
Dynamic SQL
Applications, Performance, and Security
in Microsof t SQL Server
—
Second Edition
—
Edward Pollack

www.EBooksWorld.ir

http://www.allitebooks.org

Dynamic SQL
Applications, Performance, and

Security in Microsoft SQL Server

Second Edition

Edward Pollack

www.EBooksWorld.ir

http://www.allitebooks.org

Dynamic SQL: Applications, Performance, and Security in Microsoft SQL Server

ISBN-13 (pbk): 978-1-4842-4317-6			 ISBN-13 (electronic): 978-1-4842-4318-3
https://doi.org/10.1007/978-1-4842-4318-3

Library of Congress Control Number: 2018967497

Copyright © 2019 by Edward Pollack

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4317-6. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Edward Pollack
Albany, NY, USA

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-4318-3
http://www.allitebooks.org

To Theresa, Nolan, and Oliver: the best players 2-4 (aka: family)
I could ever have asked for!

www.EBooksWorld.ir

http://www.allitebooks.org

v

Table of Contents

Chapter 1: What Is Dynamic SQL?��� 1

Understanding Dynamic SQL��� 1

A Simple Example��� 1

The EXEC Statement��� 2

Data Type to Use��� 3

Dynamic Execution Process��� 3

Dynamic SQL in Action��� 4

Advantages of Dynamic SQL�� 7

Optional or Customized Search Criteria�� 7

Customizable Everything�� 7

Optimize SQL Performance�� 8

Generate Large Amounts of T-SQL or Text, Fast!�� 8

Execute SQL Statements on Other Servers or Databases�� 9

Do the Impossible!�� 9

Dynamic SQL Considerations��� 10

Apostrophes Can Break Strings�� 10

NULL Can Break Strings��� 10

Difficult to Read and Debug�� 11

Permissions and Scope Are Different��� 11

Dynamic SQL Cannot be used in Functions�� 12

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

www.EBooksWorld.ir

http://www.allitebooks.org

vi

Dynamic SQL Style��� 12

Document Thoroughly�� 12

Debugging Dynamic SQL�� 16

Write Dynamic SQL Just Like Standard T-SQL�� 19

String Sizes and Truncation�� 20

Management Studio Text Display��� 21

Sp_executesql�� 22

Building Strings via Concatenation�� 23

Notes on Apostrophes�� 29

Conclusion��� 30

Chapter 2: Protecting Against SQL Injection��� 31

What Is SQL Injection?��� 31

Cleansing Inputs�� 39

Parameterizing Dynamic SQL�� 42

Schema Name and Square Brackets��� 48

Effective Spacing��� 50

Properly Type Inputs��� 50

Blind SQL Injection��� 51

Detection and Prevention��� 53

Security Testing�� 53

Scanning of Application Traffic��� 54

Log Review��� 54

Code Review��� 55

Software Patching�� 55

Limit URL Length�� 56

Use Views and/or Masking for Sensitive Data�� 57

Vendor Software��� 57

Login Pages�� 58

Conclusion��� 60

Table of Contents

www.EBooksWorld.ir

vii

Chapter 3: Large Scale Searching��� 61

Why Use Dynamic Searches?�� 61

Custom Search Grids��� 67

Search Grid Considerations�� 79

Disallow Blank Searches�� 80

Data Paging�� 80

Conditional Paging�� 83

Search Limitations�� 86

Input-Based Search�� 87

Result Row Count��� 93

Additional Filtering Considerations�� 99

Alternatives�� 101

Conclusion��� 102

Chapter 4: Permissions and Security�� 103

The Principle of Least Privilege�� 103

Granular Permissions vs. Role Permissions��� 106

Dynamic SQL and Ownership Chaining�� 107

Changing Security Context On-the-Fly��� 112

Where Do Security Disasters Come From?�� 120

Users, Passwords, and Inconvenience��� 124

Dynamic SQL Maintenance�� 126

Cleaning House�� 138

Login and User Usage�� 140

Auditing Users and Logins��� 142

Memory Consumption�� 146

Row Level Security�� 153

Signing Stored Procedures�� 158

Conclusion��� 163

Table of Contents

www.EBooksWorld.ir

viii

Chapter 5: Managing Scope��� 165

What Is Scope?�� 165

Why Is Scope Important?��� 168

Managing Scope in Dynamic SQL�� 169

Using OUTPUT in Dynamic SQL�� 170

Table Variables and Temporary Tables��� 175

Table Variables��� 175

Temporary Tables��� 177

Global Temporary Tables��� 181

Using Permanent Tables for Temporary Storage�� 185

Output Data Directly to a Table from Dynamic SQL�� 187

Conclusion��� 190

Cleanup�� 191

Chapter 6: Performance Optimization��� 193

Query Execution��� 193

Parsing��� 193

Binding��� 193

Optimization��� 194

Execution�� 194

Optimization Tools�� 194

Query Execution Plan��� 195

STATISTICS IO��� 198

STATISTICS TIME��� 199

Use All of These Tools!�� 200

Dynamic SQL vs. Standard SQL��� 200

Query Parsing and Binding��� 200

Execution Plan Caching�� 202

Simplifying Queries�� 206

Paging Performance�� 215

Filtered Indexes��� 228

Table of Contents

www.EBooksWorld.ir

ix

Cardinality�� 233

Statistics��� 234

Sys.dm_db_stats_properties��� 244

Trace Flag 2371�� 245

Back to Dynamic SQL��� 246

Query Hints�� 247

Conclusion��� 254

Cleanup�� 254

Chapter 7: Scalable Dynamic Lists�� 257

What Is a Dynamic List?��� 257

Using XML to Create a Dynamic List�� 260

Set-Based String Building�� 264

Revisiting Security��� 267

STRING_AGG�� 274

Conclusion��� 278

Chapter 8: Parameter Sniffing��� 279

What Is Parameter Sniffing?�� 279

Parameter Sniffing Examples�� 282

Identifying Parameter Sniffing��� 297

Design Considerations��� 298

Query Execution Details��� 299

The Red Herrings�� 302

Parameter Values��� 307

Local Variables��� 308

Forcing Cardinalities to the Optimizer�� 316

Dynamic SQL�� 320

Trace Flag 4136�� 322

Fix Bad Business Logic��� 322

Conclusion��� 325

Cleanup�� 325

Table of Contents

www.EBooksWorld.ir

x

Chapter 9: Dynamic Pivot and Unpivot�� 327

PIVOT�� 327

UNPIVOT��� 337

Additional Examples��� 343

Multiple PIVOT Operators��� 347

Multiple UNPIVOT Operators��� 350

Classification Using PIVOT and CASE��� 358

Conclusion��� 360

Chapter 10: Solving Common Problems�� 361

Collation Conflicts�� 361

The Problem��� 362

The Solution�� 369

Organizing and Archiving Data��� 372

The Problem��� 372

The Solution�� 374

Customized Database Objects��� 380

The Problem��� 380

The Solution�� 380

A Note on System Tables��� 388

Conclusion��� 389

Chapter 11: Applications of Dynamic SQL�� 391

Database Backups��� 391

Saving Generated Scripts��� 399

Saving Scripts to a Table�� 399

Executing TSQL on Other Servers�� 409

Generating Schema from Metadata��� 412

Building a Solution��� 412

Conclusion��� 420

Table of Contents

www.EBooksWorld.ir

xi

Chapter 12: Index Usage and Maintenance��� 421

Index Defragmentation��� 421

Index Rebuild�� 423

Index Reorganization�� 424

Creating an Index Maintenance Solution�� 424

Index Usage Statistics�� 430

Missing Index Statistics��� 466

Conclusion��� 485

Index�� 487

Table of Contents

www.EBooksWorld.ir

xiii

About the Author

Edward Pollack has over 18 years of experience in database

and systems administration and architecture, developing a

passion for performance optimization and making things

go faster. He has spoken at many SQL Saturdays, 24 Hours

of PASS, and PASS Summit. This led him to organize SQL

Saturday Albany, which has become an annual event for

New York’s Capital Region.

In his free time, Ed enjoys video games, sci-fi & fantasy,

traveling, and cooking exceptionally spicy foods. He lives in

the subarctic icescape of Albany, NY with his wife Theresa,

his sons Nolan and Oliver, and an impressive collection of

video game-related plushies and figures.

www.EBooksWorld.ir

xv

About the Technical Reviewer

Kathi Kellenberger is the editor of Simple-Talk at Redgate Software, and Data Platform

MVP with over 20 years experience working with SQL Server. She is the author of several

books, including Beginning T-SQL, Beginning Reporting Services, and Expert T-SQL

Window Functions. When she is not working, she enjoys spending time with friends and

family, singing, and climbing the stairs of tall buildings.

www.EBooksWorld.ir

xvii

Acknowledgments

The SQL Server community is vast, made up of user groups, companies, professionals,

colleges, and organizations that create a network of like-minded individuals all looking

to further their knowledge, while at the same time helping others.

My interest in database administration was borne of some masochistic curiousity,

but the resources to learn, grow, and share that knowledge were made possible by

more people than I can count, each of whom has volunteered countless hours for the

betterment of others.

Thank you to the Professional Association of SQL Server; the Capital Area SQL Server

Group and its founders, Dan Bowlin and Joe Barth; to Autotask, a company that has

given me great amounts of professional freedom to explore database technologies in my

free time; Matt Slocum for organizing and letting me be a part of SQL Saturday Rochester

(the first I spoke at); APress for the opportunity to write and support throughout the

process; SQL Shack for standing behind my writing for years; my friends, who are always

there for me, no matter what life has thrown at us; to the many volunteers who organize,

speak, write, blog, and otherwise improve the world in their free time; and to my family

for having immense patience when I've come up with crazy ideas like this one.

www.EBooksWorld.ir

xix

Introduction

Dynamic SQL is a tool that is often described in bits and pieces, when a need for code

arises and time is limited. This book is an opportuntiy to put as many of those fragments

as possible together into a meaningful journey, from defining the technology to delving

into its deepest and most complex aspects. This is a dive into many topics that are

extremely important when working with any database. We will intentionally delve

deeper into performance optimization, application development, and security than may

seem necessary.

�What is This Book?
This is meant to be a discussion of smart database design and architecture, with a focus

on dynamic SQL. If any topic that is covered in an aside feels incomplete, it is because

there simply isn't room in these pages for a thorough analysis of all of them without

losing focus on why we are here. Dynamic SQL is a tool that is often underused, misused,

or overused. The many tangents into other arenas of design and development serve as

guides to keep us on track and emphasize the value of well-written database queries, as

well as ensuring that we use dynamic SQL for the correct applications.

Each chapter delves into a specific topic and attempts to go into as much detail as

possible, while also providing multiple examples to demonstrate it in the simplest way

possible. If you have never written a line of dynamic SQL, this will be an opportunity

to learn, practice, and immediately apply it. If you already have experience in writing

and using dynamic SQL, this will be a chance to learn new applications while getting a

refresher on those you have worked with in the past.

Most examples in this book will reference the Microsoft AdventureWorks sample

database, which provides basic database structures that can be freely experimented

with. Queries are compatible with any version of AdventureWorks, but were tested most

heavily with AdventureWorks 2016.

www.EBooksWorld.ir

xx

�Intended Audience
Anyone with a healthy interest in database administration or development can benefit

from the topics covered within this book. Each chapter starts out with basic definitions

and examples, providing an easy entry point for professionals with any level of

experience. We transition into more advanced techniques, allowing you to not only learn

the basics of an important subject, but also gain access to scripts and ideas that could be

tested and used to solve problems you may face in your everyday experiences.

If you have a particular interest in database security or optimziation, then you will

appreciate the focus on these topics in each chapter. SQL Injection gets an exhaustive

review, with many different aspects and examples presented to ensure a thorough

explanation of this important topic! Every chapter, regardless of topic, will reference

performance whenever possible. It is an oft-made mistake that a database is designed

with little data and few users, ignoring the possibility that it will one day grow into a

behemoth. Reminders are placed throughout this book to consider query performance

at all times, even when performance may seem “good enough.”

�Contacting the Author
We can only grow personally and professionally if we are willing to consider other

viewpoints and revise our own to improve.

I love hearing from anyone who has ideas, questions, applications, video game

recommendations, or criticism. Please contact me at ed7@alum.rpi.edu and let me

know what I can do to improve the content of this book, or address any questions or

problems you may have.

Introduction

www.EBooksWorld.ir

1
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_1

CHAPTER 1

What Is Dynamic SQL?
T-SQL is a scripting language that expands with each new release of SQL Server. Success

in the world of database development and administration requires flexibility and the

ability to adapt constantly to new situations, technologies, and demands. Many of the

challenges we face are unknowns, or situations in which we cannot know exactly the

data we will be working with until runtime. In order to find the optimal solution in the

face of unknowns, one of the best tools at our disposal is dynamic SQL.

�Understanding Dynamic SQL
Dynamic SQL is quite simple to understand, and once acquainted, the number of

applications can become staggering. Dynamic SQL seeks to solve scenarios where we

want to operate on one or many objects, but do not know all of the pertinent details

as we write our code. Parameters can be passed into our code in order to persist sets

of important values, but what do we do when the structure of our T-SQL is defined by

these values?

�A Simple Example
Starting with a very simple select statement, we will build a starting point for

understanding dynamic SQL:

SELECT TOP(10) * FROM Person.Person;

This statement returns 10 rows from the table Person.Person, including all columns

in the table. What if we wanted to select data from a table, but did not know the name

of the table until runtime? How would we substitute the variable table name into our

www.EBooksWorld.ir

2

T-SQL? Before answering that question, let’s introduce dynamic SQL by simply rewriting

the preceding query so that we are executing it as a character string, rather than standard

T-SQL:

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = 'SELECT TOP 10 * FROM Person.Person';

EXEC (@sql_command);

In this example, we have defined a character string called @sql_command that

will be used to hold our dynamic SQL. What is the dynamic SQL? It’s the string that

we are building and then later executing. In this case, it is the same select statement

from before, with no alterations. After we set the value of our @sql_command, it is then

executed, providing the same results as before.

�The EXEC Statement
EXEC is used to execute @sql_command. EXECUTE may also be used, as they are

equivalent statements. Other ways to execute dynamic SQL will be presented later in

this book, in response to the need for further flexibility or security. Remember to always

put parentheses around the @sql_command string. Here’s an example that omits the

parentheses:

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = 'SELECT TOP 10 * FROM Person.Person';

EXEC @sql_command;

Failure to do so will result in a somewhat odd error:

Msg 2812, Level 16, State 62, Line 11

Could not find stored procedure 'SELECT TOP 10 * FROM Person.Person'.

The dynamic SQL command string is treated by SQL Server as a stored procedure

when parentheses are not included. Leave them out and you’ll be unable to execute your

SQL string, receiving an error similar to the preceding one.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

3

�Data Type to Use
Note that NVARCHAR(MAX) is used as the data type for our command string. While

we could use VARCHAR, we would potentially be losing data if any extended Unicode

characters were in any of the objects we work with. The size could also be shortened,

but if our command string becomes larger than that size, it will be truncated and our

dynamic SQL will become the source of confusing error messages or logical errors.

For consistency and reliability, use NVARCHAR(MAX) as the data type for your
dynamic SQL command strings.

It may be tempting to use VARCHAR or use a smaller size string to save computing

resources, but as these are scalar variables, the memory used is relatively small and

very temporary. A 10,000 character NVARCHAR string would cost 20KB, whereas the

VARCHAR version would cost 10KB. The difference is minimal and will not have an

impact on any modern computing system. This logic should not be applied to tables,

where computing resources are multiplied by row counts, and additional storage

systems are involved.

�Dynamic Execution Process
To understand how dynamic SQL works and the various ways in which it can be

applied to the many problems we encounter, it is important to consider how dynamic

SQL is built. In addition, becoming familiar with the execution process used by SQL

Server in order to parse and run our string of T-SQL will make using dynamic SQL a

much easier process.

All dynamic SQL follows 3 basic steps:

	 1.	 Create a string variable that will store our dynamic SQL.

Any variable name may be used.

	 2.	 Build a command string and store it in this variable.

	 3.	 Execute our command string.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

4

The benefit of storing our T-SQL command as a string is that we are free to use any

string manipulation commands on it, building it in one or many steps. Now to tackle our

original problem: how to select data from a table that is not defined until runtime. To

accomplish this, we remove Person.Person from the string and replace it with a variable

that we define as shown previously:

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @table_name SYSNAME;

SELECT @table_name = 'Person.Person';

SELECT @sql_command = 'SELECT TOP 10 * FROM ' + @table_name;

EXEC (@sql_command);

The variable @table_name stores the name of the table we wish to query.

Commonly, this would be passed in as a parameter, either from other stored

procedures, or an application that calls this directly. By building it into @sql_command,

we gain the flexibility of querying any table we wish, without hard-coding it ahead

of time. While this is a trivial example (how often will we want to select data in this

fashion?), it provides the basis for thousands of applications, each of which can save

immense time, resources, and complexity. Before diving further into the details of

dynamic SQL and its many uses, let’s look at a more practical (and more complex)

example of dynamic SQL in action.

�Dynamic SQL in Action
A common maintenance need is to run T-SQL against many databases on a server.

This maintenance could involve backing up databases, rebuilding indexes, reporting

on critical data elements, or many other applications. If our database list never

changes and no databases are ever renamed, we could hard-code names into each

procedure and not need to worry about changing them in the future. This would work

until the one day when we finally experience those inevitable changes, moving or

renaming databases, ultimately breaking those valuable maintenance procedures. It’s

critical that our maintenance, monitoring, and reporting jobs operate with the highest

level of reliability possible.

Listing 1-1 shows a common example of a statement that could be used to run a

backup against a single database, storing it on a local drive.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

5

Listing 1-1.  Simple Backup Statement

BACKUP DATABASE AdventureWorks2014

TO DISK='E:\SQLBackups\AdventureWorks2014.bak'

WITH COMPRESSION;

This T-SQL will back up the AdventureWorks2014 database to the SQLBackups folder

on the E drive, using compression. If we want to perform a custom database backup on

a subset of databases that all begin with the text “AdventureWorks,” we would need to

build T-SQL that could adapt to collect a list of all databases with that name, and then

perform backups on each of them separately. The following T-SQL shows one way that

this could be accomplished, using dynamic SQL.

Listing 1-2.  Dynamic SQL Built to Back Up All Databases Starting with

“AdventureWorks”

DECLARE @database_list TABLE

 (database_name SYSNAME);

INSERT INTO @database_list

 (database_name)

SELECT

 name

FROM sys.databases

WHERE name LIKE 'AdventureWorks%';

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @database_name SYSNAME;

DECLARE database_cursor CURSOR LOCAL FAST_FORWARD FOR

SELECT database_name FROM @database_list

OPEN database_cursor

FETCH NEXT FROM database_cursor INTO @database_name;

WHILE @@FETCH_STATUS = 0

BEGIN

 SELECT @sql_command = '

 BACKUP DATABASE [' + @database_name + ']

 TO DISK="E:\SQLBackups\' + @database_name + '.bak"

 WITH COMPRESSION;'

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

6

 EXEC (@sql_command);

 FETCH NEXT FROM database_cursor INTO @database_name;

END

CLOSE database_cursor;

DEALLOCATE database_cursor;

This T-SQL is certainly more complex than the first backup statement that we

looked at. Let’s break it apart in order to understand what is going on here, and why it

works. We can then focus on the dynamic SQL that provides the backbone of this set of

statements.

	 1.	 Populate a table variable with a list of database names.

	 2.	 Go through a loop, one time per database.

	 3.	 Build a dynamic SQL command string that takes into account the

current database name.

	 4.	 Execute the dynamic backup statement.

	 5.	 Continue iterating through the loop until all relevant databases

have been backed up.

We declare a number of variables here:

@database_list: Contains all databases that match our search

criteria. In this case, any database that starts with the word

“AdventureWorks” will be included.

@sql_command: This is the command string that will contain our

dynamic SQL statement.

@database_name: Holds the name of the database that is currently

being backed up.

database_cursor: A cursor that will be used to iterate through all

databases named in @database_list.

Much of this example is setup for the loop. The critical portion is where we substitute

the database name and backup file name with @database_name. This allows us to

generate a backup statement that will not only back up each database, regardless of how

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

7

many there are, but will name the backup file using that name. We could just as easily

append additional information onto the file name, such as the date, time, or server

name, if it were important.

Backups are a perfect use of dynamic SQL, as we can continue to customize and add

time-saving functionality into our code, such as:

	 1.	 Whether to use compression

	 2.	 Determining if subfolders should be used (or not) for backup files

	 3.	 Should we perform a FULL, DIFF, or TLOG?

	 4.	 Should this backup be COPY_ONLY?

�Advantages of Dynamic SQL
There are many reasons why we would want to incorporate dynamic SQL into our

everyday arsenal of SQL Server tools. In addition, there are many specific challenges for

which dynamic SQL is the optimal solution. Discussing these scenarios will highlight

why an entire book can be written on this topic.

�Optional or Customized Search Criteria
Search boxes are one of the most common tools used in the development of web pages

or applications. For simple searches, we may only need to pass in a single variable for

evaluation. In more powerful web searches, we may be able to choose between many

criteria, of which each could be evaluated with AND or OR conditions. While we could

write a very long SELECT statement with left joins to every possible table involved, we

would likely end up with an immense, inefficient, and unwieldy pile of T-SQL. Dynamic

SQL allows us to build up a select string that only queries the tables necessary to satisfy a

given search.

�Customizable Everything
Adding joins or WHERE clauses are only the beginning. With dynamic SQL, any

statement can be customized to provide greater flexibility to your code. Want to group

by a column based on a dynamic search? The solution is to write the GROUP BY clause

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

8

as dynamic SQL, altering it as needed to fit the needs of each specific situation. Want to

generate row numbers for a data set, but won’t know which columns to partition by or

order by until runtime? No problem!

Our preceding example illustrated how we could use dynamic SQL to customize a

backup operation, and customize the name of the backup file. Any conceivable T-SQL

statement can be altered to utilize dynamic SQL, and in doing so, allow for greater

flexibility in any number of day-to-day challenges.

ORM (object-relational mapping) software can allow for similar levels of customization,

but not all companies can (or want) to use software that automatically generates T-SQL,

as performance and complexity can quickly become overwhelming. Like any querying

application, choosing the correct tool is essential to scalability and performance.

�Optimize SQL Performance
So far, dynamic SQL has appeared to make things more complicated, adding the need

for temporary variables, loops, and command strings. Despite the seemingly added

complexity, this framework can allow us to reduce the size of the SQL statements that we

typically execute and improve performance.

Dynamic SQL provides an opportunity to customize our statements to match

performance needs. Removing excess objects, adjusting joins and subqueries, and

reducing the size of an SQL statement can result in faster executions times and reduce

resource consumption.

While our scripts may have more lines of T-SQL, the queries that are ultimately

executed by SQL Server will be simpler and perform more reliably.

�Generate Large Amounts of T-SQL or Text, Fast!
Sometimes we need to execute large SQL statements that act on a set of many objects.

Other times, we want to generate output text based on data stored in a specific set of

tables. Perhaps we want to generate SELECT statements that will be used to gather

reporting data from any number of sources.

Writing all of this T-SQL by hand could take a very long time, and lead to a significant

opportunity for human error to occur, as we trudge through a time-consuming, boring

task. If the SQL statements involved are to be run on a regular basis, then preparing them

in advance may be impossible if the target tables or other objects involved can change

on a regular basis.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

9

Using dynamic SQL, we can generate any amount of commands or text without

limit. SQL Server will not tire of this process, no matter how dull it may seem. This is an

opportunity to automate tedious tasks and reduce operator intervention in those that

would end up being busy work. The result is that our jobs become easier, more fun, and

we can focus on more important tasks that demand our attention!

�Execute SQL Statements on Other Servers or Databases
A common challenge occurs when you want to run queries against other entities, but do

not know ahead of time what all of those entities are. If those objects can vary, or change

at runtime, then dynamic SQL is a great solution for managing these operations without

having to hard-code object names that are likely to change over time. This reduces the

chances of an application breaking after a software release, configuration change, or

hardware upgrade.

Similarly, in these scenarios, we may have an application with code that runs

in many locations, with references to servers, databases, or other objects that vary

based on environment. Writing slightly different code in each environment would be

inefficient and would result in significantly higher maintenance needs over time. Far

simpler would be to maintain configuration data and write code that processes those

configurations, reading and writing to the database as needed. Dynamic SQL allows for

that configuration data to be easily handled and acted upon, regardless of the complexity

of the operations involved.

�Do the Impossible!
Simply put, there are many tasks in SQL Server that would be extremely difficult, or

seemingly impossible without dynamic SQL. Many common maintenance scenarios that

need to iterate across database objects become trivially easy with dynamic SQL.

Have you ever tried to PIVOT or UNPIVOT across a dynamic column list? The

command is powerful, but requires a definitive column list. If the list is not known until

runtime, then the only way to get the data we need is to use dynamic SQL to insert our

customized column list into the statement and then execute it.

We will have many examples of interesting, useful, and fun ways in which dynamic

SQL can make very difficult tasks easy. Stay tuned and enjoy!

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

10

�Dynamic SQL Considerations
As with any tool, dynamic SQL shouldn’t be used everywhere blindly, nor is it the

solution to every database problem you’ll encounter. With a discussion of any tool,

it is imperative that we consider its challenges, pitfalls, and complexities prior to

implementing it.

�Apostrophes Can Break Strings
As we build dynamic SQL commands, we incorporate other variables and strings into

them. If any of these contain apostrophes, then our command string will be broken.

The resulting command will, if we are lucky, throw an error and not run. SQL injection

is the process of using the variables in dynamic SQL to intentionally close the string

with an apostrophe, and then attempt to execute malicious code. If we do not

cleanse all parameters and inputs prior to building our command statement, we risk

introducing colossal security holes into our code.

Like in application code, it is imperative that we ensure that our inputs are clean

and that unexpected symbols in our parameters will have no negative effect on the

operation of our code. Failure to do so can result in broken code, unexpected behavior,

or catastrophic security holes. Input cleansing is important in all components of an

application, including the database!

�NULL Can Break Strings
NULL is a complicated state of affairs. As an absence of value, any attempt to

concatenate a string with NULL will result in NULL. If the dynamic SQL command string

that we build is passed a parameter that is NULL, then our entire statement will become

NULL. The result will likely be T-SQL that does absolutely nothing. This can lead to

troubleshooting nightmares as it becomes unclear why an SQL statement appears to

do nothing. Further, the search for the NULL parameter may be a daunting task if the

statement in question has many inputs.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

11

�Difficult to Read and Debug
Dynamic SQL loses the benefits of color coding that exist in SQL Server Management

Studio (and most text/code editor tools) that you get when you write standard SQL in

the text editor. Within apostrophes, much of the text will be red, including keywords,

strings, and variable names. In addition, the error checking that is performed as you type

does not occur as effectively within a dynamic SQL string. A simple typo that would be

underlined in red normally will not be as apparent when it is within a string.

In order to combat these challenges, we must devise very well-written T-SQL. In

addition to writing very organized code, we have to be even more diligent when

documenting our work. T-SQL that may normally be trivially easy to understand can

be harder to grasp when written as part of a string. Extra time and care must be used

in order to ensure that when we revisit this code in the future, it is still easy to read and

meaningful.

Dynamic SQL always compiles correctly. To SQL Server, it is simply a character

string. The contents of it are not checked for syntax or object validity until runtime.

Effective testing and debugging are the key to ensuring that the T-SQL we write executes

as we expect it to.

A positive side effect of this situation is that it encourages and trains us to write better

code. We are more conscious of spacing, naming, and line breaks, allowing our code

(dynamic SQL or otherwise) to be easier to read.

�Permissions and Scope Are Different
Dynamic SQL statements are executed in their own scope. Variables defined within the

string will not normally be available outside of it. In addition, dynamic SQL is executed

with the permissions of the user executing the overall T-SQL code (stored procedure, job,

etc…). It does not execute with the permissions of the owner of the stored procedure or

the user that happened to be executing it recently.

To avoid unexpected errors, permissions conflicts, or other security concerns, it’s

important to consider what users will be running any code that includes dynamic SQL. If

we need to save data from a dynamic SQL statement, or pass parameters in from outside,

then that needs to be explicitly managed in order to get the desired effect.

Scoping in SQL Server is a feature whose purpose is to segregate objects in different

sessions and benefits us by ensuring that different users cannot access data in-flight that

they may not be allowed to see.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

12

�Dynamic SQL Cannot be used in Functions
Simply put, we can use dynamic SQL in stored procedures, ad hoc T-SQL, and jobs, but

it is not allowed within functions. Any attempt to include dynamic SQL within functions

will result in an error:

Msg 443, Level 16, State 14, Procedure fn_test, Line 72

Invalid use of a side-effecting operator 'EXECUTE STRING' within a

function.

SQL Server functions must be deterministic. Inputs and outputs must be in the

form given in the function definition. Dynamic SQL by nature is nondeterministic, and

therefore cannot be used within functions.

�Dynamic SQL Style
Writing code that works is very important. Writing code that is easy to understand and

maintainable is equally as important. As someone charged with the creation and upkeep

of immense numbers of database objects, you must always consider how easy it will be

to read, understand, troubleshoot, and upgrade these objects at any point in the future.

Because dynamic SQL tends to be harder to read, extra care should be taken to ensure

that our T-SQL is well written, effectively documented, and that objects/variables are

named according to reasonable conventions. These design considerations will save your

future self considerable time, as well as show your colleagues that you care about their

well-being and the future of your organization.

These tips apply to all types of coding, but will be of particular benefit when writing

T-SQL, and especially when implementing dynamic SQL.

The rules of good dynamic SQL design begin here, but will continue to be built upon

throughout the rest of this book. Consider any efforts on your part to write maintainable

code, whether it utilizes dynamic SQL or not.

�Document Thoroughly
This is the mantra that is repeated to anyone who has ever written a line of code, a script,

or a nontechnical process. Your documentation explains how your code works, why it is

written as it is, and serves as a guide when changes will inevitably be made. T-SQL that

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

13

may not normally warrant documentation will become harder to read when dynamic

SQL is applied. Consider creating additional documentation to supplement this added

complexity.

The first and simplest way to document your work is to include a header at the top

of your file. This header provides basic information on who created this code, some

revision notes, its purpose, and a quick overview of how it works. Understanding the

reasons behind why a stored procedure was created can be as useful as knowing how it

works. More importantly, it is possible to discern the function of code by reading through

it and scratching one’s head a bit. It isn’t possible to figure out the original request

that spurred the creation of that code without either having some existing application

knowledge that others may not have or asking other developers for help.

Consider the following header for a simple backup script:

Listing 1-3.  Header Comments, Documenting a Hypothetical Backup Script

/* 8/1/2018 Edward Pollack

 Backup routing for AdventureWorks databases

 As a result of ticket T1234, logged on 7/21/2018, it became necessary

 to selectively back up a limited set of AdventureWorks databases via a

 SQL Server Agent job. The job can have its schedule adjusted as needed

 to fit the current needs of the business.

 Dynamic SQL is used to iterate through each database, performing the

 backup and naming the resulting file using the database name, date,

 time, and source server. */

This header tells the reader the following:

	 1.	 The date that this code was written, to provide context into when

it came about

	 2.	 The author, which allows future developers to know where to go

with questions

	 3.	 Background into why this was written and the problem that was

being addressed

	 4.	 A brief description of how it works and any special features that

are used

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

14

This short documentation block answers most of the common questions that a

developer may have about your code. The things we consider obvious while writing

T-SQL may not be so obvious to someone else reading this years later. Our own code

is always easier to read than that of others, and this is easy to forget when buried in

development projects. As time passes, though, even our own code can be hard to

understand as we become more detached from the details of how we wrote it.

When writing code that involves dynamic SQL, we must consider documenting

thoroughly, but also not go overboard and explain every single line of T-SQL. Let’s take

our backup routine from earlier and add some meaningful documentation to it.

Listing 1-4.  Backup Script Sample, with Documentation Added

-- �This will temporarily store the list of databases that we will back up

below.

DECLARE @database_list TABLE

 (database_name SYSNAME);

INSERT INTO @database_list

 (database_name)

SELECT

 name

FROM sys.databases

WHERE name LIKE 'AdventureWorks%';

-- �This WHERE clause may be adjusted to back up other databases besides

those starting with "AdventureWorks".

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @database_name SYSNAME;

DECLARE @date_string VARCHAR(17) = CONVERT(VARCHAR, CURRENT_TIMESTAMP, 112) +

'_' + REPLACE(RIGHT(CONVERT(NVARCHAR, CURRENT_TIMESTAMP, 120), 8), ':', ");

-- Use a cursor to iterate through databases, one by one.

DECLARE database_cursor CURSOR FOR

SELECT database_name FROM @database_list

OPEN database_cursor

FETCH NEXT FROM database_cursor INTO @database_name;

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

15

WHILE @@FETCH_STATUS = 0 -- Continue looping until the cursor has reached

the end of the database list.

BEGIN

 -- �Customize the backup file name to use the database name, as well

as the date and time.

 SELECT @sql_command = '

 BACKUP DATABASE ' + @database_name + '

 �TO DISK="E:\SQLBackups\' + @database_name + '_' + @date_string +

'.bak" WITH COMPRESSION;'

 EXEC (@sql_command);

 FETCH NEXT FROM database_cursor INTO @database_name;

END

-- Clean up our cursor object.

CLOSE database_cursor;

DEALLOCATE database_cursor;

This example shows our backup script from earlier with the addition of a timestamp

on the file name. Documentation is added to explain each section. Note that the

comments are short, simple, and explain the parts that I think may benefit from them.

We don’t waste time with obvious comments that would take up extra space and distract

from the task at hand. For example, I’d never include a comment like this, unless I was

looking for some misplaced comic relief:

-- This variable holds the database name.

DECLARE @database_name SYSNAME;

While amusing, my addition tells us nothing new. Whether it annoys or amuses,

it doesn’t provide any useful information that wasn’t already made obvious in the

variable name.

Documentation is often like choosing pizza toppings. Everyone has their own

style, and it would be foolish to try and settle on a single style that is appropriate in

all environments for all objects. If you are writing more complex code, especially if it

involves dynamic SQL, consider being as thorough as possible. Your bit of extra work

now will save someone immense time in the future!

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

16

�Debugging Dynamic SQL
Dynamic SQL benefits from debugging more than the standard queries that we write.

Since SQL Server will always compile dynamic SQL statements successfully, it’s

important that we perform further testing on our code before executing it. Simple errors

that would normally be obvious could easily be missed due to the lack of feedback in

SQL Server Management Studio. In addition, our code will partially be obscured in a

string, surrounded by apostrophes. The harder the code is to read, the harder it will be to

debug and locate mistakes, whether they are syntax or logical mistakes.

The easiest and most effective way to test and debug dynamic SQL is to replace the

EXEC with PRINT. When the T-SQL is executed, the command string will print out rather

than be executed immediately. The printout can then be copied into another editor

window and reviewed for syntax, logic, spelling, and any other considerations you may

have. Many common dynamic SQL typos are the result of misplaced quotation marks,

which become quickly apparent when moved into a new window. For example, consider

the following short command string:

DECLARE @CMD NVARCHAR(MAX);

SELECT @CMD = 'SELLECT TOP 17 * FROM Person.Person';

EXEC (@CMD);

This statement will compile successfully, but throw the following error:

Msg 156, Level 15, State 1, Line 79

Incorrect syntax near the keyword 'TOP'.

The resulting error message is cryptic and tells us very little of what we did wrong.

Print out the command string and paste it into an editor window, and the issue becomes

obvious:

SELLECT TOP 17 * FROM Person.Person

SELECT is clearly misspelled, and in addition to being underlined in red in SQL

Server Management Studio, it will not be highlighted blue as a reserved keyword

normally would be.

For larger blocks of T-SQL, there is great value in adding a debug bit into the code.

When @debug is 1, all statements will print rather than execute. When @debug is 0, then

statements will execute. This allows you to control all blocks of code with a single bit that

can easily be configured at the top. It is far easier to flip this one bit than to constantly

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

17

write print statements and comment out execute statements whenever debugging

becomes necessary. Once the code is reviewed and complete, the debug bit and PRINT

statements can be removed.

Following is our backup script example from earlier, with a debug parameter added.

Listing 1-5.  Backup Script Sample, with Debug Parameter Added

DECLARE @debug BIT = 1;

DECLARE @database_list TABLE

 (database_name SYSNAME);

INSERT INTO @database_list

 (database_name)

SELECT

 name

FROM sys.databases

WHERE name LIKE 'AdventureWorks%';

-- This WHERE clause may be adjusted to back up other databases besides

those starting with "AdventureWorks".

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @database_name SYSNAME;

DECLARE @date_string VARCHAR(17) = CONVERT(VARCHAR, CURRENT_TIMESTAMP, 112) +

'_' + REPLACE(RIGHT(CONVERT(NVARCHAR, CURRENT_TIMESTAMP, 120), 8), ':', ");

-- Use a cursor to iterate through databases, one by one.

DECLARE database_cursor CURSOR FOR

SELECT database_name FROM @database_list

OPEN database_cursor

FETCH NEXT FROM database_cursor INTO @database_name;

WHILE @@FETCH_STATUS = 0 -- Continue looping until the cursor has reacdhed

the end of the database list.

BEGIN

 -- �Customize the backup file name to use the database name, as well

as the date and time.

 SELECT @sql_command = '

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

18

 BACKUP DATABASE ' + @database_name + '

 TO DISK="E:\SQLBackups\' + @database_name + '_' + @date_string + '.bak"

 WITH COMPRESSION;'

 IF @debug = 1

 PRINT @sql_command

 ELSE

 EXEC (@sql_command);

 FETCH NEXT FROM database_cursor INTO @database_name;

END

-- Clean up our cursor object.

CLOSE database_cursor;

DEALLOCATE database_cursor;

With the addition of four lines of T-SQL, we have allowed execution to be controlled

by a single bit. By copying the print output into a new window and reviewing it, we can

quickly confirm if it compiles successfully and looks correct.

Additionally, if the source of a problem is unclear, we can add PRINT statements

into our code for some of our variables. For example, if we were unsure that the @date_

string was being populated correctly, we could print it out separately and verify that the

value is what we expect:

PRINT '@date_string (line 20): ' + @date_string

This is a very simple debugging action, but by including the variable name and line

number, we make understanding our code easier. If the results were still perplexing,

we could split up the result further, printing the date and time portions of the variable

separately. By breaking a problem into smaller, simpler pieces, debugging becomes a

much easier task, and one that causes far less frustration along the way.

When writing new dynamic SQL, be sure to print the command string often,
verifying that the resulting TQL is valid, both syntactically, and logically.

SELECT may be used instead of PRINT. This can allow command strings to be saved

into a table or file for further review in the future. This removes the need to immediately

review code in the results pane of a code editor.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

19

Last, for any code that will take inputs from other applications (or an end user),

remember to test all possibilities. Ensure that either the application or the T-SQL

checks and validates inputs as needed. What happens if an input contains a special

character? What if it has an apostrophe, underscore, or escape character? If a human

is allowed to manually enter text, assume they will make mistakes, enter garbage,

blanks, special characters, or in some way do the unexpected. Account for this and

you will prevent untold numbers of potential errors, and greatly improve the security

of your application.

�Write Dynamic SQL Just Like Standard T-SQL
Just because your dynamic SQL is enclosed in a string does not mean that it should

be written any differently than your usual statements. Whatever your normal

standards are for capitalization, indentation, and spacing should be similarly applied

here. Too often is a dynamic SQL statement written as one long line of code, with no

spaces, new lines, capitalizations, or breaks. The result is often unintelligible, and far

more prone to mistakes. If you were to copy the debug text from a PRINT statement

into a new window, the result should look precisely like the T-SQL you would

normally write.

Listing 1-6.  Example of How to Annoy Future Developers with Poorly Formatted

Dynamic SQL!

DECLARE @CMD NVARCHAR(MAX) = "; -- This will hold the final SQL to execute.

DECLARE @first_name NVARCHAR(50) = �'Edward'; -- First name as entered in

search box.

SET @CMD = 'SELECT PERSON.FirstName,PERSON.LastName,PHONE.

PhoneNumber,PTYPE.Name FROM Person.Person PERSON INNER JOIN Person.

PersonPhone PHONE ON PERSON.BusinessEntityID = PHONE.BusinessEntityID INNER

JOIN Person.PhoneNumberType PTYPE ON PHONE.PhoneNumberTypeID = PTYPE.

PhoneNumberTypeID WHERE PERSON.FirstName = "' + @first_name + "";

PRINT @CMD;

EXEC (@CMD);

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

20

�String Sizes and Truncation
When we attempt to store a string in a variable that is not large enough to hold it, the

string will be automatically truncated. The result will be incomplete data that will likely

cause us headaches later on in our code. Consider the following T-SQL, which generates

a timestamp and stores it in a string:

Listing 1-7.  Example of Truncation When Generating a Timestamp String

DECLARE @date_string VARCHAR(10) = CONVERT(VARCHAR, CURRENT_TIMESTAMP, 112) +

'_' + REPLACE(RIGHT(CONVERT(NVARCHAR, CURRENT_TIMESTAMP, 120), 8), ':', ");

PRINT @date_string;

We expect a timestamp with the date (MMDDYYYY) and time (HHMMSS). What

we instead get is a string that is cut off at ten characters: 20150908_1. Always declare

variables that are large enough to hold any valid data that could be stored there. If you

are unsure of the potential data size, erring on the side of caution and providing extra

characters is not a bad decision. Seventeen characters are required to get the full text

output expected in this example. What if we were considering adding milliseconds to

the timestamp, but were not going to do so until a future software release? Make the

@date_string larger now, and there will be no need to make further changes in the

future in order to account for that change. The cost is tiny, and the potential for errors in

the future is greatly reduced.

A more complex example of string truncation can occur when dynamic SQL gets

very, very large. If you write a command string that is greater than 8192 characters, and

are concatenating it with other strings (names, dates, input parameters, other dynamic

SQL strings, etc…), there is an implicit, undocumented risk of truncation. SQL Server will

automatically convert strings of different data types and sizes in an attempt to process

them quickly and efficiently. The result will be a NVARCHAR(MAX) command string that

seems to be truncated down to 8192 characters when executed. This truncation can be

resolved in one of two ways:

	 1.	 Split the dynamic SQL statement into multiple statements, each

less than 8192 characters.

	 2.	 Change all parameters and variables involved in the command

string to NVARCHAR(MAX).

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

21

The first option can be difficult to guarantee. How do we split an extremely long

command into pieces that are guaranteed to always be 8192 characters or less? The

second option will always work when faced with this conundrum, and is an easy,

inexpensive fix.

When working with very large dynamic SQL, consider using NVARCHAR(MAX) for
all scalar parameters involved in the construction of the command string to avoid
inadvertent string truncation.

�Management Studio Text Display
An unrelated, but somewhat similar problem can occur when we print output directly to

our text window. We will do this frequently, either to debug new T-SQL, or to manually

execute dynamic SQL that we have generated. By default, the text limit in the output

window of SQL Server Management Studio is set to 256 characters. Any text printed

from any SQL statements will be truncated at 256 characters, which will often be

inconvenient.

This limit only affects output that you PRINT to the results window and has no

bearing on the string sizes when you execute a command string. The text limit has no

effect on actual query execution. For the sake of debugging, it is advantageous to modify

your SQL editor options to increase this limit to 8192 characters.

This setting can be found by navigating to Tools➤Options➤Query Results➤SQL

Server➤Results to Text and modifying the Maximum number of characters displayed in

each column. See Figure 1-1 for an example.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

22

Figure 1-1.  Results to Text settings in SQL Server Management Studio

Change 256 to 8192 and you’ll have an easier time printing and debugging larger

dynamic SQL statements in the future.

�Sp_executesql
Thus far, all dynamic SQL statements have been executed using the EXEC keyword.

This method of execution is simple, straightforward, and convenient for quick testing

and debugging. EXEC comes with a number of limitations and security concerns that

encourage us to find a better solution:

	 1.	 EXEC is far more vulnerable to SQL injection and the effects of

unexpected input. Escape characters and apostrophes can easily

wreck a dynamic SQL statement.

	 2.	 There is no built-in way to manage input or output variables

with EXEC.

	 3.	 When using EXEC, it is unlikely that execution plans will be reused.

This reuse of execution plans, known as parameter sniffing, is a

useful feature and generally something we want to occur.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

23

Each of these topics will be covered in extensive detail later in this book and can be

addressed using the system stored procedure sp_executesql, instead of EXEC.

The syntax for sp_executesql is straightforward:

sp_executesql N'SELECT COUNT(*) FROM Person.Person';

Whatever T-SQL is provided in the string will be executed in the same way as

our previous examples. The more common (and more useful) syntax is to store the

command string in a variable and use EXEC in front of sp_executesql:

DECLARE @sql_command NVARCHAR(MAX) = 'SELECT COUNT(*) FROM Person.Person';

EXEC sp_executesql @sql_command;

For all examples going forward, we will use sp_executesql instead of EXEC. This

is considered a best practice in SQL Server, and one that will improve the reliability,

security, and performance of your dynamic SQL.

In the world of databases, we rarely use the words “always” or “never.” Oftentimes,

the answer to a question is “it depends,” followed by quite a bit of discussion. This is

one of those rare scenarios where “always” is the best answer. When writing dynamic

SQL, always use sp_executesql, and never use EXEC. The benefits far outweigh any

inconvenience that we may face from using this new stored procedure in our work.

�Building Strings via Concatenation
There are two straightforward ways to combine strings in T-SQL. The first is to use

the “+” operator, which has been the method used thus far in this book. This is simple,

easy and quick to implement, and intuitive.

Remember our brief introduction to how NULL can break strings? When piecing

many strings together, if any one of them happens to be NULL, then the entire string

output will become NULL as well. NULL + 1 is treated by SQL Server in a similar manner

that infinity + 1 is handled by mathematics. We can combat this by using ISNULL,

COALESCE, or perform an explicit check of the variable for NULL and replace it as

needed. Consider the following dynamic SQL queries.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

24

Listing 1-8.  Examples of String Concatenation Results When a Parameter is

NULL

DECLARE @schema VARCHAR(25) = NULL;

DECLARE @table VARCHAR(25) = 'Person';

DECLARE @sql_command VARCHAR(MAX);

SELECT @sql_command = �'SELECT COUNT(*) ' + 'FROM ' + @schema + '.'

+ @table;

PRINT @sql_command;

SELECT @sql_command = �'SELECT COUNT(*) ' + 'FROM ' + ISNULL(@schema,

'Person') + '.' + @table;

PRINT @sql_command;

SELECT @sql_command = �'SELECT COUNT(*) ' + 'FROM ' + CASE WHEN @schema IS

NULL THEN 'Person' ELSE @schema END + '.' + @table;

PRINT @sql_command;

The first query returns NULL. Since @schema is NULL, anything we concatenate

with it will also become NULL. This will generally be undesired behavior, and we would

immediately be confounded by a command string that does nothing or generates errors

when executing.

The second query uses ISNULL to ensure that, if @schema is NULL, something

will be returned in place of it. In this case, we hard-coded the Person schema, which

produced the same results as we got before. This required the assumption that Person

was an appropriate default schema. In the event that we do not have a default value, we

may be better served by throwing an error, rather than making up a value that may not

be accurate. Alternatively, we could simply never allow @schema to be NULL and exit

immediately if it is.

The third query uses a CASE statement to replace NULL with the “Person” schema.

This is the same result as our last query, though CASE provides some additional

flexibility that we could utilize. If necessary, we could alter the structure of our query to

account for missing variables, or have multiple code paths.

There is a second way to concatenate strings that can be beneficial under

circumstances where the data types and values of our data are unpredictable. The built-

in function CONCAT allows us to combine strings using the following syntax:

SELECT CONCAT('SELECT COUNT(*) ', 'FROM ', 'Person.', 'Person');

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

25

Variables may be passed into this function as parameters as well:

DECLARE @schema NVARCHAR(25) = 'Person';

DECLARE @table NVARCHAR(25)= 'Person';

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = �CONCAT ('SELECT COUNT(*) ', 'FROM ', @schema, '.',

@table);

PRINT @sql_command

The results of both of these SQL statements will be the same:

SELECT COUNT(*) FROM Person.Person

CONCAT offers several features:

	 1.	 NULL parameters are always converted into empty strings.

	 2.	 The data type of the result is intelligently determined based on

the inputs. NVARCHAR parameters will yield NVARCHAR results,

VARCHAR will yield VARCHAR, and MAX inputs will yield an

output of MAX size.

	 3.	 If all inputs are NULL, then the output will be an empty string of

type VARCHAR(1).

	 4.	 It will automatically attempt to convert different data types in

the process of concatenation. This works on numeric values as

well, which you may allow to convert for you, or introduce your

own use of CAST/CONVERT to explicitly convert prior to the

application of the CONCAT function.

Removing NULL may not be desired behavior, though! Oftentimes, if a parameter is

unintentionally NULL, we may very well prefer that an error be thrown by our code than

continue processing with dummy values. Utilize this feature only if removing NULLs is

advantageous to your application.

CONCAT is a viable alternative to using the “+” operator. There are many other

SQL Server string manipulation functions that are useful when generating dynamic

SQL. We’ll continue to use “+” for the duration of this book, but it’s worth the time to

quickly review a handful of useful string functions that may prove convenient.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

26

LTRIM, RTRIM: Removes any whitespaces on the left (LTRIM) or right (RTRIM) of

an expression. This can be useful when dealing with unpredictable inputs, or those that

often have extra whitespaces attached to them:

DECLARE @string NVARCHAR(MAX) = ' This is a string with extra whitespaces';

SELECT @string;

SELECT LTRIM(@string);

SELECT RTRIM(@string);

SELECT TRIM(@string); -- Available in SQL Server 2017 and later.

The preceding T-SQL returns the following:

“This is a string with extra whitespaces”

“This is a string with extra whitespaces”

“This is a string with extra whitespaces”

“This is a string with extra whitespaces”

TRIM is available in SQL Server 2017 and later, but will save some typing by

removing whitespaces from either end of a string, similar to applying both an RTRIM

and an LTRIM.

CHARINDEX: This will return the first instance of a search expression within a string.

For example, if we wanted to return the position of the first instance of “dinosaur’ in a

string, then this would do the trick:

DECLARE @string NVARCHAR(MAX) = 'The stegosaurus is my favorite dinosaur';

SELECT CHARINDEX('dinosaur', @string);

The result of this query would be 32, the starting character of the word dinosaur. An

optional third parameter can specify where in the string to begin looking for the search

string. CHARINDEX returns “0” if the search string isn’t found.

STUFF: Allows you to insert a string into the middle of another string and optionally

delete characters from the insert point. This has many uses, and can be a convenient way

to combine SQL statements, text output, or input parameters in desired combinations.

Here are a few examples of how to use STUFF:

DECLARE @string NVARCHAR(MAX) = 'The stegosaurus is my favorite dinosaur';

SELECT STUFF(@string, 5, 0, 'purple ');

SELECT STUFF(@string, 5, 11, 't-rex');

SELECT STUFF(@string, 32, 8, 'animal!');

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

27

The first parameter is the text to be modified, and the last is the string that is being

inserted. The second is the insert point (what character position number within the

string to insert into). The third parameter indicates how many characters will be deleted

prior to the insertion (enter 0 if you don’t want to delete any characters). The results of

our queries are as follows:

"The purple stegosaurus is my favorite dinosaur"

"The t-rex is my favorite dinosaur"

"The stegosaurus is my favorite animal!"

REPLACE: Within a string, this will replace all occurrences of a text pattern with

another. This is often useful for removing specific characters from a string, or for

replacing undesirable parts of input strings with a standard or consistent segment of text.

The behavior of REPLACE and STUFF can be very similar, so you can choose whichever

is convenient for the task at hand:

DECLARE @string NVARCHAR(MAX) = CAST(CURRENT_TIMESTAMP AS NVARCHAR);

SELECT REPLACE(@string, ' ', ");

SELECT REPLACE(REPLACE(@string, ' ', "), ':', ");

SELECT REPLACE(REPLACE(REPLACE(REPLACE(@string, ' ', "), ':', "), 'AM', "),

'PM', ");

In these examples, we are stripping out a variety of characters from the current date/

time string. A single REPLACE can be used to remove a specific character, or several

can be used to remove additional characters as well. In the first example, we replace

all spaces with empty strings, thereby removing them from the string. The second

query also removes colons, and the final additionally removes “AM” or “PM” from the

timestamp. This is a frequent tactic used when cleansing strings to be used in file names,

labels, or a standard name for catalog data. The query results are as follows:

Sep1320152:40PM

Sep132015240PM

Sep132015240

TRANSLATE allows you to perform any number of REPLACE operations within a

single statement. You supply a list of characters to replace, and the targets to replace

with, and it does the work for you:

DECLARE @string NVARCHAR(MAX) = 'Text;with&extraneous(characters)';

SELECT TRANSLATE(@string, ';&()', ' ');

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

28

The result will be a string in which the various characters specified have been

converted into spaces:

Text with extraneous characters

Note that this function is only available in SQL Server 2017 and later.

SUBSTRING returns a segment of a string, based on a starting point and the number

of characters to return. This can also be used to remove characters from a string, to

extract a specific portion, or return the beginning or end of a string.

DECLARE @string NVARCHAR(MAX) = CAST(CURRENT_TIMESTAMP AS NVARCHAR);

SELECT SUBSTRING(@string, 1, 3);

In this example, we return the three-letter month from the string:

Sep

REPLICATE repeats a string the number of times specified. This can be a quick way

to generate a large volume of test text, or to create data when there are parts that are

expected to repeat often.

SELECT 'Look, a robot' + REPLICATE('!', 50)

Look, a robot!!

The example is simple (outputting lots of exclamation marks), but consider the

following example, where serial numbers are entered into a system, but should all have

20 digits (with leading zeroes):

DECLARE @serial_number NVARCHAR(MAX) = '91542278';

SELECT REPLICATE(0, 20 - LEN(@serial_number)) + @serial_number;

In this example, LEN returns the number of characters in the serial number.

By subtracting that from 20, we can determine how many additional characters we

need to reach 20. By replicating zeroes this many times, we can quickly pad the serial

number with the appropriate number of zeroes. This tactic is also useful with zip codes,

identification numbers, or any numeric values represented as strings, where leading

zeroes could be omitted.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

29

REVERSE is also a simple function that takes a string and reverses the characters.

This can be useful if we are looking to operate on the end of the string (in reverse order)

or to manage a list, starting at the end.

DECLARE @string NVARCHAR(MAX) = '123456789';

SELECT REVERSE(@string);

In this quick example, we take a number string and reverse it, which returns the

expected result:

987654321

�Notes on Apostrophes
Because dynamic SQL is built within strings, it’s important to carefully consider how to

correctly use apostrophes when we build more complex string logic. For example, let’s

say we wanted to locate all people with a first name that started with Ed. Using dynamic

SQL, we would need to include some extra apostrophes to ensure that our syntax is

correct:

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @first_name NVARCHAR(20) = 'Ed';

SELECT @sql_command = '

SELECT

 *

FROM Person.Person

WHERE FirstName LIKE "' + @first_name + '%"';

PRINT @sql_command;

EXEC sp_executesql @sql_command;

The resulting command string will look like this:

SELECT

 *

FROM Person.Person

WHERE FirstName LIKE 'Ed%'

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

30

Note that three apostrophes are used instead of one. Within a string, a pair of

apostrophes is translated into a single apostrophe. Whenever you are working with

strings within a dynamic SQL command string, be sure to debug and print often to

ensure that you’re building valid T-SQL and have not forgotten any string delimiters.

If there was a need to modify a string within a parameter within dynamic SQL, the

result would be the need for six apostrophes instead of two. If this sounds complicated,

then use that complexity as a caution against developing an application that is more

difficult to understand and maintain than is necessary.

�Conclusion
Dynamic SQL is a powerful tool that is capable of executing complex requests quickly

and efficiently. There are many database queries and tasks that would be very difficult

to accomplish without the ability to customize queries on the fly. We will soon delve into

greater detail on dynamic SQL features, as well as provide many practical examples of

how to effectively use it.

Before diving in, though, it is important to discuss security and the best practices for

writing and maintaining dynamic SQL. As with any tool, it can be used and misused, and

knowing how to effectively utilize it will not only improve the quality of development,

but also help secure your existing applications and systems.

Chapter 1 What Is Dynamic SQL?

www.EBooksWorld.ir

31
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_2

CHAPTER 2

Protecting Against
SQL Injection
There are few SQL vulnerabilities as commonly exploited as SQL injection. This form of

database attack has destroyed companies, ruined careers, and is a constant challenge

for security officers. As database professionals, data is our greatest asset, and it is our

responsibility to guard it above all else. SQL injection is not limited only to dynamic

SQL, but is a technique that can be applied to many areas of SQL Server. Therefore,

understanding and defending against it are among the most important priorities when

considering SQL Server security.

�What Is SQL Injection?
SQL injection is an attack where a hacker attempts to insert malicious T-SQL into the

parameters used in dynamic SQL. Consider the example shown in Listing 2-1.

Listing 2-1.  Dynamic SQL, Intro to SQL Injection

DECLARE @CMD NVARCHAR(MAX);

DECLARE @search_criteria NVARCHAR(1000);

SELECT @CMD = 'SELECT * FROM Person.Person

WHERE LastName = "';

SELECT @search_criteria = 'Smith';

SELECT @CMD = @CMD + @search_criteria;

SELECT @CMD = @CMD + "";

PRINT @CMD;

EXEC sp_executesql @CMD;

www.EBooksWorld.ir

32

We perform a search of Person.Person for anyone who has a given last name.

@search_criteria was passed into this code. The resulting command string appears

exactly as we expect it to:

SELECT * FROM Person.Person

WHERE FirstName = 'Edward'

Over time, this search is used by many, many people and is expanded to also search

for people by last name, middle initial, title, e-mail address, and more! Eventually,

someone with the last name of “O’Brien” tries to search for their records.

Listing 2-2.  Use of Input Value with an Apostrophe

DECLARE @CMD NVARCHAR(MAX);

DECLARE @search_criteria NVARCHAR(1000);

SELECT @CMD = 'SELECT * FROM Person.Person

WHERE LastName = "';

SELECT @search_criteria = 'O"Brien';

SELECT @CMD = @CMD + @search_criteria;

SELECT @CMD = @CMD + "";

EXEC sp_executesql @CMD;

The results are not what the user expected. Instead of getting their info, they get an

SQL Server error instead:

Msg 102, Level 15, State 1, Line 322

Incorrect syntax near 'Brien'.

Msg 105, Level 15, State 1, Line 322

Unclosed quotation mark after the character string ".

We return to our command string and verify that it looks correct, and notice the

following:

SELECT * FROM Person.Person

WHERE LastName = 'O'Brien'

The apostrophe within “O’Brien” broke our command string, closing the string after

the “O” in “O’Brien.” Instead of receiving the expected data, our friend O’Brien receives

a cryptic error and contacts your help desk to determine why this web application is

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

33

broken. This is a best-case scenario of what could happen: the user shrugs and submits

an incident to your organization to fix this bug so they can search for their information

without odd error messages.

Let’s consider another example where the end user is more tech savvy and a bit more

malicious. They enter a string with apostrophes and are returned an error message.

Instead of reporting the error to you, a light bulb goes off and they begin writing some

T-SQL of their own, as shown in Listing 2-3.

Listing 2-3.  How a Hacker Can Begin to Use SQL Injection Against Unsecured

Dynamic SQL

DECLARE @CMD NVARCHAR(MAX);

DECLARE @search_criteria NVARCHAR (1000);

SELECT @CMD = 'SELECT * FROM Person.Person

WHERE LastName = "';

SELECT @search_criteria = 'Smith" OR 1 = 1 AND "" = "';

SELECT @CMD = @CMD + @search_criteria;

SELECT @CMD = @CMD + "";

EXEC sp_executesql @CMD;

The sneaky user realized immediately that this site was vulnerable to SQL injection

and began tinkering with search parameters until they found one that allowed them to

extract all of the personal data from this table, not just theirs. By adding two apostrophes

after “Smith,” our uninvited guest has returned to the main T-SQL query and appended

“OR 1 = 1” to the end. Finally, they added some additional apostrophes on to the end

in order to complete the command string correctly and avoid syntactical errors. The

resulting command string is as follows:

SELECT * FROM Person.Person

WHERE LastName = 'Smith' OR 1 = 1 AND " = "

The last name of “Smith” is irrelevant to the attack. By adding in a condition that

is always true, they’ve effectively bypassed the WHERE clause and have gained access

to all of the data in the table. In a single statement, they have stolen tens of thousands

of rows of personal data and begun a data breach that would cause great harm to any

organization targeted by it!

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

34

If a username and password prompt were managed via dynamic SQL, then a

similar attack as the preceding scenario would result in someone gaining access to a

software application that they were not authorized to use. Consider the dynamic SQL

in Listing 2-4, which verifies a user’s ID and password.

Listing 2-4.  Dynamic SQL that Verifies a User/Password Combination

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @id INT = 3;

DECLARE @password NVARCHAR(128) = ";

SELECT @sql_command = '

SELECT

 *

FROM Person.Password

WHERE BusinessEntityID = ' + CAST(@id AS NVARCHAR(25)) + '

AND PasswordHash = "' + @password + ""

EXEC (@sql_command)

Any guess of an incorrect password will result in a failed login, and no results are

returned, but what if a hacker tries to use SQL injection to bypass the login validation

altogether? The following string for @password would be all it would take to completely

invalidate this security check:

"' OR 1 = 1 AND "" = "'

By including an OR in the conditional, a malicious user could find ways to log in

using any user, even an administrator. Since these logins may appear legitimate from the

perspective of the application, it’s possible that this attack could go unnoticed until it is

too late.

Similarly, UNION ALL can allow additional data to be selected without triggering any

errors, as seen in Listing 2-5.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

35

Listing 2-5.  Use of UNION ALL via SQL Injection to Collect Additional Secure

Data

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @id INT = 3;

DECLARE @password NVARCHAR(128) = "' UNION ALL SELECT * FROM Person.

Password WHERE "" = "';

SELECT @sql_command = '

SELECT

 *

FROM Person.Password

WHERE BusinessEntityID = ' + CAST(@id AS NVARCHAR(25)) + '

AND PasswordHash = "' + @password + ""

EXEC (@sql_command)

In this example, the original query is allowed to execute with a blank password, but

an additional SELECT statement is appended, which returns the entire contents of the

Password table. The resulting command string looks like this:

SELECT

 *

FROM Person.Password

WHERE BusinessEntityID = 3

AND PasswordHash = " UNION ALL SELECT * FROM Person.Password WHERE " = "

This is a bit trickier to pull off, as both tables need to be of the same structure in order

to prevent syntax errors when the columns from the first table do not match the second.

Given time, though, a hacker can figure out ways around this, such as adding dummy

columns to the appended table, choosing specific columns, or using COLLATE to ensure

that language and localization settings match up. Guessing the names of tables in order

to exploit them is a matter of trial and error here, but later on we will discuss ways in

which a hacker can determine them through more covert means.

A similar attack involving a user name/password scenario would be to use

comments to remove the remainder of the T-SQL so that the user name is validated

but the password is not. This database schema is hypothetical, but the use case very

common, as seen in Listing 2-6.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

36

Listing 2-6.  User/Password Verification Statement

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @username NVARCHAR(128) = 'edward';

DECLARE @password NVARCHAR(128) = 'my_password';

SELECT @sql_command = 'SELECT

 *

FROM dbo.password

WHERE username = "' + @username + "' AND Password = "' + @password + "";

EXEC(@sql_command);

An attacker may see that SQL injection is possible here and try to remove the

password from the equation altogether by entering the following for their user name:

'administrator" --'

The resulting command string shows that the remainder of the WHERE clause is

commented out, therefore bypassing the password check:

SELECT

 *

FROM dbo.password

WHERE username = 'administrator' --' AND Password = 'my_password'

An open comment delimiter “/*” may be used in an attempt to bypass multiline

queries, or those that have some precautions in place.

For a skilled hacker, this would only be the beginning. From here, they could begin

testing the structure of your database, learning the names of tables, stored procedures,

views, and the security permissions granted to the user that the application runs under.

In order to do this, they would continue to rewrite their search box entry, in an attempt

to learn more, as seen in Listing 2-7.

Listing 2-7.  Closing a Dynamic SQL String from an Input Parameter to Probe

Schema Objects

DECLARE @CMD NVARCHAR(MAX);

DECLARE @search_criteria NVARCHAR(1000);

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

37

SELECT @CMD = 'SELECT * FROM Person.Person

WHERE LastName = "';

SELECT @search_criteria = 'Smith"; SELECT * FROM sys.tables WHERE "" = "'

SELECT @CMD = @CMD + @search_criteria;

SELECT @CMD = @CMD + "";

EXEC sp_executesql @CMD;

After a bit of experimenting with apostrophes, the hacker has figured out how to

close the search statement and start a new one of their own. By selecting data from sys.

tables, they have now collected a list of all tables in the database. If they did not have

access to system views, then guesswork would still yield some results, as most databases

have somewhat predictable object names. More guessing would result in more risk,

as many failed T-SQL statements or high activity from this search by a single user may

eventually arouse suspicion. Unfortunately, most companies do not have the time or

resources to vigilantly monitor and guard their web logs. Oftentimes these vulnerabilities

are discovered too late, after data has been stolen.

Their next step would be to identify specific tables of interest: those with passwords,

credit card numbers, or other valuable data. In addition, they can now run any SQL

statements for which the application user has permissions without generating any

further errors, as seen in Listing 2-8.

Listing 2-8.  Using SQL Injection to Freely Gather Password Data

DECLARE @CMD NVARCHAR(MAX);

DECLARE @search_criteria NVARCHAR(1000);

SELECT @CMD = 'SELECT * FROM Person.Person
WHERE LastName = "';
SELECT @search_criteria = 'Smith"; SELECT * FROM Person.Password WHERE "" = "'
SELECT @CMD = @CMD + @search_criteria;
SELECT @CMD = @CMD + "";

EXEC sp_executesql @CMD;

At this point, the hacker can have whatever data they collect from the database. If

you’re lucky, then critical data will be encrypted, reducing their ability to immediately

gain access to sensitive information. With this level of database access, though, they may

be able to collect enough additional information to access other systems and eventually

decrypt that data. This is an excellent example of why highly privileged accounts, such

as sa, should never be used in the context of an application login. Doing so can allow a

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

38

hacker who gains unauthorized access to an application to also gain extensive access to

the database server as well. This access could span many databases, linked servers, or

other entities that would comprise a data breach that could involve other applications

than the one initially targeted.

There is a single worst-case scenario that has played out many times in recent

history. If our hacker was feeling destructive, they could use their newly found database

access to delete data, truncate or drop tables, or even delete backup files from disk. How

could they access files on disk? If xp_cmdshell is enabled on your server, then they may

be able to use it to access any data that is directly accessible from here. They could also

potentially adjust server settings, change database and server security, add or remove

users, and more. The limits at this point are only restricted by one’s imagination.

Disable xp_cmdshell on all database servers that could be accessed from outside
of your internal network. As an additional safety measure, disable it anywhere that
it isn’t absolutely needed!

In addition to xp_cmdshell, other system stored procedures should have their

security limited. xp_regread, xp_regwrite, xp_servicecontrol, xp_loginconfig,

sp_addextendedproc, and many others can provide far more access to the server and

operating system than we would ever want. Be sure to limit access to these so that any

user that doesn’t need them doesn’t have them. Other functions that can be dangerous

include HOST_NAME(), OPENQUERY(), OPENROWSET(), SHUTDOWN, and KILL.

Another scenario that has added further insult to injury has been the desire of

hackers to profit off of their escapades. They may try and blackmail your company in an

attempt to profit off of their efforts: “Pay up, or watch your precious data go up in flames!”

More complicated situations have arisen when our hacker attempts to cover their data

theft by issuing a DDOS (distributed denial of service attack) attack. The influx of web/

data requests overwhelm your web servers, and distract you from their true intentions.

Additional SQL injection attacks have been documented in which the hacker did

not steal data, drop tables, or otherwise make their presence immediately known.

Instead, they would use their newfound access to modify web page code, inserting links

to viruses, malware, or other malicious code that could exploit anyone visiting this web

page. This expands the scope of the attack greatly, and could result in significant damage

until the target realizes what has happened, removes the malicious code, and patches

the original SQL injection target.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

39

The preceding scenario is scary but is far from a bedtime story gone wrong. We will

spend the rest of this chapter discussing our aforementioned nightmare situation, and

the steps we can take to alleviate each and every mistake that led to our database server

being infiltrated by an outside party. This is not only a discussion of SQL injection, but

also one of general security best practices.

�Cleansing Inputs
The first step toward guarding against SQL injection is to ensure that all inputs are

clean and that no invalid data can be passed in. This is a responsibility that is shared

by application developers (via code), database administrators (via SQL), and web

developers (via the web interface). In an ideal environment, inputs are cleansed at

all stages of execution. The web page or application that initially prompts for inputs

should make efforts to ensure that invalid entries are not allowed. Some common

methods are:

	 1.	 Generate a custom error message for the user that indicates that

invalid characters or text were entered.

	 2.	 Strip out the invalid characters and allow execution to proceed.

	 3.	 Define roles for input data and if the entry doesn’t fit that specific

format, throw an error to the user. For example, a birthdate could

be in the form MMDDYYYY, and all other entries disallowed.

	 4.	 Implement a software framework that automatically handles the

cleansing of inputs for you.

These efforts will greatly enhance security and ensure that end users receive

immediate feedback regarding the data they input. A good application will implement

at least one, but likely several, of these safeguards. A great application will implement

all of them, regardless of those efforts seeming redundant or unnecessary. As database

professionals, we want these protections but cannot rely on them. It is our responsibility

to ensure that all parameters that are passed into our T-SQL are cleansed with the same

level of diligence. Doing so on all layers of a software application ensures the highest

level of protection in the event that mistakes are made.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

40

SQL Server error messages should always be handled internally via code and
never exposed to end users. Instead, provide them with a friendly error message
and reporting instructions.

The simplest way to cleanse inputs is to directly address them at the start of our

code. In an attempt to keep our sample code as easy to read as possible, we’ll use stored

procedures for any reusable code going forward. Using Listing 2-9, let’s reconsider our

search from earlier and add some basic input cleansing at the top.

Listing 2-9.  Basic Input-Cleansing Search Procedure

CREATE PROCEDURE dbo.search_people

 (@search_criteria NVARCHAR(1000) = NULL) -- �This comes from user

input.

AS

BEGIN

 SELECT @search_criteria = REPLACE(@search_criteria, "", """);

 DECLARE @CMD NVARCHAR(MAX);

 SELECT @CMD = 'SELECT * FROM Person.Person

 WHERE LastName = "';

 SELECT @CMD = @CMD + @search_criteria;

 SELECT @CMD = @CMD + "";

 PRINT @CMD;

 EXEC sp_executesql @CMD;

END

GO

EXEC dbo.search_people 'Smith';

EXEC dbo.search_people 'O"Brien';

EXEC dbo.search_people "' SELECT * FROM Person.Password; SELECT "';

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

41

The preceding stored procedure contains a single addition at the top: all instances

of an apostrophe are replaced with a pair of apostrophes. This guarantees that if anyone

enters apostrophes, they will not break the string and cause immediate errors or obvious

SQL injection vulnerabilities. The queries generated by each of the three executions are

as follows:

SELECT * FROM Person.Person

 WHERE LastName = 'Smith'

SELECT * FROM Person.Person

 WHERE LastName = 'O"Brien'

SELECT * FROM Person.Person

 WHERE LastName = "' SELECT * FROM Person.Password; SELECT "'

In the first example, “Smith” is entered and all people with the last name of Smith are

returned as usual. When an O’Brien enters his last name, the apostrophe is doubled, his

name is searched, and results are found normally, without any error messages. When

our malicious user tries to access passwords within the database, they are given an

empty result set. Since the apostrophes are doubled in all cases, this string of attempted

SQL injection turns into a harmless string with no holes in it.

SQL Server has a built in function whose purpose is to ensure that string contents are

correctly delimited. QUOTENAME takes two parameters: the string to be cleansed and

the character that will be verified. The stored procedure in Listing 2-10 is similar to the

one in Listing 2-9, but the REPLACE operation has been updated to use QUOTENAME

instead.

Listing 2-10.  Input-Cleansing Search Procedure, Implemented Using

QUOTENAME

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

people')

 DROP PROCEDURE search_people;

GO

CREATE PROCEDURE dbo.search_people

 (@search_criteria NVARCHAR(1000) = NULL) -- This comes from user input.

AS

BEGIN

 DECLARE @CMD NVARCHAR(MAX);

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

42

 SELECT @CMD = 'SELECT * FROM Person.Person

 WHERE LastName = ';

 SELECT @CMD = @CMD + QUOTENAME(@search_criteria, "");

 PRINT @CMD;

 EXEC sp_executesql @CMD;

END

GO

EXEC dbo.search_people 'Smith';

EXEC dbo.search_people 'O"Brien';

EXEC dbo.search_people "' SELECT * FROM Person.Password; SELECT "';

QUOTENAME handles the apostrophe cleansing for us, and as a result we no

longer need to wrap the last name portion of our command string in additional

apostrophes. The output of this stored procedure is exactly the same as in the last

example. Each name is correctly delimited with apostrophes to ensure that the

search criteria will not cause any opportunities for errors to occur. In addition to

apostrophes, QUOTENAME can be used to delimit square brackets ([,]), as well as

quotation marks (“”).

�Parameterizing Dynamic SQL
Manually cleansing inputs using REPLACE or QUOTENAME is leaps and bounds better

than having no protection at all. This will help prevent the most common SQL injection

attacks, but it’s not perfect. Manual input cleansing ensures that certain character

combinations are replaced with more desirable options, but they are still subject to

our vigilance in escaping inputs everywhere they exist. This tends toward a manual

process where the database developer must remember to correctly use REPLACE or

QUOTENAME in conjunction with all dynamic SQL statements.

A more reliable choice is to shift the responsibility from the developer to sp_

executesql. This versatile stored procedure can accept input parameters, and in the

process of doing so, will cleanse them automatically. Consider the new version of our

previous stored procedure, as seen in Listing 2-11.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

43

Listing 2-11.  Parameterized Search Procedure

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

people')

 DROP PROCEDURE search_people;

GO

CREATE PROCEDURE dbo.search_people

 (@search_criteria NVARCHAR(50) = NULL) -- This comes from user input.

AS

BEGIN

 DECLARE @CMD NVARCHAR(MAX);

 SELECT @CMD = 'SELECT * FROM Person.Person

 WHERE LastName = @search_criteria';

 PRINT @CMD;

 �EXEC sp_executesql @CMD, N'@search_criteria NVARCHAR(1000)',

@search_criteria;

END

The syntax for parameterizing sp_executesql is broken into three parts:

	 1.	 The command string to execute (@CMD)

	 2.	 The parameter list, including data types for each (N'@search_

criteria NVARCHAR(1000)'

	 3.	 The parameters that are being passed in from our stored

procedure (@search_criteria)

The results of this stored procedure are identical to each of our previous input

cleansing examples. In this case, sp_executesql will handle the cleansing itself,

ensuring that the inputs are correctly delimited, without the need for any further

instruction from us. The parameter list may be stored as a separate variable as well. This

can prove useful when there are many parameters, when we want to modify this list prior

to execution, or when we want the sp_executesql command to be as short and clean

as possible. As a bonus, we do not need to manage clumps of apostrophes as we delimit

strings within dynamic SQL.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

44

Listing 2-12.  Parameterized Search Procedure Using a Separate Parameter

Variable

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

people')

 DROP PROCEDURE search_people;

GO

CREATE PROCEDURE dbo.search_people

 �(@search_criteria NVARCHAR(1000) = NULL) -- This comes from user input.

AS

BEGIN

 DECLARE @CMD NVARCHAR(MAX);

 �DECLARE @parameter_list NVARCHAR(MAX) = N'@search_criteria

NVARCHAR(1000)';

 SELECT @CMD = 'SELECT * FROM Person.Person

 WHERE LastName = @search_criteria';

 PRINT @CMD;

 EXEC sp_executesql @CMD, @parameter_list, @search_criteria;

END

Notice the addition of the variable @parameter_list, which provides a separate

place in which to store the list of input parameters. Adding this parameter is optional,

but can help improve the readability of your dynamic SQL execution statement.

Using sp_executesql and passing all parameters into it ensures that all inputs are
properly delimited and that SQL injection will not be possible using those inputs

The parameter list string (@parameter_list) contains all of the parameter names

that correspond to the text within the dynamic SQL command string. The input

parameters (@search_criteria) correspond to the parameters that are being passed in

from outside of the dynamic SQL, listed individually. The parameter names in each list

may be different, and the naming convention used is up to you. Exercise consistency,

though, so that future developers are not left guessing with each line of T-SQL.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

45

How many parameters are allowed in an sp_executesql statement? The answer is

based on the SQL Server built-in limit for parameters in a stored procedure. The limit for

any stored procedure is 2100, but in the case of sp_executesql, the command string and

parameter list count as parameters, leaving us with a 2098 parameter limit, which should

be more than enough for even the wildest programmers among us!

We can even use string building and dynamic SQL in the construction of the search

criteria and parameter list, if we want to. This can allow us further customization of what

variables are important for a given application at a given time.

The preceding example illustrated a dynamic SQL statement with a single parameter.

Listing 2-13 shows how this would look with many parameters, naming the internal and

external names differently.

Listing 2-13.  Search Procedure with Multiple Optional Parameters

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

people')

 DROP PROCEDURE search_people;

GO

CREATE PROCEDURE dbo.search_people

 (@FirstName NVARCHAR(50) = NULL,

 @MiddleName NVARCHAR(50) = NULL,

 @LastName NVARCHAR(50) = NULL,

 @EmailPromotion INT = NULL)

AS

BEGIN

 DECLARE @CMD NVARCHAR(MAX);

 �DECLARE @parameter_list NVARCHAR(MAX) = N'@FirstName NVARCHAR(50),

@MiddleName NVARCHAR(50), @LastName NVARCHAR(50), @EmailPromotion INT';

 SELECT @CMD = 'SELECT * FROM Person.Person

 WHERE 1 = 1';

 IF @FirstName IS NOT NULL

 SELECT @CMD = @CMD + '

 AND FirstName = @FirstName'

 IF @MiddleName IS NOT NULL

 SELECT @CMD = @CMD + '

 AND MiddleName = @MiddleName'

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

46

 IF @LastName IS NOT NULL

 SELECT @CMD = @CMD + '

 AND LastName = @LastName'

 IF @EmailPromotion IS NOT NULL

 SELECT @CMD = @CMD + '

 AND EmailPromotion = @EmailPromotion';

 PRINT @CMD;

 �EXEC sp_executesql @CMD, @parameter_list, @FirstName, @MiddleName,

@LastName, @EmailPromotion;

END

There are a few interesting changes to our search proc here. First, there are now

four parameters that are passed into our stored procedure. Note the syntax of the sp_

executesql command: command string first, then the internal parameter list, and then

each parameter passed in separately. It is important that the order of parameters in each

list match, otherwise you risk passing a first name in as a last name or a string where an

integer is expected.

The second significant change in this stored procedure is that all parameters are

optional. In order to facilitate this, “WHERE 1 = 1” is the first WHERE clause, followed

by each parameter. This ensures that if all parameters are NULL, we aren’t left with a

hanging WHERE keyword and no clauses following it, which would result in an error.

Consider the following executions of the preceding stored procedure:

EXEC dbo.search_people 'Edward', 'H', 'Johnson', 1

EXEC dbo.search_people 'Edward', NULL, NULL, 1

EXEC dbo.search_people

The first example provides values for all parameters and will return a single row from

Person.Person. The T-SQL command string will look like this:

SELECT * FROM Person.Person

 WHERE 1 = 1

 AND FirstName = @FirstName

 AND MiddleName = @MiddleName

 AND LastName = @LastName

 AND EmailPromotion = @EmailPromotion

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

47

The second example leaves the middle name and last name NULL, and the resulting

command string is:

SELECT * FROM Person.Person

 WHERE 1 = 1

 AND FirstName = @FirstName

 AND EmailPromotion = @EmailPromotion

The final example provides no parameters, and illustrates the importance of the

“WHERE 1 = 1” placeholder in order to maintain good syntax when we do not know what

parameters (if any) will be supplied:

SELECT * FROM Person.Person

 WHERE 1 = 1

It is likely within any large application where the table we are searching contains

thousands (or millions) of rows, that we would not want to allow an empty search like

this. It is generally beneficial to require at least one search parameter, which prevents a

user from blindly returning everything. It is also worthwhile to limit the rows returned by

the database to some relatively small number. Limits of 10, 25, 50, and 100 are common

defaults for many applications, which ensure that we never inadvertently allow a user to

query a table for millions of rows at one time.

Using sp_executesql is not enough to ensure protection against SQL injection.
All parameters must explicitly be passed into sp_executesql as shown in the
last few examples. If parameters are concatenated directly to the command string
without passing them into sp_executesql, then those inputs will be subject
to SQL injection attacks by exploiting apostrophes as previously demonstrated,
and as we will see in further examples to follow. Always verify that there is no
opportunity for anyone to have their search text directly incorporated into a
command string without the appropriate input sanitation first!

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

48

�Schema Name and Square Brackets
This convention applies to writing standard SQL, as well as dynamic SQL. When

querying against dynamically defined database schema, such as tables, views, columns,

or stored procedures, we are unable to parameterize the database objects. Without this

protection, our T-SQL is opened up to the potential for SQL injection attacks. Consider

the following T-SQL search in Listing 2-14.

Listing 2-14.  Dynamic Table Search with No SQL Injection Protection

DECLARE @table_name SYSNAME = 'ErrorLog';

DECLARE @CMD NVARCHAR(MAX);

SELECT @CMD = 'SELECT * FROM ' + @table_name;

PRINT @CMD;

EXEC sp_executesql @CMD;

When executed, this returns all rows in the table ErrorLog. As with our examples

earlier, this search, which defines the table to be queried at runtime, can easily

be targeted by SQL injection. The following sinister input for @table_name would

result in the contents of Person.Password being returned to the user, in addition to

ErrorLog:

'ErrorLog; SELECT * FROM Person.Password WHERE "" = ""';

An easy defense against this is to explicitly include the schema name, even if it is

the default. In addition, include square brackets around all objects, which will further

delimit the SQL statement and restrict its ability to be easily manipulated.

Listing 2-15.  Dynamic Table Search with Added Schema and Brackets

DECLARE @table_name SYSNAME = �'ErrorLog; SELECT * FROM Person.Password

WHERE "" = ""';

DECLARE @CMD NVARCHAR(MAX);

SELECT @CMD = 'SELECT * FROM [dbo].[' + @table_name + ']';

PRINT @CMD;

EXEC sp_executesql @CMD;

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

49

Executing this new version will result in the following command string:

SELECT * FROM [dbo].[ErrorLog; SELECT * FROM Person.Password WHERE " = "]

Executing that T-SQL results in an error at runtime:

Msg 208, Level 16, State 1, Line 142

Invalid object name 'dbo.ErrorLog; SELECT * FROM Person.Password WHERE " = "'.

Adding the schema and delimiting brackets caused that simple SQL injection

attempt to fail. Assuming that the error message is caught by an application, and a

friendly error returned, then the user will not know for certain what happened. This, of

course, isn’t foolproof, and a very persistent hacker will continue entering attempts at

command strings until they figure out the pattern and try this input:

'ErrorLog]; SELECT * FROM [Person].[Password'

By closing the square brackets, and then reopening them with their table name,

they’ve defeated our attempts to secure this query. While we could take further measures

to complicate the command string to thwart a potential hacker, there would still be a

security risk involved.

As stated earlier, any command string where all inputs are not parameterized using

sp_executesql will be potentially vulnerable to SQL injection attacks. In general, avoid

using database objects as dynamic SQL parameters unless you are certain that there will

be no external access to this system. Regardless of audience, use QUOTENAME in order

to properly delimit your parameters. While they cannot be passed in to sp_executesql

directly, this will at least ensure that they cannot be exploited as seen.

For internal procedures to be used exclusively by DBAs or developers, these sorts

of dynamic SQL statements are reasonable, though caution should still be exercised.

As soon as any unknown parties have access, such as nontechnical departments, end

users, or the Internet as a whole, the level of risk increases immensely. Always consider

your audience before making stored procedures available to outside parties in any

form, and ensure there is no way for them to exploit your code. Even if those procedures

are internal and deemed safe, it is still important to utilize every security precaution

and T-SQL best practice. Seemingly unlikely events, such as rogue users, disgruntled

employees, or social engineering attempts happen far too often to be considered

irrelevant under any conditions.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

50

�Effective Spacing
The example in Listing 2-6 showed a scenario where an attacker used comments to

remove the password check in a login script. The primary cause of this vulnerability

was the lack of parameterization or input sanitation, but a secondary cause was that the

entire WHERE clause was on a single line.

I am unsure what possesses anyone to write dynamic SQL mostly or all on a single

line, but in addition to rendering it illegible, it also increases the ways in which SQL

injection could be used to exploit a poorly written query. Writing dynamic SQL with

the same formatting and care that standard SQL is given will not only make it more

maintainable, but will also remove a very simple SQL injection attack method from a

hacker’s arsenal.

�Properly Type Inputs
In addition to sanitizing inputs, it is important to always use the correct data type

for inputs. SQL injection specifically targets string inputs, in which apostrophes and

malicious SQL can be inserted. Nontext data types, such as BIT, INT, or DATETIME

cannot be the target of SQL injection.

Some applications are written with all (or most) input parameters as strings, for

convenience. When working with strings, there is no need to cast or convert them to

strings when concatenating them with your dynamic SQL command string. While this

may reduce development time slightly, it increases the number of inputs in which SQL

injection is theoretically possible.

If any data type is being evaluated that is not inherently a string, ensure that it is

stored as a nonstring at least until it has been passed into your stored procedure. Once

execution has passed these parameters into T-SQL, they can then be cast as strings and

used in dynamic SQL with no risk of SQL injection. If desired, string variables can be

declared within a stored procedure, and then populated with the converted types from

above. Since the conversion is internal to SQL Server and has no connection outside of

the stored procedure, it too is safe from SQL injection.

Always ensure that data is properly typed. Storing values as nonstrings ensures
that they cannot be the target of SQL injection.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

51

Similarly, ensure that applications always verify inputs to ensure that they match

the expected type. An integer that is passed into a T-SQL statement as a string may allow

arithmetic to be embedded safely in the string. If a malicious user realizes that they

can replace “5” with “5 + 1,” then they will immediately begin to probe other nonstring

inputs to determine if they are converted blindly to strings. A parameter should be

typed correctly from the moment it is entered by a user until it is consumed by a stored

procedure. This prevents any opportunities for manipulation, in addition to reducing

complexity and the chance that mistakes may be made as a result of confusing data types.

�Blind SQL Injection
Even if a hacker cannot gain complete access to the database server via SQL injection,

they may still be able to use some query elements to slowly gain information about

a server, its security settings, and data. This can be done through the SQL injection

methods demonstrated previously, or by modifying URLs or other data that is passed

directly to the application.

The simplest example of this attack is to modify an HTTP string in order to view

data that would otherwise be inaccessible to the user, such as a user profile, personal

pictures, or upcoming travel plans. This attack requires little or no T-SQL knowledge,

and therefore it is very common and often one of the first attempts made against a web

application. The defense against these attempts to steal data is to ensure that the web

page itself does not allow URLs to be blindly modified. In addition, if user, client, or web

browser data is verified with all requests to sensitive data, then denying unauthorized

access becomes much easier.

If the hacker can gain some SQL Server access via dynamic SQL, but finds him

or herself limited by security restrictions, they can use their limited access to poke at

the server and slowly discover limitations, security settings, data elements, and more.

They will send requests in the form of IF statements that evaluate to true or false.

Alternatively, the malicious user could ask questions that lead to error messages, and

therefore determine the results by which the statement throws an error or not. TRY/

CATCH can be used to manage error messages, thereby reducing the impact of these

queries on web or database logs. Delays can be used, as well, to help in diagnosing

responses based on the time it takes for them to complete. Even if friendly errors are

displayed, that information would confirm that they have enough access to query the

server for information and succeed.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

52

Listing 2-16 illustrates some simple examples of the sorts of blind SQL injection

queries that might get targeted at a vulnerable server.

Listing 2-16.  Example Queries that May be Used in Blind SQL Injection Attacks

IF CURRENT_USER = 'dbo' SELECT 1 ELSE SELECT 0;

IF @@VERSION LIKE '%12.0%' SELECT 1 ELSE SELECT 0;

IF (SELECT COUNT(*) FROM Person.Person WHERE FirstName = 'Edward' AND

LastName = 'Pollack') > 0

WAITFOR DELAY '00:00:05'

ELSE

WAITFOR DELAY '00:00:00';

BEGIN TRY

 DECLARE @sql_command NVARCHAR(MAX);

 SELECT @sql_command = 'SELECT COUNT(*) FROM dbo.password;'

 EXEC (@sql_command)

END TRY

BEGIN CATCH

 SELECT 0

END CATCH;

The first three examples use basic yes/no questions in an attempt to learn

about the server. The last example is a bit sneakier, and involves creating additional

dynamic SQL to probe database objects further without throwing database errors in

the process. TRY/CATCH does not work if syntax errors are present, hence querying

an invalid table would return error messages. Injecting or appending further

dynamic SQL allows an attacker to verify the existence of tables without causing

syntax or parsing errors.

Blind SQL injection is a slower attack method, but can, over time, reveal critical data

about a system. Each query reveals a new piece of information, and with enough data,

they may be able to alter/bypass security restrictions in order to execute queries in the

same way as they would have if no security precautions were in place.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

53

�Detection and Prevention
Prevention is the optimal way to prevent SQL injection, but as with any large software

system, there will be code that predates you and could contain security holes. How do

we guard ourselves against existing threats, or those we have yet to identify?

�Security Testing
It has become a regular security task for companies to have third party vendors run

penetration tests against their applications. This provides an opportunity for an

unbiased external source to probe your environments for any of the common signs of

SQL injection (or other vulnerabilities). Alternatively, these tests can be run internally

if you have your own set of tools that are up to the task. This is an excellent way to find

uncommon, old, or hidden vulnerabilities.

This sort of testing is often required in order to meet compliance standards, for

example, with HIPAA (Health Insurance Portability and Accountability Act). If you work

for a company or industry where sensitive data is stored by your software, conduct the

necessary research to ensure that your security testing and verification are meeting your

industry’s compliance standards. Additional compliance may be necessary if you are

doing business with customers in other countries.

Similarly, the GDPR (General Data Protection Regulation) greatly increases the level

of responsibility an organization must take with its data. Any breach or attack that results

in access to personal data (even if not stolen or altered) requires notification within 72

hours of its discovery.

The most common methods for detecting SQL injection vulnerabilities involve

blindly populating application inputs with a variety of injection statements, in an

attempt to generate application errors or coax unusual HTTP responses from a web

page. For example, a set of valid searches is performed and the response time measured.

Next, SQL injection statements are supplied to the application. By comparing those

response times, it is possible to determine if the injected SQL was executed or not.

Checking for error messages is also common. If a set of typical SQL injection

statements can result in unusual application or SQL errors, then the possibility exists for

further exploitation.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

54

It is important to understand that while security companies possess a variety of tools

as a method of defending you from SQL injection attacks, hackers also possess their

own sets of similar tools. If any security vulnerability can be demonstrated, regardless

of how improbable or obscure, it is likely that a hacker will also eventually discover and

immediately take advantage of it (or already is!).

�Scanning of Application Traffic
Lightweight monitors can be put in place that will scan incoming traffic for unusual

data patterns. For example, are common SQL commands or syntax being sent to

your database servers from applications where only text is expected? Searching for

semicolons, apostrophes, comment delimiters (--, /*, */), or T-SQL keywords such as

SELECT, WHERE, and FROM are effective ways to locate and manage the sources of

hacking attempts.

While these scans can be very useful, their value is solely based on the ratio of valid

information versus noise. The need to catch SQL injection attacks needs to be weighed

against the potential that common SQL characters or keywords may be common among

application traffic. Realistically, any application that is open to the Internet will be

blindly targeted by hackers for common vulnerabilities.

If this is the case, then it is up to us to determine a baseline for an average day of

traffic (without any actual attacks occurring). Once that is established, then we can

limit alerts to scenarios where suspicious activity is high enough to make us want to

investigate further.

�Log Review
Similar to monitoring network, application, or database traffic, we can regularly scan

our web logs, application logs, or database error logs to determine if anything unusual or

concerning is taking place. Similar searches can be made as with application traffic, and

the results can be trended over time to produce an overview of SQL injection attempts,

common targets, and sources.

Using this data, we can review the most common targets and ensure they are not

vulnerable to SQL injection. In addition, we can analyze the sources of attacks to

determine if any patterns exist. Many companies will block web traffic from specific

countries, domains, or IP ranges, in order to remove risks while not affecting legitimate

end user activity.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

55

Note that password change requests are not logged by default, as a security

precaution so that details (such as the old or new passwords) are not stored anywhere

that others could view. As a result, if injected T-SQL statements contain sp_password,

they will evade the SQL Server logs (though they will still appear as normal in

application or web logs). There are many available ways to audit password changes, a

few of which will be covered in Chapter 4.

Many of the ideas presented here can be automated so that a human is not actively

monitoring web traffic or SQL Server logs. By filtering suspicious or anomalous requests,

we can regularly capture and store anything of interest to us and only alert an operator of

those requests that are of concern to us.

�Code Review
All new application code should follow a review process by which an experienced

developer reviews it. Similarly, all T-SQL should reviewed by a DBA or developer with

enough database experience to be able to sniff out security holes. If the database

scripts include dynamic SQL, then that can be focused on, ensuring that no SQL

injection vulnerabilities exist. Even if the review is quick and targeted, it is likely

that any significant problems will be discovered and fixed. Even if only a single

vulnerability were ever found, the process itself would be completely justified in its

elimination.

For larger and older applications, a sequential review of existing code can provide

an additional defense against attacks. While it may sound time consuming to review

all existing code, we can greatly reduce the volume by filtering based on the presence

of common mistakes. For example, for SQL injection review, specifically single out

database scripts/objects and review only those that contain EXEC, sp_executesql, or

xp_cmdshell.

�Software Patching
Be sure to keep your servers up to date! In addition to SQL Server, stay current with

service packs and patches for your operating system, application software, and any

commonly used tools or frameworks. Vulnerabilities are discovered daily in many

commonly used software products, and some could potentially allow unauthorized

access to your data.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

56

While SQL injection is typically associated with dynamic SQL, it has been

discovered in the past as a vulnerability where seemingly legitimate HTTP or

command strings are passed from the web or another application directly to yours.

The most readily available defense against unexpected attacks such as these is to

regularly review application patch notes, and if any relevant security holes are found,

patch them immediately.

�Limit URL Length
As mentioned previously, it’s possible for malicious SQL or application requests to

be passed into an application via an HTTP request. Some web servers will not log the

complete URL if it is too long. This is one possible way in which a hacker can probe your

system for vulnerabilities without their actions being immediately noticed. They can

create an unusually long URL, with the hope that it will either be truncated, or not logged

at all.

Most web servers allow you to set a limit on the allowable length of URL strings,

and unless any applications require long URLs, setting that limit is beneficial. 2048

characters is a common limit, though any can be chosen. As with security, only allow

as much as is required for your application to operate normally (including future

growth).

For example, in Microsoft IIS, when this limit is set, a longer URL will return a

404 error to the client with no further detail. The server logs, though, will include

additional information as to why the request was blocked, so that you can identify

potential threats:

	 1.	 404.10: Request Header Too Long

	 2.	 404.13: Content Length Too Long

	 3.	 404.14: URL Too Long

	 4.	 404.15: Query String Too Long

These errors, when detected in bulk, should be a red flag when looking for potential

attackers or software bugs. If the origin of the requests is dubious, then consider blocking

them, otherwise research further to determine their cause and if they necessitate further

research and development.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

57

�Use Views and/or Masking for Sensitive Data
In those scenarios where encrypted sensitive data needs to be accessed, such as

passwords or credit card numbers, consider only supplying permissions to views that

provide the fewest fields necessary to service those queries. Denying direct access to

critical tables removes the ability of a hacker to access them, and therefore use SQL

injection to infiltrate them.

For example, a password table may have a variety of information that could not

only give away password hash details, but also password policies, user names, locked

accounts, recent login times, and more. The application likely only needs access to the

encrypted password (or hash) and positive identifying data (such as a user ID).

SQL Server 2016 includes a new security feature: Dynamic Data Masking. This can be

extremely effective for any scenarios where part of sensitive data is needed, such as the

last four digits of a social security number or credit card number. For users without the

UNMASK permission, a predetermined segment of the sensitive data will be obscured.

This added layer of data obfuscation provides an extra defense against an unauthorized

user gaining the complete details of your important data.

Data masking, while convenient, is not intended to be a hardened security feature. In

no way does data masking provide user-level security, and there are many documented

ways to bypass this feature if a user has direct SQL Server access. Masking is exclusively

a presentation feature that provides security to the end-user of the data. Anyone with

direct access to SQL Server and the masked data can work around the masking in order

to reveal the hidden characters.

Despite these limitations, Dynamic Data Masking is another lock on the vault that is

critical data, and one that will either dissuade a hacker from proceeding, or slow them

down enough that your security team has extra time to respond to the threat head-on.

For scenarios where only data validation is needed, but not full access to that data, this is

an excellent tool for providing only what is needed and nothing more.

�Vendor Software
Not all software on our systems was written by us or a trusted industry leader. Many

companies rely on additional applications to manage a variety of needs, such as:

•	 Payroll

•	 Vacation Time

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

58

•	 Help Desk

•	 E-mail/Calendars

•	 Reporting

•	 Expense Reports

•	 Hiring/Recruitment

Each of these applications has their own code, data storage, user interface, and

security concerns. When we use vendor software, regardless of whether it is cloud-based

or on-premises, we open ourselves up to any security vulnerabilities that software

may have.

When researching SQL injection or performing security audits or penetration tests,

be sure to include all software that your organization uses, regardless of its source. If the

software is installed on-premises, then be sure to validate the security and access it has

to local computing resources. Make sure that the application can in no way access data

or systems aside from its own.

In addition, perform your tests on their software as well. We often take it for granted

that the security of vendor software isn’t our problem, but if they lose our data, we

cannot simply blame them and move on.

Any client, regulatory, or industry standards that apply to our software must also

apply to software we install, use, or trust from other vendors. Major companies suffer

breaches regularly and lose social security numbers, credit card data, or personally

identifiable information. If any of that data belongs to your clients, then that vendor’s

mistake becomes your headache.

�Login Pages
Of all the text boxes we fill out in an application, none is more sensitive and more

attacked than the login page. Validating user names and passwords is extremely

important, and mistakes in doing so can render all of our other security precautions

irrelevant.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

59

Defending against SQL injection is important when managing login pages, but there

is benefit in taking additional steps to improve security:

•	 Do not provide detailed feedback on failed logins. If a login is

unsuccessful, report that fact and say nothing more. Indicating that a

user name is invalid allows attackers to hammer a site to determine

which login names are real or not. Reporting an incorrect password

will validate the existence of a specific user name, also providing

useful information to a hacker.

•	 Use two-factor authentication. Forcing a user to validate a new login

attempt from another device greatly cuts down on garbage login

attempts and allows users to take charge of their own security.

•	 Limit login attempts over a given time period. This stops an attacker

after enough bad guesses and logs that fact to web logs that can be

reviewed later.

•	 Account signup forms and password reset forms should be as vague

as possible, not confirming or denying the existence of accounts,

credentials, e-mail addresses, or previous login/signup attempts.

•	 Allow passwords to meet modern guidelines:

•	 Allow very long passwords. This allows the use of hard-to-guess

sentences or phrases. Force a minimum length, such as 8 or 12

characters.

•	 Drop specific complexity requirements. They are confusing, hard

to remember, and result in easy-to-guess passwords.

•	 Block the use of common passwords that are too easy to guess,

such as “Password” or “qwerty123.”

•	 Do not force frequent password resets, but do allow users to

change passwords any time.

•	 Do not use password hints. They are only effective in spreading

users’ personal information further by asking easy-to-research

questions. Favorite sports teams or car models are easy to guess

or confirm via social media.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

60

Any place in an application where user security is validated should receive as much

scrutiny as possible. If someone can gain unauthorized access to an account, then they

can access important data without the need for further hacking or trickery. Worse, this

access may be challenging to detect before it is too late.

�Conclusion
SQL injection is one of the top vulnerabilities exploited throughout the entire

process of application development. In fact, many government, corporate, and

independent surveys have consistently ranked SQL injection as the #1 vulnerability

in all of computing. This is clearly a very serious topic and one we must keep in

mind on a regular basis as we design, develop, test, deploy, and maintain a software

application.

The easiest and most effective way to protect against SQL injection is to be proactive

and write both secure T-SQL and application code. Consider how user inputs will be

integrated into search parameters and ultimately into database queries. Once those

sensitive areas are located, address them with multiple levels of security. Implementing

sp_executesql is a good start, but also adding input verification, parameterization, and

explicit schema references will be even more effective. Depending on your application,

take as many additional steps as are practical, as each will be another lock on the vault

that is your data.

If the time and effort required for these additional steps is ever questioned by

management, feel free to explain to them the vulnerabilities that you are addressing. List

out the potential threats and the consequences of them being realized. Security is often

seen as an inconvenience, but it is our responsibility as database professionals to justify

its necessity and ensure that our data is as secure as possible. Never let doing the “right”

thing with regard to security be entangled with release dates, efficiency, or resources.

The consequences of disregarding what are relatively simple development steps are too

high to shrug off.

In Chapter 4, we will discuss security in further detail. SQL injection is significant

enough to warrant a separate and special place in the hierarchy of SQL Server security.

Documenting your efforts and the threats they address will justify themselves in the

long run.

Chapter 2 Protecting Against SQL Injection

www.EBooksWorld.ir

61
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_3

CHAPTER 3

Large Scale Searching
One of the most common, versatile, and useful ways to implement dynamic SQL is

when performing complex searches. Consider your favorite web sites and the search

functionality provided in each. For some, the search may be simple: go to the single

text box in the top-right corner, enter some text, and results are returned. For others,

such as searching for a hotel, a flight, or a car rental, they can involve dozens (or more)

of optional parameters. Dynamic SQL can allow us to pare down our search queries

in order to only process what is needed. In addition, we can also greatly customize the

search, as well as the data returned. We can even analyze the input to determine the

correct course of action, based on its structure.

�Why Use Dynamic Searches?
Let’s say we want to search through a table of products, but need to join this data to

other tables along the way. Depending on the application, the number of tables could

be small, or they could be immense. For the hotel search, we may very well need

to join fifty tables if we wanted to query on every single possible search parameter.

Listing 3-1 is an example of a relatively small product search that could benefit from

the use of dynamic SQL.

Listing 3-1.  Search Stored Procedure, with Six Optional Parameters

(No Dynamic SQL)

CREATE PROCEDURE dbo.search_products

@product_name NVARCHAR(50) = NULL, @product_number NVARCHAR(25) = NULL,

@product_model NVARCHAR(50) = NULL, @product_subcategory NVARCHAR(50) = NULL,

@product_sizemeasurecode NVARCHAR(50) = NULL, @product_weightunitmeasurecode

NVARCHAR(50) = NULL

www.EBooksWorld.ir

62

AS

BEGIN

 SET NOCOUNT ON;

 SET @product_name = '%' + @product_name + '%';

 SET @product_number = '%' + @product_number + '%';

 SET @product_model = '%' + @product_model + '%';

 SELECT

 Product.Name AS product_name,

 Product.ProductNumber AS product_number,

 ProductModel.Name AS product_model_name,

 ProductSubcategory.Name AS product_subcategory_name,

 SizeUnitMeasureCode.Name AS size_unit_measure_code,

 WeightUnitMeasureCode.Name AS weight_unit_measure_code

 FROM Production.Product

 LEFT JOIN Production.ProductModel

 ON Product.ProductModelID = ProductModel.ProductModelID

 LEFT JOIN Production.ProductSubcategory

 ON Product.ProductSubcategoryID = ProductSubcategory.ProductSubcategoryID

 LEFT JOIN Production.UnitMeasure SizeUnitMeasureCode

 ON Product.SizeUnitMeasureCode = SizeUnitMeasureCode.UnitMeasureCode

 LEFT JOIN Production.UnitMeasure WeightUnitMeasureCode

 �ON Product.WeightUnitMeasureCode = �WeightUnitMeasureCode.

UnitMeasureCode

 WHERE (Product.Name LIKE @product_name OR @product_name IS NULL)

 �AND (Product.ProductNumber LIKE @product_number OR @product_number

IS NULL)

 AND (ProductModel.Name LIKE @product_model OR @product_model IS NULL)

 �AND (ProductSubcategory.Name = �@product_subcategory OR @product_

subcategory IS NULL)

 �AND (SizeUnitMeasureCode.Name = �@product_sizemeasurecode OR @product_

sizemeasurecode IS NULL)

 �AND (WeightUnitMeasureCode.Name = �@product_weightunitmeasurecode OR

@product_weightunitmeasurecode IS

NULL);

END

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

63

This stored procedure will search for products, and has a variety of search options

available for the user to choose from: product name, product number, product model,

product subcategory, size measure, and weight measure may all be provided or omitted

from the user’s input. It is assumed for this specific example that product name, product

number, and product model are wildcard searches; hence the addition of “%” to each

parameter after it is passed in. The other parameters are assumed to be selected from a

prepopulated menu, ensuring that any values passed in will be exact, and therefore there

is no need to make those into wildcard searches.

In the case of this search, we will always return the same six columns, regardless of

the parameters passed in. As a result, we will LEFT JOIN all participating tables to ensure

that we get a row per product, even if any join criteria are NULL. To ensure that no

results are omitted for unused parameters, an additional check is added to all WHERE

clauses such that, if the input is NULL, it will evaluate to true. The resulting logic allows

us to choose one of the following:

•	 A parameter is passed in from user input and should be evaluated

against the appropriate column. The NULL check evaluates to FALSE,

and has no bearing on this logic.

•	 A parameter is not passed in from the user, and therefore the

comparison against it is irrelevant. Instead, the NULL check evaluates

to true and therefore the entire WHERE clause evaluates to TRUE.

The following three examples illustrate how this works:

EXEC dbo.search_products @product_number = 'BK-M18', @product_model =

'Mountain', @product_subcategory = 'Mountain Bikes';

In this search, three parameters are provided and we will search for any product

that has a product number that includes “BK-M18”, a product model that includes the

word “Mountain”, and must be in the subcategory of “Mountain Bikes.” The other three

parameters do not participate in the WHERE clause and are evaluated against the

second NULL check instead. Ten results are returned that fit these specifications.

EXEC dbo.search_products @product_name = 'Mountain-500 Black, 48';

Here, the user knows exactly what they are looking for, and enter a specific product

name. All other parameters are NULL and are discarded from the search logic. A single

row is returned with the product they were searching for.

EXEC dbo.search_products;

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

64

In this last example, the user enters no search criteria and simply runs an empty

search. Our stored procedure allows this, and every product is returned. All inputs are

NULL and therefore bypass the WHERE clause predicate.

In reviewing this stored procedure, we find it to be accurate, returning the expected

results, but it is also somewhat lengthy and evaluates quite a few WHERE clause

predicates in order to accomplish what it needs to. The T-SQL that is executed is very

similar, regardless of what parameters are provided, which could be problematic in

scenarios where we were evaluating many parameters.

As business logic grows and becomes more complex over time, it is a given that these

queries will also grow and increase in size and complexity. A simple LEFT JOIN on one

column may no longer be enough to handle this new logic. WHERE clauses may have

additional options attached to them, such as the ability to be wildcard searches, equality

searches, include AND/OR logic, and more. While this stored procedure may continue

to grow over time to encompass all of these new requirements, we definitely do not

want the resulting T-SQL that is executed to grow indefinitely. Performance will become

problematic when we are joining dozens of tables, issuing subqueries, existence checks,

and complex WHERE clauses. This is where dynamic SQL comes in! See Listing 3-2 for

an example of using parameters to limit joins.

Listing 3-2.  Search Stored Procedure, with Six Optional Parameters (Using

Dynamic SQL)

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

products')

BEGIN

 DROP PROCEDURE dbo.search_products;

END

GO

CREATE PROCEDURE dbo.search_products

 �@product_name NVARCHAR(50) = NULL, @product_number NVARCHAR(25) =

NULL, @product_model NVARCHAR(50) = NULL,

 �@product_subcategory NVARCHAR(50) = NULL, @product_sizemeasurecode

NVARCHAR(50) = NULL,

 @product_weightunitmeasurecode NVARCHAR(50) = NULL

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

65

AS

BEGIN

 SET NOCOUNT ON;

 SET @product_name = '%' + @product_name + '%';

 SET @product_number = '%' + @product_number + '%';

 SET @product_model = '%' + @product_model + '%';

 DECLARE @sql_command NVARCHAR(MAX);

 �DECLARE @parameter_list NVARCHAR(MAX) = '@product_name NVARCHAR(50),

@product_number NVARCHAR(25),

 �@product_model NVARCHAR(50), @product_subcategory NVARCHAR(50),

@product_sizemeasurecode NVARCHAR(50),

 @product_weightunitmeasurecode NVARCHAR(50)';

 SELECT @sql_command = '

 SELECT

 Product.Name AS product_name,

 Product.ProductNumber AS product_number,

 ProductModel.Name AS product_model_name,

 ProductSubcategory.Name AS product_subcategory_name,

 SizeUnitMeasureCode.Name AS size_unit_measure_code,

 WeightUnitMeasureCode.Name AS weight_unit_measure_code

 FROM Production.Product

 LEFT JOIN Production.ProductModel

 ON Product.ProductModelID = ProductModel.ProductModelID

 LEFT JOIN Production.ProductSubcategory

 �ON Product.ProductSubcategoryID = ProductSubcategory.

ProductSubcategoryID

 LEFT JOIN Production.UnitMeasure SizeUnitMeasureCode

 ON Product.SizeUnitMeasureCode = SizeUnitMeasureCode.UnitMeasureCode

 LEFT JOIN Production.UnitMeasure WeightUnitMeasureCode

 �ON Product.WeightUnitMeasureCode = SizeUnitMeasureCode.

UnitMeasureCode

 WHERE 1 = 1'

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

66

 IF @product_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND Product.Name LIKE @product_name'

 IF @product_number IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND Product.ProductNumber LIKE @product_number'

 IF @product_model IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND ProductModel.Name LIKE @product_model'

 IF @product_subcategory IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND ProductSubcategory.Name = @product_subcategory'

 IF @product_sizemeasurecode IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND SizeUnitMeasureCode.Name = @product_sizemeasurecode'

 IF @product_weightunitmeasurecode IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND WeightUnitMeasureCode.Name = @product_weightunitmeasurecode'

 PRINT @sql_command;

 �EXEC sp_executesql @sql_command, @parameter_list, @product_name,

@product_number,

 @product_model, @product_subcategory, @product_sizemeasurecode,

 @product_weightunitmeasurecode

END

This stored procedure uses dynamic SQL to provide us complete control over the

WHERE clause. Instead of there always being six checks on all columns, we now only

include a check when the relevant parameter is supplied. Consider our first example

from earlier:

EXEC dbo.search_products @product_number = 'BK-M18', @product_model =

'Mountain', @product_subcategory = 'Mountain Bikes';

Earlier, the search used all six WHERE clause sections, one per parameter, even when

the parameter was NULL. With the new dynamic SQL version, the resulting command

string will only include WHERE clause sections for parameters that are not NULL, as

seen in Listing 3-3.

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

67

Listing 3-3.  Output from the Stored Procedure in Listing 3-2

SELECT

 Product.Name AS product_name,

 Product.ProductNumber AS product_number,

 ProductModel.Name AS product_model_name,

 ProductSubcategory.Name AS product_subcategory_name,

 SizeUnitMeasureCode.Name AS size_unit_measure_code,

 WeightUnitMeasureCode.Name AS weight_unit_measure_code

FROM Production.Product

LEFT JOIN Production.ProductModel

ON Product.ProductModelID = ProductModel.ProductModelID

LEFT JOIN Production.ProductSubcategory

ON Product.ProductSubcategoryID = ProductSubcategory.ProductSubcategoryID

LEFT JOIN Production.UnitMeasure SizeUnitMeasureCode

ON Product.SizeUnitMeasureCode = SizeUnitMeasureCode.UnitMeasureCode

LEFT JOIN Production.UnitMeasure WeightUnitMeasureCode

ON Product.WeightUnitMeasureCode = SizeUnitMeasureCode.UnitMeasureCode

WHERE 1 = 1

 AND Product.ProductNumber LIKE @product_number

 AND ProductModel.Name LIKE @product_model

 AND ProductSubcategory.Name = @product_subcategory

Note that only the necessary WHERE clause segments are included. WHERE 1 = 1

is always present, regardless of the input parameters. While it’s possible to add some

additional logic to remove the need for the default WHERE clause, its inclusion comes

at no significant cost and avoids adding any further complex logic to our growing stored

procedure.

�Custom Search Grids
At the moment, it may seem as though all this trouble to shrink the WHERE clause

isn’t worth it, but this is only the beginning! The next logical step is to examine another

common use case for large-scale searching: custom search grids. In this slightly

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

68

different search, the output columns are controlled by the user as well. Previously, we

returned the same six columns for every search, but this is an unlikely scenario for

any large application that wishes to incorporate any level of flexibility into its search

functionality.

For this search, there are two fundamental ways in which to approach it. The

first is to include all columns and joins in every query. The application can then pick

and choose which are needed, and which ones to discard. For this option, instead of

selecting six output columns, we would add every possible one that could be requested

by the end user in their custom results grid. For very small tables, this would be

functional and relatively maintainable, but consider scenarios where there are immense

numbers of possible columns to choose from, such as in a File Explorer window shown

in Figure 3-1.

Figure 3-1.  Windows File Explorer column chooser

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

69

In this column chooser, there are hundreds of columns to choose from, and the idea

of always collecting all of this data, regardless of the user’s needs, is quite scary. There

are many file types for which only a small number of these choices would make sense to

include, and collecting all of this data for every folder accessed would be inefficient and

difficult to effective maintain.

If we were to apply this logic to our preceding stored procedure and include all

possible columns from each of the six tables we queried, we would have to list 38 columns

to ensure that the end user had everything they could potentially need from these entities.

If every table relating to products in Adventureworks was added to our search query,

the end result would contain hundreds of columns and be quite the challenge to ensure

good performance. The downside of selecting everything extends to network IO, disk IO,

memory, and server CPU, in addition to the performance of SQL Server in processing the

query. All of this extra data would need to be moved from the database to the application

before it could finally be sorted out, and the extra columns removed from the data set.

The second and more versatile solution for implementing a search grid is to make

each part of the query dynamic. In addition to the WHERE clause, make the joins and

the columns selected dynamic. This ensures that the command string that we ultimately

execute is relatively small, only reads from the tables we need, and only returns the

columns we want. To keep this example easy to read, we will assume that the product

name and product number will always be returned. We will also assume that there will

be an additional set of bits that can be passed in that will determine what other columns

are chosen, which include some of the filter columns, as seen in Listing 3-4.

Listing 3-4.  Search Grid Stored Procedure, Using Dynamic SQL

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

products')

BEGIN

 DROP PROCEDURE dbo.search_products;

END

GO

CREATE PROCEDURE dbo.search_products

 �@product_name NVARCHAR(50) = NULL, @product_number NVARCHAR(25) =

NULL, @product_model NVARCHAR(50) = NULL,

 �@product_subcategory NVARCHAR(50) = NULL, @product_sizemeasurecode

NVARCHAR(50) = NULL,

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

70

 @product_weightunitmeasurecode NVARCHAR(50) = NULL,

 �@show_color BIT = 0, @show_safetystocklevel BIT = 0, @show_

reorderpoint BIT = 0, @show_standard_cost BIT = 0,

 �@show_catalog_description BIT = 0, @show_subcategory_modified_date

BIT = 0, @show_product_model BIT = 0,

 �@show_product_subcategory BIT = 0, @show_product_sizemeasurecode

BIT = 0, @show_product_weightunitmeasurecode BIT = 0

AS

BEGIN

 SET NOCOUNT ON;

 -- �Add "%" delimiters to parameters that will be searched as

wildcards.

 SET @product_name = '%' + @product_name + '%';

 SET @product_number = '%' + @product_number + '%';

 SET @product_model = '%' + @product_model + '%';

 DECLARE @sql_command NVARCHAR(MAX);

 -- Define the parameter list for filter criteria.

 �DECLARE @parameter_list NVARCHAR(MAX) = '@product_name NVARCHAR(50),

@product_number NVARCHAR(25),

 �@product_model NVARCHAR(50), @product_subcategory NVARCHAR(50),

@product_sizemeasurecode NVARCHAR(50),

 @product_weightunitmeasurecode NVARCHAR(50)';

 -- Generate the command string section for the SELECT columns.

 SELECT @sql_command = '

 SELECT

 Product.Name AS product_name,

 Product.ProductNumber AS product_number,';

 IF @show_product_model = 1 SELECT @sql_command = @sql_command + '

 ProductModel.Name AS product_model_name,';

 �IF @show_product_subcategory = 1 SELECT @sql_command = @sql_

command + '

 ProductSubcategory.Name AS product_subcategory_name,';

 �IF @show_product_sizemeasurecode = 1 SELECT @sql_command =

@sql_command + '

 SizeUnitMeasureCode.Name AS size_unit_measure_code,';

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

71

 �IF @show_product_weightunitmeasurecode = 1 SELECT @sql_command

= @sql_command + '

 WeightUnitMeasureCode.Name AS weight_unit_measure_code,';

 IF @show_color = 1 SELECT @sql_command = @sql_command + '

 Product.Color AS product_color,';

 �IF @show_safetystocklevel = 1 SELECT @sql_command = @sql_

command + '

 Product.SafetyStockLevel AS product_safety_stock_level,';

 IF @show_reorderpoint = 1 SELECT @sql_command = @sql_command + '

 Product.ReorderPoint AS product_reorderpoint,';

 IF @show_standard_cost = 1 SELECT @sql_command = @sql_command + '

 Product.StandardCost AS product_standard_cost,';

 �IF @show_catalog_description = 1 SELECT @sql_command = @sql_

command + '

 �ProductModel.CatalogDescription AS productmodel_catalog_

description,';

 �IF @show_subcategory_modified_date = 1 SELECT @sql_command =

@sql_command + '

 �ProductSubcategory.ModifiedDate AS product_subcategory_

modified_date';

 -- �In the event that there is a comma at the end of our command

string, remove it before continuing.

 IF (SELECT SUBSTRING(@sql_command, LEN(@sql_command), 1)) = ','

 SELECT @sql_command = LEFT(@sql_command, LEN(@sql_command) - 1);

 SELECT @sql_command = @sql_command + '

 FROM Production.Product'

 -- �Put together the JOINs based on what tables are required by the

search.

 �IF (@product_model IS NOT NULL OR @show_product_model = 1 OR @show_

catalog_description = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.ProductModel

 ON Product.ProductModelID = ProductModel.ProductModelID';

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

72

 �IF (@product_subcategory IS NOT NULL OR @show_subcategory_modified_

date = 1 OR @show_product_subcategory = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.ProductSubcategory

 �ON Product.ProductSubcategoryID = ProductSubcategory.

ProductSubcategoryID';

 �IF (@product_sizemeasurecode IS NOT NULL OR @show_product_

sizemeasurecode = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.UnitMeasure SizeUnitMeasureCode

 �ON Product.SizeUnitMeasureCode = SizeUnitMeasureCode.

UnitMeasureCode';

 �IF (@product_weightunitmeasurecode IS NOT NULL OR @show_product_

weightunitmeasurecode = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.UnitMeasure WeightUnitMeasureCode

 �ON Product.WeightUnitMeasureCode = SizeUnitMeasureCode.

UnitMeasureCode'

 SELECT @sql_command = @sql_command + '

 WHERE 1 = 1'

 -- �Build the WHERE clause based on which tables are referenced and

required by the search.

 IF @product_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND Product.Name LIKE @product_name'

 IF @product_number IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND Product.ProductNumber LIKE @product_number'

 IF @product_model IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND ProductModel.Name LIKE @product_model'

 IF @product_subcategory IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND ProductSubcategory.Name = @product_subcategory'

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

73

 IF @product_sizemeasurecode IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND SizeUnitMeasureCode.Name = @product_sizemeasurecode'

 IF @product_weightunitmeasurecode IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND WeightUnitMeasureCode.Name = @product_weightunitmeasurecode'

 PRINT @sql_command;

 �EXEC sp_executesql @sql_command, @parameter_list, @product_name,

@product_number,

 @product_model, @product_subcategory, @product_sizemeasurecode,

 @product_weightunitmeasurecode

END

GO

EXEC dbo.search_products @product_number = 'BK-M18', @product_model =

'Mountain', @product_subcategory = 'Mountain Bikes';

EXEC dbo.search_products @product_name = 'Mountain-500 Black, 48';

EXEC dbo.search_products;

EXEC dbo.search_products @product_name = 'Mountain-500 Black, 48', @show_

safetystocklevel = 1, @show_reorderpoint = 1, @show_standard_cost = 1 ;

GO

The first change here is that there are ten new parameters that correspond to each

column that can be added to the search results grid. This looks a bit haphazard, though

an explicit parameter list is convenient for easy troubleshooting. Each is explicitly named

and easy to understand and document. One alternative to the use of individual bits

would be to implement a bitmap and adjust individual bits within a single parameter.

This reduces the parameter list from one parameter for each optional column to just

one for all optional columns. It will also reduce readability and maintainability, as the

parameter will now be a hexadecimal number instead of a set of bits. For example, if

bit 1, bit 6, and bit 7 were selected, the resulting VARBINARY representation of that

bitmap would be 0x00000061. In order to make this usable and maintainable, each bit

would need to be documented so that anyone who modifies or works with this stored

procedure would know exactly how it works.

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

74

While this stored procedure has many parameters, most will not be needed at any

one time, unless the end user truly wants to filter on and display everything. Note that

the additional bit parameters are not included in the parameters for sp_executesql.

These bit columns are used in building our command string only, but are not required

within the dynamic SQL. As a result, adding additional bits does not cause the sp_

executesql statement to grow, although it will add more parameters to the search_

products stored procedure. As a result, the sp_executesql statement is the same in this

example as it was in the previous one.

The column list has been broken down into a series of parameter checks as well.

Any optional column is only included if its respective bit parameter is set. For example,

if @show_product_model is set to 1, then the ProductModel.Name column will be included

in the SELECT statement. The following EXEC statement illustrates a single filter on

ProductModel.Name and the inclusion of that name, as well as the product color:

EXEC dbo.search_products @product_model = 'Mountain', @show_product_model = 1,

@show_color = 1

The resulting command string for this search is as follows in Listing 3-5.

Listing 3-5.  Command String Generated from Stored Procedure in Listing 3-4

SELECT

 Product.Name AS product_name,

 Product.ProductNumber AS product_number,

 ProductModel.Name AS product_model_name,

 Product.Color AS product_color

FROM Production.Product

LEFT JOIN Production.ProductModel

ON Product.ProductModelID = ProductModel.ProductModelID

WHERE 1 = 1

 AND ProductModel.Name LIKE @product_model

Note that the actual T-SQL executed is only what is needed to service the user’s

request, and nothing more. All sections of the query were customized to meet the exact

search that was requested.

The example here only returns columns that are explicitly called out by the user. If

desired, the T-SQL can be written such that we return all columns in a table if any one of

them is selected, or just the columns that could be selected by the end user. Using this

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

75

methodology, if @show_product_model = 1, then ProductModel.Name and ProductModel.

CatalogDescription would be selected. The application could then remove any

unneeded columns. This alternative would be easier to maintain and update over time

but would sacrifice a small amount of performance, as more data would be returned

than is needed, as seen in Listing 3-6.

Listing 3-6.  Search Proc with a Simplified SELECT Statement, Using Fewer

Conditionals

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

products')

BEGIN

 DROP PROCEDURE dbo.search_products;

END

GO

-- Search with a check to avoid empty searches.

CREATE PROCEDURE dbo.search_products

 �@product_name NVARCHAR(50) = NULL, @product_number NVARCHAR(25) =

NULL, @product_model NVARCHAR(50) = NULL,

 �@product_subcategory NVARCHAR(50) = NULL, @product_sizemeasurecode

NVARCHAR(50) = NULL,

 @product_weightunitmeasurecode NVARCHAR(50) = NULL,

 �@show_color BIT = 0, @show_safetystocklevel BIT = 0, @show_

reorderpoint BIT = 0, @show_standard_cost BIT = 0,

 �@show_catalog_description BIT = 0, @show_subcategory_modified_date

BIT = 0, @show_product_model BIT = 0,

 �@show_product_subcategory BIT = 0, @show_product_sizemeasurecode

BIT = 0, @show_product_weightunitmeasurecode BIT = 0

AS

BEGIN

 SET NOCOUNT ON;

 �IF COALESCE(@product_name, @product_number, @product_model, @product_

subcategory,

 �@product_sizemeasurecode, @product_

weightunitmeasurecode) IS NULL

 RETURN;

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

76

 -- �Add "%" delimiters to parameters that will be searched as

wildcards.

 SET @product_name = '%' + @product_name + '%';

 SET @product_number = '%' + @product_number + '%';

 SET @product_model = '%' + @product_model + '%';

 DECLARE @sql_command NVARCHAR(MAX);

 -- Define the parameter list for filter criteria.

 �DECLARE @parameter_list NVARCHAR(MAX) = '@product_name NVARCHAR(50),

@product_number NVARCHAR(25),

 �@product_model NVARCHAR(50), @product_subcategory NVARCHAR(50),

@product_sizemeasurecode NVARCHAR(50),

 @product_weightunitmeasurecode NVARCHAR(50)';

-- Generate the simplified command string section for the SELECT columns.

SELECT @sql_command = '

 SELECT

 Product.Name AS product_name,

 Product.ProductNumber AS product_number,';

 �IF @show_product_model = 1 OR @show_catalog_description = 1

SELECT @sql_command = @sql_command + '

 ProductModel.Name AS product_model_name,

 �ProductModel.CatalogDescription AS productmodel_catalog_

description,';

 �IF @show_product_subcategory = 1 OR @show_subcategory_modified_

date = 1 SELECT @sql_command = @sql_command + '

 ProductSubcategory.Name AS product_subcategory_name,

 �ProductSubcategory.ModifiedDate AS product_subcategory_

modified_date,';

 �IF @show_product_sizemeasurecode = 1 SELECT @sql_command =

@sql_command + '

 SizeUnitMeasureCode.Name AS size_unit_measure_code,';

 �IF @show_product_weightunitmeasurecode = 1 SELECT @sql_command =

@sql_command + '

 WeightUnitMeasureCode.Name AS weight_unit_measure_code,';

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

77

 �IF @show_color = 1 OR @show_safetystocklevel = 1 OR @show_

reorderpoint = 1 OR @show_standard_cost = 1

 SELECT @sql_command = @sql_command + '

 Product.Color AS product_color,

 Product.SafetyStockLevel AS product_safety_stock_level,

 Product.ReorderPoint AS product_reorderpoint,

 Product.StandardCost AS product_standard_cost';

 -- �In the event that there is a comma at the end of our command

string, remove it before continuing.

 IF (SELECT SUBSTRING(@sql_command, LEN(@sql_command), 1)) = ','

 SELECT @sql_command = LEFT(@sql_command, LEN(@sql_command) - 1);

 SELECT @sql_command = @sql_command + '

 FROM Production.Product'

 -- �Put together the JOINs based on what tables are required by the

search.

 �IF (@product_model IS NOT NULL OR @show_product_model = 1 OR @show_

catalog_description = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.ProductModel

 ON Product.ProductModelID = ProductModel.ProductModelID';

 �IF (@product_subcategory IS NOT NULL OR @show_subcategory_modified_

date = 1 OR @show_product_subcategory = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.ProductSubcategory

 �ON Product.ProductSubcategoryID = ProductSubcategory.

ProductSubcategoryID';

 �IF (@product_sizemeasurecode IS NOT NULL OR @show_product_

sizemeasurecode = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.UnitMeasure SizeUnitMeasureCode

 �ON Product.SizeUnitMeasureCode = SizeUnitMeasureCode.

UnitMeasureCode';

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

78

 �IF (@product_weightunitmeasurecode IS NOT NULL OR @show_product_

weightunitmeasurecode = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.UnitMeasure WeightUnitMeasureCode

 ON Product.WeightUnitMeasureCode = SizeUnitMeasureCode.UnitMeasureCode'

 SELECT @sql_command = @sql_command + '

 WHERE 1 = 1'

 -- �Build the WHERE clause based on which tables are referenced and

required by the search.

 IF @product_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND Product.Name LIKE @product_name'

 IF @product_number IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND Product.ProductNumber LIKE @product_number'

 IF @product_model IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND ProductModel.Name LIKE @product_model'

 IF @product_subcategory IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND ProductSubcategory.Name = @product_subcategory'

 IF @product_sizemeasurecode IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND SizeUnitMeasureCode.Name = @product_sizemeasurecode'

 IF @product_weightunitmeasurecode IS NOT NULL

 SELECT @sql_command = @sql_command + '

 �AND WeightUnitMeasureCode.Name = @product_

weightunitmeasurecode'

 PRINT @sql_command;

 �EXEC sp_executesql @sql_command, @parameter_list, @product_name,

@product_number,

 @product_model, @product_subcategory, @product_sizemeasurecode,

 @product_weightunitmeasurecode

END

GO

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

79

The preceding T-SQL shows the difference that using fewer conditionals makes. The

resulting command string will potentially contain some extra columns, but the stored

procedure has become simpler, with five conditionals instead of ten. Consider this an

alternative for smaller searches, or those where the data sets are straightforward. If the

number of columns required per table were to increase in the future, this might need

to be redesigned to maintain efficient query execution. Alternatively, for very small

tables, SELECT TableName.* could also be used to further reduce the size of the stored

procedure. The following T-SQL shows this change for the ProductModel table:

IF @show_product_model = 1 OR @show_catalog_description = 1 SELECT

@sql_command = @sql_command + 'ProductModel.*,’;

While simple, this would return an indeterminate number of columns, which could

become a bottleneck in the future if tables continue to add new columns. In addition,

with this syntax, we lose control over the column names, which could result in duplicates

in a case where many tables use the same column names for different data elements. In

AdventureWorks, we would have no way to differentiate between the product name and

the product model name, as both columns are simply called “Name.” Please use caution

whenever returning all columns from a table using *. This can be a useful tool for a small

table with a very predictable and unchanging structure. On the other hand, if the table

changes, this stored procedure could easily break or return additional unexpected data.

The joins in our dynamic search only happen when a column is required from a

table. This occurs if a column is explicitly requested via an input parameter bit, or if it is

filtered on.

The combination of dynamic joins, dynamic SELECT statement, and dynamic

WHERE ensures that we do not access any table that isn’t required for the search grid.

While our stored procedure has become larger, the command strings generated by it are

shrinking, which is the primary goal of this exercise.

�Search Grid Considerations
The stored procedure presented is a huge leap forward in terms of customization, but it

is more complex than our previous searches. With any added complexity comes a variety

of considerations that will help in making intelligent design decisions, as well as avoid

pitfalls associated with this level of flexibility.

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

80

�Disallow Blank Searches
A common theme throughout all of the searches so far has been to provide the end user

with as much control as possible over what they see and can filter on. This can potentially

be dangerous, though, if the data set is large and the user requests a huge amount of that

data. It’s generally a good practice to not allow a user to perform a blank search unless

the data set is sufficiently small or paged in such a way that it won’t be a strain on the

database server—that is, if they go to the search page and click “Go” without providing

any additional details, then we should either do nothing or return a meaningful error:

IF COALESCE(@product_name, @product_number, @product_model, @product_

subcategory, @product_sizemeasurecode, @product_weightunitmeasurecode) IS NULL

 RETURN;

This additional COALESCE statement at the start of the stored procedure will

immediately exit if none of the filter criteria are populated. Consider these EXEC

statements:

EXEC dbo.search_products @show_product_model = 1;

EXEC dbo.search_products;

For both of these search attempts, the stored procedure will exit as soon as it reaches

the COALESCE check above. If preferred, RAISEERROR can be used to throw a specific

error back to the application that the search originated from. Regardless, it’s up the

application as to how to handle scenarios where no data set is returned, or an error is

thrown, to ensure that the end user receives a friendly and helpful message that explains

why their search was invalid.

When a search returns too much data, it can pose a security threat, as a repeated

operation that is excessively expensive could hog system resources and act as a denial of

service attack, whether intentional or not.

�Data Paging
It is rare that we would want to blindly return all rows in a result set. Consider your

favorite Internet search engine: it’s unlikely that any will return more than 25 results at

a time by default. In a web search scenario, a single search could return millions of hits.

For the sake of the search provider and your own computer, avoiding returning millions

of rows is beneficial!

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

81

Paging can be accomplished in a number of ways, depending on the version of

SQL Server that you are developing with. The simplest method is for the application

to request a specific set of IDs, and then request additional sets of IDs whenever the

user clicks “Next.” Since users typically won’t click through hundreds of pages of search

results, querying the database each time they click isn’t likely to be a significant drain on

resources. If a data set is such that the end user will want to eventually view everything,

then selecting all of the data and allowing the application to page through it as necessary

will likely be more efficient than selecting 25 rows over and over again. The following

T-SQL will return 25 products where the color is NULL:

SELECT

 Name,

 ProductNumber,

 Color,

 Size,

 DaysToManufacture

FROM Production.Product

WHERE Product.Color IS NULL

AND ProductID BETWEEN 316 AND 359

Alternatively, a common table expression (CTE) can be used so that row numbers

can be compared, instead of directly pulling IDs for a set of products:

WITH CTE_PRODUCTS AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY ProductID ASC) AS rownum,

 Name,

 ProductNumber,

 Color,

 Size,

 DaysToManufacture

 FROM Production.Product

 WHERE Product.Color IS NULL)

SELECT

 Name,

 ProductNumber,

 Color,

 Size,

 DaysToManufacture

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

82

FROM CTE_PRODUCTS

WHERE rownum BETWEEN 5 AND 29;

The results returned by each of these queries are the same. While the second query

is easier for the application to process (as it doesn’t need to manage ProductIDs), it will

be less efficient because it needs to reorder the data each time a search is performed.

The ID search simply grabs 25 rows using a clustered index seek, rather than adding row

numbers to the entire data set, prior to paging.

OFFSET allows for paging without the need for window functions or explicit ID

references. The following statement will return 25 products, starting at the 51st product,

based on the ProductID:

SELECT

 Name,

 ProductNumber,

 Color,

 Size,

 DaysToManufacture

FROM Production.Product

WHERE Product.Color IS NULL

ORDER BY ProductID ASC

OFFSET 50 ROWS

FETCH NEXT 25 ROWS ONLY

Using this syntax, an ORDER BY clause must be present, as it is necessary to

determine the column to page off of. The OFFSET determines how many rows to skip

before selecting the data we are interested in. Lastly, FETCH NEXT tells SQL Server how

many rows to retrieve from that starting point. FETCH NEXT is optional and if omitted,

all data after the offset will be returned. This syntax is the simplest and easiest to use

from an application perspective, as the OFFSET and FETCH NEXT row counts can be

provided by an application, T-SQL, or user input, in order to quickly return exactly the

result set desired.

We will investigate performance in further detail in a later chapter, but for now it is

worth mentioning that paging performance can vary greatly based on the T-SQL syntax

used. Different use cases will lend themselves to different approaches, though each

option mentioned is capable of effectively returning paged results based on whatever

user input is provided.

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

83

�Conditional Paging
If the size of a data set can vary greatly, then it may be beneficial to perform some initial

intelligence on the data prior to gathering it. For example, if we know that a data set

contains only 13 rows, then there is no need to page it. We can select all rows from our

13 row results in a single statement and have no further work to do. Similarly, if a result

set is 30 rows, we know that it will fit on 1 to 2 pages, depending on how many results

are displayed per page. For both of those scenarios, it is likely that the end user will view

most, if not all, results most of the time. If a search returns a huge set of results, then we

know that paging is necessary. In addition, we know that the user will almost certainly

not view all results in the set. If results are returned based on a relevance score, such as

with a web search engine, then it’s very likely the user will only view the first 10 or 20

before either moving on or adjusting their search criteria.

The page size can also be dynamic, if desired, as an additional way to make the result

set as useful as possible. For example, if 26 results are returned, having to click to a new

page for a single result would be somewhat wasteful. Instead, simply returning all 26 at

once would be easier, more efficient, and convenient for the user. If results are verbose

and include additional details that consume a large amount of space, then returning

fewer results automatically (based on how verbose) could be advantageous.

Knowing how an application works can help in determining the optimal method

of paging. The following is an example of a search where we return line item details for

orders based on a tracking number wildcard search. As a common search, it’s likely

that CarrierTrackingNumber will be indexed and that most searches will be for a single

tracking number only, but the application may have different requirements with regard

to how to execute the search, as seen in Listing 3-7.

Listing 3-7.  Sales Order Detail Search, with a Variety of Input Parameters

CREATE PROCEDURE dbo.search_sales_order_detail

@tracking_number NVARCHAR(25), @offset_by_this_many_rows INT = 0, @row_

count_to_return INT = 25, @return_all_results BIT = 0

AS

BEGIN

 SET NOCOUNT ON;

 -- Add wildcard delimiters to the tracking number.

 SELECT @tracking_number = '%' + @tracking_number + '%';

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

84

 -- �If the result set is small, return all results to the application

for display.

 IF @return_all_results = 1

 BEGIN

 SELECT

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderHeader.Status,

 SalesOrderHeader.PurchaseOrderNumber,

 SalesOrderDetail.CarrierTrackingNumber,

 SalesOrderDetail.OrderQty,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.UnitPriceDiscount,

 SalesOrderDetail.LineTotal,

 Product.Name,

 Product.ProductNumber

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 �ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.

SalesOrderID

 INNER JOIN Production.Product

 ON SalesOrderDetail.ProductID = Product.ProductID

 WHERE CarrierTrackingNumber LIKE @tracking_number

 ORDER BY SalesOrderDetail.SalesOrderDetailID;

 END

 ELSE

 BEGIN

 SELECT

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderHeader.Status,

 SalesOrderHeader.PurchaseOrderNumber,

 SalesOrderDetail.CarrierTrackingNumber,

 SalesOrderDetail.OrderQty,

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

85

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.UnitPriceDiscount,

 SalesOrderDetail.LineTotal,

 Product.Name,

 Product.ProductNumber

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 INNER JOIN Production.Product

 ON SalesOrderDetail.ProductID = Product.ProductID

 WHERE CarrierTrackingNumber LIKE @tracking_number

 ORDER BY SalesOrderDetail.SalesOrderDetailID

 OFFSET @offset_by_this_many_rows ROWS

 FETCH NEXT @row_count_to_return ROWS ONLY;

 END

END

GO

This search provides four options. The tracking number input, which can be all or

part of a tracking number, is the only required option. @offset_by_this_many_rows

determines if we are skipping ahead in the search and @row_count_to_return indicates

the number of rows to select. The @return_all_results parameter can be set to 1 in

order to bypass all paging logic and return everything. This can be useful if the input is a

complete tracking number, where returning all parts of the shipment would make logical

sense, and it’s unlikely that the data returned would be unusually large. In this example,

the application handles the check for the input format to verify this, but the stored

procedure could do this as well if it were universally constant that a full tracking number

results in all data being returned.

Defaults are placed on the input parameters to simplify assumptions, but could be

left off if the application wished to always populate them. Let’s consider some sample

input to this new search:

EXEC dbo.search_sales_order_detail '4911-403C-98', NULL, NULL, 1;

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

86

This search is for a complete tracking number. As a result, the application indicated

that all results should be returned, regardless of the data size. This is accomplished by

setting @return_all_results to “1”. This execution returns 12 rows, which constitute

every sales order detail that has a carrier tracking number of “4911-403C-98”.

EXEC dbo.search_sales_order_detail '491';

This search is much more generic, only searching for three characters of a tracking

number. Without any additional input, the stored procedure defaults to selecting the

first 25 rows only. If more are required, the application will need to provide additional

parameter values to account for this:

EXEC dbo.search_sales_order_detail '491', 25, 50, 0;

By adding an offset of 25 rows, and a row count of 50, this stored procedure call will

return the next 50 rows of this tracking number search. If the user continues to click

“Next,” then more results would be returned by increasing the offset. Alternatively, the

user could refine their search, adding more characters to their tracking number input

string in order to more effectively find what they are looking for.

This example did not involve any dynamic SQL, but the techniques used can be

applied to any searching mechanism to include some level of pagination in the result

set. Paging is a common and often necessary way to add control over a data set, increase

customization by the end user, and maintain good performance by not returning too

much data at one time.

�Search Limitations
If you’ve ever tried searching a folder on your computer using very generic search

terms, you’ve experienced the latency associated with running a very generic search.

When building a search procedure for any application, it’s important to disallow or limit

any user input that could cause strain on their search experience, as well as on server

performance. A common approach is to not allow blank searches. That is, if the user

tries to click “Go” with no text in any search box, either do nothing or return a message

requesting more information. Alternatively, the search could simply grab the first 50

results, display them, and wait for further user input as to the next steps to take. At no

point in the process do we want to return excessive amounts of data from the database

server, nor do we want to make the end user wait forever for that data to appear.

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

87

An additional way to limit data volume is to ensure that too many columns cannot

be requested from a custom search grid. If a results grid could theoretically have 500

different columns, it would be in our best interest to limit them to a much smaller

number. Depending on the application, 10 columns may be enough, or 25, or maybe

even 50. That limit would be based on average application usage, as well as the size of

the columns and the amount of resources needed to return the data. If the search begins

to experience lag after the 30th column, then capping the number of columns in the

results grid to 25 would be sensible.

�Input-Based Search
In our previous example, we allowed parameters to be passed into a search stored

procedure that allowed for quite a bit of customization. As an additional step, we can

parse user input and determine from the format what sort of data is being searched for.

This is useful for the corner search box found on many web pages. In these applications,

there is sometimes an advanced search feature available, but the average user wants to

enter text in a single place and receive immediate feedback. These searches can be a

bit messy, as we may need to search many types of data, and running a blanket search

on many different columns at once will likely perform poorly and return false positives.

If the search instructions indicate that the text can be entered in one of many forms

before defaulting to a single text description, then we can optimize our search to focus

on a select few indexed columns rather than every possible search criteria all at once.

Listing 3-8 illustrates a sales order search that allows a variety of inputs to be entered.

Listing 3-8.  Sales Order Detail Search That Detects Input Type Based on String

Form

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

sales_order_detail')

BEGIN

 DROP PROCEDURE dbo.search_sales_order_detail;

END

GO

CREATE PROCEDURE dbo.search_sales_order_detail

 �@input_search_data NVARCHAR(25), @offset_by_this_many_rows INT = 0,

@row_count_to_return INT = 25, @return_all_results BIT = 0

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

88

AS

BEGIN

 SET NOCOUNT ON;

 -- �For this search procedure, do not allow blank input. If blank is

entered, return immediately with no result set.

 -- Input parameter does not allow NULLs.

 IF LTRIM(RTRIM(@input_search_data)) = "

 RETURN;

 -- �Pad the input string with spaces, in case it isn't 25 characters

long. This will avoid string truncation below.

 �SET @input_search_data = @input_search_data + REPLICATE(' ', 25 -

LEN(@input_search_data));

 -- Parse the @input_search_data to determine the data it references.

 DECLARE @input_type NVARCHAR(25);

 -- �Search by Sales Order Number: Starts with "SO" and at least 5

numbers.

 �IF (LEFT(@input_search_data, 2) = 'SO' AND ISNUMERIC(SUBSTRING

(@input_search_data, 3, 5)) = 1)

 SET @input_type = 'SalesOrderNumber';

 ELSE

 -- �Search by Purchase Order Number: Starts with "PO" and at least 10

numbers.

 �IF (LEFT(@input_search_data, 2) = 'PO' AND ISNUMERIC(SUBSTRING

(@input_search_data, 3, 10)) = 1)

 SET @input_type = 'PurchaseOrderNumber';

 ELSE

 -- �Search by Account Number: Starts with two number, a hyphen, 4

numbers, a hyphen, and at least 6 additional numbers.

 �IF (ISNUMERIC(LEFT(@input_search_data, 2)) = 1 AND SUBSTRING(@input_

search_data, 3, 1) = '-' AND ISNUMERIC(SUBSTRING(@input_search_data,

4, 4)) = 1

 �AND SUBSTRING(@input_search_data, 8, 1) = '-' AND

ISNUMERIC(SUBSTRING(@input_search_data, 9, 6)) = 1)

 SET @input_type = 'AccountNumber';

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

89

 ELSE

 -- �Search by Carrier Tracking Number: 4 Alphanumeric, 1 hyphen, 4

alphanumeric, one hyphen, and two alphanumeric.

 �IF (PATINDEX('%[^a-zA-Z0-9]%' , LEFT(@input_search_data, 4)) = 0

AND SUBSTRING(@input_search_data, 5, 1) = '-' AND PATINDEX('%[^a-

zA-Z0-9]%' , SUBSTRING(@input_search_data, 6, 4)) = 0

 �AND SUBSTRING(@input_search_data, 10, 1) = '-' AND

PATINDEX('%[^a-zA-Z0-9]%' , SUBSTRING(@input_search_data,

11, 2)) = 0)

 SET @input_type = 'CarrierTrackingNumber';

 ELSE

 -- �Search by Product Number: Starts with two letters, a dash,

and four alphanumeric characters: AA-12YZ.

 �IF (PATINDEX('%[^a-zA-Z]%' , LEFT(@input_search_data, 2)) = 0 AND

SUBSTRING(@input_search_data, 3, 1) = '-' AND PATINDEX('%[^a-

zA-Z0-9]%' , SUBSTRING(@input_search_data, 4, 4)) = 0)

 SET @input_type = 'ProductNumber';

 ELSE

 -- �Default our input to carrier tracking number, if no other format

is identified.

 SET @input_type = 'CarrierTrackingNumber';

 -- Remove additional padding to prevent bad string matches.

 -- �Add a wildcard delimiter to the end of the input, to account for

additional characters at the end.

 SELECT @input_search_data = LTRIM(RTRIM(@input_search_data)) + '%';

 DECLARE @sql_command NVARCHAR(MAX);

 DECLARE @parameter_list NVARCHAR(MAX);

 -- Create the parameter list and initial command string.

 �SET @parameter_list = '@input_search_data NVARCHAR(25), @offset_by_

this_many_rows INT, @row_count_to_return INT';

 SET @sql_command = '

 SELECT

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderHeader.Status,

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

90

 SalesOrderHeader.PurchaseOrderNumber,

 SalesOrderHeader.AccountNumber,

 SalesOrderHeader.SalesOrderNumber,

 SalesOrderDetail.CarrierTrackingNumber,

 SalesOrderDetail.OrderQty,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.UnitPriceDiscount,

 SalesOrderDetail.LineTotal,

 Product.Name,

 Product.ProductNumber

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 INNER JOIN Production.Product

 ON SalesOrderDetail.ProductID = Product.ProductID';

 -- �Based on the value of @input_type, dynamically generate the WHERE

clause.

 IF @input_type = 'ProductNumber'

 SET @sql_command = @sql_command + '

 WHERE Product.ProductNumber LIKE @input_search_data';

 ELSE IF @input_type = 'SalesOrderNumber'

 SET @sql_command = @sql_command + '

 �WHERE SalesOrderHeader.SalesOrderNumber LIKE @input_search_

data';

 ELSE IF @input_type = 'PurchaseOrderNumber'

 SET @sql_command = @sql_command + '

 �WHERE SalesOrderHeader.PurchaseOrderNumber LIKE @input_search_

data';

 ELSE IF @input_type = 'AccountNumber'

 SET @sql_command = @sql_command + '

 WHERE SalesOrderHeader.AccountNumber LIKE @input_search_data';

 ELSE IF @input_type = 'CarrierTrackingNumber'

 SET @sql_command = @sql_command + '

 �WHERE SalesOrderDetail.CarrierTrackingNumber LIKE @input_

search_data';

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

91

 SET @sql_command = @sql_command + '

 ORDER BY SalesOrderDetail.SalesOrderDetailID';

 -- If there are any row limitations, append them here.

 SET @sql_command = @sql_command + '

 OFFSET @offset_by_this_many_rows ROWS';

 IF @return_all_results = 0

 SET @sql_command = @sql_command + '

 FETCH NEXT @row_count_to_return ROWS ONLY;';

 PRINT @sql_command;

 �EXEC sp_executesql @sql_command, @parameter_list, @input_search_data,

@offset_by_this_many_rows, @row_count_to_return;

END

String comparisons early in the stored procedure check @input_search_data and

determine the alphanumeric and symbol locations within the string. Based on parsing

this parameter, the type of data stored in it is assessed, and the @input_type assigned.

When we build our dynamic SQL statement, the WHERE clause is completely based on

the type of input provided. PATINDEX is used to determine if any characters not in a

specific range are present in a string. If we want to verify that a string of four characters

are alphanumeric, then checking to see if any characters not in the ranges of a-z,

A-Z, or 0-9 will accomplish that goal. The carat “^” is used to indicate a logical NOT,

so the comparison string ‘%[^a-zA-Z0-9]%’ will return a nonzero result if any non-

alphanumeric characters are present in the input string.

Alternatively, a drop-down menu could appear along with the search box, indicating

what the input type is. This is also effective, but the preceding example was focused on

the idea of a one-click solution, which is advantageous when the number of potential

inputs (and their structure) is limited. It’s also a simpler and faster interface for the end

user to learn and utilize. The input parsing could be managed in the application as well,

if that was preferable.

The main downside to the implementation is flexibility, but if the application

controls what types of input can be provided, then there will be no need to check for

every possible combination of letters and numbers. While not demonstrated, it would

also be possible to use more generic checks for different data types. For example, any

string with PO in front is a purchase order number, or any that begins with SO is a sales

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

92

order number. In this implementation, we defaulted to the carrier tracking number

in the event that the input string did not match up with any of our type checks. This

is arbitrary and could default to any format, or return with no results (if that were

preferable).

The following are a handful of example executions of the aforementioned stored

procedure:

EXEC dbo.search_sales_order_detail @input_search_data = 'BK-M82B-42';

This represents a search for a specific product, based on the product number. The

resulting WHERE clause in the command string will appear as a check only against this

column:

WHERE Product.ProductNumber LIKE @input_search_data

ORDER BY SalesOrderDetail.SalesOrderDetailID

OFFSET @offset_by_this_many_rows ROWS

FETCH NEXT @row_count_to_return ROWS ONLY;

The remainder of the statement is constant for any executions where we do not

explicitly want to return all results (using the @return_all_results parameter).

EXEC dbo.search_sales_order_detail @input_search_data = 'PO125', @offset_

by_this_many_rows = 0, @row_count_to_return = 50, @return_all_results = 0;

This statement searches for a portion of a purchase order number while returning 50

rows at a time, instead of the default of 25:

WHERE SalesOrderHeader.PurchaseOrderNumber LIKE @input_search_data

ORDER BY SalesOrderDetail.SalesOrderDetailID

OFFSET @offset_by_this_many_rows ROWS

FETCH NEXT @row_count_to_return ROWS ONLY;

The only difference between this T-SQL segment and the last is the filtering on

PurchaseOrderNumber rather than ProductNumber. The row offset and row count to

return are specified by their respective parameters, regardless of the values passed in.

EXEC dbo.search_sales_order_detail @input_search_data = 'SO43662', @return_

all_results = 1;

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

93

This is a search based on a specific sales order number. By setting @return_all_

results to 1, the FETCH NEXT section is omitted, resulting in the following command

string:

WHERE SalesOrderHeader.SalesOrderNumber LIKE @input_search_data

ORDER BY SalesOrderDetail.SalesOrderDetailID

OFFSET @offset_by_this_many_rows ROWS

The offset is still specified, but will default to zero as no value was provided.

Alternatively, we can remove this clause altogether when @offset_by_this_many_rows

is zero.

�Result Row Count
It can be advantageous to return the total row count of a query, even if we are only

returning a paged set of 25 (or 10 or 50) rows. We may want to know that a result set

contains 118 rows, and that only 25 are being displayed at the moment. Oftentimes the

end user will need to know that, in addition to currently viewing rows 51-75, that they

are viewing those rows out of a total set of 118. This provides immediate feedback on the

effectiveness of their search terms, as well as some validation that the result set is what

they expect. If the total row count were too high, the response would be to refine the

search to be more specific. If the row count was too low, then we’d want to verify that we

are entering valid data and that the data we are searching for is actually there.

This count can be calculated ahead of time as a separate operation, which would

result in an additional query using the same filters as the data retrieval itself. Listing 3-9

is an example that uses a simple purchase order search.

Listing 3-9.  Retrieving a Count of Rows for a Specific Result Set

SELECT

 COUNT(*)

FROM Sales.SalesOrderHeader

INNER JOIN Sales.SalesOrderDetail

ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

INNER JOIN Production.Product

ON SalesOrderDetail.ProductID = Product.ProductID

WHERE SalesOrderHeader.PurchaseOrderNumber LIKE 'PO125%';

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

94

This count can be executed as a separate query and cached for later use, in the

event that the user continues to page through their current result set. This allows us

to only perform an expensive count once, rather than each time the same data set

is accessed. The query in Listing 3-10 returns 290 as the count of rows matching the

criteria specified.

Listing 3-10.  Retrieving Current and Total Row Counts Alongside the Result Set

SELECT

 �COUNT(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID ROWS

BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS row_count_current,

 �COUNT(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID ROWS BETWEEN

UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS row_count_total,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderHeader.Status,

 SalesOrderHeader.PurchaseOrderNumber,

 SalesOrderHeader.AccountNumber,

 SalesOrderHeader.SalesOrderNumber,

 SalesOrderDetail.CarrierTrackingNumber,

 SalesOrderDetail.OrderQty,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.UnitPriceDiscount,

 SalesOrderDetail.LineTotal,

 Product.Name,

 Product.ProductNumber

FROM Sales.SalesOrderHeader

INNER JOIN Sales.SalesOrderDetail

ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

INNER JOIN Production.Product

ON SalesOrderDetail.ProductID = Product.ProductID

WHERE SalesOrderHeader.PurchaseOrderNumber LIKE 'PO125%'

ORDER BY SalesOrderDetail.SalesOrderDetailID;

This query returns the same result set, but includes a few counts alongside that data.

The first count, row_count_current, is the row number of the current sales order detail

record as ordered by the SalesOrderDetailID. row_count_total, on the other hand, will

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

95

return the total row count for the result set, regardless of the current row number (which

is 290, as it was previously). The ROWS addition is syntax that allows us to determine the

window over which the window function processes rows of data over more specifically.

ROWS UNBOUNDED PRECEEDING AND CURRENT ROW will count from the start of the result

set through the current row, hence returning an increasing row count based on the

ORDER BY clause. ROWS UNBOUNDED PRECEEDING AND UNBOUNDED FOLLOWING, on the

other hand, will return a count of all rows in the data set, regardless of the current row

number. UNBOUNDED PRECEEDING references the start of the result set, whereas UNBOUNDED

FOLLOWING references the end of the result set.

The last step is to combine our efforts above so that we can retrieve row counts while

also paging the data set, as seen in Listing 3-11.

Listing 3-11.  Retrieving Current and Total Row Counts Alongside the Result Set

with Data Paging

WITH CTE_SEARCH_DATA AS (

 SELECT

 �COUNT(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS row_count_

current,

 �COUNT(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS

row_count_total,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderHeader.Status,

 SalesOrderHeader.PurchaseOrderNumber,

 SalesOrderHeader.AccountNumber,

 SalesOrderHeader.SalesOrderNumber,

 SalesOrderDetail.CarrierTrackingNumber,

 SalesOrderDetail.OrderQty,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.UnitPriceDiscount,

 SalesOrderDetail.LineTotal,

 Product.Name,

 Product.ProductNumber

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

96

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 INNER JOIN Production.Product

 ON SalesOrderDetail.ProductID = Product.ProductID

 WHERE SalesOrderHeader.PurchaseOrderNumber LIKE 'PO125%')

SELECT

 *

FROM CTE_SEARCH_DATA

ORDER BY CTE_SEARCH_DATA.row_count_current

OFFSET 25 ROWS

FETCH NEXT 50 ROWS ONLY;

In this last example, we put the previous query into a common table expression and

perform the paging operation using row_count_current to determine where to offset

the result set from. The convenience of collecting data, row counts, and paging all in a

single statement can be very useful, but must be weighed against performance. We will

dive into the performance of these statements in a later chapter, but in the meantime, as

always, test all new T-SQL thoroughly prior to release in order to avoid any inadvertent

performance problems.

Dynamic SQL can be used to determine whether counts need to be included in

the result set or not, as well. This can help reduce the amount of work needed when

the result set is small, or if we don’t need the row count for any further operations.

Listing 3-12 illustrates this usage.

Listing 3-12.  Dynamic SQL is Used to Make Row Counts into Optional

Components of the Result Set

DECLARE @include_row_counts BIT = 0;

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

WITH CTE_SEARCH_DATA AS (

 SELECT';

IF @include_row_counts = 1

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

97

 SELECT @sql_command = @sql_command + '

 �COUNT(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID

ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS row_count_

current,

 �COUNT(SalesOrderDetailID) OVER (ORDER BY SalesOrderDetailID

ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS

row_count_total,';

SELECT @sql_command = @sql_command + '

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderHeader.Status,

 SalesOrderHeader.PurchaseOrderNumber,

 SalesOrderHeader.AccountNumber,

 SalesOrderHeader.SalesOrderNumber,

 SalesOrderDetail.CarrierTrackingNumber,

 SalesOrderDetail.OrderQty,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.UnitPriceDiscount,

 SalesOrderDetail.LineTotal,

 Product.Name,

 Product.ProductNumber

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 INNER JOIN Production.Product

 ON SalesOrderDetail.ProductID = Product.ProductID

 WHERE SalesOrderHeader.PurchaseOrderNumber LIKE "PO125%")

SELECT

 *

FROM CTE_SEARCH_DATA';

IF @include_row_counts = 1

 SELECT @sql_command = @sql_command + '

ORDER BY CTE_SEARCH_DATA.row_count_current';

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

98

ELSE

SELECT @sql_command = @sql_command + '

ORDER BY CTE_SEARCH_DATA.OrderDate';

SELECT @sql_command = @sql_command + '

OFFSET 25 ROWS

FETCH NEXT 50 ROWS ONLY;';

PRINT @sql_command;

EXEC sp_executesql @sql_command;

The parameter @include_row_counts determines if the window functions are

included in the command string or not, and updates the ORDER BY accordingly. In

this specific example, it is set to zero and the resulting command string is as follows in

Listing 3-13.

Listing 3-13.  The Command String Generated In Listing 3-12, which Omits Row

Count

WITH CTE_SEARCH_DATA AS (

 SELECT

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderHeader.Status,

 SalesOrderHeader.PurchaseOrderNumber,

 SalesOrderHeader.AccountNumber,

 SalesOrderHeader.SalesOrderNumber,

 SalesOrderDetail.CarrierTrackingNumber,

 SalesOrderDetail.OrderQty,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.UnitPriceDiscount,

 SalesOrderDetail.LineTotal,

 Product.Name,

 Product.ProductNumber

 FROM Sales.SalesOrderHeader

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

99

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 INNER JOIN Production.Product

 ON SalesOrderDetail.ProductID = Product.ProductID

 WHERE SalesOrderHeader.PurchaseOrderNumber LIKE 'PO125%')

SELECT

 *

FROM CTE_SEARCH_DATA

ORDER BY CTE_SEARCH_DATA.OrderDate

OFFSET 25 ROWS

FETCH NEXT 50 ROWS ONLY;

For a deeper look at window functions and how they are used, check out “Expert

T-SQL Window Functions in SQL Server,” by Kathi Kellenberger, published by Apress.

�Additional Filtering Considerations
There are an infinite number of modifications that can be applied to any of these

searching methods to achieve a specific functionality. For example, dynamic SQL can be

used to control the grouping used in reporting queries to quickly retrieve specific sums

or counts, while omitting others. Listing 3-14 is a simple example of a T-SQL statement

that will include one of two different summations (or both, or neither), depending on an

input parameter.

Listing 3-14.  Sums/Counts Returned Based on Input Parameters, Using

Dynamic SQL

DECLARE @start_date DATE = '2014-06-01';

DECLARE @end_date DATE = '2014-06-30';

DECLARE @include_order_count BIT = 1;

DECLARE @include_order_total BIT = 1;

IF @include_order_count = 0 AND @include_order_total = 0

 RETURN;

DECLARE @parameter_list NVARCHAR(MAX);

DECLARE @sql_command NVARCHAR(MAX);

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

100

SELECT @parameter_list = '@start_date DATE, @end_date DATE'

SELECT @sql_command = '

 SELECT';

IF @include_order_count = 1

SELECT @sql_command = @sql_command + '

 �COUNT(DISTINCT SalesOrderDetail.SalesOrderDetailID) AS sales_order_

count,';

IF @include_order_total = 1

SELECT @sql_command = @sql_command + '

 SUM(SalesOrderDetail.LineTotal) AS total_revenue,';

SELECT @sql_command = @sql_command + '

 1 AS place_holder

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 WHERE OrderDate BETWEEN @start_date AND @end_date';

PRINT @sql_command;

EXEC sp_executesql @sql_command, @parameter_list, @start_date, @end_date;

In the preceding code, two input bits determine if we should include a count of all

sales order detail lines, a sum of all line charges, both, or neither. This can be extended

greatly to reduce the number of complex operations necessary in a stored procedure.

Alternatively, IF…THEN statements could be used to separately check whether each

metric should be evaluated or not. This would work well for a small number of variables,

but for a complex data set where there could be many different queries against many

tables, gathering them all in a single efficient step may be a far fast and more efficient

alternative to grabbing each, one at a time.

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

101

�Alternatives
A common method of implementing search functionality is to use an ORM (object-

relational mapping) to automatically generate T-SQL for search queries on an ad

hoc basis. ORMs can be powerful, easy to implement, and inexpensive to maintain.

Their strength lies in being able to generate T-SQL based on a relational model,

without the need to write each and every query. By designing a relational model and

mapping database objects to objects in application code, the need to write search

queries is eliminated.

As a database grows and its schema becomes more complex, though, the challenges

of producing efficient T-SQL will grow. The downside of automated T-SQL is that we lose

control over how it is written and cannot easily differentiate between different use-cases.

We may know as experienced database professionals how to join 15 tables together in a

way that is quick and efficient, but the ORM may not be able to do so.

To choose the best tool for the job, consider the following questions about a given

data model:

•	 Are there many entities to be joined, or are only a handful needed?

•	 Do we need to pick and choose for large numbers of columns?

•	 Is performance important, or can queries tolerate some amount of

latency?

•	 How much control do we want over the specifics of a search?

The advantages of dynamic SQL are control and performance. With complete control

over the structure of T-SQL, we gain the ability to tune and optimize performance to

be as fast as possible. By being able to control our code, we can always get whatever

results we are looking for, even if those results include unusual mathematical functions,

aggregate functions, or other constructs not typically available within a standard ORM

framework.

The downside of dynamic SQL for searching is that it requires more development

time to write stored procedures to manage those queries. The goal should be to balance

these needs to ensure that we use dynamic SQL in areas where the greatest gains can be

achieved in performance and customization. An ORM will provide maintainability, but

at the cost of flexibility and performance.

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

102

�Conclusion
Using dynamic SQL to create flexible, efficient search routines creates a limitless number

of ways in which we can access data quickly while customizing the T-SQL solution to

match whatever challenges an application may send our way. We could easily have filled

hundreds of pages with examples of how different combinations of parameters and

T-SQL techniques could create a new or innovative search methodology.

Needless to say, the flexibility is, in itself, the source of innovation. When you run

into challenges and are unsure how to get every possible result set that you are looking

for, experiment and try turning hard-coded conventions into parameters. While a

dynamic SQL stored procedure may appear at first glance to be more complex, the

added lines of control logic can easily be formatted and documented to ensure that the

resulting code is easy both to read and maintain.

Chapter 3 Large Scale Searching

www.EBooksWorld.ir

103
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_4

CHAPTER 4

Permissions and Security
In Chapter 2, we did a thorough look into SQL injection and the multitude of ways in

which poorly written TSQL can become a target for malicious attacks. Now, we are

going to step back and review best practices for SQL Server security, with a focus on

dynamic SQL and its typical use cases. Security is an immense topic; one that could

easily consume thousands of pages given the opportunity. It also evolves with each day

that passes, as new products are released and vulnerabilities are found in older ones.

Our goal is to cover the most important and common places where we need to take care

while developing database solutions using dynamic SQL, without veering too far into

one-offs or edge cases.

�The Principle of Least Privilege
The most important consideration in security comes from the Principle of Least

Privilege. This says that for any application, the permissions available to it are exactly

what are needed to perform its functions, and nothing more. At the database level, this

principle is critically important, as database security is the last barrier against data theft.

Once a hacker has gained unfettered access to our data, there is little left for us to protect

against. The most important considerations are to determine what users an application

should run under, and what permissions that user should be assigned.

The most significant mistake that companies often make is to use a sysadmin user for

their applications. This is convenient because it will always work, regardless of the TSQL

that is executed. No matter what the application does, this user will provide total access

to everything. While convenient, it poses a security nightmare in that the application

using this account could perform actions that shouldn’t be allowed. Worse, if the

application was somehow compromised and a malicious user gained access to execute

TSQL commands, they would now have access to everything.

www.EBooksWorld.ir

104

Consider the following list of hypothetical applications and functions:

•	 Order processing system

•	 File transfer application

•	 Report generation

•	 Software installer

•	 Backup software

Each of these applications performs very different functions and will have to access

a database server very differently. What types of permissions should the SQL Server

login and user be given to satisfy these functions? Does the application need read

access? Write access? Will it need to alter any server configurations or settings? Does

the application only access a single database or a set of databases? Can the application

be limited to permissions on a small set of objects? Obviously, creating a manual policy

with granular access to everything may be more work than it is worth, and would

constitute the most in-depth solution. Without going into that much detail, what would

the preceding applications generally need to operate?

	 1.	 Order processing system: Read and write access to a specific

database or set of databases (select, insert, update, delete) would

provide the ability to create, update, delete, and report on order

statuses. If data were read/written via stored procedures, then

the ability to execute those routines would be necessary. It is

unlikely that the application would have any reason to adjust

server settings, alter database schema, access file data, or access

unrelated data in other databases or servers.

	 2.	 File transfer application: Read and write access to tables that

document file transfers. The user will likely also need direct access

to read and write to a file system. If possible, do not perform file

access using xp_cmdshell. This system-stored procedure, when

enabled on a database server, provides a huge amount of access to

the operating system. A database login with access to data and the

operating system is very powerful, and makes for a very tempting

target for any hacker looking to compromise an application and

its hardware.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

105

	 3.	 Report generation: Read-only access ideally to only a separate

reporting database. Reports generally run best when separated

from the transactional data that is their overall data source. The

ability to limit reports to read-only access greatly reduces the ways

in which these applications can be hacked or broken. If desired,

read-access can be further broken down into the tables or stored

procedures required for these reports. This ensures that protected

or sensitive data is only accessed if needed.

	 4.	 Software installer: When installing software, the application

will often request as much in the way of permissions as

possible, often looking for a sysadmin user. It’s important

that if this level of permissions are given, that they are

temporary. Typically, installing or upgrading software is

an infrequent event, and one that does not happen with

any level of regularity. As such, if a separate user with high

levels of permissions is needed, that it is never used for other

applications, users, or functions. Do not use sa, or piggy-back

on other service accounts where different uses may get mixed

up. A DBA installing under their own account is acceptable, so

long as they have the permissions required for the installation.

Each application should be configured to operate under its

own login, separate from other applications.

	 5.	 Backup software: The primary permissions required will be to

take backups of our databases. This software may also need to

access some metadata in order to read data about the databases or

write log data, but this access will likely be minimal. It’s possible

that this software could run solely under a backup operator

account with no need for any further permissions.

These were some typical examples based on common software applications that

we’ll see in development or IT, but with each environment comes its own suite of

applications and security needs. As long as permissions are reduced to the minimum

level required by an application, we can be assured that any security holes that could be

exposed via extra permissions will never be realized.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

106

Provide each application with its own distinct login. This improves security,
granularity of permissions, and the ability to debug and identify the source of a
query running against a given database

The Principle of Least Privilege does not only apply to a database server, though.

Security is best organized in layers, with the database being the lowest layer, and the

last one to be accessed by the end user. Ensure that any applications that ultimately can

access the database server also run with only the permissions they need. Each layer of

security provides an additional lock on the vault that is your data.

�Granular Permissions vs. Role Permissions
The most common permissions mistakes involve the server-level role of sysadmin or

the database-level role of db_owner. Sysadmin provides a login with complete access to

all SQL Server functions and is the most all-encompassing permission available to any

login. The db_owner user role provides access to all maintenance and configuration

functionality for a single database, as well as access to all objects within it. Both of these

roles will generally provide far more access than is required by an application. They

often are used for convenience, but can leave gaping security holes if a system were ever

compromised.

In general, avoid giving any application login the sysadmin role, especially for an

application that is accessible to the Internet and/or the general public. Db_owner is

often given to an application that accesses a database unique to its function, but rarely

are the permissions provided by that role necessary for the application to work as

intended. Does the application need to alter database configuration settings, access

system views, or have the ability to drop the database? Odds are good that those

functions are not needed (or wanted!), and discretion should be taken when configuring

the application user.

While assigning more granular roles may take more time, effort, and planning,

doing so ensures that we don’t leave a gaping hole where malicious actions could be

taken against our database server. If an application only requires read and write access

to a set of 20 tables, then consider assigning db_reader and db_writer, instead of db_

owner. If the database contains other sensitive data, consider assigning permissions

Chapter 4 Permissions and Security

www.EBooksWorld.ir

107

exclusively to those 20 tables, and no others. While we tend to trust the applications

we use, vulnerabilities are found every day in both our own software, as well as

publically available software, regardless of whether it is open source or proprietary. If

any vulnerability could be exploited in an application we rely on, then ensuring it has

minimal access to the database server will greatly reduce the damage caused by an

attack, and ensure our data is as safe as possible.

To review all server and database roles in this space would be a lengthy and

somewhat off-topic digression. Microsoft provides extensive documentation on all built-

in roles, as well as how to create your own, if they are inadequate. The following MSDN

links provide the current documentation on server and database roles, as well as links to

many useful, related topics:

Server Roles: https://msdn.microsoft.com/en-us/library/ms188659.aspx

Database Roles: https://msdn.microsoft.com/en-us/library/ms189121.aspx

�Dynamic SQL and Ownership Chaining
When writing, testing, and executing dynamic SQL, permissions run differently than

what you may typically experience. Any string that is executed with EXEC or EXECUTE

will be run under its own scope, though security context will not be changed. This can

be confusing at first, and lead to security errors while running dynamic SQL. Listing 4-1

shows an example that illustrates this behavior.

Listing 4-1.  Simple Stored Procedure to Demonstrate Ownership Chaining

CREATE PROCEDURE dbo.ownership_chaining_example

AS

BEGIN

 SET NOCOUNT ON;

 -- Select the current security context, for reference.

 SELECT SUSER_SNAME();

 SELECT COUNT(*) FROM Person.Person;

 DECLARE @sql_command NVARCHAR(MAX);

 SELECT @sql_command = 'SELECT SUSER_SNAME();

Chapter 4 Permissions and Security

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/ms188659.aspx
https://msdn.microsoft.com/en-us/library/ms189121.aspx

108

 SELECT COUNT(*) FROM Person.Person';

 EXEC sp_executesql @sql_command;

END

GO

When we execute this stored procedure, the results are exactly what we expect:

the user (me) for the current security context is returned and then the count of rows in

Person.Person is returned using standard TSQL. After this, the same operations are

performed using dynamic SQL. The results appear in Figure 4-1.

Figure 4-1.  Ownership chaining in inline TSQL vs. dynamic SQL

The user Edward is a sysadmin, which provides it with complete access to everything

on this SQL Server. The results so far are no surprise: the security context and count

from Person.Person are returned, both outside of, and inside the dynamic SQL sections.

What happens if a different user executes the stored procedure, one with significantly

fewer permissions than my user possesses? To illustrate this, we will create a user called

VeryLimitedUser, with no permissions by default.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

109

CREATE USER VeryLimitedUser WITHOUT LOGIN;

GO

CREATE ROLE VeryLimitedRole;

GO

ALTER ROLE VeryLimitedRole ADD MEMBER VeryLimitedUser;

GO

Next, we’ll assign it execute permissions only on our preceding stored procedure:

GRANT EXECUTE ON dbo.ownership_chaining_xample TO VeryLimitedRole;

GO

With permissions assigned, we’ll switch security contexts temporarily and execute

the stored procedure using this new user:

EXECUTE AS USER = 'VeryLimitedUser';

GO

EXEC dbo.ownership_chaining_example;

GO

REVERT;

GO

The results from the execution are not the same as previously, as shown in Figure 4-2,

and require some additional explanation to fully make sense of.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

110

Upon trying to select the count from Person.Person with the dynamic command, an

error is returned by SQL Server:

Msg 229, Level 14, State 5, Line 40

The SELECT permission was denied on the object 'Person', database

'AdventureWorks2014', schema 'Person'.

Typically, when a user has execute permissions on a stored procedure, then

any TSQL contained within the stored procedure will be run normally, regardless

of what other objects the user has (or doesn’t have) permissions to. In our example,

VeryLimitedUser does not have read access to Person.Person. Despite this limitation,

being granted execute permissions on the stored procedure allowed it to access the

table. This was not the case for the select within the dynamic SQL statement. What

happened here!?

The phenomenon demonstrated is ownership chaining. To facilitate efficient and

meaningful security within a database with many objects, the permissions of the initial

caller of TSQL are passed along through any additional TSQL within it. For example,

Figure 4-2.  Results prior to a permissions error resulting from a lack of ownership
chaining

Chapter 4 Permissions and Security

www.EBooksWorld.ir

111

when you execute a stored procedure (and have the permissions to do so), any

additional TSQL called from within will also execute successfully. Similarly, a user with

permissions to a view does not require permissions to all of the underlying objects as

well. Once access to the view is granted, the subsequent permissions to tables, views,

and functions beneath it are implicitly granted as well.

Ownership chaining greatly simplifies security within SQL Server and allows

us to quickly & safely delegate permissions to a stored procedure or view without

also having to grant access to every single object referenced within it. For a security

administrator, this is a huge timesaver, and allows them to provide permissions based

on logical or business need, without having to assign granular security for every

referenced object.

There is one big exception to the rules of ownership chaining, though, and that is

dynamic SQL. As soon as a dynamic SQL string is executed, the chain is broken, and

execution resets to the permissions of the initial caller. In our preceding example, our

VeryLimitedUser was able to access Person.Person without having explicit permissions

to it, thanks to ownership chaining. The moment the dynamic SQL was executed,

permissions were reverted back to VeryLimitedUser, outside of the context of the stored

procedure itself. As a result, our user, with no explicit permissions to Person.Person, was

unable to access it and an error was thrown.

Note that security contexts do not change when ownership chaining is broken. The

same result was returned for the current user security context, regardless of the state of

the ownership chain. Since the user has no login, the security context is returned as a

system-generated numeric string instead.

Be aware of ownership chaining and ensure that the user that executes a stored
procedure has adequate permissions for the proc itself, as well as any objects or
dynamic SQL called from within.

Typically, this break of the ownership chain will not pose a problem, assuming the

permissions that are assigned to the user itself are similar to those that are required for

any TSQL (dynamic or otherwise) executed by it. Careful testing of stored procedures

and TSQL statements that utilize dynamic SQL can ensure that the results are what

are desired and that permission errors are not thrown unexpectedly. Always take the

opportunity to test a newly written stored procedure using the login or user that will

ultimately run it in production. Also test in an environment that is similar enough

Chapter 4 Permissions and Security

www.EBooksWorld.ir

112

to production that we would catch any ownership chaining problems ahead of time.

Oftentimes, developers work in sandbox environments with extensive permissions

on their personal logins. As a result, everything runs successfully as a sysadmin or

db_owner, but might not when the code is moved to production and permissions are

more limited.

�Changing Security Context On-the-Fly
Typically, the scenarios presented above with ownership chaining will not pose

problems in database development. It is possible, though, that in an isolated scenario,

we want to allow a specific TSQL statement or stored procedure to run under a

different user’s security context. One of two situations may arise in which the default

permissions are not adequate. A user could have too few permissions and is triggering

a variety of security errors due to the breaking of ownership chaining, or inadequate

permissions for a specific object. Alternatively, we may have a user with far more

permissions than are needed, and we wish to reduce them when executing a sensitive

stored procedure.

There are a variety of ways to change security for a given object or execution, each

of which we will demonstrate with examples below. Please note that these assignments

should be the rare exception, not the rule. If you find that more and more stored

procedures are being given special permissions on-the-fly, it may be a sign that your

overall security methodology is flawed. Consider reassigning the application user to a

better set of database roles, or if necessary, create a new role that provides everything

needed. Manually adjusting permissions in TSQL is difficult to document and track, and

as a result will greatly increase complexity over time. Minimizing these exceptions will

greatly increase maintainability and make understanding your code easier, especially

when troubleshooting bugs or unusual behavior.

One example of changing permissions was presented earlier, and that is to change

the security context of a user by using EXECUTE AS. This requires that the user executing

the context change has the permissions necessary to impersonate the user. This is

important; otherwise a user with minimal permissions could try to impersonate a

sysadmin or other account with extensive server access. Consider the following TSQL:

SELECT SUSER_SNAME() AS SUSER_SNAME, USER_NAME() AS USER_NAME, ORIGINAL_

LOGIN() AS ORIGINAL_LOGIN;

GO

Chapter 4 Permissions and Security

www.EBooksWorld.ir

113

EXECUTE AS USER = 'VeryLimitedUser';

SELECT SUSER_SNAME() AS SUSER_SNAME, USER_NAME() AS USER_NAME, ORIGINAL_

LOGIN() AS ORIGINAL_LOGIN;

GO

Here, we select some basic information about our current user, including the original

login, which will return the initial login used for this connection regardless of what

permissions have changed since then. Our initial permissions look like this:

Edward, dbo, Edward

After switching to our limited user, the current security info has changed to the

following:

S-1-9-3-609289169-1216273702-1805054397-27368224, VeryLimitedUser, Edward

This shows that the login and user have changed to our limited access test user, but

the original login is still Edward.

EXECUTE AS USER = 'Edward';

GO

Attempting to switch context back to Edward will fail though, returning the

following error:

Msg 15517, Level 16, State 1, Line 48

Cannot execute as the database principal because the principal "Edward"

does not exist, this type of principal cannot be impersonated, or you do

not have permission.

Now that we are executing as VeryLimitedUser, switching to Edward fails

because this user does not have the necessary permissions to impersonate a system

administrator. The only way to return back to executing as Edward on this connection is

using the REVERT command:

REVERT;

GO

SELECT SUSER_SNAME() AS SUSER_SNAME, USER_NAME() AS USER_NAME, ORIGINAL_

LOGIN() AS ORIGINAL_LOGIN;

GO

Chapter 4 Permissions and Security

www.EBooksWorld.ir

114

Now our security context is back where we started:

Edward, dbo, Edward

If we want to change security context and not be able to change again, the WITH NO

REVERT option allows for this:

EXECUTE AS USER = 'VeryLimitedUser' WITH NO REVERT;

As soon as this additional option is added, permissions are locked into

VeryLimitedUser for the remainder of this stored procedure or connection. Any attempt

to EXECUTE AS another user or revert will fail:

REVERT;

GO

EXECUTE AS USER = 'Edward';

Running either of these statements will return the following errors:

Msg 15196, Level 16, State 1, Line 55

The current security context is non-revertible. The "Revert" statement

failed.

Msg 15517, Level 16, State 1, Line 56

Cannot execute as the database principal because the principal "Edward"

does not exist, this type of principal cannot be impersonated, or you do

not have permission.

The errors remind us that REVERT will not work, nor can we switch users.

WITH NO REVERT is an excellent way to ensure that an entire stored procedure or

connection is made with a single user and that there is no way for anyone to try and

acquire more permissions than this. The only way to end an EXECUTE AS statement

with this option is for the stored procedure to complete, or the connection to end or

be terminated.

The next way to alter permissions is to assign a specific security context to a stored

procedure. When this is done, that stored proc will always execute as this user when it

executes, regardless of the user that calls it, as seen in Listing 4-2.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

115

Listing 4-2.  Stored Procedure Demonstrating EXECUTE AS OWNER

CREATE LOGIN Ed WITH PASSWORD = 'ThisIsATestofADBReaderLogin!';

GO

CREATE USER Ed FOR LOGIN Ed;

GO

ALTER ROLE db_datareader ADD MEMBER Ed;

GO

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'ownership_

chaining_example')

BEGIN

 DROP PROCEDURE dbo.ownership_chaining_example;

END

GO

CREATE PROCEDURE dbo.ownership_chaining_example

WITH EXECUTE AS 'Ed'

AS

BEGIN

 SET NOCOUNT ON;

 -- Select the current security context, for reference.

 SELECT SUSER_SNAME() AS security_context_no_dynamic_sql;

 SELECT COUNT(*) AS table_count_no_dynamic_sql FROM Person.Person;

 DECLARE @sql_command NVARCHAR(MAX);

 �SELECT @sql_command = 'SELECT SUSER_SNAME() AS security_context_in_

dynamic_sql;

 SELECT COUNT(*) AS table_count_in_dynamic_sql FROM Person.Person';

 EXEC sp_executesql @sql_command;

END

GO

GRANT EXECUTE ON dbo.ownership_chaining_example TO [VeryLimitedUser];

Chapter 4 Permissions and Security

www.EBooksWorld.ir

116

EXECUTE AS USER = 'VeryLimitedUser';

GO

SELECT SUSER_SNAME();

GO

EXEC dbo.ownership_chaining_example;

GO

The EXECUTE AS ‘Ed’ option will cause the stored procedure to always execute with

the permissions of its owner, regardless of what user runs it. In this example, ‘Ed’ is a

user with read-access to the database and execute access on this stored procedure.

This allows a user that normally would not have permissions to access the objects

internal to the stored procedure to run it. Alternatively, a user with more permissions

than the owner will still execute it with the owner’s permissions. The owner of an object

is typically its creator, unless changed at a future time.

A potentially more restrictive and useful permissions change is to force a stored

procedure to execute within the context of its caller. This is similar to breaking the

ownership chain, as was seen in dynamic SQL earlier. Typically, assigning execute

permissions to a user will grant that user the ability to execute a stored procedure,

even if they do not have access to all underlying objects. EXECUTE AS CALLER forces

permissions to be checked in the scope of the user executing the proc, as well as the

permissions on the proc itself. This does NOT apply to dynamic SQL, though. This

behavior can be observed in Listing 4-3.

Listing 4-3.  Stored Procedure Demonstrating EXECUTE AS CALLER

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'ownership_

chaining_example')

BEGIN

 DROP PROCEDURE dbo.ownership_chaining_example;

END

GO

CREATE PROCEDURE dbo.ownership_chaining_example

WITH EXECUTE AS CALLER

AS

Chapter 4 Permissions and Security

www.EBooksWorld.ir

117

BEGIN

 SET NOCOUNT ON;

 -- Select the current security context, for reference.

 SELECT SUSER_SNAME() AS security_context_no_dynamic_sql;

 SELECT COUNT(*) AS table_count_no_dynamic_sql FROM Person.Person;

 DECLARE @sql_command NVARCHAR(MAX);

 �SELECT @sql_command = 'SELECT SUSER_SNAME() AS security_context_in_

dynamic_sql;

 SELECT COUNT(*) AS table_count_in_dynamic_sql FROM Person.Person';

 EXEC sp_executesql @sql_command;

END

GO

When executed by a user with execute permissions, but not read permissions on

Person.Person, the stored procedure will run under the permissions of whichever user

calls it. As a result, all objects accessed within it will also check that user’s permissions.

This ensures that the user that calls a stored procedure has permissions on all the objects

referenced from within. Dynamic SQL executes in its own scope and will result in the

execution failing if permissions on the underlying table are not provided to the user

executing it. If not in dynamic SQL, then it would behave normally.

It is important to remember that, regardless of any security adjustments mentioned,

dynamic SQL will still break the ownership chain. The only ways to ensure that dynamic

SQL executes successfully is to run the calling TSQL with a user that has adequate

permissions, add EXECUTE AS OWNER to the proc, or to grant more granular permissions

over the specific execution, which can be accomplished as seen in Listing 4-4.

Listing 4-4.  Stored Procedure Embedding a Security Context Change in

Dynamic SQL

CREATE LOGIN EdwardJr WITH PASSWORD = 'AntiSemiJoin17', DEFAULT_DATABASE =

AdventureWorks2014;

GO

USE AdventureWorks2014

Chapter 4 Permissions and Security

www.EBooksWorld.ir

118

GO

CREATE USER EdwardJr FROM LOGIN EdwardJr;

EXEC sp_addrolemember 'db_owner', 'EdwardJr';

GO

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'ownership_

chaining_example')

BEGIN

 DROP PROCEDURE dbo.ownership_chaining_example;

END

GO

CREATE PROCEDURE dbo.ownership_chaining_example

AS

BEGIN

 SET NOCOUNT ON;

 -- Select the current security context, for reference.

 SELECT SUSER_SNAME() AS security_context_no_dynamic_sql;

 SELECT COUNT(*) AS table_count_no_dynamic_sql FROM Person.Person;

 DECLARE @sql_command NVARCHAR(MAX);

 SELECT @sql_command = 'EXECUTE AS LOGIN = "EdwardJr";

 SELECT SUSER_SNAME() AS security_context_in_dynamic_sql;

 SELECT COUNT(*) AS table_count_in_dynamic_sql FROM Person.Person';

 EXEC sp_executesql @sql_command;

END

GO

Here, we explicitly change the security context within the dynamic SQL. This is

another way to ensure a specific set of permissions once the ownership chain has been

broken. In this case, EdwardJr is a new user with read, write, and execute permissions

on all objects within this AdventureWorks database. This user has no other server

permissions. If we execute this stored procedure as the sysadmin Edward:

EXEC dbo.ownership_chaining_example;

The results are as follows in Figure 4-3.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

119

Note that the security context within the dynamic SQL is no longer the same as the

stored procedure caller (Edward), but has been changed to our new user EdwardJr,

which has far less permissions than a sysadmin. This is a great way to set a predictable

level of permissions for dynamic SQL, when the breaking of the ownership chain is

a frequent problem. If a user with limited permissions attempts to run this stored

procedure, they will run into trouble.

GRANT EXECUTE ON dbo.ownership_chaining_example TO VeryLimitedRole;

EXECUTE AS USER = 'VeryLimitedUser';

EXEC dbo.ownership_chaining_example;

REVERT;

GO

Figure 4-3.  Changing security context when executing dynamic SQL

Chapter 4 Permissions and Security

www.EBooksWorld.ir

120

Here, we grant execute permissions to VeryLimitedUser, switch security context,

and run the stored procedure. The initial SELECT succeeds, as this user has adequate

permissions via the GRANT EXECUTE, but the moment we attempt to switch to

EdwardJr, an error is thrown:

Msg 15406, Level 16, State 1, Line 142

Cannot execute as the server principal because the principal "EdwardJr"

does not exist, this type of principal cannot be impersonated, or you do

not have permission.

The limited user does not have the necessary permissions to impersonate EdwardJr,

or any other user for that matter, and is stopped as soon as the permissions change is

attempted. This behavior may be desirable if we wish to limit who can execute a specific

block of dynamic SQL. As always, let the business needs for your code dictate the

minimal level of permissions required for your data access, and adjust as needed along

the way, if necessary.

�Where Do Security Disasters Come From?
There are many answers to this question, some obvious, others more unexpected. Let’s

consider one possible definition of a security disaster: any action that is taken, but not

desired by the organization and its security personnel. This is intentionally generic,

as we want to consider all ways in which “bad things” can happen. Everyone that has

worked with databases for long enough has experienced one of these situations:

•	 A hacking attempt (or suspected hacking attempt) is made against

your organization.

•	 A disgruntled (or malicious) employee alters data without the

appropriate authority to do so.

•	 A developer forgets the WHERE clause in their ad hoc TSQL.

•	 A planned software release goes awry, resulting in lost data.

•	 Hardware or software failures result in infrastructure entering an

undesirable state.

•	 Unwanted changes were made via a legitimate use of the application.

•	 A software or hardware upgrade have unintended consequences.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

121

We could name many more disasters that would easily keep us awake at night,

but the key to all of them can be boiled down to two basic categories: lack of

planning and human error. How do we manage each risk in a way that is meaningful

and nonobtrusive? With the intention of keeping this from straying too far from

dynamic SQL, let’s briefly review these risks and provide starting points for

managing them.

Keep in mind from our discussions earlier that SQL injection, when exploited in the

worst possible ways, can quickly hand complete control of a server over to the wrong

person at the wrong time. We’ve already provided a solution to this specific security

threat and stated that the best way to defend an application is to provide adequate

security on multiple levels so that the sum of these efforts becomes extremely expensive

to circumvent. There is no foolproof way to secure a system against all threats. In the

same way that a sufficiently motivated robber could probably break into anyone’s house,

a hacker (or group) that is ambitious enough can find ways to make your life difficult.

Discouraging an attack can be achieved by avoiding any glaring security holes that

would make your application a tempting target. The robber that sees solid locks, strong

windows, and distinct signs of a security system is less likely to risk their freedom over an

endeavor that would likely land them in jail.

Lack of planning is rarely identified until it’s too late. Companies often put off high

availability and disaster recovery solutions until after their first disaster scare. The

penetration test is performed for the first time after a high-profile hacking attempt is

identified. More rigorous testing of upgrades is planned and conducted after an upgrade

goes awry one day. Confirmations are added to the application after the first time a

customer accidentally deletes a significant portion of their data. Proper planning can be

achieved with a concerted effort by an employee who, as part of their job responsibilities,

reviews application, software, and hardware features for common security threats.

Ideally a team of individuals from different departments and backgrounds would be

involved. While a database professional would likely catch bad TSQL within the server, a

developer would find bad code in the application, and a customer service representative

might know the top ways in which customers get in trouble with their data.

Do not assign database roles to users unless they absolutely need them. Avoid the
sysadmin server role at all costs. Minimize use of the db_owner database role,
unless truly required by an application or user.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

122

As discussed earlier, providing applications and utilities with adequate permissions

(but no more) is the key for a database administrator to avoid disasters. Consider that

there are a plethora of functions in SQL Server that are included in sysadmin and

db_owner by default. With each new version of SQL Server, new functionality is added,

and those features are often included in those roles as well. As a result, if an application

is assigned a user with one of these roles, then it may gain new permissions after an

upgrade. Features, even those not currently used, such as replication, in-memory OLTP,

Always On, and others may become configurable inadvertently under these roles. Always

consider carefully when providing any application or employee with a login. Consider

the access it has and the worst things they could possible do and decide if those

scenarios are acceptable. It cannot be overstated that a user cannot cause trouble if their

permissions don’t allow it. This is especially true if permissions are implicitly granted via

database or server roles.

Not all dangerous actions are technical in nature. Many, many terrible things result

from human error, human nature, or some combination of the two. Consider a scenario

that plays out daily at companies around the world: a support rep answers the phone.

On the other end is a manager from another division. They sound knowledgeable

and are requesting access to restricted data about one of your largest customers. The

representative, fearful for their job, provides the data, hangs up, and forgets this ever

happened. The trouble is, the person who called didn’t work for the company at all, has

gained access to important information, and only had to spend a few minutes to acquire

it. This technique is known as social engineering and poses a great threat, as no amount

of technology can stop us from using our software as it is meant to be used, especially if

we are motivated to do so.

People with little technical knowledge can call, e-mail, text, and otherwise

communicate with employees in an attempt to steal data. While we can laugh at the low-

quality e-mails we receive and label them as being absurd, we ask, “Who would fall for

them”? Depending on the targeted product, the click rate on e-mail scams is anywhere

from 1% to 12%. In other words, if you work with 100 other people, at least a few of them

are clicking on links within illegitimate e-mails. Only education and communication can

prevent these threats from spreading. Limiting security helps by limiting the number of

individuals with privileged access, but cannot stop a robbery when you unlock the door,

open it, and invite a robber inside.

Some of our other examples earlier had a similar theme of accidental misfortune.

The developer who forgets the WHERE clause or the user who misuses an application

did not hack with the intent to cause trouble for your organization; they simply misused

Chapter 4 Permissions and Security

www.EBooksWorld.ir

123

the tools they had at their disposal. There are two tactics to defend against these types

of incidents. The first is utilizing the Principle of Least Privilege. It’s worth overstating

what has already been discussed: only provide users with the access they need to

perform the daily functions of their job. An employee without production write-access

cannot truncate or delete from a table. The brand new DBA cannot accidentally run

a schema-altering script in production if they have no ability to make DDL changes.

If an employee is to be fired, be sure to revoke their access immediately, to prevent

any opportunity for retribution. Review security roles and user access annually (or

more often if possible) to ensure that changes in your organization or software don’t

necessitate permissions changes.

The second defense against human nature is education. Make ALL employees aware

of your company’s data and security policies. If these policies don’t exist, then work

with the appropriate managers to create them. It is important to educate all employees,

as anyone with access to data, whether via SQL Server Management Studio or terminal

software at their desk, can potentially make mistakes that can cost a great deal in

the long run. For developers, QA specialists, IT, and other technical folks, encourage

accessing data safely. Many utilities exist that will highlight and color-code connection

strings or warn against any TSQL statements that have no WHERE clause or affect

an entire table. Knowing that you are connected to a production server can prevent

the dreaded situation when a script was intended for the development database, but

accidentally run in production.

Educating against nontechnical threats is equally important. Once employees

understand how e-mail can be used to infect computers and steal information, they

can be vigilant against those sorts of threats. This may mean making your own spam

calls or intentionally sending spammy e-mails to catch those in need of an additional

security lesson.

Writing well-structured, documented, and maintainable code is a critical first

step toward maintaining data security. To take all of those efforts and have data

compromised as a result of human error would be an example of the ultimate irony for

any IT department. Take care to exercise diligence on all fronts so that any angle that

your application could be attacked is well defended against. Whether a compromised

database is due to a SQL injection hack, a fearful customer service representative, or

a database administrator with a fat finger is irrelevant to an organization as a whole.

The end results are similar and should provide the necessary motivation to secure an

application environment as much as possible from the human factor.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

124

�Users, Passwords, and Inconvenience
We’ve discussed security roles, ownership chaining, and all of the ways in which human

error can lead to disaster. What do all of these situations involve? Users. For any of these

situations to come to fruition, a user’s account must somehow be used against you.

There are few actions that elicit more groans than having to change your password, but a

strong and consistent password policy is a good defense against password hacking or old

accounts that get resurrected for nefarious purposes.

When using Windows authentication, be sure to have all Windows users configured

with an acceptable password policy. An ideal password policy is not complex, but

enforces long passwords and ensures that users cannot cheat and use commonly

hackable choices. Don’t allow users to reuse passwords and do not force password resets

too often. Frequent password resets result in us taking insecure shortcuts to try and

remember passwords, such as post-it notes, password files, or other bad choices. Last,

audit accounts for usage and purge any that are no longer needed. This is especially

important for live user accounts in which a person could, in the future, try to log in when

they no longer should have access. When it comes to logins, less is better!

Not only will this minimize the chances that an account could be compromised,

it greatly reduces the chance that a lesser used (or forgotten) account could

somehow be used without your knowing. Also ensure that Active Directory is kept up

to date and that all employees’ access is disabled when they leave the company. If a

server allows mixed authentication, be sure to audit both SQL Server logins as well

as Windows logins.

Microsoft is adamant that windows authentication is the recommended form of

security in SQL Server, but to be certain that your server is as secure as possible, those

Windows accounts must also be secure. When using Windows authentication, your SQL

Server is only as safe as the Windows users that are provided access to it. Work with your

network or systems administrator as necessary to ensure that all Windows accounts are

secure, and then confirm that only necessary accounts have access to your SQL servers.

If network access rules can be used to limit where a server can be accessed from, then

use them! If an important SQL Server should only be accessed on a secure, internal

network, then limit access to that network only. This greatly reduces access from other

locations, offices, or the Internet at large.

If SQL Server authentication is used, then be sure to make the same smart decisions

for each server, as seen in Figure 4-4.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

125

When any user is created, or by selecting the properties for a user, you can configure

their security settings. Be sure to choose to enforce the password policy and expiration

policy, as indicated by the check-box in Figure 4-4. These policies are inherited from

Windows, either from a server policy or from an Active Directory/group policy. This

policy can include additional security features, such as locking out users that fail too

many login attempts.

Users, including IT professionals, will gripe about the inconvenience of account

lockouts and dealing with policies. The benefits of these rules far outweigh the

inconvenience. If employees are used to the password rules and have had a long history

of them being applied fairly, their complaints will generally be minimized. It is often

Figure 4-4.  Typical SQL Server user authentication options

Chapter 4 Permissions and Security

www.EBooksWorld.ir

126

the breaking of habit that is most responsible for confusion and mistakes when dealing

with security rules. Planning ahead and configuring your database servers with strong,

consistent user security will help to safeguard your data in the long run at little cost to

you or your users.

Audit password policies on a regular basis. How do yours stack up against industry

standards? These standards change on an annual basis. Today’s standards lend to using

longer passwords with fewer character-specific requirements, fewer password resets, and

adding reliance on 2-factor authentication. Older standards often forced users to change

passwords often and use a variety of awkward special characters in doing so. In ten years,

standards will likely evolve more as attack vectors evolve and new exploits are found.

�Dynamic SQL Maintenance
Over time, all database objects will require some amount of maintenance. As

applications evolve, tables grow, objects are added and removed, and software is

upgraded, then stored procedures, functions, views, jobs, maintenance plans, and more

will require updating as well. This maintenance is a regular part of any software life

cycle, but is even more critical in the case of dynamic SQL. Whenever an object such

as a stored procedure or function is created or altered, syntax and objects within it are

checked for validity. If there are any syntax errors, or if any objects are incorrect, errors

will be thrown immediately and the create/alter statement will fail. Since dynamic SQL

command strings are not subject to parsing or binding, they will always be created

successfully, even if their contents are invalid.

This poses a significant maintenance challenge for both developers and database

administrators. How are objects maintained when their references are not enforced

by any SQL Server restrictions? There are several solutions that can make our lives

easier as application releases are being designed and planned. The first and most basic

solution is to document stored procedures, jobs, functions, and other objects and their

dependencies. There is no need to go into excessive detail, but this documentation

should be easily searchable and allow anyone to quickly look up the basic functionality

of an object and verify any major dependencies. Some organizations will implement

this documentation in a database called a data dictionary. There are no codified rules

for data dictionaries; they simply are a way to organize your database schema into a

manageable reference guide. The details are left to each organization to manage as they

see best for their own development and maintenance processes.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

127

Whether implemented as a database, spreadsheet, Wiki, or text document,

organizing your database objects in some fashion will provide an invaluable tool for

the entire organization. They will easily be able to learn about database objects without

having to track down a domain expert for help. In addition, when application changes

are planned, determining the dependencies and areas that are affected by those changes

will be significantly easier. The simplest data dictionary would simply be a list of tables,

columns, indexes, stored procedures, and so on. Additional information can be added

that describes the functionality of each object, the developers who worked most on

them, and relationships to other objects or software modules.

At a higher level, if schema and source code are searchable, and we decide to modify

a table, we can then quickly search schema and source code for that table name to verify

if and how it is used.

If documentation is how we organize our application development environment,

then cleanup is how we prevent an inevitable descent into an unmaintainable mess.

Organizations greatly value the creation of new features in software and will generally

show great interest in releasing new features rapidly, especially if those new features

can earn money for the organization. A fine balance must be maintained between new

features and technical debt. Technical debt is the accumulated to-do list that every

developer knows all too well. The much-needed upgrade that no one has time for,

cleaning up unused objects, performance optimization of old code, and so on are all

examples of technical debt. No matter how good our documentation is, it becomes

difficult to keep track of all of these exceptions and relics. Developers slowly forget

about them as newer projects take the forefront, and older developers retire or move

on. Cleaning up old database objects and references to deprecated TSQL is critical to

keeping code maintainable.

The objects that we put out of sight and mind about today can easily become

security holes in the future. The dynamic SQL that everyone forgot about quickly

becomes the giant blob of string text that nobody wants to decipher. The application

works and no one wants to mess with a poorly documented unknown object. Prevent

this situation by making it a regular part of the release cycle to review all potential

dependencies and take the appropriate actions to address them. Make sure that all

objects that are no longer needed are removed. Those that require updating should be

analyzed and the correct updates applied. These relics become security concerns as

your software, security, and policies change. Old encryption algorithms that used to be

considered solid and effective are eventually deprecated as modern technology renders

Chapter 4 Permissions and Security

www.EBooksWorld.ir

128

them too weak to rely on anymore. The new coding standards that apply to all new

stored procedures provide no defense against a poorly written proc from ten years ago.

The TSQL written back when the company was a startup by developers putting in 16

hour days needs to be given the same treatment as the new objects that are created by a

better equipped development team.

One way to track stored procedure execution is to create an execution log and add

code to each stored procedure that inserts into the log the date and time it was executed.

This is a fine tactic if we suspect an object is unused, but we are not certain of that fact. If

enough time passes and there is no logged usage, then removal would be deemed safe.

Remember to maintain the log table, though, removing old rows or those that are not

relevant anymore.

While documentation is extremely helpful in determining how to utilize, reference,

and manage new and existing objects, how do we perform those initial searches to find

out what those many references are? SQL Server provides a number of system views that

provide extensive details on database objects, how they relate to each other, and the

TSQL text that their CREATE statements contain. By leveraging these views, we can build

a multipurpose search stored procedure that uses a variety of system views and dynamic

SQL to return a list of objects that contain a given search term, as seen in Listing 4-5.

Listing 4-5.  Schema Search Stored Procedure

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

all_schema')

BEGIN

 DROP PROCEDURE dbo.search_all_schema;

END

GO

CREATE PROCEDURE dbo.search_all_schema

 @searchString NVARCHAR(MAX)

AS

BEGIN

 SET NOCOUNT ON;

 -- �This is the string you want to search databases and jobs

for. MSDB, model and any databases named like tempDB will be

ignored.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

129

SELECT @searchString = REPLACE @searchString, '[', '[[]');

 SELECT @searchString = '%' + @searchString + '%';

 DECLARE @sql NVARCHAR(MAX);

 DECLARE @database_name NVARCHAR(MAX);

 DECLARE @databases TABLE (database_name NVARCHAR(MAX));

 �IF EXISTS (SELECT * FROM tempdb.sys.tables WHERE name = '#object_

data')

 BEGIN

 DROP TABLE #object_data;

 END

 CREATE TABLE #object_data

 (database_name NVARCHAR(MAX) NOT NULL,

 schemaname SYSNAME NULL,

 table_name SYSNAME NULL,

 objectname SYSNAME NOT NULL,

 object_type NVARCHAR(MAX) NOT NULL);

 �IF EXISTS (SELECT * FROM tempdb.sys.tables WHERE name = '#index_

data')

 BEGIN

 DROP TABLE #index_data;

 END

 CREATE TABLE #index_data

 (database_name NVARCHAR(MAX) NOT NULL,

 schemaname SYSNAME NOT NULL,

 table_name SYSNAME NOT NULL,

 index_name SYSNAME NOT NULL,

 key_column_list NVARCHAR(MAX) NOT NULL,

 include_column_list NVARCHAR(MAX) NOT NULL);

 INSERT INTO @databases

 (database_name)

 SELECT

 name

Chapter 4 Permissions and Security

www.EBooksWorld.ir

130

 FROM sys.databases

 WHERE name NOT IN ('msdb', 'model', 'tempdb')

 AND state_desc <> 'OFFLINE';

 DECLARE DBCURSOR CURSOR FOR SELECT database_name FROM @databases;

 OPEN DBCURSOR;

 FETCH NEXT FROM DBCURSOR INTO @database_name;

 WHILE @@FETCH_STATUS = 0

 BEGIN

 SET @sql = '

 USE [' + @database_name + '];

 -- Tables

 INSERT INTO #object_data

 �(database_name, schemaname, table_name, objectname,

object_type)

 SELECT

 db_name() AS database_name,

 schemas.name AS schema_name,

 tables.name AS table_name,

 tables.name AS objectname,

 "Table" AS object_type

 FROM sys.tables

 INNER JOIN sys.schemas

 ON schemas.schema_id = tables.schema_id

 WHERE tables.name LIKE "' + @searchString + "';

 -- Columns

 INSERT INTO #object_data

 �(database_name, schemaname, table_name, objectname,

object_type)

 SELECT

 db_name() AS database_name,

 schemas.name AS schema_name,

 tables.name AS table_name,

 columns.name AS objectname,

 "Column" AS object_type

 FROM sys.tables

Chapter 4 Permissions and Security

www.EBooksWorld.ir

131

 INNER JOIN sys.columns

 ON tables.object_id = columns.object_id

 INNER JOIN sys.schemas

 ON schemas.schema_id = tables.schema_id

 WHERE columns.name LIKE "' + @searchString + "';

 -- Schemas

 INSERT INTO #object_data

 �(database_name, schemaname, table_name, objectname,

object_type)

 SELECT

 db_name() AS database_name,

 schemas.name AS schema_name,

 NULL AS table_name,

 schemas.name AS objectname,

 "Schema" AS object_type

 FROM sys.schemas

 WHERE schemas.name LIKE "' + @searchString + "';

 -- Procedural TSQL

 INSERT INTO #object_data

 �(database_name, schemaname, table_name, objectname,

object_type)

 SELECT

 db_name() AS database_name,

 parent_schema.name AS schema_name,

 parent_object.name AS table_name,

 child_object.name AS objectname,

 CASE child_object.type

 WHEN "P" THEN "Stored Procedure"

 WHEN "RF" THEN "Replication Filter Procedure"

 WHEN "V" THEN "View"

 WHEN "TR" THEN "DML Trigger"

 WHEN "FN" THEN "Scalar Function"

 WHEN "IF" THEN "Inline Table Valued Function"

 WHEN "TF" THEN "SQL Table Valued Function"

 WHEN "R" THEN "Rule"

 END AS object_type

Chapter 4 Permissions and Security

www.EBooksWorld.ir

132

 FROM sys.sql_modules

 INNER JOIN sys.objects child_object

 ON sql_modules.object_id = child_object.object_id

 LEFT JOIN sys.objects parent_object

 ON parent_object.object_id = child_object.parent_object_id

 LEFT JOIN sys.schemas parent_schema

 ON parent_object.schema_id = parent_schema.schema_id

 WHERE child_object.name LIKE "' + @searchString + "'

 OR sql_modules.definition LIKE "' + @searchString + "';

 -- Index Columns

 WITH CTE_INDEX_COLUMNS AS (

 SELECT -- �User indexes (with column name matching search

string).

 db_name() AS database_name,

 SCHEMA_DATA.name AS schemaname,

 TABLE_DATA.name AS table_name,

 INDEX_DATA.name AS index_name,

 STUFF((SELECT ", " + SC.name

 FROM sys.tables AS ST

 INNER JOIN sys.indexes SI

 ON ST.object_id = SI.object_id

 INNER JOIN sys.index_columns IC

 ON SI.object_id = IC.object_id

 AND SI.index_id = IC.index_id

 INNER JOIN sys.all_columns SC

 ON ST.object_id = SC.object_id

 AND IC.column_id = SC.column_id

 �WHERE INDEX_DATA.object_id =

SI.object_id

 AND INDEX_DATA.index_id = SI.index_id

 AND IC.is_included_column = 0

 ORDER BY IC.key_ordinal

 �FOR XML PATH("")), 1, 2, "") AS key_column_

list,

 STUFF((SELECT ", " + SC.name

Chapter 4 Permissions and Security

www.EBooksWorld.ir

133

 FROM sys.tables AS ST

 INNER JOIN sys.indexes SI

 ON ST.object_id = SI.object_id

 INNER JOIN sys.index_columns IC

 ON SI.object_id = IC.object_id

 AND SI.index_id = IC.index_id

 INNER JOIN sys.all_columns SC

 ON ST.object_id = SC.object_id

 AND IC.column_id = SC.column_id

 �WHERE INDEX_DATA.object_id = SI.object_id

 AND INDEX_DATA.index_id = SI.index_id

 AND IC.is_included_column = 1

 ORDER BY IC.key_ordinal

 �FOR XML PATH("")), 1, 2, "") AS include_

column_list,

 "Index Column" AS object_type

 FROM sys.indexes INDEX_DATA

 INNER JOIN sys.tables TABLE_DATA

 ON TABLE_DATA.object_id = INDEX_DATA.object_id

 INNER JOIN sys.schemas SCHEMA_DATA

 ON SCHEMA_DATA.schema_id = TABLE_DATA.schema_id

 WHERE TABLE_DATA.is_ms_shipped = 0

 AND INDEX_DATA.type_desc IN ("CLUSTERED", "CLUSTERED"))

 INSERT INTO #index_data

 �(database_name, schemaname, table_name, index_name, key_

column_list, include_column_list)

 SELECT

 �database_name, schemaname, table_name, index_name, key_

column_list, ISNULL(include_column_list, "") AS include_

column_list

 FROM CTE_INDEX_COLUMNS

 �WHERE CTE_INDEX_COLUMNS.key_column_list LIKE "' +

@searchString + "'

Chapter 4 Permissions and Security

www.EBooksWorld.ir

134

 �OR CTE_INDEX_COLUMNS.include_column_list LIKE "' +

@searchString + "'

 OR CTE_INDEX_COLUMNS.index_name LIKE "' + @searchString + "';'

 EXEC sp_executesql @sql;

 FETCH NEXT FROM DBCURSOR INTO @database_name;

 END

 SELECT

 *

 FROM #object_data;

 SELECT

 *

 FROM #index_data

 -- Search to see if text exists in any job steps.

 SELECT

 j.job_id,

 s.srvname,

 j.name,

 js.step_id,

 js.command,

 j.enabled

 FROM msdb.dbo.sysjobs j

 INNER JOIN msdb.dbo.sysjobsteps js

 ON js.job_id = j.job_id

 INNER JOIN master.dbo.sysservers s

 ON s.srvid = j.originating_server_id

 WHERE js.command LIKE @searchString;

 DROP TABLE #object_data;

 DROP TABLE #index_data;

END

This stored procedure is somewhat extensive, but provides an excellent research

tool that will search all databases on a server, as well as SQL Server Agent jobs, for any

text provided as the @searchString. Since database level system views differ within each

Chapter 4 Permissions and Security

www.EBooksWorld.ir

135

database, it is necessary to query these views on a database-by-database basis. Dynamic

SQL is used to quickly iterate through all databases (except msdb, model, tempdb, and

any offline databases). Three result sets are returned: database objects, indexes, and

jobs. If desired, these output tables can be combined into a single output table using

UNION ALL, but for the purposes of this demonstration, we’ll keep them separate, which

makes each more readable.

If we had a generic search to perform, perhaps to determine if the

BusinessEntityContact table is referenced anywhere on the server, we could run the

stored procedure as follows:

EXEC dbo.search_all_schema N'BusinessEntityContact';

The resulting data set in Figure 4-5 includes two views, one table-valued function,

one table, and four indexes in a single database. No jobs were found with this name. If

other databases existed with this text, then they would also be returned. If there was a

desire to limit the database name so that we don’t expend extra resources and return

results from all databases, another parameter could easily be added to specify a database

search term as well.

This search capability can be extremely useful when researching software changes,

existing objects, and dependencies. Finding all instances of a table name requires

seconds, rather than hours of research. This stored procedure can be used to search for

more specific search terms, such as the name of a primary key:

EXEC dbo.search_all_schema N'PK_Sales';

Figure 4-5.  Example output from execution of a schema search, using a table name

Chapter 4 Permissions and Security

www.EBooksWorld.ir

136

The results in Figure 4-6 show a limited set of primary keys, all starting with the

search term provided.

This illustrates some noise, as a number of primary keys happen to contain the

specific name we were looking for. Removing the noise from the result set is a trivial task,

though the additional results can be useful when looking for schema similar to our target

search object. A final example in Figure 4-7 shows the results for a more specific search

using the full schema and table name for an object.

EXEC dbo.search_all_schema N'Production.Product';

Figure 4-6.  Example output from execution of a schema search, using a primary
key name

Figure 4-7.  Example output from execution of a schema search, using a full table
name

Chapter 4 Permissions and Security

www.EBooksWorld.ir

137

This execution shows very specific results, as only two stored procedures and a lone

job reference the full text of Production.Product.

Tools such as this can be invaluable ways in which to keep up with database

schema maintenance effectively. If there are capabilities specific to your database

environment that are not addressed by this stored procedure, consider modifying

it to add further filters, search capabilities, or specific hard-coded needs for one

application. There are many other objects in SQL Server that are not addressed here,

but could be, such as:

•	 Replication publication names

•	 Linked server names

•	 Logins

•	 Users

•	 SSIS package details

•	 Synonyms

•	 Server-scoped DDL triggers

Adding any of these (or other metrics) would be a matter of adding code to either

the database-specific dynamic SQL, or to the server-wide queries elsewhere in the

proc. Results could be compressed into a single universal result set or broken out by

type. Customization of code such as this can be easy to mold to the needs of a given

organization, while allowing for nearly limitless functionality.

Use search capabilities to assist in removing deprecated features, updating

dependencies, and ensuring that your team has the necessary knowledge to ensure

that technical debt is addressed as effectively and efficiently as possible, before it

becomes unmanageable. These regular searches can help ensure maximum security

within your application, as potential security holes can be quickly found and

patched. A search for “sp_executesql” and “EXEC” could help uncover all uses of

dynamic SQL, which could be valuable in verifying that SQL injection is not possible

from TSQL within the database server. Searching for a specific date, developer name,

or project name could return stored procedures containing those words in their

comments.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

138

�Cleaning House
A task that is often overlooked in favor of pushing forward with new features is the

removal of old columns, tables, stored procedures, or other TSQL. A typical development

cycle involves deprecating unused features, and essentially flagging them for future

removal. What are often left out are the details as to how and when those objects

are removed. Until such a time arrives, it is unlikely that they will be fully updated

or maintained. For all intents and purposes, they are technical debt that will remain

indefinitely unless special efforts are made to deal with them.

A key component to the creation of any object is the discussion of its maintenance.

How do we maintain, archive, delete, or support a table or process once it is placed into a

production environment?

Once we charge forward to work on upgrades, new features, and other research and

development, cleanup becomes a distant memory. Even SQL Server itself is filled with a long

list of deprecated features. A deprecated feature is one that is flagged for future removal, but

remains in the interim for backwards compatibility purposes (or due to lack of motivation to

remove it). To provide context, at the time of this writing, SQL Server 2017 contains a total of

352 deprecated features, keywords, and commands. In contrast, the number of discontinued

features is a footnote in MSDN’s documentation. Discontinued features are those that are

removed from the product and no longer usable. Clearly it is much easier to end support for

a feature and cease upgrading it than to go through the trouble of removing it altogether. If

this is a slow transition for Microsoft, then clearly it is a challenge for anyone!

An excellent way to manage the deprecation and removal of software features

is to build the discontinuation process into the standard development lifecycle.

When a feature is flagged as no longer needed, include a timeline by which it will be

removed. Beyond just creating a schedule, be sure to include enough details that the

discontinuation can be acted upon. Consider these questions:

•	 What components need to be addressed in order for this feature to be

completely removed?

•	 How much effort is required to remove each component?

•	 Who needs to be involved in each component’s removal?

•	 Where in the development schedule for new features will this work fit in?

•	 What upkeep is required of these features in the interim, until they

are removed?

Chapter 4 Permissions and Security

www.EBooksWorld.ir

139

As technical debt, this work will often fall lower in priority than new features.

Asking and answering these questions can help ensure that important maintenance

work is not forgotten. The last point is critically important when advocating for

this work: what constant work and upkeep is required to properly maintain old

components? This can incorporate software licensing costs, extra hardware usage,

cloud storage and processing power, documentation, and anything else that could

conceivably cost time and money.

In the same way that the tonsils or an appendix may act as liabilities to our health,

old features slowly impede progress over time. Unlike tonsils, we can freely remove an

old software feature whenever we decide to do so, with far lower risk than surgery.

More importantly, they provide areas that are more likely to suffer from security

vulnerabilities, as they are no longer in the forefront of our development efforts.

Oftentimes deprecated features are maintained quickly and with minimal QA,

as they are no longer as critical to the application and may not even be used in

the front end anymore. These are facts that must be wrestled with as part of the

regular development of an application, but are of particular interest to DBAs when

dynamic SQL is involved because it can provide additional access that may become

undesirable over time.

If features are deprecated that use dynamic SQL, xp_cmdshell, or any other

features of SQL Server that can potentially provide extra access to database objects,

consider additional steps to secure them as part of the process. If the feature is no

longer used by the application, consider removing the dynamic SQL portion and

replacing it with a token placeholder. Similarly, security to that feature can be limited.

This ensures that it cannot be abused in any way by any party, internal or external

to your organization. This tactic can be employed for any TSQL that is no longer

used but must be maintained so that software builds can complete successfully. If a

feature is no longer used but cannot be dropped, consider reducing it to the smallest

footprint allowed by your development process. Not only will this reduce security

risks, but it will make the removal process easier when the time comes, as more of the

functionality would already be gone.

The removal of unused code can be one of the most effective ways to prevent
unexpected security breaches in the future.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

140

A common error made when removing a feature is to accidentally leave it

partially in use, or have some component of it still running in the application. Maybe

a search procedure is still run when software is loaded, even if the results are not

captured by the application. Another possibility is that there is a web page that is

no longer linked by any active pages, but can still be accessed by entering a URL

manually, or following a favorite to the same page. Removing core functionality

as part of deprecation will highlight these missed opportunities and provide

easy QA feedback so that these holes can be quickly closed. This can simplify the

discontinuation process and remove the potential for future development errors or

security breaches via unexpected/hidden code paths.

�Login and User Usage
The Principle of Least Privilege tells us to provide logins and users with only what

they need to serve their purpose, and nothing more. An additional implied step in

order to be effective is to not share logins across multiple applications or users. Each

individual SQL Server login, whether it uses Windows authentication or SQL Server

authentication, should serve a distinct and singular purpose. This greatly improves

security by

•	 making it easier to disable and later drop unused logins related to old

applications or terminated employees.

•	 providing more granular control over permissions for each individual

application.

•	 discouraging the sharing of users by different employees, especially if

they are from different departments or in different roles.

•	 encouraging responsible development habits by maintaining a subtle

focus on security.

•	 allowing for easier migration of applications to new servers or

platforms.

•	 improving the response time to security threats, breaches, or attacks.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

141

Consider a scenario when an application has db_owner privileges on three

databases. A new employee starts and will be maintaining this application for your

organization. They are provided with a standard login, access, and associated accounts.

As a convenience, this user is also given the credentials for the login that is used by

the application. This allows the new employee to immediately begin work on their

application development without any additional security requests. A year later, the

application expands and requires additional privileges to access some system views and

manage some server settings.

Several years later, the employee leaves the company, and IT has forgotten that this

user had access to an application login and fails to change passwords or consider the

repercussions of these facts. The employee discovers that their access is still intact via

the application login and decides to quietly steal some organizational data. From this

point on, this organization is compromised and it is highly unlikely that the former

employee’s access will be caught until some action is taken that gets their attention. In

addition to stealing data, they could also alter database settings, change data, or even

drop the application databases.

The solution to this problem was to never let this employee share logins in the

first place. This may have taken some additional time to either create a new login

or alter their standard-issue credentials to incorporate these added permissions.

Documentation would also be essential to ensuring that this user’s additional access

is available by anyone that may need to audit, alter, or disable their access. The longer

a login is shared for, the easier it is to forget the nature of this duality and become

complacent in its “just working.”

An equally frustrating situation would be if an individual’s login is used as the

logins credentials for an application. This setup works for as long as the employee is

working for the organization, but as soon as they leave, things get tricky. In the event

that IT notices the shared user, they will be forced to quickly plan an ad hoc change

of permissions. This may involve changing application passwords or creating a new

application user. Either of these could require downtime in order to facilitate the change.

If the shared user is not documented and is disabled as per standard procedures when

this employee departs, then the application will immediately stop working. The result

will be unplanned downtime and likely a late night for those in charge of the application.

Similarly, database and job owners should never be a user’s login, but instead a static

login that will never change as the organization evolves.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

142

�Auditing Users and Logins
An additional safeguard against any undesired security situations is to schedule and

implement regular audits of all SQL Server logins and users. Verify that permissions are

adequate and relevant given current security policies and application needs. Ensure

that all logins and users are required and that permissions that map logins to users are

needed. This process may seem daunting, both from an organizational and technical

standpoint, but can be made easier with the right scripts and effective communication

with all stakeholders. Generally, managers and fellow employees will be happy to

help you out to ensure that their data is secure and that compliance with any related

standards is maintained.

In the realm of TSQL scripts, there are many possibilities that can be useful to us.

We’ll provide a few to get you started, but feel free to modify these or search the Web

for more in-depth versions. Our goal is to identify all logins and users, customized

securables, and mappings between logins and users. To begin, we’ll take a brief look at

all logins and roles on the server, using the script in Listing 4-6.

Listing 4-6.  Script to Retrieve a List of Server Logins and Roles

SELECT

 server_principals.name AS Login_Name,

 server_principals.type_desc AS Account_Type

FROM sys.server_principals

WHERE server_principals.name NOT LIKE '%##%'

ORDER BY server_principals.name, server_principals.type_desc;

This query will return results that look similar to Figure 4-8.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

143

The results include all SQL logins, such as my own login, Edward, and my test logins,

EdPollack and EdwardJr. The Windows authentication user SANDILE\Edward also exists

on this server. In addition, included are a variety of system logins used by SQL Server

services, and server level roles. Type can be filtered in order to limit the result set to

nonsystem logins only. “U” indicates a Windows login, “S” indicates an SQL login, and

“G” indicates a windows group. Filtering to these types only will reduce the result set to

what we are likely most interested in auditing, as seen in Figure 4-9.

Figure 4-8.  List of server logins and roles, from TSQL in Listing 4-6

Figure 4-9.  Login list with server roles removed

Chapter 4 Permissions and Security

www.EBooksWorld.ir

144

This query can easily be executed on all production servers and the results

aggregated to provide a quick peek into which logins exist on which server, and can

quickly provide insight into logins that shouldn’t exist or that might be missing on a

given server.

Our next research will involve exposing customized securables. If specific

permissions were granted on an object, we definitely want to know what they are, who

they have been given to, and verify that they are indeed necessary. This is an area that is

particularly vulnerable to carelessness or oversight, as it can be slow and cumbersome to

verify these details from the SQL Server Management Studio GUI.

Listing 4-7.  Script That Lists Any User-Created Securables

SELECT

 OBJECT_NAME(database_permissions.major_id) AS object_name,

 USER_NAME(database_permissions.grantee_principal_id) AS role_name,

 database_permissions.permission_name

FROM sys.database_permissions

WHERE database_permissions.class = 1

AND OBJECTPROPERTY(database_permissions.major_id, 'IsMSSHipped') = 0

ORDER BY OBJECT_NAME(database_permissions.major_id);

The query in Listing 4-8 returns a list of any object-level permissions that were

explicitly assigned, as seen in Figure 4-10. Any system securables were omitted to

remove a large amount of noise from the list.

Figure 4-10.  Object-level permissions with system securables removed

On my local server, there are a handful of permissions granted to some stored

procedures. It may seem odd that my sysadmin user, Edward, is included, but in the

event that my user ever has its permissions reduced, knowledge of any additional

securables I possess would be critical to completing that task in its entirety.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

145

This query can be run across production servers to let you know what special

permissions were assigned over time to different users and roles, and can ensure that

any security changes that are implemented take into account any and all exceptions

that may exist already.

One additional task that we will often want to complete is to collect the associations

between server logins and users within each database. These relationships determine

additional permissions a login may have within a given database. For example, a login

may have no explicit permissions assigned at the server level, but could be given a

variety of permissions at the database level that would coincide with job or application

responsibilities.

Listing 4-8.  TSQL to Return Relationships Between Server Logins and

Database Users

CREATE TABLE #login_user_mapping (

 login_name NVARCHAR(MAX),

 database_name NVARCHAR(MAX),

 user_name NVARCHAR(MAX),

 alias_name NVARCHAR(MAX));

INSERT INTO #login_user_mapping

EXEC master.dbo.sp_msloginmappings;

SELECT

 *

FROM #login_user_mapping

ORDER BY database_name,

 user_name;

DROP TABLE #login_user_mapping;

The script in Listing 4-8 collects a list of login mappings using an SQL Server system-

stored procedure, inserting the results directly into a temp table. The results are then

returned from the temp table. The output of sp_msloginmappings is formatted as a single

output set per login name, and as a result would be very difficult to use in reporting or

analysis. By returning results directly into a temp table, we can get all of the mapping

data into a single result set, which we can filter, sort, or read at our leisure. The result set

on my local machine can be seen in Figure 4-11.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

146

Each login is associated to a database and user. If any aliases existed, they would also

be returned. This lets us keep track of which databases a given login has any permissions

to. Typically, when a login is deleted, any users associated with that login will remain in

their respective databases until acted upon by an administrator. The results returned by

the preceding query can ensure that we properly clean up all database users when we

disable or drop a server login.

There are many other system views and stored procedures that can be used to

analyze SQL Server security, but the handful shown should provide a solid starting

point with which to take stock of your database environment and identify any significant

security flaws that could be easily addressed once this information is known.

�Memory Consumption
Earlier, we briefly discussed the effects of string truncation on dynamic SQL and how

it can cause command strings to be executed incorrectly, or throw errors. Most of our

dynamic SQL examples thus far have had relatively short command strings whose

lengths were predetermined, based on the parameters that were passed in. In a scenario

Figure 4-11.  Full list of all login/user mappings on this SQL Server

Chapter 4 Permissions and Security

www.EBooksWorld.ir

147

where the length of the command string is controlled by a specific number of objects,

or amount of data, the resulting string can potentially be very large. Like other scalar

parameters you define in SQL server, the command string is stored in memory. Consider

the dynamic SQL in Listing 4-9.

Listing 4-9.  Dynamic SQL to Check Database Integrity on All Databases on

This Instance

DECLARE @databases TABLE

 (database_name NVARCHAR(MAX));

INSERT INTO @databases

 (database_name)

SELECT

 databases.name

FROM sys.databases;

DECLARE @sql_command NVARCHAR(MAX) = ";

SELECT @sql_command = @sql_command + '

DBCC CHECKDB (' + database_name + ');'

FROM @databases;

PRINT @sql_command;

EXEC sp_executesql @sql_command;

This dynamic SQL will create a command string that will run DBCC CHECKDB on

all databases on this SQL Server instance. The command string will consist of one line

per database, regardless of how many databases exist on the server. Since this particular

command is short, the command string on my server will appear like this:

DBCC CHECKDB (master);

DBCC CHECKDB (tempdb);

DBCC CHECKDB (model);

DBCC CHECKDB (msdb);

DBCC CHECKDB (AdventureWorks2012);

DBCC CHECKDB (AdventureWorks2014);

DBCC CHECKDB (AdventureWorks2008);

Chapter 4 Permissions and Security

www.EBooksWorld.ir

148

While this example is short, consider what might happen if there were 500

databases on my server. In that scenario, the command string would be 500 lines

long. This would still not be terribly large, but introduces a potential memory issue

if the object count or text involved became too long. For example, what if we were

to assemble a row count report for all tables in all databases on the server? In that

scenario, on a server with 500 databases and 500 tables per database, we would

have a command string that was 250,000 lines long. If the text of each command

were similar to “SELECT COUNT(*) FROM schema_name.table_name”, then each

line of text would be about 300 bytes. The total command string size would be

approximately 75MB, which is well below the amount of memory that a server

is likely to have, but illustrates a potential performance and security threat that

unbounded statements can pose.

When writing dynamic SQL, be conscious of the length of a command string. If it can

grow unbounded, consider adding a cutoff to prevent it from getting excessively large.

Alternatively, batch the statements so that sets of rows are processed, rather than all of

them at one time. While it is rare that a command string would grow to be gigabytes in

size, it is not out of the realm of possibility, nor should it be ignored. Excessive growth

could also occur due to developer error, if we forgot to increment a counter or advance

a cursor. If we allow the string to grow indefinitely, server memory would eventually run

out. The result would likely be some variety of SQL Server crash that could influence

other applications whose databases are hosted on this server.

Listing 4-10.  Dynamic SQL to Gather Row Counts of All Tables on This SQL

Server Instance

SET NOCOUNT ON;

DECLARE @databases TABLE

 (database_name NVARCHAR(MAX));

CREATE TABLE #tables

 (database_name NVARCHAR(MAX),

 schema_name NVARCHAR(MAX),

 table_name NVARCHAR(MAX),

 row_count BIGINT);

DECLARE @sql_command NVARCHAR(MAX) = ";

Chapter 4 Permissions and Security

www.EBooksWorld.ir

149

INSERT INTO @databases

 (database_name)

SELECT

 databases.name

FROM sys.databases

WHERE databases.name <> 'tempdb';

DECLARE @current_database NVARCHAR(MAX);

WHILE EXISTS (SELECT * FROM @databases)

BEGIN

 SELECT TOP 1 @current_database = database_name FROM @databases;

 SELECT @sql_command = @sql_command + '

 USE [' + @current_database + ']

 INSERT INTO #tables

 (database_name, schema_name, table_name, row_count)

 SELECT

 "' + @current_database + "',

 schemas.name,

 tables.name,

 0

 FROM sys.tables

 INNER JOIN sys.schemas

 ON tables.schema_id = schemas.schema_id';

 EXEC sp_executesql @sql_command;

 DELETE FROM @databases WHERE database_name = @current_database;

END

SELECT @sql_command = ";

SELECT @sql_command = @sql_command + '

 USE [' + database_name + '];

 UPDATE table_list

 SET row_count = (SELECT SUM(partitions.rows)

 FROM sys.partitions

 �INNER JOIN sys.tables ON

partitions.object_id = tables.

object_id

Chapter 4 Permissions and Security

www.EBooksWorld.ir

150

 �INNER JOIN sys.schemas ON

schemas.schema_id = tables.

schema_id

 �WHERE table_list.table_name =

tables.name

 �AND table_list.schema_name =

schemas.name

 �AND index_id < 2) -- Ignore

the partitions from the non-

clustered indexes if any exist.

 FROM #tables table_list

 WHERE table_list.schema_name = "' + [schema_name] + "'

 AND table_list.table_name = "' + table_name + "'

 AND table_list.database_name = "' + database_name + "';'

FROM #tables;

--EXEC sp_executesql @sql_command;

SELECT

 *

FROM #tables;

DROP TABLE #tables;

GO

The TSQL in Listing 4-11 uses dynamic SQL to construct a long command string that

will gather row counts for all tables in all databases on the server (with the exception of

TempDB). The more databases and the more tables on the server, the larger the string

will be. Before executing the command string, we return the length in bytes, which

is calculated as two times the number of characters in the string. The characters are

multiplied by two to account for the fact that the command string is the NVARCHAR

data type, which consists of double-byte UNICODE characters. On my local server with

six databases, the length of this command string is 3.04MB. On a server with many more

databases and tables, the length could become prohibitively long. Following is an example

of batching that limits the number of rows that are processed at one time, ensuring that

the command string cannot grow too large. In this specific example, we process row

counts for each database separately, which would generally be adequate in limiting the

overall size of our command strings. The TSQL for this can be found in Listing 4-11.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

151

Listing 4-11.  Dynamic SQL to Gather Row Counts of All Tables on This SQL

Server Instance Using Batched Command String Creation

SET NOCOUNT ON;

DECLARE @databases TABLE

 (database_name NVARCHAR(MAX));

CREATE TABLE #tables

 (database_name NVARCHAR(MAX),

 schema_name NVARCHAR(MAX),

 table_name NVARCHAR(MAX),

 row_count BIGINT);

DECLARE @sql_command NVARCHAR(MAX) = ";

INSERT INTO @databases

 (database_name)

SELECT

 databases.name

FROM sys.databases

WHERE databases.name <> 'tempdb';

DECLARE @current_database NVARCHAR(MAX);

WHILE EXISTS (SELECT * FROM @databases)

BEGIN

 SELECT TOP 1 @current_database = database_name FROM @databases;

 SELECT @sql_command = ";

 SELECT @sql_command = @sql_command + '

 USE [' + @current_database + ']

 INSERT INTO #tables

 (database_name, schema_name, table_name, row_count)

 SELECT

 "' + @current_database + "',

 schemas.name,

 tables.name,

 0

Chapter 4 Permissions and Security

www.EBooksWorld.ir

152

 FROM sys.tables

 INNER JOIN sys.schemas

 ON tables.schema_id = schemas.schema_id';

 EXEC sp_executesql @sql_command;

 SELECT @sql_command = ";

 SELECT @sql_command = @sql_command + '

 USE [' + database_name + '];

 UPDATE table_list

 SET row_count = (SELECT SUM(partitions.rows)

 FROM sys.partitions

 �INNER JOIN sys.tables ON

partitions.object_id = tables.

object_id

 �INNER JOIN sys.schemas ON

schemas.schema_id = tables.

schema_id

 �WHERE table_list.table_name =

tables.name

 �AND table_list.schema_name =

schemas.name

 �AND index_id < 2) -- Ignore

the partitions from the non-

clustered indexes if any exist.

 FROM #tables table_list

 WHERE table_list.schema_name = "' + [schema_name] + "'

 AND table_list.table_name = "' + table_name + "'

 AND table_list.database_name = "' + database_name + "';'

 FROM #tables

 WHERE database_name = @current_database;

 EXEC sp_executesql @sql_command;

 DELETE FROM @databases WHERE database_name = @current_database;

END

Chapter 4 Permissions and Security

www.EBooksWorld.ir

153

SELECT

 *

FROM #tables;

DROP TABLE #tables;

GO

The only difference in the rewrite of our row count TSQL is that the collection of

row counts happens in the main loop, after each database’s tables are enumerated. This

breaks up our command string generation into one per database. Instead of creating

a 3MB command string, we create and execute six different ones, none of which are

more than 475KB. In a scenario where the length of a command string could become

very long due to a large number of objects being analyzed, batching can ensure that

memory pressure never becomes a security or stability concern, even when executed on

extremely large data sets.

�Row Level Security
Introduced in SQL Server 2016, this feature allows far more granular control over table

data access. Using this feature, we can restrict access based on the criteria specified

within a function that we write. Doing this, we can incorporate user names, logins, and

other data into the function and cross it with data in a table.

To demonstrate the power of this feature, we’ll introduce an employee login table,

populate it with some test data, create a few test logins, and implement row level security

on top of these structures, as seen in Listing 4-12.

Listing 4-12.  Create an Employee Login Table, Insert Test Data, and Create

Logins/Users for Testing Purposes

CREATE TABLE dbo.employee_login

(�employee_id INT NOT NULL IDENTITY(1,1) CONSTRAINT PK_employee

PRIMARY KEY CLUSTERED,

 first_name VARCHAR(100) NOT NULL,

 last_name VARCHAR(100) NOT NULL,

 username VARCHAR(50) NOT NULL,

 login_owner_username VARCHAR(50) NOT NULL);

GO

Chapter 4 Permissions and Security

www.EBooksWorld.ir

154

INSERT INTO dbo.employee_login

 (first_name, last_name, username, login_owner_username)

VALUES

 ('Ed', 'Pollack', 'Ed', 'Ed'),

 ('Ed', 'Pollack', 'epollack', 'Ed'),

 ('Ed', 'Pollack', 'edwardjr', 'Ed'),

 ('Theresa', 'Pollack', 'Theresa', 'Theresa'),

 ('Nolan', 'Pollack', 'Nolan', 'Ed'),

 ('Donna', ", 'Donna', 'Donna'),

 ('Joe', ", 'Joe', 'Joe'),

 ('Giganotosaurus', ", 'GFunk', 'Troodon'),

 ('Tyrannosaurus', ", 'Trex', 'Troodon'),

 ('Pteranodon', ", 'Pteranodon', 'Troodon'),

 ('Troodon', ", 'Troodon', 'Ed');

GO

CREATE LOGIN [Ed] WITH PASSWORD = 'test_password', CHECK_POLICY = OFF,

CHECK_EXPIRATION = OFF;

CREATE USER [Ed] FROM LOGIN [Ed];

ALTER ROLE db_datareader ADD MEMBER [Ed];

GO

CREATE LOGIN [Troodon] WITH PASSWORD = 'test_password', CHECK_POLICY = OFF,

CHECK_EXPIRATION = OFF;

CREATE USER [Troodon] FROM LOGIN [Troodon];

ALTER ROLE db_datareader ADD MEMBER [Troodon];

GO

CREATE LOGIN [Nolan] WITH PASSWORD = 'test_password', CHECK_POLICY = OFF,

CHECK_EXPIRATION = OFF;

CREATE USER [Nolan] FROM LOGIN [Nolan];

ALTER ROLE db_datareader ADD MEMBER [Nolan];

GO

We now have a table called employee_login, as well as some test data to work with.

The key column for this demonstration will be login_owner_username, which indicates

the user name of the person who owns this account. Our goal will be to ensure that the

Chapter 4 Permissions and Security

www.EBooksWorld.ir

155

only people that can view an account are those that own it. Other users should not have

access, even if the account in question is theirs. We’ve also created three logins that will

be used to validate this behavior. Each is granted full read access to Adventureworks (the

current database we are using).

The next step is to create a security function that will be used to validate data against

our security policy. Our example function, as seen in Listing 4-13, will be simple: check

if the user name matches login_owner_username within employee_login. If so, return

data; otherwise, do not.

Listing 4-13.  Create a Table-Valued Function That Defines Our Security Criteria

CREATE FUNCTION dbo.fn_employee_login_security_function (@user_name AS

VARCHAR(50))

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN

 SELECT

 1 AS fn_security_predicate_result

 FROM dbo.employee_login

 WHERE @user_name = SUSER_NAME();

The function returns a 1 if security is successfully validated on a given row. Here, we

are comparing the function’s input against the currently logged in user name. Our last

step is to create a security policy that will use the preceding function to actively filter data

against it, as seen in Listing 4-14.

Listing 4-14.  Create a Security Policy That Implements an Existing Security

Function

CREATE SECURITY POLICY employee_login_security_policy

ADD FILTER PREDICATE dbo.fn_employee_login_security_function(login_owner_

username)

ON dbo.employee_login

WITH (STATE = ON);

GO

Chapter 4 Permissions and Security

www.EBooksWorld.ir

156

The filter predicate passes login_owner_username into the function we created

above, without any additional WHERE clause or restrictions. As a result, this security

policy will apply to the entire table.

I am currently logged in as a user called epollack. Given that, I’ll try to select all data

from our test table:

SELECT

 *

FROM dbo.employee_login;

Despite being a sysadmin, no data is returned, as seen in Figure 4-12.

Figure 4-12.  Results of a SELECT against employee_login, as an
unauthorized user

Since epollack is not a value for any row in the table, zero results are returned,

despite my being a sysadmin and having read access granted to the entire table. Row

level security overrides this and ensures that I only see what I am supposed to see.

Now, let’s impersonate the login Ed and try again:

EXECUTE AS LOGIN = 'Ed';

SELECT

 *

FROM dbo.employee_login;

REVERT

The results can be seen in Figure 4-13.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

157

Only the rows that obey the security policy and had a login owner defined as Ed were

returned. This functionality extends to other queries as well. For example, aggregate

functions, such as MIN, MAX, and COUNT, will only include rows that are validated

successfully by the security policy.

If I were to run a SELECT and COUNT vs. the table as the login Troodon, then I’ll get

back the list of dinosaurs the user has access to, as seen in Figure 4-14.

Figure 4-13.  Results of a SELECT against employee_login, as a user with some
row level access

Figure 4-14.  Results of a SELECT against employee_login, as a user with differing
row level access

Chapter 4 Permissions and Security

www.EBooksWorld.ir

158

The options for customizing row level security are limitless. We could create lists of

specific users based on tabular metadata, and then apply that access to other objects.

Logins with specific roles, securables, or text within the user name could be given

granular permissions based on that metadata. Application logins could be used, instead,

to regulate who has access to data. As a feature, row level security is a very flexible way to

further restrict access to ensure that we can best follow the principal of least privilege.

�Signing Stored Procedures
One additional way to control access to stored procedures is to use a certificate to sign it,

allowing permissions to be granted without the need to explicitly assign them to a user.

This allows a login and user to be created with no permissions assigned to them, and

trust to be established to objects via use of the certificate.

More importantly to us, this security applies to access within the scope of a stored

procedure or dynamic SQL within it! Let’s jump in and configure a login, user, and

certificate, as seen in Listing 4-15.

Listing 4-15.  Create a Login, User, and Certificate for Testing a Signed Stored

Procedure

CREATE LOGIN SecurityTestUser WITH PASSWORD = 'SecurityTest%UserForSigned

ProcsDemo!StrongPassword^12345!'

GO

CREATE USER SecurityTestUser FOR LOGIN SecurityTestUser;

GO

CREATE CERTIFICATE SecurityTestCertificate

 ENCRYPTION BY PASSWORD = 'Security&Test@Certificate135790Password!!!'

 WITH SUBJECT = 'Secure Stored Proc Access',

 EXPIRY_DATE = '1/1/2021';

GO

This sets us up with a certificate that we will use to sign a stored procedure, as well as

a user and login that will be used to test it. In Listing 4-16, we’ll create a stored procedure

that validates current security credentials both in its scope and within the scope of a

dynamic SQL statement. We’ll also sign it using the certificate that we recently defined.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

159

Listing 4-16.  Create a Stored Procedure and Sign It Using a Certificate

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name =

'GetPersonCount')

BEGIN

 DROP PROCEDURE dbo.GetPersonCount;

END

GO

CREATE PROCEDURE dbo.GetPersonCount

AS

BEGIN

 SELECT

 *

 FROM sys.user_token;

 DECLARE @sql_command NVARCHAR(MAX);

 SELECT @sql_command = '

 SELECT

 *

 FROM sys.user_token;

 SELECT COUNT(*) FROM Person.Person';

 EXEC sp_executesql @sql_command;

END

GO

ADD SIGNATURE TO GetPersonCount

BY CERTIFICATE SecurityTestCertificate

WITH PASSWORD = 'Security&Test@Certificate135790Password!!!';

GO

Now that these structures are available, we can create a database user from the

certificate. This user is special in that it will be associated with the ownership chain of

any objects it has permissions to. Listing 4-17 shows the creation of this user, as well as

the assigning of permission to it and our previous test user.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

160

Listing 4-17.  Create a Database User from the Certificate and Assign

Permissions to Our Test Objects

CREATE USER TestUserFromCertificate

FROM CERTIFICATE SecurityTestCertificate;

GO

GRANT SELECT

ON Person.Person

TO TestUserFromCertificate;

GO

GRANT EXECUTE

ON dbo.GetPersonCount

TO TestUserFromCertificate;

GO

GRANT EXECUTE

ON dbo.GetPersonCount

TO SecurityTestUser;

GO

With these structures created, we can test object access as the login

SecurityTestUser and see what happens. Listing 4-18 shows tests using my admin

login, and then executing as our test login.

Listing 4-18.  Create a Database User from the Certificate and Assign

Permissions to Our Test Objects

EXEC dbo.GetPersonCount;

GO

SELECT

 *

FROM Person.Person;

GO

SELECT

 *

FROM Person.Password;

GO

Chapter 4 Permissions and Security

www.EBooksWorld.ir

161

EXECUTE AS LOGIN = 'SecurityTestUser';

GO

EXEC dbo.GetPersonCount;

GO

SELECT

 *

FROM Person.Person;

GO

SELECT

 *

FROM Person.Password;

GO

REVERT;

GO

First, we’ll test as me. As an admin login with permissions to do anything, the

results are predictable and provide a good starting point. Figure 4-15 shows what

happens when I execute the stored procedure, select from Person.Person, and select

from Person.Password.

Figure 4-15.  Security info and results from test queries as a sysadmin login

Chapter 4 Permissions and Security

www.EBooksWorld.ir

162

We can see the security info for my Windows user, both in the stored procedure and

the dynamic SQL contained within.it. The row count within the dynamic SQL is returned

correctly. In addition, the SELECT operations against Person.Person and Person.

Password also execute correctly. With the more obvious test case out of the way, we can

execute the same code, but as SecurityTestUser, as seen in Figure 4-16.

Figure 4-16.  Output when a user is mapped from a certificate and used to
retrieve data

The security information returned from sys.user_token confirms the database

principals that are associated with the user we were executing as. The stored procedure

executes normally and returns the row count as requested. In addition, the SELECT

against Person.Person succeeds. Our last test, selecting data from Person.Password fails

as we expect it to, as seen in Figure 4-17.

Figure 4-17.  Error message when the mapped user attempts to access data that it
does not have permissions to view

The key is that the user permissions chained into the dynamic SQL that we included

in the stored procedure and did not revert to the object owner or caller.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

163

Signing a stored procedure using a certificate allows for more granular control over

security without needing to explicitly redefine permissions against every underlying

object in question. By granting permissions to the certificate, we no longer need to

worry about granular table access details that would previously have been an issue when

dealing with ownership chaining.

This also can simplify the granting and revoking of permissions, as there is no need

to modify logins, but instead a certificate user. Unlike EXECUTE AS, this process does

not change the execution context of the stored procedure, but permissions are managed

as if they were.

Signing stored procedures is a simple and easy-to-use alternative for managing

security across different scopes when the alternative is micromanaging permissions on

many objects.

�Conclusion
All of this security advice may seem distant to the topic of dynamic SQL, but it’s

important in ensuring that the development we do is both effective and secure. Taking

any or all of these best practices and suggestions and implementing them greatly

reduces the risk of SQL injection, as well as other exploits that could inadvertently

create vulnerabilities in your system. If this topic interests you, there are many books

and courses out there that will dive into security in much greater detail. This chapter is

intended to provide an introduction and overview of SQL Server security, with a focus on

dynamic SQL and the greatest security threats to it.

As we charge forward with further examples of how dynamic SQL can perform

powerful searches, maintenance, or data transformations, keep in mind how

security-related considerations can have lasting repercussions for the integrity of not

only your queries, but your SQL Server as a whole. It is far easier to make the correct

decisions now than to return at a later date and clean up the mistakes of previous

development efforts.

Chapter 4 Permissions and Security

www.EBooksWorld.ir

165
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_5

CHAPTER 5

Managing Scope
Our discussions of security have alluded to the fact that dynamic SQL does not run in

the same scope as the remainder of TSQL in the same stored procedure. In addition

to breaking the ownership chain, variables declared locally and globally will not have

easy access to each other. When writing application code or stored procedures, passing

variables into and out requires a bit of planning, ensuring that the inputs and outputs are

correct. Working with dynamic SQL is very similar, and luckily we have a variety of ways

in which to manage variables effectively without any level of inconvenience.

�What Is Scope?
To make understanding scope as easy as possible, some definitions of what we are

talking about should be provided, as well as a few examples of why this is an important

topic. Scope can be defined as where and how long a variable or object is available for

within any SQL Server object. Consider the following simple TSQL statement:

DECLARE @FirstName NVARCHAR(50) = 'Edward';

SELECT

 *

FROM Person.Person

WHERE FirstName = @FirstName;

This is about as simple as TSQL gets, but what is the scope of the variable we just

defined? Without any interruptions or changes in control within these statements,

@FirstName is in scope throughout the example, and can be used (as we expect it

could be) by the SELECT statement immediately after it. What happens if we end the

batch prior to returning the results?

www.EBooksWorld.ir

166

DECLARE @FirstName NVARCHAR(50) = 'Edward';

GO

SELECT

 *

FROM Person.Person

WHERE FirstName = @FirstName;

This simple change, a “GO” before the SELECT, will result in an error:

Msg 137, Level 15, State 2, Line 20

Must declare the scalar variable "@FirstName".

When the batch was ended, all locally defined variables were no longer available and

in scope for the remainder of this TSQL. “GO”, by definition, will end a batch and trigger

this behavior whenever used. Any TSQL that is encapsulated within its own object, such

as a trigger, function, or stored procedure, will also execute within their own scope. Any

attempt to access variables defined within these objects from outside of them will result

in errors similar to this.

CREATE PROCEDURE dbo.get_people

AS

BEGIN

 DECLARE @FirstName NVARCHAR(50) = 'Edward';

 SELECT

 *

 FROM Person.Person

 WHERE FirstName = @FirstName;

END

GO

EXEC dbo.get_people;

SELECT @FirstName;

The preceding stored procedure will perform the same search as previously.

Attempting to execute it as shown yields the exact same results, with the previous error

being returned because our TSQL cannot be bound. By default, variables declared

within a stored procedure are not available from anywhere outside of it. In our example,

SQL Server has no idea what @FirstName is, as it was defined within the stored procedure

Chapter 5 Managing Scope

www.EBooksWorld.ir

167

only. The same convention also applies to dynamic SQL, and is important to understand

when determining where variables are to be declared, modified, and returned.

Parameters can be added to stored procedures to facilitate the easy movement of

data in and out of them so that their values can remain in scope and be used elsewhere

in your work. The following example in Listing 5-1 shows how variables can be passed

into a stored procedure, and how values can be explicitly returned as well:

Listing 5-1.  Stored Procedure Illustrating Input and Output Parameters

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_people')

BEGIN

 DROP PROCEDURE dbo.get_people;

END

GO

CREATE PROCEDURE dbo.get_people

 @first_name NVARCHAR(50), @person_with_most_entries NVARCHAR(50) OUTPUT

AS

BEGIN

 DECLARE @person_count INT;

 SELECT TOP 1

 @person_with_most_entries = Person.FirstName

 FROM Person.Person

 GROUP BY Person.FirstName

 ORDER BY COUNT(*) DESC;

 SELECT

 *

 FROM Person.Person

 WHERE FirstName = @first_name;

 RETURN @@ROWCOUNT;

END

GO

In this example, we pass in a first name that will be used in the search. We also pass

in an additional string that will be overwritten with the most common first name in

Person.Person. Within the stored procedure, all rows in Person.Person will be returned

Chapter 5 Managing Scope

www.EBooksWorld.ir

168

that have the first name passed in. Last, the count of rows with that first name will be

used as the return value from the stored proc. An example execution would look like this:

DECLARE @person_with_most_entries NVARCHAR(50);

DECLARE @person_count INT;

EXEC @person_count = dbo.get_people 'Edward', @person_with_most_entries OUTPUT;

SELECT @person_with_most_entries AS person_with_most_entries;

SELECT @person_count AS person_count

Note the use of the OUTPUT keyword. This TSQL reserved word can be used in a

number of ways, but when working with a stored procedure as seen in the preceding, it

signifies that the parameter that is being passed in will retain changes to its value as the

stored procedure executes. For this to work properly, OUTPUT must also be specified in

the parameter list for the stored procedure as well.

When executed, a search will be performed and all people with the name “Edward”

will be returned. In addition, the @person_with_most_entries variable will also be

updated as an output variable. Last, the count of people with the first name provided

will be returned from the stored procedure and stored in @person_count. When those

variables are selected at the end, the expected values are returned, as seen in Figure 5-1.

�Why Is Scope Important?
So far, scope appears to be an inconvenience that we are forced to deal with when

working with variables and parameters. The nuisance is not without merit, though,

as it provides an immense level of security that would otherwise be unavailable in

SQL Server.

Scope exists to isolate unrelated objects from each other. By Microsoft’s definition,

scope is a stored procedure, trigger, function, or batch. Two statements are in the same

Figure 5-1.  Results from the dbo.get_people stored procedure

Chapter 5 Managing Scope

www.EBooksWorld.ir

169

scope if they are within the same stored procedure, trigger, function, or batch. It is

similar behavior in practice to how local and global variables behave in application code.

If variables, parameters, and temporary objects were available everywhere,

regardless of where they were called from, then what would stop someone from

accessing data that they are not authorized to access? How would two variables named

@username interact when declared separately but at the same time?

As a result, scope is an important aspect of SQL Server security, and one that we rely

on to write predictable, maintainable, and easy-to-debug code. While understanding

scope improves our ability to write quality dynamic SQL, it also improves the rest of the

TSQL we write, as scope is a feature that affects all database code, regardless of its location.

�Managing Scope in Dynamic SQL
Dealing with scope in Dynamic SQL isn’t terribly different than when working with a

stored procedure. Imagine everything within the dynamic SQL statement as being separate

from the remainder of your TSQL and act accordingly. To illustrate the similarities,

consider the following TSQL, which is similar to our previous search examples:

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

DECLARE @FirstName NVARCHAR(50) = "Edward";

SELECT

 *

FROM Person.Person

WHERE FirstName = @FirstName;'

EXEC sp_executesql @sql_command;

SELECT @FirstName

In this case, the variable @FirstName is declared within the command string, and as

such is not available outside of the scope of the dynamic SQL statement. The SELECT at

the end will fail as @FirstName no longer exists:

Msg 137, Level 15, State 2, Line 84

Must declare the scalar variable "@FirstName".

Similarly, a variable declared outside of a command string will be unavailable for use

on the inside. Last, multiple command strings each execute in their own scope. A variable

declared in one command string will not be available in another dynamic SQL statement.

Chapter 5 Managing Scope

www.EBooksWorld.ir

170

To manage our code correctly, we need to treat variables in a given scope as isolated

and unrelated to those in a different scope. In this chapter we will discuss a variety of

ways in which data can be shared between different scopes. This will allow us to share

data when needed, or intentionally not share data when we would prefer more privacy

or security within a given scope. SQL Server provides many ways to isolate or share data,

allowing us to choose which method is best for a given situation.

�Using OUTPUT in Dynamic SQL
By default, any variables that are passed into sp_executesql are read-only. That is, they

can be used within the scope of the dynamic SQL whenever needed, but when the

dynamic SQL is complete, and execution returns to the calling TSQL, any changes to

parameters are not saved. Consider the TSQL in Listing 5-2, focusing on the UPDATE of

the @FirstName parameter.

Listing 5-2.  Dynamic SQL: Updating Parameters Within the Command String

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

DECLARE @first_name NVARCHAR(50) = 'Edward';

SELECT @sql_command = '

SELECT

 *

FROM Person.Person

WHERE FirstName = @first_name;

SELECT @first_name = "Xavier";

SELECT @first_name;

'

SELECT @parameter_list = '@first_name NVARCHAR(50)'

EXEC sp_executesql @sql_command, @parameter_list, @first_name;

SELECT @first_name;

GO

In the preceding example, the last action taken within the command string is to

reassign the name “Xavier” to the parameter @first_name. Even though the parameter

Chapter 5 Managing Scope

www.EBooksWorld.ir

171

is read-only, we are allowed to change the value of it within the dynamic SQL. The new

value will remain relevant and in-scope until the end of the dynamic SQL. It is important

to note that, despite the fact that we used the same variable name for the first name both

within and outside of our dynamic SQL, they are still treated as completely separate

variables. Depending on your applications, there may be value in using different variable

names, which would help differentiate between separate variables, or in using the same

variable names, which would make it more obvious when a distinct value is being used

across TSQL statements, each with a different scope. The output from the preceding

code is shown in Figure 5-2.

The results of the search are retuned, as we expected them to be. The SELECT of the

first name from within the dynamic SQL shows that our reassignment of the parameter

is allowed, and succeeded. When we check the variable again, after the dynamic SQL

execution is complete, though, we can see that @first_name is set to “Edward” instead of

“Xavier.” As a slight adjustment, we can go ahead and change the variable names, as shown

in Listing 5-3, which helps emphasize that they are distinct and separate from each other.

Figure 5-2.  Reassigning a variable within dynamic SQL without the OUTPUT
operator

Chapter 5 Managing Scope

www.EBooksWorld.ir

172

Listing 5-3.  Rewrite of TSQL from Listing 5-2, which Returns the Same Results

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

DECLARE @first_name_calling_sql NVARCHAR(50) = 'Edward';

SELECT @sql_command = '

SELECT

 *

FROM Person.Person

WHERE FirstName = @first_name_within_dynamic_sql;

SELECT @first_name_within_dynamic_sql = "Xavier";

SELECT @first_name_within_dynamic_sql;

'

SELECT @parameter_list = '@first_name_within_dynamic_sql NVARCHAR(50)'

EXEC sp_executesql @sql_command, @parameter_list, @first_name_calling_sql;

SELECT @first_name_calling_sql;

The results from this slightly different version are exactly the same as before. The

only difference was that we changed the name of the variable in our calling TSQL to

@first_name_calling_sql and the parameter for the dynamic SQL statement to

@first_name_within_dynamic_sql.

What if we intentionally want any changes to our parameters made within the

dynamic SQL to be saved and passed back out to the parameters that were passed

in initially? The solution is nearly the same as with a stored procedure. Simply add

OUTPUT to any parameter that is to pass its value back to the calling TSQL and it will

work very similarly to our examples earlier, as seen in Listing 5-4.

Listing 5-4.  Using OUTPUT to Permanently Modify a Parameter

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

DECLARE @first_name_calling_sql NVARCHAR(50) = 'Edward';

SELECT @sql_command = '

SELECT

 *

FROM Person.Person

Chapter 5 Managing Scope

www.EBooksWorld.ir

173

WHERE FirstName = @first_name_within_dynamic_sql;

SELECT @first_name_within_dynamic_sql = "Xavier";

SELECT @first_name_within_dynamic_sql;

'

SELECT @parameter_list = '@first_name_within_dynamic_sql NVARCHAR(50) OUTPUT'

EXEC sp_executesql @sql_command, @parameter_list, @first_name_calling_sql

OUTPUT;

SELECT @first_name_calling_sql;

In this example, we explicitly flag the first name parameter as an OUTPUT

parameter. This indicates that, if the value is changed within the dynamic SQL, that

change will be persisted after the command string has been executed and we switch

back to the scope of the calling TSQL. The output is seen in Figure 5-3.

Figure 5-3.  Results when OUTPUT was used to persist @first_name_within_
dynamic_sql

Chapter 5 Managing Scope

www.EBooksWorld.ir

174

This time, when we change the value of @first_name_within_dynamic_sql to

“Xavier,” that value is passed from the dynamic SQL back to sp_executesql and remains

until we act on it again. This is immensely useful when we want a parameter to change

within dynamic SQL or we would like to pass variables in and out seamlessly.

Note that in this TSQL, the OUTPUT keyword is appended to both the parameter list

and the parameter name in the sp_executesql statement. The keyword must be applied

in both places or the parameter value will not be updated as expected. If OUTPUT is

omitted from the parameter list, then SQL Server does not know that it is intended to

be persisted from our dynamic SQL statement. The result is an explicit error message

calling this out:

Msg 8162, Level 16, State 2, Line 152

The formal parameter "@first_name_within_dynamic_sql" was not declared as

an OUTPUT parameter, but the actual parameter passed in requested output.

Luckily the message is very easy to understand, and makes it clear how to fix the

error. SQL Server does not allow an OUTPUT parameter to be passed into a variable that

is not declared in the same fashion.

What happens if we declare the parameter within our parameter list as an OUTPUT

variable, but do not declare it as such in the sp_executesql command? In this scenario,

no error is thrown. It is perfectly legal to declare a parameter with the OUTPUT

keyword within the parameter list and not include the same keyword when executing

the command string. The result will be that the TSQL executes successfully, and the

value of the first name parameter is not persisted from dynamic SQL back to the calling

TSQL. Table 5-1 sums up the results of each usage of the OUTPUT variable.

The only way to successfully alter the value of a parameter and return it to the calling

TSQL is to use OUTPUT on both the parameter list and the variable being passed in.

Table 5-1.  Results of Different Uses of OUTPUT. Green Is Good, Red Is Bad

Parameter List Input Variable Result

Parameter value is not persisted.

OUTPUT Error is thrown by SQL Server.

OUTPUT Parameter value is still not persisted.

OUTPUT OUTPUT Parameter value persisted from dynamic SQL.

Chapter 5 Managing Scope

www.EBooksWorld.ir

175

To avoid confusion when writing dynamic SQL, avoid the mixed scenarios where one

variable is declared as OUTPUT but not the other. The results in one case will be an

error message, which is certainly not desirable. The other ambiguous case will make

for a difficult-to-understand piece of code whose purpose will not be clear to any other

developer, and could lead to coding mistakes in the future.

Any parameter may be passed into dynamic SQL that is allowed to be passed into a

stored procedure, including tables and even cursors. Table variables, discussed in the

next section, are read-only, though, and may not be set as OUTPUT parameters.

�Table Variables and Temporary Tables
An additional way of persisting data in SQL Server is to create table variables or

temporary tables and store data in them. The behavior of each of these is somewhat

unique, and offers an alternate way to manage data within dynamic SQL. Let’s discuss

each in a bit more detail and illustrate each behavior and how it could impact your TSQL.

�Table Variables
Consider the TSQL in Listing 5-5.

Listing 5-5.  Results of Using a Table Variable Within Dynamic SQL that Is

Declared Outside of It

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

DECLARE @last_names TABLE (

 last_name NVARCHAR(50));

SELECT @sql_command = '

SELECT DISTINCT

 FirstName

FROM Person.Person

WHERE LastName IN (SELECT last_name FROM @last_names)'

EXEC sp_executesql @sql_command;

Chapter 5 Managing Scope

www.EBooksWorld.ir

176

Running this TSQL results immediately in an error:

Msg 1087, Level 15, State 2, Line 197

Must declare the table variable "@last_names".

The @last_names table variable may be created at the start of our example, but does

not exist within the scope of the dynamic SQL. We try to return a set of first names using

that data, but it cannot be found. As a result, any attempt to access it will fail. We can

pass a table variable into dynamic SQL, but it requires the additional step of declaring a

custom type and using it as the data type, as seen in Listing 5-6.

Listing 5-6.  Passing a Table Variable into Dynamic SQL

CREATE TYPE last_name_table AS TABLE

 (last_name NVARCHAR(50));

GO

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

DECLARE @first_name_calling_sql NVARCHAR(50) = 'Edward';

DECLARE @last_names AS last_name_table;

INSERT INTO @last_names

 (last_name)

SELECT

 LastName

FROM Person.Person WHERE FirstName = @first_name_calling_sql;

SELECT @sql_command = '

SELECT DISTINCT

 FirstName

FROM Person.Person

WHERE LastName IN (SELECT last_name FROM @last_name_table)

'

SELECT @parameter_list = '@first_name_within_dynamic_sql NVARCHAR(50),

@last_name_table last_name_table READONLY'

EXEC sp_executesql @sql_command, @parameter_list, @first_name_calling_sql,

@last_names;

Chapter 5 Managing Scope

www.EBooksWorld.ir

177

The first step is to create a table type once that will be used for the remainder of this

example. It’s passed as a parameter into sp_executesql just like any other parameter, but

must be declared as READONLY within the parameter list. Table variables are always

read-only and cannot be modified within the dynamic SQL that they are passed into.

If we were to try and delete from the table variable, or make any change to it at all, we

would then receive an error:

Msg 10700, Level 16, State 1, Line 255

The table-valued parameter "@last_name_table" is READONLY and cannot be

modified.

SQL Server provides a very direct error message, reminding you that attempting to

alter the read-only table variable will fail.

�Temporary Tables
Temporary tables behave similarly to table variables, but are declared, persisted, and

disposed of differently. Unlike a table variable, a temporary table will persist until

dropped, or until its calling session ends. Let’s retry our initial example, but using a

temporary table instead of a table variable, as seen in Listing 5-7.

Listing 5-7.  Results of Using a Temp Table Within Dynamic SQL that is Declared

Outside of It

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

CREATE TABLE #last_names (

 last_name NVARCHAR(50));

SELECT @sql_command = '

SELECT DISTINCT

 FirstName

FROM Person.Person

WHERE LastName IN (SELECT last_name FROM #last_names)'

EXEC sp_executesql @sql_command;

DROP TABLE #last_names

Chapter 5 Managing Scope

www.EBooksWorld.ir

178

This time, we do not receive an error message, but instead a result set (albeit an

empty one). What if we modify the temporary table within the dynamic SQL? Listing 5-8

shows the resulting TSQL.

Listing 5-8.  Results of Modifying a Temp Table Within Dynamic SQL

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

CREATE TABLE #last_names (

 last_name NVARCHAR(50));

INSERT INTO #last_names

 (last_name)

SELECT 'Thomas'

SELECT @sql_command = '

SELECT DISTINCT

 FirstName

FROM Person.Person

WHERE LastName IN (SELECT last_name FROM #last_names);

INSERT INTO #last_names

 (last_name)

SELECT "Smith";

'

EXEC sp_executesql @sql_command;

SELECT * FROM #last_names;

DROP TABLE #last_names;

The results indicate that the temp table was not only accessible within the dynamic

SQL, but was written successfully, as seen in Figure 5-4.

Chapter 5 Managing Scope

www.EBooksWorld.ir

179

The first result set shows that the temporary table is accessible within dynamic

SQL. The second result set shows that it can be modified within the dynamic SQL

and those results persisted later on in our example. This is very useful, and provides a

simple way to manage data that needs to pass between dynamic SQL and other TSQL

seamlessly. Since we are on a roll, what happens when we declare a temporary table

within dynamic SQL and attempt to access it later in our code? Listing 5-9 shows the

TSQL to accomplish this.

Listing 5-9.  Results of Creating a Temp Table Within Dynamic SQL and

Accessing It Later

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

SELECT @sql_command = '

CREATE TABLE #last_names (

 last_name NVARCHAR(50));

Figure 5-4.  Temporary tables created outside of dynamic SQL are also accessible
within

Chapter 5 Managing Scope

www.EBooksWorld.ir

180

INSERT INTO #last_names

 (last_name)

SELECT "Thomas";

'

EXEC sp_executesql @sql_command;

SELECT DISTINCT

 FirstName

FROM Person.Person

WHERE LastName IN (SELECT last_name FROM #last_names);

Our luck has run out, and the preceding example resulted in an error:

Msg 208, Level 16, State 0, Line 316

Invalid object name '#last_names'.

While a temporary table declared in our calling TSQL is accessible within dynamic

SQL, the reverse is not true. The table #last_names exists only within the scope of our

dynamic SQL and will not be available elsewhere. Similarly, referencing the temp table in

another block of dynamic SQL later in our code will result in the same error. In other words,

the following example will also fail with the same error message, as shown in Listing 5-10.

Listing 5-10.  Reusing a Temp Table in Subsequent Dynamic SQL Is Also Not

Valid

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

SELECT @sql_command = '

CREATE TABLE #last_names (

 last_name NVARCHAR(50));

INSERT INTO #last_names

 (last_name)

SELECT "Thomas";

'

EXEC sp_executesql @sql_command;

Chapter 5 Managing Scope

www.EBooksWorld.ir

181

SELECT @sql_command = '

SELECT DISTINCT

 FirstName

FROM Person.Person

WHERE LastName IN (SELECT last_name FROM #last_names);'

EXEC sp_executesql @sql_command;

Each section of dynamic SQL exists within its own isolated scope, and will not share

locally defined objects.

Be mindful when creating and accessing temporary tables, to ensure that they are

available where needed and not out of scope when required later in your code. Also,

keep in mind that these temp tables are only available within your current SQL Server

connection. If you attempt to access a temp table created in this connection from a

separate application or connection, it will also be unavailable.

Last, a temporary table will be automatically dropped when its connection is

ended. It is a good practice to drop temp tables when your work with them is complete,

but if you don’t, SQL Server will remove them for you. This automatic removal only

occurs when the connection under which the temp table was created is ended. If that

connection is maintained indefinitely, then the temp table will also remain indefinitely.

If a table with the same name were later declared within the same session, an error

would result because the table already exists.

One additional note on temporary tables: if you are operating repeatedly on them

to retrieve a small subset of rows, consider indexing. A temp table may have a clustered

index defined on it, as well as nonclustered indexes. Primary keys may also be added

to enforce uniqueness when necessary. Indexing a commonly queried column or set

of columns can greatly improve performance by reducing reads and producing higher

quality execution plans.

�Global Temporary Tables
One final option that is available for us are global temporary tables. These tables are

declared just like standard temp tables, but with a prefix of “##” instead of “#.” Global

temp tables are available server-wide for any TSQL accessing the same SQL Server

instance they are created on. This access is not restricted based on connection or by

database access.

Chapter 5 Managing Scope

www.EBooksWorld.ir

182

Once created, a global temp table will persist until all connections to it are ended.

The table may be created within the scope of dynamic SQL or the calling TSQL and will

still be available within any other scope on the server.

Consider the example in Listing 5-11, similar to our preceding code.

Listing 5-11.  Example of Global Temporary Table Usage

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

SELECT @sql_command = '

CREATE TABLE ##last_names (

 last_name NVARCHAR(50));

INSERT INTO ##last_names

 (last_name)

SELECT "Thomas";'

EXEC sp_executesql @sql_command;

SELECT @sql_command = '

SELECT DISTINCT

 FirstName

FROM Person.Person

WHERE LastName IN (SELECT last_name FROM ##last_names);'

EXEC sp_executesql @sql_command;

SELECT * FROM ##last_names;

-- DROP TABLE ##last_names;

In this TSQL, we declare a global temp table within dynamic SQL. We then select

some first names from Person.Person, using the global temp table, and later access

it again in our calling TSQL. Everything works exactly as intended (this does happen

sometimes)! Note that at the end of the example, we did not drop the global temp table.

As a result, it will remain available until either all connections using it are ended, or

we explicitly drop it. This can be beneficial if we want to access it again here, or from

Chapter 5 Managing Scope

www.EBooksWorld.ir

183

another location. It can also be problematic if we forget about it and try to declare a temp

table with the same name in the future:

CREATE TABLE ##last_names (

 last_name NVARCHAR(50));

When we run this table creation, an error is generated:

Msg 2714, Level 16, State 6, Line 351

There is already an object named '##last_names' in the database.

It is critically important to manage global temp tables within any code that creates

or uses them. Forgetting to drop a temp table may turn out OK if you happen to end

the connection and it is automatically removed by SQL Server. If another connection is

made to the table, though, then it will not be dropped by SQL Server, as it will still be in

use. The best practice for dealing with any temporary tables is to drop them when they

no longer are needed. This removes any possibility of the table persisting and being

accessed inadvertently later on, or being created when it already exists.

Always drop a temporary table when it is no longer needed. This ensures that it
does not interfere with future table creation and is not somehow accessed when
no longer needed.

Since we have our table ##last_names available, we may as well demonstrate

another feature of global temporary tables: their availability anywhere on the server:

CREATE DATABASE temp_table_test;

GO

USE temp_table_test;

GO

SELECT

 *

FROM ##last_names;

Even within our new database, the global temporary table was still available. Since

we’ve yet to drop this SQL Server connection, it will remain available indefinitely to any

other connection on the server. This leads into a discussion of global temp table security,

Chapter 5 Managing Scope

www.EBooksWorld.ir

184

for which there happens to be none. Once created, a global temporary table is not only

available everywhere, but to any login or user in any database, without restrictions.

In the last chapter, we created a user called “VeryLimitedUser”, which only had access

to a single stored procedure and no explicit access to any other database, tables, or SQL

Server functionality. What happens when this user tries to access our global temp table?

EXECUTE AS USER = 'VeryLimitedUser';

GO

SELECT

 *

FROM ##last_names;

REVERT;

GO

DROP TABLE ##last_names;

GO

Despite having nearly no permissions on our server, this user was able to select

data from the global temp table without issue. This raises a potential security concern

with global temporary tables in that they are by design, accessible by anyone else on

the server, regardless of their specific permissions. In addition, it is not possible to place

permissions on a global temp table to restrict this behavior. Be mindful of any global

temp tables that you create and be sure that, in the event another user was to somehow

access it, that this access would not be problematic. If your global temp table contains

any sensitive data, consider storing it in another format, such as a table variable,

standard temporary table, or in a permanent table that is used for staging or temporary

data. Hashing or encrypting the data can also be a good way to limit its access elsewhere,

if security is a concern, as it will reduce usability from other connections.

Even if a user does not know the exact name of a global temp table, they could query

TempDB.sys.tables to determine its name and then query it freely. This backdoor

would require read access to TempDB, but from there a sneaky person could learn about

objects that they have not been granted direct access to, and read data from them once

identified.

Another issue that can occur is if two global temp tables are created from two

different connections that are given the same name. Since these tables are global and in

scope for the entire SQL Server instance, no two may share the same name. If this occurs,

Chapter 5 Managing Scope

www.EBooksWorld.ir

185

an error will be thrown, and the second person to attempt to declare the new table will

be unable to continue without renaming it to a name that is not in use.

Avoid using global temporary tables whenever possible. Their lack of access
controls and scope make them obvious security and maintainability hazards.

I would propose as a best practice to never use global temporary tables. Their

functionality can be mirrored using other more secure (and more reliable) methods.

If you need to maintain legacy code with global temp tables, do everything you can to

minimize access and sensitive data in them. Ultimately, replacing those tables with

temporary tables, table variables, or permanent tables would be preferable. Global temp

tables are an excellent example of why scope is important and how access that is too easy

and convenient can result in insecure and unpredictable code.

�Using Permanent Tables for Temporary Storage
For a scenario where temporary data is stored very often for a specific functionality,

creating a permanent table can be an efficient and secure way to manage this data.

For our previous example, we could alternatively manage the list of last names in the

manner shown in Listing 5-12.

Listing 5-12.  Using a Permanent Table for Temporary Storage

CREATE TABLE dbo.last_names_staging (

 �last_name NVARCHAR(50) NOT NULL CONSTRAINT PK_last_names_staging

PRIMARY KEY CLUSTERED);

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

SELECT @sql_command = '

INSERT INTO dbo.last_names_staging

 (last_name)

SELECT "Thomas";'

EXEC sp_executesql @sql_command;

Chapter 5 Managing Scope

www.EBooksWorld.ir

186

SELECT @sql_command = '

SELECT DISTINCT

 FirstName

FROM Person.Person

WHERE LastName IN (SELECT last_name FROM dbo.last_names_staging);'

EXEC sp_executesql @sql_command;

SELECT * FROM dbo.last_names_staging;

In this example, everything works as it did in our previous examples, except that

our “temporary storage” is rather permanent. It may seem counterintuitive to create a

permanent object to store temporary data, but there are many benefits in doing so:

•	 Data is persisted permanently, regardless of connection.

•	 Table can be accessed from anywhere on the server, regardless of

database.

•	 Security can be applied to the table, ensuring only authorized access.

•	 Indexes, statistics, and constraints may be added to the table and will

persist indefinitely.

•	 No need to access TempDB.

The drawbacks of using a permanent table are few, but significant:

•	 It becomes a permanent object that requires maintenance and

documentation.

•	 Usage must be managed so that data is always relevant.

To summarize all of the preceding points: use permanent tables when data needs to

be stored on a more long-term basis, or when optimization becomes important. While

indexes can be placed on temporary tables and table variables (with limitations), having

a permanent place to stage temporary data can be extremely convenient and removes

the need to constantly manage temporary objects.

Permanent tables also provide us with the ability to recover more fully from a

disaster. If a SQL Server were to failover, crash, or restart, then any data in the permanent

table would be there when the server became available again as it was prior to the

crash. Temporary objects, on the other hand, would not be recovered. If the staging of

Chapter 5 Managing Scope

www.EBooksWorld.ir

187

temporary data is critical and we want to ensure that intermediary states are tracked and

maintained, then a permanent table is an excellent way to provide this level of support

and availability.

Equally importantly, limit the use of tables for this purpose to only when it is sensible

and efficient. Creating permanent tables for all temporary data creation/access could

quickly result in a plethora of objects that require care and maintenance. One option to

assist with organization would be to create the table in its own schema, thus separating

it from the rest of the objects in the database. Alternatively, for smaller use cases,

appending a prefix to these tables may suffice, in order to organize and find them easily.

One final consideration for temporary data is to use a Memory-Optimized table.

If we want the flexibility and durability of a permanent table, but also want speed, then

a Memory-Optimized table will provide all the benefits of a standard table without

using TempDB. Instead, data will be stored in memory, providing significantly faster

speeds. Creating the table with durability of SCHEMA_AND_DATA will ensure that it is

recovered properly from an outage situation. If data permanence is not important, then a

Memory-Optimized table with durability of SCHEMA_ONLY will perform extremely fast,

while not persisting data in the event of a restart. The cost to use Memory-Optimized

tables is memory, while saving disk resources and IO against TempDB. If the volume

of temporary data is very large, consider your memory resources carefully before

implementing.

When a “permanent temporary table” is no longer needed, it can easily be dropped.

This cleanup step is important, as we don’t want to clutter a server with unneeded,

temporary, or unused objects. This is true for traditional tables or Memory-Optimized

tables. Creating any permanent database object carries with it the implicit responsibility

to document and manage it effectively. When the day comes that it is no longer needed,

take the added time to deprecate and ultimately remove it.

�Output Data Directly to a Table from Dynamic SQL
One final way to collect data from any stored procedure, including dynamic SQL, is to

insert it directly into a table as a part of the EXEC statement. This example, as seen in

Listing 5-13, is a new twist on our temporary storage seen previously, eliminating the

need to explicitly manage it within dynamic SQL.

Chapter 5 Managing Scope

www.EBooksWorld.ir

188

Listing 5-13.  Inserting Dynamic SQL Output Directly into Another Table

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX);

CREATE TABLE #last_names (

 last_name NVARCHAR(50));

SELECT @sql_command = '

SELECT

 LastName

FROM Person.Person

WHERE FirstName = "Edward";

'

INSERT INTO #last_names

 (last_name)

EXEC sp_executesql @sql_command;

SELECT

 *

FROM #last_names

DROP TABLE #last_names;

In this example, we declare the temporary table #last_names at the start of the

TSQL. Note that when we execute our command string, the output is directly placed into

the temp table, without the need for passing parameters or managing additional objects.

This is a very convenient way to save the output from dynamic SQL or any other stored

procedure, and to do so quickly and efficiently. This is also an excellent way to save the

output from a system stored procedure, as seen in Listing 5-14.

Listing 5-14.  Using the INSERT…EXEC Syntax to Collect Output from sp_who

CREATE TABLE #sp_who_data

(

 spid SMALLINT,

 ecid SMALLINT,

 status NCHAR(30),

 loginame NCHAR(128),

Chapter 5 Managing Scope

www.EBooksWorld.ir

189

 hostname NCHAR(128),

 blk CHAR(5),

 dbname NCHAR(128),

 cmd NCHAR(16),

 request_id INT

)

INSERT INTO #sp_who_data

(spid, ecid, status, loginame, hostname, blk, dbname, cmd, request_id)

EXEC sp_who;

SELECT * FROM #sp_who_data

WHERE dbname = 'AdventureWorks2016CTP3'; -- Optional filter criteria. Feel

free to remove if not needed.

DROP TABLE #sp_who_data;

A very common administrative need is to view the current SQL Server connections

and gather details about who is connected to what database, and what they are up to.

While executing sp_who gathers that data, it only outputs it to the results window. On

a busy server with many connections, we will want to filter that data by database, user,

or some other criteria. We may also want to log that data permanently, for auditing or

other security purposes. The ability to insert that data directly into a table allows us to

efficiently filter it down to a single database and get only the connections there, rather

than on the entire server. Note that the data types in the #sp_who_data table were

taken from MSDN and are not a byproduct of my active imagination: https://msdn.

microsoft.com/en-us/library/ms174313.aspx

This same syntax can be applied to any stored procedure, system stored procedure,

or dynamic SQL output. While it is convenient, it is also somewhat inflexible. The

table that the data is to be inserted into must be defined ahead of time, and be exactly

the same structure as the output data. While it would be convenient to execute our

command string while also creating a temporary table, SQL Server does not allow that

syntax:

SELECT

 EXEC sp_who

INTO #sp_who_data;

Chapter 5 Managing Scope

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/ms174313.aspx
https://msdn.microsoft.com/en-us/library/ms174313.aspx

190

SELECT INTO #sp_who_data

EXEC sp_who;

SELECT INTO #sp_who_data

(EXEC sp_who);

No matter how creative we get, there is no way to force SQL Server to create the

temporary table on-the-fly for you. SELECT INTO is not allowed in conjunction with

stored procedure execution, and no rearrangement of the preceding TSQL will make this

magically work. As a result, we must always define the target table for our output ahead

of time.

�Conclusion
While scope prevents us from effortlessly moving data in between dynamic SQL, our

other TSQL, and additional stored procedure executions, a number of tools exist that

provide many ways in which to accomplish this anyway. As with any toolbox, always

choose the correct tool for each job. Typically, the more temporary the data, the less

need there is for creating elaborate structures or methodologies to manage it.

If data is needed once, or only for the duration of a specific stored procedure,

consider using the INSERT...EXEC syntax or a temporary table. If data should be

persisted, then a permanent table may be a great way to manage that temporary data.

Global temporary tables, regardless of use case, should generally be avoided, as they

afford no security and will pose maintainability issues when multiple sessions create or

access the same table.

Chapter 5 Managing Scope

www.EBooksWorld.ir

191

�Cleanup
The following TSQL will clean up any objects created in this chapter, if they exist:

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_people')

BEGIN

 DROP PROCEDURE dbo.get_people;

END

GO

IF EXISTS (SELECT * FROM sys.databases WHERE databases.name = 'temp_table_test')

BEGIN

 DROP DATABASE temp_table_test;

END

GO

Chapter 5 Managing Scope

www.EBooksWorld.ir

193
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_6

CHAPTER 6

Performance Optimization
No discussion of dynamic SQL would be complete without a dive into its performance.

Dynamic SQL can greatly improve performance, but can also increase complexity if not

used effectively. As was the case with security, optimization is a topic that could easily

occupy significantly larger books than this one. As such, we will try to maintain a focus

on dynamic SQL and any performance concerns that relate to it.

�Query Execution
Before jumping into the performance of dynamic SQL and a variety of ways to monitor

and tune it, it is necessary to quickly review the process of query execution. What

happens when you execute a TSQL statement through the moment that the results are

returned and it is complete? Query execution is typically broken into four steps:

�Parsing
A query is checked for syntax and if there are any unidentified or invalid TSQL

commands, an error will be thrown. In addition, the query is broken into a list of very

high-level steps that will be followed by SQL Server throughout the remainder of this

process. These steps are simple operations, such as selecting data from a table, joining

another table, or executing some dynamic SQL or stored procedure.

�Binding
This step is primarily concerned with validating objects and ensuring that they are both

valid and used in the correct context. Tables, columns, functions, stored procedures,

and any other named objects are checked against SQL Server’s system catalogs to verify

that the names are correct and that they are being referenced correctly. At this point, if

no error has been received, then we know that syntax and object names are all correct.

www.EBooksWorld.ir

194

The list generated in the parsing step is used with this new information to generate what

is known as an algebrized tree. This tree is a listing of steps that must be performed in

order for the query to execute correctly.

�Optimization
This is the most complex part of the execution process and involves SQL Server needing

to take the tree from the binding step and find a good execution plan for it very, very

quickly. This work proceeds similarly to the way a chess program attempts to find the

best move at any point in the game. Basically, the query optimizer comes up with a

possible execution plan and assigns a cost to it, then evaluates more execution plans

until it decides that it has found the best plan, or one that is good enough. SQL Server

can evaluate thousands of execution plans before deciding which to use.

Query optimization is a race against time, as the query itself will take time to process,

but the optimization process also takes time. The optimizer needs to weigh this in order

to not waste too much time optimizing a simple query, but also take enough time that

it finds a plan that performs well. For example, if we had a query that took 2 seconds

to execute, and the optimizer could spend 1 more second to save a ½ second during

execution, then it would have wasted that time in doing so. If it could save 1.5 seconds

using only 0.1 seconds of effort, then it would be a great deal. In addition to time, server

resources such as CPU are considered. This process happens very quickly and is one of

the most complex components of SQL Server.

The result of optimization is a list of detailed steps that SQL Server can execute, in

order, to return the results desired in the original query.

�Execution
The steps from the optimization process are executed, and any actions required are

taken to complete them.

�Optimization Tools
To review performance and make intelligent decisions based on it, we need to

define a set of tools that we will use going forward that will assist in this process.

It is impossible to make consistently good decisions regarding performance without

Chapter 6 Performance Optimization

www.EBooksWorld.ir

195

multiple metrics that we are comfortable using. If a query is slow, we need to know

which part of it is the bottleneck and identify why this is the case.

�Query Execution Plan
Query execution plans are the first, and most visual of the tools available to us. Execution

plans are the steps that the optimizer came up with during the optimization step and are

then executed by SQL Server.

The actual execution plan from a query can be viewed in SQL Server by clicking on

the “Include Actual Execution Plan” icon in SQL Server Management Studio, or using the

keyboard shortcut Ctrl-M, as seen in Figure 6-1.

Figure 6-1.  Turning on and using query execution plans in SQL Server
Management Studio

Chapter 6 Performance Optimization

www.EBooksWorld.ir

196

The icon to turn on the actual execution plan is circled in the figure. What you get in

return for turning this on is an additional tab in the results window, labeled “Execution

Plan.” Included in this tab is a section for every query executed, including the query

text. The graphical portion is read from right-to-left and is made of icons that represent

operations performed by SQL Server, such as reading a table, joining data sets, sorting,

and so on. If SQL Server thinks that a new index could help query performance, it will

suggest it in green between the query text and the graphical plan. Hovering over an

icon will produce details on the step, including rows processed, estimated IO, CPU, and

subtree cost, as shown in Figure 6-2.

Figure 6-2.  Viewing detailed properties for any step within an execution plan

Chapter 6 Performance Optimization

www.EBooksWorld.ir

197

Subtree cost is an indication of the cost determined during the optimization step and

provides an idea of which parts of the query are most expensive to execute, as well as

how the optimizer believed a query would perform prior to execution.

The width of the lines in between steps will indicate the relative number of rows

processed by that step. Hovering over one of these lines will provide some basic

information about the data transfer represented by the line. Figure 6-3 shows an example

of these details.

Execution plans may also include warnings, errors, or other issues that SQL Server

ran into while executing a query. When in doubt, take a closer look at any troublesome

steps, which could reveal useful information about why a query is performing poorly.

Hovering over any part of an execution plan will provide additional details on the step.

Opening the properties for a step will return an additional array of information regarding

how the step performed.

Starting in SQL Server 2016, live query statistics were introduced, allowing you to

view execution progress as a query moves through the process from parsing and binding

to optimization and execution. This may be turned on by clicking on the icon directly

next to the “Include Actual Execution Plan” button shown in Figure 6-4.

Figure 6-3.  Viewing details of the output from one step of the execution plan

Figure 6-4.  Viewing live query statistics

Chapter 6 Performance Optimization

www.EBooksWorld.ir

198

Live query statistics will update details of execution plan progress as steps complete.

This can be a big timesaver when debugging large, complex, or slow queries, as you can

get feedback on performance without having to wait until an entire process completes.

�STATISTICS IO
SQL Server can provide information about which tables were read, and how many reads

occurred against them. This can be turned on with the following TSQL:

SET STATISTICS IO ON;

This is very important information, as it indicates overall IO use. If a query is running

slow, it could be the result of excessive reads against a table. The execution plan may

not always convey the enormity of an IO bottleneck, but the knowledge that a query that

returns two rows is taking a million reads to do so is an indication of a possible problem.

Often, the two will correlate with each other, providing a solid foundation on which

to understand why a query is slow. Once enabled, STATISTICS IO will add additional

details to the text output screen, as shown in Figure 6-5.

While there are a number of operations detailed in Figure 6-5, we will limit our

discussion to the first four:

�Object

This is the name of the table or view that is being accessed.

�Scan Count

This indicates if an object was read multiple times. A high number here can indicate

that SQL Server is reading the same data over and over again, which can be a potential

sign of an inefficient query. The most common causes of this are nested common-table

expressions, correlated subqueries, or other scenarios where a table is accessed more

than once within a single statement.

Figure 6-5.  Example output from STATISTICS IO

Chapter 6 Performance Optimization

www.EBooksWorld.ir

199

�Logical Reads

This is the number of reads made on the object indicated, regardless of whether the data

is cached in memory or not. This will be the metric we refer to throughout this chapter

whenever we are concerned with IO read activity, as it will remain static for a given

query, even if the physical reads change.

�Physical Reads

This is the number of reads where the data was not yet in the buffer cache. Whenever

data is read for a query, it is placed into memory and remains there until it ages out

or is replaced at a later time. The initial read of data into memory from your storage

system can be very expensive. If queries are constantly making physical reads, that

could be a sign that queries are reading too much data, or that there is memory

pressure on the server.

When you execute a query and access data for the first time, this number typically

will be the same as the logical reads, but all subsequent executions will show zero for this

metric because the data will now be in memory from the first execution.

�STATISTICS TIME
What is likely the most important metric to any consumer of data is the time it took

for the server to return the data we are looking for. As database professionals, the

most common complaint we will ever hear is, “It’s slow!” This metric breaks out the

execution time for each step, which can be useful in determining which query in a stored

procedure took the most time to execute. The following is the output for STATISTICS

TIME for the same query used in the preceding execution plan:

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 0 ms.

SQL Server Execution Times:

 CPU time = 0 ms, elapsed time = 64 ms.

Parse and compile time is the time spent by SQL Server to perform the parsing,

binding, and optimization steps that we discussed earlier. Execution time is the actual

time spent on running the query itself.

These times are very useful, but must be taken with a grain of salt. Execution times are

affected by many different variables. If an execution plan is cached and reused, then the

Chapter 6 Performance Optimization

www.EBooksWorld.ir

200

parse and compile time will be zero. If data is cached in memory, then the execution time

will be much faster. External factors, such as network latency, IO latency, or contention

from other processes can all affect execution time. As a result, it’s important to base

your optimization decisions on many trial executions of the query, to ensure that we are

not making decisions based on exceptions or edge cases. Similarly, if your test system’s

hardware and query load differs from production, then take that into account as well as

execution times being higher or lower as a result. A development server with no other

processes running will outperform a similar system with a heavy SQL Server load running.

As a rule of thumb, when timing a query’s execution, I will try to run it at least 10 to

20 times to get a good idea of how it would perform in a production environment where

it may be run over and over. How often you personally test a query will be based on its

importance, complexity, and your organization’s QA policies. When in doubt, take the

time to run enough trials such that you are comfortable with the results and confident in

using those results when justifying your decisions to others, if necessary.

�Use All of These Tools!
It is important to use as many performance metrics as possible when analyzing a

query’s performance. An execution plan by itself may not tell the entire story, nor would

execution times give you all the information needed to tune a query. While more tools

exist, the preceding three (execution plan, statistics IO, and statistics time) when used in

concert provide a very solid understanding of how a query performs, where a bottleneck

exists, and some hints as to where to begin tuning to improve performance.

�Dynamic SQL vs. Standard SQL
While the TSQL that executes within a command string will be handled by SQL Server

like any other standard SQL statement, there are some potential differences that are

important to point out regarding performance:

�Query Parsing and Binding
A big piece of the first two stages of query execution are checking syntax, object names,

and verifying that you didn’t make any mistakes when writing your query that would

prevent it from being executed. The contents of strings are evaluated at runtime, and are

Chapter 6 Performance Optimization

www.EBooksWorld.ir

201

not subject to these processes when you initially write and test a query. Since a dynamic

SQL command string is a string, it will not be checked for the validity of its contents until

you’ve executed it. You can parse a query, verifying syntax by clicking this icon, as seen

in Figure 6-6.

This can allow you to verify syntax and check for any obvious mistakes before trying

to execute your TSQL. The following query will generate a syntax error when parsing:

SELECT & FROM Person.Person;

My typo replaced the asterisk (*) with an ampersand (&). When I clicked the parse

icon to validate my syntax, the result was an error:

Msg 102, Level 15, State 1, Line 18

Incorrect syntax near '&'.

Alternatively, if this were written as dynamic SQL, no such error would be thrown:

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = 'SELECT & FROM Person.Person;';

EXEC (@sql_command);

The parser doesn’t check the contents of @sql_command until it is executed and

is then treated as a brand new query that needs to be parsed, bound, optimized, and

executed. It parses without an error, but will throw a similar error when executed:

Msg 102, Level 15, State 1, Line 19

Incorrect syntax near '&'.

As a result, it is important to carefully print and test command strings prior to

executing them.

Figure 6-6.  Manually parsing a query in SQL Server Management Studio

Chapter 6 Performance Optimization

www.EBooksWorld.ir

202

�Execution Plan Caching
A query execution plan is generated for every unique query that executes in SQL Server.

What makes a query unique? This is determined by its exact text. Optimizing a query to

generate an execution plan takes time and server resources and is a relatively expensive

process, especially for more complex queries. Consider the query in Listing 6-1, which

hypothetically runs frequently on a server, 500 times per minute.

Listing 6-1.  Example TSQL that Will Generate a New Execution Plan for Each

First Name

DECLARE @FirstName NVARCHAR(MAX) = 'Edward';

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

 SELECT

 *

 FROM Person.Person

 WHERE FirstName = "' + @FirstName + "';

';

PRINT @sql_command;

EXEC sp_executesql @sql_command;

When this is executed for the first time, an execution plan is created for its exact text,

which will print out as follows:

 SELECT

 *

 FROM Person.Person

 WHERE FirstName = 'Edward';

Note that the name “Edward” is included in the SQL text. Let’s say that the query

runs again, but for a different name:

DECLARE @FirstName NVARCHAR(MAX) = 'Xavier';

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

 SELECT

 *

Chapter 6 Performance Optimization

www.EBooksWorld.ir

203

 FROM Person.Person

 WHERE FirstName = "' + @FirstName + "';

'

PRINT @sql_command;

EXEC sp_executesql @sql_command;

The resulting SQL text will be different than the previous run of the query:

 SELECT

 *

 FROM Person.Person

 WHERE FirstName = 'Xavier';

As a result, each will receive a different execution plan. Checking the data from our

time statistics, we can see that some finite amount of time was spent on handling the

query prior to execution:

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 1 ms.

One ms may not seem like much, but if executed 500 times per minute, we would

end up with 720,000ms of extra execution time every day! For a more complex query, this

could add up to a huge amount of latency. When an execution plan is reused, the time

indicated for the parse and compile time will be zero, which is much more desirable for a

query that is executed often.

The fix for this dilemma is the same as the fix for many of our security and SQL

injection concerns in earlier chapters: parameterize the query! This rewrite of the

preceding query changes FirstName into a parameter that can be used over and over

with the same execution plan:

DECLARE @FirstName NVARCHAR(MAX) = 'Edward';

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX) = '@first_name NVARCHAR(MAX)';

SELECT @sql_command = '

 SELECT

 *

 FROM Person.Person

 WHERE FirstName = @first_name;'

Chapter 6 Performance Optimization

www.EBooksWorld.ir

204

PRINT @sql_command;

EXEC sp_executesql @sql_command, @parameter_list, @FirstName;

When @sql_command is printed out for this version of our simple query, the resulting

text is as follows:

 SELECT

 *

 FROM Person.Person

 WHERE FirstName = @first_name;

The query text will be the same, no matter what value of @FirstName is passed in to

the dynamic SQL command string. As a result, we will only pay the price of optimizing the

query once, and then the execution plan will be reused over and over from that point on.

That’s 12 minutes of latency shaved off of this query per day. If it were a more complex query

that required 20ms to parse and compile, then the savings would be 4 hours of latency!

Let’s quickly prove this out and show that the behavior I am describing is true, not

just theoretical. First, we’ll clear out the procedure cache, which will provide us with a

clean slate to work on, with no distractions:

DBCC FREEPROCCACHE;

Executing this DBCC command will clear all execution plan data out of cache. This

is an excellent way to create a clean environment to test in, but should only be used

in isolated environments where important workloads cannot be affected! For our test

purposes on local test servers here, this is a fine way to aid our work.

Never clear out the procedure cache in production unless you absolutely mean it!
This removes all query execution plan data from cache, and on a busy server could
cause immense latency because queries will need to be reoptimized!

Now, let’s run our previous queries on Person.Person a few times, each one with

a variety of different names. This is solely to add execution data to the cache for the

upcoming demo, and therefore any queries run on this table will end up in cache and

visible below. Once done, we can build a TSQL statement that will read query data from

the cache for us, as shown in Listing 6-2.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

205

Listing 6-2.  TSQL that Can Retrieve SQL Text from the Query Plan Cache

SELECT

 cached_plans.objtype AS ObjectType,

 OBJECT_NAME(sql_text.objectid, sql_text.dbid) AS ObjectName,

 cached_plans.usecounts AS ExecutionCount,

 sql_text.TEXT AS QueryText

FROM sys.dm_exec_cached_plans AS cached_plans

CROSS APPLY sys.dm_exec_sql_text(cached_plans.plan_handle) AS sql_text

WHERE sql_text.TEXT LIKE '%Person.Person%';

This returns only a handful of relevant columns from the plan cache for our viewing

pleasure, but could be altered to return quite a bit more data, if we wanted. The results of

this query are as shown in Figure 6-7.

The results are every query that is currently in the plan cache with TSQL text that

includes the string “Person.Person.” The first query is the one we just ran to collect this

data. The second is our parameterized query, which I ran for a variety of different first

names. Notice that the execution count indicates that it has been reused a number

of times. The remaining six queries are the nonparameterized queries from earlier,

executed for the names “Edward” “Xavier,” “Thomas,” “Jesse,” “James,” and “T-Rex!!!”.

Regardless, of the results (or lack thereof) returned, a separate entry is in the plan cache

for all of these, even though the queries are essentially the same.

Note that under the object type, the parameterized query is listed as “Prepared,”

rather than “Adhoc,” which indicates that the TSQL that was executed had no variables

that could alter the TSQL text within it. By being completely parameterized, the query

plan also becomes deterministic. Changing the first name we are searching for doesn’t

alter the SQL text, and therefore does not alter the execution plan. In the event that this

query was executed very often for a large variety of first names, the nonparameterized

Figure 6-7.  Sample data from the query plan cache

Chapter 6 Performance Optimization

www.EBooksWorld.ir

206

query would quickly fill up the plan cache with a pile of entries for the same search. This

would be very wasteful over time, not only consuming resources in constantly compiling

query execution plans, but eventually bumping other, more important queries out of

cache. As a result, whenever working with any query that is to be executed often, make

sure that it can execute over and over but only need a single execution plan.

�Simplifying Queries
In our earlier discussion of dynamic searches, we were able to use dynamic SQL as a way

to remove excessive joins or WHERE clauses from TSQL statements. While the dynamic

SQL was more complex, the resulting TSQL that was executed was simpler. Now that we

have some performance evaluation tools at our disposal, we can put that claim to the

test! See Listing 6-3 for this stored procedure.

The following is a dynamic search that we wrote in Chapter 4. This stored procedure

may seem long, but its length ensures that no table is queried and no column returned

unless needed for the search that is being performed.

Listing 6-3.  Dynamic Search Procedure that Selectively Queries Objects When

Needed

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

products')

BEGIN

 DROP PROCEDURE dbo.search_products;

END

GO

-- Search with a check to avoid empty searches.

CREATE PROCEDURE dbo.search_products

 �@product_name NVARCHAR(50) = NULL, @product_number NVARCHAR(25) =

NULL, @product_model NVARCHAR(50) = NULL,

 �@product_subcategory NVARCHAR(50) = NULL, @product_sizemeasurecode

NVARCHAR(50) = NULL,

 @product_weightunitmeasurecode NVARCHAR(50) = NULL,

 �@show_color BIT = 0, @show_safetystocklevel BIT = 0,

@show_reorderpoint BIT = 0, @show_standard_cost BIT = 0,

Chapter 6 Performance Optimization

www.EBooksWorld.ir

207

 �@show_catalog_description BIT = 0, @show_subcategory_modified_date

BIT = 0, @show_product_model BIT = 0,

 �@show_product_subcategory BIT = 0, @show_product_sizemeasurecode

BIT = 0, @show_product_weightunitmeasurecode BIT = 0

AS

BEGIN

 SET NOCOUNT ON;

 �IF COALESCE(@product_name, @product_number, @product_model,

@product_subcategory,

 �@product_sizemeasurecode, @product_weightunitmeasurecode)

IS NULL

 RETURN;

 -- Add "%" delimiters to parameters that will be searched as wildcards.

 SET @product_name = '%' + @product_name + '%';

 SET @product_number = '%' + @product_number + '%';

 SET @product_model = '%' + @product_model + '%';

 DECLARE @sql_command NVARCHAR(MAX);

 -- Define the parameter list for filter criteria.

 �DECLARE @parameter_list NVARCHAR(MAX) = '@product_name NVARCHAR(50),

@product_number NVARCHAR(25),

 �@product_model NVARCHAR(50), @product_subcategory NVARCHAR(50),

@product_sizemeasurecode NVARCHAR(50),

 @product_weightunitmeasurecode NVARCHAR(50)';

-- Generate the simplified command string section for the SELECT columns.

SELECT @sql_command = '

 SELECT

 Product.Name AS product_name,

 Product.ProductNumber AS product_number,';

 �IF @show_product_model = 1 OR @show_catalog_description = 1

SELECT @sql_command = @sql_command + '

 ProductModel.Name AS product_model_name,

 �ProductModel.CatalogDescription AS productmodel_catalog_

description,';

Chapter 6 Performance Optimization

www.EBooksWorld.ir

208

 �IF @show_product_subcategory = 1 OR @show_subcategory_modified_

date = 1 SELECT @sql_command = @sql_command + '

 ProductSubcategory.Name AS product_subcategory_name,

 �ProductSubcategory.ModifiedDate AS product_subcategory_

modified_date,';

 �IF @show_product_sizemeasurecode = 1 SELECT @sql_command =

@sql_command + '

 SizeUnitMeasureCode.Name AS size_unit_measure_code,';

 �IF @show_product_weightunitmeasurecode = 1 SELECT @sql_command =

@sql_command + '

 WeightUnitMeasureCode.Name AS weight_unit_measure_code,';

 �IF @show_color = 1 OR @show_safetystocklevel = 1 OR @show_

reorderpoint = 1 OR @show_standard_cost = 1

 SELECT @sql_command = @sql_command + '

 Product.Color AS product_color,

 Product.SafetyStockLevel AS product_safety_stock_level,

 Product.ReorderPoint AS product_reorderpoint,

 Product.StandardCost AS product_standard_cost';

 -- �In the event that there is a comma at the end of our command

string, remove it before continuing.

 IF (SELECT SUBSTRING(@sql_command, LEN(@sql_command), 1)) = ','

 SELECT @sql_command = LEFT(@sql_command, LEN(@sql_command) - 1);

 SELECT @sql_command = @sql_command + '

 FROM Production.Product'

 -- �Put together the JOINs based on what tables are required by the

search.

 �IF (@product_model IS NOT NULL OR @show_product_model = 1 OR

@show_catalog_description = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.ProductModel

 ON Product.ProductModelID = ProductModel.ProductModelID';

 �IF (@product_subcategory IS NOT NULL OR @show_subcategory_modified_

date = 1 OR @show_product_subcategory = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.ProductSubcategory

Chapter 6 Performance Optimization

www.EBooksWorld.ir

209

 �ON Product.ProductSubcategoryID = ProductSubcategory.

ProductSubcategoryID';

 �IF (@product_sizemeasurecode IS NOT NULL OR @show_product_

sizemeasurecode = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.UnitMeasure SizeUnitMeasureCode

 ON Product.SizeUnitMeasureCode = SizeUnitMeasureCode.UnitMeasureCode';

 �IF (@product_weightunitmeasurecode IS NOT NULL OR @show_product_

weightunitmeasurecode = 1)

 SELECT @sql_command = @sql_command + '

 LEFT JOIN Production.UnitMeasure WeightUnitMeasureCode

 ON Product.WeightUnitMeasureCode = SizeUnitMeasureCode.UnitMeasureCode';

 SELECT @sql_command = @sql_command + '

 WHERE 1 = 1';

 -- �Build the WHERE clause based on which tables are referenced and

required by the search.

 IF @product_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND Product.Name LIKE @product_name';

 IF @product_number IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND Product.ProductNumber LIKE @product_number';

 IF @product_model IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND ProductModel.Name LIKE @product_model';

 IF @product_subcategory IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND ProductSubcategory.Name = @product_subcategory';

 IF @product_sizemeasurecode IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND SizeUnitMeasureCode.Name = @product_sizemeasurecode';

 IF @product_weightunitmeasurecode IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND WeightUnitMeasureCode.Name = @product_weightunitmeasurecode';

Chapter 6 Performance Optimization

www.EBooksWorld.ir

210

 PRINT @sql_command;

 �EXEC sp_executesql @sql_command, @parameter_list, @product_name,

@product_number,

 �@product_model, @product_subcategory, @product_sizemeasurecode,

@product_weightunitmeasurecode;

END

This stored procedure is written such that a table is only queried if data from it is

needed for a WHERE clause or join. In addition, columns are only returned by the query

if they are required by the calling application. Now that this is created, let’s run it for a

possible user search, as seen in Listing 6-4.

Listing 6-4.  Execution Example for the Stored Procedure in Listing 6-3

EXEC dbo.search_products @product_name = 'Mountain Frame', @product_number =

'FR-M21B', @product_model = 'LL Mountain Frame',

@product_subcategory = 'Mountain Frames', @show_color = 0,

@show_safetystocklevel = 0,

@show_reorderpoint = 0, @show_standard_cost = 1, @show_catalog_description = 1,

@show_subcategory_modified_date = 0,

@show_product_model = 1, @show_product_subcategory = 1

This search has a variety of parameters passed in, as well as a few that were omitted.

The user has no interest in the measurements of the bike frames, and therefore left out

parameters for those variables. The result set is for five mountain bike frames shown in

Figure 6-8.

The command string that was executed is shown in Listing 6-5.

Figure 6-8.  Results from the Search Proc, as Executed from the TSQL in
Listing 6-4

Chapter 6 Performance Optimization

www.EBooksWorld.ir

211

Listing 6-5.  The Command String Generated by the Execution of Our Search

Proc in Listing 6-4

SELECT

 Product.Name AS product_name,

 Product.ProductNumber AS product_number,

 ProductModel.Name AS product_model_name,

 �ProductModel.CatalogDescription AS productmodel_catalog_

description,

 ProductSubcategory.Name AS product_subcategory_name,

 �ProductSubcategory.ModifiedDate AS product_subcategory_

modified_date,

 Product.Color AS product_color,

 Product.SafetyStockLevel AS product_safety_stock_level,

 Product.ReorderPoint AS product_reorderpoint,

 Product.StandardCost AS product_standard_cost

FROM Production.Product

LEFT JOIN Production.ProductModel

ON Product.ProductModelID = ProductModel.ProductModelID

LEFT JOIN Production.ProductSubcategory

ON Product.ProductSubcategoryID = ProductSubcategory.ProductSubcategoryID

WHERE 1 = 1

 AND Product.Name LIKE @product_name

 AND Product.ProductNumber LIKE @product_number

 AND ProductModel.Name LIKE @product_model

 AND ProductSubcategory.Name = @product_subcategory

Some joins and WHERE clauses were omitted from this TSQL, as they were not

required by the parameters passed in. How did this affect performance? Here are the IO

statistics for this execution.

Table 'ProductModel'. Scan count 0, logical reads 10, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'ProductSubcategory'. Scan count 0, logical reads 10, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

212

Table 'Product'. Scan count 1, logical reads 14, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

The overall IO was 34 reads: ten on ProductModel, ten on ProductSubcategory, and

fourteen on Product. The execution plan for the same execution is shown in Figure 6-9.

The plan shows access to the three tables referenced in the IO stats and the various

steps required to put that data together for us. For comparison, the estimated subtree

cost for the entire query is 0.014.

The alternative to a dynamic search would be a static search, where all tables are

automatically joined and all columns returned, in case we need them. This is shown in

the stored procedure in Listing 6-6.

Listing 6-6.  Search Procedure that Checks and Returns All Data, Regardless of

Parameters

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

products')

BEGIN

 DROP PROCEDURE dbo.search_products;

END

GO

CREATE PROCEDURE dbo.search_products

 �@product_name NVARCHAR(50) = NULL, @product_number NVARCHAR(25) = NULL,

@product_model NVARCHAR(50) = NULL,

 �@product_subcategory NVARCHAR(50) = NULL, @product_sizemeasurecode

NVARCHAR(50) = NULL,

Figure 6-9.  Execution Plan for the Stored Procedure in Listing 6-4

Chapter 6 Performance Optimization

www.EBooksWorld.ir

213

 @product_weightunitmeasurecode NVARCHAR(50) = NULL

AS

BEGIN

 SELECT @product_name = '%' + @product_name + '%';

 SELECT @product_number = '%' + @product_number + '%';

 SELECT @product_model = '%' + @product_model + '%';

 SELECT

 Product.Name AS product_name,

 Product.ProductNumber AS product_number,

 ProductModel.Name AS product_model_name,

 �ProductModel.CatalogDescription AS productmodel_catalog_

description,

 ProductSubcategory.Name AS product_subcategory_name,

 �ProductSubcategory.ModifiedDate AS product_subcategory_

modified_date,

 SizeUnitMeasureCode.Name AS size_unit_measure_code,

 WeightUnitMeasureCode.Name AS weight_unit_measure_code,

 Product.Color AS product_color,

 Product.SafetyStockLevel AS product_safety_stock_level,

 Product.ReorderPoint AS product_reorderpoint,

 Product.StandardCost AS product_standard_cost

 FROM Production.Product

 LEFT JOIN Production.ProductModel

 ON Product.ProductModelID = ProductModel.ProductModelID

 LEFT JOIN Production.ProductSubcategory

 ON Product.ProductSubcategoryID = ProductSubcategory.ProductSubcategoryID

 LEFT JOIN Production.UnitMeasure SizeUnitMeasureCode

 ON Product.SizeUnitMeasureCode = SizeUnitMeasureCode.UnitMeasureCode

 LEFT JOIN Production.UnitMeasure WeightUnitMeasureCode

 ON Product.WeightUnitMeasureCode = SizeUnitMeasureCode.UnitMeasureCode

 WHERE (Product.Name LIKE @product_name OR @product_name IS NULL)

 AND (Product.ProductNumber LIKE @product_number OR @product_number IS NULL)

 AND (ProductModel.Name LIKE @product_model OR @product_model IS NULL)

 �AND (ProductSubcategory.Name = @product_subcategory OR @product_

subcategory IS NULL)

Chapter 6 Performance Optimization

www.EBooksWorld.ir

214

 �AND (SizeUnitMeasureCode.Name = @product_sizemeasurecode OR

@product_sizemeasurecode IS NULL)

 �AND (WeightUnitMeasureCode.Name = @product_weightunitmeasurecode OR

@product_weightunitmeasurecode IS NULL);

END

This TSQL is much easier to read and understand. The search is straightforward,

returning all possible columns that we may want, joining all tables, and checking all

search parameters in the WHERE clause, even if they are not specified in the stored

procedure parameters. The only differences in output are any extra columns that we had

explicitly left out in our previous version. We can run the exact same execution statement

as before in order to evaluate performance:

EXEC dbo.search_products @product_name = 'Mountain Frame', @product_number

= 'FR-M21B', @product_model = 'LL Mountain Frame',

@product_subcategory = 'Mountain Frames'

The execution plan and IO statistics for this new version are as follows in Figure 6-10.

Table 'UnitMeasure'. Scan count 1, logical reads 21, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'ProductSubcategory'. Scan count 0, logical reads 10, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'ProductModel'. Scan count 0, logical reads 10, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'Product'. Scan count 1, logical reads 14, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Figure 6-10.  Execution plan for the more inclusive search proc

Chapter 6 Performance Optimization

www.EBooksWorld.ir

215

The primary difference in performance was that we had to access the UnitMeasure

table twice to gather data on both size and weight measurements for the product. While

we did not require those columns for the search that was run, the simplified TSQL does

not discern between what we need and don’t need. It trades simplicity in design for

complexity in performance.

The result is that our same search as before required an additional 21 reads, and the

subtree cost was 0.022. How did execution time compare? On my local server, in a trial of

20 executions, the dynamic SQL approach took 40ms to run, on average. The “simplified”

version took 50ms. These decreases in performance may not seem immense, as they are

querying tables that are relatively small. If the UnitMeasure table had been larger, then

the extra work would have also become more significant. Additionally, what if instead

of 4 tables, we had to query 100? What if the possible columns that were options for the

user to select from numbered in the thousands? If we were forced to read from 100 tables

frequently when not needed, the results would be very noticeable on a production server.

Also keep in mind that each search that accesses different tables will result in a

unique execution plan. In this case, that behavior is encouraged, as we would prefer a

smaller and leaner execution when less objects need to be queried. Extra plans will not

be created for different parameter values, though, but only in scenarios where the text of

the query itself is changed. This would happen whenever joins are added, the WHERE

clause is given additional parameters, or columns are added to

When a very large number of tables, columns, filters, or other variables are involved,

the resulting search needs to be intelligent enough to not query objects that are

unneeded. The necessary logic to accomplish this can be executed in application code or

in SQL Server, but must be dealt with in some manner that eliminates the extra resource

overhead needed for querying those unneeded objects. Dynamic SQL is an excellent tool

to accomplish this, though thorough documentation and clean coding are required so

that the increased performance is not gained at the expense of maintainability.

�Paging Performance
Paging can be an expensive process, especially when used frequently. Interactive searches

often require additional aggregate data that may not exist at the row level, such as:

•	 Total row count

•	 Current row number

Chapter 6 Performance Optimization

www.EBooksWorld.ir

216

•	 Sum, average, min, or max values for a column

•	 Page size

•	 Related or correlated results

Returning this data in-line with a result set presents many questions, such as

whether to calculate the aggregates separately, or with window functions? This is an area

where there are no singular answers. The size, distribution, and indexing of the overall

data sources matter. In addition, knowing what percentage of the result set is returned

can influence our decision making process as well. To begin this analysis, let’s review

a handful of different ways in which we can page data, and dig into the performance of

each method.

In the following query in Listing 6-7, we return 25 search results as the user is paging

through.

Listing 6-7.  Basic Data Paging, Using Row Numbers Based on Order Date

WITH CTE_PRODUCTS AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY OrderDate ASC) AS rownum,

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 WHERE SalesOrderHeader.SalesPersonID = 277

)

SELECT

 *

FROM CTE_PRODUCTS

WHERE rownum BETWEEN 51 AND 75

The performance of this query is relatively straightforward, as seen in Figure 6-11.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

217

Table 'SalesOrderDetail'. Scan count 9, logical reads 42, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

The resulting execution plan is composed of a seek on SalesOrderDetail and

a scan on SalesOrderHeader as we collect data on a specific sales person’s orders.

Note that the reads on SalesOrderDetail are relatively low. Paging can improve read

performance on your storage system, as we ultimately return much less data than the

total amount at one time.

This leads to an important consideration: do we return all data at once, saving it for

when the user clicks “Next,” or do we only return 25 rows and wait for the user to ask for

more before returning it? This question can be addressed by adjusting the number of

rows returned in our outermost SELECT statement. The following is the STATISTICS IO

output for scenarios where we return rows 51-200, 51-500, and 51-1000, respectively:

Table 'SalesOrderDetail'. Scan count 19, logical reads 79, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderDetail'. Scan count 41, logical reads 157, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Figure 6-11.  Execution Plan for the Basic Paging TSQL in Listing 6-7

Chapter 6 Performance Optimization

www.EBooksWorld.ir

218

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderDetail'. Scan count 77, logical reads 277, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Our reads increase as we commit to returning more data from SalesOrderDetail. To

make a smart decision about performance, we must decide, on average, how many times

a user will click “Next.” If they typically only view a page or two and move on to other

work, then returning a small data set each time is optimal. If the user will eventually page

through most, or the entire data set, then simply returning everything to a temporary

table or to the application would make more sense.

Let’s add some complexity to the query above. What if we want to include the total

result count along with the search results? There are many ways we could accomplish it.

In Listing 6-8 are a few examples along with performance metrics and notes.

Listing 6-8.  Data Paging, Including Total Result Count as a Subquery in the

Outermost SELECT

WITH CTE_PRODUCTS AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY OrderDate ASC) AS rownum,

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

Chapter 6 Performance Optimization

www.EBooksWorld.ir

219

 WHERE SalesOrderHeader.SalesPersonID = 277

)

SELECT

 *,

 (SELECT COUNT(*) FROM CTE_PRODUCTS) AS total_result_count

 FROM CTE_PRODUCTS

WHERE rownum BETWEEN 51 AND 75;

In this first example, we create a subquery in our final SELECT that returns the total

count of rows within the common table expression. In this case, we will return the entire

result set and recalculate the row count every time the user requests more results. The

performance for this method is seen in Figure 6-12.

Table 'SalesOrderDetail'. Scan count 10, logical reads 318, physical reads

0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 2, logical reads 692, physical reads

0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'Workfile'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Figure 6-12.  Search query performance when the row count is returned with each
execution

Chapter 6 Performance Optimization

www.EBooksWorld.ir

220

To calculate the count, additional access to each table was required, and now we

scan each table once and seek each table once. Our overall reads increased by 279, or

38%. This isn’t a very efficient method, but it is convenient, and could be controlled

easily with dynamic SQL. Once the count has been acquired once, it could be stored

and reused by the application, with dynamic SQL filtering out the additional subselect

from our final query. This leads us to ask if we shouldn’t just calculate the row count

separately and reuse it for as long as necessary, as shown in Listing 6-9.

Listing 6-9.  Data Paging, Calculating the Row Count as a Separate Operation

SELECT COUNT(*) AS total_result_count

FROM Sales.SalesOrderHeader

INNER JOIN Sales.SalesOrderDetail

ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

WHERE SalesOrderHeader.SalesPersonID = 277;

WITH CTE_PRODUCTS AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY OrderDate ASC) AS rownum,

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 WHERE SalesOrderHeader.SalesPersonID = 277

)

SELECT

 *

FROM CTE_PRODUCTS

WHERE rownum BETWEEN 51 AND 75;

In this alternative, we calculate the total row count prior to fetching the actual data.

This can be returned to the application once and used repeatedly, until the user discards

this particular search. This could be done via a RETURN value in a stored procedure, as a

Chapter 6 Performance Optimization

www.EBooksWorld.ir

221

result set to a waiting application, saving it into a temporary table for repeated use later,

or other, similar methods. This behavior is illustrated in Figure 6-13.

Table 'Workfile'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'SalesOrderDetail'. Scan count 1, logical reads 276, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 3, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderDetail'. Scan count 9, logical reads 42, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Figure 6-13.  Performance of the search when we cache the row count prior to
execution

Chapter 6 Performance Optimization

www.EBooksWorld.ir

222

The IO data shows that the cost to calculate the row count this way is identical to

the previous example. The two execution plans shown cover the count (the first plan)

and the data select (the second plan). Overall, the effort is similar to before in terms of

operations required and the resources consumed by each.

In the next example, we move the count in with the common table expression, as

seen in Listing 6-10.

Listing 6-10.  Data Paging, Using a Window Function to Calculate the Total Row

Count

WITH CTE_PRODUCTS AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY OrderDate ASC) AS rownum,

 �COUNT(SalesOrderDetail.SalesOrderDetailID) OVER (ORDER BY

SalesOrderDetail.SalesOrderDetailID ROWS BETWEEN UNBOUNDED

PRECEDING AND UNBOUNDED FOLLOWING) AS total_result_count,

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 WHERE SalesOrderHeader.SalesPersonID = 277

)

SELECT

 *

FROM CTE_PRODUCTS

WHERE rownum BETWEEN 51 AND 75;

The syntax following the ORDER BY (known as framing) signifies that the row count

should be for the entire data set (UNBOUNDED PRECEEDING AND UNBOUNDED

FOLLOWING). Once again, we’ve moved the count calculation into the data retrieval, but

how does it perform?

Chapter 6 Performance Optimization

www.EBooksWorld.ir

223

Table 'Worktable'. Scan count 3, logical reads 16130, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderDetail'. Scan count 473, logical reads 1626, physical

reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob

read-ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

What happened!? We can see in Figure 6-14 that the execution plan seems simple

enough, with each of the two tables being accessed once. The IO statistics, though,

tell a very different story! In order to calculate the count within the CTE, SQL Server

recalculates it for every single row that is processed in the result set! The reads are many

orders of magnitude higher than all of the previous examples and show that syntax that

looks good doesn’t always perform well! We can simplify the TSQL in an attempt to

improve performance, as seen in Listing 6-11.

Listing 6-11.  Data Paging, with a Simplified Window Function

WITH CTE_PRODUCTS AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY OrderDate ASC) AS rownum,

 COUNT(*) OVER () AS total_result_count,

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

Figure 6-14.  Performance when determining row counts using a window
function

Chapter 6 Performance Optimization

www.EBooksWorld.ir

224

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 WHERE SalesOrderHeader.SalesPersonID = 277

)

SELECT

 *

FROM CTE_PRODUCTS

WHERE rownum BETWEEN 51 AND 75;

The performance is almost the same as before. Despite removing the additional

syntax, this method preforms extremely inefficiently, and in a larger data set would result

in significantly more reads and latency as SQL Server attempts to calculate the count on

each row throughout the data.

One final option is to persist the entire data set from the start. If the search results are

not excessively large, or if we can limit them to a relatively compact segment, then we

can optimize for this specific scenario, as seen in Listing 6-12.

Listing 6-12.  Data Paging, Using a Row Count Calculation after the Data Is

Selected

SELECT

 ROW_NUMBER() OVER (ORDER BY OrderDate ASC) AS rownum,

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

INTO #orders

FROM Sales.SalesOrderHeader

INNER JOIN Sales.SalesOrderDetail

ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

WHERE SalesOrderHeader.SalesPersonID = 277;

Chapter 6 Performance Optimization

www.EBooksWorld.ir

225

SELECT @@ROWCOUNT AS total_result_count;

CREATE CLUSTERED INDEX IX_temp_orders_rownum ON #orders (rownum);

SELECT * FROM #orders WHERE rownum BETWEEN 1 AND 25;

SELECT * FROM #orders WHERE rownum BETWEEN 26 AND 50;

SELECT * FROM #orders WHERE rownum BETWEEN 51 AND 75;

SELECT * FROM #orders WHERE rownum BETWEEN 76 AND 100;

DROP TABLE #orders;

Here, we select the entire data set into a temp table. We then grab the total row count

using @@ROWCOUNT, which does not require any data access to be returned. Since we

are assuming a need to access much of the data returned, the next action is to create a

clustered index on the temp table on rownum. This ensures that every query that filters

on rownum will be very efficient. Here are the IO statistics for this version of the search.

Table 'SalesOrderDetail'. Scan count 473, logical reads 1626, physical

reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob

read-ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table '#orders'. Scan count 1, logical reads 62, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table '#orders'. Scan count 1, logical reads 2, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table '#orders'. Scan count 1, logical reads 2, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table '#orders'. Scan count 1, logical reads 2, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

226

Table '#orders'. Scan count 1, logical reads 2, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

We pay a hefty price up front for gathering the data in our search, racking up 2,315

reads! Adding the index costs another 62 reads on our temp table, but from this point

on, all of the paged results come very inexpensively because we can use that index

effectively. Based on IO, is all of this effort worth it? Our original search required 731

reads. Based on that number, we would come out ahead with this new approach after

our 4th time paging through the result set. As stated previously, retrieving all of the data

at once is effective when the data set is not prohibitively large and we know that we will

want to page through a number of times, on average.

The query execution plans in Figure 6-15 tell a similar story.

The 3rd execution plan is repeated for each subsequent paging search result

executed against the existing data set. The subtree cost is 1.99 for the data collection

query, 0.8 for the index creation, and 0.003 to return paged search results. The results

correlate well with the IO statistics: quite a bit of effort is expended up front to retrieve

the 7,825 rows in the entire result set, but from that point on, access is comparatively

inexpensive.

Figure 6-15.  Performance when we gather all data up-front, for repeated
querying later

Chapter 6 Performance Optimization

www.EBooksWorld.ir

227

Note that by saving and reusing the count, it won’t update if the underlying data

changes. This can be tolerated in some search scenarios, where the result set must stay

the same until the search is run again, but may not be acceptable in all use cases. If a

data set needs to be refreshed with each click through the results, then storing results

and counts for later may not be good enough to meet that business need. In scenarios

such as this, consider the structure of the data, and if new data is appended to the end

of the data set, and therefore could be retrieved as an additional operation on top of the

existing search. For instance, in the prceding example we could check the maximum

SalesOrderDetailID in the temp table and then add to the data set any additional new

data in SalesOrderHeader and SalesOrderDetail that is newer. Alternatively, if the

data has a last modified date and/or last create date, we could use those dates to quickly

gather data that changed since the initial search was completed.

One final paging option that we’ve not yet assessed is the OFFSET functionality,

which allows you to order a result set, offset to any row number in that ordering, and

select any number of rows starting at that point. This TSQL is shown in Listing 6-13.

Listing 6-13.  Data Paging, Using OFFSET

SELECT

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

FROM Sales.SalesOrderHeader

INNER JOIN Sales.SalesOrderDetail

ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

WHERE SalesOrderHeader.SalesPersonID = 277

ORDER BY SalesOrderDetailID ASC

OFFSET 50 ROWS

FETCH NEXT 25 ROWS ONLY

The syntax for OFFSET is straightforward and allows you to page a data set without

calculating row numbers yourself. The IO statistics and execution plan for this example

are shown in Figure 6-16.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

228

Table 'SalesOrderDetail'. Scan count 9, logical reads 45, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

The execution plan is similar to what we have seen already, and the reads are similar

to what we got in the first example using ROW_NUMBER. The key to using OFFSET is to

make sure that the ORDER BY is on the column that you would like to page by. In these

preceding examples, OrderDate was used to determine the order of the result set, but

others could have been used, depending on business needs.

Keep in mind that the best columns to use for paging are those that are ever

increasing. If a new row can be inserted into an older data set, then the potential exists

for missing or duplicate rows. For example, if I created a new sales order, but populated

the order date with a date in the past, then there is a chance that a paged data set in-

flight could be disrupted. If this is not a tolerable possibility, then use an identity or

increasing ID column for paging purposes.

�Filtered Indexes
By default, an index will apply to all rows in a given table. On large tables, indexes can

become expensive to read as well as time-consuming resource-intensive to maintain. If

we have a common query or set of queries that all rely on the same filters, we can create

an index that only applies to those filter conditions. This filtered index will only apply

when those exact filters are used, so it is important to get it right the first time!

Figure 6-16.  Performance of paging using the OFFSET operator

Chapter 6 Performance Optimization

www.EBooksWorld.ir

229

A common use of filtered indexes is when we have a table for which a particular

status or flag signifies data that we are interested in, whereas the remainder of the

data will consistently be ignored. Consider the stored procedure in Listing 6-14, which

executes a search of purchase orders.

Listing 6-14.  Simple Dynamic Search, with a Common Status Filter

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_in_

process_purchasing_data')

BEGIN

 DROP PROCEDURE dbo.get_in_process_purchasing_data;

END

GO

CREATE PROCEDURE dbo.get_in_process_purchasing_data

 @return_detail_data BIT

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @sql_command NVARCHAR(MAX);

 SELECT @sql_command = '

 SELECT

 PurchaseOrderHeader.PurchaseOrderID,

 PurchaseOrderHeader.OrderDate,

 PurchaseOrderHeader.ShipDate,

 PurchaseOrderHeader.SubTotal,

 PurchaseOrderHeader.Freight';

 IF @return_detail_data = 1

 SELECT @sql_command = @sql_command + ',

 PurchaseOrderDetail.PurchaseOrderDetailID,

 PurchaseOrderDetail.OrderQTY,

 PurchaseOrderDetail.UnitPrice,

 Product.Name,

 Product.ProductNumber';

 SELECT @sql_command = @sql_command + '

 FROM purchasing.PurchaseOrderHeader

Chapter 6 Performance Optimization

www.EBooksWorld.ir

230

 INNER JOIN purchasing.PurchaseOrderDetail

 �ON PurchaseOrderHeader.PurchaseOrderID = PurchaseOrderDetail.

PurchaseOrderID';

 IF @return_detail_data = 1

 SELECT @sql_command = @sql_command + '

 INNER JOIN Production.Product

 ON Product.ProductID = PurchaseOrderDetail.ProductID';

 SELECT @sql_command = @sql_command + '

 WHERE PurchaseOrderHeader.Status = 2';

 EXEC sp_executesql @sql_command;

END

GO

This stored procedure performs a search using a parameter that determines if

detailed data can be returned or not. More importantly, a common filter exists in all

executions:

WHERE PurchaseOrderHeader.Status = 2

To illustrate a baseline for performance, let’s add a standard covering index that will

help reduce reads on PurchaseOrderHeader:

CREATE NONCLUSTERED INDEX IX_PurchaseOrderHeader_status_INC

ON Purchasing.PurchaseOrderHeader (OrderDate, status)

INCLUDE (PurchaseOrderID, ShipDate, SubTotal, Freight);

GO

Now, we can execute this for a detailed run:

EXEC dbo.get_in_process_purchasing_data @return_detail_data = 1;

The result set is comprised of 57 rows, containing all columns that could be returned

by the dynamic SQL within the stored procedure. The performance for this execution is

as follows:

Table 'Product'. Scan count 0, logical reads 114, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

231

Table 'PurchaseOrderDetail'. Scan count 12, logical reads 24, physical

reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob

read-ahead reads 0.

Table 'PurchaseOrderHeader'. Scan count 1, logical reads 24, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Note that even with the covering index, there are still 24 reads on

PurchaseOrderHeader. The execution plan is as follows in Figure 6-17.

The subtree cost for the entire query is 0.095894. Since there is an automatic filter on

status = 2 for this stored procedure, we can improve our index by adding the filter to the

index itself:

IF EXISTS (SELECT * FROM sys.indexes WHERE indexes.name = 'IX_

PurchaseOrderHeader_status_INC')

BEGIN

 �DROP INDEX IX_PurchaseOrderHeader_status_INC ON Purchasing.

PurchaseOrderHeader

END

GO

CREATE NONCLUSTERED INDEX IX_PurchaseOrderHeader_status_INC

ON Purchasing.PurchaseOrderHeader (OrderDate, status)

INCLUDE (PurchaseOrderID, ShipDate, SubTotal, Freight)

WHERE status = 2;

Figure 6-17.  Execution plan when a covering index is used for the search query

Chapter 6 Performance Optimization

www.EBooksWorld.ir

232

Note the filter underneath the INCLUDE portion of the index. Adding a filter to the

index will alter its structure to only include data pertaining to rows that match the filter.

In a table where we are interested in consistently querying a very small portion of it, a

filtered index can greatly improve performance:

	 1.	 Since the index is smaller, it is faster for SQL Server to read it,

therefore returning data faster with fewer logical reads.

	 2.	 A smaller index reduces the time it takes to perform index

maintenance on it.

	 3.	 A smaller index requires less disk space to store.

The performance metrics returned by executing our stored procedure with the new

filtered index are as follows:

Table 'Product'. Scan count 0, logical reads 114, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'PurchaseOrderDetail'. Scan count 12, logical reads 24, physical

reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob

read-ahead reads 0.

Table 'PurchaseOrderHeader'. Scan count 1, logical reads 2, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

There are only two logical reads on PurchaseOrderHeader, a fraction of what we saw

before! This improved execution plan can be seen in Figure 6-18.

Figure 6-18.  Performance when a filtered covering index is utilized

Chapter 6 Performance Optimization

www.EBooksWorld.ir

233

Note that even though the execution plan looks similar to before, the cost of the

index scan on PurchaseOrderHeader has decreased, and the overall subtree cost has

decreased by 25%.

Filtered indexes are excellent ways to manage queries on tables where only a small

subset is needed regularly. On very large tables, the performance difference can be

dramatic! Use caution though, as filtered indexes come with two caveats:

	 1.	 WHERE clauses must be precise. While the query optimizer will

try its best to use a filtered index, it can only make use of it when

the query’s WHERE clause overlaps that of the index. If the query

changes enough so that the filters don’t match, then SQL Server

will ignore the filtered index and try to use another instead.

	 2.	 When data is written to a table with a filtered index, SQL Server

must check to see whether the changed data matches the filter.

This means that small numbers of extra reads may be required

when altering data to properly maintain the filtered index. While

this cost is generally low, it is important to recognize it when

working on large data sets. For the preceding example, any

UPDATE that modifies status will need to verify if those changes

will result in data being added or removed from the filtered

index. In filtered indexes with a compound WHERE clause,

modifications to any column of it will result in similar checks.

The benefits will typically outweigh the costs when considering a filter on an index.

If a table contains 100 million rows, of which 10,000 contain current or relevant data,

then we could expect reads on the index as well as storage to be reduced to about 0.01%

of the original amount, which is an immense improvement!

�Cardinality
When considering performance concerns, it is important to discuss cardinality and what

it means for the queries we execute. Cardinality refers to the number of rows affected by

an operation. When optimizing a query, SQL Server must determine how many rows will

be affected by each part of the execution plan. This is extremely important, as that count

will determine important decisions, such as whether to scan or seek a table, or whether

to use a merge or hash join. An explanation of cardinality would be incomplete without a

brief overview of statistics.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

234

�Statistics
By default, statistics are created on all indexes and columns in any given table. Statistics

provide a simple, yet powerful list of values within a table. For example, we can view the

statistics on a given index with the following statement:

DBCC SHOW_STATISTICS ("Sales.SalesOrderheader", IX_SalesOrderHeader_

CustomerID);

The output of this execution is comprised of three sets of data, as seen in Figure 6-19.

The first row returned is an overview of the statistics, including the name, last update

time, total rows in the table, and sampled rows. The rows sampled will equal the row

count for smaller tables, but in larger tables will be smaller. Updating statistics isn’t free,

and scanning millions of rows to update may not be worth the effort if data is relatively

uniform in nature. The Steps are the number of ranges that the data was broken into,

where 200 is the maximum SQL Server will use. For the preceding example, a total of

31,465 rows were sampled (the entire table) and broken into 153 ranges in which values

of CustomerID were counted.

The second result set shows the density for each column involved in the index,

including the clustered index column(s), which this index refers back to. Density is equal

to 1 / (# of distinct values). For the preceding values:

SELECT DISTINCT CustomerID FROM Sales.SalesOrderheader;

Figure 6-19.  Sample output of DBCC SHOW_STATISTICS

Chapter 6 Performance Optimization

www.EBooksWorld.ir

235

This returns 19,119 distinct values for CustomerID. 1 / 19119 = 5.230399E-05, which

is the value provided above. The combination of CustomerID and SalesOrderID (the

clustered primary key column) is as unique as the primary key in this case:

SELECT DISTINCT CustomerID, SalesOrderID FROM Sales.SalesOrderheader;

The results of this query are 31,465 values: 1 / 31465 = 3.178134E-05, the second

value above.

Density is an important metric for the query optimizer, as it provides quick insight

into how unique a column is, and therefore how many potential values there will be on

average for each individual value. To determine further details on this, and to expand

upon density, we can review the last data set, which is the statistics histogram. The

histogram shows ranges of values for CustomerID, and the number of rows for which

their values fall into that range.

For example, let’s take a look at a single row of the histogram.

RANGE_HI_KEY, RANGE_ROWS, EQ_ROWS, DISTINCT_RANGE_ROWS, AVG_RANGE_ROWS

11331 84 27 30 2.8

11417 173 7 85 2.035294

11439 68 6 21 3.238095

One hundred seventy-three values are found within the range 11,331 < X < 11,417.

In addition to that range, there are seven values that are equal to the maximum value of

the range (11,417). There are 85 possible values within this range (11,417 – 11,331 - 1),

and the average range rows per value is 2.035294.

This is all well and good, but what does it mean for us? This data is somewhat

esoteric, but it provides immense value to the query optimizer. It can cross-check filters,

groupings, and joins with this data very quickly and determine how to process a query. If

a filter is very inclusive and it turns out that it will return most rows in a table, then a table

scan will likely be used. In scenarios like this, it’s faster to return everything than it is to

selectively pick and choose a large volume of rows separately. If a filter is very exclusive,

the optimizer will quickly realize that an index seek is the fastest way to return the results.

The query optimizer is only as good as the data that is provided to it by statistics.

If this data becomes inaccurate for any reason, then the result can be suboptimal

execution plans, poor performance, and users calling you at absurdly late hours of the

night looking for help.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

236

There are three settings in SQL Server that guide how statistics are handled within a

database. All are included in system views and can be reviewed for a given database like

this:

SELECT

 is_auto_update_stats_on,

 is_auto_create_stats_on,

 is_auto_update_stats_async_on

FROM sys.databases WHERE name = 'AdventureWorks2014';

Removing the filter will return info on all databases on this SQL Server. The results of

the this query are as follows:

is_auto_update_stats_on is_auto_create_stats_on is_auto_update_stats_async_on

1 1 0

What do these values mean?

Auto_update_stats_on tells us if SQL Server will automatically update stale statistics,

which by default is on. This does not guarantee statistics that will give you accurate

execution plans, but handles a few scenarios when statistics are deemed stale. More on

this in the following!

Auto_create_stats_on indicates if statistics will be automatically created on columns

and indexes as needed, which is on by default. This is useful and should only be turned

off if you are very confident about maintaining statistics manually. This setting does not

apply to views, for which you will need to manually create statistics where needed.

Auto_update_stats_async_on determines if statistics should be updated before or

after a query’s execution and is off by default. Turning this on speeds up query execution,

but can lead to inaccurate execution plans, and therefore is recommended to be kept off.

For these settings, the defaults are generally best, unless you have a very compelling

reason to make changes. What does auto-updating statistics entail, and when does it

happen?

By default, a database is set with AUTO_UPDATE_STATISTICS on. This will cause

statistics to update based on rules that depend upon the version of SQL Server.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

237

Up through SQL Server 2014, statistics would auto-update whenever

	 1.	 an empty table has rows inserted into it.

	 2.	 rhe row count in a table increases from less than 500 rows to more

than 500 rows by a count of at least 500.

	 3.	 the row count in a table increases from greater than 500 rows by

500 rows + 20%.

Starting in SQL Server 2016, #3 on the list is replaced with the square root of (1,000

plus the table’s row count). That number is the threshold of row count change needed to

trigger a statistics update. This change accommodates larger tables where 20% change

simply never occurs.

These scenarios update statistics when row counts change significantly, but are not

necessarily comprehensive enough for a complex production environment. To ensure

that statistics are completely up to date, even if the prceding criteria are not met, we can

consider updating statistics manually or on a maintenance schedule. All statistics can be

updated on a database in one fell swoop as follows:

EXEC sys.sp_updatestats;

This will recalculate all statistics on every table in your database. This is generally

unadvised, as the volume of data that needs to be scanned can be quite large, take a

long time, and cause contention for important production loads. If we cannot update

everything all at once, then what alternatives are there?

Updating statistics can be a very IO-intensive operation. Only perform this
maintenance when necessary, and only on objects where it is needed.

Statistics can be updated on any single object with the following syntax:

UPDATE STATISTICS Production.Product;

This will update all statistics on the table Production.Product. Additionally, a single

statistics can be updated as well:

UPDATE STATISTICS Production.Product PK_Product_ProductID;

In this statement, we update only the statistics on the primary key for Production.

Product.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

238

The next logical question to ask is, “How do we know when we should update

statistics manually?” Generally, this is a process that should not be worried about unless

there is a reason. SQL Server’s default settings tend to be reliable for most common

database designs. If we don’t need to perform expensive maintenance, then we certainly

shouldn’t! What happens when statistics do become stale, though? To help facilitate

this, we’ll turn off the automatic updating of statistics. This should never be done in a

production environment! For testing purposes, though, this is an excellent way to watch

the effect of stale statistics on query optimization and execution:

ALTER DATABASE AdventureWorks2014

SET AUTO_UPDATE_STATISTICS OFF;

After executing this, we can verify the statistics settings on our database using our

query from earlier:

SELECT

 is_auto_update_stats_on,

 is_auto_create_stats_on,

 is_auto_update_stats_async_on

FROM sys.databases WHERE name = 'AdventureWorks2014';

is_auto_update_stats_on is_auto_create_stats_on is_auto_update_stats_async_on

0 1 0

Note that is_auto_update_stats_on is now disabled, and as a result, statistics will

only update if we do it ourselves manually. For this example, we’ll create a new index on

Production.Product on the Weight column:

CREATE NONCLUSTERED INDEX IX_Product_Weight ON Production.Product (Weight);

Consider the following query:

SELECT

 ProductID,

 Weight,

 Name

FROM Production.Product

WHERE Weight = 170

Chapter 6 Performance Optimization

www.EBooksWorld.ir

239

This returns a single row (out of 504) from the table. The performance metrics are

seen in Figure 6-20.

Table 'Product'. Scan count 1, logical reads 4, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

This is a relatively straightforward example! Four reads on Production.Product

and an execution plan that performs a seek on the new index, as well as a key lookup

to retrieve the Name column, which is not in the index we created previously. Let’s now

insert a large number of new data into the table, as seen in Listing 6-15.

Listing 6-15.  TSQL to Populate the Product Table with 1,999 New Products

-- Turn off execution plan here.

SET STATISTICS IO OFF

SET STATISTICS TIME OFF

DECLARE @count INT = 1

WHILE @count < 2000

BEGIN

 INSERT INTO Production.Product

 (Name,

 ProductNumber,

 MakeFlag,

 FinishedGoodsFlag,

 Color,

Figure 6-20.  Performance of a simple index seek operation

Chapter 6 Performance Optimization

www.EBooksWorld.ir

240

 SafetyStockLevel,

 ReorderPoint,

 StandardCost,

 ListPrice,

 Size,

 SizeUnitMeasureCode,

 WeightUnitMeasureCode,

 Weight,

 DaysToManufacture,

 ProductLine,

 Class,

 Style,

 ProductSubcategoryID,

 ProductModelID,

 SellStartDate,

 SellEndDate,

 DiscontinuedDate,

 rowguid,

 ModifiedDate

)

 SELECT

 'Hoverboard' + CAST(@count AS VARCHAR(25)),

 'HOV-' + CAST(@count AS VARCHAR(25)),

 1 AS MakeFlag,

 1 AS FinishedGoodsFlag,

 NULL AS Color,

 500 AS SafetyStockLevel,

 375 AS ReorderPoint,

 55 AS StandardCost,

 100 AS ListPrice,

 NULL AS Size,

 NULL AS SizeUnitMeasureCode,

 'G' AS WeightUnitMeasureCode,

 170 AS Weight,

 5 AS DaysToManufacture,

Chapter 6 Performance Optimization

www.EBooksWorld.ir

241

 NULL AS ProductLine,

 'H' AS Class,

 NULL AS Style,

 5 AS ProductSubcategoryID,

 97 AS ProductModelID,

 '1/1/2015' AS SellStartDate,

 NULL AS SellEndDate,

 NULL AS DiscontinuedDate,

 NEWID() AS rowguid,

 CURRENT_TIMESTAMP AS ModifiedDate

 SET @count = @count + 1

END

This query will insert 1,999 rows into Production.Product, all with the same weight

(170). Turning off the execution plan as well as statistics metrics will greatly speed up the

insert, since we are using a quick and dirty loop to complete the task. Once complete,

let’s rerun the same query from before that previously ran very efficiently:

SET STATISTICS IO ON;

SET STATISTICS TIME ON;

SET NOCOUNT ON;

SELECT

 ProductID,

 Weight,

 Name

FROM Production.Product

WHERE Weight = 170;

Execution completes quickly enough, but looking under the covers at performance

reveals another story altogether. This can be seen in Figure 6-21.

Table 'Product'. Scan count 1, logical reads 4008, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

242

The execution plan is identical to what we got previously, but the reads on

Production.Product are significantly higher! 4,004 reads on a table with about 2,500

rows seems very high for a query that only returns three columns. By turning off statistics

auto-update, we removed the query optimizer’s most important tool to find good

execution plans: accurate statistics. Let’s review the statistics for the index we used in

Figure 6-22.

DBCC SHOW_STATISTICS ("Production.Product", IX_Product_Weight);

Note that for the range including 170 there is only a single equality row, even though

we added 1,999 additional rows. The query optimizer cannot make a smart decision

with data that is this inaccurate. To illustrate this, we’ll update the statistics on this index

manually:

UPDATE STATISTICS Production.Product IX_Product_Weight;

Figure 6-22.  Stale statistics for the IX_Product_Weight index on Production.
Product

Figure 6-21.  Performance of the search query against a larger result set

Chapter 6 Performance Optimization

www.EBooksWorld.ir

243

Running the prceding DBCC command to recheck the statistics on the IX_Product_

Weight index reveals the changes we expect to see, as shown in Figure 6-23.

Now there are 2,000 rows reported with a weight equal to 170, which matches our

expectations after the inserts we executed. With statistics updated, let’s run the test

query one last time:

SELECT

 ProductID,

 Weight,

 Name

FROM Production.Product

WHERE Weight = 170

This time, performance metrics look much less concerning, as shown in Figure 6-24.

Table 'Product'. Scan count 1, logical reads 58, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Figure 6-24.  Performance of the previous search query with updated
statistics

Figure 6-23.  Updated statistics for the IX_Product_Weight index on Production.
Product

Chapter 6 Performance Optimization

www.EBooksWorld.ir

244

Only 58 reads were needed, instead of 4,004, and a clustered index scan was chosen

as the most efficient data retrieval method. It turns out that, when we are looking to

return a very large portion of a table, it’s faster to simply return everything and discard

what we don’t need rather than traverse an index to find all of the necessary rows. As

soon as the query optimizer had accurate data on the contents of the index, it was able to

opt for a scan instead, knowing that this was the best course of action.

�Sys.dm_db_stats_properties
The system dynamic management view sys.dm_db_stats_properties provides direct

insight into the metrics and usage of a statistics object. This is valuable, as it allows us

to more carefully pick and choose which statistics to update or not update on any given

day. Consider the following query in Listing 6-16.

Listing 6-16.  Returning Additional Metrics on Statistics Usage and Contents

SELECT

 schemas.name AS SchemaName,

 tables.name AS TableName,

 stats.name AS StatsName,

 dm_db_stats_properties.*

FROM sys.stats

INNER JOIN sys.tables

ON tables.object_id = stats.object_id

INNER JOIN sys.schemas

ON schemas.schema_id = tables.schema_id

CROSS APPLY sys.dm_db_stats_properties(tables.object_id, stats.stats_id)

WHERE dm_db_stats_properties.modification_counter > 0

ORDER BY dm_db_stats_properties.modification_counter DESC;

The column modification_counter is a count of updates to the underlying data of

the statistics object in question. This allows us to cherry-pick the statistics that are likely

to be the most out of date. The results of this query return all statistics objects in which at

least one update has occurred, and orders them by those with the most updates first.

If we were to build a process to update statistics automatically, or were interested in

learning about the statistics that are updated most frequently, the results would tell us

everything we need to know, as seen in Figure 6-25.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

245

We quickly learn that there are four statistics that may require updating, of which one

has comparatively experienced significant change. We also learn a bit about the table

sizes involved, the rows sampled, and the number of steps in the histogram. If we wanted

to know if a statistics object was out of date, how it is used, or if we should update it, then

this would be the perfect way to find out.

The amount of change that necessitates a statistics update will vary from system to

system, but by taking some time to understand application usage of commonly accessed

tables, we can get an idea for the correct filter to use on the modification_counter

column. By ordering results by that change count, we can ensure that the stalest statistics

are updated first. As time goes on, we may determine exceptional columns that should

never be updated because they are write-only or change so much that maintaining

accurate stats is not worth the effort. Alternatively, we may find statistics that are

critically important and should always be updated. These rules can be combined with

our query results earlier to paint a very clear picture of statistics maintenance and the

best ways to maintain data for a given application.

�Trace Flag 2371
Starting with SQL Server 2008R2 and prior to SQL Server 2016, there was an additional

way to manage auto-updating statistics in SQL Server, and that is trace flag 2371. This

trace flag is intended to address the needs of very large tables, in which the metrics used

to auto-update statistics normally simply don’t fit well. Wait for changes to 20% of a table

with millions of rows, and you may be forced to wait for a very long time.

When you turn on this trace flag, the formula for when to update statistics is made

somewhat dynamic. When a table exceeds 25,000 rows, the percentage of rows that need

to be modified to trigger the update of statistics decreases. This addresses the needs of

large tables while also not changing the functionality on smaller tables.

Figure 6-25.  Detailed metrics on statistics that have changed data since the last
update

Chapter 6 Performance Optimization

www.EBooksWorld.ir

246

If you are responsible for a database that contains tables with millions or billions of

rows, then this trace flag can be a significant boom to performance and a way to avoid

having to manually manage statistics. This trace flag can be enabled as follows:

DBCC TRACEON (2371);

As always, do not make changes to SQL Server trace flags until you have performed

a thorough assessment of your database environment and tested to ensure that this

change is beneficial. While we get very excited when new performance features or

options are available, performing adequate QA on these changes is critical to ensuring

that they are both necessary and helpful.

More documentation on this trace flag can be found on MSDN in a very well-written

article: http://blogs.msdn.com/b/saponsqlserver/archive/2011/09/07/changes-to-

automatic-update-statistics-in-sql-server-traceflag-2371.aspx.

�Back to Dynamic SQL
We’ve discussed statistics, how they are used, and how inaccurate statistics can affect

performance. How does this relate to dynamic SQL and our day-to-day tasks? Cardinality

is a measure of quantity used in every step of query optimization. In each step, the query

optimizer must use statistics to determine how many rows it expects to be returned in

that step, whether it be a seek, join, or filter. If statistics are inaccurate, even in a single

step, it could result in a suboptimal execution plan in which performance is worse than it

need be, or (worst case) unacceptably slow.

Cardinality can be checked by hovering over any step in an execution plan, as seen in

Figure 6-26.

Figure 6-26.  Viewing row counts in SQL Server Management Studio

Chapter 6 Performance Optimization

www.EBooksWorld.ir

http://blogs.msdn.com/b/saponsqlserver/archive/2011/09/07/changes-to-automatic-update-statistics-in-sql-server-traceflag-2371.aspx
http://blogs.msdn.com/b/saponsqlserver/archive/2011/09/07/changes-to-automatic-update-statistics-in-sql-server-traceflag-2371.aspx

247

Hovering over the arrow between the clustered index scan and merge join reveals

that the optimizer estimated 31,465 rows to be output to the join. When executed,

though, the actual number of rows was 31,431. A difference this small will rarely present

a performance concern, but if you are reviewing a query execution plan and notice that

the actual and estimated number of rows differ greatly, then definitely take a closer look

at statistics and ensure they are accurate.

Dynamic SQL introduces scenarios where there can be queries that change all the

time, or that shift between a handful of common use cases. The potential for statistics

to be wrong, or for execution plans to get used or reused in suboptimal ways becomes

higher. In Chapter 8 we’ll discuss parameter sniffing and dive deeper into cardinality and

the ways in which bad estimates can lead to performance headaches. Understanding

these issues can greatly reduce the head scratching when they arise.

�Query Hints
There are many ways in which we can provide the query optimizer with a nudge in order

to get it to do exactly what we want. Consider one of the most common hints used in SQL

Server, the NOLOCK hint, as used in Listing 6-17.

Listing 6-17.  Example Usage of the NOLOCK Query Hint

SELECT

 SalesOrderDetail.SalesOrderDetailID,

 SalesOrderDetail.SalesOrderID,

 SalesOrderDetail.ProductID

FROM Sales.SalesOrderDetail WITH (NOLOCK)

WHERE ProductID = 713;

NOLOCK is a commonly used hint that can be used on SELECT statements that

will avoid contention by reading existing data (dirty pages) from memory, even if other

transactions are operating on the data involved. At first glance, this sounds spectacular—

no contention! It’s a double-edged sword, though, as it is very possible for us to run a

SELECT while an UPDATE is in progress and never return data that was changed or not

committed in that UPDATE statement.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

248

NOLOCK is an example of a query hint, which is a somewhat poorly named

feature because it is more of a command than a hint. Hints are often used as ways to

fix performance problems when they arise. For example, a DBA that sees frequent

locking or deadlocking may use NOLOCK to stop that contention from occurring. This

hint can be useful in a reporting-style environment where the timeliness of data is

not critical, and we simply need an idea of what data looked like at a given time. Even

then, we would want to ask ourselves why we are running reporting queries in a highly

transactional environment, and only when that question is answered, be comfortable in

making this change.

The downside to using query hints is that we are telling the query optimizer exactly

what to do, as though we are smarter than it. While there are times we may know better,

things can change in any busy production environment. The hint that works perfectly

today may be useless tomorrow, or hinder performance.

Liberal use of join hints will often be a potential mistake, as shown in Listing 6-18.

Listing 6-18.  Using Join Hints to Force a Particular Join by the Optimizer

DECLARE @ProductID INT = 713;

SELECT

 SalesOrderDetail.SalesOrderDetailID,

 SalesOrderDetail.SalesOrderID,

 SalesOrderDetail.ProductID,

 SalesOrderHeader.OrderDate

FROM Sales.SalesOrderDetail

INNER LOOP JOIN Sales.SalesOrderHeader

ON SalesOrderDetail.SalesOrderID = SalesOrderHeader.SalesOrderID

WHERE ProductID = @ProductID;

SELECT

 SalesOrderDetail.SalesOrderDetailID,

 SalesOrderDetail.SalesOrderID,

 SalesOrderDetail.ProductID,

 SalesOrderHeader.OrderDate

FROM Sales.SalesOrderDetail

Chapter 6 Performance Optimization

www.EBooksWorld.ir

249

INNER MERGE JOIN Sales.SalesOrderHeader

ON SalesOrderDetail.SalesOrderID = SalesOrderHeader.SalesOrderID

WHERE ProductID = @ProductID;

SELECT

 SalesOrderDetail.SalesOrderDetailID,

 SalesOrderDetail.SalesOrderID,

 SalesOrderDetail.ProductID,

 SalesOrderHeader.OrderDate

FROM Sales.SalesOrderDetail

INNER HASH JOIN Sales.SalesOrderHeader

ON SalesOrderDetail.SalesOrderID = SalesOrderHeader.SalesOrderID

WHERE ProductID = @ProductID;

The query optimizer will choose what it considers the best join type when we join

two tables together in a query. Sometimes we may find that if we override the default and

force a particular join, we can get better performance. This may not always work, though,

and if we review the prceding performance, we see a variety of results:

Warning: The join order has been enforced because a local join hint is used.

Table 'SalesOrderHeader'. Scan count 0, logical reads 1322, physical reads 0,

read-ahead reads 19, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderDetail'. Scan count 1, logical reads 3, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Warning: The join order has been enforced because a local join hint is used.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 688, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

250

Table 'SalesOrderDetail'. Scan count 1, logical reads 3, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Warning: The join order has been enforced because a local join hint is used.

Table 'Workfile'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderDetail'. Scan count 1, logical reads 3, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

When we review the IO statistics, we see that forcing a loop join resulted in much

higher reads than a hash or merge join. Different values of @ProductID may result in

different joins producing better or worse performance results. Note that SQL Server

reminds us that the join order has been enforced by our query hint. This is its way of

gently telling us that whatever happens next is our fault and we cannot call up Microsoft

and complain if the results aren’t what we expected.

Similarly, the execution plans for the prceding queries look different, and each

reflects different subtree costs. This can be seen by reviewing the three execution plans

in Figure 6-27.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

251

Figure 6-27.  Execution plans when different joins are forced with query hints

Chapter 6 Performance Optimization

www.EBooksWorld.ir

252

In general, forcing specific joins is going to eventually backfire. Perhaps a hash

join seems like the best choice right now, as we see a large table joining a small

table, but data can change, as well as application usage. When our tweaks eventually

become irrelevant, we will not remember or notice the problem until it is too late, and

performance degrades as the use case for our changes no longer applies. Change is a

constant in database design and management and we must write scripts that are nimble

enough to be relevant in months, or even years from now. Query hints put constraints

on our design, reducing the options that the optimizer can choose from. If those options

would be useful in the future, then our hints will prevent their usage.

Another frequently used query hint is RECOMPILE, which will force SQL Server to

create a new execution plan for a query, even if an adequate one already exists in the

query plan cache. This is often used to sidestep bad execution plans or ensure that the

best plan is found each time. The optimization process is expensive, though, and on a

busy production server the costs associated with frequently recompiling large volumes

of queries could result in unusually high CPU utilization and query latency. Let’s take

our last test query and add this hint to it, as seen in Listing 6-19.

Listing 6-19.  Using a RECOMPILE Hint to Force a New Execution Plan to be

Created and Used

DECLARE @ProductID INT = 713;

SELECT

 SalesOrderDetail.SalesOrderDetailID,

 SalesOrderDetail.SalesOrderID,

 SalesOrderDetail.ProductID,

 SalesOrderHeader.OrderDate

FROM Sales.SalesOrderDetail

INNER JOIN Sales.SalesOrderHeader

ON SalesOrderDetail.SalesOrderID = SalesOrderHeader.SalesOrderID

WHERE ProductID = @ProductID

OPTION (RECOMPILE);

Running this query, we’ll find that nearly everything appears normal in the execution

plan and IO statistics. Where we find a seemingly minor, yet significant difference is in

the STATISTICS TIME results:

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 1 ms.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

253

Within the output, we notice that no matter how many times we run the query, the

parse and compile time is always non-zero. This is the price for forcing the execution

plan to recompile. A millisecond may seem small, but for more complex queries with

many tables and joins, the time can be much higher. Combine increased times with

frequent execution and performance will be significantly impacted by the time and effort

required to continuously create new execution plans.

Query hints should be used sparingly, only when necessary, and when all
alternatives have been exhausted. Change over time can render hints destructive
to database performance, rather than helpful.

We could easily review dozens of query hints, highlighting common usage, as well

as potential pitfalls, but generally it is important to recognize that query hints are often

ways to cheat our way past bigger problems. Very often, hints are used to cover up poorly

designed tables, inefficiently written queries, bad indexing, or other mistakes that could

be resolved to fix the performance problem.

There are legitimate uses for query hints, but it is important to view them as last

resorts, rather than tools that should be implemented frequently. Only implement

them after extremely thorough testing and assurances that the likelihood of breaking

changes will be very low. A list of available query and table hints can be found on MSDN:

https://msdn.microsoft.com/en-us/library/ms181714.aspx

Note the warning provided near the top of the article:

If one or more query hints cause the query optimizer not to generate a

valid plan, error 8622 is raised.

Some hints can remove the only valid transforms available from the query optimizer.

If this happens, then a query can fail to execute, generate an error, and likely wake you

up at an uncomfortably late hour. Knowledge of these options is important, but please

use caution when implementing them. Use hints when deemed necessary and safe and

utilize all alternatives first. If a query can be rewritten, an index added, or a view altered,

consider those and similar changes first before bossing around the query optimizer.

Chapter 6 Performance Optimization

www.EBooksWorld.ir

https://msdn.microsoft.com/en-us/library/ms181714.aspx

254

�Conclusion
Performance optimization is a huge topic, and this blast through many important topics

only serves to scratch the surface. There is no shortage of ways in which we can dig

deeper into query tuning, indexing, statistics, or other ways to improve performance.

Approach each problem with a plan in mind, and research it thoroughly. SQL Server

provides many tools that allow us to easily assess performance, resource consumption,

and ways to get our most important queries to execute faster. Always test and confirm

the expected results of any change and be certain that your predictions match the test

results. While it can be humbling to have one’s performance hypothesis struck down by

other metrics that were not considered, this result is still greatly preferred over releasing

suboptimal changes into a production environment.

For the duration of this book, we will dig further into performance in many of our

examples. This will allow us to apply what we have discussed and provide a variety of

ways in which to test some of the conclusions we have drawn thus far. Look forward to

many more examples of execution plans, statistics, and query comparisons that will aid

in our exploration of dynamic SQL.

�Cleanup
The TSQL in Listing 6-20 will clean up any objects created in this chapter, if they exist.

Listing 6-20.  Script to Clean Up Any Objects Created in This Chapter, if Needed

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'search_

products')

BEGIN

 DROP PROCEDURE dbo.search_products;

END

GO

IF EXISTS (SELECT * FROM sys.indexes WHERE indexes.name = 'IX_

PurchaseOrderHeader_status_INC')

BEGIN

 �DROP INDEX IX_PurchaseOrderHeader_status_INC ON Purchasing.

PurchaseOrderHeader

END

Chapter 6 Performance Optimization

www.EBooksWorld.ir

255

GO

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_in_

process_purchasing_data')

BEGIN

 DROP PROCEDURE dbo.get_in_process_purchasing_data;

END

GO

DELETE

FROM Production.Product

WHERE Product.Name LIKE 'Hoverboard%';

Chapter 6 Performance Optimization

www.EBooksWorld.ir

257
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_7

CHAPTER 7

Scalable Dynamic Lists
Generating lists of data is a common task with a wide variety of use cases. Perhaps we

want to output data to an application or file with a specific formatting or syntax. Maybe

the best format to read a list of data is in a single line, rather than a tabular format.

Maybe you want to store data in a table using a particular string format that needs to be

quickly built prior to storing it.

While this is not an often advertised feature of SQL Server, it is one that can be

implemented in ways that perform quite well. Alternatively, it is very easy to concoct

list generation in ways that are unbelievably inefficient. This chapter will serve as a

discussion of many different ways in which lists can be generated. In addition to syntax,

we will review performance and maintainability to ensure that there is no question as to

which method is the best for the job.

Performance tuning will be referenced frequently in this chapter. Please refer to

Chapter 6 for details on reading execution plans, reviewing IO statistics, and other

considerations with regard to dynamic SQL and query tuning and optimization.

�What Is a Dynamic List?
The easiest way to introduce this topic is with an example. Let’s consider a scenario

where we want to output a comma separated list of IDs for a list of people. A common

method that is to build this string piece by piece using a CURSOR, as seen in Listing 7-1.

www.EBooksWorld.ir

258

Listing 7-1.  Example of a Cursor-Based Approach to Building a Comma-Delimited

List of IDs

DECLARE @nextid INT;

DECLARE @myIDs NVARCHAR(MAX) = ";

DECLARE idcursor CURSOR FOR

SELECT TOP 100

 BusinessEntityID

FROM Person.Person

ORDER BY LastName;

OPEN idcursor;

FETCH NEXT FROM idcursor INTO @nextid;

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @myIDs = @myIDs + CAST(@nextid AS NVARCHAR) + ',';

 FETCH NEXT FROM idcursor INTO @nextid;

END

SET @myIDs = LEFT(@myIDs, LEN(@myIDs) - 1);

CLOSE idcursor;

DEALLOCATE idcursor;

SELECT @myIDs AS comma_separated_output;

In this TSQL, a CURSOR is declared for 100 IDs and is looped through, one by one,

as the string @myIDs is slowly built up with IDs and commas. The last string modification

uses the LEFT function to remove the trailing comma that is left over from the loop. The

result will be 100 BusinessEntityIDs, each separated by commas. The text output will

appear like this:

285,293,295,2170,38,211,2357,297,291,299,121,16867,16901,16724,10263,10312,...

We’ll cut off the list here after 16 IDs, as there’s no need to waste space with that ☺
In general, iteration should be avoided when writing TSQL in any scenario where

a set-based approach could be applied. SQL Server is built to efficiently process sets of

data, and when we try to pull data a row at a time, we will often see poor performance

as the common result. This is an example of where TSQL that involves loops can be

extremely inefficient. Let’s first look at the execution plan.

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

259

The execution plan is cut off after the first two queries, as the next 99 are exactly the

same as the 2nd. It’s immediately clear that we must consider 101 execution plans in

order to determine the overall effort expended by SQL Server when generating our list.

As a result, it is necessary to read from Person.Person over 100 times, in addition to

reading from the cursor itself, which is not a free operation. On my SQL Server, this took

a total of 10 seconds to run. For a TSQL application whose purpose it is to read 100 IDs,

this is quite slow! While much of this execution time results from generating 100 extra

execution plans, it illustrates how any seemingly simple task performed often enough

can become cumulatively painful.

To gain more insight into the inefficiency introduced here, we can review the IO

statistics as well:

Table 'Worktable'. Scan count 0, logical reads 201, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Person'. Scan count 1, logical reads 318, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Figure 7-1.  Execution plan for a simple SELECT query that iterates through a
loop

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

260

Table 'Worktable'. Scan count 0, logical reads 2, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Person'. Scan count 0, logical reads 3, physical reads 0, read-ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

The first set of IO statistics covers the initial cursor declaration. The 2nd represents a

single iteration of the WHILE loop, which will be repeated another 99 times. If we add up

the total logical reads for all of the queries involved, we get 1,019 reads, which is quite a

lot given that we are only intending to return 100 integer values.

While the output of this example was exactly what we were looking for, it took a

relatively immense amount of computing resources to get there. Imagine if we wanted a

list of a thousand or a million IDs. What if instead of IDs, we wanted a list of large strings?

The result could easily be millions of reads and a query that grinds our server to a halt!

Correct output is desirable, but with unscalable and unmaintainable performance,

code like this will come back to haunt us in the future as software changes and our

assumptions about data size or acceptable performance metrics become invalidated.

�Using XML to Create a Dynamic List
It’s clear that generating a string using any form of loop is going to be inefficient for all

but the tiniest data sets. An alternative that is widely used is to select the desired data

from the underlying table and format it using XML. Consider the following example

of this syntax, as seen in Listing 7-2, which generates the same list as the loop that was

introduced earlier.

Listing 7-2.  Generating a List of IDs Using XML

DECLARE @myIDs NVARCHAR(MAX) = ";

SET @myIDs = STUFF((SELECT TOP 100 ',' + CAST(BusinessEntityID AS NVARCHAR)

FROM Person.Person

ORDER BY LastName

FOR XML PATH("), TYPE

).value('.', 'NVARCHAR(MAX)'), 1, 1, ");

SELECT @myIDs;

GO

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

261

The first thing we notice is that the syntax is more complicated and somewhat less

readable. The result set is the same, which is what we intended:

285,293,295,2170,38,211,2357,297,291,299,121,16867,16901,16724,10263,10312,...

To understand how XML generates this list, we can break the query up, starting with

the innermost TSQL and then building upon it as we move forward:

SELECT TOP 100 ',' + CAST(BusinessEntityID AS NVARCHAR) AS ID_CSV

FROM Person.Person

ORDER BY LastName;

This SELECT statement returns a list of IDs, with a comma preceding each, as seen in

Figure 7-2.

Figure 7-2.  ID list that will be used in an XML-generated list

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

262

There is nothing out of the ordinary here. The next step will concatenate all of the

rows of data above into an XML format, which in SQL Server will display as a comma-

delimited list:

SELECT (SELECT TOP 100 ',' + CAST(BusinessEntityID AS NVARCHAR)

FROM Person.Person

ORDER BY LastName

FOR XML PATH("));

The result of this SELECT will show a result that is on its way to being the finished

product:

285,293,295,2170,38,211,2357,297,291,299,121,16867,16901,16724,10263,10312,...

There are two pieces of unfinished business that we need to deal with before we can

consider this query fully dissected and correct. The first is to ensure that the XML output

is the correct data type:

SELECT (SELECT TOP 100 ',' + CAST(BusinessEntityID AS NVARCHAR)

FROM Person.Person

ORDER BY LastName

FOR XML PATH("), TYPE

).value('.', 'NVARCHAR(MAX)');

The XML value method converts the XML results to the data type provided

prior to returning it. If this is a very long list, the conversion makes sure that we

don’t suffer from string truncation along the way. It also lets us choose between

VARCHAR and NVARCHAR if the distinction is important. In this example, we choose

NVARCHAR(MAX) as the data type to return. The results of this query are identical to

the output from the last step, as the data type conversion is invisible to the SQL Server

output we are viewing.

The last step is to remove that pesky comma from the left, which can be

accomplished via a number of string manipulation techniques. STUFF was used earlier

to cram the contents of the comma-delimited list into the character at position 1, which

happens to be the comma we are looking to remove anyway. This method is convenient,

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

263

as it can be accomplished in a single step without having to store the results in a variable

if we don’t need to. An alternative would be to use RIGHT or SUBSTRING to remove the

leading comma:

DECLARE @myIDs NVARCHAR(MAX) = ";

SET @myIDs = (SELECT TOP 100 ',' + CAST(BusinessEntityID AS NVARCHAR)

FROM Person.Person

ORDER BY LastName

FOR XML PATH("), TYPE

).value('.', 'NVARCHAR(MAX)');

SELECT RIGHT(@myIDs, LEN(@myIDs) - 1);

SELECT SUBSTRING(@myIDs, 2, LEN(@myIDs) - 1);

The results of each SELECT are identical, and match what we were looking for in the

output:

285,293,295,2170,38,211,2357,297,291,299,121,16867,16901,16724,10263,10312,...

Now that we have established that XML can be used to generate a comma-delimited

list, we should take the additional steps to performance test it and determine its level of

efficiency. First, let’s examine the IO statistics for the query:

Table 'Person'. Scan count 1, logical reads 3, physical reads 0, read-ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

This looks great! The reads are the equivalent of what we would expect if we were to

simply run the SELECT statement from Person.Person with no additional formatting

applied to it. Using XML reduced our reads from 1,019 to 3, which I consider an excellent

deal any day of the week! Next, let’s see how the execution plan looks in Figure 7-3.

Figure 7-3.  Performance of list-generation using XML

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

264

For a query that is grabbing a list of IDs, this is a bit complex. The magic that is

performed behind the scenes by the XML reader isn’t free, and that becomes clear

here as it consumes 97% of the resources of the query. Examining the subtree cost of

the execution plan, we find that it is about 1.09, which is similar to the query cost of the

WHILE loop method. In other words, the XML cost is equal to about 100 queries in the

loop from earlier. While we’ve reduced disk IO greatly, we risk consuming more CPU if

we rely heavily on XML.

�Set-Based String Building
While the XML solution was better, it was not perfect. The execution plan was somewhat

confusing and illustrated that CPU consumption by XML can be high. Let’s consider an

additional option, as shown in Listing 7-3.

Listing 7-3.  Generating a List of IDs by Building a String Directly into a Variable

DECLARE @myIDs NVARCHAR(MAX) = ";

SELECT TOP 100 @myIDs = @myIDs + CAST(BusinessEntityID AS NVARCHAR) + ','

FROM Person.Person

ORDER BY LastName;

SET @myIDs = LEFT(@myIDs, LEN(@myIDs) - 1);

SELECT @myIDs;

This TSQL is much more aesthetically pleasing. It is so simple that it begs us to

scratch our heads and ask, “How does it work?” When we execute it, the results are the

same as our examples thus far:

285,293,295,2170,38,211,2357,297,291,299,121,16867,16901,16724,10263,10312,...

SQL Server allows you to SELECT string data directly into a scalar variable in a single

step. The string building is reminiscent of dynamic SQL, even if we are not executing a

command string as part of this work. The general structure of this statement is as follows:

	 1.	 Declare a string, typically VARCHAR(MAX) or NVARCHAR(MAX).

	 2.	 Set the string variable equal to an empty string (or any leading

characters that you’d like).

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

265

	 3.	 SELECT @variable = @variable + combination of columns and

string data.

	 4.	 Remove the trailing comma from the end of the string.

	 5.	 Proceed with our comma-separated list as needed.

First, let’s take a look at the IO statistics to determine how much data was read in

order to generate this list:

Table 'Person'. Scan count 1, logical reads 3, physical reads 0, read-ahead

reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

As with the XML solution, the reads are the same as the SELECT query on its own

would have required. Three reads to generate that list is excellent, and given that, we

move on to examine the execution plan in Figure 7-4.

Our execution plan is about as simple as it gets: a single scan of the target table

and some inexpensive operations to assemble the string. The subtree cost for this is

0.004, which is significantly lower than all other string-building techniques that we’ve

discussed so far. Removing the element of XML greatly reduces the overhead that

the XML reader requires to crunch data into the desired output format. Additionally,

SQL Server can build the string in a completely set-based operation with no need for

iteration, temporary tables, or any other expensive mediums.

This method is exceptionally fast, efficient, and easy to code and maintain. The lack

of loops or XML makes the resulting TSQL easy enough for a beginner to experiment

with and understand. Only minimal documentation would be required to explain what

this does and why the method was chosen.

The dynamically built list is not limited to a single column or scalar string value.

We are free to build the string out of as many data elements as we wish, whether they are

column data, scalar variables, string literals, or strings converted from other data types.

Listing 7-4 shows how to generate a list like with multiple variables.

Figure 7-4.  Performance of list-generation using a string-based SELECT

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

266

Listing 7-4.  Building a List with Multiple Columns and String Literals

DECLARE @myData NVARCHAR(MAX) = ";

SELECT @myData =

 �@myData + 'ContactTypeID: ' + CAST(ContactTypeID AS NVARCHAR) +

',Name: ' + Name + ','

FROM person.ContactType

SET @myData = LEFT(@myData, LEN(@myData) - 1);

SELECT @myData;

This example is similar to the previous one, but we’ve thrown in the Name column, as

well as the column names preceding the values themselves. The syntax for this TSQL is

identical to the previous example, with the only difference being the columns and literals

that are concatenated in the SELECT statement. The value of @myData ends up being

ContactTypeID: 1,Name: Accounting Manager,ContactTypeID: 2,Name:

Assistant Sales Agent,ContactTypeID: 3,Name: Assistant Sales

Representative,ContactTypeID: 4,Name: Coordinator Foreign

Markets,ContactTypeID: 5,Name: Export Administrator,...

If you wanted headers for your data, additional columns, labels, or any other useful

information embedded into the string, getting them there is relatively straightforward.

There’s no limit to what you can include in the string, though it is worth examining the

length of the output to ensure that whatever application, report, or file is accepting the

data can handle whatever the maximum expected size could be.

One final simplification that we can make is to eliminate the need to remove the trailing

comma at the end with a clever use of ISNULL. Listing 7-5 shows this short example.

Listing 7-5.  Using ISNULL to Eliminate the Leading Comma Within the SELECT

Statement

DECLARE @myData NVARCHAR(MAX);

SELECT @myData =

 �ISNULL(@myData + ',',") + 'ContactTypeID: ' + CAST(ContactTypeID AS

NVARCHAR) + ',Name: ' + Name

FROM person.ContactType;

SELECT @myData;

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

267

ISNULL can accomplish this by checking the value of @myData to see if it is NULL:

	 1.	 Do not assign an initial empty string value to @myData.

	 2.	 If @myData is NULL, which occurs on the first value only, then

insert a blank.

	 3.	 If @myData is not NULL, then insert a comma.

This logic will implicitly eliminate the leading comma that would have been

introduced, thereby reducing the number of SQL statements we need by one. The results

of this query are identical to the previous example. The performance of the TSQL is also

the same as previously. COALESCE can also be used instead of ISNULL with the exact

same effect:

DECLARE @myData NVARCHAR(MAX);

SELECT @myData =

 �COALESCE(@myData + ',',") + 'ContactTypeID: ' + CAST(ContactTypeID AS

NVARCHAR) + ',Name: ' + Name

FROM person.ContactType;

SELECT @myData;

Whether you use an ISNULL, LEFT, or COALESCE statement is a matter of personal

preference, but suffice it to say that these options are significantly better than a loop or

XML, each of which carries additional complexity and performance concerns.

�Revisiting Security
While the various string building methods just presented are not dynamic SQL in

the traditional sense, they share many of the strengths and weaknesses found when

creating command strings for use in dynamic SQL. The lengthy list of security concerns

presented in previous chapters is as relevant here as they were before.

In any scenario where we are building strings using at least one parameter that is

entered from an outside source, the threat of SQL injection becomes as real as it was

when we performed an open-ended web search. The example in Listing 7-6 illustrates

string building using a stored procedure that accepts parameters from an external

source:

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

268

Listing 7-6.  A Reminder of SQL Injection when Building a List with Dynamic SQL

CREATE PROCEDURE dbo.return_person_data

 @last_name NVARCHAR(MAX) = NULL, @first_name NVARCHAR(MAX) = NULL

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @return_data NVARCHAR(MAX) = ";

 DECLARE @sql_command NVARCHAR(MAX);

 DECLARE @parameter_list NVARCHAR(MAX);

 SELECT @parameter_list = '@output_data NVARCHAR(MAX) OUTPUT';

 SELECT @sql_command = '

 SELECT

 �@output_data = @output_data + "ID: " + CAST(BusinessEntityID AS

NVARCHAR) + ", Name: " + FirstName + " " + LastName + ","

 FROM Person.Person

 WHERE 1 = 1'

 IF @last_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND LastName LIKE "%' + @last_name + '%"';

 IF @first_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND FirstName LIKE "%' + @first_name + '%"';

 PRINT @sql_command;

 EXEC sp_executesql @sql_command, @parameter_list, @return_data OUTPUT;

 SELECT @return_data = LEFT(@return_data, LEN(@return_data) - 1);

 SELECT @return_data;

END

The preceding stored procedure combines dynamic SQL and list building to

generate a comma separated list of IDs and names. It also manages to create several

glaring security risks. Let’s consider some executions of this proc:

EXEC dbo.return_person_data @first_name = 'Edward';

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

269

The results of this execution are what we expect:

ID: 3731, Name: Edward Adams,ID: 13658, Name: Edward Alexander,ID: 4241,

Name: Edward Anderson,ID: 3732, Name: Edward Baker,ID: 13631, Name: Edward

Barnes,ID: 4229, Name: Edward Brown,ID: 13657, Name: Edward Bryant...

The list is truncated after the 7th value, as there’s no need to list the extensive list

of people from AdventureWorks with the first name of “Edward.” The generated string

contains an ID, and a name, which is the combination of each person’s first name, last

name, and a space inserted in between. Commas separate each field, with the trailing

comma removed by the final LEFT statement.

What happens when the user passes in a blank?

EXEC dbo.return_person_data @first_name = ";

In this scenario, my server churns for almost 3 minutes before returning results.

With 19,972 rows in Person.Person, it turns out that it takes a significant amount of

time to render all of those IDs and names. While we often get used to memory being

significantly faster than disk, it is not infinitely so. SQL Server needs to temporarily cache

data to disk while the query completes. The results are the following IO statistics:

Table 'Person'. Scan count 1, logical reads 109, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Worktable'. Scan count 0, logical reads 758369, physical reads 0,

read-ahead reads 0, lob logical reads 244941773, lob physical reads 0, lob

read-ahead reads 3909272.

Where did 244,941,773 reads come from? That unbelievable number comes from

the volume of data being returned in conjunction with the blank search string. SQL

Server cannot manage this operation on-the-fly in memory and is forced to use TempDB

instead, which is significantly slower. Reads on Person.Person are not significant, but

Worktable reads are very, very impressive!

This is an important call-out to quality assurance that testing is critically important

in any application. If a search can theoretically return tens of thousands of rows, be sure

to implement some method of paging or limiting of the data set so that a lazy or careless

user doesn’t bring your server down with an empty search.

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

270

Let’s return to the malicious example that caused us to lose sleep in an earlier chapter:

EXEC dbo.return_person_data @first_name = 'whatever"; SELECT * FROM Person.

Password; SELECT "';

Here, we intentionally close the search string with arbitrary text (“whatever”) and

begin a new SQL statement with a SELECT from Person.Password. This situation is as

dangerous as it was earlier, as the intended query returns an empty set of people, and

instead the Person.Password table is returned. The resulting command string for this

parameter value is as unfortunate as it appears to be:

SELECT

 �@output_data = @output_data + 'ID: ' + CAST(BusinessEntityID AS

NVARCHAR) + ', Name: ' + FirstName + ' ' + LastName + ','

FROM Person.Person

WHERE 1 = 1

AND FirstName LIKE '%whatever'; SELECT * FROM Person.Password; SELECT '%'

This TSQL throws an error as well, on top of this already messy result set:

Msg 537, Level 16, State 3, Procedure return_person_data, Line 204

Invalid length parameter passed to the LEFT or SUBSTRING function.

Since @output_data is NULL, its length is NULL, which is not a valid input for the

LEFT function. Despite this, the password list was returned prior to the error message

generating. Depending on application and error handling settings, the hacker that

entered this TSQL may have gotten the data they wanted.

Whenever inputs are provided by an outside source, be sure to parameterize your

sp_executesql statement to ensure that there is no way for dangerous TSQL to be

inserted into your command string. This is shown in Listing 7-7.

Listing 7-7.  Dynamic SQL List Generation Using Parameters for Inputs

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'return_

person_data')

BEGIN

 DROP PROCEDURE dbo.return_person_data;

END

GO

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

271

CREATE PROCEDURE dbo.return_person_data

 @last_name NVARCHAR(MAX) = NULL, @first_name NVARCHAR(MAX) = NULL

AS

BEGIN

 SET NOCOUNT ON;

 SELECT @last_name = '%' + @last_name + '%';

 SELECT @first_name = '%' + @first_name + '%';

 DECLARE @return_data NVARCHAR(MAX) = ";

 DECLARE @sql_command NVARCHAR(MAX);

 DECLARE @parameter_list NVARCHAR(MAX);

 �SELECT @parameter_list = '@output_data NVARCHAR(MAX) OUTPUT,

@first_name NVARCHAR(MAX), @last_name NVARCHAR(MAX)';

 SELECT @sql_command = '

 SELECT

 �@output_data = @output_data + "ID: " + CAST(BusinessEntityID AS

NVARCHAR) + ", Name: " + FirstName + " " + LastName + ","

 FROM Person.Person

 WHERE 1 = 1'

 IF @last_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND LastName LIKE @last_name';

 IF @first_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND FirstName LIKE @first_name';

 PRINT @sql_command;

 �EXEC sp_executesql @sql_command, @parameter_list, @return_data OUTPUT,

@first_name, @last_name;

 SELECT @return_data = LEFT(@return_data, LEN(@return_data) - 1);

 SELECT @return_data;

END

This updated stored procedure contains parameters for @first_name and @last_

name. When we execute our examples again, what happens?

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

272

EXEC dbo.return_person_data @first_name = 'Edward';

The results from this execution are the same as earlier. All data for people with the

first name of “Edward” are returned as expected.

EXEC dbo.return_person_data @first_name = ";

The blank search still takes 3 minutes to run, but at least it does so securely!

EXEC dbo.return_person_data @first_name = 'Edward"; SELECT * FROM Person.

Password; SELECT "';

The attempt to use SQL injection to retrieve passwords still generates an error, with

the zero being passed to the LEFT function as the input length. Luckily, parameterization

removes the ability for the end user to inject their own TSQL into any of the parameters,

so they do not gain access to Person.Password as they did previously.

We should be diligent and fix the looming errors in the above example. Letting SQL

server grind away for minutes on a big query could be as destructive to our server as error

messages or SQL injection attempts could be. Similarly, allowing an error to creep through

to the UI is also a bad practice. We should prevent errors from being generated, regardless of

the user input. Let’s patch the holes in Listing 7-8 and hope that QA doesn’t find any more.

Listing 7-8.  List Generation Stored Procedure, with Fixes for Long Waits and

Error Messages

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'return_

person_data')

BEGIN

 DROP PROCEDURE dbo.return_person_data;

END

GO

CREATE PROCEDURE dbo.return_person_data

 @last_name NVARCHAR(MAX) = NULL, @first_name NVARCHAR(MAX) = NULL

AS

BEGIN

 SET NOCOUNT ON;

 SELECT @last_name = '%' + @last_name + '%';

 SELECT @first_name = '%' + @first_name + '%';

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

273

 DECLARE @return_data NVARCHAR(MAX) = ";

 DECLARE @sql_command NVARCHAR(MAX);

 DECLARE @parameter_list NVARCHAR(MAX);

 �SELECT @parameter_list = '@output_data NVARCHAR(MAX) OUTPUT,

@first_name NVARCHAR(MAX), @last_name NVARCHAR(MAX)';

 SELECT @sql_command = '

 SELECT TOP 25

 �@output_data = @output_data + "ID: " + CAST(BusinessEntityID AS

NVARCHAR) + ", Name: " + FirstName + " " + LastName + ","

 FROM Person.Person

 WHERE 1 = 1'

 IF @last_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND LastName LIKE @last_name';

 IF @first_name IS NOT NULL

 SELECT @sql_command = @sql_command + '

 AND FirstName LIKE @first_name';

 PRINT @sql_command;

 �EXEC sp_executesql @sql_command, @parameter_list, @return_data OUTPUT,

@first_name, @last_name;

 IF LEN(@return_data) > 0 AND @return_data IS NOT NULL

 SELECT @return_data = LEFT(@return_data, LEN(@return_data) - 1);

 SELECT @return_data;

END

In this variation on our stored procedure, we introduce a TOP 25 to the list-building

SELECT statement. This limits the result set to 25 people only, preventing a runaway

query that could consume immense server resources. In addition, a check was placed

on the LEFT function near the end of the stored procedure that checks if the length of

@return_data is NULL or 0. This ensures that, if there is no result set, we don’t throw

errors when trying to manipulate it. These options could be added as parameters as well,

if we wanted to configure rows returned or other behavior.

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

274

The steps that we walked through are an important reminder that security is an

ever-present concern and that the situations that could bring a server to its knees may

not always be the obvious ones. Quality assurance is extremely important! Ensure that

any software that you are writing is thoroughly tested for all possible values, regardless of

whether they are normal use cases or oddball edge cases. Empty searches, empty result

sets, and SQL injection attempts are all situations that can be easily dealt with, but we

must identify these threats to effectively respond to them. Even for internal processes

where inputs are well understood, caution is still worth the effort.

�STRING_AGG
Introduced in SQL Server 2017, this new string function allows columnar data in a table

to be transformed into a customized data set. This provides an alternative to dynamic

SQL for scenarios in which there is only a single field and separator to parse, or when

grouping is desired.

Let’s start with a simple example in Listing 7-9 where we generate a string of order

numbers.

Listing 7-9.  Generating a List of Order Numbers Using a String-Building Method

DECLARE @myData NVARCHAR(MAX);

SELECT @myData =

 ISNULL(@myData + ',',") + SalesOrderHeader.SalesOrderNumber

 FROM Sales.SalesOrderHeader

WHERE SalesOrderHeader.OrderDate = '5/31/2011';

SELECT @myData;

The results are what we expect: a list of order numbers, as seen in Figure 7-5.

Figure 7-5.  List of order numbers, generated by a list-building query

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

275

We can rewrite the query as seen in Listing 7-10, using the function STRING_AGG to

get the same results.

Listing 7-10.  Generating a List of Order Numbers Using the STRING_AGG

Function

SELECT

 STRING_AGG(SalesOrderHeader.SalesOrderNumber, ',')

 FROM Sales.SalesOrderHeader

WHERE SalesOrderHeader.OrderDate = '5/31/2011';

This function only allows a single separator at one time, so more complex lists with

multiple delimiters would require either more string manipulation or multiple uses of

STRING_AGG to accomplish. The syntax is simple, though, and performance is identical

to our previous list-building approach, both for IO and query cost.

A feature of STRING_AGG that is unique and can be leveraged to generate data

sets that would otherwise be challenging is the WITHIN GROUP clause. This allows

multiple lists to be generated based on a grouping clause. Consider the following query

in Listing 7-11.

Listing 7-11.  Generating Multiple Lists for Given Order Dates

SELECT

 �SalesOrderHeader.OrderDate, STRING_AGG(SalesOrderHeader.

SalesOrderNumber, ',') WITHIN GROUP (ORDER BY SalesOrderHeader.

SalesOrderID ASC) AS OrderList

FROM Sales.SalesOrderHeader

WHERE SalesOrderHeader.OrderDate BETWEEN '5/31/2011' AND '6/30/2011'

GROUP BY SalesOrderHeader.OrderDate;

The results of this query are shown in Figure 7-6 and illustrate a new functionality:

generating multiple lists simultaneously.

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

276

Without the need to loop through the table, we were able to apply grouping and

string building to SalesOrderHeader to generate a list of order IDs per order date within

the date range specified. The cost to do this is only marginally higher than the order

list we generated for a single date. As a bonus, we applied sorting to the orders within

the list, allowing us to take control over the ordering of order numbers within each

individual list. If we leave out the WITHIN GROUP clause, we can still generate grouped

lists, but would not apply any ordering to the result set.

STRING_AGG is an aggregate function, just like MIN, MAX, or SUM. As a result, it can

be used alongside a GROUP BY clause and combined with other aggregate metrics.

Consider the expanded example in Listing 7-12.

Listing 7-12.  Adding Order Count and Aggregate Sorting into the Result Set

SELECT

 SalesOrderHeader.OrderDate, STRING_AGG(SalesOrderHeader.

SalesOrderNumber, ',') AS OrderList, COUNT(*) AS OrderCount

FROM Sales.SalesOrderHeader

WHERE SalesOrderHeader.OrderDate BETWEEN '5/31/2011' AND '6/30/2011'

GROUP BY SalesOrderHeader.OrderDate

ORDER BY COUNT(*) DESC;

Figure 7-7 shows a result set that has been manipulated on the aggregate and list level.

Figure 7-6.  Multiple order lists, grouped by the order date

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

277

This query structure allows for multiple levels of customization. We may filter, order,

and manipulate the contents of the order list to structure it exactly as we would like

for our text output. We can also add or manipulate additional aggregate fields, such as

COUNT. Last, we can order the entire result set, allowing the most significant lists to be

returned at the top of our list.

If you want to build a string from an aggregated data set prior to SQL Server 2017, the

simplest approach would be the following:

•	 Build an aggregate query that returns the necessary columns for the

resulting string.

•	 Place those aggregated results into a temporary table.

•	 Build a string using our previous methods with the data in the temp

table.

This allows us to reuse fast, reliable methods of string building over a grouped data

set. The additional overhead of using a temp table is small compared with the IO or CPU

costs associated with using iteration or XML.

STRING_AGG provides list-generating functionality that otherwise would require

iteration or some other expensive trickery to accomplish. Its usage is limited to only a

single separator, but this still provides an immense amount of usability that previously

was not available in a built-in SQL Server function. As a bonus, its syntax is simple and

easy to use, making it a perfect tool when multiple lists need to be efficiently generated

in a single TSQL statement.

Figure 7-7.  Multiple order lists with order count and aggregate sorting added

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

278

�Conclusion
The list building presented here is not the same sort of dynamic SQL that we have

discussed thus far in this book. While it is generally simpler and does not require a

separate execution to get our result set, many commonalities exist between it and the

command strings that we built earlier.

In any scenario where we are accepting user input to build a string, parallels can

immediately be drawn between the SQL injection threats that we tackled earlier and the

ones that can be similarly identified when we want to list names or ID numbers.

In addition to SQL injection, dynamic lists share similarities in syntax, string

manipulation, formatting, security, and the ability to combine them with additional

dynamic SQL to create even greater flexibility. With added complexity is an added need

for careful testing, both for unexpected input as well as SQL injection attempts. While

dynamically generated lists may not always carry the threats associated with external

user input, being consistently aware of best practices regarding parameterization and

QA can ensure that our TSQL is the highest quality and most secure possible.

Chapter 7 Scalable Dynamic Lists

www.EBooksWorld.ir

279
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_8

CHAPTER 8

Parameter Sniffing
In Chapter 6 we introduced a number of tools, methods, and tips for performance

optimization. A critical component that was briefly discussed was the query plan cache.

Whenever a query is executed for the first time, an execution plan is generated by the

query optimizer. This process is expensive, and therefore it is beneficial to minimize

the work that is performed by it. Execution plans are placed into the query plan cache

when optimization is complete, where they will remain until sufficient changes occur in

execution, available memory, or the underlying data to push that plan out of cache.

This process by which execution plans are saved is critical to optimal SQL Server

performance. Whenever a query is executed that matches a query in cache, the existing

plan will be used. This allows SQL Server to bypass the optimizer and jump directly to

execution, saving us time and resources along the way! Without this feature, we would be

forced to add significant resources to busy servers to account for the resources needed to

constantly optimize every query that is executed.

�What Is Parameter Sniffing?
Execution plans are placed in cache based on a query hash that is assigned to it when

the plan is generated. This hash is based on the exact text of the query itself and will be

different if any part of a query is different. As a result, parameterizing queries allows

us to reuse the same plan over and over, regardless of the value of the parameter. The

execution plan will be created based on the parameter value that is passed into the

query during its first execution. Each subsequent execution will reuse the same plan,

regardless of the value.

This leads us to a question of accuracy: will the plan that was chosen during the first

execution of a query be the best plan for all possible values going forward? If parameters

that are passed into a stored procedure are somewhat consistent, then odds are very

good that the initially created plan will be good enough for all future executions. In this

www.EBooksWorld.ir

280

scenario, query plan caching is working perfectly for us, and we will have no reason to

consider performance concerns. What if parameter values are sporadic, and lead to a

wide variety of possible results? Given enough time, an execution plan will be generated

that will not be the best plan for other parameter values.

Execution plan reuse for different parameters is the definition of parameter

sniffing and is an inadvertent side effect of SQL Server’s usage of the query plan

cache. Suboptimal plan reuse is a potential way in which this behavior can cause us

performance troubles. Before getting started, let’s introduce a stored procedure that

will read some data from the query plan cache based on a string search of the query text

itself. This will save us time later on when researching the contents of the plan cache and

how they relate to the performance of example queries to follow. Listing 8-1 shows this

stored procedure, which we will be using throughout the rest of this chapter.

Listing 8-1.  Stored Procedure to Read Optimization and Execution Data from

the Query Plan Cache

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'read_

query_plan_cache')

BEGIN

 DROP PROCEDURE dbo.read_query_plan_cache;

END

GO

CREATE PROCEDURE dbo.read_query_plan_cache

 @text_string NVARCHAR(MAX) = NULL

AS

BEGIN

 SELECT @text_string = '%' + @text_string + '%';

 DECLARE @sql_command NVARCHAR(MAX);

 DECLARE @parameter_list NVARCHAR(MAX) = '@text_string NVARCHAR(MAX)';

 IF @text_string IS NULL

 SELECT @sql_command = '

 SELECT TOP 25

 DB_NAME(execution_plan.dbid) AS database_name,

 cached_plans.objtype AS ObjectType,

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

281

 �OBJECT_NAME(sql_text.objectid, sql_text.dbid) AS

ObjectName,

 query_stats.creation_time,

 query_stats.last_execution_time,

 query_stats.last_worker_time AS cpu_last_execution,

 �query_stats.last_logical_reads AS reads_last_

execution,

 �query_stats.last_elapsed_time AS duration_last_

execution,

 query_stats.last_rows AS rows_last_execution,

 cached_plans.size_in_bytes,

 cached_plans.usecounts AS ExecutionCount,

 sql_text.TEXT AS QueryText,

 execution_plan.query_plan,

 cached_plans.plan_handle

 FROM sys.dm_exec_cached_plans cached_plans

 INNER JOIN sys.dm_exec_query_stats query_stats

 ON cached_plans.plan_handle = query_stats.plan_handle

 �CROSS APPLY sys.dm_exec_sql_text(cached_plans.plan_

handle) AS sql_text

 �CROSS APPLY sys.dm_exec_query_plan(cached_plans.plan_

handle) AS execution_plan';

 ELSE

 SELECT @sql_command = '

 SELECT TOP 25

 DB_NAME(execution_plan.dbid) AS database_name,

 cached_plans.objtype AS ObjectType,

 �OBJECT_NAME(sql_text.objectid, sql_text.dbid) AS

ObjectName,

 query_stats.creation_time,

 query_stats.last_execution_time,

 query_stats.last_worker_time AS cpu_last_execution,

 �query_stats.last_logical_reads AS reads_last_

execution,

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

282

 �query_stats.last_elapsed_time AS duration_last_

execution,

 query_stats.last_rows AS rows_last_execution,

 cached_plans.size_in_bytes,

 cached_plans.usecounts AS ExecutionCount,

 sql_text.TEXT AS QueryText,

 execution_plan.query_plan,

 cached_plans.plan_handle

 FROM sys.dm_exec_cached_plans cached_plans

 INNER JOIN sys.dm_exec_query_stats query_stats

 ON cached_plans.plan_handle = query_stats.plan_handle

 �CROSS APPLY sys.dm_exec_sql_text(cached_plans.plan_

handle) AS sql_text

 �CROSS APPLY sys.dm_exec_query_plan(cached_plans.plan_

handle) AS execution_plan

 WHERE sql_text.TEXT LIKE @text_string';

 EXEC sp_executesql @sql_command, @parameter_list, @text_string

END

GO

This stored procedure will greatly simplify our research, as we can pass it any query

text and it will return a variety of data about queries in cache, their execution plans,

and performance metrics on the last execution. It is also a great example of using

dynamic SQL to perform a common SQL Server research task. We will use this to collect

information on queries as we test them here, but it can be reused in any circumstance

where you would like to search the plan cache for specific information. TOP 25 is used

on the SELECT statements to limit the result set. On a busy server this could otherwise

return a very large amount of data, which could adversely affect server or client

performance.

�Parameter Sniffing Examples
In order to be sure we are getting clean test results, we will clear the query plan cache.

As advised earlier in this book, do not run this in a production environment or any place

where consistent performance is expected. Clearing the query plan cache is an excellent

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

283

way to debug queries by forcing them to create fresh new plans with each execution, but

as the optimizer takes significant resources to do its job, we should only ever do this in

isolated environments:

DBCC FREEPROCCACHE;

You may also provide a specific plan handle as a parameter to this DBCC command.

This would allow you to clear only a single plan of choice from cache, rather than

everything. For simplicity, we will clear the entire cache here, but the syntax to clear a

single query would look like this:

DBCC FREEPROCCACHE (0x06000700E8C6530730F36E6B03000000010000000000000000000

00000000000000000000000000000000000);

The plan handle is included in the query plan cache search query, in case it’s needed

for further research. Now, to illustrate parameter sniffing, we’ll create a simple stored

procedure that searches Production.Product based on the ProductModelID, as seen in

Listing 8-2.

Listing 8-2.  Example Stored Procedure to be Used to Test Parameter Sniffing

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_

products_by_model')

BEGIN

 DROP PROCEDURE dbo.get_products_by_model;

END

GO

CREATE PROCEDURE dbo.get_products_by_model (@firstProductModelID INT,

@lastProductModelID INT)

AS

BEGIN

 SELECT

 PRODUCT.Name,

 PRODUCT.ProductID,

 PRODUCT.ProductModelID,

 PRODUCT.ProductNumber,

 MODEL.Name

 FROM Production.Product PRODUCT

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

284

 INNER JOIN Production.ProductModel MODEL

 ON MODEL.ProductModelID = PRODUCT.ProductModelID

 �WHERE PRODUCT.ProductModelID BETWEEN @firstProductModelID AND

@lastProductModelID;

END

Note that there are two parameters that are being passed into the stored procedure:

@firstProductModelID and @lastProductModelID. Let’s execute this for a small range of

product IDs:

EXEC get_products_by_model 120, 125;

This returns six rows of data, as seen in Figure 8-1.

The performance metrics for this execution are as follows:

Table 'ProductModel'. Scan count 0, logical reads 12, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'Product'. Scan count 1, logical reads 15, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Figure 8-1.  Result set for a restrictive product search that only returns six rows

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

285

There were a total of 27 logical reads for this execution, and SQL Server utilized a

scan and seek to get the necessary data from Product and ProductModel in order to

return our results. To confirm what we see, and add some additional metrics, we can use

our query plan cache stored procedure from earlier to learn more about this execution:

EXEC dbo.read_query_plan_cache 'get_products_by_model';

This returns a variety of useful information about this single execution of the stored

procedure, as seen in Figure 8-3.

In an effort to keep Figure 8-3 easy to read, I’ve wrapped the image of the query

results to multiple lines, rather than trying to squeeze it into a single query result row.

The following information can be gleaned from these results:

CPU: 936 microseconds

Reads: 29

Duration: 26ms (26,329 microseconds)

Rows Returned: 6

Figure 8-3.  Metrics returned by dbo.read_query_plan_cache for a restrictive
search query

Figure 8-2.  Performance of a product search returning a small amount of data

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

286

In addition, the query text and execution plan are also available here, if needed.

Now, let’s clear the plan cache and execute the same stored procedure, but for a different

range of IDs:

DBCC FREEPROCCACHE;

EXEC get_products_by_model 0, 10000;

This execution returns 295 results, rather than 6, as seen in Figure 8-4.

The performance is not significantly different, but a different execution plan was

chosen, as seen in Figure 8-5.

Table 'Workfile'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Product'. Scan count 1, logical reads 15, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'ProductModel'. Scan count 1, logical reads 2, physical reads 1,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Figure 8-4.  Product results for a less restrictive search returning 295 rows

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

287

Since we were selecting such a large number of rows from the table, the query

optimizer decided that an index scan on ProductModel would be more efficient. This

is often a good decision as it becomes expensive to seek through an index when the

number of rows being returned approaches a large portion of the table. The exact

turning point will typically depend on the data size, but this is an excellent example of a

situation where an index scan offers superior performance to an index seek.

Before reading the plan cache, we’ll run get_products_by_model five more times,

which will add additional data into the cache that will be useful to review below:

EXEC get_products_by_model 0, 10000;

EXEC get_products_by_model 0, 10000;

EXEC get_products_by_model 0, 10000;

EXEC get_products_by_model 0, 10000;

EXEC get_products_by_model 0, 10000;

As we did before, let’s run our stored procedure to read information from the plan

cache for this new execution of the search proc. The resulting metrics can be found in

Figure 8-6.

EXEC dbo.read_query_plan_cache 'get_products_by_model';

Figure 8-5.  Performance when a less restrictive search query is executed

Figure 8-6.  Metrics returned by dbo.read_query_plan_cache for a less restrictive
search query

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

288

The results are in line with what we saw earlier:

CPU: 1858 microseconds

Reads: 19

Duration: 80ms (80,324 microseconds)

Rows Returned: 295

Note that the execution count is 6 here. By running the query a number of times, we

can illustrate plan reuse when it is desired. Once a plan was found, it will be retained and

reused until it is eventually released from the plan cache. Despite the execution count,

the results are almost identical for each execution.

So far there have been no surprises, each execution has returned the data we

expected, and the optimizer did a great job of choosing the correct plan in order to

minimize resource utilization. Let’s clear the cache one last time and run our search proc

twice in a row, first for a small range of product models and then with the large range:

DBCC FREEPROCCACHE;

EXEC get_products_by_model 120, 125;

EXEC get_products_by_model 0, 10000;

When we run this T-SQL, the first execution performs exactly as it did earlier.

A plan is chosen with an index scan on Product and an index seek on ProductModel.

The resulting execution plan and IO statistics are also exactly the same. When we run the

second execution of our stored procedure, something unusual happens: it performs very

poorly! The performance metrics for the second product search are in Figure 8-7 for the

scenario where a wide range of IDs was passed in:

Table 'ProductModel'. Scan count 0, logical reads 590, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'Product'. Scan count 1, logical reads 15, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

289

This time, reads were significantly higher than what we’d expect for this stored

procedure. The execution plan chosen was reused from the previous one for the narrow

range of IDs (index seek on ProductModel), rather than one that is optimal for a large

result set (index scan on ProductModel). Reading the plan cache helps us understand

what happened:

EXEC dbo.read_query_plan_cache 'get_products_by_model';

The results in Figure 8-8 show that the execution plan that was created for the narrow

range of IDs was reused for the second run, despite providing parameters that resulted in

a very different cardinality.

Note that ExecutionCount is 2. This is proof that the initial execution plan was

reused for the second execution of the search proc. The rest of the metrics returned

confirm the poor performance we viewed:

CPU: 2474 microseconds

Reads: 607

Duration: 90ms (90,353 microseconds)

Rows Returned: 295

Figure 8-7.  Search performance when a suboptimal plan is reused

Figure 8-8.  Metrics returned by dbo.read_query_plan_cache, illustrating
parameter sniffing

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

290

This is an example of parameter sniffing when it directly harms query execution

performance. A suboptimal execution plan was chosen and the result was significantly

higher reads, CPU utilization, and a longer query runtime.

Before discussing ways in which we can resolve performance problems with

parameter sniffing, let’s look at an additional example that shows how parameter sniffing

can potentially interfere when working with dynamic SQL. These examples will use

sales orders and will take advantage of a new sales person to illustrate the effects of poor

cardinality estimates on execution plans:

INSERT INTO Sales.SalesPerson

 �(BusinessEntityID, TerritoryID, SalesQuota, Bonus, CommissionPct,

SalesYTD, SalesLastYear, rowguid, ModifiedDate)

VALUES

 (1, 1, 1000000, 289, 0.17, 0, 0, NEWID(), CURRENT_TIMESTAMP);

UPDATE Sales.SalesOrderHeader

 SET SalesPersonID = 1

WHERE SalesPersonID IS NULL;

UPDATE STATISTICS Sales.SalesOrderHeader;

GO

These statements will create a new sales person and assign them to all sales orders

that currently have no one assigned to them. In addition, we’ve updated statistics on the

table to ensure that the optimizer is aware of the new data when making optimization

decisions. This will provide us with a sales person with 27,659 sales orders assigned to

them. Now we’ll introduce a new stored procedure that will search sales orders based on a

SalesPersonID that is provided as a parameter. In addition, the number of rows returned

and offset can be provided, if we wish to page the results, as shown in Listing 8-3.

Listing 8-3.  Search Procedure to be Used for Demonstrating Parameter Sniffing

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_sales_

orders_by_sales_person')

BEGIN

 DROP PROCEDURE dbo.get_sales_orders_by_sales_person;

END

GO

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

291

CREATE PROCEDURE dbo.get_sales_orders_by_sales_person

 @SalesPersonID INT, @RowCount INT, @Offset INT

AS

BEGIN

 DECLARE @sql_command NVARCHAR(MAX);

 �DECLARE @parameter_list NVARCHAR(MAX) = '@SalesPersonID INT,

@RowCount INT, @Offset INT';

 -- Add one to the offset to get the correct starting row.

 SELECT @Offset = @Offset + 1;

 SELECT @sql_command = '

 WITH CTE_PRODUCTS AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY OrderDate ASC) AS rownum,

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 WHERE SalesOrderHeader.SalesPersonID = @SalesPersonID

)

 SELECT

 *

 FROM CTE_PRODUCTS

 WHERE rownum BETWEEN @Offset AND @Offset + @RowCount;';

 �EXEC sp_executesql @sql_command, @parameter_list, @SalesPersonID,

@RowCount, @Offset;

END

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

292

This stored procedure is completely parameterized, allowing us to change the inputs at

execution time, without the need for any of the dynamic SQL to be adjusted. Let’s start out

by looking at the performance of a search involving our new sales person that we created:

DBCC FREEPROCCACHE;

EXEC dbo.get_sales_orders_by_sales_person 1, 1000, 0;

The query plan cache is cleared first, to ensure that the results are unaffected by

any other queries executed on this server. The additional parameters are set to return

1,000 rows from the result set (which contains 27,659 rows), starting from row 1. The

performance metrics for this execution are found in Figure 8-9.

Table 'SalesOrderDetail'. Scan count 1000, logical reads 3231, physical

reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob

read-ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

In addition, the execution metrics returned by our plan cache reading stored

procedure can be seen in Figure 8-10:

EXEC dbo.read_query_plan_cache 'CTE_PRODUCTS';

Figure 8-10.  Metrics returned by dbo.read_query_plan_cache for a parameterized
search with paging

Figure 8-9.  Execution plan for a search that uses parameterized paging

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

293

Note that since some parameters were defined locally for the dynamic SQL, the

stored procedure itself was not entered into the plan cache, and instead only the

dynamic SQL statement. The contents of QueryText are as follows in Listing 8-4.

Listing 8-4.  Resulting Query Text as Executed in the Dynamic Search with

Paging

(@SalesPersonID INT, @RowCount INT, @Offset INT)

 WITH CTE_PRODUCTS AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY OrderDate ASC) AS rownum,

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 WHERE SalesOrderHeader.SalesPersonID = @SalesPersonID

)

 SELECT

 *

 FROM CTE_PRODUCTS

 WHERE rownum BETWEEN @Offset AND @Offset + @RowCount;

The desired effect is still achieved in that the query that we intend to run is fully

parameterized and an execution plan will be reused whenever the stored procedure

is executed. Searching for it in cache, though, required entering some text from the

SELECT query, rather than the stored procedure name.

All of the above results show that the optimizer chose a clustered index scan on

SalesOrderHeader and a clustered index seek on SalesOrderDetail. 3,926 reads were

needed in order to query this large data set and the results from the query metrics are as

follows:

CPU: 14ms (13,726 microseconds)

Reads: 4062

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

294

Duration: 115ms (115,309 microseconds)

Rows Returned: 1000

Let’s clear the cache and repeat this exercise for a sales person with far fewer sales

records:

DBCC FREEPROCCACHE;

EXEC dbo.get_sales_orders_by_sales_person 285, 1000, 0;

The result set for this execution is 245 rows, instead of 27,659. As such, limiting

the result set to 1,000 rows will have no effect on what is returned by SQL Server. The

performance metrics for this execution are as follows in Figure 8-11.

Table 'SalesOrderDetail'. Scan count 16, logical reads 53, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 50, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Only 103 reads were required to return this smaller data set, and the optimizer

chose to use an index seek on SalesOrderHeader and a clustered index seek on

SalesOrderDetail. Even though a key lookup is an expensive random IO operation, the

optimizer still chose that over the alternative of scanning the entire table. Let’s review the

additional query stats for this execution, as seen in Figure 8-12.

EXEC dbo.read_query_plan_cache 'CTE_PRODUCTS';

Figure 8-11.  Execution plan for a parameterized paged search with a small
result set

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

295

The data above agrees with everything we’ve reviewed so far. This execution requires

significantly less reads to return fewer rows and does so a bit faster than before.

CPU: 2127 microseconds

Reads: 103

Duration: 95ms (94,877 microseconds)

Rows Returned: 245

Now that we have established a baseline for the performance of our stored procedure

with regards to large vs. small result sets, we can demonstrate parameter sniffing for a

scenario that is the opposite of the one we reviewed earlier. Let’s clear the query plan

cache one last time and run the sales order search for our sales person with the very

large number of orders assigned to them:

DBCC FREEPROCCACHE;

EXEC dbo.get_sales_orders_by_sales_person 1, 1000, 0;

A quick review of the performance metrics for this execution confirms that it behaves

exactly the way it did earlier, as seen in Figure 8-13.

Table 'SalesOrderDetail'. Scan count 1000, logical reads 3231, physical

reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob

read-ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Figure 8-12.  Metrics returned by dbo.read_query_plan_cache for a parameterized
search with paging and a small result set

Figure 8-13.  Performance of the search from earlier, with a large result set

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

296

Both the IO statistics and execution plan match our first execution from earlier. Now,

let’s execute the same stored procedure for the second use case that we presented, where

the sales person has far fewer sales orders (without clearing the plan cache):

EXEC dbo.get_sales_orders_by_sales_person 285, 1000, 0;

While the results returned are the same as when we ran this same query earlier, the

performance is significantly different. Figure 8-14 illustrates this with the IO statistics, as

well as the execution plan.

Table 'SalesOrderDetail'. Scan count 16, logical reads 74, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 689, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Since we did not clear the query plan cache, the execution plan from above was

reused for this execution of our stored procedure. The execution plan is the same as the

previous execution: the optimizer uses a clustered index scan on SalesOrderHeader,

even though this is not the optimal way to retrieve data from the table for the smaller

cardinality illustrated in this example. As a result, the reads on SalesOrderHeader are

significantly higher, and the reads on SalesOrderDetail about 50% higher. To show that

plan reuse occurred, we’ll run our read_query_plan_cache stored procedure one last

time and review the results in Figure 8-15.

EXEC dbo.read_query_plan_cache 'CTE_PRODUCTS';

Figure 8-14.  Performance when the execution plan for a large result set is reused
with a significantly smaller one

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

297

Summarizing the data above, we can pull out the most relevant details for review:

Executions: 2

CPU: 3402 microseconds

Reads: 777

Duration: 98ms (97,993 microseconds)

Rows Returned: 245

The execution count is the proof that our execution plan was indeed reused. In this

scenario, reuse was not beneficial, and caused our query to take significantly greater

resources to execute. On a larger, busier production database, performance could have

been seriously degraded by this sort of parameter sniffing.

�Identifying Parameter Sniffing
Undesired plan reuse will not always be apparent. Sometimes performance problems

will be identified in a production environment, but not be immediately connected to

a parameterization issue. Once we know that a query is being assigned a suboptimal

execution plan, we can begin looking for symptoms that may be indicative of parameter

sniffing:

•	 A stored procedure performs well sometimes and poorly at other

times.

•	 A query begins performing poorly with no changes to any of the

underlying schema.

•	 Tweaks, hacks, and T-SQL adjustments can temporarily resolve the

problem.

•	 A stored procedure is excessively large.

•	 A stored procedure contains many different code paths and

branching logic.

Figure 8-15.  Metrics returned by dbo.read_query_plan_cache for a parameterized
search with paging when parameter sniffing results in undesired plan reuse

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

298

•	 A stored procedure has many parameters available.

•	 A query is known to return vastly different result sets based on

parameter values.

The next logical question would be to ask how we deal with this phenomenon, and

how to correctly compensate for parameter sniffing? To provide the best answer possible,

we’ll discuss a few additional considerations, before diving into a variety of solutions.

�Design Considerations
Rule one for managing a phenomenon like parameter sniffing is to know your data! Since

this is a SQL Server feature and not a bug, we need to carefully assess any scenario when

it becomes problematic, before trying to implement a solution.

Let’s take both of our examples above: what was the precise cause of undesired

plan reuse? Ultimately it was the fact that multiple executions of the stored procedure

resulted in wildly different cardinality estimates for the result set. One parameter value

returned 245 rows whereas the other returned over a hundred times as much data.

When addressing parameter sniffing, we should ask a variety of questions to

accurately gauge its severity, frequency, and effects of change:

	 1.	 How often is the query executed?

	 2.	 What is the most common order of magnitude for cardinality that

will be returned by an execution? Was parameter sniffing helpful

most of the time, or did it lead to poor execution plans more often

than we would want?

	 3.	 How will increasing data sizes over time affect these cardinality

estimates?

	 4.	 Are there other culprits involved, such as stale statistics, poorly

written T-SQL, missing or fragmented indexes?

	 5.	 What are the most frequent parameter values that are likely to be

passed to the stored procedure?

	 6.	 Do you already know the cardinality of the result set, regardless

of inputs? That is, does a stored procedure always return a set

number of rows?

	 7.	 Can a complex query be broken up into multiple simpler queries?

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

299

Often, queries that satisfy a business need will fit a regular pattern of usage.

Determining that pattern and then finding situations that fall well outside of the norm

can help in figuring out if our T-SQL is accommodating common use cases, or if we are

inadvertently setting ourselves up for poor performance by writing for the exceptions

rather than common occurrences.

Of the many ways in which queries can perform suboptimally, none are as poorly

handled as parameter sniffing. The desire to fix a problem quickly and with few

resources lends itself to a scenario in which we seek shortcuts and hacks. In addition,

many sources of information about parameter sniffing are inaccurate or just plain wrong.

Query hints, trace flags, local variables, and tinkering with the plan cache will rarely

solve parameter sniffing challenges completely and correctly. We should use extreme

caution when applying a bandage to parameter sniffing, as we will often inadvertently

create a ticking time bomb that will result in bigger performance problems in the future.

�Query Execution Details
How often does a query execute overall and how often does it execute in such a way

that parameter sniffing is a discernable problem? If it is run constantly, then we need to

ensure that it is efficient, as something that executes thousands of times a minute cannot

afford to be slow or consume excessive resources. We would need to determine the most

common use case and write T-SQL to accommodate it. If there are multiple common

scenarios that run constantly, we could consider separate stored procedures for each

one, multiple code paths within a single proc, or other ways to make the most out of each

situation.

If a query executes infrequently, though, such as for a daily report or infrequent

search, then recompiling the query plan each time would be a reasonable solution as it

would ensure the best possible plan and not reuse an old plan. Since it is uncommonly

run, the cost of recompilation would not be significant enough to cause our server any

resource pressure due to the extra work the optimizer needs to perform each time. In

these cases, you are at liberty to take a wider variety of actions to resolve the undesired

plan reuse. Verify, though, that the query that is rarely executed today does not become

more frequently used in the future. If the once-a-day query becomes popular and starts

to be executed every 5 seconds throughout the day, then recompilation will become an

expensive operation to perform so frequently.

A query hint may be used to force a recompile every time it executes by using OPTION

(RECOMPILE). The syntax is as follows in Listing 8-5.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

300

Listing 8-5.  Example Usage of the RECOMPILE Query Hint

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_sales_

orders_by_sales_person')

BEGIN

 DROP PROCEDURE dbo.get_sales_orders_by_sales_person;

END

GO

CREATE PROCEDURE dbo.get_sales_orders_by_sales_person

 @SalesPersonID INT, @RowCount INT, @Offset INT

AS

BEGIN

 DECLARE @sql_command NVARCHAR(MAX);

 �DECLARE @parameter_list NVARCHAR(MAX) = '@SalesPersonID INT,

@RowCount INT, @Offset INT';

 SELECT @sql_command = '

 WITH CTE_PRODUCTS AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY OrderDate ASC) AS rownum,

 SalesOrderHeader.SalesOrderID,

 SalesOrderHeader.Status,

 SalesOrderHeader.OrderDate,

 SalesOrderHeader.ShipDate,

 SalesOrderDetail.UnitPrice,

 SalesOrderDetail.LineTotal

 FROM Sales.SalesOrderHeader

 INNER JOIN Sales.SalesOrderDetail

 ON SalesOrderHeader.SalesOrderID = SalesOrderDetail.SalesOrderID

 WHERE SalesOrderHeader.SalesPersonID = @SalesPersonID

)

 SELECT

 *

 FROM CTE_PRODUCTS

 WHERE rownum BETWEEN @Offset AND @Offset + @RowCount

 OPTION (RECOMPILE) ;';

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

301

 �EXEC sp_executesql @sql_command, @parameter_list, @SalesPersonID,

@RowCount, @Offset;

END

The only difference between this stored procedure and the one we worked with

earlier was the addition of the RECOMPILE hint at the end of the SELECT query. With

this in place, let’s run our last parameter sniffing example:

DBCC FREEPROCCACHE;

EXEC dbo.get_sales_orders_by_sales_person 1, 1000, 0;

EXEC dbo.get_sales_orders_by_sales_person 285, 1000, 0;

EXEC dbo.read_query_plan_cache 'CTE_PRODUCTS';

Last time we executed the stored procedure in this manner, the query execution plan

was reused, resulting in poor performance. Let’s review the performance for the second

execution in Figure 8-16, which was for the small result set:

Table 'SalesOrderDetail'. Scan count 16, logical reads 53, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'SalesOrderHeader'. Scan count 1, logical reads 50, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

This time around, SQL Server executed the query and recompiled the query plan at

runtime to obtain the optimal plan for each set of parameters, rather than reuse the one

for the large result set that preceded it.

Figure 8-16.  Performance when the execution plan is recompiled at runtime,
preventing reuse of a suboptimal plan

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

302

As always, query hints should be used cautiously, and only when deemed necessary.

The resources required by the optimizer to generate an execution plan are not trivial,

and recompiling plans too frequently can result in additional CPU consumption

and increased query latency. This tool is best used when you are certain that a query

executes infrequently, or its cardinality is so sporadic that plan reuse often results in

poor performance.

An additional consideration is to determine if poor performance resulting from

plan reuse is the rule or the exception? Adding recompilation to a query because of an

occasional anomaly would not be beneficial. It may be best to tolerate undesired plan

reuse if a query executes optimally for a majority of the time. An alternative would be to

trap and handle the rare and specific cases where it is a problem, if possible. Also worth

investigating is if the anomaly is indicative of a bigger problem, such as a data validation

error or illegitimate data being passed into your stored procedure. Sometimes parameter

sniffing is the result of bad data or an application problem that requires further research

to diagnose and resolve.

The tradeoff for recompiling an execution plan is to improve query execution

performance at the cost of optimization performance. When determining if this tradeoff

is worth it, consider the future: will this query execute similarly in the future? Could the

application or query source change, resulting in new, unexpected behavior that could

turn this good decision into a bad one? In addition, has your research been exhaustive

enough to ensure that all use cases have been covered? If you can confidently answer

these questions, then making the correct decision with regards to recompiling query

execution plans should be straightforward.

�The Red Herrings
Sometimes, bad execution plans may arise from other sources. If statistics are out of

date, then suboptimal query execution plans could be chosen prior to parameter sniffing

occurring. In other words, plan reuse was perfectly fine, but the optimizer initially

created a bad plan due to the lack of accurate statistics, and that bad plan was later

reused. In this scenario, a bad plan would have likely been generated even if plan reuse

had not occurred. Verifying the estimated vs. actual row counts in an execution plan is a

good way to spot potential statistics inaccuracies. See Chapter 6 for details on viewing,

using, and updating statistics.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

303

Realistically, any way in which T-SQL can be poorly written could lead us to

accidentally blame parameter sniffing for undesired plan reuse. For example, let’s look at

a simple example in Listing 8-6 where a query was written in such a way that suboptimal

performance was essentially guaranteed:

Listing 8-6.  An AdventureWorks Query Guaranteed to Perform Poorly

SELECT DISTINCT

 PRODUCT.ProductID,

 PRODUCT.Name

FROM Production.Product PRODUCT

INNER JOIN Sales.SalesOrderDetail DETAIL

ON PRODUCT.ProductID = DETAIL.ProductID

OR PRODUCT.rowguid = DETAIL.rowguid

This query, which returns 266 rows, yields the performance metrics seen in Figure 8-17.

Table 'Product'. Scan count 5, logical reads 40, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'SalesOrderDetail'. Scan count 4, logical reads 4984, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'Worktable'. Scan count 4, logical reads 1209220, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Figure 8-17.  Performance of an (intentionally) poorly written query

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

304

Check out that row count heading into the nested loops! That’s 34.5 million rows!

Since SalesOrderDetail contains only 121,317 rows, we clearly have a problem that

needs to be resolved here. It turns out that using an OR operator in a join can cause

catastrophically bad performance, as the query optimizer has a very difficult time

determining the best way to intersect the data sets efficiently.

If this query plan were reused in the future, it would perform poorly, not because

of parameter sniffing, but because the query itself is poorly designed. If we rewrote the

query itself to remove the OR, such as by using two statements separated by a UNION,

we can realize significantly better performance. Listing 8-7 shows this improved T-SQL.

Listing 8-7.  The Optimized Version of the Slow Query from Listing 8-6

SELECT

 PRODUCT.ProductID,

 PRODUCT.Name

FROM Production.Product PRODUCT

INNER JOIN Sales.SalesOrderDetail DETAIL

ON PRODUCT.ProductID = DETAIL.ProductID

UNION

SELECT

 PRODUCT.ProductID,

 PRODUCT.Name

FROM Production.Product PRODUCT

INNER JOIN Sales.SalesOrderDetail DETAIL

ON PRODUCT.rowguid = DETAIL.rowguid

While this T-SQL may seem longer and more complex than before, the query

optimizer will have a significantly easier time finding a good plan for it:

Table 'Product'. Scan count 2, logical reads 30, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'SalesOrderDetail'. Scan count 505, logical reads 1554, physical

reads 0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob

read-ahead reads 0.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

305

The execution plan may also seem more complex, but this T-SQL syntax allowed

the optimizer to break a complex problem into two simpler problems that could then be

easily solved, combined, and the same result set returned. The reads were reduced by

over 75 times and the runtime went from 10 seconds down to 100ms.

Dividing and conquering a complex query is often an excellent way to prevent

the query optimizer from being unable to find the best possible plan. The preceding

example was a scenario where a simple-looking query was a performance bomb for the

optimizer to deal with. Separating it into two sections as shown was one solution, but

using a temporary table or table variable to store the data in intermediary steps would

also have been a valid solution to this performance problem.

Before assuming that parameter sniffing is the root cause of a performance
problem, review the T-SQL involved and confirm that there are not more significant
areas to address, such as poorly constructed T-SQL or bad database design.

If a query becomes large and unwieldy, consider breaking it into smaller, simpler

queries. With each table that is joined into a query, the number of possible execution

plans that the query optimizer must evaluate grows exponentially. Depending on the

query style, the number of join orders that exist for n tables will either be n! (n factorial,

for a query tree that is left-deep) or (2n-2)!/(n-1)! (an even larger number if the query

tree is bushy). Consider for a moment the number of ways in which four tables in a left-

deep join order can be ordered:

Figure 8-18.  Performance of the rewritten & optimized query in Listing 8-7

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

306

Table A JOIN Table B JOIN Table C JOIN Table D

ABCD ABDC ACBD ACDB ADBC ADCB BACD BADC BCAD BCDA BDAC BDCA

CABD CADB CBAD CBDA CDAB CDBA DABC DACB DBAC DBCA DCAB DCBA

The result is that there are 24 (4! = 4 * 3 * 2 * 1) possible ways to arrange the four

tables involved in the sample above. Left-deep and bushy trees are ways to describe

the query trees that are built by any query processor. This is how each type looks when

illustrated as a tree.

The left-deep tree consists of a sequence of tables that are joined one-at-a-time,

while a bushy tree is composed of separately joined tables whose results are then

joined together as each set of joins is completed. There are far more ways to express the

ordering in a bushy tree, hence why the mathematical expression for the permutations of

join orders is significantly larger than a left-deep tree.

Without entering an in-depth discussion of each type of query tree, it is safe to say

that with each table added into a query, the number of ways the joins can be ordered will

increase significantly. Removing even one table from a complex query and collecting the

data from it separately can result in major performance gains.

Always test these changes and ensure that the refactored T-SQL truly performs better,

and equally important, be certain that the data returned is the same as it was earlier.

Highly transactional data may change in between an initial data collection and the final

query, resulting in inconsistent data. As a result, be comfortable with the data that is

being queried and don’t blindly optimize without being certain that the output of the

resulting query will be the same as the original.

Investigating indexing is also worthwhile. Verify that correct indexes are being used and

that the operation against that index is the correct one. If a seek is expected, then check to

see if a seek is being implemented by the optimizer. Should there be a key lookup? Could a

ABCD

ABCD
ABC

AB C
AB CD

A B
A B C D

D

Figure 8-19.  Example of a left-deep query tree (left) and a bushy query tree (right)

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

307

covering index provide a significant performance improvement for a commonly executed

query? If a filtered index should be used, does the index filter match the query filter exactly?

Before investigating parameter sniffing as the culprit to a performance problem,

always verify that there are no other bigger problems that require tacking first. In

addition to statistics, indexing, and T-SQL mistakes, it is possible that SQL Server

configuration settings may also affect query performance. Parallelism, trace flags, and

memory/CPU pressure could all lead to unexpected performance degradation.

Despite these possibilities, always start with the simplest solutions first, and then

explore more complex ones when they are disproven. It is significantly more likely that

a performance problem related to undesired plan reuse is simply the result of classic

parameter sniffing, and not of some other mysterious origin. If not, then consider the

impact of statistics, indexing, and query structure. Only when all else fails is it necessary

to investigate the guts of your SQL Server installation for further clues. This will be a

rare scenario if it ever happens, but being prepared and knowing where to look to solve

performance problems can save immense time in the future.

�Parameter Values
A good way to investigate parameter sniffing is to inspect the parameters themselves

and the typical values that are being passed into them. Is a certain value or set of values

very common? Are the values always different and indicative of a process that never

repeats? Does a parameter typically receive a value that seems random, or do they follow

a distinct pattern?

This knowledge can help determine the best course of action to take. If a small

set of values are always passed into a stored procedure, then you may be able to make

assumptions about them and design the T-SQL to take into account those artificial limits.

Some useful observations include:

	 1.	 Is a parameter always NOT NULL?

	 2.	 Will a parameter always be set to the current date, or a current

value for an important metric?

	 3.	 Is there a very limited set of values for a parameter?

	 4.	 Are parameter values seemingly random?

	 5.	 Is a particular value extremely common, or is that value more

important or relevant than other values?

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

308

As noted earlier, it’s important to consider the possibility of change. If application

changes could impact parameter values, then it is necessary to anticipate that change

and not write T-SQL that will be harmed by those changes in the future. If this can be

verified, then use simplifying assumptions to rewrite stored procedures to be shorter,

simpler, and easier for the optimizer to make the correct decisions as often as possible.

Additionally, knowing the cardinality of a result set can greatly affect how we write

a stored procedure. For example, if a single row is always returned from a given stored

proc, we can ensure that each section of it is optimized for that small result set. Similarly,

if we are paging data and will always return 25 rows, or 50, then that information can be

used to make sure the stored proc is written to return that row count and no more or less.

As was illustrated in Chapter 3, paging data sets can be optimized for a small

result set when it is unlikely that we will request more data. If we know that a user will

request page after page, though, then we can write our queries to return more data, in

anticipation of the next click. The application knowledge that allows us to draw these

conclusions also provides the information we need to write T-SQL that aligns with the

business logic we are trying to satisfy.

�Local Variables
To prepare for this example, let’s add an index to Production.Product, which will help

support the queries that we are about to run:

CREATE NONCLUSTERED INDEX NCI_production_product_ProductModelID ON

Production.Product (ProductModelID) INCLUDE (Name);

While not meant to influence queries from earlier in this chapter, the index will allow

for a more straightforward demonstration of parameter sniffing going forward.

A tactic that is sometimes used to try and eliminate parameter sniffing is to redeclare

variables locally, rather than using the parameters passed into a stored procedure. The

effect of this may seem similar to the use of the RECOMPILE hint, but it more accurately

mimics the use of OPTIMIZE FOR UNKNOWN. Often, performance is harmed in the

long run by this change. To demonstrate the effect that this has, we will create a new

version of our stored procedure from the start of this chapter and redefine all stored

procedure parameters as local variables within it, as seen in Listing 8-8.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

309

Listing 8-8.  Stored Procedure that Redeclares Parameters as Local Variables

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_

products_by_model_local')

BEGIN

 DROP PROCEDURE dbo.get_products_by_model_local;

END

GO

CREATE PROCEDURE dbo.get_products_by_model_local (@firstProductModelID INT,

@lastProductModelID INT)

AS

BEGIN

 DECLARE @ProductModelID1 INT = @firstProductModelID;

 DECLARE @ProductModelID2 INT = @lastProductModelID;

 SELECT

 PRODUCT.Name,

 PRODUCT.ProductID,

 PRODUCT.ProductModelID,

 PRODUCT.ProductNumber,

 MODEL.Name

 FROM Production.Product PRODUCT

 INNER JOIN Production.ProductModel MODEL

 ON MODEL.ProductModelID = PRODUCT.ProductModelID

 �WHERE PRODUCT.ProductModelID BETWEEN @ProductModelID1 AND

@ProductModelID2;

END

Note that @firstProductModelID and @secondProductModelID have been assigned

to @ProductModelID1 and @ProductModelID2, respectively. These new variables are

then used in the final SELECT statement at the end of the stored procedure. Using this

new version of our proc, let’s test out performance using the example from earlier in this

chapter:

DBCC FREEPROCCACHE;

EXEC dbo.get_products_by_model_local 120, 125;

EXEC dbo.get_products_by_model_local 0, 10000;

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

310

Here, we will establish a baseline for what the optimizer believes to the best plan

for the product search. For the first execution, which covers a small range of product

models, and therefore carries with it a small result set (only six rows), we find that

the performance is different from the original version of the stored proc. The new IO

statistics and execution plans for both are found in Figure 8-20, with the new on top, and

the old one below:

Table 'Product'. Scan count 6, logical reads 24, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'ProductModel'. Scan count 1, logical reads 2, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Declaring local variables and using them in the query resulted in a different

execution plan, as well as different IO statistics. Now let’s compare new vs. old for the

second scenario above, where the result set is much larger. Figure 8-21 shows these

performance metrics.

Figure 8-20.  Performance of a query with a small result set variables are declared
and the stored proc parameters reassigned locally

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

311

Figure 8-21.  Performance metrics for a large result set, when variables are
declared and the stored proc parameters reassigned locally

Table 'Product'. Scan count 128, logical reads 849, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'ProductModel'. Scan count 1, logical reads 2, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

As seen, a different (and more complex) execution plan was chosen for the new

version of our stored procedure. This version also required far more IO than previously

to return the same data. In fact, the same execution plan was chosen by the query

optimizer for both sets of parameters. This consistently leads to good performance

when working with the small result set, but poor performance on the large result set.

Parameter sniffing appears to no longer occur here, since the same plan is used for

either set of parameter values, but if we execute our stored procedure a few times in a

row, we can confirm that the plan is in fact being reused:

DBCC FREEPROCCACHE;

EXEC dbo.get_products_by_model_local 120, 125;

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

312

EXEC dbo.get_products_by_model_local 0, 10000;

EXEC dbo.get_products_by_model_local 120, 125;

EXEC dbo.get_products_by_model_local 0, 10000;

Now, let’s review the data from the query plan cache for this stored procedure, as

seen in Figure 8-22.

EXEC dbo.read_query_plan_cache 'get_products_by_model_local';

We can see that the only plan returned was executed four times, so there was plan

reuse. Since the execution plan chosen for each set of parameters was the same, though,

it did not matter that reuse occurred as the results would be the same, regardless of

how many times we executed the stored procedure or the order of those executions.

Despite redeclaring variables locally, parameter sniffing still occurred, and the resulting

performance was still not optimal.

What happened here? Why was the same execution plan used for two very different

sets of data? The answer lies in how the query optimizer uses statistics. The optimizer

must make quick and intelligent decisions using whatever statistics are available to it

when a query is executed. Any information that is unavailable until runtime will also be

unavailable to the optimizer. The three pieces of information provided by statistics as

introduced earlier were:

	 1.	 Summary data, which provides row count, average key length,

and an overview of the statistics object.

	 2.	 Density data, which provides information on the uniqueness of

each object bring tracked.

	 3.	 Histogram data, giving row counts for different values over the

sample range of the statistics object.

Figure 8-22.  Metrics returned by dbo.read_query_plan_cache for the product
search where parameters are reassigned to local variables

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

313

For the query optimizer to make the most accurate decision possible, it requires all

of this information. Unfortunately, some T-SQL techniques will force parameter data

to become unavailable or unusable until runtime. This results in suboptimal execution

plans as the optimizer is forced to make decisions without the benefit of the histogram

data, density data, or both.

In the preceding example, where we declared local variables and reassigned the

parameters to them, we took away the optimizer’s ability to use the histogram. Previously

we executed the stored procedure and the parameters were used to determine the

execution plan the first time, and then the plan was reused each time thereafter. In

this case, we executed the stored procedure for the first time and the summary and

density data were all that was available for the optimizer to create an execution plan.

Since local variables have unknown values until runtime, there is no way to check the

histogram for cardinality data, and it is therefore omitted from the optimization process.

As a result, the execution plan that was generated and reused had to be created based

on assumptions. In addition, the execution plan chosen would be the same for any

parameter values passed in, not just the two examples that we reviewed), since those

values were unavailable until runtime.

In summary, this means that whenever we use local variables in a stored procedure,

the query optimizer will need to make assumptions, and ultimately this can lead to poor

cardinality estimates. Oftentimes in this situation, a DBA may find that the execution

plan that is chosen happens to perform better than previously, but this is largely due to

luck and the optimizer stumbling upon a plan that works well for the use cases that are

being scrutinized. In other words, a mediocre execution plan performed adequately

enough to trick us into believing that a parameter sniffing problem was solved.

To fully illustrate what is happening, let’s take a closer look at the execution plans

for a single execution of each version of the stored procedure, focusing on cardinality

estimates versus the actual row counts from each IO step. First, the original stored

procedure (running for the large result set) is shown in Figure 8-23.

DBCC FREEPROCCACHE;

EXEC dbo.get_products_by_model 0, 10000;

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

314

Note that the actual and estimated number of rows is identical for both IO

operations. This indicates that the optimizer had sufficient statistics data to correctly

estimate the row counts for each step and choose a suitable execution plan. Once

executed, the results confirmed the optimizer’s work and we can give it a pat on the back

for a job well done.

Here are the execution plan details for the IO steps when we declare local variables

and use them instead of the stored procedure parameters, as seen in Figure 8-24.

DBCC FREEPROCCACHE;

EXEC dbo.get_products_by_model_local 0, 10000;

Figure 8-23.  Execution plan details for the parameterized stored procedure

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

315

In this example, while the actual number of rows was the same as previously, the

estimates are way off! 11.52 rows were estimated for the IO operation on ProductModel

and 1 row estimated on Product. This is the source of the suboptimal execution plan that

we reviewed previously.On the ProductModel table, the optimizer has no information to

go on because the operation is an inequality with no parameters. For the Product table,

the optimizer can use the density data to try and get a good estimate, but without the

histogram it will fall short.

Do not redeclare parameters locally in a stored procedure. It is a trap!

There are many reasons why the query optimizer may make poor cardinality

estimates when evaluating different parts of an execution plan. While some of those

possibilities are normal and by-design, we certainly do not want to artificially limit the

information available to it and cause even worse estimations to be made. Declaring

local variables may appear to fix bad execution plans or eliminate parameter sniffing,

but ultimately it will worsen the situation by limiting the optimizer’s access to valuable

Figure 8-24.  Execution plan details for the stored procedure using local
variables

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

316

information. Unless significant research has been done into the data and queries

involved, localizing variables in a stored procedure will likely be a risky decision in the

long run, even if it appears to solve a business need right now.

�Forcing Cardinalities to the Optimizer
We have experimented with the query optimizer, recompiling plans or altering variable

scope to try and improve query performance. An additional option is available when we

have very complete knowledge of our data and wish to instruct the query optimizer on

cardinality directly. In a query, we can use the OPTIMIZE FOR hint to directly instruct

the optimizer on what value to accept as the cardinality for a parameter.

Let’s reconsider the product model search from earlier in which we had declared

local variables to try and manage cardinality. When we used local variables, we robbed

the query optimizer of the ability to use the histogram data, thus forcing it to use less

accurate estimates based on the remaining data. If we always returned a large data set

and knew that as fact, we could consider telling the query optimizer to base cardinality

on specific values, as shown in Listing 8-9.

Listing 8-9.  Example of Using the OPTIMIZE FOR Query Hint

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_

products_by_model')

BEGIN

 DROP PROCEDURE dbo.get_products_by_model;

END

GO

CREATE PROCEDURE dbo.get_products_by_model (@firstProductModelID INT,

@lastProductModelID INT)

AS

BEGIN

 SELECT

 PRODUCT.Name,

 PRODUCT.ProductID,

 PRODUCT.ProductModelID,

 PRODUCT.ProductNumber,

 MODEL.Name

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

317

 FROM Production.Product PRODUCT

 INNER JOIN Production.ProductModel MODEL

 ON MODEL.ProductModelID = PRODUCT.ProductModelID

 �WHERE PRODUCT.ProductModelID BETWEEN @firstProductModelID AND

@lastProductModelID

 �OPTION (OPTIMIZE FOR (@firstProductModelID = 0, @lastProductModelID =

10000));

END

In this example, we force the optimizer to base all analysis on the values that we

provide only, rather than turning to statistics to determine the best way to proceed.

When we do this, the performance returns to what we had seen earlier when it was using

the optimal plan, as seen in Figure 8-25.

DBCC FREEPROCCACHE;

EXEC dbo.get_products_by_model 0, 10000;

Table 'Workfile'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'Product'. Scan count 1, logical reads 16, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'ProductModel'. Scan count 1, logical reads 2, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

318

The result is the optimal execution plan and only 18 reads. When we use this hint, it

will choose this plan regardless of what values are passed in. OPTIMIZE FOR is intended

for a use case in which you have extensive knowledge of the input parameters. This is an

infrequent scenario, but one that can exist in stored procedures or code where the inputs

and outputs are very predictable.

There is one additional way in which we can use the OPTIMIZE FOR hint, and

that is to take away parameter values altogether and instruct the optimizer to make its

decisions using only statistics, with no insight into parameter values. Let’s try this out as

well with the same stored procedure, as seen in Listing 8-10.

Listing 8-10.  Example of Using the OPTIMIZE FOR UNKNOWN Query Hint

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_

products_by_model')

BEGIN

 DROP PROCEDURE dbo.get_products_by_model;

END

GO

CREATE PROCEDURE dbo.get_products_by_model (@firstProductModelID INT,

@lastProductModelID INT)

AS

BEGIN

 SELECT

 PRODUCT.Name,

 PRODUCT.ProductID,

 PRODUCT.ProductModelID,

Figure 8-25.  Execution plan when we forced the cardinality for each parameter in
the query

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

319

 PRODUCT.ProductNumber,

 MODEL.Name

 FROM Production.Product PRODUCT

 INNER JOIN Production.ProductModel MODEL

 ON MODEL.ProductModelID = PRODUCT.ProductModelID

 �WHERE PRODUCT.ProductModelID BETWEEN @firstProductModelID AND

@lastProductModelID

 �OPTION (OPTIMIZE FOR (@firstProductModelID UNKNOWN, @lastProductModelID

UNKNOWN));

END

In this example, instead of providing static values, we use UNKNOWN, which

instructs the optimizer to not base its analysis on any particular parameter value but

instead determine cardinality based solely on statistics. Let’s check out the performance

for this version of our stored procedure when we use this new hint, which can be found

in Figure 8-26.

DBCC FREEPROCCACHE;

EXEC dbo.get_products_by_model 0, 10000;

Table 'Product'. Scan count 128, logical reads 849, physical reads 0, read-

ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-ahead

reads 0.

Table 'ProductModel'. Scan count 1, logical reads 2, physical reads 0,

read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob read-

ahead reads 0.

Figure 8-26.  Performance metrics when we use OPTIMIZE FOR UNKNOWN

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

320

When we leave the optimizer to its own devices, it will resort to statistics to

determine the best execution plan. In this case, the results are exactly what we got

previously, when a poor plan was chosen. Typically, when the optimizer relies on

statistics only, with no parameter guidance, it will create an execution plan that is geared

towards the most common parameter values that could be passed in. In the preceding

example, we are returning an unusually large amount of data, which the optimizer was

not prepared for. The result was very similar to when we used local variables to bypass

the optimizer’s standard parameter analysis.

OPTIMIZE FOR, like all hints, can be very useful when applied to very specific or

unusual circumstances. Use it with caution, as it may help performance for a select set

of parameter values but could also greatly harm performance if other unexpected values

are passed in. Query hints should always be applied conservatively, and only when you

are certain that you have full knowledge of the queries involved, the parameter values,

and a good handle on cardinality.

�Dynamic SQL
An odd, but all-to-often recommended solution to parameter sniffing is to wrap the

offending T-SQL in dynamic SQL and hard-code any parameters into the resulting

command string. Consider a new version of our search stored proc from earlier, as seen

in Listing 8-11.

Listing 8-11.  Example of Using Dynamic SQL to Attempt to Control the

Optimization Process of a Stored Procedure

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_

products_by_model')

BEGIN

 DROP PROCEDURE dbo.get_products_by_model;

END

GO

CREATE PROCEDURE dbo.get_products_by_model (@firstProductModelID INT,

@lastProductModelID INT)

AS

BEGIN

 DECLARE @sql_command NVARCHAR(MAX);

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

321

 SELECT @sql_command = '

 SELECT

 PRODUCT.Name,

 PRODUCT.ProductID,

 PRODUCT.ProductModelID,

 PRODUCT.ProductNumber,

 MODEL.Name

 FROM Production.Product PRODUCT

 INNER JOIN Production.ProductModel MODEL

 ON MODEL.ProductModelID = PRODUCT.ProductModelID

 WHERE PRODUCT.ProductModelID BETWEEN ' +

CAST(@firstProductModelID AS NVARCHAR(MAX)) + ' AND ' +

CAST(@lastProductModelID AS NVARCHAR(MAX)) + ';';

 EXEC sp_executesql @sql_command;

END

GO

When we run through our examples from earlier, we find that the optimal plan is

chosen each time. This is because we are hard-coding values for @firstProductModelID

and @lastProductModelID into the query. Since execution plans are generated for each

set of unique query text, we will get a different plan for each set of values.

Wrapping T-SQL in dynamic SQL mimics the behavior of OPTION (RECOMPILE)

in that each set of parameters will receive its own execution plan. This will result in

more accurate execution plans, but also the need to generate a new plan for each set of

parameters. This can be more efficient than recompiling the stored procedure every time

it executes, but comes with a few downsides:

•	 Like OPTION (RECOMPILE), we are forcing the query optimizer to

consume more resources to generate execution plans more often.

•	 Extra execution plans can bloat the plan cache if too many are

generated.

•	 The use of dynamic SQL should be well-documented as it will not be

plainly obvious to a developer why we are doing this.

•	 Increased code complexity and the potential need to address SQL

injection.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

322

Dynamic SQL is an interesting and potentially efficient solution to parameter

sniffing, but should be used carefully as the primary cost of its use is maintainability.

Document its use completely and be confident that code will not change in the future in

a way that would result in too many execution plans being generated for the single stored

procedure. Since each set of parameters results in a new plan, we want to be certain that

the variety of parameter values never becomes too high.

�Trace Flag 4136
This trace flag disables plan reuse server-wide, removing the possibility that parameter

sniffing can occur. While this may sound like a great idea, the result is similar to applying

the OPTIMIZE FOR UNKNOWN query hint to all queries affected by it.

In general, this trace flag is a bad idea and its use will be relegated to highly

specialized scenarios in which a server processes a unique workload that benefits from

the removal of plan reuse. Trace flags, like query hints, should be used with extreme

caution. Telling the query optimizer what to do requires in-depth knowledge of an

application, how it works, its data, and the future of its behavior.

Starting in SQL Server 2016, parameter sniffing can be disabled at the database-level

as well. While this provides a bit more control behavior related to parameterization, it

still requires the same level of care that would be applied when considering using trace

flag 4136.

Disabling parameter sniffing is ill-advised unless you have enough application and

data knowledge to be able to confidently prove out that it will result in consistently

adequate performance. If so, be sure to fully document its use as trace flags and database

settings are well-hidden from the view of most developers and can easy be forgotten

about as time passes.

�Fix Bad Business Logic
We often blame parameter sniffing on SQL Server and seek ways to resolve it that involve

tweaking queries or settings to improve performance and allow us to move onto other

more important tasks. The most common cause of parameter sniffing is poor database

design, suboptimal T-SQL, or bad architecture decisions. Despite seeming unrelated to

parameter sniffing, we can single out a set of mistakes that are easy to identify and that

can be used as red flags to identify the cause of parameter sniffing.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

323

�Too Many Possible Code Paths

When a stored procedure contains many possible branches that can be accessed based

on parameter values, the ability to generate a good execution plan becomes challenging.

If there are ten different blocks of code that can be executed, each will be assigned an

execution plan. The results of these branches can be passed through to other sections

of code that depend on them. Plans for those branches won’t change, even if the data

inputs do.

This is a common problem when there is a desire for a single stored procedure to

solve many different problems. A stored procedure with too many code paths will be

easily identifiable by the presence of lots of branching logic (IF, THEN, ELSE, GOTO, etc.)

and the propensity for any one section of code to be executed while many others are not.

This in itself can be tolerable, but when the outputs of a branched section are used as

inputs to additional branches, then the potential for a bad plan to be generated is greatly

increased.

The simplest solution is to break each code path into a separate stored procedure.

The benefit is that each proc will better represent a single use case and will be far

more likely to be assigned an execution plan that is relevant to all parameter values.

Splitting a large problem into smaller, simpler problems is often a great way to improve

performance, increase maintainability, and make code easier to read and understand.

�Lots of Parameters

The more parameters a stored procedure has, the more ways in which combinations of

them can result in unexpected performance. Similar to how a query with more tables

becomes harder to optimize, a stored procedure with many parameters has far more

combinations that can result in undesired plan reuse.

If parameter sniffing is identified on a stored procedure that has a large number of

parameters, consider ways in which the parameter count can be reduced by:

•	 Splitting the stored procedure into smaller, simpler stored procs.

•	 Remove parameters that are not used or that have the same value all

the time.

•	 Ensure that no parameters are redeclared locally.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

324

•	 Combine parameters that are ultimately responsible for the same set

of results.

•	 Remove parameters used solely for branching and separate those

logical units into new stored procedures.

Reducing the parameter count in a stored procedure is an easy and straightforward

way to address parameter sniffing, and is guaranteed to improve performance by

simplifying the number of code paths available and allowing the optimizer to generate

an execution plan using far fewer variables to do so.

�Stored Procedure is Huge

A larger stored procedure contains more T-SQL statements that need to be optimized

and therefore more decisions that need to be made to generate an execution plan. When

a stored procedure is immense, it is often a sign of a desire to cram large amounts of

business logic into a single place. This lends itself to there being too many code paths

and too many different ways in which a single execution plan may not be capable of

servicing all possible combinations of variables or data sets that are passed to and from

each section of code.

The easiest fix is to break the stored procedure into smaller, more manageable

pieces. This is a common theme in optimization, and while turning one object into three

may seem complex, it will create code patterns that lend themselves to more efficient

execution plans and more consistent performance. Similarly, try to move business logic

and formatting into code. This simplifies queries and allows the database to do what it is

best at: storing and retrieving data.

If a stored proc is immense, ask yourself: “why is it so huge”? What can we do to

simplify it and make it more manageable? If a specific section consistently performs

poorly, can we separate or address just that component of the stored procedure? Finding

a single large, problematic query and breaking it into two or three smaller ones may

improve stored procedure performance overall by eliminating a single hard-to-optimize

expensive query. Are we spending immense resources to generate HTML output for

a web page when application code might be better suited for that task? These are all

useful considerations when determining how to break up a large problem and when

diagnosing a poorly performing behemoth.

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

325

�Conclusion
Query execution plan reuse is an important feature in SQL Server that conserves

memory and CPU while allowing common queries to execute quickly and efficiently.

When parameter sniffing leads to poor performance, it should be diagnosed carefully to

ensure that it is indeed the cause, and not a symptom of another, bigger problem.

When suboptimal parameter sniffing is found, analyze the data to determine metrics

that describe the parameters, data, and usage patterns. This research will greatly help

in determining the best course of action (if any) that should be taken. Test potential

solutions for all use cases and ensure as much as possible that application or query

changes in the future will not invalidate your changes.

Query tuning and refactoring can be a more useful tool than query hints. Consider

different ways that a query can be written to execute more efficiently. In addition, look

for simplifying assumptions that may allow for a query to be reduced or rewritten into

something simpler and easier for the optimizer to digest. Sometimes that effort will

completely remove parameter sniffing as a problem, thus eliminating the need for

further research or the need to resort to query hints or hacks to achieve success.

�Cleanup
The T-SQL in Listing 8-12 will clean up any objects created in this chapter, if they exist,

except for the stored procedure read_query_plan_cache, which may come in handy

later on:

Listing 8-12.  Script that Cleans Up Any Objects Created in This Chapter

IF EXISTS (SELECT * FROM sys.indexes WHERE indexes.name = 'NCI_production_

product_ProductModelID')

BEGIN

 DROP INDEX NCI_production_product_ProductModelID ON Production.Product;

END

GO

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_

products_by_model_local')

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

326

BEGIN

 DROP PROCEDURE dbo.get_products_by_model;

END

GO

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_sales_

orders_by_sales_person')

BEGIN

 DROP PROCEDURE dbo.get_sales_orders_by_sales_person;

END

GO

Chapter 8 Parameter Sniffing

www.EBooksWorld.ir

327
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_9

CHAPTER 9

Dynamic Pivot and
Unpivot
PIVOT is an extremely efficient way to alter the structure of a result set, expanding

a single column of values into a set of separate columns. UNPIVOT does the exact

opposite, taking a set of columns and resolving them into a single output column. Both

of these operators can be very useful in reporting, analytics, or when trying to format

existing data into a specific structure as required by an application.

A significant limitation of both operators is that the column or name list for each

must be defined prior to runtime in our TSQL. This can be acceptable if the name list

is static or predictable enough that we will not need to modify our code frequently to

allow it to work. If this list changes, though, we are forced to create many different stored

procedures or functions to handle the many list values, or force limitations into our code

to prevent having to do this.

There is a fun and effective alternative to either of these options, and that is to use

dynamic SQL in order to generate our name lists on the fly. Once we introduce the

dynamic aspect to this operator, we can write TSQL that incorporates all values in a

column, a variable list, or those provided by user input. Without dynamic SQL, it is very

difficult and inefficient to accomplish tasks such as this without writing significantly

longer or more complex TSQL to generate a similar result set.

�PIVOT
Pivot is common in analytics when we are looking to resolve transactional data into

a columnar structure for use in reporting or metrics. The easiest way to introduce the

challenge we just presented is with an example. Consider the TSQL in Listing 9-1, which

returns some quantity data, as well as color for products that are in an inventory.

www.EBooksWorld.ir

328

Listing 9-1.  Query to Return Select Product Data from AdventureWorks

SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT_INVENTORY.LocationID,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity

FROM Production.Product PRODUCT

LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID;

Note that a single product may have quantities in multiple locations. What if

management was looking to correlate popularity and inventory with the color of a variety

of products across all of those locations? They request a report where, instead of a row

per product that includes color, there is a row per product name, and additional columns

Figure 9-1.  The query in Listing 9-1 is simple enough, and will return these results

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

329

for each color specified. This would allow easy analysis to take place per product per

color. PIVOT is the simplest way to accomplish the task, as seen in Listing 9-2.

Listing 9-2.  Common Usage of PIVOT, to Report on Products by Color

SELECT

 *

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 �FOR product_color IN ([Black], [Blue], [Grey], [Multi], [Red],

[Silver], [Silver/Black], [White], [Yellow])

) PIVOT_DATA;

In the preceding example, we move the previous query into a FROM clause that will

be used for pivoting. The correct syntax for PIVOT requires two new components:

	 1.	 An aggregate function that will act on all values if multiple values

exist. In the initial SELECT statement that returns product data,

there were many duplicate rows. Here, we choose to use SUM

whenever this occurs, which will add up product quantities if

there are multiple rows with the same product name.

	 2.	 A value list for all values that will be changed from row data into

column headers. In this case, the list is of colors from Product.

Color.

The output of this statement in Figure 9-2 illustrates the creation of the new columns.

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

330

The results show nine new columns, which are the exact same that we defined in the

query that we wrote earlier. In a scenario where multiple rows from our original query

shared the same product name, the quantities were added. For example, for the product

“Road-250 Black, 48” there were two rows returned by the original query, with quantities

of 116 and 49, respectively, for the color black. In the output generated by the PIVOT

output, we can see that the two rows were combined into one with a quantity of 165 for

the same color. If multiple products existed with the same name, but in different colors,

then multiple columns would be populated with quantity data for a single product after

the PIVOT was applied.

There is a single weakness in this approach, and that is that the column list must be

explicitly provided in the PIVOT statement prior to runtime. Any attempt to rewrite the

PIVOT to use a dynamic list without dynamic SQL will fail, as shown in both Listings 9-3

and 9-4.

Listing 9-3.  Attempt to Use a Subselect Within a PIVOT Statement

(Unsuccessfully)

SELECT

 *

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

Figure 9-2.  Output of the PIVOT query in Listing 9-2

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

331

 PRODUCT_INVENTORY.Quantity AS product_quantity

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 FOR product_color IN (SELECT Color FROM Production.Product)

) PIVOT_DATA;

Listing 9-4.  Attempt to Use a Table Variable Within a PIVOT Statement (also

Unsuccessfully)

DECLARE @colors TABLE

 (color_name VARCHAR(25));

INSERT INTO @colors

 (color_name)

VALUES ('Black'), ('Blue'), ('Grey'), ('Multi'), ('Red'), ('Silver'),

('Silver/Black'), ('White'), ('Yellow');

SELECT

 *

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 FOR product_color IN (SELECT color_name FROM @colors)

) PIVOT_DATA;

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

332

Both examples are logical attempts to incorporate more customizable inputs into our

query. In the first example, we try to feed in all colors from Production.Product. If this

worked, we could always use PIVOT for all values in a column, without the need to hard

code them ahead of time. The second attempt uses a table variable to store a set of colors

prior to executing the PIVOT statement. If this worked, we could then customize a color

list prior to runtime using input from an application or person.

Unfortunately, neither syntax works, and will generate similar error messages:

Msg 156, Level 15, State 1, Line 50

Incorrect syntax near the keyword 'SELECT'.

Msg 102, Level 15, State 1, Line 50

Incorrect syntax near ')'.

These messages are not terribly helpful, but do imply that our syntax is incorrect.

Our slick attempt at solving a problem didn’t work, but there is another way to get

past this limitation in the syntax of PIVOT: dynamic SQL! The column name list must

be present in our TSQL prior to runtime, and that can be accomplished by building a

command string with the column list details added in when the string is built. This will

allow us to have a dynamic column list available from any source we choose. Here is a

new version of our PIVOT where we use a table variable to store a list of colors, and feed

it into dynamic SQL to output to a column list that we specify at runtime.

Listing 9-5.  Use of Dynamic SQL and a Table Variable to Create a Variable

Column List at Runtime

DECLARE @colors TABLE

 (color_name VARCHAR(25));

INSERT INTO @colors

 (color_name)

VALUES ('Black'), ('Grey'), ('Silver/Black'), ('White');

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

SELECT

 *

FROM

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

333

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 FOR product_color IN (';

SELECT @sql_command = @sql_command + '[' + color_name + '], '

FROM @colors;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) PIVOT_DATA

';

EXEC sp_executesql @sql_command;

The PIVOT TSQL above is exactly the same as it was before, but we incorporate

several dynamic SQL methods from earlier in this book in order to accomplish our goal.

First, we generate a dynamic list of colors and add it to our command string:

SELECT @sql_command = @sql_command + '[' + color_name + '], '

FROM @colors;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

For any number of colors in our table variable, this will append them to our

command string, contained in brackets and delimited by commas. The additional

SELECT statement removes the trailing comma that remains from the list generation.

Once the list of colors has been appended, we can complete the command string

and execute it to get our result set.

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

334

Note that columns only exist for the colors that we included in the table variable. Any

products for which the color is not given in a column header will have NULLs for all new

columns added by the PIVOT operation.

With this framework in place, we can tackle scenarios that were previously

impossible. First, let’s rewrite the previous query so that it includes ALL colors,

regardless of which are added or removed in the underlying data over time. To

accomplish this, all we need to do is replace the INSERT into the table variable to use a

query of Production.Product, rather than a static list of values, as shown in Listing 9-6.

Listing 9-6.  Dynamic PIVOT that Uses All Color Values in Production.Product

DECLARE @colors TABLE

 (color_name VARCHAR(25));

INSERT INTO @colors

 (color_name)

SELECT DISTINCT

 Product.Color

FROM Production.Product

WHERE Product.Color IS NOT NULL;

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

SELECT

 *

Figure 9-3.  Results of the Dynamic PIVOT in Listing 9-5

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

335

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 FOR product_color IN (';

SELECT @sql_command = @sql_command + '[' + color_name + '], '

FROM @colors;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) PIVOT_DATA

';

PRINT @sql_command;

EXEC sp_executesql @sql_command;

The text of the command string prior to execution shows that it looks identical to our

original hard-coded PIVOT query earlier:

SELECT

 *

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

336

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 �FOR product_color IN ([Black], [Blue], [Grey], [Multi], [Red],

[Silver], [Silver/Black], [White], [Yellow])) PIVOT_DATA

Our ultimate test is to add a few colors to Production.Product and see what

happens to our command string and output when we run the dynamic PIVOT again:

UPDATE Production.Product

SET Product.Color = 'Fuschia'

WHERE Product.ProductID = 325 -- Decal 1

UPDATE Production.Product

SET Product.Color = 'Aquamarine'

WHERE Product.ProductID = 326 -- Decal 2

Here, we update two products to use new colors that were not present in

AdventureWorks originally: Fuchsia and Aquamarine. With these colors added, let’s run

the dynamic PIVOT and review the new command string:

SELECT

 *

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 �FOR product_color IN ([Aquamarine], [Black], [Blue], [Fuschia],

[Grey], [Multi], [Red], [Silver], [Silver/Black], [White],

[Yellow])) PIVOT_DATA

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

337

Note that the new colors that we added are now present in the PIVOT. Reviewing the

output in Figure 9-4, we can confirm that the columns are in the result set and correctly

populated based on the changes we made.

With the preceding syntax, we can make any PIVOT dynamic and supply a list of

values from user input, a TSQL query, or anywhere that data can be queried from in

SQL Server. This reduces the need to hard code specific column headings into stored

procedure, thereby reducing maintenance costs over time. The last thing we want to

worry about is adjusting TSQL or application code whenever a new color bike is added

to the product inventory!

The following TSQL will clean up our changes and remove the new colors used,

returning them to NULL as they originally were set:

UPDATE Production.Product

SET Product.Color = NULL

WHERE Product.ProductID = 325 -- Decal 1

UPDATE Production.Product

SET Product.Color = NULL

WHERE Product.ProductID = 326 -- Decal 2

�UNPIVOT
PIVOT has its counterpart in UNPIVOT, which takes a query with a column list and

reconstructs it into row data. To demonstrate this using familiar data, we will output

the results of our previous example into a table for use in this section using the TSQL in

Listing 9-7.

Figure 9-4.  Dynamic PIVOT with the inclusion of two new colors

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

338

Listing 9-7.  Query to Store Data for Use in a Dynamic UNPIVOT Demonstration

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

SELECT

 *

INTO dbo.Products_By_Color

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 �FOR product_color IN ([Black], [Blue], [Grey], [Multi], [Red],

[Silver], [Silver/Black], [White], [Yellow])) PIVOT_DATA';

Exec Sp_executesql @sql_command;

By adding an INTO to the SELECT, the output we reviewed will be stored in the table

dbo.Products_By_Color, which will be used in our UNPIVOT testing below.

The syntax for UNPIVOT mirrors that of PIVOT and involves the use of a similar

column list, with the exception that the data will be reverted to rows, removing all

additional columns listed. This can be seen in Listing 9-8.

Listing 9-8.  Using UNPIVOT to Revert Column Headers into Row Data

SELECT

 *

FROM

 (SELECT

 *

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

339

 FROM dbo.Products_By_Color) AS PRODUCTS_BY_COLOR

UNPIVOT

 (product_quantity FOR Color IN

 �([Black], [Blue], [Grey], [Multi], [Red], [Silver], [Silver/Black],

[White], [Yellow])

) AS UNPIVOT_DATA;

Figure 9-5 shows a subset of the output from the preceding statement.

All of the new columns that we introduced in the last section have been removed

and their corresponding names inserted into the new Color column. The syntax for

UNPIVOT involves three additional bits of syntax that are worth describing in detail:

Figure 9-5.  Output from the UNPIVOT statement in Listing 9-8

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

340

	 1.	 A new column for the unpivoted quantity data. In this case, we

called the new column product_quantity, though any name

could be used. When using UNPIVOT, there is no need to provide

an aggregation, as all values are moved into this column whether

duplicated or not.

	 2.	 The new column that will contain the previous multitude of

pivoted column names must be provided. In this example, we

name it “Color.”

	 3.	 A column list must be provided, similar to when we wrote a PIVOT

statement. Each column in this list will be included within rows of

the result set. Any omitted column names will not be represented

in the result set.

The results from this query are not the same as our original data. It is important to

emphasize that UNPIVOT is not simply the opposite of PIVOT, and that applying one

after the other will rarely result in identical sets of data. In the preceding example, there

are two important differences between this data and what we began with at the start of

the chapter.

First, NULLs have been eliminated. Any product with no color defined was dropped

out of the result set. The results show all product-color combinations for which a color

in the list we provided was present and had a quantity defined. The second difference

involves the quantities themselves. When we apply PIVOT to a set of data, we supply

an aggregate to process multiple rows with the same value. Once quantities have been

summed, there is no way for us to “un-sum” them. The results of the UNPIVOT contain

product quantity totals that represent multiple products from the original data in

production.Product.

Now that we have addressed the important differences between PIVOT, UNPIVOT,

and the ways in which data is handled by each, we can work on making UNPIVOT more

flexible.

As before, we want to be able to apply UNPIVOT from a dynamic list of column

names, and not be forced to supply values ahead of time in our code. This allows us to

make data or schema changes at will without having to adjust UNPIVOT code each and

every time. Our first challenge is to generate a list of colors given a group of columns in

a table, rather than row data. To get all of the columns, there are a few options available

to us. The first would be to go back to Production.Product and use the colors from that

table to fuel this query, as seen in Listing 9-9.

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

341

Listing 9-9.  A Dynamic UNPIVOT, Using Original Row Data to Supply Color

Names

DECLARE @colors TABLE

 (color_name VARCHAR(25));

INSERT INTO @colors

 (color_name)

SELECT DISTINCT

 Product.Color

FROM Production.Product

WHERE Product.Color IS NOT NULL;

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

SELECT

 *

FROM

 (SELECT

 *

 FROM dbo.Products_By_Color) AS PRODUCTS_BY_COLOR

UNPIVOT

 (product_quantity FOR Color IN

 (';

SELECT @sql_command = @sql_command + '[' + color_name + '], '

FROM @colors;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) AS UNPIVOT_DATA;

';

EXEC sp_executesql @sql_command;

This approach works and will provide the same output as earlier, but has a distinct

limitation in that our color list from earlier may not apply here. If it doesn’t, then we

need to collect column name data from the table schema itself and use that to power

our UNPIVOT. This can be accomplished by querying the sys.tables and sys.columns

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

342

system views, which provide information about the structure and names of our tables

and columns. There are other system objects available that can provide similar data,

such as INFORMATION_SCHEMA.COLUMNS, but for our example here we’ll stick to the

two aforementioned views, which reference data in sys.objects. This can be seen in

Listing 9-10.

Listing 9-10.  A Dynamic UNPIVOT, Using Schema Metadata to Supply Color

Names

DECLARE @colors TABLE

 (color_name VARCHAR(25));

INSERT INTO @colors

 (color_name)

SELECT

 columns.name

FROM sys.tables

INNER JOIN sys.columns

ON columns.object_id = tables.object_id

WHERE tables.name = 'Products_By_Color'

AND columns.name NOT IN ('product_name', 'ReorderPoint');

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

SELECT

 *

FROM

 (SELECT

 *

 FROM dbo.Products_By_Color) AS PRODUCTS_BY_COLOR

UNPIVOT

 (product_quantity FOR Color IN

 (';

SELECT @sql_command = @sql_command + '[' + color_name + '], '

FROM @colors;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

343

SELECT @sql_command = @sql_command + ')) AS UNPIVOT_DATA;

';

EXEC sp_executesql @sql_command;

Everything in this example is the same as the previous one, except for the collection

of color data, which uses the column names for the table dbo.Products_By_Color as

provided by sys.columns. Note that we need to provide an exceptions list here that

includes any columns that we do not wish to UNPIVOT. In this example, there are two

additional columns that are not colors and that we do not wish to convert into row data:

product_name and ReorderPoint. If we forget these exceptions, we might get unexpected

output, or an error message such as this:

Msg 8167, Level 16, State 1, Line 329

The type of column "ReorderPoint" conflicts with the type of other columns

specified in the UNPIVOT list.

In this case, we included columns of different data types in the UNPIVOT. While

the quantities listed under the color columns are all of type INT, ReorderPoint is a

SMALLINT and product_name is NVARCHAR(50). The exceptions can be hard coded

as we have done previously, or passed in as variables into wherever the TSQL for the

UNPIVOT runs from.

�Additional Examples
The functionality demonstrated above was perfect for teaching the basics of PIVOT

and UNPIVOT, as well as integrating dynamic SQL into their usage. A very common

real-world use of these operators is to produce accounting data that is distributed by

month, quarter, or year in column headers. For example, what if we wanted to return

sales data with column headings per quarter? We can integrate PIVOT into a common

table expression, which allows us to set up financial data that we can then transform into

columnar data for reporting or further analysis. This example can be seen in Listing 9-11.

Listing 9-11.  Using PIVOT to Group Sales Data by Quarter

WITH CTE_SALES AS (

 SELECT

 DATEPART(QUARTER, OrderDate) AS order_quarter,

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

344

 DATEPART(YEAR, OrderDate) AS order_year,

 TotalDue

 FROM Sales.SalesOrderHeader)

SELECT

 *

FROM

(SELECT

 *

 FROM CTE_SALES

) PRODUCT_DATA

PIVOT

(SUM(TotalDue)

 FOR order_quarter IN ([1], [2], [3], [4])

) PIVOT_DATA

ORDER BY order_year ASC;

The result of the query in Listing 9-11 can be seen in the small result set in Figure 9-6.

Each quarter is given its own column, with sales totals aggregated in each row below.

Instances of NULL represent scenarios where there was no data in the underlying for

those specific time periods. We could also write the PIVOT query to return all quarters,

including year, as a column header, as seen in Listing 9-12.

Listing 9-12.  Using PIVOT to Group Sales Data by Quarter and Year in a Single

Result Row

WITH CTE_SALES AS (

 SELECT

 'Totals' AS Totals,

 'Q' + CAST(DATEPART(QUARTER, OrderDate) AS VARCHAR(1)) + '-' +

Figure 9-6.  Using PIVOT to obtain sales by quarter

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

345

 �CAST(DATEPART(YEAR, OrderDate) AS VARCHAR(4)) AS

quarter_and_year,

 TotalDue

 FROM Sales.SalesOrderHeader)

SELECT

 *

FROM

(SELECT

 *

 FROM CTE_SALES

) PRODUCT_DATA

PIVOT

(SUM(TotalDue)

 �FOR quarter_and_year IN (�[Q2-2011], [Q3-2011], [Q4-2011], [Q1-2012],

[Q2-2012], [Q3-2012], [Q4-2012], [Q1-2013],

 �[Q2-2013], [Q3-2013], [Q4-2013], [Q1-2014],

[Q2-2014])

) PIVOT_DATA

By combining quarter and year into a single string, we can condense our data into

a single row with one column per quarter, including the year. The column Totals is

included so that we have some sort of row header, but it is not necessary to successfully

retrieve our result set.

This syntax introduces the same problem we had earlier, though, in that we were

forced to hard code a list of quarters into the TSQL. If new data is added, then our query

will not account for it and the result set will be incomplete. Dynamic SQL can rescue

us again, by allowing us to declare a list of quarters ahead of time and then integrate

it into a command string that will use PIVOT to crunch our source data appropriately,

regardless of the dates that are included. This is shown in Listing 9-13.

Listing 9-13.  Dynamic PIVOT Used to Return any Number of Quarters of

Financial Data

DECLARE @quarters TABLE

 (quarter_and_year NVARCHAR(7));

INSERT INTO @quarters

 (quarter_and_year)

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

346

SELECT DISTINCT

 'Q' + CAST(DATEPART(QUARTER, OrderDate) AS VARCHAR(1)) + '-' +

 CAST(DATEPART(YEAR, OrderDate) AS VARCHAR(4))

FROM Sales.SalesOrderHeader

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

WITH CTE_SALES AS (

 SELECT

 "Totals" AS Totals,

 "Q" + CAST(DATEPART(QUARTER, OrderDate) AS VARCHAR(1)) + "-" +

 �CAST(DATEPART(YEAR, OrderDate) AS VARCHAR(4)) AS

quarter_and_year,

 TotalDue

 FROM Sales.SalesOrderHeader)

SELECT

 *

FROM

(SELECT

 *

 FROM CTE_SALES

) PRODUCT_DATA

PIVOT

(SUM(TotalDue)

 FOR quarter_and_year IN ('

SELECT @sql_command = @sql_command + '[' + quarter_and_year + '], '

FROM @quarters;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) PIVOT_DATA

';

PRINT @sql_command;

EXEC sp_executesql @sql_command;

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

347

�Multiple PIVOT Operators
For our next example, we’ll illustrate a more advanced usage of PIVOT. Whereas

previously we only used PIVOT to operate on a single column, it is possible to apply this

operator to multiple columns of distinct values. Let’s say that we wanted to crunch our

product data by color and by safety stock level? This can be done using a single query, as

follows in Listing 9-14.

Listing 9-14.  Using Multiple PIVOT Operators in a Single TSQL Statement

SELECT

 *

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity,

 PRODUCT.SafetyStockLevel

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 �FOR product_color IN ([Black], [Blue], [Grey], [Multi], [Red],

[Silver], [Silver/Black], [White], [Yellow])

) PIVOT_DATA_COLOR

PIVOT

(COUNT(SafetyStockLevel)

 FOR SafetyStockLevel IN ([4], [60], [100], [500], [800], [1000])

) PIVOT_DATA_LEVEL

The query above will return the results shown in figure 9-7.

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

348

A new set of columns has been added to our result set with the number of times a

particular SafetyStockLevel value matches the ones provided in our list. This can be a

very handy trick if we want to report on multiple metrics side by side and wish to do so in

a single query, rather than joining multiple result sets together.

We can implement dynamic SQL just as we did before to ensure that all list values

for both metrics are correctly accounted for. When we do this, we will need to include a

separate table variable for SafetyStockLevel values, in addition to those for Color, as

shown in Listing 9-15.

Listing 9-15.  Using Multiple PIVOT Operators with Dynamic SQL

DECLARE @colors TABLE

 (color_name VARCHAR(25));

INSERT INTO @colors

 (color_name)

SELECT DISTINCT

 Product.Color

FROM Production.Product

WHERE Product.Color IS NOT NULL;

DECLARE @stock_levels TABLE

 (safety_stock_level SMALLINT);

INSERT INTO @stock_levels

SELECT DISTINCT

 Product.SafetyStockLevel

FROM Production.Product;

DECLARE @sql_command NVARCHAR(MAX);

Figure 9-7.  Results of a query that uses two PIVOT operators for data aggregation

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

349

SELECT @sql_command = '

SELECT

 *

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity,

 PRODUCT.SafetyStockLevel

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 FOR product_color IN (';

SELECT @sql_command = @sql_command + '[' + color_name + '], '

FROM @colors;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) PIVOT_DATA_COLOR

PIVOT

(COUNT(SafetyStockLevel)

 FOR SafetyStockLevel IN (';

SELECT @sql_command = @sql_command + '[' + CAST(safety_stock_level AS

NVARCHAR) + '], '

FROM @stock_levels;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) PIVOT_DATA_LEVEL

';

PRINT @sql_command;

EXEC sp_executesql @sql_command;

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

350

The result set is exactly the same as it was previously. We can verify that we didn’t

make any mistakes by reviewing the text of the command string:

SELECT

 *

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity,

 PRODUCT.SafetyStockLevel

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 �FOR product_color IN ([Black], [Blue], [Grey], [Multi], [Red],

[Silver], [Silver/Black], [White], [Yellow])) PIVOT_DATA_COLOR

PIVOT

(COUNT(SafetyStockLevel)

 �FOR SafetyStockLevel IN ([4], [60], [100], [500], [800], [1000]))

PIVOT_DATA_LEVEL

Combining multiple PIVOT operators with dynamic SQL provides an immense

amount of flexibility when generating columnar data given the contents of multiple

columns. By producing a result set in a single query, we ensure relational integrity and

that we didn’t make any mistakes when outputting data to intermediate locations.

The syntax is the same as it was for a single PIVOT, and does not become much more

complex as we add further instances of it.

�Multiple UNPIVOT Operators
For the final example of this chapter, we’ll build on our work thus far to UNPIVOT the

result set from before. This will be accomplished using multiple UNPIVOT operators.

Keep in mind that the result set for this operation will not be the same as the original

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

351

input data from the start of the last example. While the results of the UNPIVOT will be

meaningful, it is important to remember that applying PIVOT and UNPIVOT to a data

set is unlikely to return equivalent results as the original data set. Granularity is often lost

and cannot be reconstituted, regardless of how fancy we get with our TSQL skills!

Our first step is to take the data from the last example and store it in a table to reuse it

in our UNPIVOT:

SELECT

 *

INTO dbo.Products_By_Color_and_Stock_Level

FROM

(SELECT

 PRODUCT.Name AS product_name,

 PRODUCT.Color AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity,

 PRODUCT.SafetyStockLevel

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

PIVOT

(SUM(product_quantity)

 �FOR product_color IN ([Black], [Blue], [Grey], [Multi], [Red],

[Silver], [Silver/Black], [White], [Yellow])) PIVOT_DATA_COLOR

PIVOT

(COUNT(SafetyStockLevel)

 �FOR SafetyStockLevel IN ([4], [60], [100], [500], [800], [1000]))

PIVOT_DATA_LEVEL;

The table Products_By_Color_and_Stock_Level is created to store the pivoted

output that we will work with for the duration of this chapter. Our first attempt at an

UNPIVOT is shown in Listing 9-16.

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

352

Listing 9-16.  First Attempt at Using Two UNPIVOT Operators in a Single

Statement

SELECT

 *

FROM

 (SELECT

 *

 �FROM dbo.Products_By_Color_and_Stock_Level) AS PRODUCTS_BY_COLOR_

AND_STOCK_LEVEL

UNPIVOT

 (product_quantity FOR Color IN

 �([Black], [Blue], [Grey], [Multi], [Red], [Silver], [Silver/Black],

[White], [Yellow])

) AS UNPIVOT_DATA_COLOR

UNPIVOT

 (safety_stock_level FOR SafetyStockLevel IN

 ([4], [60], [100], [500], [800], [1000])

) AS UNPIVOT_DATA_STOCK_LEVEL;

The preceding query returns results but they are a bit suspect, as seen in the result

set in Figure 9-8.

Figure 9-8.  Results from an improperly constructed query with two UNPIVOT
operators

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

353

Note that we receive six rows back for each product. Since the safety stock levels

were defined as non-NULL counts, the UNPIVOT operation sees all as valid values and

returns rows for each. Ideally we want the column names pivoted into row values for

both colors and stock levels, but with the assumption that zero values are omitted for all

stock levels. There are a variety of ways to fix this, and we will do so using an additional

WHERE clause to remove the zeroes altogether, as shown in Listing 9-17.

Listing 9-17.  UNPIVOT Example, with Zero Values Removed

SELECT

 product_name,

 ReorderPoint,

 product_quantity,

 Color,

 SafetyStockLevel

FROM

 (SELECT

 *

 �FROM dbo.Products_By_Color_and_Stock_Level) AS PRODUCTS_BY_COLOR_

AND_STOCK_LEVEL

UNPIVOT

 (product_quantity FOR Color IN

 �([Black], [Blue], [Grey], [Multi], [Red], [Silver], [Silver/Black],

[White], [Yellow])

) AS UNPIVOT_DATA_COLOR

UNPIVOT

 (safety_stock_level FOR SafetyStockLevel IN

 ([4], [60], [100], [500], [800], [1000])

) AS UNPIVOT_DATA_STOCK_LEVEL

WHERE safety_stock_level <> 0;

By filtering on safety_stock_level <> 0, we remove the zeroes. In addition, we

explicitly choose the columns for the output set such that safety_stock_level is not

included, as its contents are no longer important to the result set and will only contain

ones. The results now look cleaner and more like what we expected the first time.

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

354

Each column is now populated with meaningful values, removing zero values and

the extra placeholder safety_stock_level column.

Now that we have a working query with multiple UNPIVOT operators, we can apply

dynamic SQL to it to return results for any values of Color or SafetyStockLevel found in

the Products_By_Color_and_Stock_Level table previously created. This fun query can

be found in Listing 9-18.

Listing 9-18.  Dynamic SQL Used in Conjunction with Multiple UNPIVOT

Operators

DECLARE @colors TABLE

 (color_name VARCHAR(25));

INSERT INTO @colors

 (color_name)

SELECT

 columns.name

FROM sys.tables

INNER JOIN sys.columns

ON columns.object_id = tables.object_id

WHERE tables.name = 'Products_By_Color_and_Stock_Level'

AND columns.name NOT IN ('product_name', 'ReorderPoint')

AND ISNUMERIC(columns.name) = 0;

Figure 9-9.  Results from the corrected UNPIVOT query in Listing 9-17

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

355

DECLARE @stock_levels TABLE

 (safety_stock_level SMALLINT);

INSERT INTO @stock_levels

SELECT

 columns.name

FROM sys.tables

INNER JOIN sys.columns

ON columns.object_id = tables.object_id

WHERE tables.name = 'Products_By_Color_and_Stock_Level'

AND columns.name NOT IN ('product_name', 'ReorderPoint')

AND ISNUMERIC(columns.name) = 1;

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

SELECT

 product_name,

 ReorderPoint,

 product_quantity,

 Color,

 SafetyStockLevel

FROM

 (SELECT

 *

 �FROM dbo.Products_By_Color_and_Stock_Level) AS PRODUCTS_BY_COLOR_

AND_STOCK_LEVEL

UNPIVOT

 (product_quantity FOR Color IN

 (';

SELECT @sql_command = @sql_command + '[' + color_name + '], '

FROM @colors;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) AS UNPIVOT_DATA_COLOR

UNPIVOT

 (safety_stock_level FOR SafetyStockLevel IN

 ('

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

356

SELECT @sql_command = @sql_command + '[' + CAST(safety_stock_level AS

NVARCHAR) + '], '

FROM @stock_levels;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) AS UNPIVOT_DATA_STOCK_

LEVEL

WHERE safety_stock_level <> 0;';

PRINT @sql_command;

EXEC sp_executesql @sql_command;

The first challenge is parsing the column names into each table variable for use later

on. In this case we are fortunate in that the colors are all string data, whereas the stock

levels are all numeric. By checking whether the column name is numeric, we can split

the column names into two meaningful lists. In the event that the column names could

not easily be separated, we could separate the initial data into multiple holding tables,

rather than putting it all into Products_By_Color_and_Stock_Level.

In an effort to avoid adding more complexity, a potentially better way to divide the

columns would be to tag each with a meaningful name. For the preceding example,

colors could be prefixed with “Color:” and stock levels prefixed with “StockLevel:”. When

we filter column names for each table variable of possible values, the prefixes could be

easily checked instead. Since we determine the structure of those prefixes, we can ensure

they are unique, meaningful, and allow us to maintain our data in a single holding table.

The command string for the preceding UNPIVOT operation will look like this:

SELECT

 product_name,

 ReorderPoint,

 product_quantity,

 Color,

 SafetyStockLevel

FROM

 (SELECT

 *

 �FROM dbo.Products_By_Color_and_Stock_Level) AS PRODUCTS_BY_COLOR_

AND_STOCK_LEVEL

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

357

UNPIVOT

 (product_quantity FOR Color IN

 �([Black], [Blue], [Grey], [Multi], [Red], [Silver], [Silver/Black],

[White], [Yellow])) AS UNPIVOT_DATA_COLOR

UNPIVOT

 (safety_stock_level FOR SafetyStockLevel IN

 ([4], [60], [100], [500], [800], [1000])) AS UNPIVOT_DATA_STOCK_LEVEL

 WHERE safety_stock_level <> 0;

This TSQL, with minor formatting differences, is identical to the statement that we

tested before, in which dynamic SQL was not used. The result set is also identical to what

we returned previously. Note the row count of the results that we have generated, as seen

in Figure 9-10.

There were a total of 184 rows returned, which is far smaller than the size of the

original data set that we worked with. Our original data, taken from Production.Product

and Production.ProductInventory, contained 1,141 rows. The results of the PIVOT

operations reduced that count to 504 rows. With each operation, the granularity of our

data set is reduced as we aggregate the results. As such, it is important to remember that

PIVOT and UNPIVOT, even when used one after the other, will generally not restore

a data set into its original form. Therefore, use these transformations as methods to

acquire reporting data efficiently, but not to reconstruct or validate data. While it is

possible to build sequences of PIVOT and UNPIVOT operations that can reverse data

into its original structure and contents, it is unlikely to be a useful exercise.

Utilizing multiple UNPIVOT operations can allow a complex reporting data set to

be reverted into summary data for use in further reports or as a way to input columnar

data into a transactional system as row data. Utilizing dynamic SQL allows for all

possible column values to be efficiently accounted for, even if the set of columns can

change over time!

Figure 9-10.  Row count from the UNPIVOT query in Listing 9-18

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

358

�Classification Using PIVOT and CASE
Pivot can be used to organize data, taking a range of values and sorting them into groups

that be reported on as needed. This allows us to dynamically generate a list of categories

and apply rules to our data to populate those categories. Consider the example in

Listing 9-19.

Listing 9-19.  Using CASE to Group Categories Prior to the PIVOT Operation

DECLARE @colors TABLE

 (color_name VARCHAR(25));

INSERT INTO @colors

 (color_name)

VALUES

 ('Standard Color'),

 ('Other'),

 ('Undefined');

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

SELECT

 *

FROM

(SELECT

 PRODUCT.Name AS product_name,

 CASE WHEN PRODUCT.Color IS NULL THEN "Undefined"

 �WHEN PRODUCT.Color IN ("White", "Black", "Grey",

"Silver/Black") THEN "Other"

 ELSE "Standard Color"

 END AS product_color,

 PRODUCT.ReorderPoint,

 PRODUCT_INVENTORY.Quantity AS product_quantity

 FROM Production.Product PRODUCT

 LEFT JOIN Production.ProductInventory PRODUCT_INVENTORY

 ON PRODUCT.ProductID = PRODUCT_INVENTORY.ProductID

) PRODUCT_DATA

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

359

PIVOT

(SUM(product_quantity)

 FOR product_color IN (';

SELECT @sql_command = @sql_command + '[' + color_name + '], '

FROM @colors;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) PIVOT_DATA

';

EXEC sp_executesql @sql_command;

In this script, we defined a set of categories up front, rather than a full list of colors.

These categories discern between monochromatic colors, other colors, and undefined

colors (that have NULL for Color). By applying PIVOT to a CASE statement, we can easily

organize the results into a customized set of categories of our choosing. The results of

this categorization are shown in Figure 9-11.

Instead of getting a result set with a column per color, the colors are aggregated into

the categories we supplied. In this example, we hard coded a set of three categories,

but they could just as easily be supplied by a query that pulls categories from a relevant

metadata table.

This allows us to crunch meaningful results from our data prior to the creation of

columns. In addition to saving us time later, we can get a more predictable result set.

Figure 9-11.  Results of categorization using PIVOT over a CASE statement

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

360

This is especially valuable if there is a large number of possible colors. We may not want

a result set with a hundred columns, but a more organized set of sixteen standard ones

would be acceptable.

The subquery that we PIVOT can have any operators applied to it. CASE is one

example, but we could apply any functions to our input data to stage it for processing.

Data functions, string manipulation, and mathematical operators can be applied as

needed, as well as CAST/CONVERT to turn our data set into exactly what we want prior

to converting row data into columnar data. Ultimately, this will save us time and effort, as

we will have far less work to do with our results because they will already be in a friendly

and easy-to-consume format.

�Conclusion
PIVOT and UNPIVOT are often seen as advanced or finicky operators to be avoided

whenever possible. For the use cases presented, though, they can provide large amounts

of data quickly in an atomic and set-based approach. As a performance bonus, there is

no need to implement loops, cursors, or other iterative solutions that could run slowly or

be resource intensive on larger volumes of data.

The biggest challenge with these operators is that column lists must be explicitly

provided prior to runtime. Hard coding these values greatly increases related technical

debt by forcing us to keep track of and update these values whenever related application

or database changes occur. This maintenance cost is high and presents opportunities for

software bugs to manifest themselves that would be difficult to avoid and frustrating to

diagnose.

Implementing dynamic SQL in conjunction with PIVOT or UNPIVOT allows us to

generate column lists at runtime based on whatever criteria the developer chooses to

apply. So long as this logic is relevant, there will be no need to adjust stored procedures

or code when new values are added or old ones removed.

Chapter 9 Dynamic Pivot and Unpivot

www.EBooksWorld.ir

361
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_10

CHAPTER 10

Solving Common
Problems
Dynamic SQL presents a unique opportunity to take common database problems or

limitations and solve them quickly. Oftentimes we run into frustrating situations where

we are managing different databases, schemas, or settings, and there is no easy way to

make changes to a mixed set of objects. This chapter provides an opportunity to explore

some examples of situations where dynamic SQL can resolve complex situations. In

addition, we will provide general guidelines and techniques that could apply to any

similar database problem.

�Collation Conflicts
Database collations in SQL Server provide a set of rules that are used when sorting or

comparing data. The following rules may be applied to data when a collation is specified:

•	 Case sensitivity: When selected, lowercase letters will always sort

ahead of capital letters, otherwise they will be the same, for sorting

and filtering purposes.

•	 Accent sensitivity: When this option is selected, accented characters are

treated distinctly from unaccented characters when sorted or compared.

•	 Width sensitivity: This option specifies whether full-width and half-

width characters are treated equally when sorted or compared.

•	 Kana sensitivity: In Japanese, Hiragana and Katakana characters will be

sorted and compared as different characters when this option is selected.

•	 Variation-selector-sensitivity: In Japanese, allows different

ideographic variation selectors to be differentiated between.

www.EBooksWorld.ir

362

Different applications may require different collations to manage their data

effectively. It is less expensive to specify an accurate collection in the database than

to constantly sort and check rules in the application. For example, if case sensitivity is

required on all strings, using a case sensitive collation will be more efficient than an

application validating the case of characters in all strings it reads.

Collations may be used to manage multiple languages or character sets in

applications that are used worldwide. This ensures that all users have a positive

experience when reading data. Imagine a scenario in which a sorted list of names had

the letter K before the letter C. This problem is common in other languages when we do

not properly manage sorting via a collation (or some other method).

�The Problem
SQL Server will prevent direct assignments or comparisons between string data of

different collations. This is by design, as comparing two different rule sets without a

conversion has no obvious resolution, and SQL Server would prefer to prevent this

than make assumptions that could be incorrect. If we are working with data in multiple

collations, we must account for the differences to ensure that we act on it according to

the correct business logic.

To test collations, we will create a new database, a new table within it, and populate it

with data from AdventureWorks, as seen in Listing 10-1.

Listing 10-1.  Building a Test Database for Collation Testing

IF EXISTS (SELECT * FROM sys.databases WHERE name = 'Collation_Test')

BEGIN

 DROP DATABASE Collation_Test;

END

GO

CREATE DATABASE Collation_Test COLLATE Traditional_Spanish_CI_AS;

GO

USE Collation_Test;

GO

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

363

CREATE TABLE dbo.Spanish_Employees

(BusinessEntityID INT NOT NULL,

 NationalIDNumber NVARCHAR(15) NOT NULL,

 LoginID NVARCHAR(256) NOT NULL,

 OrganizationNode HIERARCHYID NULL,

 OrganizationLevel SMALLINT NULL,

 JobTitle NVARCHAR(50) NOT NULL,

 BirthDate DATE NOT NULL,

 MaritalStatus NCHAR(1) NOT NULL,

 Gender NCHAR(1) NOT NULL,

 HireDate DATE NOT NULL,

 SalariedFlag BIT NOT NULL,

 VacationHours SMALLINT NOT NULL,

 SickLeaveHours SMALLINT NOT NULL,

 CurrentFlag BIT NOT NULL,

 rowguid UNIQUEIDENTIFIER ROWGUIDCOL NOT NULL,

 ModifiedDate DATETIME NOT NULL,);

GO

INSERT INTO Collation_Test.dbo.Spanish_Employees

SELECT

 *

FROM AdventureWorks2016CTP3.HumanResources.Employee;

Note that when we created the database Collation_Test, it was explicitly given the

collation Traditional_Spanish_CI_AS. All strings in this database will, by default, be

stored and sorted in this new collation, rather than the instance default or the settings

found on other databases. On my SQL Server, the default collation is SQL_Latin1_

General_CP1_CI_AS. This can be verified in the server properties in the GUI, as shown in

Figure 10-1.

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

364

Under “Server Collation,” the default for my server can be found. This is the collation

that will be used on any new database that is created in which another collation is not

supplied. This can also be verified with TSQL:

SELECT SERVERPROPERTY('Collation') AS ServerDefaultCollation;

The resulting collation is the same as seen previously in the GUI and can be verified

in Figure 10-2.

Figure 10-1.  Default server collation, as seen in the SQL Server Properties
window

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

365

To illustrate one of the differences between different collations, we will look at the

HumanResources.Employee table, focusing on the JobTitle column within the original

table and the newly created one that is collated using Traditional Spanish. Listing 10-2

shows each of these queries.

Listing 10-2.  Two Test Queries, Illustrating Differences in Two Distinct Collations

SELECT

 *

FROM AdventureWorks2016CTP3.HumanResources.Employee

WHERE JobTitle LIKE 'C%'

ORDER BY JobTitle;

SELECT

 *

FROM Collation_Test.dbo.Spanish_Employees

WHERE JobTitle LIKE 'C%'

ORDER BY JobTitle;

The results of the preceding queries are a bit unusual, and indicate that there are

significant differences between each collation.

Figure 10-2.  The default collation on my test server

Figure 10-3.  Different collations result in the same query providing different
results

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

366

The second result set only returns two rows, whereas the original AdventureWorks

table includes two additional executives. Why were the results different? It turns out that

in traditional Spanish, the letters “CH” are considered a separate letter of the alphabet.

We can view those rows of data for which the job title begins in those characters like this:

SELECT

 *

FROM Collation_Test.dbo.Spanish_Employees

WHERE JobTitle LIKE 'CH%'

ORDER BY JobTitle;

This query returns the results in Figure 10-4.

Because of the language differences, the filter “C%” does not include the results that

are returned by the filter “CH%.” In addition, these letters will not sort as they normally

would in a Latin collation:

SELECT

 *

FROM Collation_Test.dbo.Spanish_Employees

WHERE JobTitle BETWEEN 'C' AND 'D'

ORDER BY JobTitle;

This query returns all four results from the first part of Figure 10-3, as seen in

Figure 10-5.

Figure 10-4.  Illustration of the difference between “C” and “CH” in a Spanish
collation

Figure 10-5.  Sorting differences in the traditional Spanish collation

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

367

In this collation, “C” comes before “CH” in the alphabet. This may seem like a

minor difference, but for a user running a web search, these results could easily lead to

incorrect assumptions. For example, the user searches as we did, returns two results, and

never realizes that there are two additional employees they may have been looking for in

the table.

It is possible to force collations on any result set, as shown in Listing 10-3.

Listing 10-3.  Forcing a Specific Collation on Filters and Sorts in a Result Set

SELECT

 *

FROM Collation_Test.dbo.Spanish_Employees

WHERE JobTitle COLLATE SQL_Latin1_General_CP1_CI_AS LIKE 'C%'

ORDER BY JobTitle COLLATE SQL_Latin1_General_CP1_CI_AS;

SELECT

 *

FROM Collation_Test.dbo.Spanish_Employees

WHERE JobTitle COLLATE SQL_Latin1_General_CP1_CI_AS BETWEEN 'C' AND 'D'

ORDER BY JobTitle COLLATE SQL_Latin1_General_CP1_CI_AS;

The results of the preceding queries return the data we would typically expect, as

seen in Figure 10-6.

Figure 10-6.  Forcing a collation to return desired results

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

368

One final example of collation conflict occurs when we try to directly compare

columns from any one collation with another:

SELECT

 *

FROM Collation_Test.dbo.Spanish_Employees

INNER JOIN AdventureWorks2016CTP3.HumanResources.Employee

ON Spanish_Employees.LoginID = Employee.LoginID;

The preceding query will result in an error:

Msg 468, Level 16, State 9, Line 94

Cannot resolve the collation conflict between "SQL_Latin1_General_CP1_CI_AS"

and "Traditional_Spanish_CI_AS" in the equal to operation.

To make this query work, we must force the collation of one join column to match

the other involved. Which collation we convert depends on our use case, but without

changing one of them, we will be unable to join, filter on, or compare results from either

data set:

SELECT

 *

FROM Collation_Test.dbo.Spanish_Employees

INNER JOIN AdventureWorks2016CTP3.HumanResources.Employee

ON Spanish_Employees.LoginID = Employee.LoginID COLLATE Traditional_

Spanish_CI_AS

By forcing a collation onto the join predicate, we can ensure that each column can

be compared to the other and results properly returned. Alternatively, we can use the

DATABASE_DEFAULT clause to automatically adjust the column collation on-the-fly,

which can be extremely useful when working with varied data sets, or those guided by

dynamic SQL:

SELECT

 *

FROM Collation_Test.dbo.Spanish_Employees

INNER JOIN AdventureWorks2016CTP3.HumanResources.Employee

ON Spanish_Employees.LoginID = Employee.LoginID COLLATE DATABASE_DEFAULT;

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

369

Note that if we want to collate text into the server’s default, then this would not be

the correct solution, but for maintaining consistency within a database, it’s a quick and

easy solution!

�The Solution
Forcing a specific collation works when we know exactly what collations to expect when

running queries. What if we are working with many different collations and do not

know until runtime exactly which we want to sort by? If we manage many servers and

databases, each with a different default collation, then we cannot make assumptions

when converting collations at runtime. In addition, forcing all columns to a specific

collation may affect the output in ways that users or applications would be intolerant of.

Dynamic SQL can help us turn a six-page problem into a one-page solution! By

returning the default collation of the server or database as we did above, we can always

return or compare data in the correct collation. The script in Listing 10-4 will result in a

collation conflict error.

Listing 10-4.  Collation Conflict Example Using a Table Variable

USE AdventureWorks2016CTP3

GO

DECLARE @temp_employees TABLE

(id INT NOT NULL IDENTITY(1,1),

 LoginID NVARCHAR(256) NOT NULL);

INSERT INTO @temp_employees

 (LoginID)

SELECT TOP 50

 LoginID

FROM AdventureWorks2016CTP3.HumanResources.Employee

ORDER BY Employee.JobTitle;

SELECT

 Spanish_Employees.NationalIDNumber,

 Spanish_Employees.LoginID,

 Spanish_Employees.JobTitle,

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

370

 Spanish_Employees.BirthDate,

 Spanish_Employees.HireDate

FROM Collation_Test.dbo.Spanish_Employees

WHERE Spanish_Employees.LoginID IN

 (SELECT LoginID FROM @temp_employees);

Temporary tables and table variables are created using the collation of the TempDB

database, which will typically match the server’s default collation. In this case, the table

variable is created in the Latin collation, whereas the LoginID we are checking is in the

Spanish collation. This can be corrected permanently the dynamic SQL in Listing 10-5.

Listing 10-5.  Resolving a Collation Conflict with Dynamic SQL

USE AdventureWorks2016CTP3

GO

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @server_collation NVARCHAR(50);

SELECT @server_collation = CAST(SERVERPROPERTY('Collation') AS NVARCHAR(50));

SELECT @sql_command = '

DECLARE @temp_employees TABLE

(id INT NOT NULL IDENTITY(1,1),

 LoginID NVARCHAR(256) NOT NULL);

INSERT INTO @temp_employees

 (LoginID)

SELECT TOP 50

 LoginID

FROM AdventureWorks2016CTP3.HumanResources.Employee

ORDER BY Employee.JobTitle;

SELECT

 Spanish_Employees.NationalIDNumber,

 Spanish_Employees.LoginID,

 Spanish_Employees.JobTitle,

 Spanish_Employees.BirthDate,

 Spanish_Employees.HireDate

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

371

FROM Collation_Test.dbo.Spanish_Employees

WHERE Spanish_Employees.LoginID IN

 (SELECT LoginID COLLATE ' + @server_collation + ' FROM @temp_employees);'

EXEC sp_executesql @sql_command;

The method indicated can be reversed to work with data using the collation of a

specific database. The script in Listing 10-6 will return data using the default collation of

our test database, rather than the server collation.

Listing 10-6.  Using Dynamic SQL to Collate Data into a Specific Database’s

Default Collation

USE master

GO

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @database_name NVARCHAR(128) = 'Collation_Test';

DECLARE @collation_name NVARCHAR(50);

SELECT @collation_name = collation_name

FROM sys.databases WHERE databases.name = @database_name;

SELECT @sql_command = '

SELECT

 Spanish_Employees.NationalIDNumber,

 Spanish_Employees.LoginID,

 Spanish_Employees.JobTitle,

 Spanish_Employees.BirthDate,

 Spanish_Employees.HireDate

FROM Collation_Test.dbo.Spanish_Employees

WHERE Spanish_Employees.LoginID IN

 (SELECT TOP 50 LoginID COLLATE ' + @collation_name + '

 �FROM AdventureWorks2016CTP3.HumanResources.Employee ORDER BY

LoginID COLLATE ' + @collation_name + ')';

EXEC sp_executesql @sql_command;

This example how to return a database’s default collation from sys.databases and

use that data to quickly resolve what would otherwise be a collation conflict. This method

could similarly be employed to return a server’s default collation and apply that instead.

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

372

�Organizing and Archiving Data
When working with the archival or movement of data, we may want to name objects

such as tables, databases, or schemas with a customized name based on the date, time,

or application. This allows objects to be meaningfully tagged on an ongoing basis,

without the need for any human intervention. Using standard TSQL, this would be

difficult without some complex application code to manage the process for us.

�The Problem
What if we have a log table that grows very quickly, but where we never need data older

than a week? Partitioning the table such that the current week is isolated into a single

partition is one solution, but was only available in Enterprise edition prior to SQL Server

2016 SP1. In addition, we might want to move the old data to a different server or storage

environment. If this or any similar situations are involved, then managing the process

ourselves may be an easier and more portable solution.

To begin this example, we will populate a table with a variety of data based on date

and time, as seen in Listing 10-7.

Listing 10-7.  Create Database Log Data for an Archiving Demonstration

USE AdventureWorks2016CTP3;

CREATE TABLE dbo.Database_Log

 �(log_id INT NOT NULL IDENTITY(1,1) CONSTRAINT PK_Database_Log

PRIMARY KEY CLUSTERED,

 Log_Time DATETIME,

 Log_Data NVARCHAR(1000));

DECLARE @datetime DATETIME = CURRENT_TIMESTAMP;

DECLARE @datediff TABLE

 (previous_hour SMALLINT);

DECLARE @count SMALLINT = 0;

WHILE @count <= 360

BEGIN

 INSERT INTO @datediff

 (previous_hour)

 SELECT @count;

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

373

 SELECT @count = @count + 1

END

SELECT @count = 0;

WHILE @count <= 1000

BEGIN

 INSERT INTO Database_Log

 (Log_Time, Log_Data)

 SELECT

 DATEADD(HOUR, -1 * previous_hour, CURRENT_TIMESTAMP),

 �CAST(DATEADD(HOUR, -1 * previous_hour, CURRENT_TIMESTAMP) AS

NVARCHAR)

 FROM @datediff;

 SELECT @count = @count + 1;

END

This script will create a table called Database_Log and populate it with 361,361 rows

of data containing a variety of log times, and the string conversion of those times. The

data looks like Figure 10-7.

Let’s say we want to archive data every week into a new table that contains a week’s

worth of data. This would normally require quite a bit of manual labor to manage table

Figure 10-7.  Sample of Database Log Data Created in Listing 10-7

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

374

names correctly. What if we also wanted to separate data into databases by year, such

that each calendar year was given its own unique database? This may seem like an

unusual use case, but the need to move large volumes of data around by a time slice

is very common. Dynamic SQL techniques can be applied to any similar problem,

regardless of the specific objects or business rules.

To provide some older data that will be archived into additional databases, we’ll

run one more data population script to increase our data size even further, as seen in

Listing 10-8.

Listing 10-8.  Script to Increase the Size of Data in the Database_Log Table

DECLARE @year_offset TINYINT = 5;

WHILE @year_offset > 0

BEGIN

 INSERT INTO dbo.Database_Log

 (Log_Time, Log_Data)

 SELECT TOP 10000

 DATEADD(YEAR, -1 * @year_offset, Log_Time),

 CAST(DATEADD(YEAR, -1 * @year_offset, Log_Time) AS NVARCHAR)

 FROM Database_Log

 SELECT @year_offset = @year_offset - 1;

END

Now we have an additional 50,000 rows of data from up to 5 years ago, which will

allow us to easily demonstrate the problem outlined above.

�The Solution
To process this data correctly, we need to perform the following tasks:

	 1.	 Read data from the log table by time period.

	 2.	 Create new database or table objects (if they do not already exist).

	 3.	 Insert the data into those objects.

	 4.	 Delete the archived data from the log table.

The script in Listing 10-9 will accomplish the tasks as outlined.

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

375

Listing 10-9.  Using Dynamic SQL to Archive Data into Dynamically Named

Tables

DECLARE @sql_command NVARCHAR(MAX);

DECLARE @parameter_list NVARCHAR(MAX) = '@start_of_week DATETIME, @end_of_

week DATETIME';

DECLARE @min_datetime DATETIME;

SELECT @min_datetime = MIN(Log_Time) FROM Database_Log;

DECLARE @previous_min_time DATETIME = '1/1/1900';

DECLARE @start_of_week DATETIME = CAST(DATEADD(dd, -1 * (DATEPART(dw,

@min_datetime) - 1), @min_datetime) AS DATE);

DECLARE @end_of_week DATETIME = DATEADD(WEEK, 1, @start_of_week);

DECLARE @current_year SMALLINT;

DECLARE @current_week TINYINT;

DECLARE @database_name NVARCHAR(128);

DECLARE @table_name NVARCHAR(128);

WHILE (@previous_min_time <> @min_datetime)

BEGIN

 SELECT @current_year = DATEPART(YEAR, @start_of_week);

 SELECT @current_week = DATEPART(WEEK, @start_of_week);

 �SELECT @database_name = 'Database_Log_' + CAST(@current_year AS

NVARCHAR);

 �SELECT @table_name = 'Database_Log_' + CAST(@current_year AS

NVARCHAR) + '_' + CAST(@current_week AS NVARCHAR)

 -- Create the yearly database if it does not already exist.

 �IF NOT EXISTS (SELECT * FROM sys.databases WHERE databases.name =

@database_name)

 BEGIN

 SELECT @sql_command = 'CREATE DATABASE [' + @database_name + ']';

 EXEC sp_executesql @sql_command;

 END

 -- Create the weekly table if it does not already exist.

 SELECT @sql_command = '

 USE [' + @database_name + '];

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

376

 �IF NOT EXISTS (SELECT * FROM sys.tables WHERE tables.name = "' +

@table_name + "')

 BEGIN

 CREATE TABLE [dbo].[' + @table_name + ']

 �(Log_Id INT NOT NULL CONSTRAINT PK_Database_Log_' + CAST

(@current_year AS NVARCHAR) + '_' + CAST(@current_week

AS NVARCHAR) + ' PRIMARY KEY CLUSTERED,

 Log_Time DATETIME,

 Log_Data NVARCHAR(1000));

 END'

 EXEC sp_executesql @sql_command;

 SELECT @sql_command = '

 INSERT INTO [' + @database_name + '].[dbo].[' + @table_name + ']

 (Log_Id, Log_Time, Log_Data)

 SELECT

 Log_Id,

 Log_Time,

 Log_Data

 FROM AdventureWorks2016CTP3.dbo.Database_Log

 WHERE Log_Time >= @start_of_week

 AND Log_Time <= @end_of_week

 AND Log_Time < DATEADD(WEEK, -1, CURRENT_TIMESTAMP);

 DELETE

 FROM AdventureWorks2016CTP3.dbo.Database_Log

 WHERE Log_Time >= @start_of_week

 AND Log_Time <= @end_of_week

 AND Log_Time < DATEADD(WEEK, -1, CURRENT_TIMESTAMP);'

 �EXEC sp_executesql @sql_command, @parameter_list, @start_of_week,

@end_of_week

 SELECT @previous_min_time = @min_datetime;

 SELECT @min_datetime = MIN(Log_Time) FROM Database_Log;

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

377

 �SELECT @start_of_week = CAST(DATEADD(dd, -1 * (DATEPART(dw,

@min_datetime) - 1), @min_datetime) AS DATE);

 SELECT @end_of_week = DATEADD(WEEK, 1, @start_of_week);

END

When the preceding script completes running, we’ll be able to view some new

databases on our server, as seen in Figure 10-8.

For each year represented by the Log_Time within Database_Log, a new database was

created. In addition, tables were created in those databases for each week represented

within that data, as seen in Figure 10-9.

Figure 10-8.  New databases created when the script in Listing 10-9 is executed

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

378

The guts of the logic that we employed revolve around creating databases and tables

dynamically based on the date and time provided by Log_Time. Once those objects are

created, data is inserted into them and then deleted from the source table. We can review

the data in a single table to verify that this script did exactly what we intended it to, as

seen in Figure 10-10.

SELECT

 *

FROM Database_Log_2011.dbo.Database_Log_2011_48

Figure 10-9.  New tables created when the script in Listing 10-9 is executed

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

379

All data within this new table is identical to how it appeared in the original

Database_Log table, including the Log_Id. The only difference is the new database and

table location of the data.

Reorganizing data when the reference points change over time can be a complex

task. Dynamic SQL allows data to be organized, moved, and new objects created with

relatively simple logic. In fewer than one hundred lines of TSQL, we were able to take all

old data from a log table and move it to any number of new database objects that were

created at runtime based on the age of that data.

Every use case for reorganizing, archiving, or moving data will be different, but the

general technique illustrated above can be extremely useful when we want to minimize

the complexity and size of an important archiving process. Always consider how the

archived data will be used prior to building a new process. Whether it is moved to

separate databases, tables, or partitions, we now have the luxury of being able to index

it uniquely based on its new purpose. By treating it as an archive repository, and not

transactional data, we gain the flexibility to optimize it based on its new purpose.

Dynamic SQL can be used to manage additional indexes, constraints, keys, views,

and stored procedures that all can allow the new data to be accessed efficiently and

conveniently. Creating those objects would be as easy as adding to our command string

in the same way as the primary keys were created above.

Figure 10-10.  Sample data from a weekly log table

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

380

�Customized Database Objects
The ability to create highly flexible custom objects is not a simple task unless some sort

of dynamic code or TSQL is implemented. Our needs in this area can be very specific,

but generalized techniques can be used to get exactly what we want every time.

�The Problem
Sometimes we want to create objects with specific use cases, but where the tables or

columns involved may not always be the same. Generating a stored procedure, function,

or view given those variables would normally be a manually intensive process. We

can implement dynamic SQL to create or modify existing objects in ways that are both

scalable and reliable.

In Chapter 9, we introduced using dynamic SQL to PIVOT or UNPIVOT data when

the column lists were not known until runtime. What if we wanted to summarize the

table data output by those processes into a view, which would provide a convenient data

source for an application to access? Once a view is created, we can consider additional

options, such as schemabinding to improve schema integrity.

Let’s consider a scenario where we want to provide insight into employee hire dates

based on job titles. For a specific company, this is data that is requested so often that

a request is made for a more permanent data structure based on it. There would be a

number of ways to approach this, including a custom table, view, or an ETL process

to manage report data based on these needs. These processes could be managed via

triggers, stored procedures, or a variety of other methods.

�The Solution
For the scenario just outlined, we’ll provide an example solution using a schemabound

view, though other methods could be used if the report or data requirements were

different. The following TSQL in Listing 10-10 will return the raw data that we are

looking for.

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

381

Listing 10-10.  Dynamic Pivot that Returns a Count of Hire Year by Job Title

DECLARE @hire_date_years TABLE

 (hire_date_year NVARCHAR(50));

INSERT INTO @hire_date_years

 (hire_date_year)

SELECT DISTINCT

 DATEPART(YEAR, Employee.HireDate)

FROM HumanResources.Employee;

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

SELECT

 *

FROM

(SELECT

 Employee.BusinessEntityID,

 Employee.JobTitle,

 DATEPART(YEAR, Employee.HireDate) AS HireDate_Year

 FROM HumanResources.Employee

) EMPLOYEE_DATA

PIVOT

(COUNT(BusinessEntityID)

 FOR HireDate_Year IN (';

SELECT @sql_command = @sql_command + '[' + hire_date_year + '], '

FROM @hire_date_years;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) PIVOT_DATA';

PRINT @sql_command;

EXEC sp_executesql @sql_command;

The output of the query returns a data set similar to that in Figure 10-11.

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

382

Each job title is listed as the first column followed by a list of columns for each hire

date year present in the Employee table. If employees are added or removed from the

underlying table, then columns may be added or removed from this data set as hire dates

are added or removed.

Now that we have a query that returns the results we want in the columnar format

that we are looking for; we can move this data into a customized view. One technicality

that we need to overcome is that when we create a schemabound view, we cannot

include * in the column list. If we take the preceding TSQL and add a CREATE VIEW…

WITH SCHEMABINDING to the query, we will get the following error:

Msg 1054, Level 15, State 6, Procedure v_job_title_year_summary, Line 6

Syntax '*' is not allowed in schema-bound objects.

Msg 102, Level 15, State 1, Procedure v_job_title_year_summary, Line 13

Incorrect syntax near 'EMPLOYEE_DATA'.

To make this syntax work, we will need to make the column list dynamic, in addition

to the PIVOT details. The TSQL in Listing 10-11 is the view creation script, with that

alteration included.

Figure 10-11.  Hire data returned by the dynamic PIVOT query in Listing 10-10

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

383

Listing 10-11.  Dynamic SQL Used to Create a Customized View with a Variable

Column List

IF EXISTS (SELECT * FROM sys.views WHERE views.name = 'v_job_title_year_

summary')

BEGIN

 DROP VIEW v_job_title_year_summary

END

GO

DECLARE @hire_date_years TABLE

 (hire_date_year NVARCHAR(50));

INSERT INTO @hire_date_years

 (hire_date_year)

SELECT DISTINCT

 DATEPART(YEAR, Employee.HireDate)

FROM HumanResources.Employee;

DECLARE @sql_command NVARCHAR(MAX);

SELECT @sql_command = '

CREATE VIEW dbo.v_job_title_year_summary

WITH SCHEMABINDING

AS

SELECT

 JobTitle,'

SELECT @sql_command = @sql_command + '

[' + hire_date_year + '], '

FROM @hire_date_years;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + '

FROM

(SELECT

 Employee.BusinessEntityID,

 Employee.JobTitle,

 DATEPART(YEAR, Employee.HireDate) AS HireDate_Year

 FROM HumanResources.Employee

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

384

) EMPLOYEE_DATA

PIVOT

(COUNT(BusinessEntityID)

 FOR HireDate_Year IN (';

SELECT @sql_command = @sql_command + '[' + hire_date_year + '], '

FROM @hire_date_years;

SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

SELECT @sql_command = @sql_command + ')) PIVOT_DATA';

PRINT @sql_command;

EXEC sp_executesql @sql_command;

Once this script is run, we can look in our views list to quickly verify that the new

view was created and that it contains the correct columns, as seen in Figure 10-12.

The view definition will not update automatically as data is updated, but since the

underlying data is not likely to change constantly, we can manage this update daily (or at

whatever interval is deemed necessary). Let’s say that we update a few hire dates to years

that are not included in the current underlying employee data:

UPDATE HumanResources.Employee

SET HireDate = '1/1/2015'

WHERE BusinessEntityID = 282

Figure 10-12.  Columns contained in the custom view created in Listing 10-11

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

385

UPDATE HumanResources.Employee

SET HireDate = '1/1/2014'

WHERE BusinessEntityID IN (260, 285)

Now, if we select data from the view, we’ll notice that 2014 and 2015 have not been

added to it, as seen in Figure 10-13.

SELECT

 *

FROM dbo.v_job_title_year_summary

For additional columns to be added to the view, it must be refreshed or recreated. In

order to recreate it easily, we’ll encapsulate the TSQL view creation from earlier into a

stored procedure, as shown in Listing 10-12.

Listing 10-12.  Stored Procedure Used to Create a Dynamically Generated View

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'create_v_

job_title_year_summary')

BEGIN

 DROP PROCEDURE dbo.create_v_job_title_year_summary;

END

GO

CREATE PROCEDURE dbo.create_v_job_title_year_summary

Figure 10-13.  Without refreshing the view, 2014 and 2015 columns will not be
returned

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

386

AS

BEGIN

 �IF EXISTS (SELECT * FROM sys.views WHERE views.name = 'v_job_title_

year_summary')

 BEGIN

 DROP VIEW v_job_title_year_summary;

 END

 DECLARE @hire_date_years TABLE

 (hire_date_year NVARCHAR(50));

 INSERT INTO @hire_date_years

 (hire_date_year)

 SELECT DISTINCT

 DATEPART(YEAR, Employee.HireDate)

 FROM HumanResources.Employee;

 DECLARE @sql_command NVARCHAR(MAX);

 SELECT @sql_command = '

 CREATE VIEW dbo.v_job_title_year_summary

 WITH SCHEMABINDING

 AS

 SELECT

 JobTitle,'

 SELECT @sql_command = @sql_command + '

 [' + hire_date_year + '], '

 FROM @hire_date_years;

 SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

 SELECT @sql_command = @sql_command + '

 FROM

 (SELECT

 Employee.BusinessEntityID,

 Employee.JobTitle,

 DATEPART(YEAR, Employee.HireDate) AS HireDate_Year

 FROM HumanResources.Employee

) EMPLOYEE_DATA

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

387

 PIVOT

 (COUNT(BusinessEntityID)

 FOR HireDate_Year IN (';

 SELECT @sql_command = @sql_command + '[' + hire_date_year + '], '

 FROM @hire_date_years;

 SELECT @sql_command = SUBSTRING(@sql_command, 1, LEN(@sql_command) - 1);

 SELECT @sql_command = @sql_command + ')) PIVOT_DATA';

 PRINT @sql_command;

 EXEC sp_executesql @sql_command;

END

With this stored procedure, we can now recreate our dynamic view with ease:

EXEC dbo.create_v_job_title_year_summary;

When we check the contents of the view, we can verify that it has been appropriately

updated:

SELECT

 *

FROM dbo.v_job_title_year_summary

Figure 10-14.  New data for 2014 and 2015 has been included in the view, once
refreshed

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

388

Columns have been added for 2014 and 2015 data and would have been added in

order to encompass any other years that were added or removed since the last time

the view was created. Note that a view that is based on a PIVOT cannot be indexed, but

dynamically generated views can be indexed normally, so long as they do not include

PIVOT or UNPIVOT and are schema-bound.

Generating schema using dynamic SQL can be a very convenient way to create

objects when knowledge of the underlying data structures may not be complete until

runtime. It can also allow for complex business logic to be summarized into database

objects using relatively simple TSQL syntax. The ability to greatly simplify application

or report code can sometimes be more important than the burden of creating a new

database object.

As with creating any new objects, always ensure that they are needed and that

there is not a more efficient method available. Oftentimes, new SQL Server versions,

application releases, or business changes can allow for new methods to be implemented

for efficiently retrieving data.

�A Note on System Tables
SQL Server has a handful of system databases that provide important functionality and

are necessary for its normal operation. TempDB, master, model, and msdb all are used

by various processes to manage metadata about our server. The following is a quick

synopsis on the effects of different collations on system database usage.

Temporary tables are created and stored in TempDB, a system database in SQL

Server that is used for the creation and persistence of temporary objects. Like all other

databases, TempDB has a collation associated with it. By default, TempDB will have

whatever collation was specified at the time that SQL Server was installed, which

typically will be the server default.

When temp tables are created, they will be assigned the collation of TempDB, even

if that collation is different than the database you are currently working in. If data within

the temp table is joined, grouped, aggregated, or compared with data in the database

that is of a different collation, then an error will be thrown similar to those seen earlier in

this chapter.

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

389

Msdb is used to manage information about internal SQL Server processes, such

as backups and SQL Server Agent processes. Because it will be in the system default

collation, care should be taken when working with this data if it is to be used by a

database with a different collation.

Master is the repository for important system information, such as logins,

configuration settings, and database metadata and will also share the system default

collation. If there is a need to retrieve any string data from the master database, be sure

to collate it appropriately prior to comparing or storing it elsewhere on the server.

Model is a potentially tricky system database to manage with regard to collation.

New databases are created as a copy of model and will share its data and configuration,

including collection. On a server with multiple collations, it will be necessary to specify

a collation whenever creating a new database to ensure that the default is not used, if

a different collation is needed. Most organizations will create new databases based on

existing databases or backup files, which will curtail this challenge. Any scenario in

which model is used will need to be monitored to make sure that the resulting database

is configured with the correct collection for the target application.

Because of the behavior of system databases, collation management may be

necessary on any SQL Server with database collations that differ from the system

defaults. In general, it is a best practice to not maintain servers with mixed collations.

This eliminates the need for custom code that manages different collations. It also

reduces the risk that third-party software or maintenance applications will break as a

result of not being prepared to deal with a server with mixed collations.

�Conclusion
In this chapter, we reviewed a handful of dynamic SQL applications that allowed us to

add flexibility to processes that are normally not tolerant of changes at runtime. Many

more applications exist, with the only limitation being your imagination.

When creating any new schema, whether dynamically generated or not, always

consider the impact and efficiency of doing so. All database objects must be maintained,

and that cumulative upkeep must be considered when contemplating the creation of

new objects. The goal of using dynamic SQL is to either allow for processes that would

otherwise not be easily possible, or to decrease complexity in those that might require a

manual or resource-intensive component.

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

390

The usage of dynamic SQL for these purposes will be dictated by your own business

logic, database server version, and the rules and policies used by your development

team. While some solutions will be useful to a wide audience, others may prove to be

the savior of one specific development environment. Regardless of how universal the

solution is, keeping this tool in mind will allow for difficult database challenges to be

solved in creative ways that otherwise could be costly and time-consuming to resolve.

Chapter 10 Solving Common Problems

www.EBooksWorld.ir

391
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_11

CHAPTER 11

Applications of
Dynamic SQL
Once we have established the idea that dynamic SQL can solve a wide variety of

challenges, we can begin to apply it to larger and more complex problems. Our goal

is to leave you with a variety of practical scripts that can be brought into any database

environment and tailored to a unique use. There are many real-world challenges for

which dynamic SQL is an efficient solution and where we can accomplish a great deal of

work in compact, reusable code.

�Database Backups
Another necessary database maintenance task is to ensure that all important data is

backed up on a regular basis. Maintenance plans are often used for this task, but they

lack flexibility and can become very complex if we wish to customize them for a variety

of use cases. If we are managing many database servers, all of which have different

backup needs, the result can be dozens (or more) of different maintenance plans. Each

of these will require the same level of care and maintenance, and hence the same level of

technical debt to ensure normal operation over time.

What can often be preferable is to create a backup script tailored to an environment

that is capable of being expanded, customized, and adjusted as needed over time. We’ll

cover the three common needs of a backup plan: full backups, differential backups, and

transaction log backups. A common configuration is to run full backups once a week,

differentials each other day, and transaction log backups intermittently throughout the

day. Larger backups (full & differential) should be run during off-hours when the system

is less used, as backup operations can require significant IO to process. Alternatively,

backups can be offloaded to an AlwaysOn Availability Group, or some other secondary

data source.

www.EBooksWorld.ir

392

This stored procedure will execute as often as we want transaction log backups

to run. When it is run at the time of day corresponding to @differential_and_full_

backup_time, then one of those will be run instead. @full_backup_day indicates which

day of the week the full backup should be taken. @backup_location provides the

location on disk where backups should be saved. Last, @print_output_only determines

if backups should be taken or if the command string should be printed out instead. This

stored procedure can be seen in Listing 11-1.

Listing 11-1.  Database Backup Stored Procedure Using Dynamic SQL

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name =

'backup_plan')

BEGIN

 DROP PROCEDURE dbo.backup_plan;

END

GO

CREATE PROCEDURE dbo.backup_plan

 �@differential_and_full_backup_time TIME = '00:00:00', -- Default to

midnight.

 @full_backup_day TINYINT = 1, -- Default to Sunday.

 �@backup_location NVARCHAR(MAX) = 'E:\SQLBackups\', -- Default to my

backup folder.

 @print_output_only BIT = 1

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @current_time TIME = CAST(CURRENT_TIMESTAMP AS TIME);

 DECLARE @current_day TINYINT = DATEPART(DW, CURRENT_TIMESTAMP);

 �DECLARE @datetime_string NVARCHAR(MAX) = FORMAT(CURRENT_TIMESTAMP ,

'MMddyyyyHHmmss');

 DECLARE @sql_command NVARCHAR(MAX) = ";

 DECLARE @database_list TABLE

 �(database_name NVARCHAR(MAX) NOT NULL, recovery_model_desc

NVARCHAR(MAX));

 INSERT INTO @database_list

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

393

 (database_name, recovery_model_desc)

 SELECT

 name,

 recovery_model_desc

 FROM sys.databases

 WHERE databases.name NOT IN ('msdb', 'master', 'TempDB', 'model');

 -- Check if a full backup is to be taken now.

 �IF (@current_day = @full_backup_day) AND (@current_time BETWEEN

@differential_and_full_backup_time AND DATEADD(MINUTE, 10,

@differential_and_full_backup_time))

 BEGIN

 SELECT @sql_command = @sql_command +

 '

 BACKUP DATABASE [' + database_name + ']

 �TO DISK = "' + @backup_location + database_name + '_' +

@datetime_string + '.bak";

 '

 FROM @database_list;

 IF @print_output_only = 1

 PRINT @sql_command;

 ELSE

 EXEC sp_executesql @sql_command;

 END

 ELSE -- Check if a differential backup is to be taken now.

 �IF (@current_day <> @full_backup_day) AND (@current_time BETWEEN

@differential_and_full_backup_time AND DATEADD(MINUTE, 10,

@differential_and_full_backup_time))

 BEGIN

 SELECT @sql_command = ";

 SELECT @sql_command = @sql_command +

 '

 BACKUP DATABASE [' + database_name + ']

 �TO DISK = "' + @backup_location + database_name + '_' +

@datetime_string + '.dif"

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

394

 WITH DIFFERENTIAL;

 '

 FROM @database_list;

 IF @print_output_only = 1

 PRINT @sql_command;

 ELSE

 EXEC sp_executesql @sql_command;

 END

 �ELSE -- If neither full or differential, then take a transaction log

backup.

 BEGIN

 SELECT @sql_command = ";

 SELECT @sql_command = @sql_command +

 '

 BACKUP LOG [' + database_name + ']

 �TO DISK = "' + @backup_location + database_name + '_' +

@datetime_string + '.trn"

 '

 FROM @database_list

 WHERE recovery_model_desc = 'FULL';

 IF @print_output_only = 1

 PRINT @sql_command;

 ELSE

 EXEC sp_executesql @sql_command;

 END

END

This script will perform backups on all databases except for msdb, tempdb, master,

and model. As was the case in all previous scripts, the database list can easily be adjusted

to cater to any custom needs. This script can be executed on any schedule and will

perform transaction log backups of the database except when it is the allotted time and

date for a differential backup or full backup. If the current time is 7:53pm on Tuesday, we

can test the script for each backup use case:

EXEC dbo.backup_plan @differential_and_full_backup_time = '19:50:00', @full_

backup_day = 3, @backup_location = 'E:\SQLBackups\', @print_output_only = 1;

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

395

This will perform a full backup, as the current time is within 10 minutes of the

designated full backup time, the full backup day has been set to Tuesday (3, and the

backup statements will be printed rather than executed. The command string output is

as follows:

BACKUP DATABASE [AdventureWorks2012]

TO DISK = 'E:\SQLBackups\AdventureWorks2012_12012015195529.bak';

BACKUP DATABASE [AdventureWorks2014]

TO DISK = 'E:\SQLBackups\AdventureWorks2014_12012015195529.bak';

BACKUP DATABASE [AdventureWorksDW2012]

TO DISK = 'E:\SQLBackups\AdventureWorksDW2012_12012015195529.bak';

BACKUP DATABASE [AdventureWorksDW2014]

TO DISK = 'E:\SQLBackups\AdventureWorksDW2014_12012015195529.bak';

If we change @print_output_only to zero and execute the stored procedure again,

we can verify the backup files in the directory they are expected to be output to.

Figure 11-1.  Full backup files created in the dynamic backup script in Listing 11-1

All four full backups are there, with the names that we assigned. Now, let’s execute

the stored procedure for a differential backup situation:

EXEC dbo.backup_plan @differential_and_full_backup_time = '19:50:00',

@full_backup_day = 3, @backup_location = 'E:\SQLBackups\', @print_output_

only = 1;

The resulting command string is as follows:

BACKUP DATABASE [AdventureWorks2012]

TO DISK = 'E:\SQLBackups\AdventureWorks2012_12012015200242.dif'

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

396

WITH DIFFERENTIAL;

BACKUP DATABASE [AdventureWorks2014]

TO DISK = 'E:\SQLBackups\AdventureWorks2014_12012015200242.dif'

WITH DIFFERENTIAL;

BACKUP DATABASE [AdventureWorksDW2012]

TO DISK = 'E:\SQLBackups\AdventureWorksDW2012_12012015200242.dif'

WITH DIFFERENTIAL;

BACKUP DATABASE [AdventureWorksDW2014]

TO DISK = 'E:\SQLBackups\AdventureWorksDW2014_12012015200242.dif'

WITH DIFFERENTIAL;

In this case, today is not the correct day for a full backup, but it is time for a

differential backup. If we execute this with @print_output_only set to zero, we can verify

that the backup files were correctly generated in Figure 11-2.

Figure 11-2.  Differential backup files created in the dynamic backup script in
Listing 11-1

In addition to the four full backups created earlier, we can now confirm that four

differential backups have also been created in the same folder. Last, let’s run a command

that will trigger a transaction log backup:

EXEC dbo.backup_plan @differential_and_full_backup_time = '00:00:00',

@full_backup_day = 1, @backup_location = 'E:\SQLBackups\', @print_output_

only = 1;

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

397

Here, the full backup day is Sunday and the full/differential backup time is midnight.

Since it is currently none of these times, a transaction log backup is taken instead. The

resulting command string is as follows:

BACKUP LOG [AdventureWorks2014]

TO DISK = 'E:\SQLBackups\AdventureWorks2014_12012015200631.trn'

Note that only a single database is getting backed up. This may at first glance appear

to be an error, since we explicitly told this stored procedure to run backups against four

databases, but in fact is correct. We cannot run transaction log backups on any database

in the simple recovery mode. On my server, three of the four databases included in this

backup plan are in simple recovery and were therefore explicitly omitted from that step.

We can verify this with the following query:

SELECT

 name,

 recovery_model_desc

from sys.databases

WHERE name IN ('AdventureWorks2012', 'AdventureWorks2014',

'AdventureWorksDW2012', 'AdventureWorksDW2014');

The results of this query confirm this finding, as seen in Figure 11-3.

Figure 11-3.  Verifying the recovery model for a specific set of databases

Production databases should be set to the full recovery mode or given unique
treatment so that important data is backed up as frequently as necessary!

When we execute the stored proc with @print_output_only set to zero, the output

folder can be inspected and the appropriate results verified in Figure 11-4.

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

398

A single new file was added: a transaction log backup for AdventureWorks2014,

which happens to be in the FULL recovery mode, as shown previously.

This stored procedure illustrates a basic framework for building your own

customized backup plan, providing complete control over the details. As a bonus,

you can accomplish your tasks using a single job and stored procedure, rather than

potentially many maintenance plans and/or maintenance plan tasks.

Some additional possibilities for additional functionality include the following:

	 1.	 Logging of backup time and duration for each operation

	 2.	 Cleanup of old backup records in MSDB

	 3.	 Cleanup of old backup files from the output location

	 4.	 Customized alerts if backups fail or take longer than a specific

time limit

	 5.	 Try/catch blocks to manage any errors in the stored procedure

	 6.	 Store proc parameters as metadata in a table, so that it can be

freely modified for any database, set of databases, or server.

There are certainly many other options available for your consideration. In this

example, all databases (except for a handful of system ones) were backed up, but we

could just as easily have omitted the WHERE clause or adjusted it so that we backed up a

specific set of databases on the server. Additionally, system databases could be managed

separately if they had a unique set of rules to follow.

Figure 11-4.  Additional transaction log backup taken with the script in Listing 11-1

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

399

The backup times for this stored procedure were determined by the job run time, but

could also be built in as stored proc parameters as well. Both scenarios work, and which

you use would depend on how you prefer to manage that data. An additional option that

would go well with parameters would be to store metadata in a permanent control table.

This would provide information about databases to back up, frequency, and type, and

could easily be customized to fit the needs of your environment.

If running a stored procedure in SQL Server seems limiting for the operations you

are considering, then PowerShell or SSIS may be used to provide better access to the file

system and Windows functionality. As with much of our work thus far, the limits to your

success with this model are primarily time and creativity.

�Saving Generated Scripts
Dynamic SQL can be written as part of stored procedures to execute as needed by

an application, but it also be saved for later. Dynamic SQL can be used to generate a

command string that is then saved to a file or new stored procedure to be executed at a

future time or as part of another application.

This flexibility can be convenient when there is a process with many steps in which

certain ones must execute on a rigid schedule. For example, we may wish to generate

a script based on the schema in a database at midnight, but not return the data itself

until a data load completes at 4am. Alternatively, we may wish to review the SQL file or

save it elsewhere for posterity, prior to or in addition to executing it. One other way to

accomplish this, and avoid moving data into the operating system, would be to store it in

a table.

�Saving Scripts to a Table
The simplest method of saving a command string would be to insert it into a table. This

allows for additional flexibility in that we could add timestamps to commands or save

old commands. To facilitate this process, we will create a table to store the command

data, as shown in Listing 11-2.

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

400

Listing 11-2.  Table to Store Dynamic SQL Output.

CREATE TABLE dbo.sql_command

(�command_id INT NOT NULL IDENTITY(1,1) CONSTRAINT PK_sql_commands

PRIMARY KEY CLUSTERED,

 sql_command NVARCHAR(MAX) NOT NULL,

 �time_stamp DATETIME NOT NULL CONSTRAINT DF_sql_commands_time_stamp

DEFAULT (CURRENT_TIMESTAMP));

Note that there is an additional column that stores a default timestamp. This ensures

that any TSQL that is saved can be associated easily with the time it was generated. To

demonstrate using this table, let’s modify the backup stored procedure from earlier to

insert to it, rather than print to the GUI, as seen in Listing 11-3.

Listing 11-3.  Backup Stored Procedure with an Output-to-Table Option.

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'backup_

plan_output')

BEGIN

 DROP PROCEDURE dbo.backup_plan_output;

END

GO

CREATE PROCEDURE dbo.backup_plan_output

 �@differential_and_full_backup_time TIME = '00:00:00', -- Default to

midnight.

 @full_backup_day TINYINT = 1, -- Default to Sunday.

 �@backup_location NVARCHAR(MAX) = 'E:\SQLBackups\', -- Default to my

backup folder.

 @output_results_to_table BIT = 1

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @current_time TIME = CAST(CURRENT_TIMESTAMP AS TIME);

 DECLARE @current_day TINYINT = DATEPART(DW, CURRENT_TIMESTAMP);

 �DECLARE @datetime_string NVARCHAR(MAX) = FORMAT(CURRENT_TIMESTAMP ,

'MMddyyyyHHmmss');

 DECLARE @sql_command NVARCHAR(MAX) = ";

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

401

 DECLARE @database_list TABLE

 �(database_name NVARCHAR(MAX) NOT NULL, recovery_model_desc

NVARCHAR(MAX));

 INSERT INTO @database_list

 (database_name, recovery_model_desc)

 SELECT

 name,

 recovery_model_desc

 FROM sys.databases

 WHERE databases.name NOT IN ('msdb', 'master', 'TempDB', 'model');

 -- Check if a full backup is to be taken now.

 �IF (@current_day = @full_backup_day) AND (@current_time BETWEEN

@differential_and_full_backup_time AND DATEADD(MINUTE, 10,

@differential_and_full_backup_time))

 BEGIN

 SELECT @sql_command = @sql_command +

 '

 BACKUP DATABASE [' + database_name + ']

 �TO DISK = "' + @backup_location + database_name + '_' +

@datetime_string + '.bak";

 '

 FROM @database_list;

 IF @output_results_to_table = 1

 BEGIN

 INSERT INTO dbo.sql_command

 (sql_command)

 SELECT @sql_command

 END

 ELSE

 BEGIN

 EXEC sp_executesql @sql_command;

 END

 END

 ELSE -- Check if a differential backup is to be taken now.

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

402

 �IF (@current_day <> @full_backup_day) AND (@current_time BETWEEN

@differential_and_full_backup_time AND DATEADD(MINUTE, 10,

@differential_and_full_backup_time))

 BEGIN

 SELECT @sql_command = ";

 SELECT @sql_command = @sql_command +

 '

 BACKUP DATABASE [' + database_name + ']

 �TO DISK = "' + @backup_location + database_name + '_' +

@datetime_string + '.dif"

 WITH DIFFERENTIAL;

 '

 FROM @database_list;

 IF @output_results_to_table = 1

 BEGIN

 INSERT INTO dbo.sql_command

 (sql_command)

 SELECT @sql_command

 END

 ELSE

 BEGIN

 EXEC sp_executesql @sql_command;

 END

 END

 �ELSE -- If neither full or differential, then take a transaction log

backup.

 BEGIN

 SELECT @sql_command = ";

 SELECT @sql_command = @sql_command +

 '

 BACKUP LOG [' + database_name + ']

 �TO DISK = "' + @backup_location + database_name + '_' +

@datetime_string + '.trn"

 '

 FROM @database_list

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

403

 WHERE recovery_model_desc = 'FULL';

 IF @output_results_to_table = 1

 BEGIN

 INSERT INTO dbo.sql_command

 (sql_command)

 SELECT @sql_command

 END

 ELSE

 BEGIN

 EXEC sp_executesql @sql_command;

 END

 END

END

Note that the only difference, aside from renaming a few variables, is to perform

an INSERT to dbo.sql_command rather than print the output. Let’s execute the stored

procedure a few times, and then review the contents of the table:

EXEC dbo.backup_plan_output @differential_and_full_backup_time =

'19:50:00', @full_backup_day = 3, @backup_location = 'E:\SQLBackups\',

@output_results_to_table = 1;

EXEC dbo.backup_plan_output @differential_and_full_backup_time =

'00:00:00', @full_backup_day = 1, @backup_location = 'E:\SQLBackups\',

@output_results_to_table = 1;

EXEC dbo.backup_plan_output @differential_and_full_backup_time =

'13:40:00', @full_backup_day = 2, @backup_location = 'E:\SQLBackups\',

@output_results_to_table = 1;

These all pass different values for the parameters, but otherwise are the same.

Reviewing the new table reveals that our command strings were saved as expected, along

with time stamps, as seen in Figure 11-5.

Figure 11-5.  BACKUP statements created by the script in Listing 11-3

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

404

Once here, they could be executed at any time in the future or reviewed by a DBA

or developer to ensure that the command strings are being generated correctly. In

addition to delaying execution, this tactic can be excellent for debugging problematic

dynamic SQL, or simply allowing for command strings to be logged prior to execution.

The following script in Listing 11-4 is another adaption of the backup script from earlier,

which will write the generated command strings to a physical SQL file.

Listing 11-4.  Backup Maintenance Script, which Outputs the Command String

to a File

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'backup_

plan_output')

BEGIN

 DROP PROCEDURE dbo.backup_plan_output;

END

GO

CREATE PROCEDURE dbo.backup_plan_output

 �@differential_and_full_backup_time TIME = '00:00:00', -- Default to

midnight.

 @full_backup_day TINYINT = 1, -- Default to Sunday.

 �@backup_location NVARCHAR(MAX) = 'E:\SQLBackups\', -- Default to my

backup folder.

 �@sql_data_location NVARCHAR(MAX) = 'E:\SQLData\', -- Default to my

SQL data file folder.

 �@sql_server_name NVARCHAR(MAX) = 'SSANDILE\EDSQLSERVER14', -- Server

name to operate on.

 @print_output_to_file_only BIT = 1

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @current_time TIME = CAST(CURRENT_TIMESTAMP AS TIME);

 DECLARE @current_day TINYINT = DATEPART(DW, CURRENT_TIMESTAMP);

 �DECLARE @datetime_string NVARCHAR(MAX) = FORMAT(CURRENT_TIMESTAMP ,

'MMddyyyyHHmmss');

 DECLARE @sql_command NVARCHAR(MAX) = ";

 DECLARE @bcp_command VARCHAR(4000);

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

405

 DECLARE @database_list TABLE

 �(database_name NVARCHAR(MAX) NOT NULL, recovery_model_desc

NVARCHAR(MAX));

 INSERT INTO @database_list

 (database_name, recovery_model_desc)

 SELECT

 name,

 recovery_model_desc

 FROM sys.databases

 WHERE databases.name NOT IN ('msdb', 'master', 'TempDB', 'model');

 -- Check if a full backup is to be taken now.

 �IF (@current_day = @full_backup_day) AND (@current_time BETWEEN

@differential_and_full_backup_time AND DATEADD(MINUTE, 10,

@differential_and_full_backup_time))

 BEGIN

 SELECT @sql_command = @sql_command +

 �'BACKUP DATABASE [' + database_name + '] TO DISK = ""' +

@backup_location + database_name + '_' + @datetime_string +

'.bak"";'

 FROM @database_list;

 IF @print_output_to_file_only = 1

 BEGIN

 SELECT @bcp_command =

 '�bcp "SELECT "' + @sql_command + "'" queryout

' + @sql_data_location + 'TempOutput.

sql -c -T -S' + @sql_server_name + '

-dAdventureWorks2014';

 EXEC xp_cmdshell @bcp_command;

 �SELECT @bcp_command = 'type "' + @sql_data_

location + 'TempOutput.sql" >> "' + @sql_data_

location + 'QueryOutput.sql"';

 EXEC xp_cmdshell @bcp_command;

 END

 ELSE

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

406

 EXEC sp_executesql @sql_command;

 END

 ELSE -- Check if a differential backup is to be taken now.

 �IF (@current_day <> @full_backup_day) AND (@current_time BETWEEN

@differential_and_full_backup_time AND DATEADD(MINUTE, 10,

@differential_and_full_backup_time))

 BEGIN

 SELECT @sql_command = ";

 SELECT @sql_command = @sql_command +

 �'BACKUP DATABASE [' + database_name + '] TO DISK = ""' +

@backup_location + database_name + '_' + @datetime_string +

'.dif"" WITH DIFFERENTIAL;'

 FROM @database_list;

 IF @print_output_to_file_only = 1

 BEGIN

 SELECT @bcp_command =

 �'bcp "SELECT "' + @sql_command + "'" queryout

' + @sql_data_location + 'TempOutput.

sql -c -T -S' + @sql_server_name + '

-dAdventureWorks2014';

 EXEC xp_cmdshell @bcp_command;

 �SELECT @bcp_command = 'type "' + @sql_data_

location + 'TempOutput.sql" >> "' + @sql_data_

location + 'QueryOutput.sql"';

 EXEC xp_cmdshell @bcp_command;

 END

 ELSE

 EXEC sp_executesql @sql_command;

 END

 �ELSE -- If neither full or differential, then take a transaction log

backup.

 BEGIN

 SELECT @sql_command = ";

 SELECT @sql_command = @sql_command +

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

407

 �'BACKUP LOG [' + database_name + '] TO DISK = ""' + @backup_

location + database_name + '_' + @datetime_string + '.trn""'

 FROM @database_list

 WHERE recovery_model_desc = 'FULL';

 IF @print_output_to_file_only = 1

 BEGIN

 SELECT @bcp_command =

 �'bcp "SELECT "' + @sql_command + "'" queryout '

+ @sql_data_location + 'TempOutput.sql -c

-T -S' + @sql_server_name + '

-dAdventureWorks2014';

 EXEC xp_cmdshell @bcp_command;

 �SELECT @bcp_command = 'type "' + @sql_data_

location + 'TempOutput.sql" >> "' + @sql_data_

location + '\QueryOutput.sql"';

 EXEC xp_cmdshell @bcp_command;

 END

 ELSE

 EXEC sp_executesql @sql_command;

 END

END

Instead of printing the command string, it outputs it to a file. Note that since BCP will

by default overwrite the destination file, we must insert each new command string to an

intermediary file, TempOutput.sql, prior to appending the output to its final destination,

QueryOutput.sql. File paths and the server name have been parameterized to make this

proc more versatile. Let’s run some examples from earlier:

EXEC dbo.backup_plan_output @differential_and_full_backup_time =

'13:55:00', @full_backup_day = 3, @backup_location = 'E:\SQLBackups\',

 �@sql_data_location = 'E:\SQLData\', @sql_server_name = 'SANDILE\

EDSQLSERVER14', @print_output_to_file_only = 1;

EXEC dbo.backup_plan_output @differential_and_full_backup_time =

'13:55:00', @full_backup_day = 1, @backup_location = 'E:\SQLBackups\',

 �@sql_data_location = 'E:\SQLData\', @sql_server_name = 'SANDILE\

EDSQLSERVER14', @print_output_to_file_only = 1;

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

408

EXEC dbo.backup_plan_output @differential_and_full_backup_time =

'10:00:00', @full_backup_day = 1, @backup_location = 'E:\SQLBackups\',

 �@sql_data_location = 'E:\SQLData\', @sql_server_name = 'SANDILE\

EDSQLSERVER14', @print_output_to_file_only = 1;

When run, no backups are taken. Instead, the command strings are sent to the text

files indicated. The following are the contents of QueryOutput.sql:

BACKUP DATABASE [AdventureWorks2012] TO DISK = 'e:\SQLBackups\

AdventureWorks2012_12062015140236.dif' WITH DIFFERENTIAL;BACKUP

DATABASE [AdventureWorks2014] TO DISK = 'e:\SQLBackups\

AdventureWorks2014_12062015140236.dif' WITH DIFFERENTIAL;BACKUP

DATABASE [AdventureWorksDW2012] TO DISK = 'e:\SQLBackups\

AdventureWorksDW2012_12062015140236.dif' WITH DIFFERENTIAL;BACKUP

DATABASE [AdventureWorksDW2014] TO DISK = 'e:\SQLBackups\

AdventureWorksDW2014_12062015140236.dif' WITH DIFFERENTIAL;

BACKUP DATABASE [AdventureWorks2012] TO DISK = 'e:\SQLBackups\

AdventureWorks2012_12062015140236.bak';BACKUP DATABASE [AdventureWorks2014]

TO DISK = 'e:\SQLBackups\AdventureWorks2014_12062015140236.

bak';BACKUP DATABASE [AdventureWorksDW2012] TO DISK = 'e:\

SQLBackups\AdventureWorksDW2012_12062015140236.bak';BACKUP

DATABASE [AdventureWorksDW2014] TO DISK = 'e:\SQLBackups\

AdventureWorksDW2014_12062015140236.bak';

BACKUP LOG [AdventureWorks2014] TO DISK = 'e:\SQLBackups\

AdventureWorks2014_12062015140236.trn'

The output file lacks spacing, as BCP works best with single-line TSQL queries. If we

wanted to improve the spacing, we could easily add additional intermediary steps into

the BCP commands to insert new lines into the file. Regardless, the output is functionally

correct and will perform the requested backups to the output folder specified.

Please note the use of xp_cmdshell in the stored procedure. This is typically used

when it is necessary to run file operations or OS commands form within SQL Server.

Typically, this is only used in restricted or private environments, as it can be a security

threat when allowed on a public server. Consider your use case carefully before

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

409

implementing it, and if your server is in a public environment, use SSIS, PowerShell, or

another tool instead.

By default, xp_cmdshell is disabled, but you can enable it with the TSQL in

Listing 11-5.

Listing 11-5.  Enabling xp_cmdshell

EXEC sp_configure 'show advanced options', 1

GO

RECONFIGURE

GO

EXEC sp_configure 'xp_cmdshell', 1

GO

RECONFIGURE

GO

For more information on the pros and cons of xp_cmdshell, see Chapters 2 and 4,

which cover SQL Injection and security, respectively. Alternatively, PowerShell can be

used to control OS operations to avoid its use.

�Executing TSQL on Other Servers
When managing multiple servers, there often are times when we need to execute TSQL

from our current server that will run remotely on another SQL Server. While these

TSQL statements are not being executed with dynamic SQL, the statement creation and

execution is very similar and worth a short demonstration.

Let’s consider a scenario where we have a centralized reporting server where we

wish to pull data from the local server, in addition to others that we have on-site. We

would want to loop through each server, retrieving data from each and returning it to the

target data store locally. First, let’s create a simple log table for the next example:

CREATE TABLE dbo.recent_product_counts

 �(count_id INT NOT NULL IDENTITY(1,1) CONSTRAINT PK_recent_

product_counts PRIMARY KEY CLUSTERED,

 product_count INT NOT NULL,

 server_name NVARCHAR(128),

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

410

 �sample_time DATETIME NOT NULL CONSTRAINT DF_recent_product_

counts DEFAULT (CURRENT_TIMESTAMP));

With a place to store our results, we’ll create a stored procedure that illustrates using

OPENQUERY in order to return a specific row count from a remote server and store the

results in this table. This can be seen in Listing 11-6.

Listing 11-6.  Using Dynamic SQL and OPENQUERY to Retrieve Data from

Remove Servers

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'get_

product_count_all_servers')

BEGIN

 DROP PROCEDURE dbo.get_product_count_all_servers;

END

GO

CREATE PROCEDURE dbo.get_product_count_all_servers

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @sql_command NVARCHAR(MAX) = ";

 SELECT

 name AS server_name

 INTO #servers

 FROM sys.servers;

 SELECT @sql_command = @sql_command + '

 INSERT INTO AdventureWorks2014.dbo.recent_product_counts

 (product_count, server_name)

 SELECT

 product_count,

 "' + server_name + "'

 �FROM OPENQUERY([' + server_name + '], "SELECT COUNT(*) AS product_

count FROM AdventureWorks2014.Production.Product WHERE ModifiedDate

>= ""2/8/2014""");'

 FROM #servers

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

411

 WHERE server_name <> @@SERVERNAME;

 SELECT @sql_command = @sql_command + '

 INSERT INTO AdventureWorks2014.dbo.recent_product_counts

 (product_count, server_name)

 SELECT

 COUNT(*),

 @@SERVERNAME

 �FROM AdventureWorks2014.Production.Product WHERE ModifiedDate >=

"2/8/2014"';

 EXEC sp_executesql @sql_command;

 DROP TABLE #servers;

END

There are two sections in this stored procedure: the first will generate TSQL to access

all servers in sys.servers that are not the local server. The second manages the local

server only, as the syntax to access it does not require OPENQUERY. After running this

query twice, the contents of recent_product_counts are as follows in Figure 11-6.

Figure 11-6.  Product counts collected from multiple servers, using the proc in
Listing 11-6

In the case of my computer there is only one other server available to query, but if

there were more, then each would be included in the result set. The ModifiedDate used

in the stored procedure would typically be a current day, week, or month of interest

based on the current date and time, but since the data in AdventureWorks is static, we

need to look back a bit further to collect meaningful counts.

It is not necessary to query all SQL Servers in sys.servers, either. A custom list

could be created, or a server table could be created and accessed to manage any number

of local or remove servers. Also note the use of many apostrophes in the command string

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

412

text. Since OPENQUERY requires an apostrophe-delimited string, as does sp_executesql,

we need to double the number of apostrophes used. This ensures that we maintain the

correct number of string delimiters when the final queries are passed to each other SQL

Server for execution.

Debug often when nesting strings in a manner like this to ensure that you get the

apostrophe count correct. Printing the command string prior to execution will help to

ensure that the output is as expected. When in doubt, start from scratch and build the

statement up one level at a time, until it is complete. In the preceding code, the number

of apostrophes is doubled because the entire TSQL statement is nested in another string,

but different applications of dynamic SQL may result in slightly different results.

The rewards for writing this sort of dynamic SQL carefully will outweigh any of

the complexities of nesting strings within each other. Being able to efficiently retrieve

important data from other servers without loops, maintenance plans, or SSIS packages

can be beneficial when looking for a simple solution to a data access need such as this.

�Generating Schema from Metadata
There are times, especially in reporting and analytics, when the ability to create

dimension or lookup tables automatically can be extremely useful and time-saving. This

is often necessary when supporting an application such as Tableau or Power BI, which

may require a predefined set of lookup tables for all dimensions to be reported on.

Manually built processes to accomplish this task are time-consuming, complex, and

error-prone. Automating it will save resources while greatly improving the quality of the

result.

�Building a Solution
Consider a table that we wish to report on, but need a corresponding dimension for

each lookup column in that table. Most common ways to accomplish this involve either

purchasing third-party tools or building a hard-coded solution that builds specific

schema for specific columns.

Our goal here will be to accomplish the same task without spending money and

by eliminating the need for stored procedures that include specific table, schema,

or column references. Instead, we will move all metadata describing our reporting

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

413

table into a single metadata table that can be easily read or modified as needed.

By centralizing this information, we greatly reduce the lines of code that require

maintenance and make changing this data trivially easy!

For this example, we will create a reporting table and populate it with data, as seen in

Listing 11-7.

Listing 11-7.  Create a Test Reporting Table for Use in a Schema Generation

Demo

USE AdventureworksDW2016CTP3;

GO

CREATE TABLE dbo.fact_customer_metrics_hourly

(fact_customer_metrics_hourly_id BIGINT NOT NULL IDENTITY(1,1)

CONSTRAINT PK_fact_customer_metrics_hourly PRIMARY KEY CLUSTERED,

 start_time_hour SMALLDATETIME NOT NULL,

 dim_customer_name VARCHAR(50) NOT NULL,

 dim_customer_type VARCHAR(10) NOT NULL,

 dim_customer_status VARCHAR(10) NOT NULL,

 api_call_count INT NOT NULL,

 development_request_count SMALLINT NOT NULL,

 data_sent_gb INT NOT NULL);

GO

INSERT INTO dbo.fact_customer_metrics_hourly

 �(start_time_hour, dim_customer_name, dim_customer_type, dim_

customer_status, api_call_count, development_request_count, data_

sent_gb)

VALUES

 �(�'9/14/2018 8:00', 'T-Rex Development', 'Developer', 'Active', 500,

3, 1000),

 ('9/14/2018 8:00', 'Ed"s QA Shop', 'QA', 'Active', 0, 17, 2),

 ('9/14/2018 8:00', 'Seventeen Corp.', 'Design', 'Inactive', 0, 1, 0),

 ('9/14/2018 8:00', 'Team #2', 'Developer', 'Active', 0, 1, 2500),

 (�'9/14/2018 9:00', 'T-Rex Development', 'Developer', 'Active',

500, 3, 1000),

 ('9/14/2018 9:00', 'Ed"s QA Shop', 'QA', 'Active', 500, 3, 1000),

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

414

 ('9/14/2018 9:00', 'Seventeen Corp.', 'Design', 'Inactive', 0, 2, 0),

 (�'9/14/2018 10:00', 'T-Rex Development', 'Developer', 'Active', 500,

3, 1000),

 ('9/14/2018 10:00', 'Ed"s QA Shop', 'QA', 'Active', 500, 3, 1000),

 (�'9/14/2018 11:00', 'T-Rex Development', 'Developer', 'Active', 500,

3, 1000),

 ('9/14/2018 12:00', 'Ed"s QA Shop', 'QA', 'Active', 500, 3, 1000);

GO

Note that some of the dimensions are explicitly maintained within fact data. This

is sometimes done to simplify reporting, fine-tune performance, or made the data

more readable. What is missing here, though, are dimension tables that pair with each

dimension column.

Our solution will be to implement a stored procedure that consumes dimension

metadata and generates tables using that information. To start this process, we’ll create

a metadata table that contains basic information about each column that we would like

to report on. This data can be populated manually or automatically and managed in

whatever manner is deemed most efficient. This table creation and population can be

seen in Listing 11-8.

Listing 11-8.  Create and Populate a Dimension Metadata Table

IF NOT EXISTS (SELECT * FROM sys.tables WHERE tables.name = 'Dimension_

Table_Metadata')

BEGIN

 CREATE TABLE dbo.Dimension_Table_Metadata

 (�Dimension_ID SMALLINT IDENTITY(1,1) NOT NULL CONSTRAINT

PK_Dimension_Table_Metadata PRIMARY KEY CLUSTERED,

 Target_Dimension_Table_Name VARCHAR(50) NOT NULL,

 Source_Fact_Schema_Name VARCHAR(128) NOT NULL,

 Source_Fact_Table_Name VARCHAR(128) NOT NULL,

 Source_Fact_Column_Name VARCHAR(50) NOT NULL

);

END

GO

INSERT INTO dbo.Dimension_Table_Metadata

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

415

 �(Target_Dimension_Table_Name, Source_Fact_Schema_Name, Source_Fact_

Table_Name, Source_Fact_Column_Name)

VALUES

 �('dim_customer_name', 'dbo', 'fact_customer_metrics_hourly',

'dim_customer_name'),

 �('dim_customer_type', 'dbo', 'fact_customer_metrics_hourly',

'dim_customer_type'),

 �('dim_customer_status', 'dbo', 'fact_customer_metrics_hourly',

'dim_customer_status');

GO

We now have a representation of three dimension columns and how we would like to

consolidate that data, as seen in Figure 11-7.

Each column has been defined by its schema, table, and column name. We have

also assigned a target table that dimension data can be loaded into when we are ready

to do so.

With this metadata defined, the next step is to create a stored procedure that can

use this data to read fact tables and generate dimension tables. The following is a stored

procedure that does exactly that, as seen in Listing 11-9.

Listing 11-9.  Stored Procedure that Consolidates Dimension Data Using

Previously Created Metadata

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'Generate_

Dimension_Tables')

BEGIN

 DROP PROCEDURE dbo.Generate_Dimension_Tables

END

GO

Figure 11-7.  Dimension attributes stored as metadata in our newly created table

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

416

CREATE PROCEDURE dbo.Generate_Dimension_Tables

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @Sql_Command NVARCHAR(MAX) = ";

 SELECT @Sql_Command = @Sql_Command + '

 USE AdventureWorksDW2016CTP3;

 �IF EXISTS (SELECT * FROM sys.tables INNER JOIN sys.schemas ON

schemas.schema_id = tables.schema_id WHERE tables.name = "'

+ Dimension_Table_Metadata.Target_Dimension_Table_Name + "'

AND schemas.name = "' + Dimension_Table_Metadata.Source_Fact_

Schema_Name + "')

 BEGIN

 �DROP TABLE [' + Dimension_Table_Metadata.Source_Fact_

Schema_Name + '].[' + Dimension_Table_Metadata.Target_

Dimension_Table_Name + '];

 END

 �CREATE TABLE [' + Dimension_Table_Metadata.Source_Fact_

Schema_Name + '].[' + Dimension_Table_Metadata.Target_

Dimension_Table_Name + ']

 �([' + Dimension_Table_Metadata.Target_Dimension_Table_Name

+ '_Id] INT NOT NULL IDENTITY(1,1) CONSTRAINT [PK_' +

Dimension_Table_Metadata.Target_Dimension_Table_Name + ']

PRIMARY KEY CLUSTERED,

 �[' + Dimension_Table_Metadata.Source_Fact_Column_Name

+ '] ' + USERDATATYPE.name +

 �CASE WHEN USERDATATYPE.name IN ('char', 'nchar',

'nvarchar', 'varchar') THEN

 '(' +

 �CASE WHEN columns.max_length = -1 THEN

'MAX'

 �WHEN USERDATATYPE.name IN ('char',

'varchar') THEN CAST(columns.max_

length AS VARCHAR(MAX))

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

417

 �ELSE CAST(columns.max_length / 2

AS VARCHAR(MAX))

 END + ')'

 ELSE " END + ' NOT NULL);

 �INSERT INTO [' + Dimension_Table_Metadata.Source_Fact_Schema_

Name + '].[' + Dimension_Table_Metadata.Target_Dimension_

Table_Name + ']

 ([' + Dimension_Table_Metadata.Source_Fact_Column_Name + '])

 SELECT DISTINCT

 '� + Dimension_Table_Metadata.Source_Fact_Table_Name +

'.' + Dimension_Table_Metadata.Source_Fact_Column_

Name + '

 �FROM [' + Dimension_Table_Metadata.Source_Fact_Schema_Name +

'].[' + Dimension_Table_Metadata.Source_Fact_Table_Name + ']

 �WHERE ' + Dimension_Table_Metadata.Source_Fact_Table_Name +

'.' + Dimension_Table_Metadata.Source_Fact_Column_Name + ' IS

NOT NULL;'

 FROM dbo.Dimension_Table_Metadata

 INNER JOIN sys.tables

 ON tables.name = Dimension_Table_Metadata.Source_Fact_Table_Name

 INNER JOIN sys.columns

 ON tables.object_id = columns.object_id

 �AND columns.name COLLATE database_default = Dimension_Table_

Metadata.Source_Fact_Column_Name

 INNER JOIN sys.schemas

 ON schemas.schema_id = tables.schema_id

 AND schemas.name = Dimension_Table_Metadata.Source_Fact_Schema_Name

 INNER JOIN sys.types USERDATATYPE

 ON columns.user_type_id = USERDATATYPE.user_type_id

 INNER JOIN sys.types SYSTEMDATATYPE

 ON SYSTEMDATATYPE.user_type_id = USERDATATYPE.system_type_id

 WHERE (USERDATATYPE.name IN ('char', 'nchar', 'nvarchar', 'varchar')

 �OR SYSTEMDATATYPE.name IN ('char', 'nchar', 'nvarchar',

'varchar'));

 EXEC sp_executesql @Sql_Command;

END

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

418

One key note on this stored procedure is that it is not long. At fewer than 50 lines

of T-SQL, it illustrates how dynamic SQL can be used to simplify a complex process by

generalizing processes. The steps to do this are as follows:

	 1.	 Drop the dimension table, if it exists.

	 2.	 Create a new dimension table.

	 3.	 Insert all dimension values into the newly created table.

Through each step, data types and sizes are preserved so that truncation is not an

issue in the final table. With this complete, we can execute it and inspect the results:

EXEC dbo.Generate_Dimension_Tables;

GO

The resulting three tables can be viewed in Figure 11-8.

Figure 11-8.  Resulting dimension tables and their contents

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

419

Each row in Dimension_Table_Metadata has been used to load data from our fact

table and turn it into dimension data. The resulting tables can be used to feed reporting

processes and provide a distinct list of lookup columns for aggregation, sorting, or other

operations.

The biggest benefit of an approach such as this is scalability. Adding a new table

only requires that we add a single row of metadata to Dimension_Table_Metadata. If any

objects change, those updates can be made centrally to this one location and the stored

procedure will continue to operate normally using the new metadata.

This process is relatively simple and is intended to demonstrate one way we can

convert data and metadata into schema and that it can be done with very little code,

complexity, or maintainability. Its simplicity begs for customization, as many of the

real-world applications of this would need to be modified to accommodate differing

use cases. Here are some different ways in which we could tweak this code to provide

additional capabilities:

•	 Limit the amount of fact data to load if there is no need to read all

historical data. This would reduce reads and speed up the process

greatly. If the fact table is very large, then this would be necessary to

prevent the stored procedure from taking an unacceptably long time.

•	 Remove the hard-coded database name from the stored procedure.

Alternatively, this could be made dynamic to operate on any

database, if more than one is involved.

•	 Use a MERGE statement instead of a drop/create on the target

dimension table. This will reduce work and allow for a slow, additive

data load over time. It will also maintain a consistent primary key ID

column, if needed.

•	 Add support for more data types, such as numeric, GUID, or custom

data types. This could be a way to enumerate other less-common

data types in the same fashion as with string data.

•	 Add additional columns to the resulting dimension tables to add

ordering, tags, or additional metadata that could be used to better

understand the data and what it means.

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

420

By using dynamic SQL, we were able to enumerate large amounts of metadata and

data using very little code. Centralizing metadata into a single, easy-to-maintain location

greatly improves the cost of data maintenance over time while allowing for processes to

consume it to generate new data, schema, or data insights. This approach can be applied

to many applications, whether they are as simple as this demonstration or far more

complex.

�Conclusion
In this chapter we presented a variety of applications that used many of the techniques

presented in this book. Many of these scripts were very open-ended, allowing for a great

deal of customization as they are built and implemented. List generation allowed for the

avoidance of cursors and loops when building command strings, making execution very

efficient.

There are countless other tasks that will present themselves over time in which

dynamic SQL or many of its related topics will be invaluable for solving. Even when not

developing new applications, knowledge of these tools allows us to be vigilant when

reviewing others’ work or when troubleshooting performance or application problems.

Be creative and willing to write something new, even if little content is available to

get you started. Many great tools have been built because of the question, “Why hasn’t

anyone done this yet?!” This book has provided a starting point, but as new versions

of SQL Server and other database tools are released, and as the complexity of software

applications increases with time, the opportunity for novel solutions increases.

Even if you think an idea may be a dead end, explore it anyway, and doubly so if it is

someone else claiming it’s a dead end. I would wager that more than half of the “brilliant

solutions” I’ve come up with over the years have led to absolutely nothing of use, but

the remainder were what have kept me optimistic about database development and

optimization throughout my career.

Chapter 11 Applications of Dynamic SQL

www.EBooksWorld.ir

421
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3_12

CHAPTER 12

Index Usage and
Maintenance
For our final chapter, we will apply dynamic SQL to one of its most fitting applications:

the care and maintenance of our SQL Servers and databases. These tasks are all too often

associated with hard-coded, hacked, messy T-SQL that is written to be forgotten. Of all

the places where a developer might copy and paste code from a dubious source, this is

the most common.

Our goal is to create a set of scripts that can perform important tasks and do so in

a scalable, reusable, and maintainable fashion. We want tools that are easy to use and

simple to customize. Each application presented in this chapter will be a self-contained

way to solve a problem. Use this code to take control of server maintenance and get

better insights out of your databases!

Indexes are central to performance. For most queries to perform optimally, they

require an index to select data from efficiently. Alternatively, unused indexes waste

resource, consuming disk space and slowing down writes on associated objects. Heavily

fragmented indexes can waste disk space and memory as they become overwhelmed

with unused space and disorganized data.

The following section outlines a variety of common indexing problems along with

solutions that can be customized and applied to any database environment.

�Index Defragmentation
One of the most immediate questions that we ask when reviewing a poorly performing

query is if the correct indexes are in place and if they are adequate. An additional

question that should not need to be asked is if those indexes are being properly

maintained. Over time as an index is inserted to, updated, and deleted from, the

www.EBooksWorld.ir

422

B-tree that it is built on becomes fragmented. The more time that passes, the worse the

situation gets and the more time it takes to traverse the B-tree effectively and return the

data requested by your queries.

Running jobs regularly that check for index fragmentation and take action as

necessary will ensure that this situation never becomes detrimental to application

performance. As a bonus, index usage metrics teach us about table usage as we learn

which are read-heavy, write-heavy, or both. Our first task toward achieving this goal

is to identify how fragmented our indexes are, and to do so on any set of databases on

our server.

This information can be found in the sys.dm_db_index_physical_stats dynamic

management view. The following query in Listing 12-1 joins data from this view into

a handful of system views to include the name of the database, table, and indexes

involved.

Listing 12-1.  Query to Determine Index Fragmentation for All Indexes in a Given

Database

USE AdventureWorks2016CTP3

DECLARE @database_name VARCHAR(100) = 'AdventureWorks2016CTP3';

SELECT

 SD.name AS database_name,

 SO.name AS object_name,

 SI.name AS index_name,

 IPS.index_type_desc,

 IPS.page_count,

 �IPS.avg_fragmentation_in_percent -- Be sure to filter as much as

possible...this can return a lot of data if you don't filter by

database and table.

FROM sys.dm_db_index_physical_stats(NULL, NULL, NULL, NULL , NULL) IPS

INNER JOIN sys.databases SD

ON SD.database_id = IPS.database_id

INNER JOIN sys.indexes SI

ON SI.index_id = IPS.index_id

INNER JOIN sys.objects SO

ON SO.object_id = SI.object_id

AND IPS.object_id = SO.object_id

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

423

WHERE alloc_unit_type_desc = 'IN_ROW_DATA'

AND index_level = 0

AND SD.name = @database_name

ORDER BY IPS.avg_fragmentation_in_percent DESC;

This query specifically targets one database in the filter (based on the parameter

declared at the top), but could be adjusted to check any or all user databases on a server.

The results in Figure 12-1 show each index, ordered by fragmentation, along with some

additional useful information.

Now that we have identified our most fragmented tables, we need to figure out the

best way to address them. We have two options available to us:

�Index Rebuild
When an index is rebuilt, it is completely replaced with a new copy of the index, built

from scratch as though it were just newly created. In SQL Server Standard edition, this

is an offline operation, meaning that it can cause contention while running. When

rebuilding indexes in Standard edition, use caution to schedule them at a time when

that interruption is tolerable. In Enterprise edition, rebuilds can be run online, allowing

them to operate while other transactions occur at the same time. Regardless of edition,

rebuilding indexes is a resource-intensive operation and should be done during off

hours when the server has extra resources to spare.

In SQL Server 2017, resumable online index rebuilds were introduced, allowing a

rebuild to continue where it left off if it were interrupted. Prior to this feature, canceling

an index rebuild would cause the entire operation to roll back, which can also be time-

consuming and resource intensive.

Figure 12-1.  Index fragmentation results from the query in Listing 12-1

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

424

�Index Reorganization
Reorganizing an index results in cleanup at the leaf level, reordering pages and

reapplying the fill-factor as necessary. This operation is always online, regardless of

the edition of SQL Server you are running, and can be interrupted at any time with no

ill effects.

Despite being a somewhat simpler process, an index reorg can potentially take

as long as an index rebuild for a very wide index. Keeping track of these times can

allow you to periodically review index maintenance tasks and ensure they are running

acceptably fast.

�Creating an Index Maintenance Solution
We now know what the problem is and what tools are available to solve it, so now we can

step through a sample of a solution. The need for dynamic SQL is immediate: we have

multiple databases, tables, indexes, and potential operations. This is a scenario where

the dynamic TSQL will be simpler and easier to implement than a long, procedural

solution.

Let’s start with a stored procedure that checks the fragmentation level and will

choose whether to reorganize or rebuild based on user input. For this example, we’ll

choose 10% for a reorg and 35% for a rebuild, as well as use those numbers as default

parameter values. It will have a @print_only flag that determines if we should print the

results for review or execute them. The proc will include all databases on the instance,

except for model, master, msdb, and tempdb. This can easily be customized to act on any

set of databases, though. One last addition is the inclusion of the schema name, so that

we can support databases with multiple schemas aside from dbo. This new script can be

viewed in its entirety in Listing 12-2.

Listing 12-2.  Simple Index Maintenance Solution Using Dynamic SQL

IF EXISTS (SELECT * FROM sys.procedures WHERE procedures.name = 'index_

maintenance_demo')

BEGIN

 DROP PROCEDURE dbo.index_maintenance_demo;

END

GO

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

425

CREATE PROCEDURE dbo.index_maintenance_demo

 @reorganization_percentage TINYINT = 10,

 @rebuild_percentage TINYINT = 35,

 @print_results_only BIT = 1

AS

BEGIN

 SET NOCOUNT ON;

 DECLARE @sql_command NVARCHAR(MAX) = ";

 �DECLARE @parameter_list NVARCHAR(MAX) = '@reorganization_percentage

TINYINT, @rebuild_percentage TINYINT'

 DECLARE @database_name NVARCHAR(MAX);

 DECLARE @database_list TABLE

 (database_name NVARCHAR(MAX) NOT NULL);

 INSERT INTO @database_list

 (database_name)

 SELECT

 name

 FROM sys.databases

 WHERE databases.name NOT IN ('msdb', 'master', 'TempDB', 'model');

 CREATE TABLE #index_maintenance

 (database_name NVARCHAR(MAX),

 schema_name NVARCHAR(MAX),

 object_name NVARCHAR(MAX),

 index_name NVARCHAR(MAX),

 index_type_desc NVARCHAR(MAX),

 page_count BIGINT,

 avg_fragmentation_in_percent FLOAT,

 index_operation NVARCHAR(MAX));

 SELECT @sql_command = @sql_command + '

 USE [' + database_name + ']

 INSERT INTO #index_maintenance

 �(database_name, schema_name, object_name, index_name,

index_type_desc, page_count, avg_fragmentation_in_percent,

index_operation)

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

426

 SELECT

 CAST(SD.name AS NVARCHAR(MAX)) AS database_name,

 CAST(SS.name AS NVARCHAR(MAX)) AS schema_name,

 CAST(SO.name AS NVARCHAR(MAX)) AS object_name,

 CAST(SI.name AS NVARCHAR(MAX)) AS index_name,

 IPS.index_type_desc,

 IPS.page_count,

 �IPS.avg_fragmentation_in_percent, -- Be sure to filter as much

as possible...this can return a lot of data if you dont filter

by database and table.

 CAST(CASE

 �WHEN IPS.avg_fragmentation_in_percent >= @rebuild_

percentage THEN "REBUILD"

 �WHEN IPS.avg_fragmentation_in_percent >=

@reorganization_percentage THEN "REORGANIZE"

 END AS NVARCHAR(MAX)) AS index_operation

 �FROM sys.dm_db_index_physical_stats(NULL, NULL, NULL, NULL , NULL) IPS

 INNER JOIN sys.databases SD

 ON SD.database_id = IPS.database_id

 INNER JOIN sys.indexes SI

 ON SI.index_id = IPS.index_id

 INNER JOIN sys.objects SO

 ON SO.object_id = SI.object_id

 AND IPS.object_id = SO.object_id

 INNER JOIN sys.schemas SS

 ON SS.schema_id = SO.schema_id

 WHERE alloc_unit_type_desc = "IN_ROW_DATA"

 AND index_level = 0

 AND SD.name = "' + database_name + "'

 AND IPS.avg_fragmentation_in_percent >= @reorganization_percentage

 AND SI.name IS NOT NULL -- Only review index, not heap data.

 �AND SO.is_ms_shipped = 0 -- Do not perform maintenance on system

objects.

 ORDER BY SD.name ASC;'

 FROM @database_list

 WHERE database_name IN (SELECT name FROM sys.databases);

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

427

 �EXEC sp_executesql @sql_command, @parameter_list, @reorganization_

percentage, @rebuild_percentage;

 SELECT @sql_command = ";

 SELECT @sql_command = @sql_command +

 ' USE [' + database_name + ']

 �ALTER INDEX [' + index_name + '] ON [' + schema_name + '].

[' + object_name + ']

 ' + index_operation + ';

 '

 FROM #index_maintenance;

 SELECT * FROM #index_maintenance

 ORDER BY avg_fragmentation_in_percent DESC;

 IF @print_results_only = 1

 PRINT @sql_command;

 ELSE

 EXEC sp_executesql @sql_command;

 DROP TABLE #index_maintenance;

END

Note that a maintenance stored procedure such as this can exist anywhere, but

ideally could be included in a user-defined maintenance/support database. This

provides us control over our schema and leaves system databases as untouched as

possible.

This script builds a long command string from a sequence of index rebuild or

reorg operations. Note that each set of dynamic SQL operations builds strings using a

dynamically generated list prior to execution. This avoids the need for loops or cursors

and accomplishes our tasks very quickly and efficiently. Let’s execute this for the default

parameters:

EXEC dbo.index_maintenance_demo @reorganization_percentage = 10, @rebuild_

percentage = 35, @print_results_only = 1;

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

428

Since @print_results_only is set to 1, no index actions will be taken. The command

string will be printed out at the end of the stored procedure, prior to dropping the

temporary table. Here is a subset of the results that printed on my server:

USE [AdventureWorks2014]

 �ALTER INDEX [IX_vProductAndDescription] ON [Production].

[vProductAndDescription]

 REORGANIZE;

USE [AdventureWorks2014]

 �ALTER INDEX [IX_vStateProvinceCountryRegion] ON [Person].

[vStateProvinceCountryRegion]

 REBUILD;

USE [AdventureWorks2016CTP3]

 �ALTER INDEX [PK_ProductCostHistory_ProductID_StartDate] ON

[Production].[ProductCostHistory]

 REBUILD;

USE [AdventureWorks2016CTP3]

 �ALTER INDEX [AK_ProductDescription_rowguid] ON [Production].

[ProductDescription]

 REBUILD;

USE [AdventureWorks2016CTP3]

 ALTER INDEX [PK_DatabaseLog_DatabaseLogID] ON [dbo].[DatabaseLog]

 REBUILD;

USE [AdventureWorks2016CTP3]

 �ALTER INDEX [PK_ProductInventory_ProductID_LocationID] ON

[Production].[ProductInventory]

 REORGANIZE;

Note that results for a variety of databases were returned and will vary accordingly

on your test machine. When working with long command strings, beware of truncation,

either in the string itself or by Management Studio’s results pane when printing sample

output. As a precaution against this, I’ve cast all strings in the temporary table as

NVARCHAR(MAX), to ensure that the command string is not converted to any of the smaller

string data types.

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

429

It is also important to note that dynamic SQL was used to gather index fragmentation

data as some of the views, such as sys.tables or dm_db_index_physical_stats are

database-specific. To collect all data for each database, it was necessary to USE each

database and then check the views within them independently of each other. Similarly,

to perform index maintenance, it is necessary to USE the appropriate database first

before running a rebuild or reorganize statement.

The contents of the temporary table are also output, so we can further review the

data returned, as seen in Figure 12-2.

Figure 12-2.  Full fragmentation results, as returned from the query in Listing 12-2

Here we can review each index, its fragmentation level, and the operation that was

chosen based on our inputs. If we are confident that this stored procedure does exactly

what we want it to, then we can allow it to execute the entire command string and clean

up all indexes in these databases:

EXEC dbo.index_maintenance_demo @reorganization_percentage = 10, @rebuild_

percentage = 35, @print_results_only = 0;

After about 30 seconds of waiting, the script completes successfully and our index

maintenance is complete! We can add additional options and continue to customize this

script to our heart’s content. Some features to consider adding:

•	 Add WITH (ONLINE = ON) to rebuild operations so they can run

online (Enterprise edition only)

•	 Add WITH (SORT_IN_TEMP = ON) to rebuild operations so they

can sort intermediary rebuild results in TempDB, which can speed

up operations. Keep in mind that enough space must be available in

TempDB for this to work.

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

430

•	 Adjust the fill factor on an index, if one besides the default is needed.

•	 Check the size of the index and take actions differently based on that

information.

•	 Add logging so that you can review the commands executed, as well

as the time needed to complete them.

•	 Exceptions for tables that are write-heavy and are not worth the effort

to perform maintenance against. Similarly, we can omit databases

that do not require maintenance to avoid unnecessary work.

Use this script as a starting point and tailor it to your environment’s needs, regardless

of how they may differ from what we have presented here. There are an infinite number

of ways to customize and improve upon this concept, with your imagination being the

only barrier between you and the perfect index maintenance solution!

�Index Usage Statistics
Knowing which indexes are used, unused, or misused provides valuable information

that can be used to effectively manage performance. Collecting this data and trending it

over time allows us to accomplish some important tasks:

•	 Unused indexes can be removed to reclaim wasted space and speed

up writes.

•	 Write-heavy indexes may be able to be removed.

•	 Indexes with many scans and lookups may suggest missing or

inadequate indexing on the table.

•	 Duplicate indexes may be removed.

SQL Server stores all index usage data in sys.dm_db_index_usage_stats. The

query in Listing 12-3 shows how we can use this view to learn about our index usage.

Listing 12-3.  Viewing Index Usage Statistics Using dm_db_index_usage_stats

SELECT

 schemas.name AS SchemaName,

 tables.name AS TableName,

 indexes.name AS IndexName,

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

431

 indexes.type_desc AS IndexType,

 dm_db_index_usage_stats.*

FROM sys.dm_db_index_usage_stats

INNER JOIN sys.indexes

ON indexes.object_id = dm_db_index_usage_stats.object_id

AND indexes.index_id = dm_db_index_usage_stats.index_id

INNER JOIN sys.tables

ON tables.object_id = indexes.object_id

INNER JOIN sys.schemas

ON schemas.schema_id = tables.schema_id

WHERE dm_db_index_usage_stats.database_id = DB_ID()

AND indexes.name IS NOT NULL;

The results of this query show any index usage that has occurred on my local SQL

Server within the database that I ran it, as seen in Figure 12-3.

Figure 12-3.  Index usage statistics from my AdventureWorks database

Included in our data is the schema name, table name, index name, index type, and a

variety of metrics counting seeks, scans, and more. Before continuing, we must consider

a handful of caveats to this data that will influence how we use it:

•	 All index usage data is reset when SQL Server is restarted.

•	 Prior to SQL Server 2012SP2CU12, 2012SP3CU3 and SQL Server

2014SP2, index rebuilds also reset index usage stats.

•	 Completely unused indexes are not included in dm_db_index_

usage_stats. A new row is added for an index when it is first read

or written to.

These details mean that we need to capture data regularly to not lose it upon a restart

or rebuild. We also need to account for unused indexes that never receive any reads or

writes, as they will not be populated in our result set at all.

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

432

To attack this problem, we will start by creating tables to store these stats. Listing 12-4

shows the creation of tables that will store index usage stats detail data, summary data,

and daily usage data.

Listing 12-4.  Tables to Store Index Usage Statistics

CREATE TABLE dbo.index_usage_stats_detail

(�index_usage_stats_detail_Id INT NOT NULL IDENTITY(1,1) CONSTRAINT

PK_index_usage_stats_detail PRIMARY KEY CLUSTERED,

 index_usage_stats_detail_create_datetime DATETIME NOT NULL,

 [database_name] SYSNAME,

 [schema_name] SYSNAME,

 table_name SYSNAME,

 index_name SYSNAME,

 user_seek_count BIGINT,

 user_scan_count BIGINT,

 user_lookup_count BIGINT,

 user_update_count BIGINT,

 last_user_seek DATETIME,

 last_user_scan DATETIME,

 last_user_lookup DATETIME,

 last_user_update DATETIME,

 is_primary_key BIT NOT NULL,

 is_clustered_index BIT NOT NULL

);

CREATE NONCLUSTERED INDEX IX_index_usage_stats_detail_index_usage_stats_

detail_create_datetime ON dbo.index_usage_stats_detail (index_usage_stats_

detail_create_datetime);

GO

CREATE TABLE dbo.index_usage_daily_stats

(index_usage_daily_stats_id INT NOT NULL IDENTITY(1,1) CONSTRAINT

PK_index_usage_daily_stats PRIMARY KEY CLUSTERED,

 index_usage_daily_stats_date DATE NOT NULL,

 [database_name] SYSNAME,

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

433

 [schema_name] SYSNAME,

 table_name SYSNAME,

 index_name SYSNAME,

 user_seek_count_daily BIGINT,

 user_scan_count_daily BIGINT,

 user_lookup_count_daily BIGINT,

 user_update_count_daily BIGINT,

 last_user_seek DATETIME,

 last_user_scan DATETIME,

 last_user_lookup DATETIME,

 last_user_update DATETIME,

 user_seek_count_last_update BIGINT,

 user_scan_count_last_update BIGINT,

 user_lookup_count_last_update BIGINT,

 user_update_count_last_update BIGINT,

 is_primary_key BIT NOT NULL,

 is_clustered_index BIT NOT NULL,

 index_usage_daily_stats_Last_Update_Datetime DATETIME NOT NULL

);

CREATE NONCLUSTERED INDEX IX_index_usage_daily_stats_index_usage_daily_

stats_date ON dbo.index_usage_daily_stats (index_usage_daily_stats_date);

CREATE NONCLUSTERED INDEX IX_index_usage_daily_stats_database_name_schema_

name_table_name_index_name ON dbo.index_usage_daily_stats ([database_name],

[schema_name], table_name, index_name);

GO

These two tables provide us with different ways to store and manage usage

metrics:

•	 Index_usage_stats_detail will contain stats directly from dm_

db_index_usage_stats with no aggregation or transformations

against it.

•	 Index_usage_daily_stats will roll up data from a given date so that

we can easily trend usage over time or over any custom time period.

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

434

With tables created to store index usage data, we can now create a stored procedure

to collect that data and store it in those tables. The process to do so is relatively

straightforward:

	 1.	 Compile a list of nonsystem databases.

	 2.	 Iterate through each database and:

	 a.	 Collect a list of all indexes in the database.

	 b.	 Collect index stats detail for each index.

	 3.	 Calculate index usage daily stats based on the detailed data

collected and the previous day’s metrics.

	 4.	 Add daily metrics for completely unused indexes not present in

dm_db_index_usage_stats.

With this basic process defined, let’s create our collection proc, execute it, and

examine the results. The stored procedure definition can be seen in Listing 12-5.

Listing 12-5.  Stored Procedure to Populate Index Usage Statistics Tables

CREATE PROCEDURE dbo.populate_index_usage_stats

 @detail_data_retention_days TINYINT = 20,

 @daily_data_retention_days TINYINT = 120,

 @aggregate_database_data BIT = 0

AS

BEGIN

 SET NOCOUNT ON;

 DELETE index_usage_stats_detail

 FROM dbo.index_usage_stats_detail

 �WHERE index_usage_stats_detail.index_usage_stats_detail_create_

datetime < DATEADD(DAY, -1 * @detail_data_retention_days, CURRENT_

TIMESTAMP);

 DELETE index_usage_daily_stats

 FROM dbo.index_usage_daily_stats

 �WHERE index_usage_daily_stats.index_usage_daily_stats_date <

DATEADD(DAY, -1 * @daily_data_retention_days, CURRENT_TIMESTAMP);

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

435

 DECLARE @index_collection_timestamp DATETIME = CURRENT_TIMESTAMP;

 �DECLARE @index_collection_date DATE = CAST(CURRENT_TIMESTAMP AS

DATE);

 CREATE TABLE #database_list

 ([database_name] SYSNAME NOT NULL PRIMARY KEY CLUSTERED,

 is_processed BIT NOT NULL);

 DECLARE @sql_command NVARCHAR(MAX);

 DECLARE @current_database_name SYSNAME;

 INSERT INTO #database_list

 ([database_name], is_processed)

 SELECT

 databases.name AS [database_name],

 0 AS is_processed

 FROM sys.databases

 �WHERE databases.name NOT IN ('master', 'msdb', 'model', 'tempdb',

'ReportServerTempDB', 'ReportServer')

 AND databases.state_desc = 'ONLINE';

 CREATE TABLE #index_usage_stats_detail

 (index_usage_stats_detail_create_datetime DATETIME NOT NULL,

 [database_name] SYSNAME,

 [schema_name] SYSNAME,

 table_name SYSNAME,

 index_name SYSNAME,

 user_seek_count BIGINT,

 user_scan_count BIGINT,

 user_lookup_count BIGINT,

 user_update_count BIGINT,

 last_user_seek DATETIME,

 last_user_scan DATETIME,

 last_user_lookup DATETIME,

 last_user_update DATETIME,

 is_primary_key BIT NOT NULL,

 is_clustered_index BIT NOT NULL);

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

436

 CREATE TABLE #all_indexes

 (all_indexes_id INT NOT NULL IDENTITY(1,1) PRIMARY KEY CLUSTERED,

 [database_name] SYSNAME NOT NULL,

 [schema_name] SYSNAME NOT NULL,

 table_name SYSNAME NOT NULL,

 index_name SYSNAME NOT NULL,

 is_primary_key BIT NOT NULL,

 is_clustered_index BIT NOT NULL);

 �WHILE EXISTS (SELECT * FROM #database_list database_list WHERE

database_list.is_processed = 0)

 BEGIN

 SELECT TOP 1

 @current_database_name = database_list.[database_name]

 FROM #database_list database_list

 WHERE database_list.is_processed = 0;

 SELECT

 @sql_command =

 ' USE [' + @current_database_name + ']

 INSERT INTO #index_usage_stats_detail

 �(index_usage_stats_detail_create_

datetime, [database_name], [schema_name],

table_name, index_name, user_seek_count,

 �user_scan_count, user_lookup_count,

user_update_count, last_user_seek, last_

user_scan, last_user_lookup, last_user_

update,

 is_primary_key, is_clustered_index)

 SELECT

 �"' + CAST(@index_collection_timestamp AS

NVARCHAR(MAX)) + "' AS index_usage_stats_

detail_create_datetime,

 �"' + REPLACE(@current_database_name,

"", """) + "' AS [database_name],

 �schemas.name AS [schema_name],

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

437

 tables.name AS table_name,

 indexes.name AS index_name,

 �dm_db_index_usage_stats.user_seeks

AS user_seek_count,

 �dm_db_index_usage_stats.user_scans

AS user_scan_count,

 �dm_db_index_usage_stats.user_lookups

AS user_lookup_count,

 �dm_db_index_usage_stats.user_updates

AS user_update_count,

 �dm_db_index_usage_stats.last_user_seek

AS last_user_seek,

 �dm_db_index_usage_stats.last_user_scan

AS last_user_scan,

 �dm_db_index_usage_stats.last_user_lookup

AS last_user_lookup,

 �dm_db_index_usage_stats.last_user_update

AS last_user_update,

 �ISNULL(indexes.is_primary_key, 0) AS is_

primary_key,

 �ISNULL(CASE WHEN indexes.type_desc =

"CLUSTERED" THEN 1 ELSE 0 END, 0) AS is_

clustered_index

 �FROM [' + @current_database_name + '].sys.dm_db_

index_usage_stats

 �INNER JOIN [' + @current_database_name + '].sys.

indexes

 �ON indexes.object_id = dm_db_index_usage_stats.

object_id

 �AND indexes.index_id = dm_db_index_usage_stats.

index_id

 �INNER JOIN [' + @current_database_name + '].sys.

tables

 �ON tables.object_id = indexes.object_id

 �INNER JOIN [' + @current_database_name + '].sys.

schemas

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

438

 �ON schemas.schema_id = tables.schema_id

 �WHERE dm_db_index_usage_stats.database_id =

(SELECT DB_ID("' + REPLACE(@current_database_

name, "", """) + "'))

 AND indexes.name IS NOT NULL;

 �INSERT INTO #all_indexes

 �([database_name], [schema_name], table_

name, index_name, is_primary_key, is_

clustered_index)

 SELECT

 �"' + REPLACE(@current_database_name,

"", """) + "' AS [database_name],

 �schemas.name COLLATE DATABASE_DEFAULT AS

[schema_name],

 �tables.name COLLATE DATABASE_DEFAULT AS

table_name,

 �indexes.name COLLATE DATABASE_DEFAULT

AS index_name,

 �ISNULL(indexes.is_primary_key, 0) AS is_

primary_key,

 �ISNULL(CASE WHEN indexes.type_desc =

"CLUSTERED" THEN 1 ELSE 0 END, 0) AS is_

clustered_index

 �FROM [' + @current_database_name + '].sys.

indexes

 �INNER JOIN [' + @current_database_name + '].sys.

tables

 �ON indexes.object_id = tables.object_id

 �INNER JOIN [' + @current_database_name + '].sys.

schemas

 �ON schemas.schema_id = tables.schema_id

 �WHERE indexes.name IS NOT NULL;';

 EXEC sp_executesql @sql_command;

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

439

 UPDATE database_list

 SET is_processed = 1

 FROM #database_list database_list

 WHERE [database_name] = @current_database_name;

 END

 INSERT INTO dbo.index_usage_stats_detail

 (�index_usage_stats_detail_create_datetime, [database_

name], [schema_name], table_name, index_name, user_

seek_count,

 �user_scan_count, user_lookup_count, user_update_count,

last_user_seek, last_user_scan, last_user_lookup, last_

user_update,

 is_primary_key, is_clustered_index)

 SELECT

 index_usage_stats_detail_create_datetime,

 [database_name],

 [schema_name],

 table_name,

 index_name,

 user_seek_count,

 user_scan_count,

 user_lookup_count,

 user_update_count,

 last_user_seek,

 last_user_scan,

 last_user_lookup,

 last_user_update,

 is_primary_key,

 is_clustered_index

 FROM #index_usage_stats_detail;

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

440

 IF @aggregate_database_data = 0

 BEGIN

 �MERGE INTO dbo.index_usage_daily_stats AS utilization_target

 �USING (SELECT

 �@index_collection_date AS index_usage_

stats_detail_Create_Date,

 �index_usage_stats_detail.[database_name],

 index_usage_stats_detail.[schema_name],

 index_usage_stats_detail.table_name,

 index_usage_stats_detail.index_name,

 index_usage_stats_detail.user_seek_count,

 index_usage_stats_detail.user_scan_count,

 �index_usage_stats_detail.user_lookup_

count,

 �index_usage_stats_detail.user_update_

count,

 index_usage_stats_detail.last_user_seek,

 index_usage_stats_detail.last_user_scan,

 �index_usage_stats_detail.last_user_

lookup,

 �index_usage_stats_detail.last_user_

update,

 �index_usage_stats_detail.is_primary_key,

 �index_usage_stats_detail.is_clustered_

index,

 �index_usage_daily_stats.user_seek_count_

last_update,

 �index_usage_daily_stats.user_scan_count_

last_update,

 �index_usage_daily_stats.user_lookup_

count_last_update,

 �index_usage_daily_stats.user_update_

count_last_update

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

441

 �FROM #index_usage_stats_detail index_usage_

stats_detail

 �LEFT JOIN dbo.index_usage_daily_stats

 �ON index_usage_stats_detail.[database_name] =

index_usage_daily_stats.[database_name]

 �AND index_usage_stats_detail.[schema_name] =

index_usage_daily_stats.[schema_name]

 �AND index_usage_stats_detail.table_name = index_

usage_daily_stats.table_name

 �AND index_usage_stats_detail.index_name = index_

usage_daily_stats.index_name

 �AND index_usage_daily_stats.index_usage_daily_

stats_date = DATEADD(DAY, -1, @index_collection_

date)) AS utilization_source

 ON (�utilization_target.[database_name] = utilization_source.

[database_name]

 �AND utilization_target.[schema_name] =

utilization_source.[schema_name]

 �AND utilization_target.table_name = utilization_

source.table_name

 �AND utilization_target.index_name = utilization_

source.index_name

 �AND utilization_target.index_usage_daily_stats_

date = @index_collection_date)

 �WHEN MATCHED

 THEN UPDATE

 SET user_seek_count_daily = CASE

 �WHEN utilization_source.user_

seek_count >= utilization_target.

user_seek_count_last_update

 �THEN utilization_source.user_

seek_count - utilization_

target.user_seek_count_last_

update + utilization_target.

user_seek_count_daily

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

442

 �WHEN utilization_source.user_

seek_count < utilization_target.

user_seek_count_last_update

 �THEN utilization_source.user_

seek_count + utilization_

target.user_seek_count_daily

 END,

 user_scan_count_daily = CASE

 �WHEN utilization_source.user_

scan_count >= utilization_target.

user_scan_count_last_update

 �THEN utilization_source.user_

scan_count - utilization_

target.user_scan_count_last_

update + utilization_target.

user_scan_count_daily

 �WHEN utilization_source.user_

scan_count < utilization_target.

user_scan_count_last_update

 �THEN utilization_source.user_

scan_count + utilization_

target.user_scan_count_daily

 END,

 user_lookup_count_daily = CASE

 �WHEN utilization_source.user_

lookup_count >= utilization_

target.user_lookup_count_last_

update

 �THEN utilization_source.

user_lookup_count -

utilization_target.user_

lookup_count_last_update

+ utilization_target.user_

lookup_count_daily

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

443

 �WHEN utilization_source.user_

lookup_count < utilization_

target.user_lookup_count_last_

update

 �THEN utilization_source.user_

lookup_count + utilization_

target.user_lookup_count_daily

 END,

 user_update_count_daily = CASE

 �WHEN utilization_source.user_

update_count >= utilization_

target.user_update_count_last_

update

 �THEN utilization_source.

user_update_count -

utilization_target.user_

update_count_last_update +

utilization_target.user_

update_count_daily

 �WHEN utilization_source.user_

update_count < utilization_

target.user_update_count_last_

update

 �THEN utilization_source.user_

update_count + utilization_

target.user_update_count_daily

 END,

 last_user_seek = CASE

 �WHEN utilization_source.

last_user_seek IS NULL THEN

utilization_target.last_user_seek

 �WHEN utilization_target.

last_user_seek IS NULL THEN

utilization_source.last_

user_seek

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

444

 �WHEN utilization_source.last_

user_seek < utilization_target.

last_user_seek

 �THEN utilization_target.last_

user_seek

 �ELSE utilization_source.last_

user_seek

 END,

 last_user_scan = CASE

 �WHEN utilization_source.last_

user_scan IS NULL

 �THEN utilization_target.last_

user_scan

 �WHEN utilization_target.last_

user_scan IS NULL

 �THEN utilization_source.last_

user_scan

 �WHEN utilization_source.last_

user_scan < utilization_target.

last_user_scan

 �THEN utilization_target.last_

user_scan

 �ELSE utilization_source.last_

user_scan

 END,

 last_user_lookup = CASE

 �WHEN utilization_source.last_

user_lookup IS NULL

 �THEN utilization_target.last_

user_lookup

 �WHEN utilization_target.last_

user_lookup IS NULL

 �THEN utilization_source.last_

user_lookup

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

445

 �WHEN utilization_source.last_

user_lookup < utilization_target.

last_user_lookup THEN utilization_

target.last_user_lookup

 �ELSE utilization_source.last_

user_lookup

 END,

 last_user_update = CASE

 �WHEN utilization_source.last_

user_update IS NULL

 �THEN utilization_target.last_

user_update

 �WHEN utilization_target.

last_user_update IS NULL THEN

utilization_source.last_user_

update

 �WHEN utilization_source.

last_user_update < utilization_

target.last_user_update THEN

utilization_target.last_user_

update

 �ELSE utilization_source.last_

user_update

 END,

 �user_seek_count_last_update = utilization_

source.user_seek_count,

 �user_scan_count_last_update = utilization_

source.user_scan_count,

 �user_lookup_count_last_update =

utilization_source.user_lookup_count,

 �user_update_count_last_update =

utilization_source.user_update_count,

 �index_usage_daily_stats_Last_Update_

Datetime = CURRENT_TIMESTAMP

 WHEN NOT MATCHED BY TARGET

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

446

 THEN INSERT

 (�index_usage_daily_stats_date, [database_

name], [schema_name], table_name, index_

name, user_seek_count_daily, user_scan_

count_daily, user_lookup_count_daily,

user_update_count_daily,

 �last_user_seek, last_user_scan, last_

user_lookup, last_user_update, user_seek_

count_last_update, user_scan_count_last_

update, user_lookup_count_last_update,

 �user_update_count_last_update, is_

primary_key, is_clustered_index,

index_usage_daily_stats_Last_Update_

Datetime)

 VALUES

 (@index_collection_date,

 utilization_source.[database_name],

 utilization_source.[schema_name],

 utilization_source.table_name,

 utilization_source.index_name,

 �CASE WHEN utilization_source.user_seek_

count_last_update IS NULL

 �THEN ISNULL(utilization_

source.user_seek_count, 0)

 �WHEN utilization_source.user_seek_

count >= utilization_source.user_

seek_count_last_update

 �THEN utilization_source.

user_seek_count -

utilization_source.user_

seek_count_last_update

 ELSE utilization_source.user_seek_count

 END,

 �CASE WHEN utilization_source.user_scan_

count_last_update IS NULL

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

447

 �THEN ISNULL(utilization_

source.user_scan_count, 0)

 �WHEN utilization_source.user_scan_

count >= utilization_source.user_

scan_count_last_update

 �THEN utilization_source.user_

scan_count - utilization_source.

user_scan_count_last_update

 �ELSE utilization_source.user_

scan_count

 END,

 �CASE WHEN utilization_source.user_lookup_

count_last_update IS NULL

 �THEN ISNULL(utilization_source.

user_lookup_count, 0)

 �WHEN utilization_source.user_

lookup_count >= utilization_

source.user_lookup_count_last_

update

 �THEN utilization_source.user_

lookup_count - utilization_

source.user_lookup_count_last_

update

 �ELSE utilization_source.user_

lookup_count

 END,

 �CASE WHEN utilization_source.user_update_

count_last_update IS NULL

 �THEN ISNULL(utilization_source.

user_update_count, 0)

 �WHEN utilization_source.user_

update_count >= utilization_

source.user_update_count_last_

update

 �THEN utilization_source.user_

update_count - utilization_

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

448

source.user_update_count_last_

update

 �ELSE utilization_source.user_

update_count

 END,

 utilization_source.last_user_seek,

 utilization_source.last_user_scan,

 utilization_source.last_user_lookup,

 utilization_source.last_user_update,

 �ISNULL(utilization_source.user_seek_

count, 0),

 �ISNULL(utilization_source.user_scan_

count, 0),

 �ISNULL(utilization_source.user_lookup_

count, 0),

 �ISNULL(utilization_source.user_update_

count, 0),

 �utilization_source.is_primary_key,

 �utilization_source.is_clustered_index,

 �CURRENT_TIMESTAMP);

 END

 ELSE -- If data is to be pre-aggregated by index, then do so here.

 BEGIN

 MERGE INTO dbo.index_usage_daily_stats AS utilization_target

 USING (SELECT

 �@index_collection_date AS index_usage_

stats_detail_Create_Date,

 'ALL' AS [database_name],

 index_usage_stats_detail.[schema_name],

 index_usage_stats_detail.table_name,

 index_usage_stats_detail.index_name,

 �SUM(index_usage_stats_detail.user_seek_

count) AS user_seek_count,

 �SUM(index_usage_stats_detail.user_scan_

count) AS user_scan_count,

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

449

 �SUM(index_usage_stats_detail.user_lookup_

count) AS user_lookup_count,

 �SUM(index_usage_stats_detail.user_update_

count) AS user_update_count,

 �MAX(index_usage_stats_detail.last_user_

seek) AS last_user_seek,

 �MAX(index_usage_stats_detail.last_user_

scan) AS last_user_scan,

 �MAX(index_usage_stats_detail.last_user_

lookup) AS last_user_lookup,

 �MAX(index_usage_stats_detail.last_user_

update) AS last_user_update,

 �MAX(CAST(index_usage_stats_detail.is_

primary_key AS TINYINT)) AS is_primary_

key,

 �MAX(CAST(index_usage_stats_detail.

is_clustered_index AS TINYINT)) AS is_

clustered_index,

 �index_usage_daily_stats.user_seek_count_

last_update,

 �index_usage_daily_stats.user_scan_count_

last_update,

 �index_usage_daily_stats.user_lookup_

count_last_update,

 �index_usage_daily_stats.user_update_

count_last_update

 �FROM #index_usage_stats_detail index_usage_

stats_detail

 LEFT JOIN dbo.index_usage_daily_stats

 �ON index_usage_stats_detail.[schema_name] =

index_usage_daily_stats.[schema_name]

 �AND index_usage_stats_detail.table_name = index_

usage_daily_stats.table_name

 �AND index_usage_stats_detail.index_name = index_

usage_daily_stats.index_name

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

450

 �AND index_usage_daily_stats.index_usage_daily_

stats_date = DATEADD(DAY, -1, @index_collection_

date)

 �AND index_usage_daily_stats.[database_name] =

'ALL'

 �GROUP BY index_usage_stats_detail.[schema_name],

index_usage_stats_detail.table_name, index_

usage_stats_detail.index_name,

 �index_usage_daily_stats.user_seek_count_

last_update, index_usage_daily_stats.

user_scan_count_last_update, index_usage_

daily_stats.user_lookup_count_last_

update,

 �index_usage_daily_stats.user_update_

count_last_update) AS utilization_source

 ON (�utilization_target.[database_name] = 'ALL'

 �AND utilization_target.[schema_name] =

utilization_source.[schema_name]

 �AND utilization_target.table_name = utilization_

source.table_name

 �AND utilization_target.index_name = utilization_

source.index_name

 �AND utilization_target.index_usage_daily_stats_

date = @index_collection_date)

 WHEN MATCHED

 THEN UPDATE

 SET user_seek_count_daily = CASE

 �WHEN utilization_source.user_

seek_count >= utilization_target.

user_seek_count_last_update

 �THEN utilization_source.user_

seek_count - utilization_target.

user_seek_count_last_update +

utilization_target.user_seek_

count_daily

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

451

 �WHEN utilization_source.user_

seek_count < utilization_target.

user_seek_count_last_update

 �THEN utilization_source.user_

seek_count + utilization_target.

user_seek_count_daily

 END,

 user_scan_count_daily = CASE

 �WHEN utilization_source.user_

scan_count >= utilization_target.

user_scan_count_last_update

 �THEN utilization_source.user_

scan_count - utilization_target.

user_scan_count_last_update +

utilization_target.user_scan_

count_daily

 �WHEN utilization_source.user_

scan_count < utilization_target.

user_scan_count_last_update

 �THEN utilization_source.user_

scan_count + utilization_target.

user_scan_count_daily

 END,

 user_lookup_count_daily = CASE

 �WHEN utilization_source.user_

lookup_count >= utilization_

target.user_lookup_count_last_

update

 �THEN utilization_source.user_

lookup_count - utilization_

target.user_lookup_count_last_

update + utilization_target.

user_lookup_count_daily

 �WHEN utilization_source.user_

lookup_count < utilization_

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

452

target.user_lookup_count_last_

update

 �THEN utilization_source.user_

lookup_count + utilization_

target.user_lookup_count_daily

 END,

 user_update_count_daily = CASE

 �WHEN utilization_source.user_

update_count >= utilization_

target.user_update_count_last_

update

 �THEN utilization_source.user_

update_count - utilization_

target.user_update_count_last_

update + utilization_target.

user_update_count_daily

 �WHEN utilization_source.user_

update_count < utilization_

target.user_update_count_last_

update

 �THEN utilization_source.user_

update_count + utilization_

target.user_update_count_daily

 END,

 last_user_seek = CASE

 �WHEN utilization_source.

last_user_seek IS NULL THEN

utilization_target.last_user_seek

 �WHEN utilization_target.

last_user_seek IS NULL THEN

utilization_source.last_user_seek

 �WHEN utilization_source.last_

user_seek < utilization_target.

last_user_seek THEN utilization_

target.last_user_seek

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

453

 �ELSE utilization_source.last_

user_seek

 END,

 last_user_scan = CASE

 �WHEN utilization_source.

last_user_scan IS NULL THEN

utilization_target.last_user_scan

 �WHEN utilization_target.

last_user_scan IS NULL THEN

utilization_source.last_user_scan

 �WHEN utilization_source.last_

user_scan < utilization_target.

last_user_scan THEN utilization_

target.last_user_scan

 �ELSE utilization_source.last_

user_scan

 END,

 last_user_lookup = CASE

 �WHEN utilization_source.last_user_

lookup IS NULL THEN utilization_

target.last_user_lookup

 �WHEN utilization_target.

last_user_lookup IS NULL THEN

utilization_source.last_user_

lookup

 �WHEN utilization_source.

last_user_lookup < utilization_

target.last_user_lookup THEN

utilization_target.last_user_

lookup

 �ELSE utilization_source.last_

user_lookup

 END,

 last_user_update = CASE

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

454

 �WHEN utilization_source.

last_user_update IS NULL THEN

utilization_target.last_user_

update

 �WHEN utilization_target.

last_user_update IS NULL THEN

utilization_source.last_user_

update

 �WHEN utilization_source.

last_user_update < utilization_

target.last_user_update THEN

utilization_target.last_user_

update

 ELSE utilization_source.last_user_update

 END,

 �user_seek_count_last_update = utilization_

source.user_seek_count,

 �user_scan_count_last_update = utilization_

source.user_scan_count,

 �user_lookup_count_last_update =

utilization_source.user_lookup_count,

 �user_update_count_last_update =

utilization_source.user_update_count,

 �index_usage_daily_stats_Last_Update_

Datetime = CURRENT_TIMESTAMP

 WHEN NOT MATCHED BY TARGET

 THEN INSERT

 (�index_usage_daily_stats_date, [database_

name], [schema_name], table_name, index_

name, user_seek_count_daily, user_scan_

count_daily, user_lookup_count_daily,

user_update_count_daily,

 �last_user_seek, last_user_scan, last_user_

lookup, last_user_update, user_seek_count_

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

455

last_update, user_scan_count_last_update,

user_lookup_count_last_update,

 �user_update_count_last_update, is_primary_

key, is_clustered_index, index_usage_daily_

stats_Last_Update_Datetime)

 VALUES

 (@index_collection_date,

 'ALL',

 utilization_source.[schema_name],

 utilization_source.table_name,

 utilization_source.index_name,

 �CASE WHEN utilization_source.user_seek_

count_last_update IS NULL

 �THEN ISNULL(utilization_source.

user_seek_count, 0)

 �WHEN utilization_source.user_

seek_count >= utilization_source.

user_seek_count_last_update

 �THEN utilization_source.user_

seek_count - utilization_source.

user_seek_count_last_update

 �ELSE utilization_source.user_

seek_count

 END,

 �CASE WHEN utilization_source.user_scan_

count_last_update IS NULL

 �THEN ISNULL(utilization_source.

user_scan_count, 0)

 �WHEN utilization_source.user_

scan_count >= utilization_source.

user_scan_count_last_update

 �THEN utilization_source.user_

scan_count - utilization_source.

user_scan_count_last_update

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

456

 �ELSE utilization_source.user_

scan_count

 END,

 �CASE WHEN utilization_source.

user_lookup_count_last_update IS

NULL

 �THEN ISNULL(utilization_source.

user_lookup_count, 0)

 �WHEN utilization_source.user_lookup_

count >= utilization_source.user_

lookup_count_last_update

 �THEN utilization_source.user_

lookup_count - utilization_source.

user_lookup_count_last_update

 �ELSE utilization_source.user_lookup_

count

 END,

 �CASE WHEN utilization_source.user_update_

count_last_update IS NULL

 �THEN ISNULL(utilization_source.

user_update_count, 0)

 �WHEN utilization_source.user_update_

count >= utilization_source.user_

update_count_last_update

 �THEN utilization_source.user_

update_count - utilization_

source.user_update_count_last_

update

 �ELSE utilization_source.user_update_

count

 END,

 utilization_source.last_user_seek,

 utilization_source.last_user_scan,

 utilization_source.last_user_lookup,

 utilization_source.last_user_update,

 �ISNULL(utilization_source.user_seek_count, 0),

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

457

 �ISNULL(utilization_source.user_scan_count, 0),

 �ISNULL(utilization_source.user_lookup_

count, 0),

 �ISNULL(utilization_source.user_update_

count, 0),

 utilization_source.is_primary_key,

 utilization_source.is_clustered_index,

 CURRENT_TIMESTAMP);

 END

 -- �Check for any indexes that are completely unused, and therefore

do not appear in any index stats usage DMV data.

 -- Update summary and daily stats data as needed based on this data.

 IF @aggregate_database_data = 0

 BEGIN

 INSERT INTO dbo.index_usage_daily_stats

 (�index_usage_daily_stats_date, [database_name], [schema_

name], table_name, index_name, user_seek_count_daily,

user_scan_count_daily, user_lookup_count_daily, user_

update_count_daily,

 �last_user_seek, last_user_scan, last_user_lookup, last_

user_update, user_seek_count_last_update, user_scan_

count_last_update, user_lookup_count_last_update,

 �user_update_count_last_update, is_primary_key, is_

clustered_index, index_usage_daily_stats_Last_Update_

Datetime)

 SELECT

 @index_collection_date,

 all_index_data.[database_name],

 all_index_data.[schema_name],

 all_index_data.table_name,

 all_index_data.index_name,

 0 AS user_seek_count_daily,

 0 AS user_scan_count_daily,

 0 AS user_lookup_count_daily,

 0 AS user_update_count_daily,

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

458

 NULL AS last_user_seek,

 NULL AS last_user_scan,

 NULL AS last_user_lookup,

 NULL AS last_user_update,

 0 AS user_seek_count_last_update,

 0 AS user_scan_count_last_update,

 0 AS user_lookup_count_last_update,

 0 AS user_update_count_last_update,

 all_index_data.is_primary_key,

 all_index_data.is_clustered_index,

 �CURRENT_TIMESTAMP AS index_usage_daily_stats_Last_

Update_Datetime

 FROM #all_indexes all_index_data

 LEFT JOIN dbo.index_usage_daily_stats

 �ON all_index_data.[database_name] = index_usage_daily_stats.

[database_name]

 �AND all_index_data.[schema_name] = index_usage_daily_stats.

[schema_name]

 �AND all_index_data.table_name = index_usage_daily_stats.

table_name

 �AND all_index_data.index_name = index_usage_daily_stats.

index_name

 �AND index_usage_daily_stats.index_usage_daily_stats_date =

@index_collection_date

 �WHERE index_usage_daily_stats.index_usage_daily_stats_id

IS NULL;

 END

 ELSE -- �If we are aggregating all database data together, then

do so here.

 BEGIN

 INSERT INTO dbo.index_usage_daily_stats

 (�index_usage_daily_stats_date, [database_name], [schema_

name], table_name, index_name, user_seek_count_daily,

user_scan_count_daily, user_lookup_count_daily, user_

update_count_daily,

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

459

 �last_user_seek, last_user_scan, last_user_lookup, last_

user_update, user_seek_count_last_update, user_scan_

count_last_update, user_lookup_count_last_update,

 �user_update_count_last_update, is_primary_key, is_

clustered_index, index_usage_daily_stats_Last_Update_

Datetime)

 SELECT

 @index_collection_date,

 'ALL' AS [database_name],

 all_index_data.[schema_name],

 all_index_data.table_name,

 all_index_data.index_name,

 0 AS user_seek_count_daily,

 0 AS user_scan_count_daily,

 0 AS user_lookup_count_daily,

 0 AS user_update_count_daily,

 NULL AS last_user_seek,

 NULL AS last_user_scan,

 NULL AS last_user_lookup,

 NULL AS last_user_update,

 0 AS user_seek_count_last_update,

 0 AS user_scan_count_last_update,

 0 AS user_lookup_count_last_update,

 0 AS user_update_count_last_update,

 MAX(CAST(all_index_data.is_primary_key AS TINYINT)),

 MAX(CAST(all_index_data.is_clustered_index AS TINYINT)),

 �CURRENT_TIMESTAMP AS index_usage_daily_stats_Last_

Update_Datetime

 FROM #all_indexes all_index_data

 LEFT JOIN dbo.index_usage_daily_stats

 ON index_usage_daily_stats.[database_name] = 'ALL'

 �AND all_index_data.[schema_name] = index_usage_daily_stats.

[schema_name]

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

460

 �AND all_index_data.table_name = index_usage_daily_stats.

table_name

 �AND all_index_data.index_name = index_usage_daily_stats.

index_name

 �AND index_usage_daily_stats.index_usage_daily_stats_date =

@index_collection_date

 �WHERE index_usage_daily_stats.index_usage_daily_stats_id

IS NULL

 �GROUP BY all_index_data.[schema_name], all_index_data.

table_name, all_index_data.index_name;

 END

 DROP TABLE #all_indexes;

 DROP TABLE #index_usage_stats_detail;

 DROP TABLE #database_list;

END

Note the parameters that are passed into the stored procedure:

•	 @detail_data_retention_days: This instructs the proc to remove

any detail data older than this number of days. The default is 20, but

can be changed to any amount, depending on the amount of history

you’d like and resources available to store it.

•	 @daily_data_retention_days: This instructs the proc to remove any

daily reporting data older than this number of days. The default is

120, but can be changed to any amount, depending on how far back

you’d like to report on index usage.

•	 @aggregate_database_data: When set to 1, indexes will be aggregated

by name across all databases. This is useful in a scenario when an SQL

Server has many databases with the same schema, and you would want

index stats to be combined across all databases. This will result in a

single row per index on each server with the database name set to “ALL.”

This stored procedure uses dynamic SQL to iterate through databases and construct

custom T-SQL to execute and collect index metrics. Let’s run a test execution of this

process using the default parameter values:

EXEC dbo.populate_index_usage_stats;

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

461

With our initial population complete, let’s view the contents of index_usage_stats_

detail in Figure 12-4.

Figure 12-4.  Detailed index usage stats

Figure 12-5.  Aggregated daily index usage stats

Each row contains data for every index in every user database on my SQL Server that

happens to have any usage recorded in dm_db_index_usage_stats. Figure 12-5 shows

what the aggregate data in index_usage_daily_stats looks like.

The data looks similar, but we only get a single row per day per index. Over time,

this allows us to sample more often and still be able to report on a consistent set of data,

regardless of when the collection process runs.

Let’s use this data to compile a list of unused indexes over the past 90 days, as seen in

Listing 12-6.

Listing 12-6.  List of Unused Indexes

SELECT

 index_usage_daily_stats.[database_name],

 index_usage_daily_stats.[schema_name],

 index_usage_daily_stats.table_name,

 index_usage_daily_stats.index_name,

 index_usage_daily_stats.is_primary_key,

 index_usage_daily_stats.is_clustered_index

FROM dbo.index_usage_daily_stats

WHERE index_usage_daily_stats.index_usage_daily_stats_date >= DATEADD

(DAY, -90, GETUTCDATE())

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

462

GROUP BY index_usage_daily_stats.[database_name], index_usage_daily_stats.

[schema_name], index_usage_daily_stats.table_name, index_usage_daily_stats.

index_name,

index_usage_daily_stats.is_primary_key, index_usage_daily_stats.is_

clustered_index

HAVING SUM(index_usage_daily_stats.user_seek_count_daily) = 0

AND SUM(index_usage_daily_stats.user_scan_count_last_update) = 0

AND SUM(index_usage_daily_stats.user_lookup_count_last_update) = 0;

Figure 12-6 shows the resulting list of unused indexes.

Figure 12-6.  List of completely unused indexes

Using this information, we can target our cleanup efforts to these indexes first.

An index should not be dropped without sufficient research. It is possible that the

index provides an important unique constraint on the database, or that it may be used

infrequently for a quarterly or annual report that will time out without it. Either way, we

can begin to paint a picture of how frequently indexes are read and if any have zero use

since our collection process started.

Let’s consider that we have run the preceding query and isolated unused indexes

and dealt with them appropriately. What’s next? We can look at indexes that are

underused, as seen in Listing 12-7. That is, indexes that have usage, but are mostly

writes, rather than reads. These indexes may be important, but are likely candidates to

consider dropping or altering after the unused indexes are fully researched.

Listing 12-7.  List of Underused Indexes

SELECT

 index_usage_daily_stats.[database_name],

 index_usage_daily_stats.[schema_name],

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

463

 index_usage_daily_stats.table_name,

 �index_usage_daily_stats.index_name,

 �SUM(index_usage_daily_stats.user_seek_count_daily) AS user_seek_

count,

 �SUM(index_usage_daily_stats.user_scan_count_daily) AS user_scan_

count,

 �SUM(index_usage_daily_stats.user_lookup_count_daily) AS user_lookup_

count,

 �SUM(index_usage_daily_stats.user_update_count_daily) AS user_update_

count,

 MAX(index_usage_daily_stats.last_user_seek) AS last_user_seek,

 MAX(index_usage_daily_stats.last_user_scan) AS last_user_scan,

 MAX(index_usage_daily_stats.last_user_lookup) AS last_user_lookup,

 MAX(index_usage_daily_stats.last_user_update) AS last_user_update,

 index_usage_daily_stats.is_primary_key,

 index_usage_daily_stats.is_clustered_index

FROM dbo.index_usage_daily_stats

WHERE index_usage_daily_stats.index_usage_daily_stats_date >= DATEADD(DAY, -90,

GETUTCDATE())

GROUP BY index_usage_daily_stats.[database_name], index_usage_daily_stats.

[schema_name], index_usage_daily_stats.table_name, index_usage_daily_stats.

index_name,

index_usage_daily_stats.is_primary_key, index_usage_daily_stats.is_

clustered_index

HAVING (SUM(index_usage_daily_stats.user_seek_count_daily) + SUM(index_

usage_daily_stats.user_scan_count_daily) + SUM(index_usage_daily_stats.

user_lookup_count_daily)) /

 �(CASE WHEN SUM(index_usage_daily_stats.user_seek_count_daily) +

SUM(index_usage_daily_stats.user_scan_count_daily) + SUM(index_

usage_daily_stats.user_lookup_count_daily) + SUM(index_usage_

daily_stats.user_update_count_daily) = 0 THEN 0.00001 ELSE

 �SUM(index_usage_daily_stats.user_seek_count_daily) + SUM(index_

usage_daily_stats.user_scan_count_daily) + SUM(index_usage_daily_

stats.user_lookup_count_daily) + SUM(index_usage_daily_stats.

user_update_count_daily) END) <= 0.1;

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

464

We can also consider indexes that are mostly used for scans and lookups, rather

than seeks. These indexes present opportunities for research. An index with a very high

number of lookups might benefit from additional include columns or a new index to

supplement its usage. An index with a high number of scans may indicate suboptimal

queries or a missing index that could greatly improve performance. Listing 12-8 provides

a query that will only return indexes where the ratio of scans to seeks is greater than 90%,

or when the ratio of lookups to seeks is greater than 90%.

Listing 12-8.  Query to List Indexes that Are Used Primarily for Scans or Lookups

SELECT

 index_usage_daily_stats.[database_name],

 index_usage_daily_stats.[schema_name],

 index_usage_daily_stats.table_name,

 index_usage_daily_stats.index_name,

 �SUM(index_usage_daily_stats.user_seek_count_daily) AS user_seek_

count,

 �SUM(index_usage_daily_stats.user_scan_count_daily) AS user_scan_

count,

 �SUM(index_usage_daily_stats.user_lookup_count_daily) AS user_lookup_

count,

 �SUM(index_usage_daily_stats.user_update_count_daily) AS user_update_

count,

 MAX(index_usage_daily_stats.last_user_seek) AS last_user_seek,

 MAX(index_usage_daily_stats.last_user_scan) AS last_user_scan,

 MAX(index_usage_daily_stats.last_user_lookup) AS last_user_lookup,

 MAX(index_usage_daily_stats.last_user_update) AS last_user_update,

 index_usage_daily_stats.is_primary_key,

 index_usage_daily_stats.is_clustered_index

FROM dbo.index_usage_daily_stats

WHERE index_usage_daily_stats.index_usage_daily_stats_date >= DATEADD(DAY,

-90, GETUTCDATE())

GROUP BY index_usage_daily_stats.[database_name], index_usage_daily_stats.

[schema_name], index_usage_daily_stats.table_name, index_usage_daily_stats.

index_name,

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

465

index_usage_daily_stats.is_primary_key, index_usage_daily_stats.is_

clustered_index

HAVING SUM(index_usage_daily_stats.user_scan_count_daily) /

 �(CASE WHEN SUM(index_usage_daily_stats.user_scan_count_daily) +

SUM(index_usage_daily_stats.user_seek_count_daily) + SUM(index_

usage_daily_stats.user_lookup_count_daily) = 0 THEN 0.00001 ELSE

 �SUM(index_usage_daily_stats.user_scan_count_daily) + SUM(index_

usage_daily_stats.user_seek_count_daily) + SUM(index_usage_daily_

stats.user_lookup_count_daily) END) > 0.9

 �OR SUM(index_usage_daily_stats.user_lookup_count_daily) /

 �(CASE WHEN SUM(index_usage_daily_stats.user_scan_count_daily) +

SUM(index_usage_daily_stats.user_seek_count_daily) + SUM(index_

usage_daily_stats.user_lookup_count_daily) = 0 THEN 0.00001 ELSE

 �SUM(index_usage_daily_stats.user_scan_count_daily) + SUM(index_

usage_daily_stats.user_seek_count_daily) + SUM(index_usage_daily_

stats.user_lookup_count_daily) END) > 0.9;

This query returns an interesting set of results, as seen in Figure 12-7.

Figure 12-7.  List of indexes used primarily for scans or lookups

The results show an assortment of indexes with high scan counts that might be worth

investigating. Those with the highest scan counts are most likely to be problematic,

whereas those with a few can likely be ignored.

With an index usage stats collection process, we can schedule a job to pull this

data regularly and report on it to return meaningful results on a regular basis. This

is required as data is not persisted indefinitely by SQL Server, and reporting on data

without sufficient history will result in bad indexing decisions that may do more

harm than good.

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

466

Automate the reporting and alerting, and we can only hear about problems when

they become relevant. This will allow us to evolve our indexing to meet the needs of

changing applications without relying on performance complaints as our primary source

of feedback.

�Missing Index Statistics
When we review an execution plan, we may see a missing index suggestion, as seen

in Figure 12-8.

We can click on the missing index and drill into the details, learning about what

columns are recommended and the impact the index would have. The data used to

generate a missing index suggestion is stored in dynamic management views within SQL

Server. This allows us to track missing indexes without having to interactively run queries

in Management Studio and look for missing index details. This allows us to respond

to poorly performing queries before users complain about latency or administrators

become concerned over excessive resource consumption.

Not all missing indexes are good suggestions. Some may not have a significant

impact. Others may cover far too many columns, making the performance

improvement not worth the cost. Once collected, though, we can sift through this data

programmatically and ensure that the best index suggestions are reported on, whereas

the less effective ones are either ignored or put to the bottom of the list.

The views involved in missing indexes are a bit more complex than with index usage

data, as there is more organization required to group index information, as well as the

Figure 12-8.  An execution plan that shows a typical missing index warning

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

467

need to separate index metadata from index statistics. The query in Listing 12-9 joins

these views to familiar system views to create a set of missing indexes with the details we

need to make sense of them.

Listing 12-9.  Query to Return the Set of Missing Indexes in the Current Database

SELECT

 databases.name AS [Database_Name],

 schemas.name AS [Schema_Name],

 tables.name AS Table_Name,

 dm_db_missing_index_details.Equality_Columns,

 dm_db_missing_index_details.Inequality_Columns,

 dm_db_missing_index_details.Included_Columns AS Include_Columns,

 dm_db_missing_index_group_stats.Last_User_Seek,

 dm_db_missing_index_group_stats.Avg_Total_User_Cost,

 dm_db_missing_index_group_stats.Avg_User_Impact,

 dm_db_missing_index_group_stats.User_Seeks,

 dm_db_missing_index_groups.Index_Group_Handle,

 dm_db_missing_index_groups.Index_Handle

FROM sys.dm_db_missing_index_groups

INNER JOIN sys.dm_db_missing_index_group_stats

ON dm_db_missing_index_group_stats.group_handle = dm_db_missing_index_

groups.index_group_handle

INNER JOIN sys.dm_db_missing_index_details

ON dm_db_missing_index_groups.index_handle = dm_db_missing_index_details.

index_handle

INNER JOIN sys.databases

ON databases.database_id = dm_db_missing_index_details.database_id

INNER JOIN sys.tables

ON tables.[object_id] = dm_db_missing_index_details.[object_id]

INNER JOIN sys.schemas

ON schemas.[schema_id] = tables.[schema_id]

WHERE databases.name = DB_NAME();

When executed, we get a set of missing indexes that include the database, schema,

table, index definition, and some statistics on how it would help future query executions,

as seen in Figure 12-9.

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

468

The data returned is quite specific, providing enough detail to understand the

impact an index would have on a given system. Some notes on the metrics returned:

•	 Equality columns are those needed to satisfy an equality query, such

as equals or IN.

•	 Inequality columns are needed by queries utilizing operators such as

NOT IN, not equals, greater than, or less than.

•	 The average user impact is the percentage improvement a query cost

would experience if the index were used.

•	 User seeks is the number of times the missing index would have been

used, had it existed.

•	 Last user seek is the most recent time the index was suggested by the

query optimizer.

The rules around the maintenance of this data are the same as index usage stats. This

means that the data from these views is temporary and will be removed when SQL Server

restarts. As a result, we need to regularly collect, store, and trend it to draw meaningful

conclusions.

We will start this project similarly to our collection process for index usage stats, by

creating tables to store our data long term. Listing 12-10 contains code for the creation of

these two new tables.

Listing 12-10.  Creation of Tables to Store Missing Index Metrics

CREATE TABLE dbo.missing_index_stats_detail

(�missing_index_stats_detail_Id INT NOT NULL IDENTITY(1,1) CONSTRAINT

PK_missing_index_stats_detail PRIMARY KEY CLUSTERED,

 missing_index_stats_detail_create_datetime DATETIME NOT NULL,

 [database_name] SYSNAME NOT NULL,

 [schema_name] SYSNAME NOT NULL,

 table_name VARCHAR(256) NOT NULL,

Figure 12-9.  A list of missing indexes generated from the missing index views

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

469

 equality_columns VARCHAR(MAX) NULL,

 inequality_columns VARCHAR(MAX) NULL,

 include_columns VARCHAR(MAX) NULL,

 last_user_seek DATETIME NOT NULL,

 avg_total_user_cost FLOAT NOT NULL,

 avg_user_impact FLOAT NOT NULL,

 user_seeks BIGINT NOT NULL,

 index_group_handle INT NOT NULL,

 index_handle INT NOT NULL

);

CREATE NONCLUSTERED INDEX IX_missing_index_stats_detail_last_user_seek ON

dbo.missing_index_stats_detail(last_user_seek);

GO

CREATE TABLE dbo.missing_index_stats_summary

(missing_index_stats_summary_Id INT NOT NULL IDENTITY(1,1)

CONSTRAINT PK_missing_index_stats_summary

PRIMARY KEY CLUSTERED,

 [database_name] SYSNAME NOT NULL,

 [schema_name] SYSNAME NOT NULL,

 table_name VARCHAR(256) NOT NULL,

 equality_columns VARCHAR(MAX) NOT NULL,

 inequality_columns VARCHAR(MAX) NOT NULL,

 include_columns VARCHAR(MAX) NOT NULL,

 first_index_suggestion_time DATETIME NOT NULL,

 last_user_seek DATETIME NOT NULL,

 avg_total_user_cost FLOAT NOT NULL,

 avg_user_impact FLOAT NOT NULL,

 user_seeks BIGINT NOT NULL,

 user_seeks_last_update BIGINT NOT NULL

);

CREATE NONCLUSTERED INDEX IX_missing_index_stats_summary_last_user_seek ON dbo.

missing_index_stats_summary(last_user_seek);

CREATE NONCLUSTERED INDEX IX_missing_index_stats_summary_database_name_

table_name ON dbo.missing_index_stats_summary([database_name], table_name);

GO

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

470

missing_index_stats_detail will contain the raw data pulled from the missing

index views, whereas missing_index_stats_summary will contain long-term running

totals for these metrics. This will allow us to track both short-term and long-term

trends with ease.

Before continuing, let’s define a basic list of steps that we will want to follow to

collect and store missing index metrics:

	 1.	 Create and populate a list of all nonsystem databases on the SQL

Server.

	 2.	 Iterate through each database and collect missing index stats

detail data.

	 3.	 Merge the detail data into summary data, adding new missing

indexes and incrementing existing metrics as needed.

This process is relatively simple, and the T-SQL to accomplish these tasks is far

less lengthy than that needed to collect index usage metrics. Listing 12-11 is a stored

procedure that will follow the process defined earlier.

Listing 12-11.  Stored Procedure to Collect Missing Index Metrics

CREATE PROCEDURE dbo.populate_missing_index_data

 @retention_period_for_detail_data_days SMALLINT = 30,

 @delete_all_summary_data BIT = 0,

 @aggregate_all_database_data BIT = 0

AS

BEGIN

 SET NOCOUNT ON;

 DELETE missing_index_stats_detail

 FROM dbo.missing_index_stats_detail

 �WHERE missing_index_stats_detail.last_user_seek < DATEADD(DAY,

-1 * @retention_period_for_detail_data_days, CURRENT_TIMESTAMP);

 IF @delete_all_summary_data = 1

 BEGIN

 TRUNCATE TABLE dbo.missing_index_stats_summary;

 END

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

471

 DECLARE @Last_Seek_Time DATETIME;

 SELECT

 @Last_Seek_Time = MAX(missing_index_stats_detail.last_user_seek)

 FROM dbo.missing_index_stats_detail;

 IF @Last_Seek_Time IS NULL

 BEGIN

 SELECT @Last_Seek_Time = DATEADD(WEEK, -1, CURRENT_TIMESTAMP);

 END

 -- �Generate a database list so that we collect data from all

databases on the server.

 DECLARE @Database_List TABLE

 ([database_name] SYSNAME NOT NULL,

 Is_Processed BIT NOT NULL);

 DECLARE @Sql_Command NVARCHAR(MAX);

 DECLARE @Current_database_name SYSNAME;

 INSERT INTO @Database_List

 ([database_name], Is_Processed)

 SELECT

 databases.name AS [database_name],

 0 AS Is_Processed

 FROM sys.databases

 �WHERE databases.name NOT IN ('master', 'msdb', 'model', 'tempdb',

'ReportServerTempDB', 'ReportServer')

 AND databases.state_desc = 'ONLINE';

 CREATE TABLE #missing_index_stats_detail

 (�missing_index_stats_detail_Id INT IDENTITY(1,1) NOT NULL

PRIMARY KEY CLUSTERED,

 [database_name] SYSNAME,

 [schema_name] SYSNAME,

 table_name SYSNAME,

 equality_columns VARCHAR(MAX),

 inequality_columns VARCHAR(MAX),

 include_columns VARCHAR(MAX),

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

472

 last_user_seek DATETIME,

 avg_total_user_cost FLOAT,

 avg_user_impact FLOAT,

 user_seeks BIGINT,

 index_group_handle INT,

 index_handle INT);

 -- Loop through each database and collect missing index stats for each.

 �WHILE EXISTS (SELECT * FROM @Database_List Database_List WHERE

Database_List.Is_Processed = 0)

 BEGIN

 SELECT TOP 1

 @Current_database_name = Database_List.[database_name]

 FROM @Database_List Database_List

 WHERE Database_List.Is_Processed = 0;

 SELECT @Sql_Command = '

 USE [' + @Current_database_name + '];

 INSERT INTO #missing_index_stats_detail

 �([database_name], [schema_name], table_name, equality_

columns, inequality_columns, include_columns, last_

user_seek,

 �avg_total_user_cost, avg_user_impact, user_seeks,

index_group_handle, index_handle)

 SELECT

 databases.name AS [database_name],

 schemas.name AS [schema_name],

 tables.name AS table_name,

 dm_db_missing_index_details.equality_columns,

 dm_db_missing_index_details.inequality_columns,

 �dm_db_missing_index_details.Included_Columns AS

include_columns,

 dm_db_missing_index_group_stats.last_user_seek,

 dm_db_missing_index_group_stats.avg_total_user_cost,

 dm_db_missing_index_group_stats.avg_user_impact,

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

473

 dm_db_missing_index_group_stats.user_seeks,

 dm_db_missing_index_groups.index_group_handle,

 dm_db_missing_index_groups.index_handle

 FROM sys.dm_db_missing_index_groups

 INNER JOIN sys.dm_db_missing_index_group_stats

 �ON dm_db_missing_index_group_stats.group_handle = dm_db_

missing_index_groups.index_group_handle

 INNER JOIN sys.dm_db_missing_index_details

 �ON dm_db_missing_index_groups.index_handle = dm_db_missing_

index_details.index_handle

 INNER JOIN sys.databases

 �ON databases.database_id = dm_db_missing_index_details.

database_id

 �INNER JOIN sys.tables

 �ON tables.[object_id] = dm_db_missing_index_details.[object_id]

 INNER JOIN sys.schemas

 ON schemas.[schema_id] = tables.[schema_id]

 WHERE databases.name = "' + @Current_database_name + "'

 �AND dm_db_missing_index_group_stats.last_user_seek > "' +

CAST(@Last_Seek_Time AS NVARCHAR(MAX)) + "';';

 EXEC sp_executesql @Sql_Command;

 UPDATE Database_List

 SET Is_Processed = 1

 FROM @Database_List Database_List

 WHERE [database_name] = @Current_database_name;

 END

 INSERT INTO dbo.missing_index_stats_detail

 �(missing_index_stats_detail_Create_Datetime, [database_name],

[schema_name], table_name, equality_columns, inequality_

columns, include_columns,

 �last_user_seek, avg_total_user_cost, avg_user_impact, user_

seeks, index_group_handle, index_handle)

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

474

 SELECT DISTINCT

 CURRENT_TIMESTAMP AS missing_index_stats_detail_Create_Datetime,

 [database_name],

 [schema_name],

 table_name,

 equality_columns,

 inequality_columns,

 include_columns,

 last_user_seek,

 avg_total_user_cost,

 avg_user_impact,

 user_seeks,

 index_group_handle,

 index_handle

 FROM #missing_index_stats_detail;

 IF @aggregate_all_database_data = 0

 BEGIN

 MERGE INTO dbo.missing_index_stats_summary AS Index_Summary_Target

 �USING (SELECT [database_name], [schema_name], table_name,

ISNULL(equality_columns, ") AS equality_columns,

ISNULL(inequality_columns, ") AS inequality_columns,

ISNULL(include_columns, ") AS include_columns,

 �MAX(last_user_seek) AS last_user_seek,

AVG(avg_total_user_cost) AS avg_total_

user_cost, AVG(avg_user_impact) AS

avg_user_impact, SUM(user_seeks) AS

user_seeks

 �FROM #missing_index_stats_detail

GROUP BY [database_name], [schema_

name], table_name, equality_columns,

inequality_columns, include_columns) AS

Index_Summary_Source

 �ON (Index_Summary_Source.[database_name] = Index_Summary_

Target.[database_name]

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

475

 �AND Index_Summary_Source.[schema_name] = Index_Summary_

Target.[schema_name]

 �AND Index_Summary_Source.table_name = Index_Summary_

Target.table_name

 �AND Index_Summary_Source.equality_columns = Index_

Summary_Target.equality_columns

 �AND Index_Summary_Source.inequality_columns = Index_

Summary_Target.inequality_columns

 �AND Index_Summary_Source.include_columns = Index_

Summary_Target.include_columns)

 WHEN MATCHED

 THEN UPDATE

 �SET last_user_seek = Index_Summary_Source.last_

user_seek,

 user_seeks = CASE

 �WHEN Index_Summary_Source.user_

seeks = Index_Summary_Target.

user_seeks_last_update

 �THEN Index_Summary_Target.

user_seeks

 �WHEN Index_Summary_Source.user_

seeks >= Index_Summary_Target.

user_seeks

 �THEN Index_Summary_Source.

user_seeks + Index_Summary_

Target.user_seeks - Index_

Summary_Target.user_seeks_

last_update

 �WHEN Index_Summary_Source.user_

seeks < Index_Summary_Target.

user_seeks

 �AND Index_Summary_Source.user_

seeks < Index_Summary_Target.

user_seeks_last_update

 �THEN Index_Summary_Target.

user_seeks + Index_Summary_

Source.user_seeks

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

476

 �WHEN Index_Summary_Source.user_

seeks < Index_Summary_Target.

user_seeks

 �AND Index_Summary_Source.user_

seeks > Index_Summary_Target.

user_seeks_last_update

 �THEN Index_Summary_Source.

user_seeks + Index_Summary_

Target.user_seeks - Index_

Summary_Target.user_seeks_

last_update

 END,

 �user_seeks_last_update = Index_Summary_

Source.user_seeks,

 �avg_total_user_cost = Index_Summary_

Source.avg_total_user_cost,

 �avg_user_impact = Index_Summary_Source.

avg_user_impact

 WHEN NOT MATCHED BY TARGET

 THEN INSERT

 �VALUES (Index_Summary_Source.[database_name],

Index_Summary_Source.[schema_name], Index_

Summary_Source.table_name, Index_Summary_Source.

equality_columns,

 �Index_Summary_Source.inequality_

columns, Index_Summary_Source.

include_columns, CURRENT_

TIMESTAMP, Index_Summary_Source.

last_user_seek,

 �Index_Summary_Source.avg_total_

user_cost, Index_Summary_Source.

avg_user_impact, Index_Summary_

Source.user_seeks, Index_

Summary_Source.user_seeks);

 END

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

477

 ELSE

 BEGIN

 �MERGE INTO dbo.missing_index_stats_summary AS Index_Summary_

Target

 �USING (SELECT 'ALL' AS [database_name], [schema_name],

table_name, ISNULL(equality_columns, ") AS equality_columns,

ISNULL(inequality_columns, ") AS inequality_columns,

ISNULL(include_columns, ") AS include_columns,

 �MAX(last_user_seek) AS last_user_seek,

AVG(avg_total_user_cost) AS avg_total_

user_cost, AVG(avg_user_impact) AS avg_

user_impact, SUM(user_seeks) AS user_seeks

 �FROM #missing_index_stats_detail GROUP

BY [schema_name], table_name, equality_

columns, inequality_columns, include_

columns) AS Index_Summary_Source

 �ON (Index_Summary_Target.[database_name] = 'ALL'

 �AND Index_Summary_Source.[schema_name] = Index_Summary_

Target.[schema_name]

 �AND Index_Summary_Source.table_name = Index_Summary_

Target.table_name

 �AND Index_Summary_Source.equality_columns = Index_

Summary_Target.equality_columns

 �AND Index_Summary_Source.inequality_columns = Index_

Summary_Target.inequality_columns

 �AND Index_Summary_Source.include_columns = Index_

Summary_Target.include_columns)

 WHEN MATCHED

 THEN UPDATE

 �SET last_user_seek = Index_Summary_Source.last_

user_seek,

 user_seeks = CASE

 �WHEN Index_Summary_Source.user_

seeks = Index_Summary_Target.

user_seeks_last_update

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

478

 �THEN Index_Summary_Target.

user_seeks

 �WHEN Index_Summary_Source.user_

seeks >= Index_Summary_Target.

user_seeks

 �THEN Index_Summary_Source.

user_seeks + Index_Summary_

Target.user_seeks - Index_

Summary_Target.user_seeks_

last_update

 �WHEN Index_Summary_Source.user_

seeks < Index_Summary_Target.

user_seeks

 �AND Index_Summary_Source.user_

seeks < Index_Summary_Target.

user_seeks_last_update

 �THEN Index_Summary_Target.

user_seeks + Index_Summary_

Source.user_seeks

 �WHEN Index_Summary_Source.user_

seeks < Index_Summary_Target.

user_seeks

 �AND Index_Summary_Source.user_

seeks > Index_Summary_Target.

user_seeks_last_update

 �THEN Index_Summary_Source.

user_seeks + Index_Summary_

Target.user_seeks - Index_

Summary_Target.user_seeks_

last_update

 END,

 �user_seeks_last_update = Index_Summary_

Source.user_seeks,

 �avg_total_user_cost = Index_Summary_

Source.avg_total_user_cost,

 �avg_user_impact = Index_Summary_Source.

avg_user_impact

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

479

 WHEN NOT MATCHED BY TARGET

 THEN INSERT

 �VALUES ('ALL', Index_Summary_Source.[schema_

name], Index_Summary_Source.table_name, Index_

Summary_Source.equality_columns,

 �Index_Summary_Source.inequality_

columns, Index_Summary_Source.include_

columns, CURRENT_TIMESTAMP, Index_

Summary_Source.last_user_seek,

 �Index_Summary_Source.avg_total_

user_cost, Index_Summary_Source.

avg_user_impact, Index_Summary_Source.

user_seeks, Index_Summary_Source.

user_seeks);

 END

 DROP TABLE #missing_index_stats_detail;

END

Note the three parameters defined within the stored procedure:

•	 @retention_period_for_detail_data_days: How many days of

detail data to retain. This will vary based on available storage and the

amount of missing index data that is generated regularly. Here, we

default this to 30 days of retention.

•	 @delete_all_summary_data: When set to 1, will clear out all

summary data. This is useful after a major server or software change

might render older data irrelevant. Alternatively, you can filter by

last_user_seek to remove out-of-date index suggestions while

retaining historical data.

•	 @aggregate_all_database_data: For a server with many databases

that contain the same schema, this option will combine index

suggestions between all databases, using “ALL” as the database name.

This can save space and allow for more intelligent decisions on

multitenant servers with a large quantity of similar databases.

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

480

Let’s execute this stored procedure and review the results in each table:

EXEC populate_missing_index_data;

SELECT * FROM dbo.missing_index_stats_detail;

SELECT * FROM dbo.missing_index_stats_summary

Figure 12-10 shows what the results look like on my local server.

Figure 12-10.  Missing index metrics collected by the stored procedure

The first result set is the raw data from the missing index dynamic management

views, which will contain a row per index per execution. The second is the aggregate

data, which will only return a single row per index.

We can make this process easier by adding views on top of these tables that build an

index creation statement for each index. Also useful would be a more usable long-term

improvement measure that takes into account query cost, number of seeks, and the

average user impact. This would provide a better objective metric for evaluating which

indexes are more useful than others. Listing 12-12 contains the CREATE statements for

these views.

Listing 12-12.  Views that Add Additional Insights to Our Missing Index Metrics

CREATE VIEW dbo.v_missing_index_stats_detail

AS

SELECT

 missing_index_stats_detail_create_datetime,

 [database_name],

 [schema_name],

 table_name,

 �'CREATE NONCLUSTERED INDEX [missing_index_' + CONVERT (VARCHAR,

missing_index_stats_detail.index_group_handle) + '_' + CONVERT

(VARCHAR, missing_index_stats_detail.index_handle) + '_' +

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

481

 �table_name + ']' + ' ON [' + table_name + ']

 �(' + ISNULL(missing_index_stats_detail.equality_columns, ") +

CASE WHEN missing_index_stats_detail.equality_columns IS NOT

NULL

 �AND missing_index_stats_detail.

inequality_columns IS NOT NULL

 THEN ','

 ELSE "

 END +

 �ISNULL(missing_index_stats_detail.inequality_columns, ") + ')'

+ ISNULL(' INCLUDE (' + missing_index_stats_detail.include_

columns + ')', ") AS index_creation_statement,

 �missing_index_stats_detail.avg_total_user_cost * (missing_index_

stats_detail.avg_user_impact / 100.0) * missing_index_stats_detail.

user_seeks AS improvement_measure,

 equality_columns,

 inequality_columns,

 include_columns,

 �ISNULL(LEN(missing_index_stats_detail.equality_columns) -

LEN(REPLACE(missing_index_stats_detail.equality_columns, '[', ")),

0) AS equality_column_count,

 �ISNULL(LEN(missing_index_stats_detail.inequality_columns) -

LEN(REPLACE(missing_index_stats_detail.inequality_columns, '[', ")),

0) AS inequality_column_count,

 �ISNULL(LEN(missing_index_stats_detail.include_columns) -

LEN(REPLACE(missing_index_stats_detail.include_columns, '[', ")), 0)

AS included_column_count,

 last_user_seek,

 user_seeks,

 index_group_handle,

 index_handle

FROM dbo.missing_index_stats_detail;

GO

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

482

CREATE VIEW dbo.v_missing_index_stats_summary

AS

SELECT

 [database_name],

 [schema_name],

 table_name,

 �'CREATE NONCLUSTERED INDEX [missing_index_' + CONVERT (VARCHAR,

missing_index_stats_summary.missing_index_stats_summary_Id) + '_' +

 �table_name + ']' + ' ON [' + table_name + ']

 �(' + missing_index_stats_summary.equality_columns + CASE WHEN

missing_index_stats_summary.equality_columns <> "

 �AND missing_index_stats_summary.

inequality_columns <> "

 THEN ','

 ELSE "

 END +

 �missing_index_stats_summary.inequality_columns + ')' + CASE

WHEN missing_index_stats_summary.include_columns = "

 THEN "

 �ELSE ' INCLUDE (' + missing_

index_stats_summary.include_

columns + ')'

 �END AS index_creation_statement,

 �missing_index_stats_summary.avg_total_user_cost * (missing_index_

stats_summary.avg_user_impact / 100.0) * missing_index_stats_

summary.user_seeks AS improvement_measure,

 missing_index_stats_summary.equality_columns,

 missing_index_stats_summary.inequality_columns,

 missing_index_stats_summary.include_columns,

 �ISNULL(LEN(missing_index_stats_summary.equality_columns) -

LEN(REPLACE(missing_index_stats_summary.equality_columns, '[', ")), 0)

AS equality_column_count,

 �ISNULL(LEN(missing_index_stats_summary.inequality_columns) -

LEN(REPLACE(missing_index_stats_summary.inequality_columns, '[', ")), 0)

AS inequality_column_count,

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

483

 �ISNULL(LEN(missing_index_stats_summary.include_columns) -

LEN(REPLACE(missing_index_stats_summary.include_columns, '[', ")), 0)

AS included_column_count,

 missing_index_stats_summary.first_index_suggestion_time,

 missing_index_stats_summary.last_user_seek,

 �missing_index_stats_summary.user_seeks

FROM dbo.missing_index_stats_summary;

These views add the following new columns to our metrics:

•	 Index creation statement for the given index. Note that the name is

arbitrary and likely should be changed.

•	 Improvement measure, which is defined as: Cost * Impact% * Seeks.

This unitless number provides a way to evaluate indexes against each

other to determine which are the most worthwhile to consider first.

•	 Equality column count

•	 Inequality column count

•	 Include column count

Let’s run the collection stored procedure again and select from these new views:

EXEC populate_missing_index_data;

SELECT * FROM dbo.v_missing_index_stats_detail;

SELECT * FROM dbo.v_missing_index_stats_summary;

The results show a new-and-improved set of missing index metrics, as seen in

Figure 12-11.

Figure 12-11.  Missing index metrics from the missing index views

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

484

The first result set shows that data has now been collected twice, once at 7:59 and

again at 8:43. The second set of results shows a single row per index, with metrics

aggregated over time based on continued usage. If we were to evaluate these indexes,

then the first one on Person.Person would be the one we’d consider first, as it has the

highest improvement measure.

From this point, we can order, filter, and curate the results to provide only what we

want to see. The following are a handful of filters that could be useful in reducing the

indexes to consider:

•	 Only include indexes with more than a certain number of user seeks.

We probably don’t want to add an index that will only ever be used

once or twice.

•	 Filter out indexes that have not had a seek in the past week. If an

index suggestion is no longer relevant, then there may be no need to

consider it.

•	 Only include indexes with an improvement measure greater than

an arbitrary number. This filters out those that will not have enough

impact to be useful.

•	 Avoid recommending indexes that are very similar to existing

indexes. Alternatively, add a warning of this so that we know that

they may need to be compared prior to making any final indexing

decisions.

Keep in mind that infrequent or low impact indexes may still be worth considering

in special circumstances, such as in a reporting environment. The preceding filters are

a good way to prioritize what to consider first and what can wait a little while for our

attention.

Last, not all index suggestions are necessarily worth the effort. An index suggestion

with 35 include columns may be overkill, and leaving out the includes may still provide

a worthwhile index. Always test and verify indexes prior to implementing them, to be

certain they help performance and justify the costs associated with more indexes.

This process provides a way to use dynamic SQL to iterate through databases

and generate T-SQL that collects missing index metrics and stores them for long-

term trending and planning. This helps us overcome the limitations of the built-in

dynamic management views while organizing this data in a far more user-friendly

format.

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

485

�Conclusion
In this chapter, we applied dynamic SQL to the challenge of index maintenance. These

processes allowed us to tackle index fragmentation, index usage statistics, and missing

index tracking. While fully functional as-is, each of these processes can be further

customized to provide additional functionality or to better fit a specific application

environment.

Use the tactics provided here as a template for building and customizing other

maintenance processes. Doing so can allow seamless execution of queries across

multiple databases, servers, or database objects. Indexing is one common maintenance

challenge, but our careers will be filled with many others. The flexibility of dynamic SQL

can help solve these problems with less code and complexity than a more hard-coded

solution would.

Chapter 12 Index Usage and Maintenance

www.EBooksWorld.ir

487
© Edward Pollack 2019
E. Pollack, Dynamic SQL, https://doi.org/10.1007/978-1-4842-4318-3

Index

A
Accent sensitivity, 361
Advantages

configuration data, 9
ORM, 8
performance, 8
reduce operator intervention, 9
search boxes, 7
WHERE clauses, 7

AdventureWorks, 303, 328, 336, 366
Aggregate function, 329
Application traffic, scanning, 54
Archiving/movement of data

database log data, 372–373
data size, increase, 374
dynamic SQL, 374–376
Log_Time, 377–378
new databases, 377
new tables, 378
reference points, 379
tasks, 374
TSQL, 372

Auditing users and logins
list, mappings, 146
object-level permissions, 144
script, user-created securables, 144
server logins and roles, 142
TSQL to return relationships, 145

Audit password policies, 126

B
Backup software, 105
BACKUP statements, 403
Batched command

string creation, 151–153
Blind SQL injection attacks, 51–52
Built in function, 41
Bushy query tree, 306
BusinessEntityContact table, 135
Business logic, complex, 388

C
Cardinality

back to dynamic SQL, 246–247
statistics (see Statistics)
sys.dm_db_stats_properties, 244–245
trace flag 2371, 245–246

Case sensitivity, 361
CAST/CONVERT, 360
CH% filter, 366
Classic parameter sniffing, 307
Cleanup, 138
COALESCE statement, 80
Code review, 55
Collation_Test database, 363
Command string,

dynamic SQL, 44, 47, 50, 147
Common table expression (CTE), 81

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-4318-3

488

Considerations
apostrophes, 10
catastrophic security holes, 10
function, error, 12
NULL parameter, 10
permissions conflicts, 11
scope, 11

Cryptic error, 32
Cursor-based approach, 257–258
Custom database objects

dynamic Pivot, 381–382
dynamic SQL, 380
dynamic view, 387
error, 382
ETL process, 380
query, 382
schemabinding, 380
schemabound view, 380, 382
schema generation, 388
stored procedure, 385–387
view creation script, 382–384
view definition, 384

Custom search grids
SELECT statement, 75
stored procedure, 69
string command, 74
windows file explorer, 68

D
Database backup, 391

functionalities, 398
needs, 391
recovery model, 397
stored procedure, 392, 394, 399

Database collations
collations differences, 365
conflict error, 369

dynamic SQL, 370–371
force collations, 367
rules, 361–362
server collation, 363–364
specific collation, 369
sys.databases, 371
test database, 362–363
TSQL, 364

database_cursor, 6
DATABASE_DEFAULT clause, 368
@database_list, 6
Database_Log table, 373–374, 377, 379
@database_name, 6
Database schema, 137
Data dictionary, 126
dbo.Products_By_Color table, 343
Debugging

backup script,
parameter, 17–18

error message, 16
replace, EXEC, 16
short command string, 16

Defending method, 54
Density data, 312
Deprecated feature, 138
Differential backup, 395–396
Dimension attributes,

metadata, 415–418
Discontinuation process, 138, 140
Discontinued features, 138
Distributed denial of service

attack (DDOS), 38
Documentation, 15
Document stored procedures, 126
Dynamic Data Masking, 57
Dynamic list

cursor-based approach, 257–258
execution plan, 258–259

Index

www.EBooksWorld.ir

489

using XML
comma-delimited list, 262–263
IDs generation, 260–261
performance, 263–264
pesky comma, 262
SELECT statement, 261
value method, 262

Dynamic search
output, 67
parameter, 63
stored procedure, 61–62, 64, 66

Dynamic SQL, 320–322, 361, 369,
379, 388, 419–420

backup statement, 5–6
command string, 170–171
EXEC statement, 2
execution process, 3–4
NVARCHAR(MAX), data type, 3
optimization process, 320
output data, 187–190
OUTPUT operator, 171
OUTPUT parameter, 172–174
OUTPUT variable, 174–175
select statement, 1
single parameter, 45
string, 36–37
TSQL, 171–172, 174
variables, 6
verification, 34

Dynamic SQL vs. Standard SQL
execution plan

complex query, 203
data checking, 203
FirstName, 202, 203
parameterized query, 205
procedure cache, 204
results, 205
retrieve SQL text, 205

@sql_command, 204
SQL text, 205
time and server resources, 202
value, @FirstName, 204

simplifying queries
command string generation, 211
documentation and clean

coding, 215
execution plan, 212
inclusive search proc,

execution plan, 214
IO statistics, 211
joins and WHERE clauses, 211
result set, 210
search parameters, 212–214
search procedure, 206–208, 210
static search, 212
stored procedure, 210
UnitMeasure table, 215
WHERE clause, 206, 215

Dynamic table search, 48–49

E
Effective spacing, 50
Encrypted sensitive data, 57
Executing TSQL, 409

dynamic SQL, 412
ModifiedDate, 411
OPENQUERY, 410–412
recent_product_counts, 411
stored procedure, 411

Execution plan
estimated vs. actual

row counts, 302, 313
large result set, 295–296
local variables, 315
parameterized paging, 292

Index

www.EBooksWorld.ir

490

parameterized stored procedure, 314
query, parameter, 318
query text, 293
small result set, 294–295, 301

F
File transfer application, 104
Filtered indexes

add, 232
execution plan, 230, 231
flag signifies data, 229
large tables, 228
performance difference,

large tables, 233
performance metrics, 232
PurchaseOrderHeader, 231, 233
purchase orders search, 229–230

Filtering considerations, 99–100
Full backup, 392, 394–397
Functions, 126

G
General Data Protection Regulation

(GDPR), 53
Generating schema,

metadata, 412
Global temporary tables

issues, 184–185
permissions, 184
SQL server functionality, 184
TSQL, 182
usage, 181–182

GRANT EXECUTE, 120
Granular permissions vs. role

permissions, 106–107

H
Hard-coded solution, 412
Health Insurance Portability and

Accountability Act (HIPAA), 53
Histogram data, 312

I, J
@include_row_counts parameter, 98
Inconvenience, 125
Index defragmentation

fragmentation, 422–423
maintenance solution,

creating, 424–430
rebuild, 423
reorganizing, 424

Index tracking, missing, 468
execution plan, 466
filters, 484–485
list of database, 467–468
metrics, 481, 483–484
storage, 469–470
stored procedure, 470–475, 477, 479–480

Index usage statistics
create nonclustered index, 432
stored procedure, 434–460
tables to store, 432
underused indexes list, 463–464
unused indexes list, 461–462
view, 430

Input-Cleansing, 10
methods, 39
search procedure, 40–41
T-SQL, 39

Input value, apostrophe, 32
IO statistics, 259–260, 288, 296, 310
IX_Product_Weight index, Production.

Product, 243

Execution plan (cont.)

Index

www.EBooksWorld.ir

491

K
Kana sensitivity, 361

L
Latin collation, 370
Left-deep query tree, 306
Length of URL strings, 56
Login and user usage, 140–141
Login pages, 58–60
Log review, 54–55

M, N
Maintenance, dynamic SQL

database objects, 127
database schema, 137
data dictionary, 127
developers and database

administrators, challenge, 126
document stored

procedures, 126
encryption algorithms, 127
log table, 128
organizations, 127
schema search stored

procedure, 128–129, 131–134
search capabilities, 137
stored procedure execution, 128
technical debt, 127

Memory consumption
batched command string

creation, 151–153
check database integrity, 147
command string, 147–148, 150
gather row counts,

all tables, 148–149
Memory-Optimized table, 187

Multiple optional parameters, 45–46
Multiple PIVOT operators

command string, 350
dynamic SQL, 348, 350
multiple columns, 347
relational integrity, 350
TSQL statement, 347

Multiple UNPIVOT operators
command string, 356
data set, 351
dynamic SQL, 354–357
non-NULL counts, 353
remove zero values, 353
row count, 357
safety_stock_level columns, 353–354
single statement, 352
TSQL, 357
WHERE clause, 353

O
Object-level permissions, 144
Object-relational mapping (ORM), 8, 101
@offset_by_this_many_rows, 85
Operating system, 38
Optimization

bottleneck exists, 200
cardinality (see Cardinality)
dynamic SQL vs. standard SQL (see

Dynamic SQL vs. Standard SQL)
filtered indexes, 228, 230–233
paging (see Paging performance)
query execution

binding, 194
parsing, 193
plans, 195, 197–198
process, 194
steps, 194

Index

www.EBooksWorld.ir

492

query hints (see Query hints,
optimization)

script to clean up, 254
STATISTICS IO (see STATISTICS IO)
STATISTICS TIME, 199–200

Optimized query, performance of, 305
OPTIMIZE FOR, query hint, 316, 318
OPTIMIZE FOR UNKNOWN,

query hint, 318–319
OrderDate, 228
Order processing system, 104
Output-to-Table option, 400
Ownership chaining

inline TSQL vs. dynamic SQL, 108
permissions error resulting, 110
security contexts, 111
security within SQL Server, 111
stored procedure, 107–109, 111
TSQL statements, 111
VeryLimitedUser, 108, 111

P
Paging performance

basic data, 216
calculating row count, 220
common table expression, 222
data retrieval, 222
determining row counts, 223
execution plan, 217
index costs, 226
interactive searches, 215
IO statistics, 225
OFFSET functionality, 227
OFFSET operator, 228
OrderDate, 228
query execution plans, 226

refresh, data set, 227
results, 219
RETURN value, stored

procedure, 220
@@ROWCOUNT, 225
row count calculation after data

selection, 224–225
ROW_NUMBER, 228
SalesOrderDetailID, 227
search, 221
search query, 219
simplified Window Function, 223–224

Parameterized search procedure, 43
Parameterizing dynamic SQL, 42
@parameter_list, 44
Parameter sniffing

bad execution plans, 302–305, 307
blocks of code, 323
definition of, 279–280
demonstration, 290–291
dynamic SQL, 320–322
execution plan (see Execution plan)
huge T-SQL statements, 324
local variables, 308–313, 315–316

density data, 312
histogram data, 312
summary data, 312

parameters, 323–324
parameter values, 307–308
queries, 298
query execution, 290, 299, 301–302
query optimizer, 316–320
symptoms, 297–298
trace flag, 322
undesired plan, 297

Parameter variable, 44
Password policy, 124
PATINDEX, 91

Optimization (cont.)

Index

www.EBooksWorld.ir

493

Permanent tables for
temporary storage, 185–187

PIVOT, 327
All Color values, 334
CASE statement, 358–359
colors, dynamic list, 333
command string, 333, 336
common usage, 329
defined, 327
dynamic SQL, 330–333
error messages, 332
example

dynamic SQL, 345
financial data, 343–344
quarters list, 345–346
query, 344
TSQL, 345

FROM clause, 329
group categories, 358–359
new colors, add, 337
operators

command string, 350
dynamic SQL, 348–349

Production.Product query, 334
query, 330
report request, 328
return data, 328
statement, 332
Table variable, 331–333
TSQL, 327–328, 333, 337

Potential threats, 56
Principle of least privilege

backup software, 105
file transfer application, 104
logins and users, 140
order processing system, 104
report generation, 105
software installer, 105

Production.Product previous search
query, 243

Products_By_Color_and_Stock_Level
table, 351, 354, 356

Product search
returning 295 rows, 286
returns six rows, 284
small amount of data, 285

Q
Query hints, optimization

error, 253
execution plans, 250–251
IO statistics, 250
join hints, 248–249
legitimate uses, 253
NOLOCK, 247
@ProductID, 250
RECOMPILE, 252
review, 253
STATISTICS TIME, 252

Query parsing and binding, 200–201
Query plan cache, 312
QUOTENAME implementation, 41–42

R
RAISEERROR, 80
RECOMPILE Query Hint, 300–301
Removal process, 139
Reporting table, 413–414
Result row count

command string, 98
dynamic SQL, 96
retrieve, 93, 95

@return_all_results, 85
REVERT command, 113

Index

www.EBooksWorld.ir

494

Revisiting Security
IO statistics, 269
list-building SELECT statement, 273
parameters, 270–271
quality assurance, 274
SQL injection, 272–273
stored procedure, 267–269

@row_count_to_return, 85
Row level security

customizing, options, 158
employee login table,

creation, 153–154
epollack, 156
security policy, creation, 155
SELECT against

employee_login, 156–157
table-valued function, creation, 155

S
SafetyStockLevel value, 348
SalesOrderDetail, 217
SalesOrderHeader, 217
Saving generated scripts, 399
Saving scripts, table

backup maintenance script, 404–407
BACKUP statements, 403
dbo.sql_command, 403
dynamic SQL, 400
QueryOutput.sql, 407–408
stored procedure, 400–402
xp_cmdshell, 408–409

Scalability, 419
Schema generation demo, 413–414
Schema Name, 48–49
Schema search

execution output
full table name, 136

primary key name, 136
table name, 135

stored procedure, 128–129, 131–134
Scope

command strings, 169
definitions, 165
important aspect, 168–169
manage, 169–170
parameters, 167
SELECT statement, 165
stored procedure, 166–168
TSQL statement, 165

Search grid
blank searches, 80
conditional paging, 83–85
data paging, 80, 82
input-based, 87, 89–91
limitations, 86
result row count (see Result row count)

Security context, changing
object/execution, 112
ownership chaining, 112, 119
permissions, 112–114

GRANT EXECUTE, 120
VeryLimitedUser, 120

results, executing dynamic SQL, 119
REVERT command, 113
stored procedure

dynamic SQL, 117–118
EXECUTE AS CALLER, 116–117
EXECUTE AS OWNER, 115–116

user by using EXECUTE AS, 112
WITH NO REVERT, 114

Security disaster, 120
Security login and user usage, 140–141
Security testing, 53–54
SELECT statement, 333
Server logins and roles, 143

Index

www.EBooksWorld.ir

495

Set-based string building
IO statistics, 265
ISNULL, 266–267
literal, 266
string-based SELECT, 265
structure, 264–265
variable, 264

Signing stored procedures, 158
Slower attack method, 52
Slow query, version of, 304
Software patching, 55
Spanish collation, 366, 370
sp_executesql command, 46
@sql_command, 6
SQL injection

database server, 51
definition, 31
dynamic SQL, 31–32
password data, 37
secure data, 35
string inputs, 50
unsecured dynamic SQL, 33–34
vulnerabilities, 41

SQL Server Management
Studio, 11, 201, 246

SQL Server user authentication
options, 125

Statistics
Auto_create_stats_on, 236
Auto_update_stats_async_on, 236
Auto_update_stats_on, 236
DBCC SHOW_STATISTICS, 234
density, 234–235
histogram, 235
indexes and columns, 234, 242
is_auto_update_stats_on, 238
large number data, 239, 241
metrics, 241

Production.Product, 237–238
query optimization and

execution, 235, 238
recheck, 243
search query, 242
simple index seek operation, 239
SQL Server 2014, 237
stale statistics, 242
table scan, 235
update, 234, 237

STATISTICS IO, 211
logical reads, 199
object, 198
output, 198, 217
physical reads, 199
query, 198
scan count, 198

STATISTICS TIME, 199–200
Stored procedure

execution plan, 287
parameter sniffing, 283–284, 289
query plan cache, 280–282
single execution plan, 285
suboptimal plan, 289

STRING_AGG
function, 275
iteration, 277
list-building query, 274
order dates, 275–276
query structure, 277
string-building method, 274

Style
apostrophes, 29–30
debugging, 16–19
formatted dynamic SQL, 19
hypothetical backup script,

documentation, 13–15
management studio text display, 21–22

Index

www.EBooksWorld.ir

496

Sp_executesql, 22–23
string concatenation, 23–25
string sizes, 20
truncation, 20

Summary data, 312
sysadmin server role, 121
sys.columns system view, 342
sys.dm_db_stats_properties, 244–245
sys.tables system view, 341
System tables

collation management, 389
master, 389
model, 389
msdb, 389
TempDB, 388
temporary tables, 388

T
Table creation and

population, 414–415
Table-valued function, 135, 155
Table variables, 175–177
Technical debt, 127
TempDB database, 370
Temporary tables

accessible, 178–179
clustered index, 181
creation, 179–180
modify, 178
reusing, 180–181

Tonsils, 139
Trace flag, 245–246, 322
Transaction log backup, 392, 394,

396–398

T-SQL
backup statement, 5
command, 46
query, 33
syntax, 305

U
UNPIVOT

color list, 341
generate colors, 340
column list, 340
defined, 337
NULLs, 340
production.Product, 340
product_name, 343
remove columns, 338
ReorderPoint, 343
store data query, 338
syntax, 339

User/Password verification, 36

V
Value list, 329
Variation-selector-sensitivity, 361
Vendor Software, 57–58

W
Weekly log table, 379
Width sensitivity, 361

X, Y, Z
xp_cmdshell, 38

Style (cont.)

Index

www.EBooksWorld.ir

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: What Is Dynamic SQL?
	Understanding Dynamic SQL
	A Simple Example
	The EXEC Statement
	Data Type to Use

	Dynamic Execution Process
	Dynamic SQL in Action
	Advantages of Dynamic SQL
	Optional or Customized Search Criteria
	Customizable Everything
	Optimize SQL Performance
	Generate Large Amounts of T-SQL or Text, Fast!
	Execute SQL Statements on Other Servers or Databases
	Do the Impossible!

	Dynamic SQL Considerations
	Apostrophes Can Break Strings
	NULL Can Break Strings
	Difficult to Read and Debug
	Permissions and Scope Are Different
	Dynamic SQL Cannot be used in Functions

	Dynamic SQL Style
	Document Thoroughly
	Debugging Dynamic SQL
	Write Dynamic SQL Just Like Standard T-SQL
	String Sizes and Truncation
	Management Studio Text Display
	Sp_executesql
	Building Strings via Concatenation
	Notes on Apostrophes

	Conclusion

	Chapter 2: Protecting Against SQL Injection
	What Is SQL Injection?
	Cleansing Inputs
	Parameterizing Dynamic SQL
	Schema Name and Square Brackets
	Effective Spacing
	Properly Type Inputs
	Blind SQL Injection
	Detection and Prevention
	Security Testing
	Scanning of Application Traffic
	Log Review
	Code Review
	Software Patching
	Limit URL Length
	Use Views and/or Masking for Sensitive Data
	Vendor Software
	Login Pages

	Conclusion

	Chapter 3: Large Scale Searching
	Why Use Dynamic Searches?
	Custom Search Grids
	Search Grid Considerations
	Disallow Blank Searches
	Data Paging
	Conditional Paging
	Search Limitations
	Input-Based Search
	Result Row Count

	Additional Filtering Considerations
	Alternatives
	Conclusion

	Chapter 4: Permissions and Security
	The Principle of Least Privilege
	Granular Permissions vs. Role Permissions
	Dynamic SQL and Ownership Chaining
	Changing Security Context On-the-Fly
	Where Do Security Disasters Come From?
	Users, Passwords, and Inconvenience
	Dynamic SQL Maintenance
	Cleaning House
	Login and User Usage
	Auditing Users and Logins
	Memory Consumption
	Row Level Security
	Signing Stored Procedures
	Conclusion

	Chapter 5: Managing Scope
	What Is Scope?
	Why Is Scope Important?
	Managing Scope in Dynamic SQL
	Using OUTPUT in Dynamic SQL
	Table Variables and Temporary Tables
	Table Variables
	Temporary Tables
	Global Temporary Tables

	Using Permanent Tables for Temporary Storage
	Output Data Directly to a Table from Dynamic SQL
	Conclusion
	Cleanup

	Chapter 6: Performance Optimization
	Query Execution
	Parsing
	Binding
	Optimization
	Execution

	Optimization Tools
	Query Execution Plan
	STATISTICS IO
	Object
	Scan Count
	Logical Reads
	Physical Reads

	STATISTICS TIME
	Use All of These Tools!

	Dynamic SQL vs. Standard SQL
	Query Parsing and Binding
	Execution Plan Caching
	Simplifying Queries

	Paging Performance
	Filtered Indexes
	Cardinality
	Statistics
	Sys.dm_db_stats_properties
	Trace Flag 2371
	Back to Dynamic SQL

	Query Hints
	Conclusion
	Cleanup

	Chapter 7: Scalable Dynamic Lists
	What Is a Dynamic List?
	Using XML to Create a Dynamic List
	Set-Based String Building
	Revisiting Security
	STRING_AGG
	Conclusion

	Chapter 8: Parameter Sniffing
	What Is Parameter Sniffing?
	Parameter Sniffing Examples
	Identifying Parameter Sniffing
	Design Considerations
	Query Execution Details
	The Red Herrings
	Parameter Values
	Local Variables
	Forcing Cardinalities to the Optimizer
	Dynamic SQL
	Trace Flag 4136
	Fix Bad Business Logic
	Too Many Possible Code Paths
	Lots of Parameters
	Stored Procedure is Huge

	Conclusion
	Cleanup

	Chapter 9: Dynamic Pivot and Unpivot
	PIVOT
	UNPIVOT
	Additional Examples
	Multiple PIVOT Operators
	Multiple UNPIVOT Operators
	Classification Using PIVOT and CASE
	Conclusion

	Chapter 10: Solving Common Problems
	Collation Conflicts
	The Problem
	The Solution

	Organizing and Archiving Data
	The Problem
	The Solution

	Customized Database Objects
	The Problem
	The Solution

	A Note on System Tables
	Conclusion

	Chapter 11: Applications of Dynamic SQL
	Database Backups
	Saving Generated Scripts
	Saving Scripts to a Table
	Executing TSQL on Other Servers
	Generating Schema from Metadata
	Building a Solution
	Conclusion

	Chapter 12: Index Usage and Maintenance
	Index Defragmentation
	Index Rebuild
	Index Reorganization
	Creating an Index Maintenance Solution

	Index Usage Statistics
	Missing Index Statistics
	Conclusion

	Index

