting as well as specify a layout mode

for your items. It is especially well suited to groups of items. Imagine that you have a

page that displays blog posts. You might want to filter these by date or by type (articles,

podcasts, videos, etc.). Perhaps you need to specify a particular layout for your items.

This is where Isotope is really well positioned to provide the functionality you need.

Before I can add Isotope, I want to isolate the Task items in my div column. I also

need to provide something to trigger the filter. For this purpose, I will just add two

buttons. This means that I need to modify my page markup as well as the customstyles.

scss file.

We need to do the following:

•	 Add two buttons to filter between critical and original tasks.

•	 Move the column headings into a separate row.

•	 Specify new CSS classes for the headings.

•	 Modify the customstyles.scss file to style the headings.

The easiest way to illustrate these changes to the Index view is to summarize them in

one graphic. You will see that the buttons added are standard Bootstrap buttons. Each

button has been given an ID, so that we can attach a click event to these in the jQuery

that will filter our tasks.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

https://isotope.metafizzy.co/

167

I have moved the headings into their own row, because I want the task items in a

separate div. Lastly, I have added three new CSS classes to the headings. These are

•	 task-pipeline-heading

•	 task-in-progress-heading

•	 task-completed-heading

These allow me to target the headings specifically and apply styles to them. Modify

your Index view to look the same as in Figure 4-29.

Figure 4-29.  Modified HTML

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

168

The next thing we want to do is change the customstyles.scss file to accommodate the

new classes for the headings. I will keep it really simple and just make the color the same.

We can do this by simply adding the new class names to the existing classes that

implement the background color. In scss we can “chain” classes that will apply the same

style to the elements on the page. You will see that the class names are separated by a

comma (refer to task-pipeline and task-pipeline-heading).

Listing 4-28.  Modified customstyles.scss

.task {

 border: 1px solid blue;

 border-radius: 5px;

 padding: 5px;

 margin: 5px;

 .task-id {

 display: none;

 }

 .task-title {

 font-weight: bold;

 }

}

.task-pipeline, .task-in-progress, .task-completed {

 min-height: 500px;

}

.task-pipeline, .task-pipeline-heading {

 background-color: powderblue;

}

.task-in-progress, .task-in-progress-heading {

 background-color: thistle;

 z-index: -1;

}

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

169

.task-completed, .task-completed-heading {

 background-color: plum;

 z-index: -1;

}

Once we have done this, we want a way to identify critical tasks. As mentioned

earlier, critical tasks are due within 1 day. Here we can use Razor to perform some

conditional logic to create dynamic client code. The client code we will be dynamically

generating here are CSS classes.

Critical tasks will have a class of critical added to it. This will allow the Isotope

plugin to identify the items we want to filter by.

Please note that the class you filter by can be anything you want. It can be date,
name, color, type, or any other classification you need. You will be telling Isotope
what the filter will be in the jQuery.

In the foreach loop on the Index page, we are going to add a condition that if the task

item has a due date within a day from now, it needs to be classified as critical. If not, it

simply does not add a class. Modify the foreach loop as follows.

Listing 4-29.  Modified foreach loop

@foreach (var item in Model)

{

 �<div class="task @(item.DueDate <= DateTime.Now.AddDays(1) ? "critical"

: "")">

 <div class="task-id">

 @item.TaskID

 </div>

 <div class="task-title">

 @item.TaskTitle

 </div>

 <div class="task-body">

 @item.TaskBody

 </div>

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

170

 <div class="task-date">

 @item.DueDate.ToString("MMMM dd, yyyy")

 </div>

 </div>

}

The crux of this logic lies in the addition of the critical classification to certain

task items. Now that we have added the code needed to correctly style and class our

task items, we need to add the Isotope plugin. Swing over to the Isotope web site and

download the isotope.pkgd.min.js file. Add this file to your Scripts folder.

Next, modify the BundleConfig class’ RegisterBundles method, and add a

ScriptBundle for Isotope.

Listing 4-30.  Adding Isotope ScriptBundle

bundles.Add(new ScriptBundle("~/bundles/isotope")

 .Include("~/Scripts/isotope.pkgd.min.js"));

Lastly, to add this bundle to your application when it runs, you need to modify the

_Layout.cshtml file. Just below the @Scripts.Render for Bootstrap, modify your code to

include the Isotope bundle.

We are now ready to add a little bit of jQuery to the Index view for tasks.

�Making Isotope Work
We will be adding some jQuery to our document ready section. In jQuery we can use the

shorthand code for the traditional $(document).ready(function(){ //code }); by

simply typing $(function() { //code }); instead. Our script section will therefore

look as follows.

Figure 4-30.  Add Isotope bundle

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

171

Listing 4-31.  Modified script section

<script type="text/javascript">

 var $grid;

 $(function () {

 $(".task").draggable();

 $grid = $('.task-pipeline').isotope({

 // options

 itemSelector: '.task'

 });

 $("#btn-order-default").click(function () {

 $grid = $grid.isotope({ filter: '*' });

 });

 $("#btn-order-name").click(function () {

 $grid = $grid.isotope({ filter: '.critical' });

 });

 });

</script>

The code might look a little confusing at first, but it is really simple to understand

once we break it up into its functional parts.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

172

We need to specify a container for the Isotope grid. This is the class of the div that

contains our Task items. The containing div class for our Task items is the .task-

pipeline class.

Next, we need to tell Isotope what each item class it will contain will be. In our

markup, our .task-pipeline div contains multiple .task class divs. Telling Isotope what

our containing class and item class are essentially instantiates the Isotope grid.

I call it a grid because, logically, that makes sense to me.

I then need to add click events for my two buttons. The first button #btn-order-

default will tell the Isotope grid to filter by all the items it contains.

Figure 4-31.  Isotope logic

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

173

You will notice that some elements are referred to by class names (e.g., .task and
.task-pipeline), while other elements are referred to by their IDs (e.g., #btn-
order-default). In jQuery, if you reference the ID of an element, you use a #[ID]
sign. If you refer to the class, you use the period[classname].

The second button #btn-order-name will only display .task items that also have a

class of critical. Having a look at the generated HTML, we can see that there are only

two tasks marked as critical.

Run your application and you will see that the four task items are displayed. If you

click the Critical Tasks button, you will see the items filter to show only the critical tasks.

Figure 4-32.  Generated HTML

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

174

When you click the Original button, the task list is reset and shows all the tasks.

Figure 4-33.  Filtered by critical tasks

Figure 4-34.  Original tasks displayed

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

175

The Isotope plugin provides a rich set of additional functionalities to your web

applications. Here we only looked at filtering, but it is equally good at sorting items and

even has specific ways to provide a fluid layout for your items.

This is the power of plugins in general. You can add functionality to your web

application by using well-supported, well-designed plugins that save you the trouble of

having to code that functionality yourself.

�Testing Your Responsive Layout Using Chrome
The Google Chrome browser has definitely become one of the most popular browsers

in the world today. The power of being able to add functionality to the browser with

extensions allows users to make it their own. For developers, it also provides a host of

features in the form of Chrome’s Developer Tools. We will be looking at one portion of it

in this section called the device toolbar. This helps developers test the responsiveness of

your web application layout across multiple devices.

�Starting with the Developer Tools
To start using the developer tools, hold down Ctrl+Shift+I or right-click your web page

and select Inspect from the context menu.

At the top-left corner, you will see the icon for the device toolbar toggle. Clicking this

will display your web page as if it was being viewed on a mobile device.

Figure 4-35.  Chrome DevTools

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

176

The device toolbar allows us to select a specific mobile device to view the page as.

Another great feature of it is the ability to rotate your web page, as if it is being viewed on

a mobile device in a rotated manner.

This is probably the closest you will come to being able to render your web page on

multiple devices without using a physical device to render your page on.

�Breakpoints and Media Queries Using SCSS
Now that we have seen how to render our web page across multiple devices, it’s time

to see how our web application is rendered on mobile devices. For this example, I have

simply chosen to use the iPhone X.

When we change the device in the device toolbar to an iPhone X, we see that there

is a problem. The problem is likely to be the same across multiple mobile devices

(excluding tablets).

Figure 4-36.  Device toolbar

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

177

The heading divs I created earlier are stacking incorrectly. In truth, the stacking is

100% correct, because this is how the Bootstrap system works. It is however not what we

want for our web application.

The way we can fix this is to use breakpoints and media queries. What these allow us

to do is specify certain styles in our generated CSS for specific mobile devices.

I’m not going to fix this issue, I’m merely going to hide the headings when viewed on

a mobile device. This will illustrate the use of breakpoints and media queries and how

they work. Start off by creating a new file called _mixins.scss in your scss folder.

Figure 4-37.  Incorrect mobile layout

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

178

In your _variables.scss file, add a new variable called $screen-mobile-max and set it

as follows.

Listing 4-32.  New variable

$screen-mobile-max: 414px;

Now edit the new _mixins.scss file and add the following code to it.

Listing 4-33.  Add mixin

@import "_variables.scss";

@mixin mobile {

 @media (max-width: #{$screen-mobile-max}) {

Figure 4-38.  Add _mixins.scss file

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

179

 @content;

 }

}

Because we are using our new variable in the mixin, we need to import the

_variables.scss file. Now save your project to compile your code. Then edit the

customstyles.scss file and add the following media query to it to target mobile devices.

Listing 4-34.  Target mobile devices

@include mobile {

 �.task-pipeline-heading, .task-in-progress-heading, .task-completed-

heading {

 display: none;

 }

}

What this does is target mobile devices up until a max width of 414px and then

applies the display: none style to the column headings. This will then hide the column

headings on mobile devices. If the screen width exceeds 414px, then the column headers

will be displayed again.

This allows you to play around with your media queries and apply specific styles

targeting specific mobile devices.

�Debugging Your jQuery Using Chrome
Developer Tools
Being able to debug your jQuery and JavaScript gives you complete control over the

code you write. No more guessing and hit and miss attempts at debugging errors (here’s

looking at you SYSPRO VbScript devs). You can write your jQuery and use Chrome

Developer Tools with complete confidence to debug your code.

What I would like to do is allow the user to check off certain tasks and mark them as

completed. For this I will need a checkbox on my task that has the text Mark completed.

When the user checks this checkbox, the text must change to Completed and the task

element on the page should change to green. This is all possible with jQuery. The first

thing I want to do is set all the .task elements to a transparent background color. I want

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

180

to be able to just uncheck the task and, on the uncheck, set the color to transparent.

Modify the customstyles.scss file and add a background-color: transparent property to

the .task class.

Listing 4-35.  Customstyles for Task element

.task {

 border: 1px solid blue;

 border-radius: 5px;

 padding: 5px;

 margin: 5px;

 background-color: transparent;

 .task-id {

 display: none;

 }

 .task-title {

 font-weight: bold;

 }

}

The next thing I want to do is add a checkbox to my tasks and give it a unique ID.

Listing 4-36.  Modified task item

@{ var iCount = 0; }

@foreach (var item in Model)

{

 iCount += 1;

 �<div class="task @(item.DueDate <= DateTime.Now.AddDays(1) ? "critical"

: "")">

 <div class="task-id">

 @item.TaskID

 </div>

 <div class="task-title">

 @item.TaskTitle

 </div>

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

181

Figure 4-39.  Set unique IDs

 <div class="task-body">

 @item.TaskBody

 </div>

 <div class="task-date">

 @item.DueDate.ToString("MMMM dd, yyyy")

 </div>

 <div class="form-check">

 �<input type="checkbox" class="form-check-input"

id="chkCompleted@(iCount)">

 �<label class="form-check-label" for="chkCompleted@(iCount)"

id="chkLabel@(iCount)">Mark completed</label>

 </div>

 </div>

}

What I have done is declared a counter called iCount that I increment on each

iteration. I then concatenate this value to the checkbox ID to ensure that the checkbox

element’s ID is unique. I do the same for the label element.

Save your changes and run your application and look at the task items. They will all

have checkboxes added to them with the text Mark completed.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

182

If we look at the generated code for our task item, we will see that the IDs are indeed

unique.

We are now ready to write some jQuery. It is here that we are faced with our first

challenge. We do not know how many tasks we are going to have. Therefore, we do not

know what the IDs will be for the checkboxes. We need to add an event when the user

checks a checkbox, but in order to do this, we need to know the ID of that checkbox.

Those IDs we add dynamically using the iCount variable.

Figure 4-41.  Generated client code for a task

Figure 4-40.  Task item with checkbox

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

183

This is where we will be using some jQuery selectors and fancy tricks to get to the

elements we want.

Please note that the code I am about to add contains a bug. The purpose of this
section is to illustrate debugging using DevTools.

Go ahead and add the following jQuery to the script section of your Index view.

Listing 4-37.  jQuery code to mark completed items

$('[id^="chkCompleted"]').click(function () {

 var $div = $(this).closest('div');

 if (this.checked) {

 $("label[for='" + this.id + "']")["0"].innerText = "Completed";

 $div.css("background-color","#89ea31");

 }

 else {

 $("label[for='" + this.id + "']")["0"].innerText = "Mark completed";

 $div.css("background-color","transparent");

 }

});

Let’s break this up and explain them a bit. The code in the image in Figure 4-42 is

exactly the same as in Listing 4-37.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

184

The logic corresponds to the steps in the preceding image and is as follows:

	 1.	 For all elements with an ID starting with the text chkCompleted,

add a click event.

	 2.	 Find a reference to the closest div element.

	 3.	 If the checkbox has been checked…

	 4.	 Get the label element with the for attribute equal to the ID of the

checkbox, and set its text to Completed.

	 5.	 Use the div reference we found earlier, and set the background

color to green.

	 6.	 If the checkbox is unchecked, reset the label element with the for

attribute equal to the ID of the checkbox back to the original text.

	 7.	 Use the div reference we found earlier, and set the background

color to transparent.

We seem to be in business, so let’s run our application and test our jQuery.

Figure 4-42.  jQuery logic

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

185

Unfortunately, we have hit a snag. While the check event works and the checkbox

label’s text is correctly changed, the entire task item’s background color isn’t being set to

green. To see what is going on, hold down Ctrl+Shift+I or right-click your web page and

select Inspect from the context menu. Select the Sources tab and scroll to the jQuery code

on your Index page.

With the breakpoint added, check and uncheck your task item checkbox. You will

see that the breakpoint is hit and your web page enters a paused state on each check and

uncheck action.

Figure 4-43.  Checking the task item checkbox

Figure 4-44.  Add breakpoint on jQuery code

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

186

While the code is paused, locate the Watch window and add the expression $(this).

closest('div') to a new watch by clicking the + icon and pasting the expression into

the textbox provided.

Immediately, I can see what the problem is. Our jQuery is targeting the wrong div

element.

Figure 4-45.  Chrome DevTools watch

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

187

We are targeting the closest div element instead of the div that holds our task item.

Modify your jQuery as follows.

Listing 4-38.  Correct jQuery code

$('[id^="chkCompleted"]').click(function () {

 var $div = $(this).closest('div[class^="task"]');

 if (this.checked) {

 $("label[for='" + this.id + "']")["0"]

 .innerText = "Completed";

 $div.css("background-color","#89ea31");

 }

 else {

 $("label[for='" + this.id + "']")["0"]

 .innerText = "Mark completed";

 $div.css("background-color","transparent");

 }

});

Figure 4-46.  Location of correct and incorrect divs

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

188

The change lies in the way we find the task item div. Instead of just finding the

closest div element, we are telling jQuery to find the closest div element that also has a

class that starts with the text “task”. Save four changes and refresh your web page. This

time, if you check your task item, it is completed and the task item changes to green.

Chrome Developer Tools provide a host of debugging tools not even mentioned in

this chapter. You can definitely write an entire book on the benefits of using Chrome

DevTools. Nevertheless, we have run out of space and I encourage you to have a closer

look at the features provided for developers by Google Chrome.

�Wrapping Up
Phew, this was a long chapter. We took a high-level view of creating an ASP.NET MVC

application and how MVC works (believe me, there is a lot more to MVC than discussed

in this chapter).

The focus of this chapter, however, was not the usual MVC topics. I wanted to take

you further and explore the lesser known features surrounding developing responsive

web applications and styling those applications easily.

We had a look at how we reference jQuery and Bootstrap, before we looked at how to

set up and use scss to style our web pages. We saw that scss compiles down to CSS and

that scss is syntactically similar to C#.

Then we had a brief look at what models, controllers, and views are and how to use

Razor inside your view. The power of Razor is evident in the fact that we can dynamically

create client code based on logic coming from a database, for example.

We had a look at how we can extend the functionality of our web application by

adding a plugin called Isotope. It provided filtering for us out of the box, freeing us from

having to roll our own.

Lastly, we had a look at testing the responsive layout of our web application across

various mobile devices. What’s more, we did so right from within Google Chrome

Developer Tools. We also saw how we can debug our jQuery code using the Watch

window in the DevTools console.

In the next chapter, we will be looking at .NET Core and figure out exactly what all

the fuss is about, so stay tuned.

Chapter 4 Responsive Web Applications Using ASP.NET MVC

www.EBooksWorld.ir

189
© Dirk Strauss 2019
D. Strauss, Exploring Advanced Features in C#, https://doi.org/10.1007/978-1-4842-4856-0_5

CHAPTER 5

Getting Started with
.NET Core 3.0
These days it’s hard to code using the Microsoft technology stack without hearing the

word .NET Core. It might leave some wondering exactly what it is. Well, .NET Core

is an open source development platform that is maintained on GitHub by Microsoft

and the .NET Community. It allows developers to write applications that support

Windows, Linux, and macOS. In fact, .NET Core can be summarized by the following

characteristics:

•	 It is cross-platform, running on macOS, Windows, and Linux.

•	 It is open source, using MIT and Apache 2 licenses, and is also a .NET

Foundation project (https://dotnetfoundation.org/About).

•	 It executes code exactly the same across multiple architectures that

include x86, x64, and ARM.

•	 It allows the use of command-line tools for local development.

•	 It can be used with Docker containers, installed side-by-side or

included in your app, making .NET Core deployment very flexible.

•	 .NET Core compatibility extends to Mono, Xamarin, and the .NET

Framework via the .NET Standard.

•	 It is supported by Microsoft per .NET Core Support (https://

dotnet.microsoft.com/platform/support/policy/dotnet-core).

www.EBooksWorld.ir

https://dotnetfoundation.org/About
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

190

We also need to have a look at the composition of .NET Core. It is composed of the

following:

•	 The .NET Core runtime (available on GitHub at https://github.

com/dotnet/coreclr). It includes garbage collection, JIT compiler,

primitive classes, and low-level classes.

•	 The ASP.NET runtime (available on GitHub at https://github.

com/aspnet/AspNetCore). This allows you to build cloud-based web

applications on Windows, Mac, or Linux.

•	 The .NET Core CLI tools (available on GitHub at https://github.

com/dotnet/cli).

•	 The dotnet tool that launches .NET Core apps and CLI tools.

In this chapter, we are going to take a look at creating and running .NET Core

applications using .NET Core 3.0 Preview 2 and Visual Studio 2019 Preview. We will be

talking about

•	 Creating .NET Core apps in Visual Studio 2019

•	 What is new in .NET Core 3.0

•	 Installing .NET Core 3.0 Preview on Linux with Snap

•	 Creating and running an ASP.NET MVC app on Linux

•	 Editing your ASP.NET Core MVC app on Linux with Visual Studio Code

•	 Debugging your ASP.NET Core MVC project with Visual Studio Code

Before we can jump in, you need to ensure that you have downloaded and installed

.NET Core 3.0 on your system. Head on over to this URL and download the installer for

your platform: https://dotnet.microsoft.com/download/dotnet-core/3.0

�Creating .NET Core Apps in Visual Studio 2019
Once you have installed .NET Core 3.0, we can start creating applications. I have just

created a simple .NET Core Console application. When the project is created, ensure

that you are targeting the .NET Core 3.0 framework from the project properties page

(Figure 5-1).

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

https://github.com/dotnet/coreclr
https://github.com/dotnet/coreclr
https://github.com/aspnet/AspNetCore
https://github.com/aspnet/AspNetCore
https://github.com/dotnet/cli
https://github.com/dotnet/cli
https://dotnet.microsoft.com/download/dotnet-core/3.0

191

I am not going to go into any detail on how to create a .NET Core Console

application. The point here is to show you how to target .NET Core 3.0.

When creating ASP.NET Core applications, ensure that you select ASP.NET Core 3.0

from the dropdown (Figure 5-2).

Figure 5-1.  Target .NET Core 3.0

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

192

My solution in Visual Studio now contains two projects as seen in Figure 5-3. These

are a .NET Core Console application and an ASP.NET Core MVC application.

Figure 5-2.  Create ASP.NET Core 3.0 app

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

193

With the two application templates created, let’s have a look at what .NET Core 3.0

can offer developers.

�What Is New in .NET Core 3.0
There are a host of new features in .NET Core 3.0, some of which I will not discuss. I will,

however, highlight some of the more interesting features.

�Windows Desktop
With the release of .NET Core 3.0, you can now create Windows desktop applications

using Windows Forms and WPF as can be seen in Figure 5-4. If you add a new project to

your solution, and filter by .NET Core, you will notice that you have two new templates

you can choose from.

Figure 5-3.  Solution Explorer

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

194

The first two version iterations of .NET Core supported web applications and APIs,

IoT, and Console applications.

Please note that even though .NET Core 3.0 adds support for building Windows
desktop apps using WinForms and WPF, you will still only be able to run these apps
on Windows.

Because Entity Framework is used by many desktop apps, .NET Core 3.0 also

supports Entity Framework 6. Visual Studio 2019 gives you the ability to create WinForm

and WPF apps, but you can do the same thing with dotnet new in the command line.

To create a new .NET Core app for WPF and WinForms, you can run the following

commands from the command line.

Figure 5-4.  New .NET Core project templates

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

195

Listing 5-1.  Using dotnet new in the command line

dotnet new wpf

dotnet new winforms

See how easy that is? In fact, a look at the command line shows the screenshot in

Figure 5-5.

If we now swing over the folder that we created, we can see the solution files created

by dotnet new (Figure 5-6).

Figure 5-5.  New WinForms app with dotnet new

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

196

You can now run your new WinForms application by typing dotnet run in the

command line. It might take a few seconds to compile and display your application, but

soon you will see the .NET Core WinForm app as displayed in Figure 5-7.

Figure 5-6.  Files for .NET Core WinForm app

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

197

If you look at the folder that you used to create the application in, you will notice

that there is now a bin folder added. When creating .NET Core Console applications, the

project targets the Microsoft.NET.Sdk SDK. You will see this if you view the netcoredemo.

csproj file of the .NET Core Console application we created at the beginning of this chapter.

Listing 5-2.  .NET Core Console csproj file

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <TargetFramework>netcoreapp3.0</TargetFramework>

 </PropertyGroup>

</Project>

The .NET Core WinForms app uses a different SDK (which the WPF app incidentally

also uses), but also declares which UI framework it uses.

The .NET Core WPF application will declare a <UseWPF>true</UseWPF>

property in the csproj file, while the .NET Core WinForms app will declare a

<UseWindowsForms>true</UseWindowsForms> property in the csproj file.

Listing 5-3.  .NET Core WinForms csproj file

<Project Sdk="Microsoft.NET.Sdk.WindowsDesktop">

 <PropertyGroup>

 <OutputType>WinExe</OutputType>

 <TargetFramework>netcoreapp3.0</TargetFramework>

Figure 5-7.  Running the .NET Core WinForms app

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

198

 <UseWindowsForms>true</UseWindowsForms>

 </PropertyGroup>

</Project>

I am sure that there are some of you that might have expected WinForms and WPF

desktop apps to run on Linux or macOS with the announcement of .NET Core 3.0. There

does seem to be some disappointment in the developer community regarding this. The

benefits, though, of using .NET Core for Windows applications mean that we have

•	 Improved performance

•	 Benefits provided by being open source

•	 Ability to install multiple .NET Core versions side-by-side

•	 Ability to publish self-contained apps

•	 Access to .NET Core only features (e.g., Span<T>)

Yeah, they had me at Improved Performance. As you know .NET Core is open source,

but WPF, Windows Forms, and WinUI have also been open-sourced. Find them here on

GitHub:

•	 WPF: https://github.com/dotnet/wpf

•	 Windows Forms: https://github.com/dotnet/winforms

•	 Windows UI: https://github.com/Microsoft/microsoft-ui-xaml

As .NET Core evolves, we are sure to see more support for APIs typically used in

Windows desktop apps.

�Support for C# 8.0
Think back to Chapter 3 where we discussed C# 8.0. The features available to developers

are now available in .NET Core 3.0. With each new preview that is released, more C# 8.0

features are being introduced.

It would only make sense to do this, because having C# 8.0 available elsewhere and

not in .NET Core would be somewhat frustrating. Have a read through Chapter 3 (if

not done so already) and see what C# 8.0 offers you in the line of improvements to the

language.

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

https://github.com/dotnet/wpf
https://github.com/dotnet/winforms
https://github.com/Microsoft/microsoft-ui-xaml

199

�Default Executables
For applications that use a globally installed version of .NET Core, they are built with

a default exe. Before this, you only had an exe with self-contained applications. This

means that you can double-click the exe or start it from the command line without using

the dotnet tool.

�On Windows

On Windows you would do the following to create a new directory in the c:\temp folder,

create a new .NET Core Console application and run it.

Listing 5-4.  Creating a .NET Core Console app on Windows

cd c:\temp

md coreconsoletest

cd c:\temp\coreconsoletest

c:\temp\coreconsoletest>dotnet new console

dotnet build

cd c:\temp\coreconsoletest\bin\debug\netcoreapp3.0

coreconsoletest.exe

If you run your exe, you will see that the text Hello World! is output in the console

window as seen in Figure 5-8. Running the dll via dotnet produces the same result.

Figure 5-8.  Running the default exe and dll

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

200

�On macOS

We can do the same thing on macOS. Be sure to download .NET Core 3.0 Preview and

install it on macOS. Next, open Terminal.

In Terminal, I create a folder on my Desktop called netcoremac and then change

to that directory. I then create a new .NET Core Console application in the directory

and build it. Then I change directory to where the executable is located, which is the

netcoreapp3.0 directory.

Listing 5-5.  Creating a .NET Core Console app on macOS

mkdir ~/Desktop/netcoremac

cd ~/Desktop/netcoremac

dotnet new console

dotnet build

cd ~/Desktop/netcoremac/bin/Debug/netcoreapp3.0

I am then able to run the netcoremac executable with ./netcoremac as well as the

netcoremac.dll with the dotnet command as seen in Figure 5-9.

�On Linux

On Linux, the same is true for a new .NET Core Console application. Open up Terminal

and create a directory called netcorelinux on the Desktop. Inside that directory, I created

a new .NET Core Console application.

Figure 5-9.  Running the default executable and dll on macOS

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

201

Listing 5-6.  Creating a .NET Core Console app on Linux

cd ~/Desktop

mkdir netcorelinux

cd netcorelinux

dotnet new console

dotnet build

cd ~/Desktop/netcorelinux/bin/Debug/netcoreapp3.0

I can use the same commands that I used on macOS to run the default executable.

Run the command ./netcorelinux to run the default executable and then run the

command dotnet netcorelinux.dll to run the dll. The output is seen in Figure 5-10.

�Fast Built-In JSON Support
JSON has become almost essential as part of modern .NET development. The go-to

library is Json.Net. Starting with .NET Core 3.0, three main JSON-related types have been

added to the System.Text.Json namespace to provide built-in JSON support. These are

Figure 5-10.  Running the default executable and dll on Linux

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

202

•	 System.Text.Json.Utf8JsonReader

•	 System.Text.Json.Utf8JsonWriter

•	 System.Text.Json.JsonDocument

This means that the new built-in JSON support provides high performance and low

allocation and is based on Span<byte>. You can read more about Span<T> here: https://

docs.microsoft.com/en-us/dotnet/api/system.span-1

�Cryptography
The System.Security.Cryptography.AesGcm and System.Security.Cryptography.

AesCcm namespaces add support for AES-GCM and AES-CCM ciphers. These are

the first authenticated encryption algorithms added to .NET Core. Let’s have a look

at the netcoredemo console application we created earlier. We will add the basic

encryption and decryption methods. Ensure that you have added the System.Security.

Cryptography namespace.

Listing 5-7.  AES-GCM encryption method

public static byte[] Encrypt(out byte[] key, out byte[] nonce, out byte[]

tag, byte[] dataToEncrypt)

{

 key = new byte[16];

 nonce = new byte[12];

 RandomNumberGenerator.Fill(key);

 RandomNumberGenerator.Fill(nonce);

 tag = new byte[16];

 byte[] ciphertext = new byte[dataToEncrypt.Length];

 using (AesGcm aes = new AesGcm(key))

 aes.Encrypt(nonce, dataToEncrypt, ciphertext, tag);

 return ciphertext;

}

We are using out parameters to pass the key, nonce, and tag values back to the

calling code.

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/dotnet/api/system.span-1
https://docs.microsoft.com/en-us/dotnet/api/system.span-1

203

When working with cryptography, we create a nonce which is a random value that
is used to prevent replay attacks. This is if someone intercepts the first message
and tries to send the message a second time. The nonce for each message must
be unique. If the receiving application receives a duplicate nonce, it knows that it
needs to discard the message.

The encrypted data is returned to the calling code and passed to the Decrypt method.

Listing 5-8.  AES-GCM decryption method

public static void Decrypt(byte[] key, byte[] nonce, byte[] tag, byte[]

ciphertext)

{

 byte[] decryptedData = new byte[ciphertext.Length];

 using (AesGcm aes = new AesGcm(key))

 aes.Decrypt(nonce, ciphertext, tag, decryptedData);

 string decryptedText = Encoding.UTF8.GetString(decryptedData);

 Console.WriteLine(decryptedText);

}

The calling code will then call the Encrypt and Decrypt methods as follows.

Listing 5-9.  Calling Encrypt and Decrypt

byte[] dataToEncrypt = Encoding.UTF8.GetBytes("String to encrypt");

var encrData = Encrypt(out byte[] key, out byte[] nonce, out byte[] tag,

dataToEncrypt);

Decrypt(key, nonce, tag, encrData);

Console.ReadLine();

Running the application, you will see the decrypted text displayed in the

decryptedText variable. See Figure 5-11 where I have inspected the variable.

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

204

If you wanted to implement the AES-CCM cipher, you would essentially do the same

thing, just with a different class name (AesCcm).

�Installing .NET Core 3.0 Preview on Linux with Snap
The recommended way to install .NET Core 3.0 Preview on Linux is via Snap. At the time

this chapter was written, the following Linux distros support Snap:

•	 Arch Linux

•	 Debian

•	 Deepin

•	 Elementary OS

•	 Fedora

•	 GalliumOS

•	 KDE Neon

•	 Kubuntu

•	 Linux Mint

•	 Lubuntu

•	 Manjaro Linux

•	 openSUSE

•	 Parrot Security OS

Figure 5-11.  Decrypted text

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

205

•	 Raspbian

•	 Solus

•	 Ubuntu

•	 Xubuntu

•	 Zorin OS

For my purposes, I used Linux Mint. After configuring Snap on your Linux system,

run the following command to install the .NET Core 3.0 Preview.

Listing 5-10.  Install .NET Core 3.0 Preview with Snap

sudo snap install dotnet-sdk --beta --classic

This now makes the default .NET Core command dotnet-sdk.dotnet when installed

via Snap. This is a namespace command and will not conflict with a globally installed

.NET Core version you might have on your Linux system. I preferred to use the default

dotnet command, seeing as this was only a test installation of Linux that I used.

To do this, you can create an alias for your dotnet-sdk.dotnet command by running

the following in Terminal.

Listing 5-11.  Creating the dotnet alias

sudo snap alias dotnet-sdk.dotnet dotnet

For more information on setting up .NET Core on Linux, refer to the following link:

https://github.com/dotnet/core/blob/master/Documentation/linux-setup.md.

�Create and Run an ASP.NET MVC App on Linux
Create a new folder on your Linux desktop. For my purposes, I am using Linux Mint.

Open Terminal and navigate to the new folder you created. To see which templates are

available to you, type the following command in Terminal.

Listing 5-12.  Listing the dotnet new templates

dotnet new -l

This now lists all the available project templates that you can create using the dotnet

new command.

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

https://github.com/dotnet/core/blob/master/Documentation/linux-setup.md

206

Please note that I aliased my dotnet-sdk.dotnet command with dotnet
by typing sudo snap alias dotnet-sdk.dotnet dotnet earlier on after
installing the .NET Core 3.0 Preview on my copy of Linux Mint.

One of the templates listed is an ASP.NET Core MVC app. To create this project type,

run the following command in Terminal while inside the directory you created on the

Desktop earlier.

Listing 5-13.  Create a .NET Core MVC app on Linux

dotnet new mvc

This will go ahead and create your ASP.NET Core MVC application in the folder we

created earlier.

Figure 5-12.  ASP.NET Core MVC project

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

207

Opening up the folder, you will notice that we have all the familiar files (Figure 5-12)

we usually see in Visual Studio.

If you encounter an Access to path error on a .nuget/packages folder or a
Permission denied error on the csproj file when creating the MVC app, run
sudo dotnet restore and type in your password when prompted.

To run your new ASP.NET Core MVC application, type the following command in

Terminal.

Listing 5-14.  Running your ASP.NET Core MVC app

dotnet run

You will see that the Terminal displays some info messages. One of those messages

should say Now listening on: https://localhost:[port] where the [port] is a valid port

number. Type that URL into your browser (I used Firefox), and you will see your ASP.NET

Core MVC application running on Linux as seen in Figure 5-13.

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

208

This whole process didn’t even take us 2 minutes to create a project and run it on

Linux.

�Edit Your ASP.NET Core MVC App on Linux
with Visual Studio Code
Microsoft has done a huge amount of work to bring Visual Studio to all platforms. Visual

Studio Code gives developers a fantastic IDE for creating applications on Linux and

macOS. I even use it daily on my Windows machine if I need to quickly work on a file.

Figure 5-13.  ASP.NET Core MVC app in Firefox on Linux

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

209

Visual Studio Code can be downloaded from the following URL: https://code.

visualstudio.com/. The benefits of using Visual Studio Code are

•	 It is a free IDE, which makes it perfect for developers wanting to try

out something new.

•	 It is also open source. You can view the repository here on GitHub:

https://github.com/Microsoft/vscode.

•	 It runs on Windows, macOS, and Linux.

This now means that I can edit my ASP.NET Core MVC project inside Visual Studio

Code on Linux.

�Editing Your Project
I have downloaded and installed Visual Studio Code on my installation of Linux Mint.

Let’s use it to open our ASP.NET Core MVC application and modify the Index.cshtml file

for the HomeController. Start by opening Visual Studio Code and clicking Explorer or by

pressing Ctrl+Shift+E. Figure 5-14 shows where you can find Explorer in Visual Studio Code.

Click Open Folder and then open the top-level folder of your project. You will see the

project files as displayed in Figure 5-15.

Figure 5-14.  Open Visual Studio Code Explorer

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

https://code.visualstudio.com/
https://code.visualstudio.com/
https://github.com/Microsoft/vscode

210

In the Views folder, select the Home folder and click Index.cshtml. This will open the

file in the code editor. Modify your code as follows.

Listing 5-15.  The Index.cshtml view

@{

 ViewData["Title"] = "Home Page";

 var longAgoDate = DateTime.Today.AddYears(-100);

 var longDayOfWeek = longAgoDate.DayOfWeek;

}

<div class="text-center">

 <h1 class="display-4">Welcome</h1>

Figure 5-15.  Open project in Visual Studio Code

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

211

 �<h2 class="display-4">100 Years ago was @longDayOfWeek, @longAgoDate.

ToString("MMMM dd, yyyy")</h2>

</div>

Save the changes to your file, and then in Terminal, type in the dotnet build

command and then dotnet run. Run your app in Firefox (Figure 5-16).

Figure 5-16.  Modified ASP.NET Core MVC project

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

212

�Debug Your ASP.NET Core MVC Project with Visual
Studio Code
Visual Studio Code allows you to debug your code. You need to do a little heavy lifting to

get this all set up, but once you have done this, you’re all sorted.

I am setting up this example on Linux, so the steps might look different to your
system if you’re not working on Linux. I’m using Linux Mint.

To do this, open up Visual Studio Code and have a look at the Extensions pane or hold

down Ctrl+Shift+X. Search for the C# extension powered by OmniSharp (Figure 5-17).

In Visual Studio Code, open the aspnetmvc folder you created your project in earlier.

When you do this, you should see the following message displayed: Required assets to

build and debug are missing from 'aspnetmvc'. Add them?

When you click Yes, Visual Studio Code will add a .vscode (Figure 5-18) folder to your

project.

Figure 5-17.  C# for Visual Studio Code Extension

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

213

Inside this .vscode folder, you will see that there should be two files created by Visual

Studio Code. These files are

•	 launch.json

•	 tasks.json

You will need these files (Figure 5-19) in order to debug your ASP.NET Core MVC

application. If these files do not exist, delete the .vscode folder and restart Visual Studio

Code and open the aspnetmvc project folder again.

Figure 5-18.  Ensure a .vscode folder exists

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

214

Open the launch.json file and inspect the contents thereof. Take note that the path

needs to be set to the correct location for the aspnetcore.dll file in the bin folder. The

launch.json file configures and saves all your debugging setup details. This debugging

configuration information is used when you debug your project.

Listing 5-16.  The launch.json file contents

 "version": "0.2.0",

 "configurations": [

 {

 "name": ".NET Core Launch (console)",

 "type": "coreclr",

 "request": "launch",

 "preLaunchTask": "build",

 �"program": "${workspaceFolder}/bin/Debug/netcoreapp3.0/

aspnetmvc.dll",

 "args": [],

 "cwd": "${workspaceFolder}",

 "stopAtEntry": false,

 "console": "internalConsole"

 },

Figure 5-19.  Ensure launch and tasks files exist

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

215

 {

 "name": ".NET Core Launch (web)",

 "type": "coreclr",

 "request": "launch",

 "preLaunchTask": "build",

 �// If you have changed target frameworks, make sure to update

the program path.

 �"program": "${workspaceFolder}/bin/Debug/netcoreapp3.0/

aspnetmvc.dll",

 "args": [],

 "cwd": "${workspaceFolder}",

 "stopAtEntry": false,

 "internalConsoleOptions": "openOnSessionStart",

 "launchBrowser": {

 "enabled": true,

 "args": "${auto-detect-url}",

 "windows": {

 "command": "cmd.exe",

 "args": "/C start ${auto-detect-url}"

 },

 "osx": {

 "command": "open"

 },

 "linux": {

 "command": "xdg-open"

 }

 },

 "env": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 },

 "sourceFileMap": {

 "/Views": "${workspaceFolder}/Views"

 }

 },

 {

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

216

 "name": ".NET Core Attach",

 "type": "coreclr",

 "request": "attach",

 "processId": "${command:pickProcess}"

 }

 ,]

}

The next file we see is the tasks.json file. This runs the build task on your ASP.NET

Core MVC project. It can contain several other tasks, but for now this is all we need.

Listing 5-17.  The tasks.json file contents

{

 "version": "2.0.0",

 "tasks": [

 {

 "label": "build",

 "command": "dotnet build",

 "type": "shell",

 "group": "build",

 "presentation": {

 "reveal": "silent"

 },

 "problemMatcher": "$msCompile"

 }

]

}

Next, expand the Views ➤ Home folder and open the Index.cshtml file. Place a

breakpoint on line 4 as can be seen in Figure 5-20 by clicking the margin.

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

217

We now need to hold down Ctrl+Shift+D to bring up the debugging pane as seen in

Figure 5-21. First off you will notice that you have access to the familiar variables, Watch

and Call Stack. You will also see the breakpoints group with the currently set breakpoint

indicated on the Index.cshtml file.

From the Debug combobox, select .NET Core Launch (web) and click the green play

button (Figure 5-22).

Figure 5-21.  The debugging pane

Figure 5-20.  Placing a breakpoint

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

218

The project will go through a build, and if this is successful, the debug bar will be

displayed enabled at the top of the Visual Studio Code IDE window. Now you want to

open up the Debug Console. You can do this via the View ➤ Debug Console menu or

by holding down Ctrl+Shift+Y. You will see the familiar output we saw earlier and you

will notice that it states that the Microsoft.Hosting.Lifetime web host is listening on

localhost (Figure 5-23).

Swing back to your browser (I’m using Firefox) and enter the URL specified in the

Debug Console.

Figure 5-22.  Debug started

Figure 5-23.  Debug Console

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

219

When your web page loads, your breakpoint will be hit as shown in Figure 5-24.

You are now able to step through your code, view variables, use the watch window, and

perform all the normal debugging task as you would normally. You can also inspect your

variables by hovering over the variable in the editor as you step through your lines of code.

�Wrapping Up
We have a wealth of information online in the form of Microsoft Documentation

(https://docs.microsoft.com) that have just what you are looking for. I hope at least

this chapter piqued your interest in what is available in .NET Core 3.0. As the framework

evolves, we will see a lot more features included with each release.

This chapter had a look at creating .NET Core applications. We saw that we can now

create a Windows desktop application on .NET Core, but that these are only supported

on Windows.

Then we had a look at what some of the more interesting new features are in

.NET Core 3.0. We saw that we have support for C# 8, fast built-in JSON support, and

cryptography.

Figure 5-24.  Breakpoint hit

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

https://docs.microsoft.com

220

We saw that we can install .NET Core 3.0 on Linux using Snap. Staying with Linux,

we created an ASP.NET Core MVC application and ran it on Linux. Using Visual Studio

Code, we saw that it was possible to edit our project files, and lastly, we saw that we were

able to debug our applications on Linux using Visual Studio Code.

If you enjoy the flexibility of Visual Studio Code, stay tuned. In the next chapter, we

are going to take a tour through Visual Studio 2019 and have a look at what is new in the

upcoming release of this world-class IDE. Are you excited? I know I am.

Chapter 5 Getting Started with .NET Core 3.0

www.EBooksWorld.ir

221
© Dirk Strauss 2019
D. Strauss, Exploring Advanced Features in C#, https://doi.org/10.1007/978-1-4842-4856-0_6

CHAPTER 6

Being More Productive
in Visual Studio
Visual Studio has come a really long way since its initial release as Visual Studio 97 over

20 years ago. Personally, I have been working with the IDE since 2003 and have loved

seeing it evolve into what it is today. The problem, though, is that developers get so

bogged down in the everydayness of writing code that they tend to miss new features

and productivity improvements with newer versions.

In part, I think that this is because developers are focused on getting the job done.

We do live and work in a fast-paced, deadline-oriented industry. It is therefore easy to

brush over getting to know the new release better, because you need to get the job done.

I have often heard developers say “I didn’t know you could do that!”.

In fact, many developers are quite focused on learning the new features of C# (for

example), and rightly so. Let’s for a moment (or a chapter) pause at the foot of our old

friend, the trusty IDE, that makes it all possible.

This chapter will take a look at what the new release (currently in Preview) offers us

in terms of productivity improvements and features.

At the time of writing this chapter, Visual Studio 2019 was in Preview 3. It might
change slightly before the final release, but most of the things discussed in this
chapter should remain the same.

I will also have a look at some existing features and goodies that can make your life

easier in your day-to-day development efforts. We will be looking at

•	 New features in Visual Studio 2019

•	 Visual Studio Live Share

www.EBooksWorld.ir

222

•	 Refactorings and code fixes

•	 Enable JavaScript debugging in ASP.NET projects

•	 Exporting your editor settings

•	 Visual Studio IntelliCode using AI

•	 General Visual Studio Tips

It’s about to get a lot more exciting, so let’s get going with Visual Studio 2019.

�New Features in Visual Studio 2019
Visual Studio 2019 brings what matters most to developers in a more condensed and

focused way by providing a fresh perspective on the UI.

�UI Improvements
The first thing you will probably notice about Visual Studio 2019 is the new start screen

as seen in Figure 6-1.

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

223

Microsoft has brought the most often used tasks developers perform front and center

with its overhauled start menu. It’s really easy to get going with what matters most in

Visual Studio, and that is writing code.

Speaking of writing code, the new project dialog also provides improvements over

the way you select project templates. Apart from it allowing you to select from a list of

recent project types, you can filter the project templates by selecting from dropdown

menus that filter by Language, Platform, or Project type as can be seen in Figure 6-2.

Figure 6-1.  Visual Studio 2019 start menu

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

224

This allows you to search for and select project templates quickly and get started

writing code. Moving on to the IDE itself, Visual Studio 2019 minimizes clutter much

more than in Visual Studio 2017, simply by minimizing the chrome and compressing the

menu. This has the effect of giving you more space to write code in. Compare the IDE

chrome and menu bar in Visual Studio 2017 with that in Visual Studio 2019.

Figure 6-3 is what we are currently used to seeing in Visual Studio 2017.

Figure 6-2.  The new project dialog

Figure 6-3.  Visual Studio 2017

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

225

Figure 6-4 shows the changes in Visual Studio 2019. You will notice that the icon has

changed and that the Visual Studio 2019 IDE looks tighter.

In fact, notice how the image of Visual Studio 2017 doesn’t include the Start button,

while the image of Visual Studio 2019 does. This is due in part to the shortening of the

Solution Configurations and Solutions Platforms dropdown menus.

�Search Improvements
In Visual Studio 2019, you can click the search bar (Figure 6-5) in the menu or hold down

Ctrl+Q to jump your cursor from the code editor to the search textbox.

This allows you to start typing immediately and search for what you need as seen in

Figure 6-6.

Figure 6-4.  Visual Studio 2019

Figure 6-5.  Visual Studio 2019 search bar

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

226

Search results are displayed quickly, which gives the IDE a snappier feel (especially if

you are focused on your code). You will notice that I mistyped the search term class, but

Visual Studio 2019 still returned relevant results for me using fuzzy search.

The search results include the menu path to whatever it is that you are looking for.

Using Visual Studio search, however, gives you a shortcut into these menus so you can

essentially keep your hands on your keyboard. Another important point to note is that

now you can create new items directly from the Visual Studio 2019 search results. In the

preceding example, you can see that I can add a new class right from within my search

results.

Lastly, if you don’t see the result that you are looking for, you can click the link at the

bottom of the search results to search on the web.

These improvements to search make Visual Studio 2019 easier to navigate and find

your way around a really feature-rich IDE. Quickly, find C# Interactive! Go!

Figure 6-6.  Search results in Visual Studio 2019

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

227

�Cleaning Up Your Code
Visual Studio 2019 gives you a lot of control over your code and how that code is to be

formatted. A great way to do this is through code cleanup.

Visual Studio allows you to configure your Code Cleanup, so let’s do this. Use the

search bar to look for the word cleanup as can be seen in Figure 6-7.

You will see that the search results include Configure Code Cleanup. You can also

hold down Ctrl+K, Ctrl+Q to open the configuration screen.

Figure 6-7.  Searching for Code Cleanup config screen

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

228

The configuration screen in Figure 6-8 allows you to enable fixers that you want to

apply in your code. Notice that I have added Apply inline ‘out’ variables preferences to my

Enabled Fixers list. You can also apply these preferences to another profile.

Wouldn’t it be nice if we could add/rename profiles? Hint hint Visual Studio team.

Back in my code editor, you will see that I can click a little brush icon (Figure 6-9) to

perform a code cleanup.

Figure 6-8.  Configure Code Cleanup

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

229

I can also click the down arrow to see more options such as running the code

cleanup associated to the specific profile as seen in Figure 6-10. I can also access the

Code Cleanup Configuration from here too.

For now, I just want to apply the inline ‘out’ variables preferences. Hit the brush

icon or hold down Ctrl+K, Ctrl+E and your code will be cleaned according to your Code

Cleanup preferences. You can see the results in Figure 6-11.

Figure 6-9.  Code before Code Cleanup

Figure 6-10.  Run Code Cleanup

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

230

Apart from configuring the Code Cleanup profile, I had to do nothing at all in order

to improve the quality of my code. This is the incredible power and value add of the new

Visual Studio 2019.

�Debugging Improvements
When you debug your code, you will notice that stepping is faster. You will also notice

that you can now search your Autos, Locals, and Watch windows via an included search

bar (Figure 6-12).

Figure 6-11.  Code cleaned up

Figure 6-12.  Watch window includes search functionality

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

231

This is really convenient, especially if you have many items in your window that you

need to look through. You will also see that you have a default search depth which is set

to 3. You can change this, but it means that your results will only drill down your tree

three levels deep before the search stops.

�Per-Monitor Aware Rendering
If you are using multiple monitors that are configured with different display scale factors,

Visual Studio might be slightly blurred or scaled incorrectly. Visual Studio 2019 is laying

the foundation that will allow Visual Studio to be a fully per-monitor aware application.

In order to try out the new PMA feature, you will need to have Windows 10 version

1803 (Figure 6-13) or newer, as well as the .NET Framework 4.8 or later installed.

You can enable preview features by going to Tools ➤ Options and clicking

Environment ➤ Preview Features as can be seen in Figure 6-14.

Figure 6-13.  Windows 10 requirements

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

232

You will notice that the option to select to optimize rendering is grayed out for me

because I do not have the .NET Framework 4.8 installed.

�Free/Paid/Trial Extensions
Previously in Visual Studio 2017, there was no clear way to see if an extension was

marked as free, paid, or a trial. With Visual Studio 2019, the Extensions and Updates

dialog will clearly mark extensions if they are either a trial or a paid extension. The

change is clearly seen in Figure 6-15.

Figure 6-14.  Preview features

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

233

Free extensions do not have any label, while paid and trial extensions are clearly

marked with a blue label.

�Visual Studio Live Share
Visual Studio Live Share is a fantastic service that allows you to “phone a friend”

essentially. You can share your codebase and its context with a colleague and collaborate

with them right from within Visual Studio.

Your colleague can read your code, navigate through it, edit and debug any project

you share with them with Visual Studio Live Share. The best of all is that Visual Studio

Live Share is included by default in Visual Studio 2019.

To find out more about Visual Studio Live Share, or to download it for Visual Studio
Code or Visual Studio 2017, go to https://visualstudio.microsoft.com/
services/live-share/

Figure 6-15.  Free/paid/trial extensions

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

https://visualstudio.microsoft.com/services/live-share/
https://visualstudio.microsoft.com/services/live-share/

234

Yes, you heard that right. It’s available for Visual Studio Code. The service works

perfectly well between two developers, irrespective of project type, programming

language, or OS that you happen to be working on.

The huge bonus with Visual Studio Live Share is that it does not require developers

to pull down a repo or set up their environment specifically for the purposes of assisting

colleagues.

In the past, the pain of having to set up a project just to assist another developer

was compounded by the fact that the person assisting might not have the dependencies

needed for the project installed.

It opens the doors for participating in code reviews easily. Just imagine what it

means for lecturers that teach a programming class to students. Personally, I think that

the lecturers might get a little less exercise now that they don’t have to walk around the

computer lab, assisting students.

So, you might be wondering exactly how awesome Visual Studio Live Share really

is? Well let me quantify that for you. It’s sharing a Visual Studio Code project running on

Linux with a colleague using Visual Studio 2019 running on Windows 10 kind of cool.

�Sharing Your Code
My friend Jason Williams is living in New York. He has just started learning the ropes of

programming and wants to start writing ASP.NET Core MVC applications. He is having

a bit of trouble with the Razor and needs my help to show him how to add a C# variable

into the HTML.

He uses Visual Studio Code as his IDE and has already set up his project and has

added some code. Let’s see how we can use Visual Studio Live Share to solve his problem.

Inside Visual Studio Code, Jason has installed the VS Live Share extension and

enabled it.

In this example, Jason is already logged in to Live Share via his GitHub account.
Sometimes, Live Share doesn’t recognize the browser sign in within VS Code. I will
show you in the section after this how to sign in via a user code if you’re having
trouble.

Jason clicks the Live Share icon (step 1) to open the Live Share panel. He then clicks

Start collaboration session under the Session Details section (Figure 6-16).

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

235

From Figure 6-17, you can see that the session details now change to show

•	 Participants

•	 Shared Servers

•	 Shared Terminals

I haven’t joined the session yet because Jason needs to send me the invitation link.

Figure 6-16.  Live Share in Visual Studio Code on Linux

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

236

In Visual Studio Code, a notification pops up (Figure 6-18) telling Jason that the

invitation link has been copied to the clipboard.

This is the link he sends to me via IM or email. Whatever works best.

Figure 6-17.  Live Share session started

Figure 6-18.  Notification with invitation link

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

237

In my office, I have just sat down to start my day when a message with the invitation

link from Jason comes through on Skype (yes, Jason is up very late in NYC). I paste

the link into my browser (Figure 6-19) and get the option to open the session in Visual

Studio 2019.

A new instance of Visual Studio 2019 is launched and displays a Joining status as

seen in Figure 6-20, with a download cloud icon.

Figure 6-19.  Invitation link pasted into my browser on Windows

Figure 6-20.  Joining the Live Share session in Visual Studio 2019

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

238

As soon as I have successfully connected to the Live Share session, my status changes

to Joined as you can see in Figure 6-21, and I can see Jason’s icon displayed.

Back on Jason’s Linux machine (Figure 6-22), he can see that I am currently joined in

on the session and looking at the Index.cshtml file on line 11.

Figure 6-21.  Live Share session joined

Figure 6-22.  Live Share status in Visual Studio Code

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

239

Back on my Windows PC (Figure 6-23), I can see that Jason currently has his cursor

at the end of line 4 of the code, as a label with his name pops up momentarily.

In Jason’s Visual Studio Code, he can see that I have selected the text Welcome,

by the label with my name that momentarily pops up (Figure 6-24). Throughout the

session, labels with our names will display momentarily in each other’s code editors

as we navigate around the code. There will always be a cursor though, identifying the

placement of our cursors to each other.

Figure 6-23.  Identifying Jason’s cursor in Visual Studio 2019

Figure 6-24.  Identifying Dirk’s cursor in Visual Studio Code

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

240

If I need to focus Jason’s attention to a particular line of code, I can send him a Focus

notification (Figure 6-25).

The problem Jason had was inserting a variable into the HTML of his page. In my

session, on Visual Studio 2019, I modify his code as can be seen in Figure 6-26 and add

the today variable to the H1 tag.

Notice that the Index.cshtml file is marked as unsaved in Visual Studio 2019.

Figure 6-25.  Sending a Focus request to participants

Figure 6-26.  Editing Jason’s code in Visual Studio 2019

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

241

Jason now immediately sees the code change I made (Figure 6-27) and understands

that the way to add a variable into his HTML is to prefix the variable with the @ sign.

Jason is currently 7 hours behind me. He is burning the midnight oil and I am able to

assist him quickly and efficiently.

•	 I didn’t have to resort to clunky and inefficient screen sharing in

Skype, for example.

•	 I didn’t need to download his project from GitHub or have to set it up

on my machine in any way.

•	 I didn’t have to set up a Linux VM, nor did I have to install Visual

Studio Code.

Jason changed nothing about his environment in order to share his code with me,

and I did not have to change anything in my environment in order to help him. Visual

Studio Live Share simply just works. It’s almost like magic.

�When You Are Having Trouble Signing In
There is a lot of documentation surrounding Visual Studio Live Share. Just head on over

to https://docs.microsoft.com/en-us/visualstudio/liveshare/ to see what topics

are being covered. One of the issues I ran into was signing in. I was running Visual Studio

Code on Linux and the browser sign in form didn’t pop up when launching Live Share.

Here is a resolution for this issue. Go to the following URL (Figure 6-28) and sign in:

https://insiders.liveshare.vsengsaas.visualstudio.com/auth/login

Figure 6-27.  Jason’s code edited in Visual Studio Code

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/visualstudio/liveshare/
https://insiders.liveshare.vsengsaas.visualstudio.com/auth/login

242

In my case I signed in with my GitHub (Jason’s GitHub) account. You can also sign in

using a Microsoft account.

Figure 6-28.  Visual Studio Live Share sign in

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

243

Once you see the Ready to collaborate screen in Figure 6-29, click the Having

trouble? link.

Figure 6-29.  Select user code directions

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

244

Copy the user code displayed on the screen (Figure 6-30) and swing back to Visual

Studio Code (or Visual Studio if you’re having trouble signing in there). Press F1 in Visual

Studio Code to display the Command Palette and enter the text “user code”. Select the

“Live Share: Sign in with user code” option and enter the user code you copied earlier.

You should now be able to successfully log in to Live Share.

�Sharing Terminals
Another question Jason has is how he can build his project in Visual Studio Code

running on Linux.

Figure 6-30.  Copy the generated user code

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

245

As it turns out, Jason can easily share his Terminal with me (Figure 6-31) during the

Live Share session. Under the Shared Terminals section, he simply needs to click the

Share terminal option.

He then needs to select what level of access he wants to give me as seen in Figure 6-32.

He decides that he needs to give me read/write access.

Figure 6-31.  Share terminal in Visual Studio Code

Figure 6-32.  Shared Terminal access level

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

246

Back in my session (Figure 6-33), Visual Studio 2019 displays a notification to me that

a new terminal is being shared in the collaboration session. It gives me the options to

install an integrated terminal or always use an external terminal.

The external terminal window is open on my PC (Figure 6-34), and I can see the

familiar prompt I would normally see on Linux.

I make a mental note to tell Jason that it is generally not a good idea to run Visual
Studio Code as the root user. I also need to tell him to stop naming his VMs after me.

I then enter the command dotnet build in the terminal window on my machine.

Figure 6-33.  New Terminal notification in Visual Studio 2019

Figure 6-34.  External Terminal window opened in Windows

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

247

Back in New York, Jason can see the command as I type it in the Terminal inside

Visual Studio Code (Figure 6-35).

Figure 6-35.  Terminal open in Visual Studio Code on Linux

Figure 6-36.  Successful build result from Terminal in Windows

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

248

I then press Enter and the build results are displayed in the Terminal window on my

PC (Figure 6-36).

The successful build results are mirrored in the Visual Studio Code Terminal window

(Figure 6-37), and Jason is now comfortable that he knows how to perform a build using

the terminal window.

�Some Notes on Live Share
It is important to note that at no point is your code stored on a Microsoft server. The

shared code resides only on the machine that shares the code. It is also not uploaded

to the cloud in any way. Live Share creates a secure end-to-end encrypted connection

between you and the person that you are sharing the code with.

The only real requirement for using Live Share is a stable Internet connection.

The secure communication established during a Live Share session is facilitated by an

Azure Relay.

Figure 6-37.  Successful build results in Visual Studio Code Terminal

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

249

At the time of writing this book, Live Share supports five concurrent guests in

addition to the developer that initiated the Live Share session. This means that a Live

Share session can have six developers in it at any given time. To use Live Share, you need

to have Visual Studio 2017 (15.6+), Visual Studio 2019, or Visual Studio Code installed.

Live Share only shares what is needed with collaborators. For example, when you

edit a file, only that file’s contents are shared. When debugging, debug actions such as

stepping and state such as call, stack, and locals are shared.

Visual Studio Live Share is an indispensable tool for developers that are working in

a more distributed environment. More and more companies are realizing the benefit of

remote developers. Microsoft has now given us the tools to do what we do, irrespective

of the distance between colleagues. Give Live Share a try. I know that you will love it as

much as I do.

�Refactorings and Code Fixes
In this section of the book, we will be looking at some general Visual Studio tips. You

can use these in Visual Studio to improve your code and become more productive in

your day-to-day coding. As developers, we have the unenviable task of having to work

on legacy code. It’s never fun. It’s almost like playing golf with someone else’s clubs.

Sometimes it doesn’t feel quite right. Let’s see how to perfect your swing in Visual Studio.

�Convert foreach to LINQ (VS2019 Only)
Did you know that you can refactor a foreach to LINQ in Visual Studio 2019? Kendra

Havens, a Program Manager on the .NET team, tweeted this tip a while ago.

As a side note, I would suggest following relevant users on Twitter such as
@gotheap, @MadsTorgersen, @terrajobst, and others. You can really pick up
some great tips from them as C# and Visual Studio continue to grow.

Let’s have a look at a very simple example of a foreach to LINQ. You will see in

Figure 6-38 that we want to refactor the foreach section.

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

250

This foreach loop can be refactored into LINQ by placing your cursor in front of

the foreach and clicking the lightbulb that appears. You can also hold down Ctrl+. or

Alt+Enter and the refactoring menu will be displayed.

Clicking Convert to LINQ will refactor your code using a query expression as seen in

Figure 6-40.

Figure 6-38.  Simple foreach loop

Figure 6-39.  Convert to LINQ

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

251

If you prefer fluent syntax, you can also select to refactor it by clicking LINQ (call

from) that refactors the preceding code as seen in Figure 6-41.

Whichever you prefer, being able to convert a foreach to LINQ is a really nice

addition to the code refactoring options in Visual Studio.

Take note that this refactoring will only be available in Visual Studio 2019.

So, which is better to use? Is there even a LINQ fluent vs. query syntax argument to

be made here? Let’s pause here for a second.

�LINQ Fluent vs. Query Syntax

There are basically two ways that you can use code to create LINQ queries. You can use

fluent syntax, which uses lambda expressions for the parameters in the query operators.

It also feels more modern. The other way is to use a query expression, which feels similar

to SQL queries.

Figure 6-40.  The refactored foreach loop

Figure 6-41.  LINQ (call from)

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

252

The one isn’t better than the other. It really depends on your preference and how

you are going to be querying. If you use the let keyword, do joins, or have multiple from

clauses, query syntax will probably be the best choice.

The let clause allows you to store the result of a sub-expression that you can
then use in subsequent clauses.

The following is an example of LINQ using query syntax and the let keyword.

Listing 6-1.  Query syntax using let

var lstStockCode =

 new List<string>()

 �{ "A100-341", "B101-754", "A100-197", "C201-341", "B102-774", "C101-111",

"A100-774", "C105-191" };

var classAStockCodes =

 from aclass in lstStockCode

 let a = (aclass.StartsWith("A100") ? (aclass.Replace("A100-", "")) : "0")

 where Convert.ToInt32(a) > 200

 && Convert.ToInt32(a) > 0

 select aclass;

foreach(var cl in classAStockCodes)

{

 WriteLine($"{cl} is a class A stock code in the 200 plus range");

}

The code listing illustrates finding all A-class stock codes where the number after

the dash is 200 or greater. Using query syntax makes sense here because we had to use

the let keyword to store the numeric portion of the stock code if the ternary conditional

statement evaluated to true. If false, we just returned a zero. We can then pull out the

stock codes that conform to our where conditions.

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

253

�Convert to Interpolated String
The following tip is available in Visual Studio 2017, but I feel that it is worth mentioning,

especially since it can simplify code quite a bit when you work with legacy code.

Consider the following bit of code.

Listing 6-2.  String.Format string

string FirstName = "Dirk";

string LastName = "Strauss";

string FullName = string.Format("My name is {0} {1}", FirstName, LastName);

The use of string.Format is a code that a lot of developers will come across (or even

write). Well now there is an option to refactor this code. Clicking the lightbulb (you can

press Ctrl+. or Alt+Enter too) will bring up the code refactor menu.

This allows you to convert the code to an interpolated string (Figure 6-42). The

resulting code is as follows.

Listing 6-3.  Formatted to interpolated string

string FirstName = "Dirk";

string LastName = "Strauss";

string FullName = $"My name is {FirstName} {LastName}";

This style of writing strings that include variables is much more readable, especially

if you name your variables well.

�Convert Anonymous Type to Class
In C#, the use of anonymous types is used to encapsulate read-only properties into

a single object without you having to define a type first. The compiler infers the type

Figure 6-42.  Convert to interpolated string

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

254

of each property. With Visual Studio 2019, you can now convert the anonymous type

(Figure 6-43) to a class.

By placing your cursor in front of the new keyword, click the lightbulb, hold down

Ctrl+. or Alt+Enter, and select Convert to class (Figure 6-44).

The Rename window pops up and highlights the NewClass name it automatically

inserted for you (Figure 6-45).

Provide a more sensible name for the class you want to create and hit the Enter button.

Figure 6-43.  The logger anonymous type

Figure 6-44.  Select convert to class

Figure 6-45.  Renaming the new class name

Figure 6-46.  Default class name renamed to LoggerClass

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

255

I called my class LoggerClass (Figure 6-46), and if I scroll down to the bottom of my

code file, I will see that Visual Studio 2019 has inserted the new class for me.

Listing 6-4.  The generated LoggerClass

internal class LoggerClass

{

 public string Flag { get; }

 public int Priority { get; }

 public string LogLevel { get; }

 public LoggerClass(string flag,

 int priority,

 string logLevel)

 {

 Flag = flag;

 Priority = priority;

 LogLevel = logLevel;

 }

 public override bool Equals(object obj)

 {

 return obj is LoggerClass other &&

 Flag == other.Flag &&

 Priority == other.Priority &&

 LogLevel == other.LogLevel;

 }

 public override int GetHashCode()

 {

 var hashCode = -1332235279;

 �hashCode = hashCode * -1521134295 + System.Collections.Generic.

EqualityComparer<string>.Default.GetHashCode(Flag);

 hashCode = hashCode * -1521134295 + Priority.GetHashCode();

 �hashCode = hashCode * -1521134295 + System.Collections.Generic.

EqualityComparer<string>.Default.GetHashCode(LogLevel);

 return hashCode;

 }

}

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

256

Now isn’t that just snazzy!

�Converting a Local Function to Method
Let’s stay with the LoggerClass we created from the anonymous type. I am going to add

a method called AddLogEntry to the class. This method will contain a local function

called DetermineLogLevelPriority that simply takes the LogLevel property value and

returns an integer value for it.

The local function uses a switch to return an integer value for the LogLevel value

passed to the class (Figure 6-47).

If the switch statement looks a little funny to you, have a look at switch
expressions in Chapter 3 of this book. Switch expressions are a new language
feature of C# 8.

Personally, I really like local functions. Let’s for a minute assume that the

DetermineLogLevelPriority method now no longer makes sense to use as a local

function. This could be as a result of needing the logic that the local function provides,

somewhere else in the class. In Visual Studio 2019, we can convert the local function to a

Figure 6-47.  The DetermineLogLevelPriority local function

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

257

method by placing our cursor in front of the local function name and hold down Ctrl+. or

Alt+Enter and select Convert to method option (Figure 6-48).

Visual Studio refactors your local function to a method that you can now call from

anywhere in your class.

Code refactoring such as this saves you a lot of time rewriting code and copying and

pasting code around to change things up.

�Enable JavaScript Debugging in ASP.NET Projects
If you create a new browser config in the Browse With menu for an ASP.NET project,

Visual Studio 2019 will enable JavaScript debugging for your project when you launch

your debug session. Go ahead and create a new ASP.NET MVC application.

Figure 6-48.  Convert to method

Figure 6-49.  Local function converted to a method

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

258

You will see from Figure 6-50 that this dialog has also had a nice overhaul. We’re

going to stick with the default settings here and just click the Create button. When your

project is created, right-click the Index.cshtml file in the Home folder under Views and

select Browse With.

Figure 6-50.  New ASP.NET Web Application dialog

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

259

Select the path to Google Chrome and pass the --incognito argument as seen in

Figure 6-51. Then give it a friendly name and click OK. Set Chrome Incognito as your

default and then cancel out of the Browse With screen.

Double-click the Index.cshtml page and view the code. Add a variable to hold the

current date and time value (Figure 6-52).

Figure 6-51.  Add new Browse With setting

Figure 6-52.  Add a variable for today’s date

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

260

At the bottom of your page, add a script section that just logs this value to the console

window. Then place a breakpoint on this line of code that contains your dateTime

variable. The breakpoint can be seen in Figure 6-53.

You are now ready to start debugging.

Ensure that the name “scripts” of the section on your Index.cshtml page
matches the name of the @RenderSection code in your _Layout.cshtml file.

Click the IIS Express (Chrome Incognito) start button to launch your debug session

(Figure 6-54).

Visual Studio now detects that I have added a breakpoint to some JavaScript code

and displays the following JavaScript debugging warning message as seen in Figure 6-55.

Figure 6-53.  Add a breakpoint in the JavaScript code

Figure 6-54.  Debug with Chrome Incognito

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

261

If you select Enable JavaScript Debugging from here, Visual Studio sets this option on

for you in Tools, Options, Debugging, General, Enable JavaScript debugging for ASP.NET

(Chrome, Edge and IE) as seen in Figure 6-56.

Figure 6-55.  JavaScript debugging warning

Figure 6-56.  JavaScript debugging enabled in Options

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

262

Heading over to this option, you will see that it is now selected.

�Exporting Your Editor Settings
If you are working in a team, you can use a file called an EditorConfig file to enforce

certain coding styles for your project. The nice thing about an EditorConfig file is the fact

that you can check it in to source control and have it travel with each new pull of the repo.

In Visual Studio 2019, you now have the ability to export your code style settings, as

seen in Figure 6-57, to an EditorConfig file. You can find this option in Tools ➤ Options ➤

Text Editor ➤ C# ➤ Code Style ➤ General.

You will notice that I specified my preference for 'var' and configured the severity to

be displayed as warnings. Clicking the Generate .editorconfig file from settings button will

export all these code style preferences to the .editorconfig file as seen in Figure 6-58.

Figure 6-57.  Generate .editorconfig file from settings

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

263

The file is now determining the style of your code, because the file takes precedence

over global Visual Studio text editor settings. You can still set your own style preferences

in the Visual Studio Options dialog, but those style preferences will only be applied in a

project that does not contain an .editorconfig file or where the style in the .editorconfig

file does not supersede the style preference you have set.

With the .editorconfig file applied to my project, I immediately see some warnings

according to the preferences I have set (Figure 6-59). Other developers working on the

same project will also see these warnings.

If I look at my code, I will see some squiggly lines appear (Figure 6-60) under the

explicit types.

Figure 6-58.  Generated .editorconfig file

Figure 6-59.  Document health indicator

Figure 6-60.  Squiggly lines appear

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

264

Figure 6-61 also shows some warnings that are displayed as per my preference in the

.editorconfig file.

Opening the .editorconfig file, I can see the style preferences I had set and exported

(Figure 6-62).

Another thing to note is that Visual Studio will clearly notify you via the status bar

that it is using an .editorconfig file for user preferences (Figure 6-63).

Figure 6-61.  Warnings displayed for explicit types

Figure 6-62.  The .editorconfig file

Figure 6-63.  Status showing .editorconfig is in use

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

265

Being able to export your code style preferences allows you and your team to easily

share code style preferences and maintain a consistent coding style across several or all

of your projects.

�Visual Studio IntelliCode Using AI
In 2018 during Build, Microsoft announced the AI-powered Visual Studio IntelliCode. It

is aimed at improving the productivity of developers by providing recommendations on

contextual code completion, inferring style rules, and code formatting. It is available for

Visual Studio 2017, Visual Studio 2019, and Visual Studio Code as an optional extension

as seen in Figure 6-64.

IntelliCode’s recommendations have been based off of learning patterns from

thousands of open source repos. With the extension installed in Visual Studio, you will

see that IntelliCode’s base model stars some recommendations for IntelliSense. This is

different from the normal alphabetical order it used to be displayed as.

Figure 6-64.  Visual Studio IntelliCode extension

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

266

It is also interesting to note that the recommendations are probably the most likely

actions you would perform on a string. IntelliCode knows this because it has gathered

that information in its base model.

If, however, I wanted the same kind of functionality from my Human class, I

unfortunately do not see any starred recommendations (Figure 6-66). The class is not an

open source class and really only lives inside my project.

Figure 6-65.  IntelliCode starred suggestions

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

267

This is because IntelliCode has not built up any custom models to use to provide

recommendations. In order to build these custom models, you need to open your

IntelliCode window and train it on your code base. It is currently under View ➤ Other

Windows ➤ IntelliCode, but I expect this to change in upcoming releases of Visual Studio

2019. The easiest way to find the IntelliCode window is to probably use the excellent

search capabilities in Visual Studio 2019.

Hit Ctrl+Q and start typing (Figure 6-67). Then click the first result to open the

IntelliCode window.

Figure 6-66.  No starred suggestions on Human class

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

268

Once the IntelliCode window is open (Figure 6-68), you will notice that no models

have been trained for the current solution. What training does is it analyzes your code,

uploads your metadata to the cloud, and learns your code’s patterns.

Code analysis happens on your machine and extracts information about your code

that gets sent to IntelliCode’s model service. It then gets uploaded to the cloud where a

model is generated that is sent back to IntelliCode on your machine.

It is important to note that none of your code is ever uploaded to the IntelliCode
cloud service. Only metadata is sent to the cloud, so all your source code stays on
your machine.

With the custom model generated, IntelliCode can now give you starred

recommendations off of your custom classes and types.

Figure 6-67.  Search for and open IntelliCode window

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

269

Depending on the size of your code base, the training process can take a few minutes

to complete. Once the training has completed (Figure 6-69), you will see the following

information in the IntelliCode window.

Figure 6-68.  The IntelliCode window

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

270

The date is displayed when the custom model was trained. You can share or delete

the model if needs be. You can also retrain your IntelliCode at any time. Another

interesting detail is that the IntelliCode window gives you a gist of what was trained in

the model details section.

Figure 6-69.  Code training completed

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

271

Heading back to your code, if you have a look at the starred recommendations, you

will see that the FullName method is starred (Figure 6-70). It now knows this because it

has analyzed how I write my code and how my classes and types look like.

Microsoft has enabled IntelliCode to work on

•	 XAML in Visual Studio

•	 C++ in Visual Studio

•	 JavaScript/TypeScript in Visual Studio Code

•	 Java in Visual Studio Code

IntelliCode is an excellent productivity tool that works off of your own code to make

you more productive. The power of AI in Visual Studio.

�General Visual Studio Tips
Visual Studio offers you so much flexibility in what you can do. It is the gold standard

of IDEs in my opinion. As mentioned earlier in this chapter, some of the finer tips and

features might get overlooked. This is especially true in the fast-paced industry we work

in. The following tips are not specific to Visual Studio 2019 (even though some details

surrounding the feature I expand on might be) and provide a lot of value to developers.

Figure 6-70.  IntelliCode recommendations using the custom model

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

272

�Using Live Unit Tests
Unit tests are actually quite essential in your code. Using unit tests can ensure that the

code you write continues to work as you change and improve your code. The reason it

is called unit testing is because you break up and test smaller portions of your code as

individual units.

The benefits of unit tests can therefore be defined as follows:

•	 Protect against regression (as your code changes)

•	 View method outcomes (executable documentation)

•	 Unit tests force you to decouple your code

Visual Studio contains Test Explorer, a window from which you can view the results

of your unit tests and run failed tests again.

When we talk about decoupling code, we mean to say that if your test is complex
or difficult to write, simplify the code being tested.

The characteristics of a unit test that adds value to your code are as follows:

•	 The tests will run fast, even in big projects.

•	 Your tests should be able to be run in isolation, without any external

dependencies such as files or databases.

•	 You can run the same test multiple times, and if you don’t change any

code, return the same result.

There are of course many other aspects to unit tests, but that can fill a book on its

own. Let us see the use of unit tests in some simple code using Visual Studio. Consider

the following code listing.

Listing 6-5.  Method to test

public static void PrintDate(string date)

{

 WriteLine($"The date is {date}");

}

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

273

As you can see, all that this method does is print out the date passed to this method

to a console window.

Consider the possibility that you need to ensure that the date is in a specific format

before printing it out to the console window.

For this, we can create a unit test by right-clicking the method and selecting Create

Unit Tests from the context menu (Figure 6-71).

Visual Studio will then display a dialog window (Figure 6-72) where you can

configure the unit tests being created. In the following example, you will see that I am

using MSTestv2 as the test framework.

Figure 6-71.  Create Unit Tests

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

274

You can install and select other unit test frameworks to use with your unit tests. After

installing the other frameworks, just restart Visual Studio, and they will be available for

selection from the dropdown menu.

Also note that if you do have methods that depend on external dependencies, you

can create stubs to mimic the functionality of the external dependencies.

Visual Studio Enterprise allows the use of Microsoft Fakes to create substitute
classes for external dependencies.

When you have configured your unit test properties, click the OK button. This will

create a new test project in your Solution Explorer as seen in Figure 6-73.

Figure 6-72.  Unit test options

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

275

You will notice that you now have some boilerplate code added for you that includes

the method you wanted to test.

Listing 6-6.  Created Test Class

[TestClass()]

public class ProgramTests

{

 [TestMethod()]

 public void PrintDate ()

 {

 Assert.Fail();

 }

}

As you iterate through your code base, you can expand on the test methods you

create and change the code being tested.

The code being tested in the PrintDate method is not complex at all, and you would

definitely expand more on the test method than simply leaving the Assert.Fail in there.

Figure 6-73.  Test project created

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

276

It is here that you would generally be able to determine if the code being tested is too

complex or too tightly coupled. You are then able to simplify the method being tested,

and then you should find it easier to create unit tests for your code.

Visual Studio includes the Live Unit Testing feature that allows you to run your tests

in the background. This means that test results are presented to you in real time as you

change and add to your code (Figure 6-74).

If you add additional code (a new method, for example), Visual Studio will notify you

if the method is covered by a unit test. This acts as a nice reminder to write unit tests as

you go along.

You can configure the general settings for Live Unit Tests by going to Tools ➤ Options

➤ Live Unit Testing ➤ General. Here you are able to cap the memory usage used for Live

Unit Testing, define the maximum number of test processes, enter a timeout value for

test cases, and so on.

Figure 6-74.  Start Live Unit Testing

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

277

As of Visual Studio 2019, you can now run unit tests right from within the Solution

Explorer as can be seen in Figure 6-75. This is really a solid addition to Visual Studio, as it

gives you more flexibility when running your tests.

�Generate Classes from XML and JSON
Another often overlooked feature of Visual Studio is creating classes from XML or JSON

code. This means that you can copy the following XML (for example) and paste it as a

class that Visual Studio creates.

Figure 6-75.  Run tests from Solution Explorer in VS2019

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

278

Listing 6-7.  Sample XML

<restaurant>

 <food>

 <name>Hamburger</name>

 <price>$5.95</price>

 <description>160g patty</description>

 <calories>875</calories>

 </food>

 <food>

 <name>Farmhouse Breakfast</name>

 <price>$6.95</price>

 �<description>Two eggs, bacon or sausage, toast, and hash brown.

Bottomless coffee</description>

 <calories>820</calories>

 </food>

</restaurant>

To do this, head on over to Edit ➤ Paste Special ➤ Paste XML As Classes or Paste

JSON As Classes menu (Figure 6-76). This will automatically output a class that maps to

the XML or JSON code that you copied earlier.

This is a fantastic time saver for anyone working with a lot of XML or JSON. Here’s

looking at you again SYSPRO developers.

Figure 6-76.  Paste Special

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

279

�C# Interactive
How many times have you been in the middle of writing code that isn’t quite ready

to run, but you really need to test some functionality? It can be a pain commenting

out code just to test a small portion of it. It is also a pain to start a full debug session,

especially when you are working on a web application with a login page and the bit of

code you want to test is in a submenu a few levels deep. Debug that five times.

The world seems a little less bright after the first few iterations of logging in,

navigating to the page you need to debug, and waiting for the breakpoint to hit. Combine

this with a bit of a lengthy compile and you have a recipe for some frustration.

This is where C# Interactive really shines. Assume that I have some small bit of code

that I want debugged. Consider the example in Figure 6-77.

The code is not complex, but I want to make sure that my code is rewriting the string

correctly to read gently instead of mainly.

Select the code you want to run, right-click it, and click Execute in Interactive from

the context menu (Figure 6-78).

You can also hold down Ctrl+E, Ctrl+E to do the same thing.

The code that you selected will be displayed in the C# Interactive window as seen in

Figure 6-79 and will be run to produce the output from that.

Figure 6-77.  Some code to test

Figure 6-78.  Execute in Interactive

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

280

As you can see, I have a bug in my code. The word mainly is not being replaced and

there are no spaces in my text.

I now need to find my bug and fix it, and can you believe… there it is (Figure 6-80).

I forgot to append the newText variable with the textToAppend variable value. I need to

rewrite my line of code to look as follows: newText += $"{textToAppend} ";

Making the code fix is quick and I can then run the code again in C# Interactive

to check that it works correctly (Figure 6-81): https://docs.microsoft.com/en-us/

visualstudio/ide/using-intellisense?view=vs-2017.

Figure 6-79.  C# Interactive

Figure 6-80.  Find the bug

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense?view=vs-2017
https://docs.microsoft.com/en-us/visualstudio/ide/using-intellisense?view=vs-2017

281

This time, the output is what I expect.

There are better ways to write this logic, but I’m just illustrating a point here.

C# Interactive is a debugging tool that allows for fast, iterative code runs without you

needing to resort to a full debug session just to test a small portion of code.

�Wrapping Up
Visual Studio is a feature-rich IDE, there is no doubt about that. I could go on forever and

a day about the tips and tricks, features, and gems in Visual Studio. In this chapter we

had a look at the new features available to developers in Visual Studio 2019.

We discussed Visual Studio Live Share and saw how we could collaborate on a

project on different IDEs and different platforms. We saw how to perform some useful

refactorings and code fixes. Then we looked at how we could define the style rules

for our code and export these to an .editorconfig file. We also saw how Visual Studio

IntelliCode brings the power of AI to developers.

The release of Visual Studio 2019 brings more productivity features to the developer’s

toolbelt. We are able to write code quicker and more accurately. We can collaborate with

our team members easier and express our intent clearer. The future looks really bright

for developers, and Visual Studio makes it shine even brighter.

Figure 6-81.  Testing the bug fix

Chapter 6 Being More Productive in Visual Studio

www.EBooksWorld.ir

283
© Dirk Strauss 2019
D. Strauss, Exploring Advanced Features in C#, https://doi.org/10.1007/978-1-4842-4856-0

Index

A
Abstract classes

car, 66
derived class, 61–63
features, 58
implementation, 61, 62
inheritation, 61
instantiation, 60
methods, 59
modifier, 58
properties, 59
SUV, 66, 67
usage, 63, 64
vehicle, 65

AES-GCM
decryption method, 203, 204
encryption method, 202

AI-powered Visual Studio IntelliCode
code analysis, 268
custom model, 270
extension, 265
FullName method, 271
IntelliSense, 265
learning patterns, 265
no starred suggestions, 266, 267
starred suggestions, 266
window, 267–269
works on, 271

Async methods
Button click event, 73

characteristics, 71
MoveNext method, 76–78
ReadFileAsync async

method, 72–75
async PerformSomeLongRunning

Operation method, 79
Async return types

Console application references, 38, 40
NuGet Package Manager, 37
ShareService class, 39, 40, 42
StockListing class, 38, 39
Task<T> diagnostic, 41
ValueTask<T> diagnostic, 43

Async streams, 121
Azure Relay, 248

B
Bootstrap code framework, 125

C
C# 8.0

advanced build settings, 106
async method, 121–123
features, 105, 106
index, 113–115
nullable reference types, 106

enabling, 107, 108, 110
error list, 109
use pragma #nullable, 110, 111

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-4856-0

284

range, 113–115
recursive patterns, 111–113
switch statements, 116–118

code, 118
property patterns, 119, 120

target typed new expressions, 120, 121
using declarations, 123, 124

C#, history of, 55–58
C# Interactive

bug, 280, 281
defined, 281
execute in interactive, 279

Chrome Developer Tools, 188
Collections, generics

HashSet<T>, 93
LinkedList<T>, 94
List<T>, 93
Queue<T>, 93
Stack<T>, 93

Collections, generics
Dictionary<TKey, TValue>, 94
SortedDictionary<TKey,

TValue>, 94
SortedList<TKey, TValue>, 94
SortedSet<T>, 94

Controller, 145
Cryptography, 202

D
Deconstruction, 7
Deconstruct tuples, 12–14
DetermineLogLevelPriority

function, 256
Discards, 30

out parameters, 30, 49, 50
pattern matching, 51, 53

standalone, ExecuteCommand
method, 50, 51

tuples, 47–49
variable, 30

DoSomeWork async method, 79
DynamicCarrier class, 95
Dynamic type, 102–104

E
Equals method, 10
Extension methods

DoSomething method, 84
intellisense, 82
IsValidInt, 82

F
Fluent syntax, 251
foreach to LINQ (VS 2019), 249, 250

let keyword, 252
LINQ (call from), 251
LINQ fluent vs. query syntax, 251, 252
query expression, 250
refactoring menu, 250

G, H
Generics

and collections (see Collections,
generics)

interfaces, 94–96
SUV and Car classes, 91
VehicleCarrier class, 89–92

GetAllVehicles method, 88, 89
GetObjectVolume function, 34
GetTasks method, 150
GetValueOrDefault method, 100

C# 8.0 (cont.)

INDEX

www.EBooksWorld.ir

285

I
IAsyncStateMachine interface, 75
IComparable interface, 67
IDiffLockable interface, 65, 68
Interfaces

creation, 67, 68
IDiffLockable, 65
implementation, 64, 65

VIN, 69, 70
Visual Studio prompt, 68

properties, 65
Isotope, 166
Is type pattern expression, 20, 21

J, K
JavaScript debugging

ASP.NET MVC application, 257, 258
breakpoint, 260
IIS Express (Chrome Incognito), 260
--incognito argument, 259
option, 261
warning message, 260, 261

jQuery UI, 134
JSON, 201

L
LINQ fluent vs. query Syntax, 251, 252
Live unit testing feature, 276
Local functions, 31

LocalFunctionExample
class, 31, 32, 34

object classes, 32, 33
output, 35
pattern matching, 34
testing, 35

Local tuple variables, 5, 6

M
Microsoft, 249
Model, View, and Controller (MVC)

add styling, 162, 163
add view markup, 154
controller, 145
design pattern, 147
Index view code, 159, 160
jQuery UI script, 164, 165
model, 146
Razor, 157, 158
RegisterRoutes method, 148
RouteConfig class, 161, 162
route segments, 149
route table creation, 148
routing, 146, 147
TaskController class, 152, 153, 160, 161
Task model, creation, 150, 152

N
.NET Core

AES-GCM
decryption method, 203, 204
encryption method, 202

applications in Visual Studio,
creation, 190–193

characteristics, 189
composition, 190
debug Visual Studio code

debug console, 218, 219
debugging pane, 217
extension, 212
folder, 213
launch.json file, 214, 215
tasks.json file contents, 216

JSON, 201
on Linux, 200, 201

Index

www.EBooksWorld.ir

286

on macOS, 200
MVC app on Linux, 205, 206, 208

Snap, 204, 205
Visual Studio code, 209–211

on Windows, 199
Windows desktop

applications, 193–198
Non-generic VehicleCarrier

class, 86–88
NotImplementedException, 62
Nullable reference types, 106

characteristics, 97, 98
HasValue, 98
iValue4, 98
Nullable<T>, 99, 100
null-coalescing operator, 99
pattern matching, 99
System.Nullable namespace, 97
types, 98, 99

Null case, 27, 28

O
Out variables, 29

C#7 code, 29
Pre-C#7 code, 28, 29

P
Pattern matching

Alumnus class code, 18
Class enums, 15
ExchangeStudent struct

code, 19
Lecturer class code, 17
Person class code, 16
Student class code, 16, 17

PatternMatchingExample class, 14, 15
PlayInstrument method, 9

Q
Query expression, 251, 252

R
Razor, 157
ReadFileAsync method, 73
Recursive patterns, 111–113
RegisterBundles method, 133
RegisterRoutes method, 148
Render method, 136
Responsive web applications

ASP.NET MVC application
configuring project, 129
solution explorer, 131
isotope, installing, 166, 167
isotope, work, 170, 171, 173–175
RegisterBundles method, 133, 135
render method, 136
running, 132
select MV, 130
StyleBundle, 135
templates, 128
Visual Studio 2019 project, 126, 127

Bootstrap code framework, 125
Chrome’s Developer Tools, 175, 176
debug jquery, Chrome’s Developer

Tools, 179, 181–183, 185–188
Media Queries Using SCSS, 176–179
SCSS

CSS files, 138, 141, 142
stylesheet, 137
Web Compiler, 139–141

Routing, 146, 147

.NET Core (cont.)

INDEX

www.EBooksWorld.ir

287

S
string.Format, 253
Switch pattern matching, 22
Switch statements, 116
Syntactically Awesome Style Sheets

(SASS), 142
System.Threading.Tasks.

Extensions, 36

T
Target typed new expressions, 120
Task<T>, 44
Throw expressions

expression-bodied
constructor, 46

null check extension method, 44, 45
simple constructor, 46
Visual Studio, 45

Tuples
discard, 47

inRangeCheck value, 48
local function, 47
without discards, 48
zero and max check, 49

element names, 11, 12
intellisense, 3
members

compare, 9–11
discrete variables, 6–8

TupleExample class, 2
tuple-returning function, 2, 3
values, position, 4, 5
var keyword, 3
variables

InstrumentType, 8
PlayInstrument method, 8

U
Unit tests

benefits, 272
creation, 273
live unit testing

feature, 276
method, 272
MSTestv2, 273
PrintDate method, 275
Solution Explorer, 277
Test Explorer, 272
test project, 274, 275

V
ValueTask<T>, 44
Value Types, default, 100–102
var keyword, 7
View, 146
Visual Studio

anonymous type to class
convert to class, 254
LoggerClass, 255
rename, 254

C# Interactive (see C# Interactive)
create class from XML/JSON, 277, 278
interpolated string, 253
local function to

method, 256, 257
unit tests (see Unit tests)

Visual Studio 2019
Code Cleanup

configure, 227, 228
icon, 228, 229
preferences, 229, 230
run code, 229

debugging, 230, 231

Index

www.EBooksWorld.ir

288

editor settings export
code style, 262, 263
EditorConfig file, 262
status bar, 264
style preference, 263
warnings, 264

free, paid/trial extensions, 232, 233
JavaScript debugging (see JavaScript

debugging)
per-monitor aware, 231, 232
search improvements, 225, 226
UI

filter templates, 223, 224
icon, 225
start screen, 222, 223
Visual Studio 2017, 224

Visual Studio Live Share, 233, 234
code share

focus notification, 240
invitation link, 237
joining status, 237, 238
Linux machine, 238

modify code, 241
notification, 236
session details, 234, 235
VS Live Share extension, 234

remote developers, 249
signing in, user code, 241–244
terminal share

access level, 245
build results, 248
dotnet build command, 246
external window, 246
Share terminal option, 245

Visual Studio prompt, interface, 68

W, X, Y, Z
When clauses

Alumnus objects, 25
case label, 23
multiple case labels, 24, 25
output window, 27
senior alumni, 26, 27
switch statement, 25, 26

Visual Studio 2019 (cont.)

INDEX

www.EBooksWorld.ir

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: C# 7 in Focus
	Getting Started with Tuples
	Changing the Default Positional Names for Tuple Values
	Create Local Tuple Variables in the Return Data
	Tuple Members as Discrete Variables
	Instances of Tuple Variables
	Comparing Tuples

	Inferring Tuple Element Names
	The Ways to Deconstruct Tuples
	Final Thoughts on Tuples

	Pattern Matching
	Using the Is Type Pattern Expression
	Using Switch Pattern Matching Statements
	Using When Clauses in Case Expressions
	Checking for Nulls in Switch Statements

	Using Out Variables
	Discards

	Using Local Functions
	Generalized Async Return Types
	So Why Should I Ever Want to Use Task<T>?

	Throw Expressions
	Discards
	Tuples
	Out Parameters
	Standalone Discard
	Pattern Matching

	Wrapping Up

	Chapter 2: Exploring C#
	The History of C#
	Using and Implementing Abstract Classes
	Abstract Class Features
	Abstract Methods
	Abstract Properties
	Using Abstract Classes
	When Do I Use an Abstract Class?

	Using and Implementing Interfaces
	Creating the Abstract and Derived Classes
	Creating the Interfaces
	Implementing the Interfaces

	Asynchronous Programming Using Async and Await
	How Do I Write Async Methods?
	Under the Hood
	Some Final Tips
	Avoid Using Wait()
	Use ConfigureAwait(false) When Necessary

	Making Use of Extension Methods
	Checking If a String Is a Valid Integer
	Extension Methods Are Lower Priority Than Instance Methods

	Generics
	Non-generic VehicleCarrier Class
	Changing VehicleCarrier Class to Be Generic
	Mix and Match

	Recap and More on Generics
	Generics and Collections
	List<T>
	Queue<T>
	Stack<T>
	HashSet<T>
	LinkedList<T>
	Dictionary<TKey, TValue>
	SortedDictionary<TKey, TValue>
	SortedList<TKey, TValue>
	SortedSet<T>

	Generic Interfaces

	Nullable Type
	Some Characteristics of Nullable Types
	Using Nullable Types
	A Peek Inside Nullable<T>

	Dynamic Type
	Wrapping Up

	Chapter 3: The New Features of C# 8.0
	Nullable Reference Types
	Enabling Nullable Reference Types
	Recap
	A Reference Type Variable Can’t Be Null
	A Reference Type Might Be Null

	Recursive Patterns
	Ranges and Indices
	Switch Expressions
	Should I Use Switch Expressions?
	Property Patterns

	Target-Typed New Expressions
	Async Streams
	Using Declarations
	Wrapping Up

	Chapter 4: Responsive Web Applications Using ASP.NET MVC
	Creating Your ASP.NET MVC Application
	Referencing jQuery and Bootstrap
	Creating Bundles
	Referencing Bundles in Views

	Setting Up and Using SCSS
	What Exactly Is SCSS?
	Adding Our Custom CSS File to BundleConfig

	Creating Models, Controllers, Views and Using Razor
	What Is a Controller?
	What Is a View?
	What Is a Model?
	What Is Routing?
	How Routing Works
	Creating Your Model
	Creating Your Controller
	Creating Your View
	What Is Razor?
	How to Write Razor
	Linking Everything Together
	Add Styling
	Add Some jQuery
	Wrapping Up

	Adding a Plugin
	Installing Isotope
	Making Isotope Work

	Testing Your Responsive Layout Using Chrome
	Starting with the Developer Tools
	Breakpoints and Media Queries Using SCSS

	Debugging Your jQuery Using Chrome Developer Tools
	Wrapping Up

	Chapter 5: Getting Started with .NET Core 3.0
	Creating .NET Core Apps in Visual Studio 2019
	What Is New in .NET Core 3.0
	Windows Desktop
	Support for C# 8.0
	Default Executables
	On Windows
	On macOS
	On Linux

	Fast Built-In JSON Support
	Cryptography

	Installing .NET Core 3.0 Preview on Linux with Snap
	Create and Run an ASP.NET MVC App on Linux
	Edit Your ASP.NET Core MVC App on Linux with Visual Studio Code
	Editing Your Project

	Debug Your ASP.NET Core MVC Project with Visual Studio Code
	Wrapping Up

	Chapter 6: Being More Productive in Visual Studio
	New Features in Visual Studio 2019
	UI Improvements
	Search Improvements
	Cleaning Up Your Code
	Debugging Improvements
	Per-Monitor Aware Rendering
	Free/Paid/Trial Extensions

	Visual Studio Live Share
	Sharing Your Code
	When You Are Having Trouble Signing In
	Sharing Terminals
	Some Notes on Live Share

	Refactorings and Code Fixes
	Convert foreach to LINQ (VS2019 Only)
	LINQ Fluent vs. Query Syntax

	Convert to Interpolated String
	Convert Anonymous Type to Class
	Converting a Local Function to Method

	Enable JavaScript Debugging in ASP.NET Projects
	Exporting Your Editor Settings
	Visual Studio IntelliCode Using AI
	General Visual Studio Tips
	Using Live Unit Tests
	Generate Classes from XML and JSON
	C# Interactive

	Wrapping Up

	Index

