
www.EBooksWorld.ir

Title Page
Enterprise Application Architecture with .NET Core

An architectural journey into Microsoft .NET open source platform

Ganesan Senthilvel
Ovais Mehboob Ahmed Khan
Habib Ahmed Qureshi

 BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

www.EBooksWorld.ir

Copyright

www.EBooksWorld.ir

Enterprise Application Architecture with .NET Core
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2017

Production reference: 1210417

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78646-888-8

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

Credits

Authors
Ganesan Senthilvel
Ovais Mehboob Ahmed Khan
Habib Ahmed Qureshi

Copy Editor

Sonia Mathur

Reviewer

Adwait Ullal

Project Coordinator

Prajakta Naik

Commissioning Editor

Aaron Lazar

Proofreader

Safis Editing

www.EBooksWorld.ir

Acquisition Editor

Nitin Dasan

Indexer

Aishwarya Gangawane

Content Development Editor

Siddhi Chavan

Graphics

Tania Dutta

Technical Editor

Abhishek Sharma

Production Coordinator

Aparna Bhagat

www.EBooksWorld.ir

About the Authors
Ganesan Senthilvel is a passionate IT leader with two decades’ experience in
architecture, design, and implementing cutting edge solutions to the address business
opportunities of enterprise applications. He has earned a Master's degree in
Computer Science and Master's degree in Business Administration. Now, he is
pursuing a doctorate program in Big Data. He is a consistent technical contributor via
COE, Blog, Whitepaper, Summit, Certification, and so on. Highly skilled at
providing coaching and mentoring to internal teams and external institutes, he
maintains his weekly blog at http://ganesansenthilvel.blogspot.in. He has published double
dozens of technology articles on CodeProject and LinkedIn Pulse. He has earned
industry certifications in Big Data, Microsoft (MCP, MCAD), and the financial
domain.

Writing this book was a rewarding experience with a high degree of learning. I
highly appreciate the sacrifices of my wife, Hema, and my boys, Vaishak and
Vishwak, while I worked on the book. I'm blessed with the support of my parents,
friends, and mentors. Big thanks go out to the Packt team.

Ovais Mehboob Ahmed Khan is a seasoned programmer and solution architect with
more than 14 years of software development experience. He has worked in different
organizations across Pakistan, the USA, and the Middle East. Currently, he is
working for a government entity based in Dubai, and also provides consultancy
services to a Microsoft gold partner firm based in New Jersey.

He is a Microsoft MVP in Visual Studio and Development Technologies and
specializes mainly in Microsoft .NET, Cloud, and Web development. He is a prolific
writer and has published numerous technical articles on different websites, such as
MSDN, TechNet, DZone, and so on; he also has a personal blog at http://OvaisMehboob.co
m and is an author of another book named as JavaScript for .NET Developers,
published by Packt. He is an active speaker and group leader of Microsoft
Developers UAE Meetup, Microsoft Technology Practices, and Developers and
Enterprise Practices user groups, and has presented various technical sessions at
various events and conferences. In short, Ovais is a passionate developer and
architect who is always interested in learning new technologies. He can be reached
at ovaismehboob@hotmail.com, and on Twitter at @ovaismehboob.

I would like to thank my family for supporting me, especially my mother, wife, and
brother, who have always encouraged me in every goal of my life. My father, may

www.EBooksWorld.ir

http://ganesansenthilvel.blogspot.in
http://OvaisMehboob.com

he rest in peace, would have been proud of my achievements.

Habib Ahmed Qureshi is an integration architect and lead developer with over 14
years of professional experience in the software industry working with the cutting
edge technologies. He has worked globally with on-site, off-site, and remote teams in
Karachi, Dubai, Copenhagen, London, and Basel. He is a go-getter, and his teams
always look to him for technical reviews and solutions.

He has worked extensively with C++, .NET (C#/VB), Java, TIBCO, and various
other middlewares on Windows and other platforms.

You can connect to him on Twitter at @habib_a_qureshi.

I would like to appreciate the support from my family, especially my wife, to help
me achieve writing this book.

www.EBooksWorld.ir

About the Reviewer
Adwait Ullal is an Enterprise Architect with cloud skills, having assisted Fortune
100 companies assess the public cloud environments and migrate applications and
infrastructure to the cloud. He is a presenter at the local SQL Saturdays and Code
Camps and has also reviewed books for Wrox and Manning. He can be contacted on
Twitter at @adwait.

I would like to thank my wife, Suchitra, for her enormous patience while I am
engaged in multiple projects as well as the staff at Packt for keeping me on point.

www.EBooksWorld.ir

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.EBooksWorld.ir

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1786468883.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

www.EBooksWorld.ir

https://www.amazon.com/dp/1786468883

Dedication

I would like to dedicate this book to two of my inspirations, Grady Booch and
Martin Fowler.

- Habib Ahmed Qureshi

www.EBooksWorld.ir

Table of Contents
Preface

What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions

1. Enterprise Architecture Concepts
Why do we need Enterprise Architecture?

Definition of Enterprise Architecture
Stakeholders of Enterprise Architecture
Business benefits

Knowing the role of an architect
Role comparison between EA and SA
Degree of Comparisons

Commonly known EA Frameworks
General Purpose Frameworks
Domain Specific Frameworks

Architecture segregation
Business Architecture
Data Architecture
Application Architecture
Technology Architecture

Introduction to TOGAF
Evolution of TOGAF 9.1
Core components
Industry usage

Introduction to Zachman
Evolution
Core components

Summary
2. Principles and Patterns

Getting started with principles and patterns
Why follow design principles?
What are design patterns?
Why use design patterns?

SOLID design principles

www.EBooksWorld.ir

SRP - Single Responsibility Principle
SRP example - The decorator pattern

OCP - Open Closed Principle
LSP - Liskov Substitution Principle
ISP - Interface Segregation Principle
DIP - Dependency Inversion Principle

Dependency injection
Introducing dependency injection
Knowing about the Service Locator pattern
Dependency injection support with .NET Core

GoF design patterns
What are software design patterns?

Creational patterns
The singleton pattern

Variations on the singleton pattern
The factory method pattern
Abstract factory pattern
Builder pattern

A commentary on creational patterns
Structural patterns

Adapter pattern
Bridge pattern
Flyweight pattern

A commentary on structural patterns
Behavioral patterns

The template method pattern
The observer pattern
The chain of responsibility pattern
The visitor pattern
The strategy pattern
The state pattern

A commentary on behavioral patterns
Summary

3. Distributed Computing
Understanding Distributed applications

Definition
Comparison

Multiprogramming
Thread synchronization
Storage
Process
Concurrency
Parallelism

Multithreading exercise
ThreadStart
ThreadPool

www.EBooksWorld.ir

Task Parallel Library (TPL)
Design challenges

Transparency
Reliability
Fault tolerance
Performance

Decompose
Caching

Scalability
Scale up
Scale out
Comparing scale up with scale out
Connecting the dots

Security
Goals
Attack
Threats

Summary
4. Software Development Life Cycle

What is SDLC?
Need for a process
Insight of core phases
SDLC models

The Waterfall model
Core phases

Business requirement
System analysis
System Design
Coding
Testing
Maintenance

Understanding the Spiral model
Core phases
Comparing the Waterfall model with the Spiral model
Benefits
Challenges
Usage recommendation

Agile model
Top five reasons to adopt Agile

Ambiguous requirements
Requirement changes
Big planning is not practical
Software review is better than document
Iterative incremental delivery is preferred

Industry evidence

www.EBooksWorld.ir

Scaled Agile Framework (SAFe)
History
Success Factors

Microsoft open source strategy to life cycle
Traditional Microsoft model and its origin from MS-DOS
Driving factors of the open source model
Twin tracks of .NET Framework and .NET Core
Comparing .NET with .NET Core
Current stack of open source tools and techniques

Summary
5. Enterprise Practices in Software Development

What is ALM?
Core aspects
ALM vs SDLC

Source Code Control System
Git
TFS
Git vs TFS
Visual Studio Integration

Team Foundation Version Control (TFVC)
Git

Developing .NET Core project templates for enterprise applications
Creating a custom .NET Core project template using .NET command-line interface tools

Performance measuring for .NET applications
CPU utilization

Using the Sampling method in Visual Studio to collect performance statistics
Measuring UI responsiveness
Analysing memory leaks

Identifying memory leaks
Summary

6. Layered Approach to Solution Architecture
Layers in layered architecture

Presentation layer
Service layer
Business layer

Transaction Script pattern
Table Module pattern
Active Record pattern
Domain Driven Design (DDD) pattern

Data access layer
Objectives of layered architecture

Practical implementation of layered architecture in .NET Core
Scope

Logical architecture
Presentation layer
Service layer

www.EBooksWorld.ir

Business layer
Data access layer
Common layer

Setting up the environment
Creating the solution

Creating the common layer
Entities mapped to database tables
Business objects
Logging events
Logging helper

Data access layer
Creating Data Context
Creating DbFactory
Repository pattern
Unit of Work pattern
Running migration

Business layer
Develop core classes
Developing business managers
Logging in .NET Core

Creating the service layer
Creating base controller
Adding Custom Action Filters
Add controllers

Creating the presentation layer
Single Page Applications
Benefits of a SPA
Developing the presentation layer using ASP.NET Core and Angular
Setting up frontend packages
Configuring the ASP.NET Core pipeline
Adding the Angular components
Creating MVC Controllers and Views

Summary
7. SOA Implementation with .NET Core

SOA definition
What is SOA?

SOA modeling
SOA Reference Model
Reference model and reference architecture relationship
SOA Reference Architecture
Common reference information architecture
Common reference Infrastructure architecture

SOA features and components
Service Component Architecture
Service types

www.EBooksWorld.ir

Service composition
Service orchestration
Service choreography

Common technology standards
Service discovery
Message broker
Enterprise Service Bus (ESB)

ESB Segments
ESB features

Data
Master Data Management (MDM)
Common data model
Live business metrics

Services gateway
SOA services library
Tracking, logging, and error handling in SOA

Notes
Sample SOA implementation

Introduction
Sample enterprise

Departments of a sample enterprise
Sample data models for departments
Sample business processes for departments
Sample database models for departments

Bounded contexts
Services implementation

Solution structure
Sample database
Sample development and system services
Sample information service

Employee information SOA service
Employee Information business logic layer
Repositories in the data access layer
Employee information core data access layer
Entity in an employee information model

Sample adapter service
Sample background service
Sample interaction (notification) service
Sample mediation service
Sample scenario of a service choreography

Summary
8. Cloud-Based Architecture and Integration with .NET Core

Cloud Computing Models
Infrastructure as a Service (IaaS)
Platform as a Service (PaaS)

www.EBooksWorld.ir

Software as a Service (SaaS)
Azure compute

Virtual machines
Cloud services

Worker Role
Web Role

App Services
Azure Service Fabric
Features comparison between virtual machines, cloud services, Azure App Services, and Servi
ce Fabric

Rapid application development using Azure App Services
Web Apps

Hosting an ASP.NET Core application on Azure
Deployment slots

API Apps
Configuring Swagger in ASP.NET Core Web API and deploying on Azure
Creating proxy classes using AutoRest in .NET Core
Enable CORS

Mobile Apps
Offline sync
Push notifications

Logic Apps
Connectors
Trigger
Actions
Creating Logic App in Azure

Scaling Azure App Services
Background services and event handling in cloud

WebJobs
Developing WebJob using .NET Core
Developing WebJobs using WebJobs SDK and .NET Framework 4.5
Azure WebJobs versus Azure WorkerRoles
Using WebHooks for event-based scenarios

Using WebHook of WebJob from VSTS
Azure Functions

Creating a basic Azure Function to listen for Queue events
Scalability and performance options in Azure App Services

Increasing storage performance
Command-Query Responsibility Segregation (CQRS) pattern
Denormalization

Azure Table storage
MongoDB

Caching
Local cache
Shared cache
Using Redis Cache in Azure

www.EBooksWorld.ir

Creating the Redis Cache
Configuring the .NET Core app to use Redis Cache on Azure

Queuing
Logging and monitoring in Azure

Logging
ASP.NET Core logging in Azure

Web server diagnostics
Application diagnostics

Accessing logs
Accessing logs via FTP
Accessing Logs via Azure PowerShell

Monitoring
SCOM (System Center Operations Manager)
Application Insights

Application hosted on Azure
Application hosted on-premise
Use Application Insights API
Setting up Application Insights in ASP.NET Core Application

Summary
9. Microservices Architecture

Microservices architecture definition
What is microservices architecture?
Microservices and SOA
Microservices and monolithic applications
Web API and web services
Characteristics of a microservices architecture
Best for microservices architecture

Documentation
Business capabilities
Business processes
Microservice interfaces
Microservice code
Microservice data store

Logging and monitoring
Immutable Infrastructure
Containerization
Stateless

Architectural elements
Bounded Context in Domain Driven Design

DDD (Domain Driven Design)
Guiding principles
Foundational concepts

Bounded context
Microservices come in systems

Service discovery
Client-side service discovery

www.EBooksWorld.ir

Server-side service discovery
Service registry
API gateway

Architectural motivations
Agile Manifesto
Reactive Manifesto

Reactive systems
Reactive microservices architecture

Key aspects of Reactive Microservices
Serverless architecture

Backend as a Service (BaaS)
Function as a Service (FaaS)
Key aspects of serverless architecture

Type of code
Stateless
Short-lived
Almost zero administration
Automatic scaling
Event-driven

Let's wrap it up
Azure for microservices

Azure Functions
Azure Service Fabric
Azure Container Service
Bringing it together

Implementation samples
Microservices architecture for our sample enterprise

Problem domains
Publishing team
Marketing team
Sales team
Platform administration team
Other teams

Contexts for the respective teams
Customer Relationship Management system
Document Management System
Understanding the Microservices Bounded Team Contexts
General service information flow
Sales Team Context
Marketing Team Context
Publishing Team Context
Platform Administration Team Context

Enterprise portal mockup
Overall microservices architecture

Common communication mechanismsin microservices

www.EBooksWorld.ir

Serverless architecture for a sample application
Our sample application - Home automation
High-level application design
Serverless architecture in Azure
Let's wrap it up

Summary
10. Security Practices with .NET Core

Authentication and authorization modes
Securing applications with ASP.NET Core Identity

Security architecture in ASP.NET Core
Getting to know the core APIs of the Identity system

HttpContext and AuthenticationManager
Understanding the authentication and authorization process

Authentication
Implementing authentication using ASP.NET Core Identity and customizing the Identity data st
ore

Configuring authentication using Identity in an empty web application project
Configuring Entity Framework Core
Defining data context and user classes
Configuring database connection and application configuration settings
Configuring Entity Framework and Identity services
Enabling authentication using Identity
Creating an identity data store in SQL server

Customizing existing Identity data store and adding new entities
Creating and Signing-in/Signing-out users
Adding claims in ASP.NET Identity membership

How authorization works
Using cookie middleware without ASP.NET Core Identity

Claims transformation
Cookie middleware events

Implementing external authentication in ASP.NET Core applications
Configuring external authentication in ASP.NET Core

Creating a web application project
Configuring apps on Facebook
Enabling Facebook middleware

Two-factor authentication
Setting up an SMS account
Enabling two-factor authentication

Security in an enterprise
Getting started with IdentityServer4

Understanding OAuth
Actors in OAuth
Flows of OAuth 2.0

Client credentials flow
Implicit flow
Authorization code flow

www.EBooksWorld.ir

Resource owner password credentials flow
Understanding OpenID Connect

OpenID Connect flows
Authorization code flow
Implicit flow
Hybrid flow
Claims and scopes
Endpoints

Discovery endpoint
Authorize endpoint
Token endpoint
UserInfo endpoint

Developing a Centralized Authorization System using IdentityServer4
Creating a Centralized Authentication Service/Authorization Server

Setting up IdentityServer4
Defining scopes, clients and users
Adding UI to enable authentication using OpenID Connect

Creating an MVC web application project
Adding OIDC and cookie middleware in HTTP pipeline
Enabling MVC and controller
Adding a Web API

Authorization
Declarative authorization techniques
Basic authorization
Authorization filters

Filtering based on authentication schemes
Filtering based on authorization
Filtering based on policy

Custom policies
Imperative authorization techniques

Safe storage
Storing and retrieving safe storage values

Summary
11. Modern AI Offerings by Microsoft

Virtual machines and containerization
Virtual machine

Simulation
Emulation
Virtual machine implementation base

Containerization
Evolution of containerization concepts

Chroot
FreeBSD Jails
Solaris Zones
OpenVZ
Cgroups

www.EBooksWorld.ir

LXC
Lmctfy
Docker

Modern container fundamentals
Docker components

Docker Engine
Docker Compose
Docker Machine
Docker registry
Docker Kitematic
Docker Swarm

Swarm mode
Docker Cloud

Docker containerization in Windows
Docker for Windows
Windows Containers

Modern development
Development editors
Development environment setup

Vagrant
Cloud development and test environment

DevOps
The Culture
Key motivational aspects

Sharing
Automation
Measurement

Software development and delivery process
Continuous Integration

Best practices
Benefits of CI

Improvement in Developer productivity
Quick identification and addressing of bugs
Faster Updates Delivery

Continuous Delivery
Continuous Delivery Pipeline

DevOps toolchain
A sample microservices application based on Docker containers

The sample application
Problem statement
Application architecture
Technical architecture

Setup in Azure Container Service
Architecture diagram

Network architecture
What is visible in this diagram?

www.EBooksWorld.ir

Hands-on prerequisites
Why Azure Container Service?

Azure App Service (on) Linux
Creating VM directly on Azure
Azure Service Fabric (ASF)
Azure Container Service (ACS)

Implementing the Math app
Implementation approach
Implementation Steps

Installing the Hypervisor
CentOS virtual machine
CentOS configuration
Container installation and execution
Uploading container images to container registry
Creating Azure Container Service
Container installation and execution on ACS

Big Data and Microsoft
Definition of Schema
Schema free - NoSQL
Fixed vs no schema
NoSQL types
Architectural best practices
Microsoft HDInsight

HDInsight ecosystem
Introduction to Business Intelligence (BI)

Current trend
Road map
Power BI architecture
Power BI layers

Artificial intelligence (AI)
Core components
Machine learning (ML)
Data mining
Interconnectivity
AI at Microsoft
Industry Bots
Microsoft open source strategy
Cognitive Services
Microsoft Bot

Summary

www.EBooksWorld.ir

www.EBooksWorld.ir

Preface
This book contains various topics for the development of enterprise applications
architecture for diversified applications. Whether it’s a layered architecture, service-
oriented architecture, microservices architecture, or a cloud-specific solution, you
will learn best practices in developing enterprise application architecture with .NET
Core. It also covers emerging fields, such as DevOps and Big Data, for the broader
perspective.
This book starts with a brief introduction to enterprise architecture (EA) and the key
components in EA practice. It then takes you through the SOLID principles and design
patterns in software development and explains the various aspects of distributed
computing to keep your applications efficient and scalable. These chapters act as a
catalyst to start the practical implementation for the designing and development of
applications using various architectural approaches. Gradually, you will explore
different approaches to implement security in your applications and explore various
authentication models and authorization techniques. In the end, you will learn the
concepts of the emerging fields and practices of DevOps, Containerization, Big Data,
Artificial Intelligence, and more.

www.EBooksWorld.ir

What this book covers
Chapter 1, Enterprise Architecture Concepts, helps you understand the fundamental
concepts of enterprise architecture and its related business need and benefits. As the
best practice in the industry, enterprise architecture is expected to have the
responsibility to perform the strategic steps in alignment with the business vision. An
enterprise architecture has few strong fundamental blocks, namely, agility, durability,
efficiency, and effectiveness. An enterprise architecture is the discipline of
addressing business needs with people, process, and technology, with the definition
of purpose, intent, and structure of enterprise applications.

Chapter 2, Principles and Patterns, provides an introduction to SOLID principles and
design patterns, but also provides C# .NET Core-based implementations to some of
the famous design patterns, including GoF patterns and Dependency Injection.

Chapter 3, Distributed Computing, explains that the reader will get an opportunity to
understand the fundamentals of this computing and application in the enterprise
world. It starts from the definition, followed by its core characteristics, such as
concurrency, scalability, transparency, security, and more. In the modern world,
distributed computing plays a vital role.

Chapter 4, Software Development Life Cycle, covers SDLC, which is a term used in
systems engineering, information systems, and software engineering as a process.
This tutorial elaborates on various methodologies, such as Waterfall, Spiral, Agile,
and so on. At the end of this chapter, you will understand the fundamental concepts of
Enterprise Architecture and its related business needs and benefits. It has started
from the traditional Waterfall model and traversed through multi-iteration Spiral
model, trendy Agile model with the specific Scaled Agile Framework (SAFe). On
traversing through various timelines and related methodologies, it has been easy to
understand the necessity of the improvement and related adoption.

Chapter 5, Enterprise Practices in Software Development, explains the enterprise
practices in the software development life cycle with the popular ALM tools and
techniques. After reading this chapter, the reader will know different ways
to measure the performance of .NET Core applications and see how enterprises can
create their own custom project templates using the .NET CLI tool.

Chapter 6, Layered Approach to Solution Architecture, teaches you a few best
practices that can be used while designing n-tier architecture. We will implement a
few patterns, such as Repository, Unit of Work, and Factory, in the data access layer
that decouples the dependencies and uses them in business layer for database

www.EBooksWorld.ir

manipulation. We will explore certain benefits of keeping entities and other helper
classes in the common layer, which can be used throughout the layers and, in the
service layer, we will develop few controllers to show how business managers can
be developed and injected. We will also learn how logging and exception handling
can be implemented and, finally, in the presentation layer, we will use Angular 2 as a
frontend framework to bring responsive user experience.

Chapter 7, SOA Implementation with .NET Core, talks about taking the top-down
approach, taking you from theoretical aspects to implementation-related information.
It introduces how to approach a SOA platform from an enterprise architecture
perspective, how to model an architecture in step-by-step approach, and what
elements to look for and take care of at the time of implementation of a SOA
architecture.

Chapter 8, Cloud-Based Architecture and Integration with .NET Core, teaches you
about cloud computing and using Microsoft Azure as the cloud platform. We will
focus on Azure App Services and see how simply we can develop and deploy .NET
Core applications on the cloud. Scalability is an essential key, and we will learn how
easy it is to scale out or scale up our applications running on Azure following with
the techniques to increase performance. Finally, you will learn about logging and
monitoring options in Azure and see how we can use Application Insights with web
applications running on the cloud to monitor application performance.

Chapter 9, Microservices Architecture, builds on SOA concepts and architectural
artifacts and utilizes the right information from the cloud-based architecture and fits it
to the right level to design the microservices-based architecture. We will design a
high-level architecture using microservices and introduce you to some of the key
elements from Azure-based offerings in order to design a sample serverless
architecture.

Chapter 10, Security Practices with .NET Core, teaches you about the security
frameworks ASP.NET Core Identity and IdentityServer4 in order to handle easy and
complex scenarios, customize and extend the existing Identity model using Entity
Framework Core, and use middleware to authenticate users using Facebook, 2FA,
and OpenID Connect. Moreover, we will develop a basic Central Authentication
System (CAS) that provides multiple applications to connect using the same protocol
and implement single sign-on. You will also learn different techniques of securing
Web API and MVC Controllers and Actions using attributes, or imperatively by
writing custom code and then, finally, we will discuss how we can store application
secrets using user secrets.

Chapter 11, Modern AI Offerings by Microsoft, explains the emerging architecture
practices of the industry in a succinct and concise way with .NET Core environment.
In the software industry, things can change quickly. You will learn DevOps concepts

www.EBooksWorld.ir

as well as the implementation of a simple microservices-based architecture in depth
using Docker-based containers, and deploy them onto the Azure cloud using the
relevant Azure offerings for the multi-container based implementation. The chapter
covers virtual machines and containerization, Docker, DevOps, Continuous
Integration and Continuous Delivery, sample app based on Docker containers, Big
Data in Microsoft, Business Intelligence (BI), and an introduction to Artificial
Intelligence (AI).

www.EBooksWorld.ir

What you need for this book
Development Environment: Visual Studio 2015/2017 Community Edition
Execution Environment: .NET Core
OS Environment: Oracle VM VirtualBox with Windows or Linux
Microsoft Azure Account

www.EBooksWorld.ir

Who this book is for
This book assumes that the readers are either senior developers or software solution
architects who want to design and develop enterprise applications with .NET Core
as the development framework and quickly get their hands on enterprise architecture,
patterns, SOA, and microservices following the .NET Core in the cloud.

With this book, you will get to know modern architectures and patterns in a
summarized form within a short period of time.

www.EBooksWorld.ir

Conventions
In this book, we follow the C# coding style as is followed by the .NET Core
community here: https://github.com/dotnet/corefx/blob/master/Documentation/coding-guidelines/coding-style.
md.

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Logging can be enabled by injecting the ILoggerFactory instance through the Configure
method of the Startup class, and then using that to add providers."

A block of code is set as follows:

 using System;

 namespace Chapter2.SRP.Decorator
 {
 public class Student
 {
 public string Name;
 public string Id;
 public DateTime DOB;

 }
 }

Any command-line input or output is written as follows:

yum install -y gcc-c++ make

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Logic
App can be created by selecting the Web + Mobile option in the search pane and by
then selecting the Logic App option."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.EBooksWorld.ir

https://github.com/dotnet/corefx/blob/master/Documentation/coding-guidelines/coding-style.md

www.EBooksWorld.ir

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book-what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.
To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.
If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.EBooksWorld.ir

http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.EBooksWorld.ir

Downloading the example code
You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/su
pport and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/E
nterprise-Application-Architecture-with-NET-Core. We also have other code bundles from our
rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them
out!

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Enterprise-Application-Architecture-with-NET-Core
https://github.com/PacktPublishing/

Downloading the color images of this
book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https://www.packtpu
b.com/sites/default/files/downloads/EnterpriseApplicationArchitecturewithNETCore_ColorImages.pdf.

www.EBooksWorld.ir

https://www.packtpub.com/sites/default/files/downloads/EnterpriseApplicationArchitecturewithNETCore_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the
code-we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/content/support
and enter the name of the book in the search field. The required information will
appear under the Errata section.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

www.EBooksWorld.ir

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

www.EBooksWorld.ir

Enterprise Architecture Concepts
This section starts with the core concepts and frameworks of the industry-wide
adopted Enterprise Architecture (EA). EA is an industry framework to align the
enterprise with the execution of disruptive and emerging changes. Strategically, it
supports the targeted (or) desired vision and outcomes of the business. By design, EA
is the fundamental block of the business, domain, and technology vision of an
enterprise.

By the end of the chapter, you will understand the fundamental concepts of enterprise
architecture, and its related business needs and benefits.

In this chapter, we will cover the following topics:

Understanding the definition of an enterprise architect and their related
stakeholders
Knowing the real need of Enterprise Architecture to attain business benefits
Knowing the clear segregation between Solution Architecture and Enterprise
Architecture
Details of four segregation types of Enterprise Architecture
Understanding the commonly known EA Frameworks--The Open Group
Architecture Framework (TOGAF) and Zachman

www.EBooksWorld.ir

Why do we need Enterprise
Architecture?
As this book is focused on the enterprise level, it is expected to provide a few core
points to understand enterprise architecture easily.

In my personal experience, it was confusing to understand the role of an enterprise
architect because people used to refer to so many architectural roles and terms, such
as architect, solution architect, enterprise architect, data architect, blueprint, system
diagram, and so on. My work experience clarified the underlying concepts and
motivated me to write this section.

In general, the industry perception is that an IT architect role is to draw a few boxes
with a few suggestions; the rest is with the development community. They feel that the
architect role is quite easy, just drawing a diagram and not doing anything else. As
said earlier, it is completely a perception of a few associates in the industry. This
perception leads me to a different view about the architecture role:

However, my enterprise architect job has cleared this perception and I understand the
true value of an enterprise architect.

www.EBooksWorld.ir

Definition of Enterprise Architecture
In simple terms, an enterprise is nothing but human endeavor. The objective of an
enterprise is where people are collaborating for a particular purpose supported by a
platform. Let me explain with an example of an online e-commerce company.
Employees of that company are people who work together to produce the firm's
profits using their various platforms, such as infrastructure, software, equipment,
building, and so on.

Enterprise has the structure/arrangements of all these pieces/components to build the
complete organization. This is the exact place where enterprise architecture plays its
key role. Every enterprise has an enterprise architect.

EA is a process of architecting that applies the discipline to produce the prescribed
output components. This process needs experience, skill, discipline, and
descriptions. Consider the following image, where EA anticipates the system in two
key states:

Every enterprise needs an enterprise architect, this is not optional. Let me give a
simple example. When you need a car for business activities, you have two choices,
either drive yourself or rent a driver. Still, you will need the driving capability to
operate the car. EA is pretty similar to this.

As depicted in the preceding diagram, EA anticipates the system in two key states,
which are as follows:

How it currently is
How it will be in the future

Basically, they work on options/alternatives to move from the current to a future state
of an enterprise system. In this process, Enterprise Architecture does the following:

Creates the frameworks to manage the architecture
Details the descriptions of the architecture
Road maps to lay the best way to change/improve the architecture
Defines constraints/opportunities
Anticipates the costs and benefits
Evaluates the risks and values

www.EBooksWorld.ir

In this process of architecting, the system applies the discipline to produce the
prescribed output components.

www.EBooksWorld.ir

Stakeholders of Enterprise
Architecture
Enterprise Architecture is so special because of its holistic view of management and
evolution of an enterprise holistically. It has a unique combination of
specialist technologies, such as architecture frameworks and design pattern practices.

Such a special EA has the following key stakeholders/users in its ecosystem:

S.No. Stakeholders Organizational actions

1 Strategic planner
Capability planning
Set strategic direction
Impact analysis

2 Decision makers

Investment
Divestment
Approvals for the project
Alignment with strategic direction

3 Analyst
Quality assurance
Compliance
Alignment with business goals

4 Project managers
Solution development
Investigate opportunities
Analysis of existing options

www.EBooksWorld.ir

Business benefits
Though many organizations intervened without EAs, every firm has the strong belief
that it is better to architect before creating any system. It is integrated in a coherent
fashion with a proactively designed system instead of a random ad hoc and
inconsistent mode.

In terms of business benefits, cost is the key factor in the meaning of Return on
Investment (RoI). That is how the industry business is driven in this highly
competitive IT world. EA has the opportunity to prove its value for its own
stakeholders with three major benefits, ranging from tactical to strategic positions.
They are as follows:

Cost reduction by technology standardization
Business Process Improvement (BPI)
Strategic differentiation

Gartner's research paper on TCO: The First Justification for
Enterprise IT Architecture by Colleen Young is a good reference to
justify the business benefits of an Enterprise Architecture.
Check out https://www.gartner.com/doc/388268/enterprise-architecture-benefits-justific
ation for more information.

In the grand scheme of cost saving strategy, technology standardization adds a lot of
efficiency to create indirect benefits. Let me share my experience in this space. In one
of my earlier legacy organizations, it was noticed that the variety of technologies and
products were built to serve the business purpose due to historical acquisitions and
mergers.

All businesses have processes; a few life examples are credit card processing,
employee on-boarding, student enrollment, and so on. In this methodology, there are
people involved with few steps for the particular system to get things done. During
rapid business growth, the processes become chaotic, which leads to duplicate
efforts across departments. In turn, stakeholders do not leverage the collaboration
and cross learning.

BPI is an industry approach that is designed to support the enterprise for the
realignment of the existing business operational process into the significantly
improved process. It helps the enterprise to identify and adopt in a better way using
industry tools and techniques.

www.EBooksWorld.ir

https://www.gartner.com/doc/388268/enterprise-architecture-benefits-justification

BPI was originally designed to induce a drastic, game-changing effect on enterprise
performance instead of bringing changes in incremental steps.

In the current, highly competitive market, Strategic Differentiation efforts make
a firm create the perception in customers minds of receiving something of greater
value than is offered by the competition. An effective differentiation strategy is the
best tool to highlight a business's unique features and make it stand out from the
crowd.

As the outcome of strategic differentiation, the business should realize the benefits of
Enterprise Architecture investment. Also, it makes the business institute new ways of
thinking to add new customer segments along with new major competitive strategies.

www.EBooksWorld.ir

Knowing the role of an architect
When I planned to switch my career to the architecture track, I had too many
questions in mind. People were referring to so many titles in the industry, such as
architect, solution architect, enterprise architect, data architect, infra architect, and so
on that I didn't know where exactly do I needed to start and end. The industry had so
many confusions to opt for. To understand it better, let me give my own work
experience as the best use cases.

In the IT industry, two higher-level architects are named as follows:

Solution architect (SA)
Enterprise architect (EA)

In my view, Enterprise Architecture is a much broader discipline than Solution
Architecture, with the sum of Business Architecture, Application Architecture,
Data Architecture, and Technology Architecture. It will be covered in detail in the
subsequent section:

SA is focused on a specific solution and addresses the technological details that are
compiled to the standards, roadmaps, and strategic objectives of the business. In
comparison with SA, EA is a more senior level. In general, EA takes a strategic,
inclusive, and long term view of goals, opportunities, and challenges facing the
company. However, SA is assigned to a particular project/program in an enterprise to
ensure technical integrity and consistency of the solution at every stage of its life
cycle.

www.EBooksWorld.ir

Role comparison between EA and SA
Let me explain the working experiences of two different roles--EA and SA. When I
played the SA role for an Internet based telephony system, my role was to build tools,
such as code generation, automation, and so on around the existing telephony system.
It needed the skill set of the Microsoft platform technology and telephony domain to
understand the existing system in a better way and then provide better solutions to
improve the productivity and performance of the existing ecosystem. I was not really
involved in the enterprise-level decision making process. Basically, I was pretty
much like an individual contributor to building effective and efficient solutions to
improvise the current system.

As the second job, let me share my experience in the EA role for a leading financial
company. The job was to build the enterprise data hub using emerging big data
technology.

www.EBooksWorld.ir

Degree of Comparisons
If we plot EA versus SA graphically, EA needs higher degree of strategy focus and
technology breath, as depicted in the following image:

In terms of roles and responsibilities, EA and SA differ in their scope. Basically, the
SA scope is limited within a project team and the expected delivery is to make the
system quality of the solution for the business. At the same time, the EA scope is
beyond SA by identifying or envisioning the future state of an organization.

With the degree of experience, expertise, responsibility, and much more. EA is
superior to SA. EA has the vision of end-to-end broader system knowledge; but SA is
bound to a specific problem statement. In terms of enterprise role, EA role is pretty
close to Chief Architect, whereas SA is at the Senior Architect level.

www.EBooksWorld.ir

Commonly known EA Frameworks
In the real-world scenario, the Enterprise Architecture Framework (EAF) inspires
software development processes in the industry. It is essential to fulfill the mission of
the associated enterprise.

In a nutshell, EA serves as the blueprint for the system and the project that develops
it. An EAF can describe the underlying infrastructure, thus providing the groundwork
for the hardware, software, and networks to work together.

With the usage of EAF, the organization will be in a situation to understand and
analyze the weaknesses or inconsistencies to be identified and addressed. As per the
fundamentals of computing, a framework is often a layered structure indicating what
kind of programs can or should be built, and how they will interrelate.

To my knowledge, there are a few established EAFs available in the industry today.
Some of them were developed for a very specific area, whereas others have
a broader coverage with complete functionality.

In my view, there are two common types of EAFs used in the industry, which are as
follows:

General Purpose Framework
Domain Specific Framework

www.EBooksWorld.ir

General Purpose Frameworks
As the name describes, these frameworks are designed by being agnostic to any
specific implementation. They have no specific business drivers in terms of an
enterprise specific scenario, but rather, they are capability based. Some of the well-
known general purpose EA Frameworks are TOGAF and Zachman.

www.EBooksWorld.ir

Domain Specific Frameworks
As self-described, these frameworks are derived from the common EA effort, in turn
referred to as domain specific. By design, they are derived with a predefined set of
business conditions and concerns because they may have originated from an
Enterprise Architecture team or process improvement effort. On rolling out to the
industry, these frameworks are mostly driven by government agencies or other
geographies.

Based on the types of industry of the EA Frameworks, the type charter is depicted as
follows:

By design, the EA Framework provides a conceptual framework to explain the
following:

How the key terms are related to each other conceptually for architectural
description
The following are the number of scenarios for the enterprise architectural
activities during the software life cycle:

Evolutionary system
Existing architecture
Architectural evaluation

The role of the stakeholders in the creation and use of an architecture
description

In this book, we will cover the foundations of two commonly known, general purpose
EA Frameworks, which are as follows:

TOGAF
Zachman Framework

We will look into their details after the layers of Enterprise Architecture section as

www.EBooksWorld.ir

follows:

www.EBooksWorld.ir

Architecture segregation
In 1992, Steven H. Spewak defined Enterprise Architecture Planning (EAP) as the
process of defining architectures for the use of information in support of the business
and the plan for implementing those architectures.

In highly distributed computing, a layered architecture is recommended for a simple
reason--to allocate the different responsibilities of the system to the respective
layers. With the same principle, Enterprise Architecture is built on the same layer
design concept. It is inspired with the idea to execute the relevant processes and
services of the layer and its related components. Take a look at the following image:

As defined in the preceding image, each layer, namely Business, Data, Application,
and Technology, is designed to delegate its execution to the underlying layer. It
means that the top layer, Business, is coarse-grained level, whereas the bottom layer,
Technology, is a fine-grained level.

www.EBooksWorld.ir

Business Architecture
Business Architecture is nothing but a blueprint of the enterprise. It helps you
understand the organization and supports you to align the long-term strategic
objectives and short-term tactical demands. Basically, it is the bridge between
enterprise strategy and business functionality, as depicted in the following image:

As shown in the preceding image, Business Architecture has three dimensions at its
core--Strategy, Operation, and Technology. The success factors of a Business
Architecture are directly proportional to the business transformation, using strategy, a
stable platform via technology, and exhibited excellence in the business operation.

In essence, the key aspect of the represented business by Business Architecture is
tabulated as follows:

S.No. Query
raised Target delivery Sample

1 Who? Stakeholders End customers, senior managers.

2 Why? Strategy
Tactics

Vision, mission, objectives of the
business.

3 How? Initiatives
Projects

Innovative development, operational
excellence.

www.EBooksWorld.ir

4 When? Events Business critical moments.

5 What? Products
Services

Manufacturing output, customer facing
service.

6 Where? Policies
Regulations

Governing body, corporate policy,
company process.

7 How
well?

Metric
Measurement

Financial report, revenue trend, profit
sharing.

Business Architecture is directly based on business strategy. By design, it is the
foundation for subsequent architectures, where it is detailed into various aspects and
disciplines of the business.

One of the relevant Business Architecture case studies by Oracle is
available at http://www.oracle.com/technetwork/articles/entarch/oea-case-study-brinks
-2012-1883032.pdf.

In my view, an ideal business architect delivers the framework of services and
artifacts, which enables customers to rapidly deliver quantifiable business value with
realistic, technology enabled, business solutions.

www.EBooksWorld.ir

http://www.oracle.com/technetwork/articles/entarch/oea-case-study-brinks-2012-1883032.pdf

Data Architecture
Data Architecture is the key contract between the business and technology in
an enterprise. I experienced the value of Data Architecture during my tenure of the
Enterprise Data Hub development initiative.

Data Architecture is designed in such a way that the real business data is handled
smoothly across the layers of the enterprise architecture. It plays the key role/artifact
to develop and implement governance supporting the enterprise data strategy. It
collaborates/connects with the various enterprise objects, such as hardware,
applications, networks, tools, technology choices, and data.

To support a variety of the commonly used enterprise applications and business
improvement activities, the framework/layers of the Data Architecture is designed as
follows:

As depicted in the preceding image, Data Architecture has three layers of
components based on its operational strategy, namely Strategic, Tactical, and
Operational. As self-described, most of the ground-level operations are executed in
the lower components--Enterprise Application Integration (EAI), Business
Intelligence (BI), and System Rationalization. Data is tactically architecture at the
middle layer using the BPI program. The top layer of Data Architecture is getting
involved in the Data Strategy of the underlying enterprise.

Let me illustrate with a real life example to easily understand enterprise data
architecture. Our business use case is to build the inventory management system of a
production factory. Consider the following image:

www.EBooksWorld.ir

As depicted in the preceding image, the inventory management workflow is aimed
towards the process of supervising and controlling stock items for the production in
an efficient way. Let's get into the details of Data Architecture with this example.

In operation level, raw material information is fed into the inventory core system
(Warehouse) in different formats/sources. EAI (tools such as Informatica) is the core
component to ingest the incoming source data in a clean/expected layout.
Rationalization is the process of extraction of the master data from the various
systems of record of both internal and external systems. After processing, to produce
the cleansed raw data using EAI and Rationalization in Warehouse, the BI layer
takes the execution responsibilities. BI analyzes the enterprise's raw data from the
various sources of the system.

Therefore, the lower operational layer of Data Architecture deals with the processing
of inventory data from end to end, ranging from raw material to shipping the finished
products. Thus, the operational layer cuts across the entire phase of the business.

The next tactical layer BPI is used to improve the existing business operation to
accomplish significant improvement in production. In our use case, let's say the raw
materials are sourced from various locations around the globe. In doing the various
analysis methodologies, the BPI system can come up with an efficient way of
sourcing the raw materials for the inventory. Of course, the existing raw data is
essential for any prediction/analysis. Effective BPI generates promising results
operational efficiency and customer focus, which in turn improves the productivity
and profitability of the business.

By definition, enterprise data strategy is the comprehensive vision and actionable
foundation for an organization's ability to harness data-related or data-dependent
capability. To emphasize the importance of Data Strategy, let me share an interesting
answer by Bill Gates of Microsoft. When he was asked a question--"What is the most
important asset of your company?" he replied--"Data". In our use case, by doing Data

www.EBooksWorld.ir

Strategy of the inventory system, it drives the business to be a customer-centric data
driven culture. In general, legacy systems produce data silos that will get in the way
of understanding customers. This is a big challenge; without a Data Strategy, it is next
to impossible for any inventory system. Due to the characteristic of relevancy,
which is contextual to the organization, evolutionary, and expected to change on a
regular basis, enterprise data strategy is essential to build the comprehensive
strategies necessary to make a real difference for the organization.

www.EBooksWorld.ir

Application Architecture
In general, software application is designed to meet an organizational need in reality
mode. As the business model is quite common in a similar industry, it obviously
expects the software application to build with the common architecture to satisfy the
business requirements of an enterprise. As a result, Application Architecture is built
in a generic way to create the business system, which is required to meet the specific
requirements of the business.

By definition, Application Architecture specifies the leveraging technologies.
Technologies are easily used to implement information systems, such as data,
processes, and interfaces. On top of that, Application Architecture describes the
details of the internal components and the way they interact to build the complete
information system.

In terms of the engineering principle, Application Architecture exhibits the execution
steps and methods in the model of the system blueprint into the reality of the
leveraging enterprise.

Applications are generally categorized in the following listed types, along with their
related characteristics. The categorization is based on the nature of the business
process:

S.No.
Application
processing
type

Characteristics Sample

1 Data It is completely data-centric without
explicit user manual intervention

Customer
store
Payroll
application

2 Transaction
On the receipt of user requests, system-
centric data is updated with the received
information in a system database

E-
commerce
application
Financial
trade app

www.EBooksWorld.ir

3 Event

This system is based on the receipt of
the interested events from the system
environment; it is not necessary to
process non-interested data points

Traffic
control
system
Real-time
dashboard

4 Language

Users' interventions are specified in a
formal language to be processed by the
underlying system. It is mostly involved
in system programming

Compilers
and
interpreter
Command
processor

Irrespective of the preceding types of application, Application Architecture is
designed into the logical groupings of the software components. These logical layers
help you differentiate between the different kinds of tasks performed by the
components. In turn, the system is easier to support the design principle of reusability
across the platform.

Earlier, I was so confused about using the terms Layers vs. Tier. Now,
my understanding is that layer describes the logical groupings of the
functionality/components in an application. However, tier describes
the physical distribution of the functionality/components on the
underlying hardware systems.

Each layer can be implemented as a large scale component running on a separate
server. It is the most commonly used web-based architectural model in the industry.
As a common practice, six layers are designed in the Application Architecture of the
industry, which are as follows:

www.EBooksWorld.ir

End User Layer: This is an individual who uses the product after it is fully
developed and marketed. This layer is around the usage pattern of the end user.
As a result of rapid technology growth in recent times, the End User Layer is
essential to build for desktop, web, mobile, pad, and so on.
Presentation Layer: This contains the end user oriented functionality
responsible for managing user interaction with the core system. In general, it
consists of components that provide a common bridge between the end user and
core business logic encapsulated in the business layer. Presentation Layer
consists of UI components to render the user output and UI processor for local
processing.
Server Layer: This implements the core functionality of the target system by
encapsulating the relevant business logic. In modern design, this layer consists
of components, some of which may expose service interfaces that other callers
can use. It is termed as the heart of the system.
Access Layer: This layer is a bridge between the core business/server layer
and the persisted store layer. It is designed using the best access pattern and
practices of the enterprise architecture. It has two key components, namely
the Data Access Component (DAC) and Service Gateway (SG). DAC allows
programmers to have a uniform and comprehensive way of developing
applications that can access almost any data store. The SG component
encapsulates the low-level details of communicating with a service by means of
service interfaces. Moreover, SG provides an ideal location to provide common
features, such as asynchronous invocation, caching, and error handling.
Persistence Layer: As the application data is persisted in this layer, it
provides access to data hosted within the boundaries of the system and data
exposed by other networked systems. By design, data is accessed through
services in modern Application Architecture.
External Layer: This layer is designed to expose the functionality of the

www.EBooksWorld.ir

application as the services to the external customer. API is the popular term in
the industry, through which business services are exposed externally to earn the
profit by sharing the best services.

In conclusion, Applications Architecture is the art and science of ensuring the suite of
enterprise applications to create the composite architecture with the characteristics
of scalability, reliability, availability, and manageability.

www.EBooksWorld.ir

Technology Architecture
Technology/Infrastructure architecture principles are defined in collaboration with
operational staff. It is the duty of the application architect to correct any wrong
assumptions that the team might make with regard to enterprise infra architecture.
Traditionally, it covers the servers, desktops, storage, network, and so on.

In the current distortive and emerging technology world, collaboration is the key for
success. On connecting and cooperating with various groups, it is easy to adapt into
the latest trends instead of reinventing the wheel again on our own. Technology
Architecture is highly influenced by this principle.

On playing the enterprise architect role, my experience educated me to insist on a
high degree of collaboration with other types of architects in the system. It is
expected to have a closer working experience with a solution architect to roll out the
implementation of the specific technology and platform as part of the role. In fact,
architecture is not at all specifically associated with a particular release of the
software. If so, then it is probably not considered architecture:

As depicted in the preceding image, Technology Architecture layers start from the
Network layers of LAN, WAN, or Remote Access. On top of the Network layer,
the Security principles are laid with Identity, Isolation, and Permission models.
Storage layer is designed on top of Network and Security layers. Platform resides
on top of the Storage layer and is the foundation for any type of software application,
which reaches/touches the end customer. Take a look at the following model:

www.EBooksWorld.ir

The Open System Interconnection (OSI) model is an interesting area in Technology
Architecture. It defines a networking framework to implement protocols in seven
layers. As the lower/deep technical details, control is passed from one layer to the
next, starting from the Application Layer to the bottom most Physical Layer of bits.
The communication passes over the channel to the next station and back up the
hierarchy.

Technology Architecture deals with these various layers and its essentials.

www.EBooksWorld.ir

Introduction to TOGAF
TOGAF is one of the well-known leading Enterprise Architecture Frameworks used
in the industry. As per the common goal, TOGAF is leveraged to make the enterprise
for implementing and improving business efficiency. As the name stands, TOGAF
insists the industry's architecture standard using the consistent methods, processes,
and communication with the group of Enterprise Architecture professionals. In turn,
the openness culture supports architecture practitioners to avoid the industry pain of
proprietary lock mode.

www.EBooksWorld.ir

Evolution of TOGAF 9.1
TOGAF's first version was developed during mid-1990s and continuously
maintained by it based on experience and exposure from the United States
Department of Defense, namely Technical Architecture Framework for
Information Management (TAFIM). Later, the forum started releasing successive
versions based on the fundamental blocks. Consider the following image:

The preceding image is a view of the timeline for the growth of TOGAF until the
latest version, 9.1. This illustrates the long maturation cycle.

TOGAF 9 Technical Corrigendum 1 can be obtained from www.opengrou
p.org/bookstore/catalog/u112.htm.

As TOGAF has become more mature, the time period between publications has also
increased.

www.EBooksWorld.ir

https://www2.opengroup.org/ogsys/catalog/u112

Core components
TOGAF's core components construct the strong fundamentals of this open
architecture framework. It is depicted in the following diagram:

The preceding diagram shows the structure in a graphical overview format calling
out the main components, which are briefed as follows:

Architecture Development Method (ADM) is a kind of circular flow chart aimed
to building an enterprise-level architecture. It has a set of resources and the related
governance to support the enterprise applications development.

The Architecture Content Framework uses the following three categories to
describe the type of architectural work product within the context of use:

Deliverables
Artifacts
Building blocks

Deliverables are the output of the project to be agreed and signed off by the
enterprise stakeholders. Artifacts are represented as the content of the architectural
repository of the firm. Building blocks are commonly represented as the reusable
components of the enterprise platform.

As we know, architecture repository contains the enterprise designs, policies,
framework, and so on. Enterprise Continuum is the method or mode to classify the
repository content.

www.EBooksWorld.ir

TOGAF 9 provides an Architecture Capability Framework that is a set of
reference materials and guidelines to establish an architecture function or capability
within an organization.

Core components of ADM and related topics are covered in details at
Open Group site. It is a great industrywide reference artifact,
available at http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap05.html

www.EBooksWorld.ir

http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap05.html

Industry usage
TOGAF is highly adopted/used in the industry. The following statistical points make
them pretty clear:

More than 150k downloads
Individual certifications near 60k, with foundation of 18k and certified of 42k
Around 400 corporate members of TOGAF
Over 60k TOGAF series books shipped
Association of enterprise architects membership at more than 75k

The continental wide usage of TOGAF is depicted in the right-hand diagram,
whereas the top-10 countries is on the left-hand side:

www.EBooksWorld.ir

Introduction to Zachman
In the space of Enterprise Architecture, Zachman Framework is the veteran being the
initial member. It was the brainchild of John Zachman during the year 1987. In the
system journal of IBM, he released this technical paper in the name of--A framework
for information systems architecture.

By design, Zachman Framework has the logical structure, which is intended to make
the comprehensive illustration of an information technology enterprise. In fact, it
exhibits the multiple perspectives and categorization of the business artifacts.

www.EBooksWorld.ir

Evolution
In 1987, John Zachman published a different approach to the elements of system
development. Instead of representing the process as a series of steps, he organized it
around the points of view taken by the various players of an enterprise.

Zachman's first paper, titled--A framework for information systems
architecture IBM Systems Journal, Volume 26, Number 3, 1987, is
cited at http://dl.acm.org/citation.cfm?id=33596.

In the history of Enterprise Architecture evolution, the Zachman Framework is the
early-bird player, as depicted in the following image:

www.EBooksWorld.ir

http://dl.acm.org/citation.cfm?id=33596

Core components
On analyzing the history, Zachman originally defined his IT taxonomy using the
building domain/industry as an analogy. Interestingly, architectural artifacts are
implicitly designed using a two-dimensional matrix in the building domain.

In a subsequent paper with Sowa, Zachman proposed a different strategy of six
descriptive namely data, function, network, people, time, and motivation, and six
player perspectives, namely planner, owner, designer, builder, subcontractor, and
enterprise

J.A. Zachman and J.F. Sowa published the subsequent version titled
Extending and Formalizing the Framework for Information Systems
Architecture. IBM Systems Journal, Volume 31, Number 3, 1992.

By design, the Zachman Framework is represented in a 6 x 6 matrix, as depicted in
the next image. On noticing, the table's column represents the interrogatives of the
communication channel, namely What, How, Where, Who, When, and Why. At the
same time, the row represents the philosophical concepts of reification, namely
scope, model, design, build, and configuration.

The details of the Zachman Framework are clearly drawn in the following diagram:

www.EBooksWorld.ir

With the support of the appropriate artifacts in every cell, it is pretty much very
simple to depict the sufficient amount of detail. Zachman provided the following
rules to assist the reader in understanding the system of the enterprise applications.
Fundamentally, it contains six major rules, which are as follows:

1. The columns have no order
2. Each column has a simple, basic model
3. The basic model of each column must be unique
4. Each row represents a distinct perspective
5. Each cell is unique
6. Combining the cells in one row forms a complete model

After 26 years at IBM, John founded Zachman International as a company dedicated
to the research and advancement of the state of the art in Enterprise Architecture by
his principle. It helps the industry adopt his framework in a massive way, from a
scientific perspective.

www.EBooksWorld.ir

Summary
As the best practice in the industry, Enterprise Architecture is expected to have the
responsibility to perform strategic steps in alignment with business vision. EA has
few strong fundamental blocks, namely agility, durability, efficiency, and
effectiveness.

EA is the discipline of addressing business needs with people, process, and
technology, with the definition of the purpose, intent, and structure of any system.

In the next chapter, we will discuss the most commonly used fundamental design
patterns and practices, being It is getting used on to build Enterprise Application
across the industry.

www.EBooksWorld.ir

Principles and Patterns
In this chapter, we will take a concise, quick, and solid look into the most common
and fundamental software industry patterns and practices applied to enterprise grade
as well as medium-sized applications.

In this chapter we will learn about the fundamental and modern design &
development principles that are essential to the quality and maintainable code for a
stable and flexible application design. We will go through some of the frequently
used design patterns from the GoF (Gang of Four) and look at their implementation
using the .NET Core code.

The topics that we will primarily cover in this chapter include:

SOLID design principles
Dependency injection
GoF design patterns

The code that we will use here will be simple, straightforward and will be used
primarily to show the main idea of the pattern.

www.EBooksWorld.ir

Getting started with principles and
patterns
Before we directly jump into defining the principles and talk about the important
and most common design patterns, let's question the basics of what designs are
patterns and why we should have software development principles.

www.EBooksWorld.ir

Why follow design principles?
No individual, group, or organization wants a software product whose code looks
complex, hard-to-change, fragile, and nonreusable. All of us want the code to remain
flexible, robust, and reusable. Therefore, we follow some of the core design
principles that are eventually essential to the quality of a software product.

www.EBooksWorld.ir

What are design patterns?
Design patterns are basically best practices in software engineering using object-
oriented design (OOD) that describe general reusable solutions to common
problems in software design within a given context. These are not the finished or
final designs readily transformed into live software product but a description or a
template of how to solve a given problem that can be used in many different
situations. Design patterns are formalized best practices that can be used to solve
common problems when designing a solution.

www.EBooksWorld.ir

Why use design patterns?
Design patterns provide a way to solve problems related to software development
using a proven solution. They not only make communication between designers more
efficient, but they also make the code more tangible, clear, efficient, and reusable.

GoF design patterns are generally considered the foundation for all other patterns.
Software professionals can immediately picture high-level design when they refer to
the name of the pattern used to solve a particular problem.

www.EBooksWorld.ir

SOLID design principles
SOLID design principles are a set of basic OOD design principles. These principles
were first published by Robert C. Martin, popularly known as Uncle Bob. He is also
a coauthor of the Agile Manifesto.

S.O.L.I.D stands for five primary class design principles:

Single Responsibility Principle (SRP): A class should have only one reason to
change, which means that a class should have only one primary job to do; an
extension can be added, for example, inheritance.
Open Closed Principle (OCP): A class should be designed in such a way that it
is open for the extension of its behavior but is closed for modification in itself.
Liskov Substitution Principle (LSP): All of the derived classes should be
substitutable (replaceable) with their parent class.
Interface Segregation Principle (ISP): Interfaces should be fine-grained and
client-specific. Let's say that a client should never be forced to implement an
interface that they don't need or use.
Dependency Inversion Principle (DIP): Depend only on abstractions rather
than on concretions. Abstractions should not depend on details (or
implementations); instead, details should depend on the abstractions.

www.EBooksWorld.ir

SRP - Single Responsibility Principle
"A class should have one, and only one, reason to change."

This primarily means that a class should have one main task, that is, a specific
interface or a single responsibility to achieve. A class with one specific
responsibility and objective is easier to code and maintain as it's clearer. Any further
changes to the objectives should either be a separate interface that is implemented
separately or a derived class, or they should be implemented in a way that the
addition of behavior is added in a separate class.

www.EBooksWorld.ir

SRP example - The decorator pattern
For the practical demonstration of SRP, I will provide you with a solid example
using a GoF design pattern. The Decorator pattern is one of the structural design
patterns that dynamically adds/overrides behavior in the existing method of an object.
It allows functionality to be divided between classes with unique areas of concern,
that is, single responsibility. The behavior can be added to an individual object either
statically or dynamically without affecting the behavior of other objects from the
same class.

Consider the following UML diagram:

UML diagram for the Decorator pattern

The preceding figure depicts the UML diagram for the decorator pattern. I will,
instead, provide the example where a decorator pattern is applied, which will help
you practically understand this UML as well as the single responsibility principle by
looking at the additional changes/behavior added separately instead of modifying the
same class again.

In the real world, you sometimes face a scenario where you need to change the
database from the SQL server to Oracle or vice versa. Let's say you have a
persistence functionality written in a class and you either may change the code in the
class or follow the SRP and design in a way that the new persistence functionality is
handled by another class without modifying the original class. To achieve this, we
follow the decorator pattern in our tiny example persistence layer:

www.EBooksWorld.ir

 using System;

 namespace Chapter2.SRP.Decorator
 {
 public class Student
 {
 public string Name;
 public string Id;
 public DateTime DOB;

 }
 }

Let's say we have a simple Student entity class, which we want to persist in various
forms, for example, to XML, JSON, or DB. Here are the basic classes defined to
setup the decorator:

 public interface IPersistor<T>
 {
 bool Persist(T objToPersist);
 }

 public class DefaultPersistor<T> : IPersistor<T>
 {
 public bool Persist(T objToPersist)
 {
 Trace.WriteLine("DefaultPersistor.Persist gets called");

 return true; //Do nothing, eat up.
 }
 }

In the following code, you see a simple implementation for the XMLPersistorDecorator
class, and OraclePersistorDecorator and SQLPersistorDecorator follow the same pattern:

 namespace Chapter2.SRP.Decorator
 {
 public class XMLPersistorDecorator<T> : PersistorDecorator<T>
 {
 public XMLPersistorDecorator(IPersistor<T>
 objectToBeDecorated) : base(objectToBeDecorated)
 { }

 public override bool Persist(T objToPersist)
 {
 //stacking up functionality of the decorator pattern -
 which basically ensures that main functionality is
 achieved and this decorator adds up new functionality.

 if (base.Persist(objToPersist))
 return DoXMLPersistence();
 return false;
 }

 private bool DoXMLPersistence()
 {
 //Does XML conversion and persistence operation..

 Trace.WriteLine("DoXMLPersistence gets called");

 return true;
 }

www.EBooksWorld.ir

 }
 }

Now you see the case where the decorator pattern is applied, satisfying the single
responsibility principle:

 [Fact]
 public void Test_SRP_Decorator()
 {
 var student = GetFakeStudent();

 IPersistor<Student> studentPersistence = new
 OraclePersistorDecorator<Student>(new
 XMLPersistorDecorator<Student>(new
 DefaultPersistor<Student>()));

 Assert.True(studentPersistence.Persist(student));
 }

From this code, you can see how changes to the functionality are achieved by various
classes instead of by modifying the single class with multiple responsibilities. The
preceding sample code is basically persisting to all persistence layers.

www.EBooksWorld.ir

OCP - Open Closed Principle
"Classes should be open for extension but closed for modification."

This principle simply means that a class should not allow modification in its code
due to a change in functionality. It should only allow you to extend the functionality in
some form, for example, by inheritance.

Once again, this principle is satisfied in our decorator example, where our
persistence decorator (derived) classes implement the abstract base class to extend
(and add up) the functionality instead of modifying the existing class.

www.EBooksWorld.ir

LSP - Liskov Substitution Principle
"Functions that use pointers or references to base classes must be able to use
objects of derived classes without knowing it."

This means that all of the derived classes should retain the existing behavior of the
base class as expected by the client while extending the functionality as fulfilled by
the parent class. This also means that the client code that consumes a specific class
or interface should be able to use a derived class or a different implementation of the
interface without affecting or having to change its internal behavior, which ultimately
minimizes the impact on the consumer code as a result of a change added by the
derived class.

Let's demonstrate this principle with an example. We create the interface for settings
when we have different types of settings, such as UserSettings, MachineSettings, and
ReadOnlySettings. Settings would be required to be loaded and saved. We will first
show the example violating the LSP and then do the correction and adhere to the LSP.
Let's have our simple setting interface:

 public interface ISettings
 {
 void Load();
 void Save();
 }

Let's have our sample classes implementing the ISettings interface:

 public class UserSettings : ISettings
 {
 public void Load()
 {
 //Loads the user settings
 }

 public void Save()
 {
 //Saves the user settings
 }
 }
 public class MachineSettings : ISettings
 {
 public void Load()
 {
 //Loads the machine settings
 }

 public void Save()
 {
 //Saves the machine settings
 }
 }
 /// <summary>

www.EBooksWorld.ir

 /// Says this class holds readonly or constant settings /
 configuration parameters to the software
 /// </summary>
 public class ReadOnlySettings : ISettings
 {
 public void Load()
 {
 //Loads some readonly/constant settings
 }

 public void Save()
 {
 throw new NotImplementedException();
 }
 }

Now let's look at a sample client code making use of these settings classes and
realize how it breaks the principle:

 [Fact]
 public void Test_Client_Violating()
 {
 List<ISettings> allSettings = new List<ISettings>();

 ISettings setting = new LSP.Bad.UserSettings();
 allSettings.Add(setting);

 setting = new LSP.Bad.MachineSettings();
 allSettings.Add(setting);

 setting = new LSP.Bad.ReadOnlySettings();
 allSettings.Add(setting);

 //Load all types of settings
 allSettings.ForEach(s => s.Load());

 //Do some changes to settings objects..

 //Following line fails because client (actually)
 does not know it has to catch
 allSettings.ForEach(s => s.Save());
 }

The last line in this code fails because the client code does not expect to catch (and
possibly ignore) the exception. Otherwise, it has to put a specific case to work to
detect whether the class is ReadOnlySettings; then, it does not call its Save() method,
which is clearly a very bad practice.

Now let's look at how to solve this problem and adhere to the Liskov Substitution
Principle:

 public interface IReadableSettings
 {
 void Load();
 }
 public interface IWriteableSettings
 {
 void Save();
 }
 public interface ReadOnlySetting : IReadableSettings

www.EBooksWorld.ir

 {
 public void Load()
 {
 //Loads the machine settings
 }
 }

Here, you can see that we have divided the interfaces according to their correct
purpose or need and then implemented the ReadOnlySettings class using only the
required interface, that is, IReadableSettings.

What we did here is basically segregate the interfaces.

Let's now take a look at the sample client code using the various types of settings
classes:

 [Fact]
 public void Test_Client_NonViolating()
 {
 var allLoadableSettings = new List<IReadableSettings>();
 var allSaveableSettings = new List<IWriteableSettings>();

 var userSettings = new LSP.Good.UserSettings();
 allLoadableSettings.Add(userSettings);
 allSaveableSettings.Add(userSettings);

 var machineSettings = new LSP.Good.MachineSettings();
 allLoadableSettings.Add(machineSettings);
 allSaveableSettings.Add(machineSettings);

 var readOnlySettings = new LSP.Good.ReadOnlySettings();
 allLoadableSettings.Add(readOnlySettings);
 //allSaveableSettings.Add(readOnlySettings); Cannot
 compile this line;
 readOnlySettings is not save-able/writable settings

 //Load all types of settings
 allLoadableSettings.ForEach(s => s.Load());

 //Do some changes to settings objects..

 allSaveableSettings.ForEach(s => s.Save()); //Now this
 line clearly does not fail :)
 }

From the preceding code, it's evident that loading and saving setting interfaces are
segregated cleanly according to their responsibilities and the code works as expected
by the client.

From this example, you can understand how a neatly designed code follows the
fundamental OOD principles and how closely related these SOLID principles are in
the sense that usually, when trying to adhere to one SOLID principle, you
automatically follow one or more of the other principles. Once a mature programmer
starts following SOLID principles, he/she does not need to remember them--over a
period of time, it becomes part of their nature or a good coding habit.

www.EBooksWorld.ir

www.EBooksWorld.ir

ISP - Interface Segregation Principle
"Interfaces should be fine-grained and client-specific."

In other words, this means that if the class has various use cases, then it should have
a specific interface for each of its use cases.

Once again, our preceding example in LSP shows how the interface segregation
principle is achieved by splitting the ISettings interface into two separate interfaces--
IReadableSettings and IWriteableSettings.

www.EBooksWorld.ir

DIP - Dependency Inversion Principle
Depend only on abstractions rather than on concretions.

Dependency Inversion Principle is the last principle of SOLID design principles.
Here, I quote directly from the source (Uncle Bob), as it is beautifully written:

High-level modules should not depend on low-level modules. Both should
depend on abstractions.
Abstractions should not depend on details. Details should depend on
abstractions.

Basically, this means that your code should never depend on the implementation, but
it should only depend on the interfaces (or abstract classes).

This will enable you to change or replace any implementation with just another
implementation, and none of the client code needs to change or worry about it since it
only depends on the interfaces.

Here, I first give you a bad example that violates the DIP:

 public class OrderProcessor : IOrderProcessor
 {
 public void Process(IOrder order)
 {
 //Perform validations..
 if (new OrderRepository().Save(order))
 new OrderNotifier().Notify(order);
 }
 }

This is bad example because the OrderProcessor class depends upon the actual
implementation of OrderRepository and OrderNotifier. The client code will need to change
if, say, we need to have a different repository persistence layer tomorrow or we need
a different notification mechanism than SMS or e-mail.

Now we provide you with the good example by correcting the bad one:

 public class OrderProcessor : IOrderProcessor
 {
 private readonly IOrderRepository _orderRepository;
 private readonly IOrderNotifier _orderNotifier;

 public OrderProcessor(IOrderRepository orderRepository,
 IOrderNotifier orderNotifier)
 {
 _orderRepository = orderRepository;
 _orderNotifier = orderNotifier;
 }

www.EBooksWorld.ir

 public void Process(IOrder order)
 {
 //Perform validations..
 if (_orderRepository.Save(order))
 _orderNotifier.Notify(order);
 }
 }

With these changes, our OrderProcessor class does not have dependencies on the actual
implementations anymore; instead, it only relies on the interfaces--IOrderRepository and
IOrderNotifier. Now if we want to change the way notifications are sent, we will need
to have a new implementation of IOrderNotifier and pass that implementation to
OrderProcessor without any code changes to the OrderProcessor class.

www.EBooksWorld.ir

Dependency injection
In modern coding patterns, factory level containers that help assemble components
eventually into a cohesive application have become very important. Beneath such
type of containers, there is a common pattern which defines how to perform the
wiring of different components together and is known as Inversion of Control (IoC).
The pattern coming out of it is more specifically known as Dependency Injection.

www.EBooksWorld.ir

Introducing dependency injection
Dependency Injection design pattern fulfills the dependency inversion principle of
the SOLID design principles. There are three main forms of dependency injection:

Constructor injection: An example of this is shown in the DIP section
Setter injection: Let's look at an example code for setter injection:

 public class OrderProcessorWithSetter : IOrderProcessor
 {
 private IOrderRepository _orderRepository;
 private IOrderNotifier _orderNotifier;

 public IOrderRepository Repository
 {
 get { return _orderRepository; }
 set { _orderRepository = value; }
 }

 public IOrderNotifier Notifier
 {
 get { return _orderNotifier; }
 set { _orderNotifier = value; }
 }

 public void Process(IOrder order)
 {
 //Perform validations..
 if (_orderRepository.Save(order))
 _orderNotifier.Notify(order);
 }
 }

Now we look at an example client code using the setter injection:

 [Fact]
 public void Test_DI_With_Setter()
 {
 var someOrder = new DIP.Order();
 var op = new DIP.Good.OrderProcessorWithSetter();
 op.Repository = new DIP.OrderRepository();
 op.Notifier = new DIP.OrderNotifier();

 op.Process(someOrder);
 }

Interface injection: Let's take a look at an example code for interface injection.
The following are the two interfaces that will be used for our sample injection:

 public interface InjectOrderRepository
 {
 void SetRepository(IOrderRepository orderRepository);
 }
 public interface InjectOrderNotifier
 {

www.EBooksWorld.ir

 void SetNotifier(IOrderNotifier orderNotifier);
 }

And here is the OrderProcessorWithInterface class that implements the interfaces
that are used for injection (usually via a DI framework):

 public class OrderProcessorWithInterface : InjectOrderRepository,
 InjectOrderNotifier, IOrderProcessor
 {
 private IOrderRepository _orderRepository;
 private IOrderNotifier _orderNotifier;

 public void SetRepository(IOrderRepository orderRepository)
 {
 _orderRepository = orderRepository;
 }

 public void SetNotifier(IOrderNotifier orderNotifier)
 {
 _orderNotifier = orderNotifier;
 }

 public void Process(IOrder order)
 {
 //Perform validations..
 if (_orderRepository.Save(order))
 _orderNotifier.Notify(order);
 }
 }

Let's have a look at the client code that uses the simple example of interface
injection:

 [Fact]
 public void Test_DI_With_Interface()
 {
 var someOrder = new DIP.Order();

 var op = new DIP.Good.OrderProcessorWithInterface();
 //Creation of objects and their respective dependencies
 (components/services inside) are usually done by the
 DI Framework
 op.SetRepository(new DIP.OrderRepository());
 op.SetNotifier(new DIP.OrderNotifier());

 op.Process(someOrder);
 }

www.EBooksWorld.ir

Knowing about the Service Locator
pattern
Injection isn't the only way to loosen the components/service dependencies. Another
way is to use the service locator.

Basically, a service locator is a sort of a registry object (a factory) that knows how
to create the services or components that an application might need. For obvious
reasons, this primarily shifts the burden of object creation from an individual class to
the factory and we still have to get the locator object inside the classes using it,
which results in the dependency of the locator itself.

We can also have more than one type of service locator inside an application. For
example, FakeServiceLocator, whose purpose is just to provide the fakes that can be
tested in the testing framework.

Your service locator can internally use the abstract factory pattern or the builder
pattern, as appropriate. It can also be a static or dynamic service locator, where in
the dynamic service locator, it may keep the object with string keys, for example, by
maintaining the objects in Hashmaps.

A simple code for the dynamic service locator implemented as a singleton factory
catalog would be as follows inside OrderProcessor:

 IOrderRepository repository = (IOrderRepository)
 serviceLocator.Instance.getService("OrderRepository");

More conceptual information on dependency resolutions
There are discussions separately on service locator that it does not
completely follows SOLID design principles and good OO practices,
but we leave that discussion out of this book.
For more information on dependency resolution, refer to Inversion of
Control Containers and the Dependency Injection pattern on Martin
Fowler's website https://martinfowler.com/articles/injection.html.

www.EBooksWorld.ir

https://martinfowler.com/articles/injection.html

Dependency injection support with
.NET Core
Microsoft has now supplied support for dependency injection directly with .NET
Core in the form of extensions with the Microsoft.Extensions.DependencyInjection NuGet
package. The support for DI in .NET Core is in a way that you can either use the
provided DI implementation, or you can use given DI interfaces in
Microsoft.Extensions.DependencyInjection.Abstractions and use it with the DI framework
implementation of your choice, for example, Ninject.

Just to give you an idea of the .NET Core direction, a similar
behavior or style is also designed with a logging framework in .NET
Core using the Microsoft.Extensions.Logging.Abstractions package.

Let's look at an example to see the Microsoft DI in motion with .NET Core.

The sample code needs to call an airport interface in order to get the list of arrival
flights, and it also needs to do the logging in between; so both of these dependencies
need to be injected. Consider the following code:

 public class ScheduleWorker
 {
 private IServiceProvider _provider;
 private ILogger _logger;

 public ScheduleWorker(IServiceProvider provider,
 ILogger logger)
 {
 _provider = provider;
 _logger = logger;
 }

 public void ExecuteSchedules()
 {
 _logger.LogInformation("Executing schedules at {UTCTime}",
 DateTime.UtcNow);

 IAirportFlightSchedules airportFlightSchedules =
 _provider.GetRequiredService<IAirportFlightSchedules>();

 _logger.LogInformation("Getting schedules..");
 var arrivalSchedules = airportFlightSchedules.
 GetDailyArrivalSchedules(DateTime.UtcNow.Date);

 _logger.LogInformation("{FlightCount} schedules found",
 arrivalSchedules.Count);
 }
 }

From the preceding code, you can see that the dependencies are injected via the

www.EBooksWorld.ir

constructor. Moreover, another business interface object is retrieved via
IServiceProvider DI supplied interface, which shows the way that's similar to service
locator pattern. Consider the following code:

 public class AirportFlightSchedules : IAirportFlightSchedules
 {
 private ILogger _logger;

 public AirportFlightSchedules(ILogger logger)
 {
 _logger = logger;
 }

 public IList<string> GetDailyArrivalSchedules(DateTime date)
 {

From this preceding code, you can see that even AirportFlightSchedules needs the logger
dependency to be injected.

Let's take a look at how the DI container was configured in order to insert interfaces:

 public class DICTests
 {
 private static IServiceProvider Provider { get; set; }

 [Fact]
 public void Test_Simple_DIC()
 {
 RegisterServices();
 ExecuteScedule();
 }

 private void RegisterServices(bool bUseFactory = false)
 {
 IServiceCollection services = new ServiceCollection();

 //Adding required dependencies to the DI Container
 //Note: DebugLogger only available when Debugger
 is attached
 services.AddTransient<ILogger, DebugLogger>(provider =>
 new DebugLogger(typeof(DICTests).FullName));
 services.AddTransient<IAirportFlightSchedules,
 AirportFlightSchedules>();
 services.AddSingleton(typeof(ScheduleWorker));

 if(bUseFactory) ConfigureServices(services);

 Provider = services.BuildServiceProvider();
 }

Notice that the DI container even allows you the capability to turn a normal class into
a singleton very easily so that the same instance/object is given back to the
client/consumer who needs its interface. Please ignore bUseFactory we see it next as it
is used to control the injection of an abstract factory class.

Our client code looks so simple and neat:

 private void ExecuteScedule()

www.EBooksWorld.ir

 {
 var scheduleWorker =
 Provider.GetRequiredService<ScheduleWorker>();
 scheduleWorker.ExecuteSchedules();
 }

Upon this call, all the dependencies are automatically injected into the scheduleWorker
object as well as all the dependent object's hierarchy in the usage.

Now let's come to the Abstract Factory injection part, why would we need it? There
could be some situations where we would need to create objects via the relevant
abstract factory object and also some logic may need to be performed when creating
new object(s) via such a factory in each call to the factory. In such situations, instead
of binding the abstract factory class directly with the client code, we can better use
the DI to inject our desired abstract factory class and the client retrieves the factory
interface from the DI to create the objects it needs. This does not only decouple the
factory object from the client but also gives the capability to inject the different
abstract factory for a different configuration; a fake factory for instance.

I will provide you with another example, adding to this DI sample code in order to
show the factory method pattern in its own section more clearly. Here, you will see
how the factory class is inserted and configured as a singleton and used in a client
code to create the specific object for the given interface. Let's take a look at the
following code:

 private void ConfigureServices(IServiceCollection
 serviceCollection)
 {
 serviceCollection.AddSingleton<IAirportFlightSchedulesFactory,
 AirportFlightSchedulesFactory>();
 }

 [Fact]
 public void Test_Simple_DIC_WithFactory()
 {
 RegisterServices(true);
 ExecuteSceduleWithFactory();
 }

 private void ExecuteSceduleWithFactory()
 {
 var scheduleWorker = Provider.
 GetRequiredService<ScheduleWorker>();
 scheduleWorker.ExecuteSchedulesUsingFactoryViaDI();
 }

Look at the client code using the factory to create the required objects based on the
IAirportFlightSchedules interface:

 public void ExecuteSchedulesUsingFactoryViaDI()
 {
 _logger.LogInformation("Executing schedules at {UTCTime}",
 DateTime.UtcNow);

www.EBooksWorld.ir

 var factory = _provider.GetRequiredService
 <IAirportFlightSchedulesFactory>();
 IAirportFlightSchedules airportFlightSchedules =
 factory.CreateAirportFlightSchedules();

 _logger.LogInformation("Getting schedules..");
 var arrivalSchedules =
 airportFlightSchedules.GetDailyArrivalSchedules(
 DateTime.UtcNow.Date);

 _logger.LogInformation("{FlightCount} schedules found",
 arrivalSchedules.Count);

That's enough about dependency injection, and I hope you learned and enjoyed it just
like I did. Let's jump onto lots of other design patterns.

www.EBooksWorld.ir

GoF design patterns
A software design pattern is a general reusable solution to a commonly occurring
problem within a given context in software design. It is not a finished design that
can be transformed directly into the source or machine code. It is a description or
a template for how to solve a problem that can be used in many different
situations. Design patterns are formalized best practices that the programmer can
use in order to solve common problems when designing an application or a system.

www.EBooksWorld.ir

What are software design patterns?
Design patterns were formally introduced in the book Design Patterns: Elements of
Reusable Object-Oriented Software, first published in 1994 by the four authors
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, with a foreword by
Grady Booch. These authors are usually referred to as the Gang of Four. The book
contains the most popular 23 design patterns; hence, the 23 patterns are known as
GoF design patterns. These design patterns are fundamentally the crux of object-
oriented analysis and design (OOAD).

Here, we will cover some of the most commonly used GoF design patterns and look
at their implementation in C# using the latest version of .NET Core.

23 GoF design patterns are divided into three main categories. I will write the names
and a one-liner explanation about them and after that, I will go into detail about the
selected ones:

www.EBooksWorld.ir

We just gave an almost single line definition for all 23 GoF design patterns. Some of
them would be obvious to understand, while others might be difficult, if not
confusing. So when we get into the details of certain patterns, their intent, design, and
reference implementation should be clearer.

We have already covered the decorator pattern as an example of SRP earlier. In the
remainder of the chapter, we will cover the following design patterns:

Four creational design patterns are as follows:

Singleton
Factory method
Abstract factory
Builder

Three structural design patterns are as follows:

Adapter
Bridge
Flyweight

Six behavioral design patterns are as follows:

The template method
Observer
Chain of responsibility
Visitor

www.EBooksWorld.ir

Strategy
State

www.EBooksWorld.ir

Creational patterns
Creational design patterns are those software design patterns that deal with the
mechanism of object creation in a flexible, maintainable manner under certain
situations or scenarios.

Let's jump on to the individual creational pattern to see its detail.

www.EBooksWorld.ir

The singleton pattern
The singleton pattern is perhaps the most common pattern used by developers across
the globe. This pattern basically defines a class for which only one (single) instance
can exist.

You can have a class that is either global or static with all static methods so that you
do not need to create any instance of this class and use it directly. This is okay but not
considered a best practice generally, unless you are defining a stateless interface to
expose an underlying OS APIs, such as subset win32 APIs or a native DLL or system
library exposing its one-off APIs.

Singleton - If you want to have a stateful class whose only one instance should exist
in the given software, then what you need is a singleton class. An example of this
class can be a configuration class, which is accessed by many other client classes
from within the application layer.

Moreover, some of the other design patterns can themselves be singletons in their
implementation, for example, factory, builder, and prototype patterns. The façade
pattern can also be implemented as a singleton since in most of the cases, only one
façade object is required to be created. You will understand more when we read
more about these other patterns as we move further in this chapter.

The following code shows a simple implementation of a singleton pattern:

 /// <summary>
 /// A very simple Singleton class
 /// Its a sealed class just to prevent derivation that
 could potentially add instances
 /// </summary>
 public sealed class SimpleSingleton
 {
 /// <summary>
 /// Privately hidden app wide single static
 instance - self managed
 /// </summary>
 private static readonly SimpleSingleton instance = new
 SimpleSingleton();

 /// <summary>
 /// Private constructor to hinder clients to create
 the objects of <see cref="SimpleSingleton"/>
 /// </summary>
 private SimpleSingleton() { }

 /// <summary>
 /// Publicly accessible method to supply the only
 instace of <see cref="SimpleSingleton"/>
 /// </summary>
 /// <returns></returns>

www.EBooksWorld.ir

 public static SimpleSingleton getInstance()
 {
 return instance;
 }
 }

www.EBooksWorld.ir

Variations on the singleton pattern
There are some commonly used variations of the singleton pattern that are applicable
based on the given situation. Out of these, the most common ones are lazy
initialization and the double check locking pattern.

Lazy initialization singleton basically creates its one and only instance upon its first
call to get an instance instead of pre-creating it. Refer to the following simple code
sample:

 public sealed class LazySingleton
 {
 private static LazySingleton instance = null;
 private LazySingleton() { }

 public static LazySingleton getInstance()
 {
 if (instance == null) instance = new LazySingleton();
 return instance;
 }
 }

The double check locking pattern is basically a thread-safe singleton pattern in a
multithreaded environment. It ensures that only one instance is created if two or more
threads ask for a singleton instance at the same time using the simple synchronization
technique. Refer to the following simple code sample for a better understanding:

 public sealed class DCLockingSingleton
 {
 /// <summary>
 /// volatile tells the compiler not to optimze this
 field and a field might be modified by multiple threads
 /// </summary>
 private static volatile DCLockingSingleton instance = null;

 /// <summary>
 /// Single object instance is used to lock all the
 accesses to get the instance of the Singleton
 /// </summary>
 private static object syncRoot = new Object();

 private DCLockingSingleton() { }

 /// <summary>
 /// Exposed as a Get only property instead of a method
 /// </summary>
 public static DCLockingSingleton Instance
 {
 get
 {
 if (instance == null)
 {
 lock (syncRoot)
 {
 if (instance == null)

www.EBooksWorld.ir

 instance = new DCLockingSingleton();
 }
 }

 return instance;
 }
 }
 }

www.EBooksWorld.ir

The factory method pattern
The factory method pattern basically specifies the interface to create an object
without specifying its exact class. This pattern primarily focuses on creating only one
type of object specified by the interface for the object to be created.

For example, in our application, we want to use a weather service to get the current
weather of a given city. What we need is a reference to the weather service object,
and what the factory method abstracts out is that we need a weather service reference
without knowing where this actual object reference is coming from. For example, it
can be from Yahoo weather, AccuWeather, or even a fake weather service object that
can be used for testing.

In the section for .NET Core dependency injection, we used the
IAirportFlightSchedulesFactory factory class, which creates the objects of the
IAirportFlightSchedules interface, which the client code uses to get the list of all arrival
flights.

Now let's say that we want to get a list of all arrival flights from Geneva airport.
What we will do is use the GenevaAirportFlightSchedulesFactory class that implements the
same interface IAirportFlightSchedulesFactory and creates the objects of type
GenevaAirportFlightSchedules, which implements the same interface, IAirportFlightSchedules.
Let's take a quick look at the code for this new Geneva factory:

 public class GenevaAirportFlightSchedulesFactory :
 IAirportFlightSchedulesFactory
 {
 private ILogger _logger;

 public GenevaAirportFlightSchedulesFactory(ILogger logger)
 {
 _logger = logger;
 }

 public IAirportFlightSchedules CreateAirportFlightSchedules()
 {
 return new GenevaAirportFlightSchedules(_logger);
 }
 }

Say, if we need flight schedules for a different airport, all we need to do is use the
different factory to get the right service object, and in this way, no change is required
in the client code at all.

www.EBooksWorld.ir

www.EBooksWorld.ir

Abstract factory pattern
Abstract factory gives you the ability to create a number of related classes. It
provides an interface that encapsulates the capability to create a group of classes that
are related in some way.

You are already aware of the factory method pattern. In other words, an abstract
factory is an interface that groups together related factory methods.

For example, KTM bikes creates various types of bikes using a number of various
factory methods, whereas the abstract factory for KTM brings all these factory
methods together and gives you a generic interface so that you can similarly
implement an Aprilia bikes abstract factory, and so on.

Let's take a look at the following UML diagram for the abstract factory pattern for our
understanding:

Now let's look at a simple abstract factory pattern example in the code. Here, let's
say we want to create a simple application with a user interface. The user interface
includes graphical components menu, status bar, and a wizard screen interface.

While these components would be better if created by their own factory methods, for
simplicity, we club them altogether in one abstract factory interface, IUIAbsFactory:

 public interface IUIAbsFactory
 {

www.EBooksWorld.ir

 IMenu GetMenu();
 IWizard CreateWizard();
 IStatusBar CreateStatusBar();
 }

You can see that menu, screens, wizards, and status bar are UI components related to
each other for a specific app. Based on this abstract factory interface, we can have,
for example, DarkUIAbsFactory and LightUIAbsFactory concrete factory classes. We will
take a look at the concrete factory implementation in a later section again, where
we'll enhance our design further by utilizing the template method pattern.

www.EBooksWorld.ir

Builder pattern
The Builder pattern is used in situations where the creation of a complex object is
required, and the creation is generally achieved through a number of steps until the
final product is ready.

A classic example is that of a car as a final product, which is created in steps by
adding the engine, chassis, body, tires, and so on. The main client asks for the product
and receives the final product with all the creation steps hidden from it. This is
achieved via a Director class.

The basic builder pattern involves a Director, Builder, and Product class, as shown
in the following diagram:

Let's look at an example in the code. We will build up our previous example of a
sample GUI app that added the menu, status bar, and wizard screen.

Remember, we had the abstract factory pattern applied in order to build our UI
controls, and one of the methods of this factory class was CreateWizard(). For the
example, we suppose that creating the wizard means adding a couple of screens to
create one flow of a wizard operation common in some types of user applications.
Therefore, creating a wizard is achieved through a number of steps internally by the
CreateWizard() method, and these steps are essentially the builder pattern, that is, to
simplify the creation of a complex product.

Let's take a look at the interface of our builder class:

www.EBooksWorld.ir

 public interface IWizardBuilder
 {
 void CreateWizardSteps(int screenSteps);
 void AddFrontScreen();
 void AddFinalScreen();

 IWizard GetResult();
 }

The code that uses the builder object to create the product in correct steps is
basically done by Director according to the builder pattern, which in our example is
the code inside the CreateWizard() method of the abstract factory:

 /// <summary>
 /// Internal code demonstrates the use of Builder pattern
 /// </summary>
 /// <returns></returns>
 public IWizard CreateWizard()
 {
 //Director code for builder pattern
 var wizardBuilder =
 _provider.GetRequiredService<IWizardBuilder>();

 wizardBuilder.CreateWizardSteps(4);
 wizardBuilder.AddFrontScreen();
 wizardBuilder.AddFinalScreen();

 var wizard = wizardBuilder.GetResult();

 ApplyThemeOnWizard(wizard);

 return wizard;
 }

Note that the following line is retrieving the correct build object using the DI
container:

 var wizardBuilder =
 _provider.GetRequiredService<IWizardBuilder>();

You do not need to go into its detail; this DI container is explained in the Dependency
injection support with .NET Core section within this chapter.

From the preceding code, you can see how the wizard in our example application is
actually created in steps using the builder pattern.

www.EBooksWorld.ir

A commentary on creational patterns
Sometimes, some creational patterns overlap each other, while other times, they
compliment each other. For example, an abstract factory is commonly implemented as
a singleton pattern itself so as to have a single instance of the abstract factory object.
Abstract factory can store the prototypes from which it can return the newly created
cloned objects.
Abstract factories are often implemented as a number of factory methods (which is
what I prefer as well) that promote creation through inheritance and give you dual
flexibility with both abstract factory and factory method at the same time. Some
abstract factories can also be implemented using the prototype pattern internally that
promotes creation through delegation, as prototypes would be contained inside the
abstract factory or otherwise implemented as singleton.

www.EBooksWorld.ir

Structural patterns
These design patterns are best practices to identify a simple way to realize
relationships between entities and their structure in a given situation.

Let's jump on to our selective structural patterns individually to look at their detail.

www.EBooksWorld.ir

Adapter pattern
The adapter pattern, as the name suggests, is the pattern for a class that adapts the
interface of another considerably complicated or inconsistent class. It's basically just
a wrapper class. It wraps the interface of another class to an interface that is simpler,
consistent to the software design, and is what the client is expecting.

The following diagram shows the adapter pattern in general and the one used for our
example:

It is one of the simplest GoF design patterns with the purpose of simplifying the
interface.

In the example scenario, we have an Oracle database hypothetical DB driver class
with a complex and inconsistent API interface in contrast to our own application
design. Therefore, in order to simplify things and make them uniform to use in our
application, we define our adapter interface, which our client code will use to access
the actual database objects without knowing the details of how to use Oracle DB
driver.

Let's take a look at our imaginary code. The following is our hypothetical and not-so-
simple OracleDBDriver interface:

 public interface OracleDBDriver
 {
 bool Initialize(string parameters);

 IOracleDBConnection CreateNewConnection();
 IOracleDBConnection CreateNewPooledConnection();

 bool ValidateSQL(string validSQL);

 SomeDBFormat ExecuteSQL(IOracleDBConnection dbCon,
 string validSQL);
 int ExecuteScalarSQL(IOracleDBConnection dbCon, string
 validSQL);
 }

www.EBooksWorld.ir

To simply the interface of OracleDBDriver, we write our simplified adapter, as shown
here:

 public class DBAdapter
 {
 private OracleDBDriver dbDriver = null;
 private bool bDBInitialized;
 private readonly string initializationDBParameters;

 public DBAdapter()
 {
 //dbDriver = new OracleDBDriverImpl();
 initializationDBParameters = "XYZ, ABC";
 }

 public DataTable ExecuteSQL(string strSQL)
 {
 if (string.IsNullOrWhiteSpace(strSQL)) throw new
 InvalidSQLException();

 if (!bDBInitialized) bDBInitialized =
 dbDriver.Initialize(initializationDBParameters);

 if(!dbDriver.ValidateSQL(strSQL)) throw new
 InvalidSQLException();

 var dbConnection = dbDriver.CreateNewPooledConnection();

 SomeDBFormat dbData = dbDriver.ExecuteSQL(dbConnection,
 strSQL);

 return TransformDBDataType(dbData);
 }

 private DataTable TransformDBDataType(SomeDBFormat dbData)
 {
 DataTable dbTable = null;

 //dbTable = dbData; do some conversions

 return dbTable;
 }
 }

From the preceding code, you can easily see how our adapter class is hiding the
complexity of database driver initialization and connection pooling logic as well as
transforming the db format into a simplified one, as desired.

www.EBooksWorld.ir

Bridge pattern
The purpose of the bridge pattern is to create a separation between an interface that
the client uses from the actual implementation. This will allow the client's interface
(abstraction) to vary independently from the actual implementation. The bridge
primarily uses aggregation to separate the responsibilities exposed by the interfaces.

Let's say we have a simple interface that provides the capability to perform an
addition operation. We create a new interface and expose it to the client that also
provides the multiply operation. And we implement the new interface by aggregating
the object of the existing interface in a way that we call our actual implementation
logic by calling the addition operation a number of times to achieve the correct result
of the multiply operation.

The following diagram shows the general diagram for the bridge pattern as well as
the diagram to show another near real-world example:

Our example in the code talks about the core microwave implementation that works
very well, but then we add a layer of abstraction on top of it, which is exposing the
premium version of the microwave interface but internally, in fact, it uses the same
core microwave implementation.

The following code shows our core microwave interface, which is a complete and

www.EBooksWorld.ir

perfectly working one in its own right:

 /// <summary>
 /// Core Implementation Interface
 /// </summary>
 public interface ICoreMicrowave
 {
 //0 seconds to 1800 seconds
 void AdjustTime(int seconds);

 //0 to 10 steps (10=200 degree)
 void AdjustHeatingTemperature(int temperature);

 void Start();
 }

We already have a Microwave class that implements this ICoreMicrowave interface.

Let's say we create an abstraction by creating a new interface that is presented to the
client for use:

 /// <summary>
 /// It gives one touch functionality
 /// </summary>
 public interface INewPremiumMicrowave
 {
 void SelectFood(FoodType foodType);
 void Start();
 }

Take a look at its implementation; it basically uses an existing implementation in a
smart way and proves that an abstraction can vary quite independently from its core
implementation:

 public class NewPremiumMicrowave : INewPremiumMicrowave
 {
 private ICoreMicrowave _microwave;
 private int[] _temperatureValuesForFood;
 private int[] _timeValuesForFood;

 public NewPremiumMicrowave(ICoreMicrowave microwave)
 {
 _microwave = microwave;

 //Storage of pre-determined values
 _temperatureValuesForFood = new int[] { 180, 180, 150,
 120, 100, 90, 80 };
 _timeValuesForFood = new int[] { 300, 240, 180, 180, 150,
 120, 60 };
 }

 public void SelectFood(FoodType foodType)
 {
 _microwave.AdjustTime(_temperatureValuesForFood[
 (int)foodType]);
 _microwave.AdjustHeatingTemperature(
 _temperatureValuesForFood[(int)foodType]);
 }

 public void Start()

www.EBooksWorld.ir

 {
 _microwave.Start();
 }
 }

In the sample implementation, you can see that the NewPremiumMicrowave class
fundamentally uses the same microwave implementation just by smartly pre-setting
some of the heating temperature and time duration values and by efficiently utilizing
the existing microwave engine.

You can see that, when such kind of feature (that is, enhancement in the interface is
needed without necessarily changing the implementation) needs to be implemented,
the bridge pattern is the right way to do it.

www.EBooksWorld.ir

Flyweight pattern
The flyweight pattern enables the sharing of information in a resource-efficient way.
You use it when you typically have the same information segment in a large number of
objects and you decide to share this information between all of these large number of
objects instead of having the same copy of information contained inside all of them.

For example, let's say in a software application, you have a list of a million
employee records for a group of companies, and several thousands of employees
belong to the same company and thus have similar information for their employer.
Instead of having this information repeatedly copied into all of the employee objects,
we share the common information into a separate object and let all those employees
refer to the same object. In this way, we save a lot of memory space. Note that this is
almost the way in which we design and relate entities in the relational database.

In most of the popular programming languages, there are some types that are
immutable, for example, strings and other primitive types. This means that, if there is
another object with the same value (the same characters) of the string, it will not have
its own copy of strings; rather, they refer to the same string in memory as managed by
the runtime. The string is immutable in .NET as well as in Java.

It is quite common to have flyweight objects to be immutable objects so that they
automatically share the same memory space, such as the string value of the company
name.

In general implementations, we have a flyweight factory that provides the flyweight
objects that are then shared across. The client code uses this factory to get/add the
flyweight objects in a way that this factory actually acts as memory storage or holder
of the flyweight (shared) objects.

Let's look at the flyweight's general UML diagram:

www.EBooksWorld.ir

We will now consider a practical example of the flyweight pattern. Let's say we have
a flight reservation system that has a list of flights, passengers booked in them, and
the reservation records.

Since the flight number and its meta information is shared across various reservations
and passengers, we create the flyweight of the flight objects; all the flight objects are
immutable objects (basically carrying only the string members) so that they become
resource-efficient for sharing. Consider the following diagram:

Let's jump into the code and look at how classes actually look like in C# for .NET
Core. We first look at the flyweight factory class, its design, and the sample code:

 public class FlightList
 {
 /// <summary>
 /// Thread-safe internal storage
 /// </summary>
 private readonly ConcurrentDictionary<string,
 Flight> _cache = new ConcurrentDictionary<string, Flight>();

 public FlightList()
 {
 PopulateFlightList(); //List of available flights
 by the given carrier (airline)
 }

 /// <summary>
 /// Returns immutable (and shareable flyweights) instances
 /// </summary>
 /// <param name="flightNumber"></param>
 /// <returns></returns>
 public Flight GetFlight(string flightNumber)
 {
 Flight flight = null;
 if (_cache.TryGetValue(flightNumber, out flight))
 return flight;
 throw new FlightDoesNotExistException();
 }

 public void AddFlight(string flightNumber, string from,
 string to, string planeType)

www.EBooksWorld.ir

 {
 var flight = new Flight(flightNumber, from, to,
 planeType);
 _cache.AddOrUpdate(flightNumber, flight,
 (key, oldFlight) => flight);
 }

The factory object allows the adding and retrieving of the flight (flyweight) objects
and holds them in a thread-safe dictionary. We have added a dummy code fragment to
populate a few dummy flights just for demo purposes. You can see them in the actual
code, but it's not important for the pattern.

Here is our Flight class, which is an immutable flyweight object:

 public class FlightList
 {
 /// <summary>
 /// Thread-safe internal storage
 /// </summary>
 private readonly ConcurrentDictionary<string, Flight> _cache =
 new ConcurrentDictionary<string, Flight>();

 public FlightList()
 {
 PopulateFlightList(); //List of available flights by
 the given carrier (airline)
 }

 /// <summary>
 /// Returns immutable (and shareable flyweights) instances
 /// </summary>
 /// <param name="flightNumber"></param>
 /// <returns></returns>
 public Flight GetFlight(string flightNumber)
 {
 Flight flight = null;
 if (_cache.TryGetValue(flightNumber, out flight))
 return flight;
 throw new FlightDoesNotExistException();
 }

 public void AddFlight(string flightNumber,
 string from, string to, string planeType)
 {
 var flight = new Flight(flightNumber, from, to,
 planeType);
 _cache.AddOrUpdate(flightNumber, flight,
 (key, oldFlight) => flight);
 }

The following FlightReservation class uses the FlightList factory class to get the flights
for each reservation and binds them into a Reservation object:

 public class FlightReservation
 {
 private readonly IList<Reservation> _reservations = new
 List<Reservation>();
 private FlightList _flightList;

 public FlightReservation(FlightList flightList)
 {

www.EBooksWorld.ir

 _flightList = flightList;
 }

 public void MakeReservation(string lastName, string id,
 string flightNumber)
 {
 int pnr = PNRAllocator.AllocatePNR(lastName, id);

 //Flyweight-Immutable object is returned which will be
 shared between all instances
 Flight flight = _flightList.GetFlight(flightNumber);

 _reservations.Add(new Reservation(pnr, flight));
 }

 public void DisplayReservations()
 {
 //Print Total Reservations: _reservations.Count;
 foreach (var reservation in _reservations)
 reservation.Display();
 }
 }

Take a look at the tiny Reservation class that binds the reservation of a passenger
created by FlightReservation:

 public class Reservation
 {
 private readonly int _pnr;
 private readonly Flight _flight;

 public Reservation(int pnr, Flight flight)
 {
 _pnr = pnr;
 _flight = flight;
 }

 public string Display()
 {
 //concat all properties and return as a single string
 return "";
 }
 }

Finally, let's look at a simple .NET Core XUnit-based test case demonstrating sample
usage. I do not think it requires further explanation, as the test code is fairly straight
forward. Do not forget to download the whole source code from the Packt website:

 public class FlyweightTests
 {
 private static IServiceProvider Provider { get; set; }

 [Fact]
 public void Test_Flyweight_Pattern()
 {
 RegisterServices();
 FlyweightClient();
 }

 /// <summary>
 /// Initializing & populating DI container
 /// </summary>

www.EBooksWorld.ir

 private void RegisterServices()
 {
 IServiceCollection services = new ServiceCollection();

 //Adding required dependencies to the DI Container
 services.AddSingleton<FlightList>();
 services.AddTransient<FlightReservation>();

 Provider = services.BuildServiceProvider();
 }

 private void FlyweightClient()
 {
 var flightReservationSystem =
 Provider.GetRequiredService<FlightReservation>();

 flightReservationSystem.MakeReservation("Qureshi",
 "NRJ445", "332");
 flightReservationSystem.MakeReservation("Senthilvel",
 "NRI339", "333");
 flightReservationSystem.MakeReservation("Khan",
 "KLM987", "333");

 flightReservationSystem.DisplayReservations();
 }
 }

www.EBooksWorld.ir

A commentary on structural patterns
Like creational patterns, structural patterns are sometimes implemented
interchangeably.
For example, a bridge pattern is often implemented using the adapter pattern.
Flyweight does not necessarily have to be implemented only as an immutable object;
it can be a single instance (using, for example, a singleton) that is shared in various
other classes in different scopes.
Also, note that, although adapter and bridge patterns match very much in terms of
implementation design, their intent is different: one is to simplify and unify, while the
other is to create further abstractions (that do not necessarily simplify) on top of an
existing implementation.

www.EBooksWorld.ir

Behavioral patterns
These design patterns are best practices to identify a simple way to realize
relationships between entities in a given situation.

Let's jump on to our selective behavioral patterns one by one in order to see them in
detail.

www.EBooksWorld.ir

The template method pattern
The template method pattern basically defines the steps of an algorithm inside a class
as a contract while deferring some of the steps (methods) to be implemented by the
derived classes; hence, it primarily defines the structure via an abstract base class.

We will explain its implementation using an example in continuation of our sample
for a GUI app we created earlier for the abstract factory pattern. In fact, within the
same example app, we cover abstract factory, builder, and template method patterns.

In the abstract factory example, we presented the IUIAbsFactory interface and mentioned
two of the possible implementations as DarkUIAbsFactory and LightUIAbsFactory concrete
factory classes. Since the difference in our supposed implementation is basically
only the color factor between the two themes, DarkUIAbsFactory and LightUIAbsFactory, we
do not need to fully implement all the methods of IUIAbsFactory. Therefore, what we
will do is create a partial implementation as an abstract class and leave the specific
parts of the code algorithm which deals with the coloring part to the further derived
classes; that is, we apply the template method pattern.

For our example code, this ThemeableUIAbsFactory abstract base class looks like the
following:

 public abstract class ThemeableUIAbsFactory : IUIAbsFactory
 {
 protected IServiceProvider _provider;
 private IMenu menu;

 public ThemeableUIAbsFactory(IServiceProvider provider)
 {
 _provider = provider;
 }

 #region IUIAbsFactory abstract factory interface
 public IStatusBar CreateStatusBar()
 {
 var statusBar = new StatusBar();
 //StatusBar creation Preprocessing..
 ApplyThemeOnStatusBar(statusBar);
 //StatusBar creation Post-processing..
 return statusBar;
 }

 /// <summary>
 /// Internal code demonstrates the use of Builder pattern
 /// </summary>
 /// <returns></returns>
 public IWizard CreateWizard()
 {
 //Director code for builder pattern
 var wizardBuilder = _provider.
 GetRequiredService<IWizardBuilder>();

www.EBooksWorld.ir

 wizardBuilder.CreateWizardSteps(4);
 wizardBuilder.AddFrontScreen();
 wizardBuilder.AddFinalScreen();

 var wizard = wizardBuilder.GetResult();

 ApplyThemeOnWizard(wizard);

 return wizard;
 }

 public IMenu GetMenu()
 {
 //sort of Singleton resource behaviour
 if (menu != null) return menu; //only one menu
 resource will be created

 menu = new Menu();
 //Menu creation Preprocessing..
 ApplyThemeOnMenu(menu);
 //Menu creation Post-processing..
 return menu;
 }
 #endregion

 #region Template Methods
 public abstract void ApplyThemeOnStatusBar(IStatusBar
 statusBar);

 public abstract void ApplyThemeOnWizard(IWizard wizard);

 public abstract void ApplyThemeOnMenu(IMenu menu);
 #endregion
 }

ThemeableUIAbsFactory is an abstract base class that implements IUIAbsFactory. It
implements almost all of the interface methods and carefully delegates the
responsibility of filling the gaps, that is, applying themes of colors to the derived
classes. It has provided a template to be followed by the derived classes, in our case,
DarkUIAbsFactory and LightUIAbsFactory, so let's look at the code for one of them; the other
is similar:

 public class DarkUIAbsFactory : ThemeableUIAbsFactory
 {
 public DarkUIAbsFactory(IServiceProvider provider) :
 base(provider)
 {
 }

 public override void ApplyThemeOnMenu(IMenu menu)
 {
 //specific implementation
 }

 public override void ApplyThemeOnStatusBar(IStatusBar
 statusBar)
 {
 //specific implementation
 }

 public override void ApplyThemeOnWizard(IWizard wizard)

www.EBooksWorld.ir

 {
 //specific implementation
 }
 }

From the implementation of DarkUIAbsFactory, you can see that it only has to fill the
template of the abstract methods and does not have to worry about implementing the
complete IUIAbsFactory interface again.

www.EBooksWorld.ir

The observer pattern
The observer pattern is a pattern to enable the publisher/subscriber scenario
between the classes of an application. In this pattern, there is an observable object
that sends events to many observing objects registered to it for receiving events.

Let's take a look at the class diagram for the example implementation of the observer
pattern:

So, our example is basically talking about a scenario in a user interface-based
application where you have a KeyboardListener class that is listening to keyboard events
and then there are some other classes that need to know about certain key events, for
example, Caps Lock, Num Lock. In this case, our KeyboardListener class is a publisher
of the event class, and our observers are subscriber classes that are interested in
receiving the key events. In our example, our events that receive the observers are
StatusBar and BalloonNotifier.

First, we show you the code of the important IKeyObserver interfaces for the observer:

 public interface IKeyObserver
 {
 void Update(object anObject);
 }

This is the code of IKeyObservable for the observable:

 public abstract class IKeyObservable
 {
 private IList<IKeyObserver> _observers = new
 List<IKeyObserver>();

 public void AddObserver(IKeyObserver observer)

www.EBooksWorld.ir

 {
 _observers.Add(observer);
 }

 public void RemoveObserver(IKeyObserver observer)
 {
 _observers.Remove(observer);
 }

 public void NotifyObservers(object anObject)
 {
 foreach (IKeyObserver observer in _observers)
 {
 observer.Update(anObject);
 }
 }
 }

Now let's take a look at the implementation of the code for our observable class, that
is, KeyboardListener:

 public class KeyboardListener : IKeyObservable
 {
 public void SartListening()
 {
 ListenToKeys(); //Normally it would be a
 continous process..
 }

 /// <summary>
 /// Listen and notify only the interested keys
 /// </summary>
 private void ListenToKeys()
 {
 ObservedKeys key;

 //Got the key, we are interested in..
 key = ObservedKeys.NUM_LOCK;

 NotifyObservers(key);
 }
 }

This is the code for our simple observing class StatusBar that receives events to show
their key status in the display area of the status bar control:

 public class StatusBar : IKeyObserver
 {
 public void Update(object anObject)
 {
 Trace.WriteLine("StatusBar - Key pressed: " +
 anObject.ToString());
 }
 }

Now take a look at our sample client test code:

 public class ObserverTests
 {
 [Fact]
 public void Test_Observer_Pattern()

www.EBooksWorld.ir

 {
 var listener = new KeyboardListener();
 var statusBar = new StatusBar();
 var balloonNotifier = new BalloonNotifier();

 listener.AddObserver(statusBar);
 listener.AddObserver(balloonNotifier);

 listener.SartListening();

 listener.RemoveObserver(balloonNotifier);
 listener.SartListening(); //trigger a new
 notification again
 }
 }

This code produces the following outcome:

StatusBar - Key pressed: NUM_LOCK
BalloonNotifier - Key pressed: NUM_LOCK
StatusBar - Key pressed: NUM_LOCK

The output confirms that when a key event, NUM_LOCK, is triggered, it is received by all
the observers waiting for the key event, and we can dynamically add and remove the
observers. This summarizes our sample for the observer pattern.

www.EBooksWorld.ir

The chain of responsibility pattern
The chain of responsibility pattern promotes loose coupling by separating the request
senders from the request receivers and processors. It works like how a sender sends
a request to be fulfilled to one of the receiver objects, and this object either fulfills
the request and returns, or it partially fulfills the request, does not process the
request, and sends the request to the next request receiver/processor object until it
has been handled. In this way, all the request receivers, processors, or handlers are
chained to each other.

A more common example of this pattern is this: say, we have a request to purchase an
item and it requires an approval; it depends on the value of an item whether it can be
approved by a manager, SVP, or CEO. So in this scenario, we send the request for
approval to a manager first; if he can fulfill the request, it is satisfied there.
Otherwise, the manager sends the request to its successor, SVP, and so on to all the
connected request receiver objects automatically, while the request sender does not
know where it should be actually handled and all the receivers chained together work
smoothly until it has been completely handled.

Let's take a look at the UML class diagram for the chain of responsibility pattern:

The class diagram is simple; the client who is the request sender basically has the
instance of one request and sends the command to it; one request handler keeps the
instance of another request handler, and so on. Note that in this way, request handlers
are chained together and, therefore, processing can take place only sequentially and
only in one direction.

As mentioned earlier, in a chain of responsibility, either the request handler can skip
and pass the request to its successor, or it can process it or partially process and pass

www.EBooksWorld.ir

it forward to the next one in the chain.

We will now take a fairly practical example for the chain of responsibility pattern.
Let's say we have some kind of an app that needs to display the weather information
containing various attributes such as the map, temperature, and so on. In our example,
we will fill the request command object partially by each request handler, and when
it reaches the last one, the request is fulfilled.

This is what our example request command object looks like:

 public class WeatherStructure
 {
 public WeatherStructure()
 {
 Temperature = new Temperature();
 Map = new Map();
 WeatherThumbnail = new WeatherThumbnail();
 WeatherDescription = new WeatherDescription();
 }

 public Temperature Temperature;
 public Map Map;
 public WeatherThumbnail WeatherThumbnail;
 public WeatherDescription WeatherDescription;
 }

We will fill each of the four attributes one by one by four request handlers chained
together. The interface for the request handler for our example is as follows:

 public abstract class IWeatherInfoBuilder
 {
 protected IWeatherInfoBuilder _successor;

 public void SetSuccessor(IWeatherInfoBuilder successor)
 {
 _successor = successor;
 }

 public abstract void BuildWeatherObject(WeatherStructure ws);
 }

One of the request handlers looks like this, while all other request handlers look and
work the same way:

 public class WeatherMapBuilder : IWeatherInfoBuilder
 {
 public override void BuildWeatherObject(WeatherStructure ws)
 {
 BuildMap(weatherStructure.Map);

 if (_successor != null)
 _successor.BuildWeatherObject(weatherStructure);
 }

 private void BuildMap(Map map)
 {
 //construct Map appropriately
 map.MapURL = "https://maps.google.com/";

www.EBooksWorld.ir

 }
 }

Note how the request handlers are chained together: first, the successive request
handler is taken and saved in SetSuccessor() and used for chained processing; when the
request is being handled in BuildWeatherObject() after the handling is done, the successor
is invoked because, in this example, we are processing the request command
partially by each of the request handlers.

Let's take a look at what the client code looks like and who acts as a request
command object sender:

 public void Test_ChainOfResponsibility_Pattern()
 {
 IWeatherInfoBuilder wInfoBuilder1 = new
 WeatherDescriptionBuilder();
 IWeatherInfoBuilder wInfoBuilder2 = new
 WeatherMapBuilder();
 IWeatherInfoBuilder wInfoBuilder3 = new
 WeatherTemperatureBuilder();
 IWeatherInfoBuilder wInfoBuilder4 = new
 WeatherThumbnailBuilder();

 wInfoBuilder1.SetSuccessor(wInfoBuilder2);
 wInfoBuilder2.SetSuccessor(wInfoBuilder3);
 wInfoBuilder3.SetSuccessor(wInfoBuilder4);

 WeatherStructure weather = new WeatherStructure();
 wInfoBuilder1.BuildWeatherObject(weather);
 }

The client code is simple and all the chained request processing is achieved by a
single line--wInfoBuilder1.BuildWeatherObject(weather);

Chained request handlers fill each attribute of WeatherStructure one by one.

www.EBooksWorld.ir

The visitor pattern
The visitor pattern allows you to separate an algorithm via the visitor class from an
object structure (aggregating elements) so that the new operations can be added
without modifying the object structure.

It's a cleaner way by design for an old way of C++ friend class, which is allowed to
access the private members of another class.

In simple words, you break the class into two classes, one only with
elements/variables, and another only with the methods. In this way, you keep the one
with variables the same while varying the methods, that is, algorithms in the other
class. You define the methods grouped together in an interface called visitor so that
you can have more than one implementation of this visitor interface, which means that
you can have a completely different set of implementations while working on the
same set of attributes / variables / elements.

Before we jump into a realistic example code, let's close the definition by the UML
class diagram:

We will use the same example we used for the chain of responsibility pattern, that is,
filling up WeatherStructure, which is our Object Structure for the visitor pattern. It
contains four elements IWeatherElement mapping to the element of the visitor pattern as
Map, Temperature, Description, and Thumbnail.

We will have two versions of concrete visitors (YahooWeatherBuilder,
ForecastIOWeatherBuilder); we will also see two ways of visitor (AnotherWeatherManipulator)
method's signature implementation. Ensure that you download and see the full version
of the code for visitor pattern and others.

www.EBooksWorld.ir

The interface for the Element is as follows:

 /// <summary>
 /// Interface for the Visitable class (The class to be visited
 by the visitor class)
 /// </summary>
 public interface IWeatherElement
 {
 void ManipulateMe(IWeatherManipulator weatherManipulator);
 }

The interface for the Visitor class is as follows:

 /// <summary>
 /// Interface for the Visitor object
 /// </summary>
 public interface IWeatherManipulator
 {
 void ManipulateElement(IWeatherElement weatherElement);
 }

The object structure that aggregates the weather elements looks like the following:

 public class WeatherStructure
 {
 private Temperature _temperature;
 private Map _map;
 private WeatherThumbnail _weatherThumbnail;
 private WeatherDescription _weatherDescription;

 private IWeatherManipulator _weatherBuilder;

 public WeatherStructure(IWeatherManipulator weatherBuilder)
 {
 _weatherBuilder = weatherBuilder;

 _temperature = new Temperature();
 _map = new Map();
 _weatherThumbnail = new WeatherThumbnail();
 _weatherDescription = new WeatherDescription();
 }...

Our test client code looks like the following:

 WeatherStructure weatherStructure = new WeatherStructure(new
 YahooWeatherBuilder());
 weatherStructure.BuildWeatherStructure();

To use the other implementation of the visitor pattern, that is, to apply the different
algorithm on the same set of elements, that is, the object structure, we just have to do
the following:

 WeatherStructure weatherStructure = new WeatherStructure(new
 ForecastIOWeatherBuilder());
 weatherStructure.BuildWeatherStructure();

Let's take a look at the simple code for BuildWeatherStructure():

www.EBooksWorld.ir

 void BuildWeatherStructure()
 {
 _temperature.ManipulateMe(_weatherBuilder);
 _map.ManipulateMe(_weatherBuilder);
 _weatherThumbnail.ManipulateMe(_weatherBuilder);
 _weatherDescription.ManipulateMe(_weatherBuilder);
 }

This line, _temperature.ManipulateMe(_weatherBuilder), is basically element.visit(visitor).

A while ago, I mentioned that we could have a slight variation in the visitor interface,
and it would look like the following:

 interface IAnotherWeatherManipulator
 {
 void ManipulateElement(Map map);
 void ManipulateElement(Temperature temperature);
 void ManipulateElement(WeatherDescription weatherDescription);
 void ManipulateElement(WeatherThumbnail weatherThumbnail);
 }

For the first version of the visitor interface, the implementation looks like the
following:

 class WeatherManipulator : IWeatherManipulator
 {
 public void ManipulateElement(IWeatherElement weatherElement)
 {
 if (weatherElement is Map)
 BuildMap(weatherElement);
 else if (weatherElement is Temperature)
 BuildTemperature(weatherElement);
 else if (weatherElement is WeatherDescription)
 BuildWeatherDescription(weatherElement);
 else if (weatherElement is WeatherThumbnail)
 BuildWeatherThumbnail(weatherElement);
 }

This means that we have to check the exact type of element in order to manipulate it
effectively; on the other hand, the other variation of the visitor interface as a concrete
type is passed into its argument, so the type checking inside the function is not
required. Both are valid implementations of the visitor pattern.

If you still have any confusion about this example visitor pattern, take a look at the
complete source code and have fun.

www.EBooksWorld.ir

The strategy pattern
The strategy pattern basically allows an algorithm to be selected dynamically at
runtime without modifying the client code.

For example, if we have lot of input data from past weather information and we need
to forecast the weather, we could perhaps infer based on purely statistical values
from the past or from an algorithm doing some kind of scientific manipulation or
both. After doing the calculations, we would want to compare the results to check the
effectiveness, for example. In this scenario, instead of changing the client code each
time, we just supply a different algorithm implementation to the client, thus incurring
maybe just a single line of code change. So, the strategy pattern lets the algorithm
vary independently from clients using it.

The simple UML diagram for the strategy pattern looks like the following:

Let's talk about the example code. We want to travel between two points, A and B, on
the map and need to calculate the duration. We encapsulate the duration calculation
algorithm in the strategy so that we can calculate the duration while traveling in the
car and traveling via public transport. Therefore, our class diagram will look like the
following for our example code:

Jumping on to the code, let's look at the code of the context class, that is,
TravelDurationCalculator:

 public class TravelDurationCalculator
 {
 private IDurationCalculator strategy;

 public TimeSpan Measure(string pointA, string pointB)
 {
 return strategy.Measure(pointA, pointB);

www.EBooksWorld.ir

 }

 //Change the strategy
 public void SetCalculator(IDurationCalculator strategy)
 {
 this.strategy = strategy;
 }
 }

From this class, you know how the flow is controlled, so let's see the interface for
our strategy:

 public interface IDurationCalculator
 {
 TimeSpan Measure(string pointA, string pointB);
 }

Now let's see the simple code for our classes implementing the strategies:

 /// <summary>
 /// Travel duration calculating strategy using car
 /// </summary>
 public class CarDurationCalculator : IDurationCalculator
 {
 public TimeSpan Measure(string pointA, string pointB)
 {
 //Calculate and return the time duration value..
 return new TimeSpan(4, 46, 0);
 }
 }
 /// <summary>
 /// Travel duration calculating strategy using public
 transport (bus, tram, train..)
 /// </summary>
 public class PublicTransportDurationCalculator :
 IDurationCalculator
 {
 public TimeSpan Measure(string pointA, string pointB)
 {
 //Calculate and return the time duration value..
 return new TimeSpan(6, 02, 0);
 }
 }

After seeing this ultimate algorithm for the travel duration calculator, let's look at
what the client code would look like the following:

 public void Test_Strategy_Pattern()
 {
 string pointA = "Berlin";
 string pointB = "Frankfurt";
 TimeSpan timeSpan;
 var durationCalculator = new TravelDurationCalculator();

 durationCalculator.SetCalculator(new
 PublicTransportDurationCalculator());
 timeSpan = durationCalculator.Measure(pointA, pointB);
 Trace.WriteLine(pointA + " to " + pointB + " takes " +
 timeSpan.ToString() + " using public transport.");

 durationCalculator.SetCalculator(new CarDurationCalculator());

www.EBooksWorld.ir

 timeSpan = durationCalculator.Measure(pointA, pointB);
 Trace.WriteLine(pointA + " to " + pointB + " takes " +
 timeSpan.ToString() + " using car.");
 }

The output of this client test code is as follows:

Berlin to Frankfurt takes 06:02:00 using public transport.
Berlin to Frankfurt takes 04:46:00 using car.

I hope this wonderful design pattern is well understood now.

www.EBooksWorld.ir

The state pattern
The state pattern allows the change in the object's behavior based on the change of its
state.

If the state is changing for an object, the behavior automatically changes as well. For
example, a person whose state is nervous behaves strangely, while a person whose
state is happy behaves in a more positive way.

The state pattern basically implements the state machine in a way that each state is a
derived class of a state interface, and they alter between them jumping from one state
to another, thus dynamically updating the behavior as per the state.

Let's jump to our example. We want to know the number of days in a season, either
summer, winter, autumn, or spring. We will always invoke one single method to know
the number of days while we want the object to shift its state automatically to the next
season and therefore change its behavior and give us the different number of days on
the next call to the same method.

The UML class diagram for the state pattern applied to our example looks like the
following:

Now it's time to make things more clear, so let's talk code. First of all, I will show
you the client code so that we can see the big picture directly, which I might have
failed to explain very clearly:

 public void Test_State_Pattern()

www.EBooksWorld.ir

 {
 var weatherTeller = new WeatherTeller();

 var weatherDays = weatherTeller.GetWeatherDays();
 Trace.WriteLine(string.Format("Name: {0} - Days: {1}",
 weatherDays.Weather, weatherDays.Days));

 weatherDays = weatherTeller.GetWeatherDays();
 Trace.WriteLine(string.Format("Name: {0} - Days: {1}",
 weatherDays.Weather, weatherDays.Days));

 weatherDays = weatherTeller.GetWeatherDays();
 Trace.WriteLine(string.Format("Name: {0} - Days: {1}",
 weatherDays.Weather, weatherDays.Days));

 weatherDays = weatherTeller.GetWeatherDays();
 Trace.WriteLine(string.Format("Name: {0} - Days: {1}",
 weatherDays.Weather, weatherDays.Days));

 weatherDays = weatherTeller.GetWeatherDays();
 Trace.WriteLine(string.Format("Name: {0} - Days: {1}",
 weatherDays.Weather, weatherDays.Days));
 }

Let's look at the interface for the context and the class implementing the WeatherTeller
context:

 internal interface IStateContext
 {
 void SetState(IWeatherDaysTellerForState newWeatherState);
 }

This is the interface for the implanting class:

 public class WeatherTeller : IStateContext
 {
 private IWeatherDaysTellerForState weatherDaysTellerState;

 public WeatherTeller()
 {
 weatherDaysTellerState = new SummerDaysTeller();
 }

 public WeatherDays GetWeatherDays()
 {
 return weatherDaysTellerState.GetWeatherDays(this); ;
 }

 /// <summary>
 /// Internal interface IStateContext implementation
 /// </summary>
 void IStateContext.SetState(IWeatherDaysTellerForState
 newWeatherState)
 {
 weatherDaysTellerState = newWeatherState;
 }
 }

The interface for the state classes:

 internal interface IWeatherDaysTellerForState
 {

www.EBooksWorld.ir

 WeatherDays GetWeatherDays(IStateContext stateContext);
 }

Finally, here is the code for one of the state classes:

 internal class SummerDaysTeller : IWeatherDaysTellerForState
 {
 public WeatherDays GetWeatherDays(IStateContext stateContext)
 {
 stateContext.SetState(new AutumnDaysTeller());

 return new WeatherDays()
 {
 Weather = "Summer",
 Days = 150 //5 months * 30
 };
 }
 }

This completes our state pattern. In fact, this is the last design pattern we cover in
this chapter.

I imagine you have understood this pattern as well as the others. Download the
complete source code and run through the code to get the complete essence.

www.EBooksWorld.ir

A commentary on behavioral patterns
Sometimes, some behavioral patterns overlap each other, while other times, they
make perfect individual sense uniquely. For example, in terms of the class diagram,
the structural implementation state and strategy patterns are quite similar, but they
exhibit completely different behavior as well as have their own different intent.
Remember, the state pattern always involves a state machine situation.

One could argue that there is an overlap between the chain of responsibility and the
decorator pattern; while both satisfy the single responsibility principle, one tackles
the addition of the functionality dynamically through the design of the structure and
other via its behavior. Also, there is a big difference between the class diagram and
implementation of the decorator and the chain of responsibility pattern.

www.EBooksWorld.ir

Summary
All of these design patterns satisfy the S.O.L.I.D object-oriented design principles.
Going through this chapter not only helped you revise your GoF patterns and
fundamental S.O.L.I.D principles, but it will also help you keep in mind when you
are designing your new classes to solve certain problems and hence increase the
quality of your software.

We also covered some fundamentals of Inversion of Control via dependency injection
and also went though some examples of DI using .NET Core. You would have also
noticed that with the advent of DI, a lot of GoF patterns are automatically taken care
of by the DI pattern. For example, almost all of the creational patterns can be
replaced by the DI, while for many others, DI can complement them by taking care of
part of their responsibility with regards to their implementation.

I hope you enjoyed this chapter as much as I did. This chapter provides the solid and
essential basis for all of the design and code-heavy chapters in the remainder of this
book.

www.EBooksWorld.ir

Distributed Computing
In the previous chapter, we looked at modern design and development principles that
are essential to quality and maintainable code and stable yet flexible application
design. Learning is through some of the most used design patterns and their
implementation using the .NET Core code. Distributed computing is an art of
computing to interact with a collection of independent systems in the field of
computer science. In this chapter, you will get an opportunity to understand the
fundamentals of this computing and application in the enterprise world. It starts with
the definition, followed by its core characteristics, such as concurrency, scalability,
transparency, security, and so on. In the modern world, distributed computing has a
vital role to play.

This chapter will cover the following topics:

What are Distributed applications?
Multithreaded programming
Concurrency versus parallelism
Design challenges to build the distribution
Scalability
Security

www.EBooksWorld.ir

Understanding Distributed applications
To understand distributed applications in a better way, we can start with the
definition of the computing, following with comparison points.

www.EBooksWorld.ir

Definition
In the early days of computer evolution, mainframe computers were heavily used in
the industry. By design, the legacy mainframe was performed on a single system and
was called centralized computing

A distributed system is a collection of independent computers, interconnected via a
network. The core objective of the network is to collaborate and complete a
particular task. Fundamentally, distributed computing is computing performed in a
distributed system. Consider the following diagram:

Historically, distributed systems have been successful because of the availability of
powerful and cheaper microprocessors in personal computers, embedded systems,
personal digital assistant, and so on. Most importantly, the continuous advancement in
communication technology has been key to their success.

www.EBooksWorld.ir

Comparison
On comparing distributed computing with the traditional centralized computing
model, it can be tabulated as follows:

Sr.No. Centralized Distributed

1 Monolithic architecture within a
single system.

Distributed architecture across the
network.

2
In terms of functionality, separate
and single function applications are
designed.

Integrated applications are
designed in terms of functionality.

3 Applications can't share data or
other app resources by design.

By design, applications can share
all types of resources.

4 Mainframe-based applications are
developed using this approach.

Modern multi-layer/tier
applications are designed based
on this methodology.

5 Proprietary user interfaces are
developed here.

Common user interfaces are
designed here.

In terms of economics, the distributed system allows the pooling of resources,
including CPU cycles, data storage, input and output devices, and services in the
enterprise system.

www.EBooksWorld.ir

Multiprogramming
Since the advent of the Internet in the 1980s, there has been a steady growth of new
enterprise applications being built on distributed processing. In recent times, there
has been an explosive growth in network technology expansion. The technical
journey goes in the way of intranet, Internet, World Wide Web, wireless network,
GPS, RFID (Radio Frequency Identifier), and so on.

In the emerging world of global computing, distributed computing is the core central
piece of all computing.

According to the fundamentals of computing, there are four core components,
namely:

Input
Process
Storage
Output

The Input phase ingests the data and commands into CPU using one or more input
devices. The Process phase performs the execution of the input data and turns it into
useful information as Output. During this process, it persists the useful data into the
Storage layer.

In general it is a bit confusing between multiprogramming and multithreading in
parallelism context. Few simple examples clear the differentiation in a perfect way.

Multiprogramming is the capability of an operating system to execute more than one
program on a single machine. A classic example is to run more than one program,
such as Excel, Internet Explorer, word, and more, in a Windows operating system:

www.EBooksWorld.ir

In a similar trend, multithreading has the ability of an operating system to execute
different parts of a program, namely--threads. It is depicted in the following diagram:

In a different dimension, threads are considered as child processes to share the
parent process resources, but execute independently. In terms of parallel execution,
multiple threads of a single process shares the single CPU system on time-sliced
basis. A classic example is a multiple document process using a single Word
process.

www.EBooksWorld.ir

Thread synchronization
In my work experience, associates always felt that multithreaded applications
provide the illusion that numerous activities are happening at more or less the same
time. Interestingly, on observing CPU/system reality, it is considered as Time Slice
to switch between different threads. It is based on round-robin methodology.

Process-based multitasking handles the concurrent execution of programs, while
thread-based multitasking deals with the concurrent execution of pieces of the same
program.

In this section, it is essential to highlight the risk factor of thread collision during a
multithreading process in an enterprise application. On building any multithreaded
application, shared data should be protected from the possibility of multiple thread
engagement with its content/value.

Let's illustrate with a simple example:

 static void Main(string[] args)
 {
 Console.WriteLine("Demo of Thread Synchronize");
 Console.WriteLine("##########################");
 Console.WriteLine("Main Thread starts here...");
 WorkerThreadClass p = new WorkerThreadClass();

 /* Group of 7 threads creation
 * for synchronize execution
 */
 Thread[] threadList = new Thread[7];
 for (int i = 0; i < 7; i++)
 {
 threadList[i] = new Thread(new
 ThreadStart(p.SyncThreadProcess));
 }
 foreach (Thread thread in threadList)
 {
 thread.Start();
 }
 Console.WriteLine("Main Thread ends here...");
 Console.ReadLine();
 }

Now, the key factor is to protect the shared block using the lock option. It requires us
to specify a token to acquire by a thread to enter within the lock scope:

 class WorkerThreadClass
 {
 // Synchronization Lock object
 private Object ThreadLock = new object();
 public void SyncThreadProcess()
 {
 //Lock to synchronize

www.EBooksWorld.ir

 lock (ThreadLock)
 {
 Console.WriteLine("Starting Thread with ID: {0}",
 Thread.CurrentThread.ManagedThreadId);
 Console.WriteLine("Lock the operation of Thread");
 for (int i = 1; i <= 10; i++)
 {
 Console.Write(i + " ");
 }
 Console.WriteLine("n Release the Lock to
 other Thread");
 }
 }
 }

On attempting to lock down an instance-level method, the execution can simply pass
the reference to that instance. Once the thread enters into a lock scope, the lock token
(in our example, the ThreadLock object) is inaccessible by other threads until the lock
is released or the lock scope has exited.

The execution result depicts the process in a clear way, as shown here:

www.EBooksWorld.ir

Storage
As there has been rapid development in the electronics and communication space, the
industry has released the hardware components with cost-effective and highly
efficient modes. In this direction, computer architecture is designed with the
interconnected multiple processors types in two forms:

Tightly coupled system
Loosely coupled system

In tightly coupled system, there is a single system-wide primary memory, which is
shared by all the processors in the ecosystem. As the name depicts, any sort of
communication is executed in the closed tightly couple environment of the common
shared memory route, as defined here:

Let's take an example in the multiprocessor environment. Processor 1 writes value
100 into the shared memory address location ADDR1. Subsequent reads by the rest of
the processors will be the same value, 100, from the ADDR1 location. It will be valid
until there are any further updates on the specific location.

If you take the same scenario in the loosely coupled system, each processor contains
its own independent local memory to persist the value. It doesn't share any memory
location across the processors. By design, message-bound inter-process
communication is established. By architecture, this is termed Message Driven
Architecture in the computing industry.

With the concept of fundamentals, the first version tightly coupled system is built
using parallel computing. The second version Loosely Coupled system is based on

www.EBooksWorld.ir

distributed computing.

On analyzing the need for hard disk capacity (GB) in personal computers, the plot is
interestingly logarithmic. The lesson learned is that the industry fitted line
corresponds to exponential growth.

www.EBooksWorld.ir

Process
In simple terms, the computing process is defined as an instance of a software
program to execute a set of predefined activities to generate the result as the output.
In the hardware of the computers, CPU is the core component of the process in which
Control Unit (CU) and ALU (Arithmetic Logic Unit) are the fundamentals to
execute.

Performance is the key success indicator of the process. There are two aspects to
a performance improvement scheme. The first is to execute multiples of a single job
instance. This refers to concurrency and parallelism. However, both objectives are
the same, and they have quite distinct concepts.

The second aspect is the multiple folds at the machine level. It is a foundation for the
scaling concepts of scale up and scale out. We will discuss scalability in detail at the
end of this chapter.

www.EBooksWorld.ir

Concurrency
In concurrent computing, the program is decomposed into multiple threads to execute
the control with distinct responsibilities. Multithreads may run either simultaneously
or in turn based on the system infrastructure. By design, there are two main concepts.
They are as follows:

How are the processes scheduled to execute?
How does the coordination process synchronize to produce the result?

Let's take a simple example. The given business problem statement is converted into
a software program. Multiple instructions of the program are decomposed into
logical independent splits, named Thread.

Therefore, the program/problem 'p' is split into 't' threads (t1, t2,...tN), the execution
target at one CPU processor.

The scheduler component drafts the execution order after making several independent
instructions associated with threads. The coordination process is quite interesting in
the way that multiple threads of control cooperate to complete the task for producing
the end result. Thus, concurrency is virtual parallelism through a shared mode, such
as time slicing.

As we know, concurrency systems have several processes that are executing
simultaneously. These processes can interact with each other while they are
executing. On the flip side, concurrency may trigger indeterminacy among the
resulting outcome that leads to issues such as deadlock and starvation. Again, these
design challenges are properly addressed during the implementation phase.

As a result, concurrent programming is implemented by splitting the existing task into
multiple factors to be executed. Concisely, concurrency achieves logical execution of
multiple tasks at once.

www.EBooksWorld.ir

www.EBooksWorld.ir

Parallelism
Parallel computing has a major design difference with the earlier concurrent
computing. Typically, it reduces the execution cycle/timing by taking advantage of the
infrastructure/hardware ability to execute/complete more than one task at any point of
given time.

Parallel computing leverages various techniques, such as vectorisation, instruction
level parallelism named super scalar architecture, multiprocessing using multiple
core processors, and so on. At a software level, there is another model in which
uniform operations over aggregate data can be speed up. This is achievable by
partitioning the data and computing on the partitions simultaneously.

Parallelism is a combination of software and hardware techniques. It is used to allow
several processes to run in parallel, physically. The primary objective is used for
faster computation in modern enterprise applications. Take a look at the following
diagram:

In a nutshell, parallelism achieves the physical execution of multiple tasks at once
using multiple processors in the ecosystem.

www.EBooksWorld.ir

Multithreading exercise
In computing theory, job execution is programmatically spanned using the control
named thread. Each thread defines a unique flow of control, but it is controlled by
the main program. If you notice that the application is a time-consuming complicated
independent process, it is advisable to leverage thread programming for the efficient
execution. Independent is the key for parallelism.

In .NET programming, threads are created by extending Thread class of System.Threading
library. On invoking Start() method of the extended Thread class, the system kick starts
the child thread execution. The life cycle of a thread starts when an object of the
System.Threading.Thread class is created and ends when the thread is terminated or
completes execution.

By design, .NET Core supports multithreaded operations in the following two ways:

Own threads with ThreadStart delegates
Using ThreadPool framework class

As best practice, it is highly recommended to create a new thread manually using
ThreadStart for long-running tasks, whereas ThreadPool only for brief jobs.

www.EBooksWorld.ir

ThreadStart
In terms of implementation, let me explain the details of coding statement and its
significance. A thread does not begin executing when it is created in C# program as
follows:

 Thread thread = new Thread(job)

In fact, thread execution is scheduled by calling the C# Start method as follows:

 thread.Start();

To sequence .NET thread processing, ThreadStart delegate is a parameter when
creating a new thread instance:

 ThreadStart job = new ThreadStart(ThreadJob);

Generally, worker thread is referred to describe another thread from the one that is
doing the work on the current thread, which, in lots of cases, is a foreground or UI
thread.
It is similar to master slave execution model in computing theory. With these
fundamental coding concepts, simple thread program is written with main and worker
thread as follows:

 /// <summary>
 /// Main method to kick start Job
 /// </summary>
 public static void Main()
 {
 ThreadStart job = new ThreadStart(ThreadJob);
 Thread thread = new Thread(job);
 thread.Start();
 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("Main thread: {0}", i);
 Thread.Sleep(1000);
 }
 Console.ReadKey();
 }

 /// <summary>
 /// Sub or worker thread is getting triggered here
 /// </summary>
 static void ThreadJob()
 {
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine("Worker thread: {0}", i);
 Thread.Sleep(500);
 }
 }

www.EBooksWorld.ir

In terms of execution of the preceding code, worker thread counts from 0 to 9 fairly
fast (about twice a second) while the main thread counts from 0 to 4 fairly slowly
(about once a second). In turn, framework execution has discrepancy of execution
between main thread of 1000ms sleep and worker thread of 500ms. As a result, the
execution output on one machine looks like the following screenshot:

On observing the code execution's result, it is clear indication that the sleeping thread
will immediately start running across main and worker threads as soon as the sleep
finishes. On thread execution, another thread may be currently running coincidentally
on a single processor machine. The impact is that the current thread needs to await
until the system thread scheduler shares the processor time during the next round of
allocation.

www.EBooksWorld.ir

ThreadPool
ThreadPool is an interesting concept and entirely different from the earlier approach.
In fact, a collection of threads is created based on the system resources (like
memory) availability. By default, the thread pool has 25 threads per processor.

On demand, thread pool size can be scaled up and down to match the code
execution. Every thread of ThreadPool is always associated with a specific given
task. On completion, the underlying thread will return to the pool manager for further
assignments. It has been depicted in the following diagram:

In terms of implementation, the System.Threading.ThreadPool class handles the creation of
new threads along with the efficient distribution of consumer and management among
those threads.

Though there are a number of ways to create thread pool in C#, the simplest way is
by calling ThreadPool.QueueUserWorkItem.

This method allows us to launch the execution of a function on the system thread
pool. Its declaration is as follows:

 ThreadPool.QueueUserWorkItem(new WaitCallback(Consume));

The first parameter specifies the function that we want to execute on the pool.
Framework expects to match the delegate of WaitCallback, as follows:

 public delegate void WaitCallback(object state);

In terms of implementation, here is a simple example to illustrate the ThreadPool
concept in .NET C# code:

 using System;
 using System.Threading;

 namespace PacktThreadSample
 {
 class ThreadPoolTest
 {
 static void Main()

www.EBooksWorld.ir

 {
 Console.WriteLine("Before handover to ThreadPool..");
 System.Threading.ThreadPool.QueueUserWorkItem(
 new WaitCallback(WorkerThread), "Content insider Worker
 Thread");

 Console.WriteLine("Right after ThreadPool retrun..");
 // Give the callback wait time of 2 mins after
 WorkerThread trigger
 // Else App might terminate before the control returns
 Thread.Sleep(2000);
 Console.WriteLine("2 minutes dealy after
 ThreadPool retrun..");
 }
 static void WorkerThread (object parameter)
 {
 Console.WriteLine(parameter);
 }
 }
 }

The only catch in ThreadPool is to handle the asynchronous thread execution. As the
best practice, the main thread needs to await for the complete worker thread
execution. On executing the preceding C# ThreadPool code, the result will be as
follows:

Technically, thread pooling is essential in multithreaded enterprise applications for
response time improvement, thread management, optimized thread timing, and more.

ThreadPool can only run so many jobs at once, and some framework classes use it
internally, so you do not want to block it with many tasks that need to block for other
things.

www.EBooksWorld.ir

Task Parallel Library (TPL)
TPL is the recent feature in .NET programming for well managed parallel
processing. The main purpose is to increase the developer's productivity by
simplifying the programming related to parallelism and concurrency to any enterprise
applications. In my view, it is a highly recommended approach to write parallel
processing code in .NET.

In spite of simplicity at TPL, I recommend the programmers to have a basic
understanding of the fundamental threading concepts like deadlocks and race
conditions. By doing so, TPL will be effectively used in the source code.

Let's start the implementation of TPL with a simple example by simply adding two
Threading namespaces:

 using System;
 using System.Threading;
 using System.Threading.Tasks;

To demonstrate the execution of TPL, let's write two independent methods to display
integer and characters of a string, which will be invoked concurrently using the
Parallel.Invoke() method:

 static void PostInteger()
 {
 for (int i=0; i<10; i++)
 {
 Console.WriteLine("Integer Post:" + i);
 Thread.Sleep(500);
 }
 }
 static void PostCharacter()
 {
 const String sampleText = "Packt Thread";
 for (int i = 0; i < sampleText.Length; i++)
 {
 Console.WriteLine("Character Post:" + sampleText[i]);
 Thread.Sleep(1000);
 }
 }

Now, it is action time to execute the preceding methods concurrently by the following
code base using Parallel class:

 using System;
 using System.Threading;
 using System.Threading.Tasks;

 namespace PacktThreadSample
 {
 class TaskParallel

www.EBooksWorld.ir

 {
 static void PostInteger()
 {
 for (int i=0; i<10; i++)
 {
 Console.WriteLine("Integer Post:" + i);
 Thread.Sleep(500);
 }
 }
 static void PostCharacter()
 {
 const String sampleText = "Packt Thread";
 for (int i = 0; i < sampleText.Length; i++)
 {
 Console.WriteLine("Character Post:" + sampleText[i]);
 Thread.Sleep(1000);
 }
 }
 static void Main(string[] args)
 {
 Parallel.Invoke(
 new Action(PostInteger),
 new Action(PostCharacter)
);
 Console.ReadLine();
 }
 }
 }

On executing the preceding source code, it is interesting to observe the highly
managed parallelism by .NET framework. From the developer's point of view, the
independent parallel methods are constructed and just attached in the Parallel.Invoke
method. Without any issue, the application is able to achieve in-built parallelism
using simple implementation. The execution result will be as follows:

Thus, TPL supports the well managed parallelism to build .NET enterprise
applications. Task parallel library helps the developer community to leverage the full
potential of the available hardware capacity. The same code can adjust itself to give
you the benefits across various hardware. It also improves the readability of the code
and, thus, reduces the risk of introducing challenging parallel process bugs.

www.EBooksWorld.ir

www.EBooksWorld.ir

Design challenges
By design, the industry always feels it's too difficult to design distributed enterprise
applications. With the fundamental concepts of a loosely coupled system, the lack of
latest current state and consistent information leads to many synchronization issues in
the design of a distributed system design. As we know, the resources of distributed
applications are physically separated in their ecosystem. Due to the missing common
resource factors, it is highly possible to have a delay in message delivery, and
messages could even be lost. Consider the following diagram:

In spite of the previously listed complexities and challenges, distributed applications
must be designed to leverage the complete advantages of the design to the end users.
By leveraging the built-in concepts of the virtual centralized system, the distributed
enterprise application is capable of demonstrating system characteristics such as
reliability, transparency, efficiency, security, and easiness.

As a process to mitigate the listed challenges, the distributed applications are
developed to deal with resolving several design issues.

www.EBooksWorld.ir

Transparency
Spatially separated multiple users consume the distributed applications concurrently.
In this condition, it is highly economical to build the sharing concept among the
existing system resources for the concurrent execution of the user's request.

By design, one of the existing processes must influence the other concurrently
executing process as they might compete for the shared resources. As a result,
collision might occur by making concurrent updates in the system. It is highly
recommended that you avoid system collision.

Concurrency transparency is a concept in which each user is intended to get a feeling
of the sole usage of the resource in the system. To simulate the concept of
concurrency transparency, the distributed system is recommended to get the following
four properties during the resource sharing processes:

In terms of priority-based execution, it is proposed that you have an event-
ordering property. This property ensures access requests to various system
resources, which are properly ordered to provide a consistent view to all users
of the enterprise applications.
To balance the deficiency against the need, no starvation property is
established to ensure the granted resource by not using it simultaneously by
multiple processes. As time progresses, the resource is eventually released to
grant further access.
To avoid conflict execution in the system, a third property is established, namely
mutual-exclusion. This property ensures shared resource accessibility to be
leveraged by one process at any point of time.
To handle resource locking seamlessly, the final property is named no-deadlock
property. The core purpose of this property is to prevent resource locking
mutual progress while competing with each other in the system.

With the capability of transparency in the enterprise environment, the distributed

www.EBooksWorld.ir

system has the ability to deliver the following eight types of transparencies:

Access
Migration
Location
Replication
Relocation
Concurrency
Persistence
Failure

Predominantly, this categorization is driven by hiding the system resources of
enterprise applications.

www.EBooksWorld.ir

Reliability
As described in the first section of this chapter, a distributed system is expected to be
more reliable than a centralized system. It seems that the existence of multiple
instances increases the level of system reliability. On the flip side, few design
challenges on loosely coupled systems have the probability of unreliable
characteristics in distributed applications.

Theoretically, reliability is defined as the probability of success. Mathematically, it
is represented as Reliability = 1 - Probability of failure.

A software reliability curve is pictorially represented as follows:

With the inference of the preceding graph, software reliability is defined as the
probability of the failure rate in the y axis against the specific time period in the x
axis for a particular distributed environment.

By rolling higher reliability in an enterprise application, it is assured that you will be
able to avoid/tolerate system faults, tolerate faults, and detect/recover from the
identified faults.

www.EBooksWorld.ir

Fault tolerance
In an enterprise distributed system, there is a high possibility of error generation due
to any mechanical or algorithmic issue. It is defined as a system fault that leads to
failure on executing the underlying applications.

In general, faults are classified into three major categories. They are as follows:

Transient fault
Intermittent fault
Permanent fault

Transient faults occur once and then disappear, so it is very difficult to reproduce
and resolve the bug. Let me provide a simple example. In a network messaging
process, it may be possible to loose data connectivity, and it is pretty hard to
reproduce the exact situation. This characteristic is considered the key factor to
categorize transient faults.

Intermittent fault repeats multiple times with the characteristics of an occurring
fault, and then it disappears for a while, then it reoccurs, and then it disappears, and
so on. As a side effect, an intermittent fault is considered the most annoying of
component faults in the underlying system. In a similar network example, loose
connectivity is the classic use case to illustrate an intermittent fault type.

Permanent fault has a persistent characteristic, so these types of fault continue to
exist until the faulty component is repaired or replaced. To continue to our network
use case, the physical corruption of network cable is the suitable example. Unless the
damaged network cable is fixed or replaced properly, the enterprise application is
not suitable to proceed. Further examples of this fault are disk head crashes, software
bugs, and burned-out power supplies.

www.EBooksWorld.ir

Performance
Performance is quite an interesting field in the IT industry. In simple terms, it is the
total number of tasks completed by a computer system. The core objective of the
performance factor is to produce the output with a short response time for the given
set of tasks.

High throughput will be the goal of performance. There are two factors involved in
calculating the value of throughput. This is mathematically noted as follows:

TH = N / T

Here, TH - Expected Throughput

N - Number of target tasks

T - Total time require to complete the task(s)

Let me give you a simple example. In a given condition, there are 100 target tasks to
be completed in an enterprise application. The total execution time to complete the
given 100 tasks may be 20 seconds. So, Threshold (TH) is as follows:

TH = 100 / 20 = 5 seconds per task

On comparison with a centralized system, distributed computing is expected to have
better performance with high throughput.

To meet the expectation of the preceding characteristics, it is essential to build some
performance-oriented aspects in the distributed system.

www.EBooksWorld.ir

Decompose
In general, most of the complex large problems are solved in an easy way with the
divide and conquer strategy. To illustrate the decomposition strategy, it is better to
choose the common network use case. It is possible to transfer the data across the
network in large chunks. Instead of transferring the complete large content in one
shot, it is much more efficient to process the individual pages.

Similarly, there is another suitable example during the message acknowledgement
process. It can showcase better performance by taking advantage of previous
messages' acknowledgement with the next message. It is possible to showcase during
a series of messages exchange processes.

www.EBooksWorld.ir

Caching
In computing theory, some techniques, such as LRU (Least Recently Used), MRU
(Most Recently Used), are quite common when it comes to improving performance
using the concept of caching. The idea is to temporarily persist the frequently used
data at the client site. In turn, the system is not expected to go and retrieve the data on
every transaction. Instead, it can refer the cached data in the local layer.

What is the benefit of doing this? Eventually, it improves overall system performance
by saving a large amount of computing time and network latency.

www.EBooksWorld.ir

Scalability
In computing theory, process is the key component in terms of the execution cycle. In
reality, there is always a need to increase the system capability from time to time.
With reference to this reality, scalability refers to the adoption capability of any
system to align with the work load increments. Scalability is highly integrated with
distributed computing by design.

www.EBooksWorld.ir

Scale up
In terms of the scaling process, scale up is the traditional model to improve the
power of the underlying system. As new resources are added in the same box, it is
interpreted as vertical scaling. This is depicted in the following figure:

Let me explain this with a simple day-to-day example. On purchasing a personal
laptop, the initial hard disk configuration might be 500 GB. After a while, the disk
gets full and there is a pressing need to increase the volume of the hard disk. So, the
next step might be to increase the volume of the existing hard disk capacity to, say, 1
TB.

Taking advantage of such resources is termed scaling up. This concept is applicable
to any type of system resources, such as RAM, processor, disk storage, application,
and so on.

www.EBooksWorld.ir

Scale out
On similar lines, scale out is another methodology to improve the system
performance of an enterprise application. The major difference is in the way of
scaling. As demand increases, the additional systems are amended instead of adding
the resources to the existing system. So, this design of scaling is termed scaling out or
horizontal scaling. It is depicted in the following figure:

www.EBooksWorld.ir

Comparing scale up with scale out
In this section, I'm going to address a comparative study between vertical scaling
design, that is, scale up and horizontal scaling design, and, scale out technologies
used in the industry. Pros and cons to both approaches will help you to decide the
suitable design for your need.

Sr.No. Design
factor Scale up Scale out

1 Server node Single server with
high power.

Clustered set of server nodes
with less power.2

Computing Concurrent
computing. Distributed computing.

3 Memory
High powered
memory in a single
computer.

Less powered memory but
collectively simulate high
power memory.

4 Processor
Large count of
processors in a single
computer.

Less processors in a single
computer but a cluster of
computers is used.

5 Implement
challenges

Generally less
challenging to
implement.

High degree of complexity to
implement.

6 Fault
tolerance

High possibility of
failure. Easier to run fault tolerance.

7
Utility costs
(electricity,
cooling)

Low. High.

8 Network
bandwidth

Relatively less due of
the single system
design.

High degree of network
bandwidth for distribution.

9 Vendor lock
Generally severe
vendor lock-in due to
proprietary

Open source leads to getting
away from vendor lock.

10 Total Cost High. Relatively low.

www.EBooksWorld.ir

www.EBooksWorld.ir

Connecting the dots
On connecting the dots of vertical scaling and horizontal scaling, here is the best use
case. Generally, disk drives are a good analogy to the scale-up approach, whereas
storage virtualization is a good analogy to the scale-out approach.

On observing the recent emerging technology trends of the industry, disk capacity has
increased significantly in alignment with processor capabilities, such as multicore
technology.

www.EBooksWorld.ir

Security
In the computing industry, security is one of the most important principles in an
enterprise application. As distributed computing is based on the cluster of the
computers, it is highly recommended that you build a stronger security policy here.

www.EBooksWorld.ir

Goals
In general, computer security has four goals:

Privacy
Secrecy
Authenticity
Integrity

Privacy is considered the information to be used only for the intended purpose, not
beyond that. Let's look at a simple example. In the financial industry, there is a term
called PII (Personally Identifiable Information). It can be used on its own or with its
supplementary information to identify the individual in context. As per the US
privacy law and information security, it is mandatory to protect this type of data.

Secrecy is scoped to access only by authorized users, not anyone else. It is pretty
simple to explain. In an enterprise application, there might be an administration
section to maintain the user base of the system. This section is not supposed to be
accessed by anyone in the system. Only some restricted users (such as the
administrator) must have the accessibility to this section.

Authenticity is defined as the ability to verify the received request only from the
restricted users, not everyone. Let's take an example of private banking by end
customers. A bank might maintain the accounts of some n users. The banking
application can only be logged into by the registered n customers, not by other
people. This is termed authenticity.

Integrity is nothing but maintenance to ensure the accuracy and consistency of the
information in an enterprise application. At the same time, the information must be
protected from unauthorized access. With system characteristics, it is more integrated
into the information reliability factor.

www.EBooksWorld.ir

www.EBooksWorld.ir

Attack
In computing principles, an attack is any attempt to destroy, disable, or steal
unauthorized system access. It violates the security discipline of the proper usage of
the underlying system asset.

There are two categories of attacks:

Passive attack
Active attack

Passive Attack: With its self-descriptive name, passive attack does not cause any
harm to the system with its unauthorized access. As per the shown examples,
browsing intrudes an attempt to access other process memories or traverse the
message packet in the network. Masquerading is the process of pretending to be an
authorized user for unauthorized data or access. Inferencing intrudes the historical
records to draw the inferences by running some analysis methods.

Active Attack: This type of attack creates a significant impact on the existing process
and so it needs to be addressed thoroughly. The virus program executes the
malpractice code from the boot sector of the disk. Worm code impacts the computer
network using the security holes. A logic bomb is a piece of code intentionally
injected into software to generate a malicious function on a particular condition.

www.EBooksWorld.ir

Threats
Threat is a possible security danger in the computing system. It might exploit a
vulnerability to breach the security. So, it causes possible harm. There are four
categories of threats:

Interception
Interruption
Fabrication
Modification

Interception means gaining access to unauthorized service or data in a computer
system. Illegal copying is an appropriate example. Interruption makes the system
resources unavailable or destroyed, for example, intentional file corruption.
Fabrication is related to including the unwanted additional data. Modification alters
the original specification of the system to break using unauthorized access.

www.EBooksWorld.ir

Summary
In this chapter, you were introduced to the fundamental concepts of distributed
computing. Also, it was explained when to use the right way of distributed
computation effectively, keeping in mind the scalability and flexibility of enterprise
applications. As Microsoft is moving towards an open source strategy, one of
Microsoft's .NET solution Message Passing API (MPAPI) is available in CodePlex.
MPAPI is an open source framework to enable the programmers without having to
use standard thread synchronization techniques like locks, monitors, semaphors,
mutexes and volatile memory. In this section, our objective was to learn the
fundamental concepts of distributed computing. Microsoft .NET provides a few easy
implementation framework with better usage guidelines.

In the next chapter, we will discuss the Software Development Life Cycle (SDLC),
which covers various methodologies such as Waterfall, Spiral, Agile, and so on.

www.EBooksWorld.ir

Software Development Life Cycle
By the end of the previous chapter, it was easy to understand when to use the right
way of distributed computation effectively while keeping the scalability and
flexibility of an enterprise application. Software Development Life Cycle (SDLC)
is a term used in systems engineering, information systems, and software engineering
as a process. This tutorial elaborates on the various methodologies like Waterfall,
Spiral, Agile, and so on. At the end of the chapter, you will understand the
fundamental concepts of Enterprise Architecture and its related business needs and
benefits.

This chapter will cover the following points:

What is SDLC?
The Waterfall model
The Spiral model
Agile development
Microsoft Open Source Strategy to life cycle:

Traditional Microsoft model and its origins in MS-DOS
Driving factors of the Open Source Model
Twin tracks of .NET Framework and .NET Core
Current stack of Open Source tools & techniques

This chapter gives an understanding about the SDLC, and how .NET Core and the
relevant development processes fit together.

www.EBooksWorld.ir

What is SDLC?
SDLC is an industry recognized process with a series of activities or steps to
develop a new enterprise application, or to modify the existing software.

www.EBooksWorld.ir

Need for a process
In everyone's life, discipline is an important factor in order to be a successful person
in their career. Observing disciplined people, it is noticed that they adhere to certain
rules and norms at any point of time.

In a similar fashion, software development needs a discipline/process to produce a
high-quality enterprise application, which meets or exceeds the expectations of end
customers. At the same time, the development effort should be limited to an estimated
time and cost.

My job as an Enterprise Architect has cleared this perception, and now I understand
the true value of an Enterprise Architect.

www.EBooksWorld.ir

Insight of core phases
In general, SDLC has five core phases in any of the models. They are listed and
diagrammatically represented as follows:

Requirement phase
Design phase
Implementation phase
Testing phase
Production phase

In the requirement phase, the requirements are collected based on the needs of the
business stakeholders. The design phase describes the structure and components of
the new system as a collection of modules and subsystems. Implementation is the
programming phase in which the design is converted into reality. The testing phase is
used to certify the functionality of the developed application. Production is the final
phase to roll out the system for end customer usage.

www.EBooksWorld.ir

SDLC models
The SDLC process has the following few models adopted in the industry:

The Waterfall model
The Spiral model
The Incremental model
Agile methodology

www.EBooksWorld.ir

The Waterfall model
The Waterfall model is developed by dividing the whole process into a few separate
phases. Typically, each phase is designed with the simple logic that the outcome of
the earlier phase is injected as the input for the next-level phase. By design, each
phase of the waterfall mode, is expected to be signed off, before getting into the
subsequent phase. It involves the deliverable artifact of each phase like design
document, business requirement document, source code, test plan, etc.

www.EBooksWorld.ir

Core phases
In a real-life scenario, this model behaves based on our imagination of water falling
from top to the bottom, as in a waterfall. It is simply represented in the following
diagram. With the similar concept, the Waterfall model is designed as follows with
these key phases:

Business requirement
System analysis
System design
Coding
Testing
Maintenance

www.EBooksWorld.ir

Business requirement
As part of business requirement, all possible specifications and requirements are
collected from the business team, and documented as a Business Requirements
Document (BRD). It acts as an evidence of the business agreement. Let us assume a
business case study to build a mobile-based application to check the status of the
customer support tickets. Then, the BRD will contain the complete functionalities of
the mobile application, supported mobile type, the customer credentials, and so on.

www.EBooksWorld.ir

System analysis
The given BRD specifications are analyzed in detail from the software system point
of view. Based on the analysis, the deliverable document is referred to as a
Functional Specification Document (FSD). FSD is more of a technical response
against the given BRD. In our case, let us define one of the FSD entries as, when the
end user clicks the sign up button, the application routes to the new user registration
form. So, FSD describes the interaction between human and enterprise application,
that is, the end user and mobile application.

www.EBooksWorld.ir

System Design
System Design Document (SDD) is the outcome of the third phase developed by the
software design professionals. SDD describes the new system intention or
replacement design, with the detailed descriptions of the system architecture and its
related components. Some firms develop two levels of SDD, namely, High Level
Design (HLD) and Low Level Design (LLD) documents. Our use case's SDD is
built with the mobile application architecture along with a few internal component
designs. Typically, the detail design document covers the input format, database
design, processing logic, output layouts, operating environment, interface
specifications, and so on.

www.EBooksWorld.ir

Coding
In software engineering, the core phase of implementation is coding. In this phase, the
software developers build the application using a set of technology tools, languages,
and the like. In our use case, the actual mobile application development is part of this
phase. Objective C is used for iOS devices, and Java is used for Android devices.
The key deliverable of this phase is the source code of the enterprise application.

www.EBooksWorld.ir

Testing
Testing is the gateway to validate the functionality, stability, and usability of the
developed application. Based on the objectives, there are multiple types of testing in
an enterprise. Integration testing covers the connectivity of the components across the
application. System testing covers the complete functionality of the application.
Performance testing addresses the stability of the product.

www.EBooksWorld.ir

Maintenance
Once the certified product is rolled into the production environment, the support team
takes control of application maintenance. They monitor the production version
continuously, and alert the respective team if anything goes wrong. As the monthly
update, the support team is supposed to publish the scorecard of the application in the
production environment.

www.EBooksWorld.ir

Understanding the Spiral model
The Spiral model is a combination of the iterative development process model and
sequential linear development model, that is, the waterfall model, with very high
emphasis on risk analysis.

www.EBooksWorld.ir

Core phases
The Spiral model is pretty much similar to the incremental model in which more
emphasis is placed on risk analysis during the course. In the emerging IT industry,
risk factor is part and parcel of the process. Instead of avoiding the risk elements, it
is advisable to identify the risk and apparently to build the alternative solution. It is
referred as risk analysis. The four phases adopted in the Spiral model are explained
in the following diagram:

Identification: In the first phase, that is, the Identification phase, it is essential to find
out the purpose of the software along with the measures to be taken. It helps to
achieve a software to serve all your requirements.

The key coverages in the first phase are listed as follows:

Studying and gathering requirements
Detailed study on the feasibility
Reviews run by a walkthrough to streamline the requirements
Understanding the requirements document
Finalizing the list of requirements
Reviewing the project to take the decision to continue with the next spiral
If the decision to continue is taken, plans are drafted for the next phase

www.EBooksWorld.ir

The core purpose is to identify the business requirements of the system.

Design: This phase calculates all the possible risks with the possibility to encounter;
apparently, it is the process to figure out how you would resolve these risks.

The key coverages in the second phase are listed as follows:

The potential risks are identified based on the drafted requirements and brain-
storming sessions
On identification of the risks, the mitigation strategy is designed and finalized to
roll out
As an artifact, a document is generated to highlight all the risks and its
mitigation plans

The core agenda of this phase is to identify the associated risks.

Build: In this phase, the target software is constructed and tested for its core
functionality, reliability, and security aspects.

As the core engineering phase, the key coverages in this phase are listed as follows:

The actual development and testing of the planned software
Coding of the product
Execution of the test cases and test results
Generation of the test summary report and defect report

It focuses on the process of development and testing the target software.

Evaluation: After the current cycle has completed to produce the first prototype, the
cycle is re-planned and repeated. The process proceeds to get into the next prototype
2.

As the final step of evaluation, these two key steps are executed:

Customer evaluates the produced software to provide their feedback for the
approval
Generating the release document to highlight the implemented features

The main purpose of this phase is to plan for the next iteration, if required.

In software development, the aforementioned four phases are repeatedly passed in
multiples of iterations named Spirals. In the baseline spiral, the process starts with
the planning phase, requirements are gathered, and risk is assessed. Each subsequent
spiral builds on the baseline spiral.

www.EBooksWorld.ir

www.EBooksWorld.ir

Comparing the Waterfall model with
the Spiral model
The following table provides a comparison between the Spiral model and the
traditional Waterfall model:

Sr.No. Waterfall Spiral

1
In the software development life cycle,
business requirements are frozen after
the initial phase.

In the spiral model,
requirements are not frozen by
the end of the initial phase. It
is kind of executed in a
continuous mode.

2

In terms of project execution, there is a
high level of risk and uncertainty
because of the missing stringent risk
management.

By design, the spiral model is
modeled to handle better risk
management

3 The Waterfall framework type is more
of a linear sequential model.

The framework type of the
spiral model is based on an
iterative process; within each
iteration, the linear model is
preferred.

4

As the user involvement is only at the
beginning of the process, it turns down
communication between the customer
and developer throughout the
development cycle.

User involvement and
communication is at a high-
degree level between the end
user and the engineer.

During execution of the

www.EBooksWorld.ir

5 As the model is kind of one-time
execution, the reusability factor is least
possible here.

multiple iterations, the
possibility of reusability is
quite necessary and
developed by nature.

www.EBooksWorld.ir

Benefits
In terms of business benefits, spiral development is faster than the traditional model,
and so saves cost and effort.

As risk evaluation is well defined in proper method, larger projects are created and
handled in a strategic way. Also, it adds control during all the phases of software
development.

Spiral model produces the intermediate deliverables at end of each iteration. It gives
a great opportunity for the end customers to share their feedback during the early
stage. Apparently, this systematic approach means software change management
can be implemented faster.

www.EBooksWorld.ir

Challenges
As more emphasis is on risk analysis, it is an important phase in the Spiral model,
which requires expert associates to execute. Apparently, it increases the overall cost,
and so, it is not a good fit for smaller projects.

In the worst cases, Spiral may go on infinitely, which creates wastage on its
investment in terms of effort and cost.

As Spiral has a high degree of complexity, and is relatively difficult to follow
strictly, documentation is more due to the execution of multiple intermediate phases
of the development cycle.

www.EBooksWorld.ir

Usage recommendation
Based on the nature of the spiral model, it is highly recommended to use it in large-
sized projects where the software needs continuous risk evaluation.

When requirements are a bit complicated and require the continuous clarification,
along with the software changes being quite dynamic, the Spiral model is the best fit.

In the same line, when the software development life cycle has sufficient time to get
end user feedback for frequent releases, the Spiral model has the highest advantage to
roll out.

www.EBooksWorld.ir

Agile model
In the legacy Waterfall model, software is developed in the sequential model. On
completion of the requirements set, the process moves into design, followed by
coding. When we enter the design phase, any change to the requirements is not
allowed. As the name suggests, primarily, the water only flows down, you can't make
it go up. This is depicted in the following diagram:

Scrum is the popular term used in the Agile model. Actually, Scrum is one of the
software development models in the IT industry to support the emerging industry.
Nowadays, IT expects the faster and better deliverables in shorter cycle to support
the cost efficiency. In alignment with this strategy, Scrum is designed with a few
small teams of intensive, inter-dependent, self-sustaining characteristics. In fact, the
deliverables are divided into a small intermediate level, named as Sprint.

www.EBooksWorld.ir

Top five reasons to adopt Agile
In the modern IT world, Agile is so popular that everyone is willing to adapt it in
their rapid development cycle. Although there are many unfounded reasons, I would
like to highlight the top five factors for its industry adoption.

www.EBooksWorld.ir

Ambiguous requirements
In the traditional model, assumption leads to confusion in making the end delivery.
We assume that the customer will identify all requirements during the initial phase.
Though it looks reasonable, the customer is not comfortable to sign off the process
officially.

As an outcome, the customer gives a list of known and probable requirements during
the initial phase of software development. It is just to avoid missing them in sign-off
mode.

www.EBooksWorld.ir

Requirement changes
In general, changes are inevitable. The customers don't know what they want in the
beginning, and they eventually come back in the later phases. We assume that the cost
of change increases during development, and so, a requirements freeze is absolutely
required. As a result, we penalize the customer for adding requirement changes later,
even though they are valid.

In this emerging highly competitive market, requirements will evolve over a period
of time.

www.EBooksWorld.ir

Big planning is not practical
We assume that software is so simple that its development can be easily planned from
the beginning to the end phase. As all project variables (like scope, size, cost, risk,
and the like) can be predicted during the initial phase, we assume that upfront big
planning is possible and enough. In fact, planning should also evolve along with the
requirements.

To confirm this, the Standish Group Chaos Report 2015 segments the result of
Agile and the Waterfall model based on software projects across sectors between
2011 and 2015. It clearly indicates 39% of Agile success versus 11% of Waterfall
against all-sized projects. It comprises of Agile split of 18%, 27% 58% against
large, medium, and small projects respectively.

www.EBooksWorld.ir

Software review is better than
document
In the modern emerging world, customers are happier to review a working software
than a bunch of written documents.

In my own experience, the latest customers are asking the question, Demo or Deck ?
prior to the review meeting-whether they will be able to see a demonstration of the
working software module or not.

www.EBooksWorld.ir

Iterative incremental delivery is
preferred
In my product development experience, I feel that customers can't wait until the
completion of the entire project to get the final product. We assume that the software
industry is pretty much similar to the manufacturing industry. As an example, a car
manufacturing company produces the final product in a sequential, step-by-step
manner. First they produce the chassis, then the engine followed by fitment, and so
on.

To impress the customer, the traditional model assumes to deliver the big final
product without the intermediate state. But in reality, the customer almost always
tends to get a deviation of what they required. It is then too late to rectify it.

To resolve this challenge, the Agile model provides delivery to the customers
frequently, in short iterations.

www.EBooksWorld.ir

Industry evidence
At XP 2002 conference, Jim Johnson of Standish Group Study reported that the
traditional model never used almost half of the features built. The following pie chart
shows their survey results:

Similarly, the success rate of the Agile model is three times better than the traditional
Waterfall model. On conducting various projects between 2002 and 2010, their result
speaks for themselves, as shown in the following pie charts:

www.EBooksWorld.ir

Scaled Agile Framework (SAFe)
These days, Scaled Agile Framework (SAFe) is quite popular, because it is a freely
revealed knowledge base of integrated patterns for enterprise-scale Lean-Agile
development. It has the bright characteristics of a scalable and modular approach.
Apparently, it allows an enterprise to leverage this model that suits their needs.

As a core principle, the SAFe framework synchronizes alignment, collaboration, and
delivery for large numbers of agile teams in an enterprise.

SAFe has six core values in its design, which are as follows:

Code quality
Program execution
Business alignment
Transparency level
Working model

The preceding diagram depicts the design of the SAFe framework.

It operates with common vision, architecture, and UX guidance. The fundamental
theme is built around collaboration and adoption of face-to-face planning and
retrospectives of the business. As part of the delivery, cross-functional agile teams

www.EBooksWorld.ir

deliver the working system increments every two weeks.

By implementation, there are two different types of SAFe: 3-Level SAFe and 4-Level
SAFe. 3-Level SAFe is for smaller implementations with 100 people or less, or for
multiple such programs that do not require significant collaboration. 4-Level SAFe is
for solutions that typically require many hundreds of practitioners to develop, deploy,
and maintain.

www.EBooksWorld.ir

History
The history of SAFe is depicted in the following timeline. The latest version,
renamed SAFe 4.0 for Lean Software and Systems Engineering, was released in
January 2016. Consider the following diagram:

www.EBooksWorld.ir

Success Factors
As a matter of fact, SAFe is popular because of its success scorecard measurement,
and apparently followed with the improvement process based on the measured score
of its development cycle.

As the success factors, the following points are considered as the improvement
measures. It helps the management team to arrive at their success metric. Apparently,
the management leads to track the investment and its related business values / returns:

Cycle time: measurement of the quickest time taken to get one of the features out
Release cycle: time taken to get a release out
Defects: measured based on the total number and changes in the defects list
Productivity: Calculation of the normalized effort to get a unit of functionality
done in the software product
Stabilization: On code completion, a percentage of a release is spent on
stabilizing before the release of an enterprise application
Customer satisfaction: Measurement of the end customer's satisfaction level
with the rate of change either up or down
Employee satisfaction: Measurement of employee group's satisfaction level
either up or down

In reality, most firms execute the patchwork approach to transform into Agile
methodology from their traditional software development life cycle models. As a
result, a heavy sprint backlog is formed due to extensive dependencies to delivery
without impediment. Due to these limitations, SAFe has gained traction as a stage-
gated cultural framework in the software development process.

www.EBooksWorld.ir

Microsoft open source strategy to life
cycle
Open sourcing and crowd sourcing are the latest trends in the software development
industry. Though both terms look similar, there is a key difference between open
source and crowd source.

Open source is built based on four key pillars, namely, free to use, study, modify, and
distribute the software for any purpose. It creates multiple custom software versions.
The best well-known example is multiple flavors of the UNIX operating system and
Android mobile platform. Open by rule is the theme of the open source culture. Every
community member is not allowed to exploit the others.

Crowd sourcing is built based on the marginal interest as well as free time of a large
group of people to build an application. This culture benefits the initiator typically
without any significant compensation to the participants. In fact, intellectual property
and distribution rights are completely owned by the initiator. OpenSignal is the best
example of crowd sourcing of the world's wireless network.

Closed source is a complete contradiction to the open source and crowd source
culture. It is sometimes referred to as the proprietary model. By design, closed
source methodology is owned by an organization with in-house development to
generate revenue for their business. Take a look at the following diagram:

The preceding illustration indicates the list of closed source and open source
companies in the IT industry. Microsoft, Apple, and others are the major players
among closed source companies, while Linux, Android, and others are prominent

www.EBooksWorld.ir

among open source companies.

Although Microsoft held an identity as a closed source company, it has switched over
to the open source list in recent years. If you take a closer look at the statement made
by the CEO of Microsoft, it reflects my words. On June 1, 2001, the ex-CEO of
Microsoft, Steve Ballmer, said that Linux is a cancer, which attaches itself, in an
intellectual property sense, to everything it touches. It was part of an interview with
the Chicago Sun-Times. In October 2014, the current CEO, Satya Nadella, delivered
a contradicting note that Microsoft loves Linux, at a San Francisco media conference.

In the coming section, let us analyze the history of closed source and motivation for
open source methods deployed in Microsoft.

www.EBooksWorld.ir

Traditional Microsoft model and its
origin from MS-DOS
Microsoft's Bill Gates's dream was to create a personal computer for every citizen in
the world. It might be true now, but his ambition was visionary and very high during
the early 1980's.

With his ambition, Microsoft carries a great time line from the MS DOS of 1981 to
the Windows 10 operating system of 2015. It was a technologically inspiring path to
make his dream come true which is shown in the following timeline diagram:

Let us take a look at the smooth journey through Microsoft's major milestones and key
deliverables to the industry. Microsoft launched its first operating system named
Microsoft Disk Operating System (MS-DOS) in August, 1981. In terms of user
experience, it was not a sophisticated platform; instead, it was just a command-line
interface. During this course, Microsoft bought an existing OS from Seattle Computer
products for $75K.

Microsoft's first Graphics User Interface (GUI)-based operating system was
launched in the name of Windows 1.0 on November 20, 1985. It was built with a 16-
bit multitasking shell on top of an existing MS-DOS installation. Windows 1.0 had
the key features of limited multitasking. An interesting fact is that Bill Gates initiated
the Windows development program after watching a demonstration of VisiCorp's
VisiOn.

Later, Windows 2.0 was released on December 9, 1987, which allows application
windows to overlap. Interestingly, it was the first version to integrate the control
panel. On the flip side, on March 17, 1988, Apple filed a lawsuit against Microsoft
and against HP on March 17, 1988. Apple accused Microsoft and HP of copying the
Macintosh System, however, Apple lost the case.

On May 22, 1990, Windows 3.0 was launched with the key deliverable of the
protected as well as enhanced mode to run the Windows application with reduced
memory. The key improvement was better memory management on the Windows
platform. This major contribution came from David Weise and Murray Sargent in

www.EBooksWorld.ir

1989.

In the history of Windows OS development, Microsoft released the first major stable
version on July 27, 1993-Windows NT. It had an added value of portability to
multiple process architectures as well as higher security and stability. As a side note,
Bill Gates hired David Cutler from DEC to design Windows NT.

The Start button is a revolutionary feature in the Windows platform. Windows 95
was launched on August 24, 1995 with the user methodology and interface to
navigate into multitasked 32-bit architectures in addition to the support of 255-
character mixed case long files names.

On June 25, 1998, Windows 98 was released with power and network management
improvements and USB support. From the end user's point of view, standby and
hibernate modes were introduced along with the windows driver model (WDM) to
manage device drivers.

Windows 2000 was released on February 17, 2000 with the addition of New
Technology File System (NTFS), Microsoft Management Console (MMC), and
Encrypting File System (EFS) active directory along with new assistive
technologies to support people with disabilities.

Windows ME (Millennium) was introduced on September 14, 2000 with the system
restore feature and improved digital media and networking tools. The ME version
had a tough time in the market, and it was heavily criticized for speed and stability
issues. In alignment with this issue, a PC World article dubbed ME as Mistake
Edition.

Microsoft came back with another stable OS named Windows XP on October 25,
2001. It had the stable improved task bar and Start menu along with better networking
features. XP had a newly improved user interface from the end user's point of view.
As the major highlight, XP was the first version of Windows to use product activation
in order to reduce software piracy.

After the success of XP, Microsoft was not up to their benchmark by the release of
Windows Vista on January 30, 2007. Though Vista was introduced with Windows
search, sidebar, shadow copy, and integrated speech recognition, it was bombarded
with many criticisms like high system requirements, more restrictive licensing, new
digital rights management, and lack of compatibility with some pre-Vista hardware
and software.

The world's most dominant (56%) desktop OS, Windows 7, was released on October
22, 2009 with support for virtual hard disks, multi-core processors performance, and
an improved touch of handwriting recognition. The main intention was to respond

www.EBooksWorld.ir

with strong stable deliverables against the criticisms faced by Vista.

Windows 8 was launched on October 26, 2012 with heavier integration of online
Microsoft services like SkyDrive and Xbox. In terms of performance, Windows 8
introduced a faster startup through UEFI integration. In terms of user experience,
Metro design and a new start screen (no start button) was introduced in the product.

The latest production version of Microsoft Windows, Windows 10, was released on
June 29, 2015. As its key features are the return of the Start button, integration with
Windows Phone, and a device-dependent interface. In terms of the emerging
Artificial Intelligence (AI) space, Windows 10 incorporates the Microsoft
intelligent personal assistant, Cortana. Take a look at the following diagram:

In spite of a long journey of three decades with so many ups and downs, Microsoft
still leads the world's desktop OS market share with over 91%. Isn't that amazing?

www.EBooksWorld.ir

Driving factors of the open source
model
As discussed in the preceding section, three decades of the Windows platform
clearly indicates a closed source company. Interestingly, in the mean time, the
industry was travelling in the opposite direction with the open source model.

After few years of resistance to the open source model, Microsoft was ready to align
with the industry movement. Indeed, Microsoft initiated open sourcing more of its
own technologies such as parts of the .NET platform. The Microsoft open-source
strategy is focused to help their customers and partners to be successful in today's
challenging heterogeneous technology world.

To make a safe landing, Microsoft's open source hosting website named CodePlex
beta was launched in May 2006, with the official launch in June 2006. After a
decade-long journey with CodePlex, Microsoft started moving its bigger open source
initiatives into GitHub, because GitHub has become the industry's popular distributed
version control and source control management system with a web-based hosting
service. As a side note, GitHub's initial product version was released in April 2008.

Microsoft's CodePlex to GitHub strategy move boosted their growth and contribution
in the open source space. It made them exhibit a stunning turnaround to the open
source world; most importantly, backed up by Microsoft's serious support. You know
what?, Now Microsoft is the top organization with the most open source contributors
on GitHub. In fact, Microsoft beats Facebook, Docker, Google, Apache, and many
other competitors.

Though Microsoft has been working on open sourcing strategy since 2006, a rapid
increase has been noticed in recent years. Apparently, it might be because of the
change in Microsoft's business strategy and senior leadership changes.

As mentioned in the previous section, it is pretty clear that Microsoft really does
love the Linux platform. As a result, Microsoft is going to launch its flagship
enterprise database product SQL Server in the Linux platform.

On seeking the last few years' of history of collaboration between Canonical and
Microsoft, it is very clear that Ubuntu is one of the first Linux distributions to get an
official endorsement to run on Azure. This is possible with a high degree of
collaboration on many fronts among the engineering teams of both the firms. As a
matter of fact, Azure-managed Big Data stack, HDInsight, is powered by the Ubuntu

www.EBooksWorld.ir

platform:

The scorecard seen in the preceding screenshot gives clear facts about Microsoft's
Open Source strategy and the related industry contribution. The box in the top-left
corner showcases that 20 percent of the operating systems on Azure are based on the
Linux platform. With the collaboration effort, the open source operating system is
already contributing a lot to Microsoft's bottom line.

Another dimension of metric is the rapid growth of the CodePlex membership. It
leads to triple time growth in four years, between 2010 and 2014. This success got
reflected in Big Data Hadoop eco system. As the result, there are contribution of 30K
LoC (Lines of Code) and the effort of a team of more than 10K engineers.

In essence, Microsoft has so many motivational factors to contribute towards open
source projects. It not only adds business value, but is also in alignment with the
industry changes.

www.EBooksWorld.ir

Twin tracks of .NET Framework and
.NET Core
.NET Framework evolved during the early 2000's as a competitive product against
the Java platform. On the road map of .NET Framework, it is so interesting to
observe the twin tracks of .NET and .NET Core, which is explained in the following
screenshot:

In a nutshell, the .NET framework is marching forward with a closed source strategy,
whereas, the .NET Core strategy is towards open source.

www.EBooksWorld.ir

Comparing .NET with .NET Core
For better clarity, let me tabularize the various points of difference between these
two frameworks

Sr.No. .NET .NET Core

1
Complete development
environment for Microsoft
.NET Application.

As .NET is super set, .NET core will
be a subset of the functionalities.

2 Closed source strategy. Open source strategy.

3 Runs on Windows platform
only.

True cross-platform; supports all
major OSs like Windows, Linux, Mac,
and the like.

4 Proprietary compiler. Open source compiler, Roslyn.

5 Distributed with Windows. Distributed with Application.

6 Hosting server IIS, runs only
on Windows platform.

Open source hosting server Kestrel,
runs across multiple platforms beyond
Windows.

As web-based development is so popular in the current industry, it would be wise to
follow the timeline of .NET-based web application development methodologies
since 1996:

www.EBooksWorld.ir

As depicted in the preceding timeline diagram, the Windows OS-based web
application started with the Active Server Pages (ASP) framework in the year
1996. As .NET was stabilized in production during the early 2000's, ASP.NET was
released in 2002. From then, there have been multiple flavors of ASP.NET web
development, like MVC, Webmail, vNext, and more.

In this great journey, the evolution of .NET Core ignited the evolution of ASP.NET
Core, which is a truly cross-platform web application development method in the
industry. In fact, ASP.NET reached maturity in 2016.

I'm sure the functionality and features of web app development will migrate from
.NET to .NET Core as time progresses.

www.EBooksWorld.ir

Current stack of open source tools and
techniques
To highlight the adoption of open source tools and techniques by Microsoft, Azure is
the best use case to describe here.

Azure clearly has become a multiplatform cloud. Indeed, 25 percent of Azure virtual
machines (VM) are now running Linux. As a top note, Azure now supports five
Linux servers as VMs: CoreOS, CentOS, Oracle Linux, SUSE, and Ubuntu.
Interestingly, Microsoft is in the process of supporting Docker and Kubernetes
container management on Windows and Azure platforms.

Technology experts at Microsoft, Mark Russinovich and Jeffrey Snover, started their
contribution towards open source Chef, which was highly visible in ChefConf 2015
by Chef Software Inc.

In terms of the .NET platform, Microsoft's twin track is the clear winner of the .NET
open source strategy. In this line, the Microsoft mobile development framework now
supports Android emulation as well.

In terms of efforts towards industry collaboration, cooperation, and contribution,
Microsoft is actively involved in open source consortiums like AllSeen Alliance,
OpenDaylight, and R Consortium. Historically, Apache is quite popular for the open
source strategy in the industry. Now, Microsoft supports the Apache Software
Foundation to encourage open source growth.

Some of the interesting tools and techniques to observe are .NET Core, TypeScript, R
Tools for Visual Studio, Azure's Service Fabric, Visual Studio Code IDE, Team
Explorer Everywhere for Eclipse, Computational Network Toolkit for deep learning,
AIX tools you can use to build AI in Minecraft, and many more.

The next screenshot shows the current tools and technology stack towards Microsoft
Open Source Strategy. It covers the end-to-end solution between the infrastructure
and DevOps layers. This stack comprises of popular tools like Grunt, Puppet, Chef,
Jodiac, Eclipse, Redis, MySQL, Suse, and so on distributed across the multiple
layers of an enterprise application framework:

www.EBooksWorld.ir

On observing the strategic direction of Microsoft's recent moves, open sourcing
effort comprises of PowerShell, Visual Studio Code, and Microsoft Edge's
JavaScript engine. During the release of Windows 10, Microsoft partnered with
Canonical to bring Ubuntu in the Windows platform for the first time in history. In the
cross-platform mobile development space, Microsoft acquired Xamarin to aid
mobile app development. It doesn't stop here. They made an effort to make open
sourced Xamarin's SDKs for a broader reach in the industry. SQL Server on the
Linux platform is on their roadmap too.

www.EBooksWorld.ir

Summary
Now, you are in a position to understand the various types of software development
lifecycle processes used in the industry. They includes Waterfall, Spiral, Agile and
Scaled Agile framework. Also, you learnt the insight of each model along with the
comparison of few instances.

In the next chapter, we will discuss the enterprise practices in software development
like maintainability, reusability, testability, and performance optimization in an
enterprise application.

www.EBooksWorld.ir

Enterprise Practices in Software
Development
In the previous chapter, we learnt about the SDLC (software development life
cycle), which is a term used in systems engineering, information systems, and
software engineering as a process. It elaborates on the various methodologies like
Waterfall, Spiral, Agile, etc. As part of the best practices used in Enterprise software
development, the essential parts are covered in this chapter. Therefore, this chapter
will cover the following points:

Application Lifecycle Management (ALM)
Modern source control repositories such as GIT, TFS, and more.
Visual Studio Integration with source control component
Creating custom project templates for .NET Core applications
Measuring performance using Visual Studio

This chapter will give you an understanding about the enterprise practices in the
software development life cycle along with the popular ALM tools and techniques.

www.EBooksWorld.ir

What is ALM?
ALM stands for Application Life Cycle Management. It is an industry-recognized
process with a series of activities or steps used to develop a new enterprise
application or modify the existing software.

www.EBooksWorld.ir

Core aspects
With the core aspects, ALM can be divided into three distinct areas, namely:

Governance
Development
Operations

Let me illustrate the three core aspects with a simple example, that is, the iPhone's
launch by Apple.

Governance encompasses all of the decision-making and project management across
the entire firm. In our example, Apple runs the iPhone's business from the conceptual
idea to the production roll-out of its multiple versions.

Development is defined as the process of creating the actual application. Practically,
the development process reappears several times in an application's lifetime in the
majority of enterprise applications. It involves both for upgrades and for wholly new
versions. In our context, Apple releases multiple versions of the new iPhone, such as
4, 5, 6, etc. In addition, Apple launches periodic upgrades for existing iPhone
devices.

Typically, operation is the work required to run and manage the application. It begins
shortly before deployment and then runs continuously. As per our illustration, Apple
provides after-sale support to resolve any maintenance issues for the end customers
of iPhone products.

www.EBooksWorld.ir

www.EBooksWorld.ir

ALM vs SDLC
It is common to equate ALM with the SDLC. This is because ALM is constructed
around the SDLC's following core phases in an enterprise application development
process:

Requirement phase
Design phase
Implementation phase
Testing phase
Production phase

By design, the ALM framework is not developed from scratch; it is built around the
SDLC framework. At the same time, ALM is considered more than the SDLC model.
However, ALM being more advanced than the SDLC, its simple approach is still
considered limiting.

With reference to the previous pictorial representation, the three core aspects are
initiated with development as the first part of an application's life cycle. As time
progress, the application is updated periodically so that it syncs with the latest
features:

www.EBooksWorld.ir

Practically, any software development life cycle is kickstarted only after the business
case's approval. With the evolution of the IT industry, the software development
methodologies have been changed into various levels. The main shift focuses on
shorter and multiple iterations, instead of one huge and complete single cycle. In this
context, the image depicts the expansion of SDLC's parts in the development life
cycle. As a result, this modern process exhibits software development as a series of
iterations. In each sub-process/iteration, it contains its own requirement definition,
design, development and quality assurance testing activities.

This solution is not the silver bullet for every problem statement. Nevertheless, this
iterative approach is still better than the traditional execution method, which is
becoming the norm in many areas.

Let me illustrate with a real world example. As the concept of cross-platforms
picked up during the mid 1990s by the Java community, Microsoft started working to
release its competitive product, namely, .NET Visual Studio, which was marketed as
a .NET developers, IDE (Interactive Development Environment) and so it was
terms as vision for .NET development tool.

As depicted in the previous image, Visual Studio's product governance kickstarted at
the initial time of the product's development, and so the timeline of governance runs
from beginning to end in life cycle. This means Visual Studio governance started with
Visual Studio 2002 on 13 Feb 2002, and has continued until Visual Studio's latest
release on 1 Feb 2017.

In terms of development, each version of Visual Studio runs in an independent SDLC
cycle. As per the previous picture, the development cycle is segregated into multiple
stages or versions. This is depicted in the middle layer of the previous image.

The operation process actually starts on the eve of the first SDLC process's
completion. This is referred to as a Professional Service in the product life cycle.
Customer support service is key throughout the operation step. In our example,

www.EBooksWorld.ir

Microsoft launched Visual Studio's operation with its first release in 2002.

www.EBooksWorld.ir

Source Code Control System
The Source Code Control System (SCCS) is an early version control system. It was
developed with the archiving and versioning of program source code and other text
files in mind. The original development was in SNOBOL at Bell Labs in 1972 by
Marc Rochkind for an IBM System/370 computer running OS/360 MVT.

SCCS is primarily used to promote the collaborative development process with
seamless effort. It is a software program that supports developers working together
while maintaining complete history.

The main purposes of SCCS are listed as follows:

To allow the development community to work simultaneously
To avoid the overwriting of each other's work in a collaborative team
To maintain the complete history of multiple versions

There are a few SCCS available on the market. In this chapter, we are going to deal
with two major products, namely, Git and TFS.

As TFS is the leading SCCS product from Microsoft, Git is a free GNU software
distributed under General Public License version 2.

www.EBooksWorld.ir

Git
Git is a popular open-sourced Distributed Version Control System (DVCS). Here
is the design of a Git product for your understanding.

Git consists of three main states in its design. They are:

Committed
Modified
Staged

The committed state refers to data safely stored in the local database. Modified is
relates to change in the file/data that have not yet been committed to the database.
Staged refers to marking a modified file in its current version to move it into the next
commit snapshot.

Git has three core states. These defined states lead into the execution section's three
categories, namely:

Git Directory
Staging Area
Working Directory

To start with, the Git Directory a storing place for persisted meta data and its related
object database for the relevant projects. As it is leveraged to clone a particular
repository from one computer to another, it is a highly important component of any
Git product.

The Staging area is a temporary placeholder, and is usually the file contained in
your Git directory. It persists the information about the list of changes to be
committed in the next commit cycle. It is often known as an index.

The Working directory is a placeholder for checking out the version content of a
relevant project. Involved with the core process, these files are extracted from the
original compressed database in the Git directory. Then, the extracted readable files
are placed on the local disk of the end customer. Later, the end user can then use it for
their own purpose in this working directory:

www.EBooksWorld.ir

The basic Git workflow is demonstrated in the following diagram:

With a good understanding of Git's basic concepts, we can now explore the
fundamentals of Microsoft's TFS product.

www.EBooksWorld.ir

TFS
In the modern social computing world, collaboration is one of the key factors for
success in the business. The Team Foundation Server (TFS) is a set of tools and
technologies designed by Microsoft to enable and promote collaboration within the
project's team. TFS co-ordinates team efforts either to build a product or to complete
the project execution:

TFS contains a key module to support the version control system. By design, it
manages the multiple revisions of source code, documents, work items, and other
critical information related to the development project. It increases discipline among
the team so as to streamline the version control process. Its features are listed as
follows:

In terms of end customer usage, TFS provides two methodologies to connect with
external systems. They are based either in the GUI (Graphical User Interface) or
command line.

In system design, authorization allows user access based on an assigned role. In a
similar vein, TFS has two levels of authorization based on the product usage. They

www.EBooksWorld.ir

are:

Contributor
Administrator

Contributor is normal user privilege, where users have access to add, delete,
modify, and maintain the records of all changes applied to the underlying file source.
It is considered as a normal user mode with the basic functionalities of any version
control system.

In contrast, Administrator is regarded as a super user of the system. Typically, any
administrator manages the version control server by maintaining the integrity of data
stored on it. In terms of the TFS product, the administrator has the privilege to
manage the workgroups, permissions, setup, and check-in policies.

www.EBooksWorld.ir

Git vs TFS
In general, the Version Control System (VCS) of any development mode is built
locally. In an enterprise mode, VCS are broadly categorized into two types, namely,
centralized and distributed/decentralized version control systems:

Git and TFS are typical products of two models. After comparing the two models, the
functionality differences are presented as follows:

S.No. Git TFS

1
Git is a Distributed Version Control
System (DVCS). Changes are
distributed between users.

TFS is file-system based and not
change set-based.

2
By design, creating a branch is
extremely quick and cheap, with very
little overhead.

Creating branches is very
expensive on multiple resources.

3 In terms of cost, Git is an open-
source product. Microsoft's license product.

4

On changing the file content, Git
detects the hash difference and marks
the file for check-in. During the
check-in process, only the changed
content goes up. It is more like a
snapshot of the data and its
difference.

As TFS is based on file-system
properties, it is essential to check
out a file before it can be
committed. If you overwrite that
file without checking it out, TFS
will not be able to detect a
change.

5

If you create 10 branches from a
trunk, you are just referencing a
snapshot, so the branches take up
bytes of data instead of duplicating
the data over.

Creating 10 branches from
production is essentially copying
that folder 10 times.

6
Git supports the concept of rebasing
or pulling in changes from the trunk
or even multiple sources.

TFS simply stores its changes as
duplicate files on a server; not
rebase.

www.EBooksWorld.ir

www.EBooksWorld.ir

Visual Studio Integration
After comparing TFS and GIT, any decision should be based on a few key factors,
such as the size of a codebase (LoC - Line of Code), team size, and team distribution
(by geographic location). On analyzing the previously listed strengths and features,
that decision is made easier.

www.EBooksWorld.ir

Team Foundation Version Control
(TFVC)
TFVC is a centralized version control system. While it works well for small teams
with small code bases, TFVC is capable of scaling to support very large codebases
(millions of files per branch with server workspaces) and it handles large binary
files well. TFVC provides granular permission control, allowing teams to restrict
access down to a file level if needed. Since all contributions are checked in to the
central server, it is very easy to audit changes and identify exactly which user has
committed a given code change.

www.EBooksWorld.ir

Git
Git is a distributed version control system where each developer has a copy of the
entire source repository. Having a local repository means that Git works well in
environments where developers need to work without connectivity. It also offers a
simple branching model that enables developers to quickly create local and private
branches, enabling flexible workflows. Git also works well in modular codebases
where code is distributed across many repositories.

Ultimately, much of the decision about which version control system to use is about
preference. However, both systems are equally capable for the majority of teams; it
is up to the team to opt for the right choice. Based on the use cases and business
scenarios, TFS or Git is selected as the version control system for the enterprise
system.

www.EBooksWorld.ir

Developing .NET Core project
templates for enterprise applications
Software development companies usually develop their own architecture and
frameworks for different kinds of projects and in-house products. Depending on the
nature of the application, different types of frameworks and architectures are
developed. There are Single Page Applications, multi-page applications, Web APIs,
Windows services, and so on. These customized frameworks are developed by
architects or lead developers to facilitate development efforts and maintain best
practices.

We have seen that whenever a new project is started and we want to reuse the
existing framework or architecture of some other project, we usually copy files and
tweak them to make them usable in the current project. This practice sometimes
becomes a cumbersome process for developers when copying files and removing
unnecessary code to make it usable. What if we have a ready-made template
available in Visual Studio, or some other tooling support that generates the basic
boilerplate code and scaffold project?

In the .NET world, we can develop custom templates that can be used to create
projects using the same framework code for which the template was created. That
customized template then scaffolds the code and creates files and references which
were part of the framework, enabling developers or architects to focus on the
implementation details rather than configuring and copying the files manually from
previous projects.

There are various methods used to create templates for .NET Core projects. We can
use VSIX, .NET CLI or Yeoman to create custom templates. The difference between
VSIX and .NET CLI is that VSIX is an extension which can be installed as a project
template in Visual Studio, where as .NET CLI and Yeoman provide a command line
experience for creating projects. In this chapter, we will learn how we can use the
.NET CLI to create custom templates.

www.EBooksWorld.ir

Creating a custom .NET Core project
template using .NET command-line
interface tools
Microsoft is working well to make the .NET CLI experience better for developers to
create, build, and run projects through the command line interface. You can install the
.NET CLI using native installers or use the installation shell script.

Once this is installed, we can go to the command prompt and run commands like new
to create a new project, restore to restore NuGet packages defined in your project, run
to run the application, build to build the application and so on. With this, we don't
need the Visual Studio IDE to create, build, or run our project, and we can use Visual
Studio Code or any other editor to build our application.

Microsoft has recently introduced and is working on a newer version of .NET CLI,
and in the RC3 version a lot of improvements and templates have been made
available for you to choose and create projects from. To create custom templates we
need to have at least version RC3 or above installed on our machine. To install the
latest build, please refer to the following link:
https://github.com/dotnet/templating.

The latest build uses the dotnet new3 command to create projects. Once this is
installed, you can type dotnet new3 on the command prompt and it will show you the
number of templates installed.

Creating a template is far easier than creating a new extension. It only requires a
.template.config folder to be created at the root of the solution or project folder,
depending on how many files or folders you want to port, and a template.json file that
will define some metadata about the template.

Suppose we have an enterprise application architecture ready and we have
customized it to bring OWASP security practices, design patterns, and other
framework-related code and we need to reuse that project as a template for future
projects. We can do that by creating a .template.config folder at the root of our solution
folder, as follows:

www.EBooksWorld.ir

https://github.com/dotnet/templating

Then, we will create a template.json file inside the .template.config folder, whose
markup will be as follows:

 {
 "author": "Ovais Mehboob (OvaisMehboob.com)",
 "classifications": ["Web", "WebAPI"], // Tags used to
 search for the template.
 "name": "EA Boilerplate ASP.NET Web API",
 "identity": "EA.Boilerplate.WebApp", // A unique ID for
 the project template.
 "shortName": "eawebapi", // You can create the project
 using this short name instead of the one above.
 "tags": {
 "language": "C#" // Specify that this template is in C#.
 },
 "sourceName": "EAWebApplication", // Name of the csproj
 file and namespace that will be replaced.
 "guids": [// Guids used in the project that will be
 replaced by new ones.
 "8FBE597A-CFF6-4865-B97A-FCE69005F098",
]
 }

Next, we can use the following command to install this template in the .NET CLI
tool:

dotnet -i "Path of your project"

We can then create a new project by executing the following command:

dotnet new3 eawebapi

www.EBooksWorld.ir

Performance measuring for .NET
applications
In this section, we will learn what factors we should consider while measuring
performance for .NET applications. We will learn what the performance metrics are
and how we can utilize different tools in Visual Studio to measure them. We will
discuss UI responsiveness, CPU and memory performance metrics, and how to
analyze memory leaks.

When any application faces performance bottlenecks, the first thing to identify is the
root cause of the area which is causing that bottleneck. Usually, when anything
happens on the performance side, developers or architects immediately jump into
rectifying that issue by optimizing different ends. However, in doing that, the
bottleneck remains still exist. Measuring performance is essential before undertaking
any steps for optimization. We should spend time on identifying the root cause before
optimizing the application code or other areas.

www.EBooksWorld.ir

CPU utilization
Applications that do a lot of CPU work are known as CPU-bound applications.
Applications that involve a lot of I/O, object locking, threading, image processing, or
any other task that involves CPU utilization are termed as CPU-bound applications.
To monitor the performance of CPU-bound applications we can use tools like
Sampling and Instrumentation.

Sampling is done by running some flow of an application then aggregating them with
multiple users to know the percentage measure of application performance and CPU
utilization whereas Instrumentation is monitoring the exact chunk of code being
executed followed with the time taken during execution. This is more detailed level
but to carry out this operation we need to modify or change application's code to
capture this information which is always not possible for applications hosted on
production servers.

www.EBooksWorld.ir

Using the Sampling method in Visual
Studio to collect performance statistics
When you start sampling on your application, it collects information about the
methods that are executing in the application flow and provides a summary as a
result. Methods that are heavily executed during the execution cycle become part of
the active function call tree known as Hot Path. Once the test is completed, it
generates the timeline graph that you can use to look for the bottleneck.

In Visual Studio 2015 or greater, we can start the sampling process by going to
the Analyze > Performance Profiler... menu. Make sure the configuration is set to
release mode.

Once you run your application, it starts recording your application flow and
identifies the Hot Path. You can perform operations on your app that can produce
performance issues and then stop your application and profiler:

To get the sampling profiling result, choose the CPU sampling and finish. This will
run the profiler in the background and open up an application where you can perform

www.EBooksWorld.ir

any action and execute any scenario. Once you close your application, a profiling
report will be generated.

Profiling report shows three sections that are Sample Profiling report, Hot Path, and
Functions, which do most of the individual work. Sample profiling report displays
the graph shows the CPU usage in a percentage at a particular time. Hot Path tells
you which code path in your application is responsible for most of the CPU
execution. Hot Path displays the Inclusive and Exclusive samples. Inclusive samples
are collected during the execution of the target function and contain the samples of the
child functions that are executed, whereas exclusive functions do not contain the child
function execution and contain the direct execution of the instructions executed by the
target function. We can also click on any of the functions being executed to see the
code that has taken that time.

Here is Hot Path showing that 100% execution time was done on GetData method:

We can click on GetData to see the complete function call and the code being
executed:

www.EBooksWorld.ir

Measuring UI responsiveness
User Interfaces are the core essence of any business application. Business
application could be a desktop-based application, web-based, or a native application
that runs on mobile. Measuring UI responsiveness is an essential practice in an
enterprise world to make an application more responsive by emending UI-related
issues and providing users a better experience. Desktop applications or native
mobile applications have one UI thread that locks user access until the current
request is processed. It could be a huge database call or any other backend
processing like image or file that locks the UI thread. Thus, give bad experience to
user.

To measure UI responsiveness, we can use the Concurrency Visualizer extension of
Visual Studio that can be added in Visual Studio IDE from extensions and updates.
This is not supported for web projects but provides tabular, graphical, and textual
data to represent the relationship between your application threads and the system
where application is running on.

To run Concurrency Visualizer you can click on the Analyze >
ConcurrencyVisualizer option in Visual Studio, where you can start a
new process, attach an existing one, and so on.
The Concurrency Visualizer extension for Visual Studio can be
installed from the Visual Studio market place (http://marketplace.visualstudi
o.com).

Once it runs, it starts analysing your system UI and provide detailed results like
utilization, threads and cross-core thread migration, delays in synchronization,
overlapped I/O operations, and much more. Here is the sample screenshot of the
report it generates after running an analysis on a particular application:

www.EBooksWorld.ir

http://marketplace.visualstudio.com

www.EBooksWorld.ir

Analysing memory leaks
Sometimes bad design and pitching something on production without prior testing or
code reviews embrace quality issues. Memory leak is one of the most common
factors in software that increases the memory, where often, restarting or killing the
process is the only possible solution.

Memory leak is a type of resource leak in which the application does not manage the
memory property and does not deallocate or dispose the objects from heap storage.

In the managed world of .NET, GC (garbage collection) is done automatically by the
CLR from time to time and developers don't follow the practice of disposing objects
and often rely on the GC to free up memory. However, this is not always a good
practice with enterprise-level applications or that involve a lot of Disk I/O,
Database, and other related operations.

Memory leaks for managed .NET application is a lot more complex to identify, but
there are certain tools that help to diagnose the memory leaks in an application.

When we run the managed .NET application, four types of heaps memory are created
to store the objects as follows:

Type of Heap Description

Code heap Stores the actual native code instructions when the JIT is done

Small object
heap Stores objects that are less than 85K in size

Large object heap Stores objects that are greater than 85K in size

Process heap Process wise heap starts for 1MB and expands

.NET maintains a complete data structure on Stack, where all the primitive data types
are stored and the addresses of the objects stored on heap. This is used by the .NET
to determine the program execution. Internally, when a method is called, .NET
creates a container that contains all the information related to the method parameters,
variables, and lines of code that will be executed for that method. If that method is
calling another method, a new container is created and stacked on top of it. On the
other hand, when the method completes, the container is removed from the top of the
stack and so on.

When the GC runs, it checks for the objects allocated on heap storage but not

www.EBooksWorld.ir

referenced by any other object of program execution. Other than in the stack, there are
more references where GC checks for the objects are Static or Global object
references, Object finalization, interop references, and CPU registers. These
references are known as GC Roots. Garbage collectors traverse the GC Roots tree
and check each of the objects being used and if there are no references freed up from
memory.

www.EBooksWorld.ir

Identifying memory leaks
There are various tools like JetBrains dotMemory, PerfView, and others to analyse or
identity memory leaks for performance. dotMemory is a very good tool but requires a
license for commercial use. In this section, we will use Perf View and see how
memory leaks can be identified.

To install PerfView, you can go to Microsoft download centre site, https://www.microsoft.c
om/en-us/download/details.aspx?id=28567, and download.

It's a simple .exe file and you don't need to install it. PerfView is highly suitable for
production use. It is quite easy to use and takes snapshots while your application is
running without affecting or freezing the application performance.

Another important tool is the VMMap, which shows complete information, such as
size, committed, private, and other information related to storage for a particular
process. After running VMMap you can select the process for which you want to
know the GC Roots storage information as follows:

This tool is good to get the glance view storage allocation, but to rectify the exact
area where the problem persists we will use PerfView.

To take a snapshot from PerfView, run the PerfView and click on Memory > Take
Head Snapshot option:

www.EBooksWorld.ir

https://www.microsoft.com/en-us/download/details.aspx?id=28567

Max. Dump K Objs is the total size of the objects snapshot will be taken. If the size is
big, PerView automatiaclly performs Heap Sampling and extracts the maximum of
250 K.

Force GC is an option from where we can explicity run GC to perform garbage
collection.

Dump GC Heap takes the snapshot and stores it your PerfView for further analysis.
You can take multiple snapshots and compare the differences:

You can open a dump file, and it opens up the GC Heap viewer that provides a list
of aggregate stacks encountered during sampling. It includes the methods frames that
were captured during sampling:

www.EBooksWorld.ir

The important columns to note are Exc%, Exc, Inc%, and Inc. Exclusive represents
the time spent on a particular method, whereas Inclusive represents the exclusive
time plus the time x in the methods. We can also drill down each object and see the
child objects in the tree.

This is a great tool to identify memory leaks, and to learn more you can refer to the
Channel 9 video at the following link:
 https://channel9.msdn.com/Series/PerfView-Tutorial.

www.EBooksWorld.ir

https://channel9.msdn.com/Series/PerfView-Tutorial

Summary
Now, you will have learnt the important aspects and best practices of application life
cycle management, popular ALM tools, custom templates for .NET Core
applications, and how to measure the performance of .NET applications using Visual
Studio in an enterprise software development process.

In the next chapter, we will discuss how to implement layered architecture using
ASP.NET Core and client-side frameworks.

www.EBooksWorld.ir

Layered Approach to Solution
Architecture
There are various approaches when developing a solution architecture, and it is
important to note that complexity should only be added in the architecture when it is
required. Adding complexity to the architecture is not a bad practice and is
acceptable if it solves a particular need or reduces the development effort for
developers during the development life cycle. In a layered architecture, the
application consists of various layers, namely, presentation, service, business, and
data access layers, and every layer is responsible for serving specific tasks.

The layered approach is one of the widely used approaches in developing enterprise
applications. In this chapter, we will study some of the core concepts of layered
architecture and also develop an architecture using .NET Core to discuss this topic.

In this chapter, we will focus on the following topics:

Discuss the following layers in layered architecture:
Presentation layer
Service layer
Business layer
Data access layer

Implement a practical implementation of each layer using .NET Core, ASP.NET
Core, Entity Framework, and Angular

www.EBooksWorld.ir

Layers in layered architecture
An enterprise application consists of various layers. Each layer is independent and
fewer dependencies on the other layer that makes it more pluggable and easy to
maintain. Communication with other layers can be made through interfaces that
encapsulate the logic or implementation details from the calling layer. Normally,
business applications are n-tiered and logically divided into the presentation layer,
service layer, business layer, and data access layer. The benefits of layered
architecture are as follows:

It is a loosely coupled system
Teams can work on different layers, in parallel, with minimal dependencies on
other teams
Changes to any layer in terms of technology or business logic have little impact
on the other layers
Testing can be done easily

www.EBooksWorld.ir

Presentation layer
This layer contains all the user interfaces of an application. In terms of ASP.NET
Core, it contains MVC controllers, views, static files (images, HTML pages),
JavaScript files, and other client-side frameworks like Angular, Knockout, and
others. This is the frontend layer with which the user interacts. Keeping this layer
separate facilitates upgrading the existing interfaces or design without making any
changes to the backend layers.

There are some architectural principles which should be followed when designing
the presentation layer. A good presentation layer design can be achieved by
following these three principles:

First of all, our data should be separated from view and use patterns like MVC,
MVVM, or MVP to address separation of concerns.
Separate teams should work on the UI and business layer simultaneously.
Minimize the application logic separate from the presentation layer -- the
presentation layer should only contains forms, fields, validation, and related
checks. All server-side logic should reside on the business layer.

www.EBooksWorld.ir

Service layer
The service layer is the main layer, which connects the presentation layer to the
business layer. It exposes some methods through class libraries, Web APIs, or web
services used by the presentation layer to perform certain operations and access data.
Moreover, it also encapsulates the business logic, and exposes POST, GET , and other
HTTP methods to perform certain functionality. There are few advantages of keeping
it web-based instead of making it a shared library project.

The following table shows the advantages of both a web-based and a shared library:

The service layer can also contain methods that do not call the business layer, but are
helper methods or common methods, which are used by the presentation layer and
other consuming parties to the achieve desired functionality. For example, the service
layer can contain a method that takes a list of strings as a parameter and returns a
CSV (comma separated value) string where this operation does not require any
backend database operation.

Securing services is highly recommended when building enterprise applications;
keeping the endpoints open leads to counterfeiting of the data from unauthorized
access. With ASP.NET, this can easily be achieved by authenticating the user using
the ASP.NET security mechanism, protecting resources imperatively through the
Authorize attribute or custom policies. The service layer is the primary layer that
exposes data to third-party sources. Therefore, logging and transactions should be
properly addressed.

There are various approaches to implement the Service layer using the .NET stack.
We can use Web API, Service Stack, WCF, and POCOs to create the service layer.
However, with .NET Core, we can develop services using Web API, Service Stack,

www.EBooksWorld.ir

and the POCOs libraries. Whereas WCF can be developed on .NET 4.5 or earlier
versions of the .NET framework, proxies can be created using WCF Connected
Services.

www.EBooksWorld.ir

Business layer
The business layer is the core layer in the layered architecture. It contains the actual
logic of the application and manages the events that trigger from the presentation
layer. There are different approaches when building the business layer and every
approach is dependent on the scope and timeline of the project.

Let's discuss a few patterns that are highly used when designing or architecting the
business layer:

www.EBooksWorld.ir

Transaction Script pattern
With this approach, the business layer provides simple public methods to perform a
particular functionality. This is a procedural approach, where each method represents
the corresponding operation taken on the presentation layer. For example, the
SubmitVendor action may have a corresponding method in the business layer such as
CreateVendor and so on.

www.EBooksWorld.ir

Table Module pattern
In this approach, each class represents one entity, used to perform CRUD (create,
read, update, and delete) operations on the table. Considering the .NET stack, we
mostly used the DataSet and DataTable objects, that is bound to the particular table in the
backend database.

www.EBooksWorld.ir

Active Record pattern
With the Active Record pattern, each instance of the class represents a database row.
So, if we have an instance of the class that is representing a particular row, we can
use that instance to perform CRUD operation on that row and this can be
implemented using Entity Framework or other ORM (Object Relational Mapper)
tools.

If you have noticed in the Entity Framework, every class is bound to a consequent
table, and contains properties that are tightly bound to the table columns. With this
pattern, each POCO class represents a database row and contains a key and other
properties to represent that row.

www.EBooksWorld.ir

Domain Driven Design (DDD) pattern
Domain Driven Design is a complex pattern, but not tightly coupled with the backend
database. In this approach, classes are structured in such a way as to represent the
entity of the domain and not the table. For example, if we are going with the DDD
pattern, we may have three tables--User, Address, and Profile, which represent the
company's employee as a domain entity. This is a good approach, however, it
takes sufficient time to understand and structure the domain entities. It represents the
business language and hides the logical details from the presentation layer.

www.EBooksWorld.ir

Data access layer
The DAL (data access layer) is the core layer that interacts with the backend
database. There are certain core classes we develop, which communicates with the
database, manage connections and execute the CRUD operations. Certain patterns can
be implemented to minimize the redundant effort of opening and closing connections
and applying transactions that can be encapsulated through a simple interface and
used by the business layer to perform CRUD operations. The most widely used
pattern for this layer is the Repository pattern, which we will explore later in this
chapter.

www.EBooksWorld.ir

Objectives of layered architecture
The objective of layered architecture is to provide separation between each layer.
Each layer should be designed in such a way that it has very little, or no impact on
the other layers. There are different techniques to achieve decoupling between layers
and interfaces are one of the techniques that are primarily used. Instead of using the
concrete implementers, we use interfaces to communicate with the other layers and
the changes do not impact on others. For example, there are cases where we may
want to change the database engine in the DAL and instead of using SQL Server we
can choose Oracle. Or, in the case of the UI, we may want to change the Web Forms
framework for an MVC framework. Good architecture always provide this
decoupling and reduces dependencies.

www.EBooksWorld.ir

Practical implementation of layered
architecture in .NET Core
So far, we have learnt the core concept of layered architecture and the usage of each
layer. To elaborate and study more about the best practices and design patterns used
to implement layered architecture using .NET Core, we will develop an enterprise
application architecture and take a simple tenant website.

www.EBooksWorld.ir

Scope
We will take a scenario where customer is a tenant and is already registered. The
customer uses the TMS (Tenant Management System) to lodge service requests. In
this chapter, we will implement the basic Service Request form and primarily focus
on the architecture. You can try and complete the rest of the implementation from the
code provided with this book.

www.EBooksWorld.ir

Logical architecture
Logically, our solution is divided into five projects. The following is the architecture
diagram showing how each project is lined up and represents each layer of the
layered architecture:

Following is a description of each layer in our project:

www.EBooksWorld.ir

Presentation layer
Web application project is named as EA.TMS.WebApp. This is an ASP.NET Core project
and contains views, Angular components, and TypeScript files to interact with the
service layer to perform HTTP operations. It also provides user authentication using
the CAS (centralized authentication system) system, developed in Chapter 10,
Security Practices with .NET Core, to authenticate users and provide authorized
access.

www.EBooksWorld.ir

Service layer
The service layer project is named as EA.TMS.ServiceApp. This is an ASP.NET Core
project and contains Web APIs. This is also protected using CAS. This service layer
interacts with the BL (business layer) to perform business functionality.

www.EBooksWorld.ir

Business layer
The business layer project is named EA.TMS.BusinessLayer. This is a .NET Core class
library project and contains business manager classes to implement business
requirements. This will call the data access layer to perform the CRUD operations.

www.EBooksWorld.ir

Data access layer
The data access layer project is named EA.TMS.DataAccess. This will be the .NET Core
class library project. In this project, we will implement Repository and Unit of Work
patterns and define our custom Data Context class to use with Entity Framework
Core.

www.EBooksWorld.ir

Common layer
The common layer project is a .NET Core class library project and we have named it
EA.TMS.Common. This is shared between all the layers.

www.EBooksWorld.ir

Setting up the environment
To set up our development environment, here are the list of pre-requisite setups that
we need to run on our machines:

1. Install Visual Studio 2015 or 2017 from http://www.visualstudio.com.

Visual Studio is also available for Mac now and you can download it
from the same link as mentioned above.

2. If using Visual Studio 2015, make sure Update 3 is installed. This is needed to
work smoothly with Angular, which is based on TypeScript 2.0.

3. Install the latest .NET Core version from https://www.microsoft.com/net/core.
4. Install TypeScript 2.0 for Visual Studio 2015 or a later version.
5. Install Node 4 or later. You can check the version by running the command node -

v at the command prompt.

6. As we will be developing an SPA (Single Page Application) and using Angular
as the frontend client-side framework, we have the option to either configure it
on our own, or install a Visual Studio extension for Angular, which makes the
basic boilerplate configuration simple. In this chapter, we will develop a web
application project from scratch without using ready-made extension.

7. Another way to create projects is using the .NET CLI tools. The new .NET CLI
tooling provides certain templates that you can use to create projects by running
simple commands through a command-line interface. The main benefit of using
these tools is cross-platform. We can use these tools in Linux, Mac, and
Windows operating systems to create projects and use Visual Studio Code, or
any other editor, to write code.

www.EBooksWorld.ir

http://www.visualstudio.com
https://www.microsoft.com/net/core

Creating the solution
Once our development environment is setup, we will start creating the layers as
follows.

www.EBooksWorld.ir

Creating the common layer
We will start by creating the common layer first. This layer is the common layer and
is referenced by all the other layers. It contains some core classes and helper
functions which will be used by each layer. The data access layer will create a
database from the entities defined in the common layer. The business layer will use
the entities and business objects defined in the common layer to perform data
manipulations and the presentation layer will use it to bind the models with the
views.

To start with, create a new Class Library (.NET Core) project. Once it is created, we
will add a few entities specific to the Tenant Management System:

The following entity will hold user profile information and is derived from the
IdentityUser class provided in the ASP.NET Core Identity Framework. We will use
ASP.NET Identity Core and Identity Server to perform user authentication and
authorization. To learn more about Identity Core and how to configure it in an
ASP.NET application, please refer to Chapter 10, Security Practices with .NET Core.

Here is the code of the ApplicationUser class:

 public class ApplicationUser : IdentityUser
 {
 }

Normally, when designing the entity models, all the generic properties should reside
under the base entity. So, we will create a BaseEntity class, which will be inherited by
all child entities.

Here is the code for the BaseEntity class:

 public abstract class BaseEntity
 {

 public BaseEntity()

www.EBooksWorld.ir

 {
 this.CreatedOn = DateTime.Now;
 this.UpdatedOn = DateTime.Now;
 this.State = (int)EntityState.New;
 }
 public string CreatedBy { get; set; }
 public DateTime CreatedOn { get; set; }
 public string UpdatedBy { get; set; }
 public DateTime UpdatedOn { get; set; }

 [NotMapped]
 public int State { get; set; }

 public enum EntityState
 {
 New=1,
 Update=2,
 Delete =3,
 Ignore=4
 }
 }

In our BaseEntity class, we have four transactional properties--CreatedBy, CreatedOn,
UpdatedOn, and UpdatedBy, which are common for every entity derived from it. These
fields are good to store the user information and the transaction date time. EntityState
is used to manage the state of each object and helps the developer to set states when
manipulating a grid or a collection.

www.EBooksWorld.ir

Entities mapped to database tables
The following is the ServiceRequest class that will be used to submit the service
requests of the tenant:

 [Description("To store Service Requests submitted by Tenants")]
 [Table("ServiceRequest")]
 public class ServiceRequest : BaseEntity
 {
 [Key]
 public long ID { get; set; }

 public long TenantID { get; set; }
 [ForeignKey("TenantID")]
 public virtual Tenant Tenant { get; set; }

 [MaxLength(1000)]
 public string Description { get; set; }

 [MaxLength(300)]
 public string EmployeeComments { get; set; }

 public int StatusID { get; set; }
 [ForeignKey("StatusID")]
 public virtual Status Status { get; set; }

 }

Please refer to the code provided with this book to define more entities.

www.EBooksWorld.ir

Business objects
We will create a separate folder for BusinessObjects inside the common layer.
BusinessObjects are classes that are composite entities or business models and contain
properties to carry data for a specific business model. The following is a sample
TenantServiceRequest business object:

 public class TenantServiceRequest : BaseEntity
 {
 public string Description { get; set; }
 public string EmployeeComments { get; set; }
 public string Status { get; set; }

 public long TenantID { get; set; }
 public string TenantName { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
 }

www.EBooksWorld.ir

Logging events
Logging events contain some constant numbers, which are used while logging
information. When developing an enterprise application, it is a recommended
approach to provide a specific action number, irrespective of whether it's an error,
information, warning, and so on.

This helps the developer to trace out the exact action which was executed on that
piece of code when the message was logged. And, in the event of an error, it
immediately gives at a glance meaning about the error type, making it easy for the
developer or support team to identity the root cause and resolve it.

Here are a few of the sample logging events we have defined in our project, which
will be used through the layers where logging will be implemented:

 public static class LoggingEvents
 {
 public const int GET_ITEM = 1001;
 public const int GET_ITEMS = 1002;
 public const int CREATE_ITEM = 1003;
 public const int UPDATE_ITEM = 1004;
 public const int DELETE_ITEM = 1005;
 public const int DATABASE_ERROR = 2000;
 public const int SERVICE_ERROR = 2001;
 public const int ERROR = 2002;
 public const int ACCESS_METHOD = 3000;
 }

www.EBooksWorld.ir

Logging helper
LoggingHelper is a helper class, which will be used throughout the project to log the
exception and read the complete stack trace about the exception:

 public static class LoggerHelper
 {
 public static string GetExceptionDetails(Exception ex)
 {

 StringBuilder errorString = new StringBuilder();
 errorString.AppendLine("An error occured. ");
 Exception inner = ex;
 while (inner != null)
 {
 errorString.Append("Error Message:");
 errorString.AppendLine(ex.Message);
 errorString.Append("Stack Trace:");
 errorString.AppendLine(ex.StackTrace);
 inner = inner.InnerException;
 }
 return errorString.ToString();
 }
 }

More helper methods and classes can be added in the common layer,
which can be used throughout the application layers.

Here is the final structure of our common layer:

www.EBooksWorld.ir

Data access layer
All the repositories and database persistence classes reside under the data access
layer (DAL). This layer is used by the business layer to perform database operations.
For database persistence, we will use Entity Framework Core - Code first model.
Entity Framework is an object relational-mapper (ORM), which enables
developers to work with relational data using domain specific object and allows the
use of LINQ or Lambda expressions to search or filter data.

Let's start by creating a new Console Application (.NET Core) project. The reason
why we create the .NET Core console application is because we will run the .NET
CLI commands to run database migrations and it will not work with the class library
project as per the present configurations:

In our DAL, we will implement a Repository, Unit of work pattern, and Factory
patterns.

www.EBooksWorld.ir

Creating Data Context
When working with the code first model of Entity Framework, we need to define our
custom context class, which should be derived from the DbContext class. Any class that
inherits from the DbContext class is used to perform the database manipulation on the
entities. In our case, we will use IdentityDbContext, which is a wrapper on the DbContext
class and takes the IdentityUser object. IdentityDbContext is a generic base class, which
can be customized with entity types that extend from the IdentityUser types.

Given next is the DataContext class, which contains the DbSet property for each entity.
DbSet represents the entity set that is used to create, update, delete, and read records
from a particular table to which the entity is mapped. If DbSet is defined for a
particular entity, then the table will be created on running the database migration and
the relationship and other constraints will be added based on the configuration
defined. Entities that are not defined through the DbSet property will not be affected by
migration and their corresponding tables will not be generated.

Here is our DataContext class containing a few DbSet properties and derived from
IdentityDbContext class:

 public class DataContext : IdentityDbContext<ApplicationUser>
 {
 public DataContext()
 {
 }

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 base.OnConfiguring(optionsBuilder);
 optionsBuilder.UseSqlServer("Data Source=.;
 Initial Catalog=TMS;
 Integrated Security=False;
 User Id={your_db_userid};
 Password={your_db_password};");
 }

 protected override void OnModelCreating(ModelBuilder builder)
 {
 base.OnModelCreating(builder);
 }
 +
 public virtual void Save()
 {
 base.SaveChanges();
 }

 #region Entities representing Database Objects
 public DbSet<Employee> Employee { get; set; }
 public DbSet<Job> Job { get; set; }
 public DbSet<JobTask> JobTask { get; set; }
 public DbSet<JobWorker> JobWorker { get; set; }

www.EBooksWorld.ir

 public DbSet<Property> Property { get; set; }
 public DbSet<ServiceRequest> ServiceRequest { get; set; }
 public DbSet<Status> Status { get; set; }
 public DbSet<Tenant> Tenant { get; set; }
 #endregion
 }

www.EBooksWorld.ir

Creating DbFactory
In an enterprise application, we may have multiple databases from where we need to
perform database operations. So, rather than injecting DataContext directly into the
Repository, we will create a DbFactory class and inject our DataContext through
dependency injection. For example, if we have multiple data context classes pointing
to different databases, we can inject them all through the parameterized constructor in
DbFactory and expose properties to return their instance.

It is always better to expose interfaces, as it encapsulates the actual implementation.
We will create the IDbFactory interface and then implement it using the DbFactory class.

Here is the code of the IDbFactory interface:

 public interface IDbFactory
 {
 DataContext GetDataContext { get; }
 }

The following is the code of the DbFactory class:

 public class DbFactory : IDbFactory, IDisposable
 {

 private DataContext _dataContext;
 public DbFactory(DataContext dataContext)
 {
 _dataContext = dataContext;
 }

 public DataContext GetDataContext
 {
 get
 {
 return _dataContext;
 }
 }

 #region Disposing

 private bool isDisposed;
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 public void Dispose(bool disposing)
 {
 if (!isDisposed && disposing)
 {
 if (_dataContext != null)
 {
 _dataContext.Dispose();

www.EBooksWorld.ir

 }
 }
 isDisposed = true;
 }

 #endregion
 }

www.EBooksWorld.ir

Repository pattern
The Repository pattern is widely used in an enterprise application and decouples the
DAL with the managers defined in BL through interfaces. It abstracts the underlying
technology and architecture of DAL and makes it easy for an architect or developer to
change it easily without affecting the BL managers or the objects that are consuming
it. For example, we use a repository to separate the implementation of retrieving the
data from the business logic and keep it agnostic to the type of data that comprises the
data access layer. In this way, our data source could be a database, web service, or
any flat file, or the like and changing the data source would not affect the business
layer by using the Repository.

In our case, we will implement a generic repository so that any model can use that
interface to perform CRUD operations. To implement the Repository pattern, we will
create an interface as follows:

 public interface IRepository
 {
 IQueryable<T> All<T>() where T : class;
 void Create<T>(T TObject) where T : class;
 void Delete<T>(T TObject) where T : class;
 void Delete<T>(Expression<Func<T, bool>> predicate)
 where T : class;
 void Update<T>(T TObject) where T : class;
 void ExecuteProcedure(string procedureCommand,
 params SqlParameter[] sqlParams);
 IEnumerable<T> Filter<T>(Expression<Func<T, bool>> predicate)
 where T : class;
 IEnumerable<T> Filter<T>(Expression<Func<T, bool>> filter,
 out int total, int index = 0, int size = 50)
 where T : class;
 T Find<T>(Expression<Func<T, bool>> predicate)
 where T : class;
 T Single<T>(Expression<Func<T, bool>> expression)
 where T : class;
 bool Contains<T>(Expression<Func<T, bool>> predicate)
 where T : class;
 }

The preceding IRepository interface has generic methods, which can be implemented
by the Repository class to perform transaction handling, saving or updating records
in the database and searching the records based on different filtering criteria.

Given next is the Repository class that implements the IRepository interface:

 public class Repository : IRepository
 {
 DataContext _context;

 public Repository(IDbFactory dbFactory)
 {

www.EBooksWorld.ir

 _context = dbFactory.GetDataContext;
 }

 public T Single<T>(Expression<Func<T, bool>> expression)
 where T : class
 {
 return All<T>().FirstOrDefault(expression);
 }

 public IQueryable<T> All<T>() where T : class
 {
 return _context.Set<T>().AsQueryable();
 }

 public virtual IEnumerable<T> Filter<T>(
 Expression<Func<T, bool>> predicate) where T : class
 {
 return _context.Set<T>().Where<T>
 (predicate).AsQueryable<T>();
 }

 public virtual IEnumerable<T> Filter<T>
 (Expression<Func<T, bool>>
 filter, out int total, int index = 0, int size = 50)
 where T : class
 {
 int skipCount = index * size;
 var _resetSet = filter != null ? _context.Set<T>
 ().Where<T>
 (filter).AsQueryable() : _context.Set<T>().AsQueryable();
 _resetSet = skipCount == 0 ? _resetSet.Take(size) :
 _resetSet.Skip(skipCount).Take(size);
 total = _resetSet.Count();
 return _resetSet.AsQueryable();
 }

 public virtual void Create<T>(T TObject) where T : class
 {
 var newEntry = _context.Set<T>().Add(TObject);
 }

 public virtual void Delete<T>(T TObject) where T : class
 {
 _context.Set<T>().Remove(TObject);
 }

 public virtual void Update<T>(T TObject) where T : class
 {
 try
 {
 var entry = _context.Entry(TObject);
 _context.Set<T>().Attach(TObject);
 entry.State = EntityState.Modified;
 }
 catch (Exception ex)
 {
 throw ex;
 }
 }
 public virtual void Delete<T>(Expression
 <Func<T, bool>> predicate) where T : class
 {
 var objects = Filter<T>(predicate);
 foreach (var obj in objects)
 _context.Set<T>().Remove(obj);
 }

www.EBooksWorld.ir

 public bool Contains<T>(Expression<Func<T, bool>> predicate)
 where T : class
 {
 return _context.Set<T>().Count<T>(predicate) > 0;
 }
 public virtual T Find<T>(Expression<Func<T, bool>> predicate)
 where T : class
 {
 return _context.Set<T>().FirstOrDefault<T>(predicate);
 }
 public virtual void ExecuteProcedure(String procedureCommand,
 params SqlParameter[] sqlParams)
 {
 _context.Database.ExecuteSqlCommand(procedureCommand,
 sqlParams);
 }

 }

www.EBooksWorld.ir

Unit of Work pattern
We implement the Unit of Work (UOW) pattern to avoid multiple calls to the
database server on each object change. With Repository, we store the object state on
any particular transaction and submit the changes once through the UOW pattern.

The following is the interface of Unit of Work that exposes four methods to begin and
end transactions and to save changes:

 public interface IUnitOfWork
 {
 void BeginTransaction();

 void RollbackTransaction();

 void CommitTransaction();

 void SaveChanges();
 }

The next item is the implementation of Unit of Work, which takes the DbFactory
instance, and allow methods to begin and end transactions and call the SaveChanges
method to push the changes in one call to the database. This way, a single call is
made to the database server and any operation performed on the Repository will be
done in-memory, within the database context:

 public class UnitOfWork : IUnitOfWork
 {
 private IDbFactory _dbFactory;

 public UnitOfWork(IDbFactory dbFactory)
 {
 _dbFactory = dbFactory;
 }

 public void BeginTransaction()
 {
 _dbFactory.GetDataContext.Database.BeginTransaction();
 }

 public void RollbackTransaction()
 {
 _dbFactory.GetDataContext.Database.RollbackTransaction();
 }

 public void CommitTransaction()
 {
 _dbFactory.GetDataContext.Database.CommitTransaction();
 }

 public void SaveChanges()
 {
 _dbFactory.GetDataContext.Save();

www.EBooksWorld.ir

 }
 }

www.EBooksWorld.ir

Running migration
Running .NET CLI commands is straightforward. There are various commands that
helps you with adding migration, removing migration, updating the database,
dropping the database, and so on.

Let's start by creating the initial migration first. To create the initial migration, you
have to go to the root folder path of your data access layer project and run the
following:

dotnet ef migrations add Initial

In the preceding command, Initial is the name of the migration. When the command is
executed, it actually searches for the class derived from the DbContext base class, and
creates the database and tables for the connection string defined. Otherwise, the local
DB store will be used.

On running, a new Migrations folder is created containing the file suffix Initial.cs, as
shown in the following image:

Each migration class has two methods, namely, Up and Down, which are used to apply
or revoke changes.

To create a database or to apply changes on the existing database, we have to run the
following command:

dotnet ef database update -verbose

In the last command, -verbose is the switch used when you want to know the details of
the operation being executed.

Now, once this command is executed successfully, our database and tables will be
created, as shown in the following screenshot:

www.EBooksWorld.ir

If you notice, in the last screenshot, there are some AspNet* tables, which are not
defined in our DataContext class, but created automatically. The reason is the
IdentityDbContext class, which takes the IdentityUser type. To study more about
IdentityUser and IdentityDbContext, please refer to Chapter 10, Security Practices with
.NET Core. Another important thing to note is the _EFMigrationsHistory table. This is the
default table created after running the Entity Framework migrations and contains the
entry of each migration. When running the migrations from .NET CLI command,
Entity Framework actually checks the last migration entry in this table, and executes
the corresponding migrations accordingly. To learn more about migrations, please
refer to this link: https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/migrations.

The next screenshot shows the final structure of the data access layer:

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/aspnet/core/data/ef-mvc/migrations

Business layer
The Business layer contains the actual logic of the application. It exposes interfaces
and defines business managers to perform business operations. To start with, we will
create a Class Library (.NET Core) project and reference data access and common
layer projects:

www.EBooksWorld.ir

Develop core classes
We will start by creating a Core folder and defining a few classes, which will be
common for all the managers and referenced by all business managers.

IActionManager is the interface that exposes four common methods to perform the CRUD
operations. Any manager implementing this interface has to define the implementation
for CRUD operations:

 public interface IActionManager
 {
 void Create(BaseEntity entity);
 void Update(BaseEntity entity);
 void Delete(BaseEntity entity);
 IEnumerable<BaseEntity> GetAll();
 IUnitOfWork UnitOfWork { get; }
 void SaveChanges();
 }

BaseEntity is our base entity class from which every entity in the common layer is
derived.

Next, we will add the abstract BusinessManager class, which will be inherited by all the
concrete classes. Currently, this does not have any method defined, but in future, if
any abstract methods need to be added, methods can be defined and all the business
managers can use them:

 public abstract class BusinessManager
 {
 }

We will be injecting the business managers into the service layer. However, in
certain scenarios, there could be a requirement to have multiple or all, business
managers needed in any service controller class. To handle this scenario, we will
develop the BusinessManagerFactory class, inject the instances through constructor
injection and expose properties that return the scoped objects to the controller. Here
is the BusinessManagerFactory added in our BusinessLayer to provide access to any manager
needed at any time:

 public class BusinessManagerFactory
 {
 IServiceRequestManager _serviceRequestManager;
 ITenantManager _tenantManager;
 public BusinessManagerFactory(IServiceRequestManager
 serviceRequestManager=null, ITenantManager tenantManager=null)
 {
 _serviceRequestManager = serviceRequestManager;
 _tenantManager = tenantManager;
 }

www.EBooksWorld.ir

 public IServiceRequestManager GetServiceRequestManager()
 {
 return _serviceRequestManager;
 }

 public ITenantManager GetTenantManager()
 {
 return _tenantManager;
 }

 }

www.EBooksWorld.ir

Developing business managers
Now we can start developing our business managers, which can be used by the
service controllers in service layers. When designing enterprise application
architecture, it's always a better choice to expose interfaces rather than classes. This
is recommended to encapsulate the actual implementation and to ensure that
unnecessary methods or properties are not known by the consumer object.

Add the Managers folder and keep the interface and its implementation in its domain-
specific folder.

The following is the IServiceRequestManager that exposes one method to return the list of
service requests lodged by tenants:

 public interface IServiceRequestManager : IActionManager
 {
 IEnumerable<TenantServiceRequest>
 GetAllTenantServiceRequests();
 }

We have derived this interface from the IActionManager interface, so the implementer
class can provide implementation for the CRUD methods as well.

Now we will add the ServiceRequestManager class that implements the
IServiceRequestManager interface as follows:

 public class ServiceRequestManager : BusinessManager,
 IServiceRequestManager
 {
 IRepository _repository;
 ILogger<ServiceRequestManager> _logger;
 IUnitOfWork _unitOfWork;

 public IUnitOfWork UnitOfWork
 {
 get
 {
 return _unitOfWork;
 }
 }

 public ServiceRequestManager(IRepository repository,
 ILogger<ServiceRequestManager> logger,
 IUnitOfWork unitOfWork) : base()
 {
 _repository = repository;
 _logger = logger;
 _unitOfWork = unitOfWork;
 }

 public void Create(BaseEntity entity)
 {

www.EBooksWorld.ir

 ServiceRequest serviceRequest = (ServiceRequest)entity;
 _logger.LogInformation("Creating record for {0}",
 this.GetType());
 _repository.Create<ServiceRequest>(serviceRequest);
 _logger.LogInformation("Record saved for {0}",
 this.GetType());
 }

 public void Delete(BaseEntity entity)
 {
 }

 public IEnumerable<BaseEntity> GetAll()
 {
 throw new NotImplementedException();
 }

 public void Update(BaseEntity entity)
 {
 throw new NotImplementedException();
 }

 public IEnumerable<TenantServiceRequest>
 GetAllTenantServiceRequests()
 {

 var query = from tenants in _repository.All<Tenant>()
 join serviceReqs in _repository.All<ServiceRequest>()
 on tenants.ID equals serviceReqs.TenantID
 join status in _repository.All<Status>()
 on serviceReqs.StatusID equals status.ID
 select new TenantServiceRequest()
 {
 TenantID = tenants.ID,
 Description = serviceReqs.Description,
 Email = tenants.Email,
 EmployeeComments = serviceReqs.EmployeeComments,
 Phone = tenants.Phone,
 Status = status.Description,
 TenantName = tenants.Name
 };
 return query.ToList<TenantServiceRequest>();
 }

 public void SaveChanges()
 {
 _unitOfWork.SaveChanges();
 }
 }

If you have noticed, we have injected Repository, Logger, and UnitOfWork. Both Repository
and UnitOfWork objects will be scoped per request, whereas the Logger object will be a
singleton object. We will register them through the .NET Core built-in dependency
injector in the service layer Startup class.

Similar to ServiceRequestManager, we will add another manager under Managers >
TenantManagement to provide tenant management. Here is the code for the ITenantManager
interface:

 public interface ITenantManager : IActionManager
 {

www.EBooksWorld.ir

 Tenant GetTenant(long tenantID);
 }

The implementation for the TenantManager class is as follows:

 public class TenantManager : BusinessManager , ITenantManager
 {
 IRepository _repository;
 ILogger<TenantManager> _logger;
 IUnitOfWork _unitOfWork;
 IServiceRequestManager _serviceRequestManager;

 public IUnitOfWork UnitOfWork
 {
 get
 {
 return _unitOfWork;
 }
 }

 public TenantManager(IRepository repository,
 ILogger<TenantManager> logger, IUnitOfWork unitOfWork,
 IServiceRequestManager serviceRequestManager) : base()
 {
 _repository = repository;
 _logger = logger;
 _unitOfWork = unitOfWork;
 _serviceRequestManager = serviceRequestManager;
 }

 public virtual Tenant GetTenant(long tenantID)
 {
 try
 {
 _logger.LogInformation(LoggingEvents.GET_ITEM,
 "The tenant Id is " + tenantID);
 return _repository.All<Tenant>().Where(i => i.ID ==
 tenantID).FirstOrDefault();
 }catch(Exception ex)
 {
 throw ex;
 }

 }

 public void Create(BaseEntity entity)
 {
 Tenant tenant= (Tenant)entity;
 _logger.LogInformation("Creating record for {0}",
 this.GetType());
 _repository.Create<Tenant>(tenant);
 SaveChanges();
 _logger.LogInformation("Record saved for {0}",
 this.GetType());
 }

 public void Update(BaseEntity entity)
 {
 Tenant tenant = (Tenant)entity;
 _logger.LogInformation("Updating record for {0}",
 this.GetType());
 _repository.Update<Tenant>(tenant);
 SaveChanges();
 _logger.LogInformation("Record saved for {0}",

www.EBooksWorld.ir

 this.GetType());
 }

 public void Delete(BaseEntity entity)
 {
 Tenant tenant = (Tenant)entity;
 _logger.LogInformation("Updating record for {0}",
 this.GetType());
 _repository.Delete<Tenant>(tenant);
 SaveChanges();
 _logger.LogInformation("Record deleted for {0}",
 this.GetType());
 }

 IEnumerable<BaseEntity> IActionManager.GetAll()
 {
 return _repository.All<Tenant>().ToList<Tenant>();
 }

 public void SaveChanges()
 {
 _unitOfWork.SaveChanges();
 }

 }

SaveChanges() actually uses the UnitOfWork instance and this will be called either by the
service controller (part of our Web API project) or from the manager itself. It
depends on the requirement and is open for the developer to use it as per need.

www.EBooksWorld.ir

Logging in .NET Core
Logging is a built-in module in .NET Core. Logging can simply be enabled by
requesting the ILoggerFactory or ILogger<T> through dependency injection. When using
ILoggerFactory, the category name has to be defined, whereas, with ILogger<T>, the class
type name will be used as the category name.

The default provider is AddConsole, which logs the message on the console application.
However, new providers can also be implemented and added by calling the
AddProvider method of ILoggerFactory.

This screenshot shows the final structure of the business layer:

www.EBooksWorld.ir

Creating the service layer
Service layer is the middle layer between the presentation and business layers. It
abstracts the actual logic implemented on the business layer from the presentation
layer and exposes services that can be consumed by the presentation layer. This layer
should be secure enough to allow only authorized access to the resources.

We will develop the service layer using the ASP.NET Core Web application and use
Web API to expose services. This layer will reference the business and common
layers defined previously.

Let's create a new ASP.NET Core Web Application (.NET Core) project and name it
EA.TMS.ServiceApp:

www.EBooksWorld.ir

Creating base controller
We will define our own BaseController to define the ActionManager and Logger instances,
which can be used by the Action filters (we will discuss these later in this chapter).
The benefit of this approach is that you can put common methods and properties in
BaseController and derive Web API controller from it. This is the code of BaseController:

 public class BaseController : Controller
 {
 private IActionManager _manager;
 private ILogger _logger;
 public BaseController(IActionManager manager, ILogger logger)
 {
 _manager = manager;
 _logger = logger;
 }
 public IActionManager ActionManager { get { return _manager; }
 }
 public ILogger Logger { get { return _logger; } }
 public HttpResponseException LogException(Exception ex)
 {
 string errorMessage =
 LoggerHelper.GetExceptionDetails(ex);
 _logger.LogError(LoggingEvents.SERVICE_ERROR, ex,
 errorMessage);
 HttpResponseMessage message = new HttpResponseMessage();
 message.Content = new StringContent(errorMessage);
 message.StatusCode =
 System.Net.HttpStatusCode.ExpectationFailed;
 throw new HttpResponseException(message);
 }
 }

www.EBooksWorld.ir

Adding Custom Action Filters
In ASP.NET Core, filters allow the running of code before or after the execution of a
particular resource in the pipeline. It can be configured on method, controller, or
globally. They run within the MVC Action Invocation pipeline known as Filter
pipeline when a particular action is selected by MVC based on the routing:

ASP.NET Core provides various filters, such as Authorization filters to decide
whether the user accessing the resource is authorized or not. Resource filters are
used to filter incoming requests in the pipeline and are mostly used for caching.
Exception filters are used to apply policies that run globally to handle unhandled
exceptions. Action filters help wrap calls to individual action methods and Result
filters to wrap the execution of independent action results.

An Action filter is an attribute that can be applied on controller and action method
levels.

In this chapter, we will develop these two action filters:

LoggingActionFilter

TransactionActionFilter

Logging Action Filter

We will create a custom LoggingActionFilter filter to log an exception when any method
is executed. This way, we can log the information for every controller which has this
attribute annotated:

 public class LoggingActionFilter : ActionFilterAttribute
 {
 public override void OnActionExecuting(
 ActionExecutingContext context)
 {
 Log("OnActionExecuting", context.RouteData,
 context.Controller);
 }

www.EBooksWorld.ir

 public override void OnActionExecuted(
 ActionExecutedContext context)
 {
 Log("OnActionExecuted", context.RouteData,
 context.Controller);
 }

 public override void OnResultExecuted(
 ResultExecutedContext context)
 {
 Log("OnResultExecuted", context.RouteData,
 context.Controller);
 }

 public override void OnResultExecuting(
 ResultExecutingContext context)
 {
 Log("OnResultExecuting", context.RouteData,
 context.Controller);
 }

 private void Log(string methodName, RouteData routeData,
 Object controller)
 {
 var controllerName = routeData.Values["controller"];
 var actionName = routeData.Values["action"];
 var message = String.Format("{0} controller:{1}
 action:{2}", methodName, controllerName, actionName);
 BaseController baseController =
 ((BaseController)controller);
 baseController.Logger.LogInformation(
 LoggingEvents.ACCESS_METHOD, message);
 }
 }

In the preceding code, the Log method is the helper method, which takes the method
name, RouteData and Controller, and logs the information in the Logger instance injected
through DI.

Transaction Action Filter

To handle transactions, we will develop a custom TransactionActionFilter, which can be
used to begin and end transactions and to commit or rollback in case any error occur.

Here is the code for TransactionActionFilter:

 public class TransactionActionFilter : ActionFilterAttribute
 {
 IDbContextTransaction transaction;
 public override void OnActionExecuting(
 ActionExecutingContext context)
 {
 ((BaseController)context.Controller).ActionManager
 .UnitOfWork.BeginTransaction();
 }

 public override void OnActionExecuted(
 ActionExecutedContext context)
 {
 if (context.Exception != null)

www.EBooksWorld.ir

 {
 ((BaseController)context.Controller).ActionManager
 .UnitOfWork.RollbackTransaction();
 }
 else
 {
 ((BaseController)context.Controller).ActionManager
 .UnitOfWork.CommitTransaction();
 }
 }
 }

www.EBooksWorld.ir

Add controllers
Next, we will add a controller, which will derive from our custom BaseController
class.

The following is the code of ServiceRequestController, which contains an HTTP POST
method to save the service requests of the tenant:

 [LoggingActionFilter]
 [Route("api/[controller]")]
 public class ServiceRequestController : BaseController
 {

 IServiceRequestManager _manager;
 ILogger<ServiceRequestController> _logger;

 public ServiceRequestController(IServiceRequestManager
 manager, ILogger<ServiceRequestController> logger) :
 base(manager, logger)
 {
 _manager = manager;
 _logger = logger;
 }
 [HttpGet]
 public IEnumerable<TenantServiceRequest> GetTenantsRequests()
 {
 return _manager.GetAllTenantServiceRequests();
 }

 [TransactionActionFilter()]
 [HttpPost]
 public void Post(ServiceRequest serviceRequest)
 {
 try
 {
 _manager.Create(serviceRequest);
 }
 catch (Exception ex)
 {
 throw LogException(ex);
 }

 }
 }

Given next is our Startup class, which registers all the dependencies in the
ConfigureServices method:

 public void ConfigureServices(IServiceCollection services)
 {

 services.AddScoped<IUnitOfWork, UnitOfWork>();
 services.AddScoped<IDbFactory, DbFactory>();
 services.AddScoped<DataContext>();
 services.AddScoped<IRepository, Repository>();
 services.AddScoped<IServiceRequestManager,
 ServiceRequestManager>();

www.EBooksWorld.ir

 services.AddScoped<ITenantManager, TenantManager>();
 services.AddScoped<BusinessManagerFactory>();
 // Add framework services.
 services.AddMvc();

 }

And here is the Configure method:

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole(LogLevel.Information);
 loggerFactory.AddDebug();

 app.UseMvc();

 }

www.EBooksWorld.ir

Creating the presentation layer
The presentation layer is the frontend of any application. It contains views, view
models, tag helpers, and static files, like images, CSS, and JavaScript. With the
recent changes in web development and client side frameworks, companies are now
choosing SPA (Single Page Applications) for web frontend. SPA applications are
more responsive in nature and provide better user experience in terms of response
time and performance.

www.EBooksWorld.ir

Single Page Applications
The SPAs are web applications that have a single web page and all views render
inside it dynamically when the user interacts with the application. SPAs use AJAX to
call backend data through services and most of the work is done on the client side:

www.EBooksWorld.ir

Benefits of a SPA
Following are few benefits of SPAs:

SPAs are responsive in nature, as most of the resources, including CSS,
JavaScript, and Images, are only loaded once throughout the application lifespan
A SPA reduces the size of response by making AJAX requests to the server and
receives a JSON response
SPAs make it easy to scale and cache resources

www.EBooksWorld.ir

Developing the presentation layer using
ASP.NET Core and Angular
In this chapter, we will use ASP.NET Core and Angular on the presentation layer. We
will use ASP.NET Core MVC (Model View Controller) to define views and load
them through the routing module dynamically into the main single page container.

There are many benefits of using ASP.NET MVC view with Angular routing. Some of
them are as follows:

We can use ViewBag to define additional properties at runtime
It provides a secure Action method through AuthorizeAttribute
We can implement logging using custom Action filters or by injecting ILogger<T>
at the controller level

To start with, open Visual Studio 2015 and select the ASP.NET Core Web
Application (.NET Core) project template to create a new project and name it
EA.TMS.WebApp:

When you build your project, it will start restoring the packages.

www.EBooksWorld.ir

www.EBooksWorld.ir

Setting up frontend packages
To develop the frontend with Angular, we need some tools, such as TypeScript, Gulp,
and NPM (Node Package Manager). Angular code can be written using TypeScript,
JavaScript, and Dart. There are certain benefits of using TypeScript, for example, it
shows errors at compile time, and provides static types. Secondly, it follows the ES6
(CMAScript6) standard, which helps to define classes, interfaces, and inheritance,
and allows architects to design the frontend following OOPS principles.

The ASP.NET Core architecture is different than what we have seen in the previous
versions. All the static files should reside in the wwwroot folder. Keeping any static file
outside wwwroot will make it inaccessible. When working with TypeScript, we create
(.ts) files outside the wwwroot folder and with a little configuration, it places the files
under a folder in the wwwroot folder. However, there are certain other files used by the
project, which will be needed by the frontend pages and we will use Gulp to copy
them to the wwwroot folder. Gulp is a JavaScript task runner, which is used to automate
tasks and has complete support in Visual Studio.

NPM, on the other hand, is the package manager to manage node modules. In
ASP.NET Core, we can add a file called package.json and define node modules. On
saving, it automatically downloads the dependencies defined in this file from Node
and restores them in the node_modules folder.

Let's add the package.json file and define the following modules:

 {
 "name": "angular-quickstart",
 "version": "1.0.0",
 "private": true,
 "scripts": {
 "typings": "typings",
 "postinstall": "typings install"
 },
 "dependencies": {
 "@angular/common": "~2.2.0",
 "@angular/compiler": "~2.2.0",
 "@angular/core": "~2.2.0",
 "@angular/forms": "~2.2.0",
 "@angular/http": "~2.2.0",
 "@angular/platform-browser": "~2.2.0",
 "@angular/platform-browser-dynamic": "~2.2.0",
 "@angular/router": "~3.2.0",
 "@angular/upgrade": "~2.2.0",
 "angular-in-memory-web-api": "~0.1.15",
 "core-js": "^2.4.1",
 "reflect-metadata": "^0.1.8",
 "rxjs": "5.0.0-beta.12",
 "systemjs": "0.19.39",
 "zone.js": "^0.6.25"
 },

www.EBooksWorld.ir

 "devDependencies": {
 "typings": "2.0.0"
 }
 }

All the @angular packages are angular dependencies, where typings is a development
dependency, which facilitates by providing intellisense when we write TypeScript
code.

Next, we will add the Typing.json file and add the following global dependency:

 {
 "globalDependencies": {
 "core-js": "registry:dt/core-js#0.0.0+20160602141332"
 }
 }

We will create all the TypeScript files under the app folder at the root of the project.
But before creating TypeScript files, let's add the TypeScript configuration file
known as tsconfig.json and add the following JSON:

 {
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "moduleResolution": "node",
 "sourceMap": true,
 "emitDecoratorMetadata": true,
 "experimentalDecorators": true,
 "removeComments": false,
 "noImplicitAny": false,
 "rootDir": "app",
 "outDir": "wwwroot/app"
 },
 "compileOnSave": true,
 "exclude": [
 "node_modules"
]
 }

Some of the important attributes have been listed in the following table:

Attribute Meaning

target

root

ECMAScript standard to which the TypeScript file will be transpiled.

TypeScripts folder (in our case, the app folder) where our TypeScript
file resides.

outDir The Output directory where the generated JavaScript files will reside

sourceMap

Good for debugging purpose. Setting this to true generates a mapping
file known as *.js.map, which contains mapping information between

www.EBooksWorld.ir

TypeScript and the generated JavaScript file.

Finally, we will add the Gulp.js file and add the following script to copy the
necessary packages to the lib folder in wwwroot:

 var gulp = require('gulp');

 var libs = './wwwroot/lib/';

 gulp.task('restore:core-js', function () {
 gulp.src([
 'node_modules/core-js/client/*.js'
]).pipe(gulp.dest(libs + 'core-js'));
 });
 gulp.task('restore:zone.js', function () {
 gulp.src([
 'node_modules/zone.js/dist/*.js'
]).pipe(gulp.dest(libs + 'zone.js'));
 });
 gulp.task('restore:reflect-metadata', function () {
 gulp.src([
 'node_modules/reflect-metadata/reflect.js'
]).pipe(gulp.dest(libs + 'reflect-metadata'));
 });
 gulp.task('restore:systemjs', function () {
 gulp.src([
 'node_modules/systemjs/dist/*.js'
]).pipe(gulp.dest(libs + 'systemjs'));
 });
 gulp.task('restore:rxjs', function () {
 gulp.src([
 'node_modules/rxjs/**/*.js'
]).pipe(gulp.dest(libs + 'rxjs'));
 });
 gulp.task('restore:angular-in-memory-web-api', function () {
 gulp.src([
 'node_modules/angular-in-memory-web-api/**/*.js'
]).pipe(gulp.dest(libs + 'angular-in-memory-web-api'));
 });

 gulp.task('restore:angular', function () {
 gulp.src([
 'node_modules/@angular/**/*.js'
]).pipe(gulp.dest(libs + '@angular'));
 });

 gulp.task('restore:bootstrap', function () {
 gulp.src([
 'node_modules/bootstrap/dist/**/*.*'
]).pipe(gulp.dest(libs + 'bootstrap'));
 });

 gulp.task('restore', [
 'restore:core-js',
 'restore:zone.js',
 'restore:reflect-metadata',
 'restore:systemjs',
 'restore:rxjs',
 'restore:angular-in-memory-web-api',
 'restore:angular',
 'restore:bootstrap'
]);

www.EBooksWorld.ir

www.EBooksWorld.ir

Configuring the ASP.NET Core
pipeline
So far, we have configured our client-side packages. In ASP.NET Core, we can add
static files, security and MVC middleware. To implement security in an ASP.NET
Core project, please refer to Chapter 10, Security Practices with .NET Core.

When developing an SPA application, we use the client-side framework heavily for
routing modules and template rendering. Many client-side frameworks, such as
Angular, provide their own routing modules to render pages in the main parent
container. To enable those routing, we need to add the following spa-fallback entry
followed by our MVC entry as shown next:

 app.UseMvc(routes =>
 {
 routes.MapRoute("default", "{controller=Home}/
 {action=Index}/{id?}");
 routes.MapRoute("spa-fallback", "{*anything}",
 new { controller = "Home", action = "Index" });
 });

Moreover, static files middleware should be added so all the static files, such as
images, JavaScript, and CSS, can be loaded:

 app.UseStaticFiles();

Static files middleware should be added before the MVC middleware
in the pipeline.

www.EBooksWorld.ir

Adding the Angular components
In this section, we will create custom components using TypeScript and create a root
app folder inside our Web App project.

Under app folder, we will create another folder known as shared and this is where we
will create some common components which will be used throughout the application:

Creating a Message component

This component will be used to show messages on the screen when the user performs
any action. These messages will be success, error or warning messages displayed in
the browser.

First, we create MessageModel, which takes the type and msg parameters in a
parameterized constructor and can be passed to MessageService to push messages in an
array.

Create a file, message.service.ts, in the app > shared > message folder, and place the
following code:

 export class MessageModel {

 type: string;
 msg: string;

 constructor(type: string, message: string) {
 if (type == 'E')
 type = 'danger';
 else if (type == 'S')
 type = 'success';

 this.type = type;
 this.msg = message;
 }
 }

Creating HTTP client component

This component is a wrapper of the Angular http module and can be used to send
RESTful messages to our service layer.

Add http-client.service.ts under the app > shared > httpclient folder, and add the
following code:

 import {Injectable, Inject} from '@angular/core';
 import {Http, Headers, RequestOptions, Response} from
 '@angular/http';

www.EBooksWorld.ir

 import { Observable } from 'rxjs/Observable';
 import { APP_CONFIG, AppConfig } from '../../app.config';

 @Injectable()
 export class HttpClient {
 options;
 headers;
 apiEndpoint: string;

 constructor(private http: Http,
 @Inject(APP_CONFIG) config: AppConfig) {
 this.apiEndpoint = config.apiEndpoint;
 }
 get(url) {
 this.headers = new Headers({ 'Content-Type':
 'application/json'
 });

 this.options = new RequestOptions({ headers:
 this.headers });
 return this.http.get(this.apiEndpoint + url);
 }

 post(url, data) {
 this.headers = new Headers({ 'Content-Type':
 'application/json' });
 this.options = new RequestOptions({ headers:
 this.headers });
 let options = new RequestOptions({ headers:
 this.headers, });
 return this.http.post(this.apiEndpoint + url,
 data, options);
 }
 }

Adding service request View Model

Next, we will add our View Model, to which the form controls will bind. Add the
data-models.interface.ts file in app > shared > models, and add the following code:

 export class ServiceRequest {
 id: number;
 tenantID: number;
 description: string;
 employeeComments: string;
 statusId: number;
 }

We can add as many models as required under this file.

Adding a shared module

In Angular, you can define modules; this helps to keep components, providers, and
other resources under one module. We can refer other modules using imports, as
shown next, and export components, using the exports key. Here, we create a shared
module to keep our MessageComponent and our custom HTTP client service in one place
and then we refer this module in other modules to leverage these features:

www.EBooksWorld.ir

 import { NgModule } from '@angular/core';
 import { CommonModule } from '@angular/common';
 import { MessageComponent } from './message/message.component';
 import { HttpClient } from './httpclient/http-client.service';
 import { MessageService } from './message/message.service';
 import { Http, HttpModule } from '@angular/http';

 @NgModule({
 imports: [
 CommonModule,
 HttpModule
],
 exports: [
 MessageComponent
],
 declarations: [
 MessageComponent
],
 providers: [
 MessageService,
 HttpClient
]
 })

 export class SharedModule {
 }

Adding configuration settings

In our application, we will be making RESTful calls to our service layer and
specifying the base service URL, authentication server (CAS) URL, or other
attributes, in one place. So, let's add the app.config.ts file in the app folder and specify
the following code:

 import { OpaqueToken } from '@angular/core';

 export let APP_CONFIG = new OpaqueToken('app.config');

 export interface AppConfig {
 apiEndpoint: string;
 title: string;
 casEndPoint: string;
 appEndPoint: string;
 }

 export const TMS_DI_CONFIG: AppConfig = {
 apiEndpoint: 'http://localhost:5001/api/',
 title: 'TMS System',
 casEndPoint: 'http://localhost:5001',
 appEndPoint: 'http://localhost:5050'
 };

Adding Application module

This is our main Application module, which contains the ServiceRequest component. We
can create domain-specific modules depending on the application size. Here, we also
refer the SharedModule, which we created earlier, so that we can access our custom
HTTP client service and MessageComponent:

www.EBooksWorld.ir

 import { NgModule } from '@angular/core';
 import { BrowserModule } from '@angular/platform-browser';
 import { APP_BASE_HREF } from '@angular/common';
 import { AppComponent } from './app.component';
 import {MenuComponent} from './menu.component';
 import { routing } from './app.routes';
 import { ServiceRequestComponent } from './components/
 tenant/service-request.component';
 import { SharedModule } from './shared/shared.module';
 import { APP_CONFIG, TMS_DI_CONFIG } from './app.config';
 import {FormsModule} from '@angular/forms';
 import {ServiceRequestService} from './components/tenant/
 service-request.service';

 @NgModule({
 imports: [
 BrowserModule,
 routing,
 SharedModule,
 FormsModule
],
 declarations: [
 AppComponent,
 ServiceRequestComponent,
 MenuComponent
],
 bootstrap: [AppComponent],
 providers: [
 { provide: APP_BASE_HREF, useValue: '/' },
 { provide: APP_CONFIG, useValue: TMS_DI_CONFIG },
 ServiceRequestService
]
 })
 export class AppModule { }

Configuring Angular Routes

To configure routing, we will create app.routes.ts under the app folder and add the
following code:

 import { ModuleWithProviders } from '@angular/core';
 import { Routes, RouterModule } from '@angular/router';
 import { ServiceRequestComponent } from './components/
 tenant/service-request.component'
 import { MenuComponent } from './menu.component'

 //Routes Configuration
 export const routes: Routes = [
 { path: 'createServiceRequest', component:
 ServiceRequestComponent },
 { path: 'menu', component: MenuComponent },
 {
 path: '',
 redirectTo: '/menu',
 pathMatch: 'full'
 },
];

 export const routing: ModuleWithProviders =
 RouterModule.forRoot(routes);

Adding App component

www.EBooksWorld.ir

App component is the main component, which hooks up with the main Angular app.
Here, tenant-mgmt is the main selector, which loads the Feature/Index page. This selector
will be added in the Home/Index page.

 import { Component } from '@angular/core';

 @Component({
 selector: 'tenant-mgmt',
 templateUrl: 'Feature/Index'
 })
 export class AppComponent {
 }

Adding Menu component

To load menus, we have to create a separate file, menu.component.ts, in the app folder and
load the Feature/Menu, page as follows:

 import { Component, AfterViewInit } from '@angular/core';
 import { Router } from '@angular/router';
 @Component({
 selector: 'menu',
 templateUrl: 'Feature/Menu'
 })
 export class MenuComponent {

 }

Adding Main module

The Main.ts bootstraps the Main Application module; the code is given as follows:

 import { platformBrowserDynamic } from
 '@angular/platform-browser-dynamic';
 import { AppModule } from './app.module';
 const platform = platformBrowserDynamic();
 platform.bootstrapModule(AppModule);

Adding domain-specific components

For each business domain, we will create a service class and a component class. The
service class will be responsible for making all the HTTP calls to the service layer,
whereas the component class will be responsible for model binding and using the
service class to submit or receive data.

Here is the implementation of the service class as discussed:

 import 'rxjs/add/operator/map';
 import 'rxjs/add/operator/catch';
 import { Injectable, Inject } from '@angular/core';
 import { Observable } from 'rxjs/Observable';
 import { HttpClient } from '../../shared/httpclient/
 http-client.service';
 import {Response} from '@angular/http';
 import { ServiceRequest } from '../../shared/models/

www.EBooksWorld.ir

 data-models.interface';

 @Injectable()
 export class ServiceRequestService {

 constructor(private httpClient: HttpClient) { }

 getServiceRequest(id: any): Observable<ServiceRequest> {
 return this.httpClient.get('serviceRequest?id=' + id)
 .map(this.extractData)
 .catch(this.handleError);
 }

 getAllServiceRequests(): Observable<ServiceRequest[]> {
 return this.httpClient.get('serviceRequest')
 .map(this.extractData)
 .catch(this.handleError);
 }

 postServiceRequest(serviceRequest: any):
 Observable<ServiceRequest> {
 let body = JSON.stringify(ServiceRequest);
 return this.httpClient.post('serviceRequest/post', body)
 .map(this.extractData)
 .catch(this.handleError);
 }

 private extractData(res: Response) {
 let body = res.json();
 return body || {};
 }
 private handleError(error: any) {
 let errMsg = (error.message) ? error.message :
 error.status ? `${error.status} -
 ${error.statusText}` :'Server error';
 console.error(errMsg); // log to console instead
 return Observable.throw(errMsg);
 }

 }

Following is the implementation of the ServiceRequest component, which calls the
service class as discussed earlier:

 import { Component } from '@angular/core';
 import { ServiceRequest } from '../../shared/models/
 data-models.interface';
 import { MessageService, MessageModel } from '../../shared/
 message/message.service';
 import { ServiceRequestService } from './service-request.service';

 @Component
 ({
 selector: 'createServiceRequest',
 templateUrl: 'Tenant/Create'
 })

 export class ServiceRequestComponent {

 serviceRequest: ServiceRequest;
 disable = false;
 serviceRequestService: ServiceRequestService;
 message: MessageService;

www.EBooksWorld.ir

 constructor(messageService: MessageService,
 serviceRequestService: ServiceRequestService
) {
 this.message = messageService;
 this.serviceRequestService = serviceRequestService;
 messageService.clearMessages();
 this.serviceRequest = new ServiceRequest();
 }

 onSubmit() {
 this.serviceRequestService.postServiceRequest(
 this.serviceRequest)
 .subscribe(() => {
 serviceReq =>
 this.message.pushMessage(new MessageModel('success',
 'Service Request Submitted Successfully'));
 },
 error => {
 this.message.pushMessage(new MessageModel(
 'danger', 'Failed to submit ' + error));
 });
 }
 }

Adding SystemJS config file to Bootstrap Angular

We will now add a custom systemjs.config.js file in the wwwroot/app folder, which tells
our System loader to load the Main.js file (generated from Main.ts):

 (function (global) {
 System.config({
 paths: {
 // paths serve as alias
 'npm:': './lib/'
 },
 // map tells the System loader where to look for things
 map: {
 // our app is within the app folder
 app: 'app',
 // angular bundles
 '@angular/core': 'npm:@angular/core/bundles/core.umd.js',
 '@angular/common': 'npm:@angular/common/bundles
 /common.umd.js',
 '@angular/compiler': 'npm:@angular/compiler/bundles
 /compiler.umd.js',
 '@angular/platform-browser': 'npm:@angular/
 platform-browser/bundles/platform-browser.umd.js',
 '@angular/platform-browser-dynamic': 'npm:@angular/
 platform-browser-dynamic/bundles/
 platform-browser-dynamic.umd.js',
 '@angular/http': 'npm:@angular/http/bundles/http.umd.js',
 '@angular/router': 'npm:@angular/router/bundles
 /router.umd.js',
 '@angular/router/upgrade': 'npm:@angular/router/
 bundles/router-upgrade.umd.js',
 '@angular/forms': 'npm:@angular/forms/bundles
 /forms.umd.js',
 '@angular/upgrade': 'npm:@angular/upgrade/
 bundles/upgrade.umd.js',
 '@angular/upgrade/static': 'npm:@angular/upgrade/
 bundles/upgrade-static.umd.js',
 // other libraries
 'rxjs': 'npm:rxjs',

www.EBooksWorld.ir

 'angular-in-memory-web-api': 'npm:angular-in-memory-
 web-api/bundles/in-memory-web-api.umd.js'
 },
 // packages tells the System loader how to load when no
 filename and/or no extension
 packages: {
 app: {
 main: './main.js',
 defaultExtension: 'js'
 },
 rxjs: {
 defaultExtension: 'js'
 }
 }
 });
 })(this);

Next, we create another importer.js file under the wwwroot/app folder and call
System.import to load our Main module.

 System.import('app/main').catch(function (err) {
 console.error(err);
 });

Lastly, we will just add the following script references in our _Layout.cshtml file
residing in the Views/Shared folder:

 <script src="~/lib/core-js/shim.min.js"></script>
 <script src="~/lib/zone.js/zone.js"></script>
 <script src="~/lib/reflect-metadata/Reflect.js"></script>
 <script src="~/lib/systemjs/system.src.js"></script>
 <script src="~/lib/rxjs/bundles/Rx.js"></script>
 <script src="~/app/systemjs.config.js"></script>
 <script src="~/app/importer.js"></script>

So, when our application starts, our Layout page loads the systemjs.config.js and
importer.js. This importer.js loads the Main.js file and bootstraps our main AppModule,
which we created earlier. This AppModule bootstraps our AppComponent, which is our main
application component and displays the Feature/Index page, where the tenant-mgmt
selector is defined.

www.EBooksWorld.ir

Creating MVC Controllers and Views
So far, we have configured Angular and developed few components that are shared
and related to the service request. We will have three controllers to show the home
page, user features, and service request.

Add the MVC HomeController in the Controllers folder and add a default Index action
method, as follows:

 public class HomeController : Controller
 {
 // GET: /<controller>/
 public IActionResult Index()
 {
 return View();
 }
 }

In our Startup class, our default routing will be set to the home controller. Therefore,
this is the main landing page for displaying single-page templates.

Then, in the Index.cshtml page, we will add our tenant-mgmt selector, as shown next:

 <tenant-mgmt></tenant-mgmt>

This selector will render our Feature/Index partial view, which we will define next.

Add a FeatureController under the Controllers folder and add following action methods:

 public class FeatureController : Controller
 {
 public IActionResult Index()
 {
 return PartialView();
 }

 public IActionResult Menu()
 {
 return PartialView();
 }

 }

The following is index view snippet of the FeatureController contains the message
selector and router-outlet to render the template:

 <div class="row">
 <div style="padding:10px 0px 0px 30px" >
 <messages></messages>
 <router-outlet></router-outlet>
 </div>

www.EBooksWorld.ir

 </div>

Here is the Menu view of FeatureController, which shows tiles when the home page is
accessed:

 <div class="row">
 <div class="col-md-7 col-sm-10 center-block floatnone">
 <div class="col-sm-3 categoryBox">
 <a [routerLink]="['/createServiceRequest']"
 class="CreateServiceRequest">

 <i class='fa fa-CreateServiceRequest'></i>

 Create ServiceRequest

 </div>
 <div class="col-sm-3 categoryBox">

 <i class='fa fa-ViewServiceRequest'></i>

 View ServiceRequests

 </div>
 <div class="col-sm-3 categoryBox">

 <i class='fa fa-AssignWorker'></i>

 Assign Worker

 </div>
 <div class="col-sm-3 categoryBox">

 <i class='fa fa-WorkersManagement'></i>

 Workers Management

 </div>

 </div>
 </div>

Next, we will develop a Create ServiceRequest page and add TenantController.

The following is the code of TenantController:

 public class TenantController : Controller
 {
 public IActionResult Create()
 {
 return PartialView();
 }

 }

Create .cshtml of TenantController as shown next:

 <div class="row">
 <div style="padding:5px 0px 0px 30px"

www.EBooksWorld.ir

 class="col-lg-12 col-md-12 col-sm-12">
 <div class="form-group">
 <h3>Enter Service Request:</h3>
 </div>
 <form (ngSubmit)="onSubmit(serviceForm)"
 #serviceForm="ngForm">
 <div class="form-group">
 <label for="name1">Enter Complaint:</label>
 <textarea rows="8" cols="800" maxlength="200"
 class="form-control" id="description"
 name="description" ngModel></textarea>
 @*<div *ngIf="formErrors.description"
 class="smallthin">
 {{ formErrors.description }}
 </div>*@
 </div>
 <div class="form-group">
 <button type="submit" style="float:left;"
 class="btn btn-success" [disabled]="disable">
 <i class="fa fa-check"></i>
 Send Request</button>
 </div>
 </form>
 </div>
 </div>

When we click on the Create ServiceRequest tile, the following page will be
displayed and will show a simple textbox to enter the complaint:

www.EBooksWorld.ir

Summary
In this chapter, you have learnt some best practices when designing an n-tier
architecture. We explored some patterns, such as Repository, Unit of Work, and
Factory in the data access layer, which provide many advantages for decoupling the
dependencies, and how to use them in the business layer for database manipulation.
We explored the benefits of keeping entities and other helper classes in the common
layer so that they can be used throughout the layers. In the service layer, we
developed a few controllers to show how the business managers can be injected and
how logging and exception handling can be done. And finally, in the presentation
layer, we configured Angular and designed a frontend framework to invoke HTTP
services, display messages, and view models to carry data. In the next chapter, we
will learn about implementing a Service Oriented Architecture using .NET Core.

www.EBooksWorld.ir

SOA Implementation with .NET Core
In this chapter, we will draw heavily from the skills and knowledge that we have
gained in the previous chapters of this book. The matter in this chapter is dense and
focuses on the architectural perspective, therefore it demands good attention. Once
we understand the core SOA architecture principles, then coding SOA services
becomes a piece of cake.

The topics that will be covered in this chapter are as follows:

SOA definition
SOA modeling
SOA pivotal components
Types of SOA services
Sample SOA implementation

www.EBooksWorld.ir

SOA definition
Shrinking the concepts learned in the first chapter on enterprise architecture, we can
segment them into four perspectives:

Business perspective
Application perspective
Information perspective
Technology/Infrastructure perspective

For this chapter, our core focus is on the application perspective, where we'll talk
about implementation of Service-Oriented Architecture (SOA) into our enterprise
using the .NET Core as the primary software technology. By saying this, we take
heavy presumptions that our business architectures have been created, our data
models are ready, our infrastructure is either already there or coming into place
based on our enterprise's technology architecture, and now we are moving forward to
our agreed-upon application architecture (which we will talk about as our SOA
definition and theory) to look for solutions with .NET Core as a primary enabler.

www.EBooksWorld.ir

What is SOA?
SOA is an architectural style that primarily promotes service orientation.

Service orientation implies loosely-coupled systems that are fundamentally focused
on satisfying the business functions. In SOA, you think in terms of services that fulfill
business processes in a self-contained manner.

It is easier to look at SOA as the solution to interfaces and integration problems, but
it provides much more. SOA is more than just an integration framework. It defines the
vision and approach to enterprise architecture that builds upon software services
representing heterogeneous business functions. SOA promotes an overall approach
by scoping the main business landscape, identifying the business units and relevant
stakeholders, then defining or improving the business processes, and exposing the
interfaces and solutions in terms of reusable, self-contained, interoperable, flexible
software services.

SOA also mandates setting up operational cycles for running healthy systems as well
as for maintenance and upgrade cycles. It not only enables the registry and discovery
framework for services, but also provides the platform for the governance of
software services that ultimately monitors, reports, and governs the business
functions for the relevant business units in an enterprise.

www.EBooksWorld.ir

SOA modeling
There are a number of SOA models and frameworks that exist in the market, but we
will consider those which are the most referenced ones.

www.EBooksWorld.ir

SOA Reference Model
A reference model is an abstract framework to understand and describe the
significant entities and relationships among them for some environments. It is used or
referred to for development of consistent standards or specifications supporting the
environment of the enterprise.

The OASIS SOA Reference Model (SOA-RM) is an abstract framework that
provides the fundamental concept of SOA to understand the entities and relationships
between them, and for the development of SOA standards within an organization.

In the dictionary, service is defined as An act or a variety of work done by one for
another. OASIS SOA-RM defines service in this one line: In SOA, services are the
mechanism by which needs and capabilities are brought together.

The following reference model defines the principal concepts of SOA:

SOA principal concepts from OASIS SOA-RM

The explanation for each concept is as follows:

Service: A mechanism to enable access to one or more capabilities
Visibility: A service provider and the service consumer need to see each other
Interaction with services: Performing actions against a service such as
sending/receiving messages
Real world effect: The intent and result of interacting with a service
Service description: The information required information in order to interact
with a service
Policies and contracts: Policies are constraints to use a service, and contracts
are an agreement between two or more parties
Execution context: A set of infrastructure elements, process entities, policy

www.EBooksWorld.ir

assertions and agreements, which are identified as a part of service interaction
between the service provider and service consumer

The following diagram is for the Oasis SOA-RM reference model describing the
services:

OASIS SOA Reference model diagram for service description

OASIS SOA-RM is a top-reference point for SOA concepts, and provides
foundational knowledge for SOA architecture. It not only provides the SOA
knowledge, but it can also be used to measure the sanity and validation check for
SOA architectures, frameworks, and implementations.

www.EBooksWorld.ir

Reference model and reference
architecture relationship
The relationship between a reference model and reference architecture has been
defined very nicely by the OASIS SOA model; therefore, their diagram is as follows:

Reference model relationship to reference architecture work (OASIS)

From this preceding diagram, we can see that reference models work as the
fundamental guiding principles for a given domain, and are more abstract building
blocks of the architecture models.

www.EBooksWorld.ir

SOA Reference Architecture
A reference architecture is an architectural design pattern that indicates how an
abstract set of entities and relationships realizes a predetermined set of requirements,
fundamental concepts, and relationships (that is, reference model) in the domain of
interest.

The purpose of reference architecture is to give a realization, which is a high-level
solution artifact, and to architects, a standard model from which to architect specific
solutions for their respective business domain.

According to TOGAF, and in general, we have the following reference architecture
continuum from abstract to concrete by influencing and refining further. For each of
these categories of architecture, we have a reference architecture:

Reference architecture continuum

The diagram means that an SOA reference architecture is categorized as a common
systems architecture. It's a generalized reference architecture for SOA, independent
of any specific industry and implementation.

The following diagram shows the standard and widely adopted SOA reference
architecture as provided by The Open Group (TOG). This reference architecture is
focused on solution and application architecture as per the The Open Group
Architecture Framework (TOGAF). Generally, all SOA implementations
eventually satisfy the elements in this model:

www.EBooksWorld.ir

SOA Reference Architecture (TOG)

We will now see a simple description of these high-level layers, as mentioned in the
preceding SOA reference architecture:

Operational Systems layer: This contains the operational system components
of an enterprise. It primarily includes the infrastructure to support SOA
implementation.
Service Components layer: This includes the software components, which
provide implementation for the service.
Services layer: This includes services with description, contracts, policies, and
containers with service components.
Business Processes layer: It's a collection of the business processes of an
enterprise.
Consumer Interfaces layer: This includes the software components, which
enable users to interact and use the services.
Integration layer: This is probably the most critical layer for an SOA platform.
It provides the integration building blocks, including messaging, message
transformation, message hub, event processing, service composition, and
service registry discovery discovery.
Quality of Service layer: This layer basically monitors, reports (and manages)
the quality of service of the SOA implementation, including its errors,
performance, reliability, availability, and security.
Information layer: This logically includes data, meta-data, analysis,
interpretation, and transformation of data.
Governance layer: This layer contains the governance rules and regulations,
and their application on the services and operations.

www.EBooksWorld.ir

www.EBooksWorld.ir

Common reference information
architecture
Information architecture basically shows the information flow in the SOA
implementation environment, and the interactions between different tiers, systems,
and processes. The following diagram shows the widely adopted IBM SOA
Foundation reference information architecture:

Reference Information Architecture (IBM)

www.EBooksWorld.ir

Common reference Infrastructure
architecture
The Infrastructure architecture depicts the fundamental infrastructure services
required to set up, build, deploy, and maintain the SOA platform components.

This helps in identifying the existing infrastructure, which could be affected by the
SOA implementation. It is also useful when making platform, technology, and vendor
choices for the SOA platform.

The following figure depicts the widely adopted IBM SOA Foundation reference
Infrastructure architecture:

Reference Infrastructure Architecture (IBM)

www.EBooksWorld.ir

SOA features and components
Here, the SOA components that we will discuss are just to give you an idea about the
meta-technical architecture level concepts. These are not the de-facto standards, but
they provide a strong basis to build your organization's SOA architecture. Therefore,
we take a summarized look at one of the most common industry standard architecture.

www.EBooksWorld.ir

Service Component Architecture
Service Component Architecture (SCA) is one of the most popular standards,
dating from 2005. It defines the architectural components of an SOA platform in a
technical manner. It is standardized by the OASIS, mainly in collaboration with IBM,
Oracle, and TIBCO.

It provides a model to compose applications that follow the SOA principles:

In a nutshell, SCA has the following key elements:

Assembly model:
Defines the structure of composite applications by having series of artifacts
defined by elements contained in XML files

Composite:
Is a basic artifact, which is the unit of deployment for SCA
Contains one or more components
Eventually, it holds remotely accessible services

Component:
Contains business functions
Functions are exposed as services, which can either be used internally or
by other components made available through entry points
When a component depends on services provided by other components,
these dependencies are called References

Services:
Remotely accessible web services, primarily based on XML

Implementations:
These are present in components
They are configurable by the component statically or dynamically
SCA provides the implementation and binding specifications

www.EBooksWorld.ir

Policy Framework:
Specifies how to add constraints, security, transactions, QoS, and
messaging policies

Enterprise service bus (ESB):
SCA specifies inclusion and usage of the ESB

Service Data Objects (SDO):
Service Data Objects to access the data sources

With further sections, we will see the software implementation perspectives of the
SOA platform and finally look at some indicative sample code with .NET Core.

www.EBooksWorld.ir

Service types
Services are the most important aspect of the SOA. In an SOA platform, you have
many services, and it is important to categorize them so that it is easy for service
development and service management.

By achieving business processes in terms of service, it increases the modularity,
business understanding, improved and trackable information flow, and better
organization of the business functionality; it also promotes reusability by exposing
service interfaces to other services and systems.

The following table describes the categories of services. Note that it's not required to
categorize your SOA services in this particular way, but use this as a guidance in the
right direction:

Service
categories Short description

Interaction
services

Primarily related to the presentation layer, it supports interaction
between applications and users. Usually a part of the MVC
pattern.

Process
services

Also called composite services, they provide the composition
logic, especially business flows. Could be part of the MVC
pattern.

Information
services

Expose the data logic of the enterprise design. Provide access to
the data storage. Could be part of the MVC pattern as well. These
services could be sub-divided, and can have their own sub
architecture with respect to the enterprise data architecture.

Access or
adapter
services

Provide access to legacy data or application. Provide access to a
resource or expose the resources as a service.

Mediation
services

They normally bind one service (usually, a producer) to more than
one service (data consumers). They provide routing logic of data
and services, data enrichment, and filtering. Some also call it a
distributor service.

Business
services

Provide encapsulated business functionality to internal and
external consumers.

Security Enable application and enforcement of security attributes to other

www.EBooksWorld.ir

services SOA services. Provide interactive and non-interactive layers of
services as well as hookable services.

Registry
services

Enable service discovery and service registry as well as policies
by providing managed access to various SOA artifacts.

Infrastructure
services

Provide measurement and monitoring of infrastructure ensuring the
integrity of the SOA operational environment.

Management
services

Provide metrics, measurements, reporting services regarding other
SOA services. Include outages, severe error detections and alerts,
enforcing administrative policies towards achieving and
maintaining the service level.

Development
services

These are, generally, an entire suite of services related to tooling
like modeling, development, testing, logging, debugging,
instrumentation, error reporting, and alerting used in an SOA
solution.

Strategy
services

Mostly related to business intelligence services for improving
business outcomes. Also may include the services that process the
strategies of business to create an implementation roadmap
covering both business and IT.

www.EBooksWorld.ir

Service composition
Service composition is the combination of existing services to create a new service,
or to achieve a newer functionality.

Since services are essentially business functions or processes in SOA, it describes
the capabilities of business. SOA enhances the visibility and capabilities of a
business by allowing them to create new functions or capabilities by combining the
existing ones into a well-formed composition.

There are two primary styles of service composition on a theoretical level, which are
as follows:

www.EBooksWorld.ir

Service orchestration
According to the dictionary (www.merriam-webster.com), orchestration is defined as The
arrangement of a musical composition for performance by an orchestra.
Orchestration is a composition of services in which one of the services is a master
service, which controls, schedules, and directs all of the other services.

www.EBooksWorld.ir

https://www.merriam-webster.com/

Service choreography
The dictionary (www.merriam-webster.com) defines choreography as follows:

The art of symbolically representing dancing
The composition and arrangement of dances especially for ballet

Basically, services can be compared to a set of dancers, and a business process to
choreography, a direction, or a business process. Each dancer, or a group of dancers,
or each service is autonomous in how they all carry out the direction.

So, in service choreography, the composed services interact and cooperate with each
other without the presence of a master, director, or controller service composing or
combining them.

An easy example of this would be the execution of a combination of cross-
departmental or cross-organizational services, where there is no single service
controlling the flow.

In the Microsoft world, we achieve service orchestration through the Windows
workflow foundation, and orchestration and choreography through the BizTalk server,
which also supports Business Process Execution Language (BPEL).

www.EBooksWorld.ir

https://www.merriam-webster.com/

Common technology standards
Besides many other technology standards, these are the most common ones that are
agreeably associated with the SOA platform:

Hypertext Transfer Protocol (HTTP) Hypertext Transfer Protocol)
XML Schema (XSD, DTD, or similar)
XML (For data representation, transfer, and/or storage)
SOAP (Messaging standard protocol)
Web Services Description Language (WSDL)
JSON (JavaScript Object Notation has lately become more popular than XML)
XPath, XQuery, and XSL Transformation
BPEL (Business Process Execution Language (XML- based construct for
services orchestration)
UDDI (Universal Description, Discovery, and Integration (UDDI))

www.EBooksWorld.ir

Service discovery
One may hardcode the URL of a service in the service consumer configurations, or
one can use the dynamic mechanism to fetch the URL at program execution
(initialization) time. This fetching of the actual URL is part of service discovery.
UDDI is one of the ways to register services and their URLs, and also to retrieve
them by their respective consumers. Service discovery mechanism can also be
custom-built by an organization in combination with the configuration management
system. Most of the SOA solutions provide service discovery as part of the solution.

This feature of SOA does not necessarily enforce the policy framework, while some
of the service discovery solutions offer lifecycle management as well.

www.EBooksWorld.ir

Message broker
A message broker in an enterprise is basically a message-oriented middleware,
which is used for sending messages between two or more clients. In a simple
mechanism, it's basically an implementation support for the producer and consumer
pattern. In general, they provide one-to-one communication (point-to-point/queues)
and one-to-many communication (publish-subscribe/topics) as well.

Message broker promotes loose coupling, and enables asynchronous communication
within distributed applications.

Some implementations use TCP as the underlying data transfer protocol, while others
also give provisions for UDP, Multicasts, and hybrids. Data types for payload that
are commonly available include string, binary, XML, and JSON along with the
options to enable compression.

There are some brokerless messaging approaches, but those are not found commonly
in SOA platforms.

Some of the message brokers in the market include IBM's WebSphere MQ,
Microsoft's MSMQ, Oracle's Service Bus, and TIBCO's EMS besides many others.
As an example, let's look at some of the highs and lows of MSMQ. Note that these
points are just for demonstration, and in no way give an exhaustive product
evaluation.

The highs for MSMQ are as follows:

Built-in Microsoft Windows (infrastructure)
No need to pay extra if you have a Windows server license (cost)
Active Directory Integration (security)
Libraries already present with .NET Framework (not with .NET Core as of
now)
Transaction support (integrity)

The lows for MSMQ are as follows:

Not so popular in bigger enterprises (popularity here might be related to
reliability, and the number of use cases supported)
Limitations on the size of message and queue (limitations for big-sized message
flow)
Not a cross-platform product

www.EBooksWorld.ir

A newer product, Azure Service Bus, is now a better alternative

www.EBooksWorld.ir

Enterprise Service Bus (ESB)
Enterprise service bus or ESB is a collection of features, functionality, and tooling,
and has become almost an essential component, rather a backbone, for any SOA
implementation.

www.EBooksWorld.ir

ESB Segments
At a higher level, ESB can be said to have these six main segments:

Storage resources (in memory, persistent, transfer)
Gateway services (protocols, security)
Message broker (as explained previously)
Solution designer (IDE)
Service adapters (data and services connectors to various resources including
third parties)
Management Interface (administration, installation of components, management,
and monitoring)

The following diagram shows the main segments in ESB:

Main Segments of ESB

www.EBooksWorld.ir

ESB features
There are a number of features which are commonly found in various ESB solutions.
Let's have a quick look at them, as they can be helpful to understand its offerings,
technical capabilities, and to compare and evaluate it.

The following is an unordered and non-exhaustive list, but contains the elements that
can be considered essential for an ESB solution:

Location transparency (producer and consumers are unaware of the endpoints)
Messaging
VETRO

Validation (format and data validation)
Enrichment (addition of attributes)
Transformation (conversion from one format to another, for example, one
XML schema to another using XSLT)
Routing (for example, message dispatching based on filters)

Process and message monitoring
Message security
Protocol conversion (for example, HTTP to JMS)
Monitoring, Administration, and Tracking

Some of the market-leading ESB solutions include IBM's WebSphere ESB, Oracle's
Service Bus, and the TIBCO BusinessWorks ESB.

www.EBooksWorld.ir

Data
Data modeling, including business and data architecture, is part of SOA architecture,
which is a big topic by itself. We would just mention here some of the essential things
with reference to the data modeling for SOA implementation.

www.EBooksWorld.ir

Master Data Management (MDM)
MDM includes information, processes (creation and maintenance), policies,
standards, governance, and tools common across the enterprise.

It holds these two main types of data:

Reference data (data referenced across the organizational system)
Analytical data:

Identification and verification of entities and their relationships
Analytics on master data, for example, number of total customers increased
in a month
Analytical information (for example, in terms of metrics) fed from data
warehouse(s)

www.EBooksWorld.ir

Common data model
This is also a part of data architecture, which, basically, describes the data model to
be used across the span of SOA-wide services. The common data model is defined
and synchronized between persistent storage (database) and the message schemas
travelling throughout the SOA services.

Common data model also includes transformations to and from various other data
models depending on the outward and inward interfaces from systems outside SOA
or legacy systems. Transformations can be dynamic at runtime, ETL scheduled, or
could be offline, triggered by external processes in a batch conversion manner.

www.EBooksWorld.ir

Live business metrics
This kind of data is a runtime aggregation of the tracking, logging, and error data
coming from all of the SOA services. This is a summarized data model to provide a
live snapshot of a system information flow before it is processed by business
intelligence and data warehouse services.

www.EBooksWorld.ir

Services gateway
SOA platforms usually (but not necessarily) have a services gateway. These
gateways are meant to have most of the web services registered inside them for
controlling access, throttling, statistical measurements, QoS, and service mappings
besides other functionalities.

Some of the main and common features of any services gateway include the
following:

HTTP and JMS-based service producers and consumers
Security (authentication, authorization, certificates, encryption, and so on)
Validation (for example, WSDL, SOAP Requests, and more)
Throttling
Routing (web services routing)
Service Proxy
Transformation (for example, from one service to another)
Caching
Central logging and reporting (real time and non-real time)
Mediation (becoming common across gateways)

Note that, with the advent of the REST-based Microservices architecture, API
Gateways are becoming more common than the SOA services gateways. We will take
a look at the API Gateway in the next chapter.

www.EBooksWorld.ir

SOA services library
SOA services library is not an essential component of an SOA platform, but these
kind of libraries are common to SOA implementations. It is an enterprise library,
generally used within implementation technologies such as .NET, Java, and various
others.

The purpose of this library is to encapsulate the implementations of the most common
concepts such as logging, which are used across (almost) all of the implementations
of SOA services.

These concepts can, in general, be called system services or SOA APIs. These can
be implemented and exposed either within the execution context of a business
service, or as a remotely callable service.

The concepts and functionalities encapsulated in the SOA services library, provided
to all SOA services may include, but not be limited to the following:

Common implementation technology framework libraries
Context (SOA service meta business context)
Logging
Error handling mechanism
Common services structure

Constants
Common schemas, XML, JSON, and Strings
Service or system states
Common SOA internal service references (static and dynamic)

Information to enable caching mechanism

www.EBooksWorld.ir

Tracking, logging, and error handling
in SOA
Tracking mechanism enables tracking of input message and message processing at
various stages, which often span across multiple services.

Logging mechanism is a general logging feature of any SOA service implementation,
which is unified so that all services log in a given SOA standard.

Error handling mechanism deals with error logging, related severity, priority, and
handling of error in terms of reporting or retrying/correction. Error reporting may
include monitoring and alerting services.

Some of the attributes that help facilitate these mechanisms may include the
following:

Log Levels (uniform log levels for all implementations)
Timestamp (includes time zones for global enterprise)
RequestID (GUID generated by the Sender/Client application to track the
transactional flow)
TrackingID (GUID generated to keep track of message flow)
BusinessUnits (inserted by the Application)
DomainID, ApplicationID, ModuleName (these are pre-defined values, perhaps
in SOA services library)
ServiceStep (used by Mediation / Orchestration)
BusinessKey (context sensitive info for a message or a set of related messages)
RetryCount (retries indicator if error retry/correction is activated)
MessageType (Pre-defined values to identify the type of a business message)
Message (could be short message and a full message)
Description (useful for logging)

www.EBooksWorld.ir

Notes
The points listed here can be considered as an advisory note:

Enterprise tracking and locking mechanisms are deployed as a centrally
accessible service, which does not have to be implemented as a central logger,
but mainly as a distributed logger and message tracker.
Logging is usually implemented asynchronously. This means that all the business
SOA services perform the logging part by invoking log-related services
asynchronously, and usually, via the SOA services library.
Tracking, logging, and error logging mechanisms are often implemented as a
combination using the same network traffic.
Since the traffic which has the highest frequency in the whole SOA platform is
the tracking and logging traffic, it has to be implemented with the utmost care
with every minute detail. It is also the most critical of all other types of services
in the SOA platform.
It is not necessary to implement all logging via the same mechanism or same set
of services. For example, we can have a central logger for certain log levels,
and perhaps, logstasher components (per machine) with ElasticSearch database
for another set of log levels.

www.EBooksWorld.ir

Sample SOA implementation
The word sample is defined as A small part of something intended as representative
of the whole in the dictionary (https://www.vocabulary.com/dictionary/sample).

So, in this section, we will implement a few types of services, which represent the
most commonly implemented SOA service patterns. And we will be using .NET Core
for all of the stuff. Therefore, it's a limited SOA sample implementation.

www.EBooksWorld.ir

https://www.vocabulary.com/dictionary/sample

Introduction
Since the book is focused on enterprise architecture implementation instead of pure
architectural knowledge or theory, therefore, we have tried to cover (or touch upon)
all fundamental parts of an SOA architecture in just one chapter instead of the whole
book as this topic deserves in the architectural sense.

For our sample implementation, we will directly see the implementation in C# .NET
Core for some of the common types of SOA services, assuming that all the reference
architectures, organizational standards, business and data models, and SOA solution
architecture are in place.

www.EBooksWorld.ir

Sample enterprise
We will take as an example for our sample enterprise, for which we are
implementing an SOA platform.

Let's say the name of our organization is H.I.J.K, which may have hijk.com, just a
random letters sequence I came up with. HIJK is a medium-to-large enterprise with
more than a thousand employees. It has various departments that are supporting the
company to run its business. They have software applications supporting their main
business products or services, and each of their departments also have other types of
software applications, which are supporting the structure of an organization for its
sustainability and growth.

www.EBooksWorld.ir

Departments of a sample enterprise
The departments of the organization in focus for our sample implementations are as
shown in following figure:

Sample organization with some of its departments

www.EBooksWorld.ir

Sample data models for departments
Let's consider a very cut-down version of data models for the departments we
consider for our sample SOA services. These data models typically come out as a
result of business and data architecture.

Note that all of this sample implementation is just for demonstration
purpose, and are quite far from reality; so do not consider this as any
real-world production level architecture, design, or code, but only for
demonstration purposes to make things easy to understand under the
given time and resources.

The following diagrammatic representation shows a sample data model:

Sample data model (trimmed)

www.EBooksWorld.ir

Sample business processes for
departments
We will now consider a few business processes or business functions which are
normally identified, created, and maintained by business analysts, and primarily,
provide knowledge and support to business architects and project managers.

The following diagram displays the list of business processes use cases for the HR
and Accounts department, for which we will create tiny SOA services with .NET
Core:

Sample HR and Accounts business use cases

The following is a list of business functions primarily related or owned by the
Regulatory Affairs department of our sample organization, H.I.J.K:

www.EBooksWorld.ir

Sample Business Services for Regulatory Affairs department

In case you have not noticed, these are business services which are more closely
mapping to the implemented SOA services in the SOA platform; or say, which are
more technically oriented.

www.EBooksWorld.ir

Sample database models for
departments
The next diagram shows an extremely cropped version of any database ERD.
Basically, it is just to give an idea of a database model to show the various
departments that an enterprise may have. Note that each department may have
implemented their own applications, or are using some vendor applications or
hybrid, and can also have a variety of storage layers in an inconsistent or
incompatible manner. Hence the need for a service- based standardized
communication model, so as to enable them to talk together in a unified manner,
across the organization:

Sample Databases for departments

www.EBooksWorld.ir

Bounded contexts
You may have noticed that we did not actually talk about the actual business domain
of our sample enterprise, but only considered its departments, which communicate
with each other on a particular sub-domain. Consider that the HR department has its
own people, processes, tools, and applications, which constitute its particular
bounded context. Similarly, the Accounts and Regulatory departments have their own
bounded contexts.

Here, in our sample scenario, the primary business processes are related to
employee's documents in the HR department, which are validated and facilitated by
the department of Regulatory Affairs. What we are looking at is a couple of bounded
contexts talking or merging to achieve some business process; for such an interaction,
we need context maps for the domain modeling, according to the Domain Driven
Design (DDD) methodology.

Bounded context focuses on a single primary business domain, which gives all team
members (business, IT, customers, and so on) shared and agreed understanding in a
consistent manner. Thus, bounded context implementations become autonomous
components. These components do not have dependencies on anything outside the
bounded context, and they are capable of running together in isolation. Naturally,
these are candidates encouraged to utilize the concepts of containerization.
Fortunately, we will visit containerization in the later chapters of this book.

Context maps provide the relationship between bounded contexts, both in terms of
business as well as technical implementation. These provide useful documentation to
view and realize the integration between the different bounded contexts. Our sample
business processes above can be considered as part of context maps if we are doing
domain modeling using DDD.

www.EBooksWorld.ir

Services implementation
Now that we are well aware of our sample enterprise, and we know what business
functionality we are targeting to implement as SOA services, let's talk code.

Note that the main idea of this chapter is to understand the
architecture and design for the implementation of SOA services using
the .NET Core technology. Therefore, the sample code here is just
indicative, and only for demonstration purposes.

www.EBooksWorld.ir

Solution structure
In this section, we will briefly view the high-level code organization for our sample
SOA services. Doing this will not only make it easier for you to follow the sample
code, but also give you an idea of the steps taken to reach the level of SOA services
implementation. Sample services here are just an example and are incomplete, and in
some places, left to be inconsistent to exhibit the real-world style; however, they
follow the step-by-step structural pattern, which is fundamental to the implementation
of an SOA platform.
Note that the organization of SOA services, conventions, versioning, and change of
management are part of implementation of any SOA platform, which should be part of
the platform definition process.

The following screenshot is an eagle-eye view of the structure of the solution for
SOA services in the given context:

Indicative solution structure for department wise SOA services

In the preceding screenshot, you can see how all services are organized in their own
distinct location, and, more or less, they all follow the same conventions of the
project hierarchy and layers. In real life, all SOA services need not, and would not,
present as part of the same single solution- it would be an overkill.

We have chosen to leave the implementation of services in proper layers, for
example, segregating Model/Entities, the Business Logic Layer, and the Data Access
Layer, but in real implementation, they should be well taken care of as per
organizational standards. A good detailed overview of the layered architecture has
already been presented to you in a previous chapter of this book, which should be a

www.EBooksWorld.ir

starting point.

Each SOA service, for any department, has at least these modules:

Service Interface layer:
This can be either based on SOAP/XML (exposing WSDL).
Or this can be either based on RestEST services with JSON, or XML, or
both.
In our examples, we have chosen to go with REST-based HTTP web
services, because they are modern, lightweight, a bit faster, and more
popular with JSON-based usage. Additionally, Windows Communication
Foundation (WCF) currently supports only web services client
functionality on the .NET Core cross-platform framework.

Business Logic layer
Data Access layer
Model or Entities layer
Testing layer

www.EBooksWorld.ir

Sample database
The database chosen for our SOA services is SQLite, which is a very simplistic
file-based relational and cross-platform database. SQLite is supported directly by
.NET Core instead of using third- party providers. SQLite is not an enterprise-grade
database, and it has a lot of limitations, but we have used it here for ease of use and
simplicity.

While, realistically, every department of an enterprise may have their own separate
databases (along with specific security) as well as shared storage, in this example,
we have just used the same database with different tables. Also, note that it is quite
possible that the IT teams, for their respective departments in the same company,
might have implemented database accessing functionalities in different ways. For
example, some departments may be able to use ADO.NET, while others may use
Entity Framework Core or another ORM layer. .NET Core directly supports both
ADO.NET and EF Core for SQLite databases, and in our sample code, we have used
both for different departments.

www.EBooksWorld.ir

Sample development and system
services
SOA Services library is the fundamental component of each SOA service in the
platform. Services offered by this library can be regarded as System services or
Development services.

We have created a dummy template of the SOA services library, and it is enough to
give you a good start. The primary interfacing part of this library starts with the SOA
context. As the name suggests, it provides the context to an implementing service in
the given SOA platform. The context enables tracing and tracking for the SOA service
as well as the standard logging provider.

The following are the minimum number of classes and services provided by the SOA
services library:

Classes in SOA services library

The most important and the vital class, which is used by all SOA web services, is
SOAContext. Also, it's the first class for which we view the code, so we will view it
completely to have an idea of how we are going to structure the whole class,
including the comments:

 // <copyright file="SOAContext.cs" company="HIJK">
 // Copyright (c) HIJK Ltd. All rights reserved.
 // </copyright>
 // <summary>
 // <project>HIJK SOA Services</project>
 // <description>
 // HIJK SOA wide basic services across the whole platform
 // </description>
 // </summary>

 namespace HIJK.SOA.SOAServices
 {
 /// <summary>
 /// This object provides the basic SOA context to

www.EBooksWorld.ir

 all the SOA services in the HIJK's SOA Platform
 /// </summary>
 public class SOAContext
 {
 public SOALogger soaLogger;
 //SOATracker soaTracker;

 private SOAServiceStructure soaServiceStructure;

 public SOAContext()
 {
 //Basic SOA Services, libraries,
 configuration initialization
 soaLogger = new SOALogger();
 }

 /// <summary>
 /// Initialize the SOA context
 /// </summary>
 public void Initialize()
 {
 //Initialize soaLogger & soaTracker
 //Read configuration or other meta-information
 mechanism to discover the SOA Service
 (which is using it) under the context
 //Create SOAServiceStructure: SOAMetaInfo & SOAPayload
 //Debug, SOA, Verbose logs
 }

 /// <summary>
 /// Close the SOA context successfully
 /// </summary>
 public void Close()
 {
 //Close the context
 //SOALogger.Log
 //SOATracker.Finish
 }

 /// <summary>
 /// Close the SOA context with error
 /// </summary>
 /// <param name="soaError"></param>
 public void Close(SOAError soaError)
 {
 //Close the context
 //SOALogger.LogError
 //SOATracker.Finish
 }
 }
 }

The web services will always use SOAContext.Initialize() at the start of their web
service method, and Close() before the end of the method to open and close the
context, and being part of the services in the SOA platform.

SOA context can be initializing some configuration, keeping the payload types and meta-
information regarding the service, setting the service bus channel so that all this
information will be automatically used in case of tracking, logging, and error
handling when required behind the scenes.

www.EBooksWorld.ir

Note that the log levels can either be mentioned in the static or
dynamic configuration as per the platform level configuration
mechanism.

All services are implemented using ASP.NET Core REST Web API with MVC;
therefore, all the services expose the functionality through Controllers. For example,
the Employee service is EmployeeController.

www.EBooksWorld.ir

Sample information service
These types of SOA services primarily expose the data logic of the enterprise. In our
sample, we have Employee information service and the employee's document listing
service. Let's see the code for the Employee information service:

www.EBooksWorld.ir

Employee information SOA service
The following is a sample code for employee service to give an idea as a reference
implementation for a REST-based web service:

 /// <summary>
 /// This class exposes the APIs related to Employee in HR Database
 /// </summary>
 [Route("api/[controller]")]
 public class EmployeeController : Controller
 {
 private SOAContext soaContext;
 private IEmployeeManager _manager;

 public EmployeeController(IEmployeeManager employeeManager)
 {
 _manager = employeeManager;
 }

 /// <summary>
 /// Gets the list of all Employees
 /// Usage: GET api/employee
 /// </summary>
 /// <returns></returns>
 [HttpGet]
 public IEnumerable<Employee> Get()
 {
 soaContext = new SOAContext();
 soaContext.Initialize();

 var retVal = _manager.GetListofAllEmployees();
 soaContext.Close();
 return retVal;
 }

If your environment is configured to use localhost:5000 for testing, then the URL to test
this REST-based SOA service shall be http://localhost:5000/api/employee, which will
then give you the list of all employees.

We can configure our solution setup to return the data in the JSON or XML format or
both of them based on the client's request.

From the preceding code, we see how this employee SOA information service uses
the context and closes it, which is provided by the SOA services library.

We do not need to go into the details of implementation for the underlying business
layers, data access layers, and other stuff in general for understanding the SOA
services design. But since it's the first web service code that we're looking at, we
will take a look at all the steps of the code up to the database level.

You can also see the full source code provided in the form of projects for each

www.EBooksWorld.ir

chapter, which is shared with you along with the book.

www.EBooksWorld.ir

Employee Information business logic
layer
The interface for the Employee Manager class looks like this:

 namespace Applications.BusinessLogic.Managers
 {
 public interface IEmployeeManager : IBusinessManager
 {
 int GetTotalNumberOfEmployees();

 /// <summary>
 /// Adds the new employee into the DB
 /// </summary>
 /// <returns></returns>
 Employee AddNewEmployee(Employee newEmployee);

 void RemoveAnEmployee(Employee newEmployee);

 /// <summary>
 /// Gets the List of All Employees eventually
 from data source
 /// </summary>
 /// <returns></returns>
 IEnumerable<Employee> GetListofAllEmployees();

 Employee GetAnEmployee(int employeeId);
 }
 }

Let's look at the implementation code, which is as written as follows:

 public class EmployeeManager : IEmployeeManager
 {
 private IRepository _employeeRepository;
 protected readonly Employee DEFAULT_EMPLOYEE;

 public EmployeeManager(IRepository
 employeeRepository) : base()
 {
 _employeeRepository = employeeRepository;
 DEFAULT_EMPLOYEE = new Employee { FirstName =
 "Not found", FamilyName = "Not found", Employee_ID = 0 };
 }

 public int GetTotalNumberOfEmployees()
 {
 return _employeeRepository.GetRecordsCount<Employee>();
 }

 public Employee AddNewEmployee(Employee newEmployee)
 {
 _employeeRepository.Create(newEmployee);
 return newEmployee;
 }

www.EBooksWorld.ir

 public IEnumerable<Employee> GetListofAllEmployees()
 {
 return _employeeRepository.GetAll<Employee>();
 }

 public void RemoveAnEmployee(Employee newEmployee)
 {
 _employeeRepository.Delete(newEmployee);
 }

 public Employee GetAnEmployee(int employeeId)
 {
 var employee = _employeeRepository.GetEntity<Employee>
 (employeeId);
 if (employee == null) return DEFAULT_EMPLOYEE;
 return employee;
 }
 }

www.EBooksWorld.ir

Repositories in the data access layer
From this preceding code for the business layer project, we can see that we access
the data source via the repository pattern. This enterprise application pattern has
been already briefed upon in the previous chapter. Our repositories are present in the
data access layer. Although we have a data access layer with repositories present in
almost every service for each department, let's just take a look at one of the
repositories, which is for the HR department:

 /// <summary>
 /// This repository class takes care of
 disposing underlying dbcon/context objects
 /// </summary>
 public interface IRepository
 {
 TEntity GetEntity<TEntity>(int id) where TEntity : class;
 IEnumerable<TEntity> GetAll<TEntity>() where TEntity : class;
 void Create<TEntity>(TEntity entity) where TEntity : class;
 void Update<TEntity>(TEntity entity) where TEntity : class;
 void Delete<TEntity>(TEntity entity) where TEntity : class;
 int GetRecordsCount<TEntity>() where TEntity : class;
 }

Now, let's look at the implementation of a generic repository; we have removed some
of the trivial code:

 /// <summary>
 /// Generic implementation of IRepository
 interface for HR business apps.
 /// The class takes will take care of disposing
 underlying dbcon/context objects.
 /// </summary>
 public class GenericRepository : IRepository
 {
 protected IDataContextCreator _dataContextCreator;
 public GenericRepository(IDataContextCreator dataContextCreator)
 {
 _dataContextCreator = dataContextCreator;
 }

 public void Create<TEntity>(TEntity entity)
 where TEntity : class
 {
 using (var context = _dataContextCreator.GetDataContext())
 {
 context.Set<TEntity>().Add(entity);
 context.SaveChanges();
 }
 }

 public IEnumerable<TEntity> GetAll<TEntity>()
 where TEntity : class
 {
 using (var context = _dataContextCreator.GetDataContext())
 return context.Set<TEntity>().ToList();
 }

www.EBooksWorld.ir

 public int GetRecordsCount<TEntity>() where TEntity : class
 {
 using (var context = _dataContextCreator.GetDataContext())
 return context.Set<TEntity>().Count();
 }

www.EBooksWorld.ir

Employee information core data access
layer
The data access layer of this service uses the DataContext (DbContext) in the Entity
Framework for the underlying SQLite database for storage. Let's view the sample
code here:

Note that in some services, we used the ADO.NET code, while in
others, we use Entity Framework Core for the data access layers.
This is done just to get a realistic feeling of some practical
inconsistencies that could happen, however, but still on the SOA
service interface layer, all the standards should be uniform.

 public class DataContext : DbContext
 {
 #region Entities representing Database Objects
 public DbSet<Employee> EMPLOYEE { get; set; }
 public DbSet<Photo> PHOTO { get; set; }
 public DbSet<Document> DOCUMENTS { get; set; }
 #endregion

 protected override void OnConfiguring(
 DbContextOptionsBuilder optionsBuilder)
 {
 base.OnConfiguring(optionsBuilder);
 optionsBuilder.UseSqlite(@"Filename=C:\SOA_Sample.db");
 }
 }

For SQLite in the previous code, here we are using a fixed path just for
demonstration purposes, and there are no special configurations that we set for using
the SQLite database.

www.EBooksWorld.ir

Entity in an employee information
model
Now, let's just see the code for the Employee entity. Remember, we have already seen
the tables for our sample SOA services scenario.

An extremely simple Employee class can be written as follows:

 public class Employee
 {
 [Key]
 public int Employee_ID { get; set; }
 public string FamilyName { get; set; }
 public string FirstName { get; set; }
 public DateTime DOB { get; set; }
 public string Grade { get; set; }
 public DateTime PPT_Issue_Date { get; set; }
 public DateTime PPT_Expiry_Date { get; set; }
 }

www.EBooksWorld.ir

Sample adapter service
Access or adapter services enable access to certain data. In our sample scene, we
have at least one adapter or access service. We have a business process in the
accounts department, which gets a list of external expenses from a third-party system
through files in some format (let's say, XML or CSV). So, a web service is required,
which receives the files one by one, parses the files, and saves them in the database.

Since we are discussing the SOA architecture, and not coding the web services, from
now on, we will only see the example pattern, and have a suggestive skeleton
service.

Our sample indicative implementation for a file receiving adapter service would
look like the following:

 /// <summary>
 /// Receives the external expenses file and save it to
 Accounting database.
 /// Case when file comes from another web service
 /// Type: Adapter Service
 /// </summary>
 [HttpPost]
 public void Post()
 {
 if (Request.HasFormContentType)
 {
 var form = Request.Form;
 foreach (var formFile in form.Files)
 {
 var filePath = Path.GetTempFileName();
 using (var fileStream = new FileStream(
 filePath, FileMode.Create))
 {
 formFile.CopyTo(fileStream);
 }
 //1. Parse the uploaded files
 //2. Save the data into database using data access layer
 //3. Delete the temp files
 }
 }
 }

In the Sample Business Processes for Departments section given earlier, we have
the following examples of access service:

The first example is the one that is able to communicate with third-party B2B
services able to receive the Passport document after its renewal from
government authorities to the Regulatory Affairs department.
The second is the one in which the received document is sent from the
Regulatory Affairs department to the HR department.

www.EBooksWorld.ir

www.EBooksWorld.ir

Sample background service
Background services in SOA are continuously running services, which may or may
not expose some service-callable interface. A background service is usually
considered as a technical category of service, and is usually categorized depending
on the function of a service. Our sample service could be categorized as an
interaction or a data access service, which is a background running service acting as
a DB Monitor, which periodically checks the database for a document's validity.
Upon detecting the expiry documents, it calls another service to notify the change. We
will see the sample code of the notification service (DocumentValidity) called by the
background service in the next session.

This kind of service needs to be hosted in a process depending on the operating
system. If it's Windows, the service can be a console app, an app without UI
scheduled by Windows schedule, or an always running Windows service. If it's
Linux, it would probably be configured as a service, or as an executable in Init.d or
as a cron job. The skeleton code of our background service, which is hosted in a
.NET Core console app, would look like the following piece of code:

 public class DBMonitor : IDisposable
 {
 private SOAContext soaContext;
 public DBMonitor()
 {
 soaContext = new SOAContext();
 }

 public void Initialize()
 {
 //Does the initialization, configuration, schedules,
 database, check ups..
 soaContext.Initialize();
 }

 public void Work()
 {
 //Perform all the mandated tasks as per schedule
 //Periodically watch DB tables for documents validity
 //Detect the change
 //Notify the change in respective document that it is
 expiring soon -- calls DocumentValidity notification service
 }

 //IDisposable Interface
 }

The simple code in the host process would be something like this:

 public static void Main(string[] args)
 {
 var monitor = new DBMonitor();

www.EBooksWorld.ir

 monitor.Initialize();
 monitor.Work();
 }

Note that we can use the same code and host it, for example, in the
windows service as it is.

www.EBooksWorld.ir

Sample interaction (notification)
service
Interaction services provide interaction between applications or users. In our sample
scenario, we have our service that provides interaction between two applications
without the need of a third software in between. For this purpose, we have a
DocumentValidity service, and we call it a notification service, which receives the
notification from one service and processes it to another within the same Regulatory
Affairs context (department):

 Let's view the simple code for our sample notification service:
 /// <summary>
 /// This API gets the notifications from the DB Documents
 Validation Notification service.
 /// Usage: - GET api/DocumentValidity/notify?employeeId=2&docid=1
 /// Type: Interaction Service
 /// </summary>
 /// <param name="employeeId"></param>
 /// <param name="docId"></param>
 /// <returns></returns>
 [HttpGet("Notify")]
 public IActionResult Notify(int employeeId, int docId)
 {
 soaContext = new SOAContext();
 soaContext.Initialize();

 //Start document validation/expiry process by
 invoking DocumentSubmitter to Authorities depending
 on the type of the document
 DocumentSubmitterProxy.ProcessDocumentSubmission(
 employeeId, docId);

 soaContext.Close();
 return new OkResult();
 }

Note that our notification service gets called by another SOA service
(the preceding code), and this service, after receiving the
notification, calls another service creating a service composition as
a service choreography.

www.EBooksWorld.ir

Sample mediation service
Mediation services get the data from one service and distribute it amongst more than
one target service. These services receive the data, may normalize data or transform
data with respect to a common data model, enrich the data by adding new fields or
filling up the empty fields in the transformed data, and perform filtration based on
some attributes before forwarding the data to a set of target services or not, and then
ultimately calling the sets of target services.

For our sample scenario, we have one mediation service, which is Document
Submitter. This service receives the data, and is supposed to call various other
target services like other authorities through B2B and third-party channel services, or
may send e-mails to trigger the manual processes. In calling the target endpoints, it
might need to transform the data into the target format, enrich the data with some
more fields like license keys, registry information, and authority-specific
authentication mechanism, and filter the payload so as not to send the data all the time
to all services, but only to limited desired targets:

Sample Mediation Service

As you can see, this service is very specific to the actual requirements, so we cannot
give the sample code, but understanding this scenario, one can imagine how the code
would look like. There is no sample code for Document Submitter. As you can see in
the preceding the diagram, an experienced engineer can realize that the
implementation of a Document Submitter mediation service is very specific to the
actual requirements in which target services it will be calling eventually.

www.EBooksWorld.ir

Sample scenario of a service
choreography
In our sample scene, we have a business process in the Regulatory Affairs
department, which is about the documents validation process. This process is
actually a service composition in the form of service choreography. Remember, in
choreography, there is no director or controller for the execution of all the services,
but they are executed sequentially in a set order to achieve a business process.

Our sample process starts from the DB Monitor background service, which sends
one message or one service call for each expiring document in its validation process.
It sends out the notification through our service Document Validity Notify, which
then calls the Document Submitter service to pass on the documents for their
renewals (for example), and after some time (required to process the renewal request
forms), we get the renewed document back via one of the B2B services Passport
Receiver (for example, to receive the specific document, that is, Passport). The
Passport Receiver service will then call the Update HR Document
(UploadSingleFile) service to pass on the new document to the HR department to
save a copy in their database:

Sample Service Choreography

This concludes our service composition as a choreography. Since it's not a workflow,
we do not need to explicitly close the status of the business process and there is no
need to update the process starter.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In this chapter, our primary focus was to understand and build the SOA software
implementation architecture. We took a top-down approach from how to define
architecture to SOA-specific architectural concepts using the right aspects and
attributes to consider while modeling the SOA platform.

We then took a closer look at the essential artifacts required for developing a general
SOA architecture and gradually moved towards the technical perspective of the
implementation architecture.

Finally, we did a skeleton implementation for some of the SOA services in our
sample scenario. We used .NET Core with C#, realizing how easy it is to write the
code with rich framework support, especially for REST-based web services. As an
additional perk, our code is already cross-platform; we can even write the code in
one platform and deploy it to other platforms.

www.EBooksWorld.ir

Cloud-Based Architecture and
Integration with .NET Core
Cloud architecture has evolved at a rapid pace in recent years, and offers highly
reliable and scalable solutions. This has drawn the attention of enterprise companies,
who are now adopting cloud services, and either migrating their existing systems or
creating new systems on the cloud. Another advantage of the cloud is the cost.
Previously, mid-or-small-sized companies had to invest a lot into building their
infrastructure, and had to buy highly-priced servers to host applications. Apart from
this, they also needed a support contract, or had to hire a local team to support the
application, depending on its complexity. On the other hand, with the cloud,
companies can use the pay-as-you-go model or purchase a subscription, and host
their applications without needing to purchase any hardware or hire a team to
maintain the infrastructure. In this chapter, we will use the cloud platform of
Microsoft, known as Microsoft Azure, and develop and host applications built using
.NET Core.

We will cover the following topics in this chapter:

Discuss the three computing models of Cloud, namely IaaS, PaaS and SaaS
Focus on Microsoft Azure as a Cloud provider and discuss the difference
between Virtual machines, Cloud services, and App services
Explore how we can develop .NET Core applications using Azure App
Services, which not only provides a Rapid Application Development model, but
also facilitates deploying and maintaining an application on the cloud
Explore how we can develop background services and event handling on the
cloud using WebJobs and Azure Functions
Discuss scalability and performance options in Azure App Services
Explore logging and monitoring options for .NET Core application using Azure

www.EBooksWorld.ir

Cloud Computing Models
Generally, every cloud platform, especially Azure, provides these three kinds of
models:

Infrastructure as a Service
Platform as a Service
Software as a Service

www.EBooksWorld.ir

Infrastructure as a Service (IaaS)
IaaS is a form of cloud computing that provides virtualized resources, such as virtual
machines, containers, networking services such as firewalls, and other computing
resources. Companies or individuals can use these services via the Internet and setup
their whole infrastructure over the cloud. This benefits small, mid-sized, and even
large companies, as they can avoid hardware costs and pay for only the services they
use. The IaaS platform provides high availability and scalability, and can be
managed through the cloud portal. For example, to create a virtual machine (VM),
you can log in with your cloud account, choose an option to create a new VM by
selecting an operating system (for example, Windows or Linux), and then choose any
of the pre-built images for the version you want to install. Within minutes, the VM
becomes ready, and you can use that VM to install any of the tools and host your
applications. The premier IaaS providers are Microsoft Azure, Amazon Web
Services, Google Compute Engine, IBM SmartCloud Enterprise, and Rackspace
Open Cloud. Some examples of the IaaS model are VM, Storage, and networks.

www.EBooksWorld.ir

Platform as a Service (PaaS)
PaaS offers platform services, such as Web Apps, and cloud services such as SQL
Server Services, Azure App Services, and so on. Whereas IaaS is all about
containers and virtual machines, and anything installed inside that VM has to be
managed manually by the user, PaaS offers cloud services where all the services are
managed by the cloud provider. For example, if we need to host our database server
on the cloud, one option is to take a VM and install the SQL Server on that VM itself.
Using this model, the management of the SQL Server or the setting up of load
balancing and failover has to be done by the user. But if we go with the SQL Server
cloud service, which is platform as a service, it does all the load balancing, failover
is done automatically, and we just need to care about our application databases and
SQL objects. There are some constraints when working with the PaaS model, as it
only supports a minimal set of versions of the tools or platforms services, and it
totally depends on the business requirement, where the architect can decide to choose
between IaaS and PaaS. Some examples of PaaS in Azure are App Services and SQL
Azure.

www.EBooksWorld.ir

Software as a Service (SaaS)
SaaS is a cloud service where the consumer can access software applications
running on the cloud via the Internet. Applications such as Twitter, Office 365, and
Flickr are all examples of SaaS. Consumers are charged monthly, weekly, or on an
on-demand basis, as per the agreement. With traditional software applications,
companies purchase the software at a one-time cost, and install it in their own
environment. Unlike on-premise installation, SaaS runs on the cloud, and offers an
on-rent model, where customers can register for a service to use software and pay as
they use. A good example of SaaS is Office 365.

www.EBooksWorld.ir

Azure compute
When Microsoft first introduced Azure, they started with Platform-as-a-Service
where they have Web Role and Worker Role. But, gradually, they started the
Infrastructure services and defined the VM Role. Since April 2015, they have
replaced all these roles, and given a new look to the Azure computing model, which
is classified into these four components:

Virtual machines
Cloud service
App Service
Service Fabric

www.EBooksWorld.ir

Virtual machines
A virtual machines is a part of IaaS and allows the user to provision any machine
running on the cloud; the user can remotely connect to that machine and do whatever
they want. With virtual machines, you can also manage resources such as CPU,
memory, and disks (HDD or SSD), and all are quite easy to set up using the cloud
portal. Similar to virtual machines, Microsoft has also introduced the concept of
containers. Containers are light-weight application hosts, which refers to virtualized
resources such as filesystem, windows registry, and others. Containers run on top of
virtual machines to sandbox any application running inside it. We can set up a Linux
virtual machine and set up a container, which runs ASP.NET Core, on top of it.
Containers are now only supported on the Linux platform but Microsoft is working on
it being supported on Windows as well. Moreover, containers are cheaper than
virtual machines in terms of cost.

www.EBooksWorld.ir

Cloud services
Cloud services is a PaaS (Platform as a Service) and is designed to support
applications that need auto-management of scalability and reliability by Azure. Cloud
services run internally on VMs and provide an abstraction layer on top. It has two
types of roles, which are as follows:

Worker Role
Web Role

www.EBooksWorld.ir

Worker Role
This role is used to run any application which does not require IIS. This role is
mainly used to run background services.

www.EBooksWorld.ir

Web Role
Web Role is primarily used to run web applications, such as ASP.NET, PHP, Web
API, WCF, and others, which runs on IIS.

Cloud service can be deployed as a package and, during deployment, you can specify
the roles that you need, choose the target operating system, and scale your service
accordingly. Cloud service is managed by Azure Service Fabric, and it controls the
environment and the virtual machines that your service is hosted on. So, for example,
if you have selected two instances to be running and once instance fails, Azure
Service Fabric detects that failure and uses some other rack in the same data center to
bring up that instance. It uses the shared storage between multiple VMs, and makes it
easy to switch between different VMs in case of any failure.

www.EBooksWorld.ir

App Services
With App Services, there is another layer of abstraction which hides the underlying
cloud services. With App Service, we don't need to choose the Worker Role or Web
Role that our application will be running on. Instead, we can simply choose any app
model from Web App, API App, Logic App, and Mobile App, and deploy the
application with easy and simple steps. In the next section, we will discuss App
Services in detail, and see how firm it is to develop applications for different app
models.

www.EBooksWorld.ir

Azure Service Fabric
Azure Service Fabric is the distributed system platform used to develop applications
on microservices architecture. It provides an easy way to package and deploy
microservices, and to manage their scalability through the Azure portal. It is the new
middleware platform for building enterprise-class cloud applications.

Azure Service Fabric provides a runtime to build distributed, stateless, and stateful
microservices, and powers various services, such as Azure SQL database, Microsoft
Power BI, Azure IoT Hub, and others. To learn more about Service Fabric and
microservices architecture, please refer to Chapter 9, Microservices Architecture.

www.EBooksWorld.ir

Features comparison between virtual
machines, cloud services, Azure App
Services, and Service Fabric
The following table compares the main features of virtual machines, cloud services,
Azure App Services, and Service Fabric:

www.EBooksWorld.ir

Rapid application development using
Azure App Services
Microsoft Azure provides a complete RAD (Rapid Application Development)
platform to develop applications that are websites, Web APIs, logic applications,
and Mobile Apps under one umbrella known as Azure App Services. In this section,
we will explore all the app models provided in Azure App Services, and understand
the unique capability of each and when to use what to achieve a particular scenario.

Azure App Services contains four types of application models, which are as follows:

Web Apps
API Apps
Mobile Apps
Logic Apps

The benefit of Azure App Services is that you just need to focus on your application
business requirement rather than going into the low-level details of plumbing servers,
defining worker roles or web roles, and so on. You can choose the app model that fits
your requirement and develop your application on the fly.

Azure provides App Services using App Service Fabric, which abstracts the server
and the underlying resources through App Service Fabric. App Services provides
certain capabilities which make creating applications simpler. These capabilities
include authentication and authorization, scaling, a hybrid model that enables
connecting to on-premise resources like the database running in your own
organization, continuous integration to deploy applications from different source
controls such as Git or TFS on every check-in, and support for troubleshooting.
Consider the following figure:

www.EBooksWorld.ir

www.EBooksWorld.ir

Web Apps
Traditionally, with web application hosting, we need a separate server or a machine
where we set up our web server. With .NET Core, we can develop a web application
that can be hosted on IIS if we have the Windows operating system installed on our
server, or Apache or Nginx web server if we have the Linux operating system.
Setting the machine and web server requires the sufficient amount of time and effort.
We need to make sure that the .NET Core runtime has been installed, set up the
application pool during deployment, and if our web application is a public website,
then we need some DevOps support to make it publicly accessible. We also need to
make sure that it is secure and has the latest service packs installed.

With Azure Web Apps, hosting a web application is simple. With a few basic steps,
we can deploy any web application on the cloud, which is accessible over the
Internet and provides capabilities for doing authentication and the authorization of
users, scalability such as load balancing servers, and connecting to the on-premise
database servers. The developer or architect hosting the web application on the
cloud does not need to get into other details such as setting up a web server,
configuration application pool, and so on.

With Web Apps, we can host any web application that is developed on .NET,
Node.js, Python, Java, and PHP. When we register a web application in Azure Web
App, it creates a public URL, which can be accessed from the Internet. The default
URL is {name_of_webapp}.azurewebsites.net, but we can attach custom domains to it as
well. We can also use deployment slots with our Web Apps, which enables us to set
up different environments such as development, staging and production. Moreover,
we can also set up continuous integration, which enables us to configure the source
repository where our code resides, like Git or TFS; automatic deployment is done
once we check-in or push our changes to that repository.

www.EBooksWorld.ir

Hosting an ASP.NET Core application
on Azure
Deploying an ASP.NET Web Application on Azure is simple. You can either create
an application through the Azure portal, or create a web application from Visual
Studio and publish it to Azure using Visual Studio or .NET CLI (command-line
interface).

Suppose we have an ASP.NET Core application in place and we want to deploy that
application on Azure. To do so, we will just right-click on the web application
project from Visual Studio, and choose Publish. A dialog will open, and ask you to
select the target to be published, as shown in the following screenshot:

Once you select Microsoft Azure App Services, it will give options to select your
Azure subscription, and choose any of the existing running App Services. As this is a
new web application, we will choose New, as shown in this screenshot:

www.EBooksWorld.ir

From the Create App Service page, specify the unique Web App Name, select
Subscription, select existing Resource Group or create a new one, and finally, select
App Service Plan:

App Service Plan gives an option to select the Location where the application will
be deployed and the Size of the machine that shows the number of processor core(s)
and RAM:

www.EBooksWorld.ir

Finally, it shows up a dialog containing the server name, Destination URL, and other
details, as shown in the following screenshot:

Azure has also introduced a template for Web App on Linux, which can create and
deploy your ASP.NET Core application on Linux running in a Docker container.
While creating, you can specify the App name, Subscription, Resource Group, and
container, and select the .NET Core runtime stack to create an ASP.NET Core
application:

www.EBooksWorld.ir

www.EBooksWorld.ir

Deployment slots
Enterprise applications usually have different environments, such as development,
staging, and production. These environments help developers to develop on the
development environment, test on staging, and when everything is tested, move
towards production. In Azure App Services, we can specify the deployment slot
while deploying the application, and even configure the percentage of the web traffic
to a particular environment to test a real-time scenario. For example, suppose we
have a web application running as vms.azurewebsites.com, and we have another
deployment where another upgraded version having the URL
vms.staging.azurewebsites.net is running. We can test the real-time scenario by sending a
percentage of the traffic to the staging web application, and once we are satisfied
with the upgraded version, we can swap the production from staging. This swapping
can be done without any downtime. Internally, when the swapping process starts,
Azure swaps the virtual IP address assigned to the slots, and makes sure that the
source slot is warmed up, so that it responds immediately when someone accesses it.
Swapping can be done in both directions, that is, from staging to production and vice
versa. Deployment slot is a full web application, but scaling is only possible for the
deployment that has been marked as production.

Deployment slots can be configured from the Azure portal by navigating to the web
application and selecting the Deployment slots option, as shown in the following
screenshot:

c

To check configuring the deployment slot, please refer to https://docs.microsoft.com/en-us/azur
e/app-service-web/web-sites-staged-publishing.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/azure/app-service-web/web-sites-staged-publishing

www.EBooksWorld.ir

API Apps
API Apps allows you to host Web APIs on Azure App Services. We can expose
existing Web APIs, or develop a new Web API project, either from Visual Studio, or
from the Azure portal with a few clicks.

It provides the following features:

APIs that can be hosted on Azure App Services should be developed either on
.NET, Java, PHP, Node.js, or Python.
API Apps provides authentication and authorization out-of-the-box, and
provides different connectors to authenticate using Facebook, Google, Microsoft
accounts, Azure AD, as so on.
It has built-in Swagger to see API metadata and consume through web. Swagger
is a powerful open source framework, which provides certain tools that help to
design, build, document, and consume RESTful APIs.
It provides the Client SDK so that the party consuming that API can easily
generate the client code through Visual Studio or command prompt, and this is
supported for clients developed on .NET, Java, Node.js, and JavaScript.
It supports CORS (Cross Origin Resource Sharing), which allows calling
Web APIs from cross domains.
It can be used in integration with Logic Apps, and Logic Apps can use
orchestration to delegate calls to our Web APIs.
We can easily do monitoring, scaling, setting up of deployment slots, and many
other things through the Azure API Management interface.

www.EBooksWorld.ir

Configuring Swagger in ASP.NET Core
Web API and deploying on Azure
Swagger is an open source framework, which helps to design, build, document, and
consume RESTful APIs. There are many benefits of using swagger in an enterprise
web application, which include the following:

It generates good documentation based on the XML comments specified in your
.NET code
It supports Client SDK generation and discoverability

Swagger is configured out-of-the-box when we create an API App from the Azure
portal, but when deploying APIs which are already created, we may not have this
framework configured. We will see how to configure Swagger in an existing Web
API developed on .NET Core, and deploy it as an API App on Azure in the next
section.

Generating swagger documents in ASP.NET Core can be achieved using Swashbuckle, a
.NET Core implementation. It has the following two components:

Swashbuckle.SwaggerGen: Generates JSON-based documentation of .NET Core Web
API.
Swashbuckle.SwaggerUI: Generates UI-based documentation of .NET Core Web API.

We can start by adding a NuGet package, Swashbuckle. Make sure to select the
prerelease option if the package is not available. Once this package is added, we
have to add the Swagger service in the ConfigureServices method of the Startup class.

Add the following entry in the ConfigureServices method of the Startup class:

 services.AddSwaggerGen(options =>
 {
 options.SingleApiVersion(new Info
 {
 Version = "v1",
 Title = "Hello World Swagger API",
 Description = "API to Configure Swagger",
 TermsOfService = "None"
 });
 });

Finally, enable Swagger middleware in the Configure method of the Startup class as
follows:

www.EBooksWorld.ir

 app.UseSwagger();
 app.UseSwaggerUi();

Now, when we run the application or host it on Azure, we can access Swagger JSON
by calling this URL: http://{websiteaddress}:{port}/swagger/v1/swagger.json.

Swagger UI can be accessed by calling the following URL:
http://{websiteaddress}:{portno}/swagger/ui.

www.EBooksWorld.ir

Creating proxy classes using AutoRest
in .NET Core
Usually, with SOAP-based web services, we can easily generate client proxy classes
by adding a service reference through Visual Studio. Whereas, with Web APIs, we
use HttpClient class to do GET, POST, or any other operation on Web API, and write a
few lines of code to set the request header, request body, other parameters, and
serialize the response received from the server.

On the other hand, if our Web APIs are Swagger-enabled, we can easily generate
client proxy classes using some third-party tools and libraries, where AutoRest is one
of them. With AutoRest, we can generate client proxy classes by executing one single
command through a command-line interface.

To start with, add a NuGet package, AutoRest, in your application which is going to
access a Web API. Once the NuGet package is added, we can go to the user's
directory and run autorest:

C:\Users\{username}\.nuget\packages\AutoRest\0.17.3\tools

To generate the client code, we can run the following command:

C:\Users\{username}\.nuget\packages\AutoRest\0.17.3\tools\autorest -Input
http://{webapiname}.azurewebsites.net/swagger/v1/swagger.json -OutputDirectory Api

In the above command, Api is the output folder where the proxy classes will be
generated, and it can be further used to consume Web API. Here is the sample
snapshot of the folder generated:

This is the sample code to access Web API:

 public static void Main(string[] args)
 {

www.EBooksWorld.ir

 HelloWorldSwaggerAPI api = new HelloWorldSwaggerAPI();
 api.ApiValuesByIdGet(1);
 }

www.EBooksWorld.ir

Enable CORS
When accessing Web API from client applications, it restricts access to web
resources unless they are being used from the same domain where the application is
running. In the ASP.NET project, we can enable CORS (Cross Origin Resource
Sharing), which allows a restricted resource to be accessible by any other domain
where the client application is running. CORS in the ASP.NET project can be
configured in several ways, and can specify Origin, Header, and Method, which we
need to be allowed from external sources.

To enable CORS in ASP.NET MVC 6, we have to add a NuGet package, as follows:
Microsoft.AspNetCore.Cors

We can configure CORS at the Controller, Action, or Middleware levels. To enable
CORS, we have to first define the policies, and this can be done either in the
ConfigureServices method or Configure method of the Startup class.

Here is an example of setting up CORS in the ConfigureServices method:

 services.AddCors(options => {
 options.AddPolicy("AllowLimited", builder =>
 builder.WithHeaders("Content-Type", "Accept")
 .WithMethods("GET", "POST").AllowAnyOrigin();
 });

The preceding policy will allow only GET and POST requests, and each request should
have a request header as Content-Type and Accept to accept requests from any domain as
specified in origin.

To enable CORS at the Controller or Action level, we can specify the EnableCors
attribute in the Controller class or Action method, and specify the policy as defined in
the ConfigureServices method:

 [EnableCors("AllowLimited")]
 public class PersonController : Controller
 {
 }

And here is the example of adding EnableCors on the method level:

 [EnableCors("AllowLimited")]
 [HttpGet]
 public IEnumerable<string> Get()
 {
 return lst;
 }

www.EBooksWorld.ir

To use CORS at the middleware level, we can call the UseCors method and specify the
policy, as defined earlier.

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 app.UseCors("AllowLimited");
 }

www.EBooksWorld.ir

Mobile Apps
Mobile Apps in Azure App Services gives a provision to develop any platform app
from Android, Windows, and iOS, which can use Azure backend services such as
calling a web service, authentication, offline syncing capability, and push
notifications:

We can develop Mobile Apps through the Azure portal on the fly by choosing a Web
+ Mobile option from the marketplace and creating an application.

Mobile Apps consists of these two projects:

A backend project, which runs on .NET or Node.js
A client project, which can target any platform from Android, Windows, iOS
(Swift, Objective-C), Xamarin (Android, iOS, Forms), and Cordova

When you choose Mobile App from the Azure portal, it gives two options, as shown
in the following screenshot:

The Mobile App option can be used if we want to customize a backend Web API
project associated with our Mobile App. On the other hand, the Mobile Apps
Quickstart option only allows you to download the client project for any platform, as
mentioned earlier. Once the project is downloaded, it contains all the boilerplate
code written to connect to the backend API and to enable offline syncing.

www.EBooksWorld.ir

www.EBooksWorld.ir

Offline sync
Offline sync can be enabled to use mobile application data when it is offline and not
connected to the Internet. It can be achieved with a combination of the Mobile App
SDK on the client and the backend API on the server. This is helpful for devices that
are not always connected to the Internet and need to store some data locally while
they are offline. A good example is the Courier service app, which takes the user's
signature on the device and stores the signature in the local database. When workers
are connected to the Internet, that information is pushed to the backend.

To enable the local data store in Mobile App, Mobile App comes with out-of-the-box
boilerplate code, which uses SQLLite for local storage of data. But you can change it
if you want to use some other technology for local database storage.

For example, if we create a Xamarin (Android) application from the Azure portal,
we can download the code and enable offline syncing by just enabling the defined
directive, OFFLINE_SYNC_ENABLED.

After enabling the offline sync, the first sync is done when the client's application is
first started and the local database is set up. The Mobile App retrieves the data from
the server, and stores it in the local store. Any changes or database operations
performed on the app will store it first to the local storage, and then sync to the
server. This way, the app behaves seamlessly without showing any delay or error.
Syncing data is done through the Mobile App SDK, and can be used to detect
conflicts and to resolve those conflicts.

www.EBooksWorld.ir

Push notifications
Push notifications is a mechanism to send notifications to the client devices on any
event. In Azure, this can be done by setting up a centralized Notification Hubs.
Notification Hubs is a service from Azure which provides the capability to send
notifications to different platforms on a large scale:

The process starts by registering each platform application with the Notification
Service. Notification Service is a system that notifies the client's device on any
event. When the device is registered on the Notification service, it sends the handle
that the Client App can send to the Backend API App, which sends it to the
Notification Hub. When the backend sends the notification, it sends it to the
Notification Hub first, and then the Notification Hub sends that notification to the
specific Notification Service, which finally delivers the notification to that particular
Client App.

To learn more about Mobile Apps, please refer to following link:
https://azure.microsoft.com/en-us/documentation/learning-paths/appservice-mobileapps/.

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/documentation/learning-paths/appservice-mobileapps/

www.EBooksWorld.ir

Logic Apps
In any enterprise, workflows are very important to run the business. Workflows are
developed so that the system can send notifications to different users for a specific
workflow level as assignment, and also persist the state of each workflow instance
that can be used for further processing. With Azure App Services in Microsoft Azure,
we can use Logic Apps to create workflows by orchestrating Software as a Service
components.

With Logic Apps, we can compose a workflow that runs in Azure and the Azure
Service Fabric takes cares of all the underlying controlling of the workflow.

Logic Apps consist of the following three components, which can run in Azure or on-
premise:

Connectors
Triggers
Actions

www.EBooksWorld.ir

Connectors
To start configuring the workflow, we have to first set up a connector. A connector
can be a push connector or a poll connector. Push connectors are those in which
Logic App is notified by the connector when the event is fired, whereas poll
connectors are those in which the connector is notified by Logic App when the event
is fired. Connectors are classified into the following categories:

API Apps, Logic Apps, and Azure Functions.
Microsoft Managed APIs: There are managed by Microsoft and contain some
third-party and Microsoft-built APIs. These type of connectors include GitHub,
Facebook, Dropbox, Azure Blog, SQL Azure, CRM online, SharePoint online,
and others.
Marketplace: These are also third-party and Microsoft-built APIs, but are
managed by Microsoft. Marketplace has a large number of connectors available,
and they are mostly hybrid connectors such as SAP Connector, IBM DB2,
Oracle, BizTalk API Apps, and others.

www.EBooksWorld.ir

Trigger
A trigger is the event that runs automatically based on a schedule or on an on-demand
basis, and can be configured on the connectors. For example, we can set up a trigger
to run Logic App on the Web API App if somebody accesses a particular GET or POST
request on that API.

www.EBooksWorld.ir

Actions
Action is the process that runs on trigger. Actions can be connectors that can be used
to trigger any action. For example, we can set up any trigger on a Web API if
someone accesses the GET or POST method, and once that trigger happens, we can use
the Oracle connector to insert an entry in some table.

www.EBooksWorld.ir

Creating Logic App in Azure
Logic App can be created by selecting the Web + Mobile option in the search pane
and by then selecting the Logic App option.

You can select the Pin to dashboard option while creating any app on
Azure so that it can be added to the main dashboard panel and is
easily accessible.

Once you open Logic App, you can see the Logic App Designer, pane as shown in
this screenshot:

You can select any predefined templates, or create a blank app. Predefined templates
provide a quick way to create a Logic App to provide a certain functionality, and
with a few simple wizard steps, the app becomes ready. These templates include
sending an e-mail when the SharePoint list item is modified, delivering an e-mail on
new tweets added to your Twitter account, and so on.

With the Blank LogicApp option, we have a choice to select the connector from the
available connectors, such as using Managed Microsoft API, or APIs from App
Services in the same region, or using API Management available in the user's
subscriptions. We can compose Logic App using designer and edit the workflow
through code view using the Logic App definition language. Let's take the example of
a simple workflow that posts a tweet on a configured Twitter account whenever new
blogpost is published on WordPress. To achieve this scenario, we first select the
WordPress (when a post is created) activity from Microsoft Managed API, and
provide the WordPress credentials. We can also set the interval at which Logic Apps
should check for any new post published on a WordPress site:

www.EBooksWorld.ir

Next, we can add an action or loop activity, and choose Twitter connector to post a
tweet on the configured account:

When adding a new step, you can choose from adding an action, a condition, a for
loop, do until loop, or scope:

www.EBooksWorld.ir

So with Logic Apps, you can quickly create workflows that run under Azure App
Service on the Azure portal, and are easily configurable with a provision of a number
of available connectors to choose from.

www.EBooksWorld.ir

Scaling Azure App Services
Scaling is a technique to scale web applications in conditions when there is a higher
load or a lesser load, and to keep the performance or the user response time
consistent.

With Azure Web Apps, Mobile Apps, API Apps, and Logic apps, scaling can be done
in four ways, which are as follows:

Scale up: To increase the resources such as CPU, memory, and other attributes
based on the pricing tier of the underlying VM
Scale down: To decrease the resources such as CPU, memory, and other
attributes based on the pricing tier of the underlying VM
Scale out: To balance the load by diverting the traffic of incoming requests to
multiple VMs
Scale in: To reduce the number of VMs if the load weighs down

Scaling can be done manually or scheduled, or can be done based on the usage of
CPU, memory, or disk space. Scaling can be done easily by opening the Web App
blade in the Azure portal and selecting the scale up and scale out options.

www.EBooksWorld.ir

Background services and event
handling in cloud
In Microsoft Azure, we can develop background services known as WebJobs, and
these WebJobs can be hooked up by other applications using WebHooks. In this
section, we will study WebJobs in detail, learn to develop long-running background
services, and use WebHook to invoke their methods from external applications.

www.EBooksWorld.ir

WebJobs
WebJobs are background services that can be run by triggering from outside sources,
on-demand, or continuous. They run under the same Web App and are managed by
Azure Service Fabric. These are a good choice when we have to run an application
as a background process for a longer run. One Web App can have a multiple number
of WebJobs, and they can all share the same memory, CPU usage, and storage. As
WebJobs and Web Apps share the same resources, any of the high-intensity jobs can
affect the performance of other WebJobs or Web Apps, and vice versa. WebJobs can
listen for events from Queue, blobs, and WebHooks, and can be triggered manually or
scheduled to run at a certain time.

WebJobs are highly recommended for scenarios where heavy plumbing is needed.
For example, let's consider a correspondence system that generates documents for
different vendors as selected on the form, and each vendor gets the document
containing information specific to that vendor. In this scenario, if the vendor list is
big, the user may get a request timeout, as a document will be generated and e-mailed
for each vendor. To design this scenario, we can use Azure Storage Queue, which
keeps the messages needed to be processed. This queue will trigger our Web Job to
process that message by generating a document, and send that as an attachment to the
corresponding vendor:

There are many other scenarios, like image processing, file maintenance, and other
long running tasks that take a substantial amount of time and may experience the
server response timeout scenarios.

WebJobs can be triggered in three different ways, as follows:

WebJobs
Type Description

On-
Demand

This is generally triggered from the Azure portal, or if listening to
some storage queues, tables, Service bus, and blobs using Azure, the
WebJobs SDK can trigger automatically when any new message is

www.EBooksWorld.ir

created.

Scheduled WebJobs can be scheduled and triggered at a specified time.

Continuous Runs continuously, but explicit code needs to be written to keep it
alive.

WebJobs can be deployed by placing the files in a particular filesystem, and can be
any of the following types:

.exe (executable file)

.bat (batch file)

.sh (Bash file)

.php (PHP file)

.py (Python file)

.js (JavaScript file)

www.EBooksWorld.ir

Developing WebJob using .NET Core
To create a Web Job, we can create a .NET class library project, or, if Azure SDK
for Visual Studio 2015 is installed, we can select the project Azure WebJob template
from the Cloud section, which generates the basic boilerplate code to kick-start the
project. However, with .NET Core, there is no tooling support currently provided in
Visual Studio 2015 and some manual work is needed. Moreover, Azure WebJobs
SDK is also not supported with .NET Core. However, if you want to run your .NET
Core console application as a WebJob, it can be done with a few simple steps, as
shown next.

For example, if you have a .NET Console application, and you want to run that as a
WebJob in the Azure portal, the following steps can be taken:

1. Create a batch (.bat) file under your console application's netcoreapp folder, and
add the following script:

 ECHO OFF
 dotnet YourConsoleApp.dll

2. Develop a zip package of the netcoreapp folder, and upload it on Azure, as shown
in the following screenshot:

3. Specify the name of the WebJob.
4. Upload the Zip file created.
5. Select Type: either Triggered or Continuous.
6. Select the type of the Triggers: either Manual or Schedule (Schedule triggers

need a CRON expression to be set).

www.EBooksWorld.ir

The CRON expression includes six fields, which are as follows:

 {second} {minute} {hour} {day} {month} {day of the week}

For Example: 30 */5 * * * *

This means: At 30 seconds past the minute, every 5 minutes.

To use Azure Storage Queues, Service Bus, or other Azure components, we need
Azure WebJobs SDK, which is not supported in .NET Core. But we can use .NET
Framework 4.5.2 or greater to leverage a particular requirement.

www.EBooksWorld.ir

Developing WebJobs using WebJobs
SDK and .NET Framework 4.5
In the previous section, we saw how easily we can deploy any .NET Core console
application as WebJobs on Azure. However, there is a limitation of WebJobs SDK,
that is, it cannot run with .NET Core, hence, we have to stick with .NET framework
4.5.

WebJobs SDK provides built-in features that simplify complex plumbing and make it
easy for developers to use and build them in less time. For example, to enable
WebJobs SDK to listen to a queue or a service bus for the creation of any new items,
we can just add any method in the functions class and specify the trigger attributes on
a parameter that passes the object as JSON or XML (as configured) being inserted in
the Azure queue.

To start with, install the Azure SDK, which installs some templates specific to Azure,
and provides a new Azure WebJobs template to create the basic WebJob on the fly:

On selecting the Azure WebJob project template, it creates a Function class and
initializes a JobHost to run the WebJob:

 var host = new JobHost();
 host.RunAndBlock();

JobHost is the entry point of Azure WebJobs SDK and its primary purpose is to
perform indexing, monitoring, and scheduling the functions defined using the
WebJobs artifacts.

In the Function class, we can define static methods and define the storage, WebHook,
and other trigger attributes that run whenever any change is made.

The following is an example that triggers this method whenever any queue item is
added in the MessageQueue, where MessageQueue is the name of the queue created on Azure.
We can achieve the complete event-based trigger by just adding the QueueTrigger

www.EBooksWorld.ir

attribute on the message parameter:

 public static void ProcessQueueMessage([QueueTrigger(
 "testqueue")] String message, TextWriter log)
 {
 log.WriteLine(message);
 }

Moreover, WebJobs are also smart in serializing the JSON response to the object if
specified as a parameter. In the preceding code snippet, we have used the String
parameter. However, this can be changed to an object if we needed some object to be
serialized based on the JSON response. So, for example, if the JSON text receiving
has an ID and Name, then we can define a POCO class in .NET, which can contain
properties like ID and Name, and the signature will be as follows:

 public static void ProcessQueueMessage([QueueTrigger(
 "testqueue")] Message message, TextWriter log)
 {
 log.WriteLine(message.Name);
 }

There are many other triggers, such as FileTriggerAttribute, ErrorTrigger, and others,
which you can check out in the WebJobs SDK documentation.

www.EBooksWorld.ir

Azure WebJobs versus Azure
WorkerRoles
Azure WorkerRoles were introduced in the early stages of the Azure platform and it
enables developers and architects to deploy background services on the cloud which
run independently on a dedicated virtual machine. This is also a PaaS solution, but
needs manual work to handle triggering, scaling, and other configuration. The
following table gives a comparison of both WorkerRole and WebJob:

WebJob WorkerRole

Hosting Hosted inside WebApp Hosted independently on
VM

Scalability Scalable with WebApps Scaled independently

Remote
Access Remoting WebJob is not supported Can be remoted, as

deployed on VM

Deployment Easy deployment Complicated deployment

Triggers Automatic Triggering support
provided out of the box

Manual coding work is
required

Logging Supports logging out of the box Manual coding work is
required

Debugging Can be easily debugged through Visual
Studio Debugging is not easy

Pricing Cheap price Expensive as compared to
WebJob

Tenancy Multi-tenant deployment supported Only single tenant
supported

www.EBooksWorld.ir

Using WebHooks for event-based
scenarios
WebHooks are HTTP callbacks and work on a Publisher/Subscriber model. We
register a WebHook which is a URL of our Web API on any notification service, such
as VSTS, DropBox, GitHub, PayPal, Salesforce, Slack, Trello, Wordpress, and many
more. Once an event occurs as per the configuration, it will make an HTTP POST
request to our Web API (URL specified during the WebHook registration), and send
us the data. On the other hand, we can also use the WebHook pattern in our Web API
project to push the HTTP POST callback to the subscribers registered on our
application.

Any WebJob hosted on Azure provides a WebHook link, which can be used by any
third-party application to trigger.

www.EBooksWorld.ir

Using WebHook of WebJob from VSTS
Many services such as Git, VSTS, Dropbox, PayPal, and others provide a provision
to subscribe to WebHooks. Every WebJob is exposed with a WebHook, and the URL
and credentials are accessible from the Properties page of WebJobs.

To use WebHooks with WebJobs, we have to add a NuGet package,
Microsoft.Azure.WebJobs.Extensions.WebHooks, and then use WebHooks in the Main method, as
follows:

 class Program
 {
 static void Main()
 {
 var config = new JobHostConfiguration();

 if (config.IsDevelopment)
 {
 config.UseDevelopmentSettings();
 }
 config.UseWebHooks();
 var host = new JobHost(config);
 host.RunAndBlock();
 }
 }

We will modify our WebJob and add another method, which will be hooked up when
the WebHook is triggered from VSTS. To invoke our method on the triggering of
WebHook, we have to annotate our method parameter with the WebHookTrigger attribute.
So, let's add the ProcessWebHookMessage method, which takes the message string parameter
annotated with WebHook and a TextWriter to write the log in WebJobs logs.

Here is the method signatures which we will add in the Functions class:

 public static void ProcessWebHookMessage(
 [WebHookTrigger] string message, TextWriter log)
 {
 log.WriteLine("Webhook has been invoked and the
 message received is {0}", message);
 }

Now build and publish your WebApp on Azure.

With VSTS, we can register a WebHook by selecting a project and proceeding
towards the Service Hooks link, as shown in this screenshot:

www.EBooksWorld.ir

To register a WebHook, we have to click on the Create Subscription button, which
opens up a pop-up window where you can select the target service that exposes the
callback URL. In this case, we will select Web Hooks and proceed with the Next
button:

The next screen has some wizard steps where you can select the Trigger event, define
filters, and specify the URL and credentials. The next screen will be the trigger
window, where we can select the Build completed event:

www.EBooksWorld.ir

And, finally, we can define the URL, username, and password, which can be
retrieved from the Azure portal properties page.

The WebJob URL provided in the properties page is a generic one, and you have to
tweak that based on your class and the method name which contains the WebHookTrigger
attribute annotated for the input parameter.

The default URL format is as follows:

https://{WebAppName}.azurewebsites.net/api/continuouswebjobs/{WebJobName}/passthrough/{ClassName}/{MethodName}

In our case, ClassName will be Functions, and MethodName will be ProcessWebHookMessage, which
has the WebHookTrigger attribute defined for the message parameter.

After setting this up, you can test it by hitting the Test button, and if the configuration
is fine, you will get a success message, as shown in the following screenshot:

www.EBooksWorld.ir

Finish the wizard, and once the project is built, the WebHook will be triggered and
log the message in Azure logs.

www.EBooksWorld.ir

Azure Functions
Azure Functions are autonomous functions that run on the cloud. Compared to
WebJobs, where you can define multiple functions in the Functions class and hook
them up on any event, Azure Functions are quite easy to set up and represent the
independent chunk of code that runs to achieve the desired functionality on the cloud.
They are easy to set up, can be configured directly on the cloud, and even the code
can be written through the editor on the Azure portal itself.

Azure Functions can be developed using C#, Node.js, F#, Python, and PHP
languages.

The benefits of Azure Functions include the following:

Pay as per use model: You pay only for the time used to run your code
Triggering support: Like WebJobs, we can use triggers to handle events
Integrated security: You can protect functions using OAuth and other social
accounts such as Facebook, Google, Microsoft Account, and Twitter
Integration support: It easily integrates with Azure App Services and SaaS
(Software as a Service) offerings
Open source: The Azure Functions runtime is open source, and is available on
GitHub

www.EBooksWorld.ir

Creating a basic Azure Function to
listen for Queue events
Let's create a simple Azure Function to learn how easily it can be developed to read
the events from the Storage Queue in Azure.

To start with, we will log in to the Azure portal, and go to the marketplace, and
search for Function Apps. The creation of Function App is the first step before creating
an Azure Function, and more than one Azure Function can run under a single Function
App:

Click to create the Function App, and provide values like AppName, Subscription,
Resource Group, Hosting Plan, and so on. Once the Function App is created, we can
start adding functions.

Azure Function App provides various function templates, which we can choose from.
Choosing any of these templates generates a basic boilerplate code, which you can
customize based on your needs. For example, the QueueTrigger-CSharp template can
be used to listen for Queue events and add the basic code of reading it from queue,
and so on.

Let's choose the QueueTrigger-CSharp template, and create a new function:

www.EBooksWorld.ir

Once the function is created, we can use the online code editor to write C# code if
C# was selected as the language for that particular template:

We can modify the function, and specify the Trigger events as we did in the WebJobs
section. We can also pass JSON content as the Queue messsage, and if the parameter
accepts object, it will automatically be serialized and injected to that function. It also
provides complete monitoring in terms of logs and the count of functions being
accessed with complete information about the function parameter values. To learn
more about Azure Functions, please refer to the following link:

https://docs.microsoft.com/en-us/azure/azure-functions/.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/azure/azure-functions/

Scalability and performance options in
Azure App Services
When designing the architecture of any web application, remember the following
components of performance efficient and scalable web applications:

www.EBooksWorld.ir

Increasing storage performance
Every business application uses a relational database as a backend persistence for
data. When we talk about relational databases, we cannot exclude database servers
such as Microsoft SQL Server, Oracle, IBM Derby, and so on, used to create the
databases, tables, stored procedures, and other useful objects. Relational databases
also exhibit properties known as the acronym ACID (Atomicity, Consistency,
Isolation, and Durability):

Atomicity: Multiple operations can be done on a database as a unified
transaction which can either succeed or fail. On failure, all the operations will
be rolled back to the previous state.
Consistent: Avoid inconsistencies in results, like keeping the atomicity and
avoiding partial changes to the database
Isolation: Concurrent transactions cannot read each other's data. This means that
if two transactions are being executed, and if some transaction has to read the
data, then it has to wait until the other transaction commits its changes.
Durability: Once the transaction is committed, the changes are saved in the
database and can be retrieved later.

An ACID transaction is the true essence of any enterprise application that involves
lots of database operations. However, the consistency and isolation attributes highly
affect scalability, as we know that consistency does not allow partial updates and
Isolation avoids any other concurrent transaction to wait until the first one is
completed. Hence, if the number of concurrent transactions are higher because of
scaling out our databases, the number of transactions increases as well, and affects
the overall performance of the application.

We will discuss the solution to this problem in the following sections.

www.EBooksWorld.ir

Command-Query Responsibility
Segregation (CQRS) pattern
This pattern actually splits the read operations from the write operations by
segregating commands from queries. Commands are objects that encapsulate the data
in the write model, whereas queries are just a read operation on the read model.
Practically, this can be achieved by replicating the database in two, for example,
DatabaseA and DatabaseB, which are synchronized through replication techniques.
All updates or command operations are done on DatabaseA and read operations on
DatabaseB. Thus, reading data from DatabaseB will not affect the performance of
write operations, as it points to DatabaseA.

With the Read model (database), we can also apply non-cluster indexes, which are
good when searching data. Unnecessary indexing reduces the performance of write
operations, as the index tables need to get updated on each write operation. But, with
this pattern, performance will not be affected, as they are two separate models.

www.EBooksWorld.ir

Denormalization
Normalization is the process of defining database tables and relationships in a way
that maintains integrity and avoids redundancy. In enterprise applications, we have
some reports or views that use heavy SQL Joins to bring data in one table view.
These joins are quite heavy operations on the database, and highly affect
performance.

Denormalization is a technique in which data can be saved in a single flat table, and
the retrieval of data is considerably faster than making SQL Joins or Sub queries. If a
business application is complex in nature, we cannot definitely convert its database
into a Non-Relational schema. But we can implement the CQR pattern, and modify
our READ model to store the values in flat tables, and use some replication
techniques to store the data from the write model to the READ model using DTS
(Data transformation services), and so on.

On the other hand, if the database is not complex, we can use non-relational (NoSQL)
databases, thus reducing query execution time and increasing the responsiveness of
the application.

Non-relational databases do not ensure data consistency. They keep that data in
key/value formats and do not check the value of the key if it's being replicated within
the database.

In Azure, we have two options to use non-relational databases, which are as follows:

Azure SQL storage
MongoDB

www.EBooksWorld.ir

Azure Table storage
Azure Table storage is a non-relational database. It's a key-value table, where each
record is identified by PartitionKey and RowKey. PartitionKey is used by Azure if the
database is partitioned, and to know which partition this data belongs to. Partitioning
is normally done if the database size is huge and indexes slower the performance
when creating, updating or deleting records. On the other hand, RowKey is the primary
key within a partition.

Azure Table storage stores the value in any format and uses JSON to serialize the
data. We can also use OData queries on Azure SQL storage and obtain fast results.
They allow easy scalability and provide replication out-of-the-box, which brings
higher availability.

To learn more about Azure Table storage, please refer to the following link:

https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/azure/storage/storage-dotnet-how-to-use-tables

MongoDB
MongoDB is a NoSQL database and is provided with Azure as a PaaS or IaaS
model. It is a scalable, high-performance NoSQL database, which can be installed
either on a virtual machine on Linux or Windows, or by using Azure Worker Role on
Windows. To learn more about MongoDB, please refer to www.mongodb.com.

www.EBooksWorld.ir

Caching
Caching is another technique to reduce the load on a server by reading the data from
the cache. There are two types of cache, namely, local cache and distributed cache.

www.EBooksWorld.ir

Local cache
Local cache is local to each single instance of an application. For each instance,
there will be a separate cache store, and the content is saved for each instance's
cache. Although there might be inconsistencies in data between the different cache
stores for each instance, this is fast and mostly good in cases where the data does not
change often. For example, configuration data or setup tables, which are not updated
frequently, can use this cache. A good example would be a list of all the countries or
cities. Azure provides a local cache mechanism using In-Role Cache, whereas, in
.NET Core, we can use IMemoryCache to implement local caching.

www.EBooksWorld.ir

Shared cache
Shared cache is also known as distributed cache, and it is used for data which is
dynamic in nature and changes a lot. The best example is transactional data, which is
updated by many instances of an application simultaneously. With shared cache
mechanism, the data is stored at a central location, and is relatively slower than local
cache.

To implement the local or shared cache mechanisms, Azure provides three types of
cache, which are described in the following table:

Cache Description

In-Role
Cache

In-Role Cache is mostly used for the distributed caching mechanism,
but we also have an option to enable the local cache. We can host this
cache in Azure Web App or Worker Role and exclusively dedicate
roles to caching or share a role with another application.

Managed
Cache This is just like storage services and is easily redundant and scalable.

Redis
Cache

It's an in-memory data store used as cache and stores values in strings,
hashes, lists, sets, and sorted sets.

www.EBooksWorld.ir

Using Redis Cache in Azure
Redis stands for Remote Dictionary Server. It is an open source in-memory
distributed database. It is a highly performant cache and provides rich data types,
which can store data in the key-value format. Azure provides a managed service for
Redis, so we don't have to install on run manually. We can just use this service to
cache our data, and it is recommended as the best caching mechanism in store.

To use Redis, we can install a NuGet package (stackexchange.redis), which is a client
API of Redis to use on Azure. The main benefit of using Redis over other caching
mechanisms is the data types. It provides various data types other than strings only.
Cache types mostly allow data to be saved as string only, but with Redis, we can
store data as strings, sets, lists, sorted sets, and hashes.

www.EBooksWorld.ir

Creating the Redis Cache
In order to proceed with configuring Redis in your ASP.NET Core web application
running as Azure Web App, we first create the Redis Cache in Azure. Redis Cache
can be created by going to the marketplace on the Azure portal and finding the Redis
Cache template to create.

To create the Redis Cache, we have to input DNS name, Subscription, Resource
group, and more, as shown in the next screenshot:

The DNS format of the Redis Cache is {RedisCacheDNSName}.redis.cache.windows.net.

www.EBooksWorld.ir

Configuring the .NET Core app to use
Redis Cache on Azure
Once the cache is created, we can configure our .NET Core client application,
probably an ASP.NET Core one, by adding a NuGet package as StackExchange.redis.
Once the package is downloaded, we can use the Redis client API to use the Redis
Cache that we have created on Azure.

To connect to the Redis Cache, we can add a namespace StackExchange, Redis, and
create a connection class using ConnectionMultiplexer, as follows:

 ConnectionMultiplexer connection =
 ConnectionMultiplexer.Connect(
 "myrediscache.redis.cache.windows.net:6380,
 password=VOBP7q7Msw8bSy6+u0=,ssl=True,abortConnect=False");

ConnectionMultiplexer takes the connection string, which can be obtained from the Redis
Cache on Azure by accessing the Access Keys option under Settings. The key benefit
of ConnectionMultiplexer is that it recreates the connection automatically if connectivity
is lost due to a network issue and is then resolved.

Once the connection is made, we can read the Redis Cache by calling the GetDatabase
method of the connection object:

 IDatabase cache= connection.GetDatabase();

Finally, the values can be set or retrieved through the Set and Get methods from the
cache object created earlier.

 cache.StringSet("UserName", "John");
 cache.StringGet("UserName");

.NET objects can also be set to the cache, but they should have the serializable
attribute annotated at the class level. For example, we can simply serialize the person
object into the JSON format, and save it in the cache as follows:

 cache.StringSet("PersonObject",
 JsonConvert.SerializeObject(personObj);

www.EBooksWorld.ir

www.EBooksWorld.ir

Queuing
Queuing is another technique that can be used to resolve long-running processes by
splitting them into queues and processing them asynchronously. A good example is
image processing or document generation, which could become a cumbersome
process if executed in a synchronous manner. With the help of Azure Queues, Blobs,
and other options, we can split these tasks by creating queue items when the client
request is initiated, and processing those items in the background using background
services. We have already discussed WebJobs and Azure Queues, which are the best
approaches for this kind of processing, earlier in this chapter.

www.EBooksWorld.ir

Logging and monitoring in Azure
In this section, we will talk about the logging and monitoring options in Azure.

www.EBooksWorld.ir

Logging
The .NET Core app models, such as ASP.NET Core, support logging out-of-the-box.
Logging can be enabled by injecting the ILoggerFactory instance through the Configure
method of the Startup class, and then using that to add providers. There are a few
built-in providers available in the Microsoft.Extensions.Logging namespace. For example,
to log information at the Console level, we can call the AddConsole method on the
instance of LoggerFactory or AddDebug to log information in the Debug window when the
application is running under the debug mode.

Following is the list of logging provider's shipped with ASP.NET Core:

Console
Debug
EventSource
EventLog
TraceSource
Azure App Service

This is the sample code snippet to inject the logger factory instance on the Configure
method in the ASP.NET Core application:

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();
 }

Once the logger factory is injected, we have to inject the ILogger instance at the
Controller level; we can use methods such as LogInformation, LogWarning, and others to
log for different severity levels:

 public class HomeController : Controller
 {
 ILogger _logger;

 public HomeController(ILogger logger)
 {
 this._logger = logger;
 }
 }

In this section, we will not go into the details of how logging can be done. To check
that, please refer to Chapter 6, Layered Approach to Solution Architecture.

www.EBooksWorld.ir

www.EBooksWorld.ir

ASP.NET Core logging in Azure
As you learnt in the previous section, ASP.NET Core applications can be hosted on
Azure using Azure Web App or Azure API App. In ASP.NET Core applications, we
can enable logging in our application hosted on Azure that writes logs in a text file or
Blob storage.

Azure provides different types of logging, which are categorized into two categories,
as follows:

www.EBooksWorld.ir

Web server diagnostics
This is used to capture and log information about the web server. It is further
classified into the following three types:

Web server logging

This logging logs information about HTTP transactions using the W3C extended log
format. This can be enabled when we need to determine site metrics such as total
number of requests being made, or from which IP a request is made, and so on.

Failed request tracing

This logging logs detailed information when the application fails. It contains the
complete trace of the web server components used to process the request, and so on.

Detailed error logging

Contains information about the HTTP status codes that indicate a failure. This can be
used to determine why the server returned an error code.

www.EBooksWorld.ir

Application diagnostics
This type of logging is used to write application-level logging. It is classified into the
following two types of logs:

Application logging (Filesystem)

This is used to log application-level logging on a text file. While configuring, we can
set the logging severity level and it logs the error into a text file.

Application logging (Blob)

To log application-level logging on Blob storage, we can set the minimum severity
level.

Azure application-level logging can be enabled in ASP.NET Core by adding a
package, Microsoft.Extensions.Logging.AzureAppServices, through NuGet, and then calling
the AddAzureWebAppDiagnostics method from loggerFactory, as follows:

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole(Configuration.GetSection("Logging"));
 loggerFactory.AddDebug();
 loggerFactory.AddAzureWebAppDiagnostics();
 }

AddAzureWebAppDiagnostics also has an overloaded method, which allows you to pass the
AzureAppServicesDiagnosticSettings object. This object can be used to override default
settings such as the template of logging output, file size, and Blob name. Once this is
enabled on the Startup class, we can use the same ILogger object injected in our MVC
controllers and log the information. The logs will be generated based on the number
of logger providers added.

When we deploy our application on Azure App Service, we can enable Azure
logging (text file and Blob) through the diagnostic section. To do that, we will first go
to our Azure App, and then search for diagnostic logs.

We can enable text file logging by selecting the On button of Application Logging
(Filesystem), as shown in the following screenshot:

www.EBooksWorld.ir

Level denotes the minimum severity level for which the logging will be done. Setting
this to Verbose logs everything like Verbose, Information, Warning, and Error.
However, if the severity is set to Error, it will only log an error, as there is no
severity level that exists after error.

The default values of a text file are as follows:

Path /LogFiles/Application folder

File name format diagnostics-yyyymmdd.txt

File size limit 10 MB

Max. number of files retained on Azure 2

Blob table logging can be enabled by selecting the On of Application Logging (Blob)
as shown in this screenshot:

In the case of Blob, we can specify the level and configure the Storage Settings. In
Storage Settings, we can either select the existing Blob, or create a new one. While
creating a new Blob storage you will be prompted for Name, Performance, and
Replication, as shown in the following screenshot:

www.EBooksWorld.ir

The default values of Blob storage are as follows:

Blob name {appname}{timestamp}/yyyy/mm/dd/hh/{guid}-applicationLog.txt

Azure App Services does not generate any file or Blob entries when
the application is running locally and not on Azure.

www.EBooksWorld.ir

Accessing logs
Logs created on the filesystem can be accessed to download logs using an FTP client
tool, Azure Power shell, or by Azure CLI (Command-Line Interface).

www.EBooksWorld.ir

Accessing logs via FTP
To access the logs using FTP, you can go to the Diagnostic and Logs option of your
Azure Web App, and then use the FTP URL and the FTP/deployment username to
connect.

www.EBooksWorld.ir

Accessing Logs via Azure PowerShell
To download logs using Azure PowerShell, we first have to install Azure
PowerShell from the PowerShell gallery. Run PowerShell from your machine using
administrative rights.

Run the following command, which will install the Azure Resource Manager
modules from the PowerShell gallery:

Install-Module AzureRM

Then run another command that installs the Azure Service Management module from
the PowerShell gallery, as follows:

Install-Module Azure

Once these modules are installed, you can connect to your Azure account by
executing the following command:

Add-AzureAccount

This command asks you to provide your credentials and, once added, you have to set
your subscription to where your website is running. Subscription can be set by
running the following command:

Select-AzureSubscription '{subscription-name}'

Now, to stream the logs of your web application on the console itself, you can run the
following command:

Get-AzureWebsiteLog -Name '{name_of_webapplication}'

To save the logs in a folder, you can run the following command:

Save-AzureWebsiteLog -Output 'C:\users\logs\logs.zip' -Name '{name_of_webapplication}'

www.EBooksWorld.ir

Monitoring
Enterprise applications consist of several layers, that is, the data access layer,
business layer, service layer, and presentation layer. Each layer is connected in a
way that can be easily pluggable without affecting the other layers. Almost all
applications deployed on Azure provide basic monitoring, which covers CPU usage,
disk read/write, data in/out bandwidth, and so on.

The Azure portal provides some monitoring tiles out-of-the-box, which we can add
on the dashboard to give us an overview, at a glance, of our running applications,
VMs, and so on. This service is known as Azure Monitor and Diagnostic service.

We can also read the monitoring information from the code running on Azure by using
the Azure Management API. This API provides easy access to insights into our
applications. It provides real-time analytics reports and identifies trends that can be
helpful for our business.

www.EBooksWorld.ir

SCOM (System Center Operations
Manager)
Another option for getting insights into the services running on Azure is by using
SCOM. This is software used by Operations teams to manage and monitor the
network. For Azure, we can add the Azure Management Pack for Operations, which
helps to get a complete insight into the services running on Azure. This is helpful
when we don't have access to the actual VM that our app is running on, and we
cannot install anything on the VM to monitor performance, logs, and so on. For
example, with Azure App Services, we can run our Web Applications on the cloud,
but the actual VMs where our Web Application is running is behind the Service
Fabric, and direct access to the VM is not possible. In this scenario, we can install
the SCOM and Azure Management Pack for Operations to serve our purpose of
monitoring.

www.EBooksWorld.ir

Application Insights
Application Insights is an Application Resource Management (APM) service. It is
used by developers to monitor an application's performance by using analytical tools
on Azure, which provide real-time analysis on how the user interacts with your
application. No matter whether our application runs on the cloud or on-premise, we
can monitor its performance using Application Insights, which supports any web
application built on .NET, Java, and Node.js.

Application Insights can be integrated with web applications in the following
scenarios:

www.EBooksWorld.ir

Application hosted on Azure
With this option we don't need to write custom code to integrate Application Insights
with our application. We can configure from the Azure portal itself. However, in
certain scenarios we can tweak our application a bit and write custom code to send
more telemetry information to the Application Insights resource running on Azure.

www.EBooksWorld.ir

Application hosted on-premise
With this option, if our ASP.NET Core application is hosted on IIS, we can install the
Application Insights Status Monitor application and associate our web application
with the Application Insights resource running on Azure.

www.EBooksWorld.ir

Use Application Insights API
With this option we can write custom code and use Application Insights API in our
ASP.NET Core application to send telemetry information to Azure. Traditionally, this
is the most recommended approach and, this way, we can send more telemetry
information on the Application Insights resource running on Azure and configure
things as per our need.

www.EBooksWorld.ir

Setting up Application Insights in
ASP.NET Core Application
To set up Application Insights, we first have to log in to the Azure portal and add a
new item, Application Insights, as follows:

Select Application Insights and click on create. Once this is done, we have to copy
the INSTRUMENTATION KEY, which we can provide in our ASP.NET Core
application. You can copy the INSTRUMENTATION KEY by clicking on Essentials
in Application Insight on the Azure portal.

Next, we will add the Application Insights instrumentation package in our ASP.NET
Core package, which actually monitors our app, and send its report to the Azure
portal, where Application Insights is configured.

Add the following package from NuGet package manager:

Microsoft.ApplicationInsights.AspNetCore

Now we have to specify the instrumentation key in our ASP.NET Core appsettings.json
file. To do this, create a file, appsettings.json, in the root folder of your web
application, and then write the following code snippet, which holds your
InstrumentationKey. The configuration snippet of appsettings.json is as follows:

 {
 {
 "ApplicationInsights": {
 "InstrumentationKey": "a79a8184-a86e-4d8b-b694-8497436a5ebe"
 }
 }
 }

To read appsettings.json, we have to write some code to build the configuration system
that will read the settings from different sources (in our case appsettings.json), and
give us the Configuration object that can be used to retrieve the settings from key/value
pairs. To do this, we will add following two packages from NuGet package manager:

 Microsoft.Extensions.Configuration.Abstractions
 Microsoft.Extensions.Configuration.Json

www.EBooksWorld.ir

Next, we will add the following code snippet in our Startup class:

 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json", optional: true,
 reloadOnChange: true)
 .AddJsonFile($"appsettings.
 {env.EnvironmentName}.json", optional: true)
 .AddEnvironmentVariables();
 Configuration = builder.Build();

In the preceding code, we read the JSON file and environment variables on the
Windows machine, and build a configuration. Configuration is the IConfigurationRoot
property defined in our Startup class, as shown next:

 public IConfigurationRoot Configuration { get; }

Now, to use the ApplicationInsights service, we have to add ApplicationInsightsTelemetry in
our ConfigureServices method of the Startup class, as follows:

 services.AddApplicationInsightsTelemetry(Configuration);

Finally, we can add this as middleware in our Configure method, as shown next. It's
recommended to add the this middleware as the very first item in the pipeline,
otherwise proper reporting will not be done:

 app.UseApplicationInsightsRequestTelemetry();
 app.UseApplicationInsightsExceptionTelemetry();

UseApplicationInsightsRequestTelemetry is used to monitor and get the telemetry
information of all the requests being processed, whereas
UseApplicationInsightsExceptionTelemetry can be used to monitor exceptions.

Now you can run your application and monitor the performance on Application
Insights:

www.EBooksWorld.ir

Application Insights provides different options to view telemetry information. There
is a search explorer, which can be used to diagnose actual requests, traces, and
exceptions. Metrics explorer can be used to diagnose response times, user counts,
and page views. Analytics is used to write queries to fetch information related to
telemetry, and through set alerts, you can specify alerts that send notifications on
special conditions based on your criteria.

www.EBooksWorld.ir

Summary
In this chapter, you learnt the basics of cloud computing, and how Microsoft Azure
plays a role in providing IaaS, PaaS, and SaaS models. We primarily focused on
Azure App Services, and explored ways to develop and deploy a .NET application
on Azure. Scalability is an essential key, and you learnt how easy it is to scale out or
scale up our applications running on Azure by using different techniques to increase
the performance of our application. Last, but not least, we discussed the logging and
monitoring options in Azure, and saw how we can use Application Insights with web
applications running on the cloud to monitor application request/response times and
other metrics. The next chapter is all about security, where you will learn about the
different security models available to secure the .NET Core applications.

www.EBooksWorld.ir

Microservices Architecture
Microservices are a hot topic these days, both in the architectural community as well
as in the development community. It is a continuously evolving space, where there
are no fixed patterns regarding the technology and technique to be applied in order to
successfully achieve the microservices implementation. However, the architectural
concepts and patterns remain the same.

We have learnt enterprise architectural concepts in the SOA chapter and have seen
various cloud-based architectural offerings in the Chapter 8, Cloud-Based Architecture
and Integration with .NET Core. In this chapter, we move further on these concepts
and features and look carefully towards the modern microservices-based
architecture. We will first cover the architectural aspects related to microservices,
and then the development aspects of the microservices implementation. Once again,
we will draw heavily from the skills and knowledge that we have gained in the
previous chapters, especially the Chapter 7, SOA Implementation with .NET Core.

We will cover the following topics in this chapter:

Microservices definition
Distinction from SOA and monolith applications
Architectural elements
Architectural motivations
Example architecture

www.EBooksWorld.ir

Microservices architecture definition
In the previous chapter, you learned what is a service, what is business and
information modeling, and what is services modeling. All of these concepts and
practices apply to microservices architecture as well.

www.EBooksWorld.ir

What is microservices architecture?
Microservices architecture is a collection of microservices. A microservice can be
defined as follows:

The smallest service that does only one thing, that is, Single Responsibility
Principle (SRP)
It's an independent piece of code and independently manageable without
dangling dependencies
It's the owner of its own data; no sharing except via services

It is an architectural approach to develop an application (or a system) as a set of
small services, where each service works independently in its own process space
and communicates using lightweight mechanisms. The services are naturally built
around business capabilities just like in SOA, and are independently deployable
components as described by bounded contexts in DDD (Domain Driven Design).
There is a minimal aspect of centralized management of these services as opposed to
traditional SOA architecture

www.EBooksWorld.ir

Microservices and SOA
The advent of microservices has disrupted the existence and architecting for SOA.
Although microservices and SOA are similar things, as both are service oriented,
there are some subtle technical differences in architecture and their implementation.
With the high usage of cloud-based applications, DevOps processes, and agile
methodologies, it's becoming more common, and rather natural, to follow the
microservices approach.

Certainly, many of the techniques used in microservices come from the experiences
of the development community in SOA and DDD. According to some pundits,
microservices architecture is a form of SOA, and it is also referred to as SOA done
right. Microservices has principles and patterns of service orientation around
business capabilities, independent and autonomous, bounded-context, event-driven
and more, all of these have roots in SOA and DDD.

In SOA, all organizations tend to follow a certain theme, standards, and programming
languages with conventions uniformly all across pieces of code. On the other hand, in
microservices, each microservice package is independent--it can use its own
programming language, its own configuration, and data (SQL, NoSQL), which is
common only across its team. Two microservices packages can be implemented
entirely differently using different implementation technologies while having a
common way of exposing and consuming the service interfaces.

In SOA, heavy focus is on centralization, and therefore, inclusion of a certain
Enterprise Service Bus (ESB) is inevitable. A specific ESB brings its own set of
ontologies and conventions. In microservices, the focus is on decentralization in the
form of completely independent components designed for failure situations
independently. Microservices are sometimes even referred to as an ESB anti-pattern.

In SOA, centralized governance often inhibits change, while in microservices, each
service package is its own owner, that is, completely autonomous.

www.EBooksWorld.ir

Microservices and monolithic
applications
Monolithic applications are applications that are deployed as a single executable unit
or a package (for example, deployment archive). Enterprise applications are often
built in three main parts, which are as follows:

frontend
middle-tier / server-side-code
backend (database)

The server-side code (internally designed as a layered architecture but) is a single
logical executable unit, and often, a single process. Any change to the application
needs to build and deploy the whole server-side part to the production server.

Monolithic applications can scale horizontally by replicating the whole server-side
application instance into multiple servers or VMs. Therefore, scaling requires
scaling of the entire application instead of the part of application that needs extra
resources.

Microservices architecture divides applications into a number of autonomous
microservices. Each microservice is a self-contained package of all code along with
its data without unmanaged external dependencies. Microservices scales out by
deploying them independently, and replicating them across servers, VMs, or
containers:

www.EBooksWorld.ir

Monoliths and microservices (Courtesy of James Lewis and Martin Fowler)

www.EBooksWorld.ir

Web API and web services
Microservice is often referred to as a remotely callable API, but it is much more than
the older network-callable API or remote process execution standards such as
Remote Method Invocation (RMI), Common Object Request Broker
Architecture (CORBA), or Distributed Component Object Model (DCOM) -
callable API standards.

Web API is, however, most common in the Microsoft world, where Web APIs
(server-side) are REST-based services that use HTTP verbs to define actions on the
business resources (data). This kind of service typically uses JSON or XML (or
sometimes in binary) as the request and response format.

Web services are services which are traditionally SOAP (simple object access
protocol) based services whose request and responses are in XML, or sometimes, in
binary. A web service is typically exposed by a standard WSDL (web services
description language) as an interface definition language, which is used to create the
proxies at the web service caller end.

www.EBooksWorld.ir

Characteristics of a microservices
architecture
Microservices architecture is more of a concept than a defined architecture with a
specific set of requirements. It's a better way to achieve the software, which is built
to scale reliably and responsively.

James Lewis and Martin Fowler laid out the following characteristics which
typically come with microservices:

Componentization via services: A component is a unit of software that is
independently replaceable and upgradeable. The advantage of using services as
components (rather than libraries) in a whole system, is that services are
independently deployable.
Organized around business capabilities: Services directly reflect the business
capabilities, and achieve the related business processes in the respective
business domains and bounded-contexts.
Products not Projects: It is a notion that the development team should own the
product for its lifetime. The product-based mentality makes closer ties to
business capabilities. It brings the developer nearer to the business users or
consumers, and helps him/her see how the software behaves in production.

Note that the model naturally favors the agile-based methodologies
and the microservices architecture's natural inclination towards
cloud-based infrastructure and DevOps processes.

Smart endpoints and dumb pipes: Microservices are to be decoupled and
cohesive as much as possible. The purpose here is to minimize the intelligence
in your infrastructure. Microservices use simple and dumb HTTP
communication protocol without any extra smartness built on top of it, and that
promotes lightweight messaging between various services urging event-based
communication patterns.

Note that it tends to suggest microservices as an ESB anti-pattern.

Decentralized governance: Microservices architecture puts developers
directly in charge of their code. They decide the technology, environment,
deployment, monitoring, and support. Each microservice has its own developer

www.EBooksWorld.ir

who can decide on their own about all the aspects of the service life cycle.
Centralized governance, on the other hand, as seen with SOA, focuses on
centralizing the tools and technologies as well as monitoring, whereas,
microservices emphasizes that not all problems can be solved by the same
technology and toolings.
Decentralized Data Management: Following the bounded-context concept
from DDD, the data for each microservice resides in a different space--either
different instances of the same database technology, or entirely different
database systems depending on the specific needs. It also allows for the right
technology for the right problem. So, the data is decentralized and managed by
only within the owner microservice.
Infrastructure automation: With microservices, the automation of
infrastructure-related tasks becomes natural. This includes continuous
integration and continuous deployment to development, test, performance, and in
some cases, even to production environments with the obvious necessity of
extensive automated testing.
Design for failure: Compared to monolithic applications, microservices divide
the application into a number of autonomous services, and therefore, increase
the instances of failures. Since failure with a microservice can happen anytime,
especially with communication, it is imperative to detect failure quickly and
take an even quicker action. Microservices are architected for automated
monitoring, and in many cases, automated recovery and restore.
Evolutionary design: Microservices itself is an evolutionary design with roots
in SOA and DDD. This architecture must support Plug and Play of services
where you add some service for a period and then remove or discard it, such as
a promotional event in your business domain. Since a microservice is self-
contained and autonomous, changing and improving its internal design and
technology is encouraged to be done without affecting the whole business and by
only upgrading of a business capability (due to technical or business in nature).

www.EBooksWorld.ir

Architecture of a single microservice

www.EBooksWorld.ir

Best for microservices architecture
Microservices architecture is still not very common and mature in terms of
implementation. And the architecture does not enforce uniform application of it;
rather, it promotes variety in terms of using specialized tools and techniques for
specific use cases. Therefore, it is essential to follow some of the best practices for
designing your microservices as curated from the industry.

The following is a list of some of the most common and important practices for
designing the microservices.

www.EBooksWorld.ir

Documentation
It is extremely important to have documentation at all levels with microservices
architecture.

The documentation should be easily accessible and enough to get an understanding of
the use cases as well as usability.

It should have documentation for all levels. For example:

www.EBooksWorld.ir

Business capabilities
Since services in the microservices architecture are built around business
capabilities, it is imperative to have the documentation and references present in both
the microservice technical documentation and in business capabilities or business
functions documentation.

www.EBooksWorld.ir

Business processes
Unified documentation should be present to point out the business process or
business processes implemented by this microservice, or if this service is part of
some business process orchestration. This is particularly helpful for identifying
business and technical dependencies both for the business community as well as the
developer community in the given organization.

www.EBooksWorld.ir

Microservice interfaces
Adequate documentation should be available to show inputs and outputs of the
service interface. It is beneficial to also include a sample code to see the client calls
in working.

www.EBooksWorld.ir

Microservice code
This should not only include the comments for automated documentation generation,
but also comments on the significant level of code. Microservices are heavily owned
and the responsibility of the core team overall. If the addition of a team member is
required, or for example, merging of two microservices is required, it is very
important to have a very good technical level of understanding to achieve the task
smoothly.

www.EBooksWorld.ir

Microservice data store
Adequate documentation should be present on your data storage layers of the
microservices in order to identify which microservice and business capability it
belongs to. For example, if the organization is using same database server but
different database instances for each microservice.

www.EBooksWorld.ir

Logging and monitoring
Build your microservices with the logging as part of your microservices
architecture before you begin.

The same is applicable to monitoring principles, strategies, and toolings.

Logging and monitoring is equipped to enable troubleshooting and alerting services
to highlight the issue as soon as possible, and that the recovery mechanisms kick-in
even faster in the form of both automated recovery and manual recovery according to
the devised strategy based on the nature of the incident.

www.EBooksWorld.ir

Immutable Infrastructure
Immutable Infrastructure is defined as follows:

"A pattern or strategy for managing services in which infrastructure is divided
into "Data" and "Everything else". "Everything else" components are replaced at
every deployment, with changes made only by modifying a versioned definition,
rather than being updated in-place."

In layman terms, you can reset the phone to factory settings in your smartphone while
keeping all the user data intact; and you may keep doing that.

For microservices, when you need to upgrade, you replace the whole service as a
fresh one; you do not upgrade or make changes in place in your infrastructure. The
data it uses or maintains or builds up remains (mostly) the same. This ensures the
application stability and maturity of the microservice.

www.EBooksWorld.ir

Containerization
The implementation mechanism of microservices emphasizes the emphasis of
microservices that you keep the deployment separation and the none-to-minimal
dependencies on other external resources outside this microservice boundary. A
microservice is cohesive within itself, and because it's autonomous, it's best to
deploy each microservice in its own separate container. This makes it easy to deploy
and easy for the tools to manage deployment.

Each container creates its own boundary around the microservice, and this enables a
number of microservices to coexist, and to serve the business without affecting each
other beyond their boundaries.

For simplicity, a container can be considered as a tiny VM running a stripped-down
version of OS.

Deploying a microservice in the container also enables a simpler and flexible way to
enable the scaling for your microservice. (Note that we will cover more on
containerization in the last chapter.)

www.EBooksWorld.ir

Stateless
Keep your microservices as stateless as possible.

This enables automatic failover, simpler load balancing, and auto scaling up or down
for your microservice.

When it's stateless, the main concern is that there are enough instances of service to
service the clients, and you can simply use automated scaling.

www.EBooksWorld.ir

Architectural elements
In this section, we will review some of the architectural concepts and elements
which are related and often utilized when implementing microservices-based
architecture.

For microservices, and in general, these are useful concepts and enterprise patterns
which can be applied when designing and implementing any kind of software product
or service.

www.EBooksWorld.ir

Bounded Context in Domain Driven
Design
We will introduce here the concept of Bounded Context, which is the main pattern in
the DDD) as coined by Eric Evans in his book in 2003. We are going through this
pattern, because it's one of most essential concepts when designing microservices
architecture.

www.EBooksWorld.ir

DDD (Domain Driven Design)
DDD is a software development approach to complex enterprise applications, which
involves connecting the technical implementation to the evolving problem/business
domain model of the given enterprise.

Paul Rayner from DomainLanguage.com summarizes DDD nicely as follows:

DDD advocates pragmatic, holistic and continuous software design: collaborating
with domain experts to embed rich domain models in the software--models that
help solve important, complex business problems.

www.EBooksWorld.ir

https://domainlanguage.com/

Guiding principles
The following are the core guiding principles that set the direction for the DDD:

To have the primary focus of the project on the main business domain and the
business domain logic of the given enterprise.
To design the software based on the model of the business domain
Close and iterative collaboration between domain and technical experts to build
the conceptual model of the particular business domain

(Note that the third guiding principle is also a core focus of the Agile software
development.)

www.EBooksWorld.ir

Foundational concepts
The DDD has its basis on the following foundational concepts:

Context: The settings applied to word(s) or sentence(s), which determine its
meanings. Context specification dictates the domain object's behavior and
interaction as well as other factors like what business rules to apply. This means
that the same domain object under a different context would have to process
different business rules.
Domain: Domain is the body of knowledge (the ontology), influence, or the
business activity. The particular environment, which a software solution
addresses, is the domain of the software.
Model: A model is an abstract representation, which describes the aspects of
the domain, and it can be used to define the solution to the problems related to
that domain. The model helps in communication between the domain experts and
technical experts. It becomes the conceptual foundation for the software design.
In order for the model to be effective, it has to have zero contradictions,
ambiguities, and inconsistencies.
Ubiquitous language: Ubiquitous language is the usage language in DDD
between domain experts, technical experts, developers, and users of the system.
The language is based on the defined model, and should be rigorous, leaving no
ambiguity; otherwise, the defined software solution would not be perfect for the
domain.

Bounded Contexts (DDD) in a sample enterprise application

www.EBooksWorld.ir

www.EBooksWorld.ir

Bounded context
DDD is applied to large and complex business domains instead of simpler ones; it
helps by dividing the domain into different bounded contexts, and specifying their
interrelationships. The basic idea behind the bounded context is the separation of
concerns principle.

Take, for example, a domain of an organization which has departments like HR,
Accounts, Regulatory Affairs, and so on. Each has its own responsibility, vocabulary,
and different roles, but work together in the principal business domain for a
particular industrial vertical. Then these departments can have their own bounded
context defined in the DDD model.

Bounded context creates an explicit boundary, and encapsulates or contains a
particular model. This model has its own ubiquitous language, which is understood
by the domain and technical experts for this model. It is very well possible that the
language and vocabulary used in this bounded context has a different meaning in other
bounded contexts. For example, a customer in a marketing sub domain might be
referred to as a payer in an accounting subdomain.

In DDD, there is a core domain, supporting domains, and generic domains. Core
domain is the revenue generation of the enterprise. Supporting domains are to support
your core business, like the HR sub-domain. Generic domains are the ones that you
need, but you do not worry too much about them. For example, a timesheeting
software for a company is a generic domain and is a likely candidate that is bought as
an off-the-shelf component.

A bounded context may represent a single sub-domain, while it is also possible that
two bounded contexts are implementing a single sub-domain. It is less likely that one
bounded context is encapsulating more than one sub-domain; however, it is not a
restriction.

There are scenarios where you need communication between two or more bounded
contexts. A bounded context does not keep reference of any other bounded context, as
it would violate the boundaries principle, and as well as it may also collide the
ubiquitous languages between them. The communication between two bounded
contexts is normally carried out via domain events; these are event messages (usually
asynchronous) that carry only information in the format or language, which is valid in
the whole domain. As messages contain the data and not the model, they do not
violate the boundaries of the bounded contexts. When one bounded context needs info
from another bounded context, it subscribes to its domain events.

www.EBooksWorld.ir

Communication can be carried out by one microservice calling another microservice
to gather or pass on the information. Another communication case is a service
orchestration implementing a certain business process, and which needs to invoke
services in several bounded contexts; such activity is carried out by a special
process called the process manager, which is not necessarily a business process
manager tool. Process managers are not part of any bounded context; they usually
carry out the business process across the bounded contexts, because such process
managers have are valid at the domain level, which is usually above the subdomains.

The Bounded Context concept is very important for the definition, maintainability,
and life cycle of a microservice. It allows us to deal with the relevant model in the
protected boundary, which provides both logical and technical limits to the
microservice process. This boundary is essential for a microservice for it to be
autonomous and self-contained.

www.EBooksWorld.ir

Microservices come in systems
It is extremely rare that we see a software having only one microservice entirely.
This perhaps might happen in case of certain POC (Proof of Concept) or prototype
applications. Microservices always come in systems, meaning, we always have sets
of microservices working together in a systemic manner to achieve the organizational
goals. Microservices architecture does not mandate the use of particular
technological artifacts, so it becomes a challenge to integrate if communication
patterns and protocols are not implemented with certain agreed standards. Once we
have common interface languages agreed upon, for example, JSON as data format,
REST for HTTP-based service calls, and AMQP for messaging, we are ready to
generate orchestrations.

Sometimes, we need to integrate with non-standard or unconventional communication
patterns, sometimes we need to expose our APIs or microservices to a wide variety
of clients, and sometimes, we need extra control and reports of how our
microservices are consumed, and how they perform.

Let's see some of the patterns which are essential for integration of microservices for
a number of use cases.

A great place to discover microservices patterns and their
implementation for a world-class level of services, with billions of
clients served, is http://netflix.github.io
Yes, it is the Netflix architectural artifacts, open-sourced and
available to use by the community.

www.EBooksWorld.ir

http://netflix.github.io

Service discovery
When working together, microservices need to communicate with each other, and
since microservices typically run in virtualized or containerized environments, the
number of instances running and their locations are unknown. These addresses are
dynamic, and are constantly changing depending on the scaling applied, subject to
load.

In the following sections, we will look at the two patterns of service discovery that
help the microservices consumer or other services to locate and consume them.

www.EBooksWorld.ir

Client-side service discovery
In client-side discovery, a service consumer, before making a request, first gets the
location of a service instance by querying a service registry, which knows the
locations of all the active service instances for the particular microservice requested.

One of the famous open-source implementations of a service registry pattern is
Eureka, which was developed by Netflix.

www.EBooksWorld.ir

Server-side service discovery
In server-side discovery, when a service consumer makes a request, it makes it via a
router or a load balancer running on a fixed or known location. This sort of router
would then require a service registry (which could be built in the router) and
forwards the request to an available service instance.

AWS Elastic Load Balancer (ELB) provides such an implementation. Kubernetes
provides a proxy service which implements server-side discovery router.

Kubernetes is an open-source system for automating deployment,
scaling, and management of containerized applications. It is also
used extensively to orchestrate Docker containers.

www.EBooksWorld.ir

Service registry
Service consumers either use client-side discovery or the server-side discovery to
locate the actual running microservice instance. They eventually get the location of a
service from the service registry.

Service registry is a datastore of microservices that records their instances and
locations.

An instance of a microservice is responsible for registering itself with the service
registry. It registers itself with the service registry on startup, and makes itself
available for discovery. On shutdown, the service instance unregisters itself from the
service registry. There is a mechanism that enables the service instance to keep
updating the registry at periodic intervals in order to validate its existence.

www.EBooksWorld.ir

API gateway
When having a lot of microservices, discovery, location, integration, security, and
analytics become a challenge. Then comes the need for the software service called
API gateway. An API gateway addresses a number of concerns within the
microservices architecture, and provides certain features which are useful in the
implementation of the architecture.

Features commonly provided by an API gateway include the following, and are to be
sought when deciding which API gateway to use in the implementation of your
microservices architecture:

API Security: The API gateway controls the access to services for partners,
customers, and employees (developers, DevOps, and so on). Some API gateways
also provide features of API key management, payload inspection, and validation.

Quality of service: API gateways provide features like throttling, restrictions,
and routing on services as well as network level QoS monitoring.
Unified services environment: Such features include addressing, mediation,
and orchestration of microservices as well as translation of data formats and
protocols. API gateways also expose the right API according to the right client
trying to consume the API based on its own platform. For example, mobile, iOS,
Android, web, and others.
Policy management: API gateways enable policies to easily configure the API
gateway and settings to control and protect deployed API services, and to
provide segregated access to development, test, and production environments.
Analytics: API gateways also provide API analytics of various kinds, which are
able to generate reports and charts based on usage metrics for all services and
also for the API gateway itself.

www.EBooksWorld.ir

Architectural motivations
In recent years, software technology, software development life cycle, and
development methodology has seen many new faces and modes. The software
community has continuously been shaping itself towards betterment. One such
phenomenal improvement is agile software development, which impacts not only the
development but also design and architecture of the software we build today.

www.EBooksWorld.ir

Agile Manifesto
Let's see what is Agile Manifesto in its original form, and that can make us realize
how microservices has to eventually hatch up.

Agile software development also meant to bring back software development control
to the developer community from the project management and quality standards
communities. The Agile Manifesto includes the following guidelines:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more.

These are clear motivations reflected here, and are also the differentiating points for
SOA-enterprise-standards-based architecture's transition to microservices
architecture.

Agile Manifesto is based on twelve principles. For example, one of the principles is
Continuous attention to technical excellence and good design enhances agility.
Since these are pretty generic development motivational principles, we leave them to
the source. Please visit http://agilemanifesto.org to see all of the principles.

www.EBooksWorld.ir

http://agilemanifesto.org

Reactive Manifesto
Similarly, the modern design and architecture motivation is Reactive programming.
Reactive Manifesto was published in September 2014. We will summarize the key
points from the Reactive Manifesto, and you can realize how important they are, and
how they affect our design and development of microservices.

Please visit http://www.reactivemanifesto.org to read the actual manifesto. You may also sign
the manifesto on the site.

Software today involves massive processing, storage, and
communication needs. According to IBM, 2.5 exabytes that is 2.5
billion gigabytes (GB) of data was generated every day in 2012. Eric
Schmidt (Executive Chairman, Alphabet) said,
Every 2 days we create as much information as we did from dawn of a
man up to 2003.
90% of the world's data today has been created in the last two years
alone (according to a report from 2015).

Even the software strategies and architectures that are 10 years old are outdated.
Today's demands cannot be simply met by yesterday's software architectures.

Today's demands are better met by Reactive Systems, and these systems are

Responsive
Resilient
Elastic, and
Message driven

Systems that are built as Reactive Systems are designed to be more flexible, loosely-
coupled, and easily scalable. This way, they are easier to maintain, more tolerant of
failure, and when failure occurs, they handle it with a proper response rather than
disaster.

www.EBooksWorld.ir

http://www.reactivemanifesto.org/

Reactive systems
Let us take a look at the features of reactive systems:

Responsiveness: Reactive systems respond in a timely manner. Such systems
are meant to detect the problems quickly, and to deal with them efficiently.
Reactive systems focus on rapid responses, and they usually set up an upper
bound so as to provide the users with quick and consistent quality of service.
Resilience: The systems are responsive in the event of a failure. The resiliency
is achieved by replication, containment, isolation, and delegation. Failure of one
system does not affect or impact the replicated system. The client either does not
notice failure, or does not have to handle the failure as it is handled
automatically.
Elasticity: Primarily, the system stays responsive under different loads. A
reactive system can scale up or scale down based on less load or more load.
This also means that the system should have no bottlenecks. Scaling up or down
can either be predictive or reactive based on the configuration with the
combination of statistics by the reactive system.
Message-driven: This property is perhaps the primary enabler to maintain the
other properties of the reactive systems. A reactive system depends on
asynchronous message communication. It ensures loose-coupling, location
transparency, and clear isolation between message sender(s) and message
receiver(s) / processor(s). Having explicit message-passing enables simpler
load management, easier elasticity, and flow control based on message queuing
mechanisms. Asynchronous non-blocking communication means that the
recipient processors only consume resources while they are active, thus creating
less system overhead.

www.EBooksWorld.ir

Reactive microservices architecture
Reactive principles are not something new. They have been tried and tested over a
number of decades, and now the community has embraced them with the reactive
manifesto, making them more common and popular than ever.

Microservices is an architecture which has learned from the successes and failures of
SOA. It has used all the good methodologies and rearchitected them from ground up,
primarily using reactive principles and modern infrastructure. Microservices are one
of the best examples of the implementation of the reactive manifesto.

One of the principles of the microservices architecture is to divide and conquer,
where you decompose the larger system into isolated subsystems based on
microservices using bounded context-based decomposition. Microservices are more
than just a list of principles and technologies. They are the way to approach the
building of a complex system design.

www.EBooksWorld.ir

Key aspects of Reactive Microservices
There are some key aspects of the reactive principles applied to microservices.
Although these should be part of microservices in general, but they are more
highlighted in the context of reactive microservices to do away with the prior pitfalls
we had with SOA frameworks and technologies.

Isolation: Isolation between microservices is to limit them as if each is running
in its own sandbox process. These microservices should be isolated not just
between various microservices, but also between the multiple instances of the
same microservice as well. The isolation should be failure protective in the
sense that failure in one service should not affect the processing of another
instance or other running microservices, and should be easily replaceable by
other instances.
Autonomous: A reactive microservice should be autonomous as much as
possible, which means that it should expose its interface and behavior and fulfill
it without external factors. The microservice should have support for a self-
healing mechanism internally, or as a standard in the microservices-based
architecture. Autonomous services enable flexibility for service orchestration
and collaboration as well as scalability, availability, and runtime manageability.
Single responsibility principle (SRP): A component should have only one
reason to change. This, in other words, also means that a component should do
one thing and do it well. When a microservice has a single reason to fulfill, it
simplifies both the business process and the technical implementation
associated with it, which allows it to be autonomous as well.
Statelessness: The best reactive microservices are stateless as much as
possible. There are certain circumstances that require the state to be shared
amongst microservices; it should be limited where applicable. The data should
be segregated between different microservices, and this can be split using
DDD's bounded context technique as described previously. An effective and
quick way, which could be applied to certain types of data persistence for the
state of microservices, is known as Event Sourcing. With this, we capture the
state change of an object as a new row of an event to be stored in the Event Log.
It is a way of persisting the application's state by storing the history, which
ultimately determines the current state of your application.
Asynchronous messaging: Asynchronous communication enables non-blocking
execution of the code, which results in efficient use of computing, storage, and
communication resources. Asynchronous messaging and event-based models for
a service allow the services to be dynamic and easily scalable by adding the
number of instances consuming the events coming up at a rate over a message

www.EBooksWorld.ir

queue. Having a message queue allows multiple consumers or multiple
instances of the same microservices to process in parallel--this not only uses the
resources efficiently, but also responds quickly enabling better usability
experience. Reactive microservices architecture is not in favor of REST-based
HTTP services, as these usually imply synchronous communication, and do not
ensure loose coupling between producers and consumers. It is recommended to
use the usual REST communication only where there are only a couple of
microservices communicating together in a tight (business and technical)
coupling scenario.
Mobility: When microservices are isolated and autonomous with a single
responsibility, they are also better as mobile as possible. This means you can
shift services from one physical location to another or add more instances of
services, but the client is not affected and gets a consistent response in a timely
manner. This is also called location transparency. Here, reactive microservices
should not only be location transparent, but should be virtually addressable so
that each microservice is reachable and replaceable effectively. Mobility of
services is achievable rather easily once the asynchronous messaging patterns
are in place.

www.EBooksWorld.ir

Serverless architecture
Serverless architectures are cloud-based systems and offerings, where the
applications do not use the usual server processes, hosting application server, and the
physical server resources. They rely on the remotely hosted and invocable micro
APIs (FaaS), frontend with client-side logic, and the combination of third-party
services (with some BaaS). Consider the following diagram:

www.EBooksWorld.ir

Backend as a Service (BaaS)
With cloud computing and the advent of microservices, BaaS started to gain
momentum as well. BaaS systems are those that provide infrastructure software
services, and these include storage as a service, database as a service, messaging,
and notifications as a service. With serverless architecture, applications usually use a
combination of BaaS services, which are often provided by the vendor cloud echo
system such as Google's Firebase and Amazon DynamoDB. Other third-party BaaS
services may include authentication services (like Auth0, AWS Cognito, and Azure
Active Directory).

There are different strategies where some organizations decide to use a rich frontend
app talking directly to the database as a service, for example (which some also call
stored procedure as a service), and other organizations still prefer to have a thin
version of middle-tier API backend services in the middle of the frontend and the
BaaS.

www.EBooksWorld.ir

Function as a Service (FaaS)
In the most common and latest definition of serverless architectures, FaaS stands at
the heart of this design.

In this type of serverless architecture, the server-side logic is written as functions,
which are, primarily, invocable/triggered-over events that reside in some sort of tiny
light-weight containers that may live on a per call / per request / per event basis, and
are hosted and fully managed by the cloud infrastructure provider. These functions
utilize other server-side resources as provided by the cloud infrastructure providers
that are part of its ecosystem.

Popular examples of FaaS include AWS Lambda and Azure Functions. There could
also be a single service that attempts to provide a complete set of capabilities (for
example, data stores, messaging servers, and so on) around FaaS, which is inclusive
of number of BaaS services. Examples of such a service provider include Parse
backend or Firebase.

We have covered some more information on Azure Functions in a previous chapter of
cloud architecture, so you may look that up for reference.

www.EBooksWorld.ir

Key aspects of serverless architecture
The most important architectural aspect of serverless architecture is the event-
driven programming model. And by virtue of the provided industrial architectural
models for serverless architecture, the biggest advantage, and thus the perspective, is
the cost-saving model. Another advantage is that the developers get freedom from
almost all of the admin tasks.

In modern programming models, typically, rich client apps having tight client-side
control flow and dynamic content generation replace (if not reduce) the server-side
controllers. Such rich JavaScript applications, mobile apps, and loads of IoT apps,
which coordinate the interaction between the various third-party services
(information providers and BaaS) by making API calls and using FaaS with events
for business logic, are the plausible use cases for serverless architecture.

www.EBooksWorld.ir

Type of code
With various FaaS providers supporting multiple programming languages as well as
containerization, you can virtually run any type of code in almost any programming
language with the support of container-based execution.

www.EBooksWorld.ir

Stateless
All the functions which are used as FaaS are stateless. This means that if you need to
maintain the state across various function calls of the same function, or while
coordination between various functions, then you need a separate datastore--be it any
type of a database, storage, or cross servers accessible in memory cache, such as
Redis.

www.EBooksWorld.ir

Short-lived
FaaS are contained in tiny light-weight containers. These functions are short-lived
code components with a life cycle usually matching the timeline of a single HTTP
request/response cycle.

Note that since the containers have a shorter life cycle, they live and die out
completely, usually on a per-request basis. Therefore, they are stateless, could take
more time to launch (couple of milliseconds) due to the container being spun up, and
could be terminated by the FaaS provider after the given maximum time. This means
that you are not supposed to have always running functions; that is also against the
design of serverless architecture.

Containers do not have to be Docker containers, but now, some providers have
started to support Docker-container-based function deployments.

www.EBooksWorld.ir

Almost zero administration
With various FaaS providers, you just need to deploy your code simply (in most
cases, a zip file), and all the infrastructure and admin is taken care of by the provider,
for example, AWS Lambda or Azure Functions.

www.EBooksWorld.ir

Automatic scaling
These FaaS providers let your functions scale up and down automatically, and thus,
provide very effective use of computer resources. They are also extremely cost
effective with zero amount of headache for developers, who do not even have to think
about the factors of scaling. Developers will have to write the code with parallel
programming in mind.

www.EBooksWorld.ir

Event-driven
Functions are event driven by nature, and thus provide an unlimited amount of
vertical scaling, otherwise max bounded by the FaaS providers. It makes high
availability of your backend FaaS services a breeze.

AWS, Azure, and a number of others provide a set of triggers, which let you invoke
your functions. Additionally, now providers also support possible invoking of your
functions from the API gateways, whereby your rich client app can invoke a service
on the API gateway, and that triggers the execution of your functions. However, this
does entail a heavy reliance on the API gateway when it ultimately mimics to act as a
microservice, which is mostly not considered as a good practice. Additionally, the
chances of vendor lock-in are also increased.

For message-oriented communication to functions and between different functions, a
message queuing system as a service is facilitated by the vendor, for example, SNS
by AWS and Queue Storage by Azure. The following is the serverless architecture
transitions (an Indicative view) diagram:

Indicative transitions to the serverless architecture

www.EBooksWorld.ir

Let's wrap it up
We can see that serverless architectures have a heavy influence on the event-driven
reactive programming model, and it frees up the developers from infrastructure
admin hassles, reducing a lot of DevOps as well. Serverless architecture, at least as
of now, is completely not for high performance applications due to the response time,
but is an excellent piece of software design to facilitate rapid deployment and shorter
time-to-market apps, and for ideas to reach quickly to your customer's satisfaction.

www.EBooksWorld.ir

Azure for microservices
Cloud computing readily comes to mind when thinking about implementation of
microservices architecture. These days, there are loads of reliable cloud services
providers, especially after the advent of OpenStack, an open source cloud software.

OpenStack is an open source software for creating private and public
clouds.

There are also some globally leading cloud services providers such as Amazon Web
Services, Microsoft Azure, IBM Bluemix, RedHat OpenShift (PaaS), and Heroku
(PaaS).In this section, we will see our options for microservices with the Microsoft
Azure cloud computing services provider.

To implement the microservices architecture with Azure, we have, at least, the
following three possibilities:

Azure Functions
Azure Service Fabric
Azure Container Service

All of them have their own unique advantages and features, which lets you choose
one or the other, or even a combination of them, depending on the needs of your
particular microservice according to its domain and technology model. Although you
could use the API App from Azure App Services to host your microservices, and
have a separate API App for each microservice, API apps do not specialize in
satisfying all the characteristics of microservices architecture.

www.EBooksWorld.ir

Azure Functions
Azure Functions are the simplest and easiest way to develop, host, and manage
microservices. They can be developed and hosted locally as well.

As of today, February 2017, Azure Functions can be hosted locally
using the Azure Functions CLI, and local development and tooling
will also be released soon allowing development and debugging on
DEV machines.

Azure Functions support development in various languages including C# and
NodeJS, and you can write the code while staying within the Azure portal on your
browser.

Azure Functions are basically meant to be event based, which means that they execute
only when the desired event occurs; they get charged for up to milliseconds of the
executable time, so you pay only when your function is executed, and not for any idle
time. They scale automatically based on the load, and you do not need to configure
the scaling limits or scaling factors at all. You do not need to manage any hosting
environment either, thus reducing the DevOps to almost none.

Since Azure Functions are event based and promote the reactive microservices
architecture, they provide an excellent number of input and output bindings for
integration with various other systems to get events from. These bindings include
Azure BLOB storage, table, Event Hub, queue storage, Azure service bus, HTTP,
Azure notification hub, Twilio (SMS service), and more.

One Azure Function App is composed of one or more individual functions. All of the
functions in a single function app share the same pricing plan, continuous deployment,
and runtime version. You can write the functions in multiple programming languages,
and they can all share the same function app.

With Azure Functions, you can develop and ship faster, with shortest development-to-
deployment cycles, focusing only on the business logic, ideal for quick testing
multiple versions with least worries about the cost, deployment, and maintenance.

Kudu: It's a troubleshooting and analysis tool for use with Microsoft
Azure. It is also useful for development within the Azure Portal. With
this, you can browse through your App Service folder hierarchy. It is
extremely useful when digging around Azure Functions. Visit here for
more information: https://github.com/projectkudu/kudu/wiki

www.EBooksWorld.ir

https://github.com/projectkudu/kudu/wiki

www.EBooksWorld.ir

Azure Service Fabric
Azure Service Fabric is less open then having your VMs in the cloud, but much more
flexible with control than Azure app services. Service fabric is a system that can run
on your development machines, on Azure cloud, on-premises datacenter, and also on
other clouds. Many of Microsoft's own services run on Azure Service Fabric as do
those of many big enterprises such as BMW.

Azure Service Fabric is great for web applications, ASP.NET Core, Owin, guest
process executions, and containers. The service fabric proposes to develop
microservices with reliable services or actor models. With service fabric, you are
provided with the following features:

Life cycle management
Always on services / VMs behind the scene
Programming models (ex-reliable actors, reliable services)
Orchestration
Health and monitoring of resources
Dev and Ops tooling
Auto scaling

Service fabric is great for hyper-scale web, including availability and reliability,
hyper-scale, and state management within clusters with continuous delivery and
containerization support. These features make it an excellent choice for mass-scaled
games, IoT at scale, and microservices-architecture-based implementations.

www.EBooksWorld.ir

Azure Container Service
Modern enterprise applications use containers. Containerization is at the heart of
microservices implementation ensuring proper technical bounded context to the
organizational business services.

Azure fully supports Docker-based containers, and containers can be deployed in
well-segregated DEV, TEST, and production environments of an enterprise in the
Azure cloud. With a lot of containers for your microservices, the integrity of
containers becomes complex, and the Azure container service eases it by automating
the management of high density containers with reliability and performance using
open source orchestrators like Mesos DC/OS, Docker swarm, and Kubernetes. It
provides control on containers cluster management.

www.EBooksWorld.ir

Bringing it together
If an application has various parts distinctively separated into multiple containers,
and each container microservice has different scaling and business variation needs,
the Azure Container Service (ACS) might be a choice for this scenario. Also, if you
are not yet there, but planning to implement the architecture with various containers
of varying needs, again ACS is a good choice.

If an application architecture is strongly based on Docker Linux containers, ACS
seems to be good choice, better than ASF.

If an application or system has a number of long running, high available stateful
processes, the Azure Service Fabric (ASF) is a good choice. ASF supports the
gateway pattern--so, many services are behind the gateway and transparent to the
client, smoothly implementing high availability, load balancing, and scalability to a
massive scale on ASF clusters.

ASF directly supports the Actor model, which is ideal for IoT applications where
millions of devices are sending messages to services on ASF with a seamless
integration into the Azure notification hub and Azure event hub.

If you have a serverless architecture at hand, and all the communication is event
based, you want a worry free infrastructure with minimal DevOps processes, and
your microservices cut down to an extremely granular level with seamless support
for automatic scalability, Azure Functions are the one you should be looking for. This
comes with the added advantage of cost savings on the infrastructure, admin tasks,
and scalability areas.

www.EBooksWorld.ir

Implementation samples
Up to now, we have covered pretty much all of the important aspects, comparisons,
and technicalities of the microservices architecture and the number of related
concepts. We will now consider building the design and the technical architecture of
a sample application, which would enable us to see in motion some aspects of the
microservices architecture that we have learnt so far.

We encourage you to view an excellent working example of a
complete IoT implementation using the Azure IoT set of services
called MyDriving - An Azure IOT and Mobile application at https://azur
e.microsoft.com/en-us/blog/mydriving-an-azure-iot-and-mobile-sample-application

We will design the architecture of an enterprise based on the microservices
principle; we will also do another example for a sample application, whose design
will be based on serverless architecture, keeping reactive microservices principles
intact and utilizing the FaaS facilities provided by the Azure cloud.

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/blog/mydriving-an-azure-iot-and-mobile-sample-application/

Microservices architecture for our
sample enterprise
In this example, we will build the microservices-based architecture for our sample
enterprise. For this first example design, our sample enterprise can have a business
domain of the digital production industry, or an industry selling specific types of
products, for example, tires or batteries that could be used in vehicles. The domain
industry could be different to some extent for our sample architecture, but they will
have the similar problem domains in order to achieve their business goals. We will
list down the departments or teams that will be working for this company so that you
will understand how this breakup can work for more than one industry. We will
design in a way to satisfy all the teams to achieve their tasks in a healthy and efficient
manner as well as for the business to achieve its targets for current demand as well
as future growth.

www.EBooksWorld.ir

Problem domains
Let's say our sample company has to publish some content on its website for the
audience to make them well aware about their products; they sell their products to
various customers, and they try to attract more customers by networking various
events in the world. Therefore, it depends heavily on how they market themselves
using the technology and right tools to not just be profitable to run the business
successfully today, but also be able to grow without significant costs and resource
limitations in terms of hardware, software, and manpower.

Given this as a background, we decide on the following teams, which are working
for the enterprise to achieve its goals.

www.EBooksWorld.ir

Publishing team
This team is responsible for publishing content regarding the features and benefits
about the products offered by the company. Given the various usual functions
performed by such type of teams, this team has decided that they need some software
capability allowing them to publish the contents and manage them in some sort of
manner.

This team needs a simple, task-focused publishing application.

www.EBooksWorld.ir

Marketing team
A marketing team is required with the obvious goal to market the company's products
and increase the popularity, ultimately leading to a growth in demand for the
products.

This team also has the responsibility to utilize digital advertisements as well as
social media and SEO aspects--everything to increase the visibility of the company
and its products.

They need to maintain certain documentation records. They also need some kind of
integration between the social media platforms and the company's own system /
website for showcasing.

www.EBooksWorld.ir

Sales team
Tasked to increase the sales and revenue stream, this team needs to know all
information about the products, marketing, production/manufacturing, potential
customer leads, and work flows for customer tracking leading to successful deals.

This team needs the industry leading CRM with integration features.

www.EBooksWorld.ir

Platform administration team
This team would have a broader scope of tasks to perform. They manage the controls
and features on the company's website or the whole platform. They have to deal with
the content layout on the featured website, integration aspects of various applications,
and to come up with grouped plans for display of information on the website,
requiring coordination between various teams.

This team needs an effective administration platform for the whole system to be
developed for the enterprise. The team will hold a good amount of business domain
information as well as the technical solution domain to achieve and to help other
teams achieve their tasks effectively.

www.EBooksWorld.ir

Other teams
There would be a number of other teams helping the enterprise achieve its goals.
These teams could include, for example, a manufacturing management team,
a facilities team, perhaps a separate HR team, and more. However, for the sake of
simplicity of the demonstration of the architecture, we will limit our sample problem
domains only to these teams listed so far.

www.EBooksWorld.ir

Contexts for the respective teams
Now that we have identified the teams, and also sort of identified their focused and
main set of requirements to let them work on their objects, let's narrow it down to the
technical design of the individual team level.

Naturally, we followed the DDD methodology, or at least some stripped version of
the DDD sets of processes, and there we have identified our contextual teams and
processes. Let's assume that our teams, as identified previously, fit the single
bounded context per team on the basis of the business and technical domains having
their own special needs, and therefore, could have their own segregated IT systems
and databases.

Since we are building the Microservices-based architecture at this stage, and for the
sake of coverage in the book, we won't go into the granular business requirements
and into details of insider implementation of each microservice and the number of
interfaces it could contain.

We consider this as a microservices-based architecture, and not the design and
architecture for the internal components and service interfaces of each microservice
and their implementation details. Note that microservices-based architecture gives
full independence to the teams, both technical and business, to come up with their
own strategy, design, technology and implementation of their bounded contexts inside
a container, but only having agreed on the exposed microservices interfaces and
standard communication patterns and mechanisms.

So we have decided to develop and deploy at least one container per context as per
our architecture, and at least two containers for each team's context (for UI and for
system interfaces). Since implementation inside each container is technologically
independent, and each microservice from the given view is technology agnostic,
every team is free to implement their container in the technologies that they prefer fit.
For example, the sales team could use the LAMP stack inside their container, while
the marketing team used the MEAN stack, and the publishing team the .NET Core-
based stack for technical implementation.

Let's assume that after some discussions, we have decided to use an industry leading
CRM (Customer Relationship Management) system, and to integrate it with our set
of interfaces. The CRM system would be primarily used by the sales team. We also
assume that since it's a market leading CRM, it exposes a set of APIs that allow us to
integrate our custom code to this CRM both for read and write operations. If, for any
reason, our chosen CRM system does not expose APIs or web services, we will have

www.EBooksWorld.ir

to wrap those components and convert them as callable APIs over HTTP and/or over
Message Queue. This newly exposed API project could either be developed as a
Web API inside the Azure cloud, or, depending on our architecture, it could be
developed as a separate microservice inside its own unique container.

www.EBooksWorld.ir

Customer Relationship Management
system
Let's assume that after some discussions we decide to use an industry-leading CRM
system, and integrate it with our set of interfaces. The CRM system would be
primarily used by the sales team, and hence, integration of interfaces would be
required with the sales microservices. Consider the following diagram:

Customer Relationship Management system used within the sample enterprise

www.EBooksWorld.ir

Document Management System
We also decide to use a certain Document Management System to save, retrieve, link,
and manage various types of documents.

Just as a reminder, document storage and linking could be achieved, for example, via
Google Drive for enterprise, SharePoint, Documentum, or even particular Azure
Storage or Blobs. In any case, the underlying Document Management System
(DMS) will expose certain APIs to link and deal with various actions to the various
types of documents. This actually depends on the use cases and feature requirements
by the various departments of the company; however, we have just decided here to
use the same DMS across various teams and their systems:

Indicative Document Management System (DMS)

We will now design the high-level microservices architecture for each team of our
sample enterprise based on the bounded context that are presumably coming out of
our enterprise DDD practice carried out earlier at some hypothetical date.

www.EBooksWorld.ir

Understanding the Microservices
Bounded Team Contexts
Before we do the breakup and high-level design of microservices with respect to the
teams, let's develop and understand the conventions that we will keep in our design,
as sort of agreed between our team of architects for building this new system.

All the respective boxes below in context diagrams showing the systematic context
for each team are the high-level microservice designs based directly on the bounded
contexts determined by the respective responsible teams.

We have decided that all of the user interface components for all the contexts will be
treated as a separate microservice. Meaning, they will be packaged and deployed
separately as an independent process other than its respective system interfaces
microservice. Both are isolated but sort of dependent, but they can be available on
the same machine or a VM.

The user interface microservice basically does not expose any service, and is,
primarily, a services consumer. UI components usually consume the services from its
own bounded contexts. As per convention, we will try that all external (outside the
bounded context) service interfaces are linked to our system interfaces, and not to
user interface, wherever possible.

Most of the user interface services can be made as SPA. Our user interface app for
the platform administration team is not necessarily an SPA, but it's a special app
interface which basically combines all other teams' interfaces under one umbrella. So
we will design our user interfaces, technically, in a way that they are embeddable UIs
without losing the user experience (UX). Rather, they should somehow enrich the
main portal, which is represented as a software under the platform admin team.

All the service-callable interfaces that represent APIs or some functionality are
exposed by the system interfaces microservice. So we will basically have a number
of system interfaces microservices from various team contexts talking to each other.

The big boxes on the right of each context which basically represent an external
system, which is being utilized as a separate interface integrated into our services
context. In a way, it depicts our business case as well as the technical scenario in an
easy and simple format. It does not exactly show the services that are being exposed
by the respective systems, but in real life, it will show all the essential connection
points.

www.EBooksWorld.ir

Similarly, we have only shown very few basic and only high-level services exposed
by our microservice's system interfaces for each team's context. This is only for
demonstration purpose.

www.EBooksWorld.ir

General service information flow
The general mechanism for information flow of our microservices is quite simple and
straightforward. It should always be kept in mind when implementing any
microservice for our sample enterprise. Meaning, we should agree on the enterprise
architecture level to keep some of the fundamental mechanisms and modes of
implementations across all of the microservices as uniform. The internal
implementation and technologies, or even the development languages, could be
different.

Note that this is a generic microservice implementation mechanism,
which we use just for our sample enterprise here. It's not a generic
way just for any type of microservice though it is quite a common
one. We keep it simple for the purpose of understanding and learning
the core concepts.

Generic microservice information flow

www.EBooksWorld.ir

Sales Team Context
Based on the high level requirements listed earlier, we come up with a certain
solution design for the system, which will eventually be used by the sales team. Note
that this team uses an external system for CRM like Salesforce and DMS, such as
Documentum:

High level microservice design for simplified sales team's bounded context

www.EBooksWorld.ir

Marketing Team Context
Our sample marketing team has two top-level functions. One is social media
marketing and the other involves advertising, which could be both digital as well as
in the form of physical banners.

The social media wing uses some software like hootsuite for their social media
campaigns, publishes the contents, and extracts the stats out of it to expose to other
channels of the enterprise, while the other advertisement wing can perform their duty
in various ways. Let's assume that their documentation is maintained in the particular
location and structure inside the DMS. The DMS is capable of exposing the
information and the data stored inside it based on the API-level interfaces.

Since the social media wing publishes contents on say Facebook or YouTube, those
contents are to be exposed on the main enterprise's portal based on the most liked or
most viewed category. We will see the main portal / site further in the platform
administration context:

High level microservice design for simplified marketing team's bounded context

www.EBooksWorld.ir

Publishing Team Context
In our sample enterprise, we have a publishing team who needs to publish the
contents about the company's products, their features, benefits, and the related
information on the web. Basically, it's a content publishing team, and therefore, they
need a capability for something like a content management system. There is an option
to use either a full-fledged content management system and then integrate its contents
to our main enterprise portal, or we use our existing capabilities of DMS and build a
cut-down version of a CMS with features that just fit our needs. For the purpose of
this high-level microservice architecture, we abstract out this specific technical
implementation point:

High level microservice design for simplified publishing team's bounded context

From the preceding design diagram, you can see that the essential attributes of the
content include URL, images, text, and videos. Now some of these could be saved in
our DMS and linked to the main content, and some of the new media can be directly
uploaded as part of the content being posted. In either case, it can be uploaded to our
DMS or to CMS if we are using a dedicated one. Here, if we simplify the business
process, it does not look too big to implement our own core-focused CMS along with
the combination of DMS.

The contents or the media of the contents could be stored in the Azure cloud as well
as the selected DMS alongside the selected CMS if any. Wherever the data is stored,
the important thing is its accessibility, and when we are dealing with microservices,

www.EBooksWorld.ir

the accessibility should be consistent in terms of the desired interface exposed, no
matter which underlying content storage technology is used.

The sample microservice design diagram shows three of the required services, which
would be ultimately utilized by the enterprise's portal in its front page or otherwise.

www.EBooksWorld.ir

Platform Administration Team Context
This is the team that seems to have, by far, the most responsibilities as compared to
other departments. Although it may not be occupied on a day-to-day basis like other
teams, but in the beginning, it will be the most critical and busy team in the whole
company.

Perhaps, the name given to this team is not so suitable, but anyway, we can list down
the responsibilities performed by this team in our sample enterprise as follows:

Maintain the enterprise portal configuration
Keep the website healthy (administration tasks)
Link other teams and their interfaces to the main enterprise portal
Set up all the various artefacts from various teams within a well-defined theme
of the portal
Fetch and display all the agreed upon and required data in a proper format by
calling the respective microservices-based APIs exposed by the systems of
other teams
Decide on the layout and agree on the variation on a timely basis so that the
other service providers evolve their microservices-based interfaces
accordingly.
Allow various departments to log in to the main portal, and provide them
accessibility to their system as much as possible--it's not necessary that they
achieve all of their respective tasks from within the main portal
The team should have the capability to browse through the DMS as it is a vital
component of all the teams
This team basically has the visibility and responsibility of the whole portal as a
platform

www.EBooksWorld.ir

High level microservice design for simplified platform admin team's bounded context

The platform administration team has technical and business relationship and
interfaces with the maximum number of systems that would be present in our sample
enterprise. Note that it also links to all the external systems as well. Meaning, it has
the maximum amount of communication going on, so network security, traffic, user
experience, and optimization is of utmost importance for this platform and the team.

www.EBooksWorld.ir

Enterprise portal mockup
The main idea of our sample enterprise application is a central enterprise portal for
the public and the company's own employees with respect to the teams. We decided
to build our architecture based on microservices, and have thus given full
independence to the other teams to develop their IT systems according to their needs
and standards while just keeping the core communication patterns. The existence of a
dedicated platform administration team is mainly due to the fact that we channelize
all the information from various systems coming into the main portal properly.

Let's say we have created the final and agreed mockup after various meetings with
business users, teams, management, architects, and developers. We involved
supposed UX experts to come up with the design, which should be able to gather all
the information we need to present in a consistent, pleasing, and complete manner:

A mockup designer view of the sample enterprise portal

The information in the portal is pretty organized, and comes from various channels

www.EBooksWorld.ir

utilizing the APIs exposed by the various systems or applications. I think it would be
nicer and easier to grasp if we see a layout regarding our enterprise portal in a grid
form:

Mockup design grid layout for sample enterprise portal

We may comprehend the design better with the layout view. This is the enterprise
portal platform where the main platform is an aggregator of information and displays
it in a consistent and useful manner.

The main portal has a Top Highlights area, which could be either manually inserted
information or a combination of manual plus gathered information, but this is
completely managed by the platform administration team.

Information displayed in the middle of the portal is basically from our publishing
team, and comes straight out of their CMS system. This platform portal basically
fetches some of the information using the provided microservices from the publishing
team's and embeds the focused and trimmed UI of their system directly inside this
portal.

Information in the left and right bars is fully dynamic, and is managed by the platform
admin team in terms of its arrangements and first-time configuration and
development. These bars basically display the information gathered from the systems
of the sales and marketing teams. The information is only gathered by calling the
respective relevant microservices APIs. For example, as shown in the preceding
microservice design diagram of the publishing team, the system exposes an API to
give the top three (configured) items, and those items are displayed by the portal.
Similar APIs are also exposed by the systems from the sales and marketing teams,
although not shown in the preceding figures.

www.EBooksWorld.ir

Note that as mentioned earlier, all the service calling is achieved via
a load balancing API gateway so that our scaling factor remains
transparent to the client caller of those microservices.

www.EBooksWorld.ir

Overall microservices architecture
All of our step-by-step design exercises given previously, and the building and
merging of individual microservices architecture have finally led us to arrive at the
point where we have one big and summarized picture of the overall microservices-
based architecture for our sample enterprise, which is depicted as follows:

Microservices based architecture for sample enterprise

The core microservices application is what as shown in this preceding picture inside
the inner architecture, and this is what we have architected as individual contexts.
All the access points to the microservices are maintained and accessed via the API
gateway.

All the services feature logging, tracking, and monitoring mechanisms on each
service call level. It can be implemented as a cross-cutting concern of aspect-
oriented programming, and by calling a dedicated logger service just the way we
talked about in the SOA chapter. The only difference would be that the logger service
itself will be packaged as a unique microservice. It is possible that logger service
might either listen on HTTP or be message-oriented or both; it can avoid being listed
on the API gateway, and could possibly be invoked directly to avoid an extra
network hop.

We have not talked about the communication methods for our microservices
architecture yet, but we will briefly see what is available.

www.EBooksWorld.ir

www.EBooksWorld.ir

Common communication
mechanismsin microservices
Communication as well as the overall microservices architecture is supposed to be
simplified. Though we have not proposed the mechanism that we will use, it can be
either synchronous or asynchronous. We can say for our architecture that all the
communication between the user interface services and system interface services
will be synchronous over HTTP, and all the communication between system services
interfaces will be asynchronous using a message broker.

Synchronous communication

For synchronous communication, the preferred communication mode is by using
REST APIs with JSON-based objects over the HTTP protocols. When we talk about
synchronous communication with HTTP with scale, it always flows through an API
gateway, which acts here more like a proxy though it has its full-feature set as we
covered in the previous section. The API gateway enables our services to be location
transparent, load balanced, and simply allows them to scale silently without affecting
the consumer of the services.

Asynchronous communication

When asynchronous communication is required, it mostly flows through a centralized
component called a message bus or a message broker, which provides us at least
with message queues. With message queues, the communication pattern is more like a
consumer/producer scenario (and less like request/response, which is preferred as a
synchronous pattern), where the consumer and producers could be one or many. The
only thing that the services consumers need to know is the service queue name, where
they could put their message, and they receive an answer asynchronously on the
response queue which was provided as part of the metadata of the request message.

For asynchronous messaging, your message bus can be a PaaS like Azure Service
Bus or Amazon SQS (Simple Queue Service), or it can reside in a bare metal server,
a VM, or as a separate container. Examples of those include TIBCO EMS, Rabbit
MQ, IBM WebSphere MQ, IronMQ, Apache Active MQ, Apache Kafka, and more.

There is a bit different and lightweight performance-oriented messaging engine
called ZeroMq. ZeroMQ is an asynchronous messaging library specialized for
concurrent applications. It provides a message queue, but unlike message-oriented
middleware (MOM), a ZeroMQ-based system can work without a dedicated message

www.EBooksWorld.ir

broker.

www.EBooksWorld.ir

Serverless architecture for a sample
application
Microservices architecture, when broken down into many functions serving in a FaaS
manner to fulfill the same, is sometimes referred to as a Nanoservices architecture.
For our part, we will focus on and follow our new example as a sample for creating
a simple serverless architecture.

www.EBooksWorld.ir

Our sample application - Home
automation
We want to develop a home automation application and want to begin with the
simplest one. We will have some smart electricity bulbs, which are not just energy
efficient but would also be remotely controllable and send status updates.

For having some control on non-smart devices, we have, let's say, developed a smart
extension cord which has smart switches where you can plug any accessory, while
the smart switch can give us the status as on or off.

We could have another device such as an energy monitor having some energy-
consumption-specific sensors, or say, a monitor camera to read the electricity meter
and transfer the readings to us periodically so as to measure consumption. For the
simplicity of our design, let's skip this device for our sample architecture.

Along with these other devices, say we have a master device which we'll call Home
Hub (HH). This device basically captures from and transfers the data to other smart
devices over, say, Bluetooth. Our smart devices talk over Bluetooth to transmit their
status as on or off (to the least) to the home hub. The HH device is able to configure
and connect to the home Wi-Fi, or plug in to your home router. It is this HH device
which gathers information from the local smart devices, and transmits information to
our server application.

This application basically is as an IoT application, and the gathered data can be
applied to perform analytics (both real-time and batch), and provide feedbacks on
efficiency back to the home users. Machine learning can also be applied to deduce
interesting results. However, for now, we are not looking to apply analytics or
intelligence.

www.EBooksWorld.ir

High-level application design
Let's assume that after hours of discussions and a range of factors (geologically
disperse, high number of devices hitting with light-weight data quite frequently, and
more) we have decided to go with a cloud-based solution, and selected Azure cloud
services as our provider.

Based on our requirements, the high-level design we come up with is as shown in the
following diagram:

High level design

The preceding diagram clarifies our understanding of how the home hub gets inputs
from the devices, and transfers them over to the event processor in the cloud. The
consumer's smartphone running our app can receive the status remotely about his
electrical appliances at home; he will also be able to control them to a certain extent,
for example, for switching them on or off.

www.EBooksWorld.ir

Serverless architecture in Azure
It is decided to implement our application as a serverless architecture using FaaS by
Azure following the event-based cloud programming model. We will leverage the
Azure Functions to build our processing logic.

We will use some of the Azure products in our architecture, so let's just quickly see
their definitions before we draw the architecture diagram.

Azure Functions: They process events with a serverless code, and are fully scalable
on demand, automatically. In this architecture, we will use them to execute some
logic based on certain events. Note that the IoT Hub to Azure Function functionality
is still newly released, otherwise, we connect from IoT Hub –> Event Hub –> Azure
Function.

For more information on the topic of Azure Function and IoT Hub,
please browse through the following site: https://azure.microsoft.com/en-us/bl
og/azure-iot-gateway-sdk-integrates-support-for-azure-functions

Event Hubs: These can (only) receive millions of events per second, and are fully
scalable. They enable you to ingress massive amounts of telemetry into the cloud. In
this architecture, we will use Event Hubs to receive messages from smart devices
based on the iOS, Android, and Windows operating systems.

Notification Hub: It's a cloud-scale push notification engine to send (only) push
notifications (millions of messages) to any platform. Here we will use it to send
messages from Azure Function in the cloud to smart devices based on the iOS,
Android, and Windows operating system.

Note that (as of now) to allow Azure Function to send messages to the
IoT Hub, we need to include the NuGet package Microsoft.Azure.Devices
in the Project.json file. Currently, it supports .NET 4.6

IoT Hub: It allows us to connect, monitor, and manage billions of IoT devices. It
enables us to have reliable, bi-directional, real-time communication. It supports a
broad set of operating systems and protocols, which is why we are using it here. We
use it in our architecture to talk to our Home Hub, which runs some micro-operating
system, let's say a tiny-sized Linux box which is able to communicate via the C
language.

DocumentDB: It's a NoSQL-document-oriented database-as-a-service (BaaS). It's a

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/blog/azure-iot-gateway-sdk-integrates-support-for-azure-functions

super-fast, planet-scale NoSQL DB, which you can query using the familiar SQL and
JavaScript syntax over document and key-value data without dealing with schema.
Here we are using it to store quickly millions of messages in a schema-less database
to be processed at later stage, say, for example, Big Data.

Stream Analytics: It enables real-time stream processing of the events received
from such as Event Hubs. It allows performing of real-time analytics for your IoT
solutions. Here we use it just to demonstrate the idea that with Azure IoT solutions,
we can perform real-time analysis on a stream of data ingress, and push back the
notifications to our customers.

Blob storage: It's a cloud-scale object storage for unstructured data (images, videos,
audio, documents, and so on). In our design, it is required to receive data from
Stream Analytics, which will later trigger our respective Azure Function.

Finally, this image depicts our serverless architecture ready for implementation:

Serverless architecture for a sample IoT Home Automation app

www.EBooksWorld.ir

Let's wrap it up
In the second example implementation, we presented the problem, drew a high-level
design, and directly proposed the solution unlike the way we drilled the first
implementation. One reason for this is that this problem is simpler than the previous
one; the other reason is that by now, we have already learnt a lot about the underlying
architectural principles.

Let's just have a quick end-to-end roundup of this Azure-based serverless
implementation architecture.

We have a home hub device connected to the Internet, equipped with some microchip
based OS, most likely a Linux distro, running our engine written in C language, and
talking to us over an Azure cloud. This HH device acts as a gateway allowing the
consumer to control other home smart electrical devices. It uses the Azure IoT
gateway, SDK, allowing it to communicate with the IoT Hub in both directions. From
the IoT hub, we trigger an Azure Function, which saves data to a NoSQL PaaS
database: DocumentDB. Data stored here can be used for various purposes at a later
stage, but is not part of our problem now. Real-time stream data also flows from the
IoT hub to Azure stream analytics, doing some calculations, like warning users that
all of their light bulbs have been switched on for the last 12 hours; these results are
stored in the Azure blob. Saving it auto triggers our event-based function, which then
sends the calculated warning over to the user on his smartphone to alert them using
the Azure notification hub (which is capable of sending notifications on Android,
iOS, and Windows). The user can see the alert information on his smartphone, and
can take an action like sending a control message to switch on or off the smart device
appliances. It does so by sending an event to an Event Hub which is capable of
receiving messages from smartphones. Note that, here, we could have also used IoT
Hub instead of Event Hub. After receiving a control message on Event Hub, another
Azure function is automatically triggered, which passes on the notification to an IoT
Hub, which then passes on the control message to the devices' gateway, that is, Home
Hub. HH is able to switch on or off the individual devices, as it's connected to them
over low-energy Bluetooth. We could have also let our smartphone directly connect
to the home hub by implementing another interface dedicated for smartphones, and
then, after getting the control message and acting on it, the device gateway could send
this update to the Azure cloud. But then we could not have controlled the smart
devices at home when we are outside the home, and we would've needed to make our
HH even more complex. These trade-offs let us decide which option is more viable
for us to take, and then we go in that direction given all the practical limitations and
possibilities.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary
In this chapter, we first took a theoretical dive, and from concepts, we moved
towards the more technical aspects of microservices-based architecture. You learned
the core microservices principles, its differences from other standard architectures,
and best practices. You also understood the core architectural elements as well as
motivational practical manifestations. We noted some key differences between Azure
Functions, service fabric, and container service. On the way, we touched base on
some theory of DDD and reactive programming, and understood the core principles
of serverless architecture as well.

Finally, we designed two example architectures--one based on microservices, and
the other with serverless paradigms using Azure cloud offerings. We hope that you
learned quite a lot in this chapter, and enjoyed it as well.

In the coming chapters we will learn various security aspects and features available
from .NET Core environment after that we will look at DevOps processes with
detailed information on containerization and will implement a simple multi-
containers microservices application using the docker on the Azure container
service.

www.EBooksWorld.ir

Security Practices with .NET Core
Security is the core component in any enterprise application. With proper
implementation, we can not only protect sensitive information from unauthorized user
access but also maintain the integrity of the data. Security can be implemented using
different techniques, where authentication and authorization are the two main
principles. In this chapter, we will discuss the different approaches of implementing
security in an ASP.NET Core web application and cover the following topics:

Authenticating websites using cookie middleware, external authentication,
ASP.NET Identity and two-factor authentication
Exploring different options for authorizing user access
Discussing the core concepts and flows of OAuth and OpenID Connect
Implementing a Central Authentication System (CAS) using IdentityServer4
Exploring safe storage to store sensitive information

ASP.NET Core comes with a wide range of Open Web Interface for .NET
(OWIN) middleware that facilitates developers and architects to authenticate
applications using identity, open authentication, social authentication such as
Facebook, Google, and Microsoft, and two-factor authentication. Moreover, custom
middleware can also be implemented to implement a specific security model. For
authorization, ASP.NET Core Identity system provides a rich security model for
defining roles, claims, and policies, which we will cover later in this chapter.

OWIN defines a standard interface between .NET web servers and
web applications. The goal of the OWIN interface is to decouple
servers and applications, encourage the development of simple
modules for .NET web development, and, by being an open standard,
stimulate the open source ecosystem of .NET web development tools.

www.EBooksWorld.ir

Authentication and authorization
modes
Authentication and authorization are the two core components for securing
applications. Authentication is the process of verifying a user's identity by obtaining
credentials and using those credentials to verify their identity, whereas authorization
is done after a successful authentication and it validates if the authenticated user has
sufficient rights to access a particular resource of an application. A typical example
is the shopping cart application, where a user can sign in to choose products, check
out, and make payments; whereas some information is still hidden from registered
users, and features such as manipulating items, managing user access, and other
administrative permissions are only given to admin users.

www.EBooksWorld.ir

Securing applications with ASP.NET
Core Identity
ASP.NET Core Identity is the new powerful, pluggable, and extensible security
system developed on .NET and it can be used with ASP.NET Core applications. It
provides greater control over database schema, linking with an existing application's
database, and provides APIs to perform user management, role management, and
signing in/signing out options.

By default, it is configured with SQL Server, but as it supports Entity Framework on
the backend, other database servers can also be used that are supported by the Entity
Framework. For example, you can use Oracle, SQLite, or Postgres and also attach
other non-relational data providers such as MongoDB and NoSQL as well.

As far as the authentication models are concerned, it provides various built-in OWIN
based middleware that can be simply added into the middleware pipeline to support
social authentication, OAuth authentication, and so on.

Here are a few of the benefits of using the ASP.NET Core Identity framework in an
enterprise application:

One ASP.NET Identity system: One ASP.NET Identity system that can be used
with all the application frameworks of ASP.NET, starting from ASP.NET Core
MVC 6, web forms, web pages, web API, and SignalR.
Schema modification: The default security database schema can easily be
modified using the Entity Framework Code First model. Extensions of existing
tables or the creation of new tables can easily be done by defining POCO classes
and making a DbSet entry in the Context class.
Providers: Various providers that can be added as a middleware component
and offer easy integration with any application.
Easy enablement of user restriction: User access can easily be restricted by
defining roles, claims, and policies, and it can be linked with any MVC
controller class or action method.
OWIN Integration: Based on OWIN middleware and it can be used with any
OWIN based host. It uses OWIN Authentication for login/logout scenarios.
NuGet package: Can easily be used and added into your project as a NuGet
package.

www.EBooksWorld.ir

www.EBooksWorld.ir

Security architecture in ASP.NET Core
In ASP.NET Core, the authentication is implemented as middleware. With previous
versions of ASP.NET Security, there was only a FormsAuthentication cookie, but with
the new ASP.NET Core Identity system, multiple cookies can be defined. Different
authentication providers are provided and, instead of only authenticating users from
the local identity data store, we can also authenticate users from external providers
such as Microsoft account, Google, Facebook, and Twitter.

Everything in the new Identity system is based on claims. That means all properties
on the user's identity object are now defined through claims. Properties such as name,
e-mail, department, role, designation, and many others, are a few examples of the
common properties associated with the user's identity and we can use these
properties to authorize user permissions. ClaimsPrincipal is the main class through
which claims can be defined. However, implementing custom claims through the
IPrincipal interface is now deprecated.

Encoding sensitive information is often needed in many web applications. Through
new cryptographic protection APIs, developers can easily encrypt information, and
they provide support key management and rotation. The core of the ASP.NET data
protection stack is the replacement for the <machineKey> element that we used to have in
previous versions of ASP.NET.

Cross Origin Request Sharing (CORS) prevents a web page from making AJAX
requests from client-side scripting languages such as JavaScript. With ASP.NET
Core, enabling CORS and allowing request and response headers, HTTP methods,
and origin is much easier and simpler than before.

Another core component is logging, which is included by default with ASP.NET
Core. You can start logging by simply creating a logger instance using LoggerFactory
and also develop and implement custom loggers to log information in the database or
any other medium.

One of the most common types of attack on websites is referred to as cross-site
request forgery (known as CSFR or XSFR). This happens when a user accesses
some malicious website or opens up some malicious e-mail that contains some script
and submits harmful requests on a site where the users are authenticated. This way,
the malicious site forges requests, as they appear to come from a legitimate user. The
forged request then attempts to impersonate authenticated users and performs an
activity. To prevent these attacks, we can add anti-forgery middleware in the
application pipeline and it does all the plumbing to verify whether the request is

www.EBooksWorld.ir

coming from the same user as it should be.

Now, let's discuss some of the core API's of the Identity system.

www.EBooksWorld.ir

Getting to know the core APIs of the
Identity system
Here are the two core classes of the ASP.NET Core Identity system.

www.EBooksWorld.ir

HttpContext and
AuthenticationManager
The HttpContext class is the core of ASP.NET Core. HttpContext is the object that gives
information about current requests and responses, for example, you can get
information about the current request headers, query strings, request body, content
type, and much more. This class is improvised in ASP.NET Core, and a few more
methods have been introduced.

In terms of security, they have introduced a new property known as authentication that
returns the AuthenticationManager object. AuthenticationManager provides some methods to
check whether the user is authenticated and it performs user sign-in and sign-out
operations.

You can check out the latest AuthenticationManager class on GitHub at http
s://github.com/aspnet/HttpAbstractions/blob/dev/src/Microsoft.AspNetCore.Http.Abstractio
ns/Authentication/AuthenticationManager.cs.

www.EBooksWorld.ir

https://github.com/aspnet/HttpAbstractions/blob/dev/src/Microsoft.AspNetCore.Http.Abstractions/Authentication/AuthenticationManager.cs

Understanding the authentication and
authorization process
ASP.NET Identity Core makes a vital shift in the way that authentication works with
the previous versions. In earlier versions, current users of the request are of the
IPrincipal type that can be retrieved through the HttpContext object, whereas with
ASP.NET Core Identity, the user is of the ClaimsPrincipal type that implements
IPrincipal. In previous versions, authorization was typically role-based, whereas now
it's completely claims-based and known as ClaimsIdentity. The ClaimsIdentity object
contains a list of claims that the user has, for example, first name, last name, e-mail
address, bank account, and phone number are some of the popular claims, but there
are many more. A claim is nothing but a key value pair that can be defined using the
Claim object. Claims are used to represent the properties of the user that can be used
further for authorization purposes.

The ASP.NET Core Identity system is integrated with the ASP.NET platform. You
can add the Authorize attribute on any controller or action method and secure that
based on the user, user's role, user claims, or through custom policies. This Authorize
attribute is responsible to validate if the user is authorized to execute that controller
or action method. When the user is authenticated, a cookie is set on the browser that
contains the list of claims that the user has, and it can be retrieved by calling the
User.Claims method.

www.EBooksWorld.ir

Authentication
In this section, we will learn about ASP.NET Core Identity and IdentityServer4, and
learn the core concepts that can be used to implement authentication in the ASP.NET
Core web application.

www.EBooksWorld.ir

Implementing authentication using
ASP.NET Core Identity and
customizing the Identity data store
In this section, we will implement ASP.NET Core Identity in an ASP.NET Core
MVC application. This section will cover all the details on configuring the Identity
and adding functionality to register, log in and log out, and modify the default data
store to save some other information of the user and implement authorization in a
simple web application that does not have a service layer in terms of a Web API.

The ASP.NET Core application can be created either through Visual Studio 2015 or a
greater version, or it can also be created using the .NET CLI or Yeoman command-
line tools. When creating an ASP.NET Core web application, you have a choice to
select the specific service accounts:

When you click on the Change Authentication dialog, it opens up the dialog to select
the type of authentication you want to use and configure your web application, shown
as follows:

www.EBooksWorld.ir

The following table shows the details of each authentication type:

Authentication
Type Description

No
Authentication If no authentication is required

Individual User
Accounts

To store the user profile in a database and bring authentication
to the user store and external authentication providers

Work and
School
Accounts

To authenticate users with Active Directory, Microsoft Azure,
Active Directory, or Office 365

Windows
Authentication For intranet applications

When you select the Web Application option as a project type and select any of the
preceding authentication types from individual accounts, work and school accounts,
or windows authentication, Visual Studio adds some boilerplate code into your
project that has all the basic configuration, as per the selected authentication type.
AccountController is created to perform user registration, log in or log off users, and
ManageController is created to manage logins, add phone numbers, and more.

By default, the Web application project is configured to use the localdb store to save
user information and other information into the database, but this can be modified and
the corresponding database connection string can be specified from the
appsettings.json file, as shown in the following screenshot:

www.EBooksWorld.ir

After running your application, you will see the default website loaded and it should
contain options to register and log in as a user:

www.EBooksWorld.ir

Configuring authentication using
Identity in an empty web application
project
To clarify our understanding, we will walk through an empty project template and
learn how security can be implemented in an ASP.NET Core web application step by
step.

To start with, let's create an ASP.NET Core MVC web application project. With the
empty project, there is no option to select the authentication type. We will start by
configuring the Entity Framework to configure data persistence, then configure
ASP.NET Core Identity, and finally create controllers to perform user registration,
log in, and log out.

www.EBooksWorld.ir

Configuring Entity Framework Core
Let's add Entity Framework Core by adding NuGet packages. Add the following
packages through the NuGet package manager console:

 Microsoft.AspNetCore.Identity.EntityFrameworkCore
 Microsoft.EntityFrameworkCore.SqlServer
 Microsoft.EntityFrameworkCore.SqlServer.Design
 Microsoft.EntityFrameworkCore.Design
 Microsoft.EntityFrameworkCore.Tools

www.EBooksWorld.ir

Defining data context and user classes
Once these packages are downloaded, we can create our custom DataContext class that
will be derived from the IdentityDbContext class. Usually, with Entity Framework Code
First model, we inherit our custom data context class from the DbContext class and then
define DbSet properties of entities to create tables. With ASP.NET Core Identity, we
have to inherit our custom data context class from the IdentityDbContext class and
specify a class that inherits from IdentityUser. IdentityDbContext is the main base class
provided by the ASP.NET Core Identity framework that derives from all the
necessary classes required to manage roles, claims, users, tokens, and more.

Here is a screenshot of the IdentityDbContext class:

IdentityUser is the wrapper of the DbContext class that is needed by all the custom data
context class to define entities. With the IdentityDbContext class, we can still define our
custom entities and also get the Identity specific models such as IdentityUser,
IdentityRole, and more, and extend them by making relationships using the Fluid API or
through attributes amongst entities. We will look at extending entities later in this
chapter.

Here is the code of our custom ApplicationDbContext class that derives from the
IdentityDbContext base class:

 public class ApplicationDbContext :
 IdentityDbContext<ApplicationUser>
 {
 public ApplicationDbContext(DbContextOptions

www.EBooksWorld.ir

 <ApplicationDbContext> options) : base(options)
 {

 }
 protected override void OnModelCreating(ModelBuilder builder)
 {
 base.OnModelCreating(builder);
 }
 }

If you notice, we are passing the ApplicationUser class when deriving from the
IdentityDbContext class. This is because the IdentityDbContext class is specific to the
IdentityUser class provided by the ASP.NET Core Identity framework. However, it's
always better to define your custom class, which can be derived from IdentityUser.
This way, you can customize your custom user class and add other properties as well
to the default user entity. For now, we will just derive it from IdentityUser and specify
it in the ApplicationDbContext class defined previously:

 public class ApplicationUser : IdentityUser
 {
 public string TwitterHandler { get; set; }
 public string LinkedInProfileLink { get; set; }

 public string SkypeAccount { get; set; }
 }

www.EBooksWorld.ir

Configuring database connection and
application configuration settings
To define connection strings, add the Application Configuration file known as
appsettings.json and specify the SQL server connection string, as follows:

 {
 "ConnectionStrings": {
 "DefaultConnection": "Data Source=.;
 Initial Catalog=ERPDB; Integrated Security=True;"
 }
 }

Any database server's connection can be defined if it is supported by
Entity Framework.

In the Startup class, we can now add this appsettings.json file to read all the key values
defined and build a dictionary object that can be used to refer the connection string.
Add the following code snippet in the Startup constructor:

 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder()
 .SetBasePath(env.ContentRootPath)
 .AddJsonFile("appsettings.json",
 optional: true, reloadOnChange: true);
 }

To resolve the SetBasePath and AddJsonFile methods, you have to add NuGet packages
such as Microsoft.Extensions.Configuration.FileExtensions and
Microsoft.Extensions.Configuration.Json.

The preceding code will only initialize and set the builder object to load the
appsettings.json file. In order to access the keys, we have to call the builder.build
method that returns IConfigurationRoot, which is a unified dictionary object and it can
be used throughout the application to read configuration values. If multiple sources
are specified in the ConfigurationBuilder object, all those sources, keys, and values will
be combined into one dictionary object, known as IConfigurationRoot.

So, add this entry in the Startup constructor, as follows:

 Configuration = builder.Build();

And add the property in the Startup.cs, as follows:

www.EBooksWorld.ir

 public IConfigurationRoot Configuration { get; }

IHostingEnvironment will be a dependency injected in the Startup constructor by the
ASP.NET Core framework and it can also be used in scenarios such as if you have
separate connection strings for development, staging, and production environments
and you want to use the specific connection string based on the environment that your
application is running on.

www.EBooksWorld.ir

Configuring Entity Framework and
Identity services
We can add the Entity Framework and Identity as middleware. ConfigureServices is the
entry point where all services are added and called by runtime.

Add the following code snippet in the ConfigureServices method to add Entity
Framework:

 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration.GetConnectionString(
 "DefaultConnection")));

Next, we can add Identity, as follows:

 services.AddEntityFrameworkSqlServer()
 .AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration.GetConnectionString("DefaultConnection")));
 .AddDefaultTokenProviders();

To add the SQL Server support, we have to call the AddEntityFrameworkSqlServer method
and then we specify the DbContext, which is ApplicationDbContext, by calling the
AddDbContext method.

The following code will add the Identity framework into your application:

 services.AddIdentity<ApplicationUser, IdentityRole>()
 .AddEntityFrameworkStores<ApplicationDbContext>()
 .AddDefaultTokenProviders();

AddIdentity also takes options to configure identity options. There are two built-in
options provided, known as AllowedUserNameCharacters and RequireUniqueEmail.

AllowedUserNameCharacters: To accept characters in a username
RequireUniqueEmail: E-mail should be unique

www.EBooksWorld.ir

Enabling authentication using Identity
Authentication can be enabled by calling UseIdentity in the pipeline through the
Configure method of the Startup class, as follows:

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 loggerFactory.AddConsole();

 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseIdentity();

 app.Run(async (context) =>
 {
 await context.Response.WriteAsync("Hello World!");
 });
 }

The app.UseIdentity method adds cookie-based authentication in the pipeline, which
means that when the user is authenticated a cookie will be added in the browser and
later used for authentication purposes. The App.UseIdentity method internally uses
app.UseCookieAuthentication and sets the cookie named as Identity.Application, whereas,
through the AuthenticationOptions, this can be customized. We can also use
app.UseCookieAuthentication in case we need to specify all the configurations explicitly.

By now, our application will only display the Hello World! message. In an empty web
application project, everything has to be configured manually, whereas with the
ASP.NET Core web application project, all the boiler-plate code is added out-of-
the-box to register users, authenticate users, and to perform log in and log out
operations.

www.EBooksWorld.ir

Creating an identity data store in SQL
server
Now we can run migration through the Entity Framework command-line tooling
support.

Go to the Command Prompt and navigate to the application's folder where your
project file resides.

First, execute this command which creates the migration:

dotnet ef migrations add Initital

Initial is the name of the migration and once you run this command, it will create a
Migrations folders and a file whose name will be ended with Initial.

The naming of migration files is date and time followed by _ and the
name of the migration.

Here is a screenshot of the Migrations folder created:

If you open the *_Initial.cs file, you will notice that it contains the Up and Down
methods used to create or remove changes to and from a database.

To update the database, we will execute the following command shown in the
following snippet that creates the ASP.NET Core Identity tables:

dotnet ef database update

www.EBooksWorld.ir

This is an out-of-the-box model provided with ASP.NET Core Identity. With this
configuration, we can register users and perform login and logout operations. In a
later section, we will see how to restrict access to website resources based on roles,
claims, and policies.

www.EBooksWorld.ir

Customizing existing Identity data store
and adding new entities
ASP.NET Core Identity model uses Entity Framework Core Code First model and,
because of this extension, it is quite simple. We can add new classes that represent
tables and provide relationships with existing Identity tables. We can also derive
new classes from existing Identity entities and add more properties, such as a
LinkedIn profile, Twitter, and so on.

Here, in this section, we will add a table known as User Profile, which contains
information related to an employee's designation, and add some properties, such as a
Twitter and LinkedIn profile in the Identity user entity itself.

The following is the updated ApplicationUser class, which inherits from IdentityUser and
contains new properties such as a Twitter handle, LinkedIn profile, and a Skype
account:

 public class ApplicationUser : IdentityUser
 {
 public string TwitterHandler { get; set; }
 public string LinkedInProfileLink { get; set; }
 public string SkypeAccount { get; set; }
 }

And here are a few more entities for designation, organization, and user profile:

 public class UserProfile
 {
 [Key]
 public long UserProfileID { get; set; }
 public bool IsActive { get; set; }
 public int DesignationID { get; set; }
 public Designation Designation { get; set; }
 public int OrganizationID { get; set; }
 public Organization Organization { get; set; }
 public DateTime EffectiveDate { get; set; }
 public int ApplicationUserId { get; set; }
 public ApplicationUser User { get; set; }
 }

 public class Designation
 {
 [Key]
 public int DesignationID { get; set;}
 public string DesgName { get; set; }
 public string Description { get; set; }
 public bool IsActive { get; set; }
 }

 public class Organization
 {

www.EBooksWorld.ir

 [Key]
 public int OrganizationID { get; set; }
 public string OrganizationName { get; set; }
 public string Address { get; set; }
 public string City { get; set; }
 public string State { get; set; }
 public string Country { get; set; }
 public string PoBoxNo { get; set; }
 public string Website { get; set; }
 public bool IsActive { get; set; }
 public List<Designation> Designations { get; set; }
 }

To learn about Entity Framework Code First model, please refer to
this link http://ef.readthedocs.io/en/latest/intro.html.

After creating these entities, we have to add the DbSet entries to create tables. Add this
code snippet in ApplicationDbContext, as follows:

 public DbSet<Organization> Organizations { get; set; }
 public DbSet<Designation> Designations { get; set; }
 public DbSet<UserProfile> UserProfiles { get; set; }

Now we will add the Entity Framework migration, as done before, and that will
create another .cs file that contains code to create tables. After running that migration,
it will create the following tables:

This is how we can extend the Identity tables and configure Identity.

www.EBooksWorld.ir

http://ef.readthedocs.io/en/latest/intro.html

www.EBooksWorld.ir

Creating and Signing-in/Signing-out
users
ASP.NET Core Identity provides two core classes, namely UserManager and
SignInManager, that can be used to register users and enable user sign-in and sign-out
operations. We can add an Account controller and specify them in the constructor,
which then is automatically dependency injected into the controller through the
parameterize controller constructor and it can be used to perform these operations.

UserManager and SignInManager both are generic types and they take the type of the class
that derives from IdentityUser (in our case, ApplicationUser). SignInManager internally
uses AuthenticationManager and wraps most of the complex parts of the authentication.

Here is the AccountController class, having a constructor taking two parameters:

 using Microsoft.AspNetCore.Identity;

 public class AccountController : Controller
 {
 SignInManager<ApplicationUser> _signInManager;
 UserManager<ApplicationUser> _userManager;

 public AccountController(SignInManager<ApplicationUser>
 signInManager, UserManager<ApplicationUser> userManager)
 {
 _signInManager = signInManager;
 _userManager = userManager;
 }
 }

To register a new user, we can define some methods, such as Register, in our
AccountController class and call the SignInAsync method as follows:

 [HttpPost]
 [AllowAnonymous]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult>
 Register(UserViewModel model)
 {
 if (ModelState.IsValid)
 {
 var user = new ApplicationUser { UserName = model.Email,
 Email = model.Email,
 TwitterHandle = model.TwitterHandle,
 LinkedInProfileLink = model.LinkedInProfileLink,
 SkypeAccount= model.SkypeAccount };
 var result = await _userManager.CreateAsync(user,
 model.Password);
 if (result.Succeeded)
 {

www.EBooksWorld.ir

 await _signInManager.SignInAsync(user,
 isPersistent: false);
 return RedirectToAction(
 nameof(HomeController.Index), "Home");
 }
 }
 return View(model);
 }

In the preceding code, we have defined a Register method that takes UserViewModel as a
parameter. UserViewModel contains all the properties needed to register a user. A user
can be created by calling the CreateAsync method that takes the user object and
password as parameters. If the user is created, we can sign-in the user by calling the
SignInManager object that actually signs in the user and sets the authenticated cookie in
the browser that can be used for authorization.

CreateAsync contains two overloaded signatures. One that takes a user object and a
password as parameters, and another that only takes the user object as a parameter.
The difference is that the one that takes the password also stores the password at the
time of creation, and the other creates the user with an empty password:

 Task<IdentityResult> CreateAsync(ApplicationUser user);

 Task<IdentityResult> CreateAsync(ApplicationUser user,
 string password);
 The SignInAsync method also has two overloaded methods:
 Task SignInAsync(ApplicationUser user, bool isPersistent,
 [string authenticationMethod = null]);

 Task SignInAsync(ApplicationUser user,
 Microsoft.AspNetCore.HTTP.Authentication
 .AuthenticationProperties authenticationproperties ,
 [string authenticationMethod = null]);

The following table shows description of each parameter:

Parameter Description
ApplicationUser User object that derives from IdentityUser

isPersistent
Gets or sets whether the authentication session is persisted
across multiple requests

authenticationMethod Name of the method used to authenticate the user
AuthenticationProperties Properties applied to the login and authentication cookie

If the user is already registered, we can call the alternative method known as
PasswordSignInAsync, as follows:

 var result = await _signInManager.PasswordSignInAsync(
 model.Email, model.Password,
 model.RememberMe, lockoutOnFailure: false);

www.EBooksWorld.ir

The PasswordSignInAsync method also has two overloaded methods:

 Task PasswordSignInAsync(ApplicationUser user,
 string password, bool isPersistent, bool lockoutOnFailure);
 Task PasswordSignInAsync(string user,
 string password, bool isPersistent, bool lockoutOnFailture);

The difference between these two is obvious. One takes a user object as a first
parameter and the other takes a username as a string in the first parameter.

The following table shows a description of each parameter:

Parameter Description
ApplicationUser User object that derives from IdentityUser
User Username

isPersistent
Gets or sets whether the authentication session is persisted across
multiple requests

lockoutOnFailure
To set the lockout failure value that locks the account after a
specified count of retries

The Signout operation can be done by calling the SignOutAsync method of the SignInManager
object. This clears the cookie from the browser.

www.EBooksWorld.ir

Adding claims in ASP.NET Identity
membership
When using Identity middleware, adding claims is not as simple as with cookie
middleware. We need to create a custom claims factory class that derives from the
UserClaimsPrincipalFactory class and overrides the CreateAsync method that injects the user
object. When the user is signed in, these claims will automatically be added in the
cookie.

To create the claims factory class, add the following code:

 public class AppClaimsPrincipalFactory :
 UserClaimsPrincipalFactory<ApplicationUser, IdentityRole>
 {
 public AppClaimsPrincipalFactory(
 UserManager<ApplicationUser> userManager,
 RoleManager<IdentityRole> roleManager,
 IOptions<IdentityOptions> optionsAccessor) : base(
 userManager, roleManager, optionsAccessor)
 {

 }
 }
 public async override Task<ClaimsPrincipal>
 CreateAsync(ApplicationUser user)
 {
 var principal = await base.CreateAsync(user);
 ((ClaimsIdentity)principal.Identity).AddClaims(new[]
 {
 new Claim(ClaimTypes.GivenName,"Jason"),
 new Claim(ClaimTypes.Surname,"Scott"),
 new Claim(ClaimTypes.Role,"Manager"),
 new Claim(ClaimTypes.Role, "Supervisor")
 });
 return principal;
 }

In the preceding code snippet, we have overridden the CreateAsync method and added
four claims, such as given name, surname, and two roles. When the user is signed in,
the claims will be added in the cookie.

Finally, we have to inject the claims factory instance as a scoped object through
Dependency Injection (DI) in the ConfigureServices method of the Startup class. This
way, when the user is signing in, it will inject our custom claims factory class,
AppClaimsPrincipalFactory, in the Identity system and use its CreateAsync method to add
claims:

 services.AddScoped<IUserClaimsPrincipalFactory<ApplicationUser>,
 AppClaimsPrincipalFactory>();

www.EBooksWorld.ir

www.EBooksWorld.ir

How authorization works
Authorization is done after authentication and it used to protect resources from the
user that are not permissible. In ASP.NET Core, we can check and protect the user
for accessing any resource by calling the User.Identity.IsAuthentication property that
returns a Boolean value. True indicates that the user is authenticated.

By writing the following code in our ManageUsers action method in the MVC controller
it will check if the user is already authenticated, otherwise returns the ChallengeResult,
that redirects the user to the access denied page as configured in the authentication
middleware:

 public IActionResult ManageUsers()
 {
 if (User.Identity.IsAuthenticated == false)
 {
 return new ChallengeResult();
 }
 return View();
 }

We can replace the preceding code by just adding the Authorize attribute as follows:

 [Authorize]
 public IActionResult ManageUsers()
 {
 return View();
 }

The Authorize attribute can be applied either at a Controller level or action method
level and it also takes claims, roles, and policies to filter requests. Authorization
techniques are covered later in the chapter.

www.EBooksWorld.ir

Using cookie middleware without
ASP.NET Core Identity
If you want to use your own data store and login controls to authenticate a user,
Cookie middleware is the best choice. Cookie middleware serializes the user
principal into an encrypted cookie and it uses that cookie to validate users on every
request. The user principal can be retrieved by calling the HttpContext.User property.

Cookie middleware can be used by adding a NuGet package named
Microsoft.AspNetCore.Authentication.Cookies and the following code snippet in the Configure
method in the Startup class:

 CookieAuthenticationOptions options = new
 CookieAuthenticationOptions();
 options.AuthenticationScheme = "CookiesMiddlewareAuth";
 options.LoginPath = "/Account/Login";
 options.AccessDeniedPath = "/Account/AccessDenied";
 options.AutomaticAuthenticate = true;
 options.AutomaticChallenge = true;
 app.UseCookieAuthentication(options);

The following table shows a description of few properties that
CookieAuthenticationOptions provides:

Property Description

AuthenticationScheme
Name of the middleware or by which the middleware is
known.

LoginPath
Relative path to the login page, to which the request will be
redirected when an unauthenticated user accesses it.

AccessDeniedPath
Relative path to the page that shows that the user does not
have access rights to a particular resource or page.

AutomaticAuthenticate

This flag indicates that on every request middleware should
run and validate the request. It also reconstructs the principal
it created earlier.

AutomaticChallenge

This flag indicates that the application should redirect the
user to the login page or access denied page if the user is not
authenticated.

CookieDomain Determines the domain used to create the cookie.

CookieHttpOnly
Determines if the browser should allow the cookie to be

www.EBooksWorld.ir

accessed by JavaScript.

CookiePath
Determines the path used to create the cookie. Default value
is '/' for the highest browser compatibility.

CookieSecure

Determines if the cookie is only allowed to be transmitted on
HTTPS requests. The default setting is that, if the page using
the calling sign in process is using HTTPS, it will default to
HTTPS and this bit can be used in the scenario if a sign-in
page, or the portions of a page, is using HTTP.

ExpireTimeSpan Expiry time to which the cookie will remain valid.

SlidingExpiration

This can be set to True to instruct the middleware to issue the
new cookie with a new expiry time when it reaches half way
through the expiration window.

Cookies can be created by calling the SignInAsync method of AuthenticationManager. The
following is the Login (HTTP POST) method that can be called when the user logs in
through the Web application:

 [HttpPost]
 [AllowAnonymous]
 [ValidateAntiForgeryToken]
 public IActionResult Login(LoginViewModel model,
 string returnUrl = null)
 {
 var claim = new Claim[]
 {
 new Claim("sub","123456789"),
 new Claim("name","ovaismehboob"),
 new Claim("email","ovaismehboob@yahoo.com"),
 new Claim("twitter","ovaismehboob"),
 new Claim("role", "Admin"),
 new Claim("role", "User")
 };
 ClaimsIdentity claimIdentity = new ClaimsIdentity(
 claim, "CookiesAuth");
 HttpContext.Authentication.SignInAsync("CookiesAuth",
 new System.Security.Claims.ClaimsPrincipal(claimIdentity));
 return Redirect(returnUrl);
 }

 HttpContext.Authentication.SignInAsync(
 "CookiesMiddlewareAuth", new
 System.Security.Claims.ClaimsPrincipal(claimIdentity));

The first parameter takes the authentication scheme that uses the cookie middleware
setup on the Configure method and it uses that for authentication. Claims can be defined
by initializing a new Claim instance and specifying the key values pair, which can be
added to the claim array as shown previously.

SignInAsync uses the claims passed through the claims identity and sets the cookie.
Claims can be retrieved by calling User.Claims, as follows:

www.EBooksWorld.ir

 <d1>
 @foreach (var claim in User.Claims)
 {
 <dt>@claim.Type</dt>
 <dt>@claim.v</dt>
 }
 </d1>

A sign-out operation, on the other hand, can remove the cookie from the browser and
sign out the user. A signing-out operation can be done by writing the following code:

 HttpContext.Authentication.SignOutAsync("CookiesMiddlewareAuth");

This method also takes the authentication scheme. So, if multiple middleware are set
up, you can sign out the user for a specific authentication scheme, which clears up the
cookie from the browser.

www.EBooksWorld.ir

Claims transformation
Every cookie has an expiry time and the default cookie expiration time in ASP.NET
Identity Core is 30 minutes, which is configurable. Claims transformation is a
valuable feature that allows developers to add or update claims on every request.
For example, if at a particular time we don't want a user to access a resource. We can
add a piece of information through claims transformation and validate it through the
Authorize attribute in our MVC or Web API controller or action level.

Let's go through an example in which we will add the AllowSecure claim that will be
validated when the user accesses the AdminController. The claims transformation has to
be added in the HTTP pipeline in the Startup class. Add the following code in the
Configure method of the Startup class:

 bool isAllowed = GetUserAllowedBit();
 if (isAllowed)
 {
 app.UseClaimsTransformation(user =>
 {
 user.Context.User.Identities.First().AddClaim(new
 Claim("AllowSecure", System.DateTime.Now.ToString()));
 return Task.FromResult(user.Principal);
 });
 }else
 {
 app.UseClaimsTransformation(user =>
 {
 if (user.Context.User.Identities.First()
 .FindFirst("AllowSecure") != null)
 {
 user.Context.User.Identities.First()
 .RemoveClaim(new Claim("AllowSecure",
 System.DateTime.Now.ToString()));
 }
 return Task.FromResult(user.Principal);
 });
 }

In the preceding code, we have called our custom GetUserAllowedBit method that returns
the Boolean value if the user is allowed or not. If the user is allowed, the claim will
be added through the claims transformation; otherwise it will be removed from the
user's claims.

Before annotating our Controller with the Authorize attribute, we will set up the policy
and specify AllowSecure claim to be required for any user accessing that resource
which is protected with this policy.

To understand the policy, please refer to the following authorization techniques. The
following code will register the policy in the pipeline:

www.EBooksWorld.ir

 services.AddAuthorization(options =>
 {
 options.AddPolicy("SecureAccess", policy =>
 policy.RequireClaim("AllowSecure"));
 });

Our AdminController can be protected by just adding the Authorize attribute and reading
this claim, as follows:

 [Authorize(Policy ="SecureAccess")]
 public class AdminController : Controller
 {
 }

www.EBooksWorld.ir

Cookie middleware events
Cookie middleware provides various events that can be overridden by defining the
method name through CookieAuthenticationOptions. This is beneficial in terms if you need
to add your own logic of setting up a browser cookie or clearing up a browser
cookie, validating a cookie, and more.

The following are the events provided in the CookieAuthenticationOptions:

Event Description

RedirectToAccessDenied
When an access denied causes a redirect in the cookie
middleware.

RedirectToLoginIn When a sign in causes a redirect in the cookie middleware.
RedirectToLogout When a sign out causes a redirect in the cookie middleware.
RedirectToReturnUrl When redirecting to a return URL.
SignedIn When a cookie is created and a user is signed in.

SigningIn
When a cookie is created. Claims can be modified and
added by overriding this method.

SigningOut
To do specific operations during a sign-out operation. For
example, clearing up the session and so on.

ValidatePrincipal

Called each time when the request is validated. This can be
used to verify the user from a database or external source
based on the claims. For example, a cookie once set remains
in the browser until a user signs out or the cookie expires.
This can be used in conditions if we need to verify the user
permissions for a specific page and navigate to the access
denied page if that permission is not assigned.

Events can be specified as follows, where options are the instance of
CookieAuthenticationEvents:

 options.Events = new Microsoft.AspNetCore.Authentication.
 Cookies.CookieAuthenticationEvents
 {
 OnValidatePrincipal = CookieEvents
 .ValidateUserPermissions
 };

CookieEvents is a custom class that contains a static method named

www.EBooksWorld.ir

ValidateUserPermissions, which can be specified through the OnValidatePrincipal property.

Here is the code of the CookieEvents class:

 public class CookieEvents
 {
 public static async Task ValidateUserPermissions(
 CookieValidatePrincipalContext context)
 {
 bool pathExist = CheckIfPageExist(
 context.HttpContext.Request.Path.Value,
 context.HttpContext.User.Claims);
 if (!pathExist)
 {
 context.HttpContext.Response.Redirect(
 "/Account/AccessDenied");
 }

 }
 }

Once the user is authenticated and the cookie is set, this method will be called every
time when the request is made. In the preceding code we are passing the request path
to the CheckIfPageExist method that checks if the user has an access to a particular
resource and redirects it to the access denied page on a deny case. There are various
other scenarios in which this can be overridden, such as if you want to check if the
user is still active in the system and sign out in case a user is deactivated.

www.EBooksWorld.ir

Implementing external authentication
in ASP.NET Core applications
Many applications these days have implemented external authentication on their
websites. This enables users to use their existing login credentials of Twitter,
Facebook, Hotmail, or any other and register on a website. This type of
authentication provides several benefits to the user registering on a website. It
facilitates users to use their existing credentials and avoid themselves from going
through a lengthy registration process and remembering the credentials they have
created.

ASP.NET Core provides a very easy and quick solution to configure external
authentication using OAuth 2.0.

OAuth architecture and basic components are explained in the following section:

www.EBooksWorld.ir

Configuring external authentication in
ASP.NET Core
In this section, we will implement external authentication with a Facebook
authentication provider.

www.EBooksWorld.ir

Creating a web application project
We can start by creating a web application ASP.NET Core project and selecting
individual accounts as the authentication mode. This option actually creates the
application project containing all the boilerplate code available to start using
authentication using ASP.NET Core Identity.

www.EBooksWorld.ir

Configuring apps on Facebook
To use of OAuth provider, we have to create an application first to obtain the client
ID and client secret keys. We can then use these keys to authenticate our ASP.NET
application by adding a middleware and specify them as discussed in the section as
follows. Here are the steps to register a new application on Facebook:

1. Create an app by navigating to http://developers.facebook.com/apps and log in with your
user registered Facebook ID.

2. Click on the Add a new App option and select Website (WWW).
3. Specify your app name and click on Create New Facebook App ID.
4. Specify display name, category, and Contact Email and click on Create App ID.
5. Once the application is created, you have to go through some tabs to specify

basic information.
6. Specify your website URL and proceed:

7. Go to your account settings and copy the App ID and App Secret that can be
used for authorization:

www.EBooksWorld.ir

http://developers.facebook.com/apps

To authenticate with Facebook or any other external provider, we need to provide the
Application ID and secret key for authorization of our application. ASP.NET Core.

www.EBooksWorld.ir

Enabling Facebook middleware
ASP.NET Core comes up with some out-of-the-box external authentication
middleware to authenticate users from Facebook, Twitter, Microsoft account, and
Google. To implement Facebook authentication, we have to add a NuGet package--
MicrosoftAspNetCore.Authentication.Facebook

Then, add the following code snippet to the Configure method of the Startup class:

 app.UseFacebookAuthentication(new FacebookOptions()
 {
 AppId = Configuration["your_app_id"],
 AppSecret = Configuration["your_app_secret"]
 });

In the preceding code snippet, we are setting the Facebook App ID and Facebook
Secret Key using the FacebookOptions object.

Now, when you run your application, it will show the Facebook button, as shown in
the following screenshot:

Clicking on the Facebook button will get the authentication code from Facebook and
render the Facebook authentication page where a user can specify the login
credentials and proceed.

It will ask you to allow to access the profile information and on allowing, redirects
to the website. Finally, it prompts you to complete the registration:

www.EBooksWorld.ir

On clicking on Register, it will create the user in the ASP.NET Identity database. For
Identity user you can specify any other username as well and use that credential to log
in next time with local Identity authentication.

www.EBooksWorld.ir

Two-factor authentication
Two-factor authentication, also known as 2FA, provides two-step verification of the
user authentication in the system. Usually, with one-step authentication, we require
the user to specify the username and password. With this type of authentication
mechanism, instead of only asking the username and password, we require another
piece of information, which is particular to that user only for authentication. For
example, we can implement two-factor authentication on a website that requires the
user to specify the username and password at the first step and then send a code
through an SMS which will be used to authenticate the user at the second step.

In this section, we will show how to implement two-factor authentication using SMS.

www.EBooksWorld.ir

Setting up an SMS account
The ASP.NET Core web application project templates provide a boilerplate of all
the authentication mechanisms that you wanted to implement, which is provided in
ASP.NET. It's a good choice to use the Web application project template and tweak
based on your requirement.

AuthMessageSender is the main class that implements the interfaces, IEmailSender and
ISMSSender, used to send SMS and e-mail. Specify the following code in the SendSMSAsync
method that uses the Twilio API:

 string AccountSid = "AC5ef872f6da5a21de157d80997a64bd33";
 string AuthToken = "[AuthToken]";
 var twilio = new TwilioRestClient(AccountSid, AuthToken);
 return Task.FromResult(0);

www.EBooksWorld.ir

Enabling two-factor authentication
Two-factor authentication can be enabled in an ASP.NET Core web application by
uncommenting the following code that comes with the ASP.NET Core web
application project template. You can use the same or equivalent logic when working
with an empty project template. To store your phone number where the application
will send the code to perform the second step of authentication can be done by
uncommenting the following code snippet from the Index view page of
ManageController.

Here is the code of Manage/Index.cshtml:

 @(Model.PhoneNumber ?? "None")
 @if (Model.PhoneNumber != null)
 {

 <a asp-controller="Manage"
 asp-action="AddPhoneNumber"
 class="btn-bracketed">Change
 <form asp-controller="Manage"
 asp-action="RemovePhoneNumber"
 method="post"> [<button type="submit"
 class="btn-link">Remove</button>]
 </form>
 }
 else
 {
 <a asp-controller="Manage"
 asp-action="AddPhoneNumber"
 class="btn-bracketed">Add
 }

Enable Two-factor authentication by uncommenting the following code:

 @if (Model.TwoFactor)
 {
 <form asp-controller="Manage"
 asp-action="DisableTwoFactorAuthentication"
 method="post" class="form-horizontal">
 Enabled <button type="submit" class="btn-link
 btn-bracketed">Disable</button>
 </form>
 }
 else
 {
 <form asp-controller="Manage"
 asp-action="EnableTwoFactorAuthentication"
 method="post" class="form-horizontal">
 <button type="submit" class="btn-link
 btn-bracketed">Enable</button> Disabled
 </form>
 }

Once the user is registered, you can go to the user settings and enable Two-Factor

www.EBooksWorld.ir

Authentication and specify the mobile number where the SMS code will be sent, as
shown in the following screenshot:

When you add the phone number and submit, it will send you the code over SMS,
which should be specified in the next screen to verify it:

Specify the code you receive and click on Submit. Once the code is verified, it will
be redirected to the account settings page and show the number added, as follows:

Now, when you try to log in again, it will ask you to select the Two-Factor
Authentication Provider. As in the previous example, we have only enabled 2FA with
Phone so we can select that and submit.

www.EBooksWorld.ir

www.EBooksWorld.ir

Security in an enterprise
In the preceding sections, we learnt about different authentication providers to
authenticate users and manage them using Identity membership provider. Enterprise
applications, however, consist of various APIs and those APIs should be protected
so only authenticated users can access them. OAuth is widely used to protect APIs or
resources deployed on a server and it provides them with a uniform interface by
accepting an access token from consumers and based on its validity, returns a
response. OAuth is not good for authentication as anybody having the same access
token can access resources. To overcome this scenario, OpenID Connect (OIDC) is
introduced, which adds an extension to OAuth and makes it more secure.
IdentityServer4 provides the middleware to implement these scenarios in an easy and
straightforward way, which we will discuss next.

www.EBooksWorld.ir

Getting started with IdentityServer4
IdentityServer4 is the framework and hostable component that was created by the
developers at Thinktecture, but now it is the recommended approach by Microsoft for
providing single sign-on, federation gateway, and access control features to modern
web applications and APIs using OpenID Connect and OAuth 2.0 protocols. It is
highly optimized to address the security problems and provide certain APIs to
implement your own STS (Secure Token Service) provider that generates access
tokens for your client and the resource owners who wanted to access resource
servers. It is a successor of IdentityServer3 and is completely developed on top of
.NET Core. Moreover, it is also part of .NET foundation, and you can learn more
about this at https://identityserver.github.io.

With IdentityServer4, we can implement the following features:

Feature Description

Authentication
as a Service
(AaaS)

Centralized authentication service to which all applications can
authenticate

Single Sign-
in/Sign-out

Single sign-in and sign-out feature that can span to multiple
applications

Access control
for APIs

Issue Access Token to various consumers to consume Web
APIs, which includes servers to server communication, web
applications, native mobile apps, and desktop applications

Federation
Gateway

Provides external authentication providers such as Facebook,
Google, Microsoft, Twitter, Azure AD (Active Directory), and
many more

Apart from the preceding features, we can also customize IdentityServer4 based on
our needs.

www.EBooksWorld.ir

https://identityserver.github.io

Understanding OAuth
In a typical scenario of a web application, a user navigates to the website, specifies
the username and password, which is then verified by the website by comparing the
username and password stored in a database. Once the user is authenticated, a cookie
is stored in the browser, which can be used for subsequent requests to access
protected resources.

In the modern application scenario, applications consist of several services (Web
APIs) and the number of consumers also varies. Moreover, many applications don't
have their own authentication provider and they use an external authentication
provider such as Google, Facebook, and Microsoft to authenticate users. In this case
the typical identity scenario would not work.

OAuth is an open authorization standard that provides a key known as a token to
access particular resources on websites. Tokens can be achieved by sharing a secret,
which could be a user password or an application ID, and the user can use that token
to gain access to resources (Web APIs) without revealing their secrets.

To elaborate, let's take an example of a hotel where a person needs a key to access a
particular room. That key is actually an access token in the OAuth world and it can
be used to access limited areas such as fitness clubs, rooms, and pool areas, whereas
the other sensitive areas are still not accessible:

An access token is just like a door key where any person having the
key can enter into the room without providing any sensitive
information, such as a username or password.

OAuth provides an access token that can be used to access the protected resources
(Web APIs) of any application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Actors in OAuth
OAuth contains the following actors:

Actors Description

Resource
Owner End user who accesses the resource hosted on the resource server

Client A web application or a mobile application that is authorized to
access the resource on behalf of the resource owner

Authorization
Server

Authorization server where the client application is registered and
returns the access token

Resource
Server Web API or web service that provides access to the data

User Agent Browser or any device that runs the application

Following is the logical representation of OAuth flow:

The resource owner is the end user who wanted to access the resource (API) from
the resource server. Resources hosted inside the resource server are protected
resources and the resource server needs an access token from the client accessing the

www.EBooksWorld.ir

resources. Client responsibility is to pass the access token on every request when
accessing the resource where the access token can be retrieved from an authorization
server.

There are two types of clients; confidential clients and public clients.
A web application is an example of a confidential client that
maintains the client ID and client secret on the server. Whereas
public clients are native mobile applications that install on each
device, or a user agent-based application that uses JavaScript to
access resources and stores client ID, and client secrets in the
JavaScript itself.

www.EBooksWorld.ir

Flows of OAuth 2.0
OAuth 2.0 provides four types of flows:

Client credentials
Implicit
Authorization code
Resource owner password credentials

www.EBooksWorld.ir

Client credentials flow
This type of flow is used for server-to-server communication. It does not require any
user interaction and only requires the client credentials such as client ID and client
secret to get the access token:

1. Client sends the client credentials, namely client ID and client secret, to the
authorization server.

2. Authorization verifies and returns the access token.
3. Client then passes the access token to the resource server to access the API.

Client credentials should not be used with the JavaScript or native mobile
applications as, with these, both the client ID and client secret residing on the client
side itself can easily be forged. In server-to-server communication, we can store the
client ID and client secret on some safe storage and they can only be accessible by
the application running on the server.

www.EBooksWorld.ir

Implicit flow
Unlike client credentials flow, which is only recommended to be used in server-to-
server communication, implicit flow is a highly secured flow that can be used for
public clients. Implicit flow does not provide client authentication, as public clients
cannot store the client ID and client secret on the public client itself:

1. Process starts when the client (for example, MVC app) redirects the resource
owner's user agent (browser) to the authorization endpoint.

2. The client passes its client credentials (client ID and secret), scope, state, and
redirection URI to the authorization server.

3. If the client is authorized, the authorization server will ask the resource owner
to enter the resource owner credentials.

4. Authorization authenticates the resource owner via the user agent and
establishes whether the resource owner grants or denies access to the client.

5. If the resource owner grants the permission to the client, the authorization server
redirects the user back to the client through the redirection URI provided earlier
and passes the access token in a URI fragment.

6. The user agent then makes the request to the web-hosted client resource without
passing the fragment information.

7. Once the request is received by the web-hosted client resource, it will return the
web page, typically an HTML document containing an embedded JavaScript that
runs on the user agent, to extract the access token from the URI fragment.

8. Once the access token is extracted, it can be used for subsequent requests.

With this type of flow, the token is known by the user agent and the user agent can
pass the token directly to the resource server to access the resource.

www.EBooksWorld.ir

Authorization code flow
Authorization code flow is optimized for confidential clients, but it can be used for
public clients as well. It is used to obtain access tokens and refresh tokens:

1. The process starts when the client (for example, the MVC app) redirects the
user agent (browser) to the authorization server.

2. The client passes its client credentials (client ID and secret), scope, state, and
redirection URI to the authorization server.

3. If the client is authorized, the authorization server will ask the resource owner
to enter the resource owner credentials.

4. The authorization server takes the resource owner credentials and authenticates
it.

5. If the resource owner is authenticated, the authorization server asks to either
grant or deny permissions access to the client.

6. If the resource owner grants the permission to the client, the authorization server
redirects the user back to the client through the redirection URI provided earlier.

7. The user agent then passes the authorization code followed with the redirection
URI to retrieve the access token.

8. If the authorization server verifies the authorization code, it will return the
access token to the redirection URI provided earlier.

9. This access token can be used by the application to authorize users on every
subsequent request.

With this type of flow, access tokens are not known by the user agent and are only
used by the client application. The user agent passes the authorization code to the
client and the client uses the access token to access the resource server.

www.EBooksWorld.ir

Resource owner password credentials
flow
In resource owner password credentials flow, the client authenticates the user by
taking the resource owner's username and password through a login interface. It can
be used for both access tokens, and refresh tokens and it involves client
authentication:

1. Resource owner enters the username and password in the client's app login
screen.

2. Username and password are passed to the authorization server to authenticate
the user.

3. If the user is authenticated, the authorization server returns the access token.
4. This access token can be used by the client to access authorized resources.

This type of flow is not recommended to be used for non-trusted sites, as user
credentials are exposed to the client application.

www.EBooksWorld.ir

Understanding OpenID Connect
OpenID Connect is a layer on top of OAuth introduced in 2015. The success of
OpenID Connect is that it returns the simple JSON-based identity tokens (JWT)
{pronounced as Jawt} signed by the OpenID provider (OP) through OAuth protocol
to suit web, mobile, and browser-based applications. In comparison to OAuth, Open
ID Connect actually tells about the user's identity information and instead of getting
the access details, it tells exactly about the user accessing a resource. Consider the
following diagram:

We can relate an Identity token to a driving license that contains driver information
such as license number, license expiry, first name, last name, type of vehicle
permitted, and so on.

The Identity token is encoded into the base 64 URL-safe string that contains
information such as subject (sub), issuing authority (iss), audience (aud), and more. It
may also contain some extra information about the user or custom claims in a set of
scopes.

When the user is authenticated, the Identity token is returned to the client application
in a secure manner and it can be used to retrieve the access token. The authorization
server reads this identity token and verifies whether the user is valid to access the
authorized resource and generate the access token.

Here is the sample JWT token representation:

 {
 "typ": "JWT",
 "alg": "H5256"
 },
 {
 "sub": "5c610ea3-2e19-4f1a-9c42-19f03539bad7",
 "aud":"ea",
 "iss":"https://ea/identity",
 "exp": 1554422985,
 "auth_time": 1554422985
 "given_name":"John",

www.EBooksWorld.ir

 "family_Name":"Scott",
 "scope":["read","write"]
 }

It is not a good practice to store all the user claim information in the
Identity Token, as it increases its size. The best way is to store some
primary information of the user and use the access token to get the
user info from a database by calling a protected Web API and passing
the access token to access it.

You can learn more about OpenID Connect specification at http://openid.net/specs/openid-conn
ect-core-1_0.html.

www.EBooksWorld.ir

http://openid.net/specs/openid-connect-core-1_0.html

OpenID Connect flows
OpenID Connect provides three types of flows:

Authorization code
Implicit
Hybrid

www.EBooksWorld.ir

Authorization code flow
This is an extension of the authorization code flow, as shown previously in the OAuth
2.0 section. It is commonly used with web applications and native mobile
applications. In this flow, the request is made to the OP (OpenID provider) to
authenticate users and user consent, and client request the Identity token from the
backend channel. With this type of flow, tokens are not exposed to the browser.

www.EBooksWorld.ir

Implicit flow
This is highly used with JavaScript-based applications that do not have any server-
side processing for communicating to the resources. In this flow, the Identity token is
directly returned to the client from the OP.

www.EBooksWorld.ir

Hybrid flow
This is the combination of authorization code and implicit flow, in which both
frontend and server-side portions can access the Identity token from the OP.

www.EBooksWorld.ir

Claims and scopes
Claims represent a single piece of user information, for example, given_name and
family_name can be represented as user claims, whereas scopes are the collection of
claims that represent a single piece of information.

There are two types of scopes, namely Identity scopes and Resource scopes.

Identity scopes: Identity scopes represent the claims related to identity.

For example, identity scopes can contain the set of claims that
represents user basic information:

User scopes: It may contain claims such as: given_name, family_name,
first_name, middle_name, last_name, birthdate, gender
Phone scopes: It may contain claims such as: phone_number,
phone_number_verified
Resource scopes: Resource scopes are related to the Web APIs, for example, a
scope named subscription can represent the Subscription API that may contain
methods such as SubscribeUser, UnSubscribeUser, and so on.

www.EBooksWorld.ir

Endpoints
IdentityServer4 provides five types of endpoints to retrieve tokens.

www.EBooksWorld.ir

Discovery endpoint
Used to retrieve metadata about IdentityServer, such as issuer name, supported
scopes, key material, and so on.

www.EBooksWorld.ir

Authorize endpoint
Used to retrieve tokens or authorization code via a browser and it involves user
authentication.

www.EBooksWorld.ir

Token endpoint
Used to request an access token by passing the client ID and secret.

www.EBooksWorld.ir

UserInfo endpoint
Used to retrieve the user's identity information. It requires the valid access token and
returns the user claims.

To learn more about endpoints, please refer to http://docs.identityserver.io/.

www.EBooksWorld.ir

http://docs.identityserver.io/

Developing a Centralized Authorization
System using IdentityServer4
An enterprise consists of various applications that are running to serve specific
needs. For example, there are web applications to which users interact with directly,
Web APIs to which web applications, native mobile applications, desktop
applications, or some server level applications communicate to access data, and so
on. Security plays an important role to protect resources. One option is to implement
security for each application and use simple Identity to authenticate users. With
enterprise scenarios, keeping authentication separate to each application is a tedious
process and centralizing it brings more benefits. Here, IdentityServer4 can be used to
implement a Centralized Authentication System using OpenID Connect protocol:

The preceding diagram shows various applications in an enterprise. There are Web
APIs used by web applications and browser-based applications using JavaScript,
native mobile applications, and Windows services that are using the Web API to
access particular data, and so on.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating a Centralized Authentication
Service/Authorization Server
To develop a Centralized Authentication Service, we will create an ASP.NET Core
project. You can either create an empty project where you have to do everything from
scratch or select the Web Application project that provides all the boilerplate code
available, which can be further modified based on your requirement. The Web
Application project also adds some extra code that you may not need in your
particular business scenario. Therefore, choose the right project that suits your needs.
We will go with the empty project.

www.EBooksWorld.ir

Setting up IdentityServer4
Once the project is created, add the IdentityServer4 package in your authorization
server through NuGet:

In the ConfigureServices method of the Startup class, we have to first add the Identity
Server by calling the AddIdentityServer method as follows:

 public void ConfigureServices(IServiceCollection services)
 {
 services.AddIdentityServer();
 }

Next, we will use the Identity Server by calling the UseIdentityServer method in the
Configure method in the Startup class as follows:

 public void Configure(IApplicationBuilder app,
 IHostingEnvironment env, ILoggerFactory loggerFactory)
 {
 app.UseIdentityServer();
 }

www.EBooksWorld.ir

Defining scopes, clients and users
We can define a new class in the same project and name it Config class, and create test
users, scopes, and clients to test our flow.

Scopes are the collection of claims and are mandatory to be defined, so the claims
can be sent out in the response from authorization servers as part of a token. Claims
are heavily used when dealing with the authorization scenario.

Scopes are modelled as resources and divided into two types, namely Identity and
API. Identity scopes represent any claim, such as role, name, email, or custom claim
values, whereas API scopes are used to access the protected resources, particularly
APIs.

Identity scopes can be defined as follows in the Config class:

 public static IEnumerable<IdentityResource> GetIdentityScopes()
 {
 return new List<IdentityResource>
 {
 new IdentityResources.OpenId(),
 new IdentityResources.Profile(),
 new IdentityResources.Email(),
 new IdentityResource {
 Name = "role",
 }
 };
 }

Whereas the API scopes can be defined as follows:

 public static IEnumerable<ApiResource> GetApiScopes()
 {
 return new List<ApiResource>
 {
 new ApiResource {
 Name = "vendorManagementAPI",
 DisplayName = "Vendor API",
 Description = "Vendor API scope",
 }
 };
 }

Next, we will define the clients. When setting up the authorization server, we need to
specify the clients so that the authorization can register them and return them the token
on successful authentication. Once the client is defined, the client can communicate to
the authorization and do the authentication and request tokens.

Here is the code snippet to define the client:

www.EBooksWorld.ir

 public static IEnumerable<Client> GetClients()
 {
 return new List<Client>
 {
 new Client
 {
 ClientId = "client",
 ClientName ="MVC Client",
 AllowedGrantTypes= GrantTypes.Implicit,
 RedirectUris = {
 "http://localhost:5002/signin-oidc" },
 PostLogoutRedirectUris= {"http://localhost:5002"},
 Enabled=true,
 AccessTokenType= AccessTokenType.Jwt,
 AllowedScopes =new List<string>
 {
 StandardScopes.OpenId,
 StandardScopes.Profile,
 StandardScopes.Email,
 StandardScopes.OfflineAccess,
 "role"
 },
 }
 };
 }

ClientID is the unique ID of the client, whereas ClientSecrets are credentials to access
the token endpoint. AllowedScopes are used to enroll the scopes eligible for the client. If
the particular scope is not defined for the client's allowed scopes, the claims
associated with that scope will not be enlisted as part of the token returned by the
authorization server.

Lastly, we will define users. To understand the concepts, we will take a simple
example and use test users that contain some hard-coded values.

To add the users, add the GetUsers method as follows:

 public static List<TestUser> GetUsers()
 {
 return new List<TestUser>
 {
 new TestUser
 {
 SubjectId = "1",
 Username = "scott",
 Password = "password",
 Claims = new List<Claim>
 {
 new Claim("name", "scott"),
 new Claim("given_name","scott edward"),
 new Claim("family_name", "edward"),
 new Claim("website", "www.scottdeveloper.com"),
 new Claim("email", "scott@mailxyz.com"),
 new Claim("role","admin"),

 },
 },
 new TestUser
 {
 SubjectId = "2",

www.EBooksWorld.ir

 Username = "richard",
 Password = "password",
 Claims = new List<Claim> {
 new Claim("role","user")
 }

 }
 };
 }

In the preceding code, we added two test users with claims. The user will be
authenticated by the authorization server through the username and password
specified, and the claims defined for each user will become part of the token if they
are part of the allowed scopes.

Finally, we will modify the AddIdentityServer and add Scopes (Identity resources and
API resources), Clients, and Users as follows:

 services.AddIdentityServer()
 .AddInMemoryIdentityResources(Config.GetIdentityScopes())
 .AddInMemoryApiResources(Config.GetApiScopes())
 .AddInMemoryClients(Config.GetClients());
 .AddTestUsers(Config.GetUsers())
 .SetTemporarySigningCredential();

The default port to run the web application using dotnet run is 5000, and this can also
be configured by calling UseUrls when defining the WebHostBuilder instance in your
main Program class.

You can either run the application using the IISExpress option or through the .NET
CLI command (dotnet run). For this section, we will run the authorization server
through the dotnet run command. You can execute the following command to run the
server:

dotnet run

Make sure to execute this command on the path where your project file resides.

Once the server is started, navigate to http://localhost:5000/.well-known/openid-
configuration and you will see the discovery document.

www.EBooksWorld.ir

Adding UI to enable authentication
using OpenID Connect
Next, we will add UI so that users can enter their username and password to
authenticate on Centralized Authentication Servers. IdentityServer4 provides
complete support to use OpenID Connect protocol and it also provides a sample UI
that contains MVC controllers, views, and boilerplate code to quick-start implement
the authentication scenario.

In this section, we will use the quick-start UI repository and this can be further
customized based on your requirement. The files can be downloaded from https://github.c
om/IdentityServer/IdentityServer4.Quickstart.UI or you can also run the PowerShell command.
You can run the following command from the CAS application path:

iex ((New-Object
System.Net.WebClient).DownloadString('https://raw.githubusercontent.com/IdentityServer/IdentityServer4.Quickstart.UI/release/get.ps1'))

Once the files are downloaded, add the MVC and StaticFiles middleware in the Startup
class as follows:

 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();

Now, run the authorization server and access http://localhost:5000.

The following page will be displayed:

www.EBooksWorld.ir

https://github.com/IdentityServer/IdentityServer4.Quickstart.UI

www.EBooksWorld.ir

Creating an MVC web application
project
In this section, we will create a simple MVC web application project that uses the
authorization server to authenticate users and protect some action methods on
controllers to see how authorization works. You can create an empty web application
project and enable MVC by calling AddMvc in the ConfigureServices method and
UseMvcDefaultRoute in the Configure method in the Startup class.

www.EBooksWorld.ir

Adding OIDC and cookie middleware
in HTTP pipeline
To use OpenID Connect Provider (OP), we need to add the middleware to our
application's HTTP pipeline, so that unauthorized requests can be forwarded to the
authorization server for user authentication.

Add cookie middleware and OIDC middleware as follows:

 app.UseCookieAuthentication(new CookieAuthenticationOptions
 {
 AuthenticationScheme = "Cookies"
 });

 app.UseOpenIdConnectAuthentication(
 new OpenIdConnectOptions
 {
 AuthenticationScheme = "oidc",
 ClientId = "client",
 Authority = "http://localhost:5000",
 RequireHttpsMetadata = false,
 SignInScheme = "Cookies",
 Scope = {"openid", "profile", "roles" },
 SaveTokens = true
 });

Both the middlewares should be added before the MVC middleware.

OpenID Connect contains some properties, such as AuthentitcationScheme, which
represent the name of the middleware and clientId to represent the ID of the client,
and it has to be matched with the one defined in the authorization server. The
authority that represents the authorization server URL, SignInScheme holds the
authentication scheme of the local middleware used to store the token once returned
from the authorization server. In our case, it's cookie middleware. Scope is the
important part that represents what scopes are allowed or contained in the token. In
our case, we have defined openid, profile, and roles, which means the client ID, name,
website and role, and others will be available in the token. For example, if we only
specify the openid and profile, the roles will not be contained in the token and if you
have used roles to authorize controllers or the action method that will not work, it
will navigate you to the access denied page on authorization. Setting SaveTokens to True
actually saves the tokens in the cookie. Tokens are stored inside the properties
section of the cookie.

The easiest way to access them is through the extension methods as follows:

www.EBooksWorld.ir

 <p>
 @await ViewContext.HttpContext.Authentication
 .GetTokenAsync("access_token")
 </p>

 Or for Refresh token call this

 <p>
 @await ViewContext.HttpContext.Authentication
 .GetTokenAsync("access_token")
 </p>

To study more about what claims are part of each scope, please go through this link htt
ps://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims.

www.EBooksWorld.ir

https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims

Enabling MVC and controller
Enable MVC in your MVC web application project, as done in the authorization
server project and add Home controller. Here is the code of HomeController:

 [Authorize]
 public IActionResult Index()
 {
 return View();
 }

Configure MVC web application on port 5002.

You can configure the MVC web application on port 5002 by updating the
launchsettings.json file and adding the UseUri in the WebHostBuilder object in the Program
class.

Update the port to 5002 in the following entry:

 "WebApp": {
 "commandName": "Project",
 "launchBrowser": true,
 "launchUrl": "http://localhost:5002",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }

Here is the code of the Program class:

 public static void Main(string[] args)
 {
 var host = new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseUrls("http://localhost:5002")
 .UseStartup<Startup>()
 .Build();

 host.Run();
 }
 }
 }

Now build and run your web application through dotnet run. Once both the
authorization server and MVC web application have started, and when you navigate
to the MVC app at http://localhost:5002, you will be redirected to the authorization
server login page:

www.EBooksWorld.ir

Log in with any of the users specified previously in the authorization server
implementation and the authorization will show the consent screen, which confirms if
the user allows the client application to access its scope claims:

If you allow, it will send the token back to the MVC web application and the cookie

www.EBooksWorld.ir

middleware will store that in the browser's cookie store.

Now, let's modify our HomeController and add another method that we want to be
accessible by the user having an admin role. Add the ManageSite method and its
corresponding view in your MVC web application project:

 [Authorize(Roles = "admin")]
 public IActionResult ManageSite()
 {
 return View();
 }

Now, if you run and access with scott, the page will be accessible. However, the
other user richard does not have any admin role assigned, and in this case it will be
redirected to the access denied page.

www.EBooksWorld.ir

Adding a Web API
In the previous section, we implemented CAS and added an MVC web application.
We used the implicit flow that returns the token to the client through the browser,
which can be used by the client for further subsequent requests. However, APIs
exposing the tokens over a browser channel is not a recommended approach, and
there should be a mechanism that uses the client ID and secret to retrieve the access
token and then use it to invoke secure methods.

IdentityServer4 introduces a new flow called Hybrid Flow, which is a combination
of both OpenID and OAuth2.0 protocols. In this flow, the Identity token is transmitted
via the browser channel on successful user authentication, whereas the access token
is retrieved by the client through a backend channel.

In this section, we will modify the authorization server's grant type to
HybridAndClientCredentials and add the client secret property. This client secret property
will be used by the client, which can be used for subsequent API requests.

Here is the updated GetClients method, in which we have added the grant type to
HybridAndClientCredentials for API clients and added two more properties, the client
secret that denotes a password user by the client to retrieve the access token and a
new scope of vendor API that we will use later in this section:

 public static IEnumerable<Client> GetClients()
 {
 return new List<Client>
 {
 new Client
 {
 ClientId = "client",
 ClientName ="MVC Client",
 AllowedGrantTypes= GrantTypes.Implicit,
 RedirectUris = { "http://localhost:5002/signin-oidc"
 },
 PostLogoutRedirectUris= {"http://localhost:5002"},
 Enabled=true,
 AccessTokenType= AccessTokenType.Jwt,
 AllowedScopes =new List<string>
 {
 StandardScopes.OpenId,
 StandardScopes.Profile,
 StandardScopes.Email,
 StandardScopes.OfflineAccess,
 "role"
 }
 },

 new Client
 {
 ClientId = "clientApi",

www.EBooksWorld.ir

 ClientName ="MVC Client API",
 ClientSecrets= { new Secret("secretkey".Sha256())},
 AllowedGrantTypes = GrantTypes.
 HybridAndClientCredentials,

 RedirectUris = {
 "http://localhost:5003/signin-oidc" },
 PostLogoutRedirectUris= {"http://localhost:5003"},
 Enabled=true,
 AccessTokenType= AccessTokenType.Jwt,
 AllowedScopes =new List<string>
 {
 StandardScopes.OpenId,
 StandardScopes.Profile,
 StandardScopes.Roles,
 StandardScopes.OfflineAccess,
 "vendorManagementAPI"
 }
 }
 };
 }

Once this is set up, add a new Web API project and create the HomeController (MVC
controller) and VendorManagementController (API controller). Here is the sample
VendorManagementController that contains some methods to get the list of all vendors, get
vendor by ID, create vendor, update, and delete vendor:

 [Route("api/[controller]")]
 public class VendorManagementController : Controller
 {
 [HttpGet]
 public IEnumerable<Vendor> GetVendors(){

 //Returning static values
 return new List<Vendor>
 {
 new Vendor { VendorID=1, Name="Bentley",
 Email="john@bent.com", PhoneNo="+12012020030",
 Website="www.bentley.com" },
 new Vendor { VendorID=2, Name="Mercedez",
 Email="william@benz.com", PhoneNo="+1201203300",
 Website="www.mercedez.com" },
 new Vendor { VendorID=3, Name="BMW",
 Email="scott@bmw.com", PhoneNo="+12014500030",
 Website="www.bmw.com" },
 new Vendor { VendorID=4, Name="Lamborghini",
 Email="tyson@lamborghini.com",
 PhoneNo="+12022220030",
 Website="www.lamborghini.com"
 },
 new Vendor { VendorID=5, Name="Nissan",
 Email="george@nissan.com", PhoneNo="+13312020030",
 Website="www.nissan.com" }
 };

 }

 [HttpGet("{id}")]
 public Vendor GetVendor(int id){ }

 [HttpPost]
 public int CreateVendor(Vendor vendor){return -1;}

www.EBooksWorld.ir

 [HttpPut]
 public int UpdateVendor(Vendor vendor){return -1;}

 [HttpDelete]
 public int DeleteVendor(int vendorID){return -1;}
 }

The HomeController is as follows. There are two methods, Index, which will display the
page, and the CallAPI method which calls the VendorManagementController GetVendors
method:

 public class HomeController : Controller
 {

 [Authorize]
 // GET: /<controller>/
 public async Task<IActionResult> Index()

 {
 return View();
 }

 [Authorize]
 public async Task<IActionResult> CallApi()
 {
 var accessToken = await HttpContext.Authentication
 .GetTokenAsync("access_token");

 var client = new HttpClient();
 client.SetBearerToken(accessToken);
 var content = await client.GetStringAsync(
 "http://localhost:5003/api/vendormanagement");

 ViewBag.Json = content;
 return View();
 }
 }

Once we run the application, it will ask for the username and password and show the
consent screen on successful authentication, as shown in the following screenshot:

www.EBooksWorld.ir

If you notice, on the consent screen, it asks you to allow offline access and Vendor
API, which was added as the scope while defining the client on the authorization
server. Finally, when we call http://localhost:5003/Home/CallAPI it will get the access
token and access the VendorManagementController that returns the vendor list.

www.EBooksWorld.ir

Authorization
As authentication is all about knowing the identity of the user and validating its
credentials, authorization can be implemented to know what the user is authorized to
do after authentication. In ASP.NET Core applications, authorization can be
implemented using declarative and imperative methods.

www.EBooksWorld.ir

Declarative authorization techniques
ASP.NET Core provides a simple declarative role and policy-based model where
authorization can be defined using different criteria and gets evaluated based on the
user claims.

Declarative authorization can be defined using attributes. Attributes such as
AuthorizeAttribute and AllowAnonymous can be annotated on controllers and actions and
validated when they are accessed by the security framework.

www.EBooksWorld.ir

Basic authorization
Here is the example of annotating attributes on EmployeeController:

 [Authorize]
 [Route("api/[controller]")]
 public class EmployeeController : Controller
 {
 [HttpGet]
 public List<Employee> Get()
 {
 return GetEmployees();
 }

 [HttpPost]
 public bool Create(Employee employee)
 {
 return CreateEmployee(employee);
 }

 [HttpDelete]
 public bool Delete(int id)
 {
 return DeleteEmployee(id);
 }

 [HttpPut]
 public bool Update(Employee employee)
 {
 return UpdateEmployee(employee);
 }
 }
 }

Annotating the authorize attribute on the Controller level will protect all the methods
defined within it.

Alternatively, we can also apply the authorize attribute on the action level, as
follows. In the following example, we have added the authorize attribute on Create,
Update, and Delete operations:

 [Route("api/[controller]")]
 public class EmployeeController : Controller
 {
 [HttpGet]
 public List<Employee> Get()
 {
 return GetEmployees();
 }

 [Authorize]
 [HttpPost]
 public bool Create(Employee employee)
 {
 return CreateEmployee(employee);
 }

www.EBooksWorld.ir

 [Authorize]
 [HttpDelete]
 public bool Delete(int id)
 {
 return DeleteEmployee(id);
 }

 [Authorize]
 [HttpPut]
 public bool Update(Employee employee)
 {
 return UpdateEmployee(employee);
 }
 }
 }

Action level attributes override the controller attribute. For example, if our
EmployeeController is protected by annotating AuthorizeAttribute, we can make particular
actions non-protected by using AllowAnonymousAttribute, as follows:

 [Authorize]
 [Route("api/[controller]")]
 public class EmployeeController : Controller
 {
 [AllowAnonymous]
 [HttpGet]
 public List<Employee> Get()
 {
 return GetEmployees();
 }

 [HttpPost]
 public bool Create(Employee employee)
 {
 return CreateEmployee(employee);
 }

 [HttpDelete]
 public bool Delete(int id)
 {
 return DeleteEmployee(id);
 }

 [HttpPut]
 public bool Update(Employee employee)
 {
 return UpdateEmployee(employee);
 }
 }
 }

www.EBooksWorld.ir

Authorization filters
We can also filter using Authentication schemes, roles, and policies. AuthorizeAttribute
provides some filters, such as ActiveAuthenticationSchemes, Roles, and Policy to filter
authorization.

www.EBooksWorld.ir

Filtering based on authentication
schemes
Specifying the AuthenticationSchemes on the following controller will only allow users
who are authenticated with the cookies authentication scheme:

 [Route("api/[controller]")]
 [Authorize(ActiveAuthenticationSchemes ="Cookies")]
 public class EmployeeController : Controller
 {
 }

www.EBooksWorld.ir

Filtering based on authorization
Here is how we can use roles. EmployeeController will only be accessible to users that
have a claim type role, such as Admin or Manager:

 [Route("api/[controller]")]
 [Authorize(Roles = "Admin, Manager")]
 public class EmployeeController : Controller
 {
 }

www.EBooksWorld.ir

Filtering based on policy
Policy-based authorization is a little different than the first two. In this first step, you
have to define a policy and then use it with the AuthorizationAttribute. Policies can be
configured in the ConfigureServices method in the Startup class, and they can be used to
define any criteria on user claims:

 services.AddAuthorization(options =>
 {
 options.AddPolicy("RequireManagerRole", policy =>
 policy.RequireRole("Manager"));
 });

And we can use the RequireManagerRole policy as follows:

 [Authorize(Policy ="RequireManagerRole")]
 [HttpGet]
 public List<Employee> Get()
 {
 return GetEmployees();
 }

Another example is by reading user claims. For example, if we only allow users to
access the EmployeeController, if an AccessAPI claim is present, it can be implemented as
follows:

 services.AddAuthorization(options =>
 {
 options.AddPolicy("RequireAPIAccess", policy =>
 policy.RequireClaim("AccessAPI"));
 });

Controller can be annotated as follows:

 [Route("api/[controller]")]
 [Authorize(Policy ="RequireAPIAccess")]
 public class EmployeeController : Controller
 {
 }

Multiple claims or roles can be defined as comma-separated. For example, the
following example requires access to the EmployeeController if the user has firstname and
lastname claims present:

 services.AddAuthorization(options =>
 {
 options.AddPolicy("RequireProfile", policy =>
 policy.RequireClaim("firstname", "lastname"));
 });

www.EBooksWorld.ir

www.EBooksWorld.ir

Custom policies
Custom requirements can also be implemented to handle any requirement. We can
define custom requirements by implementing the IAuthorizationRequirement interface.
Here is our custom requirement that only allows users if they are based in GCC
countries, namely Saudi Arabia, Kuwait, United Arab Emirates, Qatar, Bahrain, and
Oman:

 public class BaseLocationRequirement :
 Microsoft.AspNetCore.Authorization.IAuthorizationRequirement
 {
 public BaseLocationRequirement(List<string> locations)
 {
 BaseLocation = locations;
 }

 public List<string> BaseLocation { get; set; }
 }

Once the requirement is set up, we need to define the handler that evaluates the
requirement:

 public class BaseLocationHandler : Microsoft.AspNetCore
 .Authorization.AuthorizationHandler<BaseLocationRequirement>
 {
 protected override Task
 HandleRequirementAsync(AuthorizationHandlerContext
 context, BaseLocationRequirement requirement)
 {
 if (!context.User.HasClaim(c => c.Type ==
 ClaimTypes.Country))
 {
 return Task.CompletedTask;
 }

 string country = context.User.FindFirst(
 c => c.Type == ClaimTypes.Country).Value;

 List<string> gccCountries = requirement.BaseLocation;

 if (gccCountries.Contains(country))
 {
 context.Succeed(requirement);
 }
 return Task.CompletedTask;

 }
 }

The preceding code implements the HandleRequirementAsync method that evaluates the
requirement and if the country lies within the GCC countries, the requirement will be
succeeded.

This new custom requirement can be added in the ConfigureServices method as follows

www.EBooksWorld.ir

and can be used in the AuthorizeAttribute in controller or action level:

 services.AddAuthorization(options =>
 options.AddPolicy("AnyGCCCountry",
 policy => policy.Requirements.Add(new
 BaseLocationRequirement(new List<string> {
 "Saudi Arabia", "Kuwait", "United Arab Emirates",
 "Qatar", "Bahrain", "Oman" }))));

Finally register the BaseLocationHandler with AuthorizationHandler using Dependency
Injection (DI) .

www.EBooksWorld.ir

Imperative authorization techniques
Declarative authorization is executed before the controller or action method is
executed, whereas sometimes it is needed to load the controllers or actions before
the authorization is executed, and this can be done using imperative authorization or
resource-based authorization. Let's take an example of university courses, where we
need to show the course page to only those students who have paid their course fees.

To implement this authorization, we first have to add the overloaded constructor in
our Course controller, as follows:

 public class CourseController : Controller
 {
 IAuthorizationService _authorizationService = null;
 public CourseController(IAuthorizationService
 authorizationService)
 {
 _authorizationService = authorizationService;
 }

Here is the action method that the user will invoke to load the course page:

 public async Task<IActionResult> ViewCourse(string courseCode)
 {
 Course course = GetCourseObject(courseCode);
 if(await _authorizationService
 .AuthorizeAsync(HttpContext.User,
 course, "PaidCourse"))
 {
 return View(course);
 }
 else
 {
 return new ChallengeResult();
 }
 }

In the preceding code snippet, we have called the AuthorizeAsync method and passed
User, course object, and the policy name that can be used to validate if the user has
rights to view the course page.

Similarly, like BaseLocation, we can define the requirement for the course and define
the CoursePaidHandler to evaluate the authorization. The course object that we have
passed through the AuthorizeAsync method can be retrieved using the context.Resource
object and its IsPaid property denotes whether the student has paid the course fees or
not:

 public class CoursePaidRequirement : Microsoft.AspNetCore
 .Authorization.IAuthorizationRequirement
 {

www.EBooksWorld.ir

 public CoursePaidRequirement()
 {
 }
 public class CoursePaidHandler : Microsoft.AspNetCore
 .Authorization.AuthorizationHandler<CoursePaidRequirement>
 {
 protected override Task HandleRequirementAsync(
 Microsoft.AspNetCore.Authorization
 .AuthorizationHandlerContext context,
 CoursePaidRequirement requirement)
 {
 Course course=(Course) context.Resource;
 if (course.IsPaid)
 {
 context.Succeed(requirement);
 }

 return Task.CompletedTask;
 }
 }
 }

Finally, we will add the following lines in our Startup class to register the policy and
CoursePaidHandler:

 services.AddAuthorization(options =>options.AddPolicy(
 "CoursePaid", policy => policy.Requirements.Add(new
 CoursePaidRequirement())));
 services.AddSingleton<IAuthorizationHandler,
 CoursePaidHandler>();

Likewise AuthorizationAsync on the controller level, we can also use it in the view to
load/unload a particular section of the page, and it can be specified as follows:

 @model Models.Course
 @if (await AuthorizationService.AuthorizeAsync(User, Model,
 "CoursePaid"))
 {
 <p>Course fees paid? @Model.IsPaid</p>
 }

www.EBooksWorld.ir

Safe storage
Before the release of .NET Core, developers used to store keys, connection strings,
and other secrets in application configuration files. .NET Core provides a wide
range of storage options to store this information and developers are only restricted
to storing this information in web.config files, and now the information can be stored in
JSON-based appsettings.json files, XML-based configuration files, or environment
variables, and so on. Sometimes, when there is a big team and multiple developers
are working on the same project, we don't want those keys to be shared among them.
A good example is an e-mail gateway where developers use a third-party gateway
such as Google, Hotmail, or Yahoo and use their login credentials to test it out.

.NET Core provides a Secret Manager Tool to store application secrets. It protects
the values by storing them in a separate JSON file on the following path, which
differs for each OS (operating system).

Windows: %APPDATA%\microsoft\UserSecrets\<userSecretsId>\secrets.json

Linux: ~/.microsoft/usersecrets/<userSecretsId>/secrets.json

Mac: ~/.microsoft/usersecrets/<userSecretsId>/secrets.json

Secret Manager Tool can be used by adding the following NuGet package:

Microsoft.Extensions.SecretManager.Tools

It also requires the userSecretsId, which should be unique for each project running on
that machine. The userSecretsId can be added as follows:

 "userSecretsId": "aspnet-UserSecretSample-c5c2838b-7727
 -4242-9973-d2b79c40e636",

Finally, we can set up a builder and add user secrets by calling the AddUserSecrets
method as follows:

 public Startup(IHostingEnvironment env)
 {
 var builder = new ConfigurationBuilder();

 if (env.IsDevelopment())
 {
 builder.AddUserSecrets();
 }
 }
 public IConfigurationRoot Configuration { get; }

www.EBooksWorld.ir

This also requires the following package to be added to your project:

"Microsoft.Extensions.Configuration.UserSecrets": "1.0.0"

www.EBooksWorld.ir

Storing and retrieving safe storage
values
Safe storage values can be stored by calling a .NET CLI command. The following
command adds the complex password to the key password:

dotnet user-secrets set password P@ssW0rd

You should run the preceding command from the root of your project.

We can access the password by passing the key name of the value stored through the
Configuration object:

Var password = Configuration["password"];

www.EBooksWorld.ir

Summary
In this chapter, we learnt about both the ASP.NET Core Identity and IdentityServer4
security frameworks to handle both easy and complex types of scenarios, how to
customize and extend the existing Identity model using Entity Framework Core, and
used middleware to authenticate users using Facebook, 2FA, and OpenID Connect.
Moreover, we developed a basic Central Authentication System (CAS) that
provides multiple applications to connect using the same protocol and enables single
sign-on. We also learnt different techniques of securing Web API and MVC
controllers and actions through attributes and imperatively by writing custom code.
Finally, we discussed how to store application secrets using user secrets.

www.EBooksWorld.ir

Modern AI Offerings by Microsoft
This is the last chapter of our book, and is probably quite interesting. We will try to
cover many topics in this chapter, so as to keep ourselves updated and aware of the
most recent trends in the IT world.

We'll start by covering some technology topics that are not only the basis for the
modern cloud infrastructure services such as IaaS and PaaS, but have also simplified
the management, development, and testability of software applications. We will then
look into some software development practices which have become common due to
these modern technologies.

Only time can tell which trends will truly take off, as in the software industry, things
can change rather quickly. Here, we talk about the current hot trends in relation to the
.NET Core platform. This chapter gives a high-level view of some of the recent
market trends and practices and how they can be achieved with .NET Core and
Microsoft's tools and technologies.

We will cover various topics in this chapter, which include the following:

Virtual machine and containerization
DevOps practices
Introduction to CI and CD in the cloud
Multi-container sample microservice in Azure using Docker
Big Data and Microsoft 
Introduction to Business Intelligence (BI) and Big Data
Introduction to Artificial Intelligence (AI) and machine learning

www.EBooksWorld.ir

Virtual machines and containerization
Let's start first with the topic of virtual machines and containers; it's been the primary
infrastructure technology since the advent of cloud computing. These are the enablers
in the cloud for the infrastructure as service phenomena. Since these technologies are,
basically, packed binary images, one can copy, paste, and replicate them anywhere,
any number of times. These images represent a computing machine, an OS image
which can be virtually executed, say, inside another super host, which is capable of
virtually running, a number of machines and operating systems inside it.

www.EBooksWorld.ir

Virtual machine
A virtual machine enables you to simulate a computing hardware in the form of a
software.

A virtual machine is usually not just geared towards simulating a particular hardware
with a particular software, but it commonly imitates a type of processor and the
relevant execution of instructions.

www.EBooksWorld.ir

Simulation
A simulation is a system that behaves (internally and externally) similar to some
other original system and is implemented in a completely different way from the other
system that it is simulating. The underlying mechanisms used to recreate the scenario
may be the same or different from the original one.

It can also be said that a simulator is a device that imitates the operation of another
device, as it basically models the underlying states of the target system to the best
possible way it can simulate.

www.EBooksWorld.ir

Emulation
Emulation is, generally, using a software to provide a different execution
environment or architecture. Emulation mimics the externally observable behavior to
match the target. The internal state of the emulation mechanism does not necessarily
reflect the internal state of the target which it is emulating. Emulators emulate
hardware without relying on the CPU being able to run the code directly. So it is
more like a translation of one set of instructions into another.

For example, a PlayStation 2 emulator on a Windows machine enables you to play
PS2 titles on your PC; an Android emulator lets you emulate an Android device on
your PC or Mac.

www.EBooksWorld.ir

Virtual machine implementation base
There are some implementations of a virtual machine engine that rely on the
techniques of emulation. For example, they emulate the x86/x64 architecture by
adding a translation layer at the guest OS level, which enables them to execute on
different platform architectures like the PowerPC, as well as x86/x64. However, this
additional layer slows down the virtual machine quite significantly.

Modern virtualization techniques implement the isolation and segregation of the
virtual machine within system memory. With support from modern hardware that
provides special instruction-set for virtualization, the virtual machine engine passes
on the execution of the guest virtual machine directly to the native hardware. Thus,
the performance of a modern virtualization based virtual machine implementation is
much faster than older VMs due to native hardware support and faster than
emulation-based VMs due to the absence of an additional translation layer.

There is another concept of virtual machines, for example, those that execute the Java
or .NET code, but they are different and are limited and targeted in their scope. A
Java Virtual Machine (JVM) provides a mechanism to execute the Java bytecode,
and Common Language Runtime (CLR) provides mechanisms to execute the
programs written for the .NET framework, regardless of the programming language.
The specs do not mandate that the bytecodes are executed by the software or the
hardware, or that the bytecode should be translated to machine code. This sort of VM
implementation can do a combination of both using emulation or where appropriate
and by using a Just-In-Time (JIT) compilation, where appropriate.

Some famous examples of virtual machines include Oracle VirtualBox, VMware
vSphere, Microsoft Hyper-V, Xen (OSS), and KVM (OSS).

www.EBooksWorld.ir

Containerization
Containers provide an isolated, resource-controlled, and portable operating
environment within an existing running operating system and that hosting OS can
itself be either running on a single physical machine or on a single virtual machine
(VM).

A container is an isolated place created by forming a virtual boundary using the
process and namespace isolation technology by the host operating system so that an
application running inside the container can run without affecting the rest of the
system and without the system affecting the application. An app inside a container
would feel like it is running inside a freshly installed OS (and the required
prerequisites) on a computer.

The idea of such a virtual environment was first proposed in 1999 by an MIPT
professor. It was an improvement on the chroot model and had three main
components, which were:

Groups of processes with namespace isolation
Filesystem to share the code, and thus, save memory on disk and RAM
Provide resource isolation as well as management

www.EBooksWorld.ir

Evolution of containerization concepts
Let's take a quick look at the various container-like virtualization technologies
created in the history of computing according to the timeline.

www.EBooksWorld.ir

Chroot
The chroot utility was first implemented by Bill Joy in 1982. A chroot on the Unix
operating system is an operation (system call/wrapper program) that changes the root
directory for the current running process and its children. A process in such a
modified environment cannot access files outside the designated directory tree.
Chroot provides the guest OS / process with its own, segregated file system to run in,
allowing applications to run in a binary environment different from the host OS. The
modified environment is called chroot jail.

www.EBooksWorld.ir

FreeBSD Jails
In March 2000, jail was introduced with the release of FreeBSD 4.0 and the release
note goes as follows:

"A new jail system call and admin command have been added for additional
flexibility in creating secure process execution environments."

FreeBSD jails had three main goals--Virtualization, Security, and Ease of delegation.

www.EBooksWorld.ir

Solaris Zones
Solaris pioneered container technology in 2004 with the introduction of Solaris
Containers, commonly known as Solaris Zones. Oracle is now the owner of Solaris
and is integrating Docker into Oracle Solaris, which allows enterprise customers to
use the Docker platform to distribute applications that are built and deployed in
Solaris Zones.

www.EBooksWorld.ir

OpenVZ
In 2005, OpenVZ started as an open source software which brought huge
improvements on existing implementations with the concept of container-based
virtualization for the Linux platform. It allows you to create multiple, secure, and
isolated Linux containers on a single physical machine. An OpenVZ container
executes like a standalone operating system i.e. the container with its own boundary
that can even be rebooted independently. It has its own root access, users, IP
addresses, memory, processes, files, applications, system libraries, and configuration
files.

www.EBooksWorld.ir

Cgroups
This project, started in 2006 by two Google engineers, was later released by the
Linux community in January 2008. Cgroups (short form of Control groups) was then
implemented as a Linux kernel feature that allows you to allocate resources such as
CPU time, system memory, disk I/O, network bandwidth, and/or combinations of
these resources to the user-defined groups of processes running on a system creating,
a virtual boundary between regular OS processes and the cgroup-ed process group.

www.EBooksWorld.ir

LXC
LXC (short form of Linux Containers) was first released in 2008 as an operating-
system-level virtualization to run multiple isolated Linux systems (called as
containers) on a host using a single Linux kernel. It basically combines the Cgroups
functionality and adds support for the namespaces to provide an isolation boundary
for given containerized applications.

www.EBooksWorld.ir

Lmctfy
First released in October 2013, lmctfy is an operating-system-level virtualization
technology implemented as open source by Google engineers. "Let Me Contain
That For You (LMCTFY)". It is based on the Linux kernel's cgroups functionality. It
has been managing Google's resource isolation needs since 2007. As it provides
functionality similar to LXC and Docker, but at a lower level, the developers of this
container technology have joined their efforts on the libcontainer library of the Docker
and stopped maintaining the lmctfy open source repository since 2015.

www.EBooksWorld.ir

Docker
Docker was first released in March 2013. The initial commit of docker consisted of a
light wrapper written in the Go language to set up, manage, and execute LXC
containers in Linux.

Docker is now an open platform for developing, shipping, and running applications.
It allows you to build, run, test, and deploy distributed applications inside software
containers.

Docker provides an additional layer of abstraction and automation on OS-level
virtualization in Linux, and now, on Windows as well. It uses the resource isolation
features of the Linux kernel cgroups and namespaces, and a union-capable file
system, UnionFS (for example: AUFS, btrfs, vfs, and DeviceMapper).

Docker now includes its own libcontainer library to use the virtualization facilities
from the Linux kernel in addition to using abstracted virtualization interfaces via
libvirt, LXC, and systemd-nspawn.

From the Docker website - Docker provides tooling and a platform to manage the
lifecycle of your containers:

Encapsulate your applications (and supporting components) into Docker
containers
Distribute and ship those containers to your teams for further development and
testing
Deploy those applications to your production environment, whether it is in a
local data center or the Cloud

www.EBooksWorld.ir

Modern container fundamentals
With container-based development, deployment, and the whole ecosystem, following
are the key concepts to understand the modern day containerization:.

Container host: An operating system on a physical machine (bare metal), or a
virtual machine configured with the container support.
Container OS image: Containers are deployed from images in the form of
layers as they stack up. The container OS image is the first layer in potentially
many image layers for the given container. This image provides the basic
required operating system environment for the desired application.
Container image: A container image is primarily for the intended application,
and it contains the base operating system, application, and all application
dependencies in the form of container layers, as well as essential configurations
that are needed to deploy a container.
Container registry: Container registry is the placeholder for the container
images which can be downloaded on demand. For example:

Docker Hub
Amazon EC2 Container Registry
Azure Container Registry

Container repository: Container repository is a collection of different, but
related, container images with different tags used to identify different versions
of the same application or service.
Configuration: Container configuration file is used to automate the creation of
container images. It can, for example, specify the required base images,
directory mappings, and required files before the given container is executed.
For Docker-based container images, it is Dockerfile for all platforms.
Container orchestration: When you deploy tens, hundreds, or thousands of
containers that make up an application, tracking and managing the deployment
requires sophistication in both management and orchestration of those
containers. Container orchestrators are assigned a pool of servers in a cluster
and the respective schedule to deploy containers onto those servers. Some
orchestrators configure networking between containers on different servers,
while some may also include load balancing, rolling updates, extensibility, and
more. Examples of popular container orchestrators include the following:

Docker Compose / Docker Swarm
Kubernetes
Mesos / DCOS

www.EBooksWorld.ir

www.EBooksWorld.ir

Docker components
Docker is no more just a container or a mere container technology. It's a full platform
with its various components, as well as a built ecosystem around it. Let's have a
quick view of the main components of the Docker platform.

www.EBooksWorld.ir

Docker Engine
Docker Engine is the core application that is deployed on the operating system,
which becomes a host for the Docker containers. It is a client-server application
which has a server (which is a background-running process called as a daemon
process); a REST API exposing the interface (which programs can use to talk to the
daemon); and a Command Line Interface (CLI) client. Most of the things that you
would need to do with installing, configuring, and using containers on a container
host are achieved via the Docker Eengine:

Docker Engine (courtesy of docs.docker.com)

Docker Engine has two editions, which are available for desktops, servers, or cloud
providers:

The Docker Community edition (Docker CE): Designed for enterprise teams
who build, ship, and run business critical applications in production at scale
The Docker Enterprise edition (Docker EE): It is ideal for developers and
small teams, and is available on many platforms, from desktop to cloud

Cloud supported Docker EE includes--AWS, MS Azure, IBM SoftLayer,
DigitalOcean, and more.

www.EBooksWorld.ir

www.EBooksWorld.ir

Docker Compose
Docker Compose is a tool for defining and running multi-container Docker-based
applications. It provides you a with compose file (docker-compose.yml) to configure your
application's services.

Using Compose is a three-step process, which includes the following:

1. Having a Dockerfile.
2. Defining services in docker-compose.yml, as they make up your app and run together

in their own isolated environment.
3. Running docker-compose up in the end so that Docker Compose starts your entire

application together.

www.EBooksWorld.ir

Docker Machine
The primary purpose or benefit of Docker Machine is to enable the provisioning and
managing remote Docker containers. Docker Engine runs locally, while Docker
Machine runs remotely.

Docker Machine has its own CLI client, docker-machine, that lets you install Docker
Engine on virtual hosts, and manage the hosts with docker-machine commands.

You can use machine to create Docker hosts on your local computer, on your data
center, or on cloud providers such as AWS or Azure.

www.EBooksWorld.ir

Docker registry
A Docker registry stores Docker-based container images. After building a Docker-
based container image, you can push it to a public container registry such as a Docker
Hub, to a private registry on cloud, or on-premise.

You also have the facility to search for existing public images, and pull them from the
registry to your own host.

Docker Hub is a public Docker registry, which serves a huge collection (probably
the largest) of existing images, and allows you to push your own. In addition to that,
Docker also provides Docker Trusted Registry, which can be installed on-
premises, or on a cloud. It allows you to store your Docker images, privately and
securely, behind your firewall. There are also cloud-based private registry providers
which you can use within your cloud environment, such as AWS EC2 registry and
Azure container registry.

www.EBooksWorld.ir

Docker Kitematic
Kitematic is a simple application to be used on desktops or DEV machines for
managing Docker containers on Mac, Linux, and Windows.

www.EBooksWorld.ir

Docker Swarm
Docker Swarm is a clustering solution for Docker-based containers by the Docker. It
enables (for load balancing and failover) you to use the pool of Docker hosts into a
single, virtual Docker host.

Docker Swarm is a standalone product, and there is a Swarm mode within a Docker
Engine as well.

The cluster management and orchestration features are built in the Docker Engine
using SwarmKit.

www.EBooksWorld.ir

Swarm mode
When Docker engines are running in a cluster, they are said to be in a swarm mode.
You can enable the swarm mode for a Docker Engine by initializing a swarm, or by
joining an existing swarm.

A swarm is a cluster of Docker engines or nodes where your application services are
running. When in swarm mode, the Docker Engine CLI and API include commands to
manage the swarm nodes (like add or remove nodes), and deploy and orchestrate the
services across the swarm. When you run a docker Docker without using the swarm
mode, you are executing container commands directly, and when you run a Docker in
the swarm mode, you orchestrate your services.

For more information on the swarm mode, go through the Docker
documentation for swarm mode at https://docs.docker.com/engine/swarm

www.EBooksWorld.ir

https://docs.docker.com/engine/swarm

Docker Cloud
Docker Cloud provides a hosted registry service (with private options) with build
and testing facilities. It provides you with the tools to help you set up and manage
host infrastructure and application life cycle features to automate the deployment of
your containers.

The core set of Docker Cloud includes the following:

Support for teams and organizations
Management of builds and images
Support for private image repositories
Support for Continuous Integration
Management of swarm clusters Management and distribution of Docker nodes
and the respective Docker Cloud infrastructure

www.EBooksWorld.ir

Docker containerization in Windows
Windows Containers are supported in Windows 10 Professional edition and up, as
well as in Windows Server 2016.

www.EBooksWorld.ir

Docker for Windows
Docker for Windows supports Docker Engine (server and client) with REST API, as
well as CLI. It contains a docker GUI to control and configure the various aspects.
You can also use Docker CLI, PowerShell, and Azure-related commands. There is an
Azure Docker VM extension as well, which allows you to install and configure the
Docker daemon, Docker client, and Docker Compose in your Linux virtual machine.

www.EBooksWorld.ir

Windows Containers
Windows Containers include these two different types of containers:

Windows Server Container: A Windows server container shares a kernel with
the container host and all other Windows Containers running on the same host. It
provides the application with an isolation boundary through the process and
namespace isolation technology.
Hyper-V Container: The Hyper-V container expands the application isolation
by providing the optimized Hyper-V virtual machine on Windows. In this
configuration, the kernel of the container host is not shared with other Hyper-V
Containers. This type of Windows Container is most suited to Linux-based
containers on Windows-based hosts.

Head on to https://docs.microsoft.com/en-us/virtualization/windowscontainers/ for
more documentation regarding Windows Containers.
Also see https://docs.docker.com/docker-for-windows/ to have a first time
hands-on with Docker for Windows.

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/virtualization/windowscontainers/
https://docs.docker.com/docker-for-windows/

Modern development
Modern day infrastructures are based on clouds, virtual machines, and containers,
and form the base of the topics in this book as well. Therefore, let's call our modern
day development environment, and set up where we are working around these
technologies so we have a few of differences to the traditional mode of development.

www.EBooksWorld.ir

Development editors
With the popularity of loads of JavaScript-based frameworks, SPA, and Node.js-
based development setups in the web development world, a number of light-weight,
cross- platform, and open source editors have become popular with a number of
extensions around to help you work in a modern-day infrastructure. With such a
scene, these are the top IDEs to consider along with their correct integration options
offered by the extensions/plugins:

Visual Studio Code
GitHub Atom
Sublime
VIM

However, with the modern PaaS and Backend As A Service (Baas) offerings with
tiny microservices models, we now see another set of editors, which are suitable for
web development; these editors, themselves, are cloud-based, and run directly out of
your browser. In addition to just being an editor, most of them have the ability to
directly integrate with Git repositories and cloud-based deployments (with respect to
CI and CD) for your app. These are called cloud editors, and the most famous of
them include the following:

Cloud9 (c9.io)
Codenvy
Koding
codeanywhere

www.EBooksWorld.ir

Development environment setup
No matter whether you use a fully-fledged development editor, a lightweight, or a
cloud-based one, you need a development environment setup with a database and
other collaborating servers that make up your application, and you need the
development environment setup and ready to go in minutes. Traditionally, setting up
the environment takes at least a day, if not a week. And modern day development
welcomes remote development not just from office machines, but from your own
computer as well. Thus, there is a demand Here comes the demand for the need for
portable development environments.

You can have a showcase development machine with all tools installed, all the
shortcuts setup, have it binary imaged as ISO or other tool-related formats, and burn
them. With this, you can have your development machine ready in minutes. Even if
you have destroyed the environment, you can rebuild it quickly.

With the advent of cloud, most of the development and testing has become focused on
virtual machines. Here comes the Vagrant.

www.EBooksWorld.ir

Vagrant
Vagrant is a software engine which takes a configuration file, and builds a VM out of
it. You can have a VM or a combination of VMs (multi-machine) with the required
OS, IDE, configuration, tools, and servers all installed on it. Since it's a VM, it is
portable as a USB key. Use it and recreate it just by copy-paste, and identical copies
will be ready in seconds or minutes.

Vagrant primarily supports VirtualBox and VMware, as well as AWS. Vagrant has
unified the creation and recreation of such development environments, and has
provided an online public repository of such machines that you can build and share,
or use an existing one.

The following is an excerpt from the Vagrant website (https://www.vagrantup.com/docs/why-va
grant/):

Vagrant provides easy to configure, reproducible, and portable work environments
built on top of industry-standard technology and controlled by a single consistent
workflow to help maximize the productivity and flexibility of you and your team.
To achieve its magic, Vagrant stands on the shoulders of giants. Machines are
provisioned on top of VirtualBox, VMware, AWS, or any other provider. Then,
industry-standard provisioning tools such as shell scripts, Chef, or Puppet, can be
used to automatically install and configure software on the machine.

www.EBooksWorld.ir

https://www.vagrantup.com/docs/why-vagrant/

Cloud development and test
environment
In modern cloud-based applications, automation of development and testability in
cloud arises with portability, heavy traffic, data, and performance requirements.
DevOps can define the Developer VMs or environments with a set of limitations as
well as VMs or setup for testable environment for various kinds of testing, all in the
same cloud (but different network segment) where the production systems are
running. This not just allows a the realistic feel, but also provides the flexibility to
create environments in minutes instead of weeks by the infrastructure as a code
paradigm with various cloud infrastructure providers.

In AWS, you have a number of predefined templates available to quickly create your
development and test environments on the cloud. Once you have consumed them, you
can then destroy them, since you can easily and quickly recreate them. This allows
you to keep the cost under control, as well as keep your in-house infrastructure safe,
secure, and undisturbed.

With similar goals, Microsoft Azure provides a dedicated optimized DevTest
environment for pre-production development, a test setup where VMs can be created,
started, stopped, and destroyed easily, and to frequently keep the cost under control.

Azure's feature is called Azure DevTest Labs , and has the following main points
listed on their website:

Fast, easy, and lean dev-test environments
Quickly provision development and test environments
Minimize waste with quotas and policies
Set automated shutdowns to minimize costs
Build Windows and Linux environments

Browse over to https://azure.microsoft.com/en-us/services/devtest-lab/ for more
information on Azure DevTest labs.

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/services/devtest-lab/

www.EBooksWorld.ir

DevOps
The Dev in DevOps stands for development and Ops stands for operations. DevOps
tries to minimize the gap between development and operations. Agile software
development has minimized the gap and improved collaboration between
requirements analysis, testing, and development, whereas, the DevOps movement
encourages collaboration between development and operations.

The exact definition of DevOps varies from business to business, but, in essence,
DevOps is all about minimizing the challenges of shipping, rapidly iterating, and
securing software applications.

www.EBooksWorld.ir

The Culture
Similar to agile software development, DevOps is just another buzzword even with
the best tools if you don't have the right culture. In 2010, John Willis and Damon
Edwards coined the term CAMS (Culture, Automation, Measurement, and
Sharing). Over the time, this seems to be a more relevant definition of DevOps. The
culture of DevOps is about the following:

Communication and sharing responsibility
Accepting failure rather than blaming faults
Cross-functional alignment, that is, working together for a common goal
Empathy, as in, teams with close ties

www.EBooksWorld.ir

Key motivational aspects
DevOps has the following key aspects, which should be implemented when setting up
the DevOps processes in your organization.

www.EBooksWorld.ir

Sharing
This involves shared responsibility of the development and operations pipelines. It
also includes sharing of code, tooling, and processes between the Ops and Dev
teams.

The Development team helps improve the Operations team code and tooling, while
the Ops security team helps ensure that best practices are used during development.
Security typically falls to dedicated roles, but ultimately, it involves all other teams
working together to deliver the application.

Sharing between autonomous teams mandates the techniques of self-testing-code
(which comes in Continuous Integration) and continuous deployment (as already set
up in close collaboration and improvement between the Dev and Ops teams).

www.EBooksWorld.ir

Automation
It is almost impossible to have DevOps processes set up without the automation of
processes using the appropriate tools, configurations, and team collaboration.
Automation of tasks like testing, configuration, and deployment frees up people to let
them focus on other more valuable tasks in the project. It also reduces the chances of
human error by continuous improvement in the automation processes. At a higher
level, automation includes the following:

Automated testing
Continuous Integration (CI)
Infrastructure as a Code
Continuous Delivery (CD)

www.EBooksWorld.ir

Measurement
Measurement of a team's performance, artifacts delivery, performance of code,
performance, and reliability of infrastructure are some of the very important functions
of an IT team of any business to deliver its promise, sustain, and support growth. It's
not only required by the Dev and Ops teams, but is an essential part of the project
management community, which eventually helps to provide the running business with
a visibility to management. Automation in DevOps enables a far more reliable
measurement than the traditional models. Measurement includes, at least, the
following:

Tasks and deliverables visibility
Visibility on build metrics
Visibility of tests metrics
Visibility on deployments in Dev, Test, and Prod environments
Improves visibility of real project costs
Logging of apps and infrastructure
Monitoring of apps and infrastructure

www.EBooksWorld.ir

Software development and delivery
process
There is no single DevOps tool to achieve all the required target steps--rather, it is
called the as DevOps toolchain. The toolchain fits into one or more of the phases of
software development and the delivery process, as if they work in collaboration
between the Dev and Ops teams.

The phases in development and delivery could be like the following, but every
organization can have their own version. Note that these phases are also helpful to
establish the CI and CD pipeline.

Phases General Description

Code Dev environment, IDE, version control

Build Continuous Integration

Test Automated and manual tests and related infrastructure

Package Deployment packages, containers, packages repositories

Release Change and release management processes

Configure and
Provision

Infrastructure configuration and management, infrastructure
as a code

Deploy Deployment of packages, containers, VMS on to the
infrastructure

Monitor Application and infrastructure monitoring

www.EBooksWorld.ir

Continuous Integration
The subject of Continuous Integration (CI) does not have to be linked to DevOps
processes, as it is an independent activity by itself. CI promotes automated
development into a testable package, which can then perform automated testing. The
primary starting point for such self-testing code is Test Driven Development
(TDD), so that you define the test cases and test scenarios beforehand or in parallel
with the development activities of such types of testing--unit testing, integration
testing, system testing, and stress and performance testing. CI is usually implemented
as a separate CI server, which is integrated with your source control. The following
types of testing, for example, can be configured to run as Automated Tests: unit
testing, integration testing, system testing, and stress and performance testing. CI is
usually implemented via a separate CI server that is integrated to your source control.
Visual Studio Team Services (VSTS) is one of the good CI servers around, which
not only integrates with the MS Team Foundation Server (TFS) source version
control, but also with Git. It also supports multiple build and testing agents, which
are available on multiple platforms--Windows, Mac, and Linux.

www.EBooksWorld.ir

Best practices
Some of the best practices for the CI process, well outlined by Martin Fowler,
include the following:

Maintaining a (single) source repository
Automating of the build process
Having a self-testing build / automated testing--Automation also enables test
metrics
Everyone committing to the baseline everyday--Reduces conflicts, improves
frequent communication
Every commit to the main baseline should be built
Keeping the build fast--Fast building process to provide rapid feedback
Fixing the broken builds immediately--This also encourages the fixing of
potential bugs before writing new code
Testing in a clone of the production environment--More realistic tests
Making it easy to get the latest deliverables--Reduce rework in the sense that
builds are readily available to stakeholders and testers
Maintaining visibility of builds and tests failure(s)--Everyone can see what's
happening: Visibility of builds and tests failure(s)
Automating deployment (for example Continuous Delivery)

www.EBooksWorld.ir

Benefits of CI
There are a number of benefits when you opt for the CI processes, which include the
following:

www.EBooksWorld.ir

Improvement in Developer productivity
Continuous Integration helps teams to be more productive by freeing the developers
of manual tasks, which also helps to reduce the number of errors and bugs in earlier
stages.

www.EBooksWorld.ir

Quick identification and addressing of
bugs
Frequent automated testing (based on commits) enables the developers to discover
and address bugs earlier, before they grow into larger problems later. This also
provides feedback on, for example, system-wide impact of local changes. It ensures
constant availability of a current build for testing or release purposes.

www.EBooksWorld.ir

Faster Updates Delivery
With the essence of Agile software development, CI helps teams deliver frequent and
faster updates to their customers.

www.EBooksWorld.ir

Continuous Delivery
Continuous Delivery is not necessarily associated with the DevOps processes, but it
is one of the primary automation activities in these processes. Continuous Delivery
is, basically, a software development practice where you build software such that a
software release can be deployed to the production at any time. Continuous Delivery
is enabled through the pipeline in which Continuous Integration, automated testing,
and automated deployment capabilities allow the software to be developed and
deployed rapidly, reliably, and repeatedly, with minimal manual efforts.

With Continuous Delivery, your software is always ready to be deployed to
production, but to push it into production requires a business decision, therefore, the
final deployment is a manual step. Continuous deployment is the next step of
Continuous Delivery--Every working version of the application is automatically
pushed to production. Continuous deployment mandates Continuous Delivery, but the
opposite is not required.

www.EBooksWorld.ir

Continuous Delivery Pipeline
While the Continuous Delivery Pipeline may vary from company to company
depending on the different processes, but a typical delivery pipeline looks like the
following:

Continuous Delivery Pipeline

If we replace the only manual step in the preceding diagram, then this diagram will
become the continuous deployment pipeline.

www.EBooksWorld.ir

DevOps toolchain
Here, we will provide just a short list of tools that are generally available for the
respective steps and tasks in the DevOps processes. Note that this is just a suggestive
list; there could be better ones out there, and we have no commercial or non-
commercial association with them.

Continuous Integration and Continuous Delivery:

Jenkins
TeamCity / Octopus Deploy
Visual Studio Team Services
Atlassian's Bitbucket
Codeship, Travis CI, and more

Configuration and Infrastructure as a Code:

Ansible
Chef
Puppet
SaltStack

www.EBooksWorld.ir

A sample microservices application
based on Docker containers
You have so far learnt about Service Oriented aArchitecture (SOA) and
microservices as key enterprise application architectures, and have also learnt the
ideas behind the containerization, especially, how well it fits with the microservices
architecture. Along the way, you've also gotten equipped with the Azure cloud
offerings around the modern services oriented architecture, which fits according to
our needs. We will now get a hands-on experience with a very basic application
having two simple microservices based on Docker containers and we will then
deploy them to Azure Container Service.

www.EBooksWorld.ir

The sample application
Let's begin with dissecting our application in a step-by-step process, with a direct
and no-nonsense approach.

www.EBooksWorld.ir

Problem statement
Our problem is that we need a web application which can perform, let's say, an
addition operation. The user will interact with the frontend of our application by
providing the required inputs, and the application will render the answer as a result
of the operation.

High-level architecture

Assuming that we are now happy and mature solution architects, based on our
experience, we decide to take the service-oriented architecture approach, thereby
exposing our addition operation as a service. This will easily allows us in future to
have multiple types of front-end clients, and we can expose the service to the world
as we desire. It will also allow us to have our front end(s) and our backend, that is,
the service, to change independently.

So, we decide that we will have one service which will expose our addition
operation capabilities, and another application package which will expose our
frontend. For now, we will have only one simple web-based frontend application.

Let's call our software, Math Application or MathApp in short:

High level architecture of MathApp

www.EBooksWorld.ir

Application architecture
Our Math Application, which is in focus as of today, has a requirement to have only
one frontend interface. Therefore, our application architecture suggests that it will
consist of two microservices. One microservice will contain our API Service, and
the other will carry our frontend application. Now, as an architectural practice in our
organization, we decide to use Docker-based containers for all types of
microservices in our enterprise:

Application architecture for MathApp

www.EBooksWorld.ir

Technical architecture
Our technical implementation architecture (or detailed Application Architecture) is
based on Docker containers providing us with our microservices. We will be hosting
our containers on the Microsoft Azure cloud platform using the Azure Container
Service (ACS). We will use Docker Hub to host our container images as a public
container registry, though we have an option to use the Azure container registry as
well.

www.EBooksWorld.ir

Setup in Azure Container Service
We will use the Azure portal (portal.azure.com) to create our environment for ACS.
When creating our containers-based application environment, we will have the
option to choose the required container orchestrator, and we choose Docker Swarm.
We select one master node and two agent nodes for our container cluster managed by
Docker Swarm. This means we will have two VMs for agent nodes and one VM for
the master node in the docker swarm setup. When using the Azure portal for creating
our ACS, it will drive us through the Azure Resource Manager (ARM) template
for the ACS cluster, and choosing Swarm for orchestrator will follow this way of
setting up our environment.

We will see more detailed and fundamental screens for the ACS and
Docker image setup in later sections. For step-by-step guidance,
please follow the link as mentioned in the later part of the section
Hands-on prerequisites.

www.EBooksWorld.ir

https://login.microsoftonline.com/common/oauth2/authorize?resource=https%3a%2f%2fmanagement.core.windows.net%2f&response_mode=form_post&response_type=code+id_token&scope=user_impersonation+openid&state=OpenIdConnect.AuthenticationProperties%3dJajEpcZk-Mntk8-zOnQrLHYthmiRWoAP_OUh-46655hk4KvRYGja6vRP0YFsKG_EqVKQAqY6Xn6yhDeIUIt6JwSGUabHBb8AsYVDuwV18X6MnZ0AJoFPCC4RflVL2Uigm2qvBvfDcUQMv7rG1qx0ssvL00oZ2Xw2CiIPdlga6DQIn3RvAEVc38jQsZ1XU3RwKH54gQ&nonce=636274247569160834.YTU2MWM1MjgtYTZlMS00YTA1LWEwNDItMjdmZDdiZjkyOTc3NWYxMWY3MTktMDliOC00MWEyLTljNDYtMjI5MDllYmNhZjk4&client_id=c44b4083-3bb0-49c1-b47d-974e53cbdf3c&redirect_uri=https%3a%2f%2fportal.azure.com%2fsignin%2findex%2f%3fsignIn%3d1&site_id=501430

Architecture diagram
Let's finalize our technical architecture, which is one of the most important
deliverables:

Technical Architecture for MathApp

We can use ARM visualizer @ ArmViz.io/designer to be able to
visualize and edit the Azure ARM templates for our project.
Additionally, we can make use of many free-to-use Azure Quickstart
templates @ https://azure.microsoft.com/en-us/resources/templates/, which are not
just to give a quick start, but sometimes contains the complete ideal
setup for our next Azure-based application.

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/resources/templates/

Network architecture
The network architecture diagram focuses on the network infrastructure setup for our
application. When using Azure ARM for ACS using the Docker Swarm as a cluster
with a given master and agent nodes, the following is the network design that Azure
ACS provides.

Since the setup remains the same in Azure with respect to the IP, ports, VMs, and
load balancers, So we quote the same diagram as mentioned on the Azure website:

Network Architecture diagram for MathApp

www.EBooksWorld.ir

What is visible in this diagram?
In the preceding diagram, you can see that the nodes, master node(s), and agent
node(s), are distinctly visible, and are present in separate VMs. The ACS arm has
minimal VM configuration already defined for the master node, while for the agent
node, you can select the VM plan to reduce its processing and memory capacity
according to the desired or expected load, performance, and cost.

The master node(s) remain in the Azure VM availability set to ensure high
availability and failover scenarios, and the agent node(s) remain in the Azure VM
scale set to ensure load balancing and auto scaling (of identical VMs) depending on
your performance demands.

Virtual network, Subnets--NAT IPs, Agent IPs, and SSH-Docker-HTTP ports--are all
preconfigured by default and opened in firewall, but you will need to enable ports in
the firewall to gain access from public IP. Load balancers for both the master set and
agent set are also set up and are basically assigned to the public IP.

www.EBooksWorld.ir

Hands-on prerequisites
If you are doing the hands-on yourself, and want to repeat the steps, you will need the
following:

Active Microsoft Azure subscription
Windows Users--PuTTY (basically putty.exe and puttygen.exe) and WinSCP (for
file transfer)
Visual Studio with Docker tools (works for both VS 2015 CE and VS2017 CE)
Docker Client or Docker Engine CLI - Docker Toolbox if you do not have
Hyper-V / VirtualBox

For step-by-step screenshots and directions for each activity to be
performed, please follow the follow this tutorial: Getting Started
with Docker and Azure Container Services: https://blogs.msdn.microsoft.com/
uk_faculty_connection/2016/09/23/getting-started-with-docker-and-container-services/

The tutorial will guide you through each step in a way similar to when we need to
interact with the Azure portal and SSH console login to our respective VM. In this
way, we can avoid one screenshot per page of the book, save time and resources, and
focus on the important points.

www.EBooksWorld.ir

https://blogs.msdn.microsoft.com/uk_faculty_connection/2016/09/23/getting-started-with-docker-and-container-services/

Why Azure Container Service?
Azure offers multiple options when we want to work using Container-based
applications. All the options satisfy a certain case, and you can choose what as best
suits your needs. To evaluate which could be the better option for your case
depending on the type of application, the containers it uses, and the cost model that
fits your budget, you will first need to kn

ow what is actually is offered by Azure. We will list here the popular Azure options
for container-based applications as of the first quarter of 2017. Instead of going into
details, we will have a very brief look at each offering.

www.EBooksWorld.ir

Azure App Service (on) Linux
This is called Azure App Service Linux from within Visual Studio 2017, and is one
of the publishing targets. When you access this from the Azure portal, it is called as
Web App On Linux.

How it works:

1. Create an ASP.NET Core web application project in VS 2017.
2. Add Docker support from within VS.
3. Publish: Select the publishing target as Azure App Service Linux; In a later step,

it allows you to create an App Service directly to your Azure subscription.

From within a VS 2017 project, you have an option to configure
Continuous Delivery, and voila! You have your release pipeline up
and running.

This is probably the simplest and quickest way to put your app in a container under a
Linux VM on the Azure cloud. You might have realized that it is a very good option if
you have a single-container application. But in our example, we need a multi-
container app in a microservices architecture.

www.EBooksWorld.ir

Creating VM directly on Azure
You can create a VM on Azure from the following:

The Azure portal
The Azure CLI
Docker, using Docker Machine

Once you have a VM ready on Azure, you can, for example, use Docker Machine to
install and configure Docker Engine on a remote machine, and publish Docker images
from the Dev machine to the VM on Azure.

Not the cool way to leverage containerized applications on Azure; it's limited, and
there's not much to explore in the context of the simple yet complete microservice
architecture example in this book. That's why we skipped it.

www.EBooksWorld.ir

Azure Service Fabric (ASF)
Azure Service Fabric offers a number of features out-of-the-box, which include the
ones listed next:

With ASF, you are not just limited to container-based applications but much
more
A number of Microsoft's own services are running on ASF, for example, Azure
Event Hubs and, Azure SQL Database
It gives you features to easily tune your microservice as stateless or stateful
Some of the core infrastructure features are already built in, like scalability and
low latency
ASF offers Reliable Services or Actor Model (good for IoT solutions, for
example, BMW implementation)
It has a good Visual Studio Integration (build, test, debug, deploy, and so on)

All of the preceding features come at the cost of using Azure SDK using its own full-
blown programming model. It means my architecture will be using yet another
special or specific technology. I smell a vendor tie-in. Additionally, it has the
potential to remove the focus from general cloud and container-based architecture to
something specific to Microsoft Windows. Therefore, for our example project, we
toss it up.

www.EBooksWorld.ir

Azure Container Service (ACS)
Azure Container Service seems to provide the neatest framework to boot your
application, which has a container-based microservices architecture. It offers an
optimized container hosting solution, along with the following benefits:

Container is open technology with a great community backing (no cloud vendor
tie-in)
ACS offers orchestrators like Docker Swarm, DC/OS, and Kubernetes
It is well-suited for multi-container (and multi-VM) applications
It sets up Infrastructure elements automatically with the provided ARM
template, which saves lot of time and tuning
It's all open source

We want to use the docker container technology for our simplest microservices-
architecture-based application. We also wish to use .NET Core technology's cross-
platform feature, thereby the need for the Linux-based VM and containers. This is
why ACS is our best choice.

www.EBooksWorld.ir

Implementing the Math app
We have a problem and we have architected its solution using containerized
microservices. Now it's time to do the implementation.

www.EBooksWorld.ir

Implementation approach
We will take a ground-up approach; in this way, we'll learn more, which, as a
developer, is always helpful at the time of debugging. We will use Visual Studio
Community edition (Free) with Docker support tools installed separately, and will
not use the extra features of VS 2017.

VS2017 provides a seamless integration with Docker, even with
multi-container apps, and a smooth integration with the VSTS CI/CD
pipeline directly to the VM. For a quick introduction to VS2017 with
Docker, watch this short video by Steve Lasker at@ https://channel9.msdn.
com/Events/Visual-Studio/Visual-Studio-2017-Launch/T111.

Our frontend microservice is a simple single-page static (HTML + JS) application,
which we've decided to host on the NGINX web server in a Linux-based container.

Our backend microservice is a simple REST API application, which is based on
ASP.NET Core hosted on the Kestrel HTTP web server inside a Linux-based
container.

For a richer experience, we will install both containers on a CentOS Linux, and test
the Math App by interacting with the frontend SPA from a browser in Windows. Once
we have achieved this successfully, we will push our docker container images to
Docker Hub, the public docker images repository. We will pull these images, and
then execute them inside our containers created using the ACS.

Following this approach, you'll not only understand the implementation of our
architecture better, but also get the more fine-grained process of implementing the
multi-container-based microservices architecture, which you would not grasp
completely if you followed a VS 2017-based docker container implementation as
your first application. In addition to that, it makes you cloud agnostic; you will be
able to deploy container-based applications, locally on Dev machine(s), on-premises
servers, or other popular cloud infrastructure providers.

www.EBooksWorld.ir

https://channel9.msdn.com/Events/Visual-Studio/Visual-Studio-2017-Launch/T111

Implementation Steps
By now, we have a clear design and architecture ready and we have also defined our
approach to implementing the solution. We will now follow the step-by-step
approach towards achieving each artifact according to our defined architecture. You
should follow each step carefully and move on to the next step only after the current
and all previous steps are completed successfully.

www.EBooksWorld.ir

Installing the Hypervisor
We will install hypervisor for playing with the virtual machines locally. We select
Oracle VirtualBox for executing our virtual machines.

Download and Install VirtualBox as follows:

From https://www.virtualbox.org/wiki/Downloads
Also download and install, when required, the Oracle VM VirtualBox Extension
Pack

www.EBooksWorld.ir

https://www.virtualbox.org/wiki/Downloads

CentOS virtual machine
We now need our VM where we will install and execute our containers locally
instead of in the cloud or on our own DEV machine to avoid cluttering and to
explore.

Instead of downloading and installing the OS on a newly created VM image, we will
download a pre-built VM image for VirtualBox, which is available for free. We will
use a CentOS version 7 Base image. It has minimal packages installed, yet most of
the basic libraries are already available. It does not have a graphical interface; we
do not need one--we will SSH into it.

1. Download the CentOS VM image from https://virtualboxes.org/images/centos/
2. Select CentOS 7.0 Base to download
3. Add and import the VM image into your VirtualBox
4. You should be up and running soon--the ID/PWD for the image is published on

the download page

You might be thinking that it would be better to install docker on Windows and use
the container in the VM from there. Surely, it would save time, but remember that
Windows 10 Home does not have hyper-V, so you can't run Linux containers.
Moreover, you will need Docker Toolbox, which will eventually install VirtualBox.
The scene is the same for Windows 7; if you have Windows 10 Pro or greater, you
can then play around with Docker easily.

www.EBooksWorld.ir

https://virtualboxes.org/images/centos/

CentOS configuration
We will mention here all the commands that we executed so that our OS in the VM is
fully prepared.

First of all, if required, you can use the loadkeys command to set the keyboard
language locale in your VM.

Next, in your VirtualBox, you can expose the ports (port forwarding) from inside the
VM to the host environment so that they become accessible. For example, I exposed
port 22 of CentOS VM outside, and mapped it to the host OS on port 3302 locally.

With this, I am now using PuTTY to SSH into my CentOS VM, as I type better on
PuTTY over Windows.

Note that I am also using WinSCP for file transfers from the Windows host to the VM
over SSH. WinSCP uses the same connection settings as PuTTY for secure file
transfer.

Port Forwarding

The following screenshot shows all the exposed and mapped ports, which we will be
needing sooner or later, to be accessible on the host OS. Please also enable other
ports at your end:

www.EBooksWorld.ir

Port Forwarding rules for CentOS VM

The general VM configuration is also visible in the last screenshot, which was
basically the default when I imported the image into the VirtualBox. Also, the steps to
reach the final screen are pretty much visible: you need to go to the VM settings,
followed by then Network, and then click on the Port Forwarding button.

Packages installation

Basically, there are two main packages that we want to install on our CentOS VM:

Docker Engine
Azure CLI

First of all, we need to install GCC and the C++ compiler, which will be used by

www.EBooksWorld.ir

other packages later. Execute the following command on your CentOS terminal:

yum install -y gcc-c++ make

Docker installation

To have full information on installing Docker on CentOS, please visit
https://docs.docker.com/engine/installation/linux/centos/.

Execute the following commands under CentOS (either on the terminal in the
VirtualBox window or in PuTTY) in the same order as displayed here:

sudo yum install -y yum-utils
sudo yum-config-manager --add-repo
https://download.docker.com/linux/centos/docker-ce.repo
sudo yum makecache fast
sudo yum -y install docker-engine (This is older command but still working)
sudo yum install docker-ce (This is a newer command)

Note that Docker runs as a privileged process, so you have to execute Docker
commands as a root user, or perform the following steps to let your user added in a
special Docker group on Linux:

sudo groupadd docker
sudo gpasswd -a coreos docker
sudo service docker restart

logout and then login again.

Now start the Docker daemon, the Docker service on the VM, by executing the
following command:

sudo systemctl start docker

Your Docker is now installed and running. You can execute a tiny containerized
application to test if it is successful:

docker run hello-world

It's a hello-world containerized application. See the output of the command; it
confirms successful installation.

Azure CLI (command-line interface) Installation

We will now install the Azure CLI, and in order to do so, we first need to install
NPM.

Login as root (for example, sudo bash), and execute the following command; notice the
"-" in the end:

www.EBooksWorld.ir

https://docs.docker.com/engine/installation/linux/centos/

curl -sL https://rpm.nodesource.com/setup_7.x | bash -

You may now exit the root session, coming back to normal user, for example, centos
(in my case), and execute the following command to install node.js so that the npm
package manager becomes available:

sudo yum install -y nodejs

We are now ready to install the Azure CLI, so execute the following command, and
we are done for now:

npm install -g azure-cli

www.EBooksWorld.ir

Container installation and execution
We need to install and run two containers, one for the frontend and another for the
backend. The frontend one is a static application, and does not need to be compiled,
so we will get it directly from the Git repository, but you can just copy-paste the
directory as well. For the backend project, you get the source code, and build it with
dotnet core using dotnet publish.

When we have our package ready, either static pages or compiled binaries (as a
result of dotnet publish, for example), we need to first build the Docker images for the
new container. Then, we need to run the newly built docker image as a running
container.

Running the frontend container

To run a new container, here, we will first download the source code from source
control. In this example, we are cloning a Git repository, building the docker image
and then executing the docker container based on the image we just built. Follow
these steps in order to run our frontend container.

Note that I have generated my RSA private key, and added it online to my bitbucket
login as well as in the SSH in the VM, using the ssh-keygen and ssh-add commands. If
you want to simulate the same steps on your own repository, then please see more
information here: https://confluence.atlassian.com/bitbucket/set-up-ssh-for-git-728138079.html:

1. You can download the source code or do a Git clone.
2. Current directory: /home/centos/containerization/app.
3. Online Git repository: https://bitbucket.org/packt_ea_net_core/chapter11_cc_fe.
4. Git clone--git@bitbucket.org:packt_ea_net_core/chapter11_cc_fe.git fe.
5. We named the newly created folder/directory named as fe.
6. In the index.html page, remember to change the URL inside the html file from

http://eaaagents.eastus.cloudapp.azure.com:8081 to http://localhost:8081 so that it's
accessible to be tested locally from the local (port forwarded) VM.

7. Build the Docker image like this:

 docker build . -t mathappfe

8. Run the Docker container from the image just built as follows:

 docker run --name mathappfe-container -p 8080:80 mathappfe

9. You can now access http://localhost:8080 on your host machine hosting the VM,

www.EBooksWorld.ir

https://confluence.atlassian.com/bitbucket/set-up-ssh-for-git-728138079.html
https://bitbucket.org/packt_ea_net_core/chapter11_cc_fe
http://eaaagents.eastus.cloudapp.azure.com:8081/

and you will see the response (as we have already forwarded this port in
VirtualBox), as seen in this screenshot:

Output of a frontend microservice container

Running the backend container

Again, to run a new container we will first clone the Git repository, build the image
and execute the container. Here, since our backend container is a .NET Core based
code, we will need to compile the C# code as well. Follow these steps in order to
run our backend container:

1. You can download the source code or do a Git clone.
2. Current directory: /home/centos/containerization/app
3. Online Git repository: https://bitbucket.org/packt_ea_net_core/chapter11_cc_be
4. Clone the git repository using the following command git clone:

hqureshi@bitbucket.org:packt_ea_net_core/chapter11_cc_be.git be

5. We named the new folder name be, and all the source can be found at:
/home/centos/containerization/app/be.

6. For the backend case, the source code is C# based on .NET Core, and we did
not install the .NET core build environment on our VM; so, in this case, we will
build our source code in to the binary package from within Windows (host
machine) with visual studio CE 2015 installed (though, in my case, I have VS
also installed in a separate Windows VM).

7. Now run the following command under the project directory:

 dotnet publish

Note that, from the source code, you could see the presence of the
Docker file; for this to publish from within Visual Studio, you need to
have Docker client installed on the same machine; otherwise, like me,
you create a published package from the CLI.

8. In this case, we published the folder to the Windows host, and transferred to our
VM using WinSCP at this location:
/home/centos/containerization/app/dynamic/mathwebapi_publish

www.EBooksWorld.ir

9. The flow of these commands looks as seen in the following screenshot:

Building the Docker container image from dotnet published directory

10. From the preceding screenshot, you can notice that docker images resulted in only
one image, which is installed in this VM. Executing the docker build will create a
new docker container image for our .NET Core-based backend WebAPI
microservice:

 docker build -t mathwebapi mathwebapi_publish

Take a look at the following screenshot:

Building the docker container image from dotnet published directory

11. Run the docker container from the image just built, as follows:

 docker run -it -d -p 8081:80 mathwebapi

Take a look at the following screenshot:

Output from docker run command

You can now access http://localhost:8080 on your host machine (which hosts the VM),
and you will see the response (as we have already forwarded this port in
VirtualBox).

You can also verify the output using curl, which will basically call the API directly,
as follows:

www.EBooksWorld.ir

curl "http://localhost:8081/api/math?a=1&b=11"

Executing our two static and .NET Core-based microservices inside the two Docker
containers that are inside Linux VM, we get an output similar to this screenshot:

Successful output of executing two microservices (locally)

We have now successfully verified executing both the containers locally. The next
step is to prepare and achieve the same results from the Azure cloud.

www.EBooksWorld.ir

Uploading container images to
container registry
We now want to upload the Docker-based container images that we have created in
the previous steps to a container registry.

Why:

We want to execute container images on the Azure cloud as facilitated by ACS
In order for us to run the containers on ACS, we need to push them
Either we push the container binaries manually, or have them uploaded and
stored on some public or private container registry over the Internet.
So, we will first push our images from our local (DEV) VM to (our selected)
Docker Hub, which is a public container registry available to be used for free
for public containers
The next step will be to pull the images from Docker Hub to ACS, then install
and execute them

First of all, create a Docker Hub account for free; my Docker Hub account, for
example, is habibcs. Then, we create a repository in our account with the name eea-
spa, which appears in Docker Hhub as seen in the following screenshot shown as
follows in the docker hub:

www.EBooksWorld.ir

A repository in a Docker Hub container registry

We now want to push our image to this repository. Run the docker images command on
your CentOS VM to see the list of images installed on the machine (or call it a docker
node). The names we gave to our frontend container and backend containers were
mathappfe , and the backend container was mathwebapi respectively, which will appear as the
output of the command beside other images:

List of images available on the machine

To push our frontend image successfully to Docker Hub, we need to execute the
following command to log in to your Docker account via Docker CLI:

docker login

Execute the following command to tag the container image:

docker tag 8e4917865c26 habibcs/eea-spa

We tag our existing container image using its IMAGE_ID with the repository name we
want to push to:

docker push habibcs/eea-spa

We push the image to our repository on Docker Hub:

docker container rm 46c07d651266

We now remove the container installed locally by using its CONTAINER_ID; 46c07d651266 in
my case:

docker rmi -f 8e4917865c26

We now remove the image by using the Image_ ID.

To test whether our operations worked successfully, we execute the following
command:

docker run --name eea-spa-container -t -d -p 8080:80 habibcs/eea-spa

This will download the image-- habibcs/eea-spa from Docker Hub, since it has been
removed from our system, and then create a container instance of it with the name of
eea-spa-container, and execute it by exposing internal port 80 to port 8080 on the host
VM. After that, the final behavior will be exactly the same as what we have done

www.EBooksWorld.ir

before with the locally built Docker image.

We repeat the same steps to upload our backend microservice image once after
creating the eea-be-mathwebapi repository on the Docker Hhub.

www.EBooksWorld.ir

Creating Azure Container Service
We now begin to transfer our microservices-based application to the Azure cloud
utilizing its Azure Container Service offerings.

Azure subscription

First of all, we need to have an Azure subscription, so, if you do not have one, create
one. You can have 200$ free to use for one month on anything on Azure the first time
you create your Azure account. If you are a Visual Studio subscriber, you can have
50$ to 150$ per month of Azure credit to spend on. Similarly, if you are an MSDN
platform subscriber, you get 100$ per month of Azure credit.

In addition to some of the afore mentioned options, there is also a plan called Visual
Studio Dev Essentials. This plan is basically to attract non-Microsoft developers to
try various MS tools, and it gives you a 25$ monthly credit to try on Azure for a year.

25$ is more than enough to try our ACS sample application; be sure to destroy all of
your ACS resources once you have successfully completed your experimentation. If,
for some reason, you do not want to destroy the ACS resources immediately, then you
can stop and deallocate all the VMs allocated in your ACS service using, for
example, the Azure Portal. In our example, we will have 3 VMs allocated.

Monthly Azure credit for Visual Studio subscribers https://azure.microsoft.c
om/en-us/pricing/member-offers/msdn-benefits-details
Monthly Azure credit for MSDN Platforms subscribers https://azure.micro
soft.com/en-us/offers/ms-azr-0062p
Visual Studio Dev Essentials https://azure.microsoft.com/en-us/pricing/member-off
ers/vs-dev-essentials

Creating Azure Container Service

Now we need the Azure Container Service to execute our microservices containers.

For our sample in ACS, we create a Docker Swarm-based orchestrator with one
master node and two agent nodes. Please follow the instructions given earlier in the
section Setup in Azure Container Service under Technical Architecture to create the
ACS for our sample. Although creating ACS via the Azure portal is self-explanatory,
you can additionally follow the step-by-step guide as mentioned previously in the
Hands-on Prerequisites section.

It takes a few minutes to create your ACS resources. For our sample, we name our

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/pricing/member-offers/msdn-benefits-details
https://azure.microsoft.com/en-us/offers/ms-azr-0062p
https://azure.microsoft.com/en-us/pricing/member-offers/vs-dev-essentials

Azure resource group as RG_ACS_EABook_Example. After the ACS is created successfully, it
looks similar to the screenshot here:

Resources in our Azure Container Service

Note that the resources you see in this screenshot are mentioned nicely and explained
a bit in the Network Architecture section previously. Please refer to it now to have a
fresh picture again in your head.

In the last screenshot, you can see Deployment History, which is shown right after
your successful ACS deployment, or you can have the same view when you go to the
Deployment option in your newly created resource group. The name of the
deployment usually looks something like microsoft.acs-2017123456789. It may look a little
different for you depending on the names given by you, but the private network,
internal IPs, ports, and general accessibility look the same as mentioned in the
preceding Network Diagram:

www.EBooksWorld.ir

Network information of our Azure Container Service

www.EBooksWorld.ir

Container installation and execution on
ACS
To install, and later execute our containers on ACS, we need a shell to log in. We can
retrieve the FQDN information (fully qualified domain name) of our (Ubuntu Linux-
based) VMs (docker swarm nodes), which hold our containers from the deployment
information as shown in the last diagram.

These VMs are installed with Ubuntu Linux with Docker Engine. The agent docker
nodes and the master node are stringed together by the virtual of Docker Swarm
orchestration, which is why we now call them Docker Swarm Nodes instead of just
docker nodes.

In your ACS deployment, and in the last screenshot, there is a field called
SSHMASTER0, from where you can get the SSH settings to log in to the secure shell.
You will need to use your private key, which you have supplied when creating the
ACS resources to log in via SSH.

In our example case, this is the FQDN and port number to log in via SSH,
eaamgmt.eastus.cloudapp.azure.com:2200

Using this information along with our certificate key, we can successfully log in to
our master node in the ACS. Once logged in, you can execute the command docker
info, and it gives an output as shown in this screenshot:

www.EBooksWorld.ir

View of docker info command on master node

Now, from within the terminal, type this command:

export DOCKER_HOST=tcp://127.0.0.1:2375

With this last command in your terminal session, your Docker commands will be
redirected to 2375, on which Docker Swarm is listening. Running docker info now gives
a different output, as shown in this screenshot:

www.EBooksWorld.ir

View of docker info command on master node from Docker Swarm

In this preceding screenshot, now you can see that docker info displays clearly the
status of the two agents connected.

After exporting the docker port, that is, now using docker swarm, running the Docker
commands will be executed on the docker agent nodes. Type the following
commands:

docker run -name eea-spa-container -t -d -p 8080:80 habibcs/eea-spa
docker run -name eea-be-container -t -d -p 8081:80 habibcs/eea-be-mathwebapi

Running these commands means that Docker will pull the images from the docker hub
public registry, install them, and execute the containers from these images, instructing
to redirect port 80 to 8080, and to redirect from 80 to 8081 for the backend container.
Remember, our index.html page in the frontend SPA container has the URL
http://eaaagents.eastus.cloudapp.azure.com:8081. This is the URL to invoke the backend
hosted in a container on the Azure Container Service. Since the docker swarm is in
control, it automatically runs the containers on the agent nodes, and decides
automatically which node(s) to run the given container. The frontend is now
accessible over ACS, which we can use to test at
http://eaaagents.eastus.cloudapp.azure.com:8080/.

But before we continue to test, we need to allow one of our ports to be accessed
publicly. The ports which are opened by default on VMs are 80, 443, and 8080. So, we
need to allow port 8081 to be opened as well so that our API can be accessed over

www.EBooksWorld.ir

this port. To do this, we need to go to the Azure Resource group for our ACS, which,
in this case, is RG_ACS_EABook_Example; in the resource group, locate the load balancer for
the agent nodes (in my case--swarm-agent-lb-580D48D8), select it, then go to Health
Probes, and add the new HTTP port 8081. In addition to that, we also need to add a
new load balancing rule in the load balancer for the newly added port:

Add a new rule to open a port (Load balancer - Health probes)

The following image shows the newly added load balancing rule for port 8081 in our
load balancer for ACS:

Add a new load balancer rule (Load balancer - Load balancing rules)

Finally, we can execute our sample microservices-based Math Application from
Docker containers, orchestrated by Docker Swarm, hosted by the Azure Container
Service on the Azure cloud, and it looks like this:

www.EBooksWorld.ir

Final view of app running from Azure Container Service

www.EBooksWorld.ir

Big Data and Microsoft
With the complexity of the disruptive Big Data technology, it is hard to conclude a
single solution as the silver bullet for every problem. At the same time, Big Data
fundamentals have not changed since Google's 2004 White Paper publications.

With two decades of hands-on experience, computing fundamentals have never
changed in spite of the upcoming technologies like Big Data, Cloud, Internet of
Things, digitization, and so on. I feel that easy user interaction makes a product
innovative in our industry.

For example, WhatsApp was built with two key fundamentals, namely, real-time
messaging and device-embedded authorization. Real-time messaging with traditional
sign-on application was quite common in the last decade. The key difference is the
mobile-enabled automatic sign-in in WhatsApp. In this era of customer satisfaction,
this technology has been well received by the end users for the product's success.

www.EBooksWorld.ir

Definition of Schema
As the word Schema is quite popular in the RDBMS world, let us take a minute to
assess what Schema is. By definition, Schema is one of the many different types of
structured data used to leverage the data carrier across multiple layers of enterprise
application.

In simple terms, Schema is the skeleton of the data structure to be used in an
enterprise application. As an example, a banking application might represent the
customer details in some prescribed layout, which is termed as Customer schema of
the banking application. In the RDBMS context, a predefined structure is essential for
efficient database management in the storage layer. Also, it helps to build and search
the relationship between the different objects of the underlying database tables.

www.EBooksWorld.ir

Schema free - NoSQL
In the modern highly distributed computing system, a strict schema data store restricts
the enterprise application to scale horizontally. With the evolution of the Big Data
technologies, schema-free design becomes more popular around the industry. The Big
Data industry refers to a term called NoSQL data store. In fact, we should not
literally interpret the word NoSQL; actually, it is Not Only SQL.

As the name itself explains, schema-free is built on a data model/design without any
strict schema. Data structure is highly runtime dynamic, that is, the data store schema
is altered during the execution of the application. So, there is no need to define the
upfront frozen data design in an enterprise software development cycle.

www.EBooksWorld.ir

Fixed vs no schema
In the fundamental design, no schema does not design the application data store based
on the relationship between data entities (like fixed schema). Rather, the design of the
data store is flexible and dynamic based on the end user query/request against the
enterprise application.

Let us illustrate this with a real-time example to understand it in a better way. In a
traditional application, say the customer has been advised to share their data feed in
a prescribed format, such as comma-separated, excel-based file, and the like. Here,
the end customer is forced to send the input data layout strictly in the predefined
format, required by the built enterprise application. On deviation from this fixed
schema of input file, the system will reject the source abruptly.

In modern applications, this is completely reversed. For example, the Facebook
application allows the end user to post/host their messages in whatever format they
want. FB never instructs the end user to feed their input data using a predefined
format. The FB users can post their input data in audio, video, message, images, of
literally any format. Even within the image upload, FB allows the user to host the
snapshot of any image format like JPG, BMP, GIF, PNG, and so on. For the end user
of FB, this concept of no schema for input feed provides great flexibility.

We hope that these real-life examples of the traditional fixed schema and modern no-
schema models clarify the key differences between them.

To illustrate more precisely, a matrix has been drafted with the x-axis representing
Fixed Schema and No Schema along with y-axis as Flat Layout and Complex
Layout. Four commonly used input feed sources like CSV, Avro, HBase, and JSON
are categorized in the appropriate quadrants of the matrix, as shown in the following
diagram:

www.EBooksWorld.ir

The main strength of no-schema databases becomes known when using them in an
object-oriented context with inheritance.

The key advantage of a schema-free database is that we can store the data as it is. By
doing schema-free design, it will be challenging to impose the database structure
rules. A good example is that of the flexibility to post any type of content (like audio,
video, image, and others) on the Facebook wall.

Another advantage of a no-schema database is that it gives additional agility during
development. It easily allows you to try new features without having to restructure
your database during the later phases of the software development life cycle in the
enterprise environment.

On the flipside of no schema usage, metadata is a vital component to interpret the
meaning of the actual data store.

www.EBooksWorld.ir

NoSQL types
So far, you've got a clear idea on schema-free NoSQL data store for the model highly
distributed computing application. Let us take a deep dive into the various types of
NoSQL data store. Broadly speaking, a NoSQL data store is categorized into four
areas, namely:

Key Value
Column
Document
Graph

A few samples of these four categories of NoSQL data stores are depicted in the
following image:

Let us explore the four types of NoSQL data stores:

Key Value: As per the principles of data management, Key is a primary value
used to seek the content of the associated record. As self-defined, Key Value
databases pair keys to values. A classic example is employee ID, which is the
key element to map the employment details of an associate in a firm. Well-
known examples of Key Value NoSQL databases are Microsoft Azure Table and
Amazon Dynamo DB.
Column: In a traditional RDBMS, an entire record is persisted in the underlying
disk at the table-row level. It helps the RDBMS table to retrieve a particular
row faster. Therefore, RDBMSs are termed as row-based databases. In contrast,
the modern column-family NoSQL databases store all the values of a particular

www.EBooksWorld.ir

column together on-disk. Apparently, it makes data retrieval of a large amount of
a specific attribute faster. As a result, this approach helps the end user to
aggregate queries and analytics scenarios in which the intention is to execute the
data retrieval based on a particular field of the record. This type of NoSQL is
the perfect solution for any query-based modern distributed application. In my
own experience in the development of financial products, I had an opportunity to
swim the depth and breadth of column family stores like Cassandra and Vertical.
Document: By design, these types of NoSQLs consider documents as a record
of its storage. In simple terms, a document is generally defined as a grouping of
key-value pairs (as referred in the first category of NoSQL). The major
difference lies in the Value section of a Document NoSQL on comparison with a
Key Value NoSQL. Actually, the document value can be nested to arbitrary
depths, which leads each document to carry its own schema. The most popular
Document NoSQL industry database is MongoDB.
Graph: Graph data structure is the fundamental design here. As we know, Graph
is a network model with a unique feature to traverse more than one path using
uni- and bi-directional paths/edges between nodes. Connections between nodes
are termed as edges in graph theory. The strength of a graph database is in
traversing the connections between the nodes. However, they generally require
all the data to fit on one machine, limiting their scalability. Graph NoSQL is the
best suitable data structure in the modern social computing connectivity model.
In fact, LinkedIn connections (with all permutations and combinations) are
derived using the industry popular Neo4j graph database.

www.EBooksWorld.ir

Architectural best practices
Traditionally, Scale up methods are used to increase the power of an enterprise
server. Here, concurrent programming methodology is leveraged using multi-core
architecture in the context of a single application in an enterprise world.

In the modern world, Scale out design is followed to implement the scalability of
any enterprise infrastructure. Highly distributed programming is the foundation for
this model, which works by distributing the given job across the connected machines
throughout the network:

Legacy mainframe and modern Hadoop processing are the best suitable examples for
the Scale up and Scale out designs respectively. It will be easy to understand the
fundamental design change with the right example.

During mainframe days, the vertical scaling/scale up was used to upgrade the
capacity of the existing server by adding more processors and memory. This process
was not only costlier, but also could not scale beyond a threshold. On the other hand,
horizontal scaling/scale out refers to adding more servers with less processors and
memory. Usually, Scale out is not only cheaper in terms of the overall cost, but can
also, literally, scale infinitely without any limitation.

To make the comparison clear, the following table lists the differences between Scale
up and Scale out, based on the fundamental design concepts and implementation
specifications of an enterprise application:

S.No. Design element Scale up Scale out

1 Fault tolerance Great risk Easy by design

2 Upgrade mechanism High effort Easy to
implement

3 Elasticity (on demand)

www.EBooksWorld.ir

Remote chance Easy to build

4 TCO (Total Cost of Ownership) Large Medium

5 Adaptation to the modern
cloud model Difficult Easy

6 Utility cost (electricity and cooling
charges) Relatively less High

7 Network equipment like switches
and routers Medium High

8 License quantity Moderate High

9 Agile methodology Challenge to
follow Easy adoption

Based on your enterprise need, limitations, and so on, it is highly recommended to
choose either Scale up or Scale out as the right fit. It should be a wise and careful
decision taken by the infrastructure and enterprise architects of the firm.

www.EBooksWorld.ir

Microsoft HDInsight
Big Data is creating a tsunami in the current IT world. Every firm / product company
is investing heavily in this space. Microsoft is not an excuse in the race of open
sourced big data technology platform.

As Microsoft shifted their strategy towards open source in recent years, they focused
their Big Data efforts with Hortonworks. The resultant product is named as
HDInsight ,with general availability since October 2013:

On reviewing the history, Google published its trade secret in 2004 using the
MapReduce research paper. Then, it was available for everyone to use as an open
source. On similar lines, Doug Cutting used to work on the Apache Nutch project as
the open source. Inspired by Google's research paper, Doug released the Hadoop
framework with the support of Yahoo. Since then, Big Data framework has been quite
popular in the industry.

As Microsoft was already ahead in Cloud space using Microsoft Azure, it became
easy to launch their Big Data suite HDInsight using its own cloud platform:

As depicted in the preceding diagram, Hadoop is hosted in the cloud-based virtual
boxes on the Microsoft Azure platform by leveraging either Windows or Linux

www.EBooksWorld.ir

distribution. There are three layers in this HDInsight design, which are as follows:

Storage (top layer of Azure storage elements)
Infrastructure (middle layer of Windows Azure VM)
Process (HDInsight HaaS Hadoop as a Service)

In any computing theory, Process and Storage are the two fundamental blocks by
design. The underlying platform is termed as Infrastructure. In this section, we are
going to analyze three items:

Storage: Traditional RDBMS persists the content in the Table object, if it is
structured. In case of unstructured content, the data is stored in the Blob object.
As per the design, there are two core storage models supported by the
HDInsight ecosystem, namely Azure Storage System and Hadoop Distributed
File System. As Hadoop is the industry-popular stack, HDFS content is
accessible using interoperable HDFS API. Though Azure storage is a separate
element, WASB (Windows Azure Storage Blob) is designed for storage
interoperability between HDFS and Azure Blob.
Infrastructure: In terms of Infrastructure, Microsoft provides a powerful
industry adopted cloud platform namely Azure. Architecture and design of
Azure platform is capable to support the next generation scalable Big Data
platform.
Process: In terms of processing, HDInsight service is completely built based on
the Apache Foundation Hadoop software, which is designed on the open source
concept. By doing so, the HDInsight ecosystem leverages the standard and open
source Hadoop concepts and technologies. In turn, it helps the end user to learn
and deploy in the system easily. On top of that, HDInsight supports Windows
PowerShell scripting for better deployment. Fundamentally, the ecosystem is
implemented by the elastic business needs of the end customer using Microsoft's
cloud-based Azure.

www.EBooksWorld.ir

HDInsight ecosystem
In my experience, big data solution requires several products and technologies,
because no single product in the market delivers an end-to-end solution. There is no
single silver bullet to resolve all the Big Data challenges. On similar lines, Hadoop
and HDInsight are critical technologies in a modern Big Data solution. There are
three essential elements in HDInsight platform, which are described as follows:

Data management: It is considered as the initial layer of the HDInsight
ecosystem. It extracts and loads the source data feed with built-in tools like
Microsoft Sqoop. If the business use case has the real-time feed, Microsoft
StreamInsight is the live data-streaming engine to ingest the source feed into the
main application.
Data enrichment: Its key objective is to improve the raw source data into
understandable quality data. Microsoft's SQL Server has a DQS (Data Quality
Services) component, which cleans the data from multiple sources for analysis.
Data analytics: Technology needs to enable the business. To achieve this, a big
data solution must deliver actionable insights through a rich set of analytical
tools including Business Intelligence (BI), advanced analytics using data
mining, machine learning, graph mining, and others.

As an enterprise Big Data system, the ideal end-to-end solution is proposed in the
following design diagram:

www.EBooksWorld.ir

Briefly, HDInsight is a powerful Hadoop distribution, which opens up new
opportunities for developing Hadoop applications in the Microsoft cloud platform,
Azure. With HDInsight, the user can easily deploy a Hadoop platform in less than 20
minutes, which is impressive. Also, it supports pretty much all the common languages
such as Java, .NET, and the like, to develop Hadoop applications in a quick and
powerful way.

www.EBooksWorld.ir

Introduction to Business Intelligence
(BI)
On analyzing the history of the computing industry, BI was initialized at Lyons
Electronic Office during the early 1950s. Interestingly, in those days, the system was
built using thousands of vacuum tubes. It is termed as meeting business needs through
actionable information.

The following is a graph depicting the business value of BI against the time factor:

The preceding graph indicates a major shift in the BI space. It started with the simple
reporting of text-based content. With time, BI integrated the financial and operational
perspective in their output. Then, it covered the system metric at the company level to
add business value. Now, BI generates the predictive analysis-based report with
real-time data of the business.

www.EBooksWorld.ir

Current trend
In today's Big Data world, BI has matured to a greater level with four major
classifications, namely:

Descriptive
Diagnostic
Predictive
Prescriptive

With the available raw source data, BI helps to build meaningful information to act
and decide using one of the aforementioned models. Let us illustrate them in detail
with the real life scenario of being an end customer of a mobile service provider.

Descriptive: The core theme of a descriptive report is, What happened to source
data? Being the mobile user, we are sent the monthly usage/billing report by the
service provider. The monthly report shares the billing details with the associated
transactions of mobile calls/usage during the specified period. Therefore, it gives a
perspective on what happened to my mobile usage during the last month.

Diagnostic: A diagnostic report responds to the question, Why did it happen? In the
same scenario, the mobile service provider can send the monthly usage report along
with reasons for the usage spike (if any). Assume that the data consumption was quite
high for a few days due to the local seasonal festival. It might be the reason for the
usage spike in the monthly report.

Predictive: The core theme of a predictive report is, What will happen inferred from
the source data? With this type of report, the mobile service provider will be in a
position to predict the upcoming usage spike based on the historical usage and social
media seasonal feeds. For the end user, the monthly usage report will be delivered
along with the predictive usage for the upcoming days.

Prescriptive: A prescriptive report is an advanced action-oriented report with the
theme, What should I do as a corrective action?. In the discussed use case, the
prescriptive report shares some beneficial action with customer as well as the
service provider. As an example, the prescriptive report may share the insight to
promote the existing mobile plan into a beneficiary plan based on the earlier
prediction. Ultimately, it adds value for both the stakeholders. It is a win-win
situation for the end customer and the mobile service provider. Hence, this advanced
action oriented prescription is in high demand for modern business execution.

www.EBooksWorld.ir

www.EBooksWorld.ir

Road map

In any IT company, there are the following two key strategies:

Change the business
Run the business

With advanced BI in place, research indicates that 80% of all enterprise reporting
will be based on modern business intelligence and analytics platforms; the remaining
20% will still be on IT-centric operational reports. Key drivers are 80% towards
change strategy and the remaining on run the business. Therefore, BI strategy is
considered the key business success criteria, going forward.

As per the Gartner report, the BI market has shifted to a more user-driven, agile
development of visual, interactive dashboards with data from a broader range of
sources. With my rich experience of building the financial enterprise data hub, I can
sense the breadth and depth of the broader range of sources.

www.EBooksWorld.ir

Power BI architecture
Power BI is a self-service BI platform, launched by Microsoft ahead in the race,
during the 2010 Microsoft Excel product release. It was initiated with the name
Power Pivot for Microsoft Excel. However, the initial launch did not pick up with
the BI end customers, so, Microsoft gathered user feedback, and carefully constructed
the current version of Power BI.

The following diagram depicts the Power BI architecture:

As described in the preceding diagram, Power BI has two key layers, namely, Excel,
and Office 365. Pretty much any type of input data source is supported by Excel. At
the same time, Power BI report has common platform support like Windows, web,
and mobile-based end user experience.

Power BI is an evolution of the add-ins previously available in Microsoft Excel, like
Power Pivot, Power Query, and Power View. Let us explore the functionality of these
components.

PowerPivot is placed as a data analysis tool. For customer convenience, it can be
easily used within the Excel product rather than a standalone tool. Moreover, this
tool helps the end customer to ingest the data literally from any kind of data source
without much restriction. In turn, it adds a degree of flexibility in the ecosystem. In
terms of output, PowerPivot generates end custom reports based on data insights,
data analysis, collaboration, and so on.

Power Query is used for the purpose of data discovery; it can be easily embedded in
an Excel add-in. It helps the end user to reshape the data and to combine the data
coming from different sources. Power Query is supplied as a plug-in product from
Microsoft Power BI self-service solution. It is considered the common ETL
(Extract Transform Load) tool component. It has an intuitive and interactive user
interface, which can be used to search, discover, acquire, combine, refine, transform,
and enrich the data.

www.EBooksWorld.ir

Power View is a vital output component. It enables the end user to build interactive
data exploration and visualization. The Power View product promotes intuitive ad
hoc reporting using enterprise data sets. As data visualizations are dynamic in nature,
it is easy for the end user to produce a single consolidated report.

www.EBooksWorld.ir

Power BI layers
As you know, Power BI supports the end user to create personalized dashboards to
monitor their most important data on-premise and from cloud-born enterprise critical
data points.

In terms of system layers, Power BI Desktop and Power BI are two sides of the same
coin. Power BI Desktop is a Windows application running on your PC, whereas,
Power BI is a cloud service that you use through the web browser:

Power BI is a cloud service, which provides tools to perform analysis of data, and
gain insights from your numbers. It is quite easy to create visualizations by using
natural-language queries, Quick Insights, or full reports.

In terms of the reporting process, the end user can access the enterprise dashboards
and reports on mobile devices by using native apps. Most importantly, the end user
experience is the same across multiple platforms.

Visualization plays a key role in promoting the success score for the end user.
Additionally, it adds business value for all stakeholders. In the modern world, the
end user expects intuitive, informative, and interactive reports.

Let us illustrate with a perfect example. Our use case is corporate travel analysis and
its consequences. As every firm marches towards cost-reduction initiatives, travel is
a hanging fruit for the senior management.

To make a decision on this strategic cost initiative, the system is expected to share the
data points in different dimensions. In our use case, travel data is analyzed with a
region-wise split, quarterly sales, trips segregation based on purpose, types of
booking like rush, normal, seasonal, and so on. On plotting the various business
analysis using Power BI, the user community can easily proceed to make business
decisions with multiple dimensions of the source data:

www.EBooksWorld.ir

Few highlights of the Power BI products are as follows:

Real-time support: It has the facility to update data not only scheduled refresh,
but also live-stream data
Office Integration: Power BI has a seamless easy integration with Microsoft
Office product suite
Data Security: Power BI has a data access mechanism for specific users with
row-level security
Next Gen Service Availability: Coordinated with the industry evolution,
Power BI exposes the business functionality using the REST API mode

www.EBooksWorld.ir

Artificial intelligence (AI)
In recent times, a few words such as Robotics, Artificial intelligence, Analytics,
Data mining, Machine learning, and so on are powerful in the current IT industry.

In this highly competitive world, it is extremely important for any software engineer
to understand the concepts and usage of the emerging fields. It is essential to survive
in the rapid-growth IT industry.

www.EBooksWorld.ir

Core components
AI is a broad term referring to computers and systems that are capable of, essentially,
coming up with solutions to problems on their own. The solutions are not hardcoded
into the program; instead, the information needed to get to the solution is coded, and
AI (used often in medical diagnostics) uses the data and calculations to come up with
a solution on its own.

One of the daily-life AI examples is seen on online portals like Amazon, Netflix, and
others. AI accomplishes a useful task by recommending music and movies based on
the interests you have expressed and judgments you have made in the past. By
monitoring the choices you make and inserting them into a learning algorithm, these
apps recommend that which you are likely to be interested in:

As depicted in the preceding diagram, AI is the superset of the listed components,
and so, it's a vast area to explore.

www.EBooksWorld.ir

Machine learning (ML)
Often confused with Artificial intelligence, machine learning actually takes the
process one step further by offering the data necessary for a machine to learn and
adapt when exposed to new data. I would define it as the self-learning capability of
the machines by modern computing principles. Fundamentally, it is designed and built
by reading mined data, creating a new algorithm through AI, and then updating the
current algorithms in a highly dynamic fashion according to the newly learnt task. In
turn, the self learning matures with time and with more experience/executions.

ML has the following few fundamental capabilities:

Generalizing information from large data sets
Detecting and extrapolating the data patterns
Applying derived information to the needy solutions
Executing the appropriate actions

By design, the preceding execution steps are based on self-intelligent algorithms.
Obviously, certain parameters must be set up at the beginning of the machine learning
process so that the machine is able to find, assess, and act upon new data.

www.EBooksWorld.ir

Data mining
Data mining is an integral part of coding programs with the information, statistics,
and data necessary for AI to create a solution:

In the traditional reporting model, the data source is retrospective, and looks back to
examine the exposure of the existing information.

However, in the case of data mining, as the name implies, the same data source is
described. This method summarizes the raw data, and makes it something that is
interpretable by humans. They are analytics that describe the past. The past refers to
any point of time when an event has occurred, whether it was one minute or one year
ago. Descriptive analytics are useful, because they allow us to learn from past
behaviors, and to understand how they might influence future outcomes.

www.EBooksWorld.ir

Interconnectivity
On connecting the dots of the aforementioned platforms, Artificial Intelligence is the
foundation that is followed by Machine learning, Statistics, and Data mining,
chronologically. In simple terms, AI is the superset of all paradigms, which is
represented in the following diagram:

Artificial intelligence is a science to develop a system or software to mimic humans
in response and behavior in a given circumstance. As the business benefits, AI
provides effective execution by increased automation, with a reduced defect rate for
enterprise applications.

www.EBooksWorld.ir

AI at Microsoft
As AI is the foundation of next generation Robotics, Machine learning, Data mining,
and so on, there are lots of attractions in this space in industry and institutes.

At Microsoft, research plays a crucial role in driving those breakthroughs. The
Microsoft research team has influenced virtually every released product in the past
three decades, including Cortana, Azure ML, Office, Xbox, HoloLens, Skype, and
Windows. Microsoft researchers believe in sharing these fundamentals through
Project Oxford and CNTK, and through partnerships with leading universities and
research organizations.

www.EBooksWorld.ir

Industry Bots
Bot is the short form of Robot. What is a Bot?

By definition, it is a software program that operates as an agent for a user or another
program, or simulates a human activity. The best common industry-used example is
the Internet crawler program. It accesses websites and gathers their content for
search engine indexes.

www.EBooksWorld.ir

Microsoft open source strategy
Satya Nadella could not have found a better way to tell the IT world there is a new
sheriff in town than when he said these three words: Microsoft loves Linux.

It's a complete contradiction of what Ballmer said in June 2001: Linux is a cancer
that attaches itself in an intellectual property sense to everything it touches.

In this process, Microsoft is partnering with open source companies such as
Canonical Ltd. to enable Windows Server to run as a guest OS on Ubuntu and
OpenStack.

Hot core development platform, .NET Framework, is being migrated into open
source as .NET Core with cross platform (Windows, Linux, Mac, and others).

www.EBooksWorld.ir

Cognitive Services
With Open Source Strategy, Microsoft initiated Cognitive Services, which expands
on Microsoft's evolving portfolio of machine learning APIs, and enables developers
to easily add intelligent features such as emotion and video detection, facial, speech,
and vision recognition, and speech and language understanding into their
applications.

Microsoft Cognitive Services (formerly, Project Oxford) are a set of APIs, SDKs,
and services available for developers to make their applications more intelligent,
engaging, and discoverable. These APIs of Cognitive Services are hosted on
Microsoft-managed data centers.

www.EBooksWorld.ir

Microsoft Bot
Microsoft Bot Framework is a comprehensive offering to build and deploy high
quality bots for users to enjoy in their favorite conversation experiences.

Bot Framework provides just what you need to build, connect, manage, and publish
intelligent bots, which interact naturally wherever your users are talking from
text/sms to Skype, Slack, Facebook Messenger, Kik, Office 365 mail, and other
popular services.

A chatbot can be easily built into any major commonly used chat product like
Facebook Messenger or Slack. On analyzing where people really spend time, you
will probably get details about where users are.

www.EBooksWorld.ir

Summary
In this chapter, you learned about virtual machines and containers, and understood the
difference between containers and VMs, various containerization technologies, and
how the containerization fundamentals in today's world make up the full ecosystem,
especially docker-based containers.

You also learned about the core of DevOps, practices including the CI and CD
processes, and how it is becoming common in modern cloud-based development and
deployment scenarios. Along the way, we also gave recommendations on the most
popular tools for the right job in today's market. Now, the reader will be able to learn
the emerging Architecture practices of the industry in a succinct and concise way
with the .NET Core environment.

We went on to implement a sample microservices-containers-based application,
something which we chose to skip in the Chapter 9, Microservices Architecture, and
decided to demonstrate it when explaining containerization. We not only implement,
our sample microservices application locally, but also successfully deployed our
multi-container app on the Azure cloud using Azure container services. We discussed
some of the internal aspects of Azure and its offerings for container-based
applications. We also deployed our application on to ACS, which demonstrates how
easy and flexible today's cloud infrastructure like Azure and AWS have become.

www.EBooksWorld.ir

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Enterprise Architecture Concepts
	Why do we need Enterprise Architecture?
	Definition of Enterprise Architecture
	Stakeholders of Enterprise Architecture
	Business benefits

	Knowing the role of an architect
	Role comparison between EA and SA
	Degree of Comparisons

	Commonly known EA Frameworks
	General Purpose Frameworks
	Domain Specific Frameworks

	Architecture segregation
	Business Architecture
	Data Architecture
	Application Architecture
	Technology Architecture

	Introduction to TOGAF
	Evolution of TOGAF 9.1
	Core components
	Industry usage

	Introduction to Zachman
	Evolution
	Core components

	Summary

	Principles and Patterns
	Getting started with principles and patterns
	Why follow design principles?
	What are design patterns?
	Why use design patterns?

	SOLID design principles
	SRP - Single Responsibility Principle
	SRP example - The decorator pattern

	OCP - Open Closed Principle
	LSP - Liskov Substitution Principle
	ISP - Interface Segregation Principle
	DIP - Dependency Inversion Principle

	Dependency injection
	Introducing dependency injection
	Knowing about the Service Locator pattern
	Dependency injection support with .NET Core

	GoF design patterns
	What are software design patterns?

	Creational patterns
	The singleton pattern
	Variations on the singleton pattern

	The factory method pattern
	Abstract factory pattern
	Builder pattern
	A commentary on creational patterns

	Structural patterns
	Adapter pattern
	Bridge pattern
	Flyweight pattern
	A commentary on structural patterns

	Behavioral patterns
	The template method pattern
	The observer pattern
	The chain of responsibility pattern
	The visitor pattern
	The strategy pattern
	The state pattern
	A commentary on behavioral patterns

	Summary

	Distributed Computing
	Understanding Distributed applications
	Definition
	Comparison

	Multiprogramming
	Thread synchronization
	Storage
	Process
	Concurrency
	Parallelism

	Multithreading exercise
	ThreadStart
	ThreadPool
	Task Parallel Library (TPL)

	Design challenges
	Transparency
	Reliability
	Fault tolerance
	Performance
	Decompose
	Caching

	Scalability
	Scale up
	Scale out
	Comparing scale up with scale out
	Connecting the dots

	Security
	Goals
	Attack
	Threats

	Summary

	Software Development Life Cycle
	What is SDLC?
	Need for a process
	Insight of core phases
	SDLC models

	The Waterfall model
	Core phases
	Business requirement
	System analysis
	System Design
	Coding
	Testing
	Maintenance

	Understanding the Spiral model
	Core phases
	Comparing the Waterfall model with the Spiral model
	Benefits
	Challenges
	Usage recommendation

	Agile model
	Top five reasons to adopt Agile
	Ambiguous requirements
	Requirement changes
	Big planning is not practical
	Software review is better than document
	Iterative incremental delivery is preferred

	Industry evidence
	Scaled Agile Framework (SAFe)
	History
	Success Factors

	Microsoft open source strategy to life cycle
	Traditional Microsoft model and its origin from MS-DOS
	Driving factors of the open source model
	Twin tracks of .NET Framework and .NET Core
	Comparing .NET with .NET Core
	Current stack of open source tools and techniques

	Summary

	Enterprise Practices in Software Development
	What is ALM?
	Core aspects
	ALM vs SDLC

	Source Code Control System
	Git
	TFS
	Git vs TFS
	Visual Studio Integration
	Team Foundation Version Control (TFVC)
	Git

	Developing .NET Core project templates for enterprise applications
	Creating a custom .NET Core project template using .NET command-line interface tools

	Performance measuring for .NET applications
	CPU utilization
	Using the Sampling method in Visual Studio to collect performance statistics

	Measuring UI responsiveness
	Analysing memory leaks
	Identifying memory leaks

	Summary

	Layered Approach to Solution Architecture
	Layers in layered architecture
	Presentation layer
	Service layer
	Business layer
	Transaction Script pattern
	Table Module pattern
	Active Record pattern
	Domain Driven Design (DDD) pattern

	Data access layer
	Objectives of layered architecture

	Practical implementation of layered architecture in .NET Core
	Scope
	Logical architecture
	Presentation layer
	Service layer
	Business layer
	Data access layer
	Common layer

	Setting up the environment
	Creating the solution
	Creating the common layer
	Entities mapped to database tables
	Business objects
	Logging events
	Logging helper

	Data access layer
	Creating Data Context
	Creating DbFactory
	Repository pattern
	Unit of Work pattern
	Running migration

	Business layer
	Develop core classes
	Developing business managers
	Logging in .NET Core

	Creating the service layer
	Creating base controller
	Adding Custom Action Filters
	Add controllers

	Creating the presentation layer
	Single Page Applications
	Benefits of a SPA
	Developing the presentation layer using ASP.NET Core and Angular
	Setting up frontend packages
	Configuring the ASP.NET Core pipeline
	Adding the Angular components
	Creating MVC Controllers and Views

	Summary

	SOA Implementation with .NET Core
	SOA definition
	What is SOA?

	SOA modeling
	SOA Reference Model
	Reference model and reference architecture relationship
	SOA Reference Architecture
	Common reference information architecture
	Common reference Infrastructure architecture

	SOA features and components
	Service Component Architecture
	Service types
	Service composition
	Service orchestration
	Service choreography

	Common technology standards
	Service discovery
	Message broker
	Enterprise Service Bus (ESB)
	ESB Segments
	ESB features

	Data
	Master Data Management (MDM)
	Common data model
	Live business metrics

	Services gateway
	SOA services library
	Tracking, logging, and error handling in SOA
	Notes

	Sample SOA implementation
	Introduction
	Sample enterprise
	Departments of a sample enterprise
	Sample data models for departments
	Sample business processes for departments
	Sample database models for departments

	Bounded contexts
	Services implementation
	Solution structure
	Sample database
	Sample development and system services
	Sample information service
	Employee information SOA service
	Employee Information business logic layer
	Repositories in the data access layer
	Employee information core data access layer
	Entity in an employee information model

	Sample adapter service
	Sample background service
	Sample interaction (notification) service
	Sample mediation service
	Sample scenario of a service choreography

	Summary

	Cloud-Based Architecture and Integration with .NET Core
	Cloud Computing Models
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)

	Azure compute
	Virtual machines
	Cloud services
	Worker Role
	Web Role

	App Services
	Azure Service Fabric
	Features comparison between virtual machines, cloud services, Azure App Services, and Service Fabric

	Rapid application development using Azure App Services
	Web Apps
	Hosting an ASP.NET Core application on Azure
	Deployment slots

	API Apps
	Configuring Swagger in ASP.NET Core Web API and deploying on Azure
	Creating proxy classes using AutoRest in .NET Core
	Enable CORS

	Mobile Apps
	Offline sync
	Push notifications

	Logic Apps
	Connectors
	Trigger
	Actions
	Creating Logic App in Azure

	Scaling Azure App Services

	Background services and event handling in cloud
	WebJobs
	Developing WebJob using .NET Core
	Developing WebJobs using WebJobs SDK and .NET Framework 4.5
	Azure WebJobs versus Azure WorkerRoles
	Using WebHooks for event-based scenarios
	Using WebHook of WebJob from VSTS

	Azure Functions
	Creating a basic Azure Function to listen for Queue events

	Scalability and performance options in Azure App Services
	Increasing storage performance
	Command-Query Responsibility Segregation (CQRS) pattern
	Denormalization
	Azure Table storage
	MongoDB

	Caching
	Local cache
	Shared cache
	Using Redis Cache in Azure
	Creating the Redis Cache
	Configuring the .NET Core app to use Redis Cache on Azure

	Queuing

	Logging and monitoring in Azure
	Logging
	ASP.NET Core logging in Azure
	Web server diagnostics
	Application diagnostics

	Accessing logs
	Accessing logs via FTP
	Accessing Logs via Azure PowerShell

	Monitoring
	SCOM (System Center Operations Manager)
	Application Insights
	Application hosted on Azure
	Application hosted on-premise
	Use Application Insights API
	Setting up Application Insights in ASP.NET Core Application

	Summary

	Microservices Architecture
	Microservices architecture definition
	What is microservices architecture?
	Microservices and SOA
	Microservices and monolithic applications
	Web API and web services
	Characteristics of a microservices architecture
	Best for microservices architecture
	Documentation
	Business capabilities
	Business processes
	Microservice interfaces
	Microservice code
	Microservice data store

	Logging and monitoring
	Immutable Infrastructure
	Containerization
	Stateless

	Architectural elements
	Bounded Context in Domain Driven Design
	DDD (Domain Driven Design)
	Guiding principles
	Foundational concepts

	Bounded context

	Microservices come in systems
	Service discovery
	Client-side service discovery
	Server-side service discovery

	Service registry
	API gateway

	Architectural motivations
	Agile Manifesto
	Reactive Manifesto
	Reactive systems

	Reactive microservices architecture
	Key aspects of Reactive Microservices

	Serverless architecture
	Backend as a Service (BaaS)
	Function as a Service (FaaS)
	Key aspects of serverless architecture
	Type of code
	Stateless
	Short-lived
	Almost zero administration
	Automatic scaling
	Event-driven

	Let's wrap it up

	Azure for microservices
	Azure Functions
	Azure Service Fabric
	Azure Container Service
	Bringing it together

	Implementation samples
	Microservices architecture for our sample enterprise
	Problem domains
	Publishing team
	Marketing team
	Sales team
	Platform administration team
	Other teams

	Contexts for the respective teams
	Customer Relationship Management system
	Document Management System
	Understanding the Microservices Bounded Team Contexts
	General service information flow
	Sales Team Context
	Marketing Team Context
	Publishing Team Context
	Platform Administration Team Context

	Enterprise portal mockup
	Overall microservices architecture
	Common communication mechanismsin microservices

	Serverless architecture for a sample application
	Our sample application - Home automation
	High-level application design
	Serverless architecture in Azure
	Let's wrap it up

	Summary

	Security Practices with .NET Core
	Authentication and authorization modes
	Securing applications with ASP.NET Core Identity

	Security architecture in ASP.NET Core
	Getting to know the core APIs of the Identity system
	HttpContext and AuthenticationManager

	Understanding the authentication and authorization process
	Authentication
	Implementing authentication using ASP.NET Core Identity and customizing the Identity data store
	Configuring authentication using Identity in an empty web application project
	Configuring Entity Framework Core
	Defining data context and user classes
	Configuring database connection and application configuration settings
	Configuring Entity Framework and Identity services
	Enabling authentication using Identity
	Creating an identity data store in SQL server

	Customizing existing Identity data store and adding new entities
	Creating and Signing-in/Signing-out users
	Adding claims in ASP.NET Identity membership

	How authorization works

	Using cookie middleware without ASP.NET Core Identity
	Claims transformation
	Cookie middleware events

	Implementing external authentication in ASP.NET Core applications
	Configuring external authentication in ASP.NET Core
	Creating a web application project
	Configuring apps on Facebook
	Enabling Facebook middleware

	Two-factor authentication
	Setting up an SMS account
	Enabling two-factor authentication

	Security in an enterprise
	Getting started with IdentityServer4
	Understanding OAuth
	Actors in OAuth
	Flows of OAuth 2.0
	Client credentials flow
	Implicit flow
	Authorization code flow
	Resource owner password credentials flow

	Understanding OpenID Connect
	OpenID Connect flows
	Authorization code flow
	Implicit flow
	Hybrid flow
	Claims and scopes
	Endpoints
	Discovery endpoint
	Authorize endpoint
	Token endpoint
	UserInfo endpoint

	Developing a Centralized Authorization System using IdentityServer4
	Creating a Centralized Authentication Service/Authorization Server
	Setting up IdentityServer4
	Defining scopes, clients and users
	Adding UI to enable authentication using OpenID Connect

	Creating an MVC web application project
	Adding OIDC and cookie middleware in HTTP pipeline
	Enabling MVC and controller
	Adding a Web API

	Authorization
	Declarative authorization techniques
	Basic authorization
	Authorization filters
	Filtering based on authentication schemes
	Filtering based on authorization
	Filtering based on policy

	Custom policies
	Imperative authorization techniques

	Safe storage
	Storing and retrieving safe storage values

	Summary

	Modern AI Offerings by Microsoft
	Virtual machines and containerization
	Virtual machine
	Simulation
	Emulation
	Virtual machine implementation base

	Containerization
	Evolution of containerization concepts
	Chroot
	FreeBSD Jails
	Solaris Zones
	OpenVZ
	Cgroups
	LXC
	Lmctfy
	Docker

	Modern container fundamentals

	Docker components
	Docker Engine
	Docker Compose
	Docker Machine
	Docker registry
	Docker Kitematic
	Docker Swarm
	Swarm mode

	Docker Cloud

	Docker containerization in Windows
	Docker for Windows
	Windows Containers

	Modern development
	Development editors
	Development environment setup
	Vagrant

	Cloud development and test environment

	DevOps
	The Culture
	Key motivational aspects
	Sharing
	Automation
	Measurement

	Software development and delivery process
	Continuous Integration
	Best practices
	Benefits of CI
	Improvement in Developer productivity
	Quick identification and addressing of bugs
	Faster Updates Delivery

	Continuous Delivery
	Continuous Delivery Pipeline

	DevOps toolchain

	A sample microservices application based on Docker containers
	The sample application
	Problem statement
	Application architecture
	Technical architecture
	Setup in Azure Container Service
	Architecture diagram

	Network architecture
	What is visible in this diagram?

	Hands-on prerequisites

	Why Azure Container Service?
	Azure App Service (on) Linux
	Creating VM directly on Azure
	Azure Service Fabric (ASF)
	Azure Container Service (ACS)

	Implementing the Math app
	Implementation approach
	Implementation Steps
	Installing the Hypervisor
	CentOS virtual machine
	CentOS configuration
	Container installation and execution
	Uploading container images to container registry
	Creating Azure Container Service
	Container installation and execution on ACS

	Big Data and Microsoft
	Definition of Schema
	Schema free - NoSQL
	Fixed vs no schema
	NoSQL types
	Architectural best practices
	Microsoft HDInsight
	HDInsight ecosystem

	Introduction to Business Intelligence (BI)
	Current trend
	Road map
	Power BI architecture
	Power BI layers

	Artificial intelligence (AI)
	Core components
	Machine learning (ML)
	Data mining
	Interconnectivity
	AI at Microsoft
	Industry Bots
	Microsoft open source strategy
	Cognitive Services
	Microsoft Bot

	Summary

