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Preface

This text is an introduction to the theory of fuzzy sets, mathematical
objects modeling the vagueness present in our natural language when we
describe phenomena that do not have sharply defined boundaries. By us-
ing the concept of partial degrees of membership to give a mathematical
definition of fuzzy sets, the number of objects encountered in human rea-
soning that can be subjected to scientific investigation is increased.

Fuzzy concepts need to be modeled mathematically for the purpose
of automation such as in expert systems, computer vision, control engi-
neering, and pattern recognition. Fuzzy set theory provides a machinery
for carrying out approximate reasoning processes when available informa-
tion is uncertain, incomplete, imprecise, or vague. With the emergence of
new tools in the area of computational intelligence, such as nonstandard
logics, neural networks, and symbolic reasoning, this new theory is a wel-
come addition to the repertoire of appropriate tools. This is especially true
when observations are expressed in linguistic terms such as in implement-
ing human control strategies in robotics. The success of this methodology
has been demonstrated in a variety of fields, such as control of complex
systems, where mathematical models are difficult to specify; in expert sys-
tems, where rules expressing knowledge and facts are linguistic in nature;
and even in some areas of statistics, exemplified by categorical data anal-
ysis, where classes of objects are more fuzzy than crisp, and where the
variability across objects needs to be modeled.

The material in this book has been chosen to provide basic background
for various areas of applications. The material in Chapters 1, 2, 3, 5, 6, 7,
8, and 13 is pertinent in engineering fuzzy logic, by which we mean the use
of simple components of fuzzy theory, such as membership functions and
fuzzy connectives, in the modeling of engineering knowledge, and in the
design of fuzzy control rules. Chapter 4 deals with that part of fuzzy logic
that actually lies within the field of logic. Several propositional logics are
discussed, including fuzzy propositional logic. This material should provide
the reader with a clear way to think about this aspect of fuzzy theory, and
should be of interest in theoretical computer science and artificial intelli-
gence. The material in Chapters 9, 10, 11, and 12 is pertinent in decision

ix
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x PREFACE

making, in particular in fields such as expert systems and computer vision
where the uncertainty involved can take on various facets, such as proba-
bility, possibility, belief functions, and more generally, fuzzy measures.

In this fourth edition, we expand the material in three specific areas.
In Section 5.10, we supply much more material on fuzzy sets of type-2.
In Section 6.5, we elaborate more on the notion of copulas in view of
their increasing usefulness in modeling dependence structures in almost
all areas of applications, especially econometrics. In Section 9.1, in view of
the actual debate on quantitative modeling of the concept of uncertainty
in social sciences, we supply some basic material on quantum probability,
a noncommutative measure of uncertainty.

This text is designed for a one-semester course at the advanced under-
graduate or beginning graduate level. The minimum prerequisite is some
calculus, some set theory and Boolean logic, and some probability and
statistics. However, we start from the ground up and background mate-
rial will be reviewed at the appropriate places. The course is designed for
students from fields such as artificial intelligence, computer science, en-
gineering, cognitive science, mathematics, and probability and statistics,
who seek a strong background for further study. The material is drawn
from many sources, including the novel series of papers of Lotfi A. Zadeh,
who is the founder of the theory of fuzzy sets. For further reading, there
is a bibliography. The exercises at the end of each chapter will deepen the
students’ understanding of the concepts and test their ability to make the
necessary calculations. Exercises with a star have solutions at the back of
the book. Exercises with an asterisk convey some advanced aspects of the
topics treated. After completing the course, the students should be able
to read more specialized and advanced books on the subject as well as
articles in technical and professional journals.

We dedicate this fourth edition to the memory of two very special
persons. The late Professor Lotfi A. Zadeh who created the theory of fuzzy
sets in 1965, has just left us in 2017, but his inspiring work will definitely
stay with us forever; and our former co-author, Professor Elbert A. Walker,
who passed away earlier this year of 2018 while starting to collaborate
toward this fourth edition. Professor Carol L. Walker, his surviving wife
and our longtime research collaborator, is replacing Elbert as a co-author
for fulfilling the task. We keep both of these great and beloved men in our
minds and hearts while proceeding to accomplish this task of revising and
expanding the third edition to the new fourth edition of this text. We thank
again all those who used the first three editions and gave us comments that
led to substantial improvements. We especially thank Robert Ross, our
Editor, for his encouragement and help in preparing this fourth edition.

Hung T. Nguyen and Carol L. Walker
Las Cruces, New Mexico and Chiang Mai, Thailand
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Chapter 1

THE CONCEPT OF

FUZZINESS

In this opening chapter, we will discuss the intrinsic notion of fuzziness in
natural language. Following Lotfi Zadeh, fuzzy concepts will be modeled
as fuzzy sets, which are generalizations of ordinary (crisp) sets.

1.1 Examples

In using our everyday natural language to impart knowledge and informa-
tion, there is a great deal of imprecision and vagueness, or fuzziness. Such
statements as “John is tall” and “Fred is young” are simple examples. Our
main concern is representing, manipulating, and drawing inferences from
such imprecise statements.

We begin with some examples.

Example 1.1.1 The description of a human characteristic such as healthy;

Example 1.1.2 The classification of patients as depressed;

Example 1.1.3 The classification of certain objects as large;

Example 1.1.4 The classification of people by age such as old;

Example 1.1.5 A rule for driving such as “if an obstacle is close, then
brake immediately”.

In the examples above, terms such as depressed and old are fuzzy in
the sense that they cannot be sharply defined. However, as humans, we do

1
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2 CHAPTER 1. THE CONCEPT OF FUZZINESS

make sense out of this kind of information, and use it in decision making.
These “fuzzy notions” are in sharp contrast to such terms as married, over
39 years old, or under 6 feet tall. In ordinary mathematics, we are used
to dealing with collections of objects, say certain subsets of a given set
such as the subset of even integers in the set of all integers. But when
we speak of the subset of depressed people in a given set of people, it
may be impossible to decide whether a person is in that subset or not.
Forcing a yes-or-no answer is possible and is usually done, but there may
be information lost in doing so because no account is taken of the degree of
depression. Although this situation has existed from time immemorial, the
dominant context in which science is applied is that in which statements
are precise (say either true or false)—no imprecision is present. But in this
time of rapidly advancing technology, the dream of producing machines
that mimic human reasoning, which is usually based on uncertain and
imprecise information, has captured the attention of many scientists. The
theory and application of fuzzy concepts are central in this endeavor but
remain to a large extent in the domain of engineering and applied sciences.

With the success of automatic control and of expert systems, we are
now witnessing an endorsement of fuzzy concepts in technology. The math-
ematical elements that form the basis of fuzzy concepts have existed for
a long time, but the emergence of applications has provided a motivation
for a new focus for the underlying mathematics. Until the emergence of
fuzzy set theory as an important tool in practical applications, there was
no compelling reason to study its mathematics. But because of the prac-
tical significance of these developments, it has become important to study
the mathematical basis of this theory.

1.2 Mathematical modeling

The primitive notion of fuzziness as illustrated in the examples above
needs to be represented in a mathematical way. This is a necessary step in
getting to the heart of the notion, in manipulating fuzzy statements, and
in applying them. This is a familiar situation in science. A good example
is that of “chance”. The outcome produced by many physical systems may
be “random”, and to deal with such phenomena, the theory of probability
came into being and has been highly developed and widely used.

The mathematical modeling of fuzzy concepts was presented by Zadeh
in 1965, and we will now describe his approach. His contention is that
meaning in natural language is a matter of degree. If we have a proposition
such as “John is young”, then it is not always possible to assert that it is
either true or false. When we know that John’s age is x, then the “truth”,
or more correctly, the “compatibility” of x with “is young”, is a matter
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1.2. MATHEMATICAL MODELING 3

of degree. It depends on our understanding of the concept “young”. If
the proposition is “John is under 22 years old” and we know John’s age,
then we can give a yes-or-no answer to whether or not the proposition is
true. This can be formalized a bit by considering possible ages to be the
interval [0,∞), letting A be the subset {x : x ∈ [0,∞) : x < 22}, and then
determining whether or not John’s age is in A. But “young” cannot be
defined as an ordinary subset of [0,∞). Zadeh was led to the notion of a
fuzzy subset. Clearly, 18- and 20-year-olds are young, but with different
degrees: 18 is younger than 20. This suggests that membership in a fuzzy
subset should not be on a 0 or 1 basis, but rather on a 0 to 1 scale, that is,
the membership should be an element of the interval [0, 1]. This is handled
as follows. An ordinary subset A of a set U is determined by its indicator
function, or characteristic function χA defined by

χA(x) =

{
1 if x ∈ A
0 if x /∈ A

The indicator function of a subset A of a set U specifies whether or not an
element is in A. It either is or is not. There are only two possible values the
indicator function can take. This notion is generalized by allowing images
of elements to be in the interval [0, 1] rather than being restricted to the
two-element set {0, 1}.
Definition 1.2.1 A fuzzy subset of a set U is a function U → [0, 1].

Those functions whose images are contained in the two-element set
{0, 1} correspond to ordinary, or crisp subsets of U , so ordinary subsets
are special cases of fuzzy subsets. It is common to refer to a fuzzy subset
simply as a fuzzy set, and we will do that.

It is customary in the fuzzy literature to have two notations for fuzzy
sets, the letter A, say, and the notation µA. The first is called a “linguistic
label”. For example, one might say “Let A be the set of young people.”
A specific function U → [0, 1] representing this notion would be denoted
µA. The notation A stands for the concept of “young”, and µA spells out
the degree of youngness that has been assigned to each member of U . We
choose to make A stand for the actual fuzzy set, which is always a function
from a set U into [0, 1], and thus we have no need for the notation µA.
Fuzzy sets of course serve as models of concepts such as “young”, but we
have found no real need for special “linguistic labels” for these concepts.
Such labels would not represent mathematical objects, so could not be
manipulated as such. In any case, we will not use any special symbols for
“linguistic labels”, and by a fuzzy set we always mean a function from
some set U into [0, 1].

For a fuzzy setA : U → [0, 1], the function A is called the membership
function, and the value A(u) is called the degree of membership of u
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4 CHAPTER 1. THE CONCEPT OF FUZZINESS

in the fuzzy set A. It is not meant to convey the likelihood or probability
that u has some particular attribute such as “young”.

Of course, for a fuzzy concept, different functions A can be considered.
The choice of the function A is subjective and context dependent and
can be a delicate one. But the flexibility in the choice of A is useful in
applications, as in the case of fuzzy control, treated in Chapter 13.

Here are two examples of how one might model the fuzzy concept
“young”. Let the set of all possible ages of people be the positive real
numbers. One such model, decided upon by a teenager might be

Y (x) =





1 if x < 25

40−x
15 if 25 ≤ x ≤ 40

0 if 40 < x

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

A membership function for “young”

An older person might model it differently, say with the function

Z(x) =






1 if x < 40

80−x
40 if 40 ≤ x ≤ 60

70−x
20 if 60 < x ≤ 70

0 if 70 < x
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1.2. MATHEMATICAL MODELING 5

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

x

y

Another membership function for “young”

There are various ways to get reasonable membership functions. Here
is an illustration of one way. Suppose we want to model the notion of
“high income” with a fuzzy set. Again, let the set U be the positive real
numbers, representing the totality of possible incomes. We survey a large
number of people and find out that no one thought that an income under
$20,000 was high, but that the proportion p of people who thought that
an income x between $20,000 and $75,000 was high was approximately

p =
x− 20

55

Of course, everyone thought that an income over $75,000 was high. Meas-
uring in thousands of dollars, one reasonable model of the fuzzy set “high
income” would be

H(x) =





0 if x < 20

x−20
55 if 20 ≤ x ≤ 75

1 if 75 < x

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

x

y

A membership function for “high income”

This last example bears a few comments. To get a reasonable model
for the fuzzy set, a survey was made and some probabilities determined.
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6 CHAPTER 1. THE CONCEPT OF FUZZINESS

The value H(50) = 30/55 does not mean that the probability of an income
of $50,000 is high. It is true that of the people surveyed, the proportion of
them who would classify such an income as high was 30/55. We have simply
taken that proportion to represent the degree to which such an income is
considered high. It is not the probability of having a high income. There is
no such probability around in this discussion. If an income is $50,000, then
the probability that a random person from those surveyed would classify
that income as high is 30/55. But probabilities should not be confused
with degrees of membership in a fuzzy set. Membership functions are not
probability distributions.

We have modeled these membership functions with some very simple
functions—piecewise linear ones. This is common practice.

1.3 Some operations on fuzzy sets

As we have noted, a subset A of a set U can be represented by a function
χA : U → {0, 1}, and a fuzzy subset of U has been defined to be a function
A : U → [0, 1]. On the set P(U) of all subsets of U there are the familiar
operations of union, intersection, and complement. These are given by the
rules

A ∪B = {x : x ∈ A or x ∈ B}
A ∩B = {x : x ∈ A and x ∈ B}

A′ = {x ∈ U : x /∈ A}

Writing these in terms of indicator functions, we get

χA∪B(x) = max {χA(x), χB(x)} = χA(x) ∨ χB(x)

χA∩B(x) = min {χA(x), χB(x)} = χA(x) ∧ χB(x)

χA′(x) = 1− χA(x)

A natural way to extend these operations to the fuzzy subsets of U is by
the membership functions

(A ∨B) (x) = max {A(x), B(x)} = A(x) ∨B(x)

(A ∧B) (x) = min {A(x), B(x)} = A(x) ∧B(x)

A′(x) = 1−A(x)

There are many other generalizations of these operations, and some
will be presented in Chapter 5. One remark about notation: we will use ∨
for max and for sup. Some authors denote the fuzzy set A ∨B by A ∪B.

www.EBooksWorld.ir



1.3. SOME OPERATIONS ON FUZZY SETS 7

This function is the smallest that is greater than or equal to both A and
B, that is, is the sup, or supremum, of the two functions. This notation
conforms to lattice theoretic notation, which we will have many occasions
to use later. Similar remarks apply to using ∧ for min and for inf (short
for “infimum”).

Here are a couple of examples illustrating these operations between
fuzzy sets. Consider the two fuzzy sets A and B of the nonnegative real
numbers given by the formulas

A(x) =





1 if x < 20
40−x
20 if 20 ≤ x < 40
0 if 40 ≤ x

(1.1)

and

B(x) =

{
1 if x ≤ 25(

1 +
(
x−25

5

)2)−1

if 25 < x
(1.2)

Here are the plots of these two membership functions.

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

x

y

The membership function A

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

x

y

The membership function B

The plots for A ∨ B, A ∧ B, and A′ are the following. We leave as
exercises the writing out of formulas for these membership functions.
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8 CHAPTER 1. THE CONCEPT OF FUZZINESS

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

The membership function A ∨B

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

The membership function A ∧B

0 10 20 30 40 50 60 70 80 90 100
0.0

0.5

1.0

The membership function A′

Here are two more membership functions for fuzzy subsets of the non-
negative real numbers, their plots, union, intersection, and complements.
Again, writing down the formulas for these membership functions is left
as an exercise.

C(x) =





0 if 0 ≤ x < 1
x− 1 if 1 ≤ x < 2

1 if 2 ≤ x < 3
4− x if 3 ≤ x ≤ 4

0 if 4 < x

(1.3)
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1.3. SOME OPERATIONS ON FUZZY SETS 9

D(x) =





ex−3 if 0 ≤ x < 3
1 if 3 ≤ x < 5
1− x−5

2 if 5 ≤ x ≤ 7
0 if 7 < x

(1.4)

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

x

y

The membership function C

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

x

y

The membership function D

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

The membership function C ∨D
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10 CHAPTER 1. THE CONCEPT OF FUZZINESS

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

The membership function C ∧D

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

The membership function C′

0 1 2 3 4 5 6 7 8
0.0

0.5

1.0

The membership function D′

1.4 Fuzziness as uncertainty

There are many kinds of uncertainty arising in real-world problems and
a variety of techniques are needed for modeling them. What are some
of these techniques, and when does fuzzy set theory provide appropriate
models?

Fuzzy sets deal with the type of uncertainty that arises when the
boundaries of a class of objects are not sharply defined. We have seen
several examples of such vagueness already: “young” and “high income”,
for instance. Membership in such classes is a matter of degree rather than
certainty one way or another, and it is specified mathematically by fuzzy
sets.
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1.4. FUZZINESS AS UNCERTAINTY 11

Ambiguity is another kind of uncertainty. This may come about in
various ways. For example, if some parameter in a control system is only
known to lie within a given interval, then there is uncertainty about any
nominal value chosen from that interval for that parameter.

Another example is that of randomness, as exemplified by the uncer-
tainty of the outcome of some experiment such as rolling a pair of dice,
or of the observations made of some physical system. Randomness is typ-
ically modeled using probability theory. That is, outcomes are assumed
to be observations of random variables and these random variables have
distribution laws. These laws may not be known, of course, but each ran-
dom variable has a unique one. This is in contrast to the fact that many
different membership functions can be assigned to the same fuzzy concept.
Again, probability and degrees of membership are distinct things.

As in the case of uncertainty modeled by probability theory, probability
logic as discussed in Chapter 4 is used as a vehicle for making inferences
from data. Probability logic is used in situations where events of interest
are either true or false, but the information available is incomplete and
prevents such a determination. Propositions will correspond to events,
and the probability of an event is used as a measure of the truth of its
corresponding proposition.

In confidence interval estimation in statistics, the situation is this. A
model parameter, for example, the mean µ of a random variable X , is
unknown. For each subset A of the range U of X , either µ ∈ A or µ /∈ A,
but it is not known which. One would like to construct a small subset
A such that µ is very likely to be in A. Since µ is fixed, a probabilistic
statement to this effect is meaningful only when the set A is random.
Thus the probability that µ ∈ A is the probability α that the random set
contains µ. After constructing A from data, it is a nonrandom set, and we
interpret the probability α as our degree of confidence that µ is in A.

Now consider a similar situation. Let U denote a set of all possible
answers to a specific question, only one of which, say u0, is correct. Which
of the answers is the correct one is unknown. For each crisp subset A of
U , we would like to ask an expert, or use evidence of some kind, to assign
a value Q(A) ∈ [0, 1] that represents our degree of belief that A contains
u0. This type of assignment is a mathematical modeling of fuzzy concepts
by fuzzy sets. Here the fuzzy sets are fuzzy subsets of the set of all subsets
of U.

In complicated real-world cases, several types of uncertainty can coex-
ist. For example, to each population of humans, chosen at random, one
might be interested in its “morality”, its “political spirit”; to each town
chosen at random, one might be interested in its “shape”, its “beauty”, and
so on. These are examples of fuzzy concepts that can be formulated rigor-
ously as random fuzzy sets. Each type of uncertainty has its mathematical

www.EBooksWorld.ir



12 CHAPTER 1. THE CONCEPT OF FUZZINESS

representation or model, and associated calculus. Different mathematical
theories are like tools in a toolbox. One may be more advantageous to use
than another in a given situation. Sometimes several may apply, and one
may even want to use several in conjunction. The practitioner has to be
creative and use understanding in order to choose the right combination
of mathematical theories to apply. We turn now to some typical useful
aspects of fuzzy sets.

The modeling of fuzzy concepts by fuzzy sets leads to the possibility
of giving mathematical meaning to natural language statements. For ex-
ample, when modeling the concept “young” as a fuzzy subset of [0,∞)
with a membership function A : [0,∞)→ [0, 1], we described the meaning
of “young” in a mathematical way. It is a function, and can be manip-
ulated mathematically and combined with other functions, for example.
The fuzzy concept has been put into a useful form.

Even in areas where statistical techniques are dominant, such as in
multivariate categorical data analysis, fuzzy sets are not only useful in
various cases, but may be more efficient. They have the capacity, for ex-
ample, to model variability across objects. We illustrate: if the categories
are like “gender” or “marital status”, there is no fuzzy concept involved.
But if the categories are “depressed”, “mentally unbalanced”, and “sta-
ble”, then instead of using an ordinary partition of a set of people into
these categories, a fuzzy partition might be more realistic. This is a typical
case where fuzziness is involved and the ordinary mathematical concept
of partition needs to be generalized to its fuzzy counterpart. (See Sec-
tion 7.4.) For example, fuzzy partitions are essential in the design of fuzzy
controllers, which is the topic of Chapter 13.

There is a more formal relation between randomness and fuzziness. Let
A : U → [0, 1] be a fuzzy set. For α ∈ [0, 1], let Aα = {u ∈ U : A(u) ≥ α}.
The set Aα is called the α-cut of A. Now let us view α as a random variable
uniformly distributed on [0, 1]. That is, let (Ω,A, P ) be a probability space
and α : Ω→ R a random variable with

P{ω : α(ω) ≤ a} =






0 if a < 0
a if 0 ≤ a ≤ 1
1 if a > 1

Then Aα(ω) is a random set. (Random sets will appear in Chapters 9,
10, and 11.) The covering function, or one-point covering function,
of the random set Aα(ω) is defined to be

π : U → [0, 1] : u→ P{ω : u ∈ Aα(ω)}

which is P{ω : α(ω) ≤ A(u)} = A(u). That is, π(u) = A(u). This means
that a fuzzy set can be written as the covering function of a random set. A
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1.5. EXERCISES 13

random set is characterized by its distribution. But specifying a covering
function of a random set is not sufficient to determine its distribution,
much the same as the fact that moments of a random variable do not
in general specify its distribution. In any case, a possible interpretation of
the formal connection between fuzzy sets and covering functions of random
sets is that fuzziness is a weakened form of randomness. It does not mean
that probability theory subsumes fuzzy set theory.

The relation A(u) = P{ω : u ∈ Aα(ω)} is interesting in suggesting
ways to obtain membership functions. First, A is a membership function,
being a function U → [0, 1]. Of course this is true if Aα is replaced by
any mapping S : Ω → P(U) and the probability function is replaced by
any mapping µ : P(Ω)→ [0, 1]. Then u → µ{ω : u ∈ S(ω)} is certainly a
mapping U → [0, 1] and hence is a fuzzy set.

We close this section with such an example. Suppose we are interested
in describing the fuzzy concept of the seriousness of some illness. Suppose
that the illness under consideration is manifested as subsets of the set
Ω = {ω1, ω2, ..., ωn} of possible symptoms. Let U be a set of humans,
and let S : Ω → P(U) be given by S(ω) = {u ∈ U : u has symptom
ω}. For u ∈ U, we are interested in some numerical measure of the set
{ω ∈ Ω : u ∈ S(ω)}. This is to be a measure of the seriousness of the
illness of u. Medical experts often can provide assessments that can be
described mathematically as a function µ : P(Ω) → [0, 1], where µ(B) is
the degree of seriousness of the illness of a person having all the symptoms
in B. So a membership function can be taken to be

A(u) = µ{ω ∈ Ω : u ∈ S(ω)}

Since µ is subjective, there is no compelling reason to assume that it is
a measure, for example, that it is additive. However, it is obvious that it
should be monotone increasing, that is, B ⊆ C should imply that µ(B) ≤
µ(C). Such functions as these are called fuzzy measures, which are a topic
of discussion in Chapter 11.

1.5 Exercises

1. Give several statements in natural language that involve fuzzy con-
cepts.

2. From your own experience, describe situations where fuzzy concepts
are needed.

3. Using just common sense, give a reasonable membership function for
the following fuzzy sets. (Of course, you must first specify exactly
what the underlying set is.)
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14 CHAPTER 1. THE CONCEPT OF FUZZINESS

(a) n is a large integer.

(b) The mean of a random variable is around 5.

(c) x is much larger than y.

(d) These are very young people.

(e) x is between −3 and 2.

(f) x is approximately equal to y.

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Let two fuzzy subsets A and B of
U be given by

u 0 1 2 3 4 5 6 7 8 9
A(u) 0 0 0.1 0.2 0.3 0.8 0.9 1 1 1

and

u 0 1 2 3 4 5 6 7 8 9
B(u) 1 1 0.9 0.8 0.7 0.5 0.4 0.2 0.2 0

Determine A ∨B, A ∧B, and A′.

5. Let C and D be fuzzy subsets of the nonnegative real numbers. Draw
the graph of C ∧D′ when

C(x) =





0 if 0 < x < 1
x− 1 if 1 ≤ x < 2
1 if 2 ≤ x < 3
4− x if 3 ≤ x < 4
0 if 4 ≤ x

and

D(x) =






ex−3 if 0 ≤ x < 3
1 if 3 ≤ x < 5
1− x−5

2 if 5 ≤ x < 10
0 if 10 ≤ x

6. ⋆Write out the formulas for A∨B, A∧B, A′, and B′, where A and
B are given by formulas 1.1 and 1.2 in Section 1.3.

7. Write out the formulas for C ∨D, C ∧D, C′, and D′, where C and
D are given by formulas 1.3 and 1.4 in Section 1.3.

8. For fuzzy sets A, B, and C, prove that (A ∨B) ∨ C = A ∨ (B ∨C),
and that (A ∧B) ∧C = A ∧ (B ∧C).
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1.5. EXERCISES 15

9. ⋆For fuzzy sets A and B, prove that (A ∨B)′ = A′ ∧B′.

10. *⋆Let f : U → [0, 1] and let α : (Ω,A, P ) → [0, 1] be a uniformly
distributed random variable. Let Sf : Ω → P(U) : ω → {u ∈ U :
f(u) ≥ α(ω)}.

(a) Verify that the range Sf (Ω) = {Sf (ω) : ω ∈ Ω} is totally
ordered by set inclusion.

(b) Show that for A ∈ Sf (Ω), {ω ∈ Ω : A ⊆ Sf (ω)} ∈ A.
(c) Let S : Ω → P(U) be any random set in U. We say that S is

nested if S(Ω) is totally ordered and for A ∈ S(Ω), {ω : A ⊆
S(ω)} ∈ A. Show that if S is nested and its covering function
coincides with f, then for A ∈ S(Ω), we have

P (ω : A ⊆ S(ω)) = P (ω : A ⊆ Sf (ω)).

11. Let U be a finite set. The cardinality, or sigma count, of a fuzzy
subset A of U is #(A) =

∑
u∈U A(u). For fuzzy subsets A and B

of U, the degree of subsethood of A in B is defined as s(A|B) =
#(A ∧B)/#(A).

(a) Verify that s(A|B) = 1 if and only if A(u) ≤ B(u) for every
u ∈ U.

(b) Compute the degree of subsethood of A in B in Exercise 4.
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Chapter 2

SOME ALGEBRA OF

FUZZY SETS

In Chapter 1, we discussed modeling fuzzy concepts such as uncertainty
with fuzzy sets. Applications demand combining these fuzzy sets in various
ways. This means that we must understand the set F(U) of all fuzzy sub-
sets of a set U as a mathematical object. The basic mathematical structure
of F(U) comes from the fact that the unit interval [0, 1] is ordered. This
ordering on [0, 1] induces a partial order on F(U), which in turn, gives
F(U) the algebraic structure of a lattice. So we need some background
material about partially ordered sets, lattices, and related mathematical
notions. These notions are fundamental, and are absolutely essential in
understanding the mathematics of fuzzy sets.

2.1 Boolean algebras and lattices

We begin by discussing the familiar properties of the system of subsets
of a set. Let P(U) be the set of all subsets of the set U . It is called the
power set of U. Sometimes P(U) is identified with 2U , which is the set
of all mappings of U into {0, 1}. A subset A ∈ P(U) is identified with
the function U → {0, 1} that maps each element of A to 1 and the other
elements of U to 0. The set U may be finite or infinite. Perhaps the most
basic thing about P(U) is that it is a partially ordered set. This simply
comes from the familiar notion of set inclusion. If A and B are in P(U)
then we write A ⊆ B if A is a subset of B, that is, if every element of A
is an element of B. To make the definition of partially ordered set formal,
we use the notion of relation. The Cartesian product of a set S with a
set T is the set S × T = {(s, t) : s ∈ S, t ∈ T }.

17
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18 CHAPTER 2. SOME ALGEBRA OF FUZZY SETS

Definition 2.1.1 A relation on a set U is a subset R of the Cartesian
product U × U .

The notion of relation is a very general one. For an element (x, y) ∈
U × U , either (x, y) ∈ R or it is not. Standard notation to denote that
(x, y) ∈ R is xRy. Taking this view, ⊆ is a relation on P(U), and A ⊆ B
is the notation that we use to say that the pair (A,B) ∈ ⊆.

The relation ⊆ satisfies the following properties.

• A ⊆ A. (The relation is reflexive.)

• If A ⊆ B and B ⊆ C, then A ⊆ C. (The relation is transitive.)

• If A ⊆ B and B ⊆ A, then A = B. (The relation is antisymmetric.)

A partial order on a set is a relation on that set that is reflexive,
transitive, and antisymmetric.

Definition 2.1.2 A partially ordered set is a pair (U,≤) where U is a
set and ≤ is a partial order on U .

We often just say that U is a partially ordered set if it is clear what the
relation ≤ is. Partially ordered sets abound. As already indicated, (P(U),
⊆) is a partially ordered set. If (U,≤) is a partially ordered set, then so
is (A,≤) where A is any subset of U and ≤ is the relation induced on A
by the relation ≤ on U . If (U,≤) is a partially ordered set and for any
two elements x, y ∈ U either x ≤ y or y ≤ x, then we say U is a chain
or is linearly ordered, or totally ordered. Any subset U of the set
of real numbers is a chain under the usual ordering. In particular, the
interval [0, 1] is a chain and will play a fundamental role throughout this
book. Two elements x and y in a partially ordered set may have a sup (for
supremum). That is, there may be an element s such that x ≤ s, y ≤ s,
and s ≤ t for all elements t such that x ≤ t and y ≤ t. By antisymmetry,
there is at most one such s, and it is the smallest element greater than
both x and y. Such an element is denoted sup{x, y}, or quite commonly
x∨ y. Similarly, x and y may have an inf (for infimum), denoted x∧ y. In
a chain, x ∨ y and x ∧ y always exist. In this special case, the sup is one
of the two elements x and y, and similarly for the inf .

Definition 2.1.3 A lattice is a partially ordered set (U,≤) in which every
pair of elements of U has a sup and an inf in U .

Chains are always lattices, as noted above. The partially ordered set
(P(U),⊆) is a lattice. The sup of two elements in P(U) is their union,
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2.1. BOOLEAN ALGEBRAS AND LATTICES 19

and the inf is their intersection. The interval [0, 1] is a lattice, being a
chain.

A binary operation on a set U is a map U × U → U . For example,
addition and multiplication are binary operations on the real numbers,
that is, are functions from R× R to R. Binary operations are often written
between their arguments. That is, the image of (2, 3) under the operation
of addition is written 2+3. We will adhere to this standard practice. Also,
throughout this book, we will use R to denote the set of real numbers.

If (U,≤) is a lattice, then it comes equipped with the two binary oper-
ations ∨ and ∧. For x, y ∈ U , x∨y is the sup and x∧y is the inf of x and y.
The operations ∨ and ∧ are also called join and meet, respectively. From
either of these binary operations one can reconstruct ≤. In fact, a ≤ b if
and only if a ∧ b = a if and only if a ∨ b = b. These binary operations
satisfy a number of properties.

Theorem 2.1.4 If (U,≤) is a lattice, then for all a, b, c ∈ U,

1. a ∨ a = a and a ∧ a = a. (∨ and ∧ are idempotent.)

2. a ∨ b = b ∨ a and a ∧ b = b ∧ a. (∨ and ∧ are commutative.)

3. (a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c). (∨ and ∧ are
associative.)

4. a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a. (These are the absorption

identities.)

The proof is quite easy and is left as an exercise. A pertinent fact is
that two binary operations satisfying conditions 1–4 define a lattice.

Theorem 2.1.5 If U is a set with binary operations ∨ and ∧ that satisfy
the properties of Theorem 2.1.4, then defining a ≤ b if a ∧ b = a makes
(U,≤) into a lattice whose sup and inf operations are ∨ and ∧.

Proof. We first show that a ∧ b = a if and only if a ∨ b = b. Thus
defining a ≤ b if a ∧ b = a is equivalent to defining a ≤ b if a ∨ b = b.
Indeed, if a ∧ b = a, then a ∨ b = (a ∧ b) ∨ b = b by one of the absorption
laws. Similarly, if a∨ b = b, then a∧ b = a. We show the existence of sups,
and claim that sup{a, b} = a∨b. Now a ≤ a∨b since a∧ (a∨b) = a by one
of the absorption laws. Similarly b ≤ b∨a = a∨ b, so that a∨ b is an upper
bound of a and b. For any other upper bound x, a = a ∧ x and b = b ∧ x,
whence x = a ∨ x = b ∨ x. Therefore, x = a ∨ x ∨ b ∨ x = (a ∨ b) ∨ x, and
so a ∨ b ≤ x. Thus a ∨ b = sup{a, b}. The rest of the proof is left as an
exercise.
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20 CHAPTER 2. SOME ALGEBRA OF FUZZY SETS

The upshot is that a lattice may be thought of as a partially ordered
set in which every pair of elements has a sup and an inf, or as a set with
two binary operations satisfying the conditions of Theorem 2.1.4. So we
could say “(U,≤) is a lattice,” or “(U,∨,∧) is a lattice.” The latter would
mean, of course, that the binary operations ∨ and ∧ satisfy the conditions
in Theorem 2.1.4.

Here are some pertinent additional properties that a lattice (U,≤) may
have.

1. There is an element 0 in U such that 0 ∨ a = a for all a ∈ U. There
is an element 1 ∈ U such that 1 ∧ a = a for all a ∈ U . (0 and 1 are
identities for ∨ and ∧, respectively.)

2. U has identities, and for each element a in A, there is an element a′

in U such that a ∧ a′ = 0 and a ∨ a′ = 1. (Each element in U has a
complement, or A is complemented.)

3. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
(The binary operations ∨ and ∧ distribute over each other. If one
of these distributive laws holds in a lattice, then so does the other.)

4. Every subset T of U has a sup. That is, there is an element a ∈ U
such that t ≤ a for all t ∈ T, and a ≤ x for any x such that t ≤ x
for all t ∈ T . Similarly, every subset T of U may have an inf . That
is, there is an element b ∈ U such that b ≤ t for all t ∈ T , and b ≥ x
for any x such that x ≤ t for all t ∈ T .

If a lattice has an identity for ∨ and an identity for ∧, then it is a
bounded lattice. From the equation a ∧ 1 = a, we get that 1 is the
largest element in the lattice, and 0 ∧ a = 0 ∧ (0 ∨ a) = 0, so 0 is the
smallest. This condition could have been stated just by saying that the
lattice has a largest and a smallest element. A bounded lattice satisfying
the second condition is a complemented lattice. A lattice satisfying
both distributive laws is a distributive lattice. A bounded distributive
lattice that is complemented is a Boolean lattice, or Boolean algebra.
Chains are distributive lattices, and (P(U),⊆) is a Boolean lattice. If a
lattice satisfies condition 4, that is, if every subset has both a sup and an
inf, it is a complete lattice. For a subset T of a complete lattice, supT
is often written

∨
T , or

∨
t∈T t, and similarly inf T =

∧
T , or

∧
t∈T t. If

{ti : i ∈ I} is a family of elements of a complete lattice, then it should
be clear that there is a unique smallest element x such that ti ≤ x for
all i ∈ I. (Some of the ti may be equal.) We write x =

∨
i∈I ti. Similar

remarks apply to the inf of the family {ti : i ∈ I}. The interval [0, 1] is a
complete lattice, and so is (P(U),⊆).
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The lattice ([0, 1],≤) plays a fundamental role. It is a bounded distribu-
tive lattice. It is not complemented. For x, y ∈ [0, 1], x ∨ y = sup{x, y} =
max{x, y}, and similarly x∧ y = inf{x, y}. Distributivity is easy to check.
This lattice has another important operation on it: [0, 1] → [0, 1] : x →
1− x. We denote this operation by ′ even though it is not a complement.
The operation has the following properties.

• (x′)′ = x.

• x ≤ y implies that y′ ≤ x′.

Such an operation on a bounded lattice is called an involution, or
a duality. It follows that ′ is one-to-one and onto, and that 0′ = 1 and
1′ = 0. If ′ is an involution, the equations

(x ∨ y)
′

= x′ ∧ y′
(x ∧ y)

′
= x′ ∨ y′

are called the De Morgan laws. They may or may not hold. But [0, 1] is
a bounded distributive lattice which has an involution, namely x′ = 1−x,
satisfying the De Morgan laws. Such a system (V,∨,∧,′ , 0, 1) is a De
Morgan algebra. Every Boolean algebra is a De Morgan algebra, and in
particular, the set of all subsets P(U) of a set U is a De Morgan algebra.
A De Morgan algebra that satisfies x ∧ x′ ≤ y ∨ y′ for all x and y is a
Kleene algebra.

Theorem 2.1.6 Let (V,∨,∧,′ , 0, 1) be a De Morgan algebra and let U be
any set. Let f and g be mappings from U into V . We define

1. (f ∨ g)(x) = f(x) ∨ g(x),

2. (f ∧ g)(x) = f(x) ∧ g(x),

3. f ′(x) = (f(x))′,

4. 0(x) = 0,

5. 1(x) = 1.

Let V U be the set of all mappings from U into V . Then (V U ,∨,∧,′ , 0, 1)
is a De Morgan algebra. If V is a complete lattice, then so is V U .

Proof. The proof is routine in all respects. For example, the fact that
∨ is an associative operation on V U comes directly from the fact that
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22 CHAPTER 2. SOME ALGEBRA OF FUZZY SETS

∨ is associative on V . (The two ∨’s are different, of course.) Using the
definition of ∨ on V U and that ∨ is associative on V , we get

(f ∨ (g ∨ h)) (x) = f(x) ∨ (g ∨ h) (x)
= f(x) ∨ (g(x) ∨ h(x))
= (f(x) ∨ g(x)) ∨ h(x)
= (f ∨ g) (x) ∨ h(x)
= ((f ∨ g) ∨ h) (x)

whence f ∨ (g ∨ h) = (f ∨ g)∨ h, and so ∨ is associative on V U . The rest
of the proof is left as an exercise.

The set V U of all mappings from U into V is really the same as the
Cartesian product

∏
u∈U V of |U | copies of V, where |U | denotes the num-

ber of elements of U . Viewed in this way, the operations ∨ and ∧ are
coordinatewise, and it is easy to see that

∏
u∈U V is a De Morgan algebra

simply because V is.
Let U be any set and let F(U) be the set of all fuzzy subsets of U . We

have defined operations on F(U) in Chapter 1. Those operations come
from operations on [0, 1] just as the ones in Theorem 2.1.6 come from
operations on V . We have the following.

Corollary 2.1.7 (F(U),∨,∧,′ , 0, 1) is a complete De Morgan algebra.

When the operations are clear, it is customary to write simply V for a
De Morgan algebra (V,∨,∧,′ , 0, 1). Thus we would write F(U) for the De
Morgan algebra in the corollary.

There are many ways to construct new lattices from old. One of the
most fundamental is this. Let X and Y be partially ordered sets. In the
Cartesian product X × Y = {(x, y) : x ∈ X, y ∈ Y }, let (a, b) ≤ (c, d) if
a ≤ c and b ≤ d. Then X × Y becomes a partially ordered set, and if X
and Y are lattices, then X × Y is a lattice and this lattice is respectively,
bounded, distributive, complemented, Boolean, or De Morgan if and only if
X and Y are. (See Exercise 10.) The set X × Y with this componentwise
ordering is the product of the lattices X and Y. This notion can be
extended to the product of any family of lattices and gives a way to make
new lattices from old. If (X,≤) is a lattice and Y is a subset of X, then
the partial order on X induces one on Y. If this induced partial order on
Y makes it into a lattice, and if the sup and inf of two elements of Y
taken in X are the same as the sup and inf taken in Y, then Y is called a
sublattice of X.

Let X be a lattice and let X [2] = {(x, y) ∈ X×X : x ≤ y}. Then X [2] is
a sublattice of X×X. (See Exercise 11.) If B and C are Boolean algebras,
then B ×C is a Boolean algebra. But B[2] is not a Boolean algebra, since
it does not have complements. (See Exercise 12.) However, B[2] does have
pseudocomplements.
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2.2. EQUIVALENCE RELATIONS AND PARTITIONS 23

Definition 2.1.8 Let X be a bounded lattice, and let x ∈ X. Then an
element x∗ is a pseudocomplement of x if x ∧ x∗ = 0, and y ≤ x∗

whenever x ∧ y = 0. That is, for each x ∈ X, there is a unique largest
element whose meet with x is 0.

An element in a bounded lattice has at most one pseudocomplement
since two pseudocomplements must each be less or equal to the other,
and hence equal. If every element has a pseudocomplement, then the
bounded lattice is pseudocomplemented, and the unary operation ∗

is called a pseudocomplement. Every finite distributive lattice is pseu-
docomplemented. The equation x∗ ∨ x∗∗ = 1 is called Stone’s iden-
tity, and a Stone algebra is a pseudocomplemented distributive lat-
tice satisfying this identity. If (S,∨,∧,∗ , 0, 1) is a Stone algebra, then for
S∗ = {s∗ ∈ S : s ∈ S}, (S∗,∨,∧,∗ , 0, 1) is a Boolean algebra. That is, ∗ is
a complement on S∗. The sublattice S∗ consists precisely of the comple-
mented elements of S, and is sometimes called the center of S. If B is a
Boolean algebra, then B[2] is a Stone algebra (Exercise 12). Stone algebras
have a fairly extensive theory [84] and only a few facts are cited here and
in the exercises. The connection with fuzzy sets follows.

The bounded distributive lattice (F(U),∨,∧, 0, 1) of all fuzzy subsets
of a set U is pseudocomplemented. If A ∈ F(U), then

A∗(u) =

{
0 if A(u) 6= 0
1 if A(u) = 0

is the pseudocomplement of A. It is totally straightforward to check that
this is indeed the case. What is the center of F(U)?

Theorem 2.1.9 (F(U),∨,∧,∗ , 0, 1) is a Stone algebra whose center con-
sists of the crisp (ordinary) subsets of U.

2.2 Equivalence relations and partitions

There are many instances in which we would like to consider certain ele-
ments of a set to be the same. For example, in the set of integers there are
occasions where all we care about an integer is whether it is even or odd.
Thus we may as well consider all even integers to be the same, and likewise
all odd integers to be the same. This considering of certain subsets of a
set as one element is one of the most fundamental notions in mathematics.
It generalizes the notion of equality. The appropriate embodiment of this
notion is a special kind of relation on a set, an equivalence relation. A
standard notation for such a relation is some symbol such as ∼, or ≡, and
it is customary to write a ∼ b for (a, b) ∈ ∼.
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24 CHAPTER 2. SOME ALGEBRA OF FUZZY SETS

Definition 2.2.1 A relation ∼ on a set U is an equivalence relation

if for all a, b, and c in U,

• a ∼ a,

• a ∼ b implies b ∼ a, and

• a ∼ b, b ∼ c imply that a ∼ c.

The first and third conditions we recognize as reflexivity and transi-
tivity. The second is that of symmetry. Thus an equivalence relation is
a relation that is reflexive, symmetric, and transitive. Before giving some
examples, there are two more pertinent definitions.

Definition 2.2.2 Let ∼ be an equivalence relation on a set U and let
a ∈ U . The equivalence class of an element a is the set [a] = {u ∈ U :
u ∼ a}.

We defined a finite partition in Chapter 1. Here is the definition in
general.

Definition 2.2.3 Let U be a nonempty set. A partition of U is a set of
nonempty pairwise disjoint subsets of U whose union is U.

There is an intimate connection between equivalence relations and par-
titions. Here are some examples illustrating these notions and this connec-
tion.

Example 2.2.4 Let U be a set, and define x ∼ y if x = y. This example
is just meant to point out that equality is an equivalence relation. For any
x ∈ U , [x] = {x}. That is, the equivalence classes are just singletons. But
do notice that the equivalence classes form a partition of U .

Example 2.2.5 Let U be a set and define x ∼ y for any two elements
of U . That is, any two elements are equivalent. For any x ∈ U , [x] = U .
Again the equivalence classes form a partition, but the partition has only
one member, namely U itself.

Example 2.2.6 Let Z be the set of all integers. Let m ∼ n if m − n is
even, that is, is divisible by 2 in Z. This is an equivalence relation because
m −m = 0 is even, if m − n is even then so is −(m − n) = n −m and
if m − n and n − p are even then so is m − n + n − p = m − p. So ∼ is
reflexive, symmetric, and transitive. For m ∈ Z,

[m] = {n ∈ Z : n ∼ m}
= {n ∈ Z : n−m is even}
= {m+ 2k : k ∈ Z}
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So, for example,

[5] = {..., 5− 6, 5− 4, 5− 2, 5− 0, 5 + 2, 5 + 4, 5 + 6, ...}
= {...,−1, 1, 3, 5, 7, 9, 11, 13, ...}

which is just the set of odd integers. The equivalence class [m] of any odd
integer m will be this same set. Similarly, the equivalence class of any even
integer will be the set of all even integers. So there are just two equivalence
classes, the set of odd integers and the set of even integers. Again, the set
of equivalence classes forms a partition.

Example 2.2.7 Let f : U → V be any function from the set U to the
set V . On U , let x ∼ y if f(x) = f(y). Then ∼ is an equivalence relation
and the equivalence class [x] consists of all those elements of U that have
the same image as x. It should be clear that these classes form a partition
of U . So any function induces an equivalence relation on its domain, two
elements being equivalent if they have the same image.

Here is the formal connection between equivalence relations and parti-
tions.

Theorem 2.2.8 Let ∼ be an equivalence relation on the set U . Then the
set of equivalence classes of ∼ is a partition of U. This association of
an equivalence relation ∼ with the partition consisting of the equivalence
classes of ∼ is a one-to-one correspondence between the set of equivalence
relations on U and the set of partitions of U.

Proof. The union of the equivalence classes [u] is U since u ∈ [u]. We
need only that two equivalence classes be equal or disjoint. If x ∈ [u]∩ [v],
then x ∼ u, x ∼ v, and so u ∼ x and x ∼ v. By transitivity, u ∼ v. If
y ∈ [u], then y ∼ u, and since u ∼ v, it follows from transitivity that
y ∼ v. Thus y ∈ [v]. This means that [u] ⊆ [v]. Similarly, [v] ⊆ [u] and
hence [u] = [v]. So if two equivalence classes are not disjoint, they are
equal. Therefore the equivalence classes form a partition. Notice that two
elements are equivalent if and only if they are in the same member of
the partition, that is, in the same equivalence class. So this map from
equivalence relations to partitions is one-to-one.

Given a partition, declaring two elements equivalent if they are in the
same member of the partition is an equivalence relation whose associated
equivalence classes are the members of the partition. So our map from
equivalence relations to partitions is onto.

Definition 2.2.9 Let ∼ be an equivalence relation on the set U . The set
of equivalence classes of ∼ is denoted U/ ∼ and is called the quotient

space of ∼. The map U → U/ ∼ : u → [u] is the natural map of U
onto U/ ∼.
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The natural map simply associates an element with the equivalence
class it is in. There is another map that is fundamental in algebra. In its
various settings, it is called the first isomorphism theorem. The setting
here is simply for sets. We state it, leaving its proof as an exercise.

Theorem 2.2.10 Let f be a mapping from U onto V. On U let x ∼ y if
f(x) = f(y). Then ∼ is an equivalence relation, and

U/ ∼→ V : [x]→ f(x)

is a one-to-one map from U/ ∼ onto V .

An equivalence relation on U is a subset of U×U , so the set E(U) of all
equivalence relations on U comes equipped with a partial order, namely
set inclusion in U × U .

Theorem 2.2.11 Let E(U) be the set of all equivalence relations on the
set U . Then (E(U), ⊆) is a complete lattice.

Proof. There is a biggest and smallest element of E(U), namely U ×U
and {(u, u) : u ∈ U}, respectively. We need to show that any nonempty
family {Ei : i ∈ I} of elements of E(U) has a sup and an inf. Now certainly∧{Ei : i ∈ I} =

⋂
i∈I Ei if

⋂
i∈I Ei is an equivalence relation. Let (u, v)

and (v, w) ∈ ⋂i∈I Ei. Then (u, v) and (v, w) belong to each Ei and hence
(u,w) belongs to each Ei. Therefore, (v, w) ∈ ⋂i∈I Ei. Thus

⋂
i∈I Ei is a

transitive relation on U . That
⋂

i∈I Ei is reflexive and symmetric is similar.
What we have shown is that the intersection of any family of equivalence
relations on a set is an equivalence relation on that set. This is clearly the
inf of that family. Now

∨{Ei : i ∈ I} of a family of equivalence relations
on U is ⋂

{E ∈ E(U) : E ⊇ Ei for all i ∈ I}

Note that U ×U is an equivalence containing all the Ei. This intersection
is an equivalence relation on U by what we just proved, and it is clearly the
least equivalence relation containing all the Ei. Therefore it is the desired
sup.

What we have just seen is an instance of a lattice L, namely E(U),
contained in a lattice M , namely P(U × U), where the lattice L gets its
order from M , the meet in L agrees with the meet in M , and the join in
L is different from the join in M . The join of elements E and F of E(U)
is E ∪F considered as elements of P(U ×U), but (unless one is contained
in the other) is not E ∪ F considered in the ordered set E(U). Thus E(U)
is not a sublattice of P(U × U).
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To see just what the elements are in the sup of two equivalence re-
lations E and F on a set U is a good exercise. It is not E ∪ F unless
one contains the other. The elements can be described and the sup is
the so-called transitive closure. (See Exercise 24 at the end of this
chapter.)

The lattice E(U) is not distributive if U has at least three elements.
By Theorem 2.2.8, the set E(U) is in one-to-one correspondence with the
set P(U) of partitions of U . Thus the lattice order ⊆ on E(U) induces
a lattice order on P(U), making it into a complete lattice. (See Exercise
25.)

2.3 Composing mappings

In dealing with fuzzy sets, it will be necessary to combine mappings, or
functions, in various ways. This section is a collection of a few things about
mappings, and mappings induced by mappings.

Perhaps the most basic thing about mappings is that sometimes they
can be composed. Let f : U → V , and g : V → W . Then g ◦ f , or more
simply gf , is the mapping U → W defined by (gf)(u) = g(f(u)). This is
called the composition of the mappings f and g. Any two functions of a
set into itself can be composed. The notation gf will be given preference.
The function f : U → U such that f(u) = u for all u is denoted by 1U
and is called the identity function on U . The set of all functions from
U to V is denoted Map(U, V ), or by V U .

We have denoted the set of all subsets, or the power set, of U by P(U),
or by 2U . Both are standard notations, with 2U reminding us that the set
of subsets of U may be identified with the set of mappings from U into
{0, 1}. Let f : U → V . The mapping f induces a mapping P(U)→ P(V ),
also denoted by f , given by f(X) = {f(x) : x ∈ X}. In addition, the
mapping f induces a mapping f−1 : P(V )→ P(U) defined by

f−1(Y ) = {u ∈ U : f(u) ∈ Y }

It should be noted that f−1(Y ) might be empty. We also use f−1 to denote
the restriction of f−1 to the one element subsets of V , and for an element
v ∈ V , we write f−1(v) instead of f−1({v}) and view this restriction of
f−1 as a mapping from V into P(U). The context will make it clear what is
meant, and using f−1 in these various ways cuts down on the proliferation
of notation.

Now consider mappings from U to L, where U is a set and L is a
complete lattice. If L is [0, 1] with the usual order on it, then mappings we
are considering are fuzzy subsets of U. Sometimes functions from U to L
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are called L-fuzzy sets. In any case, in what follows, L will be a complete
lattice.

A mapping A : U → L induces a mapping A : P(U)→ P(L). So with
a subset X of U , A(X) is a subset of L. But since L is a complete lattice,
we may take the sup of A(X). This sup is denoted

∨
(A(X)). One should

view
∨

as a mapping P(L) → L. The composition
∨
A is a mapping

P(U)→ L, namely the mapping given by

P(U)
A→ P(L)

∨→ L

In particular, a fuzzy subset of U yields a fuzzy subset of P(U).
For sets U and V , a subset of U × V is called a relation in U × V .

Now, a relation R in U ×V induces a mapping R−1 : V → P(U) given by

R−1(v) = {u : (u, v) ∈ R}

Thus with A : U → L we have the mapping

V
R−1

−→ P(U)
A−→ P(L)

∨→ L

Thus a relation R in U × V associates with a mapping A : U → L a
mapping ∨AR−1 : V → L. This latter mapping is sometimes denoted
R(A). When L = [0, 1], we then have a mapping F(U) → F(V ) sending
A to R(A) = ∨AR−1. If R is actually a function from U to V, then R has
been extended to a function F(U)→ F(V ) sending A to ∨AR−1. In fuzzy
set theory, this is called the extension principle. One should note that
if R−1(v) = ∅, then ∨AR−1(v) = 0.

At this point we need some notation. Suppose that f1 : X1 → Y1 and
f2 : X2 → Y2. Then f1 × f2 is standard notation for the mapping

X1 ×X2 → Y1 × Y2 : (x1, x2)→ (f1(x1), f2(x2))

Now if A and B are fuzzy subsets of U and V, respectively, then A × B
maps U × V into [0, 1]× [0, 1], and the image (A(u), B(v)) of an element
of U × V is a pair of elements of [0, 1] and hence has a min. Thus the
composition ∧(A × B) is a fuzzy subset of U × V. Sometimes in fuzzy
set theory, the mapping ∧(A × B) is denoted simply A × B, but there
are other binary operations besides ∧ that we will have occasion to follow
A ×B with. If A is a fuzzy subset of U, and V is any set, then letting B
be the constant map V → [0, 1] : v → 1 yields a fuzzy subset of U × V
called the cylindrical extension of A to U ×V . In any case, given fuzzy
subsets of U and V, we get a fuzzy subset of U × V, and thus a mapping
F(U)×F(V )→ F(U × V ) given by (A,B)→ ∧(A×B).

We now look at some special cases.
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• A function f : U → V is the relation {(u, v) : f(u) = v} in U × V ,
so it induces the mapping F(U) → F(V ) that sends A to ∨Af−1,
sometimes denoted f(A), that is, to the composition

V
f−1

−→ 2U
A−→ 2[0,1]

∨−→ [0, 1]

• A relation in (U × V )×W induces a mapping F(U × V )→ F(W ).
But we have the mapping F(U)×F(V )→ F(U ×V ) just described.
Thus a relation R in (U × V )×W induces the mapping

F(U)×F(V )→ F(W )

which sends (A,B) to ∨(∧(A × B))R−1. When U = V = W , then
the relation R in (U×U)×U induces a binary operation on F(U). In
the case U = R, there are the familiar arithmetic binary operations
such as addition and multiplication on R, and each induces a binary
operation on the fuzzy subsets F(R). These particular operations
will be taken up in Chapter 3.

2.4 Isomorphisms and homomorphisms

We introduce here a concept that is basic in algebra and one which we will
meet in a nontrivial way in the next section. Also it will be of particular
significance for us in Chapter 5. We begin with a couple of examples.
Suppose (U,≤) and (V,≤) are two partially ordered sets. (We are using
the same symbol, namely ≤, for the partial orders in both the sets U
and V .) When are these partially ordered sets “just alike”? For example,
it is intuitively clear that as partially ordered sets, there is no difference
between ([0, 1],≤) and ([1, 2],≤). For them to be alike, there must be a one-
to-one mapping from U onto V that respects, in some sense, the ordering
of the two sets. Precisely, there must be a one-to-one onto mapping f :
U → V such that x ≤ y if and only if f(x) ≤ f(y). Such a mapping
f is an (order) isomorphism, and if there is such a mapping from U
to V, the partially ordered sets (U,≤) and (V,≤) are isomorphic. The
mapping f(x) = x + 1 is an order isomorphism from [0, 1] to [1, 2]. A
mapping g : U → V such that g(x) ≤ g(y) whenever x ≤ y is called a
homomorphism, or an order homomorphism, emphasizing that the
order relation is being respected. The condition on g that if x ≤ y then
g(x) ≤ g(y) is expressed by saying that g preserves order, or is order
preserving.

Suppose that (U,∨,∧) and (V,∨,∧) are lattices. Here, instead of having
sets with one relation, as in the case of a partially ordered set, we have
sets each with two binary operations on them. (Again, we are using the
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same symbols for different binary operations.) A mapping f : U → V is an
isomorphism of these two lattices if f is one-to-one and onto, f(x∨y) =
f(x) ∨ f(y), and f(x ∧ y) = f(x) ∧ f(y). That is, f must be one-to-one
and onto and preserve both lattice operations. If the one-to-one and onto
conditions are dropped, then f is a lattice homomorphism. If U and
V are complete lattices, then an isomorphism f : U → V is a complete
lattice homomorphism if and only if f(

∨
S) =

∨{f(s) : s ∈ S} and
f(
∧
S) =

∧{f(s) : s ∈ S} for every subset S of U . An isomorphism of a
lattice (or any algebraic structure) with itself is called an automorphism.

Compositions of homomorphisms are homomorphisms and composi-
tions of isomorphisms are isomorphisms. For example, if f : U → V and
g : V →W are lattice homomorphisms, then g ◦f : V →W is a lattice ho-
momorphism. These facts are left as exercises. In later chapters, especially
in Chapter 5, we will see many examples.

The general theme then is this. Suppose that U is a set on which we
have various structures — relations, binary operations, unary operations
such as complements in Boolean algebras, and so on. If V is another set
with corresponding structures, then the system U with its operations is
isomorphic to the system V with its operations if there is a one-to-one
mapping from U onto V preserving these structures. A homomorphism
just preserves the structure; it is not required to be one-to-one or onto.
This all can be made more precise, but would lead us too far afield at the
moment.

Example 2.4.1 Consider the lattice ([0, 1],∨,∧,′ ) with involution, where
∨ is sup, ∧ is inf, and x′ = 1 − x, and the lattice {0, 12 , 1} with the same
operations. Then the mapping f : [0, 1] → {0, 12 , 1} that sends endpoints
to endpoints and the interior points of [0, 1] to 1

2 is a homomorphism. Note
that one requirement is that f(x′) = f(x)′, and that this does hold.

Suppose that f : U → V is a homomorphism from a lattice (U,∨,∧) to
a lattice (V,∨,∧). Then the relation∼ on U defined by a ∼ b if f(a) = f(b)
is an equivalence relation. But also, if a ∼ b and c ∼ d, then f(a ∨ c) =
f(a)∨ f(c) =f(b)∨ f(d) =f(b∨d), so a∨ c ∼ b∨d. Similarly a∧ c ∼ b∧d.
So this equivalence relation has these two additional properties: if a ∼ b
and c ∼ d then a∨ c ∼ b∨d and a∧ c ∼ b∧d. Such an equivalence relation
on a lattice is called a congruence. And congruences on lattices give rise
to homomorphisms.

Theorem 2.4.2 If ∼ is a congruence on the lattice U, then the set of
equivalence classes U/ ∼ forms a lattice under the operations [a] ∨ [b] =
[a ∨ b] and [a] ∧ [b] = [a ∧ b]. The mapping U → U/ ∼: a→ [a] is a lattice
homomorphism.
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The proof is left as an exercise. The lattice U/ ∼ is the quotient
lattice of U relative to the congruence ∼ . Congruences are defined anal-
ogously on other algebraic systems, such as Boolean algebras, De Morgan
algebras, Stone algebras, and so on. And in each instance, these congru-
ences give rise in an analogous way to quotient structures. We will see
instances of these concepts in later chapters.

There is another algebraic concept that will be important for us, es-
pecially in Chapters 5 and 6, and that is the concept of a group. Before
giving the definition, we illustrate with an example that will be pertinent.
Consider the partially ordered set I = ([0, 1],≤), and let Aut(I) be the
set of all automorphisms of I with itself. That is, Aut(I) is the set of all
functions f from [0, 1] to [0, 1] that are one-to-one and onto, and such that
f(x) ≤ f(y) if and only if x ≤ y. We remarked above that compositions of
homomorphisms are homomorphisms, and certainly compositions of one-
to-one and onto functions are one-to-one and onto. Thus the composition
of two elements of Aut(I) is an element of Aut(I), and thus composition
is a binary operation on Aut(I). The composition of f and g will be writ-
ten simply as fg, meaning the function given by (fg)(x) = f(g(x)). This
composition has some special properties. It is associative, has an identity,
and every element has an inverse. This means that

• f(gh) = (fg)h. (Composition is associative.)

• There is an element 1 in Aut(I) such that 1f = f1 = f for all f .
(The function 1 is the function given by 1(x) = x for all x. It is
called the identity of the group.)

• For each f ∈ Aut(I), there is an element f−1 ∈ Aut(I) such that
ff−1 = f−1f = 1. (Each element of Aut(I) has an inverse. The
element f−1 is simply the inverse of f as a function on [0, 1].)

Now, any set G with a binary operation that is associative, has an
identity, and for which every element has an inverse, is a group. Aut(I)
is a set, namely the set of all automorphisms of I, and composition of its
elements as functions is a binary operation on it satisfying the requisites
to be a group. This group is called the group of automorphisms of I.
Groups abound in mathematics, and have a huge theory. Our main interest
will be in groups that are automorphism groups of other algebraic struc-
tures, such as the lattice I. We will elaborate on various aspects of groups,
such as subgroups, congruences, quotient structures, and isomorphisms
between groups themselves as the need arises.

For us, one important aspect is this: mathematical models of real-world
situations are often algebraic structures, that is, sets on which there are
defined various operations or relations. Homomorphisms, automorphisms,
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and quotient structures are basic notions in mathematics. This is especially
true in fuzzy set theory, as we will see. If two models are isomorphic,
then abstractly, one is as good as the other. But one may be simpler to
implement, for computational reasons, for example. In any case, it pays
to know whether two such models are isomorphic, or equivalent.

2.5 Alpha-cuts

This notion plays a fairly big role in fuzzy set theory. Let A be a fuzzy
subset of U , and let α ∈ [0, 1]. The α-cut of A is simply the set of those
u ∈ U such that A(u) ≥ α. All that is needed to make this definition
is that the image of the mapping A be in a partially ordered set. In the
fuzzy case, it is in the complete lattice [0, 1]. The fact that this image
is a complete lattice is important in the theory because we will need to
take the sup of infinite subsets of [0, 1]. We will present the basic facts
about α-cuts in a more general context than usual, requiring at first just
a partially ordered set C instead of the complete lattice [0, 1].

There is a bit of notation that is standard and convenient. If α ∈ C,
then ↑α = {c ∈ C : c ≥ α}. Thus ↑ is a mapping from C into P(C) and
↑α is called the up set of α. We write ↑α rather than ↑(α). If C = [0, 1],
then for α ∈ [0, 1], ↑α = [α, 1].

Definition 2.5.1 Let U be a set, let C be a partially ordered set and let
A : U → C. For α ∈ C, the α-cut of A, or the α-level set of A, is
A−1(↑α) = {u ∈ U : A(u) ≥ α}. This subset of U will be denoted by Aα.

Thus the α-cut of a function A : U → C is the subset Aα = A−1(↑α)
of U , and we have one such subset for each α ∈ C. A fundamental fact
about the α-cuts Aα is that they determine A and this is easy to see. It
follows immediately from the equation

A−1(α) = Aα

⋂
(
⋃

β>α

Aβ)′

Here, ′ means set complement in the set U. This equation just says that
the left side, {u : A(u) = α}, namely the set of those elements that A takes
to α, is the intersection of {u : A(u) ≥ α} with the set {u : A(u) ≯ α}.
But these two sets are given strictly in terms of α-cuts. So knowing all the
α-cuts of A is the same as knowing A itself. We can state this as follows.

Theorem 2.5.2 Let A and B be mappings from a set U into a partially
ordered set C. If Aα = Bα for all α ∈ C, then A = B.
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Thus we have the following situation. A function A : U → C gets a
function A−1↑ : C → P(U) which is just the composition

C
↑−→ P(C)

A−1

−→ P(U)

We already know from the theorem just above that associating A with the
function A−1↑ is one-to-one. What we want first is a simple description of
the functions C → P(U) that can come from functions A : U → C in this
way. For example, in the fuzzy case, this would allow us to identify the set
of fuzzy subsets of U with a set of maps from [0, 1] into P(U) with certain
properties.

In Exercise 37 we note that if C is a complete lattice, then
⋂

α∈D Aα =
A∨D for any subset D of C. In different notation, this says that the map-
ping A−1↑ has the property that

A−1↑(∨D) =
⋂

d∈D

A−1↑d

Letting g = A−1↑, this says that the following diagram of mappings com-
mutes.

22
U

2U
✲∩

2C C✲∨

❄

g

❄

g

This is the condition that functions g : C → P(U) must satisfy to be
A−1↑ for some A.

Theorem 2.5.3 Let C be a complete lattice and U a set. Let F(U) be the
set of all mappings from U into C, and L(U) be the set of all mappings
g : C → P(U) such that the diagram above commutes, or equivalently such
that for all subsets D of C,

g(
∨
D) =

⋂

d∈D

g(d)

Then the mapping Φ : F(U)→ L(U) given by Φ(A) = A−1↑ is one-to-one
and onto.

Proof. We have already observed that Φ maps F(U) into L(U) and
that this mapping is one-to-one. Let g ∈ L(U). We must show that g =
A−1↑ for some A ∈ F(U). For u ∈ U , define

h(u) = {d ∈ C : g(d) ⊇
⋂

u∈g(x)

g(x)} = {d ∈ C : u ∈ g(d)}
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Let A =
∨ ◦h. Then

A−1↑(c) = {u ∈ U : A(u) ≥ c}

Now if u ∈ g(c), then g(c) ⊇ ⋂u∈g(x) g(x), which implies that c ∈ h(u)

and thus that u ∈ A−1↑(c). Thus g(c) ⊆ A−1↑(c). Now suppose that
u ∈ A−1↑(c), so that A(u) ≥ c. Then u ∈ ⋂u∈g(x) g(x) ⊆ g(d) for all

d ∈ h(u). Thus

u ∈
⋂

d∈A(u)

g(d) = g(A(u)) ⊆ g(c)

It follows that g(c) = A−1↑(c), whence g = A−1↑ = Φ(A).

The system F(U) is a complete lattice, and this one-to-one correspon-
dence with L(U) suggests that it too is a complete lattice in a natural
way. This is indeed the case.

First, F(U) is a complete lattice via the orderingA ≤ B if A(u) ≤ B(u)
for all u ∈ U . Also L(U) is partially ordered by f ≤ g if f(x) ⊆ g(x) for
all x ∈ C. This is just the pointwise ordering of the maps in L(U). For A
and B in F(U), A(u) ≤ B(u) for all u ∈ U if and only if

A−1↑(x) = {u : A(u) ≥ x}
⊆ {u : B(u) ≥ x}

if and only if A−1↑ ≤ B−1↑ if and only if Φ(A) ≤ Φ(B). Since Φ is one-to-
one and onto, Φ is an order isomorphism and thus a lattice isomorphism
where the lattice operations come from the orders. The orders are com-
plete, so Φ is a complete order isomorphism and thus a complete lattice
isomorphism. In particular, L(U) is a complete lattice.

Corollary 2.5.4 The complete lattices F(U) and L(U) are isomorphic.

The upshot of all this is that studying the complete lattice F(U) is the
same as studying the complete lattice L(U). In particular, the lattice of
fuzzy sets may be viewed as a special set of functions from [0, 1] to P(U)
with appropriate operations on them. However, it should be realized that
L(U) is not necessarily a sublattice of P(U)C . This happens if and only if
C is a chain. If C is not a chain, the sup of two elements of L(U) taken in
L(U) may not be the sup taken in P(U)C .

2.6 Images of alpha-level sets

Let f : U → V and let A be a fuzzy subset of U . Then
∨
Af−1 is a

fuzzy subset of V by the extension principle. It is the mapping that is the
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composition

V
f−1

→ P(U)
A→P([0, 1])

∨→ [0, 1]

There is a connection between the α-level sets, or the α-cuts, of these two
fuzzy sets. This relation is important in the calculus of fuzzy quantities.
It holds in more generality than for fuzzy sets.

Theorem 2.6.1 Let C be a complete lattice, U and V be sets, A : U → C,
and f : U → V. Then

1. f(Aα) ⊆ (
∨
Af−1)α for all α ∈ C.

2. f(Aα) = (
∨
Af−1)α for α > 0 if and only if for each member P of

the partition induced by f ,
∨
A(P ) ≥ α implies A(u) ≥ α for some

u ∈ P .

3. f(Aα) = (
∨
Af−1)α for all α > 0 if and only if for each member P

of the partition induced by f,
∨
A(P ) = A(u) for some u ∈ P .

Proof. The theorem follows immediately from the equalities below.

f(Aα) = {f(u) : A(u) ≥ α}
= {v ∈ V : A(u) ≥ α, f(u) = v}

(
∨
Af−1)α = {v ∈ V :

∨
Af−1(v) ≥ α}

= {v ∈ V :
∨{A(u) : f(u) = v} ≥ α}

One should notice that for some α, it may not be true that
∨
A(P ) = α

for any P .

When U = V × V , f is a binary operation on V . If A and B are
fuzzy subsets of V and the binary operation f is denoted ◦ and written
in the usual way, then the theorem specifies exactly when Aα ◦ Bα =
(A ◦B)α, namely when certain sups are realized. These α-level images for
fuzzy subsets of R will be discussed further in Chapter 3, where also some
conditions will be given that are sufficient for the realization of these sups.

The function
∨
Af−1 is sometimes written f(A), and in this notation,

the theorem relates f(Aα) and f(A)α. Of special interest is when U =
U1 × U2 × · · ·× Un. In that case, let A(i) be a fuzzy subset of Ui. Then
A(1)× ...×A(n) is a fuzzy subset of U , and trivially

(
A(1) × ...×A(n)

)
α

=

A
(1)
α × ... × A(n)

α . The fuzzy subset
∨

(A(1) × ... × A(n))f−1 is sometimes
written f(A(1), ..., A(n)). In this notation, the third part of the theorem
may be stated as
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• f(A
(1)
α , ..., A

(n)
α ) = f(A(1), ..., A(n))α for all α > 0 if and only if for

each member P of of the partition induced by f ,

∨
(A(1) × ...×A(n))(P ) = (A(1) × ...×A(n))(u)

for some u ∈ P . That is, for any v ∈ V,

∨
{

n∧

i=1

A(i)(ui) : (u1, u2, ..., un) ∈ f−1(v)

}

is attained.

This result is often referred to as Nguyen’s Theorem in the litera-
ture. It is valid for L-fuzzy sets. Note that the extension of f : U (1)× ...×
U (n) → V to fuzzy sets, namely

f(A(1), ..., A(n))(v) =
∨
{

n∧

i=1

A(i)(ui) : (u1, u2, ..., un) ∈ f−1(v)

}

is defined in terms of ∧, a binary operation on [0, 1]. The operation ∧
may be replaced by a t-norm T (see Chapter 5). This leads to the sup-T
convolution for defining the fuzzy set f(A(1), ..., A(n)). Nguyen’s theorem
holds in this more general setting, and says that for all v ∈ V,

∨{
T (A(1)(u1), ..., A(n)(un)) : (u1, u2, ..., un) ∈ f−1(v)

}

is attained if and only if for all α ∈ L,

[f(A(1), ..., A(n))]α =
⋃

T (t1,...,tn)≥α

f(A
(1)
t1 , ..., A

(n)
tn )

See Exercise 45.

2.7 Exercises

1. Let U be a set and let P(U) be the set of all subsets of U . Verify in
detail that (P(U),⊆) is a Boolean algebra. Show that it is complete.

2. Show that a chain with more than two elements is not complemented.

3. ⋆A relation on U is a preorder if it is reflexive and transitive. Let
U = [0,∞)× [0,∞), the product of the set of nonnegative reals with
itself. Let ≤ be the usual order relation in [0,∞).
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(a) On U, define (x, y) � (u, v) if xy ≤ uv. Show that � is a
preorder. Show that it is linear, that is, that for a and b in U,
either a � b or b � a.

(b) On U, define (x, y) � (u, v) if either xy = 0, or u
x = v

y ≥ 1.
Show that � is a preorder, and is not linear.

(c) Let Γ denote the set of all preorders � on U such that

i. If (x, y) � (u, v), then (ax, by) � (au, bv) for a, b ∈ [0,∞).

ii. If (x, y) � (u, v), then (y, x) � (v, u).

iii. (x, x) � (u, u) if and only if x ≤ u.
Show that the preorders in (a) and (b) are in Γ, and that the
preorder in (a) is the only linear one in Γ.

4. Prove that in a lattice, if ∨ distributes over ∧, then ∧ distributes
over ∨, and conversely.

5. ⋆Prove Theorem 2.1.4.

6. Complete the proof of Theorem 2.1.5.

7. Let N be the set of positive integers and let R be the relation mRn
if m divides n. Show that this makes N into a distributive lattice.

8. Complete the proof of Theorem 2.1.6

9. Show that the De Morgan algebra (F(U),∨,∧,′ , 0, 1) satisfies A ∧
A′ ≤ B ∨B′ for all A,B ∈ F(U), that is, is a Kleene algebra. Show
that [0, 1] is a Kleene algebra. Show that [0, 1][2] is not a Kleene
algebra.

10. Show that the product X × Y of lattices X and Y is a lattice. Show
that X×Y is respectively, bounded, complete, distributive, comple-
mented, Boolean, or De Morgan if and only if X and Y are. Show
that if S and T are sublattices of X and Y, respectively, then S × T
is a sublattice of X×Y, but that not every sublattice of X×Y need
be of this form.

11. ⋆Let X be a lattice. Show that X [2] is a lattice. If ′ is an involution
of X , show that (x, y)′ = (y′, x′) is an involution of X [2] and that
X [2] with this involution is a De Morgan algebra if and only if X
with the involution ′ is a De Morgan algebra.

12. Let B be a Boolean algebra. Show that B[2] is a Stone algebra but
not a Boolean algebra.

13. Show that if S is a Stone algebra, then so is S[2].
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14. Show that every bounded chain is a Stone algebra.

15. Show that if S is a Stone algebra with pseudocomplement ∗, then
S∗ = {s∗ : s ∈ S} is a Boolean algebra.

16. Prove Theorem 2.1.9 in detail.

17. Show that an involution of a bounded lattice is one-to-one and onto.

18. ⋆Let U be an infinite set and let F be the set of all subsets of U
that are either finite or have finite complement. Show that (F ,⊆) is
a Boolean algebra, but is not complete.

19. Show that the lattices pictured are not distributive.

20. Show that for relations, reflexive, symmetric, and transitive are in-
dependent. That is, show that for any subset of these three, there is
a relation satisfying those conditions and not satisfying the others.
For example, there is a relation that is symmetric but not reflexive
and not transitive.

21. Let N be the set of positive integers. On N× N let (a, b) ∼ (c, d) if
a + d = b + c. Show that ∼ is an equivalence relation. What is the
quotient space (N× N)/ ∼?

22. Let U = Z× Z∗, where Z is the set of integers and Z∗ is the set of
nonzero integers. On U , let (m,n) ∼ (p, q) if mq = np. Verify that
∼ is an equivalence relation. What is the quotient space U/ ∼?

23. Prove Theorem 2.2.10 in detail.
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24. ⋆Let E(U) be the set of all equivalence relations on the set U . Under
⊆, E(U) is a complete lattice by Theorem 2.2.11. Describe the sup of
two equivalence relations directly in terms of the elements of those
two sets. Describe the sup of a set of equivalence relations directly
in terms of the elements of those sets.

25. Let P(U) be the set of all partitions of the set U . For P and Q in
P(U), put P ≤ Q if every member of P is a subset of a member of
Q.

(a) Let Φ : E(U)→ P(U) be the mapping that takes an equivalence
relation to its set of equivalence classes. This is the map in
Theorem 2.2.8. Show that for A and B in E(U), A ⊆ B if and
only if Φ(A) ≤ Φ(B).

(b) Show that (P(U),≤) is a complete lattice.

(c) Show that Φ is a lattice isomorphism.

26. Prove Theorem 2.4.2 in detail.

27. Suppose that U has three elements. Show that the lattice P(U) is
the lattice pictured on the right in Exercise 19. Show that P(U) is
not distributive if U has at least three elements.

28. ⋆Let R, S, and T be relations in U ×V , V ×W , and W ×X, respec-
tively. Show that R(ST ) = (RS)T . That is, show that composition
of relations is associative.

29. Let f : U → V , g : V → W , and h : W → X . Show that h(gf) =
(hg)f . That is, show that composition of functions is associative.

30. For any sets X and Y, let Map(X,Y ) be the set of all mappings
from X to Y. Show that

Φ : Map(W,Map(X,Y ))→Map(W×X,Y ) : Φ(f)(w, x) = f(w)(x)

is a one-to-one correspondence.

31. Let f : U → V .

(a) Show that ff−1 = 1P(V ) if f is onto.

(b) Show that f−1f = 1P(U) if f is one-to-one.

32. Let f : U → V . Show that {f−1f(x) : x ∈ U} is a partition of U .
Why is {f−1(v) : v ∈ V } not a partition of U?

33. ⋆Let A and B be fuzzy subsets of U and α ∈ [0, 1].
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(a) Show that

(A ∨B)α = Aα ∪Bα

(A ∧B)α = Aα ∩Bα

(b) Is (A′)α = (Aα)′?

(c) Let S be a set of fuzzy subsets of U. Show that (
∧

A∈S A)α =⋂
A∈S Aα.

(d) Is (
∨

A∈S A)α =
⋃

A∈S Aα?

34. Let A be a fuzzy subset of a set U. For α ∈ [0, 1], the strong α-cut
of A is

A∗
α = {u : u ∈ U,A(u) > α}

Show that for u ∈ U,

A(u) = sup
α
αχA∗

α
(u)

35. Let A be a fuzzy subset of the set U and let Aα be the α-cut of A.

(a) Verify that for all x ∈ U,

A(x) =
∨

α∈[0,1]

αχAα
(x)

This is called the resolution of the identity.

(b) Verify that for all x ∈ U,

A(x) =

∫ 1

o

χAα
(x)dα

(c) Suppose that {Bα : α ∈ [0, 1]} is a family of subsets of U such
that for all x ∈ U ,

A(x) =
∨

α∈[0,1]

αχBα
(x)

Show that for all α ∈ [0, 1], Bα ⊆ Aα.

(d) The support of a fuzzy set A is given by

supp(A) = {x ∈ U : A(x) > 0}

With Bα as in part (c), verify that

⋃

α∈(0,1]

Aα =
⋃

α∈(0,1]

Bα = supp(A)
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36. Show that L(U) in Theorem 2.5.3 is a complete lattice via the or-
dering f ≤ g if f(x) ⊆ g(x) for all x ∈ C.

37. Let C be a complete lattice and P(U) the power set of U . There
are two complete lattices around: the complete lattice P(U) of all
subsets of U , and of course C. We use ∪ and ∩ for the operations in
P(U) and ∨ and ∧ for the operations in C. Let D be a subset of C
and let A : U → C. Prove the following:

(a) For α and β in C, and α ≤ β then Aα ⊇ Aβ .

(b)
⋃

α∈D Aα ⊆ A∧D.

(c)
⋂

α∈D Aα = A∨D.

(d) The converse of (a) does not always hold.

(e) The opposite inclusion in (b) does not always hold.

38. Show that L(U) is not a sublattice of (P(U))C . See Corollary 2.5.4.

39. ⋆In the context of Theorem 2.6.1, show that f(Aα) = (∨Af−1)α if
either

(a) f is one-to-one, or

(b) C = V and f = A.

40. In the notation following Theorem 2.6.1, show that

f(A(1), A(2), ..., A(n))(y) =
∨

α∈[0,1]

αf(A(1)
α , A(2)

α , ..., A(n)
α ) (y)

41. ⋆Let A be the fuzzy set and f : R→ R defined by the equations

A(x) = χ{0}(x) + e−
1
xχ(0,∞)(x)

f(x) = xχ(0,1)(x) + χ[0,∞)(x)

Recall that the fuzzy subset f(A) is defined by

f(A)(y) = (∨Af−1)(y) = sup{A(x) : x ∈ f−1(y)}

where f−1(y) = {x : y = f(x)}.

(a) Show that for each y ∈ [0, 1), sup{A(x) : x ∈ f−1(y)} is at-
tained.

(b) Show that sup{A(x) : x ∈ f−1(1)} is not attained.

(c) Show that f(A)1 6= f(A1).
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42. ⋆Let A and B be fuzzy sets, and f : R× R→ R defined by the
equations

A(x) = χ[3,4](x) + e−
1
xχ(0,3)∪(4,∞)(x)

B(x) = χ[−2,−1](x) + e−
1
xχ(−∞,−2)∪(−1,0)(x)

f(x) = x+ y

Recall that f(A,B) is the fuzzy subset of R defined by f(A,B)(z) =
sup{A(x) ∧B(y) : x+ y = z}.

(a) Show that sup{A(x) ∧B(y) : x+ y = 0} is not attained.

(b) Show that [f(A,B)]1 6= f(A1, B1).

43. Let A and B be fuzzy subsets of R, and f : R× R→ R defined by
the equations

A(x) = χ[0,1](x) + 1
2χ(5,∞)(x)

B(x) = χ{0}(x) + 1
4e

− 1
xχ(0,∞)(x)

f(x) = x ∧ y

Show that A 1
4
∧B 1

4
6= (A ∧B) 1

4
.

44. Let A and B be fuzzy subsets of R, and f : R× R→ R be defined
by

A(x) = B(−x) =

{
0 if x ≤ 0

e−
1
x if x > 0

f(x, y) = x+ y

Show that f(A1, B1) is strictly contained in [f(A,B)]1.

45. *Let A and B be fuzzy subsets of U and V , respectively, and let f :
U × V →W. Let T : [0, 1]× [0, 1]→ [0, 1] be symmetric, associative,
non-decreasing in each variable, and T (x, 1) = x for all x ∈ [0, 1].
Define fT (A,B) : W → [0, 1] by the formula

fT (A,B)(w) = sup{T (A(u), B(v)) : (u, v) ∈ f−1(w)}

This is a sup-T convolution.

(a) Show that the following are equivalent.
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i. For each w ∈W,

sup{T (A(u), B(v)) : (u, v) ∈ f−1(w)}

is attained.

ii. For each α ∈ (, 1], [fT (A,B)]α =
⋃

T (t,s)≥α f(At, Bs).

(b) If T (x, y) = x ∧ y, verify that [fT (A,B)]α = f (Aα, Bα) .

(c) If T (x, y) = xy, verify that [fT (A,B)]α =
⋃

t∈[α,1] f(At, Bα/t).

(d) If T (x, y) = x if y = 1, y if x = 1, and 0 otherwise, verify that

[fT (A,B)]α = f(A1, Bα) ∪ f(Aα, B1)

(e) If T (x, y) = max{0, x+ y − 1}, verify that

[fT (A,B)]α =
⋃

t∈[α,1]

f(At, Bα+1−t)

46. *Let f : R× R→ R be continuous and let T be as in the previous
exercise and upper semicontinuous. Upper semicontinuous means
that for each α ∈ [0, 1], {(s, t) ∈ [0, 1] × [0, 1] : T (s, t) ≥ α} is
closed. Let A and B be fuzzy subsets of R which are upper semi-
continuous and have compact support. This means that the closure
S(A) = {x ∈ R : A(x) > 0} of A is compact and similarly for B.
Show that for α ∈ (0, 1], [fT (A,B)]α =

⋃
T (s,t)≥α f(As, Bt).

47. *Let f : R+ × R+→ R+ be continuous, and A and B be continuous
fuzzy subsets of R+ such that limx→∞A(x) = limx→∞B(x) = 0.
Show that [f(A,B)]α = f(Aα, Bα) for α ∈ (0, 1].
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Chapter 3

FUZZY QUANTITIES

This chapter is devoted to the study of a concrete class of fuzzy sets,
namely those of the real line R. Fuzzy quantities are fuzzy subsets of R,
generalizing ordinary subsets of R. In order to define operations among
fuzzy quantities, we will invoke the extension principle, which was dis-
cussed in Chapter 2. This principle provides a means for extending opera-
tions on R to those of F(R). In later sections, we will look at special fuzzy
quantities, in particular, fuzzy numbers and fuzzy intervals.

3.1 Fuzzy quantities

Let R denote the set of real numbers. The elements of F(R), that is, the
fuzzy subsets of R, are fuzzy quantities. A relation R in U × V , which
is simply a subset R of U × V, induces the mapping R : F(U)→ F(V )
defined by R(A) = ∨AR−1. This is the mapping given by

R(A)(v) =
∨
{A({u : (u, v) ∈ R})}

as expressed by the extension principle at work. In particular, a mapping
f : R→ R induces a mapping f : F(R) → F(R). A binary operation
◦ : R× R→ R on R gives a mapping F(R × R) → F(R), and we have
the mapping F(R) × F(R) → F(R× R) sending (A,B) to ∧(A × B).
Remember that ∧(A ×B)(r, s) = A(r) ∧B(s). The composition

F(R)×F(R)→ F(R× R)→ F(R)

of these two is the mapping that sends (A,B) to ∨(∧(A ×B))◦−1, where
◦−1(x) = {(a, b) : a ◦ b = x}. We denote this binary operation by A ◦ B.

45
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This means that

(A ◦B)(x) =
∨
∧(A ×B) ◦−1 (x)

=
∨

a◦b=x

∧(A×B)(a, b)

=
∨

a◦b=x

{A(a) ∧B(b)}

For example, for the ordinary arithmetic binary operations of addition
and multiplication on R, we then have corresponding operations A + B
= ∨ ∧ (A×B)+−1 and A · B = ∨ ∧ (A×B)·−1 on F(R). Thus

(A+B)(z) =
∨

x+y=z
{A(x) ∧B(y)}

(A ·B)(z) =
∨

x·y=z
{A(x) ∧B(y)}

The mapping R→ R : r → −r induces a mapping F(R)→F(R) and
the image of A is denoted −A. For x ∈ R,

(−A)(x) =
∨

x=−y{A(y)} = A(−x)

If we view − as a binary operation on R, we get

(A−B)(z) =
∨

x−y=z
{A(x) ∧B(y)}

It turns out that A+ (−B) = A−B, as is the case for R itself.
Division deserves some special attention. It is not a binary operation

on R since it is not defined for pairs (x, 0), but it is the relation

{((r, s), t) ∈ (R× R)× R : r = st}

By the extension principle, this relation induces the binary operation on
F(R) given by the formula

A

B
(x) =

∨
y=zx

(A(y) ∧B(z))

So division of any fuzzy quantity by any other fuzzy quantity is possible.
In particular, a real number may be divided by 0 in F(R). Recall that R
is viewed inside F(R) as the characteristic functions χ{r} for elements r
of R. We note the following easy proposition.

Proposition 3.1.1 For any fuzzy set A, A/χ{0} is the constant function
whose value is A(0).
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3.1. FUZZY QUANTITIES 47

Proof. The function A/χ{0}is given by the formula

(
A/χ{0}

)
(u) =

∨
s=t·u

(
A(s) ∧ χ{0}(t)

)

=
∨

s=0·u

(
A(s) ∧ χ{0}(0)

)

= A(0)

Thus χ{r}/χ{0} is the constant function 0 if r 6= 0 and 1 if r = 0.
Neither of these fuzzy quantities is a real number, that is, neither is a
characteristic function of a real number.

We note that performing operations on R is the same as performing
the corresponding operations on R viewed as a subset of F(R). For binary
operations ◦, this means that χ{r} ◦χ{s} = χ{r◦s}. This last equation just
expresses the fact that the mapping R→F(R) : r → χ{r} is a homomor-
phism. More generally, the following holds.

Theorem 3.1.2 Let ◦ be any binary operation on a set U , and let S and
T be subsets of U . Then

χS ◦ χT = χ{s◦t:s∈S,t∈T}

Proof. For u ∈ U ,

(χS ◦ χT )(u) =
∨

s◦t=u

(χS(s)
∧
χT (t))

The sup is either 0 or 1 and is 1 exactly when there is an s ∈ S and a
t ∈ T with s ◦ t = u. The result follows.

Thus if U is a set with a binary operation ◦, then F(U) contains a
copy of U with this binary operation. In particular, if U = R, then R with
its various binary operations is contained in F(R). We identify r ∈ R with
its corresponding element χ{r}.

The characteristic function χ∅ has some special properties, where ∅
denotes the empty set. From the theorem, χ∅ ◦ χT = χ∅, but in fact,
χ∅ ◦ A = χ∅ for any fuzzy set A. It is simply the function that is 0
everywhere.

Binary operations on a set induce binary operations on its set of sub-
sets. For example, if S and T are subsets of R, then

S + T = {s+ t : s ∈ S, t ∈ T }

These operations on subsets S of R carry over exactly to operations on
the corresponding characteristic sets χS in F(R). This is the content of
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48 CHAPTER 3. FUZZY QUANTITIES

the previous theorem. Subsets of particular interest are intervals of R such
as [a, b], (a, b), and so on.

Now we go to the algebraic properties of fuzzy quantities with respect
to the operations induced from R. Not all properties of binary operations
on R carry over to the ones induced on F(R), but many do. We identify
a real number r with its characteristic function χ{r}.

Theorem 3.1.3 Let A, B, and C be fuzzy quantities. The following hold.

1. 0 +A = A 2. 0 ·A = 0

3. 1 · A = A 4. A+B = B +A

5. A+ (B + C) = (A+B) + C 6. AB = BA

7. (AB)C = A(BC) 8. r(A+B) = rA + rB

9. A(B + C) ≤ AB +AC 10. (−r)A = −(rA)

11. −(−A) = A 12. (−A)B = −(AB) = A(−B)

13.
A

1
= A 14.

A

r
=

1

r
A

15.
A

B
= A

1

B
16. A+ (−B) = A−B

Proof. We prove some of these, leaving the others as exercises. The
equations

1 ·A(x) =
∨

yz=x χ{1}(y) ∧ A(z)

=
∨

1x=x χ{1}(1) ∧ A(x)

= A(x)

show that 1 ·A = A. If (A(B + C))(x) > (AB +AC)(x), then there exist
u, v, y with y(u+ v) = x and such that

A(y) ∧B(u) ∧ C(v) > A(p) ∧B(q) ∧ A(h) ∧ C(k)

for all p, q, h, k with pq + hk = x. But this is not so for p = h = y,
q = u, and v = k. Thus (A(B +C))(x) ≤ (AB +AC)(x) for all x, whence
A(B + C) ≤ AB +AC.
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However, r(A +B) = rA + rB since

(
χ{r}(A+B)

)
(x) =

∨
uv=x(χ{r}(u)

∧
(A+B)(v))

=
∨

rv=x(χ{r}(r)
∧

(A+B)(v))

=
∨

s+t=v
rv=x

(A(s)
∧
B(t))

=
∨

s+t=v
rv=x

(χ{r}(r)A(s)
∧
χ{r}(r)B(t))

= (rA + rB)(x)

There are a number of special properties that fuzzy quantities may
have, and we need a few of them in preparation for dealing with fuzzy
numbers and intervals. A subset A of the plane, that is, of R2 = R× R,
is convex if it contains the straight line connecting any two of its points.
This can be expressed by saying that for t ∈ [0, 1], tx + (1 − t)y is in A
whenever x and y are in A. This definition applies to Rn actually. For
R, convex subsets are just intervals, which may be infinite, and α-cuts of
indicator functions of convex sets are convex.

Definition 3.1.4 A fuzzy quantity A is convex if its α-cuts are convex,
that is, if its α-cuts are intervals.

Theorem 3.1.5 A fuzzy quantity A is convex if and only if A(y) ≥ A(x)∧
A(z) whenever x ≤ y ≤ z.

Proof. Let A be convex, x ≤ y ≤ z, and α = A(x) ∧ A(z). Then
x and z are in Aα, and since Aα is an interval, y is in Aα. Therefore
A(y) ≥ A(x) ∧ A(z).

Suppose that A(y) ≥ A(x) ∧ A(z) whenever x ≤ y ≤ z. Let x < y < z
with x, z ∈ Aα. Then A(y) ≥ A(x) ∧ A(z) ≥ α, whence y ∈ Aα and Aα is
convex.
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Theorem 3.1.6 If A and B are convex, then so are A+B and −A.

Proof. We show that A + B is convex, leaving the other parts as
exercises. Let x < y < z. We need that (A + B)(y) ≥ (A + B)(x) ∧ (A +
B)(z). Let ε > 0. There are numbers x1, x2, z1 and z2 with x1 + x2 = x
and z1 + z2 = z and satisfying

A(x1) ∧B(x2) ≥ (A+B)(x)− ε
A(z1) ∧B(z2) ≥ (A+B)(z)− ε

Now y = αx+ (1− α)z for some α ∈ [0, 1]. Let x′ = αx1 + (1− α)z1 and
z′ = αx2 + (1 − α)z2. Then x′ + z′ = y, x′ lies between x1 and z1, and z′

lies between x2 and z2. Thus we have

(A+B)(y) ≥ A(x′) ∧B(z′)
≥ A(x1) ∧ A(z1) ∧B(x2) ∧B(z2)
≥ [(A+B)(x)− ε] ∧ [(A+B)(z)− ε]
≥ [(A+B)(x) ∧ (A+B)(z)]− ε

It follows that A+B is convex.

A function f : R→ R is upper semicontinuous if {x : f(x) ≥ α} is
closed. The following definition is consistent with this terminology.

Definition 3.1.7 A fuzzy quantity is upper semicontinuous if its α-
cuts are closed.

Theorem 3.1.8 A fuzzy quantity A is upper semicontinuous if and only
if whenever x ∈ R and ǫ > 0 there is a δ > 0 such that |x− y| < δ implies
that A(y) < A(x) + ǫ.
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Proof. Suppose that Aα is closed for all α. Let x ∈ R and ǫ > 0. If
A(x) + ǫ > 1, then A(y) < A(x) + ǫ for any y. If A(x) + ǫ ≤ 1 then for
α = A(x)+ǫ, x /∈ Aα and so there is δ > 0 such that (x−δ, x+δ)∩Aα = ∅.
Thus A(y) < α = A(x) + ǫ for all y with |x− y| < δ.

Conversely, take α ∈ [0, 1], x /∈ Aα, and ǫ = α−A(x)
2 . There is δ > 0

such that |x− y| < δ implies that A(y) < A(x) + α−A(x)
2 < α, and so

(x− δ, x+ δ) ∩ Aα = ∅. Thus Aα is closed.

The following theorem is the crucial fact that enables us to use α-cuts
in computing with fuzzy quantities.

Theorem 3.1.9 Let ◦ : R×R → R be a continuous binary operation on
R and let A and B be fuzzy quantities with closed α-cuts and bounded
supports. Then for each u ∈ R, (A ◦B)(u) = A(x) ∧B(y) for some x and
y with u = x ◦ y.

Proof. By definition,

(A ◦B)(u) =
∨

x◦y=u

(A(x) ∧B(y))

The equality certainly holds if (A◦B)(u) = 0. Suppose α = (A◦B)(u) > 0,
and A(x) ∧B(y) < α for all x and y such that x ◦ y = u. Then there is a
sequence {A(xi) ∧ B(yi)}∞i=1 in the set {A(x) ∧ B(y) : x ◦ y = u} having
the following properties.

1. {A(xi) ∧B(yi)} converges to α.

2. Either {A(xi)} or {B(yi)} converges to α.

3. Each xi is in the support of A and each yi is in the support of B.

Suppose that it is {A(xi)} that converges to α. Since the support of
A is bounded, the set {xi} has a limit point x and hence a subsequence
converging to x. Since the support of B is bounded, the corresponding
subsequence of yi has a limit point y and hence a subsequence converging
to y. The corresponding subsequence of xi converges to x. Thus we have
a sequence {{A(xi) ∧B(yi)}∞i=1 satisfying the three properties above and
with {xi} converging to x and {yi} converging to y. If A(x) = γ < α, then
for δ = α+γ

2 and for sufficiently large i, xi ∈ Aδ, x is a limit point of those
xi, and since all cuts are closed, x ∈ Aδ. But it is not, so A(x) = α. In a
similar vein, B(y) ≥ α, and we have (A ◦ B)(u) = A(x) ∧ B(y). Finally,
u = x ◦ y since u = xi ◦ yi for all i, and ◦ is continuous.

Corollary 3.1.10 If A and B are fuzzy quantities with bounded support,
all α-cuts are closed, and ◦ is a continuous binary operation on R, then
(A ◦B)α = Aα ◦Bα.
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Proof. Applying the theorem, for u ∈ (A ◦B)α, (A ◦B)(u) = A(x) ∧
B(y) for some x and y with u = x ◦ y. Thus x ∈ Aα and y ∈ Bα, and
therefore (A ◦B)α ⊆ Aα ◦Bα. The other inclusion is easy.

Corollary 3.1.11 If A and B are fuzzy quantities with bounded support
and all α-cuts are closed, then

1. (A+B)α = Aα +Bα,

2. (A ·B)α = Aα ·Bα,

3. (A−B)α = Aα −Bα.

We end this section with a note about division of sets of real numbers.
We have no obvious way to divide a set S by a set T . We cannot take
S/T = {s/t : s ∈ S and t ∈ T } since t may be 0. But we can perform
the operation χS/χT . Therefore fuzzy arithmetic gives a natural way to
divide sets of real numbers one by the other, and in particular to divide
intervals. (A similar definition is actually used in computer arithmetic.)
We also note that if S and T are closed and bounded, then (χS/χT ) (u) =
χS(ux) ∧ χT (x) for a suitable x. The proof of this is left as an exercise.

3.2 Fuzzy numbers

We are going to specify a couple of special classes of fuzzy quantities, the
first being the class of fuzzy numbers. A fuzzy number is a fuzzy quantity
A that represents a generalization of a real number r. Intuitively, A(x)
should be a measure of how well A(x) “approximates” r, and certainly
one reasonable requirement is that A(r) = 1 and that this holds only for
r. A fuzzy number should have a picture somewhat like the one following.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0
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x

y

A fuzzy number 4
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Of course we do not want to be so restrictive as to require that fuzzy
numbers all look like triangles, even with different slopes. A number of def-
initions have been proffered, and one of the simplest and most reasonable
seems to be the following.

Definition 3.2.1 A fuzzy number is a fuzzy quantity A that satisfies
the following conditions.

1. A(x) = 1 for exactly one x.

2. The support {x : A(x) > 0} of A is bounded.

3. The α-cuts of A are closed intervals.

There are many ways this definition could be stated, and the third
condition may seem arbitrary. However, it is easily stated and visualized,
and has some nice consequences. This definition is not universally used.
Sometimes the second condition is not required.

The following proposition is an easy consequence of the definition.

Proposition 3.2.2 The following hold:

1. Real numbers are fuzzy numbers.

2. A fuzzy number is a convex fuzzy quantity.

3. A fuzzy number is upper semicontinuous.

4. If A is a fuzzy number with A(r) = 1, then A is non-decreasing on
(−∞, r] and non-increasing on [r,∞).

Proof. It should be clear that real numbers are fuzzy numbers. A
fuzzy number is convex since its α-cuts are intervals, and is upper semi-
continuous since its α-cuts are closed. If A is a fuzzy number with A(r) = 1
and x < y < r, then since A is convex and A(y) < A(r), we have A(x) ≤
A(y), so A is monotone increasing on (−∞, r]. Similarly, A is monotone
decreasing on [r,∞).

Theorem 3.2.3 If A and B are fuzzy numbers then so are A+B, A ·B,
and −A.

Proof. That these fuzzy quantities have bounded support and assume
the value 1 in exactly one place is easy to show. The α-cuts of A+B and
A · B are closed intervals by Corollary 3.1.11. Since −A = (−1) · A, the
rest follows.
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Carrying out computations with fuzzy quantities, and in particular
with fuzzy numbers, can be complicated. There are some special classes of
fuzzy numbers for which computations of their sum, for example, is easy.
One such class is that of triangular fuzzy numbers. They are the ones with
pictures like the one above. It is clear that such a fuzzy number is uniquely
determined by a triple (a, b, c) of numbers with a ≤ b ≤ c. So computing
with triangular fuzzy numbers should be reduced to operating on such
triples.

Definition 3.2.4 A triangular fuzzy number is a fuzzy quantity A
whose values are given by the formula

A(x) =





0 if x < a

x− a
b− a if a ≤ x ≤ b

x− c
b− c if b < x ≤ c

0 if c < x

for some a ≤ b ≤ c.

For example, if a = −1, b = 2, and c = 3, the picture is
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The formula is just a precise way to say what we want triangular fuzzy
numbers to be. It is clear that there is a one-to-one correspondence between
triangular numbers and triples (a, b, c) with a ≤ b ≤ c, and we identify
a triangular number with its triple. Then (a, b, c) is the fuzzy quantity
given by the formula in the definition above. If a = b, then A(b) in the
formula above is b−a

b−a with numerator and denominator both 0. We take
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this quotient to be 1. Similar remarks apply to triangular numbers (a, c, c).
Thus triangular numbers (r, r, r) are those functions which are 1 at r and 0
elsewhere, the image of the real number r in F(R). For a < c, the support
of (a, b, c) is the open interval (a, c), and the value 1 is assumed at b and
only at b.

Theorem 3.2.5 For triangular numbers,

(a, b, c) + (d, e, f) = (a+ d, b+ e, c+ f)

Proof. Using ((a, b, c) + (d, e, f))α = (a, b, c)α + (d, e, f)α, it follows
that the support of the sum is the interval (a + d, c + f) and that 1 is
assumed exactly at b + e. Suppose that α > 0, the left endpoint of the
α-cut of (a, b, c) is u and that of (d, e, f) is v. Then a ≤ u ≤ b, d ≤ v ≤ e,
and

α =
u− a
b− a =

v − d
e− d

An easy calculation shows that

α =
u+ v − (a+ d)

b+ e− (a+ d)

which shows that u+v is the left endpoint of the α-cut of (a+d, b+e, c+f).
But we know that the left endpoint of the α-cut of (a, b, c) + (d, e, f) is
u + v. Similarly for right endpoints of cuts, and hence (a, b, c) + (d, e, f)
and (a+ d, b+ e, c+ f) have the same cuts and so are equal.

Thus adding two triangular numbers is the same as adding two triples
of real numbers coordinatewise, a particularly simple thing to do.

Products of triangular numbers are not necessarily triangular. How-
ever, we do have (AB)α = AαBα. So we can compute the cuts of a product
of triangular numbers easily. The problem is that the product is not piece-
wise linear. For example, the square of the triangular number (−1, 0, 1)
looks like the following figure.

3.3 Fuzzy intervals

A subset S of R is identified with χS , and in particular, intervals [a, b] are
identified with their characteristic functions, namely the fuzzy quantities
χ[a,b]. The use of intervals with their arithmetic is appropriate in some
situations involving impreciseness. When the intervals themselves are not
sharply defined, we are driven to the concept of fuzzy interval. Thus we
want to generalize intervals to fuzzy intervals, and certainly a fuzzy quan-
tity generalizing the interval [a, b] should have value 1 on [a, b]. A fuzzy
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quantity that attains the value 1 is called normal. The other defining
properties of fuzzy intervals should be like those of fuzzy numbers. Thus
a fuzzy interval should look something like the following picture.
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A membership function for the fuzzy interval [4, 6]

This fuzzy interval has a trapezoidal form, representing “approximately
between 4 and 6”. Our definition is this:

Definition 3.3.1 A fuzzy interval is a fuzzy quantity A satisfying the
following:

1. A is normal.

2. The support {x : A(x) > 0} of A is bounded.

3. The α-cuts of A are closed intervals.

Theorem 3.2.3 holds for fuzzy intervals, with only minor changes in
the proofs. In fact, fuzzy numbers are fuzzy intervals. The only difference
is that a fuzzy number can attain the value 1 at only one place, while a
fuzzy interval can have an interval of such places.

3.4 Exercises

1. Show that χS/χ{0} is the constant function 1 or 0 according to
whether or not 0 ∈ S.

2. ⋆Complete the proof of Theorem 3.1.3.

3. Show that for relation on a set U , the resulting binary operation ◦
on F(U) has the property that A ◦ χ∅ = χ∅ for all A ∈ F(U).
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4. ⋆Show that there are fuzzy quantities A and B, such that

(a) A−A 6= 0

(b) (A+B)−B 6= A

(c) A
A 6= 1

(d) A
BB 6= A

5. Show that for fuzzy quantities, multiplication does not distribute
over addition. That is, A(B + C) 6= AB +AC.

6. Let S and T be closed and bounded subsets of R. Show that (χS/χT )
(u) = χS(ux) ∧ χT (x) for some x.

7. Compute the α-cuts of the sum of two triangular numbers.

8. For f : R→ R and A ∈ F(R), write down the membership function
of f(A) when

f(x) = −x, f(x) = x2

f(x) = x5, f(x) = |x|

9. Let ϕL(x) = 0 ∨ (1− x) and ϕR(x) = e−x, and

A(x) =





ϕL(a−x
α ) if x ≤ a

1 if a < x < b

ϕR(x−b
β ) if x ≥ b

B(x) =





ϕL( c−x
α′ ) if x ≤ c

1 if c < x < d

ϕR(x−d
β′ ) if x ≥ d

Compute −A, A + B and A/B. In general, when a membership
function A(x) is obtained from two functions ϕL(x) and ϕR(x) as
above, these functions ϕL(x) and ϕR(x) are referred to as shape
functions.

10. Show that if A is a convex fuzzy quantity, then so is −A.
11. ⋆Is it true that if A and B are convex fuzzy quantities, then so is

AB?

12. ⋆Let C be the set of all convex fuzzy quantities. Order these functions
by the usual pointwise order. That is, A ≤ B if A(u) ≤ B(u) for all
u ∈ R. Show that (C,≤) is a lattice. Show that if A and B are in C,
then A ∨B taken in C may not be A ∨B taken in F(R).
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13. ⋆Define the fuzzy quantities A and B by

A(x) =
1

2(1 + e−
x
2 )

B(x) = 1

Show that A and B are convex, A + B is convex, but (A + B) 3
4
6=

A 3
4

+B 3
4
.

14. ⋆Let A ∈ F(R) be continuous. Show that A is convex if and only if
the Aα are closed intervals.

15. ⋆The condition that A(y) ≥ A(x) ∧ A(z) whenever x < y < z is
sometimes called quasiconcavity. Show that A ∈ F(R) is convex
if and only if for x, y ∈ R, the function λ → A(λx + (1 − λ)y) is
quasiconcave.

16. ⋆A function f : R → R is pseudoconcave if for x, y ∈ U with
f(x) 6= f(y) and for z = λx + (1 − λ)y with λ ∈ (0, 1), we have
f(z) > f(x) ∧ f(y). A fuzzy set A ∈ F(U) is strongly convex if A
is convex and pseudoconcave. Show that a convex fuzzy subset A of
U is strongly convex if its membership function A is one-to-one on
{x ∈ U : A(x) < 1}.
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Chapter 4

LOGICAL ASPECTS OF

FUZZY SETS

The phrase “fuzzy logic” has two meanings. On the one hand, it refers
to the use of fuzzy sets in the representation and manipulation of vague
information for the purpose of making decisions or taking actions. It is the
theory of fuzzy sets, the study of the system of all mappings of a set U into
the unit interval. This involves not only the usual connectives of max and
min on fuzzy sets, but the theory of t-norms, t-conorms, negations, and
many other related concepts. Also there are generalizations of ordinary
set theoretical concepts to the fuzzy setting, such as that of equivalence
relation. Many topics can be “fuzzified”. Some of these appear throughout
this book.

On the other hand, fuzzy logic means the extension of ordinary logic
with truth values in the two-element Boolean algebra ({0, 1},∨,∧,′ , 0, 1)
to the case where they are in the Kleene algebra ([0, 1],∨,∧,′ , 0, 1). There
are of course many extensions of two-valued logic to multivalued ones, gen-
erally with the truth values being finite in number. A standard reference
for this is [178].

This chapter focuses on fuzzy logic in this second sense. An important
reference is [88]. First, we present the basics of the two-valued propositional
calculus, next the corresponding material for a well-known three-valued
propositional calculus due to Lukasiewicz, and then for the propositional
calculus in which the truth values consist of the Kleene algebra above, that
is, for fuzzy propositional calculus. The fact that these last two proposi-
tional calculi are equal does not seem to be widely known. But it is a
useful fact. It enables one to determine in finitely many steps, following a
specific algorithm, whether two expressions in fuzzy sets are equal, where
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the expressions involve just the fuzzy sets and the connectives max, min,
and the complement x → 1 − x. An analogous fact holds for fuzzy sets
whose values are themselves intervals in [0, 1].

4.1 Classical two-valued logic

First, we will look at the simplest formal logic, the classical two-valued
propositional logic, or calculus. In it, propositions can take on only two
truth values. This will not be the case in the other logics we consider. Here
are the basics of propositional calculus.

The building blocks consist of a set of formal entities V = {a, b, c, ...}
often called the variables of the logic. The elements of V are to be thought
of as primitive propositions, or simple statements, or variables. We specify
three basic logical connectives: ∨ (or), ∧ (and), and ′ (not). From the
elements of V and these connectives, we build up expressions such as
a∨b, a∧b′, a′∧(b∨c), and so on. Such expressions are formulas. Formulas
are defined inductively as follows:

• If a is a variable, then a is a formula.

• If u and v are formulas, then u ∨ v, u ∧ v and u′ are formulas.

The set of all formulas is denoted F. Thus if we have only three vari-
ables, a, b, and c, at the first step in this recursive process, we get the
formulas a, b, c. Then at the next step, we get a′, b′, c′, a∨a, a∧a, a∨ b, a∨
c, b ∨ a, and several more. At the third step, we get such new formulas as
a ∨ b′, a ∨ (b ∧ c) , (a ∨ c)′ , and (b′)′ ∧ c′. Of course there are many many
more. The set F is the set of all formulas defined. If Fn is the set of formulas
gotten at the n-th stage, then ∪nFn = F. It is an infinite set, even if V has
only one element. For example, if a is a variable, then a, a∧ a, (a ∧ a)∧ a,
a ∧ ((a ∧ a) ∧ a), a ∧ (a ∧ ((a ∧ a) ∧ a)), . . . are all distinct formulas, as

are a, a′, (a′)
′
,
(
(a′)

′)′
, . . . At this point, elements of F are just certain

strings of symbols. No meaning has been attached to anything.
For any function t : V → {0, 1} we get a function t̃ : F → {0, 1} as

follows: for each variable a appearing in a formula, substitute t (a) for it.
Then we have an expression in the symbols 0, 1,∨,∧, and ′, together with
balanced sets of parentheses. The tables below define the operations of ∨,
∧, and ′ on the truth values {0, 1}.

∨ 0 1

0 0 1
1 1 1

∧ 0 1

0 0 0
1 0 1

′
0 1
1 0
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4.1. CLASSICAL TWO-VALUED LOGIC 61

Using these tables, which describe the two element Boolean algebra, we
get an extension to F. For example, if t(a) = 0 and t(b) = t(c) = 1, then

t̃ (((a ∨ b) ∧ c) ∧ (b′ ∨ c)) = (((t(a) ∨ t(b)) ∧ t(c)) ∧ (t(b)′ ∨ t(c)))
= ((0 ∨ 1) ∧ 1) ∧ (1′ ∨ 1)

= (1 ∧ 1) ∧ (0 ∨ 1)

= 1 ∧ 1

= 1

Such a mapping F → {0, 1} is called a truth evaluation. We have
exactly one for each mapping V → {0, 1}. Expressions that are assigned
the value 1 by every t are called tautologies, such as a ∨ a′ and b ∨ b′.

There are two other common logical connectives, ⇒ (implies) and ⇔
(implies and is implied by, or if and only if), and we could write down the
usual truth tables for them. However, in classical two-valued logic, a⇒ b
is taken to mean a′ ∨ b, and a⇔ b to mean (a⇒ b) ∧ (b⇒ a). Thus they
can be defined in terms of the three connectives we used. The formula
a⇒ b is called material implication.

Two formulas a and b are called (logically) equivalent if they have
the same image for every truth evaluation. This is the same thing as a⇔ b
being a tautology, for which we write a ≡ b. The expressions a, a∨ a, and
(a ∨ a) ∨ a are equivalent, always having truth evaluation the same as a.
Likewise, the expressions a∧(b∨c) and (a ∧ b)∨(a ∧ c) are equivalent. Both
have truth evaluation 1 when a and either b or c have truth evaluation 1,
and have truth evaluation 0 otherwise. We want to consider two formulas
equal if they are logically equivalent, and indeed, being logically equivalent
is an equivalence relation, and so partitions F. Two elements of F are in
the same member of this partition if they are equivalent, that is, in the
same equivalence class.

Consider now the set F/ ≡ (F “modulo” ≡) of all equivalence classes
of this equivalence relation. Let [a] denote the equivalence class containing
the formula a. Then setting

[a] ∨ [b] = [a ∨ b]
[a] ∧ [b] = [a ∧ b]

[a]′ = [a′]

makes F/ ≡ into a Boolean algebra. That these operations are well defined,
and actually do what is claimed, takes some checking and we will not give
the details. This Boolean algebra is the classical propositional calculus. If
the set V of variables, or atomic formulas, is finite, then F/ ≡ is finite, even
though F is infinite. It is a fact that if V has n elements, then F/ ≡ has
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22
n

elements. If {v1, v2, . . . , vn} is the set of variables, then the elements
of the form

w1 ∧ w2 ∧ . . . ∧ wn

where wi is either vi or v′i are called monomials, and every element of F
is logically equivalent to the join of a unique set of these monomials. (The
element [0] is the join of the empty set of monomials.) Elements written
in this fashion are said to be in disjunctive normal form. For example,
if there are just two variables a and b, then a ∨ b is logically equivalent
to (a ∧ b) ∨ (a ∧ b′) ∨ (a′ ∧ b) . This is easy to check: just check the truth
evaluations for all four possible truth evaluations of the pair a and b.

The classical propositional calculus is associated with a Boolean alge-
bra of sets in the following way. Suppose we associate with each equivalence
class [u] ∈ F/ ≡ the set

{t : V → {0, 1} : t̃(u) = 1}

This defines a function by the very definition of logically equivalent. Thus
we have a mapping

T : F/ ≡ → P({0, 1}V )

where {0, 1}V denotes the set of all functions from V to {0, 1} and
P({0, 1}V ) denotes the set of all subsets of {0, 1}V . The mapping T is
one-to-one, again by the definition of being logically equivalent. The set
of all subsets of {0, 1}V is a Boolean algebra under ordinary set union,
intersection, and complementation. The image of F/ ≡ is a sub-Boolean
algebra and T is a homomorphism, that is,

T (a ∨ b) = T (a) ∪ T (b)

T (a ∧ b) = T (a) ∩ T (b)

T (a′) = T (a)′

T ([0]) = ∅

T ([1]) = {0, 1}V

If V is finite, the mapping T is onto and we have a one-to-one corre-
spondence between the equivalence classes of propositions and subsets of
{0, 1}V . This is the connection between propositional calculus and set the-
ory. It is isomorphic to a Boolean algebra of sets.

We illustrate the construction of F/ ≡ above in the case V = {a, b}.
We need only concern ourselves with writing down one formula for each
equivalence class. First, we have the formulas a, b, a′, b′, and in the next
iteration the formulas, a ∨ a, a ∨ b, b ∨ a, a ∨ a′, a ∨ b′, a′′, and so on. We
will not write them all down. There can be at most 16 nonequivalent ones,
that being the number of subsets of {0, 1}{a,b}. If we denote the equivalence

www.EBooksWorld.ir



4.1. CLASSICAL TWO-VALUED LOGIC 63

class containing a∨ a′ by 1 and the one containing a∧ a′ by 0, then these
16 are

0 1
a a′

b b′

a ∨ b a′ ∧ b′
a ∨ b′ a′ ∧ b
a′ ∨ b a ∧ b′
a′ ∨ b′ a ∧ b
(a ∧ b′) ∨ (a′ ∧ b) (a′ ∨ b) ∧ (a ∨ b′)

We have not written them all in disjunctive normal form. For any two
of these formulas, it is easy to find a truth evaluation for which they take
different values. For example, consider the formulas a′ ∨ b and (a ∧ b′) ∨
(a′ ∧ b). If t(a) = t(b) = 1 then t (a′ ∨ b) = 1 and t ((a ∧ b′) ∨ (a′ ∧ b)) = 0.
So this propositional calculus has only 16 formulas, and is isomorphic to
the Boolean algebra with 16 elements.

In summary, propositional calculus is a logic of atomic propositions.
These atomic propositions cannot be broken down. The validity of ar-
guments does not depend on the meaning of these atomic propositions,
but rather on the form of the argument. For example, the deduction rule
known as modus ponens states that from b ⇒ a and b one deduces a
logically. That is, ((b⇒ a) ∧ b)⇒ a is a tautology. It is easily checked that
this is indeed the case.

If we consider propositions of the form “all a’s are b”, which involves
the quantifier “all” and the predicate b, then the validity of an argument
should depend on the relationship between parts of the statement as well as
the form of the statement. For example, “all men are mortal”, “Napoleon
is a man”, and therefore “Napoleon is mortal”. In order to reason with
this type of proposition, propositional calculus is extended to predicate
calculus, specifically to first-order predicate calculus. Its alphabet includes
the quantifiers “for all” (∀) and “there exists” (∃), as well as predicates, or
relation symbols. A predicate on a set S is a relation on S, for example, “x
is a positive integer”. This is a unary predicate. It can be identified with
the subset {s ∈ S : P (s) is a positive integer}, that is, a unary relation
on S. More generally, a n-ary predicate on S can be identified with the
subset {(s1, s2, · · · , sn) ∈ Sn : P (s1, s2, · · · , sn) is true}, that is, with a
n-ary relation on S. The formalism of such logic is more elaborate than
that of propositional calculus and we will not discuss it further.
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4.2 A three-valued logic

The construction carried out in the previous section can be generalized in
many ways. Perhaps the simplest is to let the set {0, 1} of truth values be
larger. Thinking of 0 as representing false and 1 as representing true, we
add a third truth value u representing undecided. It is common to use
1
2 instead of u, but a truth value should not be confused with a number,
so we prefer u. Now proceed as before. Starting with a set of variables, or
primitive propositions V , build up formulas using this set and some logical
connectives. Such logics are called three-valued, for obvious reasons. The
set F of formulas is the same as in classical two-valued logic. However, the
truth evaluations t will be different, thus leading to a different equivalence
relation ≡ on F. There are a multitude of three-valued logics, and their
differences arise in the specification of truth tables and implication.

In extending a mapping V → {0, u, 1} to a mapping F → {0, u, 1},
we need to specify how the connectives operate on the truth values. Here
is that specification for a particularly famous three-valued logic, that of
Lukasiewicz.

∨ 0 u 1

0 0 u 1
u u u 1
1 1 1 1

∧ 0 u 1

0 0 0 0
u 0 u u
1 0 u 1

′

0 1
u u
1 0

Again, we have chosen the basic connectives to be ∨, ∧, and ′. These
operations ∨ and ∧ come simply from viewing {0, u, 1} as the three-element
chain with the implied lattice operations. The operation ′ is the duality of
this lattice. The connectives ⇒ and ⇔ are defined as follows.

⇒ 0 u 1

0 1 1 1
u u 1 1
1 0 u 1

⇔ 0 u 1

0 1 u 0
u u 1 u
1 0 u 1

For this logical system, we still have that a and b are logically equivalent,
that is, t̃(a) = t̃(b) for all truth valuations t : V → {0, u, 1} if and only if
a⇔ b is a three-valued tautology.

It is clear that a three-valued tautology is a two-valued tautology. That
is, if t̃(a) = t̃(b) for all truth valuations t : V → {0, u, 1}, then t̃(a) = t̃(b)
for all truth valuations t : V → {0, 1}. But the converse is not true. For
example, a ∨ a′ is a two-valued tautology, while it is not a three-valued
one. Just consider t : V → {0, u, 1} with t(a) = u.

The set F/ ≡ of equivalence classes of formulas under the operations
induced by ∨, ∧, and ′ do not form a Boolean algebra since, in particular,
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for a variable a, it is not true that a ∨ a′ always has truth value 1. We
see from the tables above that if a has truth value u, then a ∨ a′ has
truth value u. The law of the excluded middle does not hold in this
logic. These equivalence classes of logically equivalent formulas do form
a Kleene algebra, however, and this Kleene algebra is the Lukasiewicz
three-valued propositional calculus.

With each formula f , associate the mapping

{0, u, 1}V → {0, u, 1}

given by t → t(f). This induces a one-to-one mapping from F/ ≡ into
the set of all mappings from {0, u, 1}V into {0, u, 1}. This set of mappings
is itself a Kleene algebra, and the one-to-one mapping from F/ ≡ into it
is a homomorphism. In the two-valued case, we had a one-to-one homo-
morphism from the Boolean algebra F/ ≡ into the Boolean algebra of all
mappings from {0, 1}V into {0, 1}, or equivalently into P({0, 1}V ).

4.3 Fuzzy logic

Fuzzy propositional calculus generalizes classical propositional calculus by
using the truth set [0, 1] instead of {0, 1}. The construction parallels those
in the last two sections. The set of building blocks in both cases is a set
V of symbols representing atomic or elementary propositions. The set of
formulas F is built up from V using the logical connectives ∧, ∨, ′ (and, or,
and not, respectively) in the usual way. As in the two-valued and three-
valued propositional calculi, a truth evaluation is gotten by taking any
function t : V → [0, 1] and extending it to a function t̃ : F → [0, 1] by
replacing each element a ∈ V which appears in the formula by its value
t(a), which is an element in [0, 1]. This gives an expression in elements of
[0, 1] and the connectives ∨, ∧, ′. This expression is evaluated by letting

x ∨ y = max{x, y}
x ∧ y = min{x, y}

x′ = 1− x

for elements x and y in [0, 1]. We get an equivalence relation on F by letting
two formulas be equivalent if they have the same truth evaluation for all
t̃. A formula is a tautology if it always has truth value 1. Two formulas u
and v are logically equivalent when t̃(u) = t̃(v) for all truth valuations
t. As in Lukasiewicz’s three-valued logic, the law of the excluded middle
fails. For an element a ∈ V and a t with t (a) = 0.3, t(a∨a′) = 0.3∨ 0.7 =
0.7 6= 1. The set of equivalence classes of logically equivalent formulas
forms a Kleene algebra, just as in the previous case.
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The association of formulas with fuzzy sets is this. With each formula u,
associate the fuzzy subset [0, 1]V → [0, 1] of [0, 1]V given by t→ t(u). Thus
we have a map from F to F

(
[0, 1]V

)
. This induces a one-to-one mapping

from F/ ≡ into the set of mappings from [0, 1]V into [0, 1], that is into the
set of fuzzy subsets of [0, 1]V . This one-to-one mapping associates fuzzy
logical equivalence with equality of fuzzy sets.

4.4 Fuzzy and Lukasiewicz logics

The construction of F/ ≡ for the three-valued Lukasiewicz propositional
calculus and the construction of the corresponding F/ ≡ for fuzzy propo-
sitional calculus were the same except for the truth values used. In the
first case the set of truth values was {0, u, 1} with the tables given, and in
the second, the set of truth values was the interval [0, 1] with

x ∨ y = max{x, y}
x ∧ y = min{x, y}

x′ = 1− x

We remarked that in each case, the resulting equivalence classes of formu-
las formed Kleene algebras. Now the remarkable fact is that the resulting
propositional calculi are the same. They yield the same Kleene algebra.
In fact, they yield the same equivalence relation. The set F of formulas
is clearly the same in both cases, and in fact is the same as the set of
formulas in the classical two-valued case. Any differences in the proposi-
tional calculi must come from the truth values and the operations of ∨,
∧, and ′ on them. Different truth values may or may not induce different
equivalence relations on F. It turns out that using truth values {0, u, 1}
with the operations discussed, and using [0, 1] with the operations dis-
played above give the same equivalence relation on F, and thus the same
resulting propositional calculi F/ ≡.

Theorem 4.4.1 The propositional calculus for three-valued Lukasiewicz
logic and the propositional calculus for fuzzy logic are the same. [70]

Proof. We outline a proof. Truth evaluations are mappings f from F
into the set of truth values satisfying

f(v ∨ w) = f(v) ∨ f(w)
f(v ∧ w) = f(v) ∧ f(w)

f(v′) = f(v)′

for all formulas v and w in F. Two formulas in F are equivalent if and
only if they have the same values for all truth valuations. So we need that
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two formulas have the same value for all truth valuations into [0, 1] if and
only if they have the same values for all truth valuations into {0, u, 1}.
First, let

∏
be the Cartesian product

∏
x∈(0,1){0, u, 1} with ∨, ∧ and ′

defined componentwise. If two truth valuations from F into
∏

differ on an
element, then these functions followed by the projection of

∏
into one of

the copies of {0, u, 1} differ on that element. If two truth valuations from
F into {0, u, 1} differ on an element, then these two functions followed by
any lattice embedding of {0, u, 1} into [0, 1] differ on that element. There
is a lattice embedding [0, 1] → ∏

given by y → {yx}x, where yx is 0, u,
or 1 depending on whether y is less than x ∧ x′, x ∧ x′ ≤ y ≤ x ∨ x′, or y
is greater than x ∨ x′. If two truth valuations from F into [0, 1] differ on
an element, then these two functions followed by this embedding of [0, 1]
into

∏
will differ on that element. The upshot of all this is that taking the

truth values to be the lattices {0, u, 1}, [0, 1], and
∏

all induce the same
equivalence relation on F, and hence yield the same propositional calculus.

Now what import does this have for fuzzy set theory? One consequence
is this. Suppose we wish to check the equality of two expressions involving
fuzzy sets connected with ∧, ∨, and ′, with ′ denoting the usual negation.
For example, does the equality

A ∧ ((A′ ∧B) ∨ (A′ ∧B′) ∨ (A′ ∧ C)) = A ∧ A′

hold for fuzzy sets? That is, is it true that this equality holds no matter
what the fuzzy sets A, B, and C are? Equivalently, for every x ∈ U is it
true that

[A ∧ ((A′ ∧B) ∨ (A′ ∧B′) ∨ (A′ ∧ C))] (x) = [A ∧ A′] (x)

which is asking whether the equality

A(x) ∧ ((A′(x) ∧B(x)) ∨ (A′(x) ∧B′(x)) ∨ (A′(x) ∧ C(x)))

= A(x) ∧ A′(x) (4.1)

holds for all x ∈ U . The theorem implies that it is enough to check the
equality

A ∧ ((A′ ∧B) ∨ (A′ ∧B′) ∨ (A′ ∧ C)) = A ∧ A′

for all possible combinations of 0, 1
2 , and 1 substituted in for A, B, and

C, so in this case there are 27 checks that need to be made. One such is
for the case A = 1

2 , B = 0, and C = 1
2 . In that case, the right-hand side
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has value 1
2 clearly, and the left side is

A ∧ ((A′ ∧B) ∨ (A′ ∧B′) ∨ (A′ ∧ C))

=
1

2
∧
((

1

2
∧ 0

)
∨
(

1

2
∧ 1

)
∨
(

1

2
∧ 1

2

))

=
1

2
∧
(

0 ∨ 1

2
∨ 1

2

)

=
1

2

The other 26 cases also yield equalities, so the expression is an identity
for fuzzy sets. No matter what the fuzzy sets A, B, and C are, for every
x ∈ [0, 1], the equality holds. It should be noted that checking equality for
combinations of the values {0, 12 , 1} is the same as checking equality when
the values {0, u, 1} are substituted into the expressions involved.

4.5 Interval-valued fuzzy logic

Interval-valued fuzzy logic generalizes fuzzy propositional calculus by using
the truth set of intervals {(a, b) : a, b ∈ [0, 1], a ≤ b}. A standard notation
for this set of intervals is [0, 1][2]. A fuzzy subset of a set U is a mapping
A : U → [0, 1], and an interval-valued fuzzy subset of a set U is a mapping
A : U → [0, 1][2]. In interval-valued set theory, an expert’s measure of
truth for a particular element u ∈ U will be associated with a pair (a, b) ∈
[0, 1][2].

Now we can construct the propositional calculus whose truth values
are the elements of [0, 1][2]. But first we need the appropriate algebra of
these truth values. It is given by the formulas

(a, b) ∨ (c, d) = (a ∨ c, b ∨ d)

(a, b) ∧ (c, d) = (a ∧ c, b ∧ d)

(a, b)′ = (b′, a′)

where the operations ∨,∧, and ′ on elements of [0, 1] are the usual ones,
commonly referred to in logic as the disjunction (∨), conjunction (∧), and
negation. This algebra is discussed in more detail in Section 5.9.

The resulting propositional calculus F/ ≡ is a De Morgan algebra, and
is not a Kleene algebra. The algebras ([0, 1],∨,∧,′ ) and ([0, 1][2],∨,∧,′ )
are fundamentally different. In the first, the inequality x ∧ x′ ≤ y ∨ y′
holds, but not in the second. That is, the first is a Kleene algebra and
the second is not. However, it turns out that the propositional calculus is
the same as the propositional calculus F/ ≡ whose truth values are the
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elements of the lattice {0, u, v, 1} with the order indicated in the diagram
below, and with the negation that fixes u and v and interchanges 0 and 1.
The details may be found in [70].

1
ր տ

u v
տ ր

0

Again, as in the ordinary fuzzy case where values are in the unit interval,
this implies that there is an algorithm for checking the equality of two
expressions. It just comes down to checking the equality of the two ex-
pressions for all possible combinations of the values {0, u, v, 1} substituted
in for the interval-valued fuzzy sets involved. So there would be 4n checks
to be made, where n is the number of fuzzy sets involved.

In this particular case, there has been a canonical form developed. That
is, any expression in these interval-valued fuzzy sets, using the connectives
we have indicated, can be put into a form such that two expressions repre-
sent the same interval-valued fuzzy set if and only if their forms are equal.
(See [160] for details.)

The result in Theorem 4.4.1 that fuzzy propositional calculus is the
same as that of Lukasiewicz three-valued logic may seem paradoxical, as
may also the fact that interval-valued fuzzy propositional calculus is the
same as the propositional calculus with truth values pictured above. But
these do not follow from the structure of fuzzy sets themselves, or interval-
valued fuzzy sets, but from the algebraic structure on the set of truth
values involved. The results have to do with the logical equivalence of
formulas in the set F. All this is determined by the algebra of truth values.
The set of variables, which in the case of fuzzy propositional calculus we
imagine to be fuzzy subsets of some set, is totally irrelevant.

One point should be totally clear. The fact that fuzzy propositional
calculus is the same as Lukasiewicz’s three-valued propositional calculus
says nothing about the efficacy of using fuzzy sets to model physical phe-
nomena, and of combining these fuzzy sets in the usual ways and to reach
decisions based on the results of such combinations. It does not say that
one may as well replace fuzzy sets by mappings into the three-element
chain {0 < u < 1}. Similar remarks apply to interval-valued fuzzy sets.

Knowing fuzzy propositional calculus is the same as Lukasiewicz’s does
give a way to test in finitely many steps the logical equivalence of two
formulas in fuzzy sets. In a finite-valued logic, logical equivalence can be
checked either by testing with truth values, or by comparing canonical
forms, if such exist. We discuss canonical forms for these propositional
calculi in the next section.
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4.6 Canonical forms

As noted in Section 4.1, in classical two-valued propositional calculus,
every formula, that is, every Boolean expression such as a ∧ (b ∨ c) ∧ d′
has a canonical form, the well-known disjunctive normal form. For
example, the disjunctive normal form for (a ∨ b) ∧ c′ in the logic on the
variables {a, b, c} is

(a ∧ b ∧ c′) ∨ (a ∧ b′ ∧ c′) ∨ (a′ ∧ b ∧ c′)

and that of (a ∧ c′) ∨ (b ∧ c′) is the same form exactly. Of course, we
could have just used the distributive law and noted equality, but that is
not the point here. In this classical case, two formulas can be checked for
logical equivalence by putting them in their canonical forms and noting
whether or not the two forms are identical. Alternately, one can check
logical equivalence by checking equality for all truth evaluations of the
two expressions. Since the set {0, 1} of truth values is finite, this is a finite
procedure.

Now for Lukasiewicz’s three-valued logic, which is equal to fuzzy propo-
sitional calculus, two formulas may be similarly tested for logical equiva-
lence, that is, by checking equality of all truth evaluations. Two formulas
in fuzzy propositional calculus are logically equivalent if and only if they
are logically equivalent in Lukasiewicz’s three-valued propositional calcu-
lus. That is the implication of Theorem 4.4.1. Similar remarks hold for
interval-valued fuzzy logic and the four-valued one discussed in Section
4.5. In this latter case, a normal form is well-known and is described in
detail in the paper [158]. There is also a normal form for Lukasiewicz’s
three-valued logic [70]. We now discuss these three normal forms, that
is, for the propositional calculi F/ ≡ for the two-valued case, the three-
valued Lukasiewicz case, and for the four-valued case above. We refer to
these three cases as F1,F2, and F3. The cases differ in that the first is a
Boolean algebra, the second is a Kleene algebra, and the third is a De Mor-
gan algebra. In each case we have variables, which we denote x1, x2, x3, ....,
binary operations ∨ and ∧, a unary operation ′, and the constants 0 and
1.

Variables x1, x2, x3, .... and their negations x′1, x
′
2, x

′
3, .... are called lit-

erals. An element a in a lattice is join irreducible if it cannot be written
as the join b ∨ c with b < a and c < a. For example, in the lattice [0, 1],
every element is join irreducible, while in [0, 1]× [0, 1] there are lots of join
reducible elements: (a, a) = (a, 0)∨ (0, a). The fact that is of fundamental
use in finding all of these normal forms is that in each of the cases F1,F2,
and F3 the algebra generated by a finite set x1, x2, . . . , xn of variables is
a bounded distributive lattice generated by the literals x1, x2, . . ., xn, x′1,
x′2, . . ., x′n. It is well known that each element of a finite distributive lattice
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is the join of all the join irreducibles below it. Getting a normal form boils
down to determining the join irreducibles and the ordering between them.
The normal form for De Morgan algebras stems from realizing that all
conjunctions of literals as well as 1, are join irreducible. The normal form
for Boolean algebras stems from realizing that the only join irreducible
elements in the Boolean case are the complete conjunctions of literals.
Here a complete conjunction of literals is a conjunction of literals in
which each variable occurs exactly once. For example, if the variables are
x1, x2, x3, then x1 ∧ x2 ∧ x3 and x1 ∧ x′2 ∧ x′3 are complete disjunctions,
while x1 ∧ x′2 and x2 ∧ x′2 are not. The empty disjunction is 0, and the
disjunction of all the complete conjunctions is 1.

The join irreducibles in the Kleene case are a little more subtle. If
the variables are x1, x2, . . ., xn, then a conjunction of literals is join
irreducible if and only if it is 1, or it contains at most one of the literals
for each variable, or it contains at least one of the literals for each variable.
Suppose n = 3. Here are some examples.

1. x1 ∧ x2 ∧x3 is join irreducible. It contains at least one of the literals
for each variable. (It also contains at most one of the literals for each
variable, so qualifies on two counts.)

2. x1 ∧ x2 ∧ x′3 is join irreducible for the same reasons as above.

3. x1 ∧ x2 ∧ x′2 is not join irreducible. It does not contain at least one
of the literals for each variable, and it contains two literals for the
variable x2.

4. x1 ∧ x′1 ∧ x2 ∧ x3 is join irreducible. It contains at least one of the
literals for each variable.

5. x1 ∧ x′1 ∧ x2 ∧ x′2 is not join irreducible. It does not contain at least
one of the literals for each variable, and it contains two literals for
two variables.

6. x1 ∧ x2 is join irreducible. It contains at most one of the literals for
each variable.

7. x3 is join irreducible. It contains at most one of the literals for each
variable.

In each of the three cases, Boolean, Kleene, and De Morgan, we need
to know the ordering between the join irreducibles. In the Boolean case,
no two join irreducibles are comparable. In the other two cases, join irre-
ducibles x and y satisfy x ≤ y if y = 1 or if every literal in y appears in x.
For example, x1 ∧ x2 ∧ x

′

3 ≤ x1 ∧ x2.
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The normal form for the Boolean algebra case, that is, for F1, is of
course well known: every element is uniquely a disjunction of complete
conjunctions of literals. Instead of getting into this, we will describe the
procedure for putting an arbitrary formula in Kleene normal form. In the
examples illustrating the steps, we assume that there are three variables,
x1, x2,x3.

1. Given a formula w, first use De Morgan’s laws to move all the nega-
tions in, so that the formula is rewritten as a formula w1 which is just
meets and joins of the literals, 0, and 1. For example, x1 ∧ (x′2 ∧x3)′

would be replaced by x1 ∧ (x2 ∨ x′3).

2. Next use the distributive law to obtain a new formula w2 from w1

which is a disjunction of conjunctions involving the literals, 0, and
1. For example, replace x1 ∧ (x2 ∨ x′3) by (x1 ∧ x2) ∨ (x1 ∧ x′3). At
this point, discard any conjunction in which 0 or 1′ appears as one
of the conjuncts. Also discard any repetition of literals from any
conjunction, as well as 1 and 0′ from any conjunction in which they
do not appear alone (if a conjunction consists entirely of 1’s and 0′’s,
then replace the whole thing by 1). This yields a formula w3.

3. Now discard all nonmaximal conjunctions among the conjunctions
that w3 is a disjunction of. The type of conjunctions we now are
dealing with are either conjunctions of literals or 1 by itself. Of course
1 is above all the others and one conjunction of literals is below
another if and only if the former contains all the literals contained
in the latter. This process yields a formula w4.

4. At this point, replace any conjunction of literals, c, which contains
both literals for at least one variable by the disjunction of all the
conjunctions of literals below c that contain exactly one of the lit-
erals for each variable not occurring in c. For example, if one of the
conjunctions is x1 ∧ x′1 ∧ x2, replace it by the disjunction (x1 ∧ x′1 ∧
x2 ∧ x3) ∨ (x1 ∧ x′1 ∧ x2 ∧ x′3). (x3 is the only variable not occurring
in x1 ∧ x′1 ∧ x2.)

5. Finally, again discard all nonmaximal conjunctions among the con-
junctions that are left, and if no conjunctions are left, then replace
the formula by 0. The formula thus obtained is now in the normal
form described above.

We illustrate the Kleene normal form with the two equivalent expres-
sions

w = A ∧ ((A′ ∧B) ∨ (A′ ∧B′) ∨ (A′ ∧ C))

w′ = A ∧ A′
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in the variables, A, B, and C.

1. There is nothing to do in this step.

2. Applications of the distributive law lead to disjunctions of conjunc-
tions involving the literals:

w2 = (A ∧ A′ ∧B) ∨ (A ∧A′ ∧B′) ∨ (A ∧ A′ ∧ C)

w′
2 = A ∧ A′

3. Neither of the expressions in step 2 contains any nonmaximal con-
junctions, so w3 = w2 and w′

3 = w′
2.

4. Replace

A ∧A′ ∧B by (A ∧ A′ ∧B ∧C) ∨ (A ∧ A′ ∧B ∧ C′)
A ∧A′ ∧B′ by (A ∧ A′ ∧B′ ∧ C) ∨ (A ∧ A′ ∧B′ ∧ C′)
A ∧A′ ∧ C by (A ∧ A′ ∧ C ∧B) ∨ (A ∧ A′ ∧ C ∧B′)

and

A ∧ A′ by (A ∧A′ ∧B ∧ C) ∨ (A ∧ A′ ∧B′ ∧ C)
∨ (A ∧A′ ∧B ∧ C′) ∨ (A ∧A′ ∧B′ ∧ C′)

to get

w4 = (A ∧ A′ ∧B ∧ C) ∨ (A ∧A′ ∧B ∧ C′)
∨ (A ∧ A′ ∧B′ ∧C) ∨ (A ∧ A′ ∧B′ ∧C′)
∨(A ∧ A′ ∧ C ∧B) ∨ (A ∧ A′ ∧ C ∧B′)

w′
4 = (A ∧ A′ ∧B ∧ C) ∨ (A ∧A′ ∧B′ ∧ C)

∨ (A ∧ A′ ∧B ∧ C′) ∨ (A ∧ A′ ∧B′ ∧C′)

5. Discarding all nonmaximal conjunctions among the conjunctions
that are left means in this case, simply discarding repetitions, leading
to the normal forms

w5 = (A ∧ ¬A ∧B ∧ C) ∨ (A ∧ ¬A ∧B ∧ C′)
∨ (A ∧ ¬A ∧B′ ∧C) ∨ (A ∧ ¬A ∧B′ ∧ C′)

w′
5 = (A ∧ ¬A ∧B ∧ C) ∨ (A ∧ ¬A ∧B′ ∧ C)

∨ (A ∧ ¬A ∧B ∧ C′) ∨ (A ∧ ¬A ∧B′ ∧ C′)

The procedure for getting the normal form in the De Morgan case is
quite similar. The only real difference is that in the De Morgan case all
conjunctions of literals are join irreducible, while this is not the case for
Kleene.
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4.7 Notes on probabilistic logic

In this section, we mention briefly probabilistic logic, pointing out simi-
larities and differences with fuzzy logic. We wish to represent and reason
with information of the following sort.

1. It is likely that John’s height is over 5′10′′.

2. John’s height is probably between 5′10′′ and 6′.

3. Most birds fly.

4. Usually mathematicians know all fields of mathematics.

5. Few men are heroes.

6. If the patient has symptom a, then the patient likely has disease b.

The information presented is uncertain. The statements contain quan-
tifiers, and these quantifiers are not the usual ones in first-order logic such
as ∃ and ∀. It contains other quantifiers such as “few”, “most”, and “usu-
ally”. So extending propositional logic to first-order logic will not suffice.
But knowledge of the type above is very common and must be modeled
if we wish to make machines mimic human behavior and reasoning. So
we need a method to allow us to manipulate and to make inferences from
such knowledge. The essential added tool used here is probability theory.

Propositions such as those above arise frequently in medical diagnosis.
For example, a fact such as “this patient has disease b” might be uncertain
for the physician since what he can observe is not the disease itself but
symptoms. The relation between symptoms and diseases, usually expressed
as conditional propositions of the form “if symptom a then disease b”
is also uncertain. However, a physician or other “expert” can assign his
“degree of belief” in the truth of such a proposition. The subjectivity of
this assignment is inevitable.

Probabilistic logic is an approach to reasoning with this type of uncer-
tain information. Viewing degrees of belief in the truth of propositions as
subjective probabilities, one can think about using the standard calculus
of probabilities to implement a “logic” of uncertain information.

The possibility of assigning probabilities to propositions is due to the
fact that the set of all equivalence classes of propositions, which we have
denoted F/ ≡ does form a Boolean algebra, so that it is a suitable domain
for probability measures. So on a suitable Boolean algebra of proposi-
tions, such as one containing those above with the quantifiers removed,
we postulate a probability measure. For example, it makes some sense to
assign the proposition “birds fly” the probability 0.90, and the proposition
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“men are heroes” the probability 0.01. The assignment of probabilities is
of course subjective and can come from many sources: experts’ opinions,
common sense, and so on. (In this regard, see [149].) So the quantifiers are
manifested in probability assignments.

We will not go into the technical details on implementation. Our pur-
pose is to spell out some relevant points that are somewhat similar to fuzzy
logic. This new mathematical tool has emerged from the requirements of
practical applications, for example in decision support systems in which
causal relationships are uncertain. Given a collection of facts and rules
forming a knowledge domain for a problem, that is, propositions of the
form

a : the patient has property a
a⇒ b : if a then b

one quantifies the degrees of belief by probabilities P (a) and P (a ⇒ b).
The implication a ⇒ b should not be interpreted as classical two-valued
material implication. In assigning the value P (a⇒ b) to the rule “if a then
b”, the expert will assess the chance for b to occur under the condition a.
Thus P (a⇒ b) = P (a|b), the conditional probability of b under a. But
a⇒ b is not a′ ∨ b since P (a′ ∨ b) 6= P (a|b) = P (ab)/P (a) in general.

Essentially the strategy of probabilistic reasoning is this. Given a knowl-
edge base consisting of rules and facts together with their probabilities,
one proceeds to construct a joint probability measure on a suitable set
of relevant events (a Boolean algebra of propositions), which will allow
the computations of probabilities of events of interest. Since probabilities
take values in the unit interval [0, 1], probabilistic logic is multivalued. Its
syntax is the same as for classical two-valued logic. For each proposition
a, there are two sets of possible worlds, those in which a is true and those
in which a is false. Not knowing the actual world, one has to consider
the probability of a being true as a truth value of a. This is obviously a
generalization of classical logic. In view of the axioms of probability mea-
sures, probabilities of combined or compound propositions cannot always
be determined from those of component propositions, as opposed to the
case of fuzzy logic. This is expressed by saying that this logical system
is nontruth functional. For more detail on probability logic, especially on
basic concepts such as probabilistic entailment, see [168].

4.8 Exercises

1. Write down the tables for ⇒ and ⇔ for classical two-valued propo-
sitional logic.

2. In two-valued propositional calculus, verify that two propositions a
and b are logically equivalent if and only if a⇔ b is a tautology.
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3. We write a = b for a⇔ b. Verify the following for two-valued propo-
sitional calculus.

(a) a′′ = a

(b) a ∨ a′ = 1

(c) a ∧ a′ = 0

(d) a = a ∨ a
(e) a ∨ b = b ∨ a
(f) a ∧ b = b ∧ a
(g) a ∨ (b ∨ c) = (a ∨ b) ∨ c
(h) a ∧ (b ∧ c) = (a ∧ b) ∧ c
(i) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
(j) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
(k) (a ∨ b)′ = a′ ∧ b′

(l) (a ∧ b)′ = a′ ∨ b′

4. In two-valued propositional calculus, show that a⇒ b is a tautology
if and only if for every truth valuation t, t̃(a) = 1 implies that
t̃(b) = 1.

5. In Lukasiewicz’s three-valued logic, verify that ∧ and ∨ agree with
∧ and ∨ on {0, u, 1} considered as a chain with 0 < u < 1.

6. ⋆In Lukasiewicz’s three-valued logic, show that a and b are logically
equivalent if and only if a⇔ b is a tautology.

7. Show that the set F/ ≡ of equivalence classes of formulas in the three-
valued Lukasiewicz logic forms a Kleene algebra under the operations

[a] ∨ [b] = [a ∨ b]
[a] ∧ [b] = [a ∧ b]

[a]′ = [a′]

8. Show that the set F/ ≡ of equivalence classes of formulas in the
interval-valued fuzzy logic forms a De Morgan algebra under the
operations

[a] ∨ [b] = [a ∨ b]
[a] ∧ [b] = [a ∧ b]

[a]′ = [a′]

Show that this De Morgan algebra does not satisfy the inequality
x ∧ x′ ≤ y ∨ y′.
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9. In Bochvar’s three-valued logic, ⇔ is defined by

⇔ 0 u 1

0 1 u 0
u u u u
1 0 u 1

Verify that a and b being logically equivalent does not imply that
a⇔ b is a three-valued tautology.

10. Show if u ∨ u = u is changed to u ∨ u = 1 in the table for ∨ in
Lukasiewicz’s three-valued logic, then the law of the excluded middle
holds.

11. ⋆Let a be a formula in fuzzy logic. Show that if t(a ∨ a′) = 1, then
necessarily t(a) ∈ {0, 1}.

12. Show that {0, u, 1} with 0 < u < 1 is a Kleene algebra. For any set
S, show that {0, u, 1}S is a Kleene algebra.

13. ⋆Show that in the algebra ([0, 1],∨,∧,′ , 0, 1) the inequality x∧ x′ ≤
y ∨ y′ holds for all x and y in [0, 1]. Show that this inequality does
not hold in ([0, 1][2],∨,∧,′ , 0, 1).

14. ⋆Show that A ∧ ((A′ ∧B) ∨ (A′ ∧ B′) ∨ (A′ ∧ C)) = A ∧ A′ is false
for fuzzy sets taking values in [0, 1][2].

15. In the three variables A,B,C, find the disjunctive normal form, the
Kleene normal form, and the De Morgan normal form for

(a) A ∨ (A′ ∧B ∧B′)

(b) A ∧ (B ∨C)′

(c) A ∧ A′

16. *An elementary polynomial in n variables x1, x2, . . . , xn is an expres-
sion of the form y1 ∧ y2 ∧ · · · ∧ yn, where yi = xi or the symbol x′i. A
Boolean polynomial in the n variables x1, x2, . . . , xn is an expression
of the form E1∨E2∨· · ·∨Em where the Ei’s are distinct elementary
Boolean polynomials.

(a) Show that there are 22
n

Boolean polynomials in n variables.
(Assume that E1 ∨ E2 = E2 ∨ E1, etc.)

(b) If f is a Boolean polynomial in n variables, then f induces
a map {0, 1}n → {0, 1} which we also call f . Spell out ex-
actly what this map is. Show that every map {0, 1}n → {0, 1}
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is induced by a Boolean polynomial. Show that two Boolean
polynomials are equal if and only if they induce the same map
{0, 1}n → {0, 1}. (Such a map is a “truth function”.)

(c) Let A be a Boolean algebra. A Boolean polynomial in n vari-
ables induces a map An → A. Such a map is called a Boolean
function. Spell out exactly what this map is. Show that two
Boolean polynomials are equal if and only if they induce the
same map An → A. Show that there is a one-to-one correspon-
dence between truth functions {0, 1}n → {0, 1} and Boolean
functions An → A.

17. *Let (Ω,A, P ) be a probability space. For a, b ∈ A, define a function
(a|b) : Ω→ {0, u, 1} by

(a|b)(ω) =





0 if ω ∈ a′ ∩ b
u if ω ∈ b′
1 if ω ∈ a ∩ b

Define the operations ∨,∧, and ′ on {0, u, 1} as in the truth tables
for Lukasiewicz’s three-valued logic. Define

((a|b) ∨ (c|d)) (ω) = (a|b)(ω) ∨ (c|d)(ω)
((a|b) ∧ (c|d)) (ω) = (a|b)(ω) ∧ (c|d)(ω)

(a|b)′(ω) = (a′|b)(ω)

(a) Show that (a|b)→ [a∩ b, b′ ∪ a] is a one-to-one correspondence
between the set {(a|b) : a, b ∈ A} of functions and the set I
{[a ∩ b, b′ ∪ a] : a, b ∈ A} of intervals. (An interval [a, b] is the
set {x ∈ A : a ≤ x ≤ b}.)

(b) On I, define

i. [a, b] ∨ [c, d] = [a ∪ c, b ∪ d]

ii. [a, b] ∧ [c, d] = [a ∩ c, b ∩ d]

iii. [a, b]∗ = [b′, b′]

Show that I is not complemented and that the truth tables of ∨
and ∧ are precisely those of Lukasiewicz three-valued ones. Also
show that if [a∩ b, b′ ∪ a] = [c∩ d, d′ ∪ c], then P (a|b) = P (c|d).
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Chapter 5

BASIC CONNECTIVES

Consider a piece of information of the form “If (x is A and y is not B),
then (z is C or z is D)”. An approach to the translation of this type
of knowledge is to model it as fuzzy sets. To translate completely the
sentence above, we need to model the connectives “and”, “or”, and “not”,
as well as the conditional “If...then...”. This combining of evidence, or
“data fusion”, is essential in building expert systems or in synthesizing
controllers. But the connectives experts use are domain dependent—they
vary from field to field. The connectives used in data fusion in medical
science are different from those in geophysics. So there are many ways to
model these connectives. The search for appropriate models for “and” has
led to a class of connectives called “t-norms”. Similarly, for modeling “or”
there is a class called “t-conorms”. In this chapter we will investigate ways
for modeling basic connectives used in combining knowledge that comes in
the form of fuzzy sets. These models may be viewed as extensions of the
analogous connectives in classical two-valued logic. A model is obtained
for each choice of such extensions, and one concern is with isomorphisms
between the algebraic systems that arise.

5.1 t-norms

Consider first the connective “and”. When A and B are ordinary subsets
of a set U, then the table

A 0 1
B

0 0 0
1 0 1

79
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gives the truth evaluation of “A and B” in terms of the possible truth
values 0 and 1 of A and B. The table just specifies a map ∧ : {0, 1} ×
{0, 1} → {0, 1}. When A and B are fuzzy subsets of U , truth values are the
members of the interval [0, 1], and we need to extend this map to a map
∧ : [0, 1]× [0, 1]→ [0, 1]. One such extension is given by x∧y = min{x, y}.
This mapping does agree with the table above when x and y belong to
{0, 1}. We make the following observations about x ∧ y = min{x, y}.

• 1 acts as an identity. That is, 1 ∧ x = x.

• ∧ is commutative. That is, x ∧ y = y ∧ x .

• ∧ is associative. That is, x ∧ (y ∧ z) = (x ∧ y) ∧ z.

• ∧ is increasing in each argument. That is, if v ≤ w and x ≤ y then
v ∧ x ≤ w ∧ y.

Any binary operation

△: [0, 1]× [0, 1]→ [0, 1]

satisfying these properties is a candidate for modeling the connective
“and” in the fuzzy setting. Note that ∧ is idempotent also, that is, x∧x =
x, but we do not require this for modeling this connective. It turns out
that such operations have already appeared in the theory of probabilistic
metric spaces where they were related to the problem of extending geo-
metric triangular inequalities to the probabilistic setting [187, 188]. They
were termed “triangular norms”, or “t-norms” for short. We will use these
t-norms as a family of possible connectives for fuzzy intersection. Now,
t-norms are binary operations on [0, 1] and a common practice is to de-
note them by T , and write T (x, y). However, this notation can become
awkward, especially in expressions such as T (v, T (T (w, x), y)). Also, in al-
gebra, it is customary to write binary operations between their arguments,
such as x+ y, x∧ y, and so on. So we are going to write t-norms as binary
operations are generally written, between their arguments. One notation
we will use for a t-norm will be △, and we write x △ y. The expression
T (v, T (T (w, x), y)), using the associative law, becomes simply

v△ ((w△ x)△ y) = v△ w△ x△ y.

Here is the formal definition.

Definition 5.1.1 A binary operation △ : [0, 1] × [0, 1] → [0, 1] is a t-

norm if it satisfies the following:

1. 1△ x = x
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2. x△ y = y△ x

3. x△ (y△ z) = (x△ y)△ z

4. If w ≤ x and y ≤ z then w△ y ≤ x△ z

The first, second, and fourth conditions give 0△ x ≤ 0△ 1 = 0, and
the associative law gives unambiguous meaning to expressions such as
u△ v△ w△ x△ y△ z. Some examples follow.

• x△0 y =

{
x ∧ y if x ∨ y = 1
0 otherwise

• x△1 y = 0 ∨ (x+ y − 1)

• x△2 y = xy
2−(x+y−xy)

• x△3 y = xy

• x△4 y = xy
x+y−xy

• x△5 y = x ∧ y

The t-norm △0 is not continuous. The t-norms △0 and △5 are ex-
tremes.

Proposition 5.1.2 If △ is a t-norm, then for x, y ∈ [0, 1],

x△0 y ≤ x△ y ≤ x△5 y

The proof is easy and is an exercise at the end of this chapter.
The t-norm ∧ is the only idempotent one, that is, the only t-norm

△ such that x△ x = x for all x. For any t-norm △, x△ x is never greater
than x. These facts are exercises. So for a t-norm △ 6= ∧ there will be an
element x such that x△ x < x.

Definition 5.1.3 A t-norm △ is convex if whenever x△y ≤ c ≤ x1△y1,
then there is an r between x and x1 and an s between y and y1 such that
c = r△ s.

For t-norms, the condition of convexity is equivalent to continuity. We
refer to the condition as convex. This formulation has the advantage of
being strictly order theoretic, allowing us to remain within the algebraic
context of I as a lattice.

Corollary 5.1.4 If a t-norm△ is convex and a < b, then there is c ∈ [a, 1]
such that a = b△ c.
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Proof. a△ b ≤ 1△ a = a < 1△ b, so by convexity, there is such a c.

Proposition 5.1.5 A t-norm is convex if and only if it is continuous in
each variable.

Proof. If the t-norm is continuous in each variable, then it is convex,
using the intermediate value theorem. Assume △ is convex. Since △ is
monotone increasing in each variable, any point of discontinuity of f(y) =
x△ y is a jump. But convexity precludes this, and so △ is continuous in
each variable.

If instead of [0, 1], we used a lattice, or even just a partially ordered set
L, then convexity makes sense, while there may be no notion of continuity
on L. Thus convexity, while equivalent to continuity on [0, 1], applies to a
much wider class of objects that might be used as fuzzy values.

Definition 5.1.6 A t-norm △ is Archimedean if it is convex, and for
each a, b ∈ (0, 1), there is a positive integer n such that

a[n] =

n times︷ ︸︸ ︷
a△ a△ · · · △ a < b

In general we will write a△a = a[2], a△a△a = a[3], and so on. We use
a[n] instead of an for this t-norm power to distinguish it from a multiplied
by itself n times.

The examples △1,△2,△3, and △4 are all Archimedean. For convex
t-norms, the condition for Archimedean simplifies, as the corollary to the
following proposition attests.

Proposition 5.1.7 If a t-norm△ is Archimedean, then for a, b ∈ (0, 1),
a△ b < b.

Proof. If △ is Archimedean, then for a ∈ (0, 1), clearly a△ a < a
lest a[n] = a for all n. If a < b, then a △ b ≤ b △ b < b. If a > b, then
a△b ≤ 1△b = b. If a△b = b, then a[n]△b = b for all n, but for sufficiently
large n, a[n] ≤ b, and b = a[n] △ b ≤ b△ b, an impossibility.

Corollary 5.1.8 The following are equivalent for a convex t-norm △.

1. △ is Archimedean.

2. a△ a < a for all a ∈ (0, 1).

Proof. Archimedean clearly implies the second condition. Assume that
a △ a < a for all a ∈ (0, 1). Then

∧
n a

[n+1] =
∧

n a
[n] = a △ ∧n a

[n] =
a[2]

∧
n a

[n] = ... =
∧

n a
[n]
∧

n a
[n], using continuity, whence

∧
n a

[n] = 0,
and the corollary follows.
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5.2 Generators of t-norms

Different situations demand different t-norms, and it is of some impor-
tance to be able to construct them. There is an easy way, at least for
Archimedean t-norms. Let 0 ≤ a < 1 and let f be any order isomor-
phism from [0, 1] to [a, 1]. This means that f is one-to-one and onto and
x ≤ y if and only if f(x) ≤ f(y). They will be referred to simply as iso-
morphisms from [0, 1] to [a, 1]. If a = 0, they are automorphisms of
[0, 1], that is, elements of Aut(I). Below is a picture of an order isomor-
phism f.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A generator f for an Archimedean t-norm

For an order isomorphism f : [0, 1] → [a, 1], and an Archimedean t-
norm △, define △f by

x△f y = f−1 ((f(x)△ f(y)) ∨ a)

Theorem 5.2.1 △f is an Archimedean t-norm.

Proof. The proof is routine in all respects. From the formula, it is
clear that △f is commutative. Since f is increasing, so is △f , and

1△f x = f−1(f(1)△ f(x) ∨ a)

= f−1(f(x) ∨ a)

= f−1(f(x))

= x

For associativity, we need

x△f (y△f z) = (x△f y)△f z.
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Using the fact that a ≤ f(x) for any x,

x△f (y△f z) = x△f (f−1(f(y)△ f(z) ∨ a))

= f−1(f(x)△ (f(f−1(f(y)△ f(z) ∨ a))) ∨ a)

= f−1(f(x)△ ((f(y)△ f(z) ∨ a)) ∨ a)

= f−1(f(x)△ f(y)△ f(z) ∨ a)

and

(x△f y)△f z = f−1((ff−1(f(x)△ f(y) ∨ a))△ f(z) ∨ a)

= f−1 ((f(x)△ f(y) ∨ a)△ f(z) ∨ a)

= f−1 (f(x)△ f(y)△ f(z) ∨ a)

Definition 5.2.2 Let • denote the t-norm that is ordinary multiplication.
If △ = •f , then f is a generator of △.

The function f gives an Archimedean t-norm. The truly remarkable
thing is that every Archimedean t-norm can be represented in this way.
The proof of this fact is a bit technical, but perhaps worth including
because of its fundamental nature. A principal reference is [130]. The the-
orem in essence goes back at least to [1]. There is a proof in [2] and some
discussion in [188].

Theorem 5.2.3 If △ is an Archimedean t-norm then there is an a ∈ [0, 1)
and an order isomorphism f : [0, 1]→ [a, 1] such that

x△ y = f−1(f(x)f(y) ∨ a)

for all x, y ∈ [0, 1]. Also if g is an order isomorphism [0, 1] → [b, 1], then
x△ y = g−1(g(x)g(y) ∨ b) if and only if f(x) = g(x)r for some r > 0.

Proof. We outline the construction of a map f satisfying f(x△ y) =
f(x)f(y) for x△ y 6= 0. First we construct a sequence in (0, 1) and define
the function on all finite products under△ of the elements of this sequence.
Then we extend this function to [0, 1] by continuity.

Let z be the largest element of [0, 1] satisfying z△z = 0 and let x0 = 1
2 .

The function x 7→ x△ x is a one-to-one, onto, order preserving mapping
from [z, 1] to [0, 1], so there is a (unique) number x1 ∈ [z, 1] satisfying
x1△ x1 = 1

2 . Define inductively a sequence satisfying xn△ xn = xn−1 for
all positive integers n. This gets a strictly increasing sequence {xi}∞i=0 in
the interval

[
1
2 , 1
)
. The terms 1

2 = x0 < x1 < x2 < ... form a bounded
infinite increasing sequence of points that must converge to some y ≤ 1.
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Since xn = xn+1△xn+1, this sequence also converges to y△y. So y△y = y
and thus y = 1.

Extend this sequence by defining xn = xn+1 △ xn+1 for all negative
integers n. The sequence of points x0 ≥ x−1 ≥ x−2 ≥ x−3 ≥ ... converges
to some number y ≥ 0 and since x−(n+1) = x−n△x−n, it also converges to
y△ y. Thus y△ y = y, whence y = 0. Note that the sequence x0 ≥ x−1 ≥
x−2 ≥ x−3 ≥ ... may or may not be zero from some point on, depending
on the t-norm.

Now define a function f on the sequence {xi : xi 6= 0} by

f(xn) =

(
1

2

)2−n

if xn 6= 0

It is easy to check, using ordinary laws of exponents, that f(xn △ xn) =
f(xn)f(xn) for all integers n such that xn △ xn 6= 0.

Using induction, together with the property that the operation △ is
strictly increasing in each variable, one can show that all nonzero products
(under △) of xi’s can be written uniquely in the form

xi1 △ xi2 △ · · · △ xin

with xi1 < xi2 < · · · < xin . This property allows us to extend f to the set
of nonzero products of the xi’s by

f (xi1 △ xi2 △ · · · △ xin) = f(xi1 )f(xi2) · · · f(xin)

The set of all points of the form xi1 △ xi2 △ · · · △ xin is dense in
the unit interval. To see this, recall that we have already observed that
limn→−∞ xn = 0 and limn→+∞ xn = 1. For a ∈ (0, 1), we must have
xn−1 < a ≤ xn for some integer n = n0. If a 6= xn0 there is a smallest
positive integer n1 such that a < xn0 △ xn1 . Continuing in this fashion
gives a sequence xn0 < xn1 < · · · < xni

< . . . for which limi→+∞ xn0 △
xn1 △ · · · △ xni

= a. Now define

f(a) = lim
i→+∞

i∏

k=0

f(xnk
)

To see that the function f maps the unit interval in the desired way
onto the interval [f(0), 1], note that

i∏

k=0

f(xnk
) =

i∏

k=0

2−2−nk
= 2−

∑i
k=0 2−nk

Since every real number z can be expressed in binary notation, that is,

z =

m∑

j=−∞

aj2
j =

∞∑

j=−m

aj2
−j
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where aj ∈ {0, 1}, the set of numbers of the form
∑i

k=0 2−nk is dense in
the set of real numbers. It is now easy to show that the function f is an
isomorphism from ([0, 1],≤) to ([f(0), 1] ,≤). Also f(x △ y) = f(x)f(y)
whenever x△ y 6= 0, so that x△ y = f−1(f(x)f(y)) if f(x)f(y) ≥ f(0)
and x△ y = 0 otherwise.

Suppose that a mapping g : [0, 1]→ [g(0), 1] gives the same t-norm as
the f just constructed. Then for r =

(
ln 1

2

)
/
(
ln g

(
1
2

))
, rg(12 ) = (g(12 ))r =

1
2 = f(12 ), and we see from the construction of f that f(xi) = g(xi)

r and
hence that f(x) = g(x)r for all x ∈ [0, 1]. Conversely, it is easy to show
that if f(x) = g(x)r , then f and g give the same t-norm.

As mentioned, a function f : [0, 1]→ [a, 1] such that

x△ y = f−1(f(x)f(y) ∨ f(0))

is called a generator of the t-norm △. So every Archimedean t-norm has
a generator, and we know when two generators f and g give the same t-
norm, namely when f(x) = g(x)r for some r > 0. Now there are two kinds
of generators: those f ∈ Aut(I), that is, those f such that f(0) = 0, and
those f such that f(0) > 0. Clearly if f(x) = g(x)r for some r > 0, then
either both f(0) = g(0) = 0, or both f(0) and g(0) are positive. How are
these two properties reflected in the behavior of the t-norms themselves?

Recall that a△ a = a[2], a△ a△ a = a[3], and so on.

Definition 5.2.4 A t-norm △ is nilpotent if for a 6= 1, a[n] = 0 for
some positive integer n, the n depending on a. A t-norm is strict if for
a 6= 0, a[n] > 0 for every positive integer n.

It is easy to see that a△ b = (a+ b− 1)∨0 is nilpotent, and a△ b = ab
is strict.

Lemma 5.2.5 Let f be a generator of the Archimedean t-norm △. Then
a[n] = f−1(f(a)n ∨ f(0)).

The proof is left as an exercise. An immediate consequence is the fol-
lowing.

Corollary 5.2.6 Let f be a generator of the Archimedean t-norm △.
Then △ is nilpotent if and only if f(0) > 0, and △ is strict if and only if
f(0) = 0.

This corollary could be rephrased simply to read “•f is nilpotent if
and only if f(0) > 0”. Archimedean t-norms thus fall naturally into two
classes: nilpotent ones and strict ones. Since we will be dealing almost
exclusively with Archimedean t-norms, the terms nilpotent and strict will
mean in particular Archimedean ones. We restate the previous theorem
for the strict t-norm case.
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Theorem 5.2.7 The t-norm △ is strict if and only if there is an auto-
morphism f ∈ Aut(I) such that x △ y = f−1(f(x)f(y)). Another such
automorphism g satisfies this condition if and only if f(x) = g(x)r for
some r > 0.

We know that two generators f and g give the same t-norm if and
only if f(x) = g(x)r for some positive real number r. In particular, an
Archimedean t-norm does not uniquely determine a generator for it. We
need to sort out this situation.

Definition 5.2.8 A generating function for an Archimedean t-norm is
an order isomorphism [0, 1] → [a, 1], where a ∈ [0, 1). The set of all such
functions for all such a is denoted G.

Generating functions may be composed: for f, g ∈ G, fg is the function
given by (fg)(x) = f(g(x)). Note that Aut(I) ⊂ G. It should be clear that
the composition of generating functions is a generating function. Compo-
sition is associative and has an identity, namely the identity function on
[0, 1]. So it is a monoid. A monoid is a set with an associative binary op-
eration ◦ that has an identity. A submonoid of a monoid is a subset that
contains the identity and contains x◦y for any two elements of the subset.
The unit interval together with any t-norm is a commutative monoid.

Let R+ be the set of positive real numbers. Now R+ is a group under
ordinary multiplication of real numbers: this operation on R+ is associa-
tive, has an identity, and every element has an inverse. For each r ∈ R+,
the mapping [0, 1] → [0, 1] : x → xr is in Aut(I). We identify R+ with
this subset of Aut(I). Multiplication in R+ corresponds to composition of
functions when R+ is viewed as this subset of Aut(I). So R+ is a group
under this composition, that is, it is a subgroup of Aut(I). Further, for
r ∈ R+ and f ∈ G, rf is the function given by (rf)(x) = f(x)r. We have
R+ ⊂ Aut(I) ⊂ G, with G a monoid and R+ and Aut(I) subgroups of this
monoid.

Declaring two generating functions equivalent if they generate the
same t-norm is obviously an equivalence relation. The set of equivalence
classes of this equivalence relation partitions G. What are these equiva-
lence classes? By Theorem 5.2.3, they are the sets {R+f : f ∈ G}, where
R+f = {rf : r ∈ R+}. This proves the following proposition, but we give
a strictly group theoretic proof that the R+f ’s form a partition of G.

Proposition 5.2.9 For f ∈ G, let R+f = {rf : r ∈ R+}. The set {R+f :
f ∈ G} is a partition of G. The generating functions f and g generate the
same t-norm if and only if R+f = R+g.

Proof. For each f , R+f is nonempty and contains f. If h ∈ R+f∩R+g,
then h = rf = sg for some r, s ∈ R+. Thus f = r−1sg, and so for
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any t ∈ R+, tf = tr−1sg ∈ R+g, whence R+f ⊆ R+g. By symmetry,
R+g ⊆ R+f, so R+f = R+g. Thus the R+f form a partition of G. The
second half of the proposition follows from Theorem 5.2.3.

As an immediate consequence, we have the following theorem.

Theorem 5.2.10 Let △f be the Archimedean t-norm with generator f.
Then △f → R+f is a one-to-one correspondence between the set of
Archimedean t-norms and the partition {R+f : f ∈ G} of G.

For those f ∈ Aut(I), we have R+f ⊂ Aut(I). Thus {R+f : f ∈
Aut(I)} partitions Aut(I). In this situation, the R+f are right cosets of
the subgroup R+ in the group Aut(I).

Corollary 5.2.11 Let •f be the strict t-norm with generator f. Then
•f → R+f is a one-to-one correspondence between the set of strict t-norms
and the right cosets of R+ in the group Aut(I).

Here is a problem that arises whenever a set is partitioned by equiva-
lence classes: pick from each equivalence class a “canonical” element. That
is, pick from each class a representative that has some particular feature.
Sometimes such a representative is called a “canonical form”. Such forms
were considered in Section 4.6. We have that situation here. The monoid
G is partitioned by the equivalence classes R+f, where f ranges over G.
Every element rf of R+f gives the same Archimedean t-norm.

Lemma 5.2.12 Let a ∈ (0, 1). An Archimedean t-norm has exactly one
generator f such that f(a) = a.

Proof. Let f ∈ G. The lemma asserts that there is exactly one element
rf in R+f such that (rf)(a) = f(a)r = a. For f(a) = b, there is exactly
one r ∈ R+ such that br = a. Now (rf)(a) = f(a)r = br = a.

Proposition 5.2.13 Let a ∈ (0, 1), and Ga = {g ∈ G : g(a) = a}. Then
Ga is a submonoid of G, and g → •g is a one-to-one correspondence
between Ga and the set of Archimedean t-norms.

Of course, those g ∈ Aut(I) correspond to strict t-norms, and the rest
to nilpotent ones. Also, Ga∩Aut(I), which we denote by Aut(I)a, is a sub-
group of Aut(I) whose intersection with R+ is the identity automorphism
of [0, 1].

Corollary 5.2.14 g → •g is a one-to-one correspondence between the
subgroup Aut(I)a and the set of strict t-norms.

www.EBooksWorld.ir



5.2. GENERATORS OF T-NORMS 89

For nilpotent t-norms, there is another way to pick a representative of
each equivalence class of generators of that t-norm. If △ is a nilpotent t-
norm, and f any generator for it, then f : [0, 1]→ [b, 1] for some b ∈ (0, 1).
Let a ∈ (0, 1). Then there is an r > 0 such that br = a. Now, rf is an order
isomorphism [0, 1] → [br, 1] = [a, 1]. Both f and rf are generators of △,
and the latter is a map [0, 1]→ [a, 1], where we have chosen a arbitrarily
in (0, 1). It should be clear that there is no other generator g of △ such
that g(0) = a.

Corollary 5.2.15 Let a ∈ (0, 1). Then f → f−1(f(x)f(y) ∨ a) is a one-
to-one correspondence between order isomorphisms f : [0, 1] → [a, 1] and
nilpotent t-norms.

It is easy to write down generators of Archimedean t-norms. Just any
order isomorphism from [0, 1] to [a, 1] will do, and if a = 0, we get strict t-
norms. But given such an order isomorphism f , the corresponding t-norm
involves the inverse of f , and that might not be easy to compute. Also,
given an Archimedean t-norm, there may be no way to get a generator for
it short of the construction indicated in the proof of Theorem 5.2.3. But
there are a number of explicit families of Archimedean t-norms known,
along with their generators and inverses of those generators. We will see
some of these later. Following are three well-known t-norms along with
their generators and inverses.

Example 5.2.16 The strict t-norm x△ y = xy has generator f(x) = x,
and so is particularly easy. The inverse of f is just f itself. Also note that
for any r > 0, f(x) = xr will work. In this case, f−1(x) = x

1
r and

f−1(f(x)f(y)) = (xryr)
1
r = ((xy)r)

1
r = xy

Example 5.2.17 x △ y = xy
x+y−xy is a strict t-norm and has generator

f(x) = e−
1−x
x , and f−1(x) = 1

1−lnx as is easily computed. We have

f−1(f(x)f(y)) =
1

1− ln(f(x)f(y))

=
1

1− ln(e−
1−x
x e−

1−y
y )

=

(
1 +

1− x
x

+
1− y
y

)−1

=
xy

x+ y − xy

www.EBooksWorld.ir



90 CHAPTER 5. BASIC CONNECTIVES

Example 5.2.18 x△ y = (x + y − 1) ∨ 0 is a nilpotent t–norm. It has
generator f(x) = ex−1. Since f(0) = e−1, f−1 is defined on [e−1, 1] and
on that interval f−1(x) = 1 + lnx.

f−1(f(x)f(y) ∨ e−1) = f−1(ex−1ey−1 ∨ e−1)

= 1 + ((x+ y − 2) ∨ (−1))

= (x + y − 1) ∨ 0

In the section on t-conorms, we will give additional examples of t-
norms, together with t-conorms, their generators, and negations connect-
ing them.

Historically, Archimedean t-norms have been represented by maps g :
[0, 1] → [0,∞], where g is a strictly decreasing function satisfying 0 <
g(0) ≤ ∞ and g(1) = 0. In this case the binary operation satisfies

g(x△ y) = (g(x) + g(y)) ∧ g(0)

and since this minimum is in the range of g,

x△ y = g−1((g(x) + g(y)) ∧ g(0))

Such functions g are called additive generators of the t-norm △.
The following proposition shows that these two types of representations

give the same t-norms. We use the multiplicative representation, because
it allows us to remain within the context of the unit interval on which
t-norms are defined.

Proposition 5.2.19 Suppose g : [0, 1] → [0,∞] is a continuous, strictly
decreasing function, with 0 < g(0) ≤ ∞ and g(1) = 0. Let

f(x) = e−g(x)

x •f y = f−1(f(x)f(y) ∨ f(0))

x△g+ y = g−1((g(x) + g(y)) ∧ g(0))

Then f : [0, 1]→ [f (0) , 1] is order preserving, one-to-one and onto, and
△g+ = •f .

Proof. It is easy to see that f : [0, 1]→ [f (0) , 1] is such a mapping.
Note that for x in the range of f , then − lnx is in the range of g, and
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f−1(x) = g−1(− lnx). For f(x)f(y) ≥ f (0), we have

x△f y = f−1(f(x)f(y))

= f−1((e−g(x))(e−g(y)))

= f−1(e−(g(x)+g(y)))

= g−1(− ln(e−(g(x)+g(y))))

= g−1(g(x) + g(y))

= x△g+ y

For f(x)f(y) < f(0), we have x△f y = f−1f(0) = 0. Also g(x) + g(y) >
g(0) implies x△g y = g−1(g(0)) = 0.

We will not use additive generators, but the reader should be aware
that they are used by some, but to our knowledge, never to an advan-
tage over multiplicative ones. At the end of this chapter, there are some
exercises about additive generators.

5.3 Isomorphisms of t-norms

We have a way to construct Archimedean t-norms: for a ∈ [0, 1) and an
order isomorphism f : [0, 1]→ [a, 1] define

x •f y = f−1(f(x)f(y) ∨ a)

In particular, if a = 0, then f is just an automorphism of ([0, 1],≤) = I.
And Theorem 5.2.3 says that this gets them all. But this still leaves the
question of when two t-norms are essentially the same. We sort that out
in this section.

A word about notation is in order. We will use various symbols to
denote t-norms, including △, ◦, and ⋄. We have previously used f ◦ g on
occasion to denote composition of functions. However, standard practice
for us is to use fg instead. The context will make clear the meaning. This is
common in mathematics. The same symbol is often used to denote different
operations. For example, + is used to denote addition of matrices as well
as of numbers. Also, we will have many occasions to write ab ∨ c, where
a, b, and c are numbers. This will always mean (ab) ∨ c. But the meaning
of a+ b ∨ c is not so well established and would be written (a+ b) ∨ c or
a+ (b ∨ c), depending on the meaning intended.

Let ◦ be a t-norm and consider the system (I, ◦). This system is simply
I with an additional structure on it, namely the operation ◦. Let ⋄ be
another t-norm on I. The following definition makes precise the notion of
the systems (I, ◦) and (I, ⋄) being structurally the same.
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Definition 5.3.1 Let ◦ and ⋄ be t-norms. The systems (I, ◦) and (I, ⋄)
are isomorphic if there is an element h ∈ Aut(I) such that h(x ◦ y) =
h(x) ⋄h(y). We write (I, ◦) ≈ (I, ⋄). The mapping h is an isomorphism.

This means that the systems ([0, 1],≤, ◦) and ([0, 1],≤, ⋄) are isomor-
phic in the sense of universal algebra: there is a one-to-one map from [0, 1]
onto [0, 1] that preserves the operations and relations involved. If (I, ◦) ≈
(I, ⋄), we also say that the t-norms ◦ and ⋄ are isomorphic.

Isomorphism between t-norms is an equivalence relation and so parti-
tions t-norms into equivalence classes. The t-norm min is rather special.
A t-norm ◦ is idempotent if a◦a = a for all a ∈ [0, 1]. If ◦ is idempotent,
then for a ≤ b, a = a ◦ a ≤ a ◦ b ≤ a ◦ 1 = a, so ◦ = min. Thus min is the
only idempotent t-norm. Further, it should be clear that the only t-norm
isomorphic to min is min itself. It is in an equivalence class all by itself.

An isomorphism of a system with itself is called an automorphism.
It is easy to show that the set of automorphisms of (I, ◦) is a subgroup
of Aut(I). Thus, with each t-norm ◦, there is a group associated with it,
namely the automorphism group

Aut(I, ◦) = {f ∈ Aut(I) : f(x ◦ y) = f(x) ◦ f(y)}

This is also called the automorphism group of the t-norm ◦. For the t-norm
a ∧ b = min{a, b}, it is clear that Aut(I,∧) = Aut(I).

By an isomorphism from a group G to a group H we mean a one-to-
one onto map ϕ : G → H such that ϕ(xy) = ϕ(x)ϕ(y) for all x and y in
G. In groups, it is customary to write “product” of x and y simply as xy. If
H is a subgroup of a group G, and g ∈ G, then g−1Hg = {g−1hg : h ∈ H}
is a subgroup of G. This subgroup is said to be conjugate to H , or a
conjugate of H. The map h → g−1hg is an isomorphism from H to its
conjugate g−1Hg.

Theorem 5.3.2 If two t-norms are isomorphic then their automorphism
groups are conjugate.

Proof. Suppose that ◦ and ⋄ are isomorphic. Then there is an isomor-
phism f : (I, ◦) → (I, ⋄). The map g → f−1gf is an isomorphism from
Aut(I, ⋄) to Aut(I, ◦), so f−1Aut(I, ⋄)f = Aut(I, ◦).

Restating Theorem 5.2.7, we have

Theorem 5.3.3 The Archimedean t-norm ◦ is strict if and only if it is
isomorphic to multiplication, that is, if and only if there is an element
f ∈ Aut(I) such that f(x ◦ y) = f(x)f(y). Another element g ∈ Aut(I)
satisfies this condition if and only if f = rg for some r > 0.
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So a generator of a strict t-norm ◦ is just an isomorphism from Aut(I, ◦)
to Aut(I, •). (The symbol • stands for the t-norm x • y = xy, that is,
ordinary multiplication of real numbers.)

Corollary 5.3.4 For any strict t-norm ◦, Aut(I, ◦) ≈ Aut(I, •).

Corollary 5.3.5 For any two strict t-norms ◦ and ⋄, Aut(I, ◦) ≈ Aut(I, ⋄).

We spell out exactly what the isomorphisms from Aut(I, ◦) to Aut(I, ⋄)
are.

Theorem 5.3.6 Let •f and •g be strict t-norms. Then h : (I, •f )→ (I, •g)
is an isomorphism if and only if g−1rf = h for some r > 0. That is, the
set of isomorphisms from (I, •f ) to (I, •g) is the set

g−1R+f = {g−1rf : r ∈ R+}.

Proof. An isomorphism h : (I, •f ) → (I, •g) gets an isomorphism gh :
(I, •f ) → (I, ·) which must be rf for some r ∈ R+. So h = g−1rf . For any
r, g−1rf is an isomorphism.

(I, •f) (I, •g)✲h

(I, •)

f
❅
❅
❅
❅❘

g
�

�
�

�✠

Corollary 5.3.7 Aut(I, •f ) = f−1R+f ≈ R+.

Proof. The set of automorphisms of (I, •f ) is f−1R+f . It is a subgroup
of Aut(I), and is isomorphic to R+ via the mapping f−1rf → r.

Corollary 5.3.8 Aut(I, •) = R+.

In the case of strict t-norms we have that Aut(I, •f) = f−1R+f ⊆
Aut(I). It turns out that these are the only convex t-norms with such
automorphism groups.

Proposition 5.3.9 Let ◦ be a convex t-norm. Then Aut(I, ◦) = f−1R+f
for some f ∈ Aut(I) if and only if ◦ is a strict t-norm.
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Proof. Suppose that Aut(I, ◦) = f−1R+f and suppose that for some
a ∈ (0, 1), a ◦ a = a. Then for any element b ∈ (0, 1), there is an
element g ∈ Aut(I, ◦) such that g(a) = b, namely g = f−1rf where
r = ln f (b) / ln f (a). Thus

b ◦ b = g(a) ◦ g(a) = g(a ◦ a) = g(a) = b,

so that ◦ is idempotent. But the only idempotent t-norm is min, and
Aut(I,min) = Aut(I) 6= f−1R+f . Thus a ◦ a < a for all a ∈ (0, 1), and ◦
is Archimedean. The t-norm is not nilpotent, by the preceding corollary,
and thus it is strict.

We cannot conclude that the function f in the proposition is a gen-
erator of ◦. Corollary 5.3.7 says that Aut(I, •f ) = f−1R+f, where •f is
the t-norm with generator f. But as we will see later, it is possible that
f−1R+f = g−1R+g without g being a generator of •f .

Now we look at isomorphisms between nilpotent t-norms. There are two
basic facts : any two are isomorphic, and each has a trivial automorphism
group.

Theorem 5.3.10 Let •f and •g be nilpotent. Let r ∈ R+ with g(0) =
(f(0))r. Then g−1rf is the unique isomorphism from (I, •f ) to (I, •g).

Proof. First note that g−1rf ∈ Aut(I). To show that g−1rf is an
isomorphism from (I, •f ) to (I, •g), we need to show that g−1rf(a •f b) =
g−1rf(a) •g g−1rf(b).

g−1rf(a •f b) = g−1rff−1(f(a)f(b) ∨ f(0))

= g−1r(f(a)f(b) ∨ f(0))

g−1rf(a) •g g−1rf(b) = g−1(gg−1rf(a)gg−1rf(b) ∨ g(0))

= g−1(rf(a)rf(b) ∨ g(0))

= g−1((f(a)f(b))r ∨ f(0)r)

= g−1r(f(a)f(b) ∨ f(0))

Suppose that ϕ : (I, •f ) → (I, •g) is an isomorphism. Then

ϕf−1(f(a)f(b) ∨ f(0)) = g−1((gϕ)(a)(gϕ)(b) ∨ g(0))

Thus

f−1(f(a)f(b) ∨ f(0)) = ϕ−1g−1((gϕ)(a)(gϕ)(b) ∨ g(0))

= (gϕ)−1((gϕ)(a)(gϕ)(b) ∨ gϕ(0))

Since f and gϕ generate the same nilpotent t-norm, gϕ = rf, so ϕ =
g−1rf , and g(0) = (f(0))r as asserted.
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Corollary 5.3.11 If ◦ is a nilpotent t-norm, then Aut(I, ◦) = {1}.

By Theorem 5.3.10, there is exactly one isomorphism between any two
nilpotent t-norms. The particular nilpotent t-norm xN y = (x+y−1)∨0 is
called Lukasiewicz’s t-norm. It is perhaps the simplest looking nilpotent
t-norm, just as multiplication is the simplest strict t-norm. In any case, if
△ is a nilpotent t-norm, it is isomorphic to N. There is an element f of
Aut(I) such that f(x◦y) = f(x)N f(y). In the strict case, a generator was
an automorphism of Aut(I). In the nilpotent case, a generator was not such
an automorphism. But now we know that every nilpotent t-norm ⋄ comes
about as x◦y = f−1(f(x)N f(y)) for a unique f ∈ Aut(I). Such an f is an
L-generator of the nilpotent t-norm ◦. It is just the unique isomorphism
of ◦ with N. We will consistently use N to denote the Lukasiewicz t-norm
and Nf to denote the nilpotent t-norm f−1(f(x)N f(y)). So f(xNf y) =
f(x)N f(y), and this is for every automorphism f ∈ Aut(I).

Theorem 5.3.12 For f ∈ Aut(I), let xNf y = f−1(f(x)N f(y)). Then
f → Nf is a one-to-one correspondence between Aut(I) and the set of
nilpotent t-norms.

This one-to-one correspondence betweenAut(I) and the set of nilpotent
t-norms gives the latter set the structure of a group, namely the binary
operation defined by NfNg = Nf g. This is a triviality. Given any group G
and any set S and a one-to-one correspondence φ : G→ S, then S becomes
a group under the binary operation st = φ(φ−1(s)φ−1(t)). However, our
correspondence suggests a way to get “natural” sets of nilpotent t-norms.
For a subgroup G of Aut(I), what is the corresponding set of nilpotent
t-norms? One must compute f−1((f(x) + f(y)− 1) ∨ 0) for every f ∈ G.
This may be difficult, the difficulty generally being in computing f−1.
There is one easy case, namely that of the subgroup R+. For any r ∈
R+, we have the nilpotent t-norm r−1((r(x) + r(y) − 1) ∨ 0), or if you

will, ((xr + yr − 1) ∨ 0)
1/r

. When r = 1, we get Lukasiewicz’s t-norm, as
should be.

Here is the formula for passing between generators and L-generators
of nilpotent t-norms.

Proposition 5.3.13 Let f be a generator of a nilpotent t-norm △. Then
the L-generator of △ is

g(x) = 1− ln f(x)

ln f(0)

The inverse of g is
g−1(x) = f−1(f(0)1−x)
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Proof. A generator for N is h(x) = ex−1, and h−1(x) = ln(x) + 1.
From Theorem 5.3.10, the unique isomorphism from △ to N is

g(x) = h−1f(x)
lnh(0)
ln f(0)

=
lnh(0)

ln f(0)
ln f(x) + 1

=
−1

ln f(0)
ln f(x) + 1

= 1− ln f(x)

ln f(0)
.

Calculating g−1 is easy.

Note that g(x) is independent of which f is picked, since any other
generator is rf for some r ∈ R+. Also, if f(0) = e−1, then g(x) = 1 +
ln f(x).

5.4 Negations

The complement A′ of a fuzzy set A has been defined by A′(x) = 1−A(x).
This is the same as following A by the function [0, 1]→ [0, 1] : x→ 1− x.
This latter function is an involution of the lattice I =([0, 1],≤). That is,
it is order reversing and applying it twice gives the identity map. In fuzzy
set theory, such a map η : [0, 1]→ [0, 1] is also called a strong negation.
A strong negation η satisfies:

(i) η(0) = 1, η(1) = 0.

(ii) η is nonincreasing.

(iii) η(η(x)) = x.

A map satisfying only the first two conditions is a negation. It is clear
that there are many of them: any nonincreasing map that starts at 1 and
goes to 0. Such simple maps as η(x) = 1 if x = 1 and = 0 otherwise,
and η(x) = 0 if x = 0 and = 1 otherwise, are negations. But they are of
little interest to us here. We will restrict our attention to involutions, and
refer to them simply as negations. The reader should be warned that in
other areas, including logic programming, constructive mathematics, and
mathematical logic, strong negation has meanings other than involution.

We will use α for the particular negation x → 1 − x, and η to denote
a negation in general. Other commonly used notations are N and ′.

The negation α is not in Aut(I) since it reverses order rather than
preserves it. A mapping f : [0, 1]→ [0, 1] that is one-to-one and onto, and
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such that f(x) ≥ f(y) if and only if x ≤ y is an antiautomorphism of I.
The set of all automorphisms and antiautomorphisms is denoted Map(I),
and is a group under the operation of composition of functions. Aut(I) is
a subgroup of it. The composition of two antiautomorphisms is an auto-
morphism, the inverse of an antiautomorphism is an antiautomorphism,
and the composition of an automorphism and an antiautomorphism is an
antiautomorphism. All this is easy to verify.

An element f ∈ Map(I) has order n if fn = 1, and n is the smallest
such positive integer. If no such integer exists, the element has infinite
order. All the elements of Aut(I) have infinite order except 1, which has
order 1. All antiautomorphisms are either of order two or of infinite order.
Antiautomorphisms of order 2 are called involutions. So negations and
involutions are the same, and α is just a particular involution. Following
are the graphs of the involutions α(x) = 1−x and η(x) = (1−x)/(1+5x).

0.0 0.5 1.0
0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

α(x) = 1− x η(x) = (1− x)/(1 + 5x)

In any group, an element of the form f−1gf is a conjugate of g. In
Map(I), conjugates of automorphisms are automorphisms, conjugates of
antiautomorphisms are antiautomorphisms, and conjugates of negations
are negations. So an element of the form f−1αf is also a negation.

If g is an element of a group G, then the set {f ∈ G : fg = gf}
is the centralizer of g. So this centralizer is just all those elements of
G that commute with g. It is a subgroup of G. We will be interested
in a subgroup of the centralizer of α, namely those elements in Aut(I)
that commute with α. This subgroup we denote Z(α). It is the subgroup
{f ∈ Aut(I) : fα = αf}. It is the centralizer of α in Aut(I).

We will prove results analogous to those for t-norms in the previous
sections. For example, every strict t-norm was constructed from the strict
t-norm multiplication and an automorphism f of I. In the same vein, every
negation comes from the particular negation α and an automorphism. Here
is the theorem.
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Theorem 5.4.1 Let β be a negation in Map(I). Let

f(x) =
αβ(x) + x

2

Then f ∈ Aut(I), and β = f−1αf . Furthermore, g−1αg = β if and only
if gf−1 ∈ Z(α).

Proof. Since f is the average of the two automorphisms αβ and the
identity, it is an automorphism.

fβ(x) =
αβ(β(x)) + β(x)

2

=
1− x+ β(x)

2

and

αf(x) = 1− αβ(x) + x

2

=
1 + β(x)− x

2

so we have fβ = αf , so β = f−1αf . Now, g−1αg = f−1αf if and only if
gf−1αfg−1 = α if and only if gf−1α = αgf−1 if and only if gf−1 ∈ Z(α).

An automorphism f such that β = f−1αf is a generator of β. In
general, if η is a negation, we denote f−1ηf by ηf . This means that f is
a generator of αf . So every negation has a generator, and we know when
two elements of Aut(I) generate the same negation. This theorem seems
to be due to Trillas [200], who takes as generators functions from [0, 1] to
[0,∞].

One consequence of this theorem is that two elements f and g of Aut(I)
determine the same negation, that is, that g−1αg = f−1αf, if and only if
gf−1 ∈ Z(α). But this is the same as Z(α)f = Z(α)g. Hence we have the
following theorem.

Theorem 5.4.2 The map αf → Z(α)f is a one-to-one correspondence
between the negations of I and the set of right cosets in Aut(I) of the
centralizer Z(α) of α.

Actually, we can give a method for constructing all elements of Z(α).

Proposition 5.4.3 Z(α) = {αfα+f
2 : f ∈ Aut(I)}.
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Proof. If g ∈ Z(α), then

αgα+ g

2
=
gαα+ g

2
=
g + g

2
= g

so g has the right form. For the other inclusion, we have the equations
(
α
αfα+ f

2

)
(x) = 1− αfα(x) + f(x)

2

=
2− αfα(x) − f(x)

2

=
1− αfα(x) + 1− f(x)

2

=
fα(x) + αf(x)

2(
αfα+ f

2
α

)
(x) =

αfαα(x) + fα(x)

2

=
αf(x) + fα(x)

2

This proposition gives a map

Aut(I)→ Z(α) : g → αgα+ g

2

This map fixes Z(α) elementwise. It is not a group homomorphism.
Consider two systems (I, β) and (I, γ) where β and γ are negations.

They are isomorphic if there is a map h ∈ Aut(I) with h(β(x)) = γ(h(x)),
that is if hβ = γh, or equivalently, if β = h−1γh. Let f and g be generators
of β and γ, respectively. If h is an isomorphism, then hf−1αf = g−1αgh,
which means that

f−1αf = h−1g−1αgh = (gh)−1αgh

Therefore, f and gh generate the same negation, and so zf = gh for
some z ∈ Z(α). Thus h ∈ g−1Z(α)f . It is easy to check that elements of
g−1Z(α)f are isomorphisms (I, β) → (I, γ). We have the following theo-
rem.

Theorem 5.4.4 The set of isomorphisms from (I, αf ) to (I, αg) is the set
g−1Z(α)f = {g−1zf : z ∈ Z(α)}. In particular, g−1f is an isomorphism
from (I, αf ) to (I, αg).

Note that Z(α) plays a role for negations analogous to that of R+ for
strict t-norms. If we call two negations β and γ isomorphic if (I, β) ≈
(I, γ), then the previous theorem says in particular that any two negations
are isomorphic. We have the following special cases.
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Corollary 5.4.5 The set of isomorphisms from (I, αf ) to (I, α) is the
right coset Z(α)f of Z(α). In particular, the generator f of a negation β
is an isomorphism from (I, β) to (I, α).

Noting that f−1Z(α)f = Z(β), we have

Corollary 5.4.6 Aut(I, αf ) = f−1Z(α)f = Z(αf ), and in particular,
Aut(I, α) = Z(α).

Since z → f−1zf is an isomorphism from the group Z(α) = Aut(I,α)
to f−1Z(α)f = Aut(I, β), we get

Corollary 5.4.7 For any two negations β and γ, Aut(I, β) ≈ Aut(I, γ).

Of course this last corollary follows also because the two systems (I, β)
and (I, γ) are isomorphic. The main thrust of all this is that furnishing I
with any negation yields a system isomorphic to that gotten by furnishing
I with the negation α : x→ 1− x.

5.5 Nilpotent t-norms and negations

We get all negations as conjugates of α, but there are other ways to
construct them. Nilpotent t-norms give rise to negations in various ways,
and we look at three of those. In a Boolean algebra,

∨{y : x∧y = 0} exists
and is the complement of x, and sending x to this element is a negation
in that Boolean algebra. Since [0, 1] is a complete lattice, we can certainly
perform the same construction for any binary operation△ on [0, 1], and in
particular with respect to a nilpotent t-norm. For a nilpotent t-norm, this
does turn out to be a negation, and what that negation is in terms of a
generator and an L-generator for the t-norm is spelled out in the following
theorem.

Theorem 5.5.1 Let △ be a nilpotent t-norm, f be a generator of △, and
g be the L-generator of △. Let

η△(x) =
∨{y : y△ x = 0}

Nf (x) = f−1
(

f(0)
f(x)

)

αg(x) = g−1αg

Then η△(x) = Nf (x) = αg(x) and this function is a negation. In particu-
lar, ηf (x) is independent of the particular generator f of △.
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Proof. Let g be an L-generator of △. Then

η△(x) =
∨{y : y△ x = 0}

=
∨{y : g−1((g(x) + g(y)− 1) ∨ 0) = 0}

=
∨{y : (g(x) + g(y)− 1) ≤ 0}

=
∨{y : (g(x) + g(y)− 1) = 0}

Hence g(y) = 1 − g(x), whence y = g−1αg(x). Thus η△(x) = αg(x), and
since g−1αg is a negation, so is η△(x).

Nf (x)△ x = f−1

(
f(0)

f(x)

)
△ x

= f−1

(
f

(
f−1

(
f(0)

f(x)

))
f(x) ∨ f(0)

)

= f−1

((
f(0)

f(x)

)
f(x) ∨ f(0)

)

= f−1 (f(0) ∨ f(0))

= 0

Therefore Nf (x) ≤ η△(x). If y △ x = 0, then 0 = f−1 (f(y)f(x) ∨ f(0))

and so f(x)f(y) ≤ f(0). Thus y ≤ f−1
(

f(0)
f(x)

)
and the desired equality

holds, that is, Nf(x) = η△(x), and in particular Nf (x) is a negation.

Definition 5.5.2 The negation in Theorem 5.5.1 is the natural nega-

tion associated with that nilpotent t-norm.

So there are three equivalent ways to get the natural negation of a
nilpotent t-norm △: from a generator, from its L-generator, and directly
from the t-norm as η△(x) =

∨{y : y △ x = 0}. This is the residual of
x with respect to △. It is of no interest to make this construction for a
strict t-norm. In that case, η△(x) = 0 if x 6= 0 and η△(0) = 1.

Every nilpotent t-norm is of the form Nf for a unique f ∈ Aut(I),
so we get ηNf

(x) = f−1αf. This implies that distinct nilpotent t-norms

can have the same associated natural negation since f−1αf determines f
only up to left multiplication by elements of Z(α). Restated, this says that
two nilpotent t-norms have the same natural negation if and only if their
L-generators f and g satisfy Z(α)f = Z(α)g, that is, determine the same
right coset of Z(α) in Aut(I).

We now determine conditions on generators of nilpotent t-norms for
them to give the same natural negation.
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Theorem 5.5.3 Let f and g be generators of nilpotent t-norms with f(0) =
g(0) = a. Then Nf = Ng if and only if for x ∈ [a, 1],

fg−1
(a
x

)
=

a

fg−1(x)

Proof. We have ηf = ηg if and only if for all x,

f−1

(
f(0)

f(x)

)
= g−1

(
g(0)

g(x)

)

Replacing x by g−1(x), this is equivalent to

(
a

fg−1(x)

)
= fg−1

(a
x

)

and the theorem is proved.

So Ng = Nf if and only if the automorphism h = fg−1 of ([a, 1],≤)
satisfies the equation h(a

x ) = a
h(x) . Such automorphisms are easy to de-

scribe. First notice that h(
√
a) =

√
a, so that h induces an automorphism

of ([a,
√
a],≤). Further, h is determined on all of [a, 1] by its action on

[a,
√
a] by the condition h(a

x ) = a
h(x) , or equivalently, h(x) = a

h( a
x
) . Now if

h is any automorphism of ([a,
√
a],≤) define h on [

√
a, 1] by

h(x) =
a

h(a
x )

Then h becomes an automorphism of ([a, 1],≤) satisfying

h
(a
x

)
=

a

h(x)

Let Ha be this set of automorphisms of ([a, 1],≤) just described. There
are lots of them: they are in one-to-one correspondence with the automor-
phisms of ([a,

√
a],≤). Take any such automorphism and extend it to an

automorphism of ([a, 1],≤) as indicated and this gets an element of Ha.
The set Ha is a subgroup of the automorphism group of ([a, 1],≤).

Two generators f and g of nilpotent t-norms with f(0) = g(0) = a give
the same negation if and only if fg−1 ∈ Ha. In particular, f and hf for
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5.5. NILPOTENT T-NORMS AND NEGATIONS 103

any h ∈ Ha give the same negation:

(hf)−1

(
hf(0)

hf(x)

)
= f−1h−1

(
h(a)

hf(x)

)

= f−1h−1

(
a

hf(x)

)

= f−1h−1h

(
a

f(x)

)

= f−1

(
a

f(x)

)

= f−1

(
f(0)

f(x)

)

A particularly simple class of nilpotent t-norms are those that have
straight lines as generators, as in the picture below. For a ∈ (0, 1) they are
the functions [0, 1]→ [a, 1] given by the formula f(x) = (1− a)x + a.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

The generator f(x) = (1− a)x+ a, with a = 1/3
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The inverse is f−1(x) = x−a
1−a and the resulting negation is

Nf (x) = f−1

(
f(0)

f(x)

)

= f−1

(
a

(1− a)x+ a

)

=

(
a

(1− a)x+ a
− a
)
/ (1− a)

=
1− x

1 + 1−a
a x

Since a ranges over (0, 1), 1−a
a ranges over (0,∞). A negation of the form

1− x
1 + bx

with b ∈ (−1,∞) is called a Sugeno negation. Therefore the nilpotent
t-norms with a linear generator give Sugeno negations, but only those with
b > 0. Those negations with b < 0 come from t-conorms, which we will see
in the next section.

5.6 t-conorms

The notion of t-norm plays the role of intersection, or in logical terms,
“and”. The dual of that notion is that of union, or “or”. In the case of
sets, union and intersection are related via complements. The well-known
De Morgan formulas do that. They are

A ∪B = (A′ ∩B′)′

A ∩B = (A′ ∪B′)′

where ′ indicates complement. But in the fuzzy setting we have many
“complements”. Any negation plays such a role. For a binary operation △
on [0, 1], we can define its dual with respect to any negation η, namely

x▽ y = η(η(x)△ η(y))

Since η is an involution, this last equation holds if and only if

x△ y = η(η(x)▽ η(y))

So if these equations hold, then we say that △ and ▽ are dual with
respect to η. In the case △ is a t-norm, then ▽ is called a t-conorm.
So a t-conorm is the dual of some t-norm with respect to some negation.
The following theorem gives properties characterizing t-conorms.
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5.6. T-CONORMS 105

Theorem 5.6.1 A binary operation ▽ on [0, 1] is a t-conorm if and only
if

1. 0▽ x = x

2. x▽ y = y▽ x

3. x▽ (y▽ z) = (x▽ y)▽ z

4. If w ≤ x and y ≤ z then w▽ y ≤ x▽ z

Proof. Suppose that ▽ satisfies the conditions of the theorem. Let η
be any negation, and let x△ y = η(η(x)▽ η(y)). Then △ is a t-norm. For
example,

(x△ y)△ z = η (η(x)▽ η(y))△ z
= η [η {η (η(x)▽ η(y))}▽η(z)]
= η [(η(x)▽ η(y))▽ η(z)]
= η [η(x)▽ (η(y)▽ η(z))]
= η [η(x)▽ η {η (η(y)▽ η(z))}]
= x△ (y △ z)

The rest of the verification that △ is a t-norm is left for the reader. Con-
versely, if x▽ y = η (η(x)△ η(y)) for a t-norm △ and a negation η, then
it is easy to verify that ▽ satisfies the conditions of the theorem.

The most frequently used negation is x → 1 − x. If a t-norm and
t-conorm are dual with respect to this negation, we will just say that
they are dual. For a nilpotent t-norm, its natural dual is its dual with
respect to its natural negation. For example, the natural dual of N is
xH y = (x+ y) ∧ 1, as is easily checked. This conorm is the Lukasiewicz
conorm.

Definition 5.6.2 A t-conorm is Archimedean if it is dual to a t-norm
that is Archimedean, is nilpotent if it is dual to a nilpotent t-norm, and
is strict if it is dual to a strict t-norm.

A t-conorm ▽ is nilpotent if and only if for x ∈ (0, 1], x[n] = 1 for
some n, where x[n] means x conormed with itself n times. If a t-norm or
t-conorm is Archimedean, then a dual of it with respect to any negation
is Archimedean. Similar statements hold for nilpotent and strict.

If the t-norm △ has a generator f , and η is a negation, then for the
dual ▽ of △ with respect to η we have

x▽ y = η(η(x)△ η(y))

= ηf−1(f(η(x))(fη(y)) ∨ f(0))

= (fη)−1((fη)(x)(fη)(y) ∨ (fη)(1))
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Thus Archimedean t-conorms have a representation by functions much in
the same way as Archimedean t-norms do. The function fη is a cogener-
ator for ▽. It is an order reversing, one-to-one mapping [0, 1]→ [b, 1] for
some b ∈ [0, 1). If g is such a mapping, then

x▽ y = g−1(g(x)g(y) ∨ g(1))

is an Archimedean t-conorm, is nilpotent if and only if g(1) > 0, and is
strict if and only if g(1) = 0. These statements follow easily using the
duality of t-conorms with t-norms. The conorm cogenerated by an order
reversing, one-to-one mapping g : [0, 1]→ [b, 1] will be denoted •g. So •g is
a t-norm if g is an isomorphism and a t-conorm if g is an anti-isomorphism.

If f is the L-generator of a nilpotent t-norm △, and η is a negation,
then

x▽ y = η(η(x)△ η(y))

= ηf−1(f(η(x)) + (fη(y)− 1) ∨ 0)

= (fη)−1((fη)(x) + (fη)(y)− 1) ∨ 0)

= (fη)−1((fη)(x)N (fη)(y))

Thus
fη(x▽ y) = (fη)(x)N (fη)(y)

Therefore, fη is an anti-isomorphism from ▽ to N, and necessarily the
only one. Such an anti-isomorphism is an L-cogenerator of the nilpotent
t-conorm ▽.

There is a negation associated with nilpotent t-conorms. The construc-
tion is dual to the t-norm case. If ▽ is a nilpotent t-conorm and g is a
cogenerator of it, the negation is

N▽(x) = g−1

(
g(1)

g(x)

)

Furthermore, N▽(x) =
∧{y : x▽ y = 1}, dual to the t-norm case.

The proof of the following theorem is routine.

Theorem 5.6.3 If f is a generator of a nilpotent t-norm △ and β is a
negation, then the negation associated with the t-conorm with cogenerator
fβ is βN△β. That is, Nfβ = βNfβ. In particular, if β is the natural
negation of △, then Nfβ = Nf .

The cogenerators of nilpotent t-conorms that are straight lines give
Sugeno negations (1− x) / (1 + λx) for λ ∈ (−1, 0). This is left as an
exercise.
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5.7 De Morgan systems

Let △ be a t-norm and β a negation. Then ▽ defined by x▽y = β(β(x)△
β(y)) is a t-conorm. If a t-norm and t-conorm are related in this way by the
negation β, then (I,△, β,▽) is a De Morgan system, or a De Morgan
triple, and the t-norm △ and the t-conorm ▽ are said to be dual to one
another via the negation β.

For notational reasons, we are going to adorn our operators with their
generators. So a De Morgan system looks like (I, •f , αg, •h). Being a De
Morgan system implies however that •h = •fαg

. Now suppose that

q : (I, •f , αg, •h)→ (I, •u, αv, •w)

is an isomorphism. Then q ∈ Aut(I) and the following hold.

q(x •f y) = q(x) •u q(y)

q(αg(x)) = αvq(x)

q(x •h y) = q(x) •w q(y)

But since x •h y = αg(αg(x) •f αg(y)) and x •w y = αv(αv(x) •u αv(y)), if
the first two equations hold, then

q(x •h y) = q (αg(αg(x) •f αg(y)))

= αvq((αg(x) •f αg(y)))

= αv(q(αg(x)) •u q (αg(y)))

= αv(αv(q(x)) •u (αvq(y)))

= q(x) •w q(y)

Therefore to be an isomorphism, q need only be required to satisfy the first
two conditions. That is, isomorphisms from (I, •f , αg, •h) to (I, •u, αv, •w)
are the same as isomorphisms from (I, •f , αg) to (I, •u, αv). We will also
call these systems De Morgan systems.

If the t-norm of a De Morgan system is strict, then so is its t-conorm,
and if the t-norm is nilpotent, so is its t-conorm. It is convenient to separate
the two cases—strict De Morgan systems and nilpotent De Morgan
systems.

5.7.1 Strict De Morgan systems

In this section, all our De Morgan systems will be strict. To determine the
isomorphisms q from (I, •f , αg) to (I, •u, αv), we just note that such a q
must be an isomorphism from (I, •f ) to (I, •u) and from (I, αg) to (I, αv).
Therefore, from Theorems 5.3.6 and 5.4.4, we get the following theorem.
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Theorem 5.7.1 The set of isomorphisms from (I, •f , αg) to (I, •u, αv) is
the set (

u−1R+f
)
∩
(
v−1Z(α)g

)

This intersection may be empty, of course. That is the case when the
equation u−1rf = v−1zg has no solution for r > 0 and z ∈ Z(α). A
particular example of this is the case where f = g = u = 1, v /∈ Z(α), and
v
(
1
2

)
= 1

2 . Then r = v−1z with r > 0 and z ∈ Z(α). But then

r

(
1

2

)
= v−1z

(
1

2

)
=

(
1

2

)r

=
1

2

Thus r = 1, and so v = z. But v /∈ Z(α). So there are De Morgan systems
(I, •f , αg) and (I, •u, αv) that are not isomorphic. When two De Morgan
systems are isomorphic, the isomorphism is unique. We need a lemma.

Lemma 5.7.2 For any f and g ∈Map(I),
(
f−1R+f

)
∩
(
g−1Z(α)g

)
= {1}

Proof. If f−1rf = g−1zg, then gf−1r = zgf−1. There is x ∈ [0, 1]
such that gf−1(x) = 1

2 . For this x, gf−1r(x) = zgf−1(x) = z
(
1
2

)
= 1

2 ,
and so gf−1(xr) = 1

2 . But gf−1(x) = 1
2 , and since gf−1 is one-to-one,

r = 1 and the lemma follows.

Theorem 5.7.3 (I, •f , αg) ≈ (I, •u, αv) if and only if

(I, •u, αv) = (I, •fh, αgh)

for some h ∈ Aut(I), in which case h−1 is the only such isomorphism. In
particular, (I, •f , αg) ≈ (I, •, αgf−1).

Proof. It is easy to check that h−1 is an isomorphism from (I, •f , αg)
to (I, •fh, αgh). If k is such an isomorphism, then k = u−1rf = v−1zg
for some r ∈ R+ and z ∈ Z(α). Thus u = rfk−1 and v = zgk−1 and so
(I, •u, αv) = (I, •fk−1 , αgk−1 ). If k were distinct from h−1, then kh would
be a nontrivial automorphism of (I, •f , αg). But by the lemma, this is
impossible.

One implication of this theorem, taking f = g, is that the theory of the
strict De Morgan systems (I, •f , αf ) is the same as that of (I, •, α). More
generally this holds for (I, •f , αg) and (I, •, αgf−1). This suggests that in
applications of strict De Morgan systems, one may as well take the strict
t-norm to be ordinary multiplication.

Corollary 5.7.4 Aut((I, •f , αg)) = {1}.
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Corollary 5.7.5 (I, •, β) ≈ (I, •, γ) if and only if γ = r−1βr for some
r ∈ R+.

Taking β = α in this last corollary, we see that (I, •, α) ≈ (I, •, γ) if
and only if γ = r−1αr for some r ∈ R+. So strict De Morgan systems
isomorphic to (I, •, α) are exactly those of the form (I, •, αr) with r ∈ R+.
Negations of the form r−1αr are Yager negations [226]. Thus we have
the following corollary.

Corollary 5.7.6 The De Morgan systems (I, •, β) that are isomorphic to
(I, •, α) are precisely those with β a Yager negation.

Here are some examples of strict De Morgan systems. It is easy to spec-
ify them. Just pick an f ∈ Aut(I) and a negation η. Then (I, •f , η, •fη) is
a De Morgan system. Since the t-conorm •fη is determined by •f and η,
one need specify only the t-norm and negation. But it may not be easy
to compute the t-norms, negations, and t-conorms from given generators.
In each of the examples below, we give t-norms, negations, t-conorms,
and the generators of the t-norms. Also, each example will be a family
of examples. Taking the same parameter(s) for the t-norm, t-conorm, and
negation, gives a De Morgan system.

Dombi

t-norm
1

1 +
[
(1−x

x )r + (1−y
y )r

] 1
r

: r > 0

negation 1− x

t-conorm
1

1 +
[
(1−x

x )−r + (1−y
y )−r

] 1
−r

: r > 0

generator e−( 1−x
x )r

: r > 0
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Jane Doe #1-Hamacher

t-norm
1

1 +
[
(1−x

x )r + (1−y
y )r + a(1−x

x )r(1−y
y )r

] 1
r

: a > 0, r > 0

negation
1− x

1 + (a− 1)x
: a > 0

t-conorm
1

1 +
[
(1−x

x )−r + (1−y
y )−r + a(1−x

x )−r(1−y
y )r

] 1
−r

: a > 0, r > 0

generator
xr

xr + a(1− x)r
: a > 0, r > 0

Aczél-Alsina

t-norm e−((− ln x) r +(− ln y) r )
1
r : r > 0

negation e
1

ln x

t-conorm e−((− ln x)−r +(− ln y)− r )
1

− r

: r > 0

generator e−(− ln x)r : r > 0

Frank

t-norm loga

[
1 +

(ax − 1)(ay − 1)

a− 1

]
: a > 0, a 6= 1

negation 1− x

t-conorm 1− loga

[
1 +

(a1−x − 1)(a1−y − 1)

a− 1

]
: a > 0, a 6= 1

generator
ax − 1

a− 1
: a > 0, a 6= 1
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Schweizer

t-norm
(

1
xa + 1

ya − 1
)− 1

a

: a > 0

negation 1− x

t-conorm 1−
(

1

(1− x)a
+

1

(1− y)a
− 1

)− 1
a

: a > 0

generator e1−x−a

: a > 0

Jane Doe #2

t-norm xye−a lnx ln y : a > 0

negation 1− x

t-conorm 1− (1− x)(1 − y)ea ln(1−x) ln(1−y) : a > 0

generator 1
1−a ln x : a > 0

Jane Doe #3

t-norm 1− (1− (1− (1 − x)a)(1− (1− y)a))
1
a : a > 0

negation 1− x

t-conorm (xa + ya − xaya)
1
a : a > 0

generator 1− (1− x)a : a > 0

5.7.2 Nilpotent De Morgan systems

First we determine the isomorphisms between two nilpotent De Morgan
systems (I, •f , αg) and (I, •u, αv). By Theorem 5.3.10, there is exactly one
isomorphism from (I, •f ) to (I, •u), namely u−1rf where (rf)(0) = u(0).
By Theorem 5.4.4, the isomorphisms from (I, αg) to (I, αv) are the maps
v−1Z(α)g. So u−1rf must satisfy the condition that v(u−1rf)g−1 ∈ Z(α).
All this translates to the following.

Theorem 5.7.7 For nilpotent De Morgan systems, (I, •f , αg) ≈ (I, •u, αv)
if and only if

(I, •u, αv) = (I, •fh, αgh)
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for some h ∈ Aut(I), in which case h−1 is the only such isomorphism.

Note that in particular, taking u(x) = ex−1 and r = − ln f(0)

h−1 : (I, •f , αg)→ (I, •u, αgf−1ru) = (I,N, αv)

where h−1(x) = u−1r−1f = 1+(ln f(x))/ ln f(0), and xNy = (x+y−1)∨0.
Thus any nilpotent De Morgan system is isomorphic to one whose t-norm is
the Lukasiewicz t-norm, just as any strict De Morgan system is isomorphic
to one whose t-norm is multiplication.

It is a little simpler to use L-generators here. Recall that

xNfy = f−1(f(x)Nf(y))

where xNy = (x+ y− 1)∨0. The only isomorphism from (I,Nf ) to (I,Nu)
is u−1f, and so (I,Nf , αg) ≈ (I,Nu, αv) occurs only when vu−1fg−1 ∈
Z(α). We get the same conclusion: (I,Nf , αg) ≈ (I,Nu, αv) if and only if
(I,Nu, αv) = (I,Nfh, αgh).

There are some very special nilpotent De Morgan systems. Nilpotent
t-norms have their natural negations, and for Nf that natural negation is
f−1αf = αf . We examine these De Morgan systems (I,Nf , αf ).

Definition 5.7.8 If △ is a binary operation on a lattice L with 0, an
element x∗ in L is the △-pseudocomplement of an element x if x△y = 0
exactly when y ≤ x∗. If every element x of L has a △-pseudocomplement
x∗, then ∗ is a △-pseudocomplement for L.

If △ is the meet operation ∧ of the lattice, then ∧-pseudocomplement
is simply pseudocomplement as defined in Chapter 2. An element has
at most one △-pseudocomplement. For a nilpotent t-norm, △, the nat-
ural negation η△ is a △-pseudocomplement. Equivalently, αf is a Nf -
pseudocomplement. Pseudocomplements do not have to be negations, but
these are. There are nilpotent De Morgan systems reminiscent of Stone
algebras and Boolean algebras. We refer to [71] for a discussion of such
De Morgan systems. We mention briefly here those reminiscent of Boolean
algebras. These algebraic systems, which we call Boolean systems, are ex-
amples of MV-algebras, an important topic of study in fuzzy mathematics
[32].

Definition 5.7.9 The De Morgan system (I,△, η,▽) is a Boolean sys-

tem if η is a △-pseudocomplement and x▽ η(x) = 1.

Theorem 5.7.10 The De Morgan system (I,△, η,▽) is a Boolean system
if and only if △ is nilpotent and η is its natural negation. Thus any Boolean
system is of the form (I,Nf , αf ,Hfαf

).
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Proof. If η is the natural negation of △, then it is the △-pseudo-
complement, and η(x▽ η(x)) = η(x) △ ηη(x) = η(x)△ (x) = 0, so x▽
η(x) = 1, and so (I,△, η,▽) is a Boolean system.

If (I,△, η,▽) is a Boolean system, then for a ∈ (0, 1), a△ η(a) = 0,
whence △ is nilpotent.

A Boolean system is determined by its t-norm, but, as we know,
many nilpotent t-norms have the same natural negation. The systems
(I,Nf , αg,Hfαf

) are De Morgan systems if and only if αf = αg, that
is, if and only if f = zg for some z ∈ Z(α). So in the Boolean systems
(I,Nzg, αg,Hzgfαf

), changing the z changes the t-norms and t-conorms,
but does not change the negation. And Z(α) is an uncountable group,
so there are uncountably many different Boolean systems with the same
nilpotent t-norm and t-conorm. Still, any two are isomorphic.

Theorem 5.7.11 Any two Boolean systems are isomorphic.

Proof. If (I,Nf , αf ,Hfαf
) and (I,Ng, αg,Hgαf

) are Boolean systems,
then fg−1is an isomorphism between them, in fact the only one.

A Boolean system is determined by its t-norm Nf with unique f ∈
Aut(I). Here are some examples of Boolean systems. We give, for each
parameter, a t-norm, its natural negation, its t-conorm with respect to
that natural negation, and the L-generator of the t-norm.

Schweizer-Sklar t-norm, Yager t-conorm

t-norm ((xa + ya − 1) ∨ 0)
1
a : a > 0

natural negation (1− xa)
1
a : a > 0

t-conorm ((xa + ya))
1
a ∧ 1 : a > 0

L-generators xa : a > 0

Yager t-norm, Schweizer-Sklar t-conorm

t-norm 1− (1 ∧ ((1 − x)a + (1− y)a)
1
a ) : a > 0

natural negation 1− (1− (1 − x)a)
1
a : a > 0

t-conorm 1− (0 ∨ ((1 − x)a + (1− y)a)
1
a ) : a > 0

L-generators 1− (1− x)a : a > 0
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Weber t-norm, Jane Doe #5 t-conorm

t-norm (a(x+ y − 1)− (a− 1)xy) ∨ 0 : a > 0, a 6= 1

natural negation
a(1− x)

1 + a(1− x)
: a > 0, a 6= 1

t-conorm (x+ y − a−1
a xy) ∧ 1 : a > 0, a 6= 1

L-generators 1− loga((a− 1)(1− x) + 1) : a > 0, a 6= 1

Jane Doe #5 t-norm, Weber t-conorm

t-norm ( 1
a (x+ y − 1− (a− 1)xy) ∨ 0 : a > 0, a 6= 1

natural negation
1− x

1 + (a− 1)x
: a > 0, a 6= 1

t-conorm (x+ y + (a− 1)xy) ∧ 1 : a > 0, a 6= 1

L-generators loga((a− 1)x+ 1) : a > 0, a 6= 1

The system ([0, 1],∧,∨,′ ), where ∧, ∨, and ′ are max, min, and x′ =
1 − x forms a De Morgan algebra in the usual lattice theoretic sense. If
we replace ′, which we have been denoting by α, by any other involution
β, then the systems ([0, 1],∧,∨,′ ) and ([0, 1],∧,∨, β) are isomorphic. Iso-
morphisms between these algebras are exactly the isomorphisms between
(I, α) and (I, β). There are many such isomorphisms and these are spelled
out in Theorem 5.4.4. This suggests that in applications of De Morgan sys-
tems where ∧ and ∨ are taken for the t-norm and t-conorm, respectively,
the negation may as well be α(x) = 1− x.

5.7.3 Nonuniqueness of negations in strict

De Morgan systems

We have noted that a De Morgan system (I,△, β,▽) is determined by the
system (I,△, β). Of course, it is also determined by the system (I, β,▽).
Is it determined by (I,△,▽)? How unique is the negation in a De Morgan
system? The following lemma is straightforward and applies to both strict
and nilpotent De Morgan systems.

Lemma 5.7.12 If (I,△, β,▽) and (I,△, γ,▽) are De Morgan systems
having the same t-norm and same t-conorm, then γβ ∈ Aut (I,△).
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Proof. We need

γβ(a△ b) = γβ(a)△ γβ(b)

By hypothesis
β(β(a)△ β(b)) = γ(γ(a)△ γ(b))

Applying this to elements γ(a) and γ(b), we get

β(βγ(a)△ βγ(b)) = γ(a△ b)

and so
βγ(a)△ βγ(b) = βγ(a△ b)

as desired.

Corollary 5.7.13 If (I,△, β,▽) and (I,△, γ,▽) are nilpotent De Morgan
systems, then β = γ.

The situation is more complicated in strict De Morgan systems. Sup-
pose that (I,△, β,▽) and (I,△, γ,▽) are strict De Morgan systems and f
is a generator of△. We know from the lemma that γβ is an automorphism
of (I,△). But automorphisms of (I,△) are of the form f−1rf for r > 0.
Thus γβ = f−1rf and β = γf−1rf . Now β is of order 2, and so is f−1βf .
Thus

β = γf−1rf = f−1r−1fγ

and

fβf−1 = f
(
f−1r−1fγ

)
f−1

= r−1fγf−1 = fγf−1r = rfβf−1r

and so rfβf−1r = fβf−1. Let η = fβf−1. Then η is an involution and
rηr = η.

On the other hand, if η is an involution such that for some r > 0,
rηr = η, then it is routine to check that for any t-norm ◦ with generator
f, f−1ηf and f−1ηrf are negations that give the same t-conorm. Are
there such involutions η? Yes, of course, with r = 1. But when r = 1,
γβ = f−1rf = 1 and γ = β. Are there such involutions with r 6= 1?

Let ε(x) = e1/ ln x. Then εr = r−1ε for any positive real number r.
Moreover, for any a > 0, aε is an involution satisfying raεr = aε. So
f−1aεf and f−1aεrf are negations that give the same t-conorm. We get
the following theorem.

Theorem 5.7.14 Let △ be a strict t-norm with generator f , ε(x) =
e1/ ln x, and let a and b be positive real numbers. Then f−1aεf and f−1bεf
are negations that give the same t-conorm for △.
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We look a moment at the case when the t-norm is multiplication. Sup-
pose that the De Morgan system (I, •, aε) is isomorphic to (I, •, β). By the
lemma, aεβ = r for some r ∈ R+. So β = r−1aε. We sum up.

Corollary 5.7.15 The De Morgan systems (I, •, aε) for a ∈ R+ are all
isomorphic. If (I, •, aε) ≈ (I, •, β), then β = rε for some r ∈ R+.

The negations aε satisfy raεr = aε for all r ∈ R+. There are no other
negations with this property. However, there is a large family of negations
β such that rβr = β for a fixed r 6= 1 [68]. Thus for each one of these
negations β, the negations γ = f−1βf and δ = f−1βrf produce the same
t-conorm from the t-norm generated by f . It seems likely that for some
such negations the De Morgan systems

(
I, •f , f−1βf

)
and

(
I, •f , f−1βrf

)

are not isomorphic even though the t-conorms are the same. They will
be, however, whenever

√
rβ
√
r = β also holds. Constructing and somehow

classifying all such β seems not to have been done.
Let △ and ▽ be a strict t-norm and strict t-conorm with generator f

and cogenerator g, respectively. When does there exist a negation β such
that △ and ▽ are dual with respect to β? This means finding a negation
β such that

β(f−1(f(β(x))f(β(y)))) = g−1(g(x)g(y))

This in turn means that fβ = rg for some r > 0. The existence of such
a β is equivalent to the existence of a negation in the set f−1R+g. There
may be many or there may be no such negations.

5.8 Groups and t-norms

The group A of automorphisms of I = ([0, 1],≤) has played a fundamen-
tal role in our development of Archimedean t-norms. Every strict t-norm
△ comes from an element f ∈ A via x △ y = f−1(f(x)f(y)), and ev-
ery nilpotent one via x△ y = f−1((f(x) + f(y) − 1) ∨ 0). For nilpotent
ones, the f is unique. For strict ones, f is unique up to a left multiple
by an element of R+. That is, f and rf , for r ∈ R+ give the same strict
t-norm. The antiautomorphisms in the group M of all automorphisms and
antiautomorphisms of I provided generators for t-conorms, and the invo-
lutions in M are the negations in De Morgan systems. The symmetries,
that is, the automorphism groups of the algebraic systems arising from I
with additional operations such as a t-norm, or a negation, or both, are
of course subgroups of A. Suffice it to say that these groups form a basis
for Archimedean t-norm theory. In this section, we will investigate further
some group theoretic aspects of t-norms. A particular point we want to
make is that many of the examples of families of t-norms and t-conorms
arise from simple combinations of a very few subgroups of M.

www.EBooksWorld.ir



5.8. GROUPS AND T-NORMS 117

5.8.1 The normalizer of R+

The multiplicative group R+ of positive real numbers is identified with a
subgroup of A by r(x) = xr for each positive r. Multiplication of elements
of R+ corresponds to composition of functions in A. This subgroup R+

gained attention from the fact that the set of strict t-norms is in one-to-
one correspondence with the set of right cosets of R+ in A. This is the set
{R+f : f ∈ A}, and it forms a partition ofA. Any two of the R+f are either
equal or disjoint, and their union is all of A. This is purely a group theoretic
fact. If S is a subgroup of a group G, then {Sg : g ∈ G} is a partition
of G. Were R+ a normal subgroup of A, that is, if f−1R+f = R+ for all
f ∈ A, then the set of these cosets would themselves form a group under
the operation (R+f)(R+g) = R+fg. This would put a group structure
on the set of strict t-norms. But this is not the case. The group R+ is
not a normal subgroup of A. However, for any subgroup S of a group
G, there is a unique largest subgroup N(S) of G in which S is normal.
This is the subgroup {g ∈ G : g−1Sg = S}, and is called the normalizer
of S in G. The first problem that arises is the identification of N(R+).
For this we will consider R+ as a subgroup of M, so N(R+) is the set
{f ∈ M : f−1R+f = R+}. There is a t-norm and t-conorm point to this.
The elements of N(R+) generate a set of t-norms and t-conorms which
carry a group structure, and besides its own intrinsic interest, it turns
out that many well-known families of t-norms and t-conorms arise rather
directly from N(R+). This section is based on the material in [179].

We now proceed to the determination of N(R+). If f ∈ N(R+), then
f−1R+f = {f−1rf : r ∈ R+} = R+, and in fact, ϕ(r) = f−1rf is an
automorphism of R+. This just means that ϕ is one-to-one and onto and
ϕ(rs) = ϕ(r)ϕ(s). But it is more. The mapping ϕ is order preserving if f
is an automorphism of I, and order reversing if f is an antiautomorphism
of I. To check that ϕ is an automorphism of the group R+ is easy. To see
that it preserves order if f is an automorphism of I, suppose that r < s.
For ϕ(r) < ϕ(s), it suffices to show that for any x ∈ [0, 1], xϕ(r) > xϕ(s).
We have, using the fact that f−1 is an automorphism and hence preserves
order,

xϕ(r) = xf
−1rf

= f−1rf(x)

= f−1(f(x))r

> f−1(f(x))s

= xϕ(s)

Similarly, if f is an antiautomorphism, then ϕ(r) > ϕ(s), whenever r < s.

www.EBooksWorld.ir



118 CHAPTER 5. BASIC CONNECTIVES

Now we need to determine the order preserving automorphisms and
the order reversing automorphisms of R+.

Theorem 5.8.1 The order preserving automorphisms of the multiplica-
tive group R+ of positive real numbers are the maps x → xtfor positive
real numbers t. The order reversing ones are the maps x→ xtfor negative
real numbers t.

This theorem is well known. The proof is outlined in the exercises at
the end of this chapter.

We are now ready to determine the normalizer N(R+) of R+. Let
f ∈ N(R+). Then f−1is also in the normalizer of R+, and r → frf−1 is
an automorphism of R+. Thus frf−1 = rt for some nonzero real number

t. Thus fr = rtf, and this means that for x ∈ [0, 1], f(xr) = (f(x))r
t

, and

f(x) = f

((
1

e

)− ln x
)

=

(
f

(
1

e

))(− ln x)t

Writing f(1e ) = e−a for a positive a, we get that f(x) = e−a(− lnx)t . It is
easy to check that t > 0 gives automorphisms, t < 0 gives antiautomor-
phisms, and t = −1 gives negations, or involutions. Hence we have the
following theorem.

Theorem 5.8.2 The normalizer N(R+) of R+ in M is given by

N(R+) =
{
f ∈ M : f(x) = e−a(− ln x)t , a > 0, t 6= 0

}

The function f(x) = e−a(− ln x)t is an automorphism of I if t > 0, an
antiautomorphism if t < 0, and a negation if t = −1.

We now look more closely at the group structure of N(R+). Let R∗

denote the multiplicative group of nonzero real numbers. For f (x) =

e−a(− ln x)t and g (x) = e−a′(− ln x)t
′

,

(gf) (x) = e
−a′

(
− ln

(
e−a(− ln x)t

))t′

= e−a′(a(− ln x)t)
t′

= e−a′(a)t
′
(− lnx)tt

′

Thus we have the following.
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Corollary 5.8.3 The normalizer N(R+) of R+ in M is isomorphic to the
group

{(c, t) : c > 0, t 6= 0}
with multiplication given by

(c′, t′) (c, t) =
(
c′ct

′

, t′t
)

.

The subgroup R+ corresponds to {(c, 1) : c ∈ R+} and the group N(R+)/R+

with {(1, t) : t 6= 0}. Thus the natural group structure carried by the set of
norms and conorms with generators in N(R+) is the multiplicative group
R∗ of the nonzero real numbers.

The group N(R+) splits: N(R+) = R+ × T, with R+ normal and T
isomorphic to R∗.

To find the norms and conorms with generators in N(R+), for f ∈
N(R+), we must compute f−1 (f (x) f (y)). If

f (x) = e−c(− ln x)t

then

f−1 (x) = e−(− ln x
c )

1
t

and

f−1 (f (x) f (y)) = f−1
(
e−c(− ln x)t−c(− ln y)t

)

= e
−
(
−−c(− ln x)t−c(− ln y)t

c

) 1
t

= e−((− ln x)t+(− ln y)t)
1
t

Of course, the quantity c does not appear in the formula since the norm or
conorm generated by f is independent of c. It is straightforward to check
the items in the following corollary.

Corollary 5.8.4 The t-norms with generators in N(R+) are given by

x△ y = e−((− ln x)t+(− ln y)t)
1
t

with t positive. The t-conorms with generators in N(R+) are given by

x▽ y = e−((− ln x)t+(− ln y)t)
1
t

with t negative. Ordinary multiplication is the identity element of the group
of t-norms and t-conorms. That is, for t = 1,

x△ y = e−(− ln x−ln y) = xy.
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The t-norms correspond to the positive elements of the group R∗, given

by its parameter t in e−((− ln x)t+(− ln y)t)
1
t

. Thus with each such t-norm
with parameter t, there is associated the conorm with parameter −t. A
negation is an element η of M of order 2. That is, η2 is the identity
automorphism. A t-norm △ is dual to a t-conorm ▽ with respect to a
negation η if

x▽ y = η(η(x)△ η(y))

It is an easy calculation to verify the following corollary.

Corollary 5.8.5 The negations in N(R+) are the elements e−c(− ln x)−1

=
e

c
ln x , that is, the elements in N(R+) with parameter t = −1. For t > 0,

the t-norm

e−((− lnx)t+(− ln y)t)
1
t

is dual to the t-conorm

e−((− lnx)−t+(− ln y)−t)
1
−t

with respect to any of the negations η(x) = e
c

lnx .

All the generators of the norms and conorms e−((− ln x)t+(− ln y)t)
1
t

are
in N(R+). This is because these norms and conorms do have generators

in N(R+), namely e−c(− ln x)t , with the positive t giving norms and the
negative t giving conorms. Generators are unique up to composition with
an element of R+, and since the group N(R+) contains R+, our claim
follows. Thus if a norm and conorm with generators in N(R+) are dual,
then they must be dual with respect to a negation in N(R+). But for

a generator f(x) = e−c(− ln x)t of a norm, and negation ed/ ln x, we have

fη(x) = e(−c/d)(− ln x)−t

. The following sums it up.

Corollary 5.8.6 Let s and t be positive. The t-norm e−((− lnx)s+(− ln y)s)
1
s

is dual to the t-conorm e−((− ln x)−t+(− ln y)−t)
1
−t

if and only if s = t, in
which case they are dual with respect to precisely the negations e

c
ln x in

N(R+).

5.8.2 Families of strict t-norms

We are going to express the set of generators of some well-known families
of t-norms as simple combinations of just a few elements of M, a couple
of subgroups of M, and one special subset of A. These are the following:
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• The subgroup R+ of A

• The subgroup T = {e−(− ln x)t : t 6= 0} of M

• The element α(x) = 1− x of M

• The element f(x) = e−
1−x
x of A

• The set F = {ax−1
a−1 : a > 0, a 6= 1}

Now we list some families of t-norms (and t-conorms in some cases)
and express their sets of generators as promised.

1. The Hamacher family:

t-norms

{
xy

x+ y − xy + a(1 − x− y + xy)
: a > 0

}

generators

{
x

x+ a(1− x)
: a > 0

}
= f−1R+f

2. The Aczél-Alsina family:

t-norms
{
e−((− lnx)r+(− ln y)r)

1
r : r > 0

}

t-conorms
{
e−((− lnx)r+(− ln y)r)

1
r : r < 0

}

generators
{
e−(− lnx)r ; r 6= 0

}
= T

Comments on this family: The only negation in this group of gener-
ators is the generator with r = −1, which gives the negation e1/ ln x.
So this group gives a family of De Morgan systems, namely the t-
norm with parameter r, r > 0, the negation e1/ ln x, and the t-conorm
with parameter −r.

3. The Jane Doe #1 family:
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t-norms





1

1 +
[
(1−x

x )r + (1−y
y )r + (1−x

x )r(1−y
y )r

] 1
r

: r > 0






t-conorms





1

1 +
[
(1−x

x )r + (1−y
y )r + (1−x

x )r(1−y
y )r

] 1
r

: r < 0





generators

{
xr

xr + (1 − x)r
: r 6= 0

}
= f−1Tf

Comments on this family: The only negation in this group of gener-
ators is the generator with r = −1, which gives the negation α. So
this group gives a family of De Morgan systems, namely the t-norm
with parameter r, r > 0, the negation α, and the t-conorm with
parameter −r.

4. The Jane Doe #3 family:

t-norms
{

1− (1− (1− (1 − x)a)(1− (1− y)a))
1
a : a > 0

}

generators {1− (1− x)a : a > 0} = α−1R+α

5. The Jane Doe #1-Hamacher family:

t-norms

{
1

1 + [(1−x
x )r + (1−y

y )r + a(1−x
x )r(1−y

y )r]
1
r

: a > 0, r > 0
}

t-conorms

{
1

1 + [(1−x
x )r + (1−y

y )r + a(1−x
x )r(1−y

y )r]
1
r

: a > 0, r < 0
}

generators

{
xr

xr + a(1 − x)r
: a > 0, r 6= 0

}
= f−1N(R+)f
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Comments on this family: The negations in this group of generators
are those with parameters a > 0, r = −1, which are the negations
(1 − x)/(1 + (a − 1)x). So this group gives a family of De Morgan
systems, namely the t-norm with parameters a > 0, r > 0, the
negation (1 − x)/(1 + (a− 1)x), and the t-conorm with parameters
a, −r.

6. The Schweizer family:

t-norms
{

(x−a + y−a − 1)−
1
a : a > 0

}

generators
{
e−( 1−xa

xa ) : a > 0
}

= fR+

7. The Jane Doe #2 family:

t-norms
{
xye−a ln x ln y : a > 0

}

generators

{
1

1− lnxa
: a > 0

}
= f−1R+

8. The Dombi family:

t-norms






1

1 +
((

1−x
x

)r
+
(

1−y
y

)r) 1
r

: r > 0






t-conorms






1

1 +
((

1−x
x

)r
+
(

1−y
y

)r) 1
r

: r < 0






generators
{
e−( 1−x

x )
r

: r 6= 0
}

= Tf

Comments on this family: The coset Tf has no negation in it. The
t-norm with parameter r, r > 0, is dual to the t-conorm with pa-
rameter r, r < 0, with respect to the negation α. Denote the el-

ement e−( 1−x
x )r

of Tf by trf. Then element fαf−1 = e1/ lnx =
t−1 ∈ T. For a generator trf of a t-norm in the Dombi family,
trfα = trfαf

−1f = trt−1f ∈ Tf .
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9. The Frank family:

t-norms

{
loga

(
1 +

(ax − 1)(ay − 1)

a− 1

)
: a > 0, a 6= 1

}

generators

{
ax − 1

a− 1
: a > 0, a 6= 1

}
= F

Comments on this family: The set of generators of this family does
not seem to come from a group or a coset of a group of generators. It
is the set of t-norms △ satisfying the equation x△y+x▽y = x+y,
where ▽ is the t-conorm dual to △ with respect to the negation α.
This family is discussed in Section 6.2.3.

5.8.3 Families of nilpotent t-norms

1. The Schweizer-Sklar family:

t-norms
{

((xa + ya − 1) ∨ 0)
1
a : a > 0

}

L-generators {xa : a > 0} = R+

2. The Yager family:

t-norms
{

(1 − ((1− x)a + (1− y)a)
1
a ) ∨ 0 : a > 0

}

L-generators {1− (1− x)a : a > 0} = αR+α

3. The Jane Doe #4 family:

t-norms
{(

1
a (x+ y − 1 + (a− 1)xy)

)
∨ 0 : a > 0, a 6= 1

}

L-generators {loga((a− 1)x+ 1) : a > 0, a 6= 1} = F−1

4. The Weber family:

t-norms {(a(x+ y − 1)− (a− 1)xy) ∨ 0 : a > 0}

L-generators {1− loga((a− 1)(1− x) + 1) : a > 0} = αF−1α
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5. The Jane Doe #6 family:

t-norms

{
loga

[(
ax + ay − a− 1

a− 1
∨ 0

)
(a− 1) + 1

]
:

a > 0, a 6= 1
}

L-generators

{
ax − 1

a− 1
: a > 0, a 6= 1

}
= F

5.9 Interval-valued fuzzy sets

If A : U → [0, 1] is a fuzzy subset of a set U , the value A(x) for a particular
x is typically associated with a degree of belief of some expert. An increas-
ingly prevalent view is that this model is inadequate. Many believe that
assigning an exact number to an expert’s opinion is too restrictive, and
that the assignment of an interval of values is more realistic. In this sec-
tion, we will outline the basic framework of a model in which fuzzy values
are intervals. This means developing a theory of the basic logical connec-
tives for interval-valued fuzzy sets. Some logical aspects of interval-valued
fuzzy sets were discussed in Section 4.5.

For ordinary fuzzy set theory, that which we have been considering so
far, the basic structure on [0, 1] is its lattice structure, coming from its
order ≤. The interval [0, 1] is a complete lattice. Subsequent operations
on [0, 1] have been required to behave in special ways with respect to
≤. The basis of the theory we have discussed has come from the lattice
I = ([0, 1],≤).

Now consider fuzzy sets with interval values. The interval [0, 1] is re-
placed by the set {(a, b) : a, b ∈ [0, 1], a ≤ b}. The element (a, b) is just
the pair with a ≤ b. As we have seen, there is a notation for this set:
[0, 1][2]. So if U is the universal set, then our new fuzzy sets are mappings
A : U → [0, 1][2]. Now comes the crucial question: with what structure
should [0, 1][2] be endowed? Again, lattice theory provides an answer. Use
componentwise operations coming from the operations on [0, 1]. For ex-
ample, (a, b) ≤ (c, d) if a ≤ c and b ≤ d, which gives the usual lattice max
and min operations

(a, b) ∨ (c, d) = (a ∨ c, b ∨ d)

(a, b) ∧ (c, d) = (a ∧ c, b ∧ d)

The resulting structure, that is, [0, 1][2] with this order, or equivalently,
with these operations, is again a complete lattice. This complete lattice is
denoted I[2]. We will use I[2] as the basic building block for interval-valued
fuzzy set theory.
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There is a natural negation on I[2] given by (a, b)′ = (b′, a′) where
x′ = 1 − x. Since I[2] comes equipped to provide the usual operations of
sup and inf, we have immediately the De Morgan algebra (I[2],∧,∨,′ ).
This in turn yields a De Morgan algebra for the set of all interval-valued
fuzzy subsets of a set by

(A ∧B) (s) = A(s) ∧B(s)

(A ∨B) (s) = A(s) ∨B(s)

A′(s) = (A(s))′

5.9.1 T-norms on interval-valued fuzzy sets

Our first task here is that of defining t-norms for I[2]. There is a natural
embedding of I into I[2], namely a → (a, a). This is how I[2] generalizes
I—instead of specifying a number a (identified with (a, a)) as a degree
of belief, an expert specifies an interval (a, b) with a ≤ b. No matter
how a t-norm is defined on I[2], it is reasonable to ask that it induce
a t-norm on this natural copy of I in it. In particular, it should be a
commutative, associative binary operation on I[2] that respects the identity
and is increasing in each variable, just as in the case for I. On I, increasing
in each variable is equivalent to the conditions a△(b∨c) = (a△b)∨(a△c)
and a△ (b∧ c) = (a△ b)∧ (a△ c). But just increasing in each variable will
not yield these distributive laws on I[2]. However, these distributive laws
do imply increasing in each variable.

From the identity rule, (a, b) △ (1, 1) = (a, b) for all (a, b) ∈ I[2], it
follows that (0, 0) △ (a, b) = (0, 0), but what about the element (0, 1)?
How is it to behave? We require that (0, 1) △ (a, b) = (0, b). There are
some strong mathematical reasons for this, having to do with fixed points
of automorphisms, but we choose to forego that discussion. We are led to
the following definition.

Definition 5.9.1 A commutative associative binary operation △ on I[2]

is a t-norm if

1. (1, 1)△ (a, b) = (a, b)

2. x△ (y ∨ z) = (x△ y) ∨ (x△ z)

3. x△ (y ∧ z) = (x△ y) ∧ (x△ z)

4. The restriction of △ to D = {(a, a) : a ∈ [0, 1]} is a t-norm, identi-
fying D with [0, 1]

5. (0, 1)△ (a, b) = (0, b)
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Several additional useful properties follow immediately.

Corollary 5.9.2 The following hold for a t-norm △ on I[2].

1. △ is increasing in each variable.

2. (0, b)△ (c, d) = (0, e) for some e ∈ [0, 1].

Proof. Suppose that y ≤ z. Then

(x△ y) ∨ (x△ z) = x△ (y ∨ z)

= x△ z

so x△ y ≤ x△ z. For the second part,

(0, b)△ (c, d) ≤ (0, 1)△ (c, d) = (0, d)

The fundamental result about t-norms on I[2] is the following theorem.

Theorem 5.9.3 Every t-norm △ on I[2] is of the form

(a, b)△ (c, d) = (a ⋄ c, b ⋄ d)

where ⋄ is a t-norm on I.

Proof. Since the t-norm induces a t-norm on D, we have

(a, a)△ (c, c) = (a ⋄ c, a ⋄ c)

where ⋄ is a t-norm on I. Now

(a, b)△ (c, d) = (a, b)△ ((c, c) ∨ (0, d))

= ((a, b)△ (c, c)) ∨ ((a, b)△ (0, d))

= ((a, b)△ (c, c)) ∨ (0, e)

Therefore, the first component of (a, b)△ (c, d) does not depend on d and
similarly does not depend on b. Also (a, b)△(c, d) has its second component
the same as

(a, b)△ (c, d)△ (0, 1) = (a, b)△ (0, 1)△ (c, d)△ (0, 1)

= (0, b)△ (0, d)

Thus, the second component of (a, b)△ (c, d) does not depend on a or c.
So a t-norm on I[2] acts componentwise. From (a, a)△ (c, c) = (a ⋄ c, a ⋄ c)
it follows that

(a, b)△ (c, d) = (a ⋄ c, b ⋄ d)
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and the proof is complete.

Now we define Archimedean, strict, and nilpotent t-norms on I[2] just
as for t-norms on I. It is easy to see that in the notation of Theorem 5.9.3,
a t-norm △ is Archimedean, strict, or nilpotent if and only if the t-norm
⋄ is Archimedean, strict, or nilpotent, respectively. In effect, the theory of
t-norms on I[2] as we have defined them is reduced to the theory of t-norms
on I.

Another approach to defining t-norms on interval-valued fuzzy sets is
to require only a commutative, associative binary operation△ on I[2] that
respects the identity and is increasing in each variable. Then one could
call a t-norm join-preserving if it satisfies a△ (b∨ c) = (a△ b)∨ (a△ c)
and lattice-ordered if it is both join-preserving and meet-preserving, i.e.
also satisfies a△ (b∧ c) = (a△ b)∧ (a△ c). The t-norms studied earlier in
this section are lattice-ordered t-norms with added boundary consitions.
See [99] for further discussion of lattice-ordered t-norms on I[2].

5.9.2 Negations and t-conorms

We will define t-conorms to be dual to t-norms, just as in the case of fuzzy
set theory. This involves negations, which are certain antiautomorphisms.
To determine these negations we must examine the set of automorphisms
and antiautomorphisms of I[2].

Definition 5.9.4 An automorphism of I[2] is a one-to-one map f from
I[2] onto itself such that f(x) ≤ f(y) if and only if x ≤ y. An anti-

automorphism is a one-to-one map f from I[2] onto itself such that
f(x) ≤ f(y) if and only if x ≥ y.

An antiautomorphism f such that f(f(x)) = x is an involution, or
negation. The map α given by α(a, b) = (1 − b, 1 − a) is a negation, as
is f−1αf for any automorphism f . It turns out that there are no others.
Furthermore, if f is an automorphism, that is, a one-to-one map of [0, 1]
onto itself such that f(x) ≤ f(y) if and only if x ≤ y, then (a, b) →
(f(a), f(b)) is an automorphism of I[2]. It turns out that there are no
others. It should be clear that automorphisms take (0, 0) and (1, 1) to
themselves. Antiautomorphisms interchange these two elements.

In the plane, I[2] is the triangle pictured. Each leg is mapped onto itself
by automorphisms.
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Lemma 5.9.5 Let A, B, and C be as in the picture. If f is an automor-
phism, then f(A) = A, f(B) = B, and f(C) = C.

Proof. Let f be an automorphism. Since f(x) ≤ f(y) if and only if
x ≤ y, it follows that

f(x ∨ y) = f(x) ∨ f(y)

f(x ∧ y) = f(x) ∧ f(y)

f(0, 0) = (0, 0)

f(1, 1) = (1, 1)

Suppose that f(a, b) = (c, c). Then

f(a, b) = f((a, a) ∨ ((b, b) ∧ (0, 1)))

= f(a, a) ∨ (f(b, b) ∧ f(0, 1))

= (c, c)

No two elements strictly less than a diagonal element (c, c) can have join
(c, c) and no two elements strictly greater than a diagonal element (c, c)
can have meet (c, c). Since f(a, a) ∨ (f(b, b) ∧ f(0, 1)) = (c, c), we need
only rule out f(0, 1) = (c, c). So suppose that f(0, 1) = (c, c). Then every
element less than (c, c) is the image of an element less than (0, 1). For
0 < z < c, f(z, z) = f(0, d) with d < 1. Then f(0, d) = f(0, 1)∧ f(d, d) =
(c, c) ∧ f(d, d). Thus (z, z) < (c, c) implies (z, z) = f(d, d) = f(0, d),
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and d = 0.. It follows that c = 0. But f(0, 0) = (0, 0). Therefore only
elements from C go to C under an automorphism f . Since the inverse of
an automorphism is an automorphism, f(C) = C for all automorphisms
f .

If f(a, b) = (0, c), then

f(a, b) = f(a, a) ∨ f(0, b)

= (d, d) ∨ f(0, b)

= (0, c)

Therefore d = 0, implying that a = 0. Hence f(A) = A.
If f(a, b) = (c, 1), then

f(a, b) = f(b, b) ∧ f(a, 1)

= (d, d) ∧ f(a, 1)

= (c, 1)

Thus d = 1, and so b = 1. It follows that f(B) = B.

Theorem 5.9.6 Every automorphism f of I[2] is of the form f(a, b) =
(g(a), g(b)), where g is an automorphism of I.

Proof. Since f is an automorphism of C, it induces an automorphism
g of I, namely (g(a), g(a)) = f(a, a). Now f(0, 1) = (0, 1) since f(A) = A
and f(B) = B. Thus

f(a, b) = f(a, a) ∨ (f(b, b) ∧ f(0, 1))

= (g(a), g(a)) ∨ ((g(b), g(b)) ∧ (0, 1)

= (g(a), g(b))

So automorphisms of I[2] are of the form (a, b)→ (f(a), f(b)) where f
is an automorphism of I. We will use f to denote both the automorphism
of I and the corresponding automorphism of I[2]. This theorem has recently
been proved for I[n] = {(a1, ..., an) : a1 ≤ ... ≤ an, ai ∈ [0, 1]} [214].

Let α be the antiautomorphism of I given by α(a) = 1 − a. Then
(a, b) → (α(b), α(a)) is an antiautomorphism of I[2] which we also denote
by α. If g is an antiautomorphism of I[2], then g = αf for the automorphism
f = αg. Now

g(a, b) = αf(a, b)

= α(f(a), f(b))

= (αf(b), αf(a))

= (g(b), g(a))
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We have the following.

Corollary 5.9.7 The antiautomorphisms of I[2] are precisely the antiau-
tomorphisms (a, b)→ (g(b), g(a)), where g is an antiautomorphism of I.

The following are consequences.

Corollary 5.9.8 The negations of I[2] are precisely the negations (a, b)→
(η(b), η(a)) where η is an negation of I.

Corollary 5.9.9 The negations of I[2] are precisely the negations (a, b)→
(f−1αf(b), f−1αf(a)) where f is an automorphism of I.

Just as for I, we define a t-conorm to be the dual of a t-norm with
respect to some negation.

Definition 5.9.10 Let △ be a binary operation and η a negation on I[2].
The dual of △ with respect to η is the binary operation ▽ given by

x▽ y = η(η(x)△ η(y))

If △ is a t-norm, then ▽ is called a t-conorm.

Theorem 5.9.11 Every t-conorm ▽ on I[2] is of the form

(a, b)▽ (c, d) = (a ⋄ c, b ⋄ d)

where ⋄ is a t-conorm on I.

The proof is a consequence of the definition of t-conorm and the corre-
sponding theorems about t-norms and negations. The theory of t-norms,
t-conorms, and negations on I[2] has thus been reduced to that theory on
I.

The following theorem gives properties characterizing t-conorms.

Theorem 5.9.12 A binary operation ▽ on I[2] that is commutative and
associative is a t-conorm if and only if

1. (0, 0)▽ (a, b) = (a, b)

2. x▽ (y ∨ z) = x▽ y ∨ x▽ z

3. x▽ (y ∧ z) = x▽ y ∧ x▽ z

4. The restriction of ▽ to D = {(a, a) : a ∈ [0, 1]} is a t-conorm

5. (0, 1)▽ (a, b) = (0, b)

Much fuzzy set theory can be extended to interval-valued fuzzy sets,
and we have just indicated the beginnings of such a theory for t-norms,
t-conorms, and negations. The theory and applications of interval-valued
fuzzy set theory, play an important role. See [140], for example.
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5.10 Type-2 fuzzy sets

Type-2 fuzzy sets are fuzzy sets with fuzzy sets as truth values. They were
introduced by Zadeh [236], extending the notion of ordinary fuzzy sets.
Mendel’s book [140] has a section (1.6) on literature on type-2 fuzzy sets,
and a rather extensive bibliography. Also, in [111], [114], [142], [146], and
[147] are discussions of both theoretical and practical aspects of type-2
fuzzy sets. Our emphasis is on the theoretical side. We endeavor to give a
straightforward treatment of the mathematical basics of type-2 fuzzy sets.
We also present the material in a setting that includes both the finite and
continuous cases.

The material presented here is based on that in [210] and [99]. We define
the basic operations and order relations of type-2 fuzzy sets and derive
their basic properties. We establish some criteria for various subalgebras
to be lattices, distributive lattices, Kleene algebras, De Morgan algebras,
and so forth, and describe the relationship between interval-valued type-2
fuzzy sets and classical interval-valued fuzzy sets. We give special attention
to the subalgebra of convex normal functions. We also discuss the notion
of triangular norms for type-2 fuzzy sets.

5.10.1 Pointwise operations and convolutions

A fuzzy subset A of a set S is a mapping A : S → [0, 1]. The set S has
no operations on it. So operations on the set Map(S, [0, 1]) of all fuzzy
subsets of S come from operations on [0, 1]. Common operations on [0, 1]
of interest in fuzzy theory are ∧, ∨, and ′ given by

x ∧ y = min{x, y} (5.1)

x ∨ y = max{x, y}
x′ = 1− x

The constants 0 and 1 are generally considered as part of the algebraic
structure, technically being nullary operations. The operations ∧ and ∨
are binary operations, and ′ is a unary operation. The algebra basic to
fuzzy set theory is ([0, 1],∨,∧,′ , 0, 1). Of course, there are operations on
[0, 1] other than these that are of interest in fuzzy matters, for example
t-norms and t-conorms. We have studied this algebra, and t-norms and
t-conorms extensively in previous chapters.

The situation for type-2 fuzzy sets is the same except that fuzzy subsets
of type-2 are mappings into a more complicated object than [0, 1], namely
into the fuzzy subsets Map(J, [0, 1]) of a lattice J . The operations on the
type-2 fuzzy subsets Map(S,Map(J, [0, 1])) of a set S will come pointwise
from operations on Map(J, [0, 1]). This is where the difficulty of type-2
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fuzzy sets lies. Operations are put on Map(J, [0, 1]) using operations on
both the domain J and the range [0, 1] of a mapping in Map(J, [0, 1]).
The equations that hold for the operations we put on Map(J, [0, 1]) will
automatically hold for the set of type-2 fuzzy subsets of a set S.

The lattices J that we consider are bounded and linearly ordered and
come equipped with an involution. Bounded means that they have a small-
est element and a largest element. We will denoted these by 0 and 1, re-
spectively. An involution of J is a one-to-one order reversing mapping ′

with the property that x′′ = x. The operations are denoted the same as
the operations on [0, 1], so J = (J,∧,∨,′ , 0, 1). In practice, J is usually the
interval [0, 1] itself or a finite subset of [0, 1] that includes the endpoints.

5.10.2 Operations on type-2 fuzzy sets

We now look at operations on Map(J, [0, 1]) that are of interest in type-
2 fuzzy set theory, and develop some of their algebraic properties. The
letter I will denote either the unit interval [0, 1] or its associated algebra
([0, 1] ,∨,∧,′ , 0, 1), and J will denote either a bounded linearly ordered
set with an involution or the associated algebra (J,∨,∧,′ , 0, 1). Both I
and J are Kleene algebras—bounded distributive lattices satisfying the
De Morgan laws and the Kleene inequality x ∧ x′ ≤ y ∨ y′.

Definition 5.10.1 Let S be a set. A type-2 fuzzy subset of S is a
mapping

A : S →Map(J, I)

So the set of all type-2 fuzzy subsets of S is Map(S,Map(J, I)). The
elements of Map(J, I) are ordinary fuzzy subsets of J. In the context of
type-2 fuzzy sets, they are called fuzzy truth values, or membership
grades of type-2 sets. Operations on this set of type-2 fuzzy sets will
come pointwise from operations on Map(J, I). For any operation on I,
we can put the corresponding pointwise operation on Map(J, I), but the
domain J also has operations on it, so we may use convolution to construct
operations on Map(J, I). The operation ∨ on I, which takes the maximum
of two elements of I, actually can be applied to any subset of I taking the
supremum, or least upper bound, of that set. Similarly for the operation
∧. Following is the definition of two basic operations on fuzzy sets of type
2.

Definition 5.10.2 Let f and g be in Map(J, I).

(f ⊔ g) (x) =
∨

y∨z=x
(f(y) ∧ g(z)) (5.2)

(f ⊓ g) (x) =
∨

y∧z=x
(f(y) ∧ g(z))

www.EBooksWorld.ir



134 CHAPTER 5. BASIC CONNECTIVES

The elements f ⊔ g and f ⊓ g are convolutions of the operations ∨
and ∧ on the domain J with respect to the operations ∨ and ∧ on I. We
will denote the convolution of the unary operation ′ on J of elements of
Map(J, I) by ∗. The formula for it is

f∗(x) =
∨

y′=x

f(y) = f(x′) (5.3)

For f ∈ Map(J, I), f ′ denotes the function given by f ′(x) = (f(x))
′
.

Denote by 1 the element of Map(J, I) defined by

1(x) =

{
0 if x 6= 1
1 if x = 1

(5.4)

Denote by 0 the map defined by

0(x) =

{
1 if x = 0
0 if x 6= 0

(5.5)

These elements 0 and 1 of Map(J, I) can be considered nullary operations,
and can be obtained by convolution of the nullary operations 1 and 0 on
J , but we skip the details of that explanation.

Note the following:

f∗∗ = f f ′∗ = f∗′ 0∗ = 1
f ′′ = f 1∗ = 0

(5.6)

5.10.3 The algebra (Map(J, I),⊔,⊓,∗ , 0, 1)
At this point, we have the algebra M = (Map(J, I),⊔,⊓,∗ ,0,1) with the
operations ⊔, ⊓, ∗, 0, and 1 obtained by convolution using the operations
∨,∧,′ , 0, 1 on J , and ∨ and ∧ on I.

Although we are interested in the algebra M, the setMap(J, I) also has
the pointwise operations ∨, ∧, ′, 0, 1 on it coming from operations on the
range I, and is a De Morgan algebra under these operations. In particular,
it is a lattice with order given by f ≤ g if f = f ∧ g, or equivalently, if
g = f∨g. We will use these operations in deriving properties of the algebra
M. Pointwise operations are simpler than convolutions, so if a convolution
can be expressed in terms of pointwise operations, it probably should be
done. We will use the order relation ≤ on M extensively.

We make heavy use of two auxiliary unary operations on Map(J, I)
which enable us to express the operations ⊔ and ⊓ in terms of pointwise
ones. These unary operations also appear in [55, 212, 211]. There are
two benefits. First, it makes some computations much easier by replacing
computations with ⊔ and ⊓ by computations with pointwise operations
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∨ and ∧ on Map (J, I), thus with computations in a lattice. Second, it
provides some insight into the effect of convolutions. For example, f ⊔ g
is a function from J to I. What does its graph look like? Giving f ⊔ g in
terms of pointwise operations on known functions provides such a graph.

Now we define two auxiliary unary operations and give some of their
elementary properties and relations with other operations.

Definition 5.10.3 For f ∈ M, let fL and fR be the elements of M
defined by

fL(x) = ∨y≤xf(y) (5.7)

fR(x) = ∨y≥xf(y)

Note that fL is monotone increasing and that fR is monotone decreas-
ing, as illustrated by the following graphs in which J = I.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

f

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

fL fR

www.EBooksWorld.ir



136 CHAPTER 5. BASIC CONNECTIVES

The following proposition establishes relationships among the auxiliary
pointwise operations ∨, ∧, L, and R that we use for Map (J, I) and the ∗
operation of M.

Proposition 5.10.4 The following hold for all f, g ∈M.

1. f ≤ fL; f ≤ fR.

2.
(
fL
)L

= fL;
(
fR
)R

= fR.

3. (fL)R = (fR)L.

4. (f∗)
L

=
(
fR
)∗

; (f∗)
R

=
(
fL
)∗

.

5. (f ∧ g)
∗

= f∗ ∧ g∗; (f ∨ g)
∗

= f∗ ∨ g∗.

6. (f ∨ g)
L

= fL ∨ gL; (f ∨ g)
R

= fR ∨ gR.

7. (f ∧ g)
L ≤ fL ∧ gL; (f ∧ g)

R ≤ fR ∧ gR.

8. f ≤ g implies fL ≤ gL and fR ≤ gR.

The proofs are immediate. Note that in item 3, (fL)R, which we will
write as fLR or as fRL, is the constant function which takes the value
∨x∈Jf(x) everywhere.

With respect to the point-wise operations ∨ and ∧, Map(J, I) is a
lattice, and these operations on Map(J, I) are easy to compute with com-
pared to the operations ⊔ and ⊓. The following theorem expresses each of
the convolution operations ⊔ and ⊓ directly in terms of pointwise opera-
tions in two alternate forms.

Theorem 5.10.5 The following hold for all f, g ∈M.

f ⊔ g =
(
f ∧ gL

)
∨
(
fL ∧ g

)
(5.8)

= (f ∨ g) ∧
(
fL ∧ gL

)

f ⊓ g =
(
f ∧ gR

)
∨
(
fR ∧ g

)
(5.9)

= (f ∨ g) ∧
(
fR ∧ gR

)
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Proof. Let f, g ∈M.

(f ⊔ g) (x) =
∨

y∨z=x (f(y) ∧ g(z))

= (
∨

x∨z=x (f(x) ∧ g(z))) ∨
(∨

y∨x=x (f(y) ∧ g(x))
)

= (f(x) ∧ (
∨

x∨z=x g(z))) ∨
((∨

y∨x=x f(y)
)
∧ (g(x))

)

=
(
f(x) ∧

(∨
z≤x g(z)

))
∨
((∨

y≤x f(y)
)
∧ (g(x))

)

=
(
f(x) ∧ gL(x)

)
∨
(
fL(x) ∧ g(x)

)

=
((
f ∧ gL

)
(x)
)
∨
((
fL ∧ g

)
(x)
)

=
((
f ∧ gL

)
∨
(
fL ∧ g

))
(x)

So we have f ⊔ g =
(
f ∧ gL

)
∨
(
fL ∧ g

)
. Now

(
f ∧ gL

)
∨
(
fL ∧ g

)
=

((
f ∧ gL

)
∨ fL

)
∧
((
f ∧ gL

)
∨ g
)

=
((
f ∨ fL

)
∧
(
gL ∨ fL

))
∧
(
(f ∨ g) ∧

(
gL ∨ g

))

=
(
fL ∧

(
gL ∨ fL

))
∧
(
(f ∨ g) ∧ gL

)

= fL ∧
(
(f ∨ g) ∧ gL

)

=
(
fL ∧ gL

)
∧ (f ∨ g)

In a totally analogous manner, we get the formulas stated for f ⊓ g.

Here are some elementary consequences.

Corollary 5.10.6 The following hold for f, g ∈M.

1. f ⊔ f = f ; f ⊓ f = f.

2. f ⊔ g = g ⊔ f ; f ⊓ g = g ⊓ f.

3. 1 ⊓ f = f ; 0 ⊔ f = f.

4. f ⊔ 1 = fL and f ⊓ 1 = fR, where 1 is the constant function with
value 1.

5. f ⊓ 0 = f ⊔ 0 = 0, where 0 is the constant function with value 0.

6. (f ⊔ g)
∗

= f∗ ⊓ g∗; (f ⊓ g)
∗

= f∗ ⊔ g∗.

7. fL ⊔ gL = fL ∧ gL = fL ⊔ g = f ⊔ gL..

8. fR ⊓ gR = fR ∧ gR = fR ⊓ g = f ⊓ gR

9. If f ≥ g, then f ⊔ g = f ∧ gL, and f ⊓ g = f ∧ gR.
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These are easy corollaries of the previous theorem. For example, to
prove item 7,

fL ⊔ gL =
(
fL ∧ gLL

)
∨
(
fLL ∧ gL

)
= fL ∧ gL

f ⊔ gL =
(
f ∧ gLL

)
∨
(
fL ∧ gL

)
= fL ∧ gL

One should notice that the pointwise formula for the binary operation
⊓ follows from that of ⊔ and item 4, which is, in turn, an immediate
consequence of the definition of ∗ and the formula for ⊔.

Proposition 5.10.7 The following hold for f, g ∈M.

(f ⊔ g)L = fL ⊔ gL (f ⊓ g)R = fR ⊓ gR
(f ⊔ g)

R
= fR ⊔ gR (f ⊓ g)

L
= fL ⊓ gL (5.10)

Proof. By Corollary 5.10.6, fL ⊔ gL = fL ∧ gL, so for the first, we
only need to show that (f ⊔ g)L = fL ∧ gL. Now,

(f ⊔ g)
L

(x) =
∨
y≤x

(f ⊔ g) (y) =
∨
y≤x

(
∨

u∨v=y
(f (u) ∧ g (v))

)

=
∨

u∨v≤x

(f (u) ∧ g (v)) =
∨
u≤x

f (u)
∨
v≤x

g (v)

= fL(x) ∧ gL(x)

so (f ⊔ g)
L

= fL ∧ gL. The second follows from the first and duality, and
Corollary 5.10.6, as follows:

(f ⊓ g)R = (f ⊓ g)∗∗R = (f∗ ⊔ g∗)∗R = (f∗ ⊔ g∗)L∗

=
(
f∗L ∧ g∗L

)∗
=
(
fR∗ ∧ gR∗

)∗
=
(
fR ∧ gR

)∗∗
= fR ∧ gR

For the third,

(f ⊔ g)
R

(x) =
∨
y≥x

(f ⊔ g) (y) =
∨
y≥x

(
∨

u∨v=y
(f (u) ∧ g (v))

)

=
∨

u∨v≥x

(f (u) ∧ g (v))

=

(
∨

u≥x, v∈[0,1]

(f (u) ∧ g (v))

)

∨
(

∨
v≥x, u∈[0,1]

(f (u) ∧ g (v))

)

=
(
fR (x) ∧ gRL (x)

)
∨
(
fRL (x) ∧ gR (x)

)
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Thus (f ⊔ g)
R

=
(
fR ∧ gRL

)
∨
(
fRL ∧ gR

)
, and this is the formula for

fR ⊔ gR. The last equality follows from duality.

We will use the formulas in (5.10) extensively.

Corollary 5.10.8 The associative laws hold for ⊔ and ⊓. That is,

f ⊔ (g ⊔ h) = (f ⊔ g) ⊔ h (5.11)

f ⊓ (g ⊓ h) = (f ⊓ g) ⊓ h

Proof. Let f, g, h ∈M. Then

(f ⊔ g) ⊔ h =
[(

(f ∨ g) ∧
(
fL ∧ gL

))
∨ h
]
∧
[
(f ⊔ g)

L ∧ hL
]

=
[(

(f ∨ g) ∧
(
fL ∧ gL

))
∨ h
]
∧
[(
fL ∧ gL

)
∧ hL

]

=
[
(f ∨ g ∨ h) ∧

((
fL ∧ gL

)
∨ h
)]
∧
(
fL ∧ gL ∧ hL

)

= (f ∨ g ∨ h) ∧
(
fL ∧ gL ∧ hL

)
= f ⊔ (g ⊔ h)

(f ⊓ g) ⊓ h = ((f ⊓ g) ⊓ h)
∗∗

= ((f∗ ⊔ g∗) ⊔ h∗)
∗

= (f∗ ⊔ (g∗ ⊔ h∗))
∗

= f ⊓ (g ⊓ h)

Thus the associative laws hold for both ⊔ and ⊓.

In the course of the proof, we had the identity

(f ⊔ g) ⊔ h = (f ∨ g ∨ h) ∧
(
fL ∧ gL ∧ hL

)
(5.12)

Notice the following consequences.

Corollary 5.10.9 The following hold for f1, f2, . . . , fn ∈M.

1. f1⊔f2⊔· · ·⊔fn = (f1 ∨ f2 ∨ · · · ∨ fn)∧
(

(f1)L ∧ (f2)L ∧ · · · ∧ (fn)L
)

2. f1⊓f2⊓· · ·⊓fn = (f1 ∨ f2 ∨ · · · ∨ fn)∧
(

(f1)
R ∧ (f2)

R ∧ · · · ∧ (fn)
R
)

Proposition 5.10.10 The operations ⊔ and ⊓ distribute over ∨. That is,

f ⊔ (g ∨ h) = (f ⊔ g) ∨ (f ⊔ h) (5.13)

f ⊓ (g ∨ h) = (f ⊓ g) ∨ (f ⊓ h)

Proof. Let f, g, h ∈M.

f ⊔ (g ∨ h) =
(
f ∧ (g ∨ h)

L
)
∨
(
fL ∧ (g ∨ h)

)

=
(
f ∧

(
gL ∨ hL

))
∨
((
fL ∧ g

)
∨
(
fL ∧ h

))

=
(
f ∧ gL

)
∨
(
f ∧ hL

)
∨
(
fL ∧ g

)
∨
(
fL ∧ h

)

(f ⊔ g) ∨ (f ⊔ h) =
(
f ∧ gL

)
∨
(
fL ∧ g

)
∨
(
f ∧ hL

)
∨
(
fL ∧ h

)
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Thus ⊔ distributes over ∨. Now ⊓ distributes over ∨ since

f ⊓ (g ∨ h) = [f ⊓ (g ∨ h)]
∗∗

= [f∗ ⊔ (g∗ ∨ h∗)]
∗

= [(f∗ ⊔ g∗) ∨ (f∗ ⊔ h∗)]
∗

= [(f ⊓ g) ∨ (f ⊓ h)]

Thus both operations distribute over the maximum.

Various distributive laws do not hold in Map(J, I): ⊔ and ⊓ do not
distribute over ∧; ∨ distributes over neither ⊔ nor ⊓, and similarly, ∧
distributes over neither ⊔ nor ⊓; and ⊔ and ⊓ do not distribute over each
other. There are easy examples to show this. But we do have the following.

Lemma 5.10.11 For all f , g, h ∈M, the following hold.

f ⊔ (g ⊓ h) = [f ∧ gL ∧ hRL] ∨
[
f ∧ gRL ∧ hL

]

∨
[
fL ∧ g ∧ hR

]
∨
[
fL ∧ gR ∧ h

]

(f ⊔ g) ⊓ (f ⊔ h) =
[
f ∧ gL ∧ hRL

]
∨
[
f ∧ gRL ∧ hL

]

∨
[
fL ∧ g ∧ hR

]
∨
[
fL ∧ gR ∧ h

]

∨
[
fL ∧ fR ∧ g ∧ hRL

]
∨
[
fR ∧ fL ∧ gRL ∧ h

]

f ⊓ (g ⊔ h) =
[
f ∧ gR ∧ hRL

]
∨
[
f ∧ gRL ∧ hR

]

∨
[
fR ∧ g ∧ hL

]
∨
[
fR ∧ gL ∧ h

]

(f ⊓ g) ⊔ (f ⊓ h) =
[
f ∧ gR ∧ hRL

]
∨
[
f ∧ gRL ∧ hR

]

∨
[
fR ∧ g ∧ hL

]
∨
[
fR ∧ gL ∧ h

]

∨
[
fR ∧ fL ∧ g ∧ hRL

]
∨
[
fL ∧ fR ∧ gRL ∧ h

]

We omit the proof. It is straightforward but tedious. A consequence of
the lemma are the following inequalities.

Theorem 5.10.12 The following hold for f, g, h ∈M.

f ⊔ (g ⊓ h) ≤ (f ⊔ g) ⊓ (f ⊔ h) (5.14)

f ⊓ (g ⊔ h) ≤ (f ⊓ g) ⊔ (f ⊓ h)

The absorption laws state that

f ⊓ (f ⊔ g) = f (5.15)

f ⊔ (f ⊓ g) = f

They do not hold in general, as we will see. However, strangely enough,
the following equality holds [146]. Thus if one absorption law holds, then
so does the other.
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Proposition 5.10.13 For f, g ∈M,

f ⊔ (f ⊓ g) = f ⊓ (f ⊔ g) =
(
f ∧ gLR

)
∨
(
fR ∧ fL ∧ g

)
(5.16)

Proof. We use Lemma 5.10.11.

f ⊔ (f ⊓ g) =
(
f ∧ fL ∧ gRL

)
∨
(
f ∧ fRL ∧ gL

)

∨
(
fL ∧ f ∧ gR

)
∨
(
fL ∧ fR ∧ g

)

=
(
f ∧ gRL

)
∨
(
fL ∧ fR ∧ g

)

f ⊓ (f ⊔ g) =
(
f ∧ fR ∧ gRL

)
∨
(
f ∧ fRL ∧ gR

)

∨
(
fR ∧ f ∧ gL

)
∨
(
fR ∧ fL ∧ g

)

=
(
f ∧ gLR

)
∨
(
fR ∧ fL ∧ g

)

It follows that f ⊔ (f ⊓ g) = f ⊓ (f ⊔ g) for all f, g ∈M.

It is easy to see that the absorption laws do not always hold. For
example, taking f to have all its values larger than the sup of the values
of g, we get

f ⊓ (f ⊔ g) =
(
f ∧ gLR

)
∨
(
fR ∧ fL ∧ g

)
= gLR

which is constant with value the sup of the values of g, and has no value
in common with f . The function f constant with value 1, and g constant
with value anything less than 1, will work for this counterexample.

5.10.4 Two order relations

In a lattice with operations ∨ and ∧, a partial order is given by a ≤ b if a∧
b = a, or equivalently if a∨b = b. This gives a lattice order, that is, a partial
order in which any two elements have a least upper bound and a greatest
lower bound. Even though the algebra M = (Map(J, I),⊔,⊓,∗ ,0,1) is not
a lattice under the operations ⊔ and ⊓, these operations have the requisite
properties to define partial orders.

Definition 5.10.14 f ⊑⊓ g if f ⊓ g = f ; f ⊑⊔ g if f ⊔ g = g.

Proposition 5.10.15 The relations ⊑⊓ and ⊑⊔ are reflexive, antisym-
metric, and transitive, thus are partial orders.

This is immediate from f ⊓ f = f = f ⊔ f , and the commutative and
associative laws for ⊓ and ⊔.

These two partial orders are not the same, and neither implies the
other. For example, f ⊑⊓ 1, but it is not true that f ⊑⊔ 1.
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Proposition 5.10.16 The following hold for f, g ∈M.

1. Under the partial order ⊑⊓, any two elements f and g have a greatest
lower bound. That greatest lower bound is f ⊓ g.

2. Under the partial order ⊑⊔, any two elements f and g have a least
upper bound. That least upper bound is f ⊔ g.

Proof. For two elements f and g, note that f ⊓g ⊑⊓ f and f ⊓g ⊑⊓ g
since f ⊓ g ⊓ f = f ⊓ g, and similarly f ⊓ g ⊑⊓ g. Therefore f ⊓ g is a
lower bound of both f and g. Suppose that h ⊑⊓ f and h ⊑⊓ g. Then
h = h ⊓ f = h ⊓ g, and so h ⊓ (f ⊓ g) = h ⊓ g = h. Thus h ⊑⊓ f ⊓ g.
Therefore f ⊓ g is the greatest lower bound of f and g.

Item 2 follows similarly.

Proposition 5.10.17 The pointwise criteria for ⊑⊓ and ⊑⊔ are these:

1. f ⊑⊓ g if and only if fR ∧ g ≤ f ≤ gR.

2. f ⊑⊔ g if and only if f ∧ gL ≤ g ≤ fL.

Proof. If f ⊑⊓ g then f ⊓ g = f = (f ∨ g) ∧
(
fR ∧ gR

)
, whence

f ≤ gR. Also f =
(
f ∧ gR

)
∨
(
fR ∧ g

)
, whence

(
fR ∧ g

)
≤ f . Conversely,

if
(
fR ∧ g

)
≤ f ≤ gR, then f⊓g =

(
f ∧ gR

)
∨
(
fR ∧ g

)
= f∨

(
fR ∧ g

)
= f

so f ⊑⊓ g.
Item 2 follows similarly.

The following proposition is obtained easily from the pointwise criteria
for these partial orders.

Proposition 5.10.18 The following hold for f, g ∈M.

1. f ⊑⊓ 1 and 0 ⊑⊔ f .

2. f ⊑⊓ g if and only if g∗ ⊑⊔ f
∗.

3. If f and g are monotone decreasing, then f ⊑⊓ g if and only if f ≤ g.

4. If f is monotone decreasing, then f ⊑⊓ g if and only if f ≤ gR.

5. If f and g are monotone increasing, then f ⊑⊔ g if and only if f ≤ g.

6. If g is monotone increasing, then f ⊑⊔ g if and only if g ≤ fL.
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5.10.5 Subalgebras of type-2 fuzzy sets

In modeling vague concepts in the fuzzy set spirit, one must choose an alge-
bra of values. For example, in the classical case that algebra is ([0, 1],∨,∧,′ ,
0, 1), and a fuzzy subset of a set S is a mapping into this algebra. Interval-
valued fuzzy sets are mappings into the algebra ([0, 1][2],∨,∧,′ , 0, 1), which
was the topic of Section 5.9. Type-2 fuzzy sets are mappings into the al-
gebra M. This latter algebra is the one for which we have been deriving
properties. In the case J = [0, 1], M contains as subalgebras isomorphic
copies of the algebras ([0, 1],∨,∧,′ , 0, 1) and ([0, 1][2],∨,∧,′ , 0, 1), or more
generally, for any J , M contains as subalgebras isomorphic copies of the
algebras (J,∨,∧,′ , 0, 1) and (J [2],∨,∧,′ , 0, 1). This fully legitimizes the
claim that type-2 fuzzy sets are generalizations of type-1 and of interval-
valued fuzzy sets. But M contains many other subalgebras of interest.
This section examines several of these subalgebras.

Definition 5.10.19 A subalgebra of an algebra is a subset of the algebra
that is closed under the operations of the original algebra.

Any subalgebra A of M will give rise to a subalgebra of type-2 fuzzy
sets, namely those maps in Map(S,Map(J, I)) whose images are in A.

A subalgebra of M is a lattice if and only if the absorption laws hold.
It is well known in lattice theory that the two partial orders coincide if
and only if the absorption laws hold.

Proposition 5.10.20 A subalgebra A of M satisfies the absorption laws
if and only if ⊑⊓ =⊑⊔.

Proof. Let f, g ∈ A and assume that the absorption laws f = f ⊓
(g ⊔ f) and g = g ⊔ (g ⊓ f) hold for f, g ∈ A. If f ⊑⊓ g, this means
f ⊓g = f , so that g = g⊔ (g ⊓ f) = g⊔f , and f ⊑⊔ g. On the other hand,
if f ⊑⊔ g, this means f ⊔ g = g, so that f = f ⊓ (g ⊔ f) = f ⊓ g, whence
f ⊑⊓ g.

Now assume that the two partial orders coincide. Then f⊔g = (f ⊔ f)⊔
g = f ⊔ (f ⊔ g) implying that f ⊑⊓ f ⊔ g, and thus that f ⊑ f ⊔ g. But
this means that f = f ⊓ (f ⊔ g). Similarly, f = f ⊔ (f ⊓ g).

The Lattice J

Type-1 fuzzy sets take values in the unit interval [0, 1]. To realize type-1
fuzzy sets as special type-2 fuzzy sets, we realize the algebra (I,∨,∧,′ , 0, 1)
as a subalgebra of (Map(I, I),⊔,⊓,∗ ,0,1). We can do this more generally,
embedding (J,∨,∧,′ , 0, 1) as a subalgebra of (Map(J, I),⊔,⊓,∗ ,0,1).

Definition 5.10.21 For each a ∈ J , its characteristic function is the
function a : J → I that takes a to 1 and the other elements of J to 0.
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These characteristic functions of points in J are clearly in one-to-one
correspondence with J , but much more is true.

Theorem 5.10.22 The mapping a 7→ a is an isomorphism from the alge-
bra (J,∨,∧,′ , 0, 1) into the subalgebra of M consisting of its characteristic
functions of points.

We will denote this subalgebra of M by J (or by I in the special case
that J = I). It should be noted that a∨b is not the characteristic function
of a ∨ b. In fact, it is a routine exercise to show the following.

Proposition 5.10.23 For a, b ∈ J ,

1. The characteristic function of a ∨ b is a ⊔ b.

2. The characteristic function of a ∧ b is a ⊓ b.

3. The characteristic function of a′ is a∗.

Of course, if one wants to use type-1 fuzzy sets, they would simply be
taken to be maps into J or I, and not as maps into this subalgebra of M.
There would be no need to cloud the issue with type-2 sets.

The subalgebra J of characteristic functions of points in J is a Kleene
algebra since it is isomorphic to (J,∨,∧,′ , 0, 1).

Intervals

The usual interpretation of interval type-2 fuzzy sets corresponds to the
subalgebra J[2] of M consisting of those functions in Map(J, I) that take
all elements of a closed interval of J to 1 and its complement to 0. Such an
interval can be identified by its two endpoints. In this context, the elements
of J are simply closed intervals for which the two endpoints coincide. In
particular, 1 and 0 are in this subalgebra. The empty set is not an interval
in this context. This subalgebra is of particular interest in applications of
type-2 fuzzy sets. It seems that most applications of type-2 fuzzy sets are
restricted to these interval type-2 ones. See [140], 7.3.1, p. 222; 7.4, p. 224;
and 10.9, p. 302.

The elements of the subalgebra J[2] will be called simply intervals. In
the previous section, we defined the characteristic function a of an element
a ∈ J . A pair (a, b) ∈ J [2] is identified with the function aL ∧ bR ∈ J[2].
Note the following.

aL ∧ bL = (a ⊔ b)L (5.17)

aR ∨ bR = (a ⊔ b)
R
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Now for intervals f = aL ∧ bR and g = cL ∧ dR, we have

f ⊔ g =
(
aL ∧ bR

)
⊔
(
cL ∧ dR

)

=
[(
aL ∧ bR

)
∧
(
cL ∧ dR

)L] ∨
[(
aL ∧ bR

)L ∧
(
cL ∧ dR

)]

=
[(
aL ∧ bR

)
∧ cL

]
∨
[
aL ∧

(
cL ∧ dR

)]

=
[(
aL ∧ cL

)
∧ bR

]
∨
[(
aL ∧ cL

)
∧ dR

]

=
(
aL ∧ cL

)
∧
(
bR ∨ dR

)
=
(
aL ⊔ cL

)
∧
(
bR ∨ dR

)

= (a ⊔ c)
L ∧ (b ⊔ d)

R

This says that the ⊔-union of the intervals [a, b] and [c, d] is the interval
[a ∨ c, b ∨ d]. That is, we can compute ⊔ coordinatewise. The formula for

f ⊓ g can be gotten similarly, and is (a ⊓ c)
L ∧ (b ⊓ d)

R
, corresponding to

the interval [a∧ c, b∧d]. It can also be obtained from the formula for f ⊔g
using duality. This is summed up by the following theorem.

Theorem 5.10.24 The mapping (a, b) 7→ aL∧bR is an isomorphism from
the the algebra (J [2],∨,∧,′ , 0, 1) into the subalgebra J[2] of M consisting
of closed intervals.

The upshot of all this is that if interval type-2 sets are used, one may
as well just use interval-valued type-1 fuzzy sets, that is, maps of a set into
J [2], the intervals of J , and combining as indicated. The theory of these
has been worked out in detail in [69] for J = I. See also Section 5.9.

This subalgebra of fuzzy type-2 intervals is a De Morgan algebra under
⊔,⊓,∗ ,0,1. Note also that J[2] is a subalgebra of 2J, the subalgebra of all
subsets of [0, 1], which is discussed later in this section.

There is another obvious interpretation of the phrase “interval type-2
fuzzy sets,” namely the characteristic functions of all intervals, including
open, closed, and half-open/half-closed intervals. This distinction vanishes
when working with Map (J, I) for finite chains J , but could be of interest
in other cases.

Normal functions

The usual definition of normality of an element f of Map(J, I), is that
f(x) = 1 for some x. We use a slightly weaker definition that coincides
with the usual definition in the finite case.

Definition 5.10.25 An element f of Map(J, I) is normal if the least
upper bound of f is 1.

There are convenient ways to express this condition in terms of our
operations on this algebra. The proof of the following proposition is im-
mediate from definitions.
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Proposition 5.10.26 The following four conditions are equivalent:

1. f is normal.

2. fRL = 1.

3. fL(1) = 1.

4. fR(0) = 1.

Proposition 5.10.27 The set N of all normal functions is a subalgebra
of M.

Proof. Here is the verification that it is closed under ⊔.

(f ⊔ g)
L

(1) =
(
fL ⊔ gL

)
(1) =

(
fL ∧ gL

)
(1)

= fL(1) ∧ gL(1) = 1

The other verifications are just as easy.

The subalgebra N contains the non-empty subsets of J as characteristic
functions, and it contains the subalgebra J[2] of intervals. Normal functions
will play an important role later.

Convex functions

The subalgebra C of convex functions is a particularly interesting one.
It contains the subalgebra J[2] of intervals, which in turn contains the
subalgebra J corresponding to the lattice J .

Definition 5.10.28 An element f of Map(J, I) is convex if whenever
x ≤ y ≤ z, then f(y) ≥ f(x) ∧ f(z).

There is a convenient way to express this condition in terms of our
operations on this algebra.

Proposition 5.10.29 An element f of Map(J, I) is convex if and only
if f = fL ∧ fR.

Proof. Suppose that f = fL ∧ fR and x ≤ y ≤ z. Then since fL(y) ≥
fL(x) and fR(y) ≥ fR(z), we get

f(y) ∧ f(x) ∧ f(z) =
(
fL ∧ fR

)
(y) ∧

(
fL ∧ fR

)
(x) ∧

(
fL ∧ fR

)
(z)

= fL(y) ∧ fR(y) ∧ fL(x) ∧ fR(x) ∧ fL(z) ∧ fR(z)

= fL(x) ∧ fR(x) ∧ fL(z) ∧ fR(z) = f(x) ∧ f(z)
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Thus f(y) ≥ f(x) ∧ f(z).
Suppose that f is convex. Then f(y) ≥ f(x) ∧ f(z) for all x ≤ y and

for all z ≥ y. Thus f(y) ≥ fR(y)∧fL(y) =
(
fR ∧ fL

)
(y), so f ≥ fR∧fL.

But it is always true that f ≤ fR ∧ fL. Thus f = fR ∧ fL.

How do convex functions come about? Here is a simple description of
convex functions in terms of monotone functions.

Proposition 5.10.30 A function is convex if and only if it is the mini-
mum of a monotone increasing function and a monotone decreasing one.

Proof. We have seen that a convex function f is the minimum of an
increasing function and a decreasing one, namely f = fL∧fR. Let f be an
increasing function and g a decreasing one, and suppose that x ≤ y ≤ z.
Then

((f ∧ g)(y)) ∧ ((f ∧ g)(x)) ∧ ((f ∧ g)(z))

= f(y) ∧ g(y) ∧ f(x) ∧ g(x) ∧ f(z) ∧ g(z)

= f(x) ∧ g(x) ∧ f(z) ∧ g(z)

so that (f ∧ g) (y) ≥ ((f ∧ g) (x))∧(f(z) ∧ g(z)) , and hence f∧g is convex.

Proposition 5.10.31 The set C of convex functions is a subalgebra of
M.

Proof. It is clear that 0 and 1 are convex. Suppose that f is convex.
Then f = fL∧fR, and f∗ =

(
fL ∧ fR

)∗
= fL∗∧fR∗ = f∗L∧f∗R. Hence

f∗ is convex. Now suppose that f and g are convex. Then

f ⊔ g =
(
fL ∧ g

)
∨
(
f ∧ gL

)

=
(
fL ∧ gL ∧ gR

)
∨
(
fL ∧ fR ∧ gL

)

=
(
fL ∧ gL

)
∧
(
fR ∨ gR

)

Thus by Proposition 5.10.30, f ⊔ g is convex. Now f ⊓ g is convex since
(f ⊓ g)

∗
= (f∗ ⊔ g∗) is convex.

Theorem 5.10.32 The distributive laws

f ⊔ (g ⊓ h) = (f ⊔ g) ⊓ (f ⊔ h) (5.18)

f ⊓ (g ⊔ h) = (f ⊓ g) ⊔ (f ⊓ h)

hold for all g, h ∈M if and only if f is convex.

www.EBooksWorld.ir



148 CHAPTER 5. BASIC CONNECTIVES

Proof. From Theorem 5.10.11, we have

f ⊔ (g ⊓ h) =
(
f ∧ gL∧ hRL

)
∨
(
f ∧ gRL∧ hL

)

∨
(
fL∧ g ∧ hR

)
∨
(
fL∧ gR∧ h

)

(f ⊔ g) ⊓ (f ⊔ h) =
(
f ∧ gL∧ hRL

)
∨
(
f ∧ gRL∧ hL

)

∨
(
fL∧ g ∧ hR

)
∨
(
fL∧ gR∧ h

)

∨
(
fL ∧ fR ∧ g ∧ hRL

)
∨
(
fR ∧ fL ∧ gRL ∧ h

)

If f is convex, then fL ∧ fR = f , and the last two terms in the expression
for (f ⊔ g)⊓(f ⊔ h) are smaller than the first two terms for that expression.
Thus f ⊔ (g ⊓ h) = (f ⊔ g) ⊓ (f ⊔ h). The other distributive law follows
similarly.

Now suppose f ⊔ (g ⊓ h) = (f ⊔ g)⊓ (f ⊔ h) holds for all g and h. Then

(
f ∧ gL ∧ hRL

)
∨
(
f ∧ gRL ∧ hL

)
∨
(
fL ∧ g ∧ hR

)
∨
(
fL ∧ gR ∧ h

)

=
(
f ∧ gL ∧ hRL

)
∨
(
f ∧ gRL ∧ hL

)
∨
(
fL ∧ g ∧ hR

)
∨
(
fL ∧ gR ∧ h

)

∨
(
fL ∧ fR ∧ g ∧ hRL

)
∨
(
fR ∧ fL ∧ gRL ∧ h

)

Letting h be the function that is 1 everywhere, and g = 0, we get

(
f ∧ 0L

)
∨
(
f ∧ 0RL

)
∨
(
fL ∧ 0

)
∨
(
fL ∧ 0R

)

=
(
f ∧ 0L

)
∨
(
f ∧ 0RL

)
∨
(
fL ∧ 0

)
∨
(
fL ∧ 0R

)

∨
(
fL ∧ fR ∧ 0

)
∨
(
fR ∧ fL ∧ 0RL

)

and so
f = f ∨

(
fR ∧ fL

)
= fR ∧ fL

Similarly, if f ⊓ (g ⊔ h) = (f ⊓ g)⊔ (f ⊓ h) holds for all g and h, then f is
convex.

Using f ⊓ gR = fR ⊓ g from Corollary 5.10.6, note that

f ⊓
(
gR ⊔ hR

)
= f ⊓ (g ⊔ h)

R
= fR ⊓ (g ⊔ h)

=
(
fR ⊓ g

)
⊔
(
fR ⊓ h

)
=
(
f ⊓ gR

)
⊔
(
f ⊓ hR

)

and similarly

f ⊔
(
gL ⊓ hL

)
= f ⊔ (g ⊓ h)

L
= fL ⊔ (g ⊓ h)

=
(
fL ⊔ g

)
⊓
(
fL ⊔ h

)
=
(
f ⊔ gL

)
⊓
(
f ⊔ hL

)

Thus the distributive law f ⊓ (g ⊔ h) = (f ⊓ g)⊔ (f ⊓ h) holds for any f if
both g and h are monotone decreasing, and f ⊔ (g ⊓ h) = (f ⊔ g)⊓ (f ⊔ h)
holds for any f if both g and h are monotone increasing.
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The lattice of convex normal functions

The set L of functions that are both convex and normal is clearly a subal-
gebra of M, being the intersection of the subalgebra C of convex functions
and the subalgebra N of normal functions. The subalgebra L is a particu-
larly important subalgebra of M; that is, a particularly important algebra
in the theory of type-2 fuzzy sets. This is true, at least in part, because it
has particularly nice algebraic properties.

The algebra M is not a lattice, because the absorption laws f⊔(f⊓g) =
f and f ⊓ (f ⊔g) = f do not hold. However, in L the absorption laws hold
by the following Proposition.

Proposition 5.10.33 If f is convex and g is normal, then

f ⊔ (f ⊓ g) = f ⊓ (f ⊔ g) = f (5.19)

Proof. We showed in Proposition 5.10.13 that

f ⊔ (f ⊓ g) = f ⊓ (f ⊔ g) =
(
f ∧ gLR

)
∨
(
fR ∧ fL ∧ g

)

Since f is convex and g is normal, we have

(
f ∧ gLR

)
∨
(
fR ∧ fL ∧ g

)
= f ∨ (f ∧ g) = f

Thus the absorption law holds for convex normal functions.

The distributive laws hold by Theorem 5.10.32. From all the other
properties of M, the subalgebra L of convex normal functions is a bounded
distributive lattice, and ∗ is an involution that satisfies De Morgan’s laws
with respect to ⊔ and ⊓. Thus we have the following theorem.

Theorem 5.10.34 The subalgebra L of M consisting of all the convex
normal functions is a De Morgan algebra.

Both De Morgan algebras and Kleene algebras are, among other things,
bounded, distributive lattices.

Theorem 5.10.35 If A is a subalgebra of M that is a lattice with re-
spect to ⊔ and ⊓ and that contains J, then the functions in A are normal
and convex, that is, A ⊆ L. Thus the subalgebra L of all convex normal
functions is a maximal lattice in M.

Proof. Let f ∈ A. Since A is a lattice, the absorption laws hold, so in
particular,

a ⊓ (a ⊔ f) = a and f ⊓ (f ⊔ a) = f
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for all a ∈ J. By Proposition 5.10.13,

a = a ⊓ (a ⊔ f) =
(
a ∧ fLR

)
∨
(
aL ∧ aR ∧ f

)

so that a (a) = 1 = fLR ∧ f (a) implies that f (a) = fRL = 1, so f is
normal. Again by Proposition 5.10.13,

f = f ⊓ (f ⊔ a) =
(
f ∧ aLR

)
∨
(
fL ∧ fR ∧ a

)

which implies that f (a) = f (a) ∨
(
fL (a) ∧ fR (a)

)
= fL (a) ∧ fR (a).

Since this holds for all a ∈ J , we have that f = fL ∧ fR, that is, f is
convex.

As we stated earlier, the subalgebra L is an important algebra in the
theory of type-2 fuzzy sets. Fortunately, there is a way to make this sub-
algebra simpler to work with. There is a natural isomorphic copy of L as
an algebra of decreasing functions from [0, 1] to [0, 2]. This representation
uses ordinary pointwise order making the operations more intuitive.

Before describing this representation, we recall a simple observation
about the ordering ⊑ from [217].

Proposition 5.10.36 For f, g ∈ L, these are equivalent.

1. f ⊑ g

2. gL ≤ fL and fR ≤ gR

Definition 5.10.37 Let I and I∗ represent the closed intervals [0, 1] and
[0, 2], respectively, ordered with the usual pointwise ordering ≤.

It will be helpful to view I∗ as I with a copy of the dual of I on top,
with the top element of I and the bottom element of the dual copy of I
identified. We now make precise the idea of straightening out a convex
function f .

Definition 5.10.38 For f : I→ I define f∗ : I→ I∗ by setting

f∗(x) =

{
2− f(x) if f(x) = fL(x)
f(x) otherwise

While defined for any function, we only consider f∗ in the case that
f is convex and normal. Roughly, f∗ is produced by taking the mirror
image of the increasing portion of f about the line y = 1, and leaving the
remainder of f alone. The following diagram illustrates the situation.
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✘✘✘✘✘✘✘◗
◗
◗◗

1

0 1

f

❳❳❳❳❳❳❳
◗
◗
◗◗

1

2

0 1

f∗

While we consider the convolution ordering ⊑ on L, we shall consider
the ordinary pointwise ordering of functions ≤ for functions from I to I∗.
The key result is the following.

Proposition 5.10.39 [217]For f, g ∈ L, f ⊑ g if and only if f∗ ≤ g∗.

We leave the proof as an exercise. The functions g that arise as f∗

for some convex normal f are those that are decreasing and have 1 as
an accumulation point of the image of g. As a result, one can work in
L completely with the familiar pointwise order. To see this result put to
good use, see [99].

The algebra of subsets of the unit interval

Consider the set 2J = Map(J, {0, 1}) ⊆ Map(J, I). It is very easy to see
that 2J is a subalgebra of M. For example, if f and g map into {0, 1},
then f ⊔ g =

(
f ∧ gL

)
∨
(
fL ∧ g

)
clearly does also. These elements can

be identified with the subsets of J via the correspondence f 7→ f−1 (1). If
such an identification is made, the following are clear.

f ∨ g = f ∪ g and f ∧ g = f ∩ g
fL = {x : x ≥ some element of f}
fR = {x : x ≤ some element of f}

Making this identification, the formulas for ⊔ and ⊓ become

f ⊔ g = (f ∪ g) ∩ fL ∩ gL =
(
f ∩ gL

)
∪
(
fL ∩ g

)

f ⊓ g = (f ∪ g) ∩ fR ∩ gR =
(
f ∩ gR

)
∪
(
fR ∩ g

)

Also, 1 corresponds to the set {1}, 0 to the set {0}, and the complement of
f to the map f ′. This is not the same as f∗. Its elements are the subsets of
J, but the operations ⊔ and ⊓ are not union and intersection. It satisfies
all the equations that M satisfies, being a subalgebra of it, but maybe
some others as well.

This subalgebra is actually closed under several other operations. For
example, fL and fR are in this subalgebra whenever f is. The constant
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function with value 1, and the constant function with value 0, are in the
subalgebra. It should also be noted that this subalgebra is closed under
the pointwise operations of ∨ and ∧.

Functions with finite support

A function has finite support if Supp (f) = {x ∈ I : f (x) > 0} is finite.
It is easy to see that the set F of all functions in M with finite support
is a subalgebra of M. For example, if f and g have finite support, then
Supp (f ⊔ g) and Supp (f ⊓ g) are both finite, because

Supp (f ⊔ g) = Supp
((
f ∧ gL

)
∨
(
fL ∧ g

))
⊆ Supp (f) ∪ Supp (g)

Supp (f ⊓ g) = Supp
((
f ∧ gR

)
∨
(
fR ∧ g

))
⊆ Supp (f) ∪ Supp (g)

Also, Supp (f∗) = {x′ : x ∈ Supp (f)} is finite. Both 0 and 1 have finite
support. The set F is also closed under the operations ∧ and ∨. Note that
although fL and fR are not in F, the functions fL ∧ g and fR ∧ g have
finite support for g ∈ F, so are in F.

The set of finite subsets of J yields a subalgebra of F. Of course,
if J is finite, F = M. If J = I, F does not contain any convex functions
except singletons, and the subalgebra of M consisting of all convex normal
functions in F coincides with I. Many applications of fuzzy theory involve
only finite subsets of I and J . See [99], Chapter 10 for a full discussion of
the mathematics that occurs in this situation.

5.10.6 Convolutions using product

In this section, we consider convolution of functions in Map(J, I), where
instead of using ∨ and ∧ on I, we use ∨ and ordinary product. As before,
we only assume that J is a bounded chain with an involution. Here are
the basic operations we consider.

Definition 5.10.40 For f, g ∈ Map (J, I), ⋒ and ⋓ are defined by the
convolutions

(f ⋒ g) (x) =
∨

y∨z=x
(f(y)g(z)) (5.20)

(f ⋓ g) (x) =
∨

y∧z=x
(f(y)g(z))

The other operations on Map(J, I) that we consider are the same as
before, namely the unary operation ∗ and the two constants 0 and 1.
Our concern here is with the algebra P = (Map(J, I),⋒,⋓,∗ ,0,1). And
principal tools are the auxiliary unary operations L and R.
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Theorem 5.10.41 The following hold for all f, g ∈Map (J, I)

f ⋒ g = fLg ∨ fgL (5.21)

f ⋓ g = fRg ∨ fgR

The proofs are straightforward. For functions f and g in Map(J, I),
fg of course means the function given pointwise by the operation of mul-
tiplication on [0, 1], that is, (fg)(x) = f(x)g(x).

Some algebraic properties of P are developed in [146] for J finite.

Remark 5.10.42 The algebra P is constructed by convolution operations
on J using I with the operations ∨ and ordinary multiplication •. Since
the algebra (I,∨, •) is isomorphic to the algebra (I,∨,△), where △ is any
strict t-norm, the results we obtain for P will be the same as if we were
using △ instead of •.

Theorem 5.10.43 The following hold for f, g ∈Map (J, I).

1. ⋒ and ⋓ are commutative and associative.

2. 0 ⋒ f = f ; 1 ⋓ f = f .

3. (f ⋒ g)
∗

= f∗ ⋓ g∗; (f ⋓ g)
∗

= f∗ ⋒ g∗.

Proof. Items 1 and 2 are left as exercises. It should be noted that
0 ⋓ f 6= 0 and 1 ⋒ f 6= 1. We prove the first half of item 3.

(f ⋒ g)
∗

(x) =
(
fLg ∨ fgL

)∗
(x)

=
(
fLg ∨ fgL

)
(x′)

= fL (x′) g (x′) ∨ f (x′) gL (x′)

= fL∗ (x) g∗ (x) ∨ f∗ (x) gL∗ (x)

= f∗R (x) g∗ (x) ∨ f∗ (x) g∗R (x)

=
(
f∗Rg∗ ∨ f∗g∗R

)
(x)

= (f∗ ⋓ g∗) (x)

The proof of the second half of item 3 is similar.

The associative law for ⋒ is the equation

f ⋒ (g ⋒ h) = (f ⋒ g) ⋒ h (5.22)

and from (5.21), we get

fLgLh∨fLghL∨f
(
gLh

)L∨f
(
ghL

)L
=fLghL∨fgLhL∨

(
fLg

)L
h∨
(
fgL

)L
h
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Taking f = 1, the function that is 1 everywhere, we get the equation

gLh ∨ ghL ∨
(
gLh

)L ∨
(
ghL

)L
= ghL ∨ gLhL ∨ gLh ∨ gLh

from which follows
(
gLh

)L ∨
(
ghL

)L
= gLhL

(
gLh ∨ ghL

)L
= gLhL

(g ⋒ h)
L

= gLhL

But also

gL ⋒ hL = gLLhL ∨ gLhLL = gLhL ∨ gLhL = gLhL

From this and duality, we have the equations

(g ⋒ h)
L

= gL ⋒ hL = gLhL (5.23)

(g ⋓ h)
R

= gR ⋓ hR = gRhR

The operations ⋒ and ⋓ are not idempotent. The idempotent law holds
only in the special cases described in the following proposition.

Proposition 5.10.44 The following hold in P.

1. f ⋒ f = f if and only if f(0) = 1; equivalently if and only if fL = 1.

2. f ⋓ f = f if and only if f(1) = 1; equivalently if and only if fR = 1.

Proof. Let f ∈Map (J, I). Then

f ⋒ f = fLf ∨ ffL = fLf = f

if and only if fL (x) = 1 for all x ∈ J , which is equivalent to f(0) = 1.
Item 2 follows similarly.

Proposition 5.10.45 The normal functions form a subalgebra of P.

Proof. We already know that 0 and 1 are normal, and that if f is
normal, then so is f∗. So we only need to show that if f and g are normal,
then so are f ⋒g and f ⋓g. A function f is normal if and only if fL(1) = 1.
Now if f and g are normal, then by (5.23),

(f ⋒ g)
L

(1) = gLhL(1) = gL(1)hL(1) = 1

It follows that f ⋒ g is normal, and dually that f ⋓ g is normal since

f ⋓ g = (f ⋓ g)
∗∗

= (f∗ ⋒ g∗)
∗
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is normal.

The following proposition was left as an unsolved problem in [146], and
was settled in the affirmative by [167] for the case that J was finite. We
make no such restriction on J here.

Proposition 5.10.46 The convex functions form a subalgebra of P.

Proof. Again, we need only to show that f ⋒ g and f ⋓ g are convex
whenever f and g are convex. For a function f to be convex means that
f = fL ∧ fR. We have

f ⋒ g = fLg ∨ fgL = fL
(
gL ∧ gR

)
∨
(
fL ∧ fR

)
gL

=
(
fLgL ∧ fLgR

)
∨
(
fLgL ∧ fRgL

)

= fLgL ∧
(
fLgR ∨ fRgL

)

Similarly
f ⋓ g = fRgR ∧

(
fLgR ∨ fRgL

)

The following two lemmas finish the proof.

Lemma 5.10.47 If f is monotone and g is convex, then f ∧ g is convex.

Proof. Suppose that f is monotone increasing. Then f = fL and
g = gL ∧ gR. We have f ∧ g = fL ∧

(
gL ∧ gR

)
=
(
fL ∧ gL

)
∧ gR, which is

convex by Proposition 5.10.30. Similarly if f is monotone decreasing.

Lemma 5.10.48 For any functions f and g, fLgR ∨ fRgL is convex.

Proof. Let S =
{
x : fL(x) ≤ fR(x)

}
and T = {x : gL(x) ≤ gR(x)}.

Because both S and T are intervals of the chain J containing 0, we may
suppose, without lost of generality, that S ⊆ T . If x ∈ S, we see that

fL(x) =
∨
y≤x

f(y) ≤ ∨
z≥x

f(z) = fR(x)

so that
fRL =

∨
w∈J

f(w) ≤ fR(x)

and we must have fR (x) = fRL for x ∈ S. Similarly, for x ∈ T , gR (x) =
gRL; for x ∈ J − S , fL (x) = fRL; and for x ∈ J − T , gL (x) = gRL. We
have respectively

(
fLgR ∨ fRgL

)
(z) =





(
fLgRL ∨ fRLgL

)
(z) if z ∈ S

fRLgRL if z ∈ T − S(
fRLgR ∨ fRgRL

)
(z) if z ∈ J − T
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This function is monotone increasing for z ∈ S, on T − S it is constant
and greater or equal to the first part, and when z ∈ J −T , it is monotone
decreasing and less or equal to the second part. Thus fLgR ∨ fRgL is
convex.

Note that the function fLgR ∨ fRgL has the general shape in the
diagram below. It may not, of course, be continuous, but it is increasing
on the left, flat on the top, and decreasing on the right.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Corollary 5.10.49 The set of normal convex functions forms a subalge-
bra of the algebra P.

We described several subalgebras of M for which the functions took
values in {0, 1}, such as the algebra J of characteristic functions of points of
J ; J[2] the closed-interval type-2 fuzzy sets; and 2J = Map (J, {0, 1}). We
note that these same algebras are subalgebras of P due to the observation
that

(Map (J, {0, 1}) ,⊔,⊓,∗ ,0,1) = (Map(J, {0, 1}),⋒,⋓,∗ ,0,1)

This follows immediately from the fact that minimum and product coin-
cide on the set {0, 1}.

5.10.7 T-norms for type-2 fuzzy sets

In this section, we restrict ourselves to the case J = I, and look at con-
volutions with respect to ∨ and ∧ of the class of t-norms, and their duals,
t-conorms. The resulting operations will be called type-2 t-norms and
type-2 t-conorms. We take convolutions with respect to ∨ and ∧, as in
the following proposition.
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Proposition 5.10.50 Let △ be a t-norm, and let N be its convolution

(f N g) (x) =
∨

y△z=x

(f(y) ∧ g(z))

Let ▽ be the t-conorm dual to △ with respect to the negation ′, and let H
be its convolution

(f H g) (x) =
∨

y▽z=x

(f(y) ∧ g(z))

Then for f, g, h ∈Map (I, I)

1. N is commutative and associative.

2. f N1 = f .

3. f N 1 = fR.

4. f N (g ∨ h) = (f N g) ∨ (f Nh).

5. If g ≤ h, then (f N g) ≤ (f Nh).

6. (f N g)
∗

= f∗H g∗.

7. H is commutative and associative.

8. f H0 = f .

9. f H (g ∨ h) = (f H g) ∨ (f Hh).

10. If g ≤ h, then (f H g) ≤ (f Hh).

The proofs are routine.
From now on, we assume that t-norms and t-conorms are continuous.

An equivalent condition is that if y△z ≥ x, then x = y1△z1, with y1 ≤ y
and z1 ≤ z, and similarly for t-conorms.

Proposition 5.10.51 The following hold for f, g ∈Map (I, I).

1. (f N g)
R

= fR N gR

2. (f N g)
L

= fLN gL

3. (f H g)
R

= fR H gR

4. (f H g)
L

= fLH gL
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Proof. To prove item 1, consider

(f N g)
R

(x) =
∨

w≥x

∨
y△z=w

(f(y) ∧ g(z))

=
∨

y△z≥x

(f(y) ∧ g(z))

(
fR N gR

)
(x) =

∨
y△z=x

(
fR(y) ∧ gR(z)

)

=
∨

y△z=x

((
∨
u≥y

f(u)

)
∧
(
∨
v≥z

g(v)

))

If y△ z ≥ x, then x = y1△ z1, with y1 ≤ y and z1 ≤ z. So

f(y) ∧ g(z) ≤
(
∨

u≥y1

f(u)

)
∧
(
∨

v≥z1

g(v)

)

Thus (f N g)R ≤ fR N gR. If y△z = x and u ≥ y and v ≥ z, then u△v ≥ x
and f(u) ∧ g(v) ≤ (f N g)

R
(x). Thus (f N g)

R
= fR N gR.

Item 3 is proved similarly. To prove item 2,

(f N g)
L

= (f N g)
L∗∗

= (f∗H g∗)
R∗

=
(
f∗R H g∗R

)∗

=
(
fL∗H gL∗

)∗
=
(
fLN gL

)∗∗
= fLN gL

and item 4 is gotten similarly.

The distributive laws in the following theorem are analogous to the
laws

f △ (g ∧ h) = (f △ g) ∧ (f △ h) f △ (g ∨ h) = (f △ g) ∧ (f △ h)

f ▽ (g ∧ h) = (f ▽ g) ∧ (f ▽ h) f ▽ (g ∨ h) = (f ▽ g) ∨ (f ▽ h)

for t-norms and t-conorms.

Theorem 5.10.52 The distributive laws

f N (g ⊓ h) = (f N g) ⊓ (f Nh)f N (g ⊔ h) = (f N g) ⊔ (f Nh)

f H (g ⊓ h) = (f H g) ⊓ (f Hh) f H (g ⊔ h) = (f H g) ⊔ (f Hh)

hold for all g, h ∈Map (I, I) if and only if f is convex.

Proof. We prove the second identity holds if and only if f is convex.
The rest follows immediately from this and the four identities

(f ⊔ g)
∗

= f∗ ⊓ g∗ (f ⊓ g)
∗

= f∗ ⊔ g∗
(f N g)

∗
= f∗ H g∗ (f H g)

∗
= f∗ N g∗
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It is easy to see that the following hold

(I) : (f N (g ⊔ h)) (x) =
∨

y△(u∨v)=x

(f (y) ∧ g (u) ∧ h (v))

(II) : ((f N g) ⊔ (f Nh)) (x)

=
∨

(p△q)∨(s△t)=x

(f (p) ∧ g (q) ∧ f (s) ∧ h (t))

and clearly (I) ≤ (II).
Assume that f is convex, and let (p△ q) ∨ (s△ t) = x. To show that

(I) ≥ (II), we want y such that

y△ (q ∨ t) = (y△ q) ∨ (y△ t) = x

and
f (y) ∧ g (q) ∧ h (t) ≥ f (p) ∧ g (q) ∧ f (s) ∧ h (t)

If p△ q = s △ t = x, let y = p ∧ s. Then (y△ q) ∨ (y△ t) = x and
either f (y) = f (p) or f (y) = f (s). In either case

f (y) ∧ g (q) ∧ h (t) ≥ f (p) ∧ g (q) ∧ f (s) ∧ h (t)

Otherwise, we may as well assume that p△ q < x and s△ t = x. If
s△ q ≤ x, then

(s△ q) ∨ (s△ t) = s△ t = x

and, taking y = s, we have the same inequality as above. On the other
hand, if s△ q > x, then s△ q > s△ t implies q > t. Thus we have

p△ q < x < s△ q

so there is a y with p < y < s and y △ q = x. Then t < q implies that
y△ t ≤ y△ q = x so that

(y△ q) ∨ (y△ t) = (y△ q) = x

Now since f is convex, f (y) ≥ f (p) ∧ f (s), so that

f (y) ∧ g (q) ∧ h (t) ≥ f (p) ∧ g (q) ∧ f (s) ∧ h (t)

as desired. It follows that (I) ≥ (II), and hence (I) = (II) when f is
convex.

Suppose f N (g ⊔ h) = (f ⊔ g) N (f ⊔ h) holds for all g and h. Then,
in particular,

f N (1 ⊔ 1) = (f N1) ⊔ (f N 1)

www.EBooksWorld.ir



160 CHAPTER 5. BASIC CONNECTIVES

The left side is
f N (1 ⊔ 1) = f N1 = f

and the right side is

(f N1) ⊔ (f N 1) = f ⊔ fR =
(
f ∨ fR

)
∧
(
fL ∧ fRL

)

= fR ∧ fL

Thus f is convex.

On the unit interval, t-norms are increasing in each variable. Convex
type-2 t-norms behave in a similar way with respect to the orders ⊑⊓ and
⊑⊔ .

Corollary 5.10.53 If f is convex and g ⊑⊓ h, then

f N g ⊑⊓ f Nh and f H g ⊑⊓ f Hh

If f is convex and g ⊑⊔ h, then

f N g ⊑⊔ f Nh and f H g ⊑⊔ f Hh

Proof. f N g = f N (g ⊓h) = (f N g)⊓ (f Nh), whence f N g ⊑⊓ f Nh.
The other parts follow similarly.

As we have seen in Section 5.10.5, the subalgebra L of normal convex
functions is rather special. It is a De Morgan algebra, for example. A nat-
ural question is whether or not type-2 t-norms of convex normal functions
are convex normal. For continuous ones, this in indeed the case.

Theorem 5.10.54 Let f and g be elements of L. That is, they are normal
and convex. Let △ be a continuous t-norm. Then f N g ∈ L.

Proof. First we prove that f N g is normal. Since f and g are normal,
for ε > 0, there exist a and b such that f(a) and g(b) are both > 1 − ε.
Thus

(f N g) (x) = ∨x=y△zf(y) ∧ g(z) ≥ f(a) ∧ g(b) ≥ 1− ε

Thus f N g is normal.
Suppose that f and g are convex, and that a < b < c. We need

(f N g) (b) ≥ (f N g) (a) ∧ (f N g) (c)

∨b=x△y (f(x) ∧ g(y)) ≥ [∨a=x1△y1 (f(x1) ∧ g(y1))]

∧ [∨c=x2△y2 (f(x2) ∧ g(y2))]
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For a particular x1, x2, y1, y2, we have x1 △ y1 ≤ b ≤ x2 △ y2. Since △
is continuous, there exist x between x1 and x2, and y between y1 and y2
such that x△ y = b. Since f and g are convex, f(x) ≥ f(x1) ∧ f(x2) and
g(y) ≥ g(y1) ∧ g(y2). Thus

f(x) ∧ g(y) ≥ f(x1) ∧ g(y1) ∧ f(x2) ∧ g(y2)

The result follows.

A proof of this theorem was furnished to us by Professor Vladik
Kreinovich. The proof above is a slight adaptation of his proof.

Corollary 5.10.55 If △ is a continuous t-norm, then (L,N) is a subal-
gebra of (M,N) .

T-norms on the subalgebra [0, 1]

As we have seen, a copy of the algebra I = ([0, 1],∨,∧,′ , 0, 1) is contained
in the algebra M = (Map(I, I),⊔,⊓,∗ ,0,1), namely the characteristic
functions a for a ∈ [0, 1]. The formula

(aNb) (x) =
∨

y△z=x

a(y) ∧ b(z)

says that aNb is the characteristic function of a△ b, as it should be. It is
clear that the t-norm N acts on the subalgebra of characteristic functions
in exactly the same was as the t-norm △ acts on the algebra [0, 1]. More
precisely,

Theorem 5.10.56 The mapping a→ a is an isomorphism from (I,△) =
([0, 1],∨,∧,△,′ , 0, 1) into (M,N) = (Map(I, I),⊔,⊓,N,∗ ,0,1).

T-norms on the subalgebra of intervals

Consider the subalgebra of intervals, which are represented by functions
of the form aL ∧ bR with a ≤ b. From the formula
(
aL ∧ bR

)
N
(
cL ∧ dR

)
(x) =

∨
y△z=x

(
aL ∧ bR

)
(y) ∧

(
cL ∧ dR

)
(z)

we see that
(
aL ∧ bR

)
N
(
cL ∧ dR

)
(x) = 1 only for those x = y△ z such

that y ∈ [a, b] and z ∈ [c, d]. Thus the smallest x can be is a△ c and the
largest is b△d, and for any value in between,

(
aL ∧ bR

)
N
(
cL ∧ dR

)
(x) =

1.Recalling that the characteristic function of a△c is aN c, this means that(
aL ∧ bR

)
N
(
cL ∧ dR

)
= (aN c)

L∧(bNd)
R

, which in turn is
(
aL N cL

)
∧(

bR NdR
)
. So t-norms on this subalgebra are calculated coordinatewise

on the endpoints of the intervals.
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In Section 5.9, t-norms were defined on the set [0, 1][2], and the require-
ments resulted in exactly that t-norms were calculated coordinatewise on
the endpoints of the intervals. The fact that convolutions of t-norms result
in coordinate-wise calculations is interesting indeed. These considerations
apply to any t-norm, in particular to multiplication.

Theorem 5.10.57 The map (a, b)→ aL ∧ bR is an isomorphism from

(
I [2],△

)
= ([0, 1][2],∨,∧,△,′ , 0, 1)

into
(M,N) = (Map(I, I),⊔,⊓,N,∗ ,0,1)

5.10.8 Generalizations of Nguyen’s theorem

In Sections 2.3 and 2.6, we touched upon Zadeh’s extension principle as
well as a theorem, due to Nguyen [158] which provides conditions for using
α-level sets in fuzzy analysis. Nguyen’s theorem has been generalized to the
setting of t-norms for ordinary fuzzy sets [63], [25], [64]. In view of recent
advances in fuzzy sets of type-2, we elaborate here on Zadeh’s extension
principle and Nguyen’s theorem in the context of fuzzy sets of type-2.

Recall that Zadeh’s extension principle refers to the procedure to lift an
ordinary function to a fuzzy function, i.e., a mapping from fuzzy subsets to
fuzzy subsets. In the context of ordinary fuzzy sets where the truth value
algebra is the complete lattice [0, 1] with its canonical lattice operations
∧,∨, if f : X × Y → Z, then we can “extend” it to a function f : F(X)×
F(Y )→ F(Z), where F(X) denotes the set of all fuzzy subsets of X . This
is done by defining the membership function of the fuzzy set f(A,B) ∈
F(Z), for A ∈ F(X), B ∈ F(Y ), as

f(A,B)(z) =
∨

(x,y)∈f−1(z)A(x) ∧B(y)

This special formula involves specifically the t-norm ∧ (min), and the t-
conorm ∨ (sup), and hence is called the sup-min convolution.

One purpose of using the above extension principle is to extend opera-
tions on real numbers to operations on fuzzy numbers, which are fuzzy
subsets of the real line R. For computational purposes, a representa-
tion of a fuzzy subset A ∈ F(X) by its α-level sets, Aα = {x ∈ X :
A(x) ≥ α}, α ∈ [0, 1], is useful. Thus, a practical question is “When
is [f(A,B)]α = f(Aα, Bα), for all α ∈ (0, 1] ?” Here, [f(A,B)]α de-
notes the α-level set of the fuzzy set f(A,B) ∈ F(Z) and, of course,
f(Aα, Bα) = {f(x, y) : x ∈ Aα, y ∈ Bα}.
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The answer to this question was given in [158], namely, when it happens
that for each z ∈ Z, the sup

∨
(x,y)∈f−1(z)A(x) ∧ B(y) is attained. To

apply this (necessary and sufficient) condition to the analysis for fuzzy
numbers, for example, we need to examine properties of the function f ,
as well as those of the fuzzy sets A,B. For example, the above condition
is satisfied when X = Y = Z = R, f is continuous, and A, B are upper
semicontinuous with compact supports in R.

An immediate generalization of Nguyen’s theorem was obtained by
Fuller and Keressztfalvi [63], when the t-norm ∧ is replaced by an arbitrary
t-norm△. Specifically, Zadeh’s extension principle is put in a more general
formulation, called a sup-t-norm convolution

f(A,B)(z) =
∨

(x,y)∈f−1(z)A(x)△B(y)

and their result is this. A necessary and sufficient condition for

[f(A,B)]α =
⋃

β△γ≥αf(Aβ , Bγ)

for all α ∈ (0, 1] is that for each z ∈ Z,
∨

(x,y)∈f−1(z)A(x) △ B(y) is
attained.

As elaborated in Section 2.3, Zadeh’s extension principle can be justi-
fied as follows. A function f : X × Y → Z is a relation in (X × Y ) × Z,
namely the subset R = {(x, y, z) : f(x, y) = z}. As such, it induces a
mapping, still denoted as f : F(X × Y )→ F(Z), sending U ∈ F(X × Y )
to f(U) ∈ F(Z), where f(U)(z) =

∨
Uf−1(z). We write

∨
Uf−1 for the

composition ∨ ◦ U ◦ f−1 in

Z
f−1

→ 2X×Y U→ 2[0,1]
∨→ [0, 1]

where f−1(z) = {(x, y) ∈ X × Y : f(x, y) = z} ⊆ X × Y , U : X × Y →
[0, 1], U(f−1(z)) = {U(x, y) : (x, y) ∈ f−1(z)}, and ∨ : 2[0,1] → [0, 1] :
∨(J) = supJ .

We have a mapping F(X) × F(Y ) → F(X × Y ) as follows. If A ∈
F(X), B ∈ F(Y ), then A × B maps X × Y into [0, 1] × [0, 1], so that
(A(x), B(y)) ∈ [0, 1]× [0, 1] which has a min, and hence the composition
∧ ◦ (A × B) : X × Y → [0, 1], i.e., a fuzzy subset of X × Y . Thus, f , as
a relation in (X × Y ) × Z, induces the mapping F(X) × F(Y ) → F(Z),
sending (A,B) to

∨ ◦ [∧ ◦ (A×B)] ◦ f−1

We move now to the territory of type-2 fuzzy sets. First, let’s recall how
to define t-norms for type-2 fuzzy sets. In general, a t-norm is a specific
binary operation on the truth value algebra of the type of fuzzy sets under
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consideration. For example, a t-norm △, for ordinary fuzzy sets, is a map
[0, 1]× [0, 1]→ [0, 1]. As such, it induces the map

N = ∨ ◦ [∧ ◦ (A×B)] ◦ △−1 : F([0, 1])×F([0, 1])→ F([0, 1])

i.e., for A,B : [0.1]→ [0, 1], z ∈ [0, 1],

(ANB)(z) = ∨(x,y)∈△−1(z)A(x) ∧B(y)

which is the convolution operation corresponding to the t-norm △ (with
respect to ∧, ∨). The binary operation N on [0, 1][0,1], the truth value
algebra of type-2 fuzzy sets, is called a t-norm for this type of fuzzy sets
(similarly, for t-conorm, see Section 5.10.7).

The formulation of Nguyen’s theorem for type-2 fuzzy sets is as follows.

Theorem 5.10.58 [99] Let Lu be the set of functions [0, 1]→ [0, 1] which
are normal, convex and upper semicontinuous. Then,

1. Let △ be a continuous t-norm on [0, 1], and f, g ∈ Lu. Then for any
z ∈ [0, 1], for the value

(fNg)(z) = ∨(x,y)∈△−1(z)[f(x) ∧ g(y)]

there are x, y ∈ [0, 1] with x△ y = z and (fNg)(z) = f(x) ∧ g(y),
i.e., (fNg)(z) attains its value at (x, y).

2. Let △ be a continuous t-norm on [0, 1], and f, g ∈ Lu. If α ∈ [0, 1]
and the α-level sets of f and g are the closed intervals f−1([α, 1]) =
[a, b] and g−1([α, 1]) = [c, d], then the α-level set of fNg is

(fNg)−1([α, 1]) = [a, b]△ [c, d]

Note that for closed intervals [a, b] and [c, d],

[a, b]△ [c, d] = {z ∈ [0, 1] : z = x△ y, x ∈ [a, b], y ∈ [c, d]}

Also, when △ is continuous, we have

[a, b]△ [c, d] = [a△ c, b△ d]

There are many questions one can ask about the algebra M. No doubt
type-2 fuzzy sets will come to play an increasingly important role in ap-
plications. We have only touched on some of the more basic mathematical
facts. The reader is encouraged to consult the book [99] for more details
and additional references.
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5.11 Exercises

1. Verify that △0, △1, △2, △3, △4, △5 are indeed t-norms.

2. ⋆ Show that if △ is a t-norm, then

△0 ≤ △ ≤ △5

3. Show that ∧ is the only idempotent t-norm.

4. Show that △1 is nilpotent.

5. Show that△5 is continuous, but not Archimedean. Show that△1,△2,
△3, and △4 are Archimedean.

6. Show that

x△ y = 1−
(

1 ∧ [(1− x)2 + (1− y)2]1/2
)

is nilpotent.

7. Furnish the details of the proof of Proposition 5.1.5.

8. ⋆Let f be a generator of an Archimedean t-norm △. Show that

n times︷ ︸︸ ︷
a△ a△ a△ · · · △ a = f−1(f(a)n ∨ f(0))

Show that the t-norm is nilpotent if and only if f(0) > 0.

9. Let f and g be generators of nilpotent t-norms. Show that there is
an h ∈ Aut(I) such that hf = g.

10. Complete the proof of Proposition 5.2.9.

11. Prove that Aut(I)a is a subgroup of Aut(I).

12. Prove that an Archimedean t-norm △ is strict if and only if x△ y
is strictly increasing for x, y ∈ (0, 1).

13. ⋆Prove that the only t-norm isomorphic to min is min itself.

14. Let ◦ be a t-norm. Show that the set of automorphisms of (I, ◦) is a
subgroup of Aut(I).

15. ⋆Show that if f is a one-to-one mapping of [0, 1] onto itself, ◦ is an
Archimedean t-norm, and f(x ◦ y) = f(x) ◦ f(y), then f ∈ Aut(I, ◦).
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16. Prove that if ◦ is a strict t-norm, then f(x) = x ◦ x is an auto-
morphism and g(x) = (1 − x) ◦ (1 − x) is an antiautomorphism of
I.

17. Prove that Map(I) is a group under composition of functions.

18. In Map(I), prove that

(a) conjugates of automorphisms are automorphisms,

(b) conjugates of antiautomorphisms are antiautomorphisms, and

(c) conjugates of negations are negations.

19. Prove that the centralizer of an element is a subgroup.

20. ⋆Show that the average (f(x) + g(x)) /2 of two automorphisms of I
is an automorphism of I.

21. Prove that Z(f−1αf) = f−1Z(α)f , and so the centralizer Z(β) of a
negation β = f−1αf is the group

f−1Z(α)f = f−1

{
αgα+ g

2
: g ∈ Aut(I)

}
f

22. Show that the map

Φ : Aut(I)→ Z(α) : g → αgα+ g

2

is not a group homomorphism. In fact, show that

Φ(f)Φ(g) = Φ(fΦ(g)) 6= Φ(fg)

23. Let H be a subgroup of a group G, and let g ∈ G. Show that h →
g−1hg is an isomorphism from H to its conjugate g−1Hg.

24. Show directly that if f, g ∈ Aut(I), and

f−1((f(x) + f(y)− 1) ∨ 0) = g−1((g(x) + g(y)− 1) ∨ 0)

for all x, y ∈ [0, 1], then f = g.

25. ⋆For r ∈ R+ and x ∈ [0, 1], let fr(x) = x
r−(r−1)x , and let G = {fr :

r ∈ R+}.

(a) Prove that G is a subgroup of Aut(I).

(b) Prove that r→ fr is an isomorphism from the group R+ to G.
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(c) Compute the set {Nf : f ∈ G} of nilpotent t-norms.

(d) Compute the set {f−1αf : f ∈ G} of negations.

26. ⋆Let x△ y = xy
2+xy−(x+y) . Prove that

(a) △ is a strict t-norm.

(b) f(x) = x
2−x is a generator of △.

(c) g(x) = 1
2 log(2−x

x ) is an additive generator of △.

27. Calculate the duals of △0, △1, △2, △3, △4, △5 with respect to α.
Denote this dual of △i by ▽i.

28. Show that

△0 ≤ △1 ≤ △2 ≤ △3 ≤ △4 ≤ △5

▽5 ≤ ▽4 ≤ ▽3 ≤ ▽2 ≤ ▽1 ≤ ▽0

29. Show that if ▽ is a t-conorm, then

▽5 ≤ ▽ ≤ ▽0

30. For p ≥ 1, let

x△p y = 1− 1 ∧ [(1− x)p + (1 − y)p]1/p

x▽p y = 1 ∧ (xp + yp)1/p

(a) Show that x△p y is a nilpotent t-norm with additive generator
fp(x) = (1− x)p, and for y ∈ [0, 1],

f−1
p (y) = 1− y1/p

(b) Show that x▽py is a nilpotent t-conorm with additive generator
gp(x) = xp, and for y ∈ [0, 1],

g−1
p (x) = y1/p

31. Let λ > 1.

(a) Show that

x△λ y = 0 ∨ x+ y − 1 + λxy

1 + λ
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is a nilpotent t-norm with additive generator

fλ(x) = 1− log(1 + λx)

log(1 + λ)

and for y ∈ [0, 1],

f−1
λ (y) =

1

λ
[(1 + λ)1−y − 1]

(b) Show that x▽λ y = 1 ∧ (x + y + λxy) is a nilpotent t-conorm
with additive generator

gλ(x) =
log(1 + λx)

log(1 + λ)

and for y ∈ [0, 1],

g−1
λ (y) =

1

λ
[(1 + λ)y − 1]

32. For p > 0, and x ∈ [0, 1], let fp(x) = 1
p (x−p − 1).

(a) Verify that fp is an additive generator for a t-norm.

(b) Find the inverse of fp on the interval [0, fp(0)].

(c) What is the associated strict Archimedean t-norm?

33. Let △ be a strict Archimedean t-norm. Let x[2] = x △ x, x[3] =
x△x[2], ... , x[n] = x△x[n−1]. Prove that for n ≥ 1, f(x[n]) = nf(x)
for x ∈ [0, 1], where f is an additive generator of △.

34. Show that a t-norm is Archimedean if and only if its dual with
respect to α is Archimedean.

35. Show that a t-norm is strict if and only if its dual with respect to α
is strict.

36. Prove that natural dual of N is xH y = (x+ y) ∧ 1.

37. ⋆Show that the only isomorphism from (I,Nf ) to (I,Ng) is g−1f.

38. Show that any η : [0, 1]→ [0, 1] such that x ≤ y implies η(x) ≥ η(y)
and η2 = 1 is one-to-one and onto and continuous, and thus is a
negation.

39. ⋆Show that a negation has exactly one fixed point. That is, show
that if η is a negation, then there is exactly one x ∈ [0, 1] such that
η(x) = x.

www.EBooksWorld.ir



5.11. EXERCISES 169

40. Let α(x) = 1 − x, and let β be any map [0, 1] → [0, 1]. Show that
αβ = βα if and only if β(x) + β(1 − x) = 1.

41. Show that if a negation commutes with α(x) = 1− x, then its fixed
point is 1

2 .

42. Show that η(x) = (1 − x)/(1 + λx), λ > −1 is a negation. Find its
fixed point. (These are Sugeno negations.)

43. Prove that the cogenerators of nilpotent t-conorms that are straight
lines give Sugeno negations (1− x)/(1 + λx) for λ ∈ (−1, 0).

44. Let f ∈ Aut(I). Show that if η is a negation, then so is f−1ηf .

45. Show that if

η(x) =
ax+ b

cx+ d

is a negation, then

η(x) =
1− x

1 + λx

for some λ > −1.

46. Let f(x) = e
x−1
x for x ∈ [0, 1].

(a) Verify that f is a generator for a t-norm and find that t-norm.

(b) Let g (x) = f(1− x). Find the t-conorm associated with g.

47. Let g be an order reversing, one-to-one onto mapping [0, 1] → [b, 1]
for some b ∈ [0, 1). Prove that

x▽ y = g−1(g(x)g(y) ∨ g(1))

is an Archimedean t-conorm, is nilpotent if and only if g(1) > 0, and
is strict if and only if g(1) = 0.

48. Let

(x△ y) = 0 ∨ x+ y − 1 + axy

1 + a
, for a > −1

x▽ y = 1 ∧ (x+ y + axy) , for a > −1

(a) Verify that △ and ▽ are norms and conorms, respectively.

(b) Find a generator for △.

(c) Find a cogenerator for ▽.
(d) Find the negation associated with △.
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(e) When a = 0, show that the norm and conorm are △1 and ▽1,
respectively.

49. Let

x△ y =
1

1 +
[
( 1
x − 1)a + ( 1

y − 1)a
] 1

a

for a ≥ 0

x▽ y =
1

1 +
[
1
x − 1)−a + ( 1

y − 1)−a
]−1

a

for a ≥ 0

Show that these are norms and conorms, respectively. Find their
generators and cogenerators and determine whether these norms and
conorms are strict or nilpotent. Find the negation associated with
the norm if it is nilpotent.

50. ⋆Let

x△ y =
xy

x ∨ y ∨ a for a ∈ (0, 1)

x▽ y =
x+ y − xy − (x ∧ y ∧ (1− a))

(1− x) ∨ (1 − y) ∨ a for a ∈ (0, 1]

Show that these are norms and conorms, respectively. Find their
generators and cogenerators and determine whether these norms and
conorms are strict or nilpotent. Find the negation associated with
the norm if it is nilpotent.

51. Prove Theorem 5.6.3.

52. Let R be the additive group of all real numbers, and let f be an
order preserving automorphism of R. Suppose that f(1) = r.

(a) Prove that r > 0.

(b) Prove that f(n) = rn for integers n.

(c) Prove that f(1/n) = r(1/n) for nonzero integers n.

(d) Prove that f(m/n) = r(m/n) for rational numbers m/n.

(e) Prove that f(x) = rx for r ∈ R.
(f) Prove that an order reversing automorphism of the group R is

multiplication by a negative real number.

(g) Prove that an order preserving or order reversing automorphism
f of the multiplicative group R+ is given by f(x) = xt for a
nonzero real number t.
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53. ⋆Prove that if f is an antiautomorphism of I, and f is in the nor-
malizer of R+, then r → f−1rf is an order reversing automorphism
of the group R+.

54. Prove that in the normalizer
{
e−a(− ln x)t : a > 0, t 6= 0

}

of R+, the parameters t > 0 give automorphisms of I, t < 0 give
antiautomorphisms of I, and t = −1 gives negations of I.

55. Prove Corollary 5.8.5.

56. ⋆Prove Theorem 5.9.11.

57. Prove Theorem 5.9.12.

58. Show that the elements 1 and 0 of Map(J, I) can be obtained by
convolution of the nullary operations 1 and 0 on J.

59. Prove the equalities in Equation 5.6 of Section 5.10.2.

60. Prove Proposition 5.10.4.

61. Prove Corollary 5.10.6, except for item 6.

62. Prove Corollary 5.10.9.

63. Prove Lemma 5.10.11.

64. For the four operations ⊔,⊓,∨, and ∧, which distribute over which?

65. Prove that the partial orders ⊑⊓ and ⊑⊔ are not the same.

66. Prove Proposition 5.10.18.

67. Prove that the absorption laws do not hold in M.

68. Prove that a subalgebra of M is a lattice with respect to ⊔ and ⊓ if
and only if the absorption laws hold in that subalgebra.

69. Prove Theorem 5.10.22 and Proposition 5.10.23.

70. Prove Proposition 5.10.26.

71. Prove Proposition 5.10.27.

72. Let f1, f2, . . . , fn ∈ M . Show that if f1 ⊑⊓ f2 ⊑⊓ · · · ⊑⊓ fn, then
n⊓

i=1
fi = f1. Show that if f1 ⊑⊔ f2 ⊑⊔ · · · ⊑⊔ fn, then

n⊔
i=1

fi = fn.
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73. An element f of Map(J, I) is endmaximal if fL = fR [167]. Prove
that the endmaximal functions form a distributive subalgebra of the
algebra (Map(J, I),⊔,⊓,∗ ).

74. Prove that the endmaximal functions satisfy

(a) f ⊓ (g ⊔ (f ⊓ h)) = (f ⊓ g) ⊔ (f ⊓ h)

(b) f ⊔ (g ⊓ (f ⊔ h)) = (f ⊔ g) ⊓ (f ⊔ h)

75. A function f : I → I is left-maximal (b-maximal) if fL = fLR

[167]. Prove that if g and h are left-maximal, then so are g ⊔ h and
g ⊓ h.

76. Prove that if g and h are left-maximal, then f ⊓ (g ⊔ h) = (f ⊓ g) ⊔
(f ⊓ h).

77. Prove Theorem 5.10.41.

78. Prove parts 1 and 2 of Theorem 5.10.43.

79. Prove Proposition 5.10.46.

80. Prove Proposition 5.10.39.
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Chapter 6

ADDITIONAL TOPICS

ON CONNECTIVES

This chapter is a continuation of the study of fuzzy connectives, and t-
norms, t-conorms, and negations will still play a basic role in the topics
discussed. We begin with fuzzy implications, a topic that has applications
in data fusion. The theory we develop for averaging operators puts into
context several phenomena observed in Chapter 5, and sheds new light on
the important family of Frank t-norms. The section on powers of t-norms
provides a definition of the r-th power of a t-norm, and characterizes those
automorphisms of the unit interval that are such powers. Powers of t-norms
have played an important role in the development of t-norm theory, for
example, in proving the existence of generators. The sensitivity of a con-
nective is a measure of its robustness, and that section illustrates various
such measures. Copulas are important objects in joint distribution theory
in statistics, and have some connections with t-norms. This connection is
explored briefly in the last section.

6.1 Fuzzy implications

In classical two-valued logic, the table for ⇒ is taken to be

⇒ 0 1

0 1 1
1 0 1

This may be expressed on {0, 1} by the formula (a⇒ b) = a′ ∨ b. It
is a binary operation on the truth values {0, 1}. In fuzzy logic, our set of

173

www.EBooksWorld.ir



174 CHAPTER 6. ADDITIONAL TOPICS ON CONNECTIVES

truth values is [0, 1], and so material implication ⇒ should be a binary
operation on [0, 1]. Such operations should agree with the classical case
for {0, 1}.

A fuzzy implication is a map

⇒: [0, 1]× [0, 1]→ [0, 1]

satisfying

⇒ 0 1

0 1 1
1 0 1

Here are some examples.

1. (x⇒ y) =

{
1 if x ≤ y
0 if x > y

2. (x⇒ y) = (1− x+ y) ∧ 1

3. (x⇒ y) = (1− x) ∨ y

The class of all possible fuzzy implications consists of all functions ⇒
defined on the unit square with the given values above on the four corners.
There are three basic constructions of fuzzy implications. They arise from
three ways to express implication in the classical case. The following are
equivalent for that case.

• (x⇒ y) =
∨{z : x ∧ z ≤ y}

• (x⇒ y) = x′ ∨ y

• (x⇒ y) = x′ ∨ (x ∧ y)

These three conditions make sense on [0, 1] when a t-norm is used for
∧, a t-conorm for ∨, and a negation for ′. There is a second motivation for
the first class of implications. When we represent the fuzzy conditional “If
x is A, then y is B” by the fuzzy subset R = (A×B)∨ (A′×V ), we realize
that R is the largest solution D of the inequality D∧(A×V ) ≤ U×B. For
the first class we need only a t-norm. The resulting operators are called R-
implications, where R stands for residuated lattice—that is, a lattice
R with a multiplication△ and multiplicative identity 1 for which (R,△, 1)
is a monoid, and the sets {y ∈ R : x△ y ≤ z} and {y ∈ R : △x ≤ z} have
a maximum and are down-sets. (For example, if x△ y ≤ z and w ≤ y
then x△ w ≤ z.)
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Definition 6.1.1 An R-implication is a map

⇒: [0, 1]× [0, 1]→ [0, 1]

of the form
(x⇒ y) =

∨{z ∈ [0, 1] : x△ z ≤ y}
where △ is a t-norm. The function ⇒ is referred to as the R-implication

associated with △.

The following calculations show that an R-implication is an implica-
tion. Let △ be any t-norm.

• 1⇒ 0 =
∨{z ∈ [0, 1] : 1△ z ≤ 0} = 0 since 1△ z = z

• 0⇒ 0 =
∨{z ∈ [0, 1] : 0△ z ≤ 0} = 1 since 0△ z = 0

• 0⇒ 1 =
∨{z ∈ [0, 1] : 0△ z ≤ 1} = 1 since 0△ z ≤ 1

• 1⇒ 1 =
∨{z ∈ [0, 1] : 1△ z ≤ 1} = 1 since 1△ z ≤ 1

For R-implications⇒, it is always the case that (x⇒ y) = 1 for x ≤ y
since x△ 1 = x ≤ y. This is in agreement with classical logic: a ⇒ b =
a′ ∨ b = 1 if a ≤ b. Here are some examples.

• For x△ y = x ∧ y

(x⇒ y) =
∨{z : x ∧ z ≤ y}

=

{
1 if x ≤ y
y if x > y

• For x△ y = xy

(x⇒ y) =
∨{z : xz ≤ y}

=

{
1 if x ≤ y
y/x if 0 < y < x

• For x△ y = 0 ∨ (x+ y − 1)

(x⇒ y) =
∨{z : 0 ∨ (x+ z − 1) ≤ y}

= 1 ∧ (1− x+ y)

When △ is an Archimedean t-norm, then there is a simple formula for
⇒ in terms of a generator of △.

www.EBooksWorld.ir



176 CHAPTER 6. ADDITIONAL TOPICS ON CONNECTIVES

Theorem 6.1.2 Let △ be an Archimedean t-norm and f a generator of
△. Then

(x⇒ y) = f−1

(
f(y)

f(x)

∧
1

)

Proof. We just calculate:

(x⇒ y) =
∨{z : x△ z ≤ y}

=
∨{z : f−1(f(x)f(z)

∨
f(0)) ≤ y}

=
∨{z : (f(x)f(z)

∨
f(0)) ≤ f(y)}

=
∨{z : f(x)f(z) ≤ f(y)}

=
∨{z : f(z) ≤ f(y)

f(x)
}

=
∨{

z : z ≤ f−1

(
f(y)

f(x)

∧
1

)}

= f−1

(
f(y)

f(x)

∧
1

)

Of course, if x ≤ y, we see that (x⇒ y) = 1, and otherwise

(x⇒ y) = f−1

(
f(y)

f(x)

)

Also note that if x ≥ y, then

f(0) ≤ f(y)

f(x)
≤ 1,

so that f−1 is defined on f(y)/f(x).

A simple example is the case x△y = xy. A generator for △ is f(x) = x
and we have

(x⇒ y) = f−1

(
f(y)

f(x)

∧
1

)

=
y

x
∧ 1

In other words, (x⇒ y) = 1 if x ≤ y and is y/x otherwise.
We turn now to the second way of constructing fuzzy implications in

the spirit of Boolean logic, namely a ⇒ b = a′ ∨ b. We simply use a t-
conorm ▽ for ∨ and a negation η for ′. The analogous definition for a
fuzzy implication is the following:

Definition 6.1.3 A ▽-implication is a map ⇒: [0, 1]× [0, 1]→ [0, 1] of
the form (x⇒ y) = η(x)▽ y, where ▽ is a t-conorm and η is a negation.
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It is easy to check that such an ⇒ is indeed an implication operator.
Some examples follow.

• For x▽ y = x ∨ y and η(x) = 1− x,

(x⇒ y) = (1− x)
∨
y

• For x▽ y = x+ y − xy and η(x) = 1− x,

(x⇒ y) = η(x)▽ y
= (1− x)▽ y
= 1− x+ y − (1− x)y
= 1− x+ xy

• For x▽ y = 1 ∧ (x+ y), and η(x) = 1− x,

(x⇒ y) = 1
∧

(1− x+ y)

This example is the one used by Lukasiewicz.

If the t-conorm involved is Archimedean, then it has a cogenerator g,
and so

(x⇒ y) = η(x)▽ y

= g−1(g(η(x))g(y)
∨
g(1))

For example, let g(x) = e−x2

and η(x) =
√

1− x2. Then an easy calcula-
tion shows that

(x⇒ y) =

{
1 if x ≤ y
√

1− x2 + y2 if x > y

Consider a rule R of the form “If x is A then y is B else y is C” when
A, B, and C are subsets of Ω. This rule is translated into

(x, y) ∈ A×B or (x, y) ∈ A′ × C

When A,B, and C are fuzzy subsets of U , this rule is translated into a
fuzzy subset of U × U like this:

R(x, y) = [(A×B) (x, y)▽ (A′ × C) (x, y)]

= [A(x)△B(y)]▽ [A′(x)△ C(y)]

where (A×B) (x, y) = A(x) △ B(y) for some t-norm △. Here ▽ is a
t-conorm, and A′(x) = η(A(x)) with η a negation.
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In particular, for C = U , C(x) = U(x) = 1 for all x ∈ U , and we have
z △ 1 = z, and so

R(x, y) = [A(x)△B(y)]▽ η(A(x))

This special form appears also in quantum logic where the implication
operators among formulas are defined by

A⇒ B = A′ ∨ (A ∧B)

This is the third equivalent form of implications for Boolean logic, and
these implications are called Q-implications, with Q coming from the
word quantum.

Definition 6.1.4 Let (△,▽, η) be a De Morgan system. This means that
△ and ▽ are dual with respect to the negation η, which means that x△y =
η((η(x)▽η(y)). A Q-implication is a binary operation ⇒ on [0, 1] of the
form

(x⇒ y) = η(x)▽ (x△ y)

It is trivial to show that ⇒ is an implication. Two examples follow.

• For the De Morgan system

x△ y = x ∧ y
x▽ y = x ∨ y
η(x) = 1− x

the Q-implication is

(x⇒ y) = (x ∧ y) ∨ (1− x)

• For the De Morgan system

x△ y = (x+ y − 1) ∨ 0

x▽ y = (x+ y) ∧ 1

η(x) = 1− x
the Q-implication is

(x⇒ y) = (x△ y)▽ η(x)

= [((x + y − 1) ∨ 0) + (1− x)] ∧ 1

=

{
y if x+ y − 1 ≥ 0

1− x if x+ y − 1 < 0

= (1− x) ∨ y
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6.2 Averaging operators

Taking the average of two elements of the unit interval [0, 1] is a binary
operation on [0, 1]. This operation has come into play a couple of times in
Section 5.4. Every negation β is a conjugate of the negation α(x) = 1− x.
That is, there is an f ∈ Aut(I) such that β = f−1αf. One such f is given
by the formula

f(x) =
αβ(x) + x

2

which takes the average of the elements αβ(x) and x of [0, 1]. Another
instance was in determining the centralizer Z(α) = {g ∈ Aut(I) : gα =
αg}. It was shown that g ∈ Z(α) if and only if for some f ∈ Aut(I),

g(x) =
αfα(x) + f(x)

2

Both these involve the involution α. Why should such group theoretic
properties of α involve + and division by 2, here the average of two real
numbers? Viewing average as a binary operation on [0, 1], just what is the
special relation between average and α? The same formulas do not work
if α is replaced by some other negation. This section addresses this issue.
We define “averaging operators” on the unit interval, and investigate espe-
cially their relation with negations and nilpotent t-norms. Also, averaging
operators provide new insight into the important class of Frank t-norms.

The averaging operators we consider are not “weighted” averages in
the usual sense, although they share some of the basic properties. These
averaging operators can be thought of as “skewed” averages. They provide
a continuous scaling of the unit interval that is not provided by the lat-
tice structure. Our characterization and many other facts about averaging
operators can be found in the references [3, 4, 5, 48, 62, 122, 148, 153, 227].

We use the following definition, which is a variant of those in the ref-
erences.

Definition 6.2.1 An averaging operator on I is a binary operation
∔ : I2 → I satisfying for all x, y ∈ [0, 1],

1. x∔ y = y ∔ x (∔ is commutative).

2. y < z implies x∔y < x∔z (∔ is strictly increasing in each variable).

3. x∔ y ≤ c ≤ x ∔ z implies there exists w ∈ [y, z] with x ∔ w = c (∔
is convex, i.e., continuous).

4. x∔ x = x (∔ is idempotent).
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5. (x∔ y) ∔ (z ∔ w) = (x∔ z) ∔ (y ∔ w) (∔ is bisymmetric).

The following properties of an averaging operator are well known.

Proposition 6.2.2 Let ∔ be an averaging operator. Then for each x, y ∈
[0, 1],

1. x ∧ y ≤ x∔ y ≤ x ∨ y—that is, the average of x and y lies between
x and y;

2. the function Ax : I→ [x∔ 0, x∔ 1] : y 7−→ x∔y is an isomorphism—
that is, Ax is an increasing function that is both one-to-one, and
onto.

Proof. If x ≤ y, then x ∧ y = x = x∔ x ≤ x∔ y ≤ y ∔ y = y = x ∨ y.
Similarly, if y ≤ x, x∧y ≤ x∔y ≤ x∨y. Clearly the function Ax is strictly
increasing and, in particular, one-to-one. Suppose x∔ 0 ≤ c ≤ x∔ 1. Then
by convexity, there is a number w ∈ [0, 1] with x∔w = c. Thus Ax is onto.

The standard averaging operator is the arithmetic mean:

av (x, y) =
x+ y

2

Other examples include the power means and logarithmic means:

x∔ y =

(
xa + ya

2

) 1
a

, a > 0

x∔ y = loga

(
ax + ay

2

)
, a > 0, a 6= 1

Indeed, for any automorphism or antiautomorphism γ of I,

x∔ y = γ−1

(
γ (x) + γ (y)

2

)
= γ−1 (av (γ (x) , γ (y)))

is an averaging operator.
The preceding example is universal—that is, given an averaging oper-

ator +̇, there is an automorphism γ of I that satisfies

γ
(
x+̇y

)
=
γ (x) + γ (y)

2

for all x, y ∈ [0, 1]. Here is a brief outline of the proof. This automorphism
can be defined inductively on the collection of elements of [0, 1] that are
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generated by +̇ from 0 and 1. Such elements can be written uniquely in
one of the forms

x = 0, x = 1, x = 0+̇1, or

x =
((
· · ·
((

0+̇1
)

+̇a1
)

+̇ · · ·
)

+̇an−1

)
+̇an

for a1, . . . , an ∈ {0, 1}, n ≥ 1, and γ is then defined inductively by

γ (0) = 0; γ (1) = 1;

γ
(
x+̇a

)
=
γ (x) + a

2
if γ (x) is defined and a ∈ {0, 1}

The function γ satisfies

γ
((
· · ·
((

0+̇x1
)

+̇x2
)

+̇ · · ·
)

+̇xn
)

=

n∑

k=1

1

2n−k+1
xk

where x1, ..., xn is any sequence of 0’s and 1’s. Now γ is a strictly increas-
ing function on a dense subset of I and thus γ extends uniquely to an
automorphism of I (see, for example, [3] page 287). Moreover, there were
no choices made in the definition of γ on the dense subset. Thus we have
the following theorem.

Theorem 6.2.3 The automorphism γ defined above satisfies

γ
(
x+̇y

)
=
γ (x) + γ (y)

2

for all x, y ∈ [0, 1]. Thus every averaging operator on [0, 1] is isomorphic
to the usual averaging operator on [0, 1]—that is, the systems

(
I, +̇

)
and

(I, av) are isomorphic as algebras. Moreover, γ is the only isomorphism
between

(
I, +̇

)
and (I, av).

If +̇ is any averaging operator, then the algebra (I, +̇) is called a mean
system. By the theorem, any two mean systems are isomorphic.

Corollary 6.2.4 For any averaging operator ∔, the automorphism group
of (I,∔) has only one element.

Proof. Suppose that f is an automorphism of (I,∔). Then γf is an
isomorphism of (I,∔) with (I, av), so by the previous theorem, γf = γ.
Thus f = γγ−1 = 1.

When an averaging operator is given by the formula

x +̇ y = γ−1

(
γ (x) + γ (y)

2

)
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for an automorphism γ of I, we will call γ a generator of the operator +̇
and write +̇ = +̇γ . From the theorem above, the generator of an averaging
operator is unique.

An averaging operator on the unit interval [0, 1] enables us to define
an average of two automorphisms or of two antiautomorphisms of that
interval. Such averages will play a role in what follows.

Theorem 6.2.5 If f and g are automorphisms [antiautomorphisms ] of I,
and ∔ is an averaging operator on I, then f ∔ g defined by (f ∔ g) (x) =
f (x) ∔ g (x) is again an automorphism [antiautomorphism] of I.

Proof. Suppose f and g are automorphisms of I. If x < y, then f (x) <
f (y) and g (x) < g (y) imply that f (x) ∔ g (x) < f (y) ∔ g (y) since ∔

is strictly increasing in each variable. Thus the map f ∔ g is strictly
increasing. Also, (f ∔ g) (0) = f (0) ∔ g (0) = 0 ∔ 0 = 0 and (f ∔ g) (1) =
f (1) ∔ g (1) = 1∔ 1 = 1. It remains to show that f maps [0, 1] onto [0, 1].
Let y ∈ [0, 1]. Then f (0) ∔ g (0) = 0 ≤ y ≤ 1 = f (1) ∔ g (1). Let

u =
∨
{x ∈ [0, 1] : f (x) ∔ g (x) ≤ y}

v =
∧
{x ∈ [0, 1] : f (x) ∔ g (x) ≥ y}

If u < w < v, then f (w)∔g (w) > y and f (w)∔g (w) < y, an impossibility.
Thus u = v and f (u) ∔ g (u) = y. This completes the proof for automor-
phisms. Similar remarks hold in the case f and g are antiautomorphisms
of I.

6.2.1 Averaging operators and negations

Now we turn to one of the main topics of this section, the relation between
averaging operators and negations. We show that each averaging operator
naturally determines a negation, with respect to which the averaging oper-
ator is self-dual. Also we put in the general context of averaging operators
the facts mentioned earlier about conjugates and centralizers of negations.

Theorem 6.2.6 For each averaging operator ∔ on I, the equation

x∔ η (x) = 0 ∔ 1

defines a negation η = η∔ on I with fixed point 0 ∔ 1.

Proof. Since x ∔ 0 = 0 ∔ x ≤ 0 ∔ 1 ≤ x∔ 1, by Proposition 6.2.2, for
each x ∈ [0, 1] there is a number y ∈ [0, 1] such that x ∔ y = 0 ∔ 1, and
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since Ax is strictly increasing, there is only one such y for each x. Thus
the equation defines a function y = η (x). Clearly η (0) = 1 and η (1) = 0.
Suppose 0 ≤ x < y ≤ 1. We know x ∔ η (x) = y ∔ η (y) = 0 ∔ 1. If
η (x) ≤ η (y), then x∔ η (x) < y∔ η (x) ≤ y∔ η (y) , which is not the case.
Thus η (x) > η (y) and η is a strictly decreasing function. Now η (η (x)) is
defined by η (x)∔ η (η (x)) = 0∔ 1. But also, η (x)∔x = x∔ η (x) = 0∔ 1.
Thus, applying Proposition 6.2.2 to η (x), we see that η (η (x)) = x. It
follows that η is a negation. If x is the fixed point of η, then x = x∔ x =
x∔ η (x) = 0 ∔ 1.

It is immediate that the negation defined by the usual average (x +
y)/2 is α, or using the notation of the theorem, that ηav = α. Indeed,
(x+ η(x))/2 = (0 + 1)/2 yields η(x) = 1− x.

Theorem 6.2.7 Every isomorphism between mean systems respects the
natural negation—that is, is an isomorphism of mean systems with natural
negation.

Proof. Suppose f : (I,∔1)→ (I,∔2) is an isomorphism. Then

f (x) ∔2 f
(
η∔1

(x)
)

= f
(
x∔1 η∔1

(x)
)

= f (0 ∔1 1)

= f (0) ∔2 f (1) = 0 ∔2 1

Thus f
(
η∔1

(x)
)

= η∔2
(f (x)).

For this reason, mean systems with natural negation
(
I,∔, η∔

)

will be referred to simply as mean systems.

Corollary 6.2.8 If γ is the generator of ∔, then η∔ = γ−1αγ. Every
negation is the natural negation of some averaging operator.

Proof. In the theorem, let ∔1 = ∔γ and ∔2 = av. Then f
(
η∔1

(x)
)

=
η∔2

(f (x)) says that γη∔ = αγ, or η∔ = γ−1αγ. Since every negation is a
conjugate of α, and γ is an arbitrary automorphism, the second statement
of the corollary follows.

Recall that a negation of the form γ−1αγ is said to be generated by
γ, and is written as αγ = γ−1αγ.

The corollary gives a way to compute the negation η associated with an
averaging operator—that is if the generator γ of the averaging operator
is known. Just conjugate α by γ. Finding η directly from the equation
x∔ η (x) = 0 ∔ 1 may or may not be easy.

Example 6.2.9 Following are three examples of averaging operators and
their negations. That the negations are as stated is left as an exercise.
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1. For x∔ y =
x+ y

2
, η∔ (x) = 1− x.

2. For x∔ y =

(
xa + ya

2

) 1
a

, η∔ (x) = (1− xa)
1
a , a > 0.

3. For x ∔ y = loga

(
ax + ay

2

)
, η∔a

(x) = loga (1 + a− ax) , a > 0,

a 6= 0.

If △ is a t-norm and f is an automorphism of I, then x △f y =
f−1(f(x) △ f(y)) is a t-norm. If f is an antiautomorphism, △f is a t-
conorm. In particular, if f is a negation, △f is the t-conorm dual to △
with respect to this negation. For an averaging operator ∔ it follows read-
ily that if f is either an automorphism or an antiautomorphism of I, then
x∔f y = f−1(f(x)∔ f(y)) is again an averaging operator. Now an averag-
ing operator ∔ has its natural negation η∔. The following theorem shows
that ∔ is self-dual with respect to its natural negation—that is,

x∔ y = η∔
(
η∔ (y) ∔ η∔ (x)

)

Theorem 6.2.10 Let ∔ be an averaging operator on I. Then η∔ is an
antiautomorphism of the system (I,∔). Moreover, it is the only antiauto-
morphism of (I,∔).

Proof. Let η = η∔. Since η is an antiautomorphism of I, we need only
show that η (x∔ y) = η (y)∔ η (x) for all x, y ∈ [0, 1]. Now η (x∔ y) is the
unique value satisfying the equation (x∔ y) ∔ η (x∔ y) = 0 ∔ 1. But by
bisymmetry,

(x∔ y) ∔ (η (y) ∔ η (x)) = (x∔ η (x)) ∔ (y ∔ η (y))

= (0 ∔ 1) ∔ (0 ∔ 1) = 0 ∔ 1

It follows that η (x∔ y) = η (y) ∔ η (x). The last statement follows from
Corollary 6.2.4.

The centralizer Z(α) = {g ∈ Aut(I) : gα = αg} is the set of elements
of the form

αfα+ f

2

for f ∈ Aut(I), that is, the average of the two automorphisms αfα and f.
This gives Z(α) in terms of α and the ordinary average. This is just an
instance of a general phenomenon.
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Theorem 6.2.11 Let ∔ be an averaging operator on I and let η be the
negation determined by the equation x∔η (x) = 0∔1. Then the centralizer
Z (η) = {g ∈ Aut(I) : gη = ηg} of η is the set of elements of the form

ηfη ∔ f

for automorphisms f of I. Moreover, if f ∈ Z (η), then ηfη ∔ f = f .

Proof. To show ηfη ∔ f is in the centralizer of η, we need to show
that (ηfη ∔ f) (η (x)) = η ((ηfη ∔ f) (x)). We prove this by showing that
(ηfη ∔ f) η satisfies the defining property for η—that is, that (ηfη ∔ f) (x)∔
(ηfη ∔ f) η (x) = 0 ∔ 1. Now

(ηfη ∔ f) (η (x)) = ηfηη (x) ∔ fη (x) = ηf (x) ∔ fη (x)

and
η ((ηfη ∔ f) (x)) = η (ηfη (x) ∔ f (x))

By bisymmetry,

[ηfη (x) ∔ f (x)] ∔ [ηf (x) ∔ fη (x)]

= [ηfη (x) ∔ fη (x)] ∔ [ηf (x) ∔ f (x)]

= [0 ∔ 1] ∔ [0 ∔ 1]

= [0 ∔ 1]

Thus the expression (ηfη ∔ f) (η (x)) = ηf (x)∔ fη (x) satisfies the defin-
ing equality for η (ηfη (x) ∔ f (x)), and we conclude that

(ηfη ∔ f) η = η (ηfη ∔ f)

Clearly, if f ∈ Z (η), then ηfη ∔ f = f . It follows that every element of
Z (η) is of the form ηfη ∔ f for some automorphism f of I.

To find an element to conjugate α by to get the negation β, one con-
structs

f(x) =
αβ(x) + x

2

and β = f−1αf. That is, conjugate α by the ordinary average of the auto-
morphisms αβ and the identity. Again, this is just an instance of a more
general phenomenon concerning averaging operations and negations. If η
is a negation, then β = f−1ηf where f is the average αη and the identity
with respect to any averaging operator whose natural negation is η.

Theorem 6.2.12 For any negation η, all negations are conjugates of η
by automorphisms of I. More specifically, if β is a negation, then

β = f−1ηf
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for f the automorphism of I defined by

f (x) = ηβ (x) ∔ x,

where ∔ is any averaging operator such that η = η∔ . Moreover, β = g−1ηg
if and only if gf−1 ∈ Z (η).

Proof. We observed earlier that every negation is the natural negation
of an averaging operator. The map ηβ ∔ id is an automorphism of I since
the composition of two negations is an automorphism and the average of
two automorphisms is an automorphism (Theorem 6.2.5). To show that

β = (ηβ ∔ id)
−1
η (ηβ ∔ id) , we show that (ηβ ∔ id)β = η (ηβ ∔ id). For

any x ∈ [0, 1],

(ηβ ∔ id)β (x) = (ηββ (x) ∔ β (x)) = η (x) ∔ β (x)

and
η (ηβ ∔ id) (x) = η (ηβ (x) ∔ x)

Now by bisymmetry

[ηβ (x) ∔ x] ∔ [η (x) ∔ β (x)] = [ηβ (x) ∔ β (x)] ∔ [η (x) ∔ x]

= [0 ∔ 1] ∔ [0 ∔ 1] = [0 ∔ 1]

Thus, using the defining property of η, η (x) ∔ β (x) = η (ηβ (x) ∔ x), or

(ηβ ∔ id)β = η (ηβ ∔ id)

as claimed.

The next theorem follows easily.

Theorem 6.2.13 Let ∔ be an averaging operator on I , and let η be the
negation determined by the equation x∔ η (x) = 0 ∔ 1. The map

Neg (I)→ Aut (I) /Z (η) : β 7−→ Z (η) (ηβ ∔ id)

is a one-to-one correspondence between the negations of I and the set of
right cosets of the centralizer Z (η) of η.

6.2.2 Averaging operators and nilpotent t-norms

We begin with a review of some notation.

• η△ is the negation naturally associated with a nilpotent t-norm △
by the condition

η△ (x) =
∨
{y : x△ y = 0}

that is, x△ y = 0 if and only if y ≤ η△ (x). This was discussed in
Section 5.5. See also [71].
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• N is the symbol used for the Lukasiewicz t-norm.

x N y = (x+ y − 1) ∨ 0

• Nγ stands for the nilpotent t-norm

xNγ y = γ−1 ((γ (x) + γ (y)− 1) ∨ 0)

generated by the automorphism γ. The automorphism γ is the L-
generator of Nγ .

• αγ = γ−1αγ, the negation generated by γ.

• +̇γ is the averaging operator generated by γ, and is given by

x +̇γy = γ−1

(
γ (x) + γ (y)

2

)

• η+̇ is the natural negation determined by the averaging operator +̇,
and is given by

x+̇η+̇ (x) = 0+̇1

It was observed in Corollary 6.2.8 that the negation generated by γ is
the same as the negation associated with the averaging operator +̇γ—that
is, αγ = η+̇γ

. A similar relationship holds for the nilpotent t-norm Nγ .

Proposition 6.2.14 For an automorphism γ of I, the negations αγ , ηNγ
,

and η+̇γ
coincide—that is,

xNγ y = 0 if and only if y ≤ αγ (x)

and
x +̇γ ηNγ

(x) = x +̇γ αγ (x) = 0 +̇γ 1

Proof. Since xNγ y = γ−1 ((γ (x) + γ (y)− 1) ∨ 0), we have x△γy = 0
if and only if γ (x) + γ (y) − 1 ≤ 0 if and only if γ (y) ≤ 1 − γ (x) if and
only if y ≤ γ−1 (1− γ (x)) = αγ (x). The last equation follows.

We remark that this same negation is often represented in the form

η (x) = f−1

(
f (0)

f (x)

)

for a multiplicative generator f of the nilpotent t-norm.
There are a number of different averaging operators that give the same

negation, namely one for each automorphism in the centralizer of that
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negation. The same can be said for nilpotent t-norms. However, there is a
closer connection between averaging operators and nilpotent t-norms than
a common negation. Given an averaging operator, one can determine the
particular nilpotent t-norm that has the same generator, and conversely,
as shown in the following theorem. This correspondence is a natural one—
that is, it does not depend on the generator.

Theorem 6.2.15 The condition

x△ y ≤ z if and only if x +̇ y ≤ z +̇ 1

determines a one-to-one correspondence between nilpotent t-norms and
averaging operators, namely, given an averaging operator +̇, define △+̇ by

x△+̇ y =
∧{

z : x +̇ y ≤ z +̇ 1
}

This correspondence preserves generators. That is, △+̇ and +̇ have the
same generator.

Proof. By Theorem 6.2.3, we may assume that +̇ = +̇γ for an auto-
morphism γ of I. Then

x△+̇ y =
∧{

z : x+̇γy ≤ z+̇γ1
}

=
∧{

z : γ−1

(
γ (x) + γ (y)

2

)
≤ γ−1

(
γ (z) + γ (1)

2

)}

=
∧
{z : γ (x) + γ (y) ≤ γ (z) + 1}

=
∧
{z : γ (x) + γ (y)− 1 ≤ γ (z)}

=
∧
{z : (γ (x) + γ (y)− 1) ∨ 0 ≤ γ (z)}

=
∧{

z : γ−1 ((γ (x) + γ (y)− 1) ∨ 0) ≤ z
}

= γ−1 ((γ (x) + γ (y)− 1) ∨ 0)

Thus, in particular, x△+̇ y is a nilpotent t-norm. Moreover, △+̇ has the
same generator as +̇. Thus the one-to-one correspondence +̇γ ←→ Nγ is
the natural one defined in the statement of the theorem.

To describe the inverse correspondence directly—that is, without refer-
ence to a generating function, given a nilpotent t-norm △, define a binary
operation ∗△ by

x ∗△ y =
∨
{ z : z△ z ≤ x△ y}
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and define +̇△ by

x+̇△y = (x ∗△ y) ∧
(
η△
(
η△ (x) ∗△ η△ (y)

))

This definition relies on the fact that for an averaging operator +̇, η+̇
is an antiautomorphism of the system

(
I, +̇

)
, (Theorem 6.2.10), and in

particular, +̇ is self-dual relative to η+̇:

x +̇ y = η+̇
(
η+̇ (x) +̇ η+̇ (y)

)

The situation with strict t-norms is somewhat more complicated. We
explore that in the next section.

6.2.3 De Morgan systems with averaging operators

The family of t-norms △ that satisfy the equation

(x△ y) + (x▽ y) = x+ y

for x▽ y = α (α (x)△ α (x)), the t-conorm dual to △ relative to α (x) =
1− x, are called Frank t-norms [61]. Frank showed that this is the one-
parameter family of t-norms of the form

x△Fa
y = loga

[
1 +

(ax − 1) (ay − 1)

a− 1

]
, a > 0, a 6= 1

with limiting values

x△F0 y = x ∧ y
x△F1 y = xy

x△F∞ y = (x+ y − 1) ∨ 0

Note that all the Frank t-norms for 0 < a < ∞ are strict. The strict
Frank t-norms are generated by functions of the form

Fa (x) =
ax − 1

a− 1
, a > 0, a 6= 1

F1 (x) = x

The limiting cases for a = 0, a = 1, and a = ∞ give the t-norms ∧,
multiplication, and N, respectively.

A t-norm △ is called nearly Frank [150] if there is an isomorphism
h : (I,△, α) → (I,△F , α) of De Morgan systems for some Frank t-norm
△F—that is, for all x ∈ [0, 1],

h (x△ y) = h (x)△F h (y)

hα (x) = αh (x)
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Definition 6.2.16 A system
(
I,△, η,▽, +̇

)
is a Frank system if △ is

a t-norm (nilpotent or strict or idempotent), η is a negation, ▽ is a t-
conorm, +̇ is an averaging operator, and the identities

(1) x▽ y = η (η (x)△ η (y)) [(I,△, η,▽) is a De Morgan system.]

(2) x +̇ η (x) = 0 +̇ 1 [
(
I, η, +̇

)
is a mean system with η = η+̇.]

(3) (x△ y) +̇ (x▽ y) = x +̇ y [The Frank equation is satisfied.]

hold for all x, y ∈ [0, 1]. A Frank system will be called a standard Frank

system if +̇ = av = +̇id.

Note that in a standard Frank system
(
I,△, η,▽, +̇

)
, △ is a Frank

t-norm (nilpotent or strict) and η = α. Also note that if +̇ is generated
by h ∈ Aut (I), the Frank equation is

h−1

(
h (x△ y) + h (x▽ y)

2

)
= h−1

(
h (x) + h (y)

2

)

which is equivalent to

h (x△ y) + h (x▽ y) = h (x) + h (y)

If
(
I,△, η,▽, +̇

)
is a Frank system, we will say that

(
I,△, +̇

)
deter-

mines a Frank system, since η is determined algebraically by +̇, and ▽
by η and △.

Theorem 6.2.17 The system
(
I,△, η,▽, +̇

)
is a Frank system if and only

if it is isomorphic to a standard Frank system.

Proof. Suppose
(
I,△, +̇

)
determines a Frank system. There is an au-

tomorphism g of I such that +̇ = +̇g, and g is also an isomorphism of
Frank systems

g :
(
I,△, +̇g

)
≈
(
I,△g−1 , +̇id

)

where +̇id = av. Thus △g−1 is a Frank t-norm. The converse is clear.

Thus
(
I, •f , +̇g

)
determines a strict Frank system if and only if f and

g are related by g ∈ F−1
a R+f for some a. Note that for every strict

Archimedean, convex t-norm △ = •f there is a two-parameter family
of Frank systems

F−1
a rf :

(
I, •f , +̇F−1

a rf

)
≈ (I, •Fa

, av)

and for every averaging operator +̇ = +̇g there is a one-parameter family
of strict Frank systems

g :
(
I, •Fag, +̇g

)
≈ (I, •Fa

, av)
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Also, for every nilpotent Archimedean, convex t-norm △ = Nγ there is a
unique Frank system

γ :
(
I,Nγ , +̇γ

)
≈ (I,N, av)

Thus every system of the form (I,△) or
(
I, +̇

)
is part of one or more

Frank systems. However, not every De Morgan system can be extended
to a Frank system. The following theorem identifies those that can. Recall
that a nilpotent De Morgan system is called a Boolean system [71] if
the negation is the one naturally determined by the t-norm.

Theorem 6.2.18 A De Morgan system with nilpotent t-norm can be ex-
tended to a Frank system if and only if the system is Boolean. A De Morgan
system (I,△, η) with strict t-norm △ can be extended to a Frank system
if and only if there exists a ∈ R+ such that for f, g ∈ Aut (I) with △ = •f
and η = αg

F−1
a R+f ∩ Z (α) g 6= ∅

In this case,
F−1
a R+f ∩ Z (α) g = {h}

and the Frank system is

(
I, •f , αg, +̇h

)
=
(
I, •Fah, αh, +̇h

)

Moreover, there is at most one such a. The t-norm in the Frank system is
nearly Frank if and only if g is in the centralizer of α.

Proof. If the t-norm in a Frank system is nilpotent, it is generated by
the same automorphism as the averaging operator. Thus the negation is
also generated by the same automorphism as the t-norm.

Consider the De Morgan system (I, •f , αg) with strict t-norm. Assume

F−1
a R+f ∩ Z (α) g 6= ∅

Then by Theorems 5.7.1 and 5.7.3,

F−1
a R+f ∩ Z (α) g = {h} .

Thus for some r ∈ R+ and k ∈ Z (α)

F−1
a rf = kg = h

Thus rf = Fah, implying •f = •Fah. Thus

(
I, •f , αg, +̇h

)
=
(
I, •Fah, αh, +̇h

)
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is a Frank system. If F−1
b R+f ∩ Z (α) g = {k} for some b ∈ R+, then

•Fbk = •f = •Fah, implying that •Fbkh−1 = •Fa
. This implies by results in

[150] that kh−1 = 1 and, from that, that a = b [61].
Now suppose that (I, •f , αg) can be extended to the Frank system(

I, •f , αg, +̇h

)
. Then αg is the negation for +̇h so that αg = αh and we

have hg−1 ∈ Z (α), or h = kg with k ∈ Z (α). Thus,

(
I, •f , αg, +̇h

)
≈
(
I, •fh−1 , α, +̇

)

which is isomorphic to
(
I, •Fa

, α, +̇
)

for some a ∈ R+. So rf = Fah for
some r, a ∈ R+, or

F−1
a rf = h = kg ∈ F−1

a R+f ∩ Z (α) g

The intersection F−1
a R+f ∩ Z (α) g may be empty for all a > 0. That

is the case when the equation F−1
a rf = hg has no solution for r, a > 0

and h ∈ Z(α). For a particular example of this, take f = id, g (x) = x for
0 ≤ x ≤ 1

2 . Then F−1
a r = hg implies that h (x) = F−1

a r (x) for 0 ≤ x ≤ 1
2

and since h ∈ Z(α), h (x) = 1 − F−1
a r (1− x) = α

(
F−1
a r (α (x))

)
for

1
2 ≤ x ≤ 1. But then

g (x) =

{
x if 0 ≤ x ≤ 1

2

αr−1FaαF
−1
a r (x) if 1

2 ≤ x ≤ 1

Now simply choose g that is not differentiable at some x0 ∈
(
1
2 , 1
)
, and

such an equality cannot hold for any choice of a and r. So there are De
Morgan systems (I, •f , αg) that are not parts of Frank systems.

6.3 Powers of t-norms

For positive integers n, the n-th power of a t-norm △ is

x[n] =

n times︷ ︸︸ ︷
x△ x△ · · · △ x

We outline in this section the theory for arbitrary positive real powers for
Archimedean t-norms. The details may be found in [209].

For a strict t-norm, the notion of n-th power naturally extends to n-

th roots by defining x[ 1
n ] to be the unique solution to

(
x[ 1

n ]
)[n]

= x for

positive integers n. This leads to the definition of positive rational powers

by setting x[ m
n ] =

(
x[ 1

n ]
)[m]

for positive integers m and n. One can show
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that the value of
(
x[ 1

n ]
)[m]

is independent of the representation of the

rational m
n , and continue to develop the notion of real powers directly as

is done for real powers of real numbers. However, we will take advantage
of the fact that all strict t-norms are isomorphic to multiplication where
powers are already defined, observing that if f is an isomorphism f :
(I,△) → (I, •), then for positive integers n, f

(
x[n]
)

= (f (x))
n
, so that

x[n] = f−1 ((f (x))
n
). We extend this to arbitrary positive real numbers,

calling on the continuity of the isomorphism.

Definition 6.3.1 Given a strict t-norm △ and a positive real number r,
the r-th power of △ is defined to be the function x[r] = f−1 ((f (x))

r
) =

f−1rf (x), where f is any isomorphism of △ with multiplication.

The function x[r] is independent of the choice of isomorphism, since
any other isomorphism is of the form sf for some positive real number s,
and

(sf)
−1

(sf (x)
r
) = f−1

(
s−1 (f (x)

rs
)
)

= f−1
(

(f (x))
rss−1

)

= f−1 ((f (x))
r
)

Theorem 6.3.2 Given a strict t-norm △, the powers of △ satisfy the
following:

1.
(
x[r]
)[s]

= x[rs] for all r, s ∈ R+.

2. x[r] △ x[s] = x[r+s] for all r, s ∈ R+.

3.
(
x[ 1

n ]
)[n]

= x for all n ∈ Z+.

4. x[r] = limm
n
→r

(
x[ 1

n ]
)[m]

where n,m ∈ Z+.

The proof is left as an exercise. Again, the details are in [209].

It can be shown [209] that a function δ : [0, 1]→ [0, 1] is the r-th power
for some strict t-norm △ and some r ∈ R+ if and only if δ ∈ Aut (I) and
one of the following holds.

1. r > 1 and δ (x) < x for all x ∈ (0, 1).

2. r = 1 and δ (x) = x for all x ∈ (0, 1).

3. r < 1 and δ (x) > x for all x ∈ (0, 1).
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There are many strict t-norms that have the same r-th power for any given
power r 6= 1. Two automorphisms f, g ∈ Aut(I) generate strict t-norms
having the same r-th power if and only if fg−1 is in the centralizer Z(r) =
{z ∈ Aut(I) : zr = rz}. Also, the precise form of the elements of Z(r) has
been worked out in [209]. However, if all the r-th powers are known, the
strict t-norm is uniquely determined. This is a direct consequence of the
proof of Theorem 5.2.3.

The powers of a general nilpotent t-norm depend on the powers of
the  Lukasiewicz t-norm, in the same sense that powers of strict t-norms
depend on powers for multiplication. So we first consider the question of
powers for the  Lukasiewicz t-norm xN y = (x+ y − 1) ∨ 0.

Proposition 6.3.3 Let n be a positive integer. Then

n times︷ ︸︸ ︷
xNxN · · · Nx = (nx− n+ 1) ∨ 0.

The proof is left as an exercise.

Now x[n] = (nx− n+ 1) ∨ 0 is a continuous function mapping [0, 1]
onto [0, 1], and restricts to an isomorphism

[
n−1
n , 1

]
≈ [0, 1]. Thus for each

x ∈ (0, 1] there is a unique solution to the equation y[n] = x. Call this

solution x[ 1
n ].

Proposition 6.3.4 Let n be a positive integer and x ∈ (0, 1]. Then 1
nx−

1
n + 1 is the unique solution to y[n] = x.

The proof is left as an exercise.

Definition 6.3.5 For the  Lukasiewicz t-norm, x ∈ (0, 1], and positive real
numbers r, the r-th power of x is defined to be x[r] = (rx − r + 1) ∨ 0.

For any positive integer n, 0 has multiple n-th roots, namely the in-
terval of numbers from 0 to the largest x ∈ [0, 1] satisfying x[n] = 0. The
usual convention is that 0[n] = 0. Following are some examples of powers
for the  Lukasiewicz t-norm.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x[2] = (2x− 2 + 1) ∨ 0 x[1/2] =
(
1
2x− 1

2 + 1
)
∨ 0

Proposition 6.3.6 For positive real numbers r and s, and x ∈ [0, 1], the
following hold.

1.
(
x[r]
)[s]

= x[rs] if x[r] 6= 0.

2. x[r+s] = x[r]N x[s].

The proof is left as an exercise.

From these propositions we see that for rationals q = m
n , x[ m

n ] is the
m-th power of the n-th root of x and this definition depends only on the
rational number q = m

n and not on the particular representation of q as a
quotient of integers.

Definition 6.3.7 Given a nilpotent t-norm △ and a positive real number
r, the r-th power of △ is defined to be the function

x[r] = f−1 ((r · f (x) − r + 1) ∨ 0)

where f is the L-generator of △ and r · f(x) denotes the ordinary product
of r and f (x).

It can be shown that a nondecreasing function δ from [0, 1] to [0, 1] is
the r-th power for some r ∈ R+ and some nilpotent t-norm △ if and only
if one of the following holds.

1. r > 1, δ (x) < x for all x ∈ (0, 1), and for some a ∈ (0, 1), δ is
identically 0 on [0, a] and induces an isomorphism [a, 1] ≈ [0, 1].

2. r = 1 and δ (x) = x for all x ∈ (0, 1).
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3. r < 1, δ (x) > x for all x ∈ [0, 1), δ (0) = 0 and for some a ∈ (0, 1),
δ induces an isomorphism (0, 1] ≈ (a, 1].

The same as for strict t-norms, there are many nilpotent t-norms that have
the same r-th power for any given power r 6= 1. Two nilpotent t-norms
with L-generators f and g have the same r-th power if and only if fg−1

is in a certain subgroup of Aut(I) that is analogous to Z(r) for the strict
case. This subgroup is explicitly described in [209]. Again, if all the r-th
powers of a nilpotent t-norm are known, the nilpotent t-norm is uniquely
determined, and this is a direct consequence of the proof of Theorem 5.2.3.

6.4 Sensitivity of connectives

The modeling of fuzzy concepts through the assignment of membership
functions as well as the choice of a fuzzy logic are subjective. This flex-
ibility reflects the very nature of fuzziness. In specific applications, some
choices must be made, depending of course on various factors. We illus-
trate some possible choices when robustness is an important factor. Here,
by robustness we mean sensitivity of membership functions or of fuzzy
logical connectives with respect to variations in their arguments. A logical
connective is a mapping from either [0, 1]2 or [0, 1] into [0, 1], as in the case
of t-norms or negations, respectively. For any mapping f : [0, 1]n → [0, 1],
an extreme measure of sensitivity of f is as follows.

Definition 6.4.1 For x = (x1, x2, ..., xn), y = (y1, y2, ..., yn), and δ ∈
[0, 1], let

ρf (δ) =
∨

|xi−yi|≤δ

|f(x)− f(y)|

The function ρf : [0, 1] → [0, 1] is an extreme measure of sensitivity

of f .

In order to compare different operations f , we proceed as in standard
decision theory where ρf (δ) plays the role of the “risk” at δ of the proce-
dure f . We say that f is less sensitive than g if for all δ, ρf (δ) ≤ ρg(δ),
with strict inequality at some δ. Here are some examples.

Example 6.4.2 If f(x, y) = x ∧ y, then for |x− u| ≤ δ and |y − v| ≤ δ,
we have x ≤ u+ δ and y ≤ v + δ. So

x ∧ y ≤ (u+ δ) ∧ (v + δ) = (u ∧ v) + δ

Similarly,
u ∧ v ≤ x ∧ y) + δ
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so that x∧y−u∧v ≤ δ. Thus ρ∧(δ) ≤ δ. Taking x = y = δ and u = v = 0,
we have x ∧ y − u ∧ v = δ, so ρ∧(δ) ≥ δ. Thus ρ∧(δ) = δ.

Example 6.4.3 If f(x) = 1 − x, then |f(x)− f(y)| = |x− y| ≤ δ, and
ρf (δ) is attained at x = δ, y = 0. Thus ρf (δ) = δ.

Example 6.4.4 If f(x, y) = xy, then ρf (δ) = 2δ − δ2.

Example 6.4.5 If f(x, y) = x+ y −xy, then ρf (δ) = 2δ − δ2.

Example 6.4.6 If f(x, y) = (x+ y) ∧ 1, then ρf (δ) = 2δ ∧ 1.

Example 6.4.7 If f(x, y) = x ∨ y, then ρf (δ) = δ.

Proposition 6.4.8 For any t-norm △, it and its dual ▽ with respect to
α(x) = 1− x have the same sensitivity.

The proof is left as an exercise.

Theorem 6.4.9 x ∧ y, x ∨ y, and α(x) = 1 − x are the least sensitive
among all continuous t-norms, t-conorms, and negations, respectively.

Proof. We showed in the first example above that ρ∧(δ) = δ. If △ is
a t-norm, then

|1△ 1− (1− δ)△ (1− δ)| = |1− (1− δ)△ (1− δ)|
≤ ρ△(δ)

so (1− δ) ≥ (1− δ)△ (1− δ) > 1− ρ△(δ). Thus ρ△(δ) ≥ δ = ρ∧(δ).
Note ∧ is the only t-norm △ such that ρ△(δ) = δ. Indeed, for ∧ 6= △,

there are x, y such that x△ y 6= x∧ y and we may assume that x△ y < x.
Now

|x△ 1− 1△ 1| = 1− x△ y > 1− x
so that ρ△(1− x) 6= 1− x. We leave the rest of the proof as exercises.

An alternative to the measure above of extreme sensitivity of fuzzy
logical connectives is a measure of average sensitivity. Let f : [a, b]→ R.
Assume that f has all derivatives and integrals necessary. A measure of
the sensitivity of differentiable functions f at a point in [a, b] is the square
f ′(x)2 of its derivative at that point. Its average sensitivity would then
be the “average” over all points in [a, b] of f ′(x)2. This “average” is the

quantity
(∫ b

a
f ′(x)2dx

)
/(b−a). More generally, if f : [a, b]n → R, account

needs to be taken of all the partial derivatives of f , and the quantity

n∑

i=1

(
∂f

∂xi

)2
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is an appropriate one. Its average sensitivity is then

S(f) =

∫
[a,b]n

∑n
i=1

(
∂f
∂xi

)2

(b− a)n

In the case [a, b] = [0, 1], the case of interest to us, the average sensitivity
of f becomes

S(f) =

∫

[0,1]n

n∑

i=1

(
∂f

∂xi

)2

Here are some examples for logical connectives on [0, 1].

Example 6.4.10 S (∧) = S(∨) = 1.

Example 6.4.11 S (△) = 2
3 for x△ y = xy and for x△ y = x+ y − xy.

Example 6.4.12 S (△) = 1 for x △ y = (x + y) ∧ 1 and for x △ y =
0 ∨ (x+ y − 1).

Example 6.4.13 S(α) = 1 for the negation α(x) = 1− x.

A t-norm and its dual with respect to α(x) = 1 − x have the same
average sensitivity. The functions ∧ and ∨ in the examples above are
differentiable at all points in the unit square except for the line x = y, so
there is no problem calculating the integrals involved. In certain situations,
one may need to use more general notions of derivative.

Theorem 6.4.14 The connectives x △ y = xy, x ▽ y = x + y − xy,
and α(x) = 1 − x have the smallest average sensitivity among t-norms,
t-conorms, and negations, respectively.

Proof. We need to show, for example, that x△ y = xy minimizes
∫ 1

0

∫ 1

0

[(
∂△
∂x

)2

+

(
∂△
∂y

)2
]
dxdy

A standard fact from analysis is that △ minimizes this expression if it
satisfies the Laplace equation

∂2△
∂x2

+
∂2△
∂y2

= 0

and of course it does. Similar arguments apply to the other two cases.

As in the case of extreme measure of sensitivity, one can use the notion
of average sensitivity to choose membership functions for fuzzy concepts.
When facing a fuzzy concept such as a linguistic label, one might have a
class of possible membership functions suitable for modeling the concept.
A good choice could be the membership function within this class that
minimizes average sensitivity.
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6.5 Copulas and t-norms

While t-norms are used as connectives in fuzzy logics, there is a closely
related concept which becomes increasingly useful in statistical modeling
of multivariate models. As such, this concept seems interesting to point out
here, even in the form of general comments. It is the notion of copulas in
probability and statistics, introduced by A. Sklar in 1959. Up-front, as we
will see, a bivariate copula is not necessarily a t-norm, since in general, it
is neither commutative nor associative. However, if a copula is associative,
then it is also commutative, and hence is a t-norm.

For ease of the exposition, we consider the case of two variables. Ex-
tension to several variables is just a matter of notation. Let (U, V ) be a
random vector, defined on a probability space (Ω,A, P ), whose marginals
U and V are uniformly distributed on the unit interval [0, 1].

If C denotes the restriction of its joint distribution function to its
support [0, 1]2, then C : [0, 1]2 → [0, 1] has the following properties:

1. C(u, 0) = C(0, v) = 0 for any u, v ∈ [0, 1]

Indeed,

C(u, 0) = P (U ≤ u, V ≤ 0) ≤ P (V ≤ 0) = 0

C(0, v) = P (U ≤ 0, V ≤ v) ≤ P (U ≤ 0) = 0

This property says that the support of (U, V ) is [0, 1]2.

2. C(u, 1) = u, C(1, v) = v, for any u, v ∈ [0, 1]

Indeed,

C(u, 1) = P (U ≤ u, V ≤ 1)

= P (U ≤ u) + P (V ≤ 1)− P [(U ≤ u) ∪ (V ≤ 1)]

= P (U ≤ u) + 1− 1 = P (U ≤ u) = u

since P (V ≤ 1) = 1 and (V ≤ 1) ⊆ (U ≤ u) ∪ (V ≤ 1).

Similarly,

C(1, v) = P (U ≤ 1, V ≤ v) = P (V ≤ v) = v

3. For any (u, v) ≤ (u′, v′),C(u′, v′)− C(u, v′)− C(u′, v) + C(u, v) ≥ 0

Indeed, it follows simply by the Lebesgue-Stieltjes theorem for char-
acterization of probability measures on R2.

Definition 6.5.1 The restriction (to its support) of a joint distribution
function whose marginals are uniform distributions on [0, 1] is called a
copula.
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In view of what has just been proved, a (bivariate) copula is a function
C : [0, 1]2 → [0, 1] satisfying (1),(2) and (3) above.

Example 6.5.2 C(u, v) = uv

Example 6.5.3 C(u, v) = u ∧ v

Example 6.5.4 C(u, v) = {u+ v − 1} ∨ 0

Example 6.5.5 C(u, v) = uv
u+v−uv

Example 6.5.6 Cθ(u, v) = uv[1 + θ(1− u)(1− v)] for |θ| ≤ 1

Thus, if U and V are real-valued random variables, both uniformly
distributed on [0, 1], then their joint distribution function C∗ : R2 → [0, 1]
can be specified by choosing some copula as its restriction to its support
[0, 1]2.

The definition of an n-dimensional copula is this.

Definition 6.5.7 An n-copula is a function

C : [0, 1]n → [0, 1]

satisfying:

1. C is grounded: when at least one ai = 0,

C(a1, a2, ..., an) = 0

2. Each margin, for all ai ∈ [0, 1], satisfies

Ci(ai) = C(1, 1, ..., ai, 1, ..., 1) = ai

3. C is n-increasing in the sense that, for any J =

n∏

i=1

[ai, bi] ⊆ [0, 1]n,

volC(J) =
∑

v

sgn(v)C(v) ≥ 0

where the summation is over all vertices v of J , and for v =
(v1, v2, ..., vn) with vi = ai or bi,

sgn(v) =

{
1 if vi = ai for an even number of i’s
−1 if vi = ai for an odd number of i’s
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In other words, an n-copula is the restriction of an n-dimensional dis-
tribution function to its support [0, 1]n, whose marginal distributions are
uniform on [0, 1].

As a restriction of a multivariate distribution function, a copula C
induces a (unique) probability measure on [0, 1]n via volC(.), namely

volC

(
n∏

i=1

[0, ai]

)
= C(a1, a2, ..., an)

More specifically, let (U1, U2, ..., Un) be a random vector with support
[0, 1]n where each univariate variable Ui is uniformly distributed on [0, 1].
Then

P (U1 ≤ a1, U2 ≤ a2, ..., Un ≤ an) = volC

(
n∏

i=1

[0, ai]

)

Thus, each copula C is a “joint probability measure” on [0, 1]n where
Lebesgue product measure is a special case. The space of all copulas is
that of all probability measures on [0, 1]n whose projections are Lebesgue
measure on [0, 1]. Since C is absolutely continuous, its joint density

δnC(a1, a2, ..., an)

δa1....δan

exists.

Now let’s address the following question of Maurice Frechet: Let X
and Y be two real-valued random variables, both defined on the same
probability space (Ω,A, P ), with distribution functions F and G, respec-
tively. What is the set of all possible joint distribution functions of (X,Y ):
that is, distributions H : R2 → [0, 1] such that H(x,∞) = F (x), and
H(∞, y) = G(y)?

Suppose first that both F and G are continuous. Then

H(x, y) = P (X ≤ x, Y ≤ y) = P (F (X) ≤ F (x), G(Y ) ≤ G(y))

Now, observe that U = F (X), and V = G(Y ) are uniformly distributed
on [0, 1], so that H(x, y) is nothing else than a joint distribution of (U, V )
evaluated at the point ((F (x), G(y)) ∈ [0, 1]2.

As such, it is of the form

H(x, y) = C(F (x), G(y))

for some copula C.
The upshot is that this representation is true in general, and that is

Sklar’s Theorem.
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Theorem 6.5.8 Sklar’s Theorem (bivariate version)

1. Let H be a joint distribution with marginals F and G. Then there ex-

ists a copula C such that, for any x, y ∈ R, H(x, y) = C(F (x), G(y)).
If F and G are continuous, then C is unique, otherwise it is deter-
mined on the range of F and G.

2. Conversely, if C is a copula, then H(x, y) = C(F (x), G(y)) is a joint
distribution with given marginals F and G.

An important corollary is this.

Corollary 6.5.9 If H is a joint distribution function with F (.) = H(.,∞),
G(.) = H(∞, .) continuous, then the unique copula C is obtained as

C(u, v) = H(F−1(u), G−1(v))

where F−1(.), G−1(.) are the quantile functions, i.e., F−1 : [0, 1]→ R

F−1(u) = inf{x ∈ R : F (x) ≥ u}

In summary, a bivariate copula is a restriction of bivariate distribution
with uniform marginals on [0, 1]. Any joint distribution function can be
built up from marginal distributions and a copula. The copula of a joint
distribution can be extracted from the joint distribution.

As we have just seen, copulas are not new objects at all. They are
just joint distribution functions with uniform marginals. Thus, from a
“probabilistic” viewpoint, there is nothing special about them! However,
the claim that copulas help to build up joint distributions from marginals
is in general ignored since, traditionally, that can be also achieved by using
marginals and conditional distributions.

So why do statisticians now need copulas? It is not because they face
new statistical problems. Basic statistical problems are the same: mul-
tivariate model building and correlation analysis. What is “new” is that
the traditional multivariate Gaussian assumptions are not appropriate any
more in many real-world problems. Remember your course on multivariate
statistical analysis?!

For example, in financial economics, variables are rather heavy-tailed,
so that Pearson correlation theory cannot be used. Also, linear dependence
is too special to capture other important types of dependence. Thus, in
view of applications, even in areas such as statistical quality control, the
problem of building general multivariate models capturing various types
of dependence surfaces as the most important step in applying statistics
to real-world problems. This is not a generalization of classical statistical
methodologies, it is a novel way of applying statistics.
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For an example, consider the loss in an investment portfolio of the form

Y =

k∑

j=1

akXk

The value-at-risk is F−1
Y (α). To compute it, we need the (estimated) distri-

bution function FY of the total loss Y . We cannot ”assume” that the joint
distribution of (X1, X2, ..., Xk) is multivariate normal! We can, instead,
estimate the marginal distributions Fj of the Xj . But then, how to come
up with an appropriate joint distribution H for (X1, X2, ..., Xk), to derive
FY , and capturing various types of dependence among its components?

As an example of multivariate model building, suppose X is F being
N(µ, σ2) and Y is Pareto, i.e.,

G(y) = P (Y ≤ y) = (1− 1

y2
)1(1,∞)(y)

Note that EY 2 =∞. Two things: We cannot assume joint normality! And
how do we investigate the correlation between X and Y , when Pearson’s
correlation cannot be used? This is basically the place where copulas are
needed, since they will solve both problems.

Specifically, the simple form of Sklar’s theorem is in fact very power-
ful. It says that, first the joint distribution is formed by two independent
ingredients: the marginals (heavy-tailed or not) and a copula. Moreover,
the copula could be “chosen” to capture any type of dependence (linear
or not) among component variables. Copulas model dependence structures
for any kind of variables (heavy-tailed or not). In fact, quantitative depen-
dence measures should be defined solely in terms of copulas, and not the
marginals (as in the case of Pearson’s correlation coefficient, resulting in
not invariant with respect to strictly nonlinear changes of scales). Another
usefulness of copulas is that when extracting them from joint distributions,
they exhibit dependence structures we need for analysis.

Example 6.5.10 Suppose that X is uniformly distributed on [−1, 1] and
Y exponentially distributed with unit mean, then a joint distribution could
be

H(x, y) = C(F (x), G(y))

where
C(u, v) =

uv

u+ v − uv
Example 6.5.11 Let (X,Y ) have Gumbel bivariate logistic distribution

H(x, y) = (1 + e−x + e−y)−1
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We can extract the dependence structure between X and Y by computing
their copula, by first deriving

F (x) = H(x,∞) = (1 + e−x)−1

G(y) = H(∞, y) = (1 + e−y)−1

and using

C(u, v) = H(F−1(u), G−1(v)) =
uv

u+ v − uv
Note that the dependence structure in the two examples is the same, as
their copulas capture their dependence.

Example 6.5.12 An example from statistical quality control (SQC). The
multivariate SQC is essentially based on (parametric) normal distribu-
tions.

In the univariate case, in 1924 Shewhart first observed that, if the
(single) product characteristic is modeled by a random variable X (due
to its possible variations), then we can detect whether it is “out of range”
(out-of-control) if the new value is far away from its mean µ = EX by three
standard deviations σ =

√
V ar(X) =

√
E(X − µ)2, by using Chebyshev’s

inequality:

P (|X − µ| ≤ kσ) ≥ 1− 1

k2

For example, for k = 3,

P (|X − µ| ≤ 3σ) ≥ 0.8889

Using an extension of Chebyshev’s inequality in higher dimensions (i.e.,
for random vectors), similar assessments can be obtained.

If we insist that X is normal N(µ, σ2), then the above lower bound is
more accurate, namely,

P (|X − µ| ≤ 3σ) ≥ 0.997

so that the interval [µ − 3σ, µ + 3σ] could be used as a “tolerance” zone
for the variations of X . Specifically, since (P (|X − µ| > 3σ) is so small,
it is unlikely that a value of X in |X − µ| > 3σ could come from X . Of
course, false alarms could arise!

The following observation is essential for considering multivariate SQC
when one drops the traditional multivariate normal distribution assump-
tion. It is important to remember that making too many model assump-
tions takes us further from realities! The task of a statistician is to try to
obtain models as general as possible.
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If we look at the tolerance interval [µ− 3σ, µ + 3σ], we realize that it
is precisely the set

{x ∈ R : f(x) ≥ c}
where

f(x) =
1

σ
√

2π
exp{− 1

2σ2
(x− µ)2}

and c = f(µ+ 3σ), with µ+ 3σ being a quantile of X . Thus, for a general
multivariate (joint) density function f , a tolerance region is of the form

{x ∈ Rd : f(x) ≥ c}

In the univariate normal distribution case, since both µ, σ are un-

known, the tolerance interval [µ − 3σ, µ + 3σ] is estimated by [Xn −
3Sn, Xn + 3Sn], where Xn and Sn are the sample mean and sample stan-
dard deviation of an i.i.d. random sample X1, X2, ..., Xn drawn from X .
Note that, in the multivariate normal case, we use the T 2-Hotelling statis-
tic.

In general, the meaning of

{x ∈ Rd : f(x) ≥ c}

is that
P (f(X) ≥ cα) = α

that is, the probability that a new observation, say, Xn+1(ω), is in the
level set is some predetermined α.

Now, of course, the joint density f on Rd (for example, when the man-
ufacturing product depends on d related characteristics) is unknown. As
such, the population parameter {x ∈ Rd : f(x) ≥ c}, which is a set,
needs to be estimated (by some set statistics, such as random sets). Such
a set statistic is the statistical tolerance region for deriving multivariate
control charts.

Basically, the population parameter consists of first estimating the
joint density f nonparametrically (by using a method such as the Kernel
method) to estimate fn, then plugging-in to obtain the statistical toler-
ance region {x ∈ Rd : fn(x) ≥ c}. Entering copulas means using copulas
to model process control in which a semiparametric model is appropriate.
It consists of two steps: first, estimate nonparametrically the marginals
densities; second, use some appropriate parametric family of copulas and
use Sklar’s theorem to obtain multivariate models.

There is a good discussion of copulas and their relation to t-norms in
[188]. We limit ourselves to some general comments. First, if △ is a t-
norm, then T (x1, x2, ..., xn) = x1△ x2△ ...△ xn satisfies conditions 1 and
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3 above in the definition of n-copula. So the relation between copulas and
t-norms hinges partly on the second condition. But commutativity and
associativity are issues. There are several pertinent theorems in [188], but
they are rather technical. We state some facts that may be found there.

• The t-norms xy, xN y, and x ∧ y are 2-copulas.

• xN y ≤ C(x, y) ≤ x ∧ y for any 2-copula C.

• A 2-copula is a t-norm if and only if it is associative.

• A t-norm is a 2-copula if and only if it is 2-increasing.

• A t-norm △ is a 2-copula if and only if for a, b, c ∈ [0, 1], with a ≤ c,
it satisfies

c△ b − a△ b ≤ c− a

Copulas and t-norms can be used as aggregation operators, that is,
for ranking alternatives in multicriteria decision making. We mention here
an application of copulas in survey sampling. The problem in sampling,
say, from a finite population U of size n is this. Let θ : U → R be a
quantity of interest, such as the annual income θ(u) of the individual u
in the population U. Suppose that we cannot conduct a census of the
population U, and are interested in some quantity related to the unknown
function θ such as the population total σ(θ) =

∑
u∈U θ(u). To obtain an

estimate of σ(θ) we could rely on the values of θ over some relatively
small part A of U, that is on

∑
u∈A θ(u). This is the essential of inductive

logic: making statements about the whole population from the knowledge
of a part of it. To make this inductive logic reliable, we create a chance
model for selecting subsets A of U. This probabilistic approach not only
has public acceptance, but is also essential in avoiding biases as well as
providing necessary ingredients for assessing errors and the performance
of the estimation procedure. A man-made chance model is then specified
by a function f : 2U → [0, 1] such that

∑
A⊆U f(A) = 1, where f(A) is the

probability of selecting the subset A of U.
In applications, it is desirable to specify the inclusion function π :

U → [0, 1], where π(u) represents the probability that the individual u will
be included in the selected sample [87]. The function f is referred to as the
sampling design. With π being specified, we are looking for sampling
designs f such that π(u) =

∑
u∈A f(A). Without loss of generality, let

U = {1, 2, ..., n}. For each j ∈ U, consider the Bernoulli random variable
Ij : 2U → {0, 1}where Ij(A) = 1 if j ∈ A and 0 otherwise, with parameters

π(j) = P (Ij = 1) =
∑

Ij(A)=1

f(A)
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The sampling design f is equivalent to the joint probability distribution
of the Bernoulli random vector (I1, I2, ..., In). This can be seen as follows.
Making the bijection between 2U and {0, 1}n,

A←→ (ε1, ε2, ..., εn) = ε ∈ {0, 1}n

with Aε = {j ∈ U : εj = 1}. We have f(Aε) = P (I1 = ε1, I2 = ε2, ..., In =
εn). Thus if we specify π, then (I1, I2, ..., In) has fixed marginal distri-
bution. As such, this joint distribution is determined by some N -copula
according to Sklar’s Theorem [155]. Specifically, let Fj be the distribution
function of Ij , namely

Fj(x) =





0 if x < 0
1− π(j) if 0≤ x < 1
1 if x ≥ 1

Let C be an n-copula. Then the joint distribution function of (I1, I2, ..., In)
could be of the form

F (x1, x2, ..., xn) = C[F1(x1), F2(x2), ..., Fn(xn)]

Thus, each choice of C leads to a possible sampling design compatible with
the specified inclusion function π. For example, choosing

C(y1, y2, ..., yn) =
n∏

j=1

yj

we obtain the well-known Poisson sampling design

f(A) =
∏

i∈A

π(i)
∏

i/∈A

(1− π(i))

In this regard, see Exercise 41.
It is left as an exercise for the reader to verify that for the n-copula

C(y1, y2, ..., yn) =

n∧

j=1

yj

the corresponding design f is

f(A) =
∑

B⊆A

(−1)|A\B|[1−
∨

j /∈B

π(j)]

www.EBooksWorld.ir



208 CHAPTER 6. ADDITIONAL TOPICS ON CONNECTIVES

6.6 Exercises

1. In the set of all subsets of a set show that

x′ ∪ y =
∨{z : x ∩ z ⊆ y} = x′ ∪ (x ∩ y)

2. Let △ be a t-norm, ▽ a t-conorm, and η a negation. Verify that
(x⇒ y) = (x▽ y)△ η(x) is a fuzzy implication.

3. Is (x⇒ y) = x ∧ y an implication?

4. ⋆Calculate the Q-implications (x⇒ y) when

(a) x△ y = xy, x▽ y = x+ y − xy, η(x) = 1− x;

(b) x△ y = (x+ y − 1) ∨ 0, x▽ y = (x+ y ∧ 1), η(x) = 1− x.

5. Let ⇒ be a fuzzy implication. Show that

(x⇒∗ y) = ((1− x)⇒ (1− y))

is a fuzzy implication. Find the fuzzy implication in terms of △, ▽,
and η corresponding to the fuzzy relation (A′ × V ) ∪ (U ×B).

6. Verify that

(x⇒ y) =

{
1 if x < 1 or y = 1

0 if otherwise

is a fuzzy implication.

7. Using (x⇒ y) = η(
∧{z : y ▽ z ≥ x}), find ⇒ when η(x) = 1 − x

and x▽ y = x+ y − xy.

8. ⋆Let △ be a nilpotent t-norm. Show that the R-implication associ-
ated with △ is the same as (x⇒ y) = η△[x△ η△(y)].

9. Let ▽ be a continuous t-norm and η a negation. Verify that the
associated S-implication (x⇒ y) = η(x)▽ y satisfies the following:

(a) (0⇒ x) = 1 and (1⇒ x) = x for all x ∈ [0, 1].

(b) (x⇒ (y ⇒ z)) = (y ⇒ (x⇒ z)).

10. For λ > 0, and x ∈ [0, 1], let

g(x) =

[
1− x

λ+ (1 − λ)(1 − x)

] 1
λ
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(a) Verify that g is a generator of a t-conorm ▽.

(b) Find the inverse of g.

(c) Find the ▽-implication associated with▽ and the negation
η(x) = (1− x)/(1 + x).

11. ⋆Let ▽ be a t-conorm and η a negation.

(a) Show that

(x⇒ y) = η
(∧
{z ∈ [0, 1] : z ▽ y ≥ x}

)

is an implication.

(b) Compute ⇒ given in part (a) when

i. x▽ y =






x if y = 0

y if x = 0

1 otherwise

, η(x) =

{
1 if x < 1

0 if x = 1

ii. (x▽ y) = 1 ∧ (x+ y), η(x) = 1− x
(c) Let f be a generator for a nilpotent t-norm. Show that

(x⇒ y) = f−1

(
f(0)f(y)

f(x)

∨
f(0)

)

is a fuzzy implication.

12. Show that a nilpotent t-conorm ▽ has a linear generator if and only
if η▽ is a Sugeno negation (1− x)/(1 − λx) with λ ∈ (−1, 0).

13. Show that for a > 0, x +̇ y =

(
xa + ya

2

) 1
a

is an averaging operator.

14. ⋆Show that f(x) = (ax − 1)/(a− 1) is a generator for the averaging
operator x +̇ y = loga((ax + ay)/2), a > 0, a 6= 1.

15. Show that for c > 0 and a 6= 0,

e
− 1

c



− ln




e−c(− lnx)a + e−c(− ln y)a

2









1
a

is an averaging operator, and find its generator.

16. Find the averaging operator whose generator is

1

1 + a
(
1−x
x

)p
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17. Show that if +̇ is an averaging operator and f and g are antiauto-
morphisms of I, then f+̇g is an antiautomorphism.

18. ⋆Verify that the negations of the averaging operators in Example
6.2.9 are as stated.

19. Let m,n, p, q be positive integers. Show that for a strict t-norm △,
x ∈ [0, 1] there is a unique y ∈ [0, 1] such that y[n] = x. Denote

this y by x[
1
n
]. Show that (x[

1
n
])[m] = (x[

1
q
])[p], and thus that x[

m
n
] is

independent of the representation of the rational number m/n.

20. Prove Theorem 6.3.2.

21. Prove Proposition 6.3.3.

22. ⋆Prove Proposition 6.3.4.

23. Prove Proposition 6.3.6.

24. ⋆Show that if ▽ is dual to △, then ρ▽ = ρ△.

25. Verify that x△ y = xy and x▽ y = x+ y− xy are equally sensitive.

26. ⋆Compute ρf (δ) for

(a) f(x, y) = xy

(b) f(x, y) = (x+ y) ∧ 1

(c) f(x, y) = x+ y − xy
(d) f(x, y) = x ∨ y

27. ⋆Compute S (f) in Examples 6.4.10 – 6.4.13 of Section 6.4.

28. Let g(x, y) = 1− f(1− x, 1− y). Show that S(f) = S(g).

29. ⋆Let w = (w1, w2, ..., wn) with each wi ∈ [0, 1] and
∑
wi = 1.

For (x1, x2, ..., xn) ∈ Rn, let x(j) be the j-th largest xi, so that
x(i) ≥ x(2) ≥ ... ≥ x(n). Let

Fw : Rn → R : (x1, x2, ..., xn)→
∑

wjx(j)

Fw is an ordered weighted averaging operator (OWA) of di-
mension n.

(a) Show that

min(x1, x2, ..., xn) ≤ Fw(x1, x2, ..., xn) ≤ max(x1, x2, ..., xn)
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(b) Determine Fw in the following cases:

i. w = (1, 0, ..., 0, 0)

ii. w = (0, 0, ..., 0, 1)

iii. w = (1/n, 0, ..., 0, 1/n)

30. Show that a binary operation △ on [0, 1] is 2-increasing if and only
if for all 0 ≤ x < y ≤ 1 and 0 ≤ u < v ≤ 1, the inequality

y△ u− x△ u ≤ y △ v − x△ v

holds.

31. Show in detail that C : [0, 1]× [0, 1]→ [0, 1], defined by C(x, y) = xy
is a 2-copula.

32. Let f : R → R. Show that f is 1-increasing if and only if f is
nondecreasing.

33. Let C : [0, 1]2 → [0, 1] : (x, y) → x+ y − xy. Show that C is nonde-
creasing in each argument. Is C 2-increasing?

34. Let f : [−1, 1]2 → [−1, 1] : (x, y)→ xy. Show that f is 2-increasing.
Is f nondecreasing in each argument?

35. ⋆Let C : [0, 1]2 → [0, 1] be 2-increasing and grounded. Show that C
is nondecreasing in each argument.

36. ⋆Let U = {u1, u2, ..., un} be a finite set. A random set on U is a map
S defined on a probability space (Ω,A, P} and taking values in the
power set P(U). Its distribution is specified by its density function
f : P(U)→ [0, 1] : B → P{ω : S(ω) = B}.

(a) Consider the {0, 1} valued random variablesXj(ω) = 1S(ω)(uj),
j = 1, 2, ...., n. Show that the distribution of S determines the
joint distribution of X = (X1, X2, ..., Xn), and vice versa.

(b) Let A be a fuzzy subset of U. Let S(A) denote the class of all
random sets S on U such that A(uj) = P{ω : uj ∈ S(ω)}. De-
scribe all possible distributions of S. (Hint: Use (a) and Sklar’s
Theorem.)

37. ⋆For x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn), let x ∧ y = (x1 ∧
y1, x2 ∧ y2, ..., xn ∧ yn), where ∧ denoted min . Write y ց x if each
yj ց xj . A function F : Rk → [0, 1] is a cumulative distribution
function (CDF) if it satisfies

(i) limxj→−∞ F (x1, x2, ..., xn) = 0 for each j, and
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limx1→∞,...,xn→∞ F (x1, x2, ..., xn) = 1.

(ii) F is right continuous, that is, if y ց x then F (y)ց F (x).

(iii) F is monotone decreasing, that is, if each xj ≤ yj, then F (x) ≤
F (y).

(iv) For any k-dimensional rectangle A = (x1, y1] × (x2, y2] × ... ×
(xk, yk), and its set of vertices V = {x1, y1}×{x2, y2}× ...×{xk, yk},
and for sgn(v) = (−1)τ(v) where τ (v) is the number of xj in v ∈ V.

∆F (A) =
∑

v∈V

sgn(v)F (v) ≥ 0

(a) Show that (iii) is equivalent to (iv) when k = 1.

(b) Let F : R2 → [0, 1] be given by

F (x, y) =

{
1 if s ≥ 0, y ≥ 0, x+ y ≥ 1

0 if otherwise

Show that F satisfies (i), (ii), and (iii) above. Does F satisfy
(iv)?

(c) Let F : Rk → [0, 1] such that for any a, a1, a2, ..., an ∈ Rk,

F (a) ≥
∑

∅ 6=I⊆{1,2,....,n}

(−1)|I|+1F (∧b∈{a,ai:i∈I}b)

Show that such an F satisfies (iii) and (iv).

(d) Let F : R2 → [0, 1] be given by

F (x, y) =

{
1 if s ≥ 0, y ≥ 0,max(x, y ≥ 1

0 if otherwise

Show that F is monotone nondecreasing. Does F satisfy the
inequality in part (c)? (Hint: Consider a = (x, y), a1 = (x1, y1),
a2 = (x2, y2) with 0 ≤ x1 < 1 < x < x2 and 0 ≤ y2 < 1 < y <
y1.)

38. Show that the following t-norms are 2-copulas.

(a) x△ y = xy

(b) x△ y = (x+ y − 1) ∨ 0

(c) x△ y = xy/ (x+ y − xy)

39. ⋆Show that N ≤ △ for any t-norm △ that is a 2-copula.

www.EBooksWorld.ir



6.6. EXERCISES 213

40. Show that Frank t-norms are 2-copulas.

41. ⋆Let S be a finite subset of the real numbers R. Prove that

∑

T⊆S

(
∏

u∈T

u

)


∏

u∈S\T

(1− u)



 = 1

Prove that
∑

s∈T⊆S

(
∏

u∈T

u

)

∏

u∈S\T

(1− u)


 = s

42. Prove that for the n-copula

C(y1, y2, ..., yn) =

n∧

j=1

yj

the corresponding design f is

f(A) =
∑

B⊆A

(−1)|A\B|[1−
∨

j /∈B

π(j)]
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Chapter 7

FUZZY RELATIONS

Relations, or associations among objects, are of fundamental importance
in the analysis of real-world systems. Mathematically, the concept is a
very general one and has been discussed earlier in Chapter 2. There are
many kinds of relations: order relations, equivalence relations, and other
relations with various important properties. Relations are ubiquitous in
mathematics, and their generalizations to fuzzy theory are important. This
chapter presents some of these generalizations with an emphasis on binary
relations, especially fuzzy equivalence relations, which generalize ordinary
equivalence relations.

7.1 Definitions and examples

Generalizing relations to fuzzy relations is easy. An n-ary relation is
a subset R of the Cartesian product U1 × U2 × ... × Un of n sets. The
generalization to the fuzzy case is the natural one.

Definition 7.1.1 An n-ary fuzzy relation in a set V = U1 × U2 ×
...× Un is a fuzzy subset R of V . If the sets Ui are identical, say U , then
R is an n-ary fuzzy relation on U . A 2-ary fuzzy relation is a binary

fuzzy relation.

So R(u1, u2, ...un) represents the degree to which (u1, u2, ...un) is com-
patible with the relation R. We shall deal mostly with binary fuzzy rela-
tions on a set U . Indeed, the motivation for fuzzy relations is to be able
to quantify statements such as “John is much younger than Paul.” For
example, if R is a modeling of “much younger than”, then R(10, 15) is
the degree to which 10 years old is considered as much younger than 15
years old. If R is a modeling of “is much greater than” on U = (0,∞),

215
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216 CHAPTER 7. FUZZY RELATIONS

then R could be something like R(x, y) = max{0, (x− y) /x}. If R is to
represent “is close to” on the real numbers R, then a reasonable function
to use might be R(x, y) = e−|x−y|.

The set F(U) of all fuzzy subsets of a set U gives rise to binary fuzzy
relations R on U×F(U) by R(u,A) = A(u). That is, R(u,A) is the degree
to which the point u of U is compatible with the fuzzy set A of U.

Probability values are in [0, 1], so conditional probability evaluations
can be also viewed as a binary fuzzy relation. If (Ω,A, P ) is a probability
space, then P induces a binary fuzzy relation on A × B, where B ={b ∈
A : P (b) 6= 0}, by P (a, b) = P (a|b), the usual conditional probability.

7.2 Binary fuzzy relations

The generalization of relations to fuzzy relations is just that of going from
subsets to fuzzy subsets. In fuzzifying various properties of relations, the
standard procedure is to identify a relation with its indicator function, as-
sociate a property of a relation with properties of the indicator function of
that relation, and translate those properties into properties of membership
functions.

We consider now the special case of binary fuzzy relations on a set
U . An ordinary binary relation on U is a subset of U × U . Following are
some important properties that these relations may have, and to generalize
these concepts to the fuzzy case we need to state them in terms of their
indicator functions. So let R be a relation on a set U . We identify R with
its indicator function. Thus R : U × U → {0, 1} and the relation R on U
is

1. Reflexive if R(x, x) = 1

2. Symmetric if R(x, y) = 1 implies R(y, x) = 1

3. Transitive if R(x, y) = R(y, z) = 1 implies R(x, z) = 1

4. Antisymmetric if R(x, y) = R(y, x) = 1 implies x = y

Many other properties of a relation are defined in terms of these. For
example, R is an equivalence relation if it is reflexive, symmetric, and
transitive.

There are many ways to translate these properties of a function from
U × U → {0, 1} to a function U × U → [0, 1]. But however translated,
they must correspond to the properties for relations when restricted to
that case. Let R be a fuzzy relation on a set U . Then R is

1. Reflexive if R(u, u) = 1
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2. Symmetric if R(u, v) = R(v, u)

3. Transitive if R(u,w) ≥ R(u, v) ∧R(v, w)

4. Antisymmetric if R(u, v) > 0 and R(v, u) > 0 imply u = v

These properties do become the corresponding ones for relations when
R takes values only in {0, 1}, as is easily seen. The value R(u, v) represents
the extent to which the elements u and v are similar, and certainly reflex-
ivity is demanded. To be symmetric just says that v is exactly as similar
to u as u is to v. Transitivity says that for all v, u is at least as similar to
w as the minimum of the similarity of u and v and the similarity of v and
w. This condition could be written as

∨{R(u, v)
∧
R(v, w) : v ∈ U} ≤ R(u,w)

We need a generalization of transitivity. The notion of transitivity
above is min-transitive or ∧-transitive. That is, R(u,w) ≥ R(u, v) ∧
R(v, w). We can replace ∧ by any t-norm. So for a t-norm △, the fuzzy
relation R is △-transitive if R(u,w) ≥ R(u, v)△ R(v, w) for all v ∈ U .

Definition 7.2.1 A fuzzy relation R on a set U is a △-fuzzy equiv-

alence relation for the t-norm △ if R is reflexive, symmetric, and △-
transitive. If△ = ∧, then we say that R is a fuzzy equivalence relation.

△-fuzzy equivalence relations are fuzzy binary relations generalizing
equivalence relations on sets. Intuitively, an equivalence relation on a set
specifies when two elements are to be considered equal. For example, the
relation “is the same age as” is an equivalence relation on any set of people.
But “is about the same age as” is not as sharply defined and may demand
modeling with a fuzzy equivalence relation.

Any equivalence relation is a △-fuzzy equivalence relation for any t-
norm △. The definition is made that way. Exercises 13 and 15 give exam-
ples of △-equivalence relations.

Fuzzy relations R are fuzzy sets, and so have α-cuts Rα. If R is a fuzzy
relation on U, then

Rα = R−1([α, 1]) = {(u, v) : R(u, v) ≥ α}

is a subset of U × U , and so is a relation on U .

Theorem 7.2.2 If R is a fuzzy relation on a set U, then R is a fuzzy
equivalence relation if and only if each α-cut, Rα is an equivalence relation
on U .

www.EBooksWorld.ir



218 CHAPTER 7. FUZZY RELATIONS

Proof. Let R be a fuzzy equivalence relation. Then (u, u) ∈ Rα since
R(u, u) = 1 ≥ α. If (u, v) ∈ Rα, then R(u, v) ≥ α so R(v, u) ≥ α from
symmetry, whence (v, u) ∈ Rα. If (u, v) and (v, w) ∈ Rα, then R(u,w) ≥
R(u, v) ∧ R(v, w) ≥ α so that (u,w) ∈ Rα. Thus Rα is an equivalence
relation. The other half of the proof is left as an exercise.

This theorem does not hold for △-fuzzy equivalence relations in gen-
eral. (See Exercise 19, for example.)

So with each fuzzy equivalence relation R on a set U , there is associ-
ated a family of equivalence relations of U , namely the α-cuts Rα, one for
each α ∈ [0, 1]. Each of these equivalence relations induces a partition Pα

of U , so we also have the associated family {Pα : α ∈ [0, 1]} of partitions
of U . Since the α-cuts of a fuzzy set determine that fuzzy set, then in
particular this family of equivalence relations, or equivalently, this fam-
ily of partitions, determines the fuzzy equivalence relation R. The set of
equivalence relations E(U) on U is a complete lattice, and each Rα is an
element of E(U). This is discussed in Section 2.2. In this complete lattice,
we have for any subset I ⊆ [0, 1],

∧

α∈I

Rα =
⋂

α∈I

Rα

= {(u, v) : R(u, v) ≥ α for all α ∈ I}
= {(u, v) : R(u, v) ≥ ∨

α∈I

α }

= R∨
α∈I

α

Since the Rα form a chain, it is easy to see that
∨

α∈I Rα =
⋃

α∈I Rα.
Thus

∨

α∈I

Rα =
⋃

α∈I

Rα

= {(u, v) : R(u, v) ≥ α for some α ∈ I}
≥ R∧

α∈I
α

This last inequality is an equality if I is finite. (See Exercise 11.) Thus we
have the following theorem.

Theorem 7.2.3 Let R be a fuzzy equivalence relation on U . Then the
map

[0, 1]→ E(U) : α→ Rα

is a lattice antihomomorphism.
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The theorem just means that for any finite subset I ⊆ [0, 1],

R∧
α∈I α =

∨

α∈I

Rα

R∨
α∈I α =

∧

α∈I

Rα

So each fuzzy equivalence relation gives a family of partitions satisfying
these last two equalities. The order relation of the set of partitions of a set
is the one corresponding to the order relation on the associated equivalence
relation, which is inclusion. This means that one partition is greater than
another if its equivalence classes are unions of some equivalence classes of
the other. The condition in the following definition is the characterizing
condition for a family of partitions to be one corresponding to a fuzzy
equivalence relation.

Definition 7.2.4 A partition tree on a set U is a family {Pα : α ∈
[0, 1]} of partitions of U such that P0 = U , and for any subset I of [0, 1],
P∨

α∈I α =
∧

α∈I Pα.

One should note that when I = ∅, then
∨

α∈I α = 0 and
∧

α∈I Pα = U .

Theorem 7.2.5 Let S be the set of all fuzzy equivalence relations and P
be the set of all partition trees on U . For R ∈ S, let Pα be the partition
associated with the equivalence relation Rα. Then

S → P : R→ {Pα : α ∈ [0, 1]}
is a bijection.

Proof. First, we need to show that this is actually a map, that is, that
the family {Pα : α ∈ [0, 1]} is a partition tree. But that was noted in the
previous theorem. The map S → P is one-to-one since the α-cuts of a fuzzy
set determine that fuzzy set. We need only to show that every partition
tree is the image of some fuzzy equivalence relation. Let {Pα : α ∈ [0, 1]}
be a partition tree. Define R : U × U → [0, 1] by

R(u, v) =
∨
{α : u and v belong to the same member of Pα}

The rest of the details are left as an exercise.

Now we turn briefly to fuzzy partial orders. A relation on a set U is
a partial order if it is reflexive, transitive, and antisymmetric. A fuzzy
relation R on a set U is defined to be a fuzzy partial order if it is
reflexive, transitive, and antisymmetric. A basic fact, similar to the case
of fuzzy equivalence relations, is the following:
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Theorem 7.2.6 Let R be a fuzzy relation on a set U . Then R is a fuzzy
partial order on U if and only if for each α ∈ (0, 1], Rα is a partial order
on U .

Proof. Suppose R is a fuzzy partial order on U . We will prove tran-
sitivity. Suppose that (u, v) and (v, w) are in Rα. Then R(u, v) ≥ α and
R(v, w) ≥ α, whence R(u, v)∧ R(v, w) ≥ α and so (u,w) ∈ Rα. The rest
of the proof is left as an exercise.

So with each fuzzy partial order on a set U , there is associated a
family of partial orderings, namely the α-cuts of this relation. Those α-
cuts determine the fuzzy partial order, of course, just as α-cuts determine
any fuzzy set.

7.3 Operations on fuzzy relations

Let f : U → V and g : V → W . If these functions are thought of as
relations in U × V and V ×W , respectively, then the composition

g ◦ f = {(u,w) ∈ U ×W : g(f(u)) = w}
= {(u,w) ∈ U ×W : (u, v) ∈ f and (v, w) ∈ g for some v ∈ V }

This latter way of expressing this composition makes sense for arbitrary
relations R and S in U × V and V ×W , respectively. This is how com-
position of relations is defined: (u,w) ∈ R ◦ S if and only if there is
a v ∈ V with (u, v) ∈ R and (v, w) ∈ S. (Note that we reverse the or-
der from that ordinarily used for functions. Were R and S functions, we
would write S ◦R for R ◦ S.) With a view to generalizing to composition
of fuzzy relations, identifying relations with their indicator functions, we
may define R ◦ S by the equation

(R ◦ S)(u,w) =
∨

v∈V

(R(u, v) ∧ S(v, w))

Since [0, 1] is a complete lattice, this equation makes sense for fuzzy rela-
tions. Also in the fuzzy case, ∧ may be replaced by any binary operation
on [0, 1], and in particular by any t-norm. Here is the definition.

Definition 7.3.1 Let R and S be fuzzy relations in U × V and V ×W ,
respectively, and let △ be a t-norm. The composition R ◦ S of R and S
with respect to △ is the fuzzy relation on U×W with membership function

(R ◦ S) (u,w) =
∨
v
{R(u, v)△ S(v, w)}
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When x△ y = x∧y, R ◦S is referred to as a max-min composition.
When x△ y = xy, R ◦ S is a max-product composition. In the special
case where the sets U, V, and W are all finite, R and S can be represented
in the form of matrices with entries in [0, 1], and R ◦S can be obtained as
the matrix product of R and S provided that in this operation, addition is
replaced by max and multiplication by △. (See Exercise 3, for example.)

The composition of these relations is associative and distributes over
sup and inf of fuzzy relations. For example, for any t-norm and fuzzy
relations R, S, and T in U ×V , V ×W , and W ×X , respectively, we have

R ◦ (S ◦ T ) = (R ◦ S) ◦ T (7.1)

If Ri is a family of fuzzy relations on U × V , then

∨

i

(Ri ◦ S) =

(
∨

i

Ri

)
◦ S (7.2)

∧

i

(Ri ◦ S) =

(
∧

i

Ri

)
◦ S

and similarly in the other coordinate. These verifications are left as exer-
cises.

The direct image of a fuzzy subset D of U under R is the fuzzy subset
of V defined by

R(D)(v) =
∨
u
{R(u, v)△D(u)}

and the inverse image of a fuzzy subset E of V under R is the fuzzy
subset of U defined by

R−1(E)(u) =
∨
v
{R(u, v)△E(v)}

These concepts are extensions of corresponding concepts in the case of
ordinary relations. When R is an ordinary subset of U × V , and D is an
ordinary subset of U , then v ∈ R(D) if and only if there is a u ∈ D such
that (u, v) ∈ R. Thus R(D) is the projection onto V of R ∩ (D × V ).
Similarly, for R−1(E) consider the inverse relation R−1 on V × U .

In general, let R be a fuzzy relation in U1 × U2 × ... × Un. Let I =
{i1, i2, ..., ik} be a subset of {1, 2, ..., n} with i1 < i2 < ... < ik. The
projection of R onto Ui1 ×Ui2 × ...×Uik is defined to be the fuzzy subset
of Ui1 × Ui2 × ...× Uik given by

S(ui1 , ui2 , ..., uik) =
∨{R(u1, u2..., un) : uj with j /∈ I}
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For example, if R is a fuzzy relation on U × V ×W , then the projection
on U × V is given by S(u, v) =

∨
w∈W R(u, v, w).

Let S be a fuzzy relation in U × V . We define a fuzzy relation R in
U ×V ×W by R(u, v, w) = S(u, v). Considering the set W as its indicator
function, R = S ×W since

(S ×W ) (u, v, w) = min{S(u, v),W (w)} = S(u, v)

The fuzzy set S ×W is called the cylindrical extension of S. It is the
largest fuzzy relation on U ×V ×W having S as a projection. Indeed if T
is a fuzzy relation with T (u, v, w) > R(u, v, w), then the projection of T
onto U × V has value at (u, v) at least T (u, v, w) > R(u, v, w) = S (u, v).

7.4 Fuzzy partitions

An equivalence relation on a set gives a partition of that set, and vice
versa. The analogy for fuzzy equivalence relations suggests properties for
the notion of fuzzy partition. If R : U × U → [0, 1] is a fuzzy relation on
a set U , there is associated the family {Ru : U → [0, 1] : v → R(u, v)} of
fuzzy subsets of U . If R were an equivalence relation, then Ru would be
the equivalence class containing u, so this is an exact analog to the crisp
case. When R is a fuzzy equivalence relation, we have

1. Ru (u) = 1 for each u ∈ U .

2. Ru (v) = Rv (u) for all u, v ∈ U .

3. Ru (v) ≥ Rw (u) ∧Rw (v) for all u, v, w ∈ U .

This suggests that a fuzzy partition of U could be defined as a family P =
{Ru : u ∈ U} of fuzzy subsets of U satisfying these three properties. There
is a clear one-to-one correspondence between the set of all such families
and the set of all fuzzy equivalence relations on U . Note in particular that
property 1 says that each of these fuzzy sets attains the value 1 for some
u ∈ U . Call a fuzzy set A normal if A(x) = 1 for some x.

There is a different notion of a finite fuzzy partition that is of interest.
A finite set {A

1
, A2, ..., An} of nonempty subsets of a set U is a partition

of U if

P1. A1 ∪ A2 ∪ · · · ∪An = U and

P2. Ai ∩ Aj = ∅ if i 6= j.
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This is equivalent to the condition
∑n

i=1 χAi
(x) = 1 for all x ∈ U . In ex-

tending the notion of partition to fuzzy sets, we cannot simply use proper-
ties P1 and P2 since max{Ai(x) : i = 1, ..., n} = 1 and min{Ai(x), Aj(x)} =
0 for i 6= j imply that Ai(x) = 0 or 1 and that the Ai are crisp sets. The
condition of normality together with

∑n
i=1 Ai(x) = 1 does lead to a useful

definition of finite partition for fuzzy sets.

Definition 7.4.1 A finite fuzzy partition of a set U is a finite set of
normal fuzzy subsets {A

1
, A2, ..., An} of U such that

∑n
i=1 Ai(x) = 1 for

all x ∈ U .

This definition captures the meaning of properties P1 and P2 above in
the following sense. Each x has a nonzero membership value for some Ai.
If Ai(x) = 1 for some i, then it is 0 for all others. In fuzzy partitions, the
degrees of membership of individuals in the various classes are measures
of the intrinsic heterogeneity of individuals.

The need to consider fuzzy partitions is manifested in the design phase
of fuzzy control, discussed in Chapter 13. Linguistic rules are of the form
“If x1 is a1, ..., xn is an, then y is b”, where the ai are fuzzy subsets of the
input spaces Xi, respectively, and b is a fuzzy subset of the output space
Y. It is necessary to consider on each space involved an appropriate fuzzy
partition of it, so that every input value can be classified according to
the predetermined fuzzy partition for triggering corresponding rules. For
example, for an interval of real numbers, a fuzzy partition could be “neg-
ative big”, “negative medium”, “negative small”, “approximately zero”,
“positive small”, “positive medium”, and “positive big”.

7.5 Fuzzy relations as Chu spaces

As mentioned in the previous section, fuzzy partitions of the input and
output spaces are basic designs of fuzzy controllers. A fuzzy partition of
a space X is used to extract information from elements of X, say from
input data when X is the input space of a fuzzy controller. Specifically,
let A ={A1, A2, ... An} be a fuzzy partition of X. Then elements of X
are classified according to A via the evaluation relation r : X× A → [0, 1]
given by r(x,Ai) = Ai(x). Thus the triple (X, r,A) is a classification
scheme. That is, X is the class of things to be classified, A is a collection
of properties used to classify elements of X, and r specifies the degree to
which an element of X satisfies a property in A. To be more general, the
unit interval [0, 1] can be replaced by some set K, for example a com-
plete lattice. These general classification schemes are also known as Chu
spaces. See, for example, Barr [15]. Chu spaces offer a general framework
for modeling phenomena such as concurrency in computer science, and
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information flow in distributed systems. We will elaborate on this concept
with an example related to fuzzy logic.

A K-Chu space for a set K is a triple (X, r,A), where X and A
are sets and r : X ×A→ K. Let C(K) denote the collection of all K-Chu
spaces. These are the objects of a category, with a morphism from (X, r,A)
to (Y, s, B) a pair (f, g) of maps, where f : X → Y and g : B → A that
satisfy the adjointness condition

r(x, g(b)) = s(f(x), b)

for x ∈ X and b ∈ B. That is, the following diagram commutes.

X ×A K✲
r

X ×B Y ×B✲f×1

❄

1×g

❄

s

Composition of morphisms is defined as follows. If (f, g) and (u, v)
are morphisms from (X, r,A) to (Y, s, B) and from (Y, s, B) to (Z, t, C),
respectively, then the pair (u ◦ f, g ◦ v) is a morphism from (X, r,A) to
(Z, t, C). Indeed,

r(x, g ◦ v(c)) = r(x, g(v(c))

= s(f(x), v(c)

= t(u(f(x)), c)

= t(u ◦ f(x), c)

So composition of morphisms is given by (f, g) ◦ (u, v) = (u ◦ f, g ◦ v).
Further, this composition of morphisms is associative, and the set of mor-
phisms from any object to itself has an identity. With objects K-Chu
spaces and morphisms as just defined, this yields a Chu category, de-
noted Chu(K). This situation defines a category in general: a class of
objects O and for any two objects A and B in O, a set Mor(A,B), called
the morphisms from A to B. There is a map Mor(A,B)× Mor(B,C) →
Mor(A,C), composition of morphisms, and this map is required to be as-
sociative, and each Mor(A,A) must have an identity. The generic example
is the class of sets with morphisms being maps from one set to another.

Here is an example of a Chu category. Let K = [0, 1], and the objects
be (X, r,A) where X is a set, A = [0, 1]X , the set of all maps from X into
[0, 1], and r(x, a) = a(x), the evaluation map. Note that the elements of
A are fuzzy subsets of X. We denote this category by FUZZ.
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Let (f, g) be a morphism from (X, r,A) to (Y, s, B). Then we have

r(x, g(b)) = g(b)(x)

= s(f(x), b)

= b(f(x))

Thus it suffices to specify f : X → Y since then g : B → A must be
g(b) = b ◦ f. This correspondence between sets and “evaluation fuzzy
spaces” manifests itself through a functor F from the category of sets to
FUZZ. For a set X, let F (X) = (X, r, [0, 1]X) ∈ FUZZ. If f : X →
Y, let F (f) = (f, ϕ(f)) where ϕ(f)(b) = b ◦ f. It is easy to check that
F (f) is a morphism (X, r, [0, 1]X) → (Y, s, [0, 1]Y ) in FUZZ, and that
F (g ◦ f) = F (g) ◦ F (f). This says essentially that FUZZ is equivalent
to the category of sets, the category whose objects are sets and whose
morphisms are ordinary maps.

This example can be varied in many ways. For example, take the Chu
spaces to be triples (X, r, [0, 1]X) whereX is a topological space and [0, 1]X

is the set of all continuous maps from X into [0, 1] with its usual topology.
Morphisms are defined in the obvious way.

It seems that Chu spaces offer a general framework in which to describe
various aspects of fuzzy set theory and its applications. For example, the
relational approach to fuzzy control as described in Section 13.2 can be put
into this framework. If X and Y are input and output spaces, respectively,
of a control system, then a fuzzy system can be viewed as a map from
[0, 1]X to [0, 1]Y . Such a map can be defined from a fuzzy relation r on
X × Y by

r(a)(y) =
∨

x∈X

(r(x, y) ∧ a(x))

where a ∈ [0, 1]X , x ∈ X and y ∈ Y.
Morphisms between Chu spaces are novel for uncertainty analysis since

they can be used to model interactions among concepts once these concepts
are represented as Chu objects in a category.

7.6 Approximate reasoning

Approximate reasoning refers to processes by which imprecise conclusions
are inferred from imprecise premises. When imprecision is fuzzy in nature,
the term “fuzzy reasoning” is also used. We restrict ourselves to the for-
mulation of some deductive procedures such as modus ponens and modus
tollens. Some further general aspects of approximate reasoning will be
discussed briefly.
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Deduction processes are used in everyday human reasoning as well as
in mathematics and other sciences. The most common formal deduction
process has the following structural pattern: if we know that a implies b
and we know a, then we conclude b. This pattern of reasoning is called
modus ponens. In propositional calculus, as discussed in Chapter 4, if a
and b are formulas and a⇒ b is true and a is true, then b is true. Modus
ponens is written as follows:

a ⇒ b
a
b

This argument is valid if for any assignment of truth values to a and b
that make both a ⇒ b and a true, then b is true. Now a ⇒ b is material
implication, which is a′ ∪ b and its truth table is

a b a ⇒ b

T T T
T F F
F T T
F F T

From this we do see that whenever a⇒ b and a are true then so is b.
We wish to formulate the modus ponens pattern in a way suitable for

generalization to the fuzzy case. The strategy is standard: identify sets
with their indicator functions and generalize to fuzzy sets.

Consider p = “x ∈ a”, q = “y ∈ b”, where a and b are subsets of U
and V , respectively. We write a (x) and b(x) for their indicator functions.
Material implication p⇒ q is the relation R = (a× b)∪ (a′×V ) ⊆ U ×V .
Since b is the image of the projection of a×b into V , then b(y) =

∨
x∈U (a×

b)(x, y). But
a× b = [(a× b) ∪ (a′ × V )] ∩ (a× V )

so that

(a× V )(x, y) = {a(x) ∧ V (y)}
= {a(x) ∧ 1}
= a(x)

we have

b(y) =
∨

x

{R(x, y) ∧ (a× V )(x, y)}

=
∨

x

{R(x, y) ∧ a(x)}
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Thus, if we view a as a unary relation on U , then b is the max-min com-
position b = R ◦ a of R with a. We also write b = R (a).

Consider next a modified version of the modus ponens. Suppose p⇒ q,
but instead of having p = “x ∈ a”, we have p∗ = “x ∈ a∗”, where a∗ is
a subset of some set X that might be different from a. The question is
“what is the conclusion b∗” in

p⇒ q
p∗

?

By analogy, we take

R(a∗)(y) =
∨

x

{R(x, y) ∧ a∗(x)}

for b∗. It can be checked that

R(a∗) =

{
b if a∗ ⊆ a
V otherwise

From this, we have R(a∗) = b when a∗ = a.
This situation is similar to another form of deduction known as modus

tollens. The structural pattern of this rule of deduction is

p⇒ q
q′

p′

That is, if p⇒ q is true and q is false, then p is false. In terms of sets,
let for p = “x ∈ a” and q = “y ∈ b”. Then (x, y) ∈ R = (a× b) ∪ (a′ × V )
and y /∈ b imply that (x, y) ∈ (a′ × V ), and hence x ∈ a′. Thus p is false.

The conclusion a′ from{
“If x ∈ a then y ∈ b′′
“y ∈ b′”

is obtained as follows. The projection in V of

[(a× b) ∪ (a′ × V )] ∩ (V × b′) = R× (V × b′)
is a′, so that

a′(x) =
∨

y∈V

{R(x, y) ∨ b′(y)}

For convenience, we denote this expression as R−1(b′) so that by definition

R−1(b′)(x) =
∨

y∈V

{R(x, y) ∨ b′(y)}

Now if the fact turns out to be “y ∈ b∗” with b∗ 6= b′ then the new
conclusion is a∗ = R−1(b∗)
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7.7 Approximate reasoning in

expert systems

We saw above that it is possible to use control experts’ knowledge to arrive
at control laws. This is a special case of a much broader and ambitious
perspective in this era of artificial intelligence—construction of machines
capable of exhibiting human behavior in reasoning. It is well known that
humans or experts in specific domains use very general forms of knowl-
edge and different schemes of reasoning to solve problems. The attempt to
mimic experts’ behavior leads to expert systems. From a practical point of
view, by an expert system we simply mean a computer system that can
act like a human expert in some domain to reach “intelligent” decisions.
Interested readers might consult [74] for a tutorial introduction to the field
of expert systems. However, no prior knowledge about expert systems is
needed to read this section and the next, since we focus our discussion
only on the motivation for using fuzzy logic in knowledge representation
and reasoning in a general setting.

Solving problems in human activities such as perception, decision mak-
ing, language understanding, and so on requires knowledge and reasoning.
These two main ingredients are obviously related, as we reason from our
knowledge to reach conclusions. However, knowledge is the first ingredi-
ent to have, and we first address the problem of representing knowledge
obtained, and propose an associated reasoning procedure capturing, to a
certain extent, the way humans reason. When knowledge is expressed by
propositions that can be either true or false, classical binary logic is ap-
propriate. In this case, the associated reasoning procedure will be based
upon inference rules such as modus ponens and modus tollens. When this
knowledge is uncertain in the sense that truth values of propositions are
not known, other knowledge representation schemes should be called upon.
For example, in the context of rule-based systems where knowledge is or-
ganized as rules of the form “If ... then ...” and propositions, both rules
and facts might be uncertain. This is the case, for example, in the rule “If
the patient coughs, then bronchitis is the cause” and the fact “The patient
coughs”. In this case, knowledge can be represented in the framework of
probability theory, and the associated reasoning is termed probabilistic
reasoning in which the rules of the calculus of probabilities are applied to
derive “confidence” in possible decisions. More generally, when the concept
of human belief is emphasized, the associated reasoning can be formulated
using the theory of evidence.

Observe that in typical decision problems, such as in a medical diagno-
sis problem, domain knowledge contains uncertainties coming from various
sources. To name a few, uncertain knowledge is due to imprecision, in-
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complete information, ambiguity, vagueness or fuzziness, and randomness.
Thus reasoning under uncertainty is the main modeling task for building
expert systems. Also, general knowledge is qualitative in nature, that is,
is expressed in natural language in which concepts, facts, and rules are
intrinsically fuzzy. For example, “high temperatures tend to produce high
pressure” is such a general bit of knowledge. That this type of qualitative,
imprecise information is useful in everyday decision processes. And humans
do reason with this common type of knowledge. Of course, from imprecise
knowledge, we can expect only imprecise conclusions. The reasoning based
on this principle is called approximate reasoning. In the next section we
will consider the case where domain knowledge contains fuzzy concepts in
a natural language, so that an appropriate candidate for modeling is the
theory of fuzzy logic.

The context in which a theory of approximate reasoning seems indis-
pensable is manifested by domain knowledge containing uncertainty and
imprecision. This is the case when linguistic descriptions of knowledge
contain

1. Fuzzy predicates such as small, tall, high, young, etc.

2. Predicate quantifiers such as most, several, many, few, etc.

3. Predicate modifiers such as very, more or less, extremely, etc.

4. Fuzzy relations such as approximately equal, much greater than, etc.

5. Fuzzy truth values such as quite true, very true, mostly false, etc.

6. Fuzzy probabilities such as likely, unlikely, etc.

7. Fuzzy possibilities such as impossible, almost impossible, etc.

As first-order logical systems extend propositional calculus to include
the quantifiers ∀ and ∃, and predicates, fuzzy logic also deals with vague
predicates, for example fuzzy propositions of the form “John is young”,
where the vague predicate “young” is modeled as a fuzzy subset of an
appropriate space, as well as nonextreme quantifiers such as “most”, “few”,
and linguistic hedges such as “much”, “highly”, “very”, and “more or
less”. Also, fuzzy relations are modeled by fuzzy sets and are parts of the
language of fuzzy logic.

As a generalization of exact predicates, a fuzzy predicate, such as
“young” can be identified with the fuzzy subset “young” on a set S of
people. Similarly, a binary fuzzy predicate such as “looks like” can be
modeled as a fuzzy subset of S2, that is, as a fuzzy relation on S. Thus,
fuzzy predicates are fuzzy relations.
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The quantifiers like “most”, “few”, and “some” are related to “fuzzy
proportions”. For example, consider “most birds fly”. This fuzzy propo-
sition is of the form “most a’s are b’s with a and b being the crisp sets
“birds” and “flying animals”, respectively. The common sense is that al-
though a is not quite contained in b, it is almost so. So, formally, “most”
is a measure of the degree to which a is contained in b. The proportion of
elements of a that are in b is #(a ∩ b)/#(a), say in the finite case, where
# denotes cardinality. Thus, when a ⊆ b, we get “all” or 100%. When we
do not know exactly #(a∩ b), a subjective estimate of #(a∩ b)/#(a) can
be numerical. If the estimate is, for example, “most”, then, as we already
mentioned, we have a choice between specifying the meaning of the fuzzy
quantifier “most” by a statistical survey or by fuzzy sets of the unit inter-
val [0, 1]. More generally, when a and b are fuzzy concepts such as “young
student” and “people without a job”, and the proposition is “most young
students do not have a job”, we are talking about “inclusion of one fuzzy
set in another” with degrees. Of course, if µa ≤ µb then we get the quanti-
fier “for all”. As far as cardinality and propositions are concerned, one can
extend these to the fuzzy case, using membership functions. For example,
let S be a finite set. For a fuzzy subset a of S, one can generalize the
concept of cardinality of crisp sets as follows:

#(a) =
∑

x∈S

µA(x)

#(b/a) =
#(a ∩ b)

#(a)

=

∑
µa(x) ∧∑µb(x)∑

x∈S µa(x)

Then “most a are b” is translated into “#(b/a) is most”. Perhaps the
notion of degrees of inclusion of a fuzzy set a in a fuzzy set b provides
a clear semantics for fuzzy quantifiers. “Fuzzy inclusion” should not be
confused with inclusion of fuzzy sets.

We emphasize that the modeling of the concepts above by fuzzy sets
reflects a sort of gradual quantification, closely related to the meaning of
the linguistic labels, in the spirit that in natural language, meaning is a
matter of degree. Fuzzy logic, as a logic for vague propositions, is quite
different from probability logic.

Below are some examples of fuzzy modeling of quantifiers and hedges.

m(x) =





0 if x < 0
4x2 if 0 ≤ x ≤ 0.5
1 if 0.5 < x

= “most”
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A fuzzy modeling of “most”

F (x) =





1 if x < 0
1− 12x2 + 16x3 if 0 ≤ x ≤ 0.5
0 if 0.5 < x

= “few”

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

A modeling of “few”

t(x) =






0 if x < 5.8
(1/0.7)x− 5.8/0.7 if 5.8 ≤ x ≤ 6.5
1 if 6.5 < x

=“tall”
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5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0
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A fuzzy modeling of “tall”

From a membership functions t(x) for “tall”, a function commonly

used to model “very tall” is (t(x))
2
.

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0
0.0

0.2

0.4

0.6

0.8

1.0

A fuzzy modeling of “very tall”

We describe now the problem of knowledge representation on which
inference rules are based. Consider the simplest form, called the canonical
form, of a fuzzy proposition, such as P = “John is tall”. A meaning repre-
sentation of P is obtained by translating P into a mathematical equation.
The implicit variable in P is X = height of John. This variable is in fact
a linguistic variable since its values could be tall, very tall, short, and so
on. The proposition P specifies a value of X , namely “tall”. Under the
“constraint” A = “tall”, X is viewed as a numerical variable with values
in a set S = [0, 10], say, and A acts as an elastic restriction on possible
values of X . Now, suppose we model A by a fuzzy subset of U by specify-
ing a membership function, still denoted by A. Then for each x ∈ U , the
assigned value X = x is compatible with P to the degree A(x). In other
words, the possibility that X = x is A (x) . Thus P induces a possibility

www.EBooksWorld.ir



7.7. APPROXIMATE REASONING IN EXPERT SYSTEMS 233

distribution on the variable X , given by

ΠX : S → [0, 1] : x→ A(x)

The translation of “X is A” into this possibility assignment equation is
symbolized by “X is A” → ΠX = A.

In the example above, the fuzzy predicate “tall” is somewhat simple, so
that the implicit variable X is clearly related only to height. In more gen-
eral cases, several implicit variables can be attributed to a fuzzy predicate.
For example, when the linguistic variable “appearance” takes on the value
“beautiful”, several factors are responsible for the concept “beautiful”, so
that X is multidimensional.

Next, consider P = “X is mA” where m is a modifier such as “not”,
“very”, or “more or less”. Then P is translated into ΠX = A+, where A+

is a fuzzy modification of A induced by m. For example, if m = “not”,
then A+(x) = 1−A(x), if m = “very”, then A+(x) = [A(x)]2, and if m =
“more or less”, then A+(x) =

√
A(x).

Consider next compound propositions such as P = “X is A” and “Y
is B” where A and B are fuzzy subsets of X and Y, respectively. P is
translated into

Π(X,Y ) = A×B
That is, the joint possibility distribution of (X,Y ) is identified with the
membership function of the Cartesian product of fuzzy sets by

Π(X,Y )(x, y) = A(x)
∧
B(y)

When the logical connective is “or” instead of “and”, the possibility as-
signment equation becomes

Π(X,Y )(x, y) = A(x)
∨
B(y)

A conditional proposition of the form “If X is A then Y is B” induces a
conditional possibility distribution Π(Y |X) which is identified with a fuzzy
implication A⇒ B given by

Π(Y |X)(y|x) = A(x)⇒ B(y)

where J is a fuzzy implication operator. Since there are various interpre-
tations of fuzzy conditionals, in a given problem some choice of J should
be made.

As an example of propositions involving fuzzy relations, consider P =
“X and Y are approximately equal”. When we specify the binary fuzzy
relation R = “approximately equal” by a membership function, the propo-
sition P induces a joint possibility distribution for (X,Y ) as

Π(X,Y )(x, y) = R(x, y)

We turn now to quantified propositions.
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7.7.1 Fuzzy syllogisms

Consider P = “QA’s are B’s”. “Most tall men are fat” is an example.
Q stands for a fuzzy quantifier such as “most”. The concept of fuzzy
quantifier is related to that of cardinality of fuzzy sets. Specifically, Q is
a fuzzy characterization of the relative cardinality of B in A. When A
and B are finite crisp sets, then the relative cardinality of B in A is the
proportion of elements ofB that are in A, that is, the ratio #(A∩B)/#(B).
In this case, the associated implicit variable is X = #(A ∩ B)/#(A), so
that “QA’s are B’s” is translated into ΠX = Q, where Q is specified by
its membership function. For example, the membership function for Q =
“most” might look like

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

The notion of cardinality can be extended to fuzzy sets by defining
#(A) =

∑
x∈U A(x) where A is a fuzzy subset of a finite set U . Thus the

relative cardinality of the fuzzy set B to the fuzzy set A can be taken
as the ratio #(A ∩ B)/#(A) where ∩ is modeled by a t-norm such as
T (x, y) = x ∧ y. So, in general, “QA’s are B’s” is translated into

Π#(A∩B)/#(A)(x) = Q(x)

7.7.2 Truth qualification

Consider P =“X is A is τ”, for example “John is young is very true”,
where τ is a linguistic truth value such as “very true”, and is modeled as a
fuzzy subset of [0, 1]. This type of proposition is translated into ΠX(x) =
τ (A(x)).

7.7.3 Probability qualification

Consider P =“Tony is young is very likely”, which is of the form “X is
A is Λ” where Λ is a linguistic or fuzzy probability value that is modeled
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as a fuzzy subset of [0, 1]. Note that, for simplicity, we denote the implicit
variable by X , which is in fact the implied attribute of Tony, namely
X = age of Tony. The concept “young” is modeled as a fuzzy subset of
X = [0, 100]. P can be rephrased as “The probability of (X is A) is Λ”.
Now A is a fuzzy event, that is, a fuzzy set whose membership function is
measurable, so that within the basic framework of probability theory with
X considered as a random variable with density f , we have

P (A) =

∫

X

A(x)f(x)dx

This probability of the fuzzy event plays the role of the variable of interest
and has the possibility distribution given by

ΠP (A)(u) = Λ(u)

for u ∈ [0, 1].

7.7.4 Possibility qualification

Consider P = “X is A is possible”. This is translated into ΠX(x) =
[A(x), 1]. Note that the possibility distribution of X is interval-valued.

From the knowledge representation above, reasoning with possibility
distributions can be carried through using various rules of inference as in
Section 7.6.

7.8 A simple form of generalized

modus ponens

In everyday life, we usually employ the following type of reasoning:

• It is known that “If a tomato is red, then it is ripe”. Then if we see
a red tomato, we will classify it as ripe.

• From “If x is large, then y is small” and “x is large” we deduce that
“y is small”.

The only difference from classical modus ponens is that the predicates
involved are linguistic labels in natural language, and thus are modeled as
fuzzy subsets of the appropriate sets. From

p = “x is a”
q = “y is b”

where a and b are fuzzy subsets of U and V , and x and y are variables
taking values in U and V , respectively, we have the schema
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p⇒ q : “if x is a then y is b”
p : “x is a”
q : “y is b”

Now p ⇒ q is a fuzzy conditional R, and can be modeled by a fuzzy
implication operator ⇒. R is a fuzzy subset of U × V with membership
function

R(x, y) = a(x)⇒ b(y)

Note that in the crisp case,

⇒ : {0, 1} × {0, 1} → {0, 1}
u⇒ v = (u ∧ v) ∨ (1− u)

b(y) =
∨

x∈U

{R(x, y) ∧ a(x)}

Now in the fuzzy case, we can look at

R(a)(y) =
∨

x∈U

[(a(x)⇒ b(y))△ a(x)]

where △ is some t-norm. The appearance of the t-norm △ is due to the
fact that p ⇒ q and p being fuzzy propositions, we need to model the
connective “and” by some t-norm. In the classical case, we have R(a) = b,
but this is not true in the fuzzy case for arbitrary t-norms and arbitrary
fuzzy implications ⇒. But there are choices where R(a) = b does hold.
Here are a couple of examples.

Example 7.8.1 For

u△ v = uv

(u⇒ v) =

{
1 if u = 0
1 ∧ v/u if u 6= 0

we have
(a(x)⇒ b(y))a(x) = a(x) ∧ b(y)

Thus
∨

x

(a(x) ⇒ b(y))a(x) =
∨

x

{a(x) ∧ b(y)}

= b(y)

Example 7.8.2 For

u△ v = (u+ v − 1) ∨ 0

(u⇒ v) = 1 ∧ (1− u+ v)
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we have

(a(x)⇒ b(y))△ a(x) =

{
a(x) if a(x) ≤ b(y)
b(y) if a(x) > b(y)

and thus ∨

x

{(a(x)⇒ b(y))△ a(x)} = b(y)

7.9 The compositional rule of inference

Consider the rule “If a tomato is red then it is ripe”, and the fact “The
tomato is almost red”. What can be said about the status of this tomato?
This is a fairly general pattern of modus ponens. The so-called composi-
tional rule of inference that we are going to formulate mathematically
in this section is a simple proposed solution to this type of question. It con-
stitutes an inference rule in approximate reasoning in which it is possible
to draw vague conclusions from vague premises.

The mathematical pattern of the generalized modus ponens is this. Let
X and Y be variables taking values in U and V , respectively. Let A, A∗,
and B be fuzzy subsets of appropriate spaces. From “If X is A then Y is
B”, and “X is A∗”, find a reasonable fuzzy subset B∗ of U so that “Y
is B∗” can be taken as a logical conclusion. We can view the conditional
statement above as a binary fuzzy relation R, that is, a fuzzy subset of
U × V , and A∗ as a unary fuzzy relation on U . As such, the generalized
modus ponens can be examined within a general framework of relations.
First, if f : U → V is a function, then the value b = f(a) may be viewed
as the image of the projection of {a} into V , that is, as the (one-element)
set {b ∈ V : (a, b) ∈ f}. When f is replaced by a relation R, and A is a
subset of U , then the image of the projection of A into V is the set

B = {v ∈ V : (u, v) ∈ R for some u ∈ A}

In terms of indicator functions,

B(v) =
∨

x∈U

{(A× V ) (u, v) ∧R(u, v)}

=
∨

x∈U

{A (u) ∧R(u, v)}

This can be written as B = R ◦ A. Note that the notation A ◦ R is also
used to retain the analogy with matrix operations in the finite case, where
addition and multiplication are replaced by maximum and minimum.

When R and A∗ are fuzzy subsets of U × V and U , respectively, the
same composition R ◦ A∗ yields a fuzzy subset B of V . When applying
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this procedure to the generalized modus ponens schema

If X is A then Y is B

X is A∗

we get the conclusion B∗ = R ◦A∗, where R is a fuzzy relation on U × V
representing the conditional “If X is A then Y is B”. Thus R(u, v) =
(A(u) ⇒ B(v)) where ⇒ is a fuzzy implication operator. More generally,
the special t-norm ∧ can be replaced by an arbitrary t-norm △ in the
composition operation among relations, leading to

B∗(v) =
∨

u∈U

{(A(u)⇒ B(v))△A∗(u)}

Note that if we insist on the coincidence with the classical pattern of
modus ponens, that is, when A∗ = A, we get B∗ = B, then appropriate
choices of△ and⇒ are required. This choice problem can be broken down
into two pieces:

• For each fixed fuzzy implication operator ⇒, determine those t-
norms △ such that B = R ◦A.

• For each fixed t-norm △, determine those ⇒ so that B = R ◦A.

These problems belong to the area of functional equations and will not
be discussed further.

7.10 Exercises

1. ⋆Let R and S be two ∧-fuzzy equivalence relations on U. Show
that W : U × U → [0, 1] : (u, v) → R(u, v) ∧ S(u, v} is a ∧-fuzzy
equivalence relation on U.

2. Let
U = {u1, u2, . . . , un}
V = {v1, v2, . . . , vm}
W = {w1, w2, . . . , wk}

Let R and S denote relations in U × V and V ×W , respectively,
in the form of n ×m and m × k matrices, respectively. Verify that
R ◦ S is obtained by the product of the two matrices R and S when
addition is replaced by ∨ and multiplication is replaced by ∧.
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3. Let

R =




0.1 0.0 0.6

0.2 0.3 1

0 0.4 0.5


 and S =




0.2 0.5 0

0.9 1 0.3

1 0.5 0.4




Find the max-min, and max-product composition of R and S.

4. ⋆Let R be a fuzzy relation in U × U . Show that R ◦ R ≤ R if and
only if R is transitive.

5. ⋆Let R be a fuzzy relation in U × U . For α ∈ (0, 1], let

Rα = {(u, v) : R(u, v) ≥ α}

That is, Rα is the α-cut of the fuzzy set R. Show that

(a) R is symmetric if and only if the relations Rα are symmetric
for all α ∈ (0, 1];

(b) R is min transitive if and only if Rα are transitive for all α ∈
(0, 1].

6. ⋆Suppose that R and S are fuzzy equivalence relations on a set U.
Is R ◦ S a fuzzy equivalence relation?

7. Show that if R and S are fuzzy equivalence relations on a set U ,
then so is R ∧ S. What about R ∨ S?

8. ⋆Prove the other half of Theorem 7.2.2.

9. Complete the proof of Theorem 7.2.5.

10. ⋆Complete the proof of Theorem 7.2.6.

11. Let {Pα : α ∈ [0, 1]} be a partition tree. Show that for any subset I
of [0, 1], P∧

α∈I α =
∨

α∈I Pα.

12. Verify Equations (7.1) and (7.2).

13. Let d be a metric on the set U . That is, d : U×U → R+ and satisfies

(a) d(x, y) = 0 if and only if x = y

(b) d(x, y) = d(y, x)

(c) d(x, y) ≤ d(x, z) + d(z, y)
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Suppose that d(x, y) ≤ 1 for all x, y ∈ U . Define a fuzzy binary
relation R on U by R (x, y) = 1− d(x, y). Show that R is a △-fuzzy
equivalence relation on U , where △ is the t-norm

x△ y = (x+ y − 1) ∨ 0

14. ⋆Let ◦ denote max-△ composition of binary fuzzy relations on U ,
where △ is any t-norm. Let R be a fuzzy binary relation on U which
is △-transitive and reflexive. Show that R ◦R = R.

15. Let R be an equivalence relation on a set X, and let △ be a contin-
uous t-norm on X. Verify that R is a △-fuzzy equivalence relation
on X.

16. Let △ be a continuous t-norm and let R : [0, 1] × [0, 1] → [0, 1] be
defined by

R (x, y) = sup{z ∈ [0, 1] : z△ (x ∨ y) ≤ x ∧ y}

Show that R is a △-fuzzy equivalence on [0, 1].

17. Let R be a fuzzy subset of [a, b] × [a, b] with membership function
R(x, y) = e−|x−y|. Show that R is a product-fuzzy equivalence rela-
tion on [a, b]. That is, show that

(a) R(x, x) = 1

(b) R(x, y) = R(y, x)

(c) R(x, y) ≥ R(x, z)R(z, y)

18. Show that the α-cuts for R in the previous exercise do not all form
equivalence relations.

19. Construct an example of a △-fuzzy equivalence relation R on a finite
set U so that for some α, Rα is not an equivalence relation on U .

20. Let R be a fuzzy equivalence relation on U . Define d : U×U → [0, 1]
by d(x, y) = 1 − R(x, y). Show that d is an ultrametric. That is,
show that

(a) d(x, y) ≥ 0

(b) d(x, y) = d(y, x)

(c) d(x, y) ≤ d(x, z) ∨ d(z, y)
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21. Let {A1, A2, ..., An} be a fuzzy partition of a set U . Verify that if
the Ai are crisp, then they are pairwise disjoint and have union U.
Does a fuzzy set A together with its fuzzy complement A′ form a
fuzzy partition? Hint: think about normal fuzzy sets.

22. Are the following fuzzy partitions of [0, 10]? Draw pictures of them.

(a) A1(x) = x/10, A2(x) = 1− x/10

(b) A1(x) =

{
1− x/5 if x < 5
x/5− 1 if 5 ≤ x

A2(x) =

{
x/5 if x < 5

2− x/5 if 5 ≤ x
(c) A1(x) = sin2 x, A2(x) = cos2 x

(d) A1(x) = x/30, A2(x) = x2/100, A3(x) = 1− x/10

23. ⋆In the definition of morphisms of Chu categories, prove that com-
position of morphisms is indeed associative, and, that for each object,
the set of morphisms of that object to itself has an identity under
this composition.

24. In the definition of the functor F from the category of sets to the
category FUZZ, verify that F (f) is a morphism and that F (f ◦g) =
F (f) ◦ F (g).

25. Show that b 6= R(a) for

u△ v = u ∧ b, (u⇒ v) = (u ∧ v) ∨ (1− v)

26. Is b = R(a) in the following cases?

(i) u△ v = u+ v − 1 ∨ 0

u⇒ v =

{
1 if u ≤ v
0 if u > v

(ii) u△ v = u+ v − 1 ∨ 0
u⇒ v = 1− u+ uv

(iii) u△ v = u+ v − 1 ∨ 0
u⇒ v = 1− u ∨ v

27. Verify that generalized modus ponens and generalized modus tollens
do generalize their classical counterparts.

28. Let u⇒ v = 1− u ∧ v. Find an operator △ such that b = R(a).
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29. Consider the following classical modus tollens:

Rule : If X ∈ A then Y ∈ B
Fact : Y ∈ B∗

Conclusion : X ∈ A∗

Verify that

A∗ =

{
A′ if B∗ ⊆ B′

U otherwise

where A,A∗ ⊆ U and B,B∗ ⊆ V .
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Chapter 8

UNIVERSAL

APPROXIMATION

This chapter is devoted to an example of system modeling in which fuzzy
logic is put into effective use. We consider a system as an input-output
map: y = f(x). We assume that the internal structure of the system is
unknown, but qualitative knowledge about its behavior is available, say,
under the form of a collection of “If...then...” rules. The problem is to
construct a mathematical description of the system, based upon available
information, so that it will represent faithfully the “true” system. The con-
struction process consists of translating linguistic rules into mathematical
expressions using fuzzy sets and fuzzy logic, and defuzzifying the combined
fuzzy output. The systems so obtained are shown to be within a class of
designs capable of approximating the “true” input-output relation to any
degree of accuracy.

8.1 Fuzzy rule bases

A system in which aspects of fuzziness are involved is called a fuzzy system.
Computer programs that emulate the decision making of human experts,
where the knowledge available and the reasoning processes involve fuzzy
concepts in a natural language, are fuzzy systems. Similarly, dynamical
systems that are controlled by fuzzy controllers are fuzzy systems. A fuzzy
controller itself is a fuzzy system since the control law is built using rules
involving fuzzy concepts.

Consider a system where an input x = (x1, . . . , xn) ∈ Rn will produce
an output y ∈ R. Suppose the relationship y = f(x) is not known, but
the behavior of the output with respect to input can be described as a
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collection of linguistic rules of the form

Ri : “If x1 is A1i, . . . , xn is Ani then y is Bi”, i = 1, 2, . . . , k

where the A’s and B’s are fuzzy sets. When an input (x1, . . . , xn) is ob-
served, one needs to find an appropriate value for the output y.

In some areas of applications, for example fuzzy control, the interpre-
tation of “If...then...” in the fuzzy rule base is slightly different from fuzzy
implication of the previous chapter. Perhaps “If x is A then y is B” really
means “If x is A then y is B, ELSE, if x is not A then y is undefined ”.
This statement can be represented by the fuzzy relation

(A×B) ∪ (A′ ×∅)

where ∅ denotes “undefined”, that is, ∅(y) = 0 for all y. The membership
of this fuzzy relation is

(A△ B)▽ (N(A)△∅) = (A△B)▽ (N(A)△ 0)

= (A△B)▽ 0

= A△B

where (A△B) (x, y) = A(x)△B(y), and similarly for the t-conorms. Thus
in

Ri : “If x1 is A1i, . . . , xn is Ani then y is Bi”

each value y has a “rule weight” of

(
△1≤j≤nAji(xi)

)
△ Bi(y)

From this interpretation, given a rule base of k rules, the property
C, “appropriate values of output”, is represented by a fuzzy subset of R,
depending on input (x1, . . . , xn), which can be written informally as

C(y) = “If x1 is A11, . . ., xn is An1 then y is B1”, or...

... or “If x1 is A1k, . . ., xn is Ank then y is Bk”.

Formally, with t-norm △ and t-conorm ▽, we have

C(y) = ▽1≤i≤k[A1i(x1)△A2i(x2)△
· · · △Ani(xn)△Bi(y); i = 1, 2, . . . , k]

For example, if a△ b = a ∧ b and a▽ b = a ∨ b, then

C(y) =
∨

1≤i≤k

{A1i(x1) ∧ . . . ∧ Ani(xn) ∧Bi(y)}
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The choice of △ and ▽ might depend on the problems at hand, or
might be justified by some criteria for sensitivity analysis.

The rules Ri above are the result of modeling linguistic labels by fuzzy
sets. This is done by choosing membership functions reflecting the se-
mantics of the linguistic labels. Adjustment or tuning parameters of these
membership functions may be necessary to get a faithful representation of
the linguistic rules. We will not discuss these practical issues here.

From a theoretical viewpoint, assuming that we have a set of rules with
specified membership functions and logical connectives, the problem is how
to produce a single output corresponding to an input x = (x1, . . . , xn).
Before treating the question, we consider some special cases.

Suppose the rules above are more precise in the sense that the Bi’s are
singletons, that is,

Ri : “If x1 is A1i, . . . , xn is Ani then y = yi”, i = 1, 2, . . . , k

In this case, Bi = {yi}, so that

Bi(y) =

{
1 if y = yi
0 if y 6= yi

Therefore, for y 6= yi, i = 1, 2, . . . , k,

A1i(x1)△ . . .△ Ani(xn)△ Bi(y) = A1i(x1)△ . . .△ Ani(xn)△ 0

≤ 1△ . . .△ 1△ 0 = 0

and hence
C(y) = 0▽ . . .▽ 0 = 0

For y = yj , for some j ∈ {1, 2, . . . , k},

A1j(x1)△ . . .△Anj(xn)△ 1 = A1j(x1)△ . . .△Anj(xn)

so that

C(yj) = ▽[0, . . . , 0, (A1j(x1)△, . . . ,△, Anj(xn)),△0 . . .△ 0]

= A1j(x1)△ . . .△Anj(xn).

One can view C(yj) as a weight for yj (or a normalized weight wj =

C(yj)/
∑k

i=1 C(yi)). A plausible single output value could be a weighted
average

y∗ =

k∑

i=1

wiyi

As another example, consider the case where all fuzzy concepts involved
express a form of measurement errors around some plausible values. In
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this case, Gaussian-type membership functions seem appropriate, so we
can take

Aij(z) = exp

{
−1

2

(z − aij)2
σ2
ij

}

Bj(z) = exp

{
−1

2

(z − bj)2
β2
j

}

For each rule Rj , bj is a plausible candidate for the rule output, but with
some degree depending upon Aij(xi), i = 1, . . . , n.

For example, choosing a△ b = ab (product inference), the normalized
weight of the output bj of the rule Rj is

wj =

∏n
i=1Aij(xi)Bj(y)

∑k
j=1

∏n
i=1 Aij(xi)

so that the overall output of the system, as a weighted average, is

y∗ =

k∑

j=1

wjyj

8.2 Design methodologies

Consider again the fuzzy set (output)

C(y) = ▽1≤i≤k[A1i(x1)△ · · · △Ani(xn)△Bi(y)]

In order to obtain a single value for the output corresponding to an input
x = (x1, . . . , xn), we need to transform the membership function C(y)
into a real number D(C). That is, we have to defuzzify the fuzzy set
C. Such a transformation is called a defuzzification procedure. Some
defuzzification procedures are centroid defuzzification

D(C) =

∫
yC(y)dy∫
C(y)dy

and center-of-maximum defuzzification

D(C) =
m− +m+

2

where
m− = inf{y : C(y) = max

z
C(z)}
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and
m+ = sup{y : C(y) = max

z
C(z)}

A chosen defuzzification procedure is used to produce an output for
the system, namely

y∗(x1, . . . , xn) = D(C)

where C(y) = ▽[Aij(x1)△ · · · △ Ani(xn)△ Bi(y); i = 1, . . . , k]. This is
known as a “combine-then-defuzzify” strategy, that is, we first combine all
the rules using fuzzy connectives to obtain an overall fuzzy set, and then
defuzzify this fuzzy set by some chosen defuzzification procedure.

Note that the two examples in Section 8.1 present another strategy,
namely “defuzzify-then-combine”. Indeed, for each rule Ri, one first de-
fuzzifies the rule output, say, by selecting a plausible output value yi for
the rule, and then combine all these yi’s via a discrete version of the cen-
troid defuzzification procedure (weighted average) applied to the fuzzy set
(yi, wi), i = 1, . . . , k.

Again, like the case of fuzzy logical connectives, the choice of defuzzi-
fication procedures might depend on the problems at hand. However, it
is possible to make this choice “optimal” if we have some performance
criteria.

So far we have described an inference design, based on a fuzzy rule
base, without a rationale. Of course, a design is only useful if it leads to a
“good” representation of the input-output relation. Now, the “true” input-
output relation y = f(x) is unknown, and only some information about f
is available, namely in the form of a fuzzy rule base. The previous designs
are thus only approximations of f . Therefore, by a “good” representation,
we mean a “good” approximation of f .

For a design methodology, that is, a choice of membership func-
tions for the A’s and B’s, of logical connectives △, ▽, and negation, and
defuzzification procedure D, we produce an input-output map

f∗ : (x1, · · · , xn)→ y∗

We need to investigate to what extent f∗ will be a good approximation of
f . Basically, this is a problem in the theory of approximation of functions.
The following is a little technical, but it is necessary to spell out the main
idea. The design above will lead to a good approximation if for any ε > 0,
one can find an f∗ such that ||f − f∗|| < ε, where || · || denotes a distance
between f and f∗. The following section contains necessary mathematical
tools for investigating this problem.
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8.3 Some mathematical background

In order to formulate and to prove some typical results about the ap-
proximation capability of fuzzy systems, we need some information about
metric spaces. A metric space is a set with a distance on it. Here is the
formal definition.

Definition 8.3.1 Let X be a set. A map d : X ×X → R is a distance,
or a metric if

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y,

2. d(x, y) = d(y, x), and

3. d(x, y) ≤ d(x, z) + d(y, z).

A set together with such a function on it is a metric space. Condition
3 is the triangle inequality.

Some examples follow.

• R with d(x, y) = | x− y |.

• Rn with d((x1, x2, ..., xn), (y1, y2, ..., yn)) =
√∑n

i=1(xi − yi)2. This
is the ordinary distance on Rn.

• Rn with d((x1, x2, ..., xn), (y1, y2, ..., yn)) = supn
i=1{| xi − yi |}.

• Rn with d((x1, x2, ..., xn), (y1, y2, ..., yn)) =
∑n

i=1 | xi − yi |.

• For an interval [a, b] of real numbers, let C([a, b]) be the set of all
continuous functions [a, b] → R. For f, g ∈ C([a, b]) let d(f, g) =
supx∈[a,b] |f(x) − g(x)|. This is called the sup-norm on C([a, b]).

• If (X, d) is a metric space, then e(x, y) = d(x, y)/(d(x, y) + 1) makes
X into a metric space.

• If X is any set, then d(x, y) = 1 if x 6= y and d(x, x) = 0 makes X
into a metric space.

The verifications that these are indeed metric spaces are left as exer-
cises.

Let (X, d) and (Y, e) be metric spaces. A function f : X → Y is
continuous at a point x ∈ X if for any ǫ > 0 there is a δ > 0 such that
e(f(x), f(y)) < ǫ whenever d(x, y) < δ. The function f is continuous if
it is continuous at every x ∈ X . If for each ǫ > 0 there is a δ such that for
all x, y ∈ X , e(f(x), f(y)) < ǫ whenever d(x, y) < δ, then f is uniformly
continuous on X .
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A subset A of X is open if for each a ∈ A there is ǫ > 0 such that
B(a, ǫ) = {x : d(x, a) < ǫ} ⊆ A. The complement of an open set is called
closed. A point x is an accumulation point of A if for every ǫ > 0,
B(x, ǫ) ∩ A 6= ∅. The closure of A, denoted A, is A together with all
its accumulation points. The closure of a set A is closed, and A = A if

and only if A is closed. In particular, A = A. The set A is dense in X if
A = X . If A is dense in X then for each x ∈ X , there is an element a ∈ A
arbitrarily close to it. That is, for any ǫ > 0 there is an element a ∈ A
such that d(x, a) < ǫ.

The set R of real numbers is a metric space with d(x, y) = | x − y |
and for a < b, the interval [a, b] is a closed subset of it. A classical result
is that with respect to this metric d, if the union of any collection of open
subsets of R contains [a, b], then the union of finitely many of them also
contains [a, b]. This is phrased by saying that any open cover contains a
finite subcover. A subset A of a metric space is compact if any open cover
of it contains a finite subcover. The subset A is bounded if sup{d(x, y) :
x, y ∈ A} <∞. Compact subsets of the Euclidean spaces Rn are the closed
and bounded ones.

If (X, d) and (Y, e) are metric spaces and f is a continuous map from
X to Y, then the image of any compact subset of X is a compact subset
of Y . If X itself is compact, then such a continuous map is uniformly
continuous. That is, a continuous map on a compact space is uniformly
continuous.

Let (X, d) be compact and C(X) the set of all continuous real-valued
functions on X with the metric supx∈X | f(x)− g(x) |. If K is a compact
subset of C(X), then for each ǫ > 0 there is a δ > 0 such that if d(x, y) < δ,
then | f(x) − f(y) |< ǫ for all f ∈ K. Such a family K of functions is
called an equicontinuous family.

A classical result known as the Weierstrass theorem is that con-
tinuous functions on a compact set [a, b] can be approximated uniformly
by polynomials. There is a generalization to metric spaces that we need.
The Stone-Weierstrass theorem is this. Let (X, d) be a compact metric
space. Let H ⊆ C(X) satisfy the following conditions.

• H is a subalgebra of C(X). That is, for a ∈ R and f, g ∈ H , we have
af, f + g, and fg ∈ H .

• H vanishes at no point of X . That is, for x ∈ X , there is an h ∈ H
such that h(x) 6= 0.

• H separates points. That is, if x, y ∈ X then there is an h ∈ H such
that h(x) 6= h(y).

Then H is dense in C(X). That is, H = C(X). This means that any
real continuous function on X can be approximated arbitrarily closely by a
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function from H . Polynomials on an interval [a, b] satisfy these conditions,
and so continuous functions on [a, b] can be approximated by polynomials.
This is the classical Weierstrass theorem. For a proof, see [183].

8.4 Approximation capability

The design of a fuzzy system is aimed at approximating some idealistic
input-output maps. The problem is well known in various branches of sci-
ence, for example, in system identification and in statistical regression.
Fuzzy systems are viewed as a tool for approximating functions. In appli-
cations, the approximation techniques used depend on available data.

Typically, a fuzzy controller, or more generally, a fuzzy system, is a
map from Rn to R constructed in some specific way. From a set of rules
of the form “If for i = 1, 2, ..., n, xi ∈ Aij , then y ∈ Bj for j = 1, 2, ..., r”,
where the variables xi and y take values in R and the Aij and Bj are fuzzy
sets, one constructs a value y∗ = f∗(x1,x2, ..., xn) by combining the rules
above. For example, choosing a t-norm △ for the logical connective “and”
and a t-conorm ▽ for “or”, one arrives at a membership function

µ(y) = ▽1≤j≤r [A1j(x1)△ ...△Anj(xn)△ Bj(y)]

and the quantity

y∗ =

(∫
R
yµ(y)dy

)
(∫

R
µ(y)dy

)

The map x→ y∗ = f∗(x) depends on

• The membership functions Aij and Bj ,

• The t-norm △ and t-conorm ▽, and

• The “defuzzification procedure” µ(y)→ y∗.

If we denote by M a class of membership functions of fuzzy concepts
on R, by L a class of fuzzy logical connectives, and by D a defuzzification
procedure, then the triple (M,L,D) is referred to as a design method-
ology and specifies the input-output map y∗ = f∗(x). The function f
also depends on the number r of rules, and this dependency is indicated
by the notation fr. The approximation capability of fuzzy systems is that
under suitable conditions on (M,L,D), the class of functions {fr : r ≥ 1}
is dense in the space of continuous functions C(K) from compact subsets
K of Rn to R with respect to the sup-norm. To illustrate this, we look at
two instances.
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Let F be the class of functions f : Rn → R of the form

f(x) =

∑r

j=1
yj △ (A1j(x1)△A2j(x2)△ · · · △Anj(xn))

∑r

j=1
(A1j(x1)△A2j(x2)△ · · · △Anj(xn))

where x = (x1, x2, ..., xn), and xi, yj ∈ R, △ is a continuous t-norm, and
Aij are of Gaussian type. That is,

Aij(x) = αije
−(x−aij)

2/kij

If K is a compact subset of Rn, then FK will denote the restriction of
elements of F to K.

Theorem 8.4.1 Let a△ b = ab, or a△ b = a∧ b. For any compact subset
K of Rn, FK is dense in C(K) with respect to the sup-norm.

Proof. We prove the theorem for the case a∧b. It suffices to verify the
hypotheses of the Stone–Weierstrass theorem. First, one needs that FK is
a subalgebra, that is, if f, g ∈ FK and α ∈ R, then f+g, fg, and αf are in
FK . This follows readily using the facts that (∧{ai}) (∧{bj}) = ∧i∧j{aibj}
whenever the ai and bj are positive, and that products of Gaussian are
Gaussian.

To show that FK vanishes at no point, simply choose yj > 0 for all j.
Then f(x) > 0 since each µij(xi) > 0.

We now show that FK separates points in K. For f defined by

f(x) =
∧i{e−

1
2 (xi−ui)

2}
∧i{e− 1

2 (xi−ui)2}+ ∧i{e− 1
2 (xi−vi)2}

then for u, v ∈ K with u 6= v, f(u) 6= f(v). Thus if g ∈ C(K) and ε > 0,
there is an f ∈ FK such that ‖f − g‖ < ε, where ‖g‖ = ∨x∈K |g(x)|.

The class F of continuous functions appears in the design situations
discussed in Section 8.1. We consider now a general class F(M,L,D) of
designs as follows.M consists of those membership functions µ such that
µ(x) = µ0(ax + b) for some a, b ∈ R and a 6= 0, and µ0(x) is continuous,
positive on some interval of R, and 0 outside that interval. L consists
of continuous t-norms and t-conorms. D is a defuzzification procedure
transforming each membership function µ into a real number in such a
way that if µ(x) = 0 outside an interval (α, β), then D(µ) ∈ [α, β]. For
example,

D(µ) =

(∫

R

xµ(x)dx

)
/

(∫

R

µ(x)dx

)

is such a procedure.
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Theorem 8.4.2 For any design methodology (M,L,D) and any compact
subset K of Rn, F(M,L,D)|K is dense in C (K) with respect to the sup-
norm.

Proof. We need to show that for f ∈ C (K) and for any ε > 0, there
exists g ∈ F(M,L,D)|K such that ‖f − g‖ ≤ ε. Since f is uniformly
continuous on the compact set K, there exists δ(ε) such that whenever

∨
{|xi − yi| : i = 1, 2, ..., n} ≤ δ(ε)

we have
|f(x)− f(y)| ≤ ε/2

Let r ≥ 1. Since K is compact, there is a covering by r open balls with the
j-th centered at z(j) and with each of radius δ(ε)/2. Consider the collection
of r rules of the form “If x1 is A1j and x2 is A2j and ... and xn is Anj

then y is Bj”, where the membership functions are chosen as follows. Let
µ0 be a continuous function positive on an interval (α, β) and 0 outside.
The function

µ̂0(t) = µ0

(
β − α

2
t+

β + α

2

)

is in M, is positive on (−1, 1) and 0 outside. Take

Aij(t) = µ̂0

(
t− z(j)i

δ

)
,

Bj(t) = µ̂0

(
t− f(z

(j)
i )

ε/2

)

Then for △,▽ ∈ L, let

µx(y) = ▽
1≤j≤r

[A1j(xi)△A2j(xi)△ · · · △ Anj(xi)△Bj(y)]

We will show that g(x) = D(µx) approximates f to the desired accuracy.
In view of the properties of D, it suffices to verify that µx is not iden-

tically 0 and µx(y) = 0 when y /∈ (f(x) − ε, f(x) + ε). Now for x ∈ K,
there is z(j) such that

∨
{∣∣∣xi − z(j)i

∣∣∣ : i = 1, 2, ..., n
}
≤ δ(ε)

Thus

Aij(xi) = µ̂0

(
xi − z(j)i

δ

)
> 0
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for all i since
xi − z(j)i

δ
∈ (−1, 1)

Taking y = f(z(j)), we have Bj(y) = µ̂0(0) > 0. By properties of t-norms
and t-conorms, it follows that µx(y) > 0.

Next, let y /∈ (f(x)−ε, f(x)+ε). By t-conorm properties, to show that
µx(y) = 0 it suffices to show that for j = 1, 2, ..., r,

pj = [A1j(xi)△A2j(xi)△ · · · △ Anj(xi)△Bj(y)] = 0

Since △ is a t-norm, pj = 0 if one of the numbers Aij(xi), Bj(y) is 0. If
all are positive, then

∣∣f(x)− f(z(j))
∣∣ ≤ ε/2 by uniform continuity of f on

K. On the other hand, by hypothesis, |y − f(x)| ≥ ε, and so

y − f(z(j))

ε/2
/∈ (−1, 1)

Thus

Bj(y) = µ̂0

(
y − f(z(j))

ε/2

)
= 0

In summary, there exist various classes of fuzzy systems that can ap-
proximate arbitrarily closely continuous functions defined on compact sub-
sets of finite dimensional Euclidean spaces. Fuzzy systems themselves are
finite-dimensional in the sense that the number of input variables is fi-
nite. However, as we will see, they can be used to approximate continuous
maps defined on infinite-dimensional spaces. This is particularly useful for
approximating control laws of distributed parameter processes. In view of
results such as the last two theorems, to handle the infinite-dimensional
case, it suffices to reduce it to the finite one.

Theorem 8.4.3 Let F be a compact subset of C(U), where U is a compact
metric space. Let J : F → R be continuous. Then for each ε > 0, there
exists a continuous function π from F to the finite-dimensional Euclidean
space Rq for some q, and a continuous function Jε defined on the compact
subset π(F ) such that for every f ∈ F ,

|J(f)− Jε(π(f))| ≤ ε

Before giving the proof, we remark that the problem of approximating
J by a fuzzy system is reduced to that of approximating Jε, which is a
continuous function of a finite number of variables. If a fuzzy system g
approximates Jε to within ε, then g also approximates J . In fact,

|J(f)− g(π(f))| ≤ |Jε(π(f))− g(π(f))|+ |J(f)− Jε(π(f))| ≤ 2ε
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This reduction is necessary for practical implementation purposes. This
procedure is parallel to computational techniques in H∞-control in which
the H∞-optimization problem for distributed parameter systems is re-
duced to a finite dimensional problem of finding weighting filters [59].

Proof. We use the notation ‖·‖ to denote the various norms that ap-
pear. Since F is compact, J is uniformly continuous on F , so there exists
δ(ε) such that whenever ‖f − g‖ ≤ δ(ε), we have ‖J(f)− J(g)‖ ≤ ε. Let
G be a finite set of points in F such that for every f ∈ F , there exists
a g ∈ G with ‖f − g‖ ≤ δ(ε)/3. Since F is a compact subset of C(U), F
forms a family of equicontinuous functions, so that there exists β(ε) > 0
such that whenever ‖u− v‖ ≤ β(ε), we have ‖f(u)− f(v)‖ ≤ δ(ε)/4 for
every f ∈ F . Choose a finite set {v1, v2, ..., vq} = V ⊆ U such that for
every u ∈ U , there exists a v ∈ V such that ‖u− v‖ ≤ β(ε).

Define π : F → Rq by π(f) = (f(v1), f(v2), ..., f(vq)). Obviously

‖π(f)− π(g)‖ =
∨

1≤i≤q

{∣∣∣f(vi)− f̃(vi)
∣∣∣
}

≤ ‖f − g‖

so π is continuous and hence π(F ) is compact.
Define Jε : π(F )→ R by

Jε(π(f)) =

∑
G αg(f)J(g)∑

G αg(f)

where for every g ∈ G,

αg(f) = ∨{0, δ(ε)/2− ‖π(f)− π(g)‖}

is a continuous function of π(f). For every f ∈ F , there exists a g ∈ G
such that

‖π(f)− π(g)‖ ≤ ‖f − g‖
≤ δ(ε)/3

< δ(ε)/2

so
∑

G αg(f) > 0. Thus Jε is well defined and continuous on π(F ).
Now

|J(f)− Jε(π(f))| ≤ ∨ |J(f)− J(g))|
with the ∨ over all g ∈ G such that ‖π(f)− π(g)‖ ≤ δ(ε)/2. For every
u ∈ U , there exists a v ∈ V such that ‖u− v‖ ≤ β(ε), so

|f(u)− g(u)| e ≤ |f(u)− f(v)|+ |f(v)− g(v)|+ |g(v)− g(u)|
≤ δ(ε)/4 + |f(v)− g(v)|+ δ(ε)/4
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Hence

‖f − g‖ =
∨

G

{|f(u)− g(u)|}

≤ δ(ε)/2 + ‖π(f)− π(g)‖

Thus, when ‖π(f)− π(g)‖ ≤ δ(ε)/2, we have ‖f − g‖ ≤ δ(ε). Hence
|J(f)− J(g)| ≤ ε, implying that for every f ∈ F , we have

|J(f)− Jε(π(f))| ≤ ε

The theorem follows.

8.5 Exercises

1. Show that the examples following Definition 8.3.1 are indeed metric
spaces.

2. ⋆Let F denote the class of all (real) polynomials in one variable x.
Verify that F is a subalgebra of C([a, b]), separating points in [a, b]
and vanishing at no point of [a, b].

3. ⋆Let F be the class of all even polynomials in one variable, that
is, those such that f(x) = f(−x). Show that F does not separate
points in, say, K = [−2,+2].

4. ⋆Let F ⊆ C(K) satisfying the hypotheses of the Stone–Weierstrass
theorem. Let x 6= y.

(a) Let g, h ∈ F such that g(x) 6= g(y), and h(x) 6= 0. Consider
ϕ = g + λh where λ is chosen as follows.

If g(x) 6= 0, then take λ = 0.
If g(x) = 0, then take λ 6= 0 such that

λ[h(x)− h(y)] 6= g(y) 6= 0

Verify that ϕ ∈ F and ϕ(x) 6= 0, ϕ(x) 6= ϕ(y).

(b) Let α = u2(x)− u(x)u(y). Verify that α 6= 0. Define

f1(·) =
1

α
[ϕ2(·)− ϕ(·)ϕ(y)]

Verify that f1 ∈ F and f1(x) = 1, f1(y) = 0.

(c) By symmetry, show that there exists f2 ∈ F such that f2(x) = 0
and f2(y) = 1. Define f = f1 + f2. Verify that f ∈ F and
f(x) = f(y) = 1.
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5. Let K = [0, 1], and let G be a family of continuous functions on
K. Let F be the class of polynomials with real coefficients in the
elements of G, that is, polynomials P of the form

P (x) =

k∑

i=1

αi[gi1(x)]n1 · · · [gim(x)]nm

where αi’s are real, gij ∈ G, and nj ’s are integers ≥ 0.

(a) Use the Stone-Weierstrass theorem to show that if G separates
points in K, then elements of C([0, 1]) are approximable by
those of F .

(b) Show that if G does not separate points in K, then there exist
continuous functions in K that cannot be approximable by el-
ements of F . (Hint: There exist x 6= y such that for all g ∈ G,
g(x) = g(y), implying that for all p ∈ F , p(x) = p(y). If f is
a continuous function such that f(x) 6= f(y), then f cannot be
approximable by F .)

6. Two metrics d and e on a metric space are equivalent if there are
positive real numbers r and s such that rd ≤ e and se ≤ d. Let
x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) ∈ Rn. Show that

(a) d1(x, y) =
∑n

k=1 |xk − yk|,
(b) d2(x, y) =

∨
1≤i≤k{|xk − yk|}, and

(c) d3(x, y) =
√∑n

k=1(xk − yk)2

are equivalent metrics on Rn.

7. Let d be the discrete metric on Rn. That is, d(x, y) = 1 if x 6= y and
0 if x = y. Show that the metric d is not equivalent to any of the
three in the previous exercise.

8. ⋆Let X be a compact metric space and C (X) the set of all contin-
uous functions from X into R. Operations on C (X) are defined for
f, g ∈ C(X), a ∈ R, and x ∈ X by

(f + g)(x) = f(x) + g(x)

(fg)(x) = f(x)g(x)

(af)(x) = af(x)

(a) Verify that C(X) is an algebra of functions.
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(b) Let [a, b] be an interval in R, and 1 and x the maps [a, b]→ R
such that 1(c) = 1 and x(c) = c for all c ∈ [a, b]. Show that
the smallest subalgebra containing 1 and x is the set P of all
polynomials in x with coefficients in R.

(c) Show that P is not a closed set of the metric space C([a, b]).

9. Let X be a compact metric space. Then

d(f, g) = sup
x∈X
| f(x)− g(x) |

is a metric on C(X).

(a) Let H be a subalgebra of C(X). Use the Stone–Weierstrass
theorem as stated in Section 8.3 to show that H is dense in
C(X) if for x 6= y ∈ X and a, b ∈ R, there is an f ∈ H such
that f(x) = a and f(y) = b.

(b) Verify that if the subalgebra H contains the constant function
1 and separates points, then it satisfies the condition of the
previous part.

10. Let X be a compact metric space. Verify that C(X) is a lattice under
the order f ≤ g if f(x) ≤ g(x) for all x ∈ X.
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Chapter 9

POSSIBILITY THEORY

This chapter is devoted to a quantitative theory of possibility. We will use
some facts about random sets to provide a firm foundation for possibility
measures.

9.1 Probability and uncertainty

As discussed earlier, uncertainty arises in real-world problems in various
forms, of which randomness is only one. In formulating the structure of a
random experiment, such as games of chance, we list the collection of all
possible outcomes of the experiment. It is on the concept of chance that
we focus our attention. The theory of probability is first of all intended
to provide an acceptable concept of quantitative chance. Despite the fact
that events can be possible or probable, the lack of a quantitative theory of
possibility has led us to focus only on probability. One of the contributions
of probability theory to science is the rigorous quantification of the concept
of chance, together with a solid theory of this quantification. This chapter
is focused on the quantification of another type of uncertainty, namely
possibility. But it is appropriate to review basic facts about probability
theory, especially the concept of random sets, which will play an essential
role in developing the foundation for other uncertainty measures, including
belief functions in Chapter 10.

The quantitative concept of chance arose from games of chance, and
later was formulated in general contexts via an axiomatic approach due to
Kolmogorov. The uncertainty measure involved is a set function known as
a probability measure. Specifically, the mathematical model of a random
experiment is this. A set Ω is intended to represent the set of all possible
outcomes of the experiment, called the sample space. This name is inspired
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from sampling survey theory, in which the random experiment consists of
choosing, in some random fashion, a sample from the population. A collec-
tion A of subsets of Ω is intended to represent events whose probabilities
can be assigned or defined. Here is the formal definition of the concepts.

Definition 9.1.1 Let Ω be a set. A σ-field or a σ-algebra of subsets of
Ω is a set A of subsets of Ω such that

1. Ω ∈ A

2. If A ∈ A, then A′ ∈ A, where ′ denotes complement.

3. If S is a countable collection of subsets of A, then ∪A∈SA ∈ A.
The pair (Ω,A) is a measurable space.

A probability measure is a function P : A → [0, 1] such that

4. If the elements of the countable collection S of subsets of A are pair-
wise disjoint, then P (∪A∈SA) =

∑
A∈S P (A). (This is σ-additivity.)

5. P (Ω) = 1.

The triple (Ω,A, P ) is a probability space.

The triple (Ω,A, P ) is a common mathematical model of random phe-
nomena. There are some elementary immediate consequences.

• P (∅) = 0.

• If A ⊆ B, then P (A) ≤ P (B).

• For a finite subset S of A,

P (∪A∈SA) =
∑

∅ 6=T ⊆A

(−1)|T |+1P (∩A∈T A)

P (∩A∈SA) =
∑

∅ 6=T ⊆A

(−1)|T |+1P (∪A∈T A)

These last two equalities are Poincaré’s equalities.
A typical example for us will be that Ω is a finite set, and A is the set

2Ω of all subsets of Ω. When P is allowed to take values in [0,∞], we say
that P is a measure, and that (Ω,A, P ) is a measure space.

The uncertainty in games of chance and random phenomena is mod-
eled by probability measures, in which the range of a random variable of
interest is simply regarded as the set of all possible values of that vari-
able. Thus, any value in the range is possible, whereas any value outside of
the range is impossible. The intuitive concept of possibility does not seem
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to add anything to the analysis of chance. Although, from time to time,
we use the qualitative concept of possibility just to express some form
of optimism about uncertainty whenever precise quantitative probabilities
are not available. The framework of probability theory and its calculus
are designed to use objective empirical data gathered from natural ran-
dom phenomena. But human perception about randomness can also be
expressed by what are known as subjective probabilities. Except for the σ-
additivity of probability measures, the calculus of subjective probabilities
is the same as that of objective probabilities.

Now, in the realm of modern technology, known as intelligent tech-
nology, we are witnessing other useful forms of uncertainty. First, as il-
lustrated in Chapter 13 on fuzzy control, the essence in the design of
intelligent systems is the ability to imitate remarkable human intelligent
behavior in, say, decision making and control. To arrive at this level of
technology, we need a way to model perception-based information of hu-
mans. Since perception-based information is mostly linguistic, we need to
model it for processing. It is precisely the theory of fuzzy sets that provides
this modeling capability.

Typical perception-based information is a proposition of the form,
“Tony is young”. The analysis of such a proposition by Zadeh is this.
There is a underlying variable X in this proposition, namely X = age,
and its range is, say, [0, 100]. The adjective “young” is then a fuzzy subset
A of [0, 100]. Ignoring the variable X, A is simply a fuzzy subset of [0, 100],
that is, a mapping A : [0, 100] → [0, 1]. But having X in mind, the value
A(x) has also another meaning, namely the degree of possibility that X
takes the value x. This is simply a natural extension of the common sense
that, if A is a crisp set, then A : [0, 100]→ {0, 1} tells us that if x ∈ A, that
is, if A(x) = 1, then X = x is possible with degree 1, and if x /∈ A, that
is, if A(x) = 0, then X = x is impossible, or its degree of possibility is 0.
Thus according to Zadeh, fuzzy sets provide a way to quantify the concept
of possibility. From this natural extension, Zadeh went on to propose the
measure of possibility for a subset B of [0, 100] as supx∈B A(x).

Thus, as a set function, a possibility measure, defined on 2[0,100] and
taking values in [0, 1] should satisfy the axiom

• For any index set I and Ai ⊆ [0, 100], i ∈ I,

Poss(X ∈ ∪i∈IAi) = sup
i∈I

(Poss(X ∈ Ai))

Such a set function is no longer additive.

We are going to offer a foundation for the heuristic approach above to
possibility measures. Our idea came from asking a basic question. Admit-
ting that information gathered by humans is perception based, “what is
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precisely the process underlying this information gathering?” This is some-
what similar to understanding, even in some rough fashion, how our brain
processes information led to the invention of neural network computations.

Now, if we look at information of the form “Tony is young”, then we
realize that we might say so since we do not know the exact age of Tony. In
other words, the values of the variable X are not observable. The process
of perception consists of forming a coarsening, that is, picking a collection
of subsets, fuzzy or not, of [0, 100] for the purpose of extracting imprecise
information. Thus, we replace X by a set-valued function S such that
the true value of X is in S. For example, a coarsening could be a fuzzy
partition of [0, 100], for example, into “young”, “middle age”, and “old”.
In the following, we will make the above rigorous. We choose to use a
nonfuzzy setting and a probabilistic framework, perhaps biased by coarse
data analysis in statistics. Our analysis will bring in an essential ingredient
from probability theory, namely the concept of random sets. Note that in
Section 1.4, we pointed out that there exists a formal relation between
fuzzy sets and random sets. Here, as we will see, random sets enter fuzzy
analysis in a much more natural way. The idea is that coarsening schemes
are viewed as random sets. But first, we will outline the concept of random
sets in the next section.

We now look at some noncommutative uncertainty modeling. Kol-
mogorov (or Laplace) probability as mentioned above, in the setting of
a probability space (Ω,A, P ), is “commutative”, since the Boolean alge-
bra A of events (sets) is commutative with respect to intersection of sets;
that is, P (A ∩ B) = P (B ∩ A). Such a property of a probability mea-
sure P (.), a quantitative modeling of the notion of chance, seems natural
and there is no need to mention it! To model another kind of uncertainty,
namely “possibility”, we have just mentioned a property which does not
exist in “standard” probability, namely nonadditivity.

To be complete, as far as modeling of various possible types of uncer-
tainty is concerned, we point out here another important property of uncer-
tainty measures, namely, noncommutativity. This is not only to make the
picture of uncertainty modeling complete. It is important for applications
in social sciences, such as economics where economic agents make their
decisions under the kind of uncertainty which exhibits noncommutativity
of incoming information (the so-called “order effect” of information). This
type of uncertainty modeling is not only nonadditive, but also noncom-
mutative, thus capturing cognitive decision-making. It turns out that this
type of noncommutative probability existed even before Kolmogorov’s gen-
eral framework for (additive and commutative) probability theory (1933).
It is called quantum probability, which we proceed to elaborate on a bit
here.
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First, let’s clarify the question “Non-commutativity of what?” If the
space (Ω,A, P ) is a Kolmogorov probability space, the σ-field A of sub-
sets of Ω (representing events) is Boolean, and hence commutative (with
respect to intersection). Moreover, events A or equivalently, their indica-
tor functions 1A : Ω ∈ {0, 1}, and more generally, real-valued random
variables X : Ω → R, form a commutative algebra (with respect to mul-
tiplication). Thus P (A ∩ B) = P (B ∩ A) and E(XY ) = E(Y X). In this
sense, Kolmogorov probability is a commutative theory.

The correspondence between geometric objects and commutative alge-
bras is a familiar and basic idea for algebraic geometry in mathematics.
If we replace a commutative algebra by a noncommutative algebra (for
example, the algebra of square matrices), what will be the correspond-
ing “noncommutative” geometry? The general answer to this question is
the work of Alain Connes, inspired from von Neumann’s mathematics for
quantum mechanics (functional analysis).

But why are we asking such a question? For “pure” or “applied” math-
ematics? Well, originally, it was an applied mathematics question, not for
behavioral economics, but for quantum physics/mechanics (1927). What
we want to build is a probability which operates on a nonboolean structure
exhibiting noncommutativity of events, and hence of probability. That is
why it will be called a noncommutative probability. We have it available,
thanks to quantum mechanics.

To see how to arrive at (construct) a noncommutative framework for
modeling uncertainty, it suffices to consider the simplest case on which
we use a familiar spirit of extension (or generalization) in mathematics
which is precisely how fuzzy sets were generalized from ordinary (crisp)
sets: If we cannot generalize an ordinary set (for example, a set of num-
bers [0, 0.005]) directly to a fuzzy set (for example, “small numbers”), we
use some equivalent representation of sets which could be suitable for ex-
tension. Recall that Zadeh used the equivalent representation of sets as
indicator functions 1A : Ω → {0, 1}, from which they are extended to
membership functions µA : Ω→ [0, 1].

Using the same principle, we made the complex plane a field. While a
real number x is identified with the 2× 2 matrix,

[
x 0
0 x

]

an ordered pair of real numbers (x, y) can be identified (that is, represented
in another way) as a 2× 2 matrix

[
x −y
y x

]
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Now, consider the simplest case of Kolmogorov probability, namely
the finite sample space, representing a random experiment with a finite
number of possible outcomes, for example, a roll of a pair of dice. A finite
probability space is a triple (Ω,A, P ) where Ω = {1, 2, ..., n}, say, for
example, a finite set with cardinality n, A is the power set of Ω (events),
and P : A → [0, 1] is a probability measure (P (Ω) = 1, and P (A ∪ B) =
P (A) + P (B) when A ∩ B = ∅). Note that since Ω is finite, the set-
function P is determined by the density ρ : Ω → [0, 1], ρ(j) = P ({j}),
with

∑n
j=1 ρ(j) = 1. A real-valued random variable is X : Ω→ R. In this

finite case, of course X−1(B(R)) ⊆ A. The domain of P is the σ-field A of
subsets of Ω (events) which is Boolean (commutative: A∩B = B∩A); that
is, events are commutative, with respect to intersection of sets. We wish to
generalize this setting to a noncommutative one, where “extended” events
could be, in general, noncommutative with respect to an “extension” of ∩.

For this, we need some appropriate equivalent representation for all
elements in this finite probability setting. Now since Ω = (1, 2, ..., n},
each function X : Ω→ R is identified as a point in the (finite dimensional
Hilbert) space Rn, namely (X(1), X(2), ..., X(n))t, which, in turn, is equiv-
alent to an n×n diagonal matrix with diagonal terms X(1), X(2), ..., X(n)
and zero outside (a special symmetric matrix), that is,

X ⇐⇒ [X ] =




X(1) 0
X(2)

0
. . . 0

0
. . .

0 X(n)




The set of such matrices is denoted as Do which is a commutative (with
respect to matrix multiplication) subalgebra of the algebra of all n × n
matrices with real entries. As matrices act as (bounded, linear) operators
from Rn → Rn, we have transformed (equivalently) random variables into
operators on a Hilbert space.

In particular, for each event A ⊆ Ω, its indicator function 1A : Ω →
{0, 1} is identified as an element of Do with diagonal terms 1A(j) ∈
{0, 1}.As such, each event A is identified as a (orthogonal) projection on
Rn, that is, an operator T such that T = T 2 = T ∗ (its transpose/ ad-
joint). Finally, the density ρ : Ω → [0, 1] is identified with the element
[ρ] of Do with nonnegative diagonal terms, and with trace tr([ρ]) = 1. An
element of Do with nonnegative diagonal terms is a positive operator, that
is, an operator T such that 〈Tx, x〉 ≥ 0, for any x ∈ Rn (where <,> de-
notes the scalar product of Rn). Such an operator is necessarily symmetric
(self adjoint). Thus, a probability density is a positive operator with unit
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trace. We have transformed the standard (Kolmogorov) probability space
(Ω,A, P ), with #(Ω) = n, into the triple (Rn,Po, ρ), where Po denotes
the subset of projections represented by elements of Do (that is, with di-
agonal terms in {0, 1}) which represent “ordinary” events; and ρ (or [ρ]),
an element of Do, is a positive operator with unit trace.

Now, keeping Rn as a finite dimensional Hilbert space, we will proceed
to extend (Rn,Po, ρ) to a noncommutative “probability space”. It suffices
to extend D0, a special set of symmetric matrices, to the total set of all
n × n symmetric matrices, denoted as S(Rn), so that a random variable
becomes an observable, that is, a self-adjoint operator on R. A quantum
event is simply an arbitrary projection on Rn, that is, an element of
P (the set of all projections); and the probability density ρ becomes an
arbitrary positive operator with unit trace. The triple (Rn,P , ρ) is called
a (finite dimensional) quantum probability space. We recognize that
quantum probability is based upon a new language, not real analysis,
but functional analysis; that is, not on the geometry of Rn, but on its
noncommutative geometry, namely linear operators on it. Clearly, in view
of the noncommutativity of matrix multiplication, quantum events (that
is, projection operators) are noncommutative in general.

Let’s pursue this finite setting a little further. When a random variable
X : Ω → R is represented by the matrix [X ], its possible values are on
the diagonal of [X ], that is, the range of X is σ([X ]), the spectrum of
the matrix (operator) [X ]. For A ⊆ Ω, Pr(A) is taken to be P ([1A]) =∑

j∈A ρ(j) = tr([ρ][1A]). More generally, EX = tr([ρ][X ]), exhibiting the
important fact that the concept of “trace” (of matrix/operator) replaces
integration, a fact which is essential when considering an infinitely dimen-
sional (complex, separable) Hilbert space, such as L2(R3,B(R3), dx) of
squared integrable, complex-valued functions.

The spectral measure of a random variable X , represented by [X ],
is the projection-valued “measure” ζ [X] : B(R) → P(Rn) : ζ [X](B) =∑

X(j)∈B πX(j), where πX(j) is the (orthogonal) projection on the space

spanned by X(j). From it, the “quantum” probability of the event (X ∈
B), forB ∈ B(R) is taken to be P (X ∈ B) =

∑
X(j)∈B ρ(j) = tr([ρ]ζ [X](B)).

The extension of the above to arbitrary (Ω,A, P ) essentially involves
the replacement of Rn by an infinite dimensional, complex and separable
Hilbert space H . The probability measure µρ(.) = tr(ρ.) on P(H) is clearly
noncommutative in general, since, for p, q ∈ P(H), they might not com-
mute; that is, pq 6= qp, so that tr(ρpq) 6= tr(ρqp). Of course, that extends
to noncommuting observables as well.

The nonadditivity of the probability measure µρ(.) = tr(ρ.) on P(H) is
seen as follows. First, P(H) is not a Boolean algebra. It is a nondistributive
lattice, instead. Indeed, in view of the bijection between projections and
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closed subspaces of H , we have, for p, q ∈ P(H), p ∧ q is taken to be
the projection corresponding to the closed subspace R(p) ∩ R(q), where
R(p) denotes the range of p; p ∨ q is the projection corresponding to
the smallest closed subspace containing R(p) ∪ R(q). You should check
p ∧ (q ∨ r) 6= (p ∧ q) ∨ (p ∧ r), unless they commute.

In (H,P(H), ρ), the probability of the event p ∈ P(H) is µρ(p) =
tr(ρp), and if A ∈ S(H), Pr(A ∈ B) = µρ(ζA(B)) = tr(ρζA(B)), for
B ∈ B(R), where ζA is the spectral measure of A (a projection-valued
measure on B(R)). With its spectral decomposition A =

∑
λ∈σ(A) λPλ,

the distribution of A on σ(A) is Pr(A = λ) = µρ(ρPλ), noting that A
represents a physical quantity.

Recall that on a Kolmogorov probability space (Ω,A, P ), the proba-
bility is axiomatized as satisfying the additivity: for any A,B ∈ A,

P (A ∪B) = P (A) + P (B)− P (A ∩B)

Now, on (H,P(H), ρ), where the “quantum probability” Q (under ρ),
defined as, for the “quantum event” p ∈ P(H), Q(p) = tr(ρp), does not,
in general, satisfy the analogue, for arbitrary p, q ∈ P(H),

Q(p ∨ q) = Q(p) +Q(q)−Q(p ∧ q)

that is, Q(.) is not additive.
Thus, in a noncommutative probability theory, we are in fact facing

nonadditivity of probability. It should be noted that, various approaches in
the literature, such as lower/upper probabilities, imprecise probabilities,
etc. are dealing only with nonadditivity of uncertainty measures, called
“nonadditive probabilities”, on Boolean algebras (just like in Kolmogorov
framework), and with no clear meaning of “probability” semantically. The
point is this. For applications to cognitive decision-making, we need both
noncommutativity and nonadditivity, and not just one, say, nonadditivity,
as in the literature! As such, the whole mathematics of quantum theory
should be used. However it should be noted that, as quantum mechanics
does not destroy Newtonian mechanics, quantum probability (or noncom-
mutative probability) does not destroy Kolmogorov probability, each type
of probability modeling is appropriate in appropriate settings.

9.2 Random sets

Roughly speaking, a random set is a set obtained at random. The most
concrete situation is in survey sampling. Let U be a finite population of
size n. To select a sample from U at random, we create a game of chance
by specifying the random selection mechanism, which causes a subset to
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be chosen with a given probability. For example, this selection mechanism
may specify that each subset of size k be chosen with equal probability
1/(nk ). The outcomes of this random experiment are subsets of U of size
k. The theory of probability provides a general framework to include this
type of random phenomenon.

Definition 9.2.1 If (Ω,A, P ) is a probability space and (V,V) a measur-
able space, then a random element with values in V is a map X : Ω→ V
which is A − V measurable. That is, for B ∈ V , X−1(B) = {ω ∈ Ω :
X(ω) ∈ B} ∈ A. The probability law of X is the probability PX on V de-
fined by PX(B) = P (X−1(B)), B ∈ V . When V = R or Rd, X is referred
to as a random variable or vector, respectively. When V is a collection
of subsets of some set, X is called a random set.

We discuss the random set case. Let U be a finite set with n elements.
Let V = 2U and V be the power set of V. Then X : Ω → V is a finite
random set provided that for A ⊆ U, {ω ∈ Ω : X(ω) = A} ∈ A. In
this case, PX is completely specified by the probability density function
f : 2U → [0, 1], where f(A) = P (X = A). The function f is a density on
2U since

∑
A⊆U f(A) = 1.

Let F : 2U → [0, 1] be given by F (A) = P (X ⊆ A). Then clearly
F (A) =

∑
B⊆A f(B). Since (2U ,⊆) has Möbius function µ(A,B) =

(−1)|B\A|, we have f(A) =
∑

B⊆A(−1)|B\A|F (B). (See Section 10.2 for
properties of the Möbius function.) The set-function F plays the role of a
distribution function for a random variable. It determines completely the
probability law PX . Note that F is not additive.

We need a more general type of random set. Let V = F(Rd), the class
of closed subsets of Rd. To construct the σ-field V , we topologize F =
F(Rd) as follows. For A ⊆ Rd, let

FA = {F ∈ F : F ∩ A 6= ∅}
FA = {F ∈ F : F ∩ A = ∅}

Also let O and K denote the classes of open and compact subsets of Rd,
respectively. The so-called hit-or-miss topology of F is the one generated
by the base

B = {FK
G1,...,Gn

: K ∈ K, Gi ∈ O, n ≥ 0}
where

FK
G1,...,Gn

= FK ∩ FG1 ∩ ... ∩ FGn

See [139] for details.
The space F(Rd) with the hit-or-miss topology is a topological space.

The smallest σ-field containing the open sets of this topology is called the
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Borel σ-field of F , and is denoted B(F). Taking V = B(F), a measurable
S : Ω→ F(Rd) is a random closed set with probability law PX on B(F).
As in the case of finite random sets and of random vectors, it turns out that
PX can be determined by much simpler set functions. In the case of finite
random sets, the distribution function F of a random set X : Ω→ 2Ω with
Ω finite is F (A) = P (X ⊆ A), A ⊆ U. A conjugate function T of F also
uniquely determines PX , where T : 2Ω → [0, 1] with T (A) = 1 − F (A′) =
P (X ∩ A 6= ∅). The set function T is called the capacity functional of X.

If X is a random vector with values in Rd, then {X} is a random
closed set on Rd whose probability law PX of X, viewed as {X}, is com-
pletely determined by the set-function T : K → [0, 1] given by T (K) =
P ({x} ∩K 6= ∅). Indeed, since Rd is a separable, complete metric space,
the probability measure PX is tight (see [20]), and as a consequence, for

A ∈ B(Rd), we have PX(A) = sup{PX(K) : K ∈ K,K ⊆ A} by observing
that T (K) = P (X ∈ K) = PX(K).

It can be checked that T satisfies the following basic properties.

1. 0 ≤ T ≤ 1, T (∅) = 0.

2. If Kn and K ∈ K and Kn ց K, then T (Kn)ց T (K).

3. T is alternating of infinite order, that is, T is monotone increasing
on K, and for any K1,K2, ...,Kn, n ≥ 2,

T

(
n⋂

i=1

Ki

)
≤

∑

∅ 6=I⊆{1,2,...,n}

(−1)|I|+1T

(
⋃

i∈I

Ki

)

A set-function T, defined on K and satisfying the properties above is
called a capacity functional. The upshot is that such a capacity func-
tional determines uniquely a probability measure on B(F), that is, the
probability law of some random closed set on Rd. This remarkable result
is due to Choquet. A probabilistic proof of it can be found in [139]. Here
is the Choquet Theorem.

Theorem 9.2.2 If T : K → R is a capacity functional, then there exists
a unique probability measure Q on B(F) such that Q(FK) = T (K) for all
K ∈ K.

9.3 Possibility measures

“Events can be improbable but possible.” Thus, from a common sense
point of view, possibility is a different type of uncertainty than chance.
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The qualitative concept of chance has been quantified by probability mea-
sures, which are set-functions satisfying Kolmogorov’s axioms. In view of
potential applications in the field of artificial intelligence, we are facing
the same foundational problem, namely how to axiomatize quantitatively
the concept of possibility.

Numerical degrees of possibility are detailed specifications of the com-
mon sense concept of possibility. This is somewhat similar to human con-
trol strategies of, say, dynamical systems. For example, consider the prob-
lem of controlling a pendulum. Its mathematical model is discussed in
Section 13.1, and in particular how control laws for the pendulum can
be developed from this model. But human operators can successfully bal-
ance the pendulum without the knowledge of the mathematical model.
This is due to the fact that they use more detailed rules than the ones
for the mathematical model, in which linguistic terms like “positive” and
“negative”, are specified further like “positive small”, “positive medium”,
“positive big”. These are examples of coarsenings in gathering perception-
based information. See Chapter 13 for further details.

The following situation in probability theory is subtle. Let X be a
random variable uniformly distributed on the unit interval [0, 1]. That
is, consider the experiment of picking at random a number in [0, 1]. Any
x ∈ [0, 1] is a possible value for X, but for any x, P (X = x) = 0. The
distribution function of X is F (x) = P (X ≤ x) is

F (x) =





0 for x < 0
x for 0 ≤ x < 1
1 for x ≥ 1

The derivative f of F, which exists almost everywhere except 0 and 1, is
f(x) = 1 for x ∈ (0, 1) and 0 for x < 0 and x > 1. Now, f(x) 6= P (X = x),
but since any x in [0, 1] is possible, f(x) could be used to denote the
possibility of the value x. Clearly, if A ⊆ [0, 1], then the possibility for
X ∈ A should be 1, that is Poss(X ∈ A) = supx∈A Poss(X = x).

We now proceed to elaborate on coarsening as a perception-based
data-gathering process. If we look at look-up tables in the successful field
of fuzzy control, we often see rules containing linguistic labels such as
“small”, “medium”, and “large”. This is a coarsening of the underlying
variable, say, distance to some referential location. Being unable to mea-
sure distance accurately with the naked eye, humans try to extract useful
information by considering some simple schemes over the correct measure-
ments. These fuzzy sets “small”, “medium”, and “large” form a fuzzy par-
tition of the range of the variable under consideration. In stronger terms,
when you cannot measure exactly the values of a variable X, coarsen it.

Let us specify this in a familiar context of statistics in which, to make
matters simple, we will consider only crisp sets. Extensions to the fuzzy
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case require the theory of random fuzzy sets.
Suppose we perform a random experiment to gain information about

some random variable X of interest. Suppose, however, X cannot be ob-
served directly or with accuracy, but instead, its values can only be located
in some regions. This is referred to as coarse data in recent statistics, such
as censored or missing data in survival analysis, and in biostatistics. See,
for example, [102].

A simple situation involving this type of imprecise data is this. Sup-
pose the random variable X of interest cannot be observed precisely,
but instead, its outcomes can be located in known subsets of a space
U, say U1, U2, ..., Um, a measurable partition of U. Inference about its un-
known density g(x|θ), θ ∈ Θ, from coarse data is desirable. The partition
U1, U2, ..., Um is a coarsening of X. Specifically, this coarsening gives rise
to the observable nonempty random set S : Ω→ {U1, U2, ..., Um}, defined
on some probability space (Ω,A, P ). Since each X(ω) is observed to be in
some Ui, the random set S is an almost sure selector of X and it has the
density given by

f(Ui) = P (S = Ui) =

∫

Ui

g(x|θ)dx

A coarsening of X is a nonempty random set S such that P (X ∈ S) = 1.
See Definition 10.1.2.

Let S be a coarsening of X on a finite set U. If S(ω) ∩ A 6= ∅, then
all we can say is that “it is possible that A occurs”. A plausible way to
quantify these degrees of possibility is to take P (S(ω) ∩ A 6= ∅. First, it
seems to be consistent with common sense that possibilities are larger than
probabilities since possibilities tend to represent an optimistic attitude as
opposed to beliefs. (See Chapter 10.) This is indeed the case since as an
almost sure selector, we clearly have {X ∈ A} ⊆ {S ∩A 6= ∅}, and hence

P ({X ∈ A}) ≤ P ({S ∩ A 6= ∅})

Now observe that the set function T (A) = P ({S ∩ A 6= ∅}) characterizes
the distribution of a random set. However, not all such T can be used to
model possibility measures.

According to Zadeh, a subjective concept of “possibility distributions”
is primitive: π : U → [0, 1], just like a membership function of a fuzzy
concept. From π, possibilities of events could be derived. Now, in our
coarsening scheme, there exists a canonical random set which does just
that. This canonical set has its roots in an early work of Goodman [78]
concerning relations between fuzzy sets and random sets.

Here is the analysis. From T (A) = P ({S ∩A 6= ∅}), we see that when
A = {u}, T ({u}) = P (u ∈ S) = π(u), the covering function of the random
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set S, where π : U = {u1, u2, ..., uk} → [0, 1]. Given π, there exist many
random sets S admitting π as their common covering function.

Let Vi(ω) = S(ω)(ui), i = 1, 2, ..., k, where, again, for A ⊆ U, we write
A(u) for the value of the indicator function of the set A at u. Each Vi is
a {0,1}-valued random variable with

P (Vi = 1) = P (ui ∈ S) = µ(ui)

The distribution of the random vector V = (V1, V2, ..., Vk) is completely
determined by PS and vice versa. Indeed, for any x = (x1, x2, ..., xk) ∈
{0, 1}k, we have P (V = x) = P (X = B), where B = {ui ∈ U : xi = 1}.
The distribution function of Vi is

Fi(y) =





0 if y < 0
1− π(ui) if 0 ≤ y < 1
1 if y ≥ 1

Thus, given the marginals Fi, the joint distribution function F of V is of
the form

F (y1, y2, ..., yk) = C(F1(y1), F2(y2), ..., Fk(yk))

where C is a k-copula, according to Sklar’s theorem [155]. Examples of
2-copulas are xy, x ∧ y, and (x+ y − 1) ∨ 0.

For C(y1, y2, ..., yk) =
k∏

i=1

yi, we obtain the well-known Poisson sam-

pling design with density

f(A) =
∏

j∈A

π(j)
∏

j∈A′

(1 − π(j))

For C(y1, y2, ..., yk) = ∧yj , we get

f(A) =
∑

B⊆A

(−1)|A−B|[1−
∨
{π(j) : j ∈ B′}]

which is the density of the following nested random set. Let α : Ω→ [0, 1]
be a uniformly distributed random variable. Let S(ω) = {u ∈ U : π(u) ≥
α(ω)}. This random set is referred to as the canonical random set
induced by π. Then π(u) = P (u ∈ S), and moreover

P (S ∩B 6= ∅) = P

({
ω : α(ω) ≤

∨

u∈B

π(u)

})
=
∨

u∈B

π(u)

Using this canonical random set, which is a coarsening scheme, we thus
arrive at Zadeh’s axioms for possibility measures.
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Definition 9.3.1 A possibility measure on a set U is a function π :
2U → [0, 1] satisfying

1. π(∅) = 0, π(U) = 1,

2. For any family {Ai}i∈I of subsets of U, π(∪i∈I(Ai) = supi∈I π(Ai).

Of course, the restriction of π to one-element subsets gives a map U →
[0, 1] that is the possibility distribution associated with π. The functions
π and f clearly determine one another.

At the application level, a possibility distribution is specified, and the
axioms of possibility measures provide the basis for calculations. This spec-
ification of possibility distributions is somewhat similar to that of inclusion
or covering functions in survey sampling that leads to desired sampling de-
signs.

The example above of the canonical random set S is obtained by ran-
domizing the α-level sets of the possibility distribution. Of course there
are many other random sets that have the same covering function. This is
completely similar to sampling designs with given inclusion function. See
Section 6.5.

Let ϕ : U → R. The function T : 2U → R such that T (K) =
supx∈K ϕ(x) is very special. It is maxitive in the sense that for any A1

and A2, T (A1 ∪ A2) = max{T (A1), T (A2)}. Such set-functions are neces-
sarily alternating of infinite order. This result is interesting in its own
right.

Theorem 9.3.2 Let C be a nonempty set of subsets of a nonempty set
U containing ∅ and stable under finite intersections and unions. Let T :
C → R be maxitive. That is, let T (A ∪ B) = max{T (A), T (B)}. Then for
elements A1, A2, ..., An of C,

T

(
n⋂

i=1

Ai

)
≤

∑

∅ 6=J⊆{1,2,...,n}

(−1)|J|+1T

(
⋃

i∈J

Ai

)

That is, T is alternating of infinite order.

Proof. Since A ⊆ B implies T (A ∪ B) = T (B) = max{T (A), T (B)},
T is monotone. Note that for any A1, A2, ..., An in C,

T

(
n⋃

i=1

Ai

)
= max{T (Ai), i = 1, 2, ..., n}

Let I = {1, 2, ..., n}.We need to show that

T

(
⋂

i∈I

Ai

)
≤

∑

∅ 6=J⊆I

(−1)|J|+1T

(
⋃

i∈I

Aj

)
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We may assume that T (A1) ≤ T (A2) ≤ ... ≤ T (An). Let I(i) be the set of
subsets of {1, 2, , , i} that contain i. Then 2I is the disjoint union ∪i∈II(i).
Note that

∑
∅ 6=J⊆I(i)(−1)|J|+1 = 0 for i ≥ 2, and = 1 for i = 1. Therefore,

∑

∅ 6=J⊆I

(−1)|J|+1T

(
⋃

i∈I

Aj

)
=

∑

i∈I

∑

∅ 6=J⊆I(i)

(−1)|J|+1T (
⋃

j∈J

Aj)

=
∑

i∈I

T (Ai)
∑

∅ 6=J⊆I(i)

(−1)|J|+1

= T (A1)

≥ T

(
⋂

i∈I

Ai

)

We will elaborate more on maxitive set-functions because possibility
measures are special cases of them.

Viewing a possibility distribution on Rd as a covering function of a
canonical random closed set on Rd, we see that the “uniform distribution”
on R, f(x) = 1 for x ∈ R, which is an “improper” probability density
in Bayesian statistics, is in fact a possibility distribution since it is the
covering function of the degenerate random closed set S ≡ R on R. In
fact, for all ∅ 6= K ⊆ K(R), T (K) = P (S ∩K 6= ∅) = 1. More generally,
while possibility distributions are not necessarily probability densities of
random variables, they determine distributions of random sets.

While in everyday language, we usually talk about something being
possible, it was Zadeh [234] who laid down the numerical concept of possi-
bility. We have provided a connection between possibility and probability
in which degrees of possibility can be nonzero while probabilities are zero.
Also, as set-functions, possibilities of events exhibit the maxitivity prop-
erty, as opposed to additivity of probability measures. This reminds us of
a familiar situation in analysis where we seek finer scales of measurements
for the sizes of sets which have measure zero, such as various concepts
of dimension in fractal geometry. These set-functions are maxitive and
possibility measures are special maxitive set-functions.

9.3.1 Measures of noncompactness

Kuratowski [13],[6] introduced a measure of noncompactness in topol-
ogy as follows. Let U be a metric space with metric δ. Recall that the diam-
eter of a subset A of U is δ(A) = sup{δ(x, y) : x, y ∈ A}. Let α : 2U → R+

be defined by α(A) = inf{ε > 0 : A can be covered by a finite number
of sets of diameter smaller than ε}. It is well known that this measure
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of noncompactness is maxitive. Note that for A ⊆ Rd, α(A) = 0 or ∞
according to whether or not A is bounded. But for an infinite dimensional
Banach space, α can take any value between 0 and ∞.

Here is an example that can be used to investigate the Choquet theorem
on nonlocally compact Polish spaces. Let U be the closed unit ball of the
Hilbert space ℓ2, where

ℓ2 = {x = (xn, n ≥ 1) : ||x||2 =
∞∑

n=1

x2n <∞}

U = {x ∈ ℓ2 : ||x|| ≤ 1}

Let G denote the class of open sets of U, and B(x, r) = {y ∈ U : ‖x− y‖
< r}. For A ∈ G, let αn = inf{r > 0 : A ⊆

n⋃
i=1

B(xi, r)}. Since (αn(A), n ≥
1) is a decreasing sequence, we note that α(A) = limn→∞ αn(A) for all
A ∈ G.

Note that no αn is maxitive. Indeed, let {B(xi, r) : r > 0, i =

1, 2, ..., 2n} be a family of 2n disjoint balls in U. Let A =
n⋃

i=1

B(xi, r),

and B =
2n⋃
i=1

B(xi, r). Then αn(A) = αn(B) = r, but αn(A ∪B) = 2r.

However, α is maxitive. Indeed, for A,B ∈ G, we have α2n(A ∪ B) ≤
max{αn(A), αn(B)}, n ≥ 1. Thus α(A ∪B) ≤ max{α(A), α(B)}, yielding
α(A ∪B) = max{α(A), α(B)}.

9.3.2 Fractal dimensions

First, we consider various concepts of dimension in the fractal geometry of
Rd [58]. For A 6= ∅ and bounded in Rd, let Nr(A) denote the smallest num-
ber of sets of diameter r that cover A. Then the upper box-dimension
of A is defined to be

dimB(A) = lim sup
logNr(A)

− log r

A more familiar concept of dimension is that of Hausdorff, which is defined
in terms of measures. We say that a finite or countable collection of subsets
(Un, n ≥ 1) is an r-cover of a set A if it covers A with diameters δ(An) ≤ r
for all n.

For s ≥ 0 and r > 0, let

Hs(A)
r = inf

{
∞∑

n=1

(δ(Un)s : {Un : n ≥ 1}) is a cover of A

}
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Since H
s(A)
r decreases as r decreases, we let Hs(A) = limr→0H

s
r (A).

The Hausdorff dimension of A is defined in terms of the s-Hausdorff
measures

dimH(A) = inf{s : Hs(A) = 0 = sup{s : Hs(A) =∞}

Another similar concept of dimension is the packing dimension. For
r > 0, a finite or countable collection of disjoint closed balls Bn of radii at
most r with center in A is called an r-packing of A. For r > 0 and s ≥ 0,
let

P s
r (A) = sup

{
∞∑

n=1

(δ(Bn))s) : {Bn, n ≥ 1} is an r-packing of A

}

Again, P s
r decreases as δ decreases, and we let P s

0 (A) = limr→0 P
s
r (A),

and the s-packing measure be

P s(A) = inf

{
∞∑

n=1

P s
0 (En) : A ⊆

∞⋃

i=1

En

}

The packing measure of A is

dimP (A) = inf {s : P s(A) = 0} = sup {s : P s(A) =∞}

All three dimensions above, as set functions are maxitive (or finitely
stable in the terminology of fractal geometry). Moreover, the Hausdorff
and packing dimensions are countably stable, that is,

dim

(
∞⋃

n=1

An

)
= sup

1≤n<∞
dim(An)

(or σ-maxitive), where dim denotes either the Hausdorff or packing di-
mension. This stronger property implies that countable sets of Rd have
Hausdorff and packing dimensions zero. The proof of the properties above
will be given next, as a consequence of a general method for constructing
maxitive set-functions.

9.3.3 Information measures

We indicate here some limiting procedures leading to the max operation. In
the study of generalized information measures of Kampé de Fériet [157],
the justification of the minimum operation as a composition law comes
from the study of the convergence of a sequence of Wiener-Shannon in-
formation measures. Specifically, let Pn be a sequence of probability mea-
sures on (Ω,A), and εn > 0 with εn → 0 as n→∞. We are interested in
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limn→∞(−εn logPn(A)) for A ∈ A. The reason is this. Suppose this limit
exists for each A. Then J(A) = limn→∞(−εn logPn(A)) can be taken as an
information measure. It turns out that J admits the idempotent operation
min, that is, J(A ∪B) = min(J(A), J(B)) if the sequence of submeasures
P εn
n converges pointwise to a σ-maxitive set function I.

Here is an example where such a situation happens. Let (Ω,A, P ) be
a probability space. Let f : Ω → R+ be measurable and such that f ∈
L∞(Ω,A, P ). Since P is a finite measure and f ∈ L∞(Ω,A, P ), it follows
that f ∈ Lp(Ω,A, P ) for all p > 0. Here

(||f ||p)
p

=

∫

Ω

|f |pdP ≤ ||f ||p∞
∫
dP = ||f ||p∞

where
||f ||∞ = inf{α ≥: P{ω : |f(ω) > 0} = 0

Consider the sequence of probability measures defined by

Pn(A) =

(∫

A

|f |ndP
)
/

∫

Ω

|f |ndP

Then

(Pn(A))1/n =
||f · 1A||n
||f ||n

→ ||f · 1A||∞||f ||∞
as n→∞. (1A is the indicator function of A.) Now, the set function limit
τ (A) = ||f · 1A||∞ is maxitive, in fact is σ-maxitive. This can be seen as
follows.

τ (A) = inf{t ≥ 0 : P (A ∩ (f > t)) = 0

= inf{t ≥ 0 : A ∈ Wt}

where

Wt = {A ∈ A : P (A ∩ (f > t)) = 0}
= {A ∈ A : A ∩ (f > t) ∈ W}

where
W = {A ∈ A : P (A) = 0}

Note that W and Wt are σ-ideals in A, that is, W is a nonempty subset
of A, stable under countable unions, ∅ ∈ W , and hereditary (if A ∈ W
and B ∈ A with B ⊆ A, then B ∈ W). Moreover, the family of σ-
ideals Wt is increasing in t. As such, τ (A) = inf{t ≥ 0 : A ∈ Wt} is
σ-maxitive (inf ∅ =∞). Indeed, if A ⊆ B, then by properties of σ-ideals,
{t : B ∈ Wt} ⊆ {t : t ∈ Wt}, and hence τ is monotone increasing.
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Next, let An ∈ A. Then by monotonicity of τ, we have

τ

(
⋃

n

An ≥ sup
n
τ (An)

)

Let s > supn τ (An). For any n ≥ 1, τ(An) < s implies that An ∈ W
since the family Wt for t > 0 is increasing. Thus

⋃
n
An ∈ Ws, resulting in

τ

(⋃
n
An

)
≤ s.

This shows that if Wt, t ≥ 0, is an increasing family of σ-ideals of
A, then the set function on A defined by V (A) = inf{t ≥ 0 : A ∈ Wt} is
necessarily σ-maxitive. As an application, if we look back at the Hausdorff
dimension, we see that, with Wt = {A : Ht(A) = 0}, the family Wt is an
increasing family of σ-ideals in the power set of Rd, and as such, the
Hausdorff dimension is σ-maxitive, and hence alternating of infinite order.

Of course, the situation is similar for maxitive set-functions. If τ : A →
R+, τ (∅) = 0, and maxitive, then for each t ≥ 0,Mt = {A : τ(A) ≤ t} is
an ideal in A. Moreover, we have τ (A) = inf{t ≥ 0 : A ∈Mt}. Conversely,
let (Wt, t ≥ 0) be an increasing family of ideals of A. Then the set-function
on A defined by τ(A) = inf{t ≥ 0 : A ∈ Wt} is maxitive. Note that
(Wt, t ≥ 0) might be different from (Mt, t ≥ 0). They coincide if and only
if (Wt, t ≥ 0) is right continuous, that is Wt =

⋂
s≥t

Ws. Finally, note that

if the ideal W in the construction of Wt = {A : A ∩ (f > 0) ∈ W} is ∅,
then

τ (A) = inf{t ≥ 0 : A ∩ f > t) = ∅} = sup
x∈A

f(x)

Maxitive set-functions of the form τ (A) = supA f(x), where f : Ω → R+

are very special, since they are maxitive in a strong sense, namely, for any
index set I and (Ai, i ∈ I),

τ

(
⋃

i∈I

Ai

)
= sup

i∈I
τ (Ai)

When τ(Ω) = 1, such set-functions are of course possibility measures as
defined earlier, and are also called idempotent probabilities [177].

Another way of justifying the maximum operator in possibility theory
is to study limits of set-functions. In the generalized information theory of
Kampé de Fériet [157], the operation min is justified as the composition
operation of the limit of a sequence of Wiener–Shannon information mea-
sures. The situation for possibility measure is completely dual. It turns out
that possibility measures are formally limits, in a certain sense, of families
of probability measures.
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We mention here briefly the occurrence of maxitive set-functions in two
fields of analysis, namely idempotent analysis and large deviation
theory [8], [37], [38].

If we look at a situation in which we have a sequence of probability
measures Pn on (Ω,A), and we wish to find limn→∞(Pn(A))1/n for some
set A, then this is the same as looking as limn→∞

1
n logPn(A).

Recall that the purpose of the study of large deviations in probability
theory is to find the asymptotic rate of convergence of a sequence of proba-
bility measures Pn of interest. Typical situations are as follows. For almost
all sets A, Pn(A) tends to zero exponentially fast, and for particular sets
A, (−1/n) logPn(A) has a limit, which is written as the infimum of a rate
function I over A.

The general set-up is this. Let Ω be a complete, separable metric space,
and A its Borel σ-field. A family (Pε : ε > 0) of probability measures on
(Ω,A) is said to obey the large deviation principle if there exists a lower
semicontinuous function I : Ω→ [0,∞] called the rate function such that

1. For α > 0, {x ∈ Ω : I(x) ≤ α} is compact

2. For each closed set F of Ω, lim supε→0 ε logPε(F ) ≤ − infF I(ω)

3. For each open set G of Ω, lim infε→0 ε logPε(G) ≥ − infG I(ω)

It is clear that the set function τ (A) = − infω∈A I(ω) = supω∈A φ(ω)
on A, where φ(ω) = −I(ω), is maxitive with “density” φ. Note that τ
takes negative values.

This large deviation principle can be expressed as a nonnegative max-
itive set-function M(A) = supω∈A(e−I(ω)) as

1. lim supε→0(Pε(F ))ε ≤M(F ),

2. lim infε→0(Pε(G))ε ≥M(G).

This maxitive set function M is called a deviability [177], and is viewed
as a limit of probabilities. In other words, the family (Pε, ε > 0) satisfying
the large deviation principle with rate function I is the same as “large
deviation convergence of the Pε to M”. Note that I is lower semicontinu-
ous and hence φ(ω) = e−I(ω) is upper semicontinuous with values in [0, 1].
Thus M is a capacity functional of some random closed set S on Ω. The
conditions above remind us of the weak convergence of probability mea-
sures [20] in which, if Pε and M are replaced by probability measures, the
conditions are equivalent. The large deviation principle can be viewed as
a sort of generalization of weak convergence of probability measures, and
possibility measures appear as limits of large deviation convergence.
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A “limit” set-function like M is not additive with respect to the ad-
dition operation on R, but it is “additive” with respective to the idem-
potent operation max . It turns out that this is precisely the framework
of idempotent analysis in which, mainly in view of optimization theory,
the algebraic structure (R+,+, ·, 0, 1) is replaced by the idempotent semi-
ring (R+ ∪ {−∞},∨,+,−∞, 1). The semiring is idempotent since ∨ is an
idempotent operation.

9.4 Exercises

1. Let (Ω,A, P ) be a probability space, n a positive integer, A1, ..., An ∈
A, and I = {1, 2, ..., n}. Prove that

(a) P (∪i∈IAi) =
∑

∅ 6=J⊆I(−1)|J|+1P (∩i∈JAi).

(b) P (∩i∈IAi) =
∑

∅ 6=J⊆I(−1)|J|+1P (∪i∈JAi).

2. ⋆Let U be a finite set. Let S be a random set, defined on (Ω,A, P )
with values in 2U\{∅}. Consider T : 2U → [0, 1] defined by T (A) =
P (S ∩ A 6= ∅). Verify that

(a) T is monotone increasing.

(b) T (∅) = 0 and T (U) = 1.

(c) Let

∆0(A0) = 1− T (A0)

∆1(A0, A1) = T (A0 ∪A1)− T (A0)

∆2(A0;A1, A2) = ∆1(A0;A1)−∆1(A0 ∪ A2;A1)

...

∆n(A0;A1, , , An) = ∆n−1(A0;A1, ..., An−1)

−∆n−1(A0 ∪An;A1, ..., An−1)

Then ∆n ≥ 0 for all n ≥ 1.

3. ⋆Let S be a random set on a finite set U, and X be an almost
sure selector of S. See Definition 10.1.2. Let F (A) = P (S ⊆ A) and
PX(A) = P (X ∈ A). Show that for all A ⊆ U, F (A) ≤ PX(A).

4. Show that the intersection of an arbitrary family of σ-fields on a set
is a σ-field.

5. Verify that the Borel σ-field of R is generated by open intervals.
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6. ⋆Let (Ω,A, µ) be a measure space. Verify the following:

(a) µ is monotone increasing.

(b) µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

(c) If An is an increasing sequence of elements of A, then

µ

(
∞⋃

n=1

An

)
= lim

n→∞
µ (An)

(d) Let B ∈ A. Then the function ν(A) = µ(A ∩ B) is a measure
on (Ω,A).

7. ⋆*Let Ω be a set and F the set of all finite subsets of Ω. For I and
J in F , let

M(I, J) = {A : A ⊆ Ω, I ⊆ A,A ∩ J = ∅}
Let M be the σ-field generated by the M(I, J)’s. Let π be a pos-
sibility measure on 2Ω. Show that there exists a unique probability
measure P on (Ω,M) such that for I ∈ F

π(I) = P{A : A ∩ I 6= ∅}
Hint: Use Mathéron’s theorem in [139].

8. ⋆*Here is another probabilistic interpretation of possibility mea-
sures. Let f be a possibility distribution on Rn. Suppose that f is
upper semicontinuous, that is, that for any real number α, {x ∈ Rn :
f(x) ≥ α} is a closed subset of Rn. Let F be the set of all closed
subsets of Rn and C the Borel σ-field of F viewed as a topological
space. Let π be the possibility measure associated with f . Show that
there exists a unique probability measure P on (F , C) such that for
any compact set K of Rn

π(K) = P{F : F ∈ F , F ∩K 6= ∅}
Hint: Use Choquet’s theorem in [139].

9. ⋆*Let S be a random set, defined on a probability space (Ω,A, P )
and taking values in the Borel σ-field of R. Let µ(S) denote the
Lebesgue measure of S. Under suitable measurability conditions,
show that for k ≥ 1 and π(x1, x2, ..., xk) = P{ω : {x1, x2, ..., xk} ⊆
S(ω)},

E(µ(S))k =

∫

Rk

π(x1, x2, ..., xk)dµ(x1, x2, ..., xk)

Hint: See Robbins [180].
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10. ⋆Let π be a possibility measure on U . Show that for A ⊆ U ,

π(A) ∨ π(A′) = 1

11. ⋆Let π be a possibility measure on U . Define T : 2U → [0, 1] by

T (A) = 1− π(A′)

(T is called a necessity measure.) Verify that

(a) T (∅) = 0, T (U) = 1.

(b) For any index set I, T (
⋂

I Ai) = infI T (Ai).

12. Let Ai, i = 1, 2, . . . , n be subsets of U such that A1 ⊆ A2 . . . ⊆ An.
For arbitrary subsets A and B of U , let i1 (respectively, i2) be the
largest integer such that Ai1 ⊆ A (respectively, Ai2 ⊆ B). Show that
Ai ⊆ A ∩B if and only if i ≤ i1 ∧ i2.

13. Let π be a possibility measure on U . For A,B ⊆ U , show that

(a) if A ⊆ B then π(A) ≤ π(B);

(b) if α(A) = 1− π(A′), then α(A) ≤ π(A).

14. Let π : U × V → [0, 1]. Show that for (u0, v0) ∈ U × V ,

π(u0, v0) ≤
(
∨

v

π(u0, v)

)
∧
(
∨

u

π(u, v0)

)

15. Let π : U × V → [0, 1] be a joint possibility distribution of (X,Y ).

(a) Suppose π(u, v) = min{πY (v), π(u|v)}. Show that if X and Y
are independent in the possibilistic sense, that is,

π(u|v) = πX(u) and π(v|u) = πY (v)

then X and Y are noninteractive. That is, they satisfy

π(u, v) = πX(u) ∧ πY (v)

(b) Suppose π(u, v) = πX(u)∧πY (v) and π(u, v) = πY (v)∧π(u|v).
Show that π(u|v) = πX(u) if πX(u) < πY (v) and π(u|v) ∈
[πX(u), 1] if πX(u) ≥ πY (v).
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(c) Define

π(u|v) =






π(u, v) if πX(u) ≤ πY (v)

π(u, v)
πX(u)

πY (v)
if πX(u) > πY (v)

Show that if π(u, v) = πX(u)∧πY (v), then π(u|v) = πX(u) for
all u and v.

16. ⋆Let (Ω,A, P ) be a probability space. For c > 0, let Ic(A) =
−c logP (A). Let

Fc : [0,∞]× [0,∞]→ [0,∞]

be given by
Fc(x, y) = 0 ∨ log(e−x/c + e−y/c)

(a) Show that if A ∩B = ∅, then

Ic(A ∪B) = Fc(Ic(A), Ic(B))

(b) Show that
lim
cց0

Fc(x, y) = x ∧ y

(c) Let I : A → [0,∞]. Show that if I(A ∪ B) = I(A) ∧ I(B) for
A ∩B = ∅, then the same holds for arbitrary A and B.
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Chapter 10

PARTIAL

KNOWLEDGE AND

BELIEF FUNCTIONS

This chapter is about mathematical tools for handling partial knowledge.
We focus on three topics: some special types of nonadditive set functions
with a special emphasis on belief functions; rough sets, which we present
in an algebraic spirit and at the most basic level; and conditional events,
where a brief survey is given.

10.1 Motivation

In the context of statistics, the complete knowledge about a random vari-
able is its probability distribution. Thus, by partial, or imprecise, knowl-
edge in a probabilistic sense, we mean the partial specification of a prob-
ability distribution of interest. The distribution may be known only to lie
is some known class of distributions.

For example, consider a box containing 30 red balls and 60 other balls,
some of which are white and the rest are black. A ball is drawn from the
box. Suppose the payoffs for getting a red, black, and white ball are $10,
$20, and $30, respectively. What is the expected payoff? Of course there is
not enough information to answer this question in the classical way since
we do not know the probability distribution of the red, white, and black
balls. We do not know the probability of getting a white ball, for example.
We do however have a set of probability densities to which the true density
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must belong. It is given in the following table.

U red black white
fk 30/90 k/90 (60− k)/90

There are 61 of these densities, and from the information we have, any
one of these is possible. In this example, imprecision arises since we can
only specify partially the true density. It is one of the 61 just described. In
such an imprecise model, what can be learned about the true density from
knowledge of the class of 61 possible densities to which the true density
belongs?

Partial knowledge arises often from the nature of the random exper-
iment or phenomena under study. For example, each time we perform a
random experiment, we cannot see the exact outcome, but instead, we
may be able to locate the outcome in some set containing it. This type of
data is referred to as coarse data. A mathematical description of such
a situation was given by Dempster in [39]. Let (Ω,A, P ) be a probability
space, a mathematical model for a random experiment with outcomes in
Ω. Let S be a mapping, defined on Ω with values in the power set 2U

of some set U. Let U be a σ-field of subsets of U. If S took values in U
and was measurable, then PS−1 : U → [0, 1] is the associated probability
measure on U. But S takes values in 2U , and it is not clear how to assign
probabilities on U. Suppose that {ω ∈ Ω : S(ω) ⊆ A} ∈ A. Then we have
the function

P∗ : U → [0, 1] : A→ P (S ⊆ A) = P ({ω ∈ Ω : S(ω) ∈ A})

called the lower probability induced by P , and similarly the function

P ∗ : U → [0, 1] : A→ P (S ∩A 6= ∅) = P ({ω ∈ Ω : S(ω) ∩ A 6= ∅})

called the upper probability induced by P.

Proposition 10.1.1 The following hold.

1. If for all ω, S(ω) 6= ∅, then P∗(∅) = 0.

2. P∗(U) = 1

3. P∗ is monotone increasing.

4. P ∗(A) = 1− P∗(A′).

5. P∗(A) ≤ P ∗(A).

6. P ∗ and P∗ are not necessarily additive.
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Although S(ω) = ∅ is possible, this is usually excluded. When S is
viewed as a random set, the lower probability P∗ plays the role of the
distribution function of S.

P∗ has an important property, which we list now but defer proving
until the next section. We assume that U is finite. Let S ⊆ 2U . Then

P∗(∪A∈SA) ≥
∑

∅ 6=T ⊆S

(−1)|T |+1P∗(∩A∈T A)

This property is called monotone of infinite order. In this situation,
it is a stronger property than monotonicity. If S is limited to k or fewer
elements, then it is called monotone of order k. The function P ∗ satisfies
a dual to this called alternating of infinite order, and alternating
of order k, respectively. These concepts will be discussed thoroughly in
Section 10.3.

The lower probability P∗(A) is interpreted as a lower bound on the
likelihood of an event A, or more generally, as the degree of belief in
A. The interval [P∗(A), P ∗(A)] represents the imprecision about beliefs.
It is the work of Dempster [39] that inspired Shafer [189] to axiomatize
a general theory of belief functions in 1976. This theory is known now as
the Dempster-Shafer theory of evidence. We will present this theory in the
next sections. As pointed out by Nguyen [156], the theory of belief func-
tions, even in its abstract formulation, can be formulated in the context
of random sets. Specifically, a belief function, such as a lower probability,
is the distribution of some random set. Like probability measures, belief
functions arise in the context of perception-based information. Let S be a
coarsening of X on U. For A ⊆ U, since we cannot observe X(ω), we are
uncertain about the occurrence of A. If S(ω) ⊆ A, then clearly A occurs.
So from a pessimistic viewpoint, we quantify our degree of belief in the
occurrence of A by P (S ⊆ A), which is less than the actual probability
P (X ∈ A).

To set the scene, let (Ω,A, P ) be a probability space, U finite, and
S : Ω→ 2U . If for each A ∈ 2U , S−1(A) ∈ A, then S is called a random
set (as opposed to being called a random variable into the measurable

space (2U , 22
U

)). See Definition 9.2.1. This induces a density f on the
finite set 2U via f(A) = PS−1(A), and the corresponding measure on 2U .
But the main object of interest to us is the distribution function

F : 2U → [0, 1] : A→
∑

B⊆A

PS−1(B) =
∑

B⊆A

f(B)

For customary reasons, it is desirable to require that F (∅) = 0, and cor-
respondingly that f(∅) = 0. So when viewed as random sets, this require-
ment is that PS−1(∅) = 0. As we will see, f and F uniquely determine
each other. Such functions F are instances of belief functions.
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A quantitative concept of belief can also be justified in the context of
coarse data as follows. As usual, let (Ω,A, P ) be a probability space and
U a finite set

Definition 10.1.2 Let X : Ω → U be a random variable. A coarsening

of X is a nonempty random set S on U, that is, a random variable S :
Ω → 2U , such that P (X ∈ S) = 1. X is called an almost sure selector

of S.

This means that P{ω ∈ Ω : X(ω) ∈ S(ω)} = 1, so S(ω) 6= ∅. Thus S
is a nonempty random set. Let F be the distribution function of S. Then
F is a belief function. Any possible probability law Q of X on U satisfies
F ≤ Q, that is, is an element of the core of F. So the core of F is a model
for the true probability of X on U. This is so because, if X is an almost
sure selector of S, then for all A ⊆ U,

{ω : S(ω) ⊆ A} ⊆ {ω : X(ω) ∈ A}

almost surely, so that

F (A) = P (S ⊆ A) ≤ P (X ∈ A) = PX−1(A)

10.2 Belief functions and incidence algebras

To give belief functions an axiomatic development and a convenient set-
ting, we study them in the context of the set of all functions 2U → R, and
develop some methods for computations with them. Such functions arise
in many contexts in reasoning under uncertainty. Some sets of such func-
tions of interest are belief functions, various measures, density functions
on 2U , possibility functions, and many others. Our purpose is to establish
some mathematical facts of use in the study and application of these kinds
of functions.

Definition 10.2.1 Let U be a finite set, and F = { f : 2U → R}. For f
and g ∈ F and r ∈ R, let

(f + g) (X) = f(X) + g(X)

(rf) (X) = r (f(X))

Proposition 10.2.2 F is a vector space over R.

The proof is routine and left as an exercise. One basis for F as a vector
space over R is the set of functions {fY : Y ⊆ U} defined by fY (Y ) = 1
and fY (X) = 0 if X 6= Y . Thus F has dimension 2|U| over R.
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Definition 10.2.3 Let A = A(U) be the set of functions
(
2U
)[2] → R,

where
(
2U
)[2]

= {(X,Y ) : X ⊆ Y ⊆ U}. On A define addition pointwise
and multiplication by the formula

(α ∗ β) (X,Y ) =
∑

X⊆Z⊆Y

α(X,Z)β(Z, Y )

A with these operations is the incidence algebra of U over the field R.

The definition can be made with U replaced by any locally finite par-
tially ordered set. Rota [182] proposed incidence algebras as a basis for
combinatorial theory from a unified point of view. They are widely used.
A good reference is [194].

Theorem 10.2.4 A is a ring with identity. Its identity is the function
given by δ(X,X) = 1 and δ(X,Y ) = 0 if X 6= Y .

Proof. Pointwise addition is the operation, which we denote by +,
given by (α+ β) (X,Y ) = α(X,Y ) + β(X,Y ). Let 0 denote the mapping
given by 0(X,Y ) = 0 for allX ⊆ Y. To show thatA is a ring, we must show
the following for all α, β, γ ∈ A. Their verifications are left as exercises.

1. α+ β = β + α

2. (α+ β) + γ = α+ (β + γ)

3. α+ 0 = α

4. For each α, there exists β such that α+ β = 0

5. (α ∗ β) ∗ γ = α ∗ (β ∗ γ)

6. α ∗ (β + γ) = (α ∗ β) + (α ∗ γ)

7. (α+ β) ∗ γ = (α ∗ γ) + (β ∗ γ)

8. α ∗ δ = δ ∗ α = α

Properties 1–4 say that A with the operation + is an Abelian group.
The ring A has an identity δ, but it is not true that every nonzero element
α has an inverse. That is, there does not necessarily exist for α an element
β such that α ∗ β = δ = β ∗ α. The following theorem characterizes those
elements that have inverses.
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Theorem 10.2.5 In the ring A, an element α has an inverse if and only
if for all X, α(X,X) 6= 0. Its inverse is given inductively by

α−1(X,X) =
1

α(X,X)

α−1(X,Y ) =
−1

α(X,X)

∑

X⊂Z⊆Y

α(X,Z)α−1(Z, Y ) if X ⊂ Y

Proof. If α has an inverse β, then (α ∗ β) (X,X) = α (X,X)β(X,X)
= δ(X,X) = 1, so that α(X,X) 6= 0. Now suppose that for all X, α(X,X)
6= 0. We need an element β such that β ∗ α = α ∗ β = δ. In particular,
we need (α ∗ β) (X,Y ) = 0 for X ⊂ Y and (α ∗ β) (Y, Y ) = 1. We define
β(X,Y ) inductively on the number of elements between X and Y. If that
number is 1, that is, if X = Y , let β(X,X) = 1/α(X,X), which is possible
since α(X,X) 6= 0. Assume that β(X,Z) has been defined for elements
X and Z such that the number of elements between the two is < n, and
suppose that the number of elements between X and Y is n > 1. We want

0 = (α ∗ β) (X,Y )

=
∑

X⊆Z⊆Y

α (X,Z)β(Z, Y )

= α (X,X)β(X,Y ) +
∑

X⊂Z⊆Y

α (X,Z)β(Z, Y )

This equation can be solved for β (X,Y ) since α (X,X) 6= 0, yielding

β(X,Y ) =
−1

α(Y, Y )

∑

X⊆Z⊂Y

β(X,Z)α(Z, Y )

Thus α ∗ β = δ. Similarly, there is an element γ such that γ ∗α = δ. Then

(γ ∗ α) ∗ β = δ ∗ β = β

= γ ∗ (α ∗ β) = γ ∗ δ = γ

The theorem follows.

Elements in a ring that have an inverse are called units. There are two
very special units in A.

• µ(X,Y ) = (−1)|Y −X| is the Möbius function.

• ξ(X,Y ) = 1 is the Zeta function.

The element ξ is easy to define: it is simply 1 everywhere. The element
µ is its inverse. These functions are of particular importance.
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Proposition 10.2.6 In the ring A, µ ∗ ξ = ξ ∗ µ = δ. That is, they are
inverses of each other.

Proof.

(µ ∗ ξ) (X,Y ) =
∑

X⊆Z⊆Y

(−1)|Z−X|ξ(Z, Y )

=
∑

X⊆Z⊆Y

(−1)|Z−X|

Now notice that
∑

X⊆Z⊆Y (−1)|Z−X| = δ(X,Y ). Similarly ξ ∗ µ = δ.

There is a natural operation on the elements of the vector space F
by the elements of the incidence algebra A. This operation is a common
one in combinatorics, and will simplify some of the computations we must
make later with belief functions.

Definition 10.2.7 For α ∈ A, f ∈ F , and X ∈ 2U , let

(f ∗ α) (X) =
∑

Z⊆X

f(Z)α(Z,X)

Proposition 10.2.8 F is a (right) module over the ring A. That is, for
α, β ∈ A, and f, g ∈ F ,

1. f ∗ δ = f

2. (f ∗ α) ∗ β = f ∗ (α ∗ β)

3. (f + g) ∗ α = f ∗ α+ g ∗ α

4. f ∗ (α+ β) = f ∗ α+ f ∗ β

The proof of this proposition is left as an exercise. It is a straightfor-
ward calculation. Notice that for f ∈ F , f ∗ ξ ∗ µ = f ∗ µ ∗ ξ = f.

With the operation f ∗ α, elements of A are linear transformations on
the real vector space F . So A is a ring of linear transformations on F . Since
U is finite, F is finite dimensional and of dimension

∣∣2U
∣∣, soA is isomorphic

to a subring of the ring of |2U | × |2U | real matrices. With a basis ordered
properly, these matrices are upper triangular. Such a matrix has an inverse
if and only if its diagonal entries are all non-zero. This corresponds to an
element α ∈ A having an inverse if and only if α(X,X) 6= 0. Following are
some observations, elementary but significant.

• For each r ∈ R, we identify r with the constant map r ∈ F defined
by r(X) = r for all X ∈ 2U .
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• A is an algebra over R via the embedding R → A : r 7→ rδ, where
rδ (X,Y ) = r (δ (X,Y )). That is, A is a vector space over R and
rδ ∗ α = α ∗ rδ. Note that (rδ ∗ α) (X,Y ) = r (α (X,Y )).

• For r ∈ R, f ∈ F and α ∈ A, r(f ∗ α) = (rf) ∗ α = f ∗ (rα).

• If α is a unit in A, then F → F : f → f ∗α and F → F : f → f ∗α−1

are one to one maps of F onto F , and are inverses of one another.

• F → F : f → f ∗ µ and F → F : f → f ∗ ξ are one to one maps of
F onto F , and are inverses of one another. This case is of particular
interest.

• f ∗ µ is called the Möbius inverse of f , or the Möbius inversion
of f .

10.3 Monotonicity

We begin now with some facts that will be of particular interest in the
study of belief functions and certain measures. Throughout this section,
U will be a finite set. Most of the results of this section are in [30].

Definition 10.3.1 Let k be ≥ 2. An element f ∈ F is monotone of

order k if for every nonempty subset S of 2U with |S| ≤ k,

f

( ⋃
X∈S

X

)
≥

∑

∅ 6=T ⊆S

(−1)|T |+1f

( ⋂
X∈T

X

)

f is monotone of infinite order if monotone of order k for all k.

This is a weakening of the Poincaré equality for probability mea-
sures. Of course, monotone of order k implies monotone of smaller order
≥ 2. Our first goal is to identify those f that are Möbius inversions of
maps that are monotone of order k. This is the same as identifying those
f such that f ∗ ξ is monotone of order k. There is an alternate form for
the right-hand side of the inequality above which is convenient to have.

Lemma 10.3.2 Let f : 2U → R. Let S be a subset of 2U . Let Γ = Γ (S)
be the set of subsets that are contained in at least one X in S. Then

∑

∅ 6=T ⊆S

(−1)|T |+1 (f ∗ ξ)
( ⋂

X∈T

X

)
=
∑

X∈Γ

f(X)
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Proof.

∑

∅ 6=T ⊆S

(−1)|T |+1 (f ∗ ξ)
( ⋂

X∈T

X

)
=

∑

∅ 6=T ⊆S

(−1)|T |+1
∑

Y ⊆∩X∈T X

f(Y )

This last expression is a linear combination of f(Y )′s, for Y a subset of
some elements of S. Fix Y. We will find the coefficient of f(Y ). Let TY be
the subset of S each of whose elements contains Y. Then for Y,

∑

∅ 6=T ⊆S
Y ⊆∩X∈T X

(−1)
|T |+1

f(Y ) =
∑

∅ 6=T ⊆TY

(−1)
|TY |+1

f(Y )

= f(Y )

The result follows.

Of course, the result could have been stated as

∑

∅ 6=T ⊆S

(−1)
|T |+1

f

( ⋂
X∈T

X

)
=
∑

X∈Γ

(f ∗ µ) (X)

The set Γ plays an important role in what follows.
Let X ⊆ U with |X | ≥ 2. Let S = {X − {x} : x ∈ X}. Then

•
⋃

Y ∈S
Y = X

• Every subset Y not X itself is uniquely the intersection of the sets
in a subset of S. In fact

Y =
⋂

x/∈Y

(X − {x})

• The set Γ for this S is precisely the subsets Y of X not X itself.

We will use these facts below.

Theorem 10.3.3 f ∗ ξ is monotone of order k if and only if for all A,C
with 2 ≤ |C| ≤ k, ∑

C⊆X⊆A

f(X) ≥ 0 .

Proof. Suppose f ∗ ξ is monotone of order k, and 2 ≤ |C| ≤ k. For
C ⊆ A, let S = {A− {u} : u ∈ C}. Then A = ∪V ∈SV, |S| = |C| , and

(f ∗ ξ) (A) = (f ∗ ξ)
( ⋃

V ∈S
V

)
≥
∑

Y ∈Γ

f(Y )
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where Γ is as in the lemma. The elements of Γ are those subsets of A that
do not contain some element of C, and thus are precisely those that do
not contain C. Thus

(f ∗ ξ) (A) =
∑

Y ⊆A

f(Y ) =
∑

C⊆X⊆A

f(X) +
∑

Y ∈Γ

f(Y )

Thus
∑

C⊆X⊆A f(X) ≥ 0.
Now suppose that

∑
C⊆X⊆A

f(X) ≥ 0 for all A,C with 2 ≤ |C| ≤ k. Let

∅ 6= S = {A1, A2, ..., Ak}. Then letting A =
k⋃

i=1

Ai ,

(f ∗ ξ) (A) =
∑

Y⊆A

f(Y ) =
∑

X⊆A,X/∈Γ

f(X) +
∑

Y ∈Γ

f(Y )

We need to show that
∑

X⊆A,X/∈Γ f(X) ≥ 0. To do this, we will write it
as disjoint sums of the form

∑
C⊆X⊆A

f(X) with 2 ≤ |C| ≤ k.
For i = 1, 2, ..., k, let

Ei = A−Ai = {xi1, ..., xini
}

A0 = A− ∪Ei

Eij = {xij , ..., xini
}

For each B /∈ Γ, let mi be the smallest integer such that ximi
∈ B,

i = 1, 2, ..., k. Let

C = {x1m1 , x2m2 , ..., xkmk
}

AC = E1m1 ∪ ... ∪ Ekmk
∪ A0

Then the intervals [C,AC ] consist of elements of Γ, and each B ∈ Γ is in
exactly one of these intervals. The theorem follows.

Again, the result could have been stated as f is monotone of order k
if and only if

∑
C⊆X⊆A

(f ∗ µ) (X) ≥ 0 for all A,C with 2 ≤ |C|≤ k. Taking

A = C, we get

Corollary 10.3.4 If f ∗ ξ is monotone of order k, then f(X) ≥ 0 for
2 ≤ |X | ≤ k.

The following corollary is of special note.

Corollary 10.3.5 f∗ξ is monotone of infinite order if and only if f(X) ≥
0 for 2 ≤ |X | .
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Proof. Suppose that f(X) ≥ 0 for all X such that 2 ≤ |X |. Let S be
a nonempty set of subsets of U . We need

(f ∗ ξ)
( ⋃

X∈S
X

)
≥

∑

∅ 6=T ⊆S

(−1)
|T |+1

(f ∗ ξ)
( ⋂

X∈T
X

)

Let Γ be as in Lemma 10.3.2. Using the fact that Γ contains all the subsets
Y such that f(Y ) < 0, we have

(f ∗ ξ)
( ⋃

X∈S
X

)
=

∑

Y⊆∪
X∈S

X

f(Y ) ≥
∑

Y ∈Γ

f(Y )

=
∑

∅ 6=T ⊆S

(−1)
|T |+1

(f ∗ ξ)
( ⋂

X∈T
X

)

So f ∗ ξ is monotone of infinite order.
Now suppose that f ∗ ξ is monotone of infinite order. Let |X | ≥ 2. We

need f(X) ≥ 0. Let S = {X − {x} : x ∈ X}. Then using the fact that Γ
is the set of all subsets of X except X itself, we have

(f ∗ ξ) (∪Y ∈SY ) = (f ∗ ξ) (X)

=
∑

Z⊆X

f(Z)

≥
∑

Z∈Γ

f(Z)

=
∑

Z⊆X

f(Z)− f(X)

Therefore, 0 ≥ −f(X), or f(X) ≥ 0.

Some additional easy consequences of the theorem are these.

Corollary 10.3.6 The following hold.

1. Constants are monotone of infinite order. In fact, (r ∗ µ) (X) = 0 if
X 6= ∅, and (r ∗ µ) (∅) = r.

2. If f and g are monotone of order k, then so is f + g.

3. If f is monotone of order k and r ≥ 0, then rf is monotone of order
k.

4. A function f is monotone of order k if and only if for r ∈ R, f + r
is monotone of order k.
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A connection with ordinary monotonicity is the following.

Theorem 10.3.7 If f is monotone of order 2, then f is monotone if and
only if f(∅) is the minimum value of f .

Proof. If f is monotone, then clearly f(∅) is its minimum value. Sup-
pose that f(∅) is its minimum value. Let Y ⊆ X . Then X = Y ∪ Z with
Y ∩Z = ∅. By 2-monotonicity, f(X) = f(Y ∪Z) ≥ f(Y ) + f(Z)− f(∅).
Since f(Z) ≥ f(∅), f(X) ≥ f(Y ).

Corollary 10.3.8 If f is monotone of order 2 and not monotone, then
f({x}) < f(∅) for some x ∈ U .

Proof. Suppose that f is monotone of order 2 and not monotone.
By the theorem, there is an X ∈ 2U with f(X) < f(∅). Let X be such
an element with |X | minimum. If |X | = 1 we are done. Otherwise, X =
Y ∪{x} with f(Y ) ≥ 0. By 2-monotonicity, f(X) ≥ f(Y )+f ({x})−f{∅).
Thus f(X) − f(Y ) ≥ f({x} − f(∅), and the left side is negative. Hence
f({x}) < f(∅).

By choosing f appropriately, it is easy to get f ∗ ξ that are monotone
of infinite order and not monotone, for example, so that (f ∗ ξ) (U) is not
the biggest value of f ∗ ξ. Just make f(x) very large negatively, and f(X)
of the other subsets positive. Then (f ∗ ξ) (U) < (f ∗ ξ) (U −{x}), so that
f ∗ ξ is not monotone.

One cannot state the definition of ordinary monotonicity in the form of
Definition 10.3.1. Having the |S| = 1 imposes no condition at all. However,

Theorem 10.3.9 f ∗ ξ is monotone if and only if for all A,C with 1 =
|C| , ∑

C⊆X⊆A

f(X) ≥ 0 .

Proof. It is clear that f ∗ ξ is monotone if and only if for A = B∪{a},
(f ∗ ξ) (B) ≤ (f ∗ ξ) (A) . This latter holds if and only if

∑

X⊆B

f(X) ≤
∑

X⊆A

f(X) =
∑

X⊆B

f(X) +
∑

{b}⊆X⊆A

f(X)

if and only if 0 ≤∑{b}⊆X⊆A f(X).

10.4 Beliefs, densities, and allocations

We turn now to the study of functions that are of particular interest to us,
namely belief functions. Again, throughout this section, U will be a finite
set. Based on the work of Dempster [39], Shafer [189] axiomatized belief
function as follows.
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Definition 10.4.1 A function g : 2U → [0, 1] is a belief function on U
if

1. g(∅) = 0

2. g(U) = 1

3. g is monotone of infinite order.

Note the following.

• A belief function is monotone of order k for any k.

• A belief function is monotone by Theorem 10.3.7.

There is an intimate connection between belief functions on U and
densities on 2U . We establish that connection now.

Definition 10.4.2 A function f : 2U → [0, 1] is a density on 2U if∑
X⊆U f(X) = 1.

Theorem 10.4.3 Let f be a density on 2U with f(∅) = 0. Then

1. (f ∗ ξ) (∅) = 0

2. (f ∗ ξ) (U) = 1

3. f ∗ ξ is monotone of infinite order.

Proof. The first two items are immediate. Since densities are non-
negative, by Corollary 10.3.5, f ∗ ξ is monotone of infinite order.

Now we get the precise correspondence between belief functions and
densities.

Theorem 10.4.4 g is a belief function if and only if g ∗ µ is a density
with value 0 at ∅.

Proof. If g∗µ is a density with value 0 at ∅, then the previous theorem
gets (g ∗ µ)∗ξ = g to be a belief function. Assume that g is a belief function.
Then ∑

X⊆U

(g ∗ µ) (X) = ((g ∗ µ) ∗ ξ) (U) = g(U) = 1

We need g ∗ µ ≥ 0.

(g ∗ µ) (∅) = g(∅)µ(∅,∅) = g(∅) = 0

For {x},
(g ∗ µ) ({x}) = g(∅)µ(∅, {x}) + g({x})µ({x}, {x}) = g({x}) ≥ 0.

Since g is monotone of infinite order, (g ∗ µ) (X) ≥ 0 for |X | ≥ 2.
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Corollary 10.4.5 Let D be the set of densities on 2U with value 0 at ∅,

and B let be the set of belief functions on U . Then D ξ−→B is a one-to-one
correspondence with inverse µ.

Corollary 10.4.6 A belief function g is a measure if and only if g ∗ µ is
a density on U , that is, if and only if (g ∗ µ) (X) = 0 for all |X | ≥ 2.

Proof. Densities f on U give measures g on U via g(X) =
∑

x∈X f(x).
Any measure on U comes about this way.

If f is a density on 2U with f(∅) = 0, then there is a natural way
to construct densities on the set U. These are allocations, assignments of
nonnegative values to elements of X so that their sum is f(X). Here is
the precise definition.

Definition 10.4.7 Let f be a density on 2U with f(∅) = 0. An alloca-

tion α of f is a function α : U × 2U → [0, 1] such that
∑

u∈X α(u,X) =
f(X) for all X ∈ 2U .

The following proposition is obvious.

Proposition 10.4.8 U → [0, 1] : u → ∑
u∈X α(u,X), where the sum is

over X, is a density on U .

Each belief function g on U gives a density f = g ∗ ξ on 2U , there
are many allocations of f , each such allocation gives a density on U, and
each density on U gives a measure on U. There are some relations between
these entities that are of interest.

Definition 10.4.9 Let g be a belief function on U. The core of g is the
set of probability measures P on the measurable space (U, 2U ) such that
P ≥ g.

Here is some notation. Let g be a belief function. (We could start with
a density f on 2U such that f(∅) = 0.)

• f = g ∗ µ is the density on 2U associated with the belief function g.

• D is the set of densities on U arising from allocations α of the density
f on 2U .

• C is the set of probability measures P on U such that P ≥ g. That
is, C is the core of g.
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f
ξ

⇄
µ

g

↓ ↓
D σ→ C

Theorem 10.4.10 Let g be a belief function on U . In the diagram above,
let σ be the map that takes a density on U to the corresponding measure
on U. Then

1. σ maps D onto C.

2. g = inf{P : P ∈ C}.

Proof. Let α be an allocation of the density f on 2U , and let P be
the probability measure that this allocation induces. First we show that
g(A) ≤ P (A) for all A ∈ 2U , that is, that σ maps D into C.

g(A) = (f ∗ ξ) (A) =
∑

B:B⊆A

f(B)

=
∑

B:B⊆A

∑

u:u∈B

α(u,B)

P (A) =
∑

u∈A

P ({u}) =
∑

u:u∈A

∑

B:u∈B

α(u,B)

Clearly g(A) ≤ P (A).
To show that g(A) = inf{P (A) : P ∈ C}, let A ∈ 2U . Let α be an

allocation of f such that for u ∈ A, for all B not contained in A, allocate
0 to u. Then g(A) = P (A), and it follows that g(A) = inf{P (A) : P ∈ C}.

We have been unable to find an elementary proof that σ is onto C, or
equivalently, that every P ∈ C is the probability measure associated with
an allocation of the density g ∗ µ. We refer the reader to [30] and to [145].

There are some special cases of allocations that are of interest, espe-
cially in applications.

Example 10.4.11 Let {U1, U2, ..., Un} be a partition of U into non-empty

disjoint sets. Let P be the set of all probability measures P on (2U , 22
U

)
that agree on Ui. In particular, for all P ∈ P ,∑i P (Ui) = 1. Thus defining
f(Ui) = P (Ui) and f(X) = 0 for X not one of the Ui, gives a density f
on 2U , and its corresponding belief function g = f ∗ ξ on 2U . Clearly
g(Ui) = f(Ui) = P (Ui). An allocation of f is simply a density α on U
such that

∑
x∈Ui

α(x) = f(Ui) = P (Ui), so gives an element P ∈ P . If
P ∈ P , its corresponding density p on U clearly satisfies

∑
x∈Ui

p(x) =
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P (Ui) = f(Ui), so comes from an allocation. If P ≥ g, then P (Ui) ≥ g(Ui)
for all i, so P (Ui) = g(Ui), whence P ∈ P . So C = P , and of course
g = inf{P : P ∈ P}.

Example 10.4.12 Let (u1, u2, ..., un) be an ordering of the set U. For a
density f on 2U , allocate all of f(X) to the largest element of X. This is
obviously an allocation α of f, and yields a density d on U. For the belief
function g = f ∗ ξ, define p : U → [0, 1] by

p(ui) = g{u1, u2, ..., ui} − g{u1, u2, ..., ui−1}

for i = 1, 2, ..., n. (If i = 1, then g{u1, u2, ..., ui−1} = g(∅) = 0.) Now p is
obviously a density on U, and the calculation below shows that p = d. So
this allocation is easily described in terms of the belief function.

p(ui) = g{u1, u2, ..., ui} − g{u1, u2, ..., ui−1}
= (f ∗ ξ) {u1, u2, ..., ui} − (f ∗ ξ) {u1, u2, ..., ui−1}
=

∑

X⊆{u1,u2,...,ui}

f(X)−
∑

X⊆{u1,u2,...,ui−1}

f(X)

=
∑

X⊆{u1,u2,...,ui}
ui∈X

f(X)

=
∑

X⊆{u1,u2,...,ui}
ui∈X

α(ui, X)

= d(ui)

There are n! such orderings of U, so we get a set P of n! probability
measures on 2U in this way. (There may be some duplications.) It is easy
to check that g = min{P : P ∈ P}.

These particular allocations are useful in proving that elements in the
core of a belief function all come from allocations (Corollary 10.4.19).

Example 10.4.13 For the Möbius inverse f = g ∗µ of a belief function g,
an intuitively appealing allocation is α(u,A) = f(A)/ |A| . This particular
allocation has an intimate connection with the allocations in the previous
example. The average of the densities p in the previous example gotten
from the n! permutations of U is called the Shapley value [190].

We have noted in Theorem 10.4.10 that each allocation of g∗µ gives an
element of the core. Thus the core of a belief function g is infinite unless
g is itself a probability measure, in which case g is the sole element of its
core. At the other extreme, if g(A) = 0 for A 6= U and g(U) = 1, then

www.EBooksWorld.ir



10.5. BELIEF FUNCTIONS ON INFINITE SETS 299

g is a belief function, as is easily checked, and the core of g is the set
of all probability measures on (U, 2U ). The elements of the core of g are
sometimes called measures compatible with g [39].

Let C be the core of a belief function g. If U = {u1, u2, ..., un}, then each
element P of C yields an n-tuple {x1, x2, ..., xn} ∈ [0, 1]n with

∑n
i=1 xi = 1,

where xi = P ({xi}). We identify the core C of g with this subset of the
simplex S of all such n-tuples.

The proofs of the following theorems may be found in [190]. The proofs
of the lemmas are easy. To show that the map D → C in Theorem 10.4.10
is onto is equivalent to showing that D = C.
Lemma 10.4.14 C is a convex subset of S.
Theorem 10.4.15 C is a closed subset of S.
Lemma 10.4.16 D is a convex subset of S and D ⊆ C.

An extreme point of C is an element x ∈ C such that if x = ty+(1−t)z
with y, z ∈ C, then t = 0 or 1− t = 0.

Theorem 10.4.17 The extreme points of C are those those n! densities
constructed in Example 10.4.12.

Those n! densities constructed in Example 10.4.12, but they may not
be distinct so actually there at most n! extreme points of C.
Theorem 10.4.18 The elements of C are convex combinations of its ex-
treme points.

Corollary 10.4.19 D = C.
As we know, inf{P : P ∈ C} = g. However, it is not true that the inf of

any set of probability measures on (U, 2U) is a belief function. There are
easy examples to the contrary. It seems to be a difficult problem to give a
reasonable classification of sets of probability measures on (U, 2U ) whose
inf is a belief function.

10.5 Belief functions on infinite sets

We have restricted belief functions to be mappings g : 2U → [0, 1] where
U is finite. In discussing those probability measures P on U such that
P ≥ g, the σ-algebra of course has always been 2U itself. But for any
nonempty set U, there is no problem with defining belief functions on U
as in Definition 10.4.1. And on the practical side, subjective assignments of
degrees of belief to the subsets of any set U are possible from an intuitive
viewpoint.

In this section we will describe several mathematical constructions of
belief functions on arbitrary sets.
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10.5.1 Inner measures and belief functions

For any nonempty set U , belief functions on U are induced by probability
measures on any σ-field of subsets of U [57], [112].

Definition 10.5.1 Let (U,A, P ) be a probability space. Then

P∗ : 2U → [0, 1] : B → sup{P (A) : A ∈ A, A ⊆ B}

is the inner measure given by P.

Theorem 10.5.2 Let (U,A, P ) be a probability space. Then P∗ is a belief
function.

It is clear that P∗(∅) = 0 and P∗(U) = 1, so we need only that P∗ is
infinite monotone. We break the proof of that fact up into two lemmas,
which are of interest in themselves.

Lemma 10.5.3 Let B ∈ 2U . Then P∗(B) = P (A) for some A ∈ A and
A ⊆ B. That is, the sup is attained.

Proof. For each positive integer n, let An ⊆ B with An ∈ A and
P (An) ≥ P (B)− 1/n. It follows readily that A = ∪nAn ∈ A, A ⊆ B, and
F (B) = F (A).

The set A in the proof above is unique up to a set of measure 0. The
set A is a measurable kernel of B. In the next lemma, Ai will be a
measurable kernel for Bi, i = 1, 2, 3, .... If P is additive but not σ-additive,
we restrict ourselves to finitely many i.

Lemma 10.5.4 If Ai is a measurable kernel for Bi, then ∩iAi is a mea-
surable kernel for ∩iBi.

Proof. Let C be a measurable kernel for ∩iBi. Since C ∪ (∩Ai) is
measurable and contained in ∩iBi, we may assume that C ⊇ ∩iAi. Letting
D = (∪i (C ∩ A′

i)) , D ∈ A, and we get

Ai ⊆ Ai ∪D ⊆ Bi

and
P (Ai) = P (Ai ∪D) = P∗ (Bi)

Thus P (D ∩ A′
i) = 0, and D ⊆ ∪iA′

i, so

P (D) = P (D ∩ (∪iA′
i) = P (∪i (D ∩ A′

i)

≤
∑

P (D ∩A′
i) = 0
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Thus P (D) = 0. Now D = (∪i (C ∩A′
i)) = C ∩ (∪A′

i) = C ∩ (∩Ai)
′
, and

P∗(∩iBi) = P (C)

= P (C ∪ (∩Ai))

= P (∩Ai) + P (C ∩ (∩Ai)
′)

= P (∩Ai) + P (D)

= P (∩Ai)

Corollary 10.5.5 P∗ is infinite monotone.

Proof. Let Ai be a measurable kernel of Bi. We have

P∗(∪ni=1Bi) ≥ P (∪ni=1Ai)

=
∑

∅ 6=I⊆{1,2,...,n}

(−1)|I|+1P (∩ni=1Ai)

=
∑

∅ 6=I⊆{1,2,...,n}

(−1)|I|+1P (∩ni=1Bi)

and this completes the proof.

Let U be an infinite set. We remark that there are many probability
measures on the measurable space (U, 2U ). Let u1, u2,..., un, ... be distinct
elements of U, and let α(ui) ∈ [0, 1] such that

∑
α(ui) = 1. Then for any

subset X of U, let P (X) =
∑

u∈X α(u). Then P is a probability measure
on the measurable space (U, 2U ). A particular case of this is the Dirac
measure at ui, that is, when α(ui) = 1. In any case, the resulting inner
measures are belief functions.

A general theory of belief functions on general spaces such as Rd, or
more generally, on locally compact Hausdorff and second countable topo-
logical spaces, requires the theory of random closed sets [139].

10.5.2 Possibility measures and belief functions

Let U be a nonempty set. Recall that a possibility measure on U (Defini-
tion 9.3.1) is a function f : 2U → [0, 1] such that

1. f(∅) = 0.

2. f(U) = 1.

3. For any set S ⊆ 2U , f(∪X∈SX) = supX∈S{f(X)}.
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The following discussion should clarify the relation between possibility
measures and belief functions, while providing a bit more information.

Definition 10.5.6 A function f : 2U → R is strongly maxitive if
f(∪X∈SX) = supX∈S{f(X)} for any set S ⊆ 2U The function is strongly
minitive if f(∩X∈SX) = inf{f(X)} for any set S ⊆ 2U .A function
f : 2U → R is maxitive if f(X ∪Y ) = sup{g(X), g(Y )}, and is minitive

if f(X ∩ Y ) = inf{g(X), g(Y )}.

Definition 10.5.7 The dual f ′ of a function f : 2U → [0, 1] is the func-
tion given by f ′(X) = 1− f(X ′).

Clearly f ′ : 2U → [0, 1].

Proposition 10.5.8 f → f ′ is a one-to-one correspondence between
strongly maxitive functions on 2U and strongly minitive functions on 2U ,
and f ′′ = f.

Proof. Clearly f ′′ = f. Let f be strongly maxitive.

f ′(∩X∈SX) = 1− f(∩X∈SX)′

= 1− f(∪X∈SX
′)

= 1− sup
X∈S

f(X ′)

= 1− sup
X∈S

(1− f ′(X))

= inf
X∈S

(1− (1 − f ′(X)))

= inf
X∈S

f(X)

The rest should be clear.

Proposition 10.5.9 Let f : 2U → [0, 1] and f(X∪Y ) = sup{f(X), f(Y )}.
Then for finite subsets F ⊆ 2U , f(∪X∈FX) = supX∈F f(X), and f is al-
ternating of infinite order. Also f ′(∩X∈FX) = infX∈F f

′(X), and f ′ is
monotone of infinite order.

Proof. f is alternating of infinite order by Theorem 9.3.2. To show
that f(X ∪ Y ) = sup{f(X), f(Y ) implies that for finite subsets F ⊆
2U , f(∪X∈FX) = supX∈F f(X) is easy. The proof that f ′(∩X∈FX) =
infX∈F f

′(X) is the same as the proof in Proposition 10.5.8 for arbitrary
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S. The following calculations show that f ′ is monotone of infinite order.

f ′(∪X∈FX) = 1− f(∪X∈FX)′

= 1− f(∩X∈FX
′)

≥ 1−
∑

∅ 6=T ⊆F

(−1)|T |+1f(∪X∈SX
′)

= 1−
∑

∅ 6=T ⊆F

(−1)|T |+1(1 − f ′(∪X∈SX
′)′

= 1−



∑

∅ 6=T ⊆F

(−1)|T |+1 −
∑

∅ 6=T ⊆F

(−1)|T |+1f ′(∪X∈SX
′)′




= 1− 1 +
∑

∅ 6=T ⊆F

(−1)|T |+1f ′(∩X∈FX)

=
∑

∅ 6=T ⊆F

(−1)|T |+1f ′(∩X∈FX)

Corollary 10.5.10 f → f ′ is a one-to-one correspondence between pos-
sibility measures on U and minitive belief functions on U.

Proof. f(∅) = 0 and f(U) = 1 if and only if f ′(∅) = 1 and f ′(U) = 1,
respectively. Proposition 10.5.8 and Proposition 10.5.9 complete the proof.

Belief functions on a finite set satisfying g(A∩B) = min{g(A), g(B)}
correspond to densities on 2U with a special property, which is due to
Dubois.

Theorem 10.5.11 Let U be a finite set and g a belief function on U.
Then g(A ∩B) = min{g(A), g(B)} if and only if the support of g ∗ µ is a
chain, that is, if and only if the support of the Möbius inverse of g is a
chain.

Proof. Suppose that the support of g ∗ µ is a chain. Since

g(A) =
∑

X⊆A

(g ∗ µ) (X)

g(B) =
∑

X⊆B

(g ∗ µ) (X)

and the support of g ∗ µ is a chain, those X in the equations above such
that (g ∗ µ) (X) 6= 0 must all be contained in A or all contained in B.
Thus, g(X ∩ Y ) = min{g(X), g(Y )}.
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Now suppose that g(A ∩B) = min{g(A), g(B)}, that neither A nor B
is contained in the other, and that g(A ∩B) = g(A). Then A ∩B 6= A,

g(A ∩B) =
∑

X⊆A∩B

(g ∗ µ) (X) =
∑

X⊆A

(g ∗ µ) (X)

so (g ∗ µ) (A) = 0. So if neither A nor B is contained in the other, then
either (g ∗ µ) (A) = 0 or (g ∗ µ) (B) = 0.

Mathematically, it is easy to get possibility measures. Just let α : U →
[0, 1] with supu∈U{α(u)} = 1. Then define f(X) = supu∈X{α(u)}.

10.6 Möbius transforms of set-functions

An interesting and natural question, not only for possible applications,
but also as a mathematical problem of its independent interest is whether
there exist Möbius transforms in the nonlocally finite case. In [137], a for-
mulation of such a counterpart is presented. The question is this. Suppose
U is infinite, and U is an infinite algebra of subsets of U. Let g : U → R,
and denote the set of all such functions by V. With point-wise addition
and multiplication by scalars, V is a vector space over R.

First, consider the case where U is finite. Then the Möbius transform
of g ∈ V plays the role of coefficients in the development of g with respect
to some linear basis of V. Specifically,

g(A) =
∑

∅ 6=B∈U

αg(B)uB(A) (10.1)

where uB ∈ V for any B ∈ U ,

uB(A) =

{
1 if B ⊆ A
0 if otherwise

and
αg(B) =

∑

D⊆B

(−1)|B−D|g(D)

Now, if we view the Möbius transform αg of g as a signed measure on the
finite set U , for A = {A1, ..., An} ⊆ U , and define αg(A) =

∑n
i=1 αg(Ai),

then the Möbius transform of a set function is a signed measure on U
satisfying Equation 10.1.

We need another identification. For each A ∈ U , we identify A with
the principal filter generated by A, namely p(A) = {B ∈ U : A ⊆ B}. But,
each principal filter p generated by A corresponds uniquely to an element
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up where up(B) is equal to 1 if B ∈ p and zero otherwise. Thus in the case
of a finite algebra U , the Möbius transform αg of a set function g : U → R
is a signed measure on the space

F = {up : p a principal filter of U}

satisfying Equation 10.1. Its existence is well known from combinatorial
theory. As we will see, its existence is due to the fact that the “composition
norm” of g, namely ‖g‖ =

∑
A∈U |αg(A)| , is finite.

Now consider the case where the algebra U of subsets of U is arbitrary.
From the identifications above, it seems natural to define the Möbius trans-
form g : U → R by generalizing the space F and the Equation 10.1 to an
integral representation, as well as specifying sufficient conditions for their
existence. In other works, the Möbius transform of g, when it exists, will
be a signed measure living on some appropriate space.

The space F is generalized as follows. Observe that an element up in R
is a special case of a set-function vp on U where p is a proper filter of U ,
that is p 6= U , vp = 1 if A ∈ p and 0 otherwise. Thus F is generalized to
G = {vp : p a proper filter of U}. Note that the space G can be topologized
appropriately. By a measure on G, we mean a Borel measure on G. For a
set-function g” : U → R, we define its composition norm by

‖g‖ = sup{‖g|F‖ : F a finite subalgebra of U},

where g|F denotes the restriction of g to F .
The basic representation theorem of Marinacci [137] is this. If ‖g‖ <

∞, then there is a unique regular and bounded signed measure αg on G
such that for A ∈ U ,

g(A) =

∫

G

vp(A)dαg(vp)

It is clear that this is an extension of Equation 10.1. Thus, via identifica-
tions, the signed measure αg on G can be viewed in the infinite case as
the Möbius transform of the set-function g with bounded norm.

10.7 Reasoning with belief functions

We will restrict ourselves to some basic mathematical tools for use in
reasoning with belief functions, such as in combination of evidence and in
updating procedures.

Since the Möbius inversion f of a belief function g is a density on 2U , g
can be viewed as the distribution of some random set S. Thus an evidence
is represented by a random set. Two bodies of evidence are independent
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if their corresponding random sets S and T are stochastically independent.
That is, for A, B ⊆ U ,

P (S = A, T = B) = P (S = A)P (T = B)

The random set S ∩ T represents a form of combination of evidence,
or fusion of data. The associated belief function is

F (A) = P (S ∩ T ⊆ A)

When S and T are independent, then the Möbius inversion f of g is ex-
pressed in terms of the Möbius inversions F and G of the random sets S
and T by

F (A) =
∑

f(X)g(Y )

where the summation is over pairs (X,Y ) such that X ∩ Y = A. In fact,

F (A) = P (S ∩ T ⊆ A)

=
∑

B⊆A

P (S ∩ T = B)

=
∑

B⊆A

∑

X∩Y=B

P (S = X,T = Y )

=
∑

B⊆A

∑

X∩Y=B

P (S = X)P (T = Y )

=
∑

B⊆A

f(B)

Although S and T are such that P (S = ∅) = P (T = ∅) = 0, the combined
random set S ∩ T might have positive mass at ∅. That is, it is possible
that P (S ∩ T = ∅) > 0.

To remove this situation so that V = S ∩ T corresponds to F with
F (∅) = 0 proceed as follows: let the range of V be {A1, A2, ..., Ak,∅}.
Then

∑k
i=1 f(Ai) = 1− f(∅). Let U have the range {A1, A2, ..., Ak} with

density g(Ai) = αif(Ai), where the αi are chosen so that g(Ai) > 0

and
∑k

i=1 αif(Ai) = 1, and hence g(∅) = 0. A canonical choice is αi =
1/(1− f(∅)), in which case g(Ai) = f(Ai)/(1− f(∅)). Then we have

G(A) = P (S ⊆ A) : S 6= ∅)

=

{
0 if A = ∅

P (∅ 6= S ⊆ A)/P (S 6= ∅) for A 6= ∅)

We turn now to the formulation of updating with belief functions.
Given a belief function g on a finite set U such that g(B) > 0, one would
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like to define a belief function gB representing the modification of g based
on the evidence B, in other words, a conditional belief function in the
spirit of probability theory. One way to achieve this is to call upon the
existence of the nonempty class P = {P : g ≤ P} of compatible probability
measures.

Now
g(A) = inf{P (A) : P ∈ P}

When g(A) > 0, we have P (A) > 0 since g ≤ P . The converse holds: if
P (A) > 0 for all P ∈ P , then g(A) > 0. This can be seen by looking at
the density gA constructed above.

Given B, it is natural to update all P in P and thus to change P to

PB = {P (· | B) : P ∈ P}

where P (A | B) = P (A ∩B)/P (B), and to consider

gB = inf{P : P ∈ PB}

as a candidate for a conditional belief function. Fortunately, it can be
shown that gB is indeed a belief function and that it can be expressed in
terms of g and B in a simple form. For A ⊆ B,

gB(A) =
g(A)

g (A) + 1− g(A ∪B′)

For other forms of conditional beliefs, see the exercises at the end of this
chapter.

10.8 Decision making using belief functions

In the framework of incomplete probabilistic information, we will investi-
gate the following simple decision problem. A decision problem consists of
choosing an action among a collection A of relevant actions in such a way
that utility is maximized. Specifically, if Θ denotes the possible “states of
nature”, the true state being unknown, then a utility function

u : A× U → R

is specified, where u(a, θ) is the payoff when action a is taken and nature
presents θ. In the Bayesian framework, the knowledge about U is described
by a probability measure Q on it. Then the expected value EQu(a, ·) is
used to make a choice as to which action a to choose. When Q is specified,
the “optimal” action is the one that maximizes EQu(a, ·) over a ∈ A. But
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suppose that Q is specified to lie in a set P of probability measures on U ,
and that the lower envelope g given by

g(A) = inf{P (A) : P ∈ P}

is a belief function and P = {P : g ≤ P}. This is the same as assuming that
the knowledge about U is given by an “evidence” whose representation is
a belief function g over U . Decision procedures based on g will be derived
by viewing g as equivalent to its class of compatible probability measures
P . Some choices of actions that can be made follow.

10.8.1 A minimax viewpoint

Choose action to maximize

∧{EPu(a, ·) : P ∈ P}

We will show that in the case where Θ is finite, the inf is attained and
is equal to a generalized integral of u(a, ·) with respect to the belief
function g.

Generalizing the ordinary concept of integrals, we consider the integral
of a function u : U → R defined by

Eg(u) =

∫ ∞

0

g(u > t)dt+

∫ 0

−∞

[g(u > t)− 1]dt

Since U is assumed to be finite, each P ∈ P is characterized by a prob-
ability density function p : U → [0, 1] where p(ω) = P ({ω}). When p is
specified, we write the corresponding P as Pp and the corresponding set
of densities for P is denoted D.

Theorem 10.8.1 Let U be finite, u : U → R and g be a belief function
on U . Then there exists an h ∈ D such that

Eg(u) = EPh
(u) = inf{EPg

(u) : p ∈ D}

Proof. Let U = {a1, a2, ..., an}, with u(a1) ≤ u(a2) ≤ ... ≤ u(an).
Then

EF (u) =

n∑

i=1

u(ai) [g({ai, ai+1,...,an})− g({ai+1, ai++2...,an})]

Let
h(ai) = g({ai, ai+1,...,an})− g({ai+1, ai+2...,an})
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If Ai = {ai, ai+1,...,an}, then

h(ai) = g(Ai)− g(Ai − {ai})
=

∑

B⊆Ai

f(B)−
∑

B⊆(Ai−{ai})

f(B)

=
∑

θi∈B⊆Ai

f(B)

where f is the Möbius inversion of g. Thus h ∈ D. Next, for each t ∈ R
and g ∈ D, it can be checked that Ph(u > t) ≤ Pp(u > t) since (u > t) is
of the form {ai, ai+1,...,an}. Thus for all p ∈ D, EPh

(u) ≤ EPp
(u).

The special density above depends on u since the ordering of U is
defined in terms of u.

Example 10.8.2 Let U = {a1, a2, a3, a4} and let g be the Möbius inver-
sion of f given by

f({a1}) = 0.4

f({a2}) = 0.2

f({a3}) = 0.2

f({a4}) = 0.1

f(U) = 0.1

We have
h a1 a2 a3 a4

0.5 0.2 0.2 0.1

If
u a1 a2 a3 a4

1 5 10 20

then

Eg(u) =

4∑

i=1

u(ai)h(θi) = 5.5

10.8.2 An expected-value approach

Since the Möbius inversion f of the belief function g is a probability density
on 2U , the “true” expected value EQ(u) is replaced by the expectation of
a suitable function of the random set S, namely

Efϕ(S) =
∑

A⊆Θ

ϕ(A)f(A)
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where ϕ : 2U → R. This is possible since for each d ∈ D, one can find
many ϕ such that EPd

(u) = Ef (ϕ). For example, define ϕ arbitrarily on
A for which f(A) 6= 0 by

ϕ(A) =



EPd
(u)−

∑

B 6=A

ϕ(B)f(B)



 /f(A)

As an example for ϕ, for ρ ∈ [0, 1], take

ϕρ(A) = ρ
∨{u(a) : a ∈ A}+ (1− ρ)

∧{u(a) : a ∈ A}

Then Ef (ϕρ) = EPd
(u) where g is constructed as follows. Order the ai so

that u(a1) ≤ u(a2) ≤ ... ≤ u(an) and define

d(ai) = ρ
∑

A

f(A) + (1− ρ)
∑

B

f(B)

where the summations are over A and B of the form

ai ∈ A ⊆ {a1, a2, ..., ai}
ai ∈ B ⊆ {ai, ai+1, ..., an}

10.8.3 Maximum entropy principle

If the choice of a canonical p in D is desired, then the inference principle
known as the “maximum entropy principle” can be used. For a probability
density p on a finite set U , its entropy is

H(p) = −
∑

a∈U

p(θ) log p(θ)

A common procedure for selecting a particular density from a given class
of densities is to choose one with maximum entropy. This situation arises,
for example, when the information available is given in the form of a
belief function g on a finite set U , or equivalently, as a density f on
2U .Corresponding to this belief function g is the set P of all probabil-
ity measures P on U such that P ≥ g. Each P corresponds to a density p
on U via P (A) =

∑
a∈A p(a), yielding the set D of densities. The Möbius

inversion of g is a probability density f on 2U . The elements of D also
arise from allocations of f , as described earlier.

Two algorithms are presented in [145] for finding the p that maximizes
H . We will present the easier of the two (called Algorithm 2 in [145]).
Algorithm 2 calculates the density p in D with maximum entropy directly
from the belief function g.
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The following two lemmas are crucial in the construction of the density
in D with maximum entropy. Given a proper nonempty subset K of U ,
the projection of g onto K is given by assigning to each subset H of K
the belief gK(H) = g(H ∪K ′)− g(K ′).

Lemma 10.8.3 Let g be a belief function, and K a nonempty subset of
U . Then

• gK(H) = g(H ∪K ′)− g(K ′) is a belief function on K.

• The Möbius inversion of gK is given by fK(H) =
∑

L∩K=H f(L) for
nonempty H ⊂ K.

• g(H) ≤ gK(H ∩K) + g(H ∩K ′), with equality when H = U .

Proof. To verify the first two claims, compute

∑

I⊂H

fK(I) =
∑

∅6=I⊂H

∑

L∩K=I

f(L) =
∑

∅6=L∩K⊂H

f(L) = g(H ∪K ′)− g(K ′).

The last claim follows from the monotonicity inequality

g(H ∪K ′) ≥ g(H) + g(K ′)− g(H ∩K ′),

which is clearly an equality when H = U .

Lemma 10.8.4 Let b = maxK⊂U g(K)/ |K|. Then the set {K ⊂ U :
g(K) = b |K|} is closed under intersections and unions. In particular,
there is a unique largest subset K such that g(K) = b |K|.

Proof. Suppose K and H are two such subsets. Then

g(H ∪K) ≥ g(H) + g(K)− g(H ∩K)

= b(|H |+ |K|)− g(H ∩K)

≥ b(|H |+ |K| − |H ∩K|)
= b |H ∪K|
≥ g(H ∪K)

The set is not closed under relative complements: g(ab) = 1, g(a) =
1/2, B(b) = 0.

We can calculate the density associated with an optimal allocation as
follows. The procedure in the following theorem is Algorithm 2.
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Theorem 10.8.5 Define a density p on U as follows. Inductively define a
decreasing sequence of subsets Ui of U , and numbers bi, as follows, quitting
when Ui is empty.

• U0 = U ,

• bi = maxK⊂Ui

g(K ∪ U ′
i)− g(U ′

i)

|K| ,

• Ki is the largest subset of Ui such that g(Ki ∪ U ′
i)− g(U ′

i) = bi |Ki|

• Ui+1 = Ui \Ki

If x ∈ Ki, then set p(x) = bi. Then p(K) ≥ g(K) for each K, and p(U) =
g(U) (that is, p ∈ D). p is the density in D with maximum entropy.

We omit the details of the proof since it is quite technical, and refer
the interested reader to [145].

The following example illustrates the construction of the required den-
sity with maximum entropy.

Example 10.8.6 Let U = {a, b, c, d} and let g and f be given as in the
following table:

2U f g

∅ 0 0
{a} 0.12 0.12
{b} 0.01 0.01
{c} 0.00 0.00
{d} 0.18 0.18
{a, b} 0.12 0.25
{a, c} 0.10 0.22
{a, d} 0.22 0.52
{b, c} 0.08 0.09
{b, d} 0.04 0.23
{c, d} 0.02 0.20
{a, b, c} 0.03 0.46
{a, c, d} 0.01 0.65
{a, b, d} 0.00 0.69
{b, c, d} 0.03 0.36
U 0.04 1

First we must find

max
K⊂Ui

g(K ∪ U c
i )−B(U c

i )

|K|
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for i = 0. That is, we need maxK⊂U B(K)/|K|, which is .26, corresponding
to the set K0 = {a, d}. Next we consider the set U1 = U\K0 = {b, c}, and
find

max
∅ 6=K⊂{b,c}

g(K ∪ {a, d})− g({a, d})
|K|

The sets K to be considered are {b}, {c}, and {b, c} corresponding to the
numbers

g({a, b, d})− g({a, d})
|{b}| = 0.17

g({a, c, d})− g({a, d})
|{c}| = 0.13

g({a, b, c, d})− g({a, d})
|{b, c}| = 0.24

So the appropriate K is {b, c} and U2 is empty and we are done. The
probability assignments are thus

p(a) = 0.26 p(b) = 0.24 p(c) = 0.24 p(d) = 0.26

This is the density on U that maximizes H(g) = −∑a∈U p(a) log p(a)
among all those densities compatible with f, or equivalently, among all
those corresponding to probability distributions on U dominating g.

The density on any finite set that maximizes entropy is the one assign-
ing the same probability to each element. So an algorithm that maximizes
entropy will make the probability assignments as “equal as possible”. In
particular, Algorithm 2 above could end in one step—if g(U)/ |U | is at
least as large as g(X)/ |X | for all the nonempty subsets X of U . It is
clear that the algorithm is easily programmed. It simply must evaluate
and compare various g(X)/ |X | at each step. The algorithm does produce
the density g in at most |U | steps.

There is exactly one density in the family D that maximizes entropy.
That is, there is exactly one probability measure in the core of a belief
function whose corresponding density has maximum entropy. That proba-
bility measure is also the unique maximal element of the core with respect
to the Lorentz partial order [110], [53].

Algorithm 2 gives the required density. An allocation can be gotten
from this density using a linear programming procedure. Algorithm 1 in
[145] actually produces an allocation, and from that allocation the entropy
maximizing density is readily produced. The interested reader is encour-
aged to consult [145] for proofs.
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10.9 Rough sets

Rough sets were introduced by Pawlak [173] and since have been the sub-
ject of many papers. We refer to the references for the many mathematical
approaches and variants of the theory [33, 67, 108, 109, 159, 176, 192]. The
material we present here is in the algebraic spirit and is at the most basic
level. It follows that presented by Pawlak himself. For numerous applica-
tions and examples, we refer to Pawlak’s book [174].

The starting point is this. Let U be a set, and let E be the set of
equivalence classes of an equivalence relation on U. This set E of equiva-
lence classes is, of course, a partition of U. For a subset X of U, let X=
∪{E ∈ E : E ⊆ X} and X = ∪{E ∈ E : E ∩X 6= ∅}. The elements X and
X are viewed as lower and upper approximations, respectively, of X . It is
clear that X ⊆ X ⊆ X. The set X is the union of all the members of the
partition contained in it, and the set X is the union of all the members
of the partition that have nonempty intersection with it. Calling X and
Y equivalent if X = Y is clearly an equivalence relation, and similarly for
X = Y . So meeting both these conditions is an equivalence relation, being
the intersection of the two. We have the following.

Proposition 10.9.1 Let E be the equivalence classes of an equivalence
relation on a set U. For subsets X and Y of U, let X ∼ Y if X = Y and
X = Y . Then ∼ is an equivalence relation on the set of subsets 2U .

Definition 10.9.2 The equivalence classes of the equivalence relation ∼
in the previous proposition are rough sets [173], and the set of rough sets
will be denoted by R.

Of course, the set of rough sets R depends on the set U and the parti-
tion E . By its very definition, a rough set R is uniquely determined by the
pair (X,X), where X is any member of R. The pair (X,X) is independent
of the representative X chosen, and we identify rough sets with the pairs
(X,X). There is a natural partial order relation on R, namely that given
by (X,X) ≤ (Y , Y ) if X ⊆ Y and X ⊆ Y . Our primary interest will be in
this mathematical structure (R,≤), and the first job is to show that this
is a lattice. There is a technical difficulty: X ∪ Y 6= X ∪ Y for example.
This is because an element of E can be contained in X ∪ Y and not be
contained in either. Thus it can be in X ∪ Y, hence in X ∪ Y , and not in
X ∪ Y . The following lemma solves most of the technical problems.

Lemma 10.9.3 For each rough set R ∈ R, there is an element XR ∈ R
such that for every pair of rough sets R and S in R, the following equations
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hold.

XR ∪XS = XR ∪XS ,

XR ∩XS = XR ∩XS ,

XR ∪XS = XR ∪XS ,

XR ∩XS = XR ∩XS ,

Proof. For each E ∈ E containing more than one element of U , pick
a subset AE such that ∅ $ AE $ E, and let A = ∪{AE : E ∈ E}.
Pick a representative X of each rough set R, and let XR = X ∪ (X ∩ A).
Observe that XR is a representative of the rough set R, and is independent
of which representative X of R was chosen. We have picked out exactly
one representative XR of each rough set R. Now, consider the equation
XR ∪ XS = XR ∪XS . If an element E ∈ E is contained in XR ∪XS ,
then it is contained in either XR or XS by their very construction. So
XR∪XS ⊇ XR ∪XS , and the other inclusion is clear. The other equalities
follow similarly.

In the proof above, we chose one representative from each rough set,
and we chose the sets AE . This requires the axiom of choice, a set theoretic
axiom whose use here should be noted. This axiom says that if S is a
nonempty set of nonempty sets, then there is a set T consisting of an
element from each of the members of S. None of this would be an issue
were U finite, but in any case we choose to use the axiom of choice.

Theorem 10.9.4 (R,≤) is a bounded lattice.

Proof. We write rough sets as the upper and lower approximations
of the sets XR picked out in the Lemma. So let (XR, XR) and (XS , XS)

be rough sets. Now, (XR, XR) ≤ (XS , XS) means that XR ⊆ XS and

XR ⊆ XS . This is clearly a partial order, and is the one induced by the
lattice P(U)×P(U). In this lattice, (XR, XR)∨(XS , XS) = (XR∪XS , XR∪
XS) = (XR ∪XS , XR ∪XS), so this sup is the sup in this induced partial
order. The existence of inf is analogous. Clearly (∅,∅) and (U,U) are in
R, and so are the 0 and 1 of the lattice (R,≤). The theorem follows.

The following is an easy consequence.

Corollary 10.9.5 (R,∨,∧, 0, 1) is a bounded distributive lattice.

It is perhaps useful to summarize at this point. We start with a finite
set U and a partition E of it, or equivalently, an equivalence relation.
This partition E of U gives an equivalence relation on the set P(U) of
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all subsets of U, namely, two elements X and Y of P(U) are equivalent
if their lower and upper approximations are equal, that is, if X = Y and
X = Y . The equivalence classes of this latter equivalence relation are rough
sets, and the set of them is denoted R. The set R is thus in one-to-one
correspondence with the set {(X,X) : X ∈ P(U)} of pairs. Of course, lots
of X give the same pair. We identify these two sets: R = {(X,X) : X ∈
P(U)}. This set of pairs is a sublattice of the bounded distributive lattice
P(U)×P(U). This last fact comes from the lemma: there is a uniform set
of representatives from the equivalence classes of rough sets such that the
equations in the lemma hold.

NowR is actually a sublattice of the lattice P(U)[2] = {(X,Y ) : X,Y ∈
P(U), X ⊆ Y }. We know that for any Boolean algebra B, B[2] is a Stone
algebra with pseudocomplement (a.b)∗ = (b′, b′), where ′ is the comple-
ment in B. So P(U)[2] is a Stone algebra.

Theorem 10.9.6 R is a subalgebra of the Stone algebra P(U)[2], and in
particular is a Stone algebra.

Proof. All we need is that if (X,X) ∈ R, then so is (X
′
, X

′
). But this

is very easy to see.

The algebra P(U)[2] has another operation on it, namely (X,Y )′ =
(Y ′, X ′).) This operation ′ on this Stone algebra P(U)[2] is a duality. It
reverses inclusions and has order two. Clearly (X,Y )′′ = (X,Y ). A Stone
algebra with a duality is called symmetric. Now on the subalgebra R,
(X,X)′ = (X

′
, X ′), which is still in R.

Corollary 10.9.7 R is a symmetric Stone algebra.

There is another algebraic object around that will give more insight
into rough sets. Let B be the complete Boolean subalgebra of P(U) gener-
ated by the elements of the partition of U. Now B[2] is a symmetric Stone
algebra, indeed a subalgebra of P(U)[2], and it should be clear that R is
a symmetric Stone subalgebra of B[2]. So given the partition of U , all the
action is taking place in the symmetric Stone algebra B[2].

One final pertinent comment. We got a uniform set of representatives
of the set of rough sets, namely the XR above. Now these actually form a
sublattice of the bounded lattice P(U), and this sublattice is isomorphic
to the bounded lattice R. Of course this sublattice can be made into a
symmetric Stone algebra, but not using in a natural way the operations
of the Boolean algebra P(U).

Stone algebras have two fundamental building blocks, their centers
and their dense sets. The center of a Stone algebra is the image of its
pseudocomplement, and its dense set consists of those elements that the
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pseudocomplement takes to 0, or in our case, to ∅. It is easy to verify the
following.

Corollary 10.9.8 The center of R = {(X,X) : X = X = X}, and the
dense set is {(X,X) : X = U}.

In rough set theory, the sets X such that X = X = X are the definable
rough sets. Those X such that X = U are called externally undefinable.

10.9.1 An example

We give now the simplest nontrivial example of all this. We give a list of
the various entities and then draw some pictures.

• U = {a, b, c}. To save on notation, we write the set {a} as a, {a, b}
as ab, and so on.

• E = {a, bc}.

• P(U) = {∅, a, b, c, ab, ac, bc, U}.

• R = {{∅}, {a}, {bc}, {b, c}, {ab, ac}, {U}}.

• A = b. (The only choices for A are b and c.)

• {XR} = {∅, a, bc, b, ab, U}, these corresponding in order to the list
of elements of R above.

• B = {∅, a, bc, U}.

• B[2]= {(∅,∅), (∅, a), (∅, bc), (∅, U), (a, a),

(a, U), (bc, bc), (bc, U), (U,U)}.

• R = {(∅,∅), (a, a), (∅, bc), (bc, bc), (a, U), (U,U)}, again these corre-
sponding in order to the lists of elements of R above.

In the lattice P(U) pictured in the following, the sublattice obtained
by leaving out c and ac is the lattice {XR}, and hence is isomorphic to R.
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The lattice P(U)

The lattice pictured below is the Boolean subalgebra of P(U) generated
by the elements of the partition E .

U
ր տ

a bc
տ ր

∅

The lattice B

(U,U)
ր տ

(a, U) (bc, U)
ր տ ր տ

(a, a) (∅, U) (bc, bc)
տ ր տ ր

(∅, a) (∅, bc)
տ ր

(∅, ∅)
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The lattice B[2]

(U,U)
ր տ

(a, U) (bc, bc)

↑ ↑

(a, a) (∅, bc)
տ ր

(∅, ∅)

The lattice of rough sets R

10.9.2 The structure of R
To get at the structure of R, we will now construct the pairs [X,X] in
a different way. In the partition E of U, let E1 be the elements of E that
have one element, and E2 be the elements of E that have more than one
element. In the example above, E1 = a and E2 = bc. We identify 2 with the
two element Boolean algebra {0, 1}, and 3 with the three element chain
{0, u, 1}, with 0 < u < 1. For an element (f, g) ∈ 2E1 × 3E2 , consider the
pair

(f, g) = (∪{E ∈ E1 : f(E) = 1}) ∪ (∪{E ∈ E2 : g(E) = 1}) ,
and

(f, g) = (f, g) ∪ (∪{E ∈ E2 : g(E) = u}) .
For each element E ∈ E2, let AE ⊂ U with ∅ $ AE $ E. (Here, the axiom
of choice is used explicitly.) Now it should be clear that if

X = (f, g) ∪ (∪{AE : g(E) = u}) ,
then

(X,X) = ((f, g), (f, g)).

Thus each pair ((f, g), (f, g)) is a rough set. For a rough set (X,X), let

f ∈ 2E1 be defined by f(E) = 1 if E ⊆ X and f(E) = 0 otherwise, and
let g ∈ 3E2 be defined by g(E) = 1 if E ⊆ X, g(E) = u if E ⊆ X ∩ X ′,
and g(E) = 0 otherwise. Since

X = X ∩ (∪{E : E ∈ E1 ∪ E2}
= ∪{X ∩ E : E ∈ E1 ∪ E2, E ≤ X} ∪ (∪{X ∩ E : E ∈ E2})
= X ∪ (∪{X ∩ E : E ∈ E2, E ≤ X ∩X ′},
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it follows that [X,X] = [(f, g), (f, g)]. Since different pairs (f, g) clearly

give different pairs [(f, g), (f, g)],

2E1 × 3E2 →R : (f, g)→ ((f, g), (f, g))

is a one-to-one correspondence. Identifying the rough sets R with pairs
as we are doing, R has an order structure given coordinate-wise. Now
2E1 ×3E2 is a Stone algebra with ordering given by (f, g) ≤ (h, k) if f ≤ h
and g ≤ k pointwise. The mapping above is order preserving by its very
definition. Thus under componentwise operations, R ∼= 2E1 ×3E2 as Stone
algebras. Further, this tells us exactly whatR is in terms of the partition of
U. On one extreme, if E2 = ∅, then for every X ⊆ U, X = X = X. In this
case, all approximations are exact, and rough sets are just elements of U.
On the other hand, if E1 = ∅, then R ∼= 3E2 ∼= (2[2])E2 ∼= (2E2)[2] = B[2]

[67]. This last object is the space of conditional events of the Boolean
algebra B, which we will see in the next section. We have the following
theorem.

Theorem 10.9.9 If E is a partition of the set U , E1 is the set of elements
of E that have one element, and E2 is the set of elements of E that have
more than one element, then R ∼= 2E1 × 3E2 as symmetric Stone algebras.

One consequence of this theorem is that R is determined solely by the
number of elements in E1 and in E2, not by the size of U. In the example
given above, E has two elements, the singleton a and the two element set
bc. Thus in that example R is the six element Stone algebra 2× 3.

The results just given can be generalized in various ways. That setup
is a particular instance of the following situation. Let A be a completely
distributive lattice and B be a complete sublattice of A that is atomic,
that is, every element of B is the supremum of the atoms below it. Here A
plays the role of the power set of U and B plays the role of the complete
Boolean subalgebra of A generated by the partition E of U. The scheme is
to approximate elements of A by elements of B, again getting upper and
lower approximations. In this situation, rough sets are defined analogously,
as follows.

Definition 10.9.10 Let A be a completely distributive lattice, and let B
be a subalgebra of A as a complete lattice. Further, assume that B is atomic
(and hence Boolean). For an element a ∈ A, let

a = ∨{b ∈ B : b ≤ a},
a = ∧{b ∈ B : a ≤ b}.
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The elements a and a are the lower and upper approximations, respec-
tively, of a. Two elements x and y of A are equivalent if they have the
same upper and the same lower approximations. The resulting equivalence
classes are called rough sets.

The theory above goes through in this more general case [67].

10.10 Conditional events

Another form of partial knowledge surfaces when we deal with uncertain
rules. These are rules in knowledge-based systems of the form “If X is B,
then Y is A”, where X and Y are input and output variables, respectively,
and A and B are subsets, possibly fuzzy, of appropriate spaces. These
rules are uncertain in the sense that if the premise “X ∈ B” is true, the
consequent “Y ∈ A” might not always be true, but is only true some
percentage of the time. This is typical, for example, in rules formed by
physicians in medical diagnosis, where each uncertain rule is accompanied
by a degree of confidence or a strength of the rule, which is taken to be
the conditional probability P (A|B).

To be rigorous, we let (Ω,A, P ) be a probability space. Each uncertain
rule of the form B ⇒ A, for A,B ∈ A, read “if B then A”, is quantified
as P (A|B). This is somewhat similar to the so-called “Bayesian inference”
in machine learning, in which a question of interest is of the form “Given
B, what is A?” The answer to such a question is based on the condi-
tional probability P (A|B). Moreover, a rule base is in fact a collection
of such rules, and it is necessary to combine these rules in some fashion
to produce outputs from inputs. Thus, we need to model B ⇒ A mathe-
matically as well. Now, B ⇒ A is a conditional, having the flavor of an
implication. This modeling problem of “conditional events” was never in-
vestigated in standard probability theory, perhaps because, as mentioned
above in Bayesian statistics, there seems to be no need for looking at “con-
ditional events” themselves, their conditional probabilities are sufficient for
applications. However, in his pioneering work on subjective probability,
DeFinetti did talk about “conditional events” [36].

Now, with the need to construct expert systems (rather than just
“teaching” a machine to learn) we face the problem of providing a new, or
additional, mathematical language to design intelligent systems. Specifi-
cally, the mathematical problem is this. For A,B ∈ A (a Boolean ring),
is there a bona fide mathematical entity, denoted as (A|B), such that for

(Ω,A, P ), the conditional probability P (A|B) = P (A∩B)
P (B) , when P (B) > 0,

can be assigned to (A|B) in a well-defined way? That is, P ((A|B)) =
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P (A|B)? Note that we intend to look for a “conditional event”; that is, a
mathematical entity which belongs to the domain A of P (.).

Can we model B ⇒ A as a material implication; that is, as B′∨A ∈ A?
No, we cannot model it as such and preserve probabilities since

P (B′ ∨ A) = P (A|B) + P (B′)P (A′|B) > P (A|B)

in general. In fact, there is no binary operation ⋄ onA such that P (A⋄B) =
P (A|B) for all A and B. This is known as Lewis’ Triviality Result [128],
which is left as an exercise. Its implication is that one must look outside
A for an appropriate model. That is, A needs to be extended, with this
extension accommodating not only the elements of A, that is, the events,
but also the “conditional events” A|B. And then one must worry about
an appropriate algebraic structure on this extension, extending the one
already on A, and respecting in some sense the probabilities of events and
conditional events. There are essentially two solutions to this problem, and
we present them below.

As expected, an extension problem can lead to either the same struc-
ture (e.g., Boolean) or a different one (non-Boolean). The extension of real
numbers to complex numbers preserve the property of a field, whereas the
extension of Boolean logic to quantum logic leads to a different kind of
logic. On the other hand, just like Zadeh, Schay [186] proposed to gener-
alize sets to “conditional sets” (which he called “conditional events”) by
extending the equivalent set presentation, namely their indicator (mem-
bership) functions. Specifically, the generalized “indicator function” of a
conditional set (A|B) : Ω→ {0, u, 1} is

(A|B)(ω) =





1 if ω ∈ A ∩B
0 if ω ∈ Ac ∩B
u if ω ∈ Bc

This formal extension turns out to be consistent with our first ap-
proach outlined now [80], which is non-Boolean and has some surprising
connection with quantum logic [60].

Let (Ω,A, P ) be a probability space. Since elements of A are called
events, we continue to call a conditional of the form “If B then A”, denoted
as (A|B), a conditional event, noting that in general, (A|B) is not in A;
that is, not an event per se, in view of the Lewis’ triviality result.

We seek to define mathematical entities (A|B) whose uncertainty can
be assigned as P (A|B). Mathematically speaking, we are looking for a
mapping f which transforms each pair of events (A,B) into an object
f(A,B) having characteristics of a conditional “if B then A”, and in such a
way that, for any probability P onA, it is possible to assign the conditional
probability P (A|B) to f(A,B) without ambiguity. The range S of such a
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map f , i.e., S = f(A×A), will be then the space of conditional events, and
logical operations on it will constitute our conditional event algebra.

Our axiomatic setting is conveniently carried out in a simple algebraic
framework. It suffices to view A as a Boolean ring with multiplication ·
being the Boolean intersection ∩, and addition + being the symmetric
difference, that is, AB = A ∩B, A+B = ABc ∪AcB, so that we use the
Boolean ring A(·,+) for our general setting. A Boolean ring A(·,+) is a
ring with unit, denoted as 1 (here Ω), the zero of A is denoted as 0 (here
the empty set), in which every element is idempotent, i.e., for any A ∈ A,
we have A · A = A2 = A. Note that any abstract Boolean ring A(·,+) is
isomorphic to a ring of subsets of some set (Stone’s representation theo-
rem). Two additional logical operations on a Boolean ring are disjunction
A ∨ B = A + B + AB, and negation A′ = 1 + A. A partial order on a
Boolean ring is A ≤ B if and only if AB = A.

Our investigation led to the following. The mapping f maps each pair
(A,B) ∈ A×A into the coset A+AB′, i.e., f(A,B) = A+AB′. Thus, let
A(·,+) be a Boolean ring. Then for A,B ∈ A, the “conditional event” A
given B, denoted as (A|B), is the coset A+AB′ = {A+xB′ : x ∈ A} ⊆ A.
The range S of such f is denoted as A|A = ∪B∈AA/AB′, with A/AB′

denoting the quotient ring A with respect to the principal ideal AB′. A
conditional event is in general not an element of A, but a collection of
elements of A (a subset of A).

It is interesting to note that (A|B) = A + AB′ is in fact a “closed
interval” in the Boolean ring A. Indeed, a closed interval in A is a subset
of the form {x ∈ A : A ≤ x ≤ B}, denoted as [A,B] for A ≤ B. It is easy
to check that (A|B) = A+AB′ = [AB,B′∨A]. Also, [A,B] = (A|B′∨A).
If we identify A with [A,A], then A ⊆ A|A. The assignment of conditional
probabilities to conditional events is well-defined since A+AB′ = C+AD′

if and only if B = D and AB = CD, so that P (A|B) = P (C|D).
The so-called Goodman–Nguyen–Walker algebra of conditional events

consists of the algebraic structure of the conditional event spaceA|A which
we summarize now. As stated before, one of the reasons to consider con-
ditional implications as conditionals, i.e., measure-free mathematical ob-
jects, is that they are uncertain rules in production systems, and as such,
we need to be able to “combine” them in order to derive their uncertainties
from component rules.

Remark 10.10.1 Since the space of conditional events is A|A is iden-
tified as the space of all closed intervals in the Boolean ring A, logical
operations on conditional events can be derived from operations on inter-
vals by analogy with intervals on the reals.
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Here, for ease of exposition, we study the algebraic structure of A|A
from an algebraic viewpoint. The object A|A = ∪B∈AA/AB is a dis-
joint union of quotient rings. On each quotient ring, we have standard
operations for its elements (conditional events with the same antecedent).
What is needed for combining difference sources of “evidence” are oper-
ations combining cosets (conditional events) from different quotient rings
(conditional events with different antecedents), which is not a standard
ring theory operation!

In the following, operations on A|A will be extended ones from A
componentwise. From the coset representation of conditional events, it is
not hard to check that A|A is closed under all (associated) set operations
(·)′,+, · (or ∧) and ∨, so that A|A is an algebra. We are going to elaborate
on this algebra, mentioning that it is not a Boolean algebra (ring).

The basic operations on A|A are obtained as

(A|B)′ = (A′|B)

(A|B) ∧ (C|D) = (AC|A′B ∨ C′D ∨BD)

(A|B) ∨ (C|D) = (A ∨ C|AB ∨ CD ∨BD)

noting that (0|1) is the zero, and (1|1) is the multiplicative identity of
A|A. Multiplication does not distribute over ∨, nor ∨ over multiplication,
so that A|A is not a ring.

A partial order on A|A is extended from the partial order on A

(A|B) ≤ (C|D) if and only if (A|B) = (A|B)(C|D)

With this partial order, it turns out that (A|A ,∧,∨) is a bounded lattice.
However, it is not complemented: the operation (.)′ onA|A is not a comple-
mentation operation (with respect to ∧,∨) so that A|A is non-Boolean. It
is however pseudo-complemented, namely (A|B)∗ = (A′B|1), i.e., A′B. In
fact,A|A is a Stone algebra (a distributive pseudo-complemented (bounded)
lattice satisfying the Stone identity: for all (A|B), (A|B)∗ ∨ (A|B)∗∗ =
(1|1)).

Remark 10.10.2 Conditional events as cosets are in one-to-one corre-
spondence with Schay’s generalized indicator function representation, i.e.,
a “tri-event” in DeFinetti’s terminology, in the context of three-valued
logic. This is so, since generalized indicator functions specify the subsets
B and A ∩B, and conversely.

In fact, the connections of A|A ( syntax) with three-valued logic (se-
mantic) is clear. In the setting of Boolean rings, each conditional event
(A|B) has one of three possible truth values, (0|1) (false), (1|1) (true) and
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(0|0) (undecided, denoted as u). Specifically, if t denotes a truth evalua-
tion on A, then, using the same symbol on A|A, the truth value t(A|B)
of (A|B) is “true” when t(AB) = 1, “false” when t(A′B) = 1, and “unde-
cided” when t(B′) = 1.

The above algebraic structure of the space of conditional events (as
cosets in Boolean rings), being a Stone algebra, represents, from a logical
viewpoint, a departure from classical logic, and possibly from quantum
logic. This structure of conditional events can be also obtained as follows.
Let (Ω,A) be a measurable space, and C(A) = A[2] = {(a, b) : a, b ∈ A, a ≤
b}. We view A sitting inside C(A) via a → (a, 1). An element (a, b) will
be written a|b to remind us that we are thinking of conditionals. We call
C(A) the space of conditional events. The set A has been enlarged to
the set C(A), and for any probability measure P on A, we have P defined
on C(A) by P (a|b) = P (a)/P (b) as usual. (When b = 0, then a = 0, and
we set P (0/0) = 1.) Now it is a matter of defining operations on C(A) that
behave properly with respect to P. The usual coordinatewise operations
on C(A) are not appropriate here because that would mean that for a ≤ c,
P (a) < P (c), and P (d) < 1, P (a|1 ∨ c|d) = P ((a ∨ c)|1) = P (c) < P (c|d).
But we should have P (a|1 ∨ c|d) ≥ P (c|d) for joins to act properly with
respect to P. So we must extend the Boolean algebra operations on A in
another way.

Theorem 10.10.3 Let (Ω,A) be a measurable space and let C(A) be the
space of conditional events, with the embedding of A into C(A) as indi-
cated. Let join, meet, and negation on A be denoted by ∨,∧, and ′, re-
spectively. Let negation on C(A) be given by (a|b)′ = a′b|b. Then there is
exactly one way to extend ∨ and ∧ to C(A) so that both of these operations
are commutative and associative, have identities, De Morgan’s laws hold,
and for all probability measures P on A,

1. P (a|b ∨ c|d) ≥ P (a|b) and

2. P (a|b ∧ c|d) ≤ P (a|b).

This extension is given by the equations

a|b ∨ c|d = (a ∨ c)|(a ∨ c ∨ bd)

a|b ∧ c|d = (a ∧ c)|((a′ ∧ b) ∨ (c′ ∧ d) ∨ (b ∧ d))

With these operations, C(A) is a bounded distributive lattice. But
it is more: it is a Stone algebra. The pseudocomplement ∗ is given by
(a|b)∗ = (a′b)|1. These facts are left as exercises.

It turns out that it is possible to extend the (σ) Boolean algebra A,
in the probability space (Ω,A, P ), to a (σ) Boolean algebra A∗ to house
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another Boolean-type of conditional events, i.e., conditional objects so
defined are bona fide “events” being members of a σ-field of subsets of
some set. In fact, the whole probability space (Ω,A, P ) is extended. This
was accomplished by using the product space approach. This is a Boolean
conditional event algebra. The essentials of this Boolean approach to con-
ditional events compatible with conditional probability evaluations are
contained in the following theorem.

Theorem 10.10.4 Let (Ω,A) be a measurable space. There exist a mea-
surable space (Ω∗,A∗) and a map T : A × A → A∗ such that, for any
probability measure P on (Ω,A), there exists a probability measure P ∗

on (Ω∗,A∗) such that P ∗(T (A,B)) = P (A|B), for any A,B ∈ A with
P (B) > 0.

Proof. Take Ω∗ to be the infinite, but countable, (cartesian) product
space

∏
n≥1

Ωn, where Ωn = Ω for all n. Next, equip this product space with

the usual product σ-field A∗, i.e., the σ-field of subsets of Ω∗ generated
by cylinders, i.e., subsets of A∗ of the form

A1 ×A2 × · · · ×An × Ω× Ω× Ω× · · ·

for any n ≥ 1, andA1, A2, ..., An in A.
Now define T : A×A → A∗ as follows.

T (A,B) =
⋃

n≥o

n times

(
︷ ︸︸ ︷
Bc ×Bc × · · · × Bc × (A ∩B))

where ∪ denotes union among subsets of Ω∗, and the term A ∩ B is the
standard shorthand for A ∩B ×Ω×Ω× · · · which is a subset of Ω∗, and
for n = 0, the first term is simply A ∩B.

For a probability measure P on A, we let P ∗ be the infinite prod-
uct probability measure on A∗ with identical components P , i.e., P ∗ is
constructed from

P ∗ (A1 ×A2 × · · · ×An × Ω× Ω× Ω× · · · ) =
n∏

i=1

P (Ai)

Now, the subsets (of Ω∗)

n times︷ ︸︸ ︷
Bc ×Bc × · · · ×Bc × (A ∩ B), for n ≥ 0, are
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pairwise disjoint (in Ω∗), so that

P ∗(T (A,B)) = P ∗[
⋃

n≥o(

n times︷ ︸︸ ︷
Bc ×Bc × · · · ×Bc × (A ∩B))]

=
∞∑

n=0

P ∗[(

n times︷ ︸︸ ︷
Bc ×Bc × · · · ×Bc × (A ∩B))]

=

∞∑

n=0

P (A ∩B)[P (Bc)]n = P (A ∩B)

∞∑

n=0

[P (Bc)]n

=
P (A ∩B)

1− P (Bc)
=
P (A ∩B)

P (B)
= P (A|B)

Thus, there exists a canonical probability space (Ω∗,A∗, P ∗) associated
with (or extending) (Ω,A, P ) which houses conditional events T (A|B) ∈
A∗ whose probabilistic uncertainties are conditional probabilities
P ∗(T (A|B)) = P (A|B). The entity T (A|B) is an element of the Boolean
algebra A∗, i.e., a bona fide “event”.

10.11 Exercises

1. Prove Proposition 10.1.1.

2. Prove Proposition 10.2.2.

3. In Proposition 10.2.2, prove that F has dimension 2|U|.

4. Let U = {a, b}, and A the incidence algebra of U. Prove that A is
isomorphic to the ring of 4× 4 real matrices of the form




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗




5. Prove Theorem 10.2.4.

6. Prove Proposition 10.2.8.

7. Let S = {X,Y } with X = {a, b} and Y = {a, c}. Verify Lemma
10.3.2 for this particular case.

8. Prove Corollary 10.3.6.
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9. Prove Corollary 10.4.5.

10. Prove Lemma 10.4.14.

11. Prove Lemma 10.4.16.

12. Complete the proof of Proposition 10.5.8.

13. Let P be a set of probability measures on a measurable space (U,A).
For A ∈ A, let

F (A) =
∧{P (A) : P ∈ P}

G(A) =
∨{P (A) : P ∈ P}

Show that

(a) G(A) = 1− F (A′) and

(b) if P is a probability measure, then F ≤ P if and only if P ≤ G.

14. Let U = {a1, a2, a3, a4}, and make the probability mass assignments

f a1 a2 a3 a4 U
0.4 0.2 0.2 0.1 0.1

(a) Write down all the numerical values of g(A) =
∑

B⊆A f(B).

(b) Let P denote the set of probability measures P such that

P ({a1}) ≥ 0.4

P ({a2}) ≥ 0.2

P ({a3}) ≥ 0.2

P ({a4}) ≥ 0.1

Verify that for A ⊆ U , g(A) = inf{P (A) : P ∈ P}.

15. ⋆Let Q be a probability measure on a finite set U , and let 0 < ε < 1.
Let

P = {εP + (1− ε)Q : P is a probability measure on U}

Show that g(A) = inf{P (A) : P ∈ P} is a belief function.

16. ⋆Let f be a probability mass assignment, that is, a probability den-
sity function on 2U , with U finite. For ∅ 6= A ∈ 2U and for a ∈ A,
let

α(A, a) = f(A)/ | A |
p(a) =

∑

a∈A

α(A, a)
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(a) Verify that p is a probability density on U .

(b) Show that if P (A) =
∑

ω∈A g(a), then
∑

B⊆A

f(B) ≤ P (A)

17. Let S be a constant random set. That is, P (S = B) = 1 for some
B ⊆ U .

(a) Determine the associated belief function g(A) = P (S ⊆ A).

(b) Let T be a random set with belief function g. Show that the
belief function of S ∩ T is g(A ∪B′).

(c) Suppose that g is additive. Show that in general, g(A ∪ B′) 6=
g(A|B).

18. Let g be a belief function on a finite set U .

(a) Show that g is monotone increasing.

(b) Show that g is 2-monotone (or super modular, or convex). That
is, show that

g(A ∪B) + g(A ∩B) ≥ g(A) + g(B)

19. Give an explicit example of a function f : 2U → R that is monotone
of infinite order and is not monotone.

20. ⋆Let U = {a1, a2, a3, ..., ak}. Let

T (aj) = {A : aj ∈ A ⊆ {aj, aj+1, ..., ak}}
Let g be a belief function on U and f its Möbius inversion. Define
p : Ω→ R by

p(ωj) =
∑

A∈T (ωj)

f(A)

(a) Show that p is a probability density on Ω.

(b) Let Pp denote the probability measure with density p. Show
that g ≤ Pp.

(c) Let F = {A : g(A) > 0}. For A ∈ F and a ∈ A, let α(a,A) ≥ 0
satisfy ∑

ω∈A

α(a,A) = f(A)

and define
pα(ω) =

∑

a∈A∈F

α(a,A)

Verify that pα is a probability density and that g ≤ Ppα
.
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21. Let g be a belief function on the finite set U . Let B ⊆ U with
g(B) > 0. For A ⊆ B show that the formula

gB(A) =
g(A)

g(A) + 1− g(A ∪B′)

reduces to the definition of conditional probability if g is additive.

22. Give an example of a density f on 2U , and two allocations of f that
give the same density on U.

23. Let f be monotone of infinite order. Show that

f(X) ≥
∑

|Y |=|X|−1

f(Y )−
∑

|Y |=|X|−2

f(Y ) +
∑

|Y |=|X|−3

f(Y )− · · ·

where the Y are subsets of X.

24. Prove the bullet items just before Theorem 10.3.3.

25. Verify the assertions in Example 10.4.12.

26. Prove that if a belief function g is not a measure, then its core is
infinite.

27. Let U be a finite set, and let g(A) = 0 for A 6= U and g(U) = 1.
Prove that g is a belief function and that the core of g is the set of
all probability measures on 2U .

28. Complete the details of the proof of Lemma 10.5.3.

29. Prove that the set A in the proof of Lemma 10.5.3 is unique up to a
set of measure 0.

30. Verify that the following conditioning operators for belief functions
generalize conditional probability measures. Assume that no denom-
inator is 0.

(a) g(A|B) =
g(A ∪B′)− g(B′)

1− g(B′)

(b) g(A|B) =
g(A ∩B)

g(B)

(c) g(A|B) =
g(A)− g(A ∩B′)

1− g(B′)

31. ⋆Let P be a probability measure on the finite set U . Assume that
no denominator is 0.
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(a) For any positive integer n, show that g(A) = [P (A)]n is a belief
function.

(b) Let g(A) = [P (A)]2 and

gB(A) = g(A|B)

=
g(A ∩B)

g(B)

=

[
P (A ∩B)

P (B)

]2

Verify that for each B, the Möbius inversion of the belief func-
tion g(·, |B) is

fB(A) =





[P (A|B)]2 when A = {ω}
2P (ω1|B)P (ω2|B) when A = {ω1, ω2}
0 when A = ∅ or |A| > 2

(c) Show that the g(·|B) in the previous part is commutative, that
is, that (gB)C = (gC)B .

(d) Show that g(·|B) satisfies the “sandwich principle”, namely that
for A ⊆ U ,

g(A) ≥ min{g(A|B), g(A|B′)}

32. Let (U,A, P ) be a probability space, and X : U → R+ be a non-
negative random variable. Show the expected value

∫
U
X(ω)dP (ω)

of X can also be written
∫∞

0
P (X > t)dt.

33. Let n be a positive integer. If P is a probability measure on the finite
set U whose density f on U is the uniform one, then the density on
U which is compatible with the belief function Pn and has maximum
entropy is f .

34. Show that in Algorithm 2 there is a unique K such that

B(K ∪ U c
i )−B(U c

i )

|K|

is maximum.

35. If m is uniform on the nonempty subsets of 2U , how many steps does
Algorithm 2 take?
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36. Let U be a set, E be a partition of U, and ∼ the equivalence relation
on P(U) giving rough sets. Show that ∼ is not a congruence on the
partially ordered set (P(U),⊆).

37. (Lewis’ Triviality Result) Let B be a Boolean algebra with more than
four elements. Then there is no binary operation ⋄ on B such that
for all probability measures P on B, and all a, b ∈ B with P (b) > 0,
we have P (a ⋄ b) = P (a|b).

38. ⋆Let P : A → [0, 1] be a probability measure on a Boolean algebra
A. For b ∈ A with P (b) > 0, define P (a|b) = (P (a ∩ b))/P (b). Let
(b⇒ a) = (b′ ∪ a). Show that

P (b⇒ a) = P (a|b) + P (a′|b)P (b).

Thus P (b⇒ a) > P (a|b), in general.

39. Show that the space C(A) of conditional events as given in Remark
10.10.1 is a Stone algebra.

40. Complete the proof of Lemma 10.9.3.

41. Write out in detail the proof of Theorem 10.9.6.

42. Show that the XR in Lemma 10.9.3 form a sublattice of the bounded
lattice P(U) that is isomorphic to R.

43. ⋆Prove Corollary 10.9.8.

44. ⋆(Coset representation of conditional events) A Boolean ring is a
ring R with identity such that every element is idempotent, that
is, satisfies a2 = a. Let a′ = 1 + a, a + Rb = {a + rb : r ∈ R},
a ∨ b = a+ b+ ab, a ≤ b if ab = a, and [a, b] = {x : a ≤ x ≤ b}.

(a) Show that a+ Rb′ = c+Rd′ if and only if ab = cd and b = d.

(b) Show that a+ Rb′ = [ab, b′ ∨ a].

(c) Show that {[a, b] : a ≤ b} = {a+Rb′ : a, b ∈ R}.

45. Let (U,A) be a measure space. For a, b ∈ A, let φa,b : U → {0, u, 1}
be defined by

φa,b(u) =





1 if u ∈ ab
0 if u ∈ a′b
u if u ∈ b′

Show that {φa,b : a, b ∈ A} is in one-to-one correspondence with
C(A).
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Chapter 11

FUZZY MEASURES

Possibility measures and belief functions are special nonadditive set func-
tions. In this chapter, we consider a more general type of nonadditive set
functions called fuzzy measures. They are used to model uncertainty in
subjective evaluations.

11.1 Motivation and definitions

The simplest situation where subjective evaluations might be called upon
is exemplified by the following: suppose Ω represents the states of nature,
the unknown true state being ω0. For a subset A of Ω, you are asked to
guess whether A contains ω0. You may answer “yes” but are not quite
sure. This situation is similar to the one in the setting of belief func-
tions, and is reminiscent of the statistical concept of confidence interval
estimation. For the latter, in the process of constructing an interval es-
timate of, say, the mean µ of a population, we have a random sample
X1, X2,..., Xn from that population and a random set S(X1, X2,..., Xn).
Before collecting the data, S is a random set, and we can talk about the
probability P (µ ∈ S) of coverage. Suppose that P (µ ∈ S) = α. We collect
the random sample x1, x2,..., xn and form the set S(x1, x2,..., xn). Either
µ ∈ S(x1, x2,..., xn) or it is not, but we say that we are confident to a
degree that µ ∈ S(x1, x2, ..., xn). Now it is agreed that even without a
random mechanism as in statistics, humans still can express subjectively
their degrees of trust or “grades of fuzziness”, with values in [0, 1]. Thus,
to each A ⊆ Ω, a value ν(A) is assigned expressing a belief that ω0 ∈ A.
Obviously, ν(∅) = 0 and ν(Ω) = 1 and ν is monotonic increasing. Since ν
is assigned subjectively, one refers to ν(A) as a grade of fuzziness, where
fuzziness is used in analogy with the subjectivity in assigning a member-
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334 CHAPTER 11. FUZZY MEASURES

ship function to a fuzzy concept. In this interpretation, the set function ν
is called a fuzzy measure and is used to model human subjective eval-
uations. One might argue that subjective evaluations could be subjective
probabilities. The main difference is that, as set functions, subjective eval-
uations need not be additive. Thus, the general framework for modeling
subjective evaluations is flexible for real-world applications. Note that one
might also use the adjective “fuzzy” as opposed to “stochastic”, as in fuzzy
reasoning or fuzzy control. The concept of fuzzy measures, on the other
hand, is also backed by considerations of imprecise probability models in
which one is forced to deal with nonadditive set functions such as lower
and upper probabilities. As we will see, except for special cases, these
“imprecise” probabilities are only monotone set functions.

The terms “fuzzy measure” and “fuzzy integral” were introduced in
Sugeno’s thesis in 1974. In the context of Lebesgue abstract integration
theory, fuzzy measures surface as a weakening of the σ-additivity of stan-
dard measures. If (Ω,A) is a measurable space, then the original Sugeno
fuzzy measure concept is defined as follows: A set function µ : A → [0, 1]
is called a fuzzy measure if µ(∅) = 0, µ(Ω) = 1, and for any monotone in-
creasing sequence An ∈ A, µ(∪An) = limn→∞ µ(An). This last condition
is monotone continuity. The condition µ(Ω) = 1 is not crucial, and if it
is dropped, then abstract measures are examples of fuzzy measures. The
basic additivity property of measures is dropped. For an ordinary measure,
the σ-additivity property implies monotone continuity, which is essential
in establishing the Lebesgue theory. But, integration with respect to fuzzy
measures, either using Sugeno’s integral or Choquet’s integral, does not
rely on the monotone continuity property, but only on the fact that µ is
monotone. Thus the axiom of monotone continuity is also dropped. And
more generally, the domain A of µ can be taken as an arbitrary class of
subsets of Ω.

We will elaborate on this point. In probability theory, or more generally,
in measure theory, the domain of σ-additive measures is taken to be a σ-
field. For example, consider the experiment of selecting at random a point
in [0, 1]. For any subset A of [0, 1] we can declare whether or not the
“event” A occurred—it did if the point selected was in A and did not if
it was not. However, what we are really interested in is the probability
P (A) of A before performing the experiment. Unlike the discrete case
where P (A) can be determined by specifying a probability on singletons,
the continuous case is more complicated. For any ω ∈ [0, 1], we must
specify that P ({ω}) = 0. Were P ({ω}) > 0, then since we are selecting a
point at random, each ω ∈ [0, 1] would have the same probability, and so∑n

i=1 P ({ωi)} > 1 for sufficiently large n. We can assign P (A) to be the
length of A for subintervals of [0, 1] but cannot extend this assignment to
the set of all subsets of [0, 1] and keep σ-additivity. But it can be extended
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11.2. FUZZY MEASURES AND LOWER PROBABILITIES 335

uniquely to the σ-field B generated by the subintervals, namely to the
Borel subsets of [0, 1].

Now the essential property of a fuzzy measure µ is its monotonicity.
Suppose that a fuzzy measure µ is specified on an arbitrary class C of
subsets of a set Ω. Then µ can be extended in many ways to all of 2Ω

keeping its monotonicity. For example, µ∗(A) = sup{µ(B) : B ∈ C, B ⊆
A} is one such extension and µ∗(A) = inf{µ(B) : B ∈ C, B ⊇ A} is
another. Thus the domain of a fuzzy measure can be an arbitrary set of
subsets of a set. The range of µ can be taken to be [0, 1] or [0,∞) if need
be.

Definition 11.1.1 Let A be a family of subsets of a set Ω, with ∅ ∈ A.
A mapping µ : A → [0,∞) is called a fuzzy measure if

1. µ(∅) = 0 and

2. if A, B ∈ A and A ⊆ B, then µ(A) ≤ µ(B).

The triple (Ω,A, µ) is a fuzzy measure space.

With this general definition, fuzzy measures are set functions that are
monotone increasing with respect to set inclusion. They appear in various
areas of mathematics. In the following two sections, we will illustrate some
basic situations.

11.2 Fuzzy measures and lower probabilities

Consider again the case of incomplete probabilistic information. Let P be a
class of probability measures on a measurable space (Ω,A). For A ∈ A, let
µ(A) = inf{P (A) : P ∈ P}. Obviously, µ is a fuzzy measure with µ(Ω) = 1.
In this case, µ is a lower probability. It is the lower envelope of P .
The monotonicity of a fuzzy measure µ is referred to as monotonicity of
order 1. More generally, µ is monotone of order n if for Ai ∈ A,

µ(∪ni=1Ai) ≥
∑

∅ 6=I⊆{1,2,...,n}

(−1)|I|+1µ(∩k∈IAk)

Probability measures and belief functions on finite Ω are monotone of
order n for all positive integers n. Monotone of order 2 means

µ(A ∪B) ≥ µ(A) + µ(B)− µ(A ∩B)

These monotonicities have been discussed in Section 10.3.
For a fuzzy measure µ, the set of all probability measures P such

that P ≥ µ is denoted P(µ). The elements of P(µ) are those probability
measures that dominate µ, or are compatible with µ.
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336 CHAPTER 11. FUZZY MEASURES

Example 11.2.1 Let Ω = {ω1, ω2}. Consider the fuzzy measure µ defined
by

µ(∅) = 0

µ(ω1) = 0.7

µ(ω2) = 0.7

µ(Ω) = 1

No probability measures P on Ω can dominate µ in the sense that if A ⊆ Ω
then µ(A) ≤ P (A). That is, there is no probability measure compatible
with µ. Indeed, for P to dominate µ, P{ωi} ≥ 0.7, an impossibility. Thus
the class of probability measures compatible with µ is empty. Unlike belief
functions, fuzzy measures do not have a probabilistic interpretation in
terms of classes of compatible probability measures. Thus fuzzy measures
can be used to model different types of uncertainty.

The fuzzy measure in this example is not monotone of order 2 since
for A = {ω1} and B = {ω2}, we have

µ(A ∪B) = µ(Ω) = 1

µ(A ∩B) = µ(∅) = 0

while µ(A)+µ(B) = 1.4. However, if a fuzzy measure is monotone of order
at least 2, then it is monotone of lower order. In this example, P(µ) = ∅
is due precisely to the fact that µ is not monotone of order 2.

Example 11.2.2 This example shows that, even when P(µ) 6= ∅, µ
might not be the lower envelope of P(µ). Let Ω = {ω1, ω2, ω3}. Consider
the fuzzy measure

µ(∅) = 0

µ(ω1) = 1/3

µ(ω2) = 1/3

µ(ω3) = 1/6

µ(ω1, ω2) = 2/3

µ(ω1, ω3) = 2/3

µ(ω2, ω3) = 2/3

µ(Ω) = 1
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11.2. FUZZY MEASURES AND LOWER PROBABILITIES 337

If P ∈ P(µ), then since

µ(ω1) = 1
3 ≤ P{ω1}

µ(ω2) = 1
3 ≤ P{ω2}

1 = P{ω1}+ P{ω2}+ P{ω3}
µ{ω1, ω3} = 2

3 ≤ P{ω1}+ P{ω3}

we get P{ω2} = 1
3 . Similarly, P{ω1} = 1

3 , and therefore so is P{ω3}. Thus
P is the uniform distribution on Ω, and clearly is not µ.

Example 11.2.3 This example shows that if µ = inf P , the lower en-
velope of a class of probability measures P , its class P(µ) of compatible
measures might be different from P . Let Ω = {ω1, ω2, ω3, ω4}, and let
probability measures Pi be given by the table below.

.

Ω ω1 ω2 ω3 ω4

P1 0.5 0.2 0.2 0.1
P2 0.4 0.3 0.2 0.1
P3 0.4 0.2 0.3 0.1
P4 0.4 0.2 0.2 0.2

If P = {P1, P2,P3, P4} and µ(A) = inf{Pi(A)}, then P ⊆ P(µ), but the
probability density P given by P{ω1} = 0.425, P{ω2} = P{ω3} = 0.225
and P{ω4} = 0.125 dominates µ.

Example 11.2.4 The discussion in this example emphasizes the fact that,
unlike belief functions, general fuzzy measures do not have the formal in-
terpretation in terms of random sets. The notion of Möbius inversion
can be defined for arbitrary set functions on finite sets. Let Ω be finite and
let µ : 2Ω → R. Now define f : 2Ω → R by

f(A) =
∑

B⊆A

(−1)|A−B|µ(B)

This f is the Möbius inversion of µ, and

µ(A) =
∑

B⊆A

f(B)

In the case of a fuzzy measure µ with µ(Ω) = 1, we have

∑

A⊆Ω

f(A) = µ(Ω) = 1
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but unless f is nonnegative, we cannot view f as a density function for
some random set. Here is an example. Let Ω = {ω1, ω2, ω3}, let µ be 0
except for µ{ωi, ωj} = 0.5 for distinct pairs, and µ(Ω) = 1. Then

f(Ω) =
∑

A⊆Ω

(−1)|Ω−A|µ(A) = −.5

The Möbius inversion gives a nonnegative function only in the case of
belief functions, that is, fuzzy measures monotone of infinite order.

Example 11.2.5 A very general and useful class of fuzzy measures con-
sists of those which are monotone of order 2. These fuzzy measures are
sometimes referred to as convex fuzzy measures, a term in game the-
ory where the monotonicity of order 2 is the analog of the positivity of
the second derivative of convex functions. This type of fuzzy measure also
appears in robust Bayesian statistics.

Let Ω = {ω1, ω2, ..., ωn}, and let µ be a fuzzy measure monotone of
order 2. Let f be the Möbius inversion of µ. Define P : 2Ω → R by

P (A) =
∑

∅ 6=B⊆Ω

f(B)
|A ∩B|
|B|

We are going to show that P is a probability measure on Ω. That P (∅) = 0
and P (Ω) = 1 are easy. Also it is easy to check that for A ∩ B = ∅,
P (A∪B) = P (A) + P (B). To finish the proof, it suffices to show that for
ω ∈ Ω, P ({ω}) ≥ 0.

Now
∑

ω∈D⊆Ω [µ(D ∪ {ω})− µ(D)] ≥ 0 since µ is monotone. Thus it
suffices to show that

∑

{ω}∪D⊆B

(−1)|B−D∪{ω}|

|B| ≥ 0
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For m = |Ω| − |D| − 1, d = |D|,

∑

D∪{ω}⊆B⊆Ω

(−1)|B\(D∪{ω})|

|B| =

|Ω|∑

n=|D|+1

∑

D∪{ω}⊆B⊆Ω
|B|=n

(−1)n−|D|−1

n

=

|Ω|∑

n=|D|+1

(|Ω| − |D| − 1

n− |D| − 1

)
(−1)

n−|D|−1

n

=

|Ω|−|D|−1∑

k=0

(|Ω| − |D| − 1

k

)
(−1)k

k + |D|+ 1

=
∑m

k=0

(−1)
k

k + d+ 1

(
m

k

)

=
d!m!

(m+ d+ 1)!
> 0

All equalities are clear except the last, and that is proved in the lemma
below.

Lemma 11.2.6 For m ≥ 0, d ≥ 0,

m∑

k=0

(−1)
k

k + d+ 1

(
m

k

)
=

d!m!

(m+ d+ 1)!

Proof. Induct on m. For m = 0, the summation reduces to

(−1)0

0 + d+ 1

(
0

0

)
=

1

d+ 1

Assume that for some m = m0 ≥ 0 the equality holds for all d ≥ 0 and
for all m ≤ m0 and consider

m+1∑

k=0

(−1)k

k + d+ 1

(
m+ 1

k

)

The following relationship

(
m+ 1

k

)
=

(
m

k

)
+

(
m

k − 1

)
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holds between binomial coefficients, and we apply it in the induction step.

m+1∑

k=0

(−1)
k

k + d+ 1

(
m+ 1

k

)

=
(−1)0

0 + d+ 1
+

m∑

k=1

(−1)k

k + d+ 1

((
m

k

)
+

(
m

k − 1

))

+
(−1)

m+1

m+ 1 + d+ 1

(
m+ 1

m+ 1

)

=
1

d+ 1
+

m∑

k=1

(−1)
k

k + d+ 1

(
m

k

)
+

m∑

k=1

(−1)
k

k + d+ 1

(
m

k − 1

)
+

(−1)
m+1

m+ d+ 2

=
d!m!

(m+ d+ 1)!
−

m−1∑

k=0

(−1)k

k + d+ 2

(
m

k

)
+

(−1)m+1

m+ d+ 2

=
d!m!

(m+ d+ 1)!
− (d+ 1)!m!

(m+ d+ 2)!
+

(−1)
m

m+ d+ 2

(
m

m

)
+

(−1)
m+1

m+ d+ 2

=
d!m!

(m+ d+ 1)!

(m+ d+ 2)

(m+ d+ 2)
− (d+ 1)!m!

(m+ d+ 2)!

=
d!m! (m+ d+ 2)− (d+ 1)!m!

(m+ d+ 2)!

=
d!

(m+ d+ 2)!
(m! (m+ 1))

=
d! (m+ 1)!

(m+ d+ 2)!

This probability measure dominates µ, so that P(µ) 6= ∅. The proof of
this fact is quite lengthy and is omitted. The interested reader can consult
[30].

11.3 Fuzzy measures in other areas

11.3.1 Capacities

As in measure theory, classical capacities on Euclidean spaces in potential
theory are extended to an abstract setting as follows. Let Ω be a set. A
precapacity on Ω is a map I from the power set 2Ω to the extended real
line R = [−∞,∞] in such a way that

• I is monotone increasing and

• if An is an increasing sequence in 2Ω, then I(∪An) = sup I(An).
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11.3. FUZZY MEASURES IN OTHER AREAS 341

A simple precapacity is this: for any set Ω, let I(A) = 1 if A is an
uncountable subset of Ω and 0 otherwise. Of course, letting I(A) = 0 for
all A is a precapacity also.

Let (Ω,A, P ) be a probability space. Define I on 2Ω by

I(A) = inf{P (B) : B ∈ A, A ⊆ B}

This precapacity has an important additional property. Since P is a prob-
ability measure, for any decreasing sequence An in A,

P (∩An) = I(∩An) = inf P (An) = inf I(An)

Precapacities having this additional structure are called capacities. A
collection F of subsets of Ω is called a pavage if it contains the empty set
and is closed under finite unions and intersections. An F -capacity on Ω is
a precapacity I such that if Fn is a decreasing sequence in F , then

I(∩Fn) = inf I(Fn)

Here are some examples.

Example 11.3.1 Let K and O denote, respectively, the set of compact
and the set of open subsets of the Euclidean space Rd. Classical capacities
in potential theory have some special properties. Let I : K → [0,∞] satisfy
the following:

1. I is increasing on K.

2. I is strongly subadditive. That is, for A,B ∈ K,

I(A ∪B) + I(A ∩B) ≤ I(A) + I(B)

3. I is continuous on the right. That is, for A ∈ K and ε > 0, there
is an open set V containing A such that for every B ∈ K satisfying
A ⊆ B ⊆ V we have I(B) ≤ I(A) + ε.

The inner capacity associated with I is defined for any subset A of
Rd by

I∗(A) = sup{I(K) : K ∈ K,K ⊆ A}
and the outer capacity I∗ by

I∗(A) = inf{I∗(X) : X ∈ O, A ⊆ X}

It can be verified that I∗ is a K-capacity.
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Example 11.3.2 Let (Ω,A, P ) be a probability space. Define I : 2Ω →
[0, 1] by

I(A) = inf{P (B) : B ∈ A, A ⊆ B}
Then I is an A-capacity.

Example 11.3.3 When Ω is finite, every increasing set function on 2Ω is a
2Ω-capacity. For example, let ϕ : 2Ω → [0, 1] satisfy

∑
A⊆Ω ϕ(A) = 1. Then

I(A) =
∑

B⊆A ϕ(B) is a 2Ω-capacity. Without referring to the pavage 2Ω

in the finite case, fuzzy measures on finite sets are often referred to as
capacities.

11.3.2 Measures and dimensions

We give here some examples of measures and dimensions.

Example 11.3.4 An interval J in Rn is the Cartesian product of intervals
of R. Let v(J) =

∏n
i=1(bi − ai). For A ⊆ Rn, define µ(A) = inf σ(J )

where the inf is over all possible coverings J ={Jj}∞j=1 of A by countable

intervals of Rn, and σ(J ) =
∑∞

j=1 v(Jj). Clearly µ : 2R
n → [0,∞) is a

fuzzy measure. Note that µ(∪∞j=1Aj) ≤
∑∞

j=1 µ(Aj), so µ is subadditive.
Such a set function is called an outer measure.

Example 11.3.5 Let (Ω, d) be a metric space. The diameter of A ⊆ Ω
is δ(A) = sup{d(x, y) : x, y ∈ A}. For each α > 0 and each ε > 0,
consider µε

α(A) = inf
∑

k[δ(Ak)]α, where the inf is taken over all countable
collections {Ak} such that A ⊆ ∪Ak and δ(Ak) < ε for each k. Let µα(A) =
limε→0 µ

ε
α(A). Then µα is an outer measure, called the Hausdorff outer

measure of dimension α. Now define µ : 2Ω → [0,∞] by

µ(A) = inf{α > 0 : µα(A) = 0}
The quantity µ(A) is called the Hausdorff dimension of A. The function
µ is not additive, but is monotone increasing.

Example 11.3.6 Let (Ω,A, P ) be a probability space. Define µ : A →
[0,∞] by µ(A) = [−c logP (A)]−1, where c > 0. This fuzzy measure has
the following special property. If A ∩B = ∅, then

µ(A ∪B) = [−c log(P (A) + P (B))]−1

=
[
max{0,−c log{e−µ(A)

c + e
1µ(B)

c }}
]−1

That is, when A∩B = ∅, µ(A∪B) is a function of µ(A) and µ(B). So µ(A∪
B) = ϕ(µ(A), µ(B)). Such fuzzy measures are called decomposable with
decomposition operation ϕ. If µ is additive, then it is decomposable
with operation ϕ(x, y) = x+ y.
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Example 11.3.7 Let (Ω,A) be a measurable space. Let µ : A → [0, 1]
satisfy

1. µ(Ω) = 1 and

2. if A ∩B = ∅, then

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B)

for some λ > −1. Then µ is called a λ-measure, or a Sugeno
measure. Since

1 = µ(Ω ∪∅)

= µ(Ω) + µ(∅) + λµ(Ω)µ(∅)

= 1 + µ(∅) + λµ(∅)

we have µ(∅)(1 + λ) = 0, implying that µ(∅) = 0. For A ⊆ B, we
have

µ(B) = µ(A) + µ(B −A) + λµ(A)µ(B −A)

But
µ(B −A) + λµ(A)µ(B −A) ≥ 0

since λ > −1 and 0≤ µ(A) ≤ 1. Thus µ(A) ≤ µ(B), so that µ is
a fuzzy measure. Note that this λ-measure can be expressed in the
form µ(A) = f(P (A)) where P is a probability measure and f is a
monotone increasing function. Indeed,

µ(A) =
1

λ
[elog(1+λµ(A)] − 1]

But observe that

elog(1+λµ(A) = [(1 + λ)
1

log(1+λ ]log(1+λµ(A))

= (1 + λ)
log(1+λµ(A))

log(1+λ)

Thus for λ > −1, we take

f(x) =

{
1
λ [(1 + λ)x − 1] if λ 6= 0

x if λ = 0

Then f(0) = 0 and f(1) = 1 and f is increasing. Next take

P (A) =
log(1 + λµ(A))

log(1 + λ)
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It remains to verify the P is additive. For A ∩B = ∅, we have

P (A ∪B) =
log(1 + λµ(A ∪B))

log(1 + λ)

But

log(1 + λµ(A ∪B)) = log [1 + λ(µ(A) + µ(B) + λ(µ(A)µ(B))]

= log[(1 + λ(µ(A))(1 + λ(µ(B))]

= log(1 + λ(µ(A)) + log(1 + λ(µ(B))

= [P (A) + P (B)] log(1 + λ)

Note that Sugeno’s λ-measures are decomposable with ϕλ(x, y) =
x+ y + λyx. If λ = 0, then µλ is additive.

11.3.3 Game theory

The mathematical framework for the coalition form of game theory is as
follows [10]. Let Ω be the set of players, and A be a σ-field of subsets of
Ω, representing the collection of all possible coalitions. A game is a map
ν : A → R with the interpretation that for A ∈ A, ν(A) is the worth of A,
that is, the payoff that the coalition A would get. The function ν is very
general, and not necessarily additive. For example, ν can be the square of
an additive measure.

Set functions in game theory are sometimes superadditive, that is, they
satisfy ν(A ∪B) ≥ νA) + ν(B) for A and B disjoint. This is supposed to
reflect the fact that disjoint coalitions do not lose by joining forces. A
similar situation with belief functions is this: the core of a game ν is the
set of all bounded, finitely additive signed measures µ on A dominating
ν, that is for which ν(A) ≤ µ(A) for A ∈ A and ν(Ω) ≤ µ(Ω).

Another fundamental concept in game theory is that of a value. Roughly
speaking, it is an operator that assigns to each player of a game a num-
ber representing the amount the player would be willing to pay in order
to participate. Thus a value is a map from games to payoff distributions,
which are bounded, finitely additive signed measures.

It is interesting to note that in the study of value and core in game
theory [10], there is a need to generalize—or idealize—the notion of set
by specifying for each point a weight between 0 and 1, which indicates
the “degree” to which that point belongs to the set. This “ideal” kind
of set is used to formalize the intuitive notion of “evenly spread” sets.
Subsets of the set Ω of players are coalitions. Evenly spread subsets are
viewed as “ideal” coalitions, which are simply fuzzy subsets of Ω. The
extension of a game from A to fuzzy events plays a key role in the study.
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(For details, see [10].) The study of nonadditive set functions and their
associated linear operators is an interesting topic in game theory. Results
in Chapter 10 concerning belief functions viewed as special games can be
partially extended to arbitrary monotone games.

11.4 Conditional fuzzy measures

Let (Ω,A, µ) be a fuzzy measure space. We take A to be an algebra of
subsets of Ω. The function µ is monotone increasing with µ(∅) = 0 and
µ(Ω) ∈ R+. The dual fuzzy measure of µ is given by µ∗(A) = µ(Ω) −
µ(A′), where A′ is the set complement of A. By analogy with conditional
probabilities, define µ(·|B) by

µ(A|B) =
µ(A ∩B)

µ(A ∩B) + µ∗(A′ ∩B)

This is well defined only when the denominator 6= 0. So the domain D(B)
of µ(·|B) is the set of those A such that µ(A ∩ B) + µ∗(A′ ∩ B) > 0. In
particular, ∅ ∈ D(B) if µ∗(B) > 0. Note that D(B) = A if, for example,
µ∗(B) > 0 and µ is subadditive. Subadditive means that µ(A1 ∪ A2) ≤
µ(A1) ∪ µ(A2) for disjoint A1 and A2.

We show that µ(·|B) is monotone increasing on D(B). Let A1 ⊆ A2.
Then since µ and µ∗ are increasing,

µ(A1 ∩B)[µ(A2 ∩B) + µ∗(A′
2 ∩B)]

= µ(A1 ∩B)µ(A2 ∩B) + µ(A1 ∩B)µ∗(A′
2 ∩B)

≤ µ(A1 ∩B)µ(A2 ∩B) + µ(A2 ∩B)µ∗(A′
1 ∩B)

and so µ(A1|B) ≤ µ(A2|B). Thus µ(·|B) is a fuzzy measure. Other forms
of conditional fuzzy measures are possible. The following are examples.

• µ(A|B) =
µ(A ∩B)

µ(B)
for µ(B) > 0.

• µ(A1|B) =
µ((A ∩B) ∪B′)− µ(B)

µ(Ω)− µ(B′)
for the denominator µ∗(B) > 0.

We discuss now the case when µ(B) = 0. Without exception, fuzzy
inference is based essentially on conditional information. Probabilistic rea-
soning and the use of conditional probability measures rest on a firm math-
ematical foundation and are well justified. The situation for non-additive
set functions seems far from satisfactory. This is an important open prob-
lem and we will elaborate on it in some detail. The material is essentially
probabilistic.
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Let X and Y be random variables defined on a probability space
(Ω,A, P ). The product Borel σ-field on R× R is denoted B × B and the
joint probability measure of (X,Y ) on B × B is determined by

Q (A×B) = P (X ∈ A, Y ∈ B)

The marginal probability measures are, respectively,

QX(A) = Q(A× R)

QX(B) = Q(R×B)

We now review briefly the concept of conditional probability. Setting

a = (X ∈ A) = X−1(A)

b = (Y ∈ B) = Y −1(B)

and denoting a ∩ b by ab, we set

P (b|a) =
P (ab)

P (a)

whenever P (a) 6= 0. For each such a, P (b|a) is a probability measure on
(Ω,A).

Now suppose X and Y are defined on (Ω,A,R), and X is a continuous
random variable. Then for x ∈ R, P (X = x) = 0. How do we make sense
of P (Y ∈ B|X = x)? Suppose X is uniformly distributed on [0, 1], and
Y is a binomial random variable defined as follows. If X = x, then the
value of Y is the number of heads gotten in n tosses of a coin where the
probability of getting a head is the value x of X . The probability of getting
at most j heads is given by the formula

j∑

k=0

(
n

k

)
xk(1− x)n−k

and this value is P (Y ≤ j|X = x). The density of X is f(x) = 1[0,1](x)
and the density of Y is

g(k|x) =

(
n

k

)
xk(1− x)n−k

under the condition that X = x. If we define g by this formula for x ∈ [0, 1]
and 0 otherwise, then the variable Y , given X = x should have g as a
“conditional density”, and then

j∑

k=0

(
n

k

)
xk(1− x)n−k
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can be written as

P (Y ≤ j|X = x) =

j∑

k=0

g(k|x)

Thus, for any B ∈ B, one might take P (Y ∈ B|X = x) as a probability
measure, even when P (X = x) = 0. The set function B → P (Y ∈ B|X =
x) is the conditional probability measure of Y when X = x.

We discuss now the existence of such conditional probability measures
in a general setting. Noting that

P (Y ∈ B) = E(1(Y ∈B)) =

∫

Ω

1(Y ∈B)(ω)dP (ω) <∞

the general problem becomes the existence of the “conditional expecta-
tion” of an integrable random variable Y given X = x. This conditional
expectation is denoted E (Y |X = x). Since Y is integrable, the set function
on B defined by

M(B) =

∫

(X∈B)

Y (ω)dP (ω)

is a signed measure, absolutely continuous with respect to QX , and hence
by the Radon–Nikodym theorem from measure theory, there exists a B-
measurable function f(x), unique to a set of QX measure zero, such that

∫

(X∈B)

Y (ω)dP (ω) =

∫

B

f(x)dQX(x)

As a special case, when Y is of the form 1(Y ∈B), we write

Q(B|X) = E[1(Y∈B)|X = x]

It is easy to check that the function

K : B × R→ [0, 1]

defined by K(B, x) = Q(B|x) satisfies

• For each fixed B ∈ B, K(B, ·) is B-measurable and

• For each x ∈ R, K(·, x) is a probability measure.

Such a function is called a Markov kernel. By the first property,∫
AK(B, x)dQX(x) is well defined for A,B ∈ B, and

Q(A× B) =

∫

A

K(B, x)dQX(x)
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thus relating the joint measure Q on B × B with the marginal measure
QX of X . When A = R, we have

Q(R×B) = QY (B) =

∫

R

K(B, x)dQX(x) (11.1)

This is the basic relation between marginals QX , QY and the Markov
kernel. Thus we can state that the conditional probability measure P (Y ∈
B|X = x) is a Markov kernel K(B, x) such that (11.1) holds. This can be
used as a guideline for defining conditional fuzzy measures.

By analogy with probability theory, one can define a conditional fuzzy
measure, denoted µ(B|x), to be a “fuzzy kernel”, that is, satisfying

• For each B ∈ B, µ(B|·) is a B-measurable function;

• For each x ∈ R (say), µ(·|x) is a fuzzy measure.

The basic problem is the existence of µ satisfying the counterpart of
(11.1) in the fuzzy setting. “Integrals” with respect to fuzzy measures
need to be defined in such a way that they generalize abstract Lebesgue
integrals. We postpone this analysis until fuzzy integrals have been defined,
but will indicate the formulation.

Let (Ωi,Ai) be two measurable spaces. A fuzzy kernel K from Ω1 to
Ω2 is a map K : A2 × Ω1 → R+ such that

• for each A2 ∈ A2, K(A2, ·) is A1-measurable and

• for each ω1 ∈ Ω1, K(·, ω1) is a normalized fuzzy measure on A2.

If P1 is a probability measure on (Ω1,A1), then

Q2(A2) =

∫

Ω1

K(A2, ω1)dP1(ω1)

is a fuzzy measure on (Ω2,A2). The same is true when P1 is replaced
by a fuzzy measure Q1 on (Ω1,A1), where integration is in the sense of
Choquet. That is,

∫

Ω1

K(A2, ω1)dP1(ω1) =

∫ 1

0

Q1{ω1 : K(A2, ω1) ≥ t}dt

In the following, the product σ-field on the Cartesian product space
Ω1 × Ω2 is denoted A1 ⊗ A2. If a normalized fuzzy measure Q on (Ω1 ×
Ω2,A1 ⊗A2) is such that

Q(A1 ×A2) =

∫

A1

K(A2, ω1)dQ1(ω1)

=

∫ 1

0

Q1{ω1 : 1A1(ω1)K(A2, ω1) ≥ t}dt
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then Q has Q1 and Q2 as marginals. That is,

Q(A1 × Ω2) =

∫ 1

0

Q1{ω1 : 1A1(ω1 ≥ t)}dt = Q1(A1)

and Q(Ω1×A2) = Q2(A2). The problem of defining Q(X2 ∈ A2|X1 = ω1)
when Q(X1 = ω1) = 0 appeared in the context of Bayesian statistics
concerning lower and upper probabilities. There, only a partial solution
was given. An open problem is this: if Q is a joint fuzzy measure on
(Ω1×Ω2,A1⊗A2), under which conditions can a fuzzy kernel K from Ω1

to Ω2 be found such that

Q2(A2) =

∫ 1

0

Q1{ω1 : K(A2, ω1) ≥ t}dt

where Qi are marginal fuzzy measures of Q? The need for considering
conditional fuzzy measures is apparent in situations such as fuzzy regres-
sion problems, interpretation and assignments of weights to fuzzy rules in
control or expert systems, and so on.

The discussion above is concerned with the problem of existence of con-
ditional fuzzy measures of the form µ(Y ∈ A : X = x) when µ(X = x) = 0.
It is a mathematical problem. Of course, from a subjective evaluation point
of view, one can specify such measures for inference purposes. A mathe-
matically difficult problem arises if we insist on a respectable level of the
theory of fuzzy measures. In this regard, much research needs to be done.
Fuzzy kernels can be used to define conditional fuzzy measures. (See, for
example, [40, 222].)

Research in the field of fuzzy measures and integrals is currently very
active, with many papers appearing. The reader should be aware that there
is no consensus even in terminology. For example, a Radon–Nikodym the-
orem for fuzzy valued measures is not a Radon–Nikodym theorem for non-
additive set functions. While dropping σ-additivity of ordinary measures,
most of the researchers add assumptions to fuzzy measures, which make
the latter almost similar to the former. Perhaps one should fix a precise
case, say Choquet capacities, and see what fundamental new results will
surface. The problem of conditional fuzzy measures µ(Y ∈ A : X ∈ B),
where µ(X ∈ B) > 0, does not cause technical problems. As in the case of
belief conditioning of Shafer, the problem with these straightforward def-
initions is that it yields a whole host of choices. Without a clear logic or
application-oriented motive, various definitions of conditional fuzzy mea-
sures look like mathematical games of extending conditional probability
measures. If the root of fuzzy measures is in subjective evaluation pro-
cesses, the conditioning problem should involve human factors, and any
proposed conditioning procedure should be tested empirically.
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11.5 Exercises

1. Verify that a fuzzy measure µ is monotone of order 2 when

µ(A ∪B) + µ(A ∩B) ≥ µ(A) + µ(B)

2. Show that if a fuzzy measure µ is monotone of order n ≥ 2, then it
is monotone of order m for 2 ≤ m ≤ n.

3. Show that µ in Example 11.2.3 of Section 11.2 is monotone of infinite
order.

4. ⋆Let µ be a fuzzy measure. For A,B,X ∈ A, define

∆1(X,A) = µ(X)− µ(X ∩ A)

∆2(X,A,B) = ∆1(X,A)−∆1(X ∩B,A)

Show that µ is monotone of order 2 if and only if ∆2(X,A,B) ≥ 0
for all X,A,B.

5. ⋆*Show that if the Möbius inversion of a fuzzy measure µ is non-
negative, then µ is a belief function, i.e., is monotone of infinite
order.

6. *Let Ω be finite. Let Q be a probability measure on Ω such that
Q(A) > 0 for every subset A 6= ∅. Let µ be a fuzzy measure on Ω
such that µ(Ω) = 1, and f its Möbius inversion.

(a) Define P : 2Ω → R by

P (A) =
∑

∅ 6=B⊆Ω

f(B)Q(A|B)

where Q(A|B) =
Q(A ∩B)

Q(B)
. Show that P is a probability mea-

sure.

(b) Show that P dominates µ if and only if µ is monotone of order
2.

7. Let F be a pavage of subsets of Ω such that if Fn ∈ F with Fn

decreasing in n and 6= ∅, then ∩Fn 6= ∅. Define I : 2Ω → {0, 1} by
I(A) = 1 if A 6= ∅ and 0 otherwise. Show that I is an F -capacity.

8. Let C be a collection of subsets of Ω. Let µ : C → [0,∞) be monotone.

(a) Verify that µ∗ and µ∗ defined in Section 11.1 are monotone.
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(b) Verify that any monotone extension ν of µ to 2Ω satisfies µ∗

≤ ν ≤ µ∗.

9. Let C be a collection of subsets of Ω such that ∅ ∈ C and C is
closed under complementation. Let µ : C → [0,∞) be monotone. Let
ν(A) = µ(Ω)− µ(Ac). Show that ν is monotone.

10. Let (Ω,A, P ) be a probability space. Let λ > 0. Define µλ : A →
[0, 1] by µλ(A) = 1

λ [(1 + λ)P (A) − 1].

(a) Show that limλ→0 µλ(A) = P (A).

(b) Show that µλ is a fuzzy measure.

(c) Show that µλ is a Sugeno λ-measure.

11. ⋆Let (Ω,A, µ) be a fuzzy measure space, where A is an algebra of
subsets of Ω. Assuming µ(Ω) <∞, consider µ∗(A) = µ(Ω)− µ(A′),
where A′ = Ω−A.

(a) Verify that µ∗ is a fuzzy measure on A.

(b) Show that µ is monotone of order 2 if and only if

µ∗(A ∪B) + µ∗(A ∩B) ≤ µ∗(A) + µ∗(B)

This condition is called alternating of order 2, or submod-
ular.

12. Show that the formula

µ(A|B) =
µ(A ∩B)

µ(A ∩B) + µ∗(A′ ∩B)

for finite fuzzy measures µ reduces to the usual definition of condi-
tional probability when µ is additive and µ(Ω) = 1.

13. Let (Ω,A, P ) be a finite fuzzy measure space. With the notation
of Section 10.1, show that D(B) =A when µ∗(B) > 0, and µ is
subadditive.

14. ⋆Let X be a nonnegative random variable defined on some prob-
ability space (Ω,A, P ). Consider the random set S(ω) = [0, X(ω)].
The random length µ(S) of S is X. Show that the expected value of
µ(S) is

∫∞

0
π(x)dx, where π(x) = P ({ω : x ∈ S(ω))} is the covering

function of S.
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15. Let S be a random closed set in Rk. Let µ denote Lebesgue measure
on Rk. Then E(µ(S)) =

∫
Rk π(x)dµ(x), where π(x) = P (x ∈ S).

Let S1, S2, ..., Sn be a random sample from S. Define the empirical
covering function to be πn(x) = #{j : x ∈ Sj}/n.

(a) Show that πn(x)→ π(x) as n→∞, for each x, with probability
one.

(b) Show that
∫
Rk πn(x)dµ(x) → E(µ(S)) as n → ∞, for each x,

with probability one.

16. ⋆Let X be a nonnegative random variable. Consider the random
closed set S(ω) = [0, X(ω)] on R+. Let π(x) = P (x ∈ S). Determine
the capacity functional of S in terms of π.

17. Let π : R→[0, 1] be upper semicontinuous. For K ∈ K(R), let
T (K) = supx∈K π(x). Show that if Kn ∈ K(R) with Kn ց, then
T (∩nKn) = limn→∞ T (Kn).

18. Let (Ω,A) be a measurable space. An ideal J of A is a subset of A
such that ∅ ∈ J , if A ∈ J and B ∈ A with B ⊆ B, then B ∈ J ,
and A,B ∈ J imply that A ∪B ∈ J . A σ-ideal J of A is a ideal J
of A such that if An ∈ J , then ∪nAn ∈ J .

(a) If P is a probability measure on A, verify that J = {A ⊆ A :
P (A) = 0} is a σ-ideal of A.

(b) Let Jt, t ≥ 0, be a family of σ-ideals of A such that Js ⊆ Jt
whenever s ≤ t. Show that T (A) = inf{t ≥ 0 : A ∈ Jt} is , that
is, for any sequence An ∈ A, T (∪nAn) = supn T (An).

(c) Suppose that Ω is a metric space, and d(A) is the diameter
of A. An outer measure on P(Ω) is a function µ : P(Ω) →
[0,∞] such that µ(∅) = 0, is monotone increasing, and is σ-
subadditive, that is, if An ∈ P(Ω), then µ(∪nAn) ≤∑n µ(An).
For α ≥ 0, the Hausdorff α-measure µα is defined by

µα(A) = lim
ε→0

{
inf
∑

n

(d(An))α

}

where the inf is taken over all countable coverings of A by closed
balls An such that d(An) < ǫ. Verify that each µα is an outer
measure.

(d) Show that Hausdorff dimension is strongly maxitive.

(e) Let P be a probability measure on (Ω,A), and f : Ω → [0,∞]
measurable and bounded. Show that T (A) = inf{t ≥ 0 : P (A∩
(f > t)) = 0} is strongly maxitive.
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19. (General construction of maxitive set functions) Let (Ω,A) be a
measurable space.

(a) Let µ be a maxitive set function defined on A with µ(∅) = 0.
Show that for each t > 0, Jt = {A ∈ A : µ(A) ≤ t} is an ideal
in A. Show also that the family of ideals {Jt}t≥0 is increasing
in t. Verify that µ(A) = inf{t ≥ 0 : A ∈ Jt}.

(b) Let {Kt}t≥0 be a family of ideals of A increasing in t. Let
µ(A) = inf{t ≥ 0 : A ∈ Kt}. Show that µ is maxitive.

(c) Let J be an ideal of A and f : Ω→ [0,∞) be measurable. Let
Jt = {A ∈ A : A ∩ (f > t) ∈ J }. Show that µ(A) = inf{t ≥ 0 :
A ∈ Jt} is maxitive.
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Chapter 12

THE CHOQUET

INTEGRAL

In Chapter 11, we introduced fuzzy measures in various situations involv-
ing general subjective evaluations. Pursuing this investigation, we address
now the problem of integration of functions with respect to monotone set
functions, with emphasis on the Choquet integral.

12.1 The Lebesgue integral

Here we will review the elements of integration with respect to σ-additive
set functions. Let (Ω,A, µ) be a measure space. We are going to describe
how to construct abstract integrals for a large class of numerical functions
defined on Ω. The set of Borel sets B(R) is the smallest σ-field containing
all the open sets of R.

Definition 12.1.1 Let f : Ω → R. The function f is measurable if
f−1(B) ∈ A whenever B ∈ B(R).

For any function g : S → T , the function g−1 : 2T → 2S preserves set
operations. For example g−1(∪Ai) = ∪g−1(Ai). Thus µ◦ f−1 : B → [0,∞]
is a measure on (R,B).

It turns out that measurability of numerical functions can be checked
by using some special classes of subsets of R. Specifically, f is measurable
if and only if for x ∈ R, {ω : f(ω) < x} ∈ A, or equivalently if {ω : f(ω) >
x} ∈ A.

A function f : Ω→ R can be written as

f(ω) = f+(ω)− f−(ω)

355
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where f+(ω) = max{0, f(ω)} and f−(ω) = max{0,−f(ω)}. Note that
f+ and f− are nonnegative. If f is measurable, then f+ and f− are also
measurable.

Let A1, A2,..., An be a partition of the space Ω into measurable sets.
A nonnegative simple function is a function ϕ of the form ϕ(ω) =∑n

i=1 αi1Ai
(ω). Thus ϕ has value αi on Ai. It should be clear that ϕ

is measurable. It turns out that nonnegative measurable function can be
approximated by simple functions. Let f be such a function and for n ≥ 1
define

fn(ω) =

n2n∑

k=1

k

2n
1Ai

n
(ω) + n1An

(ω)

where

Ak
n = {ω :

k − 1

2n
< f(ω) ≤ k

2n
}

for k = 1, 2, ..., n2n, and An = {ω : f(ω) > n}. Then fn is an increasing
sequence of nonnegative functions converging pointwise to f .

With the concepts above, we can describe abstract integrals. Let f be
a nonnegative simple function, say, f(ω) =

∑n
i=1 αi1Ai

(ω). The integral
of f with respect to µ is defined by

∫

Ω

f(ω)dµ(ω) =
n∑

i=1

αiµ(Ai)

Now let f be nonnegative and measurable. There is an increasing se-
quence of nonnegative simple functions fn converging pointwise to f . Since∫
Ω f(ω)dµ(ω) is an increasing sequence of numbers, it has a limit in [0,∞],

and we define ∫

Ω

f(ω)dµ(ω) = lim
n→∞

∫

Ω

fn(ω)dµ(ω)

Of course, it remains to be verified that this limit is independent of the
choice of the simple functions fn converging to f , but we omit those details.

As in the case of simple functions, the map f →
∫
Ω f(ω)dµ(ω) is mono-

tone increasing. Moreover, the following monotone convergence theorem is
fundamental.

Theorem 12.1.2 (Monotone convergence theorem) If f is an increasing
sequence of nonnegative measurable functions, then

lim
n→∞

∫

Ω

fn(ω)dµ(ω) =

∫

Ω

lim
n→∞

fn(ω)dµ(ω)
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Finally, for f measurable, we write f = f+ − f− and define

∫

Ω

f(ω)dµ(ω) =

∫

Ω

f+(ω)dµ(ω)−
∫

Ω

f−(ω)dµ(ω)

Of course this is defined when both f+ and f− are integrable, that is when
both

∫
Ω f

+(ω)dµ(ω) and
∫
Ω f

−(ω)dµ(ω) are finite. More generally, this is
defined if not both are infinite.

12.2 The Sugeno integral

The motivation for the definition of the Sugeno integral can be described
as follows. Let (Ω,A, P ) be a probability space. For A ∈ A, P (A) =
E(1A) =

∫
Ω

1A(ω)dP (ω), where 1A is the indicator function of the set A.

If Ã is a fuzzy event, that is, its membership function is measurable,
then the probability of the fuzzy event Ã can be defined by replacing
1A by Ã in E(1A) [235]. Thus P (Ã) = E(Ã) =

∫
Ω Ã(ω)dP (ω). The same

procedure can be also applied to possibility measures. Let π : Ω→ [0, 1] be
a possibility distribution, and let Pπ be its associated possibility measure,
that is, for A ⊆ Ω, Pπ(A) = supω∈A π(ω). Observe that

Pπ(A) = sup
ω∈Ω

[π(ω) ∧ 1A(ω)]

Thus we can extend possibility measures to fuzzy subsets of Ω by

Pπ(Ã) = sup
ω∈Ω

[
π(ω) ∧ Ã(ω)

]

It turns out that

sup
ω∈Ω

[
π(ω) ∧ Ã(ω)

]
= sup

α∈[0,1]

[
α ∧ Pπ(Ã ≥ α)

]
(12.1)

Indeed,

sup
α∈[0,1]

{α ∧ Pπ(Ã ≥ α)} = sup
α∈[0,1]

{α ∧ sup
B̃(ω)≥α

{Ã(ω) ∧ π(ω)}}

≤ sup
ω∈Ω
{Ã(ω) ∧ π(ω)}

Conversely, let ε > 0. For α ∈ [0, 1] there is a υ ∈ (B̃ ≥ α) such that

sup
(Ã≥α)

π(ω) ≤ π(υ) + ε
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Since π(υ) ≥ α,

sup
(Ã≥α)

π(ω) ∧ α ≤ (π(υ) + ε) ∧ Ã(υ)

≤ sup
Ω
{Ã(ω) ∧ π(ω)}+ ε

so that
sup

α∈[0,1]

{α ∧ sup
(Ã≥α)

π(ω)} ≤ sup
Ω
{Ã(ω) ∧ π(ω)} + ε

and the equality follows.
In the expression supα∈[0,1]{α ∧ Pπ(Ã ≥ α)} for Pπ(Ã), if we replace

Pπ by any normalized fuzzy measure µ on (Ω,A), that is, a measure µ
such that µ(Ω) = 1, and Ã by f : Ω→ [0, 1], we get the quantity

Iµ(f) = sup
α∈[0,1]

{α ∧ µ(f ≥ α)}

This last quantity was proposed by Sugeno as the “fuzzy integral” of f
with respect to µ. It is easily shown that

sup
α∈[0,1]

{α ∧ µ(f ≥ α)} = sup
α∈[0,1]

{α ∧ µ(f > α)}

and this equality holds for any fuzzy measure µ with values in [0,∞) and
f measurable with values in [0,∞). We use the notation Iµ(f) to denote

sup
α≥0
{α ∧ µ(f ≥ α)} = sup

α≥0
{α ∧ µ(f > α)}

This definition of Sugeno’s integral is obtained by replacing addition
and multiplication of real numbers by sup and inf, respectively, in the
formula relating abstract Lebesgue integrals to Lebesgue integrals on the
real line. That is, if µ is a σ-additive measure on (Ω,A), then

∫

Ω

f(ω)dµ(ω) =

∫ ∞

0

µ(f > t)dt

However, Iµ(f) is constructed directly for any nonnegative measurable
function f without considering first nonnegative simple functions, as is
done in ordinary measure theory. The reason is that the operations of sup
and inf are well-defined and Iµ(f) involves only these, while in Lebesgue
integration, the integral sign is a new operation which needs to be defined.

The functional Iµ is different from the Lebesgue integral functional
when µ is additive. We have that f ≤ g implies Iµ(f) ≤ Iµ(g). Also,
Iµ(1A) = µ(A). Thus Iµ is a generalization of Lebesgue measure, but is
not a generalization of Lebesgue integration.

www.EBooksWorld.ir



12.2. THE SUGENO INTEGRAL 359

The quantity Iµ(f) can be constructed from simple functions. If ϕ is
a nonnegative simple function with ϕ (ω) =

∑n
i=1 αi1Ai

(ω), where the Ai

form a measurable partition of Ω, then define Q(ϕ) = ∨ni=1(αi∧µ(Ai)), in
analogy with ordinary integrals of simple functions. However, as we will
see, Q(ϕ) is not the fuzzy integral of ϕ as it is in the case of the Lebesgue
integral.

Theorem 12.2.1 Iµ(f) = supQ(ϕ), where the sup is taken over all sim-
ple functions ϕ ≤ f .

Proof. Let Jµ(f) = supQ(ϕ). Now Jµ is obviously an increasing func-
tional. For A ∈ A, the simple function

ϕ(x) =

(
inf
x∈A

f(x)

)
1A(x)

satisfies the inequality ϕ(x) ≤ f(x), which implies that

Jµ(f) ≥ Jµ(ϕ) ≥ Q(ϕ) = α ∧ µ(A) =
(

inf
A
f
)
∧ µ(A)

and thus that
Jµ(f) ≥ sup

A∈A
[(inf

A
f) ∧ µ(A)]

On the other hand, if ϕ (x) =
∑n

i=1 αi1Ai
(x) and ϕ ≤ f , then

Q(ϕ) = sup
i
{αi ∧ µ(Ai(x)} = αk ∧ µ(Ak)

for some k ∈ {1, 2, ..., n}. Since ϕ ≤ f and ϕ(x) = αk on Ak, we have
αk ≤ infAk

f(x). Thus

Q(ϕ) ≤
(

inf
Ak

f

)
∧ µ(Ak) ≤ sup

A∈A
[(inf

A
f) ∧ µ(A)]

Hence
Jµ(f) = sup

A∈A
[(inf

A
f) ∧ µ(A)]

It remains to show that this last equation holds when Jµ(f) is replaced
by Iµ(f). For A ∈ A and α = infA f , we have A ⊆ (f ≥ α), so that
µ(A) ≤ µ(f ≥ α). Thus

sup
A∈A

[
(

inf
A
f
)
∧ µ(A)] ≤ Iµ(f)

Conversely, for each α ≥ 0, let A = (f ≥ α) ∈ A. Then

α ∧ µ(f ≥ α) ≤
(

inf
A
f
)
∧ µ(A) ≤ sup

A∈A
[(inf

A
f) ∧ µ(A)]
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so that
Iµ(f) ≤ sup

A∈A
[(inf

A
f) ∧ µ(A)]

The quantity

Q(ϕ) =
n

sup
i=1
{αi ∧ µ(Ai)]

is not equal to Iµ(µ) in general. For example, let Ω = [0, 1], µ = dx, the
Lebesgue measure on the Borel σ-field B of [0, 1], and

ϕ(x) = (5/6) 1[0, 12 ](x) + (7/8) 1[ 12 ,1](x)

for x ∈ [0, 1]. Then Q(ϕ) = 1
2 < Iµ(ϕ) = 5

6 , as an easy computation
shows. The reason for this phenomenon is that Iµ(ϕ) = supQ(ψ) where
the sup is taken over all simple functions ψ ≤ ϕ, which is not, in general,
equal to Q (ϕ), since Q(ϕ) is not an increasing functional. For example,
let ψ(x) ≡ 3

4 and

ϕ(x) = (5/6) 1[0, 12 ](x) + (7/8) 1[ 12 ,1](x)

Then ψ ≤ ϕ, but Q(ψ) = 3
4 > Q(ϕ) = 1

2 . Thus when computing Iµ(ϕ) for
ϕ a simple function, one has to use the general definition

Iµ(ϕ) = sup
α≥0
{α ∧ µ(ϕ > α)}

which does not reduce in general to Q (ϕ). However, if

α1 ≤ α2 ≤ ... ≤ αn

and Bi = ∪ij=iAj , then for

ϕ(ω) =
n∑

i=1

αi1Ai
(x)

we have
Iµ(ϕ) =

n
sup
i=1
{αi ∧ µ(Bi)}

Indeed, for all i,

sup
α∈[αi−1,αi)

{α ∧ µ(ϕ > α)} = αi ∧ µ(Bi)

The definition of Iµ(f) does not involve the monotone continuity of
µ as opposed to a stronger condition of ordinary measures, namely, the
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σ-additivity in the construction of the Lebesgue integral. Thus, even in
the case where quantities like Iµ(f) are to be taken as fuzzy integrals,
the monotone continuity axiom for fuzzy measures is not needed. Adding
this property to the set of axioms for fuzzy measures obscures the subjec-
tive evaluation processes. It is difficult to justify why human subjective
evaluations should obey the monotone continuity axiom. On the technical
side, the class of fuzzy measures with the monotone continuity property
is almost that of Choquet’s capacities. Zadeh’s possibility measures do
not possess the decreasing monotone continuity property, and yet they
are some of the most plausible set functions for quantifying subjective
evaluations.

Consider possibility measures again. If π : Ω→ [0, 1], and A ⊆ Ω, then

sup
ω∈A

π(ω) = sup
Ω
{π(ω) ∧ 1A(ω)}

When A is a fuzzy subset of Ω, supω∈A π(ω) is taken to be supΩ{π(ω) ∧
A(ω)}. However, this expression does not lend itself to a generalization
to π : Ω → [0,∞] to represent supA π for A fuzzy or not. For such π,
supΩ{π(ω) ∧ A(ω)} ≤ 1 for A fuzzy, while it is not bounded by 1 if A is
not fuzzy.

If we consider the fuzzy measure given by Pπ(A) = supA π when π :
Ω→ [0, 1], then IPπ

(1A) = Pπ(A) for subsets A of Ω, and

IPπ
(A) = sup

Ω
{π(ω) ∧ A(ω)}

for A fuzzy. Thus we can use IPπ
(A) to represent supA π, whether or not

A is fuzzy. When π : Ω→ [0, 1],

IPπ
(A) = sup

α∈[0,1]

{α ∧ Pπ(A > α)}

and when π : Ω → [0,∞], we simply consider the fuzzy measure, still
denoted by Pπ, which is not a possibility measure since Pπ(Ω) might be
greater than 1. In that case,

IPπ
(A) = sup

α≥0
{α ∧ Pπ(A > α)}

can be used to represent supA π for fuzzy sets A.
Thus the Sugeno integral with respect to fuzzy measures provides a

means for formulating the problem of maximizing functions over con-
straints expressed as fuzzy sets.
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12.3 The Choquet integral

Standard measure theory is a theory of integrals motivated by the need to
compute important quantities such as volumes, expected values, and so on.
Motivated by subjective probabilities, we are led to consider fuzzy mea-
sures. Since additive measures are special cases of fuzzy measures, fuzzy
integrals should be generalizations of Lebesgue integrals. Or, perhaps a
radically different concept of integral should be developed specifically for
nonadditive set functions. Whatever approach is taken, we need to con-
sider carefully the meaning of the quantities fuzzy integrals are supposed
to measure. Just what are those quantities of interest in reasoning with
general knowledge that need to be measured? Guidelines and motivation
from practical applications are needed to keep the theory on the right
track.

12.3.1 Motivation

The situations that we will consider have a statistical flavor. For non-
additive set functions like capacities, the difference between a statistical
view and a subjective evaluation view is in the assignment of values to
them. After that, they possess the same mathematical properties.

We first consider the following simple problem in decision making. Let
X be a random variable with values in

Θ = {θ1, θ2, θ3, θ4} ⊆ R+

and with density f0. We view X as the identity function on Θ. Suppose
that f0 is only known to satisfy

1. f0(θ1) ≥ 0.4,

2. f0(θ2) ≥ 0.2,

3. f0(θ3) ≥ 0.2, and

4. f0(θ4) ≥ 0.1.

Thus the expectation Ef0(X) =
∑

i θif0(θi) cannot be computed. Let
F be the family of densities on Θ satisfying the inequalities above on its
values. We might be interested in computing inf{Ef (X) : f ∈ F}. The
situation can be described like this. Let Pf denote the probability on Θ
generated by f . That is, for A ⊆ Θ, Pf (A) =

∑
θ∈A f(θ). Now let

F : 2Θ → [0, 1] : A→ inf{Pf(A) : f ∈ F}

We will show that inf{Ef (X) : f ∈ F} can be computed from the set
function F , which is clearly a fuzzy measure.
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Suppose that θ1 < θ2 < θ3 < θ4, and let

g(θ1) = F{θ1, θ2, θ3, θ4} − F{θ2, θ3, θ4}

g(θ2) = F{θ2, θ3, θ4} − F{θ3, θ4}

g(θ3) = F{θ3, θ4} − F{θ4}

g(θ4) = F{θ4}

Then g is a density on Θ, and g ∈ F , as is easily checked. Now

Eg(X) =

∫

Θ

θdPg(θ)

=

∫ ∞

0

Pg{θi : θi > t}dt

=

∫ ∞

0

F{θi : θi > t}dt

by construction of g in terms of F . This last integral is called the Choquet
integral of X(θ) = θ with respect to the increasing set function F . See
also Definition 12.3.2.

It remains to show that inf{Ef (X) : f ∈ F} is attained at g. Since

Ef (X) =

∫ ∞

0

Pf{θi : θi > t}dt

it suffices to show that for t ∈ R,

Pg{θi : θi > t} ≤ Pf{θi : θi > t}

for all f ∈ F . If {θ : θ > t} = {θ1, θ2, θ3, θ4}, then

Pg{θ > t} =
∑

g(θi) = 1 = Pf{θ > t}

For {θ : θ > t} = {θ2, θ3, θ4},

Pg{θ > t} =

4∑

j=2

g(θj) ≤
4∑

j=2

f(θj) = Pf{θ > t}

since by construction of g, we have g(θj) ≤ f(θj) for f ∈ F and j = 2, 3, 4.
Thus the Choquet integral with respect to the nonadditivity set func-

tion F is the inf for expected values. This situation is general. If the
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fuzzy measure F is a normalized monotone capacity of infinite order,
and P = {P : F ≤ P} is a class of probability measures on a measur-
able space (Ω,A), and X : Ω → R is a bounded random variable, then
inf{EP (X) : P ∈ P} is the same as the Choquet integral of X with respect
to F (although the inf may not be attained).

Consider now another situation with imprecise information. Let X be
a random variable defined on a probability space (Ω,A, P ), and let g :
R→ R+ be a measurable function. Let PX = PX−1 be the probability
law of X on (R,B). Then

Eg(X) =

∫

Ω

g(X(ω))dP (ω) =

∫

R

g(x)dPX(x)

Now suppose that for each random experiment ω we cannot observe the
exact outcome X (ω), but can locate X (ω) in some interval [a, b]. That
is, X(ω) ∈ [a, b]. Thus we have a mapping Γ defined on Ω with values
in the class of nonempty closed subsets of R such that for each ω ∈ Ω,
X(ω) ∈ Γ(ω). The computation of Eg(X) in this situation is carried out
as follows: for each ω,

g(Γ(ω)) = {g(x) : x ∈ Γ(ω)}
Since g(X(ω)) ∈ g(Γ(ω)), we have

g∗(ω) = inf{g(x) : x ∈ Γ(ω)}
≤ g(X(ω))

≤ sup{g(x) : x ∈ Γ(ω)}
= g∗(ω)

Thus the random variable g ◦ X of interest is bounded from below and
above by the random variables g∗ and g∗, respectively, which results in
E (g∗) ≤ E(g(X)) ≤ E(g∗). Thus we are led to compute E(g∗) =∫
Ω
g∗(ω)dP (ω) and E(g∗) =

∫
Ω
g∗(ω)dP (ω). To remind us that these are

bounds on E(g(X)), we write E∗g(X) = Eg∗, and E∗g(X) = Eg∗.
We will show that E∗g(X) and E∗g(X) are Choquet integrals of the

function g with respect to some appropriate fuzzy measures on (R,B).
First, we need to see when Eg∗ and Eg∗ exist. Indeed, even if g is measur-
able, g∗ and g∗ may not be. The following condition on the multi-valued
mapping Γ will suffice.

We will say that Γ is strongly measurable if for all B ∈ B,

B∗ = {ω : Γ(ω) ⊆ B} ∈ A
B∗ = {ω : Γ(ω) ∩B 6= ∅} ∈ A

This measurability reduces to ordinary measurability when Γ is single
valued.
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Lemma 12.3.1 The following are equivalent.

1. Γ is strongly measurable.

2. If g is measurable, then g∗ and g∗ are measurable.

Proof. Suppose that Γ is strongly measurable and g is measurable. To
prove that g∗ is measurable, it suffices to prove that g−1

∗ [c,∞) ∈ A for all
c ∈ R. Now ω ∈ g−1

∗ [c,∞) means that infx∈Γ(ω) g(x) ≥ c, so that

Γ(ω) ⊆ {x : g(x) ≥ c} = g−1[c,∞)

and hence ω ∈ [g−1[c,∞)]∗. If ω ∈ [g−1[c,∞)]∗, then Γ(ω) ⊆ g−1[c,∞).
That is, for all x ∈ Γ(ω), g (x) ≥ c, implying that infx∈Γ(ω) ≥ c, and
thus g∗(ω) ∈ [c,∞), or ω ∈ g−1

∗ [c,∞). Thus g−1
∗ [c,∞) = [g−1[c,∞)]∗. By

assumption, g−1[c,∞) ∈ B, the Borel sets of R, and by the first condition,
[g−1[c,∞)]∗ ∈ A. The measurability of g∗ follows similarly.

For the converse, let A ∈ B. Then 1A = f is measurable and

f∗(ω) =

{
1 if Γ(ω) ⊆ A
0 otherwise

Hence f−1
∗ ({1}) = A∗, and by hypothesis, A∗ ∈ A. Similarly, A∗ ∈ A.

If we let F∗ : B → [0, 1] be defined by

F∗(B) = P{ω : Γ(ω) ⊆ B} = P (B∗)

then

E∗g(X) =

∫

Ω

g∗(ω)dP (ω) =

∫ ∞

0

P{ω : g∗(ω) > t}dt

=

∫ ∞

0

P{g−1
∗ (t,∞)}dt =

∫ ∞

0

P [g−1(t,∞)]∗dt

=

∫ ∞

0

P{ω : Γ(ω) ⊆ g−1(t,∞)}dt

=

∫ ∞

0

F∗(g−1(t,∞))dt

Note that the multivalued mapping Γ is assumed to be strongly measur-
able, so that F∗ is well defined on B. Clearly F∗ is a fuzzy measure. Since

F∗(g−1(t,∞)) = F∗{x : g(x) > t}
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we have that

E∗g =

∫ ∞

0

F∗{x : g(x) > t}dt

Similarly, by setting

F ∗(B) = P{ω : Γ(ω) ∩B = ∅} = P (B∗)

we get

E∗g =

∫ ∞

0

F ∗{x : g(x) > t}dt

In the situation above, the set-function F∗ is known theoretically (say,
Γ is “observable” but X is not). Although F∗ is not a probability measure,
it can be used for approximate inference processes. Choquet integrals with
respect to F∗ represent some practical quantities of interest. Thus when
subjective evaluations are quantified as fuzzy measures, a theory of fuzzy
integrals, that is, of integration of functions with respect to monotone
increasing set-functions, will be useful for inference purposes.

12.3.2 Foundations

Various concepts of fuzzy integrals are in the literature, resulting from
diverse mathematical investigations into ways to extend the Sugeno or
Lebesgue integrals. However, the mainstream of thought seems to be to
adopt the Choquet functional as the most reasonable way to define fuzzy
integrals. The previous section gave the meaning of the Choquet integral
in the context of capacities in some applications situations. The fuzzy
integral is defined by replacing the capacity by a fuzzy measure in the
original Choquet functional. In this process, only the monotone increasing
property of fuzzy measures is used, allowing fuzzy integrals to be defined
for the most general class of fuzzy measures. This is also consistent with
the fact that if fuzzy measures are viewed as generalizations of Lebesgue
measures, then the fuzzy integral should generalize the Lebesgue integral.

In all generality, a fuzzy measure µ on a set Ω is a real-valued set
function defined on some class A of subsets of Ω containing the empty
set ∅, such that µ(∅) = 0, and for A,B ∈ A, with A ⊆ B, we have
µ(A) ≤ µ(B). When the restriction is made to nonnegative values for µ,
we allow ∞ as a possible value in order to cover classical cases such as
Lebesgue measure on the real line. Thus µ : A → [0,∞], and the structure
of the collection of subsets A might be arbitrary. Of course, as a special
case, when µ happens to be σ-additive, then A should be taken as a σ-field
of subsets of Ω. It turns out that, in view of the integration procedure that
will follow, A can be taken to be a σ-field in general.
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We are going to consider the “integral” of real-valued functions defined
on Ω. As in classical analysis, it is convenient to extend the possible values
to ±∞, so that the range is the interval [−∞,∞], and all sup such as
supω∈A f(ω) exist. (∞ = +∞). Arithmetic operations are extended from
R to [−∞,∞] in the usual way.

1. x(±∞) = (±∞)x = ±∞ for 0 < x ≤ ∞, and = ∓∞ for −∞ ≤ x <
0.

2. x+(±∞) = (±∞)+x = ±∞ for x ∈ R and (±∞)+ (±∞) = (±∞).

3. x
±∞ = 0 for x ∈ R.

Other forms, such as ∞+ (−∞) and 0(∞) are undefined.
Let µ be a fuzzy measure on Ω, and f : Ω→ [−∞,∞]. In the following,

we will consider the function

[−∞,∞]→ [0,∞] : t→ µ(f > t)

which is well defined if for all t ∈ [−∞,∞], the set

(f > t) = {ω ∈ Ω : f(ω) > t} ∈ A,
the domain of µ. Thus if we take A to be a σ-field of subsets of Ω, then
this condition holds when f is A - B[−∞,∞] measurable, where B[−∞,∞] is
the Borel σ-field of [−∞,∞], defined as follows. The Borel σ-field B is the
σ-field generated by the open intervals of R. Now B[−∞,∞] is the σ-field
on [−∞,∞] generated by B and {−∞,∞}. The Borel σ-field B[0,∞] is

{A ∩ [0,∞] : A ∈ B[−∞,∞]} = {A : A ⊆ [0,∞] ∩ B[−∞,∞]}
In the following, when the σ-fields are obvious, we will not mention them
when speaking about the measurability of functions.

In ordinary integration, to avoid meaningless expressions like −∞ +
∞, one started out by considering nonnegative and nonpositive measurable
functions separately. Let (Ω,A) be a measurable space, and let f : Ω →
[0,∞] be a measurable function. Then there exists an increasing sequence
f1, f2, ... of simple functions fn : Ω→ [0,∞], that is, functions of the form∑n

j=1 aj1Aj
(ω) with aj ∈ R+ and the Aj pairwise disjoint elements of A,

such that for all ω ∈ Ω, f (ω) = limn→∞ fn(ω). If f : Ω→ [−∞,∞], then
we write

f(ω) = f(ω)1{f≥0}(ω) + f(ω)1{f<0}(ω)

= f(ω)1{f≥0}(ω)−
(
−f(ω)1{f<0}(ω)

)

= f+(ω)− f−(ω)
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Then f+ and f− are maps Ω → [0,∞], and f is measurable if and only
if both f+ and f− are measurable. When µ is a nonnegative σ-additive
measure on (Ω,A), the Lebesgue integral of a nonnegative f with respect
to µ is defined to be

∫

Ω

f(ω)dµ(ω) = lim
n→∞

∫

Ω

fn(ω)dµ(ω)

where fn is simple and converges from below to f , and

∫

Ω

fn(ω)dµ(ω) =

kn∑

j=1

ajµ(Aj)

when the Aj ’s form a partition. Because of the additivity of µ, the quantity∫
Ω f(ω)dµ(ω) is well defined. It is independent of the particular choices of

the fn.
For f : Ω→ R measurable, we define

∫

Ω

f(ω)dµ(ω) =

∫

Ω

f+(ω)dµ(ω)−
∫

Ω

f−(ω)dµ(ω)

provided that not both terms in the right-hand side are∞. When µ (Ω) <
∞,

∫

Ω

fdµ =

∫ ∞

0

µ(f > t)dt+

∫ 0

−∞

[µ(f > t)− µ (Ω)]dt (12.2)

Indeed, since f+ ≥ 0, we have

∫

Ω

f+dµ =

∫ ∞

0

µ(f+ > t)dt =

∫ ∞

0

µ(f > t)dt

Similarly,
∫
Ω f

−dµ =
∫∞

0 µ(f− > t)dt. For each t > 0, (f− > t) and
(f ≥ −t) form a partition of Ω. By the additivity of µ,

µ(f− > t) = µ (Ω)− µ(f ≥ −t)

and (12.2) follows.
Still in the case µ (Ω) <∞, for A ∈ A, we get in a similar way that

∫

A

fdµ =

∫

Ω

(1Af)dµ

=

∫ ∞

0

µ ((f > t) ∩ A) dt+

∫ 0

−∞

[µ ((f > t) ∩A)− µ (A)]dt
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For f ≥ 0, we have
∫
Ω fdµ =

∫
Ω µ (f > t) dt. The right-hand side is

an integral of the numerical function t → µ (f > t) with respect to the
Lebesgue measure dt on [0,∞]. It is well defined as long as the function
is measurable. Thus if µ is a fuzzy measure on (Ω,A) and f is A− [0,∞]
measurable, then (f > t) ∈ A for all t ∈ [0,∞]. Since µ is increasing,
t→ µ (f > t) is B[0,∞]−B[0,∞]-measurable since it is a decreasing function.
This is proved as follows: for t ∈ [0,∞], let ϕ(t) = µ(f > t). Then

(ϕ < t) =

{
[a,∞] if a = inf{ϕ < t} is attained

(a,∞] if not

In either case, (ϕ < t) ∈ B[0,∞]. Indeed if inf{ϕ < t} is attained at a, then
for b ≥ a, we have ϕ(b) ≤ ϕ(a) < x so that b ∈ (ϕ < x). Conversely, if
ϕ(c) < x, then a ≤ x by the definition of a.

If a = inf{ϕ < x} is not attained, then if ϕ(b) < x, we must have
a < b. Conversely, if c > a, then for ε = c− a > 0, there exists y such that
ϕ(y) < x and a < y < c. But ϕ is decreasing, so ϕ(c) ≤ ϕ(y) < x. Thus
c ∈ (ϕ < x).

Thus for f : Ω → [0,∞], one can define the fuzzy integral of f
with respect to a fuzzy measure µ by the Choquet integral (C)

∫
Ω
fdµ =∫∞

0 µ(f > t)dt. When f : Ω→ [−∞,∞] is measurable, one defines

(C)

∫

Ω

fdµ = (C)

∫

Ω

f+dµ− (C)

∫

Ω

f−dµ

Definition 12.3.2 Let (Ω,A) be a measurable space. Let µ be a fuzzy mea-
sure on A with µ (Ω) < ∞. Then the Choquet integral of a measurable
function f with respect to µ is

(C)

∫

Ω

fdµ =

∫ ∞

0

µ(f > t)dt+

∫ 0

−∞

[µ(f ≥ t)− µ (Ω)]dt

and for A ∈ A,

(C)

∫

A

fdµ =

∫ ∞

0

µ [(f > t) ∩A] dt+

∫ 0

−∞

[µ ((f ≥ t) ∩ A)− µ (A)]dt

We also write (C)
∫
Ω
fdµ = Cµ(f). When Ω is a finite set, say,

{1, 2, ..., n}, the discrete Choquet integral of f : Ω → R takes the
form

Cµ(f) =

n∑

i=1

(
f(i) − f(i−1)

)
µ(A(i))

where (·) is a permutation of Ω such that f(1) ≤ f(2) ≤ ... ≤ f(n),
A(i) = {(i), (i+ 1), . . . , (n)}, f(0) = 0, and f(i) = fi. for i = 1, 2, ..., n.
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We say that f is µ-integrable on A when the right side is finite. When
µ (Ω) < ∞, say µ (Ω) = 1, and µ represents subjective evaluations con-
cerning variables, then the “fuzzy” variable f has the “distribution”

ϕf (t) =

{
µ(f > t) if t ≥ 0

µ(f ≥ t)− µ (Ω) if t < 0

The “expected value” of f under µ is the Lebesgue integral of the distri-
bution ϕf , that is

∫∞

−∞
ϕf (t)dt. Some remarks are in order.

When f = 1A with A ∈ Ω, we have µ(f > t) = µ(A)1[0,1)(t), so that

(C)

∫

Ω

1A(ω)dµ(ω) = µ(A)

More generally, for f(ω) =
∑n

i=1 ai1Ai
(ω) with the Ai’s pairwise disjoint

subsets of Ω and a0 = 0 < a1 < · · · < an, we have

µ(f > t) =
n∑

i=1

µ
(
∪nj=iAj

)
1[ai−1,ai)

so that

(C)

∫
f(ω)dµ(ω) =

n∑

i=1

(ai − ai−1)µ
(
∪nj=iAj

)

For an arbitrary simple function of the form f =
∑n

i=1 ai1Ai
, and with

the Ai’s forming a measurable partition of Ω and

a1 < · · · < ak < 0 < ak+1 < · · · < an

we have for t ≥ 0

(f > t) =





∅ if t ∈ [an,∞)

∪ni=j+1Ai if t ∈ [aj , aj+1)

∪ni=k+1Ai if t ∈ [0, ak+1)

and for t < 0

(f ≥ t) =






∪ni=k+1Ai if t ∈ (ak, 0)

∪ni=j+1Ai if t ∈ (aj , aj+1]

Ω = ∪ni=1Ai if t ∈ (−∞, a1]

www.EBooksWorld.ir



12.3. THE CHOQUET INTEGRAL 371

Thus
∫ ∞

0

µ(f > t)dt = ak+1µ
(
∪ni=k+1Ai

)

+ ...+ (aj+1 − aj)µ
(
∪ni=j+1Ai

)
+ ...+ (an − an−1)µ (An)

Also
∫ 0

−∞

[µ(f ≥ t)− µ (Ω)] dt = (a2 − a1) [µ (∪ni=2Ai)− µ (∪ni=1Ai)] +

...+ (aj+1 − aj)
[
µ
(
∪ni=j+1Ai

)
− µ (∪ni=1Ai)

]
+

...+ (−ak)
[
µ ∪ni=k+1 Ai − µ (∪ni=1Ai)

]

so that

(C)

∫

Ω

fdµ =

n∑

j=1

aj
[
µ
(
∪ni≥jAi

)
− µ

(
∪ni=j+1Ai

)]

While the Choquet integral is monotone and positively homogeneous
of degree one, that is, f ≤ g implies that (C)

∫
Ω fdµ ≤ (C)

∫
Ω gdµ and

for λ > 0, (C)
∫
Ω
λfdµ = λ(C)

∫
Ω
fdµ, its additivity fails. For example, if

f = (1/4) 1A and g = (1/2) 1B, and A ∩B = ∅, then

(C)

∫

Ω

(f + g)dµ 6= (C)

∫

Ω

fdµ+ (C)

∫

Ω

gdµ

as an easy calculation shows. However, if we consider two simple functions
f and g of the form

f = a1A + b1B with A ∩B = ∅, 0 ≤ a ≤ b

g = α1A + β1B with 0 ≤ α ≤ β

then

(C)

∫

Ω

(f + g)dµ = (C)

∫

Ω

fdµ+ (C)

∫

Ω

gdµ

More generally, this equality holds in the case f =
∑n

j=1 aj1Aj
and g =∑n

j=1 bj1Aj
, with the Aj pairwise disjoint and the ai and bi increasing and

non-negative. Such pairs of functions satisfy the inequality

(f(ω)− f(ω′))(g(ω)− g(ω′)) ≥ 0

That is, the pair is comonotonic, or similarly ordered. It turns out
that the concept of comonotonicity of real-valued bounded measurable
functions is essential for the characterization of fuzzy integrals.
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Definition 12.3.3 Two real-valued functions f and g defined on Ω are
comonotonic if for all ω and ω′ ∈ Ω,

(f(ω)− f(ω′))(g(ω)− g(ω′)) ≥ 0

Roughly speaking, this means that f and g have the same “tableau of
variation”. Here are a few elementary facts about comonotonic functions.

• The comonotonic relation is symmetric and reflexive, but not tran-
sitive.

• Any function is comonotonic with a constant function.

• If f and g are comonotonic and r and s are positive numbers, then
rf and sg are comonotonic.

• As we saw above, any two functions f =
∑n

j=1 aj1Aj
and g =∑n

j=1 bj1Aj
, with the Aj pairwise disjoint and the ai and bi increas-

ing and nonnegative, are comonotonic.

Definition 12.3.4 A functional H from the space B of bounded real-
valued measurable functions on (Ω,A) to R is comonotonic additive if
whenever f and g are comonotonic, H(f + g) = H(f) +H(g) .

If H(f) =
∫
Ω fdµ with µ a Lebesgue measure, then H is additive, and

in particular, comonotonic additive. Fuzzy integrals, as Choquet function-
als, are comonotonic additive.

Here are some facts about comonotonic additivity.

• If H is comonotonic and additive, then H(0) = 0. This follows since
0 is comonotonic with itself, whence H(0) = H(0+0) = H(0)+H(0).

• If H is comonotonic additive and f ∈ B, then for positive integers
n, H(nf) = nH(f). This is an easy induction. It is clearly true for
n = 1, and for n > 1 and using the induction hypothesis,

H(nf) = H(f + (n− 1)f)

= H(f) +H((n− 1)f)

= H(f) + (n− 1)H(f)

= nH(f)

• If H is comonotonic additive and f ∈ B, then for positive integers
m and n, H((m/n)f) = (m/n)H(f). Indeed,

(m/n)H(f) = (m/n)H(n f
n )

= mH(f/n)

= H((m/n)f)
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• If H is comonotonic additive and monotonic increasing, then H(rf)
= rH(f) for positive r and f ∈ B. Just take an increasing sequence of
positive rational numbers ri converging to r. Then H(rif) = riH(f)
converges to rH(f) and rif converges to rf . Thus H(rif) converges
also to H(rf).

We now state the result concerning the characterization of fuzzy inte-
grals. Consider the case where µ (Ω) = 1. Let

Cµ(f) =

∫ ∞

0

µ(f > t)dt+

∫ 0

−∞

[µ(f ≥ t)− 1]dt

Theorem 12.3.5 The functional Cµ on B satisfies the following:

1. Cµ(1Ω) = 1.

2. Cµ is monotone increasing.

3. Cµ is comonotonic additive.

Conversely, if H is a functional on B satisfying these three conditions,
then H is of the form Cµ for the fuzzy measure µ defined on (Ω,A) by
µ (A) = H(1A).

The first two parts are trivial. To get the third, it suffices to show that
Cµ is comonotonic additive on simple functions. The proof is cumbersome
and we omit the details.

For the converse, if µ (A) = H(1A), then by the comonotonic additivity
of H , H(0) = 0, so µ (∅) = 0. By the second condition, µ is a fuzzy mea-
sure. For the rest it is sufficient to consider nonnegative simple functions.
We refer to [184] for the details.

12.3.3 Radon–Nikodym derivatives

Let µ and ν be two σ-additive set functions (measures) defined on a σ-
algebra U of subsets of a set U. If there is a U-measurable function f :
U → [0,∞) such that µ(A) =

∫
A fdν for all A ∈ U , then f is called (a

version of) the Radon–Nikodym derivative of µ with respect to ν, and
is written as f = dµ/dν.

It is well known that the situation above happens if and only if µ
is absolutely continuous with respect to ν, in symbols µ << ν, that
is, if ν(A) = 0, then µ(A) =0. When µ and ν are no longer additive, a
similar situation still exists. Here is the motivating example. Let f : U →
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[0,∞) be µ-measurable. Consider the (maxitive) fuzzy measure µ(A) =
supu∈A f(u). Also let ν0 : U → [0,∞) be defined by

ν0 =

{
0 if A = ∅

1 if A 6= ∅

Then µ can be written as the Choquet integral of f with respect to the
fuzzy measure ν0. Indeed

ν0({u : f(u) ≥ t} ∩A) =

{
0 if f(u) < t for u ∈ A
1 if f(u) ≥ t for some u ∈ A

Thus

∫ ∞

0

ν0({u : f(u) ≥ t} ∩A)dt =

∫ supu∈A f(u)

0

dt = µ(A)

By analogy with ordinary measure theory, we say that f is the Radon–
Nikodym derivative of µ with respect to ν0.

Definition 12.3.6 Let µ, ν : U → [0,∞] be two fuzzy measures. If there
exists a U-measurable function f : U → [0,∞) such that for A ∈ U

µ(A) =

∫ ∞

0

ν({u : f(u) ≥ t} ∩ A)dt

then µ is said to have f as its Radon–Nikodym derivative with respect to
ν, and we write f = dµ

dν , or dµ = fdν.

Here is another example. Let U = R and U = B(R), the Borel σ-field
of R. Let B = [0, 1), A ∈ B(R), d(A,B) = inf{|x− y| : x ∈ A, y ∈ B}, and
A′ be the complement of A in U . Define µ and ν by

µ(A) =






0 if A = ∅
1
2 sup{|x| : x ∈ A} if A 6= ∅ and d(A,B′) > 0

1 if A 6= ∅ and d(A,B′) = 0

ν(A) =





0 if A = ∅
1
2 if A 6= ∅ and d(A,B′) > 0

1 if A 6= ∅ and d(A,B′) = 0

Then f(x) = x if x ∈ B and 1 otherwise is dµ
dν .

Obviously, if dµ = fdν, then µ << ν. But unlike the situation for
ordinary measures, the absolute continuity is only a necessary condition for
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µ to admit a Radon–Nikodym derivative with respect to ν. For example,
with U = R and U = B(R) as before, and N the positive integers, let µ
and ν be defined by

µ(A) =

{
0 if A ∩ N = ∅

1 if A ∩ N 6= ∅

ν(A) =

{
0 if A ∩N = ∅

sup{ 1x : x ∈ A ∩ N} if A ∩N 6= ∅

By construction, µ << ν. Suppose that dµ = fdν. Then f : R→ [0,∞)
is a B(R)-measurable function such that for A ∈ B(R), µ(A) =

∫
A fdν (in

Choquet’s sense). We then have for n ∈ N,

µ({n}) =

∫ ∞

0

ν((f ≥ t) ∩ {n})dt

=

∫ f(n)

0

ν({n})dt

=

∫ f(n)

0

1

n
dt

=
1

n
f(n)

But by construction of µ, µ({n}) = 1 so that f(n) = n. Now

µ(N) =

∫

N

fdν =

∫ ∞

0

ν((f ≥ t) ∩ N)dt

=

∞∑

n=1

∫ n

n−1

ν((f ≥ t) ∩ N)dt

≥
∞∑

n=1

∫ n

n−1

ν((f ≥ n) ∩N)dt

=
∞∑

n=1

∫ n

n−1

ν({k : f(k) ≥ n})dt

=

∞∑

n=1

∫ n

n−1

ν({k : k ≥ n})dt

=

∞∑

n=1

sup{ 1

k
: k ≥ n} =

∞∑

n=1

1

n
=∞

This contradicts the fact that µ(N) = 1. Thus, even though µ << ν, µ
does not admit a Radon–Nikodym derivative with respect to ν. Depending
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on additive properties of µ and ν, sufficient conditions for µ to admit a
Radon–Nikodym derivative with respect to ν can be found.

It is well known that probability measures (distribution of random
variables) can be defined in terms of probability density functions via
Lebesgue integration. For distributions of random sets, namely capacities
alternating of infinite order, a similar situation occurs when the Radon–
Nikodym property is satisfied. Specifically, suppose that dµ = fdν. Then
µ is alternating of infinite order whenever ν is. We restrict the proof of
this fact to the case where U is finite, in which case f can take only finitely
many values, say x1 ≤ x2 ≤ · · · ≤ xn. with x0 = 0, we can write

µ(A) =

∫

A

fdν

=

n∑

k=1

∫ xk

xk−1

ν({x ∈ A : f(x) ≥ t})dt

=

n∑

k=1

(xk − xk−1)ν(Bk ∩ A)

where Bk = {u ∈ U : f(u) ≥ xk} for k ≤ n. Take A = ∩mi=1Ai. Then we
have

µ(

m⋂

i=1

Ai) =

n∑

k=1

(xk − xk−1)ν(Bk

⋂
(

m⋂

i=1

Ai))

Since Bk∩(∩i∈IAi)) = ∩i∈I(Bk∩Ai) and ν is alternating of infinite order,
we have

ν(Bk

⋂
(

m⋂

i=1

Ai)) ≤
∑

∅ 6=I⊆{1,2,...,m}

(−1)|I|+1ν(∪i∈I(Bk ∩ Ai))

=
∑

∅ 6=I⊆{1,2,...,m}

(−1)|I|+1ν(Bk ∩ (∪i∈IAi))

Thus

µ(

m⋂

i=1

Ai) ≤
n∑

k=1

(xk − xk−1)
∑

∅ 6=I⊆{1,2,...,m}

(−1)|I|+1ν(Bk

⋂
(
⋂

i∈I

Ai))

=
∑

∅ 6=I⊆{1,2,...,m}

(−1)|I|+1
n∑

k=1

(xk − xk−1)ν(Bk

⋂
(
⋂

i∈I

Ai)

=
∑

∅ 6=I⊆{1,2,...,m}

(−1)|I|+1µ(
⋂

i∈I

Ai)
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12.3.4 Multicriteria decisions with Choquet integrals

This section is devoted to an interesting application of the concept of Cho-
quet integral. An important problem in decision sciences is that of ranking
alternatives according to a set of criteria. For example, in the problem of
ranking houses available on the market, the criteria could be {location,
price, physical condition, ...}. Each house is evaluated according to these
criteria. Note that these criteria can take linguistic values, that is, fuzzy
subsets of appropriate spaces, such as “good location”. In the following,
we consider the simple case of numerical values for criteria. In this context,
the problem is this. Let the evaluations of a subject x, according to the
criteria be x1, x2, ..., xn. We view x as a function from N = {1, 2, ..., n}
to R+, or simply as a vector x = (x1, x2, ..., xn) in Rn. Given k subjects,
we would like to totally rank them for selection. This boils down to defin-
ing some total, or linear, order on Rn, that is, an aggregation operator
ϕ : Rn → R so that x is preferred to y = (y1, y2, ..., yn) if ϕ(y) ≤ ϕ(x).
Clearly, the determination of ϕ should take into account the semantics of
the criteria as well as the interactions among criteria. In the example of
rating houses, while the criteria “physical condition” is “independent” of
the other criteria, “location” and “price” are not. Also, the importance of
each criterion is different. It is usually assumed that “location” is priority
number one. Thus an appropriate ϕ should depend on “degrees of impor-
tance” of subsets of criteria. Viewing the set of criteria as a set of “players”
in a cooperative game, we are led to define these degrees of importance
by a fuzzy measure µ : 2N → [0, 1], with, for A ⊆ N, µ(A) the degree, or
weight of importance of A in the ranking process.

A familiar situation is when the criteria are independent. In such
a case, it suffices to specify the degree of importance αi of each cri-
terion, with

∑n
i=1 αi = 1. The associated aggregation, or fusion, oper-

ator ϕα(x) =
∑n

i=1 αixi is the linear weighted average. These weights
αi determine an additive measure on 2N by defining µα(A) =

∑
i∈A αi, so

that ϕα is an integral operator
∫
N
X(i)dµα(i). The integral

∫
N
X(i)dµα(i)

can be rewritten a follows. Each X = (x1, x2, ..., xn) ∈ Rn induces a per-
mutation σX on N = {1, 2, ..., n} satisfying x(1) ≤ x(2) ≤ ... ≤ x(n), where
xσX (i) = x(i). We have

ϕα(X) =

∫

N

X(i)dµα(i) =

n∑

i=1

αixi

=
n∑

i=1

α(i)x(i) =
n∑

i=1

(
x(i) − x(i−1)

)
µα(A(i))

where x(0) = 0 and A(i) = {(i), (i+ 1), ..., (n)}.
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When the criteria are interactive, that is, dependent, we replace the
additive measure µα by a fuzzy measure µ leading to the discrete Choquet
integral

Cµ(X) =
n∑

i=1

(
x(i) − x(i−1)

)
µ(A(i))

For a fuzzy measure µ on N, Cµ : Rn → R is an aggregation operator,
generalizing the linear weighted average operator. In general Cµ is non-
linear. In multicriteria decision theory, appropriate aggregation operators
should satisfy certain desirable properties. It is left as exercises to verify
that the Choquet integral Cµ satisfies the following properties.

1. If x ≤ y coordinate-wise, then Cµ(x) ≤ Cµ(y).

2. Cµ is positively homogeneous and translation invariant. That is, for
a ≥ 0 and b ∈ R, Cµ(ax+ b) = aCµ(x) + b.

3. Cµ(1A) = µ(A), where 1A is the vector with xi = 1 for i ∈ A and
xi = 0 for i /∈ A.

4. Cµ is linear with respect to µ in the sense that it is of the form∑
∅ 6=A⊆N µ(A)ϕA for ϕA : R|N |→R.

Property 4 can be seen as follows. Let m be the Möbius inverse of µ,
that is, m(A) =

∑
B⊆A(−1)|A−B|µ(B). Then

Cµ(x) =

n∑

i=1

(x(i) − x(i−1))µ(A(i))

=

n∑

i=1

(x(i) − x(i−1))
∑

B⊆A(i)

m(B)

=
∑

B⊆N

m(B)
∑

B⊆A(i)

(x(i) − x(i−1))

=
∑

B⊆N

m(B)

(
inf
i∈B

x(i)

)

Thus

Cµ(x) =
∑

B⊆N



∑

A⊆B

(−1)|B−A|µ(A)



(

inf
i∈B

x(i)

)

=
∑

A⊆N

µ(A)
∑

A⊆B

(−1)|B−A|

(
inf
i∈B

x(i)

)
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In applications, the problem of identification of the fuzzy measure µ
used to form the Choquet integral is essential. This is a familiar situation
in so-called expert systems. Of course, if experts are available to specify
µ, then we simply use that µ. Otherwise, µ can be identified either in a
supervised learning or in an unsupervised learning context, depending on
available data. Here techniques in soft computing, such as neural networks,
could be called upon.

Example 12.3.7 Here is an example taken from [82]. Consider the prob-
lem of ranking students based on their scores on three subjects: mathe-
matics (M), physics (P), and literature (L). Let µ be a fuzzy measure on
the set {M,P,L} with

µ({M}) = µ({P}) = .45

µ{(L}) = .3

µ({M,P}) = .5

µ({M,L}) = µ({P,L}) = .9

µ({M,P,L}) = 1.0

The rankings of the three students A, B, C using the Choquet integral
with respect to the fuzzy measure µ above are given in the table below.

M P L
Choquet
Integral

Rank

A 18 16 10 13.9 2
B 10 12 18 13.6 3
C 14 15 18 14.9 1

12.4 Exercises

1. Prove the statements in the paragraph immediately following Defi-
nition 12.1.1.

2. Prove Equation (12.1).

3. ⋆Let (Ω,A) be a measurable space and f : Ω→ R+. For n ≥ 1 and
k ∈ {1, 2, ..., n2n}, let

Ak
n = {ω :

k − 1

2n
≤ f(ω) <

k

2n
}

and let An = {ω : f(ω) > n}.

(a) Show that for each n ≥ 1, the sets Ak
n together with An form a

measurable partition of Ω.
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(b) For n ≥ 1, let

fn(ω) =

n2n∑

k=1

k

2n
1Ak

n
(ω) + n1An

(ω)

Show that fn is an increasing sequence of simple functions
which converges pointwise to f .

4. ⋆Let

f(ω) =

m∑

i=1

αiχAi
(ω)

=

n∑

i=1

βiχBi
(ω)

be two representations of the simple function f . Show that

m∑

i=1

αiµ(Ai) =

n∑

i=1

βiµ(Bi)

5. Let f and g be nonnegative simple functions, and α, β ≥ 0.

(a) Show that
∫

Ω

(αf + βg)(ω)dµ(ω) = α

∫

Ω

f(ω)dµ(ω) + β

∫

Ω

g(ω)dµ(ω)

(b) If f ≤ g then
∫

Ω

f(ω)dµ(ω) ≤
∫

Ω

g(ω)dµ(ω)

6. *Let f ≥ 0 and measurable. Show that
∫

Ω

f(ω)dµ(ω) = sup{
∫

Ω

ϕ(ω)dµ(ω) : ϕ is simple and ϕ ≤ f}

7. Let (Ω,A, P ) be a probability space, and X : Ω → R be a random
variable. Write X = X+−X−. Show that P (X− ≥ t) = P (X ≤ −t)
and P (X ≤ t) = 1− P (X > t).

8. ⋆Let (Ω,A, µ) be a fuzzy measure space with µ(Ω) = 1. For h : Ω→
[0, 1], define

Sµ(h) = sup
0≤α≤1

(α ∧ µ(hα))

where ∧ denotes minimum, and hα = {ω : h(ω) ≥ α}. Show that
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(a) if α ∈ [0, 1] then Sµ(α) = α;

(b) for A ∈ A, Sµ(1A) = µ(A);

(c) for f, g : Ω→ [0, 1] with f(·) ≤ g(·), one has Sµ(f) ≤ Sµ(g).

9. Let (Ω,A, µ) be a fuzzy measure space. A set N ∈ A is called a
µ-null set if

µ(N ∪ A) = µ(A), for all A ∈ A

(a) Verify that if µ is additive then µ(N) = 0.

(b) Define H(A) = (0, µ(A)), for A ∈ A. Verify that µ = L◦H (i.e.,
µ(A) = L(H(A))), where L denotes ordinary Lebesgue measure
on R.

(c) For a measurable function f : Ω→ R+, define

C(f)(x) = sup{t : x ∈ H({f > t})}

for x ∈ (0, µ(Ω)). Show that

Eµ(f) =

∫ +∞

0

µ(f ≥ t)dt =

∫ µ(Ω)

0

C(f)(x)dx

10. Let (Ω,A, P ) be a probability space, and (Θ,B) a measurable space.
Let Γ : Ω → B such that A∗ = {ω : Γ(ω) ⊆ A} ∈ A where A ∈ A
and P (Υ = ∅) = 0.

(a) Show that µ(A) = P (A∗) is a fuzzy measure.

(b) Let f : Θ→ R+, and define

f∗(ω) = inf
θ∈Γ(ω)

f(θ)

Show that

Eµ(f) =

∫

Ω

f∗(ω)dP (ω)

11. ⋆Let f, g : Ω→ R. Show that the following are equivalent.

(a) f and g are comonotonic.

(b) The collection {(f > t), (g > s), s, t ∈ R} of subsets is a chain
with respect to set inclusion.
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12. ⋆Let U = R, U = B(R), and N be the positive integers. Let µ, ν,
and γ : B(R)→ [0, 1] be defined by

µ(A) =

{
0 if A ∩N = ∅

min{1, 12
∑

n{ 1n : n ∈ A ∩ N} if A ∩N 6= ∅

ν(A) =

{
0 if A ∩ N = ∅

sup{ 1n : n ∈ A ∩ N} if A ∩ N 6= ∅

γ(A) =

{
0 if A ∩N = ∅

1 if A ∩N 6= ∅

Show that

(a) µ << ν << γ << µ. (<< means absolutely continuous)

(b) µ(R) = ν(R) = γ(R) = 1.

(c) if An ր A (respectively, An ց A), then ν(An) ր ν(A) (re-
spectively, ν(An)ց ν(A)).

(d) µ is alternating of order 2.

(e) ν and γ are alternating of infinite order.

13. Let N = {1, 2, ..., n}, and let µ be a fuzzy measure on 2N . Let
X : N → R+, X(i) = xi. Let (·) be a permutation of N such that
x(1) ≤ x(2) ≤ ... ≤ x(n). Verify that

(a)
∫∞

0
µ(X ≥ t)dt =

∑n
i=1(x(i) − x(i−1)µ

(
A(i)

)
, where x(0) = 0,

A(i) = {(i), (i+ 1), ..., )n)}.
(b)

∫∞

0
µ(X ≥ t)dt =

∑n
i=1 x(i)(µ

(
A(i)

)
− µ

(
A(i+1)

)
,

where A(n+1) = ∅.

14. For ∅ 6= B ⊆ N , let µB be the fuzzy measure on N = {1, 2, ..., n}
defined by

µB(A) =

{
1 if B ⊆ A
0 if B  A

Let X : N → R+. Show that the Choquet integral of X with respect
to µB is infi∈B X(i).

15. Let N = {1, 2, ..., n} and let µ be a fuzzy measure on 2N . Let m :
2N → R be defined by m(A) =

∑
B⊆A µ(B).

(a) Show that µ(·) =
∑

∅ 6=A⊆N m(A)µA(·) where µA(·) is the fuzzy
measure defined in Exercise 12.
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(b) LetX : N → R+. Show that Cµ(X) =
∑

∅ 6=A⊆N m(A) infA(X),
where C(X) is the Choquet integral of X with respect to µ.

16. Let F be a set of functions from a set Θ to R. For θ1, θ2, ..., θn, prove
that

inf{
n∑

i=1

f(θi) : f ∈ F} − inf{
n∑

i=2

f(θi) : f ∈ F} ≥ inf{f(θ1) : f ∈ F}

17. Carry out the calculations necessary to get the results in the table
in Example 12.3.7.

18. Ten items are to be ranked based on scores on three features {1,2,3}.
The following tables give the fuzzy measure µ to be used and the ten
scores on each of three features of the items. Compute the Choquet
integrals that provide the required ranking.

µ(∅) = 0

µ({1}) = .2000

µ({2}) = .1000

µ({3}) = .3990

µ({1, 2}) = .3386

µ({1, 3}) = .7544

µ({2, 3}) = .5772

µ({1, 2, 3}) = 1.000

Item
Score on
Feature 1

Score on
Feature 2

Score on
Feature 3

1 .56 .78 .92
2 .05 .36 .19
3 .97 .95 .84
4 .00 .62 .06
5 .22 .15 .00
6 1.00 .75 .33
7 .49 .55 .76
8 .89 .37 .97
9 .64 .59 1.00
10 .11 .00 .03
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Chapter 13

FUZZY MODELING

AND CONTROL

In this last chapter, we discuss the use of fuzzy logic in an important area
of applications, namely control engineering. It should be understood that
the term “fuzzy logic” is a general term used in the modeling and ma-
nipulating of fuzzy concepts as modeled by fuzzy sets, as opposed to the
strict sense of “logic”. However, we focus on aspects of modeling of do-
main knowledge and general principles of fuzzy control rather than on its
practical designs and implementation. For readers who are interested in
these aspects, [43] and [171] are good sources. Also, the design of fuzzy con-
trollers benefits from soft computing technologies such as neural networks.
For an introduction to fuzzy neural control, see [165]. The purpose here is
to provide an understanding of the rationale behind fuzzy technology. No
prior knowledge is needed. Since the methodology of fuzzy technology is
general in the context of knowledge-based systems, we choose the topic of
control to illustrate it. The reader can recognize easily that the discussions
in this chapter apply to the field of expert systems as well.

13.1 Motivation for fuzzy control

The standard approach to designing controllers of dynamical systems relies
on the availability of mathematical descriptions, that is, models, of these
systems. In many situations, differential equations of dynamical systems
can be specified from the laws of mechanics. For example, the analytic
mathematical model of the motion of a car moving on a straight road
is obtained as follows: in an ideal environment, suppose that the car is

385

www.EBooksWorld.ir



386 CHAPTER 13. FUZZY MODELING AND CONTROL

controlled by the throttle, producing an accelerating force u1(t), and by the
brake, producing a retarding force u2(t). If we let x1(t) denote the distance
of the car from a given initial position and x2(t) denote its velocity, then

ẋ1 = x2 (13.1)

ẋ2 = u1 − u2

where ẋ1 is the derivative with respect to t. Consider the state, or input,

x =

(
x1
x2

)

and the control

u =

(
u1
u2

)

The system (13.1) of differential equations is written in the form of a
time-invariant linear system

ẋ = Ax+Bu (13.2)

where the matrices A and B are

A =

(
0 1
0 0

)

B =

(
0 0
1 −1

)

In general, a dynamical system is represented by a nonlinear differential
equation of the form

ẋ = f(x, u, t) (13.3)

The aim of feedback control is to determine a control law u = ϕ(x, t) in
order to achieve some specific control objective.

Let us consider a situation where a control law can be derived from
common sense reasoning. Consider the problem of controlling a pendulum:
the simple pendulum is fixed at one end, and is controlled by a rotary
force. In its simplified form, the mathematical model of the motion of the
pendulum, which is derived from mechanics, is

θ̈(t) + sin θ(t) = u(t)

where θ(t) denotes the angle at time t, θ̈(t) is the second derivative of θ(t)
with respect to time t, and u(t) is the torque applied at time t. Suppose
we wish to keep the pendulum upright at the unstable equilibrium, which
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13.1. MOTIVATION FOR FUZZY CONTROL 387

is the vertical position θ = π, θ̈ = 0, and u = 0. If we make a change
of variables φ = θ − π, then the equilibrium point is φ = 0, φ̇ = 0, and
u = 0. Now, our small operation range is around the unstable equilibrium
position. As such, we have a local control problem, and we can simplify
the model by linearizing it around the equilibrium point. For φ small, we
keep only the first-order term in the Taylor expansion of sin, so that the
model is linearized to

φ̈(t)− φ(t) = u(t)

and the control objective is manipulating u(t) to bring φ(t) and φ̇(t) to
zero from any small nonzero initial φ(0), φ̇(0). By examining the system,
for form of the control law u(t) can be suggested by common sense or naive
physics, namely if “If...Then” rules:

• If φ is positive, then u should be negative.

• If φ is negative, then u should be positive.

Thus, u(t) should be of the form u(t) = −αφ(t) for some α > 0. To
check stability, we substitute this into φ̈(t) − φ(t) = u(t) resulting in the
closed-loop equation

φ̈(t)− φ(t) + αφ(t) = 0

Since this is a linear system, we simply need to examine the roots of its
characteristic equation z2 + 1 = 0. Clearly, u(t) = −αφ(t) cannot stabilize
the pendulum. In adding damping to the system, we can take

u(t) = −αφ(t)− βφ̇(t)

for α > 0, β > 1. Now the roots of z2 +βz+α− 1 = 0 both have negative
real parts, and hence the closed-loop system is asymptotically stable.

For more complex problems, mathematical models might be hard to
specify, or might be only partially known. On the other hand, if the con-
trol objectives are task-oriented, such as “park a car”, then it is not clear
how standard control theory can be immediately extended to cope with
such new situations. A relevant question is whether it is possible to con-
trol plants without explicit knowledge of their mathematical models. A
positive answer to this question will lead to a new approach to control
engineering.

In the spirit of artificial intelligence, we observe that in everyday activ-
ities, humans through manual control strategies are quite capable of con-
trolling complex systems without differential equations. They park cars
and ride bicycles, for example. Doing so requires common sense reason-
ing, naive physics, or heuristic knowledge about the systems. This type of
information is weaker than precise analytic descriptions of the dynamics
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by differential equations, and yet seems to be sufficient for control tasks.
It is possible to acquire this control information, either by simulating the
behavior of an expert who is capable of controlling a given system, or by
asking him to describe his control strategy. A pioneering experiment by
Mamdani and Assilian [134] showed that this is possible. In their experi-
ment with a steam engine, the basic fact is that human operators express
their control strategies linguistically rather than in precise mathematical
terms. Thus in order to carry out a control synthesis, it is necessary to
model linguistic information as well as the inference process. The use of
fuzzy logic to achieve this goal leads to the field of fuzzy control. The
adjective “fuzzy” is used to denote the mathematical way of modeling
fuzziness in natural languages, analogous to “stochastic” control in which
“noise” is modeled as randomness by using probability theory. Thus fuzzy
control is a technique for deriving control laws when control information
is expressed in linguistic terms.

It should be emphasized that from a general view of scientific investi-
gations, each approach to a problem has its own domain of applicability.
Standard control theory is efficient when precise mathematical models
are available. The emergence of artificial intelligence technologies has sug-
gested the additional use of manual control expertise in more complex
problems. This is particularly appropriate when mathematical models are
difficult to specify due, for example, to ill-defined problems or to the goal
oriented objectives such as “park the car”. The so-called intelligent control
is born from the idea that it is possible to mimic human control strategies
in designing automatic control laws. Of course, the modeling and synthesis
of linguistic control rules of experts can be done in different ways. Fuzzy
control denotes the approach to control engineering in which fuzzy logic
is used to derive control laws.

13.2 The methodology of fuzzy control

We will use a very simple example to spell out the design methodology of
fuzzy control. Note that this is an example of a “data driven” method: it
is the data that dictates which appropriate method to use.

Suppose we wish to design an automatic device to keep the temperature
of a room at a fixed value T0. Let T (t) denote the temperature of the room
at time t. The purpose of the device is to bring T (t) to T0. By switching
the heater or cooler on and off, we can control the rate of temperature
changes. Let x = T − T0 be the input variable and u = ẋ the control
variable. For an observed value x, it is required to find an appropriate value
u(x) for controlling the temperature. Now, suppose by “naive physics” or
by “expert knowledge” we know the following.
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1. If x is “small positive” then u should be “small negative”.

2. If x is “small negative” then u should be “small positive”.

From the form of this knowledge, we see that each piece of information
can be represented as an “If ... then ...” rule. This situation is similar to
the general framework of knowledge-based systems. For example, in sim-
ple medical diagnostic systems, the input variables like x take only two
possible values, 0 or 1. The relationships between variables are typically
of causal nature and can be expressed in terms of implications. If we view
variables as random variables and model strengths of variable relationships
by conditional probabilities, then we can model the knowledge structure
entirely within the framework of probability theory, namely by the joint
probability distributions of the variables. In our actual example of auto-
matic control, although the global knowledge structure is similar, there is
a significant difference at the local level: the input variable x is a linguis-
tic. That is, it is a variable whose possible values are terms in a natural
language rather than numerical ones. The output variables are of the same
nature. This situation is general in real-world complex problems where it
is difficult to describe knowledge about control strategies in precise terms.
For example, in describing car-driving strategies, an expert driver will not
be able to give a precise answer to a question such as “How many seconds
should you apply the brakes if your car is going quite fast and there is an
obstacle in front of you that seems quite near?”

Since the obvious task of a design engineer is to use these “If...then...”
rules to build an automatic device behaving in a manner similar to a
human expert, he has to translate first these rules into implementable
mathematical representations. This amounts first to modeling fuzzy con-
cepts in these rules, such as “positive small”, “negative big”, and so on.
For any given control problem, after identifying input and output variables
and their ranges, in order to search for a collection of “If...then...” rules
to form a rule base defining a control law, it is necessary to cover these
ranges by appropriate fuzzy partitions. Essentially these rules deal with
linguistic variables such as “small positive”, “small negative”, and so on,
and hence need to be modeled by fuzzy sets.

Suppose the first rule R1 is

“If x is A1 then u is B1”

where A1 and B1 stand for “positive small” and “negative small”, respec-
tively. To represent A1 and B1 mathematically, we use fuzzy sets. Let X
and U denote the ranges of the temperature and of the rate of temperature
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changes, respectively. Then A1 and B1 can be modeled as fuzzy sets

A1 : X → [0, 1]

B1 : U → [0, 1]

In a more complicated rule such as “If x1 is A1 and ... xn is An then
u is B1”, we represent the input as a vector

x =




x1
x2
...
xn




and rewrite the rule as “If x is A then u is B1” where A is the fuzzy
Cartesian product of the Ai characterized by

A(x1, x2, ..., xn) =
∧
{Ai(xi), i = 1, 2, ..., n}

When u is also a vector, we have a multi-input multi-output rule.
In general scientific investigations, the emphasis on qualitative models

has become routine. For example in mathematical psychology where the
goal is to model behavior, one usually translates qualitative models into
quantitative models since the latter provide representations necessary for
testing. For this to be possible, one has to make several basic assumptions.
For example, in providing qualitative models for association learning, one
assumes, or considers, only the case that associations are in only two possi-
ble states: present in full, or completely absent. That is, partial associations
are ignored. Furthermore, if one assumes that transitions from one state
to another are quantified by probabilities, then under further plausible
assumptions, Markov processes can be used as models. Of course, these
probabilistic views of “all-or-none” models should be validated in specific
situations. The modeling of knowledge using fuzzy sets is a further step in
qualitative modeling. Basically, “all-or-none” models are extended to more
flexible and realistic ones in which partial degrees of “truth” are incorpo-
rated. In each rule, besides the modeling of linguistic labels such as Ai and
Bj , we need to model the connectives “and”, “or”, “not” and “if ... then ...
”. It is precisely here that fuzzy logic is called upon. The standard logical
connectives “and”, “or”, and “not” are modeled using t-norms, t-conorms,
and negations, respectively. The logical connective “if ... then ...” is much
more subtle. A rule in our example such as “If x is positive small then u
is negative small” does not represent a causal relationship between x and
u, nor an implication in the usual sense. It simply conveys the idea that
for every x, if x is positive and small, then there is a control value u that
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is negative and small, and that is a “reasonable” value to use. Thus in a
collection of rules of the form

Rj : “If x is Aj then u is B”, j = 1, 2, ..., r (13.4)

we let M(x, u) be the binary fuzzy predicate “u is a reasonable control for
x” and consider a theory consisting of logical statements of the form

Aj(x)→ ∃u (M(x, u) and Bj(u)), j = 1, 2, ..., r

Thus, for every x, if x satisfies the property Aj then there exists a value
u which is “reasonable” for x, and for which Bj hold. It can be shown
that (x, u) satisfies the formula “Aj(x) and Bj(u)” if and only if M(x, u)
belongs to a minimal model of the theory above (in the context of non-
monotonic logic instead of classical logic [136]). This observation can be
used to justify the translation of a conditional statement of the form “if
x is A then u is B” into a fuzzy binary relation M(x, u) = A(x)▽B(u),
where ▽ is a t-norm, such as min. For a collection of rules Rj , the combined
fuzzy relation M given by

M(x, u) =
∨{(Aj(x)

∧
Bj(u)), j = 1, 2, ..., n}

is referred to as Mamdani’s rule. The use of the t-conorm max reflects
the fact that the connection between the rules is specified by the logical
connective “or”. Of course, in general, this connection depends on the
meaning of the knowledge represented. For MIMO (multi-inputs multi-
outputs) systems, some additional symbols, or metalanguage, are needed
in the consequent part of each rule. For example, in

Rj : “If x is Aj then u1 is B1
j ; ... ; uk is Bk

j ”

the symbol “;” is used to denote the noninteraction or independent control
actions ui. In this case, the rule Rj can be decomposed into k rules in-
volving scalar control variables ui with the same antecedent part, so that
the MIMO system is equivalent to k MISO (multi-inputs single output)
subsystems. Here, we focus only on MISO systems for simplicity.

The rule base (13.4) plays the role of a mathematical model. This is
the heuristic approach to fuzzy control. The flexibility in describing a rule
base in mathematical terms by using fuzzy logic comes from the fact that
there are different ways to model fuzzy concepts by membership functions,
as well as choices of logical connectives involved in rules. By a fuzzy
design, we will mean a specific choice of such systems of parameters. We
will elaborate on fuzzy design in the next section.

The following relational approach to deriving control laws from rule
bases is popular in practice. First, a fuzzy system is a mapping M
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from fuzzy subsets of X to fuzzy subsets of U . Such a system can be
defined by specifying a fuzzy relation on the product space X× U . Thus
for A ∈ [0, 1]X , we get B = M ◦A ∈ [0, 1]U , where ◦ denotes some composi-
tion operation among fuzzy relations. For example, the sup-△composition,
where △ is a t-norm is defined by

B(u) =
∨

x∈X

(M(x, u)△A(x)) (13.5)

When A is a singleton, that is, when A (x) = 1{x0}(x) for some x0 ∈ X ,
then by properties of t-norms, B is reduced to B(u) = M(x0, u). By a
fuzzy logic system we mean a fuzzy system in which M is constructed
from a rule base like (13.4) using fuzzy logic. If each rule Rj is translated
into

Mj(x, u) = Aj(x)△Bj(u)

then
M(x, u) = ▽[Mj(x, u), j = 1, 2, ..., r]

where ▽ is a t-conorm.
When A(x) = 1{x0}(x), the fuzzy output B becomes

B(u) = ▽[Mj(x, u), j = 1, 2, ..., r]

= ▽[Aj(x0)△Bj(u), j = 1, 2, ..., r]

In the context of control, the input variable takes values in the in-
put space X . If the observed input value x∗ is accurate, we take A(x) =
1{x∗}(x) as input to the fuzzy logic system, producing the fuzzy output of
the rule Rj given by

u→ Aj(x
∗)△Bj(u)

Note that when X = X1 ×X2 × ...×Xn, then

Aj(x
∗) = Aj(x

∗
1, x

∗
2, ..., x

∗
n)

=
∧{Ai

j(x
∗
i ), i = 1, 2, ..., n}

where Aj = A1
j × A2

j × ... × An
j and represents the degree to which x∗

satisfies the antecedent part of Rj . It can be interpreted as the firing
degree of Rj when the input is x∗.

If the observed input x∗ contains some sort of error or imprecision,
then we can “fuzzify” x∗. This amounts to building a fuzzy subset of X
around x∗ in a fashion appropriate to cope with the imprecision present.
For example, if the basic statistics of the stochastic processes generating
x∗ are known, they can be used to construct a fuzzy subset A associated
with x∗.
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The general relational equation B = M ◦ A will produce the fuzzy
output B from this fuzzy input A. In this case, the firing degree of Rj

with respect to the input A is generalized to the degree of matching
between A and the antecedent Aj of Rj , namely

∨

x∈X

{A(x) ∧Aj(x)}

This quantity can also be interpreted as the possibility measure of Aj

given A.
Now, for a crisp input A, the fuzzy logic system M produces a fuzzy

output B. Referring back to our example of controlling a thermostat, we
need a crisp value for the control action. Thus, the fuzzy output B should
be summarized to obtain such a value. This procedure is termed defuzzi-
fication. For example, in the case where all spaces of interest are copies
of the real line R, the fuzzy set B can be summarized as

D(B) =

∫
R
uB(u)du∫

R
B(u)du

This defuzzification procedure is called the centroid method. For a crisp
input x∗, if we view the quantity

B(·|x∗)∫
R
B(u|x∗)du

as a conditional probability density of the control variable given the input
value x∗, then D(B) has the form of a conditional mean. Other possible
defuzzification procedures will be discussed in the next section.

We mention now another approach, one due to Sugeno, to construct
fuzzy logic controllers where defuzzification is not needed. This approach
also illustrates the obvious fact that if additional information about the
dynamics of the plant under control is available, even in approximate form,
it should be incorporated into the design of the controller. This approach
is due to Sugeno and is essentially based on the possibility of describing
locally the dynamics of a plant in approximate terms, in other words, by
a fuzzy model. This is the case, for example, when for each member of a
fuzzy partition of the input space X , the difference equation of the plant
is linear to some degree. This suggests forming control rules as follows:

• Rj : “If x1 is A1
j and ... xn is An

j then u = fj(x1, x2, ..., xn)”, j =
1, 2, ..., r
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Here the xi are actual observed values of the input variables and fj is
some specific linear function

fj(x1, x2, ..., xn) =

n∑

i=1

αijxi

and the fuzzy subsets Ai
j form a fuzzy partition of the input space. Note

that the consequent part in each Rj is precise. The firing degree, or the
degree of applicability, of Rj is T (Ai

j(xi), i = 1, 2, ..., n) = τ j , where T is
some t-norm such as T (a, b) = ab. The rule Rj will produce a crisp output
given by uj = τ jfj(x1, x2, ..., xn). The overall output control value is
taken as a weighted average

u(x1, x2, ..., xn) =

∑r
j=1 τ jfj(x1, x2, ..., xn)

∑r
j=1 τ j

The Sugeno approach, or more precisely, the Takagi-Sugeno model, is es-
sentially a model-based fuzzy control.

To conclude this section, we mention some basic design issues.

• The rule base plays the role of control knowledge needed to derive
control laws. As such, various factors in this knowledge base need
to be examined to achieve a sufficiency of needed information—for
example, the number of rules, the choice of parameters, membership
functions of fuzzy concepts involved, and the logical connectives. As
in standard control theory, any choice of these nominal parameters
should be done with some robustness properties in mind. Also, in
some cases, where imprecision arises in eliciting membership func-
tions, interval-valued membership functions might be required.

• The description of control knowledge in linguistic rules involves lin-
guistic variables whose values should form fuzzy partitions of asso-
ciated spaces. The fuzzy partitions of both input and output spaces
are necessary to insure that for any observed input values, some rule
in the rule base should “fire” with some positive firing degree.

• The principle of fuzzy control described in this section aims at pro-
ducing a control law u(x) from a rule base. Thus we can view a
fuzzy logic system as a mechanism for producing an approximation
to some ideal control law, or as a model-free regression type problem.
The property of being a “good approximator” can be used to jus-
tify its capability in approximating any continuous functions defined
on a compact domain. Note that such a theoretical result is only a
sort of existence theorem. Success of designs of fuzzy controllers still
depend on the skill of the knowledge engineers.
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• Controllers are judged by their performance, such as robustness and
stability. In this respect, it seems fruitful to have some form of
knowledge about the dynamics of the plants, such as fuzzy models.
Then an analysis can be done using both fuzzy models and control
rules.

13.3 Optimal fuzzy control

As stated earlier, fuzzy control seems promising when the dynamics of sys-
tems are not known with precision. Standard control relies on the knowl-
edge of a differential equation ẋ = f(x, u) with x(t0) = x0 describing
the dynamics. If such an equation is not available, then a weaker form
of knowledge might serve as a means to derive control laws. For exam-
ple, the knowledge about a plant might be expressed in the form of a
collection

Rj : if (x, u) is Aj then x is Bj , j = 1, 2, ..., r

of rules. The standard approach to optimal control is this. Given the dif-
ferential equation together with a set of constraints specifying the goals
such as production planning, terminal control, tracking problems and so
on, an optimal control law is the one that maximized some objective func-
tion J(u) subject to the set of constraints. Suppose now that instead of
a differential equation with its constraints, we have a collection of rules
as above. Now instead of maximizing an objective function subject to a
differential equation, we face a maximizing problem over a set of rules.
The mathematical formulation of this optimization problem is not quite
clear. If the set of rules is combined into a single fuzzy relation on an
appropriate space then we have the problem of optimizing a function over
a fuzzy set. But what does this mean? One formulation is this. Let J be
a function defined on a set X and let A be a fuzzy subset of X. Suppose
that J takes real values in an interval [a, b]. Then we may as well assume
that J : X → [0, 1]. If A is a crisp set so that A(x) = 1 for all x ∈ X ,
then maximizing J over A should simply mean maximizing J, which can
be expressed as maximizing the function J ∧ A. So in the fuzzy case, we
could formulate the problem of maximizing a function J over a fuzzy set A
as that of maximizing the function J ∧A. This is not the only reasonable
formulation. In the crisp case, maximizing the product J(x)A(x) is also
the same as maximizing J , so one could state the problem in general as
one of maximizing the J(x)A(x).
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13.4 An analysis of fuzzy control techniques

Fuzzy control is a way to transform linguistic knowledge into control laws.
A systematic way of doing so was spelled out in the previous section. It
consisted of

• Modeling fuzzy concepts in rules,

• A choice of fuzzy connectives in rules or combination of rules, and

• A choice of a defuzzification procedure.

We look at these steps in more detail. Consider a rule base of a MISO
system, namely where the input variable is x = (x1, x2..., xn) ∈ X =
X1 ×X2× .... ×Xn, and the output variable is u ∈ Y. One needs first to
specify fuzzy partitions of all spaces involved. Let A′

js and B′
js be fuzzy

partitions of X and Y , respectively, corresponding to linguistic variables
such as “small positive”, and so on. Next linguistic “If ...then ...” rules
corresponding to these fuzzy partition can be found either from experts or
through training data. These rules form the knowledge base from which a
control law can be derived. In fact, these rules are a weaker way of defining
a function that can approximate the ideal control law. In this regard, see
Chapter 8 on universal approximation.

Step 1. Rj : “If x is Aj then u is Bj”, j = 1, 2, ..., r
The linguistic labels Ai

j and Bi
j are viewed as fuzzy subsets of appropri-

ate spaces. The membership functions of these fuzzy concepts need to be
specified. This can be done by asking experts or by using common sense.
In asking experts to specify the membership function of a fuzzy concept A
of X , we can only obtain a finite number of degrees of belief. For xi ∈ X ,
i = 1, 2, ...,m, we can ask N experts whether they believe the statement
“xi is A” is true. The degree of xi in A, that is, the value A(xi), is taken to
be M/N where M is the number of experts who say yes. There are other
ways to obtain a value of A(xi). Experts can use their subjective probabil-
ities. In any case, from a finite number of values A(xi), one extrapolates
to obtain a function A defined on all of X .

Control rules expressed in natural language might contain fuzzy mod-
ifiers such as “very”, or “almost all”. Modeling fuzzy quantifiers was dis-
cussed in the Chapter 9.

When it is not reasonable to give experts’ degrees of belief as numbers
in the unit interval, one has to allow membership functions to take values
elsewhere, such as subintervals of [0, 1]. When this happens, we are in the
realm of interval-valued fuzzy logic. An expert may specify a degree of

www.EBooksWorld.ir



13.4. AN ANALYSIS OF FUZZY CONTROL TECHNIQUES 397

belief of 8 on a scale from 0 to 10. But this means the expert’s degree of
belief is closer to 8 than to 7 or to 9, so belongs to the interval [0.75, 0.85].

Membership functions of fuzzy concepts can be chosen in some simpli-
fied forms especially easy for computations. Some of these simple forms
are parametric, that is, are determined by the choice of a finite number of
parameters. Here are some examples of such fuzzy subsets of R.

1. Triangular membership functions are those of the form

A(x) =






0 if x < a− b or x > a+ b

1 +
x− a
b

if a− b < x ≤ a

1− x− a
b

if a < x ≤ a+ b

where a and b are any real numbers.

2. Trapezoidal membership functions are those of the form

A(x) =





0 if x < a or x > d
x− a
b− a if a ≤ x < b

1 if b ≤ x < c
x− d
c− d if c ≤ x ≤ d

where a < b < c < d.

3. Gaussian type membership functions are those of the form

A(x) = exp

(
(x− µ)

2

σ2

)

4. Piecewise polynomial functions, or splines, including piecewise
linear ones are often used.

5. Piecewise fractionally linear functions are those with each piece
a function of the form

A(x) =
ax+ b

cx+ d

After the forms of the various membership functions have been decided,
the parameters of the functions are specified in such a way that the fuzzy
controller will behave in some optimal fashion. That part is called tuning.
Those interested in tuning procedures should consult books on applications
of fuzzy control.
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Step 2. After modeling linguistic labels in rules as fuzzy subsets of appro-
priate sets, the next task is to decide on the choices of logical connectives
involved. The theory of fuzzy logic provides classes of candidate function
such as t-norms, t-conorms, and negations. Such choices should be guided
by the universal approximation property of fuzzy systems and by sensitiv-
ity analysis. For example, popular t-norms are min and product. Popular
t-conorms are max and the dual of product with respect to the negation
1−x. When the connection between rules is expressed as “or” (or “else”),
and the combination of rules is max−T composition, then when T = min
or product, we obtain max-min or max-product composition (inference),
respectively.

Step 3. Having obtained an overall fuzzy output B as a fuzzy subset of
the output space V , we need to summarize it into a single value u∗ to be
used as the actual control action. A defuzzification procedure is a map

D : [0, 1]U → U

Here are some examples of defuzzification procedures.

1. Centroid (or center-of-gravity) defuzzification. Here is a heuris-
tic motivation of this method. Since B(u) is the degree to which u
is compatible with B, it is proportional to some probability density
function f(u). For example, B(u) is proportional to the number of
experts who believe that u is good, so that the more experts who
believe in u, the greater the chance that u is actually good. Letting

f(u) =
B(u)∫

U B(u)du

we can choose u∗ to minimize the average deviation
∫

(u−u∗)2f(u)du.
Differentiation with respect to u∗ yields

u∗ =

∫
U uB(u)du∫
U
B(u)du

which is called the centroid value.

2. Mean-of-maxima defuzzification. Somewhat similar to measures
of location in statistics, and also because of the meaning of degrees
of membership, values u∗ that have the highest values B(u∗) are also
natural to consider. Let E be those elements of U which maximize
B. If E is finite then put u∗ to be the average of the elements of
E. In particular, if E consists of just one element, u∗ is taken to be
that element. If E is infinite, then one takes u∗ to be some sort of
average of the elements of E.
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3. Center-of-area defuzzification. This method is the counterpart
of the concept of a median of a probability density function. The
center of area of B is the value u∗ splitting the area under B into
two parts of equal size.

As for logical connectives, the choice of a defuzzification procedure
should be guided by considerations such as robustness or sensitivity to
errors in its argument B. It can be shown that the centroid defuzzifica-
tion procedure is continuous with respect to a suitable topology on the
space of membership functions, and hence tends to have good robustness
properties.

13.5 Exercises

1. ⋆Let I be a bounded interval of the real line R. Give a fuzzy partition
of I with triangular membership functions.

2. Let I and J be two bounded intervals of R. Consider a collection of
rules:

Rj : “If x is Aj then u is Bj”, j = 1, 2, 3

where the Aj and Bj are fuzzy subsets of I and J , respectively.

(a) Specify Aj and Bj so that (A1, A2, A3) and (B1, B2, B3) are
fuzzy partitions of I and J , respectively.

(b) In view of the previous part, compute for a given x the fuzzy
output of each rule Rj using min-inference.

(c) Suppose the connection between the rules is expressed as the
logical connective “or”. Compute the overall fuzzy output by
using the t-conorm max(a, b). Do the same for the t-conorm
x+ y − xy.

(d) In each case of the previous part, compute the crisp output
value using the centroid defuzzification procedure.

3. With an example specifying membership functions of the rule base
of Exercise 2, using the t-norm product, t-conorm x + y − xy, and
center-of-area defuzzification procedure, give an explicit formula for
computing the overall crisp output.

4. ⋆Let f be a probability density function on R, that is, f ≥ 0 and∫∞

−∞ f(x)dx = 1. Let J(u) =
∫∞

−∞(x − u)2f(x)dx. Show that u =∫∞

−∞ xf(x)dx minimizes J .
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5. Let the overall fuzzy output B of a fuzzy logic system be a trape-
zoidal function with parameters a, b, c, d. Compute the defuzzified
value of B by using

(a) The centroid method,

(b) The mean-of-maxima method, and

(c) The center-of-area method.
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Answers to Selected Exercises

The solutions to some of the exercises are given below. The exercises
are chosen for various reasons. Generally, they are the more difficult ones.
But some are chosen because they illustrate some technique or principle.
Still others present material supplementary to that in the text. Complete
details are not always given in the answers, but rather hints or an outline
of the solutions are presented.

SOLUTIONS FOR CHAPTER 1

Exercise 6. (A ∨B) (x) = A(x) ∨B(x) = 1 if X ≥ 25 and

(
40− x

20

)
∨
(

1 +

(
x− 25

5

)2
)−1

if 25 ≤ x. See the plot on Page 9. To determine when (40− x) /20 is the
larger involves solving a cubic polynomial. We leave the rest to the reader.
Exercise 9. Computing the two fuzzy sets gives

(A ∨B)
′
(x) = 1− (A ∨B) (x) = 1−A(x) ∨B(x)

(A′ ∧B′) (x) = A′(x) ∧B′(x) = (1−A(x)) ∧ (1−B(x))

=

{
1−A(x) if A(x) ≥ B(x)
1−B(x) if B(x) ≥ A(x)

= 1−A(x) ∨B(x)

Exercise 10. (a) Sf(Ω) = {At : 0 ≤ t ≤ 1} where At = {u ∈ U : f(u) ≥
t}. Thus Sf(Ω) is totally ordered.

(b) Let A ⊆ Ω.

{ω ∈ Ω : A ⊆ Sf (ω)} = {ω : f(A) ⊆ [α(ω), 1]

= {ω : α(ω) ≤ inf f(A)} ∈ A

since α is a random variable.

(c) The equality holds when A = ∅, both sides being equal to 1. P{ω :
A ⊆ Sf (ω)} = P{ω : α(ω) ≤ inf f(A)} = inf f(A) since α is uniformly
distributed. Now, P{ω : A ⊆ S(ω)} for A ∈ Sf (Ω) is well defined by the
definition of a nested random set. Also P{ω : A ⊆ S(ω)} = P{ω : y ∈
S(ω)} for all y ∈ A} ≤ P{ω : z ∈ S(ω) for some z ∈ A}. Thus P{ω :
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A ⊆ S(ω)} ≤ infy∈A P{ω : y ∈ S(ω)} = inf f(A), since by hypothesis
f(y) = P{ω : y ∈ S(ω)}.

Let A 6= ∅ and A ∈ Sf (Ω). Define D(A) = {B ∈ Sf (Ω) : ∅ 6= B ⊂ A}.
If D(A) = ∅, then for all x ∈ A,P{ω : x ∈ S(ω)} = P{ω : A ⊆ S(ω)} since
we always have P{ω : x ∈ S(ω)} ≥ P{ω : A ⊆ S(ω)}. If the inclusion is
strict, then there exists ω such that x ∈ B = S(ω), so B 6= ∅, and B ⊂ A,
which is impossible.

If D(A) 6= ∅, then let x ∈ A\B for all B ∈ D(A). For this x, using the
fact that Sf (Ω) is totally ordered, we get {ω : x ∈ S(ω)} = {ω : A ⊆ S(ω).
From all the above, we have for A ∈ Sf (Ω), P{ω : A ⊆ S(ω)} ≤ inf f(A) =
infy∈A P{ω : y ∈ S(ω)} ≤ P{ω : x ∈ S(ω)} = P{ω : A ⊆ S(ω)}, and
therefore P{ω : A ⊆ S(ω)} = inf f(A) = P{ω : A ⊆ Sf (ω)}.

SOLUTIONS FOR CHAPTER 2

Exercise 3. (a) That � is a preorder is very easy. It is linear since ≤ is
linear.

(b) If xy = 0, then certainly (x, y) � (x, y). If xy 6= 0, then x
x = y

y = 1, and

hence (x, y) � (x, y), and we have reflexivity. Suppose that (x, y) � (u, v)
and (u, v) � (s, t). If xy = 0, then (x, y) � (s, t) by definition. If xy 6= 0,
then u

x = v
y ≥ 1, and s

u = t
v ≥ 1, so s

x = s
u

u
x = t

v
v
y = t

y ≥ 1. Thus

(x, y) � (s, t), and we have transitivity. This preorder is not linear since
neither (1, 2) � (1, 3) nor (1, 3) � (1, 2) holds.

(c) That the preorder in (a) is in Γ is clear. For the preorder in (b), suppose
(x, y) � (u, v). If xy = 0, then axby = 0 and yx = 0, so (ax, by) � (au, bv)
and (y, x) � (v, u). If xy 6= 0, then u

x = v
y ≥ 1. If ab = 0 then certainly

(ax, by) ≤ (au, bv). If ab 6= 0, then au
ax = bv

by ≥ 1, and again (ax, by) ≤
(au, bv). To show property (ii) is very easy. If (x, x) � (u, u), and xx = 0,
then x = 0 whence x ≤ u. If xx 6= 0, then u

x = u
x ≥ 1, and so x ≤ u. If

x ≤ u, and x = 0, then clearly (x, x) � (u, u). If x 6= 0, then u 6= 0, and
since u

x ≥ 1, we get (x, x) � (u, u). Thus the preorder in (b) is in Γ.
It remains to show that the preorder in (a) is the only linear one

in Γ. So suppose that � ∈ Γ. We must show that (x, y) � (u, v) if
and only if xy ≤ uv. Suppose that (x, y) � (u, v). Then (xy, xy) �
(yu, xv), and since (y, x) � (v, u), we have (yu, xv) ≤ (uv, uv). By transi-
tivity, (xy, xy) ≤ (uv, uv), whence xy ≤ uv. Now suppose that xy ≤ uv.
We need that (x, y) ≤ (u, v). Suppose that xy 6= 0. Either (x, y) ≤
(
√
xy,
√
xy) or (

√
xy,
√
xy) ≤ (x, y). If the former, then (x

√
y
x , y
√

x
y ) ≤

(
√
xy
√

y
x ,
√
xy
√

x
y ), or (

√
xy,
√
xy)≤ (x, y). Similarly (

√
xy,
√
xy)≤ (x, y)

implies that (x, y) ≤ (
√
xy,
√
xy), so that in any case, (x, y) ≤ (

√
xy,
√
xy) ≤

(x, y). Since xy 6= 0, uv 6= 0, whence (x, y) ≤ (
√
xy,
√
xy) ≤ (

√
uv,
√
uv) ≤
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(u, v). Now suppose that xy = 0. If both x and y are 0, then (x, y) ≤
(
√
xy,
√
xy) ≤ (x, y). If x = 0 and y > 0, then the inequalities (x, y) ≤

(
√
xy,
√
xy) ≤ (x, y) become (0, y) ≤ (0, 0) ≤ (0, y). One of (0, 1) ≤ (1, 0)

and (1, 0) ≤ (0, 1) holds. If the former, then (0, y) ≤ (0, 0) and (0, 0) ≤
(y, 0), using property (i). Therefore, in any case we have the inequalities
(x, y) ≤ (

√
xy,
√
xy) ≤ (x, y), and our result follows.

Exercise 5. We prove one of the absorption identities. The other proper-
ties are completely trivial. a∨ (a∧ b) is the sup of a and a∧ b. Since a ≥ a
and a ≥ a ∧ b, a ≥ a ∨ (a ∧ b). Clearly the other inequality holds.

Exercise 11. It is easy to see that (u, v) ≤ (x, y) if and only if u ≤ x and
v ≤ y makes X [2] into a lattice. Suppose ′ is an involution on L. Then

(x, y)′′ = (y′, x′)′ = (x, y)

If (u, v) ≤ (x, y), then u ≤ x and v ≤ y, so

(u, v)′ = (v′, u′) ≤ y′, x′)

If X together with ′ is De Morgan, then

((u ∧ v) ∧ (x, y))′ = (u ∧ x, v ∧ y)′

= ((v ∧ y)′, (u ∧ x)′)

= (v′ ∨ y′, u′ ∨ x′)
= (v′, u′) ∨ (y′, x′)

= (u, v)′ ∨ (x, y)′

Exercise 18. The Boolean algebra is not complete since U has a set of
finite subsets whose union and complement are both infinite. Such a set
of subsets of U has no sup in F .

Exercise 24. Let R and S be two equivalence relations on U . The sup of
these two equivalence relations is the set consisting of all pairs (u, v) ∈ U×
U such there are elements x1, x2,..., xn with (u, x1), (x1, x2), ...(xn−1, xn),
(xn, v) all in R ∪ S. Note that R ∪ S is not an equivalence relation since
it may not be transitive. It should be clear now what the sup of a set of
equivalence relations on U is.

Exercise 28. RS = {(u,w) : for some v ∈ V, (u, v) ∈ R and (v, w) ∈ S}.
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This is the definition of composition of relations. So

(RS)T = {(u, x) : for some w ∈ W, (u,w) ∈ RS, (w, x) ∈ T }
= {(u, x) : for some v ∈ V, w ∈W, (u, v) ∈ R ,

(v, w) ∈ S, (w, x) ∈ T }
R(ST ) = {(u, x) : for some v ∈ V, (u, v) ∈ R, (v, x) ∈ ST }

= {(u, x) : for some v ∈ V, w ∈W, (u, v) ∈ R ,

(v, w) ∈ S, (w, x) ∈ T }

Exercise 33. (a)

(A ∨B)α = {x ∈ U : A(x) ∨B(x) ≥ α}
Aα ∪Bα = {x ∈ U : A(x) ≥ α or B(x) ≥ α}

Since for each x, either A(x) ≤ B(x) or B(x) ≤ A(x), A(x)∨B(x) is either
A(x) or B(x), and the desired equality follows. Similarly, (A ∧ B)α =
Aα ∩Bα.

(b) No: (A′)α = {x ∈ U : 1 − A(x) ≥ α}, whereas (Aα)′ = {x ∈ U :
A(x) ≥< α}.
(c) Obviously

⋂
A∈S Aα ≤ (

∧
A∈S A)α. If infA∈S A(x) ≥ α, then A(x) ≥ α

for all A ∈ S.
(d) No in general. Obviously for all α,

⋃
A∈S Aα ⊆ (

∨
A∈S A)α. But

supA∈S A(x) ≥ α does not necessarily imply that there is some A ∈ S
such that A(x) ≥ α, unless for each x ∈ U, supA∈S A(x) is attained.

Exercise 39. (a) If f is one-to-one, then this follows from part 3 of
Theorem 2.6.1.

(b) If C = V and f = A, then this follows from part 2 of Theorem
2.6.1.

Exercise 41. (a) For y < 0, f−1(y) = ∅, so that f(A)(y) = 0. For y = 0,
f−1(0) = (−∞, 0], so that f(A)(0) = sup−∞<x≤0A(x) =1. For 0 < y < 1,
f−1(y) = {y}, so that f(A)(y) = A(y).

(b) For y = 1, f−1(1) = [1,∞), so that f(A)(1) = supx≥1 e
− 1

x = 1. For
y > 1, f−1(y) = ∅, so that f(A)(y) = 0. In summary,

f(A)(y) =






0 for y < 0 or y > 1
1 for y = 0 or y = 1

e−
1
x for 0 < y < 1
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(c) For α = 1, we have A1 = {x : A(x) ≥ 1} = {0}. Thus f(A) = {f(x) :
x ∈ A1} = {f(0)} = {0}. Now [f(A)]1 = {y : f(A)(y) ≥ 1} = {0, 1} 6=
f(A1).

Exercise 42. (a) f−1(0) = {x, y) : x + y = 0} = {(x,−x) : x ∈ R} On

[−4, 4], the maximum value of A(x)∧B(x) is e−
1
x < 1. And on (−∞,−4)∪

(4,∞), A(x) = B(−x) < 1, and supx>4A(x) = sup e−
1
x = 1.

(b) We have A1 = [3, 4], B1 = [−2,−1], and hence f(A1, B1) = A1 +B1 =
[1, 3]. Note that 0 /∈ f(A1, B1). But since A(x) ∧B(−x) < 1 on [0, 4], and

A(x) = B(x) = e−
1
x on [0, 4],

f(A,B)(0) = sup
x≥0

(A(x) ∧B(−x)) = sup
x>4

e−
1
x = 1

Thus 0 ∈ [f(A,B)]1, showing that [f(A,B)]1 6= f(A1, B1).

SOLUTIONS FOR CHAPTER 3

Exercise 2. These are all routine. We will prove 16. It is of some interest.

(A+ (−B)) (z) =
∨

x+y=z

(A(x) ∧ (−B)(y))

=
∨

x+y=z

(A(x) ∧B(−y))

(A−B) (z) =
∨

x−y=z

(A(x) ∧B(y))

=
∨

x+y=z

(A(x) ∧B(−y))

Exercise 4. Note that part (a) implies part (b), and part (c) implies
part (d). We consider part (a). (A−A) (0) =

∨
x−y=0 (A(x) ∧ A(y)) , and

χ0(0) = 1. Any constant A will serve as an example.

Exercise 11. For a fuzzy quantity A to be convex means that its α-cuts
are intervals. Equivalently, A(y) ≥ A(x) ∧ A(z) whenever x ≤ y ≤ z. So
to show AB is convex, we need to show that AB(y) ≥ AB(x) ∧AB(z). If
x ≤ y ≤ z < 0 or 0 < x ≤ y ≤ z, then AB(y) ≥ AB(x) ∧ AB(z). A proof
of this can be modeled after the proof that A + B is convex if A and B
are convex. The other cases, for example, if x < 0 ≤ y ≤ z, are not clear.

Exercise 12. The only real problem is to show that two convex fuzzy
quantities have a sup in C. But the inf of any set of convex fuzzy quantities
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is convex. This follows easily from the fact that a fuzzy quantity A is
convex if and only if A(y) ≥ A(x) ∧ A(z) whenever x ≤ y ≤ z. The sup
of two convex fuzzy quantities is the inf of all the convex fuzzy quantities
≥ both. It is very easy to find two convex fuzzy quantities whose sup as
fuzzy quantities is not convex.

Exercise 13. The fuzzy quantity B is obviously convex, and it is a
straightforward calculation to check thatA is convex. (A+B)(x) = ∨y+z=x

{A(y) ∧ B(z)} = ∨y∈RA(y) = 1
2 . Now (A + B) 3

4
= ∅, while A 3

4
= ∅,

B 3
4

= R, and so A 3
4

+B 3
4

= R.

Exercise 14. Since A is continuous, the α-cuts are closed, and hence are
closed intervals.

Exercise 15. Suppose that A is convex. Let λ1, λ, λ2 ∈ [0, 1] with λ1 <
λ < λ2. For x, y ∈ R, let x′ = λ1x + (1 − λ1y) and y′ = λ2x + (1 − λ2y).
Then λ = αλ1 + (1 − α)λ2 for some α ∈ [0, 1]. A calculation shows that
αx′ + (1− α)y′ = λx+ (1− λ)y = z′. Since A is convex, we have A(z′) ≥
A(x′) ∧ A(y′), or that A is quasiconcave.

Suppose that A is quasiconcave and that x < y < z. Then y = λx +
(1 − λ)z with λ ∈ (0, 1). Since 0 < λ < 1 and A is quasiconcave, A(y) =
A(λx+ (1− λ)z) ≥ A(z) ∧A(x).

Exercise 16. By quasiconcavity of A, we have for x, y ∈ R, λ ∈ [0, 1] and
z = λx + (1 − λ)y that A(z) ≥ A(x) ∧ A(y). We need strict inequality
when A(x) 6= A(y) and λ ∈ (0, 1). But this is immediate from A being
one-to-one on {x ∈ U : A(x) < 1} since A(z) can be neither A(x) nor
A(y).

SOLUTIONS FOR CHAPTER 4

Exercise 6. Using the definitions of logical equivalence and tautologies,
this problem is just a matter of checking the table for ⇐⇒ in Section 4.2.
In Lukasiewicz’ three-valued logic, implication is not material implication.

Exercise 11. t(a∨ a′) = t(a) ∨ t(a′) = t(a)∨ (1− t(a)) , which cannot be
1 unless t(a) ∈ {0, 1}.

Exercise 13. In ([0, 1],∨,∧,′ , 0, 1) , x ∧ x′ = x ∧ (1 − x) ≤ 1/2, while
y ∨ y′ ≥ 1/2. It is easy to find examples in

(
[0, 1][2],∨,∧,′ , 0, 1

)
where the

inequality does not hold.

Exercise 14. See the discussion in Section 4.5. Letting A(x) = u, B(x) =
v, and C(x) = 0 shows the equality does not hold.
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SOLUTIONS FOR CHAPTER 5

Exercise 2. x△0 y = 0 unless x∨ y = 1. Now x△ y = x∧ y if x∨ y = 1,
so △0 ≤ △. Since x△ y ≤ x△1 = x and x△ y ≤ 1△ y = y, x△ y ≤ x∧y,
so △ ≤ △5.

Exercise 8. Induct on n, starting at n = 2. For n = 2, the assertion is
true by definition of generator. Assume true for n − 1. So for n, we get
a△ f−1(f(a)n−1 ∨ f(0)) = f−1

[
f(a)(f(a)n−1 ∨ f(0)) ∨ f(0)

]
. There are

two cases: f(a)n−1 ∨ f(0) = f(0) and f(a)n−1 ∨ f(0) = f(a)n−1. Both are
easy to check.

If f(0) > 0, then for sufficiently large n, f(a)n < f(0), so

n times︷ ︸︸ ︷
a△ · · · △ a =

f−1(f(a)n∨f(0)) = 0. If f(0) = 0, then f−1(f(a)n∨f(0)) = f−1(f(a)n) >
0 for a > 0.

Exercise 13. If f(x△y) = f(x)∧f(y), then x△y = f−1 (f(x) ∧ f(y)) =
f−1

(
f(x)) ∧ f−1(f(y)

)
= x ∧ y.

Exercise 15. We need f to be monotone increasing. Let x ≤ y. Then
x = y ◦ z for some z, and so f(x) = f(y ◦ z) = f(y) ◦ f(z). Therefore
f(x) ≤ f(y).

Exercise 20. The function (f(x) + g(x)) /2 is one-to-one since f and g
are one-to-one and monotone increasing. The rest is clear.

Exercise 25. fr(x) = x
r−(r−1)x , G = {fr : r ∈ R+}, r ∈ R+ x ∈ [0, 1].

(a)

fr(fs(x)) = fr(
x

s− (s− 1)x
)

=

x
s−(s−1)x

r − (r − 1) x
s−(s−1)x

=
x

r (s− (s− 1)x)− (r − 1)x

=
x

rs− rsx + rx− rx + x

=
x

rs− (rs − 1)x

so frfs = frs Since frfr−1 = f1 is the identity automorphism, and so G is
a subgroup.
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(b) This follows from the proof of the first part.

(c) xNfry = (fr(x)+fr(y)−1)∨0 =
(

x
r−(r−1)x + y

r−(r−1)y − 1
)
∨0, which

may be written in various ways.

(d)

fr−1αfr(x) = fr−1(1− x

r − (r − 1)x
) = fr−1

(
r − rx + x− x
r − (r − 1)x

)

= fr−1

(
r(1 − x)

r − (r − 1)x

)
= fr−1

(
1− x

1− ( r−1
r )x

)

=

1−x
1−( r−1

r
)x

r−1 − (r−1 − 1) 1−x
1−( r−1

r
)x

= r2
x− 1

−x+ xr2 − r2

which may be written in various forms.

Exercise 26. It is easy to check that f(x) = x
2−x is an automorphism of

[0, 1]. Thus x△ y = f−1(f(x)f(y)) is a strict t-norm. Now f−1(x) = 2x
1+x ,

so that

x△ y =
2
(

x
2−x

y
2−y

)

1 + x
2−x

y
2−y

=
2xy

4− 2x− 2y + 2xy

=
xy

2 + xy − (x+ y)

This shows that x △ y = xy
2+xy−(x+y) is a strict t-norm and that f is a

generator of it. Finally, for part (c) just check that f(x) = e−g(x).

Exercise 37. g−1f is an isomorphism from (I,Nf ) to (I,Ng). Were h
another such isomorphism, then h−1g−1f would be a nontrivial automor-
phism of (I,Nf ). Corollary 5.3.11 prevents that.

Exercise 39. If η(x) = x < y = η(y), then x = η(x) > η(y) = y.

Exercise 50. They are clearly continuous. The associative law for △ is
a bit tedious, but follows readily using the distributive law x(y ∨ z) =
xy ∨ xz). The t-norm is not Archimedean since a △ a = a. The natural
dual of △ is ▽.

Exercise 53. We need f−1rf ≥ f−1rf whenever r ≤ s. Suppose that
r ≤ s. Now for x ∈ [0, 1], xf

−1rf = f−1rf(x) = f−1f(x)r ≤ f−1f(x)s =
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xf
−1sf since f(x)r ≥ f(x)s and f−1 is an antiautomorphism. Thus f−1rf ≥

f−1rf.

Exercise 56. If ▽ is a conorm on I[2], then x▽ y = η(η(x)△ η(y)) for
some t-norm △ and negation η on I[2]. Let x = (a, b) and y = (c, d). Then

x▽ y = η(η(x)△ η(y))

= η(η(a, b)△ η(c, d))

= η((η (b) , η (a))△ (η (d) , η (c)))

= η((η (b) ◦ η (d)), (η (a) ◦ η (c)))

= ((η(η (a) ◦ η (c)), η(η (b) ◦ η (d)))

and (η(η (a) ◦ η (c)) is a conorm ⋄ on [0, 1], being dual to the norm ◦ with
respect to η. The symbol η is used to denote both a negation on [0, 1] and
the negation it induces on I[2].

SOLUTIONS FOR CHAPTER 6

Exercise 4. We do part (a). (1 − x)▽ xy = 1 − x + xy − (1 − x)xy =
1− x+ x2y

Exercise 8. (x ⇒ y) =
∨{z ∈ [0, 1] : x△ z ≤ y}, which we need to be

η△[x△ η△(y)].

η△[x△ η△(y)] =
∨
{z : z △ (x△ η△(y)) = 0}

=
∨
{z : (z △ x)△ η△(y) = 0}

Now (z△ x)△ η△(y) = 0 if and only if z△x ≤ y, which is what we want.

Exercise 11. Part (a) is easy. For example,

(0⇒ 1) = η(∧z : z▽ 1 ≥ 0} = η(0) = 1

(1⇒ 0) = η(∧z : z▽ 0 ≥ 1} = η(1) = 0

For the first part of (b), if x 6= 0 6= y, then (x⇒ y) = 1. If x = 0, then
(x⇒ y) = 1. If x 6= 0 and y = 0, then (x⇒ y) = η(x). A computation
shows that for the second part of (b), (x⇒ y) = 1− 0 ∨ (x− y).

In part (c), (1⇒ 0) = f−1
(

f(0)f(0)
f(1) ∨ f(0)

)
= f−1f(0) = 0. The rest is

similar.
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Exercise 14. f−1(x) = loga((a− 1)y + 1). The function f generates the
averaging operator

x+̇y = f−1

(
f(x) + f(y)

2

)

= f−1

(
ax−1
a−1 + ay−1

a−1

2

)

= loga

(
ax − 1 + ay − 1

2
+ 1

)

= loga

(
ax + ay

2

)

Exercise 18. We do the verification for the first two averaging operators.

The negation of the averaging operator x+y
2 is the solution to x+η(x)

2 = 1
2 ,

which is η(x) = 1−x. The negation of the averaging operator
(

xa+ya

2

)1/a

is the solution to
(

xa+(η(x))a

2

)1/a
= 0+̇1 =

(
1
2

)1/a
, which a simple calcu-

lation shows is η(x) = (1− xa)1/a. .

Exercise 22. This follows immediately from Exercise 21, which in turn is
a simple induction on n.

Exercise 24.

ρ▽(δ) = sup{|(x▽ y)− (x′ ▽ y′)| : |x− x′| , |y − y′| ≤ δ}
= sup{|1− (1− x)▽ (1 − y)− (1− (1 − x′)▽ (1 − y′))|
: |1− x− (1− x′)| , |1− y − (1− y′)| ≤ δ}
= sup{|(x△ y)− (x′ △ y′)| : |x− x′| , |y − y′| ≤ δ}
= ρ△(δ)

Exercise 26. (a) If |x− x′| and |y − y′| ≤ δ, then it is easy to check
that |xy − x′y′| ≤ 2δ − δ2, while if x = y = 1 and x′ = y′ = 1 − δ, then
|xy − x′y′| = 2δ − δ2.

(b) If δ < 1
2 , then min{1, 2δ} = 2δ, and for |x′ − x′| and |y′ − y′| ≤ δ we

have
|(x+ y)− (x′ + y′)| = |x− x′ + y − y′| ≤ 2δ < 1

Taking x = y = 0 and x′ = y′ = δ, we get |(x+ y)− (x′ + y′)| = 2δ. If
δ ≥ 1

2 , min{2δ, 1} = 1, and taking x = y = 0 and x′ = y′ = δ, we have
ρ(δ) = 1.
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(c) This one is dual to f(x, y) = xy, so has the same extreme sensitivity,
namely 2δ − δ2.
(d) Since max is dual to min, their extreme sensitivities are the same, and
the sensitivity for min is calculated in Example 6.4.2. ρ∧(δ) = δ.

Exercise 27. (a) If f(x, y) = min{x, y}, and x < y, then ∂f
∂x = 1 and

∂f
∂y = 0. Thus

(
∂f
∂x

)2
+
(

∂f
∂y

)2
= 1, and similarly for x > y. It follows that

S(f) = 1.

(b) In either case,
(

∂f
∂x

)2
+
(

∂f
∂y

)2
= x2 + y2 and S(f) = 2

3 .

(c) For f(x, y) = min{1, x+y}, we have
(

∂f
∂x

)2
+
(

∂f
∂y

)2
= 2 or 0 according

to whether x+ y < 1 or not.

(d) ∂g
∂x = −∂f(1−x,1−y)

∂x and ∂g
∂y = −∂f(1−x,1−y)

∂y . Thus

S(g) =

∫ 1

0

∫ 1

0

[(
∂f(1− x, 1− y)

∂x

)2

+

(
∂f(1− x, 1− y)

∂y

)2
]
dxdy

Now changing variables by letting x′ = 1 − x and y′ = 1 − y gets S(f) =
S(g).

Exercise 29. (a) Since x(n) is the min of the xi and x(1) is the max, we
have

x(n) =
(∑

wj

)
x(n) ≤

(∑
wjx(j)

)
≤
(∑

wj

)
x(1) = x(1)

(b) These choices of w give the max, the min, and the ordinary average,
respectively.

Exercise 35. Let x ≤ x′ and y ∈ [0, 1]. The rectangle with vertices
(x, y), (x, 0), (0, y), (x′, y) has volume C(x′, y)−C(x, y), using the grounded
property of C.

Exercise 36. (a) Let x = (x1, x2, ..., xn) ∈ {0, 1}n. Then for B = {uj :
xj = 1}, P (X1 = x1, ..., Xn = xn) = F (B). Conversely, let B ⊆ U. Then
f(B) = P (ω : S(ω) = B) = P (ω : uj ∈ S(ω) for all uj ∈ B) = P (X1 =
x1, ..., Xn = xn) where xj = 1 if uj ∈ B and 0 otherwise.

(b) Note that if S ∈ S(A), then

Fj(x) =
0 if x < 0

1−A(x) if 0 ≤ x < 1
1 if x ≥ 1
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Thus the membership function A determines all one-dimensional CDF′s
Fj of the Xj . By Sklar’s Theorem, the joint CDF F of X = (x1, x2, ..., xn)
is of the form F (x1, x2, ..., xn) = C([F1(x1), ..., Fn(xn)]. In view of (a),
each such F determines a distribution for an S in S(A).

Exercise 37. (a) From k = 1 and A = (x, y], we have ∆f (A) = F (y) −
F (x).

(b) It is obvious that F satisfies (i), (ii), and (iii). Now, for A = (14 , 1]×
(12 , 1], we have ∆f (A) = F (1, 1) − F (14 , 1) − F (12 , 1) + F (14 ,

1
2 ) = −1, so

that F does not satisfy (iv).

(c) For a1 = (x1, y1) ≤ a = (x, y), we have, applying the hypothesis to
the case n = 1, that F (a) ≥ F (a1). Next, for A = (x1, y1] × ... × (xk, yk]
arbitrary, ∆f (A) ≥ 0 since it is a consequence of the hypothesis when
a = (y1, y2, ..., yk), and the n(= 2k − 1) aj being the vertices of A.

(d) If (x, y) ≤ (x′, y′) then max(x, y) ≤ max(x′, y′), and hence F (x, y) ≤
F (x′, y′). For a = (x, y), a1 = (x1, y1), a2 = (x2, y2), with 0 ≤ x1 < 1 <
x < x2 and 0 ≤ y2 < 1 < y < y1, we have F (a ∧ a

1
) = F (a ∧ a2) = 1, and

F (a ∧ a1 ∧ a2) = F (x1, y2) = 0. Thus
∑

∅ 6=I⊆{1,1}

(−1)|I|+1F (∧b∈{a,ai,i∈I}b = 1 + 1− 0 = 2 > 1 = F (a)

and hence F does not satisfy the desired inequality.

Exercise 39. A t-norm is a 2-copula if and only if for a ≤ c, c△b−a△b ≤
c− a. To check that (a+ b − 1) ≤ a△ b, take c = 1.

Exercise 41. The proof is by induction on #S. The equations hold if the
field of real numbers is replaced by any commutative ring with identity.

SOLUTIONS FOR CHAPTER 7

Exercise 1. Reflexivity and symmetry of W are clear. For ∧-transitivity,
we have for all x ∈ U,

W (u, v) = R(u, v) ∧ S(u, v)

≥ (R(u, x) ∧R(x, v)) ∧ (S(u, x) ∧ S(x, v))

= (R(u, x) ∧ S(x, v)) ∧ (R(u, x) ∧ S(x, v))

= W (u, x) ∧W (x, v)

Exercise 4. Suppose R is transitive. Then R(u, v) ∧ R(v, w) ≤ R(u,w),
and so ∨

v∈U

(R(u, v) ∧R(v, w)) ≤ R(u,w)
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so that R ◦R ≤ R.
Conversely, suppose that R ◦R ≤ R. Then certainly

∨

v∈U

(R(u, v) ∧R(v, w)) ≤ R(u,w)

so that for all v,R(u, v) ∧R(v, w) ≤ R(u,w), whence R is transitive.

Exercise 5. Part (a) is trivial.
For part (b), suppose thatR is transitive. ForR(u, v) ≥ α andR(v, w) ≥

α, we have

R(v, w) ≥
∨

x∈U

(R(u, x) ∧R(x,w)) ≤ R(u,w)

≥ R(u, v) ∧R(v, w)

≥ α

Conversely, suppose that Rα is transitive for all α. Let α = R(u, v) ∧
R(v, w). Then R(u,w) ≥ α, and this for any v. Thus

R(u,w) ≥
∨

v∈U

(R(u, v) ∧R(v, w))

Exercise 6. No. It is easy to get an example with U a three-element set
and R and S equivalence relations, and in particular fuzzy equivalence
relations.

Exercise 8. Suppose that each Rα is an equivalence relation. We show
that R is transitive, which means that R(u,w) ≥ R(u, v) ∧ R(v, w). If
R(u, v) ∧ R(v, w) = α, then (u, v) and (v, w) ∈ Rα, and since Rα is an
equivalence relation and hence transitive, (v, w) ∈ Rα, so R(v, w) ≥ α =
R(u, v) ∧R(v, w).

Exercise 10. Suppose that each Rα is a partial order. To show that R
is transitive, see the proof of transitivity in Exercise 8.

Exercise 14. R is △-transitive, so R(u, v) ≥ supw (R(u,w)△R(w, v)) =
R ◦R(u, v). Now

R ◦R(u, v) = sup
w

(R(u,w)△R(w, v))

≥ sup
w

(R(u, u)△R(w, v))

= sup
w

(1△R(w, v))

= sup
w

(R(w, v))

≥ R(u, v)
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Exercise 23. Let

(f1, f2) : C1 → C2
(g1, g2) : C2 → C3
(h1, h2) : C3 → C4

be morphisms between the Chu spaces C1, ..., C4. Then

(h1, h2) ◦ ((g1, g2) ◦ (f1, f2)) = (h1, h2) ◦ (g1 ◦ f1, f2 ◦ g2)

= (h1 ◦ (g1 ◦ f1) , (f2 ◦ g2) ◦ h2)

= ((h1 ◦ g1) ◦ f1, f2 ◦ (g2 ◦ h2))

= ((h1, h2) ◦ (g1, g2)) ◦ (f1, f2)

That the appropriate identity exists is obvious.

SOLUTIONS FOR CHAPTER 8

Exercise 2. Polynomials are continuous, so F ⊆C([a, b]). Addition and
multiplication of polynomials result in polynomials, so F is a subalgebra.
Let c, d ∈ [a, b] with c 6= d. The polynomial x is c at c and d at d. The
polynomial x− c+ 1 is nonzero at c.

Exercise 3. F does not separate points on [−2, 2] since for any x ∈ [−2, 2]
and f ∈ F , we have f(x) = f(−x).

Exercise 4. (a) There are functions g and h in F such that g(x) 6= g(y)
and h(x) 6= 0. Let ϕ = g+λh with λ chosen as indicated. Then ϕ(x) = g(x)
if g(x) 6= 0 and ϕ(x) = λh(x) if g(x) = 0. Thus ϕ(x) 6= 0, and obviously
ϕ ∈ F . Now ϕ(x)− ϕ(y) = g(x)− g(y) + λh(x) − h(y) 6= 0.

(b) Let α = ϕ2(x) − ϕ(x)ϕ(y), and f1(x) = 1
α

[
ϕ2(x)− ϕ(x)ϕ(y)

]
. Then

α 6= 0 since ϕ(x) 6= ϕ(y) and ϕ(x) 6= 0. Obviously f1 ∈ F . Now f1(y) = 0
and f1(x) = 1.

(c) The construction of f2 is similar, and f1+ f2 clearly has the desired
properties. Note that if 1 ∈ F , then one could let f2(w) = 1 − f1(w) for
all w.

Exercise 8. (a) f + g, fg, and af are continuous.

(b) Let F be a subalgebra of C([a, b]) containing 1 and x. Then any
polynomial

∑
aix

i is in F , and certainly is a subalgebra.

(c) The closure P of P in C([a, b]) consists of those functions on [a, b]
that are uniform limits of sequences of elements of P. According to the
Weierstrass theorem, P = C([a, b]). But |x| ∈ P but not in P, so P6= P.
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SOLUTIONS FOR CHAPTER 9

Exercise 2. (a) If A ⊆ B, then (S ∩ A 6= ∅) ⊆ (S ∩B 6= ∅).

(b) Clearly we always have {ω : S(ω) ∩ ∅ 6= ∅} = ∅. Next, since for
ω ∈ Ω, S(ω) 6= ∅ by hypothesis, {ω : S(ω) 6= ∅} = Ω.

(c) Observe that △n(A0, A1, ..., An) = P (S ∩ A0 = ∅, S ∩ Ai 6= ∅,
i = 1, 2, ..., n).

Exercise 3. Since PX(A) ≤ T (A) = P (S∩A 6= ∅), and F (A) = 1−T (A′),
we have that PX(A) ≤ 1−F (A′) implies that F (A) ≤ 1−PX(A′) = PX(A).

Exercise 6. (a) For A ⊆ B, we have B = A ∪ (B\A), so that

µ(B) = µ(A) + µ(B\A) ≥ µ(A)

(b) For A, B ∈ A, we have

A ∪B = A ∪ (B\A)

B = (B\A) ∪ (A ∩B)

Thus

µ(A ∪B) = µ(A) + µ(B\A)

= µ(A) + µ(B)− µ (A ∩B)

(c) Let An ր, n ≥ 1. Let A0 = ∅. We have

µ

(
∞⋃

n=1

An

)
= µ

(
∞⋃

n=1

(An\An−1)

)

=
∞∑

n=1

µ (An\An−1)

= lim
m→∞

m∑

n=1

µ (An\An−1)

= lim
m→∞

µ

(
m⋃

n=1

An\An−1

)

= lim
m→∞

µ (Am)

(d) Let B ∈ A, and define ν : A → R+ by ν(A) = µ(A ∩ B). The details
are routine.
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Exercise 7. Let π : Ω→ [0, 1]. The associated possibility measure on 2Ω

is defined by π(A) = sup{π(ω) : ω ∈ A}. Since

sup{π(ω) : ω ∈ Ai} = sup
i
{sup{π(ω) : ω ∈ Ai}}

it follows that the restriction of π to F is a space law, and hence the result
follows from Matheron’s theorem.

Exercise 8. Let f : Rn → [0, 1] be upper semicontinuous. It suffices to
verify that π(A) = sup{f(x) : x ∈ A} is a Choquet capacity, alternating
of infinite order. The fact that π is alternating of infinite order is proved
as in Exercise 7. Let π : Ω → [0, 1]. The associated possibility measure
on 2Ω is defined by π(A) = sup{π(ω) : ω ∈ A}. Since 4, it remains to
show that π is upper semicontinuous on the set K of compact sets of Rn,
that is, if Km ց K in K, then π(Km)ց π(K). Let α = inf{π(Km)} and
β = π(K). Clearly β ≤ α. Let ε > 0 and take δ = α − ε < α. We then
have π(Km) > δ for all m, that is, sup{f(x) : x ∈ Km} > δ for all m ≥ 1.
Hence for

Am = {x : f(x) ≥ δ} ∩Km 6= ∅

we have that Am ⊆ Km ⊆ K1, which is compact, and the Am’s are
closed since f is upper semicontinuous. Therefore, A =

⋂∞
m=1Am 6= ∅.

Since A ⊆ K, we have π(A) ≤ π(K) =β. But by the construction of An,
π(A) ≥ δ, and thus δ ≤ β.

Exercise 9. We verify the formula in a special case. Let X be a nonneg-
ative random variable. Let S(ω) = [0, X(ω)]. We have µ ◦ S = X , and
π(x) = P{ω : x ∈ S(ω)} = P (X ≥ x). Now it is well known that E(X) =∫∞

0
P (X ≥ x)dx. But E(X) = (E◦µ)(S), so that (E◦µ)(S) =

∫∞

0
π(x)dx.

Exercise 10. We have π(A ∪ A′) = π(U) = π(A) ∨ π(A′) = 1.

Exercise 11. Let π be a possibility measure on U. Let T : 2U → [0, 1] :
A → 1 − π(A′). Then for part (a), T (∅) = 1 − π(U) = 0 and T (U) =
1− π(∅) = 1.
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For part (b),

T (
⋂

i∈I

Ai) = 1− π
(
⋃

i∈I

A
′

′

)

= 1−
∨

i∈I

π
(
A

′

i

)

=
∧

i∈I

(
1− π

(
A(

′

i

))

=
∧

i∈I

T (Ai)

Exercise 16. Part (a) is a direct calculation, and for part (b), use l’Hospital’s
rule. For part (c), suppose that I(A ∪ B) = min{(A), (B)} for A,B with
AB = ∅. For arbitrary A and B we have

I(A ∪B) = I(A′B ∪ AB′ ∪ AB)

= min{I(A′B), I(AB′), I(AB)}
But

I(A) = min{I(AB′), I(AB)}
I(B) = min{I(A′B), I(AB)}

Hence I(A ∪B) = min{I(A), I(B)}.
SOLUTIONS FOR CHAPTER 10

Exercise 15. Let Q be a probability measure on a finite set U and let
0 < ε < 1. Let

P = {εP + (1 − ε)Q : P is a probability measure on Ω}
Define F (A) = inf{P (A) : P ∈ P}. Obviously, F is increasing, F (∅) = 0
and F (Ω) = 1. It remains to show that for all n ≥ 1,

F (

n⋃

i=1

Ai) ≥
∑

∅ 6=J⊆{1,2,...,n}

(−1)|J|+1F (
⋂

J

Aj)

If ∪Ai 6= Ω then there is a probability measure P such that P (∪Ai) = 0,
so that

F (
⋃
Ai) = (1− ε)Q(

⋃
Ai)

≥
∑

∅ 6=J⊆{1,2,...,n}

(−1)|J|+1(1− ε)Q(
⋂

J

Aj)

=
∑

∅ 6=J⊆{1,2,...,n}

(−1)|J|+1(1− ε)F (
⋂

J

Aj)
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If
⋃
Ai = Ω, then F (

⋃
Ai) = 1 and

∑

∅ 6=J⊆{1,2,...,n}

(−1)|J|+1(1 − ε)F (
⋂

J

Aj) = (1− ε)Q(
⋃
Ai)

≤ 1− ε

Exercise 16. (a)

∑

ω∈Ω

p(ω) =
∑

A⊆Ω

∑

ω∈A

α(ω,A)

=
∑

A⊆Ω

f(A) = 1.

(b) Let Pg(A) =
∑

ω∈A g(ω). We have

F (A) =
∑

B⊆A

f(B)

=
∑

B⊆A

∑

ω∈B

α(ω,B)

≤
∑

ω∈A

∑

{B:ω∈B}

α(ω,B)

= Pg(A)

Exercise 20. (a) p(ωj) =
∑

A∈T (ωj)
f(A), where

T (ωj) = {A : ωj ∈ A ⊆ {ωj , ωj+1, ..., ωk}}

Then
∑k

j=1 p(ωj) =
∑

A⊆Ω f(A) = 1

(b) F (B) =
∑

A⊆B f(A) ≤ ∑ωj∈B p(ωj) since {A : A ⊆ B} ⊆ {A : A ∈
T (ωj) for some ωj ∈ B}
(c) See Exercise 16.

Exercise 31. (a) Let F (A) = [P (A)]n and define f : 2Ω → [0, 1] by

f(A) =






0 if |A| > n
∑

na≥0∑
na=n

∏
a∈A

n!∏
na!

[P (a)]na otherwise

Since
1 = [P (Ω)]n = [

∑

ω∈A

P (ω)]n =
∑

A⊆Ω

f(A)
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the function f is a probability mass assignment. It is easy to check that
F (A) =

∑
B⊆A f(B), so that A→ [P (A)]n is a belief function.

(b) Let FB(A) = [P (A|B)]2. Then FB is a belief function from part (a),
and hence its Möbius inversion is given by fB.

(c)

FB(A) = FB(A|C)

= [PB(A|C)]2

= [PB(
AC

PB(C)
)]2

= [
P (AC|B)

P (C)|B)
]

= [
P (ABC)

P (BC)
]2

= (FC)B(A)

(d) The “sandwich principle” holds. If F (A) < F (A|B) then

P (A) = P (AB′) + P (AB)

= P (AB′) + P (A|B)P (B)

≥ P (AB′) + P (A)P (B)

from which it follows that

P (A)[1 − P (B) ≥ P (ABB′)

and

P (A) ≥ P (AB′)

P (B′)
= P (A|B′)

Hence

F (A) = [P (A)]2

≥ [P (A|B′)]2

= F (A|B′)

and so F (A) ≥ min{F (A|B), F (A|B′)}.

Exercise 36. It is easy to get examples such that A ∼ B and C ∼ D,
yet A ∪C is not equivalent to B ∪D, in fact so that A ∪ C 6= B ∪D. Let
C = D, and pick A and B so that A ∪ C contains an element of E that
B ∪C does not.
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Exercise 38.

P (b⇒ a) = P (b′ ∨ a)

= P (b′ ∨ ab)
= P (b′) + P (ab)

= 1− P (b) + P (ab)

= [P (a|b) + P (a′|b)]− P (b) + P (ab)

= P (a|b) + P (a′|b)− P (b) + P (a|b)P (b)

= P (a|b) + P (a′|b)− P (b) + [1− P (a′|b)\P (b)

= P (a|b) + P (a′|b)P (b′)

Exercise 43. The center ofR consists of the elements (X,X)∗ =
(
X

′
, X

′
)

of R. Any Y is of the form X
′
.

Exercise 44. (a) If ab = cd and b = d, then a + Rb′ = a + ab′ + R =
a(1 + b′) + Rb′ = ab + Rb′.Similarly c + Rd′ = cd + Rd′ = cd + Rb′, .so
a+Rb′ = c+Rb′. Conversely, if a+Rb′ = c+Rd′, then a = c+ rd′, and
hence ad = cd. Also, a + b′ = c + sd′, and so ad + b′d = cd = ad, which
gets b′d = 0. Similarly, bd′ = 0, and we have (1 + b)d = d+ bd = 0 = bd′ =
b(1 + d) = b+ bd, so b = d.

(b) (a+ rb′) ≥ (a+ rb′) ∧ ab = (a+ rb′)ab = ab. Now (b′ ∨ a) (a+ rb′) =
(a+ b′ + ab′) (a+ rb′) = a+rb′, so ab ≤ a+rb′ ≤ b′∨a. If ab ≤ x ≤ b′∨a,
then abx = ab, and x(b′ ∨ a) = x(a + b′ + ab′) = x(a + b′ + a(1 + b)) =
x(b′ + ab) = xb′ + abx = xb′ + ab = xb′ + a+ ab′ ∈ a+ rb′.

(c) [a, b] = [a(b′ ∨ a), (b′ ∨ a) ∨ a] = a+R(b′ ∨ a)′, using part b.

SOLUTIONS FOR CHAPTER 11

Exercise 4. Suppose that µ is monotone of order 2, that is, µ(A ∪ B) ≥
µ(A) + µ(B) − µ(A ∩B). Then for all X ∈ A,

µ(X) ≥ µ(X ∩ (A ∪B))

= µ((X ∩ A) ∪ (X ∩B))

= µ(X ∩ A) + µ(X ∩B)− µ(X ∩ A ∩B)

so that △2(X,A,B) = µ(X)− µ(X ∩A)−µ(X ∩B) + µ(X ∩A∩B) ≥ 0.
Conversely, suppose that △2(X,A,B) ≥ 0. Take X = A ∪ B. Then 0 ≤
△2(X,A,B) = µ(A ∪B)− µ(A)− µ(B) + µ(A ∩B).

Exercise 5. This problem is lengthy. See [30].
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Exercise 11. (a) µ∗(∅) = µ(Ω)−µ(Ω) = 0. IfA ⊆ B, then µ(A′) ≥ µ(B′),
and µ∗(A) = µ(Ω)− µ(A′) ≤ µ(Ω)− µ(B′) = µ∗(B).

(b) This is the same as exercise 4.

Exercise 14. E(µ(S)) = E(X) =
∫∞

0 P (X ≥ x)dx =
∫∞

0 π(x)dx by
observing that {ω : X(ω) ≥ x} = {ω : x ∈ S(ω)}.

Exercise 16. Recall that the capacity functional T of the random closed
set S on R+ is T (K) = P{ω : S(ω) ∩ K 6= ∅} for compact subsets K
of R+. When we have K = {x}, then π(x) = T ({x}) = P (x ∈ S). Here,
when S(ω) = [0, X(ω)], it turns out that T can be determined from π.
Indeed, T (K) = P ([0, x] ∩K 6= ∅) = P (∧K ≤ x) = π(∧K).

SOLUTIONS FOR CHAPTER 12

Exercise 3. (a) Clearly for each n ≥ 1, the sets Ak
n, k = 1, 2, ..., n2n and

An are pairwise disjoint and An

⋃
(
⋃n2n

k=1 A
k
n) = Ω.

(b) If f(ω) > n+ 1 then f(ω) > n, so that fn(ω) = n < n+ 1 = fn+1(ω).
Suppose that n < f(ω) ≤ n+ 1. Then

n2n+1

2n+1
< f(ω) ≤ (n+ 1)2n+1

2n+1

and
n2n+1

2n+1
<
n2n+1 + 1

2n+1
<

(n+ 1)2n+1

2n+1

If
n2n+1

2n+1
≤ f(ω) ≤ n2n+1 + 1

2n+1

then fn(ω) = n and fn+1(ω) =
n2n+1 + 1

2n+1
> n. If

n2n+1 + 1

2n+1
< f(ω) ≤ (n+ 1)2n+1

2n+1

then fn(ω) = n, and fn+1(ω) =
(n+ 1)2n+1

2n+1
> n. Finally, if fn(ω) ≤ n,

then for k = n2n+1 + 1,

k − 1

2n
≤ f(ω) <

k

2n

for some k = 1, 2, ..., n2n. So either

2 (k − 1)

2n+1
≤ f(ω) <

2k − 1

2n+1
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or
2k − 1

2n+1
≤ f(ω) <

2k

2n+1

Reasoning as before, we get fn(ω) ≤ fn+1(ω).
It remains to show that limn→∞ fn(ω) = f(ω). If f(ω) = ∞, then

f(ω)̇ > n for all n, so that fn(ω) = n. If f(ω) < ∞, then there is an n0

such that f(ω) ≤ n0 and |f(ω)− fn(ω)| ≤ 1
2n for all n ≥ n0. In either

case, limn→∞ fn(ω) = f(ω).

Exercise 4. With Ω =
⋃n

j=1 Aj =
⋃n

j=1 Bj , we have Aj = Aj ∩ Ω =⋃
i(Aj ∩Bi) and Bi = Bi ∩ Ω =

⋃
j(Aj ∩Bi). Also f(ω) = αj − βi when

ω ∈ Aj ∩Bi.

∑

j

αjµ(Ai) =
∑

j

αjµ

(
⋃

i

(Aj ∩Bi)

)

=
∑

j

αj

∑

i

µ(Aj ∩Bi)

=
∑

j

∑

i

αjµ(Aj ∩Bi)

=
∑

j

∑

i

βiµ(Aj ∩Bi)

=
∑

ij

βi

∑

j

µ(Aj ∩Bi)

=
∑

i

βiµ



⋃

j

(Aj ∩Bi)




=
∑

i

βiµ(Bi)

Exercise 8. (a) Let h : Ω → [0, 1] be h(ω) = α for all ω ∈ Ω. Then
hβ = ∅ for all β > α. Thus Sµ(α) = sup0≤β≤α(β ∧ µ(Ω)) = α.

(b) For h = χA, hα = A for all α > 0. Thus Sµ(χA) = supα>0(α∧µ(A)) =
µ(A).

(c) Let f, g : Ω → [0, 1] with f ≤ g. Then for α ∈ [0, 1], fα ⊆ gα and so
µ(fα) ≤ µ(gα), implying that Sµ(f) ≤ Sµ(g).

Exercise 10. Part (a) is trivial. For part (b), let f∗(ω) = infθ∈Γ(ω) f(θ).
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Then
∫

Ω

f∗(ω)dP (ω) =

∫

Ω

P (ω : f∗(ω) > t)dt

=

∫ ∞

0

P (ω : f(Γ(ω)) ⊂ (t,∞))dt

=

∫ ∞

0

µ(f−1(t,∞))dt

=

∫ ∞

0

µ{θ : f(θ) > t}

= Eµ(f)

Exercise 11. Assume (a) and suppose that there exists A = (f > t)
and B = (g > s) such that A * B and B * A. Take ω ∈ A − B and
ω′ ∈ B − A. Then f(ω) > t ≥ f(ω′). Similarly, g(ω′) > s ≥ g(ω), so that
(f(ω)− f(ω′)(g(ω)− g(ω′)) < 0, contradicting (b). Thus (a) implies (b).

Suppose f and g are not comonotonic. Then there exist a and b such
that f(a)− f(b) > 0 and g(a)− g(b) < 0. Let A = {ω : f(ω) > g(b)} and
B = {ω : g(ω :> g(a)}. Since f(b) < f(a), we have a ∈ A and a /∈ B, so
that a ∈ A − B. Similarly, g(a)g(b) implies that b ∈ B − A. Thus A * B
and B * A. Thus (b) implies (a).

Exercise 12. Parts (a), (b), and (c) are easy to check. For (d) let

S(A) =

{
0 if A ∩ N = ∅

1
2

∑
n{ 1n : n ∈ A ∩ N} if A ∩ N 6= ∅

Observe that S is additive. There are four cases.

1. µ(A ∪B) < 1. In this case, we have

µ(A ∩B) = S(A ∩B)

= S(A) + S(B)− S(A ∪B)

= µ(A) + µ(B)− µ(A ∪B)

2. µ(A ∪B) = 1, µ(A) < 1, µ(B) < 1. In this case, we have

µ(A ∩B) ≤ S(A ∩B)

= S(A) + S(B)− S(A ∪B)

≤ µ(A) + µ(B)− µ(A ∪B)
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3. µ(A ∪B) = 1, µ(A) = 1, µ(B) < 1. In this case, we have

µ(A ∩B) ≤ µ(B)

= µ(A) + µ(B)− µ(A ∪B)

4. µ(A ∪B) = µ(A) = µ(B) = 1. In this case, we have

µ(A ∩B) ≤ µ(B)

= µ(A) + µ(B)− µ(A ∪B)

For part (e), it can be checked that both ν and γ are maxitive, and
hence alternating of infinite order.

SOLUTIONS FOR CHAPTER 13

Exercise 1.

-2 -1 0 1 2

1

x

y

There are two fuzzy sets here, A and 1−A.

Exercise 4. Let µ =
∫∞

−∞ xf(x)dx. Since

(x− u)
2

= (x− µ+ µ− u)
2

= (x− u)
2

+ (µ− u)
2

+ 2 (x− µ) (µ− u)

and
∫∞

−∞
f(x)dx = 1, we have

∫ ∞

−∞

(x− u)
2
f(x)dx =

∫ ∞

−∞

(x− µ)
2
f(x)dx+ (µ− u)

2

Hence u = µ minimizes J(u) =
∫∞

−∞ (x− u)
2
f(x)dx.
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Composition of relations, 220
Compositional rule of inference, 237
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Fuzzy logic, 65
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Fuzzy truth values, 133
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Poincaré inequalities, 260
Population parameter, 205
Possibility distribution, 233, 272
Possibility measure, 271, 277
Possibility qualification, 235
Power of a t-norm, 192
Power set, 17, 27
Precapacity, 340
Preorder, 36
Probabilistic logic, 74
Probabilistic reasoning, 228
Probability measure, 260
Probability qualification, 234
Probability space, 260
Product, 22
Projection, 221
Propositional calculus, 60
Pseudoconcave, 58
Pseudocomplement, 23, 112

Q-implication, 178
Quantified propositons, 233

Quantum event, 265
Quantum probability space, 265
Quasiconcave, 58
Quotient lattice, 31
Quotient space, 25

R-implications, 174
Radon–Nikodym derivative, 374
Random set, 12, 267, 285
Random variable, 267
Reflexive, 18, 216
Relation, 18, 28
Residual, 101
Residuated lattice, 174
Resolution of the identity, 40
Robustness of fuzzy logic, 196
Rough set, 314

Sampling design, 206
Set statistics, 205
Shape functions, 57
Shapley value, 298
Sigma count, 15
Similarly ordered, 371
Simple function, 356
Sklar’s theorem, 201
Splines, 397
SQC, 204
State variable, 386
Stone algebra, 23, 324
Stone’s identity, 23
Stone–Weierstrass theorem, 249
Straightening out, 150
Strict, 86, 105
Strict De Morgan systems, 107
Strong alpha cut, 40
Strong negation, 96
Strongly convex, 58
Strongly maxitive, 302, 352
Strongly measurable, 364
Strongly minitive, 302
Strongly subadditive, 341
Subalgebra, 143

www.EBooksWorld.ir



448 Index

Subgroup, 87
Sublattice, 22
Submodular, 351
Submonoid, 87
Subsets of unit interval, 151
Sugeno measure, 343
Sugeno negation, 104
Sup, 18
Sup-min convolution, 162
Sup-norm, 248
Sup-T convolution, 36
Support, 40
Symmetric, 216, 217
Symmetric Stone algebra, 316
Symmetry, 24

t-conorm, 104, 131
t-conorm implication, 176
t-norm, 80, 126
Tautology, 61, 65
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