

Building Microservices with .NET Core 2.0

 Second Edition

Transitioning monolithic architectures using microservices with .NET Core 2.0 using C# 7.0

Gaurav Aroraa

BIRMINGHAM - MUMBAI

 Building Microservices with .NET Core 2.0

 Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Second edition: December 2017

Production reference: 1211217

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78839-333-1

www.packtpub.com

 Credits

	
Author

Gaurav Aroraa

	
Copy Editor

Safis Editing

	
Reviewer

Jeffrey Chilberto

	
Project Coordinator

Ulhas Kambali

	
Commissioning Editor

Merint Mathew

	
Proofreader

Safis Editing

	
Acquisition Editor

Denim Pinto

	
Indexer

Francy Puthiry

	
Content Development Editor

Vikas Tiwari

	
Graphics

Jason Monteiro

	
Technical Editor

Jash Bavishi

	
Production Coordinator

Shantanu Zagade

 Foreword

"Our industry does not respect tradition – it only respects innovation."

 - Satya Nadella

Those words from Satya ring true with microservice architectures. I believe that microservices are a crucial spark of innovation in web development. In an agile world, we need an agile framework in the cloud that is working for us, processing individual actors and services. With this new power, we can deploy a framework that scales, improve resiliency, greatly reduces latency, increases our control of security, and upgrade the system without downtime. Microservices becomes the optimal architecture in our new, cloud-based development environment, and it can result in major cost benefits.

Gaurav Aroraa masterfully takes us on a journey to explore the history of microservices. He carefully and thoroughly tours the architectural design concepts that accompany the evolution of microservices, from when James Lewis first coined the term to our current tools and implementations.

The book starts at a high level, with detailed diagrams and descriptions that explain the architectural scenarios, and it uncovers all the values that you’ll receive with a microservices design. At this point, you might ask whether the book is about microservices architecture or is a how-to guide to .NET development. Importantly, the book provides practical knowledge about translating our current applications into this bold new world of microservices. On that journey, it does not speed up. In other books, you move so fast that you can’t understand how or why it works (you can only follow the instructions). You might code and pick up a few tactics along the way, mostly copying and coding by autopilot. However, this book teaches each concept and step in the development process with the attention and focus that it deserves.

In this second edition, Gaurav has crafted the most comprehensive book on microservice development. I’m excited to see him expand on new options for building microservice architectures. Join Gaurav, as you learn about Azure Service Fabric, Service Bus, Message Queuing, and more!

Personally, I have had the privilege to know Gaurav for a few years now. He’s a Visual Studio and Development MVP (Microsoft Most Valuable Professional) awardee and a leader in the Microsoft cloud development community. I’ve worked closely with him on his powerful contributions to TechNet Wiki. In Building Microservices for .NET Core, I see his dedication and passion shine through. This book needed to be written. I am excited when I find gems like this. Gaurav thoroughly covers every detail, every parameter, and every consideration in tackling this weighty concept of developing a microservices architecture. Read this book, skip ahead where you’re knowledgeable about the given information, and absorb the author’s knowledge; share the book with your business contacts. The development community needs to adopt a microservices approach, and this book is a powerful advocate on that journey.

Ed Price

Senior Program Manager

Microsoft Azure CAT (Customer Advisory Team)

Co-Author of Learn to Program with Microsoft Small Basic

 About the Author

Gaurav Aroraa has an M.Phil in computer science. He is a Microsoft MVP, certified as a scrum trainer/coach, XEN for ITIL-F, and APMG for PRINCE-F and PRINCE-P. Gaurav serves as a mentor at IndiaMentor and webmaster at dotnetspider, and he cofounded Innatus Curo Software LLC. In more than 19 years of his career, he has mentored over a thousand students and professionals in the industry. You can reach to Gaurav via Twitter: @g_arora.

Book writing is not an easy job, as it takes time a lot of time. Sometimes, it needs your personal/family time. So, I want to thank all who motivated me and allowed me to spend time with this book, which I was supposed to spend with them. My first thank you goes to my wife, Shuby Arora, for her constant support throughout. Then, I would like to thank my angel, Aarchi Arora. I would also like to thank the entire Packt team, especially Vikas Tiwari, Jash Bavishi, Diwakar Shukla, Ulhas Kambale, and Denim Pinto for their overnight support. Without the technical reviewer, it's hard to make the content appealing to the readers. So, I would like to thank Jeffrey Chilberto whose precise and to-the-point reviews enriched the book's content. I would also like to thank the entire MVP community, especially Deepak Rajendra – Indian MVP Lead. His words and support further fuelled my desire to write this book. A special thanks to Shivprasad Koirala, who guided me from time to time at various junctures of writing this book. Thanks to the TechNet Wiki community, the Azure community, and to all the lovely folks: Ronen, Kamlesh, Arlan, Syed, Peter Geelen, Pedro aka Pete Laker, and all other champs. Thanks to my friends who motivated me: Chandershekhar Thota, Kanwwar Manish, Ram Nath Rao, Lalit Kale, Pooja (the champ), and Tadit (the bug trapper).

Finally, a hearty thanks to Ed Price for his in-depth knowledge and his suggestions to improve the various sections of this book.

 About the Reviewer

Jeff Chilberto is a software consultant specializing in the Microsoft technical stack, including Azure, BizTalk, MVC, WCF, and SQL Server. Since his graduation in 1993, Jeff has worked in a wide range of industries, including banking, telecommunications, education, gaming, and healthcare in the United States, Europe, Australia, and New Zealand. A founding member of the Azure Development Community, Jeff’s focus is on Azure solution architecture and on the development and promotion of the Azure technology and services.

 www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt books and video courses, as well as industry-leading tools to help you plan your personal development and advance your career.

 Why subscribe?

	Fully searchable across every book published by Packt

	Copy and paste, print, and bookmark content

	On-demand and accessible via a web browser

 Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial process. To help us improve, please leave us an honest review on this book's Amazon page at https://www.amazon.com/dp/1788393333.

If you'd like to join our team of regular reviewers, you can e-mail us at customerreviews@packtpub.com. We award our regular reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be relentless in improving our products!

 Table of Contents

 	
 Title Page

 	
 Second Edition

	
 Copyright

 	
 Building Microservices with .NET Core 2.0

 	
 Second Edition

	
 Credits

	
 Foreword

	
 About the Author

	
 About the Reviewer

	
 www.PacktPub.com

 	
 Why subscribe?

	
 Customer Feedback

	
 Preface

 	
 What this book covers

	
 What you need for this book

	
 Who this book is for

	
 Conventions

	
 Reader feedback

	
 Customer support

 	
 Downloading the example code

	
 Downloading the color images of this book

	
 Errata

	
 Piracy

	
 Questions

	
 An Introduction to Microservices

 	
 Origin of microservices

	
 Discussing microservices

	
 Monolithic architecture

 	
 Service-Oriented architecture

 	
 What is a service?

	
 Understanding the microservice architecture

 	
 Messaging in microservices

 	
 Synchronous messaging

	
 Asynchronous messaging

	
 Message formats

	
 Why should we use microservices?

	
 How does the microservice architecture work?

	
 Advantages of microservices

	
 SOA versus microservices

	
 Prerequisites of the microservice architecture

	
 Understanding the problems with the monolithic architectural style

 	
 Challenges in standardizing a .NET stack

 	
 Fault tolerance

	
 Scaling

 	
 Vertical scaling or scale up

	
 Horizontal scaling or scale out

	
 Deployment challenges

	
 Organizational alignment

	
 Modularity

	
 Big database

	
 Prerequisites for microservices

 	
 Functional overview of the application

 	
 Solutions for current challenges

	
 Handling deployment problems

	
 Making much better monolithic applications

 	
 Introducing dependency injections

	
 Database refactoring

	
 Database sharding and partitioning

	
 DevOps culture

	
 Automation

	
 Testing

	
 Versioning

	
 Deployment

	
 Identifying decomposition candidates within monolithic

 	
 Important microservices advantages

 	
 Technology independence

	
 Interdependency removal

	
 Alignment with business goals

	
 Cost benefits

	
 Easy scalability

	
 Security

 	
 Data management

	
 Integrating monolithic

	
 Overview of Azure Service Fabric

	
 Summary

	
 Implementing Microservices

 	
 Introduction

 	
 C# 7.0

	
 Entity Framework Core

	
 Visual Studio 2017

	
 Microsoft SQLServer

	
 Size of microservices

	
 What makes a good service?

	
 DDD and its importance for microservices

 	
 Domain model design

 	
 Importance for microservices

	
 The concept of seam

 	
 Module interdependency

	
 Technology

	
 Team structure

	
 Database

	
 Master data

	
 Transaction

	
 Communication between microservices

 	
 Benefits of the API gateway for microservices

	
 API gateway versus API management

	
 Revisiting the Flix One case study

 	
 Prerequisites

	
 Transitioning to our product service

	
 Migrations

 	
 Code migration

	
 Creating our project

	
 Adding the model

	
 Adding a repository

	
 Registering the repositories

	
 Adding a product controller

	
 The ProductService API

	
 Adding EF core support

	
 EF Core DbContext

	
 EF Core migrations

	
 Database migration

	
 Revisiting repositories and the controller

	
 Introducing ViewModel

	
 Revisiting the product controller

 	
 Adding Swagger support

	
 Summary

	
 Integration Techniques and Microservices

 	
 Communication between services

 	
 Styles of collaboration

	
 Integration patterns

 	
 The API gateway

	
 The event-driven pattern

	
 Event sourcing

	
 Eventual consistency

	
 Compensating transactions

	
 Competing consumers

	
 Azure Service Bus

	
 Azure queues

	
 Implementing an Azure Service Bus queue

 	
 Prerequisites

	
 Sending messages to the queue

	
 Adding configuration settings

 	
 Receiving messages from the queue

	
 Summary

	
 Testing Microservices

 	
 How to test microservices

 	
 Handling challenges

	
 Testing strategies (testing approach)

	
 Testing pyramid

	
 Types of microservice tests

 	
 Unit testing

	
 Component (service) testing

	
 Integration testing

	
 Contract testing

 	
 Consumer-driven contracts

	
 How to implement a consumer-driven test

	
 How Pact-net-core helps us achieve our goal

	
 Performance testing

	
 End-to-end (UI/functional) testing

	
 Sociable versus isolated unit tests

	
 Stubs and mocks

	
 Tests in action

 	
 Getting ready for the test project

	
 Unit tests

	
 Integration tests

	
 Consumer-driven contract tests

	
 Summary

	
 Deploying Microservices

 	
 Monolithic application deployment challenges

	
 Understanding the deployment terminology

	
 Prerequisites for successful microservice deployments

	
 Isolation requirements for microservice deployment

	
 Need for a new deployment paradigm

	
 Containers

 	
 What are containers?

	
 Suitability of containers over virtual machines

	
 Transformation of the operation team's mindset

	
 Containers are new binaries

 	
 Does it work on your machine? Let's ship your machine!

	
 Introducing Docker

 	
 Microservice deployment with Docker overview

	
 Microservice deployment example using Docker

 	
 Setting up Docker on your machine

 	
 Prerequisites

	
 Creating an ASP.NET Core web application

	
 Summary

	
 Securing Microservices

 	
 Security in monolithic applications

	
 Security in microservices

 	
 Why won't a traditional .NET auth mechanism work?

	
 JSON Web Tokens

	
 What is OAuth 2.0?

	
 What is OpenID Connect?

	
 Azure Active Directory

	
 Microservice Auth example with OpenID Connect, OAuth 2.0, and Azure AD

 	
 Registration of TodoListService and TodoListWebApp with Azure AD tenant

	
 Generation of AppKey for TodoListWebApp

	
 Configuring Visual Studio solution projects

	
 Generate client certificates on IIS Express

	
 Running both the applications

	
 Azure API management as an API gateway

 	
 Rate limit and quota policy example

	
 Container security

	
 Other security best practices

	
 Summary

	
 Monitoring Microservices

 	
 Instrumentation and telemetry

 	
 Instrumentation

	
 Telemetry

	
 The need for monitoring

 	
 Health monitoring

	
 Availability monitoring

	
 Performance monitoring

	
 Security monitoring

	
 SLA monitoring

	
 Auditing sensitive data and critical business transactions

	
 End user monitoring

	
 Troubleshooting system failures

	
 Monitoring challenges

 	
 Scale

	
 DevOps mindset

	
 Data flow visualization

	
 Testing of monitoring tools

	
 Monitoring strategies

 	
 Application/system monitoring

	
 Real user monitoring

	
 Semantic monitoring and synthetic transactions

	
 Profiling

	
 Endpoint monitoring

	
 Logging

 	
 Logging challenges

	
 Logging strategies

 	
 Centralized logging

	
 Using a correlation ID in logging

	
 Semantic logging

	
 Monitoring in Azure Cloud

 	
 Microsoft Azure Diagnostics

	
 Storing diagnostic data using Azure storage

 	
 Using Azure portal

	
 Specifying a storage account

	
 Azure storage schema for diagnostic data

	
 Introduction of Application Insights

	
 Other microservice monitoring solutions

 	
 A brief overview of the ELK stack

 	
 Elasticsearch

	
 Logstash

	
 Kibana

	
 Splunk

 	
 Alerting

	
 Reporting

	
 Summary

	
 Scaling Microservices

 	
 Scalability overview

	
 Scaling infrastructure

 	
 Vertical scaling (scaling up)

	
 Horizontal scaling (scaling out)

	
 Microservice scalability

 	
 Scale Cube model of scalability

 	
 Scaling of x axis

	
 Scaling of z axis

	
 Scaling of y axis

	
 Characteristics of a scalable microservice

	
 Scaling the infrastructure

 	
 Scaling virtual machines using scale sets

	
 Auto Scaling

	
 Container scaling using Docker Swarm

	
 Scaling service design

 	
 Data persistence model design

	
 Caching mechanism

 	
 CacheCow

	
 Azure Redis Cache

	
 Redundancy and fault tolerance

 	
 Circuit breakers

 	
 Closed state

	
 Open state

	
 Half-Open state

	
 Service discovery

	
 Summary

	
 Introduction to Reactive Microservices

 	
 Understanding reactive microservices

 	
 Responsiveness

	
 Resilience

	
 Autonomous

	
 Message-driven: a core of reactive microservices

	
 Let's make code reactive

	
 Event communication

 	
 Security

 	
 Message-level security

	
 Scalability

	
 Communication resilience

	
 Managing data

	
 The microservice ecosystem

	
 Coding reactive microservices

 	
 Creating the project

 	
 Communication between the application and the database

	
 Client – coding it down

	
 Summary

	
 Creating a Complete Microservice Solution

 	
 Architectures before microservices

 	
 The monolithic architecture

	
 Challenges in standardizing the .NET stack

	
 Scaling

	
 Service-oriented architecture

	
 Microservice-styled architecture

 	
 Messaging in microservices

	
 Monolith transitioning

 	
 Integration techniques

	
 Deployment

	
 Testing microservices

	
 Security

	
 Monitoring

 	
 Monitoring challenges

 	
 Scale

	
 Component lifespan

	
 Information visualization

	
 Monitoring strategies

 	
 Scalability

 	
 Infrastructure scaling

	
 Service design

	
 Reactive microservices

	
 Greenfield application

 	
 Scoping our services

 	
 The book-listing microservice

	
 The book-searching microservice

	
 The shopping-cart microservice

	
 The order microservice

	
 User-authentication

	
 Synchronous versus asynchronous

	
 The book-catalog microservice

	
 The shopping-cart microservice

	
 The order microservice

	
 The user-authentication microservice

	
 Summary

 Preface

Distributed systems are always hard to get complete success with. Lately, microservices are getting a considerable amount of attention. With Netflix and Spotify, microservice implementations have the become the biggest success stories in the industry. On the other hand, there are people who are of the opinion that microservices are nothing new or that they are only a rebranding of SOA.

In any case, microservice architecture does have critical advantages—particularly with regard to empowering the agile improvement and conveyance of complex venture applications.

However, there is no clear practical advice on how to implement microservices in the Microsoft ecosystem and, especially, by taking advantage of Azure and the .NET Core framework. This book tries to fill that void.

It explores the concepts, challenges, and strengths around planning, constructing, and operating microservice architectures built with .NET Core 2.0. This book discusses all cross-cutting concerns along with the microservices design. It also highlights some important aspects to consider while building and operating microservices through practical How Tos and best practices for security, monitoring, and scalability.

 What this book covers

Chapter 1, An Introduction to Microservices, gets you familiar with microservice architectural styles, history, and how it differs from its predecessors: monolithic architecture and service-oriented architecture (SOA).

Chapter 2, Implementing Microservices, discusses the different factors that can be used to identify and isolate microservices at a high level, what the characteristics of a good service are, and how to achieve the vertical isolation of microservices.

Chapter 3, Integration Techniques and Microservices, gets you familiar with synchronous and asynchronous communication, types of collaborations, and the API gateway.

Chapter 4, Testing Microservices, explains how the testing of microservices is different from the testing of a normal .NET application. It gets you acquainted with the testing pyramid.

Chapter 5, Deploying Microservices, covers how to deploy microservices and best practices. It also takes into account the isolation factor, which is a key success factor, along with setting up continuous integration and continuous delivery to deliver business change at a rapid pace.

Chapter 6, Securing Microservices, explains how to make microservices secure with OAuth and takes you through container security and best practices in general.

Chapter 7, Monitoring Microservices, covers the debugging and monitoring of microservices, which is not a trivial problem but quite a challenging one, as there is no single tool in the .NET ecosystem that is, by design, made for microservices. However, Azure monitoring and troubleshooting is the most promising one.

Chapter 8, Scaling Microservices, explores scalability, which is one of the most critical advantages of pursuing the microservice architectural style. This chapter will explain scalability by design and by infrastructure with respect to the microservice architecture.

Chapter 9, Introduction to Reactive Microservices, gets you familiar with the concept of reactive microservices. You will learn how to build reactive microservices with the use of a reactive extension. It will help you focus on your main task and free you from the chores of communicating across services.

Chapter 10, Creating a Complete Microservice Solution, walks you through all the concepts of microservices that you have learned so far. Then, we will develop an application from scratch while putting all the skills you have learned to use.

 What you need for this book

All supporting code samples in this book are tested on .NET Core 2.0 using Visual Studio 2017 update 3 and SQL Server 2008R2 or later on a Windows platform.

 Who this book is for

This book is for .NET Core developers who want to learn and understand the microservice architecture and implement it in their .NET Core applications. It’s ideal for developers who are completely new to microservices or just have a theoretical understanding of this architectural approach and want to gain a practical perspective in order to better manage application complexity.

 Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in the text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can include other contexts through the use of the include directive."

A block of code is set as follows:

 "ConnectionStrings": {
 "ProductConnection": "Data Source=.;Initial Catalog=ProductsDB;Integrated Security=True;MultipleActiveResultSets=True"
 }

Any command-line input or output is written as follows:

Install-Package System.IdentityModel.Tokens.Jwt

New terms and important words are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

 Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of. To send us general feedback, simply email feedback@packtpub.com, and mention the book's title in the subject of your message. If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

 Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

 Downloading the example code

You can download the example code files for this book from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files emailed directly to you. You can download the code files by following these steps:

	Log in or register on our website using your email address and password.

	Hover the mouse pointer on the SUPPORT tab at the top.

	Click on Code Downloads & Errata.

	Enter the name of the book in the Search box.

	Select the book for which you're looking to download the code files.

	Choose from the drop-down menu where you purchased this book from.

	Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the latest version of:

	WinRAR / 7-Zip for Windows

	Zipeg / iZip / UnRarX for Mac

	7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPublishing/Building-Microservices-with-.NET-Core-2.0-Second-Edition. We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/. Check them out!

 Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/diagrams used in this book. The color images will help you better understand the changes in the output. You can download this file from https://www.packtpub.com/sites/default/files/downloads/BuildingMicroserviceswith.NETCore2.0_ColorImages.pdf.

 Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title. To view the previously submitted errata, go to https://www.packtpub.com/books/content/support and enter the name of the book in the search field. The required information will appear under the Errata section.

 Piracy

Piracy of copyrighted material on the internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the internet, please provide us with the location address or website name immediately so that we can pursue a remedy. Please contact us at copyright@packtpub.com with a link to the suspected pirated material. We appreciate your help in protecting our authors and our ability to bring you valuable content.

 Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

 An Introduction to Microservices

The focus of this chapter is to get you acquainted with microservices. We will start with a brief introduction. Then, we will define their predecessors: monolithic architecture and Service-Oriented Architecture (SOA). After this, we will see how microservices fare against both SOA and the monolithic architecture. We will then compare the advantages and disadvantages of each one of these architectural styles. This will enable us to identify the right scenario for these styles. We will understand the problems that arise from having a layered monolithic architecture. We will discuss the solutions available to these problems in the monolithic world. At the end, we will be able to break down a monolithic application into a microservice architecture. We will cover the following topics in this chapter:

	Origin of microservices

	Discussing microservices

	Understanding the microservice architecture

	Advantages of microservices

	SOA versus microservices

	Understanding the problems with the monolithic architectural style

	Challenges in standardizing a .NET stack

	Overview of Azure Service Fabric

 Origin of microservices

The term microservices was used for the first time in mid-2011 at a workshop on software architects. In March 2012, James Lewis presented some of his ideas about microservices. By the end of 2013, various groups from the IT industry started having discussions about microservices, and by 2014, they had become popular enough to be considered a serious contender for large enterprises.

There is no official introduction available for microservices. The understanding of the term is purely based on the use cases and discussions held in the past. We will discuss this in detail, but before that, let's check out the definition of microservices as per Wikipedia (https://en.wikipedia.org/wiki/Microservices), which sums it up as:

"Microservices is a specialization of and implementation approach for SOA used to build flexible, independently deployable software systems."

In 2014, James Lewis and Martin Fowler came together and provided a few real-world examples and presented microservices (refer to http://martinfowler.com/microservices/) in their own words and further detailed it as follows:

"The microservice architectural style is an approach to developing a single application as a suite of small services, each running in its own process and communicating with lightweight mechanisms, often an HTTP resource API. These services are built around business capabilities and independently deployable by fully automated deployment machinery. There is a bare minimum of centralized management of these services, which may be written in different programming languages and use different data storage technologies."

It is very important that you see all the attributes Lewis and Fowler defined here. They defined it as an architectural style that developers could utilize to develop a single application with the business logic spread across a bunch of small services, each having their own persistent storage functionality. Also, note its attributes—it can be independently deployable, can run in its own process, is a lightweight communication mechanism, and can be written in different programming languages.

We want to emphasize this specific definition since it is the crux of the whole concept. And as we move along, it will come together by the time we finish this book.

 Discussing microservices

We have gone through a few definitions of microservices; now, let's discuss microservices in detail.

In short, a microservice architecture removes most of the drawbacks of SOAs. It is more code-oriented (we will discuss this in detail in the coming sections) than SOA services.

Slicing your application into a number of services is neither SOA nor microservices. However, combining service design and best practices from the SOA world along with a few emerging practices, such as isolated deployment, semantic versioning, providing lightweight services, and service discovery in polyglot programming, is microservices. We implement microservices to satisfy business features and implement them with reduced time to market and greater flexibility.

Before we move on to understanding the architecture, let's discuss the two important architectures that led to its existence:

	The monolithic architecture style

	SOA

Most of us would be aware of the scenario where, during the life cycle of an enterprise application development, a suitable architectural style is decided. Then, at various stages, the initial pattern is further improved and adapted with changes that cater to various challenges, such as deployment complexity, large code base, and scalability issues. This is exactly how the monolithic architecture style evolved into SOA, further leading up to microservices.

 Monolithic architecture

The monolithic architectural style is a traditional architecture type and has been widely used in the industry. The term monolithic is not new and is borrowed from the UNIX world. In UNIX, most of the commands exist as a standalone program whose functionality is not dependent on any other program. As seen in the following image, we can have different components in the application, such as:

	User interface: This handles all of the user interaction while responding with HTML or JSON or any other preferred data interchange format (in the case of web services).

	Business logic: All the business rules applied to the input being received in the form of user input, events, and database exist here.

	Database access: This houses the complete functionality for accessing the database for the purpose of querying and persisting objects. A widely accepted rule is that it is utilized through business modules and never directly through user-facing components.

Software built using this architecture is self-contained. We can imagine a single .NET assembly that contains various components, as described in the following diagram:

As the software is self-contained here, its components are interconnected and interdependent. Even a simple code change in one of the modules may break a major functionality in other modules. This would result in a scenario where we'd need to test the whole application. With the business depending critically on its enterprise application frameworks, this amount of time could prove to be very critical.

Having all the components tightly coupled poses another challenge—whenever we execute or compile such software, all the components should be available or the build will fail; refer to the preceding diagram that represents a monolithic architecture and is a self-contained or a single .NET assembly project. However, monolithic architectures might also have multiple assemblies. This means that even though a business layer (assembly, data access layer assembly, and so on) is separated, at runtime, all of them will come together and run as one process.

A user interface depends on other components' direct sales and inventory in a manner similar to all other components that depend upon each other. In this scenario, we will not be able to execute this project in the absence of any one of these components. The process of upgrading any one of these components will be more complex as we may have to consider other components that require code changes too. This results in more development time than required for the actual change.

Deploying such an application will become another challenge. During deployment, we will have to make sure that each and every component is deployed properly; otherwise, we may end up facing a lot of issues in our production environments.

If we develop an application using the monolithic architecture style, as discussed previously, we might face the following challenges:

	Large code base: This is a scenario where the code lines outnumber the comments by a great margin. As components are interconnected, we will have to bear with a repetitive code base.

	Too many business modules: This is in regard to modules within the same system.

	Codebase complexity: This results in a higher chance of code-breaking due to the fix required in other modules or services.

	Complex code deployment: You may come across minor changes that would require whole system deployment.

	One module failure affecting the whole system: This is in regard to modules that depend on each other.

	Scalability: This is required for the entire system and not just the modules in it.

	Intermodule dependency: This is due to tight coupling.

	Spiraling development time: This is due to code complexity and interdependency.

	Inability to easily adapt to a new technology: In this case, the entire system would need to be upgraded.

As discussed earlier, if we want to reduce development time, ease of deployment, and improve maintainability of software for enterprise applications, we should avoid the traditional or monolithic architecture.

 Service-Oriented architecture

In the previous section, we discussed the monolithic architecture and its limitations. We also discussed why it does not fit into our enterprise application requirements. To overcome these issues, we should take a modular approach where we can separate the components such that they should come out of the self-contained or single .NET assembly.

The main difference between SOA and monolithic is not one or multiple assemblies. As the service in SOA runs as a separate process, SOA scales better compared to monolithic.

Let's discuss the modular architecture, that is, SOA. This is a famous architectural style where enterprise applications are designed as a collection of services. These services may be RESTful or ASMX Web Services. To understand SOA in more detail, let's discuss service first.

 What is a service?

Service, in this case, is an essential concept of SOA. It can be a piece of code, program, or software that provides functionality to other system components. This piece of code can interact directly with the database or indirectly through another service. Furthermore, it can be consumed by clients directly, where the client may be a website, desktop app, mobile app, or any other device app. Refer to the following diagram:

Service refers to a type of functionality exposed for consumption by other systems (generally referred to as clients/client applications). As mentioned earlier, it can be represented by a piece of code, program, or software. Such services are exposed over the HTTP transport protocol as a general practice. However, the HTTP protocol is not a limiting factor, and a protocol can be picked as deemed fit for the scenario.

In the following image, Service - direct selling is directly interacting with Database, and three different clients, namely Web, Desktop, and Mobile, are consuming the service. On the other hand, we have clients consuming Service - partner selling, which is interacting with Service - channel partners for database access.

A product selling service is a set of services that interacts with client applications and provides database access directly or through another service, in this case, Service – Channel partners. In the case of Service – direct selling, shown in the preceding image, it is providing functionality to a web store, a desktop application, and a mobile application. This service is further interacting with the database for various tasks, namely fetching and persisting data.

Normally, services interact with other systems via some communication channel, generally the HTTP protocol. These services may or may not be deployed on the same or single servers:

In the preceding image, we have projected an SOA example scenario. There are many fine points to note here, so let's get started. First, our services can be spread across different physical machines. Here, Service - direct selling is hosted on two separate machines. It is possible that instead of the entire business functionality, only a part of it will reside on Server 1 and the remaining on Server 2. Similarly, Service - partner selling appears to be having the same arrangement on Server 3 and Server 4. However, it doesn't stop Service - channel partners being hosted as a complete set on both the servers: Server 5 and Server 6.

A system that uses a service or multiple services in a fashion mentioned in the preceding diagram is called SOA. We will discuss SOA in detail in the following sections.

Let's recall the monolithic architecture. In this case, we did not use it because it restricts code reusability; it is a self-contained assembly, and all the components are interconnected and interdependent. For deployment, in this case, we will have to deploy our complete project after we select the SOA (refer to the preceding diagram and subsequent discussion). Now, because of the use of this architectural style, we have the benefit of code reusability and easy deployment. Let's examine this in the wake of the preceding diagram:

	Reusability: Multiple clients can consume the service. The service can also be simultaneously consumed by other services. For example, OrderService is consumed by web and mobile clients. Now, OrderService can also be used by the Reporting Dashboard UI.

	Stateless: Services do not persist any state between requests from the client, that is, the service doesn't know, nor care that the subsequent request has come from the client that has/hasn't made the previous request.

	Contract-based: Interfaces make it technology-agnostic on both sides of implementation and consumption. It also serves to make it immune to the code updates in the underlying functionality.

	Scalability: A system can be scaled up; SOA can be individually clustered with appropriate load balancing.

	Upgradation: It is very easy to roll out new functionalities or introduce new versions of the existing functionality. The system doesn't stop you from keeping multiple versions of the same business functionality.

 Understanding the microservice architecture

The microservice architecture is a way to develop a single application containing a set of smaller services. These services are independent of each other and run in their own processes. An important advantage of these services is that they can be developed and deployed independently. In other words, we can say that microservices are a way to segregate our services so they can be handled completely independent of each other in the context of design, development, deployment, and upgrades.

In a monolithic application, we have a self-contained assembly of a user interface, direct sales, and inventory. In the microservice architecture, the services part of the application changes to the following depiction:

Here, business components have been segregated into individual services. These independent services now are the smaller units that existed earlier within the self-contained assembly, in the monolithic architecture. Both direct sales and inventory services are independent of each other, with the dotted lines depicting their existence in the same ecosystem yet not bound within a single scope. Refer to the following diagram:

From the preceding diagram, it's clear that our user interface can interact with any of the services. There is no need to intervene in any service when a UI calls a service. Both the services are independent of each other, without being aware of when the other one would be called by the user interface. Both services are liable for their own operations and not for any other part in the whole system. Although much closer to the microservice architecture, the preceding visualization is not entirely a complete visualization of the intended microservice architecture.

In the microservice architecture, services are small, independent units with their own persistent stores.

Now let's bring this final change so that each service will have its own database persisting the necessary data. Refer to the following diagram:

Here, User interface is interacting with those services that have their own independent storage. In this case, when a user interface calls a service for direct sales, the business flow for direct sales is executed independently of any data or logic contained within the inventory service.

The solution that the use of microservices provides has a lot of benefits, as discussed next:

	Smaller codebase: Each service is small, and therefore, easier to develop and deploy as a unit

	Ease of independent environment: With the separation of services, all developers work independently, deploy independently, and no one is bothered about any module dependency

With the adoption of the microservice architecture, monolithic applications are now harnessing the associated benefits, as it can now be scaled easily and deployed using a service independently.

 Messaging in microservices

It is very important to carefully consider the choice of the messaging mechanism when dealing with the microservice architecture. If this one aspect is ignored, then it can compromise the entire purpose of designing using the microservice architecture. In monolithic applications, this is not a concern as the business functionality of the components gets invoked through function calls. On the other hand, this happens via a loosely coupled web service level messaging feature, where services are primarily based on SOAP. In the case of the microservice messaging mechanism, it should be simple and lightweight.

There are no set rules for making a choice between various frameworks or protocols for a microservice architecture. However, there are a few points worth considering here. First, it should be simple enough to implement, without adding any complexity to your system. Second, it should be lightweight enough, keeping in mind the fact that the microservice architecture could heavily rely on interservice messaging. Let's move ahead and consider our choices for both synchronous and asynchronous messaging along with the different messaging formats.

 Synchronous messaging

When a timely response is expected from a service by a system and the system waits on it until a response is received from the service, which is synchronous messaging. What's left is the most sought-after choice in the case of microservices. It is simple and supports HTTP request-response, thereby leaving little room to look for an alternative. This is also one of the reasons that most implementations of microservices use HTTP (API-based styles).

 Asynchronous messaging

When a system is not immediately expecting a timely response from the service and the system can continue processing without blocking on that call, which is asynchronous messaging.

Let's incorporate this messaging concept into our application and see how it would change and look:

 Message formats

Over the past few years, working with MVC and the like has got me hooked on the JSON format. You could also consider XML. Both formats would be fine on HTTP with the API style resource. Binary message formats are also easily available in case you need to use one. We are not recommending any particular format; you can go ahead with any of the selected message formats.

 Why should we use microservices?

Tremendous patterns and architectures have been explored with some gaining popularity; there are others, though, that are losing the battle of internet traffic. With each solution having its own advantages and disadvantages, it has become increasingly important for companies to quickly respond to fundamental demands, such as scalability, high performance, and easy deployment. Any single aspect failing to be fulfilled in a cost-effective manner could easily impact large businesses negatively, making a big difference between a profitable and non-profitable venture.

This is where we see microservices coming to the rescue of enterprise system architects. They can ensure their designs against problems mentioned previously, with the help of this architectural style. It is also important to consider the fact that this objective is met in a cost-effective manner while respecting the time involved.

 How does the microservice architecture work?

Until now, we have discussed various things about the microservice architecture, and we can now depict how the microservice architecture works; we can use any combination as per our design approach or bet on a pattern that would fit in it. Here are a few points that favor the working of the microservice architecture:

	It's programming of the modern era, where we are expected to follow all SOLID principles. It's object-oriented programming (OOP).

	It is the best way is to expose the functionality to other or external components in a way so that any other programming language will be able to use the functionality without adhering to any specific user interfaces, that is, services (web services, APIs, rest services, and so on).

	The whole system works as per a type of collaboration that is not interconnected or interdependent.

	Every component is liable for its own responsibilities. In other words, components are responsible for only one functionality.

	It segregates code with a separation concept, and segregated code is reusable.

 Advantages of microservices

Now let's try to quickly understand where microservices takes a leap ahead of the SOA and monolithic architectures:

	Cost effective to scale: You don't need to invest a lot to make the entire application scalable. In terms of a shopping cart, we could simply load balance the product search module and the order-processing module while leaving out less frequently used operation services, such as inventory management, order cancellation, and delivery confirmation.

	Clear code boundaries: This action should match an organization's departmental hierarchies. With different departments sponsoring product development in large enterprises, this can be a huge advantage.

	Easier code changes: The code is done in a way that it is not dependent on the code of other modules and is only achieving isolated functionality. If it were done right, then the chances of a change in a microservice affecting another microservice are very minimal.

	Easy deployment: Since the entire application is more like a group of ecosystems that are isolated from each other, deployment could be done one microservice at a time, if required. Failure in any one of these would not bring the entire system down.

	Technology adaptation: You could port a single microservice or a whole bunch of them overnight to a different technology without your users even knowing about it. And yes, hopefully, you don't expect us to tell you that you need to maintain those service contracts, though.

	Distributed system: This comes as implied, but a word of caution is necessary here. Make sure that your asynchronous calls are used well and synchronous ones are not really blocking the whole flow of information. Use data partitioning well. We will come to this a little later, so don't worry for now.

	Quick market response: The world being competitive is a definite advantage; as otherwise, users tend to quickly lose interest if you are slow to respond to new feature requests or adoption of a new technology within your system.

 SOA versus microservices

You'll get confused between microservices and SOA if you don't have a complete understanding of both. On the surface of it, microservices' features and advantages sound almost like a slender version of SOA, with many experts suggesting that there is, in fact, no need for an additional term, such as microservices, and that SOA can fulfill all the attributes laid out by microservices. However, this is not the case. There is enough difference to isolate them technologically.

The underlying communication system of SOA inherently suffers from the following problems:

	The fact that a system developed in SOA depends upon its components, which are interacting with each other. So no matter how hard you try, it is eventually going to face a bottleneck in the message queue.

	Another focal point of SOA is imperative monogramming. With this, we lose the path to make a unit of code reusable with respect to OOP.

We all know that organizations are spending more and more on infrastructure. The bigger the enterprise is, the more complex the question of the ownership of the application being developed. With an increasing number of stakeholders, it becomes impossible to accommodate all of their ever-changing business needs. This is where microservices clearly stand apart. Although cloud development is not in the current scope of our discussion, it won't harm us to say that the scalability, modularity, and adaptability of the microservice architecture can be easily extended further with the use of cloud platforms. It's time for a change.

 Prerequisites of the microservice architecture

It is important to understand the resulting ecosystem from the microservice architecture implementation. The impact of microservices is not just preoperational in nature. So profound will the changes in any organization opting for the microservice architecture be that, if they are not well-prepared to handle it, it won't be long before advantages turn into disadvantages.

After the adoption of the microservice architecture is agreed upon, it would be wise to have the following prerequisites in place:

	Deployment and QA: Requirements will become more demanding, with a quicker turnaround from development requirements. It would require you to deploy and test as quickly as possible. If it is just a small number of services, then it would not be a problem. However, if the number of services is going up, it could very quickly challenge the existing infrastructure and practices. For example, your QA and staging environment may no longer suffice to test the number of builds that would come back from the development team.

	A collaboration platform for the development and operations team: As the application goes to the public domain, it won't be long before the age-old script of dev versus QA is played out again. The difference this time would be that the business will be at stake. So, you need to be prepared to quickly respond in an automated manner to identify the root cause when required.

	A monitoring framework: With the increasing number of microservices, you would quickly need a way to monitor the functioning and health of the entire system for any possible bottlenecks or issues. Without any means of monitoring the status of the deployed microservices and the resultant business function, it would be impossible for any team to take a proactive deployment approach.

 Understanding the problems with the monolithic architectural style

In this section, we will discuss all the problems with the monolithic .NET stack-based application. In a monolithic application, the core problem is this: scaling monolithic is difficult. The resultant application ends up having a very large code base and poses challenges in regard to maintainability, deployment, and modifications.

 Challenges in standardizing a .NET stack

In monolithic application technology, stack dependency stops the introduction of the latest technologies from the outside world. The present stack poses challenges as a web service itself suffers from some challenges:

	Security: There is no way to identify the user via web services (no clear consensus on a strong authentication scheme). Just imagine a banking application sending unencrypted data containing user credentials without encryption. All airports, cafes, and public places offering free Wi-Fi could easily become victims of increased identity theft and other cybercrimes.

	Response time: Though the web services themselves provide some flexibility in the overall architecture, it quickly diminishes due to the high processing time taken by the service itself. So, there is nothing wrong with the web service in this scenario. It is a fact that a monolithic application involves huge code; complex logic makes the response time of a web service high, and therefore, unacceptable.

	Throughput rate: This is on the higher side, and as a result, hampers subsequent operations. A checkout operation relying on a call to the inventory web service that has to search for a few million records is not a bad idea. However, when the same inventory service feeds the main product searching/browsing for the entire portal, it could result in a loss of business. One service call failure out of ten calls would mean a 10% lower conversion rate for the business.

	Frequent downtime: As the web services are part of the whole monolith ecosystem, they are bound to be down and unavailable each time there is an upgrade or an application failure. This means that the presence of any B2B dependency from the outside world on the application's web services would further complicate decision-making, thereby seeking downtime. This absolutely makes the smaller upgrades of the system look expensive; thus, it further increases the backlog of the pending system upgrades.

	Technology adoption: In order to adopt or upgrade a technology stack, it would require the whole application to be upgraded, tested, and deployed, since modules are interdependent and the entire code base of the project is affected. Consider the payment gateway module using a component that requires a compliance-related framework upgrade. The development team has no option but to upgrade the framework itself and carefully go through the entire code base to identify any code breaks preemptively. Of course, this would still not rule out a production crash, but this can easily make even the best of the architects and managers sweat and lose some sleep.

Availability: A percentage of time during which a service is operating.

Response time: The time a service takes to respond.

Throughput: The rate of processing requests.

 Fault tolerance

Monolithic applications have high module interdependency as they are tightly coupled. The different modules utilize functionality in such an intramodule manner that even a single module failure brings the system down due to the cascading effect, which is very similar to dominoes falling. We all know that a user not getting results for a product search would be far less severe than the entire system coming down to its knees.

Decoupling using web services has been traditionally attempted at the architecture level. For database-level strategies, ACID has been relied upon for a long time. Let's examine both these points further:

	Web services: In the current monolithic application, customer experience is degraded due to this very reason. Even as a customer tries to place an order, reasons such as the high response time of web services or even a complete failure of the service itself results in a failure to place the order successfully. Not even a single failure is acceptable, as users tend to remember their last experience and assume a possible repeat. Not only does this result in the loss of possible sales, but also the loss of future business prospects. Web services' failures can cause a cascading failure in the systems that rely on them.

	ACID: ACID is the acronym for atomicity, consistency, isolation, and durability; it's an important concept in databases. It is in place, but whether it's a boon or bane is to be judged by the sum total of the combined performance. It takes care of failures at the database level, and there is no doubt that it does provide some insurance against the database errors that creep in. At the same time, every ACID operation hampers/delays operations by other components/modules. The point at which it causes more harm than benefit needs to be judged very carefully.

 Scaling

Factors such as availability of different means of communication, easy access to information, and open world markets are resulting in businesses growing rapidly and diversifying at the same time. With this rapid growth of business, there is an ever-increasing need to accommodate an increasing client base. Scaling is one of the biggest challenges that any business faces while trying to cater to an increased user base.

Scalability is nothing but the capability of a system/program to handle the growth of work better. In other words, scalability is the ability of a system/program to scale.

Before starting the next section, let's discuss and understand scaling in detail, as this will be an integral part of our exercise as we work on transitioning from monolithic to microservices.

Scalability of a system is its capability to handle an increasing/increased load of work. There are two main strategies or types of scalability in which we can scale our application.

 Vertical scaling or scale up

In vertical scaling, we analyze our existing application to find the parts of the modules that cause the application to slow down due to higher execution time. Making the code more efficient could be one strategy so that less memory is consumed. This exercise of reducing memory consumption could be for a specific module or the whole application. On the other hand, due to obvious challenges involved with this strategy, instead of changing the application, we could add more resources to our existing IT infrastructure, such as upgrading the RAM or adding more disk drives. Both these paths in vertical scaling have a limit for the extent to which they can be beneficial. After a specific point in time, the resulting benefit will plateau. It is important to keep in mind that this kind of scaling requires downtime.

 Horizontal scaling or scale out

In horizontal scaling, we dig deep into modules that show a higher impact on the overall performance for factors such as high concurrency; so this will enable our application to serve our increased user base, which is now reaching the million mark. We also implement load balancing to process a greater amount of work. The option of adding more servers to the cluster does not require downtime, which is a definite advantage. Each case is different, so whether the additional costs of power, licenses, and cooling are worthwhile, and up to what point, will be evaluated on a case-by-case basis.

Scaling will be covered in detail in Chapter 8, Scaling Microservices.

 Deployment challenges

The current application also has deployment challenges. It is designed as a monolithic application, and any change in the order module would require the entire application to be deployed again. This is time-consuming and the whole cycle will have to be repeated with every change. This means this could be a frequent cycle. Scaling could only be a distant dream in such a scenario.

As discussed about scaling regarding current applications having deployment challenges that require us to deploy the entire assembly, the modules are interdependent, and it is a single assembly application of .NET. The deployment of the entire application in one go also makes it mandatory to test the entire functionality of our application. The impact of such an exercise would be huge:

	High-risk deployment: Deploying an entire solution or application in one go poses a high risk as all modules are going to be deployed even for a single change in one of the modules.

	Higher testing time: As we have to deploy the complete application, we will have to test the functionality of the entire application. We can't go live without testing. Due to higher interdependency, the change might cause a problem in some other module.

	Unplanned downtime: Complete production deployment needs code to be fully tested and hence we need to schedule our production deployment. This is a time-consuming task that results in high downtime. Although planned downtime, during this time, both business and customers will be affected due to the unavailability of the system; this could cause revenue loss to the business.

	Production bugs: A bug-free deployment would be the dream of any project manager. However, this is far from reality and every team dreads this possibility. Monolithic applications are no different from this scenario and the resolution of production bugs is easier said than done. The situation can only become more complex with some previous bug remaining unresolved.

 Organizational alignment

In a monolithic application, having a large code base is not the only challenge that you'll face. Having a large team to handle such a code base is one more problem that will affect the growth of the business and application.

	Same goal: In a team, all the team members have the same goal, which is timely and bug-free delivery at the end of each day. However, having a large code base and current, the monolithic architectural style will not be a comfortable feeling for the team members. With team members being interdependent due to the interdependent code and associated deliverables, the same effect that is experienced in the code is present in the development team as well. Here, everyone is just scrambling and struggling to get the job done. The question of helping each other out or trying something new does not arise. In short, the team is not a self-organizing team.

Roy Osherove defined three stages of a team in his book, Teamleader:

Survival phase: No time to learn.

Learning phase: Learning to solve your own problems.

Self-organizing phase: Facilitate, experiment.

	A different perspective: The development team takes too much time for deliverables due to reasons, such as feature enhancement, bug fixes, or module interdependency stopping easy development. The QA team is dependent upon the development team and the dev team has its own problems. The QA team is stuck once developers start working on bugs, fixes, or feature enhancements. There is no separate environment or build available for QA to proceed with their testing. This delay hampers overall delivery, and customers or end users would not get the new features or fixes on time.

 Modularity

In respect to our monolithic application, where we may have an Order module, a change in the module Orders affects the module Stock and so on. It is the absence of modularity that has resulted in such a condition.

This also means that we can't reuse the functionality of a module within another module. The code is not decomposed into structured pieces that could be reused to save time and effort. There is no segregation within the code modules, and hence, no common code is available.

Business is growing and its customers are growing by leaps and bounds. New or existing customers from different regions have different preferences when it comes to the use of the application. Some like to visit the website, but others prefer to use mobile apps. The system is structured in a way that we can't share the components across a website and a mobile app. This makes introducing a mobile/device app for the business a challenging task. Business is affected as in such scenarios the company loses out on customers who prefer mobile apps.

The difficulty in replacing the component's application is using third-party libraries, an external system such as payment gateways, and an external order-tracking system. It is a tedious job to replace the old components in the currently styled monolithic architectural application. For example, if we consider upgrading the library of our module that is consuming an external order-tracking system, then the whole change would prove to be very difficult. Also, it would be an intricate task to replace our payment gateway with another one.

In any of the preceding scenarios, whenever we upgraded the components, we upgraded everything within the application, which called for a complete testing of the system and required a lot of downtime. Apart from this, the upgrade would possibly result in the form of production bugs, which would require you to repeat the whole cycle of development, testing, and deployment.

 Big database

Our current application has a mammoth database containing a single schema with plenty of indexes. This structure poses a challenging job when it comes down to fine-tuning the performance:

	Single schema: All the entities in the database are clubbed under a single schema named dbo. This again hampers business due to the confusion with the single schema regarding various tables that belong to different modules; for example, customer and supplier tables belong to the same schema, that is, dbo.

	Numerous stored procedures: Currently, the database has a large number of stored procedures, which also contain a sizeable chunk of the business logic. Some of the calculations are being performed within the stored procedures. As a result, these stored procedures prove to be a baffling task to tend to when the time comes to optimize them or break them down into smaller units.

Whenever deployment is planned, the team will have to look closely at every database change. This, again, is a time-consuming exercise and many times would turn out to be even more complex than the build and deployment exercise itself.

 Prerequisites for microservices

To understand better, let's take up an imaginary example of FlixOne Inc. With this example as our base, let's discuss all the concepts in detail and see what it looks like to be ready for microservices.

FlixOne is an e-commerce player (selling books) that is spread all over India. They are growing at a very fast pace and diversifying their business at the same time. They have built their existing system on the .NET framework, and it is traditional three-tier architecture. They have a massive database that is central to this system, and there are peripheral applications in their ecosystem. One such application is for their sales and logistics team, and it happens to be an Android app. These applications connect to their centralized data center and face performance issues. FlixOne has an in-house development team supported by external consultants. Refer to the following diagram:

The preceding diagram depicts a broader sense of our current application, which is a single .NET assembly application. Here we have the user interfaces we use for search, order, products, tracking order, and checkout. Now look at the following diagram:

The preceding diagram depicts our Shopping cart module only. The application is built with C#, MVC5, and Entity Framework, and it has a single project application. This image is just a pictorial overview of the architecture of our application. This application is web-based and can be accessed from any browser. Initially, any request that uses the HTTP protocol will land on the user interface that is developed using MVC5 and JQuery. For cart activities, the UI interacts with the Shopping cart module, which is nothing but a business logic layer that further talks with the database layer (written in C#); data is persisted within the database (SQL Server 2008R2).

 Functional overview of the application

Here we are going to understand the functional overview of the FlixOne bookstore application. This is only for the purpose of visualizing our application. The following is the simplified functional overview of the application until Shopping cart:

In the current application, the customer lands on the home page, where they see featured/highlighted books. They have the option to search for a book item if they do not get their favorite one. After getting the desired result, the customer can choose book items and add them to their shopping cart. Customers can verify the book items before the final checkout. As soon as the customer decides to check out, the existing cart system redirects them to an external payment gateway for the specified amount you need to pay for the book items in the shopping cart.

As discussed previously, our application is a monolithic application; it is structured to be developed and deployed as a single unit. This application has a large code base that is still growing. Small updates need to deploy the whole application at once.

 Solutions for current challenges

Business is growing rapidly, so we decide to open our e-commerce website in 20 more cities; however, we are still facing challenges with the existing application and struggling to serve the existing user base properly. In this case, before we start the transition, we should make our monolithic application ready for its transition to microservices.

In the very first approach, the Shopping cart module will be segregated into smaller modules, then you'll be able to make these modules interact with each other as well as external or third-party software:

This proposed solution is not sufficient for our existing application, though developers would be able to divide the code and reuse it. However, the internal processing of the business logic will remain the same without any change in the way it would interact with the UI or the database. The new code will interact with the UI and the database layer with the database still remaining as the same old single database. With our database remaining undivided and as tightly coupled layers, the problems of having to update and deploy the whole code base will still remain. So this solution is not suitable for resolving our problem.

 Handling deployment problems

In the preceding section, we discussed the deployment challenges we will face with the current .NET monolithic application. In this section, let's take a look at how we can overcome these challenges by making or adapting a few practices within the same .NET stack.

With our .NET monolithic application, our deployment is made up of XCOPY deployments. After dividing our modules into different submodules, we can adapt to deployment strategies with the help of these. We can simply deploy our business logic layer or some common functionality. We can adapt to continuous integration and deployment. The XCOPY deployment is a process where all the files are copied to the server, mostly used for web projects.

 Making much better monolithic applications

We understand all the challenges with our existing monolithic application. We have to serve better with our new growth. As we are growing widely, we can't miss the opportunity to get new customers. If we miss fixing any challenge, then we would lose business opportunities as well. Let's discuss a few points to solve these problems.

 Introducing dependency injections

Our modules are interdependent, so we are facing issues, such as reusability of code and unresolved bugs, due to changes in one module. These are deployment challenges. To tackle these issues, let's segregate our application in such a way that we will be able to divide modules into submodules. We can divide our Order module in such a way that it would implement the interface, and this can be initiated from the constructor. Here is a small code snippet that shows how we can apply this in our existing monolithic application.

Here is a code example that shows our Order class, where we use the constructor injection:

 namespace FlixOne.BookStore.Common
 {
 public class Order : IOrder
 {
 private readonly IOrderRepository _orderRepository;
 public Order(IOrderRepository orderRepository)
 {
 _orderRepository = orderRepository;
 }
 public OrderModel GetBy(Guid orderId)
 {
 return _orderRepository.Get(orderId);
 }
 }
 }

The inversion of control, or IoC, is nothing but a way in which objects do not create other objects on whom they rely to do their work.

In the preceding code snippet, we abstracted our Order module in such a way that it could use the IOrder interface. Afterward, our Order class implements the IOrder interface, and with the use of inversion of control, we create an object, as this is resolved automatically with the help of inversion of control.

Furthermore, the code snippets of IOrderRepository and OrderRepository are as follows:

 namespace FlixOne.BookStore.Common
 {
 public interface IOrderRepository
 {
 OrderModel Get(Guid orderId);
 }
 }
 namespace FlixOne.BookStore.Common
 {
 public class OrderRepository : IOrderRepository
 {
 public OrderModel Get(Guid orderId)
 {
 //call data method here
 return new OrderModel
 {
 OrderId = Guid.NewGuid(),
 OrderDate = DateTime.Now,
 OrderStatus = "In Transit"
 };
 }
 }
 }

Here we are trying to showcase how our Order module gets abstracted. In the preceding code snippet, we return default values for our order just to demonstrate the solution to the actual problem.

Finally, our presentation layer (the MVC controller) will use the available methods, as shown in the following code snippet:

 namespace FlixOne.BookStore.Controllers
 {
 public class OrderController : Controller
 {
 private readonly IOrder _order;
 public OrderController(IOrder order)
 {
 _order = order;
 }
 // GET: Order
 public ActionResult Index()
 {
 return View();
 }
 // GET: Order/Details/5
 public ActionResult Details(string id)
 {
 var orderId = Guid.Parse(id);
 var orderModel = _order.GetBy(orderId);
 return View(orderModel);
 }
 }
 }

The following is a class diagram that depicts how our interfaces and classes are associated with each other and how they expose their methods, properties, and so on:

Here again, we used the constructor injection, where IOrder passed and got the Order class initialized; hence, all the methods are available within our controller.

By achieving this, we would overcome a few problems, such as:

	Reduced module dependency: With the introduction of IOrder in our application, we are reducing the interdependency of the Order module. This way, if we are required to add or remove anything to/from this module, then other modules would not be affected, as IOrder is only implemented by the Order module. Let's say we want to make an enhancement to our Order module; it would not affect our Stock module. This way, we reduce module interdependency.

	Introducing code reusability: If you are required to get the order details of any of the application modules, you can easily do so using the IOrder type.

	Improvements in code maintainability: We have divided our modules into submodules or classes and interfaces now. We can now structure our code in such a manner that all the types, that is, all the interfaces, are placed under one folder and follow the suit for the repositories. With this structure, it would be easier for us to arrange and maintain code.

	Unit Testing: Our current monolithic application does not have any kind of unit testing. With the introduction of interfaces, we can now easily perform unit testing and adopt the system of test-driven development with ease.

 Database refactoring

As discussed in the preceding section, our application database is huge and depends on a single schema. This huge database should be considered while refactoring. We will go for this as:

	Schema correction: In general practice (not required), our schema depicts our modules. As discussed in previous sections, our huge database has a single schema, that is dbo now, and every part of the code or table should not be related to dbo. There might be several modules that will interact with specific tables. For example, our Order module should contain some related schema name, such as Order. So whenever we need to use the table, we can use them with their own schema instead of a general dbo schema. This will not impact any functionality related to how data would be retrieved from the database. But it will have structured or arranged our tables in such a way that we would be able to identify and correlate each and every table with their specific modules. This exercise will be very helpful while we are in the stage of transitioning a monolithic application to microservices. Refer to the following image:

In the preceding figure, we see how the database schema is separated logically. It is not separated physically—our Order Schema and Stock Schema belong to the same database. So here we separate the database schema logically, not physically.

We can also take an example of our users—not all users are admin or belong to a specific zone, area, or region. But our user table should be structured in such a way that we should be able to identify the users by the table name or the way they are structured. Here we can structure our user table on the basis of regions. We should map our user table to a region table in such a way it should not impact or lay any changes in the existing code base.

	Moving business logic to code from stored procedures: In the current database, we have thousands of lines of Stored Procedure with a lot of business logic. We should move the business logic to our codebase. In our monolithic application, we are using Entity Framework; here we can avoid the creation of stored procedures. We can incorporate all of our business logic to code.

 Database sharding and partitioning

Between database sharding and partitioning, we can go with database sharding, where we will break it into smaller databases. These smaller databases will be deployed on a separate server:

In general, database sharding is simply defined as a shared-nothing partitioning scheme for large databases. This way, we can achieve a new level of high performance and scalability. Sharding comes from shard and spreading, which means dividing a database into chunks (shards) and spreading to different servers.

The preceding diagram is a pictorial overview of how our database is divided into smaller databases. Take a look at the following diagram:

 DevOps culture

In the preceding sections, we discussed the challenges and problems with the team. Here, we propose a solution to the DevOps team: the collaboration of the development team with another operational team should be emphasized. We should set up a system where development, QA, and the infrastructure teamwork in collaboration.

 Automation

Infrastructure setup can be a very time-consuming job; developers would remain idle while the infrastructure is being readied for them. They will take some time before joining the team and contributing. The process of infrastructure setup should not stop a developer from becoming productive, as it would reduce overall productivity. This should be an automated process. With the use of Chef or PowerShell, we can easily create our virtual machines and quickly ramp up the developer count as and when required. This way, our developer can be ready to start the work on day one of joining the team.

Chef is a DevOps tool that provides a framework to automate and manage your infrastructure.

PowerShell can be used to create our Azure machines and to set up TFS.

 Testing

We are going to introduce automated testing as a solution to our prior problems, those we faced while testing during deployment. In this part of the solution, we have to divide our testing approach as follows:

	Adopt Test-Driven Development (TDD). With TDD, a developer is required to test his or her own code. The test is nothing but another piece of code that could validate whether the functionality is working as intended. If any functionality is found to not satisfy the test code, the corresponding unit test fails. This functionality can be easily fixed, as you know this is where the problem is. In order to achieve this, we can utilize frameworks such as MS test or unit tests.

	The QA team can use scripts to automate their tasks. They can create scripts by utilizing QTP or the Selenium framework.

 Versioning

The current system does not have any kind of versioning system, so there is no way to revert if something happens during a change. To resolve this issue, we need to introduce a version control mechanism. In our case, this should be either TFS or Git. With the use of version control, we can now revert to our change in case it is found to break some functionality or introduce any unexpected behavior in the application. We now have the capability of tracking the changes being made by the team members working on this application, at an individual level. However, in the case of our monolithic application, we did not have the capability of doing this.

 Deployment

In our application, deployment is a huge challenge. To resolve this, we introduce Continuous Integration (CI). In this process, we need to set up a CI server. With the introduction of CI, the entire process is automated. As soon as the code is checked in by any team member, using version control TFS or Git, in our case, the CI process kicks into action. It ensures that the new code is built and unit tests are run along with the integration test. In either scenarios of a successful build or otherwise, the team is alerted to the outcome. This enables the team to quickly respond to the issue.

Next we move to continuous deployment. Here we introduce various environments, namely a development environment, staging environment, QA environment, and so on. Now, as soon as the code is checked in by any team member, CI kicks into action. It invokes the unit/integration test suits, builds the system, and pushes it out to the various environments we have set up. This way, the turnaround time of the development team to provide a suitable build for QA is reduced to minimal.

 Identifying decomposition candidates within monolithic

We have now clearly identified the various problems that the current FlixOne application architecture and its resultant code are posing for the development team. Also, we understand which business challenges the development team is not able to take up and why.

It is not that the team is not capable enough—it is just the code. Let's move ahead and check what would be the best strategy to zero in on for the various parts of the FlixOne application that we need to move to the microservice-styled architecture. You should know that you have a candidate with a monolith architecture, which poses problems in one of the following areas:

	Focused deployment: Although this comes at the final stage of the whole process, it demands more respect and rightly so. It is important to understand here that this factor shapes and defines the whole development strategy from the very initial stages of identification and design. Here's an example of this: the business is asking you to resolve two problems of equal importance. One of the issues might require you to perform testing for many more associated modules, and the resolution for the other might allow you to get away with limited testing. Having to make such a choice would be wrong. A business shouldn't have the option of making such a choice.

	Code complexity: Having smaller teams is the key here. You should be able to assign small development teams for a change that is associated with a single functionality. Small teams comprise one or two members. Any more than this and a project manager will be needed. This means that something is more interdependent across modules than it should be.

	Technology adoption: You should be able to upgrade components to a newer version or a different technology without breaking stuff. If you have to think about the components that depend on it, you have more than one candidate. Even if you have to worry about the modules that this component depends upon, you still have more than one candidate. I remember one of my clients who had a dedicated team to test out whether the technology being released was a suitable candidate for their needs. I learned later that they would actually port one of the modules and measure the performance impact, effort requirement, and turnaround time of the whole system. I don't agree with this, though.

	High resources: In my opinion, everything in a system, from memory, CPU time, and I/O requirements, should be considered a module. If any one of the modules spends more time, and/or more frequently, it should be singled out. In any operation that involves higher-than-normal memory, the processing time blocks the delay and the I/O keeps the system waiting; this would be good in our case.

	Human dependency: If moving team members across modules seems like too much work, you have more candidates. Developers are smart, but if they struggle with large systems, it is not their fault. Break the system down into smaller units, and the developers will be both more comfortable and more productive.

 Important microservices advantages

We have performed the first step of identifying our candidates for moving to microservices. It will be worthwhile going through the corresponding advantages that microservices provide.

 Technology independence

With each one of the microservices being independent of each other, we now have the power to use different technologies for each microservice. The Payment gateway could be using the latest .NET framework, whereas the product search could be shifted to any other programming language.

The entire application could be based on an SQL server for data storage, whereas the inventory could be based on NoSQL. The flexibility is limitless.

 Interdependency removal

Since we try to achieve isolated functionality within each microservice, it is easy to add new features, fix bugs, or upgrade technology within each one. This will have no impact on other microservices. Now you have vertical code isolation that enables you to perform all of this and still be as fast with the deployments.

This doesn't end here. The FlixOne team now has the ability to release a new option for the Payment gateway alongside the existing one. Both the Payment gateways could coexist until the time that both the team and the business owners are satisfied with the reports. This is where the immense power of this architecture comes into play.

 Alignment with business goals

It is not necessarily a forte of business owners to understand why a certain feature would be more difficult or time-consuming to implement. Their responsibility is to keep driving the business and keep growing it. The development team should become a pivot to the business goal and not a roadblock.

It is extremely important to understand that the capability to quickly respond to business needs and adapt to marketing trends is not a by-product of microservices, but their goal.

The capability to achieve this with smaller teams only makes it more suitable to business owners.

 Cost benefits

Each microservice becomes an investment for the business since it can easily be consumed by other microservices without having to redo the same code again and again. Every time a microservice is reused, time is saved by avoiding the testing and deployment of that part.

User experience is enhanced since the downtime is either eliminated or reduced to minimal.

 Easy scalability

With vertical isolation in place and each microservice rendering a specific service to the whole system, it is easy to scale. Not only is the identification easier for the scaling candidates, but the cost is less. This is because we only scale a part of the whole microservice ecosystem.

This exercise can be cost-intensive for the business; hence, prioritization of which microservice should be scaled first can now be a choice for the business team. This decision no longer has to be a choice for the development team.

 Security

Security is similar to what is provided by the traditional layered architecture; microservices can be secured as easily. Different configurations can be used to secure different microservices. You can have a part of the microservice ecosystem behind firewalls and another part for user encryption. Web-facing microservices could be secured differently from the rest of the microservices. You can suit your needs as per choice, technology, or budget.

 Data management

It is common to have a single database in the majority of monolithic applications. And almost always, there is a database architect or a designated owner responsible for its integrity and maintenance. The path to any application enhancement that requires a change in the database has to go through this route. For me, it has never been an easy task. This further slows down the process of application enhancement, scalability, and technology adoption.

Because each microservice has its own independent database, the decision-making related to changes required in the database can be easily delegated to the respective team. We don't have to worry about the impact on the rest of the system, as there will not be any.

At the same time, this separation of the database brings forth the possibility for the team to become self-organized. They can now start experimenting.

For example, the team can now consider using the Azure Table storage or Azure Redis Cache to store the massive product catalog instead of the database, as is being done currently. Not only can the team now experiment, their experience could easily be replicated across the whole system as required by other teams in the form of a schedule convenient to them.

In fact, nothing is stopping the FlixOne team now from being innovative and using a multitude of technologies available at the same time, then comparing performance in the real world and making a final decision. Once each microservice has its own database, this is how FlixOne will look:

 Integrating monolithic

Whenever a choice is made to move away from the monolithic architecture in favor of the microservice-styled architecture, the time and cost axis of the initiative will pose some resistance. A business evaluation might rule against moving some parts of the monolithic application that do not make a business case for the transition.

It would have been a different scenario if we were developing the application from the beginning. However, this is also the power of microservices, in my opinion. A correct evaluation of the entire monolithic architecture can safely identify the monolithic parts to be ported later.

However, to ensure that these isolated parts do not cause a problem to other microservices in future, we must take one safeguard against the risk.

The goal for these parts of the monolithic application is to make them communicate in the same way as that of other microservices. Doing this involves various patterns and you utilize the technology stack in which the monolithic application was developed.

If you use the event-driven pattern, make sure that the monolithic application can publish and consume events, including a detailed modification of the source code to make these actions possible. This process can also be performed by creating an event proxy that publishes and consumes events. The event proxy can then translate these events to the monolithic application in order to keep the changes in the source code to a minimum. Ultimately, the database would remain the same.

If you plan to use the API gateway pattern, be sure that your gateway is able to communicate with the monolithic application. To achieve this, one option is to modify the source code of the application to expose RESTful services that can be consumed easily by the gateway. This can also be achieved by the creation of a separate microservice to expose the monolithic application procedures as REST services. The creation of a separate microservice avoids big changes in the source code. However, it demands the maintenance and deployment of a new component.

 Overview of Azure Service Fabric

While we were talking about microservices in .NET Core world, Azure Service Fabric is the name that is widely used for microservices. In this section, we will discuss Fabric services.

This is a platform that helps us with easy packaging, deployment and managing scalable and reliable microservices (the container is also like Docker, and so on). Sometimes it is difficult to focus on your main responsibility as a developer, due to complex infrastructural problems, and such. With the help of Azure service fabric, developers need not worry about the infrastructural issues.

This bundles and has the power of Azure SQL Database, Cosmos DB, Microsoft Power BI, Azure Event Hubs, Azure IoT Hub, and many more core services.

As per official documentation (https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview):

	Service fabric—any OS, any cloud: You just need to create a cluster of service fabric and this cluster runs on Azure (cloud) or on premises, on Linux, or on a Windows server. Moreover, you can also create clusters on other public clouds.

	Service fabric - stateless and stateful microservices: Yes, with the help of service fabric you can build applications as stateless and/or stateful.

"As per official documentation (https://docs.microsoft.com/en-us/azure/service-fabric/) of microservices:

Stateless microservices (such as protocol gateways and web proxies) do not maintain a mutable state outside a request and its response from the service. Azure Cloud Services worker roles are an example of a stateless service. Stateful microservices (such as user accounts, databases, devices, shopping carts, and queues) maintain a mutable, authoritative state beyond the request and its response."

	Full support to application life-cycle management: With the help of service fabric, get the support of a full application lifecycle that includes development deployment, and so on.

	You can develop a scalable application. For more information refer to: https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-lifecycle.

	You can develop highly reliable, stateless and stateful microservices.

There are different service fabric programming models available that are beyond the scope of this chapter. For more information, refer to: https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-choose-framework.

 Summary

In this chapter, we discussed the microservice architectural style in detail, its history, and how it differs from its predecessors, monolithic and SOA. We further defined the various challenges that monolithic faces when dealing with large systems. Scalability and reusability are some definite advantages that SOA provides over monolithic. We also discussed the limitations of the monolithic architecture, including scaling problems, by implementing a real-life monolithic application. The microservice architecture style resolves all of these issues by reducing code interdependency and isolating the dataset size that any one of the microservices works upon. We utilized dependency injection and database refactoring for this. We further explored automation, CI, and deployment. These easily allow the development team to let the business sponsor choose what industry trends to respond to first. This results in cost benefits, better business response, timely technology adoption, effective scaling, and removal of human dependency. Finally, we discussed Azure Service Fabric and got an idea about service fabric and its different programming models.

In the next chapter, we will go ahead and transition our existing application to the microservice-style architecture and put our knowledge to the test.

 Implementing Microservices

In the previous chapter, we discussed the problems of a layered monolith architecture. In this chapter, we will discuss how we can refactor them from the existing system and build separate microservices for products and orders. In this chapter, we will cover the following topics:

	Introduction to C# 7.0, Entity Framework Core, Visual Studio 2017, and Microsoft SQLServer

	Size of microservices

	What makes a good service?

	Domain-driven design (DDD) and its importance for microservices

	The concept of Seam

	Communication between microservices

	Revisiting the Flix One case study

 Introduction

Before we proceed with the concepts to implement microservices, it is worth mentioning the core concepts, languages, and tools that we're using to implement these microservices. In this chapter, we will get an overview of these topics.

 C# 7.0

C# is a programming language developed by Microsoft. The current release at the time of writing this book is C# 7.0. The language appeared in 2002. This language is an object-oriented language and component-oriented. The current version has various new features such as ValueTuple, Deconstructors, pattern matching, the switch statement local function, and so on.

We are not going into details of these features as it's beyond the scope of this book. Refer to https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/ for more details.

 Entity Framework Core

Entity Framework Core (EF Core) is a cross-platform version of Microsoft Entity Framework that is one of the most popular object-relational mappers (ORMs).

ORM is a technique that helps you to query and manipulate data as per required business output. Refer to the discussion at https://stackoverflow.com/questions/1279613/what-is-an-orm-and-where-can-i-learn-more-about-it for more details.

EF Core supports various databases. A complete list of databases is available here: https://docs.microsoft.com/en-us/ef/core/providers/index. The current version of EF Core is 2.0. To get familiar with EF Core, I suggest you read this: https://docs.microsoft.com/en-us/ef/core/get-started/index in detail.

 Visual Studio 2017

Visual Studio is one of the best Integrated Development Environments (IDE) created by Microsoft. It enables developers to work in various ways using famous languages(for example, C#, VB.NET F#, and so on). The current release of Visual Studio 2017 is update 3 (VS15.3).

An IDE is a software application that provides a facility for programmers to write programs using programming languages. For more information, visit https://en.wikipedia.org/wiki/Integrated_development_environment.

Microsoft also released Visual Studio for macOS, and the new avatar of Visual Studio has many tremendous features. For more information please refer to https://www.visualstudio.com/vs/whatsnew/. In this book, all examples are written using Visual Studio 2017 update 3. You can also download a community edition that is free: https://www.visualstudio.com/.

 Microsoft SQLServer

Microsoft SQLServer (MSSQL) is a software application that is a relational database management system. It's mainly used as database software to store and retrieve data. This is built on top of SQL, that is, Structured Query Language: http://searchsqlserver.techtarget.com/definition/SQL.

The current release, that is, SQL Server 2017, is more robust and can be used on Windows and Linux. You can get SQL Server 2017 from here: https://www.microsoft.com/en-IN/sql-server/sql-server-2017. Please note that we will use SQL Server 2008 R2 or later in this book.

 Size of microservices

Before we start building our microservices, we should be clear about a few of their basic aspects, such as what factors to consider while sizing our microservices and how to ensure their isolation from the rest of the system.

As the name suggests, microservices should be micro. A question arises: what is micro? Microservices are all about size and granularity. To understand this better, let's consider the application discussed in Chapter 1, An Introduction to Microservices.

We wanted the teams working on this project to stay synchronized at all times with respect to their code. Staying synchronized is even more important when we release the complete project. We needed to first decompose our application/specific parts into smaller functionalities/segments of the main service. Let's discuss the factors that need to be considered for the high-level isolation of microservices:

	Risks due to requirement changes: Changes in the requirements of one microservice should be independent of other microservices. In such a case, we will isolate/split our software into smaller services in such a way that if there are any requirement changes in one service, they will be independent of another microservice.

	Functionality changes: We will isolate the functionalities that are rarely changed from the dependent functionalities that can be frequently modified. For example, in our application, the customer module notification functionality will rarely change. But its related modules, such as Order, are more likely to have frequent business changes as part of their life cycle.

	Team changes: We should also consider isolating modules in such a way that one team can work independently of all the other teams. If the process of making a new developer productive—regarding the tasks in such modules—is not dependent on people outside the team, it means we are well placed.

	Technology changes: Technology use needs to be isolated vertically within each module. A module should not be dependent on a technology or component from another module. We should strictly isolate the modules developed in different technologies or stacks, or look at moving them to a common platform as a last resort.

Our primary goal should not be to make services as small as possible; instead, our goal should be to isolate the identified bounded context and keep it small.

 What makes a good service?

Before microservices were conceptualized, whenever we thought of enterprise application integration, middleware looked like the most feasible option. Software vendors offered Enterprise Service Bus (ESB), and it was one of the best options for middleware.

Besides considering these solutions, our main priority should be inclined toward the architectural features. When microservices arrived, middleware was no longer a consideration. Rather, the focus shifted to contemplation of business problems and how to tackle those problems with the help of the architecture.

In order to make a service that can be used and maintained easily by developers and users, the service must have the following features (we can also consider these as characteristics of good services):

	Standard data formats: Good services should follow standardized data formats while exchanging services or systems with other components. The most popular data formats used in the .NET stack are XML and JSON.

	Standard communication protocol: Good services should obey standard communication formats, such as SOAP and REST.

	Loose coupling: One of the most important characteristics of a good service is that it follows loose coupling. When services are loosely coupled, we don't have to worry about changes. Changes in one service will not impact other services.

 DDD and its importance for microservices

Domain-Driven Design (DDD) is a methodology and a process of designing complex systems. In these sections, we will briefly discuss DDD and how it is important in the context of microservices.

 Domain model design

 The main objective of domain design is to understand the exact domain problems and then draft a model that can be written in any language or set of technologies. For example, in our Flix One bookstore application, we need to understand Order Management and Stock Management.

Here are a few characteristics of the domain-driven model:

	A domain model should focus on a specific business model and not multiple business models

	It should be reusable

	It should be designed so that it can be called in a loosely coupled way, unlike the rest of the system

	It should be designed independently of persistence implementations

	It should be pulled out from a project to another location, so it should not be based on any infrastructure framework

 Importance for microservices

DDD is the blueprint and can be implemented by microservices. In other words, once DDD is done, we can implement it using microservices. This is just like how, in our application, we can easily implement Order services, Inventory services, Tracking services, and so on.

Once you have dealt with the transition process to your satisfaction, a simple exercise should be performed. This will help you verify that the size of the microservice is small enough. Every system is unique and has its own complexity level. Considering these levels of your domain, you need to have a baseline for the maximum number of domain objects that can talk to each other. If any service fails this evaluation criterion, then you have a possible candidate to evaluate your transition once again. However, don't get into this exercise with a specific number in mind; you can always go easy. As long as you have followed all the steps correctly, the system should be fine for you.

If you feel that this baseline process is difficult for you to achieve, you can take another route. Go through all the interfaces and classes in each microservice. Considering all the steps we have followed, and the industry standard coding guidelines, anybody new to the system should be able to make sense of its purpose.

You can also perform another simple test to check whether the correct vertical isolation of the services was achieved. You can deploy each one of them and make them live with the rest of the services, which are still unavailable. If your service goes live and continues listening for incoming requests, you can pat yourself on the back.

There are many benefits that you can derive from the isolated deployment capability. The capability to just deploy them independently allows the host in them to enter its own independent processes. It allows you to harness the power of the cloud and other hybrid models of hosting that you can think of. You are free to independently pick different technologies for each one of them as well.

 The concept of seam

At the very core of microservices lies the capability to work on a specific functionality in isolation from the rest of the system. This translates into all the advantages discussed earlier, such as reduced module dependency, code reusability, easier code maintenance, and better deployment.

In my opinion, the same attributes that were attained with the implementation of microservices should be maintained during the process of implementation. Why should the whole process of moving monoliths to microservices be painful and not be as rewarding as using the microservices themselves? Just remember that the transition can't be done overnight and will need meticulous planning. Many capable solution architects have differed in their approaches while presenting their highly capable teams. The answer lies not just in the points already mentioned, but in the risk to the business itself.

This is very well attainable. However, we must identify our method correctly in order to achieve it. Otherwise, there is a possibility that the whole process of transitioning a monolithic application to microservices could be a dreadful one.

 Module interdependency

This should always be the starting point when trying to transition a monolithic application to microservice-style architecture. Identify and pick up those parts of the application that are least dependent on other modules and have the least dependency on them, as well.

It is very important to understand that by identifying such parts of the application, you are not just trying to pick up the least challenging parts to deal with. However, at the same time, you have identified seams, which are the most easily visible ones. These are parts of the application where we will perform the necessary changes first. This allows us to completely isolate this part of the code from the rest of the system. It should be ready to become a part of the microservice or deployed in the final stage of this exercise.

Even though such seams have been identified, the capability to achieve microservice-style development is still a little further away. This is a good start, though.

 Technology

A two-pronged approach is required here. First, you must identify what different features of the application's base framework are being utilized. The differentiation could be, for example, implemented on the basis of heavy dependency on certain data structures, interprocess communication being performed, or the activity of report generation. This is the easier part.

However, as the second step, I recommend that you become more confident and pick up pieces that use a type of technology that is different from what is being used currently. For example, there could be a piece of code relying on simple data structures or XML-based persistence. Identify such baggage in the system and mark it for a transition. A lot of prudence is required in this twin-pronged approach. Making a selection that is too ambitious could set you on a path similar to what we have been trying to avoid altogether.

Some of these parts might not look like very promising candidates for the final microservice-style architecture application. They should still be dealt with now. In the end, they will allow you to easily perform the transition.

 Team structure

With every iteration of this identification process being executed, this factor becomes more and more important. There could be teams that are differentiated on various grounds, such as their technical skill set, geographical location, or security requirements (employees versus outsourced).

If there is a part of the functionality that requires a specific skill set, then you could be looking at another probable Seam candidate. Teams can be composed of varying degrees of these differentiation factors. As part of the transition to microservices, the clear differentiation that could enable them to work independently could further optimize their productivity.

This can also provide a benefit in the form of safeguarding the intellectual property of the company—outsourcing to consultants for specific parts of the application is not uncommon. The capability to allow consultants or partners to help you only on a specific module makes the process simpler and more secure.

 Database

The heart and soul of any enterprise system is its database. It is the biggest asset of the system on any given day. It is also the most vulnerable part of the whole system in such an exercise. No wonder database architects can sound mean and intruding whenever you ask them to make even the smallest change. Their domain is defined by database tables and stored procedures.

The health of their domain is judged by the referential integrity and the time it takes to perform various transactions. I don't hold them guilty for overdoing it anymore. They have a reason for this—their past experiences. It's time to change that. Let me tell you, this won't be easy, as we will have to utilize a completely different approach to handle data integrity once we embark on this path.

You might think that the easiest approach is to divide the whole database in one go, but this is not the case. It can lead us to the situation we have been trying to avoid all along. Let's look at how to go about doing this in a more efficient manner.

As you move along, picking up pieces after the module dependency analysis, identify the database structures that are being used to interact with the database. There are two steps that you need to perform here. First, check whether you can isolate the database structures in your code to be broken down, and align this with the newly defined vertical boundaries. Second, identify what it would take to break down the underlying database structure as well.

Don't worry yet if breaking down the underlying data structure seems difficult. If it appears that it is involving other modules that you haven't started to move to microservices, it is a good sign. Don't let the database changes define the modules that you would pick and migrate to microservice-style architecture. Keep it the other way round. This ensures that when a database change is picked up, the code that depends on the change is already ready to absorb the change.

This ensures that you don't pick up the battle of data integrity while you are already occupied with modifying the code that would rely on this part of the database. Nevertheless, such database structures should draw your attention so that the modules that depend on them are picked next. This will allow you to easily complete the move to microservices for all the associated modules in one go. Refer to the following diagram:

Here, we have not broken the database yet. Instead, we have simply separated our database access part into layers as part of the first step.

What we have simply done is map the code data structure the database, and they no longer depend on each other. Let's see how this step would work out when we remove foreign key relationships.

If we can transition the code structures being used to access the database along with the database structure, we will save time. This approach might differ from system to system and can be affected by our personal bias. If your database structure changes seem to be impacting modules that are yet to be marked for transition, move on for now.

Another important point to understand here is what kind of changes are acceptable when you break down this database table or merge it with another partial structure? The most important thing is not to shy away from breaking those foreign key relationships apart. This might sound like a big difference from our traditional approach to maintaining data integrity. However, removing your foreign key relationships is the most fundamental challenge when restructuring your database to suit the microservice architecture. Remember that a microservice is meant to be independent of other services. If there are foreign key relationships with other parts of the system, it makes it dependent on the services owning that part of the database. Refer to the following diagram:

As part of step two, we have kept the foreign key fields in the database tables but have removed the foreign key constraint. So the ORDER table is still holding information about ProductID, but the foreign key relation is broken now. Refer to the following diagram:

This is what our microservice-style architecture would finally look like. The central database would be moved away in favor of each service having their own database. So, separating the data structures in the code and removing foreign key relationships is our preparation to finally make the change. The connected boundaries of microservices in the preceding figure signify the interservice communication.

With the two steps performed, your code is now ready to split ORDER and PRODUCT into separate services, with each having their own database.

If all of the discussion here has left you bewildered about all those transactions that have been safely performed up to now, you are not alone. This outcome of the challenge with the transactions is not a small one by any means, and deserves focused attention. We'll talk about this in detail a bit later. Before that, there is another part that becomes a no man's land in the database. It is master data or static data, as some may call it.

 Master data

Handling master data is more about your personal choice and system-specific requirements. If you see that the master data is not going to change for ages and occupies an insignificant amount of records, you are better off with the configuration files or even code enumerations.

This requires someone to push out the configuration files once in a while when the changes do happen. However, this still leaves a gap for the future. As the rest of the system would depend on this one module, it will be responsible for these updates. If this module does not behave correctly, other parts of the system relying on it could also be impacted negatively.

Another option could be to wrap up the master data in a separate service altogether. Having the master data delivered through a service would provide the advantage of the services knowing the change instantly and understanding the capability to consume it as well.

The process of requesting this service might not be much different from the process of reading configuration files when required. It might be slower, but then it is to be done only as many times as necessary.

Moreover, you could also support different sets of master data. It would be fairly easy to maintain product sets that differ every year. With the microservice architecture style, it is always a good idea to be independent of any kind of outside reliance in future.

 Transaction

With our foreign keys gone and the database split into smaller parts, we need to devise our own mechanisms for handling data integrity. Here, we need to factor in the possibility that not all services would successfully go through a transaction in the scope of their respective data stores.

A good example is a user ordering a specific product. At the time the order is being accepted, there is a sufficient quantity available to be ordered. However, by the time the order is logged, the Product service cannot log the orders for some reason. We don't know yet whether is was due to insufficient quantity or some other communication fault within the system. There are two possible options here. Let's discuss them one by one.

The first option is to try again and perform the remaining part of the transaction sometime later. This would require us to orchestrate the whole transaction in a way that tracks individual transactions across services. So every transaction that leads to transactions being performed for more than one service must be tracked. In case one of them does not go through, it deserves a retry. This might work for long-lived operations.

However, for other operations, this could cause a real problem. If the operation is not long-lived and you still decide to retry, the outcome will result in either locking out other transactions or making the transaction wait—meaning it is impossible to complete it.

Another option that we can contemplate here is to cancel the entire set of transactions spread across various services. This means that a single failure at any stage of the entire set of transactions would result in the reversal of all the previous transactions.

This is one area where maximum prudence would be required, and it would be time well invested. A stable outcome is only guaranteed when the transactions are planned out well in any microservice-style architecture application.

 Communication between microservices

In the preceding section, we separated our Order module into Order services and discussed how we can break down the foreign key relationship between ORDER and PRODUCT tables.

In a monolithic application, we have a single repository that queries the database to fetch the records from both ORDER and PRODUCT tables. However, in our upcoming microservice application, we will segregate repositories between Order service and Product service. With each service having its respective database, each one would access its own database only. Order service would only be able to access order Database, whereas Product service would be able to access product Database only. Order service should not be allowed to access product Database and vice versa.

We will discuss communication between microservices in Chapter 3, Integration Techniques and Microservices, in detail.

Refer to the following diagram:

In the preceding figure, we can see that our UI is interacting with Order Service and Product service via API gateway. Both the services are physically separated from each other and there is no direct interaction between these services. Communication performed in this manner is also referred to as communication that is based on the API Gateway Pattern.

The API gateway is nothing but a middle tier via which the UI can interact with the microservices. It also provides a simpler interface and makes the process of consuming these services simpler. It provides a different level of granularity to different clients as required (browser and desktop).

We can say that it provides coarse-grained APIs to mobile clients and fine-grained APIs to desktop clients, and it can use a high-performance network underneath its hood to provide some serious throughput.

The definition of granularity from Wikipedia is as follows (https://en.wikipedia.org/wiki/Granularity):

"Granularity is the extent to which a system is broken down into small parts, either the system itself or its description or observation. It is the extent to which a larger entity is subdivided. For example, a yard broken into inches has a finer granularity than a yard broken into feet.

Coarse-grained systems consist of fewer, larger components than fine-grained systems; a coarse-grained description of a system regards large subcomponents while a fine-grained description regards smaller components of which the larger ones are composed."

 Benefits of the API gateway for microservices

There is no doubt that the API gateway is beneficial for microservices. With its use, you can do the following:

	Invoke services through the API gateway

	Reduce round trips between the client and the application

	The client has the ability to access different APIs in one place, as segregated by the gateway

It provides flexibility to clients in such a manner that they are able to interact with different services as and when they need to. This way, there is no need to expose complete/all services at all. API gateway is a component of complete API management. In our solution, we will use Azure API management, and we will explain it further in Chapter 3, Integration Techniques and Microservices.

 API gateway versus API management

In the preceding section, we discussed how the API gateway hides the actual APIs from its client and then simply redirects the calls to the actual API from these clients. The API management solution provides a complete management system to manage all the APIs of its external consumers. All API management solutions, such as Azure API management (https://docs.microsoft.com/en-us/azure/api-management/), provide various capabilities and functionalities, such as:

	Design

	Development

	Security

	Publishing

	Scalability

	Monitoring

	Analysis

	Monetization

 Revisiting the Flix One case study

In the preceding chapter, we looked at an example of an imaginary company, Flix One Inc., operating in the e-commerce domain and having its own .NET monolithic application: the Flix One bookstore. We have already discussed the following:

	How to segregate the code

	How to segregate the database

	How to denormalize the database

	How to begin transitioning

	The available refactoring approaches

In the next sections, we will start writing/transitioning .NET monolith to a microservice application.

 Prerequisites

We will use the following tools and technologies while transitioning our monolithic application to microservice-style architecture:

	Visual Studio 2017 update 3 or later

	C# 7.0

	ASP.NET Core MVC/Web API

	Entity Framework Core

	SQL Server 2008R2 or later

 Transitioning to our product service

We already have our product module in place. We are going to pull back this module now and start with a new ASP.NET Core MVC project. To do this, follow all the steps we discussed in the preceding sections and in Chapter 1, An Introduction to Microservices, Let's examine the technology and database we will use:

	Technology stack: We have already selected this for our product service; we will go with ASP.NET Core, C#, Entity framework (EF), and so on. Microservices can be written using different technology stacks and can be consumed by clients created by different technologies. For our product service, we will go with ASP.NET Core.

	Database: We have already discussed this in Chapter 1, An Introduction to Microservices, when talking about a monolithic application and segregating its database. Here, we will go with SQL Server, and the database schema will be Product instead of dbo.

Our product database is segregated. We will use this database in our product service, as shown in the following screenshot:

We have created a separated product database for our product service. We did not migrate the entire data. In the following sections, we will discuss product database migration as well. Migration is important as we have numerous existing records of FlixOne bookstore customers. We can't ignore these records, and they need to be migrated to our modified structure. Let's get started.

 Migrations

In the preceding section, we separated our product database to ensure that it would only be used by our product service. We also selected a technology stack of our choice to build our microservice (product service). In this section, we will discuss how we can migrate both our existing code and database to ensure that they fit right in with our new architectural style.

 Code migration

Code migration does not involve just pulling out a few layers of code from the existing monolithic application and then bundling it with our newly created Product service. In order to achieve this, you'll need to implement all that you have learned up until now. In the existing monolithic application, we have a single repository, which is common to all modules, whereas, for microservices, we will create repositories for each module separately and keep them isolated from each other:

In the preceding image, Product service has a Product repository, which further interacts with its designated data store, named Product database. We will now discuss microcomponents a bit more. They are nothing but isolated parts of the application (microservice), namely common classes and business functionalities. It is worthwhile to note here that the Product repository itself is a microcomponent in the world of microservices.

In our final product service, which is to be done in ASP.NET Core 2.0, we will work with a model and controller to create our REST API. Let's talk about both of these briefly:

	Model: This is an object that represents the data in the product service. In our case, the identified models are stacked into product and category fields. In our code, models are nothing but a set of simple C# classes. When we talk in terms of EF Core, they are commonly referred to as plain old CLR objects (POCOs). POCOs are nothing but simple entities without any data access functionality.

	Controller: This is a simple C# class that inherits an abstract class controller of the Microsoft.AspNetCore.Mvc namespace. It handles HTTP requests and is responsible for the creation of the HTTP response to be sent back. In our Product service, we have a product controller that handles everything.

Let's follow a step-by-step approach to create our product service.

 Creating our project

As already decided in the previous sections, we will create our ProductService in ASP.NET Core 2.0 or C# 7.0, using Visual Studio. Let's look at what steps are required to do this:

	Start Visual Studio.

	Create a new project by navigating to File | New | Project.

	From the template options available, select ASP.NET Core Web Application.

	Enter the project name as FlixOne.BookStore.ProductService, and click on ok.

	From the template screen, select Web Application (Model-View-Controller) and make sure you have selected .NET Core and ASP.NET Core 2.0 from the options, as shown in the following screenshot:

6. Leave rest options as the default and click on ok.

The new solution should look like the following screenshot:

	From the solution explorer, right-click (or press Alt + Enter) on the project and click on Properties.

	From the Properties window, click on Build and click on Advance. The Language version should be C#7.0, as shown in the following screenshot:

 Adding the model

In our monolithic application, we do not have any model classes yet. So let's go ahead and add a new model as required.

To add the new model, add a new folder and name it Models. In the Solution Explorer, right-click on the project and then click on options from Add | New Folder:

There is no hard and fast rule for putting all the model classes in a folder named Models. As a matter of fact, we can put our model classes anywhere in the project in our application. We follow this practice as it becomes self-explanatory from folder names. At the same time, it easily identifies that this folder is for the model classes.

To add new Product and Category classes (these classes will represent our POCOs), do as follows:

	Right-click on the Models folder and chose Option.

	Add New Item|Class. We will name them Product and Category.

	Now add the properties that depict our product database column name to the tables Product and Category.

There is no restriction regarding having the property name match the table column name. It is just general practice.

The following code snippet depicts what our Product.cs model class will look like:

 namespace FlixOne.BookStore.ProductService.Models
 {
 public class Product
 {
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public string Image { get; set; }
 public decimal Price { get; set; }
 public Guid CategoryId { get; set; }
 }
 }

The following code snippet shows what our Category.cs model class will look like:

 namespace FlixOne.BookStore.ProductService.Models
 {
 public class Category
 {
 public Category()
 {
 Products = new List<Product>();
 }
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public IEnumerable<Product> Products { get; set; }
 }
 }

 Adding a repository

In our monolithic application, we have a common repository throughout the project. In ProductService, by virtue of following all the principals learned up until now, we will create microcomponents, which means separate repositories encapsulating the data layer.

A repository is nothing but a simple C# class that contains the logic to retrieve data from the database and maps it to the model.

Adding a repository is as simple as following these steps:

	Create a new folder and name it Persistence.

	Add the IProductRepository interface and a ProductRepository class that will implement the IProductRepository interface.

	Again, we name the folder Persistence in an effort to follow the general principal for easy identification.

The following code snippet provides an overview of the IProductRepository interface:

namespace FlixOne.BookStore.ProductService.Persistence
{
 public interface IProductRepository
 {
 void Add(Product product);
 IEnumerable<Product> GetAll();
 Product GetBy(Guid id);
 void Remove(Guid id);
 void Update(Product product);
 }
}

The following code snippet provides an overview of the ProductRepository class (it is still without any implementation and it does not have any interaction with the database yet):

 namespace FlixOne.BookStore.ProductService.Persistence
 {
 public class ProductRepository : IProductRepository
 {
 public void Add(Product Product)
 {
 throw new NotImplementedException();
 }
 public IEnumerable<Product> GetAll()
 {
 throw new NotImplementedException();
 }
 public Product GetBy(Guid id)
 {
 throw new NotImplementedException();
 }
 public bool Remove(Guid id)
 {
 throw new NotImplementedException();
 }
 public void Update(Product Product)
 {
 throw new NotImplementedException();
 }
 }
 }

 Registering the repositories

For ProductService, we will use built-in dependency injection support with ASP.NET Core. To do so, follow these simple steps:

	Open Startup.cs.

	Add the repository to the ConfigureServices method. It should look like this:

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();
 services.AddSingleton<IProductRepository,
 ProductRepository>();
}

 Adding a product controller

Finally, we have reached the stage where we can proceed to add our controller class. This controller will actually be responsible for responding to the incoming HTTP requests with the applicable HTTP response. In case you are wondering what is to be done with that, you can see the HomeController class, as it is a default class provided by the ASP.NET core template.

Right-click on the controllers folder, chose the Add | New Item option, and select Web API Controller Class. Name it ProductController. Here we are going to utilize whatever code/functionality we can from the monolithic application. Go back to the legacy code and look at the operations you're performing there; they can be borrowed for our ProductController class. Refer to the following screenshot:

After we have made the required modifications to ProductController, it should look something similar to this:

 using Microsoft.AspNetCore.Mvc;
 using FlixOne.BookStore.ProductService.Persistence;
 namespace FlixOne.BookStore.ProductService.Controllers
 {
 [Route("api/[controller]")]
 public class ProductController : Controller
 {
 private readonly IProductRepository _ProductRepository;
 public ProductController(IProductRepositoryProductRepository)
 {
 _ProductRepository = ProductRepository;
 }
 }
 }

 The ProductService API

In our monolithic application, for the Product module, we are doing the following:

	Adding a new Product module

	Updating an existing Product module

	Deleting an existing Product module

	Retrieving a Product module

Now we will create ProductService; we require the following APIs:

	API Resource
	Description

	GET /api/Product
	Gets a list of products

	GET /api/Product{id}
	Gets a product

	PUT /api/Product{id}
	Updates an existing product

	DELETE /api/Product{id}
	Deletes an existing product

	POST /api/Product
	Adds a new product

 Adding EF core support

Before going further, we need to add EF so that our service can interact with the actual product database. Until now, we did not add any method to our repository that could interact with the database.

To add EF core support, we need to add EF's core sqlserver package (we are adding the sqlserver package because we are using SQL Server as our DB server). Open the NuGet Package Manager (Tools | NuGet Package Manager | Manage NuGet Package).

Open the NuGet Package and search for Microsoft.EntityFrameworkCore.SqlServer:

 EF Core DbContext

In the preceding section, we added the EF Core 2.0 package for SQL Server support; now we need to create a context so our models can interact with our product database. We have the Product and Category models, refer to this list:

	Add a new folder and name it Contexts—it is not compulsory to add a new folder.

	In the context folder, add a new C# class and name it ProductContext. We are creating DbContext for ProductDatabase, so to make it similar here, we are creating ProductContext.

	Make sure the ProductContext class inherits the DbContext class.

	Make the changes, and our ProductContext class will look like this:

 using FlixOne.BookStore.ProductService.Models;
 using Microsoft.EntityFrameworkCore;
 namespace FlixOne.BookStore.ProductService.Contexts
 {
 public class ProductContext : DbContext
 {
 public ProductContext(DbContextOptions<
 ProductContext>options): base(options)
 { }
 public ProductContext()
 { }
 public DbSet<Product> Products { get; set; }
 public DbSet<Category> Categories { get; set; }
 }
 }

We have created our context, but this context is independent of the product database. We need to add a provider and connection string so that ProductContext can talk with our database.

	Once again, open the Startup.cs file and add the SQL Server db provider for our EF Core support, under the ConfigureServcies method. Once you add the provider's ConfigureServcies method, our Startup.cs file will look like this:

 public void ConfigureServices(IServiceCollection services)
 {
 // Add framework services.
 services.AddMvc();
 services.AddSingleton<IProductRepository, ProductRepository>();
 services.AddDbContext<ProductContext>(o =>o.UseSqlServer
 (Configuration.GetConnectionString("ProductsConnection")));
 }

	Open the appsettings.json file and add the required database connection string. In our provider, we have already set the connection key as ProductsConnection. So now, add the following line to set the connection string with the same key (change Data Source to your data source):

 {
 "ConnectionStrings":
 {
 "ProductConnection":
 "Data Source=.SQLEXPRESS;Initial Catalog=ProductsDB;
 IntegratedSecurity=True;MultipleActiveResultSets=True"
 }
 }

 EF Core migrations

Although we have already created our product database, it is not time to underestimate the power of EF Core migrations. EF Core migrations will be helpful for us to perform any future modifications to the database. This modification could be in the form of a simple field addition or any other update to the database structure. We can simply rely on these EF Core migration commands every time to do the necessary changes for us. In order to utilize this capability, follow these simple steps:

	Go to Tools | NuGet Package Manager | Package Manager Console.

	Run the following commands from Package Manager Console:

Install--Package Microsoft.EntityFrameworkCore.Tools --pre
Install--Package Microsoft.EntityFrameworkCore.Design

	To initiate the migration, run this command:

 Add-Migration ProductDB

It is important to note that this is to be done only the first time (when we do not yet have a database created by this command).

	Now, whenever there are any changes in your model, simply execute the following command:

Update-Database

 Database migration

At this point, we are done with our ProductDatabase creation. Now it's time to migrate our existing database. There are many different ways to do this. Our monolithic application, which presently has a huge database, contains a large number of records as well. It is not possible to migrate them by simply using a database SQL script.

We need to explicitly create a script to migrate the database with all of its data. Another option is to go ahead and create a DB package as required. Depending on the complexity of your data and the records, you might need to create more than one data package to ensure that the data is migrated correctly to our newly created database, ProductDB.

 Revisiting repositories and the controller

We are now ready to facilitate interaction between our model and database via our newly created repositories. After making the appropriate changes to ProductRepository, it will look like this:

 using System.Collections.Generic;
 using System.Linq;
 using FlixOne.BookStore.ProductService.Contexts;
 using FlixOne.BookStore.ProductService.Models;
 namespace FlixOne.BookStore.ProductService.Persistence
 {
 public class ProductRepository : IProductRepository
 {
 private readonly ProductContext _context;
 public ProductRepository(ProductContext context)
 {
 _context = context;
 }
 public void Add(Product Product)
 {
 _context.Add(Product);
 _context.SaveChanges();
 }
 public IEnumerable<Product> GetAll() =>
 _context.Products.Include(c => c.Category).ToList();
 //Rest of the code has been deleted
 }
 }

 Introducing ViewModel

Add a new class to the models folder and name it ProductViewModel. We do this because, in our monolithic application, whenever we search for a product, it should be displayed in its product category. In order to support this, we need to incorporate the necessary fields into our view model. Our ProductViewModel class will look like this:

 using System;
 namespace FlixOne.BookStore.ProductService.Models
 {
 public class ProductViewModel
 {
 public Guid ProductId { get; set; }
 public string ProductName { get; set; }
 public string ProductDescription { get; set; }
 public string ProductImage { get; set; }
 public decimal ProductPrice { get; set; }
 public Guid CategoryId { get; set; }
 public string CategoryName { get; set; }
 public string CategoryDescription { get; set; }
 }
 }

 Revisiting the product controller

Finally, we are ready to create a REST API for ProductService. After the changes are made, here is what ProductController will look like:

 using System.Linq;
 using FlixOne.BookStore.ProductService.Models;
 using FlixOne.BookStore.ProductService.Persistence;
 using Microsoft.AspNetCore.Mvc;
 namespace FlixOne.BookStore.ProductService.Controllers
 {
 [Route("api/[controller]")]
 public class ProductController : Controller
 {
 private readonly IProductRepository _productRepository;
 public ProductController(IProductRepository
 productRepository) => _productRepository = productRepository;

 [HttpGet]
 [Route("productlist")]
 public IActionResult GetList() => new
 OkObjectResult(_productRepository.GetAll().
 Select(ToProductvm).ToList());

 [HttpGet]
 [Route("product/{productid}")]
 public IActionResult Get(string productId)
 {
 var productModel = _productRepository.GetBy(new Guid(productId));
 return new OkObjectResult(ToProductvm(productModel));
 }

 //Rest of code has been removed
 }
 }

We have completed our all the tasks that are required for web API creation. Now, we need to tweaks few things so that client can get information about our web APIs. So, in the upcoming sections, we will add Swagger to our web API documentation.

 Adding Swagger support

We are using Swagger in our API documentation. We will not dive into the details of Swagger here (for more information, refer to https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger).

Swagger is an open source and famous library that provides documentation for Web APIs. Refer to the official link, https://swagger.io/, for more information.

It is very easy to add documentation using Swagger. Follow these steps:

	Open NuGet Package Manager.

	Search for the Swashbuckle.AspNetCore package.

	Select the package and then install the package:

	It will install the following:

	Swashbuckle.AspNetCore

	Swashbuckle.AspNetCore.Swagger

	Swashbuckle.AspNetCore.SwaggerGen

	Swashbuckle.AspNetCore.SwaggerUI

This is shown in the following screenshot:

	Open the Startup.cs file, move to the ConfigureServices method, and add the following lines to register the Swagger generator:

services.AddSwaggerGen(swagger =>
{
 swagger.SwaggerDoc("v1", new Info
 { Title = "Product APIs", Version = "v1" });
});

	Next, in the Configure method, add the following code:

app.UseSwagger();
app.UseSwaggerUI(c =>
{
 c.SwaggerEndpoint("/swagger/v1/swagger.json",
 "My API V1");
});

	Press F5 and run the application; you'll get a default page.

	Open the Swagger documentation by adding swagger in the URL. So, the URL would be http://localhost:43552/swagger/:

The preceding image shows the Product API resources, and you can try these APIs from within the Swagger documentation page.

Finally, we have completed the transition of our monolith .NET application to microservices and discussed the step-by-step transition of ProductService. There are more steps to come for this application:

	How microservices communicate: This will be discussed in Chapter 3, Integration Techniques and Microservices

	How to test a microservice: This will be discussed in Chapter 4, Testing Microservices

	Deploying microservices: This will be discussed in Chapter 5, Deploying Microservices

	How can we make sure our microservices are secure, and monitoring our microservices: This will be discussed in Chapter 6, Securing Microservices, and Chapter 7, Monitoring Microservices

	How microservices are scaled: This will be discussed in Chapter 8, Scaling Microservices

 Summary

In this chapter, we discussed the different factors that can be used to identify and isolate microservices at a high level. We also discussed the various characteristics of a good service. When talking about DDD, we learned its importance in the context of microservices.

Furthermore, we analyzed how we can correctly achieve the vertical isolation of microservices through various parameters in detail. We tried to draw on our previous understanding of the challenges posed by a monolithic application and its solution in microservices, and we learned that we can use factors such as module interdependency, technology utilization, and team structure to identify seams and perform the transition from a monolithic architecture to microservices in an organized manner.

It became apparent that the database can pose a clear challenge in this process. However, we identified how we can still perform the process using a simple strategy and the possible approaches to do this. We then established that, with the foreign keys reduced/removed, the transactions can be handled in a completely different manner.

Moving on from a monolith to bounded contexts, we further applied our knowledge to transition the FlixOne application to a microservice architecture.

 Integration Techniques and Microservices

In the previous chapter, we developed microservices using a .NET monolithic application. These services are independent of each other and are located on different servers. What would be a better way to have inter-service communication, where one service interacts/communicates with the other? In this chapter, we will discuss the various patterns and methods that will help us foster this communication. We will cover the following topics:

	Communication between services

	Styles of collaboration

	Integration patterns

	The API gateway

	The event-driven pattern

	Azure Service Bus

 Communication between services

In the case of a .NET monolithic application, if there is a need to access third-party components or external services, we use the HTTP client or another client framework to access the resources. In Chapter 2, Implementing Microservices, we developed the Product service in such a way that it would work independently. But this was not the case; we mandatorily required a few services to interact with each other.

So this is a challenge—having services communicate with each other. Both the Product service and Order service are hosted on separate servers. Both these servers are independent of each other, are based on REST, and have their own endpoints via which they communicate with each other (when a service interacts with another service and vice versa, we refer to it as an inter-service communication as well).

There are ways in which services communicate with each other; let's discuss them briefly:

	Synchronous: In this case, the client makes a request to the remote service (called a service) for a specific functionality and waits until it gets the response:

In the preceding diagram (pictorial view, not complete), you can see our different microservices communicate with each other. All our services are RESTful. They are based on the ASP.NET Core Web API. In the upcoming section, we will discuss in detail how exactly a service is called. This is known as the synchronous method, where clients have to wait for a response from the service. In this case, the client had to wait until it got a complete response.

	Asynchronous: In this, clients make a request to the remote service (called a

service) for a specific functionality, and does not wait, although it does care about the response. We will discuss this in detail in the following sections.

 Styles of collaboration

In the preceding section, we discussed two different modes of how services intercommunicate. These modes are nothing but styles of collaborations, which are as follows:

	Request/response: In this case, the client sends a request and waits for the response from the server. This is an implementation of synchronous communication. But it is not true that request/response is only an implementation of synchronous communication; we can use it for asynchronous communication as well.

Let's consider an example to understand the concept. In Chapter 2, Implementing Microservices, we developed ProductService. This service has the GetProduct method, which is synchronous. The client has to wait for a response whenever it calls this method:

[HttpGet]
[Route("GetProduct")]
public IActionResult Get() =>
return new
OkObjectResult(_productRepository.GetAll().ToViewModel());

As per the preceding code snippet, whenever this method is called by the client (who is requesting this), they will have to wait for the response. In other words, they will have to wait until the ToViewModel() extension method is executed:

[HttpGet]
[Route("GetProductSync")]
public IActionResult GetIsStillSynchronous()
{
 var task = Task.Run(async() => await
 _productRepository.GetAllAsync());
 return new OkObjectResult(task.Result.ToViewModel());
}

In the preceding code snippet, we can see that our method is implemented in such a way that whenever a client makes a request, they will have to wait until the async method is executed. Here, we call async in the sync way.

To make our code short, we added extension methods to the already existing code written in Chapter 2, Implementing Microservices:

using System.Collections.Generic;
using System.Linq;
using FlixOne.BookStore.ProductService.Models;

namespace FlixOne.BookStore.ProductService.Helpers
{
 public static class Transpose
 {
 public static ProductViewModel ToViewModel(this Product
 product)
 {
 return new ProductViewModel
 {
 CategoryId = product.CategoryId,
 CategoryDescription = product.Category.Description,
 CategoryName = product.Category.Name,
 ProductDescription = product.Description,
 ProductId = product.Id,
 ProductImage = product.Image,
 ProductName = product.Name,
 ProductPrice = product.Price
 };
 }
 public static IEnumerable<ProductViewModel>
 ToViewModel(this IEnumerable<Product> products) =>
 products.Select(ToViewModel).ToList();
 }
}

To sum up, we can say that the collaboration style request/response does not mean that it can be implemented only synchronously; we can use asynchronous calls for this as well.

	Event-based: The implementation of this collaborative style is purely asynchronous. This is a method of implementation in which clients that emit an event do not know exactly how to react.

In the preceding section, we discussed ProductService in a synchronous manner. Let's look at an example of how users/customers can place an order; here is a pictorial overview of the functionality:

The preceding diagram shows that the process of purchasing a book has a few main functions:

	

	With the help of the search functionality, customers can find a specific book.

	After getting the results for the searched book, customers can view the details of the book.

	As soon as they proceed to Checkout, our system will make sure that the display (available books to purchase) shows the right quantity. For example, the available quantity is 10 copies of Microservices for .NET and the customer checks out with one book. In this case, the available quantity should now show nine copies.

	The system will generate an invoice for the purchased book and send it to the customer, to their registered email.

Conceptually, this looks easy; however, when we talk about implementing microservices, we are talking about services that are hosted separately and have their own REST API, database, and so on. This is now sounding more complex. There are many aspects involved, for example, how a service will call or invoke another service upon a successful response from one or more services. This is where the event-driven architecture comes into the picture:

In the preceding diagram, we can see that Invoice service and Product service are triggered when Order service is executed. These services further call internal asynchronous methods to complete their functionalities.

We are using Azure API management as our API gateway. In the upcoming sections, we will discuss this in detail.

 Integration patterns

Until now, we have discussed inter-service communication and have gone through the practical implementation of ProductService with the use of synchronous and asynchronous communication. We've also implemented microservices using different styles of collaboration. Our FlixOne bookstore (developed as per the microservice architectural style) required more interaction, therefore it required more patterns. In this section, we will discuss the implementation of various integration patterns required for our application.

The complete application of the FlixOne bookstore is available in Chapter 10, Creating a Complete Microservice Solution.

 The API gateway

In the Styles of collaboration section, we discussed two styles we can use to foster intercommunication between microservices. Our application is split into various microservices:

	Product service

	Order service

	Invoice service

	Customer service

In our FlixOne bookstore (user interface), we need to show a few details:

	Book title, author name, price, discount, and so on

	Availability

	Book reviews

	Book ratings

	Publisher ranking and so on

Before we check out the implementation, let's discuss the API gateway.

The API gateway is nothing but an implementation of Backend For Frontend (BFF). Sam Newman introduced this pattern. It acts as a proxy between client applications and services. In our example, we are using Azure API management as our API gateway.

It is responsible for the following functionalities:

	Accepting API calls and routing them to your backends

	Verifying API keys, JWT tokens, and certificates

	Supporting Auth through Azure AD and the OAuth 2.0 access token

	Enforcing usage quotas and rate limits

	Transforming your API on the fly without code modifications

	Caching backend responses wherever they are set up

	Logging call metadata for analytics purposes

Refer to Azure API management (https://social.technet.microsoft.com/wiki/contents/articles/31923.azure-create-and-deploy-asp-net-webapi-to-azure-and-manage-using-azure-api-management.aspx) to learn more about the process of setting up the API Azure portal and working with REST APIs.

In the preceding diagram, we have different clients, such as a mobile and desktop application and a web application, that are using microservices. Here, Azure API management is working as an API gateway.

Our client does not know the actual server in which our services are located. The API gateway provides them with the address of its own server, and internally, it authenticates the request from clients with the use of a valid Ocp-Apim-Subscription-Key.

Our ProductService has a REST API. Refer to the following table:

	
API resource

	
Description

	
GET /api/product

	
Gets a list of products

	GET /api/product{id}
	
Gets a product

	PUT /api/product{id}
	
Updates an existing product

	
DELETE /api/product{id}

	
Deletes an existing product

	POST /api/product
	
Adds a new product

We have already created ProductClient, a .NET console application. It makes a request to Azure API management bypassing the subscription key. Here is the code snippet for this:

namespace FlixOne.BookStore.ProductClient
{
 class Program
 {
 private const string ApiKey = "myAPI Key";
 private const string BaseUrl = "http://localhost:3097/api";
 static void Main(string[] args)
 {
 GetProductList("/product/GetProductAsync");
 //Console.WriteLine("Hit ENTER to exit...");
 Console.ReadLine();
 }
 private static async void GetProductList(string resource)
 {
 using (var client = new HttpClient())
 {
 var queryString =
 HttpUtility.ParseQueryString(string.Empty);

 client.DefaultRequestHeaders.Add("Ocp-Apim-Subscription-
 Key", ApiKey);

 var uri = $"{BaseUrl}{resource}?{queryString}";

 //Get asynchronous response for further usage
 var response = await client.GetAsync(uri);
 Console.WriteLine(response);
 }
 }
 }
 }

In the preceding code, our client is requesting a REST API to get all the products. Here a brief description of the terms that appear in the code:

	BaseUrl
	
This is the address of the proxy server.

	
Ocp-Apim-Subscription-Key

	
This is a key assigned by API management to a specific product the client has opted for.

	Resource
	
This is our API resource, which is configured over Azure API management. It will be different from our actual REST API resource.

	Response
	
This refers to the response to a specific request, in our case the default JSON format.

Since we're using Azure API management as an API gateway, there are certain benefits we'll enjoy:

	We can manage our various APIs from a single platform, for example, ProductService, OrderService, and other services can be easily managed and called by many clients

	Because we're using API management, it does not only provide us with a proxy server, but also provides the facility to create and maintain documentation for our APIs

	It provides a built-in facility to define various policies for quota, output formats, and format conversions, such as XML to JSON or vice versa

So, with the help of the API gateway, we can have access to some great features.

 The event-driven pattern

The microservice architecture has the database per service pattern, which means it has an independent database for every dependent or independent service:

	Dependent service: Our application would require a few external services (third- party services or components, and so on) and/or internal services (these are our own services) to work or function as expected. For instance, CHECKOUT-SERVICE requires CUSTOMER-SERVICE; also, CHECKOUT-SERVICE requires an external (third-party) service to verify a customer's identity (such as Aadhaar card ID in the case of Indian customers). Here, our CHECKOUT-SERVICE is a dependent service, as it requires two services (an internal service and external service) to function as expected. Dependent services do not work if any or all the services on which the service is dependent on do not work properly (there are a lot of reasons a service would not work, including network failure, unhandled exception, and so on).

	Independent service: In our application, we have services that do not require any other service to work properly. Services that do not need any other service to work in order to function are called independent services; these services can be self-hosted. Our CUSTOMER-SERVICE does not require any other service to function properly, but other services may or may not require this service.

The main challenge is to maintain business transactions to ensure data consistency across these services. For instance, when and how CUSTOMER-SERVICE would know that CHECKOUT-SERVICE has functioned; now it requires the functionality of CUSTOMER-SERVICE. There may be several services in an application (services may be self-hosted). In our case, when CHECKOUT-SERVICE is triggered and CUSTOMER-SERVICE is not invoked, then how will our application identify the customer’s details?

ASP.NET WebHooks can also be used for providing event notifications; refer to the WebHooks documentation for more information.

To overcome the related problems/challenges we've discussed (for CHECKOUT-SERVICE and CUSTOMER-SERVICE), we can use an event-driven pattern (or the eventual consistency approach) and use distributed transactions.

A document on MSDN (https://msdn.microsoft.com/en-us/library/windows/desktop/ms681205(v=vs.85).aspx) says the following:

A distributed transaction is a transaction that updates data on two or more networked computer systems. Distributed transactions extend the benefits of transactions to applications that must update distributed data. Implementing robust distributed applications is difficult because these applications are subject to multiple failures, including failure of the client, the server, and the network connection between the client and server. In the absence of distributed transactions, the application program itself must detect and recover from these failures.

The following diagram describes an actual implementation of the event-driven pattern in our application, where PRODUCT-SERVICE subscribes to the events and Event-Manager manages all the events:

In an event-driven pattern, we implement a service in such a way that it publishes an event whenever a service updates its data, and another service (dependent service) subscribes to this event. Now, whenever a dependent service receives an event, it updates its data. This way, our dependent services can get and update their data if required. The preceding diagram shows an overview of how services subscribe to and publish events. In the diagram, Event-Manager could be a program running on a service or a mediator helping you manage all the events of the subscribers and publishers.

It registers an event of the Publisher and notifies a Subscriber whenever a specific event occurs/is triggered. It also helps you to form a queue and wait for events. In our implementation, we will use Azure Service Bus queues for this activity.

Let's consider an example. In our application, this is how our services will publish and receive an event:

	CUSTOMER-SERVICE performs a few checks for the users, namely login check, customer details check, and so on; after these necessary checks are conducted, the service publishes an event called CustomerVerified.

	CHECKOUT-SERVICE receives this event and, after performing the necessary operations, it publishes an event called ReadyToCheckout.

	ORDER-SERVICE receives this event and updates the quantity.

	As soon as the checkout is performed, CHECKOUT-SERVICE publishes an event. Whatever result is received from the external service, either CheckedoutSuccess or CheckedoutFailed, it is used by CHECKOUT-SERVICE.

	When InventoryService receives these events, it updates the data to make sure the exact item is added or removed.

With the use of event-driven patterns, services can automatically update the database and publish an event.

 Event sourcing

This pattern helps us ensure that the service will publish an event whenever the state changes. In this pattern, we take a business entity (product, customer, and so on) as a sequence of state-changing events. The Event Store persists the events and these events are available for subscription or as other services. This pattern simplifies our tasks by avoiding the requirement to synchronize the data model and the business domain. It improves performance, scalability, and responsiveness.

	This simply defines an approach indicating how we can handle the various operations on our data by a sequence of events; these events are recorded in a store.

	An event represents a set of changes made to the data, for example, InvoiceCreated.

The preceding diagram describes how an event would work for ORDERSERVICE:

	The commands issue a book from the User Interface to be ordered

	ORDERSERVICE queries (from the Event Store) and populates the results with the CreateOrder event

	Then, the command handler raises an event to order the book

	Our service performs the related operations

	Finally, the system appends the event to the event store

 Eventual consistency

Eventual consistency is nothing but an implementation of the data consistency approach. This suggests implementation, so the system would be a scalable system with high availability.

A document on MSDN (https://msdn.microsoft.com/en-us/library/dn589800.aspx) says the following:

"Eventual consistency is unlikely to be specified as an explicit requirement of a distributed system. Instead it is often a result of implementing a system that must exhibit scalability and high availability, which precludes most common strategies for providing strong consistency."

According to this distributed data, stores are subject to the CAP theorem. The CAP theorem is also known as Brewer's theorem. Consistency, Availability, (network) Partition tolerance (CAP). According to this theorem, in a distributed system, we can only choose two out of these three:

	Consistency

	Availability

	Partition tolerance

 Compensating transactions

Compensating transactions provides a way to roll back or undo all the tasks performed in a series of steps. Suppose one or more services have implemented operations in a series and one or more of them have failed. What would be your next step then? Would you reverse all the steps or commit to a half-completed functionality?

In our case, in which a customer orders a book and ProductService marks the ordered book as sold temporarily, after the confirmation of the order, OrderService calls an external service for completing the payment process. If the payment fails, we would need to undo our previous tasks, which means we will have to check ProductService so it will mark the specific book as unsold.

 Competing consumers

Competing consumers provides a way to process messages for multiple concurrent consumers, so they receive these messages on the same channel. This application is meant for handling a large number of requests.

It can be implemented by passing a messaging system to another service (a consumer service), and it can be handled asynchronously, like so:

This scenario can be implemented with the use of Azure Service Bus queues.

 Azure Service Bus

In the event-driven pattern, we discussed services publishing and subscribing events. We used an Event-Manager to manage all the events. In this section, we will see how Azure Service Bus manages events and provides the facility to work with microservices.

Azure Service Bus is an information delivery service. It is used to make communication easier between two or more components/services. In our case, whenever services need to exchange information, they will communicate using this service. Azure Service Bus plays an important role here. There are two main types of service provided by Azure Service Bus:

	Brokered communication: This service can also be called hired service. It works similarly to the postal service in the real world. Whenever a person wants to send messages/information, he/she can send a letter to another person. In this way, one can send various types of messages in the form of letters, packages, gifts, and so on. This type of messaging service ensures delivery of a message even when both the sender and receiver are not online at the same time. This is a messaging platform with components such as queues, topics, subscriptions, and so on.

	Non-brokered communication: This is similar to making a phone call. In this case, the caller (sender) calls a person (receiver) without any confirmation indicating whether he/she will answer the call or not. In this way, the sender sends information, and it purely depends on the receiver to receive the communication and pass the message back to the sender.

Take a look at the following diagram:

The documentation on Microsoft Azure (https://docs.microsoft.com/en-us/azure/service-bus-messaging/service-bus-fundamentals-hybrid-solutions) says:

"Service Bus is a multi-tenant cloud service, which means that the service is shared by multiple users. Each user, such as an application developer, creates a namespace, then defines the communication mechanisms she needs within that namespace."

The preceding diagram is a pictorial view of Azure Service Bus and it depicts four different communication mechanisms. Everyone has their own taste in terms of which it connects application:

	Queues: These allow one-directional communication, and act as brokers.

	Topics: These provide one-directional communication where a single topic can have multiple subscriptions.

	Relays: These provide bi-directional communication. They do not store messages (as queues and topics do). Relays pass messages to the destination application.

 Azure queues

Azure queues are nothing but cloud storage accounts that use Azure Table. They provide a way to queue a message between applications. In the upcoming sections, we will implement message queues, which is part of Azure Service Bus.

 Implementing an Azure Service Bus queue

In this section, we will look at the actual implementation of an Azure Service Bus queue by creating the following:

	A Service Bus namespace

	A Service Bus messaging queue

	A console application to send a message to

	A console application to receive a message

 Prerequisites

We need the following to implement this solution:

	Visual Studio 2017 update 3 or later

	A valid Azure subscription

If you do not have an Azure subscription, you can get it for free by signing in here: https://azure.microsoft.com/en-us/free/.

If you have everything mentioned, you can start by following these steps:

	Log on to the Azure portal (https://portal.azure.com/).

	In the left navigation bar, click on Service Bus. If unavailable, you can find it by clicking on More Services.

	Click on Add:

	In the Create namespace dialog, enter a namespace, say, flixone. Select the pricing tier next: Basic, Standard, or Premium.

	Select your Subscription.

	Choose an existing resource or create a new one.

	Select the location where you want to host the namespace.

	Open a newly created namespace (we just created flixone).

	Now click on Shared access policies.

	Click on RootManageSharedAccessKey. Refer to the following screenshot:

	Click on Queues in the main dialog of the flixone namespace.

	From the Policy: RootManageSharedAccessKey window, note the primary key connection string for further use. Refer to the following screenshot:

	Click on Name to add a queue (say, flixonequeue), and click on Create (we're using REST values as default values). Refer to the following screenshot:

The preceding image is of Create Queue dialog. In the Create Queue dialog we can create a queue for example in above image we are creating a queue with the name of floxonequeue. Queues can be verified by visiting the Queues dialog.

Now we are ready to create our sender and receiver applications for messages.

 Sending messages to the queue

In this section, we will create a console application that will actually send messages to the queue. To create this application, follow these steps:

	Create a new console application and name it FlixOne.BookStore.MessageSender using Visual Studio's new project (C#) template:

	Add the NuGet package Microsoft Azure Service Bus by right-clicking on the project.

	Write the code to send the message to the queue, and your Program.cs file will contain the following MainAsync() method:

 private static async Task MainAsync()
 {
 const int numberOfMessagesToSend = 10;
 _client = new QueueClient(ConnectionString, QueueName);
 WriteLine("Starting...");
 await SendMessagesAsync(numberOfMessagesToSend);
 WriteLine("Ending...");
 WriteLine("Press any key...");
 ReadKey();
 await _client.CloseAsync();
 }

In the preceding code, we are creating our queue client by providing ConnectionString and QueueName that we have already set in our Azure portal. It calls the SendMessagesAsync() method that accepts a parameter containing the count of the number of messages needed to be sent.

	Create a SendMessagesAsync() method and add the following code:

private static async Task SendMessagesAsync(int numberOfMessagesToSend)
{
 try
 {
 for (var index = 0; index < numberOfMessagesToSend; index++)
 {
 var customMessage = $"#{index}:
 A message from FlixOne.BookStore.MessageSender.";
 var message = new
 Message(Encoding.UTF8.GetBytes(customMessage));
 WriteLine($"Sending message: {customMessage}");
 await _client.SendAsync(message);
 }
 }
 catch (Exception exception)
 {
 WriteLine($"Weird! It's exception with message:
 {exception.Message}");
 }
}

	Run the program and wait for a while. You will get the following:

	Go to the Azure portal and then go to the created queue to check whether it displays a message. The below image is showing overview of flixonequeue where we can see Active Message Count etc.

 Adding configuration settings

In the previous example, we used constant values for both ConnectionString and QueueName. If we need to change these settings, we have to make changes to the code. But why should we make code changes for this small change? To overcome this situation, we have configuration settings. You can learn more about configuration at https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration. In this section, we will add configurations with the help of the IConfigurationRoot of the Microsoft.Extensions.Configuration namespace.

	First of all, right-click on the project and click on Manage NuGet packages. Search for the Microsoft.Extensions.Configuration NuGet package. Refer to the following screenshot:

	Now, locate and search for the Microsoft.Extensions.Configuration.Json NuGet package. Refer to the following screenshot:

	Add the following ConfigureBuilder() method to the Program.cs file:

private static IConfigurationRoot ConfigureBuilder()
{
 return new ConfigurationBuilder()
 .SetBasePath(Directory.GetCurrentDirectory())
 .AddJsonFile("appsettings.json")
 .Build();
}

	Now, add the appsettings.json file to the project, and the following properties:

{
 "connectionstring":
 "Endpoint=sb://flixone.servicebus.windows.net/;
 SharedAccessKeyName=
 RootManageSharedAccessKey;SharedAccessKey=
 BvQQcB5FhNxidcgEhhpuGmi/
 XEqvGho9GmHH4yjsTg4=",
 "QueueName": "flixonequeue"
}

	Add the following code to the main() method:

var builder = ConfigureBuilder();
_connectionString = builder["connectionstring"];
_queuename = builder["queuename"];

After adding the preceding code, we added a way to get the connectionstring and queuename from the .json file. Now, if we need to change any of these fields, we do not need to make changes to the code files.

 Receiving messages from the queue

In this section, we will create a console application that will receive messages from the queue. To create this application, follow these steps:

	Create a new console application (C#) and name it FlixOne.BookStore.MessageReceiver.

	Add the NuGet package for Azure Service Bus (as added in the previous application).

	Write the code to receive messages from the Azure Bus Service queue, so your program.cs file contains the method ProcessMessagesAsync():

 static async Task ProcessMessagesAsync(Message message,
 CancellationToken token)
 {
 WriteLine($"Received message: #
 {message.SystemProperties.SequenceNumber}
 Body:{Encoding.UTF8.GetString(message.Body)}");
 await _client.CompleteAsync
 (message.SystemProperties.LockToken);
 }

	Run the application and look at the result. Refer to the following screenshot:

	The console window will display the message and its ID. Now, go to the Azure portal and verify the message. It should be zero. Refer to the following screenshot:

The preceding example demonstrates how we can use the Azure Bus Service to send/receive messages for our microservices.

 Summary

Inter-service communication is possible with synchronous or asynchronous communication, which are styles of collaboration. Microservices should have asynchronous APIs. The API gateway is a proxy server that provides a way to allow various clients to interact with APIs. API management, as an API gateway, provides plenty of features to manage/host various RESTful APIs. There are various patterns that help us communicate with microservices. With the use of Azure Bus Service, we can easily manage and play with inter-service communication using the Azure Bus Service message queue; services can easily send or receive messages between themselves through this. Eventual consistency talks about scalable systems with high scalability, and it is proven by the CAP theorem.

In the next chapter, we will discuss various testing strategies to test an application and build on the microservice architectural style.

 Testing Microservices

Quality assurance, or testing, is a great way to assess a system, program, or an application with different aspects. Sometimes, a system requires testing to identify erroneous code, on other occasions we may need it to assess our system's business compliance. Testing can vary from system to system and can be considerably different depending on the architectural style of the application. Everything depends on how we are strategizing our testing approach or plan. For example, testing a monolith .NET application is different to testing SOA or microservices. In this chapter, we will cover these topics:

	How to test microservices

	Handling challenges

	Testing strategies

	The testing pyramid

	Types of microservice tests

 How to test microservices

Testing microservices can be a challenging job, as it is different from how we test applications built using the traditional architectural style. Testing a .NET monolithic application is a bit easier than testing a microservice, which provides implementation independence and short delivery cycles.

Let's understand it in the context of our .NET monolithic application, where we did not utilize continuous integration and deployment. It becomes more complex when testing is combined with continuous integration and deployment. For microservices, we are required to understand the tests for every service and how these tests differ from each other. Also, note that automated testing does not mean that we will not perform any manual testing at all.

Here are a few things that make microservice testing a complex and challenging task:

	Microservices might have multiple services that work together or individually for an enterprise system, so they can be complex.

	Microservices are meant to target multiple clients; hence, they involve more complex use cases.

	Each component/service of the microservice architectural style is isolated and independent, so it is a bit complex to test them as they need to be tested individually and as a complete system.

	There might be independent teams working on separate components/services that might be required to interact with each other. Therefore, tests should cover not only internal services but also external services. This makes the job of testing microservices more challenging and complex.

	Each component/service in a microservice is designed to work independently, but they might have to access common/shared data where each service is responsible for modifying its own database. So, testing microservices is going to be more complex as services need to access data using API calls to other services, which further adds dependencies to other services. This type of testing will have to be handled using mock tests.

 Handling challenges

In the previous section, we discussed how testing a microservice is a complex and challenging job. In this section, we will discuss some points that will indicate how conducting various tests could help us overcome these challenges:

	A unit test framework, such as Microsoft Unit Testing Framework, provides a facility to test individual operations of independent components. To ensure that all the tests pass and that a new functionality or change does not break anything (if any functionality breaks down, then the related unit test would fail), these tests can be run on every compilation of code.

	To make sure that responses are consistent with the expectations of the clients or consumers, consumer-driven contract testing can be used.

	Services use data from an external party or from other services, and they can be tested by setting up the endpoint of the services that are responsible for handling the data. Then we can use a mocking framework or library such as moq to mock these endpoints during the integration process.

 Testing strategies (testing approach)

As mentioned in the Prerequisites section of Chapter 1, An Introduction to Microservices, deployment and QA requirements can become more demanding. The only way to effectively handle this scenario would be through preemptive planning. I have always favored the inclusion of the QA team during the early requirement gathering and design phase. In the case of microservices, it becomes a necessity to have a close collaboration between the architecture group and the QA group. Not only will the QA team's input be helpful, but they will be able to draw up a strategy to test the microservices effectively.

Test strategies are merely a map or outlined plan that describes the complete approach of testing.

Different systems require different testing approaches. It is not possible to implement a pure testing approach to a system that is developed using a newer approach rather than the earlier developed system. Testing strategies should be clear to everyone so that the created tests can help non-technical members of the team (such as stakeholders) understand how the system is working. Such tests can be automated, simply testing the business flow, or they could be manual tests, which can be simply performed by a user working on the User Acceptance Testing system.

Testing strategies or approaches have the following techniques:

	Proactive: This is a kind of early approach and tries to fix defects before the build is created from the initial test designs

	Reactive: In this approach, testing is started once coding is completed

 Testing pyramid

The testing pyramid is a strategy or a way to define what you should test in microservices. In other words, we can say it helps us define the testing scope of microservices. The concept of the testing pyramid was originated by Mike Cohn (http://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid) in 2009. There are various flavors of the testing pyramid; different authors have described this by indicating how they had placed or prioritized their testing scope. The following image depicts the same concept that was defined by Mike Cohn:

The Testing pyramid showcases how a well-designed test strategy is structured. When we look closely at it, we can easily see how we should follow the testing approach for microservices (note that the testing pyramid is not specific to microservices). Let's start from the bottom of this pyramid. We can see that the testing scope is limited to the use of Unit tests. As soon as we move to the top, our testing scope is expanded into a broader scope where we can perform complete system testing.

Let's talk about these layers in detail (bottom-to-top approach):

	Unit tests: These are tests that test small functionalities of an application based on the microservice architectural style

	Service tests: These are tests that test an independent service or a service that communicates with another/external service

	System tests: These are tests that help in testing an entire system with an aspect of the user interface. These are end-to-end tests

One interesting point in this concept is that the top-layered tests, that is, system tests, are slow and expensive to write and maintain. On the other hand, the bottom-layered tests, that is, unit tests, are comparatively fast and less expensive.

In the upcoming sections, we will discuss these tests in detail.

 Types of microservice tests

In the previous section, we discussed test approaches or testing strategies. These strategies decide how we will proceed with the testing of the system. In this section, we will discuss various types of microservice testing.

 Unit testing

Unit tests are tests that typically test a single function call to ensure that the smallest piece of the program is tested. So these tests are meant to verify specific functionality without considering other components:

	Testing will be more complex when components are broken down into small, independent pieces that are supposed to be tested independently. Here, testing strategies come in handy and ensure that the best quality assurance of a system will be performed. It adds more power when it comes with the Test-Driven Development (TDD) approach. We will discuss this with the help of an example in Unit tests which is a sub-section of Tests in Action.

You can learn and practice TDD with the help of Katas at https://github.com/garora/TDD-Katas

	Unit tests can be of any size; there is no definite size for a unit test. Generally, these tests are written at the class level.

	Smaller unit tests are good for testing every possible functionality of a complex system.

 Component (service) testing

Component or service testing is a method where we bypass the UI and directly test the API (in our case, the ASP.NET Core Web API). Using this test, we confirm that an individual service does not have any code bugs and that it is working fine functionality-wise.

Testing a service does not mean it is an independent service. This service might be interacting with an external service. In such a scenario, we should not call the actual service but use the mock and stub approach. The reason for this is our motto: to test code and make sure it is bug-free. In our case, we will use the moq framework for mocking our services.

There are a few things worth noting for component or service testing:

	As we need to verify the functionality of the services, these kinds of tests should be small and fast

	With the help of mocking, we don't need to deal with the actual database; therefore, test execution time is less or nominally higher

	The scope of these tests is broader than unit tests

 Integration testing

In unit testing, we test a single unit of code. In component or service testing, we test mock services depending on an external or third-party component. But integration testing in microservices can be a bit challenging, as in this type of testing we test components that work together. Service calls here should be made that integrate with external services. In this test strategy, we make sure that the system is working together correctly and the behavior of services is as expected. In our case, we have various microservices and some of them depend upon external services.

For example, StockService depends upon OrderService in a way that a particular number of items is reduced from the stock as soon as the customer successfully orders that specific item. In this scenario, when we test StockService, we should mock OrderService. Our motto should be to test StockService and not communicate with OrderService. We do not test the database of any service directly.

 Contract testing

Contract testing is an approach where each service call independently verifies the response. If any service is dependent then dependencies are stubbed. This way, the service functions without interacting with any other service. This is an integration test that allows us to check the contract of external services. Here we come to a concept called the consumer-driven contract (we will discuss this in detail in the following section).

For example, CustomerService allows new customers to register with the FlixOne Store. We do not store new customers' data in our database. We verify customer data before this to check for blacklisting or fraud user listing and so on. This process calls an external service that is maintained by another team or entirely by a third-party. Out tests will still pass if someone changes the contract of this external service because this change would not affect our test, as we stubbed the contract of this external service.

 Consumer-driven contracts

In microservices, we have several services that are independent or services that require communication with each other. Apart from this, from a user's (here, the user is a developer, who is consuming the API being referred to) point of view, they know about the service and whether it has, or doesn't have, several clients/consumers/users. These clients can have the same or different needs.

Consumer-driven contracts refer to a pattern that specifies and verifies all the interactions between clients/consumers and the API owner (application). So here, consumer-driven means that the client/consumer specifies what kind of interactions it is asking for with the defined format. On the other hand, the API owner (application services) must then agree to these contracts and ensure that they are not breaking them:

These are the contracts:

	Provider contract: This is merely a complete description of the service provided by the API owner (application). Swagger's documentation can be used for our REST API (web API).

	Consumer contract: This is a description of how consumers/clients are going to utilize the provider contract.

	Consumer-driven contract: This is a description of how the API owner satisfies consumer/client contracts.

 How to implement a consumer-driven test

In the case of microservices, it's a bit more challenging to implement a consumer-driven test than for a .NET monolithic application. This is because, in monolithic applications, we can directly use any unit test framework, such as MS tests or NUnit, but we can't do this directly in the microservice architecture. In microservices, we would need to mock not only method calls but also the services themselves, which get called via either HTTP or HTTPs.

To implement a consumer-driven test, there are tools available that will help. One famous open source tool for a .NET framework is PactNet (https://github.com/SEEK-Jobs/pact-net) and another for .NET Core is Pact.Net Core (https://github.com/garora/pact-net-core). These are based on Pact (https://docs.pact.io/) standards. We will see consumer-driven contract testing in action at the end of this chapter.

 How Pact-net-core helps us achieve our goal

In a consumer-driven test, our goal is to make sure that we are able to test all the services, internal components, and services that depend on or communicate with other/external services.

Pact-net-core is written in a way that guarantees the contracts would be met. Here are a few points on how it helps us to achieve our goal:

	The execution is very fast

	It helps identify failure causes

	The main thing is that Pact does not require a separate environment to manage automation test integration

There are two steps for working with Pact:

	Defining expectations: In the very first step, the consumer team has to define the contract. In the preceding image, Pact helps record the consumer contract, which will be verified when replayed:

	Verifying expectations: As part of the next step, the contract is provided to the provider team and then the provider service is implemented to fulfill the same. In the following image, we are showing the replaying of a contract on the provider side to fulfill the defined contract:

We have gone through consumer-driven contracts; they mitigate the challenges of microservice architectures with the help of an open source tool called Pact-net.

 Performance testing

This is non-functional testing, and its main motto is not to verify the code or test the code's health. This is meant to ensure that the system is performing well, based on the various measures, namely scalability, reliability, and so on.

The following are the different techniques or types of performance testing:

	Load testing: This is a process where we test the behavior of the system under various circumstances of a specific load. It also covers critical transactions, database load, application servers, and so on.

	Stress testing: This is an approach where the system goes under regress testing and finds the upper limit capacity of the system. It also determines how a system behaves in this critical situation, when the current load goes above the expected maximum load.

	Soak testing: This is also called endurance testing. In this test, the main purpose is to monitor memory utilization, memory leaks, or various factors that affect the system performance.

	Spike testing: This is an approach where we make sure that the system is able to sustain the workload. One of the best tasks to determine performance is by suddenly increasing the user load.

 End-to-end (UI/functional) testing

End-to-end, UI, or functional tests are those that are performed for the entire system, including the entire service and database. These tests increase the scope of testing. It is the highest level of testing, includes frontend integration, and tests the system as an end user would use it. This testing is similar to how an end user would work on the system.

 Sociable versus isolated unit tests

Sociable unit tests are those that contain concrete collaborators and cross boundaries. They are not solitary tests. Solitary tests are those that ensure that the methods of a class are tested. Sociable testing is not new. This word is explained in detail by Martin Fowler as a unit test (https://martinfowler.com/bliki/UnitTest.html):

	Sociable tests: This is a test that lets us know the application is working as expected. This is the environment where other applications behave correctly, run smoothly, and produce the expected results. It also, somehow, tests the functioning of new functions/methods, including other software for the same environment. Sociable tests resemble system testing because these tests behave like system tests.

	Isolated unit tests: As the name suggests, you can use these tests to perform unit testing in an isolated way by performing stubbing and mocking. We can perform unit testing with a concrete class using stubs.

 Stubs and mocks

Stubs are returned, canned responses to calls made during the test; mocks are meant to set expectations:

	Stubs: In a stubs object, we always get a valid stubbed response. The response doesn’t care what input you provide. In any circumstance, the output will be the same.

	Mocks: In a mock object, we can test or validate methods that can be called on mocked objects. This is a fake object that validates whether a unit test has failed or passed. In other words, we can say that mock objects are just a replica of our actual object. In the following code, we use the moq framework to implement a mocked object:

 [Fact]
 public void Get_Returns_ActionResults()
 {
 // Arrange
 var mockRepo = new Mock<IProductRepository>();
 mockRepo.Setup(repo => repo.GetAll().
 ToViewModel()).Returns(GetProducts());
 var controller = new ProductController(mockRepo.Object);
 // Act
 var result = controller.Get();
 // Assert
 var viewResult = Assert.IsType<OkObjectResult>(result);
 var model = Assert.IsAssignableFrom<
 IEnumerable<ProductViewModel>>(viewResult.Value);
 Assert.Equal(2, model.Count());
 }

In the preceding code example, we mocked our IProductRepository repository and verified the mocked result.

In the upcoming sections, we will understand these terms in more detail, using more code examples from our FlixOne bookstore application.

 Tests in action

So far, we have discussed test strategies and various types of microservice tests. We've also discussed how to test and what to test. In this section, we will see tests in action; we will implement tests with the use of the following:

	Visual Studio 2017 Update 3 or later

	.NET Core 2.0

	C# 7.0

	ASP.NET Core 2.0

	xUnit and MS tests

	The moq framework

 Getting ready for the test project

We will test our microservice application: FlixOne bookstore. With the help of code examples, we will see how to perform unit tests, stubbing, and mocking.

We created the FlixOne bookstore application in Chapter 2, Implementing Microservices.

Before we start writing tests, we should set up a test project in our existing application. There are a few simple steps we can take with this test project setup:

	From Solution Explorer within Using Visual Studio, right-click on Solution and click New Project—refer to the following screenshot:

	From the Add New Project template select .NET Core and xUnit Test Project (.NET Core), and provide a meaningful name, for example, FlixOne.BookStore.ProductService.UnitTests:

	Go to project Properties, by right-clicking on the project name from Solution Explorer. Open the Build tab from the Properties page and click on Advance and select C# 7.0 as Language version:

Our project structure should look like this:

 Unit tests

In ProductService, let's make sure our service returns product data without failure by testing it. Here we will use fake objects to do so, follow these steps:

	Add a new folder and name it Fake in the FlixOne.BookStore.ProductService.UnitTests project.

	Under the Fake folder add the ProductData.cs class and add the following code:

public class ProductData
{
 public IEnumerable<ProductViewModel> GetProducts()
 {
 var productVm = new List<ProductViewModel>
 {
 new ProductViewModel
 {
 CategoryId = Guid.NewGuid(),
 CategoryDescription = "Category Description",
 CategoryName = "Category Name",
 ProductDescription = "Product Description",
 ProductId = Guid.NewGuid(),
 ProductImage = "Image full path",
 ProductName = "Product Name",
 ProductPrice = 112M
 },
 new ProductViewModel
 {
 CategoryId = Guid.NewGuid(),
 CategoryDescription = "Category Description-01",
 CategoryName = "Category Name-01",
 ProductDescription = "Product Description-01",
 ProductId = Guid.NewGuid(),
 ProductImage = "Image full path",
 ProductName = "Product Name-01",
 ProductPrice = 12M
 }
 };
 return productVm;
 }
 public IEnumerable<Product> GetProductList()
 {
 return new List<Product>
 {
 new Product
 {
 Category = new Category(),
 CategoryId = Guid.NewGuid(),
 Description = "Product Description-01",
 Id = Guid.NewGuid(),
 Image = "image full path",
 Name = "Product Name-01",
 Price = 12M
 },
 new Product
 {
 Category = new Category(),
 CategoryId = Guid.NewGuid(),
 Description = "Product Description-02",
 Id = Guid.NewGuid(),
 Image = "image full path",
 Name = "Product Name-02",
 Price = 125M
 }
 };
 }
}

In the previous code snippet, we are creating fake data by creating two lists of ProductViewModel and Product.

	Add the Services folder in the FlixOne.BookStore.ProductService.UnitTests project.

	Under the Services folder add the ProductTests.cs class.

	Open NuGet Manager and then search for and add moq, refer to the following screenshot:

	Add the following code to the ProductTests.cs class:

public class ProductTests
{
 [Fact]
 public void Get_Returns_ActionResults()
 {
 // Arrange
 var mockRepo = new Mock<IProductRepository>();
 mockRepo.Setup(repo => repo.GetAll()).
 Returns(new ProductData().GetProductList());
 var controller = new ProductController(mockRepo.Object);
 // Act
 var result = controller.GetList();
 // Assert
 var viewResult = Assert.IsType<OkObjectResult>(result);
 var model = Assert.IsAssignableFrom<IEnumerable<
 ProductViewModel>>(viewResult.Value);
 Assert.NotNull(model);
 Assert.Equal(2, model.Count());
 }
}

In the preceding code example, which is a unit test example, we are mocking our repository and testing the output of our WebAPI controller. This test is based on the AAA technique; it will be passed if you meet the mocked data during setup.

 Integration tests

In ProductService, let's make sure that our service returns the product data without failure. Before we proceed, we have to add a new project and subsequent test classes, follow these steps:

	Right click on Solution and then Add Project.

	
From the Add New Project window, select XUnit Test Project (.NET Core) and provide a meaningful name, for example, FlixOne.BookStore.ProductService.IntegrationTests. Refer to the following screenshot:

	Add the appsettings.json file and add the following to it:

 {
 "ConnectionStrings":
 {
 "ProductConnection": "Data Source=.;Initial
 Catalog=ProductsDB;Integrated
 Security=True;MultipleActiveResultSets=True"
 },
 "buildOptions":
 {
 "copyToOutput":
 {
 "include": ["appsettings.json"]
 }
 }
 }

	Open the Startup.cs file of the FlixOne.BookStore.ProductService project.

	Now make the ConfigureServices and Configure methods void. This is so we can override these methods in our TestStartup.cs class. These methods would look as follows:

public virtual void ConfigureServices(IServiceCollection services)
{
 services.AddTransient<IProductRepository,
 ProductRepository>();
 services.AddDbContext<ProductContext>(
 o => o.UseSqlServer(Configuration.
 GetConnectionString("ProductConnection")));
 services.AddMvc();
 //Code ommited
}
public virtual void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 }
 else
 {
 app.UseExceptionHandler("/Home/Error");
 }
 app.UseStaticFiles();
 app.UseMvc(routes =>
 {
 routes.MapRoute(name: "default",
 template: "{controller=Home}/{action=
 Index}/{id?}");
 });
 // Enable middleware to serve generated Swagger
 as a JSON endpoint.app.UseSwagger();
 // Enable middleware to serve swagger-ui (HTML, JS,
 CSS, etc.), specifying the Swagger JSON endpoint.
 app.UseSwaggerUI(c =>
 {
 c.SwaggerEndpoint("/swagger/v1/swagger.json",
 "Product API V1");
 });
}

	Add a new folder called Services.

	Add the TestStartup.cs class.

	Open NuGet Manager. Search and add the Microsoft.AspNetCore.TestHost package. Refer to the following screenshot:

	Add the following code to TestStartup.cs:

public class TestStartup : Startup
{
 public TestStartup(IConfiguration
 configuration) : base(configuration)
 { }
 public override void ConfigureServices
 (IServiceCollection services)
 {
 //mock context
 services.AddDbContext<ProductContext>(
 o => o.UseSqlServer(Configuration.
 GetConnectionString("ProductConnection")));
 services.AddMvc();
 }
 public override void Configure(IApplicationBuilder
 app, IHostingEnvironment env)
 { }
}

	Under the Services folder, add a new ProductTest.cs class and add the following code to this class:

public class ProductTest
{
 public ProductTest()
 {
 // Arrange
 var webHostBuilder = new WebHostBuilder()
 .UseStartup<TestStartup>();
 var server = new TestServer(webHostBuilder);
 _client = server.CreateClient();
 }
 private readonly HttpClient _client;
 [Fact]
 public async Task ReturnProductList()
 {
 // Act
 var response = await _client.GetAsync
 ("api/product/productlist"); //change per //setting
 response.EnsureSuccessStatusCode();
 var responseString = await response.Content.
 ReadAsStringAsync();
 // Assert
 Assert.NotEmpty(responseString);
 }
}

In the preceding code example, we are checking a simple test. We are trying to verify the response of a service by setting up a client with the use of HttpClient. The test will fail if the response goes empty.

 Consumer-driven contract tests

In the previous section, Contract testing, we discussed things in detail. In this section, we will see how we can implement consumer-driven contract tests with the help of pact-net-core.

We will use our existing FlixOne.BookStore.ProductService project, which contains all our APIs. Our FlixOne.BookStore.ProductService project contains provider tests that let you create a provider scenario, and our client project that actually consumes the services, makes a call, and tests the contract.

To get started you should install the NuGet package. Execute Install-Package PactNet.Windows using the package console.

As per Pact specification (already discussed in a previous section, Contract testing), the client will create a contract called consumer contract (a .json file). We have written the following code to generate our contract:

public class ConsumerProductApi : IDisposable
{
 public ConsumerProductApi()
 {
 PactBuilder = new PactBuilder(new PactConfig
 {
 SpecificationVersion = Constant.SpecificationVersion,
 LogDir = Helper.SpecifyDirectory(Constant.LogDir),
 PactDir = Helper.SpecifyDirectory(Constant.PactDir)
 })
 .ServiceConsumer(Constant.ConsumerName)
 .HasPactWith(Constant.ProviderName);
 MockProviderService = PactBuilder.MockService
 (Constant.Port, Constant.EnableSsl);
 }
 public IPactBuilder PactBuilder { get; }
 public IMockProviderService MockProviderService { get; }
 public string ServiceBaseUri => $"http://localhost:{Constant.Port}";
 public void Dispose()
 {
 PactBuilder.Build();
 }
}

In the preceding code, we are building a contract. In addition to that, we mocked our client tests. See the following code snippet:

[Fact]
public void WhenApiIsUp_ReturnsTrue()
{
 //Arrange
 _mockProviderService.UponReceiving("a request to
 check the api status")
 .With(new ProviderServiceRequest
 {
 Method = HttpVerb.Get,
 Headers = new Dictionary<string, object> { { "Accept",
 "application/json" } },
 Path = "/echo/status"
 })
 .WillRespondWith(new ProviderServiceResponse
 {
 Status = 200,
 Headers = new Dictionary<string, object> { {
 "Content-Type", "application/json; charset=utf-8" } },
 Body = new
 {
 up = true,
 upSince = DateTime.UtcNow,
 version = "2.0.0",
 message = "I'm up and running from last 19 hours."
 }
 });
 var consumer = new ProductApiClient(_serviceBaseUri);
 //Act
 var result = consumer.ApiStatus().Up;
 //Assert
 Assert.True(result);
 _mockProviderService.VerifyInteractions();
}

Our code will create the consumer contract as shown in the following:

{
 "consumer":
 {
 "name": "Product API Consumer"
 },
 "provider":
 {
 "name": "Product API"
 },
 "interactions":
 [
 {
 "description": "a request to check the api status",
 "request":
 {
 "method": "get",
 "path": "/echo/status",
 "headers":
 {
 "Accept": "application/json"
 }
 },
 "response":
 {
 "status": 200,
 "headers":
 {
 "Content-Type": "application/json; charset=utf-8"
 },
 "body":
 {
 "up": true,
 "upSince": "2017-11-06T00:52:01.3164539Z",
 "version": "2.0.0",
 "message": "I'm up and running from last 19 hours."
 }
 }
 }
],
 "metadata":
 {
 "pactSpecification":
 {
 "version": "2.0.0"
 }
 }
}

Once the consumer-driven contract is created, it should adhere to a provider, so we need to write the APIs accordingly (we are using our existing product API). The following is the code snippet for a provider:

//Arrange
const string serviceUri = "http://localhost:13607";
var config = new PactVerifierConfig
{
 Outputters = new List<IOutput>
 {
 new CustomOutput(_output)
 }
};
//code omitted

We have created a web API and a test to verify consumer-driven contracts and finally testing it from a client's perspective.

 Summary

Testing microservices is a bit different from applications built on the traditional architectural style. In a .NET monolithic application, testing is a bit easier compared to microservices, and it provides implementation independence and short delivery cycles. Microservices face challenges while performing the testing. With the help of the testing pyramid concept, we can strategize our testing procedures. Referring to the testing pyramid, we can easily see that unit tests provide the facility to test a small function of a class and are less time-consuming. On the other hand, the top layer of the testing pyramid enters a large scope with system or end-to-end testing, and these tests are time-consuming and very expensive. Consumer-driven contracts are a very useful way to test microservices. Pact-net is an open source tool meant for this. Finally, we went through the actual test implementation.

In the next chapter, we will see how to deploy a microservice application. We will discuss continuation integration and continuation deployment in detail.

 Deploying Microservices

Both monolith and microservice architectural styles come with different deployment challenges. In the case of .NET monolithic applications, more often, deployments are a flavor of Xcopy deployments. Microservice deployments present a different set of challenges. Continuous integration and continuous deployment are the key practices when delivering microservice applications. Also, container technologies and toolchain technology, which promise greater isolation boundaries, are essential for microservice deployment and scaling.

In this chapter, we will discuss the fundamentals of microservice deployment and the influence of emerging practices, such as CI/CD tools and containers, on microservice deployment. We will also walk through the deployment of a simple .NET Core service in a Docker container.

By the end of the chapter, you will have an understanding of the following topics:

	Deployment terminology

	What are the factors for successful microservice deployments?

	What is continuous integration and continuous deployment?

	Isolation requirements for microservice deployment

	Containerization technology and its need for microservice deployment

	Quick introduction to Docker

	How to package an application as a Docker container using Visual Studio

Before proceeding further, we should first learn why we are talking about the deployment of microservices. The deployment cycle is one that has a specific flow.

 Monolithic application deployment challenges

Monolithic applications are applications where all of the database and business logic is tied together and packaged as a single system. Since, in general, monolithic applications are deployed as a single package, deployments are somewhat simple but painful due to the following reasons:

	Deployment and release as a single concept: There is no differentiation between deploying build artifacts and actually making features available to the end user. More often, releases are coupled to their environment. This increases the risk of deploying new features.

	All or nothing deployment: All or nothing deployment increases the risk of application downtime and failure. In the case of rollbacks, teams fail to deliver expected new features and hotfixes or service packs have to be released to deliver the right kind of functionality.

A Hotfix, also known as a Quickfix, is a single or cumulative package (generally called a patch). It contains fixes for issues/bugs found in production that must be fixed before the next major release.

	Central databases as a single point of failure: In monolithic applications, a big, centralized database is a single point of failure. This database is often quite large and difficult to break down. This results in an increase in mean time to recover (MTTR) and mean time between failures (MTBF).

	Deployment and releases are big events: Due to small changes in the application, the entire application could get deployed. This comes with a huge time and energy investment for developers and ops teams. Needless to say, a collaboration between the various teams involved is the key to a successful release. This becomes even harder when many teams spread globally are working on the development and release. These kinds of deployments/releases need a lot of hand-holding and manual steps. This impacts end customers who have to face application downtime. If you are familiar with these kinds of deployments, then you'll also be familiar with marathon sessions in the so-called war rooms and endless sessions of defect triage on conference bridges.

	Time to market: Carrying out any changes to the system in such cases becomes harder. In such environments, executing any business change takes time. This makes responding to market forces difficult—the business can also lose its market share. With microservice architecture, we are addressing some of these challenges. This architecture provides greater flexibility and isolation for service deployment. It has proven to deliver much faster turnaround time and much-needed business agility.

 Understanding the deployment terminology

Microservices deployment terminology simply includes steps that start with code changes till release. In this section, we will discuss all these steps of deployment terminology as follows:

	Build: In the build stage, the service source gets compiled without any errors along with the passing of all corresponding unit tests. This stage produces build artifacts.

	Continuous Integration (CI): CI forces the entire application to build again every time a developer commits any change—the application code gets compiled and a comprehensive set of automated tests are run against it. This practice emerged from the problems of frequent integration of code in large teams. The basic idea is to keep the delta, or change to the software, small. This provides confidence that the software is in a workable state. Even if a check-in made by a developer breaks the system, it is easy to fix it this way.

	Deployment: Hardware provisioning and installing the base OS and correct version of the .NET framework are prerequisites for deployment. The next part of it is to promote these build artifacts in production through various stages. The combination of these two parts is referred to as the deployment stage. There is no distinction between the deployment and release stage in most monolithic applications.

	Continuous Deployment (CD): In CD, each successful build gets deployed to production. CD is more important from a technical team's perspective. Under CD, there are several other practices, such as automated unit testing, labeling, versioning of build numbers, and traceability of changes. With continuous delivery, the technical team ensures that the changes pushed to production through various lower environments work as expected in production. Usually, these are small and deployed very quickly.

	Continuous delivery: Continuous delivery is different from CD. CD comes from a technical team's perspective, whereas continuous delivery is more focused on providing the deployed code as early as possible to the customer. To make sure that customers get the right defect-free product, in continuous delivery, every build must pass through all the quality assurance checks. Once the product passes the satisfactory quality verification, it is the business stakeholders' decision when to release it.

	Build and deployment pipelines: The build and deployment pipeline is part of implementing continuous delivery through automation. It is a workflow of steps through which the code is committed in the source repository. At the other end of the deployment pipeline, the artifacts for release are produced. Some of the steps that may make up the build and deployment pipeline are as follows:

	Unit tests

	Integration tests

	Code coverage and static analysis

	Regression tests

	Deployments to staging environment

	Load/stress tests

	Deployment to release repository

	Release: A business feature made available to the end user is referred to as the release of a feature. To release a feature or service, the relevant build artifacts should be deployed beforehand. Usually, the feature toggle manages the release of a feature. If the feature flag (also called feature toggle) is not switched on in production, it is called a dark release of the specified feature.

 Prerequisites for successful microservice deployments

Any architectural style comes with a set of associated patterns and practices to follow. The microservice architectural style is no different. Microservice implementation has more chances of being successful with the adoption of the following practices:

	Self-sufficient teams: Amazon, who is a pioneer of SOA and microservice architectures, follow the Two Pizza Teams paradigm. This means usually a microservice team will have no more than 7-10 team members. These team members will have all the necessary skills and roles; for example, development, operations, and business analyst. Such a service team handles the development, operations, and management of a microservice.

	CI and CD: CI and CD are prerequisites for implementing microservices. Smaller self-sufficient teams, who can integrate their work frequently, are precursors to the success of microservices. This architecture is not as simple as a monolith. However, automation and the ability to push code upgrades regularly enables teams to handle complexity. Tools, such as Team Foundation Online Services (TFS), TeamCity, and Jenkins, are quite popular toolchains in this space.

	Infrastructure as code: The idea of representing hardware and infrastructure components, such as networks with code, is new. It helps you make deployment environments, such as integration, testing, and production, look exactly identical. This means developers and test engineers will be able to easily reproduce production defects in lower environments. With tools such as CFEngine, Chef, Puppet, Ansible, and Powershell DSC, you can write your entire infrastructure as code. With this paradigm shift, you can also put your infrastructure under a version control system and ship it as an artifact in deployment.

	Utilization of cloud computing: Cloud computing is a big catalyst for adopting microservices. It is not mandatory as such for microservice deployment though. Cloud computing comes with near infinite scale, elasticity, and rapid provisioning capability. It is a no-brainer that the cloud is a natural ally of microservices. So, knowledge and experience with the Azure cloud will help you adopt microservices.

 Isolation requirements for microservice deployment

In 2012, Adam Wiggins, co-founder of the Heroku platform, presented 12 basic principles. These principles talk about defining new modern web applications from an idea to deployment. This set of principles is now known as the 12-factor app. These principles paved the way for new architectural styles, which evolved into microservice architectures. One of the principles of the 12-factor app was as follows:

"Execute the app as one or more stateless processes"

- Adam Wiggins (https://12factor.net/)

So, services will be essentially stateless (except the database, which acts as the state store). The shared nothing principle is also applied across the entire spectrum of patterns and practices. This is nothing more than the isolation of components in order to achieve scale and agility.

In the microservice world, this principle of isolation is applied in the following ways:

	Service teams: There will be self-sufficient teams built around services. In effect, the teams will be able to take all the decisions necessary to develop and support the microservices they are responsible for.

	Source control isolation: The source repository of every microservice will be separate. It will not share any source code, files, and so on. It is okay to duplicate a few bits of code in the microservice world across services.

	Build stage isolation: Build and deploy pipelines for every microservice should be kept isolated. Build and deploy pipelines can even run in parallel, isolated, and deployed services. Due to this, CI-CD tools should be scaled to support different services and pipelines at a much faster speed.

	Release stage isolation: Every microservice should be released in isolation with other services. It is also possible that the same service with different versions is in the production environment.

	Deploy stage isolation: This is the most important part of isolation. Traditional monolith deployment is done with bare metal servers. With the advancement in virtualization, virtual servers have replaced bare metal servers.

In general, a monoliths' standard release process looks like this:

Considering these isolation levels, the microservice build and deployment pipeline may look like this:

 Need for a new deployment paradigm

The highest level of isolation for an application can be achieved by adding a new physical machine or bare metal server, so there is a server with its own operating system managing all system resources. This was regular stuff in legacy applications but it is not practical for modern applications. Modern applications are massive systems. Some examples of these systems are Amazon, Netflix, and Nike, or even traditional financial banks, such as ING. These systems are hosted on tens of thousands of servers. These kinds of modern applications demand ultra-scalability to serve their millions of users. For a microservice architecture, it does not make any sense to set up a new server just to run a small service on top of it.

With new CPU architectural breakthroughs, one of the options that emerged was virtual machines. Virtual machines abstract out all the hardware interactions of an operating system through the hypervisor technology. Hypervisors enabled us to run many machines or servers on a single physical machine. One significant point to note is that all the virtual machines get their piece of an isolated system resource from physical host resources.

This is still a good isolated environment to run an application. Virtualization brought the rationale of raising servers for entire applications. While doing so, it kept the components fairly isolated; this helped us utilize spare computer resources in our data centers. It improved the efficiency of our data centers while satisfying applications' fair isolation needs.

However, virtualization on its own is not able to support some of a microservice's needs. Under the 12-factors principles, Adam also talks about this:

"The twelve-factor app’s processes are disposable, meaning they can be started or stopped at a moment’s notice. This facilitates fast elastic scaling, rapid deployment of code or config changes, and robustness of production deploys."

- Adam Wiggins (https://12factor.net/)

This principle is important for the microservice architectural style. So, with microservices, we must ensure that the services start up faster. In this case, let's assume that there is one service per virtual machine. If we want to spin this service, it first needs to spin the virtual machine; however, the boot time of a virtual machine is long. Another thing is that with such applications, we are talking about a lot of cluster deployments. So services will definitely be distributed in clusters.

This also implies that virtual machines might need to be raised up on one of the nodes in the clusters and booted. This is again a problem with virtual machines' boot-up time. This does not bring the kind of efficiency that we are expecting for microservices.

Now, the only option left is to use the operating system process model, which comes with a quicker boot time. The process programming model has been well-known for ages but even processes come at a cost. They are not well isolated and share system resources as well as the kernel of the operating system.

For microservices, we need a better isolation deployment model and a new paradigm of deployment. The answer is this: innovation of the container technology. A good consideration factor is that the container technology sits well between virtualization and the operating system's process model.

 Containers

Container technology is not new to the Linux world. Containers are based on Linux's LXC technology. In this section, let's see how containers are important in the case of microservices.

 What are containers?

A container is a piece of software in a complete filesystem. It contains everything that is needed to run code, runtime, system tools, and system libraries—anything that can be installed on a server. This guarantees that the software will always run in the same way, regardless of its environment. Containers share their host operating system and kernel with other containers on the same host. The technology around containers is not new. It has been a part of the Linux ecosystem for a long time. Due to the recent microservice-based discussions surrounding it, container technology came into the limelight again. Also, it is the technology on which Google, Amazon, and Netflix run.

 Suitability of containers over virtual machines

Let's understand the difference between containers and virtual machines—at the surface level, both are tools to achieve isolation and virtualization.

The architectural difference between virtual machines and containers is quite evident from the following diagram:

By looking at the virtual machine internals, we can see that there is a host operating system along with a kernel, and on top of it, the hypervisor layer. Hosted applications have to bring in their own operating system and environment. In containers though, the containerization technology layer serves as a single layer and is shared across different applications. This removes the need for a guest operating system. Thus, applications in a container come with a smaller footprint and strong isolation levels. Another aspect that will encourage you to use containers for microservice deployment is that we can pack more applications on the same physical machine when compared to the same applications deployed on a virtual machine. This helps us achieve greater economy of scale benefits and provides a comparison of the benefits of virtual machines.

One more thing to note with containers is that they can be run on virtual machines as well. So it is okay to have a physical server with a virtual machine on it. This virtual machine serves as a host to a number of containers.

 Transformation of the operation team's mindset

Microsoft's Bill Baker came up with an analogy of pets and cattle and he applied it to servers in a data center. Okay, honestly, we care for our pets. We love them and show affection towards them, we name them as well. We think of their hygiene; if they fall sick, we take them to the vet. Do we take such care of our cattle? Of course, we don't; this is because we do not care that much about cattle.

The same analogy is true with respect to servers and containers. In pre-DevOps days, server admins cared about servers. They used to name those server machines and also have dedicated maintenance downtime and so on. With DevOps practices, such as infrastructure as code and containerization, containers can be treated as cattle. As the operations team, we do not need to care for them since containers are meant for a short lifespan. They can be booted up quickly in clusters and torn down quickly as well. When you are dealing with containers, always keep in mind this analogy. As far as daily operations go, expect the spinning up of and teardown of containers to be normal practice.

This analogy changes the perspective towards microservice deployment and how it supports containerization.

 Containers are new binaries

This is a new reality you will face as a .NET developer: working with microservices. Containers are new binaries. With Visual Studio, we compile the .NET program and after compilation, Visual Studio produces .NET assemblies, namely DLLs or EXEs. We take this set of associated DLLs and EXEs emitted by the compiler and deploy them on the servers.

"Containers are new binaries of deployment"

- Steve Lasker, Principal Program Manager at Microsoft

So, in short, our deployment unit was in the form of assemblies. Not anymore! Well, we still have .the NET program generating EXEs and DLLs, but our deployment unit has changed in the microservice world. It is a container now. We will still be compiling programs into assemblies. These assemblies will be pushed to the container and made ready to be shipped.

When we look at the code walkthrough in the following section of this chapter you will understand this point. We, as .NET developers, have the ability (and may I say necessity) to ship the containers. Along with this, another advantage of container deployment is that it removes the barrier between different operating systems and even different languages and runtimes.

 Does it work on your machine? Let's ship your machine!

Usually, we hear this a lot from developers: Well, it works on my machine! This usually happens when there is a defect that is not reproducible in production. Since containers are immutable and composable, it is quite possible to eliminate the configuration impedance between the development and production environment.

 Introducing Docker

Docker (www.docker.com) has been a major force behind popularizing the containerization of applications. Docker is to containers what Google is to search engines. Sometimes, people even use containers and Docker as synonyms. Microsoft has partnered with Docker and is actively contributing to the Docker platform and tools in open source. This makes Docker important for us as .NET developers.

Docker is a very important topic and will be significant enough to learn for any serious .NET developer. However, due to time and scope constraints, we will just scratch the surface of the ecosystem of Docker here. We strongly recommend that you read through the Docker books made available by Packt Publishing.

If you want to safely try and learn Docker without even installing it on your machine, you can do so with https://KataCoda.com.

Now let's focus on some of the terminologies and tools of the Docker platform. This will be essential for our next section:

	Docker image: A Docker image is a read-only template with instructions for creating a Docker container. A Docker image consists of a separate filesystem, associated libraries, and so on. Here, an image is always read-only and can run exactly the same abstracting, underlying, host differences. A Docker image can be composed of one layer on top of another. This composability of the Docker image can be compared with the analogy of layered cake. Docker images that are used across different containers can be reused. This also helps reduce the deployment footprint of applications that use the same base images.

	Docker registry: A Docker registry is a library of images. A registry can be either public or private. Also, it can be on the same server as the Docker daemon or Docker client or on a totally separate server.

	Docker hub: This is a public registry and it stores images. It is located at http://hub.docker.com.

	Dockerfile: Dockerfile is a build or scripting file that contains instructions to build a Docker image. There can be multiple steps documented in a Dockerfile, starting with getting the base image.

	Docker container: A Docker container is a runnable instance of a Docker image.

	Docker compose: Docker compose allows you to define an application’s components—their containers, configuration, links, and volumes—in a single file. Then, a single command will set everything up and start your application. It is an architecture/dependency map for your application.

	Docker swarm: Swarm is the Docker service by which container nodes work together. It runs a defined number of instances of a replica task, which is itself a Docker image.

Let's look into the individual components of the Docker ecosystem; let's try to understand one of the ways in which the Docker workflow makes sense in the software development life cycle.

 Microservice deployment with Docker overview

In order to support this workflow, we need a CI tool and a configuration management tool. For illustration purposes, we have taken the Visual Studio Team Services (VSTS) build service as CI and VSTS release management for continuous delivery. The workflow would remain the same for any other tools or modes of deployment. The following is one of the flavors of microservice deployment with Docker:

	The code is checked into the VSTS repository. If this is the project's first check-in, it is done along with Dockerfile for the project.

	The preceding check-in triggers VSTS to build the service from the source code and run unit/integration tests.

	If tests are successful, VSTS builds a Docker image that is pushed to a Docker registry. VSTS release services deploy the image to the Azure container service.

	If QA tests pass as well, VSTS is used to promote the container to deploy and start it in production.

The following diagram depicts the steps in detail:

Note that the usual .NET CI-CD tools, such as TeamCity and Octopus Deploy (capabilities are in alpha stage), have features to produce a Docker container as a build artifact and deploy it to production.

 Microservice deployment example using Docker

Now we have all the essentials required to move toward coding and see for ourselves how things work. We have taken the product catalog service example here to be deployed as a Docker container. After running the accompanying source code, you should be able to successfully run the product catalog service in the Docker container.

 Setting up Docker on your machine

This tutorial doesn't require any existing knowledge of Docker and should take about 20 or 30 minutes to complete.

 Prerequisites

You will need to do the following:

	Install Microsoft Visual Studio 2017 Update 3 (https://www.visualstudio.com/downloads/download-visual-studio-vs)

	Install .NET Core 2.0 (https://www.microsoft.com/net/download/core)

	Install Docker For Windows to run your Docker containers locally (https://www.docker.com/products/docker#/windows)

We are using Docker Community Edition for Windows to demonstrate the example.

	After installation, your system will require restarting to complete the installation.

	After restarting, Docker for Windows will prompt you to enable the Hyper-V feature if not enabled on your system. Click OK to enable the Hyper-V feature on your system (a system restart will be required). Refer to the following screenshot:

	Once Docker for Windows is installed, right-click on the Docker icon in the system tray and click on Settings and select Shared Drives:

 Creating an ASP.NET Core web application

Following are the simple steps to get started:

	Create a new project by navigating to File | New Project | .NET Core | select ASP.NET Core Web Application, refer to the following screenshot:

	From the New ASP.NET Core Web Application window, select .NET Core and ASP.NET Core 2.0.

	Select Web Application (Model-View-Controller) from available templates.

	Check Enable Docker support.

	As we are demonstrating it for Windows select OS as Windows (if you did not install Docker as mentioned in the previous section, here you need to install Docker for Windows).

	Click Ok to proceed, refer to the following screenshot:

The preceding steps will create the FlixOne.BookStore.ProductService project with Docker support. Following is the screenshot showing our project structure:

The following files are added to the project:

	Dockerfile: The Dockerfile for ASP.NET Core applications is based on the microsoft/aspnetcore image (https://hub.docker.com/r/microsoft/aspnetcore/). This image includes the ASP.NET Core NuGet packages, which have been prejitted, improving startup performance. When building ASP.NET Core applications, the Dockerfile FROM instruction (command) points to the most recent microsoft/dotnet image (https://hub.docker.com/r/microsoft/dotnet/) on the Docker hub. Following is the default code-snippet provided by the template:

FROM microsoft/aspnetcore:2.0
ARG source
WORKDIR /app
EXPOSE 80
COPY ${source:-obj/Docker/publish} .
ENTRYPOINT ["dotnet", "FlixOne.BookStore.ProductService.dll"]

The preceding code is basically a set of instructions and these instructions are as follows:

FROM tells Docker that to pull the base image on the existing image, call microsoft/aspnetcore:2.0. This image already contains all the dependencies for running the ASP.NET Core on Linux, so we don't have to set it.

COPY and WORKDIR copy the current directory's contents to a new directory inside the called/app container and set it to the working directory for subsequent instructions.

EXPOSE tells Docker to expose the product catalog service on port 80 of the container.

ENTRYPOINT specifies the command to execute when the container starts up. In this case, it's .NET.

	Docker-compose.yml: This is the base Compose file used to define the collection of images to be built and run with Docker-compose build/run.

	Docker-compose.dev.debug.yml: This is an additional Compose file for iterative changes when your configuration is set to debug. Visual Studio will call -f docker-compose.yml and -f docker-compose.dev.debug.yml to merge them. This Compose file is used by Visual Studio development tools.

	Docker-compose.dev.release.yml: This is an additional Compose file to debug your release definition. It will load the debugger in isolation so it does not change the content of the production image.

The docker-compose.yml file contains the name of the image that is created when the project is run.

We now have everything we need to run/launch our service in the Docker container. Before we go further, please refer to Chapter 2, Implementing Microservices, and add the complete code (that is, controller, repositories, and so on) so the project structure looks like the following screenshot:

Now all you have to do is press F5 and launch your service in the container. This is the simplest and easiest way to put your service in the container. Once your microservice is containerized, you can use Visual Studio team services and Azure container services to deploy your container to the Azure cloud (https://docs.microsoft.com/en-us/azure/container-service/dcos-swarm/container-service-deployment).

 Summary

Microservice deployment is an exciting journey for us. For successful microservice delivery, deployment best practices should be followed. We need to focus on implementing isolation requirements for microservices even before we talk about deployment using automated tools. With successful microservice deployment practices, we can deliver business changes rapidly. The different isolation, requirements from self-sufficient teams to continuous delivery, give the scale and agility that are fundamental promises of microservices. Containerization is by far one of the most important innovative technologies we have, and we must take advantage of it for microservice deployment. Combining the Azure cloud with Docker will help us deliver the scale and isolation we are expecting from microservices. With Docker, we can easily achieve greater application density, which means a reduction in our cloud infrastructure cost. We also saw how easy it is to start these deployments with Visual Studio and Docker tools for Windows.

In our next chapter, we will look at microservice security. We will discuss the Azure active directory for authentication, how to leverage OAuth 2.0, and how to secure an API gateway with Azure API Management.

 Securing Microservices

Security is one of the most important cross-cutting concerns for web applications. Unfortunately, data breaches of well-known sites seem commonplace these days. Taking this into account, information and application security has become critical to web applications. For the same reason, secure applications should no longer be an afterthought. Security is everyone's responsibility in an organization.

Monolithic applications have less surface area when compared to microservices, however, microservices are distributed systems by nature. Also, in principle, microservices are isolated from each other; hence, well-implemented microservices are more secure as compared to monolithic applications. A monolith has different attack vectors compared to microservices. The microservice architecture style forces us to think differently in the context of security. However, let me tell you upfront, microservice security is a complex domain to understand and implement.

Before we dive deep into microservice security, let's understand our approach toward it. We will be focusing more on how authentication and authorization (collectively referred to as auth in the chapter henceforth) work and the options available within the .NET ecosystem.

We will explore Azure API management and its suitability as an API gateway for .NET-based microservice environments; we'll also see how Azure API management can help us protect microservices through its security features. Then, we'll briefly touch base with different, peripheral aspects that have defense in depth mechanisms for microservice security. We will also discuss the following topics:

	Why are form authentication and older techniques not sufficient?

	Authentication and the available options, including OpenID and Azure Active Directory

	Introducing OAuth 2.0

	Introducing Azure API management as an API gateway

	Using Azure API management for security

	Interservice communication security approaches

	Container security and other peripheral security aspects

 Security in monolithic applications

To understand microservice security, let's step back and recall how we used to secure .NET monolithic applications. This will help us better grasp why a microservice's auth mechanism needs to be different.

The critical mechanism to secure applications has always been auth. Authentication verifies the identity of a user. Authorization manages what a user can or cannot access, also known as permissions. Encryption, well, that's the mechanism that helps you protect data as it passes between the client and server. We're not going to discuss encryption too much though, just ensure the data that goes over the wire is encrypted everywhere. This can be achieved through the use of the HTTPS protocol.

The following diagram depicts the flow of a typical auth mechanism in .NET monoliths:

In the preceding diagram, we can see that the user enters his or her username and password typically through a web browser. Then, this request hits some thin layer in a web application that is responsible for auth. This layer or component connects to the user credential store, typically an SQL server in the case of a .NET application. The auth layer verifies user-supplied credentials against the username and password stored in the credential store.

Once the user credentials are verified for the session, a session cookie gets created in the browser. Unless the user has a valid session cookie, he cannot access the app. Typically, a session cookie is sent with every request. Within these kinds of monolithic applications, modules can freely interact with each other since they are in the same process and have in-memory access. This means trust is implicit within those application modules so they do not need separate validation and verification of requests while talking to each other.

 Security in microservices

Now let's look at the case of microservices. By nature, microservices are distributed systems. There is not a single instance of an application; rather, there are several distinct applications that coordinate with each other in harmony to produce the desired output.

 Why won't a traditional .NET auth mechanism work?

One of the possible approaches for microservice security might be this: we mimic the same behavior as that of the auth layer in a monolith. This could be depicted as follows:

In this approach, we distributed the auth layer and provided it to all the microservices. Since each one is a different application, it will need its own auth mechanism. This inherently means that the user credential store is also different for every microservice. This raises so many questions, such as how do we keep the auth in sync across all services? How can we validate inter-service communication, or do we skip it? We do not have satisfactory answers to these questions. Hence, this approach does not make sense and just increases complexity. With this approach, we cannot even be sure whether it will work in the real world.

There is one more factor we need to take into account for modern applications. In the microservice world, we need to support native mobile apps and other non-standard form factor devices as well as IoT applications. With the significant proliferation of native mobile applications, the microservice architecture also needs to support secure communication between those clients and microservices. This is different from the traditional web browser-based user interface. On mobile platforms, a web browser is not part of any native mobile app. This means cookie-based or session-based authentication is not possible. So microservices need to support this kind of interoperability between client applications. This was never a concern for .NET monolithic applications.

In the case of traditional authentication, the browser is responsible for sending the cookie upon each request. But we're not using the browser for a native mobile app. In fact, we're neither using ASPX pages, nor the form's authentication module. For an iOS client or Android, it's something different altogether. What's more, we are also trying to restrict unauthorized access to our API. In the preceding example, we'd be securing the client, be it an MVC app or a Windows phone app, and not the microservice. Moreover, all these mobile client devices are not part of the trust subsystem. For every request, we cannot trust that the mobile user is indeed the owner; the communication channel is not secured either. So any request coming from them cannot be trusted at all.

But apart from these problems, there's another more conceptual problem we have. Why should the application be responsible for authenticating users and authorization? Shouldn't this be separated out?

One more solution to this is using the SAML protocol, but again, this is based on SOAP and XML, so not really a good fit for microservices. The complexity of the implementation of SAML is also high.

Therefore, it is evident from the preceding discussion that we need a token-based solution. The solution for microservices' auth comes in the form of OpenID Connect and OAuth 2.0. OpenID Connect is the standard for authentication and OAuth 2.0 is the specification for the authorization. However, this authorization is delegated by nature.

We will see this in detail in further sections. But before that, let's take a detour and look at JSON Web Tokens and see why they are significant with respect to microservice security.

 JSON Web Tokens

JSON Web Tokens (JWT) is pronounced JOT. It is a well-defined JSON schema or format to describe the tokens involved in a data exchange process. JWTs are described in RFC 7519.

JWTs are not tied to either OpenID Connect or OAuth 2.0. This means they can be used independently, irrespective of OAuth 2.0 or OpenID Connect. OpenID Connect mandates the use of a JWT for all the tokens that are exchanged in the process. In OAuth 2.0, the use of JWTs isn't mandated, more a kind of implementation format. Moreover, the .NET framework has built-in support for JWT.

The purpose of a JWT-based security token is to produce a data structure that contains information about the issuer and the recipient along with a description of the sender's identity. Therefore, tokens should be protected over the wire so they cannot be tampered with. To do so, tokens are signed with symmetric or asymmetric keys. This means when a receiver trusts the issuer of the token, it can also trust the information inside it.

Here is an example of a JWT:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

This is the encoded form of a JWT. If we see the same token in decoded form, it has three components: header, payload, and signature; they are all separated by a period (.). The preceding example token can be decoded as follows:

Header: {"alg": "HS256", "type": "JWT"}
Payload: {"sub": "1234567890","name": "John Doe","admin": true}
Signature:HMACSHA256(base64UrlEncode(header) + "." + base64UrlEncode(payload),secret)

NET v.4.5.1 and onward has built-in support for generating and consuming JWTs. You can install JWT support in any .NET application using the package manager console with the following command:

Install-Package System.IdentityModel.Tokens.Jwt

Visit https://jwt.io/, where you can view and decode JWTs very easily. Moreover, you can add it as part of the Chrome debugger as well, which is quite handy.

 What is OAuth 2.0?

Okay, you might not know what OAuth 2.0 is, but you will have surely used it for several websites. Nowadays, many websites allow you to log in with your username and password for Facebook, Twitter, or Google accounts. Go to your favorite website, for example, the www.stackoverflow.com login page. There is a login button that says you can sign in with your Google account, for example. When you click on the Google button, it takes you to Google's login page along with some of the permissions mentioned. Here you provide your Google username and password and click on the Allow button to grant permissions to your favorite site. Then, Google redirects you to Stack Overflow and you are logged in with appropriate permissions in Stack Overflow. This is merely the end user experience for OAuth 2.0 and OpenID Connect.

OAuth 2.0 can be best described as a series of specification-turned-authorization frameworks. RFC 6749 defines OAuth as follows:

"The OAuth 2.0 authorization framework enables a third-party application to obtain limited access to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction between the resource owner and the HTTP service, or by allowing the third-party application to obtain access on its own behalf."

OAuth 2.0 handles authorization on the web, in native mobile applications, and all headless server applications (these are nothing more than microservice instances in our context). You must be wondering why we are discussing authorization first instead of authentication. The reason is that OAuth 2.0 is a delegated authorization framework. This means, to complete the authorization flow, it relies on an authentication mechanism.

Now let's see some terminology associated with it.

OAuth 2.0 roles describe the involved parties in the authorization process:

	Resource: The entity that is getting protected from unintended access and usage. This is nothing more than a microservice in our case.

	Resource owner: Resource owner is a person or entity who owns the specified resource. When a person owns a resource, he or she is an end user.

	Client: Client is the term used to refer to all kinds of client applications. This refers to any application trying to access the protected resource. In a microservices' context, the applications involved are single page applications, web user interface clients, and native mobile applications, or even a microservice that is trying to access another microservice downstream.

	Authorization server: This is the server that hosts the secure token service and issues tokens to the client after successfully authenticating the resource owner and obtaining permissions from the resource owner or on their behalf.

You may have noticed that OAuth does differentiate between end users and applications used by an end user. This is a bit odd but makes perfect sense since it is also generally viewed as saying, I am authorizing this app to perform these actions on my behalf.

The following diagram depicts how these roles interact with each other in the general flow of authorization in the OAuth framework:

In step 6, illustrated in the preceding diagram, the client passes the authorization grant to the authorization server. This step is not as simple as it looks. Authorization grants are of different types. The grant types represent four, different possible use cases for getting access tokens in OAuth 2.0. If you choose the wrong grant type, you might be compromising security:

	Authorization code: This is the typical OAuth grant used by server-side web applications, the one you would use in your ASP.NET apps.

	Implicit: Authenticating with a server returns an access token to the browser, which can then be used to access resources. This is useful for single page applications where communication cannot be private.

	Resource owner password credentials: This requires the user to directly enter their username and password in the application. It is useful when you are developing a first-party application to authenticate with your own servers. For example, a mobile app might use a resource owner grant to authenticate with your own servers.

	Client credentials: This is typically used when the client is acting on its own behalf (the client is also the resource owner) or is requesting access to protected resources based on an authorization previously arranged with the authorization server.

 What is OpenID Connect?

OpenID Connect 1.0 is a simple identity layer on top of the OAuth 2.0 protocol. OpenID Connect is all about authentication. It allows clients to verify end users based on the authentication performed by an authorization server. It is also used to obtain basic profile information about the end user in an interoperable and REST-like manner.

So OpenID Connect allows clients of all types—web-based, mobile, and JavaScript—to request and receive information about authenticated sessions and end users. We know that OAuth 2.0 defines access tokens. Well, OpenID Connect defines a standardized identity token (commonly referred to as ID token). The identity token is sent to the application so the application can validate who the user is. It defines an endpoint to get identity information for that user, such as their name or email address. That's the user info endpoint.

It's built on top of OAuth 2.0, so the flows are the same. It can be used with the authorization code grant and implicit grant. It's not possible with the client credentials grant, as the client credentials grant is for server-to-server communication.

There's no end user involved in the process so there's no end user identity either. Likewise, it doesn't make sense for the resource owner path of usage or process. Now how does that work? Well, instead of only requesting an access token, we'll request an additional ID token from the security token service (STS) that implements the OpenID Connect specification. The client receives an ID token, and usually, also an access token. To get more information for the authenticated user, the client can then send a request to the user info endpoint with the access token; this user info endpoint will then return the claims about the new user.

OpenID supports authorization code flow and implicit flow. It also adds some more additional protocols, which are discovery and dynamic registration.

 Azure Active Directory

There are multiple providers for OAuth 2.0 and OpenID Connect 1.0 specifications. Azure Active Directory (Azure AD) is one of them. Azure AD provides organizations with enterprise-grade identity management for cloud applications. Azure AD integration will give your users a streamlined sign-in experience, and it will help your application conform to the IT policy. Azure AD provides advanced security features, such as multifactor authentication, and scales really well with application growth. It is used in all Microsoft Azure Cloud products, including Office 365, and processes more than a billion sign-ins per day.

One more interesting aspect of traditional .NET environments is that they can integrate their organizational Windows Server Active Directory with Azure AD really well. This can be done with the Azure AD sync tool or the new capability of pass-through authentication. So, organizational IT compliances will still be managed.

 Microservice Auth example with OpenID Connect, OAuth 2.0, and Azure AD

Now we are well-equipped with all the prerequisite knowledge to start coding. Let's try and build a ToDoList application. We are going to secure TodoListService, which represents one of our microservices. In the solution, the ToDoList microservice is represented by the TodoListService project and ToDoListWebApp represents the server-side web application. It will be easier to follow if you open up the Visual Studio solution named OpenIdOAuthAzureAD.sln provided with this chapter. This example uses the client credentials grant.

Note that, due to the ever-changing nature of Azure portal and the corresponding Azure services UI, it is advisable that you use the Azure Service management API and automate some of the registration tasks about to follow. However, for learning purposes and largely for encouraging developers who are new to Azure or might be trying Azure AD for the first time, we are going to follow the Azure portal user interface.

Here are the prerequisites:

	Visual Studio 2017 Update 3

	An Azure subscription (if you don't have this, you can use the free trial account for this demo)

	Azure AD tenant (single-tenant): You can also work with your Azure account's own default directory, which should be different from that of the Microsoft organization

 Registration of TodoListService and TodoListWebApp with Azure AD tenant

Now let's look at how to register TodoListService.

In this step, we will add TodoListService with Azure AD tenant. To achieve this, log in to the Azure management portal, then do the following:

	Click on App registrations. Click on the Add button. It will open the Create pane, as depicted here:

	Provide all the mandatory details as displayed in the preceding screenshot and click on the Create button at the bottom of the Create pane. While we are providing a sign-on URL, make sure that you are providing it for your app. In our case, TodoListService is a microservice, so we won't have a special sign-in URL. Hence, we have to provide the default URL or just the hostname of our microservice. Here we are going to run the service from our machine, so the localhost URL will be sufficient. You can find the sign-in URL once you right-click on project URL under TodoListService project and navigate to Web, as shown in the following diagram:

A sign-in URL in Azure portal should have the trailing /; otherwise, you may face an error, even if you execute all the steps correctly.

	If you deploy your service with the Microsoft Azure App Service plan, you will get a URL that is similar to https://todolistservice-xyz.azurewebsites.net/. You can later change the sign-on URL if you deploy the service on Azure.

	Once you click on the Create button, Azure will add the application to your Azure AD Tenant. However, there are still a few more details that need to be completed for finishing the registration of TodoListService. So navigate to App Registration | TodoListService | Properties. You will notice that there are a few more additional properties, such as App ID URL, which has been provided now.

	For the App ID URL, enter https://[Your_Tenant_Name]/TodoListService, replacing [Your_Tenant_Name] with the name of your Azure AD tenant. Click on OK to complete the registration. The final configuration should look like this:

Now we move on to the registration of TodoListWebApp:

	First, we register TodoListWebApp. This is necessary since we are going to use OpenID Connect to connect to this browser-based web application. So we need to establish the trust between the end user, that is, us and TodoListWebApp.

	Click on App registrations. Click on the Add button. It will open up the Create pane, as depicted in the following screenshot. Fill in the sign-in URL as https://localhost:44322/.

	Once again, as in the TodoListService registration, we will be able to view most of the additional properties once we create the web app. So, the final properties configuration will look like this:

	A setting to note here is the logout URL: we set it as https://localhost:44322/Account/EndSession.

This is because after ending the session, Azure AD will redirect the user to this URL. For the App ID URL, enter https://[Your_AD_Tenant_Name]/TodoListWebApp, replacing [Your_AD_Tenant_Name] with the name of your Azure AD tenant. Click on OK to complete the registration.

	Now we need to set up permissions between TodoListWebApp so that it can call our microservice: TodoListService. So, navigate to App Registration | TodoListWebApp | Required Permissions again and click on Add. Now click on 1 Select an API. This navigation is displayed in the following screenshot. You need to key in ToDoListService for it to show up in the API pane:

	Now you will be able to view the Enable Access pane, where you have to tick for Access TodoListService Permissions under the Delegated Permissions, and Done under the Add API access pane. This will save the permissions.

 Generation of AppKey for TodoListWebApp

Another important step for registration is adding client_secret, which is necessary to establish trust between Azure AD and TodoListWebApp. This client_secret is generated only once and configured in the web application. To generate this key, navigate to App Registrations | TodoListWebApp | Keys. Then, add the description as AppKey and click on Save. Once the key is saved, the value of the key is autogenerated by Azure and will be displayed next to the description. This key is displayed only once, so you have to immediately copy it and save it for later use. We will be keeping this key in the web.config file of TodoListWebApp in this case.

The key stored will be displayed on the Azure portal as follows:

For production-grade applications, it is a bad idea to keep client_Secret and all such critical key values in web.config. It is good practice to keep them encrypted and isolated from applications. For such purposes, in production-grade applications, you can use Azure key-vault (https://azure.microsoft.com/en-us/services/key-vault/) to keep all your keys protected. Another advantage of a key vault is that you can manage the keys according to the environment, such as dev-test-staging and production.

 Configuring Visual Studio solution projects

First, we look at how to configure this with the TodoListService project.

Open the web.config file and replace the following keys:

	Search for the ida:Tenant key. Replace its value with your AD tenant name, for example, contoso.onmicrosoft.com. This will also be part of any of the application's APP ID URL.

	Replace the ida:Audience key. Replace its value with https://[Your_AD_Tenant_Name]/TodoListService.
 Replace [Your_AD_Tenant_Name] with the name of your Azure AD tenant.

Now let's see how to configure this with the TodoListWebApp project.

Open the web.config file and find and replace the following keys with the provided values:

	Replace todo:TodoListResourceid with https://[Your_Tenant_Name]/TodoListService.

	Replace todo:TodoListBaseAddress with https://localhost:44321/.

	Replace ida:ClientId with the application ID of ToDoListWebApp. You can get it by navigating to App Registration | TodoListWebApp.

	Replace ida:AppKey with client_secret that we generated in step 2 of the process of registering TodoListWebApp. If you missed noting this key, you need to delete the previous key and generate a new key.

	Replace ida:Tenant with your AD tenant name, for example, contoso.onmicrosoft.com.

	Replace ida:RedirectUri with the URL you want the application to redirect to when the user signs out of TodoListWebApp. In our case, the default is https://localhost:44322/ since we want the user to navigate to the home page of the application.

 Generate client certificates on IIS Express

Now TodoListService and TodoListWebApp will talk over a secure channel. To establish a secure channel, ToDoListWebApp needs to trust the client certificate. Both services are hosted on the same machine and run on IIS Express.

To configure your computer to trust the IIS Express SSL certificate, open the PowerShell command window as an administrator. Query your personal certificate store to find the thumbprint of the certificate for CN=localhost:

PS C:windowssystem32> dir Cert:LocalMachineMy
Directory: Microsoft.PowerShell.SecurityCertificate::LocalMachineMy
Thumbprint Subject
---------- -------
C24798908DA71693C1053F42A462327543B38042 CN=localhost

Next, add the certificate to the trusted root store:

PS C:windowssystem32> $cert = (get-item cert:LocalMachineMyC24798908DA71693C1053F42A462327543B38042)
PS C:windowssystem32> $store = (get-item cert:LocalmachineRoot)
PS C:windowssystem32> $store.Open("ReadWrite")
PS C:windowssystem32> $store.Add($cert)
PS C:windowssystem32> $store.Close()

The preceding set of instructions will add a client certificate to the local machine's certificate store.

 Running both the applications

We are done with all those tedious configuration screens and replacing of keys. Excited? But before you hit F5, set ToDoListService and ToDoListWebApp as startup projects. Once this is done, we can safely run our application and be greeted with the landing page of our application. If you click on the Sign-in button, you will be redirected to login.microsoftonline.com; this represents the Azure AD login. Once you are able to log in, you will see the landing page as follows:

You can observe network traffic and URL redirection when you log in to the application to study a detailed exchange of ID tokens and get an access token. If you explore the application through the ToDoList menu, you will be able to access the ToDoList screen as well as add items to ToDoList. This is where our TodoListService microservice is getting called, as well as getting authorization permissions from the TodoWebApp web application. If you explore the profile menu, you will see the ID token return along with your first name, last name, and email ID, which shows OpenID Connect in action.

If you want to explore the code in detail, TodoListController.cs in the TodoListService project, Startup.Auth.cs, and TodoListController.cs contain interesting bits of code along with explanatory comments.

In this example, we used OAuth and OpenID Connect to secure a browser-based user interface, a web application, and a microservice. Things might be different if we have an API gateway between the user interface web app and microservice. In this case, we need to establish trust between the web app and API gateway. Also, we have to pass the ID token and access token from the web app to the API gateway. This, in turn, passes the tokens to the microservice. However, it is not feasible to cover the discussion and implementation in this chapter's scope.

 Azure API management as an API gateway

Another important pattern in microservices' implementation is Backends For Frontends (BFF). This pattern was introduced and made popular by Sam Newman. The actual implementation of the BFF pattern is done by introducing the API gateway between various types of clients and microservices.

This is depicted in the following diagram:

Azure API Management (henceforth referred to as Azure APIM or just APIM) is just the right fit, and it can act as an API gateway in .NET-based microservice implementation. Since Azure APIM is one of the cloud services, it is ultra-scalable and can be integrated well within the Azure ecosystem. In the current chapter, we will focus on the following features of Azure APIM.

Azure APIM is logically divided into three parts:

	API gateway: API gateway is merely a proxy between client applications and services. It is responsible for the following functionalities; these are mainly used by various applications to talk to microservices:

	Accepts API calls and routes them to your backends

	Verifies API keys, JWTs, and certificates

	Supports auth through Azure AD and OAuth 2.0 access token

	Enforces usage quotas and rate limits

	Transforms your API on the fly without code modifications

	Caches backend responses where set up

	Logs call metadata for analytics purposes

	Publisher portal: This is the administrative interface to organize and publish an API program. It is mainly used by microservice developers to make microservices/APIs available to API consumers or client applications. Through this, API developers can:

	Define or import API schema

	Package APIs into products

	Set up policies such as quotas or transformations on the APIs

	Get insights from analytics

	Manage users

	Developer portal: This serves as the main web presence for API consumers where they can do the following:

	Read the API documentation

	Try out an API via the interactive console

	Create an account and subscribe to it to get the API keys

	Access analytics on their own usage

Azure APIM comes with an easy-to-follow user interface and good documentation. Azure API management also comes with its REST API, hence all the capabilities of the Azure APIM portal, which you see can see, can be programmatically achieved by Azure REST API endpoint available for Azure APIM.

Now, let's quickly look at some security-related concepts in Azure APIM and how they can be used in microservices:

	 Products: Products are merely a collection of APIs. They also contain usage quota and terms of use.

	Policies: Policies are dynamic security features of API management. They allow the publisher to change the behavior of the API through configuration. Policies are a collection of statements that are executed sequentially upon the request or response of an API. API management is fundamentally a proxy that is sitting between our microservices hosted in Azure and client applications. By virtue of the fact that it is an intermediate layer, it is able to provide additional services. These additional services are defined in a declarative XML-based syntax called policies. Azure APIM allows various policies. In fact, you can compose your own custom policies by combining the existing ones. A few of the important policies are as follows:

	Access restriction policies:

	Check the HTTP header: This policy checks whether a specific HTTP header or its value exists in every request received by Azure APIM.

	Limit call rate by subscription: This policy provides allow or deny access to the microservice based on the number of times the specific service has been called on a per subscription basis.

	Restrict caller IPs: This policy refers to white-boxing of IP addresses so only known IPs can access the services.

	Set usage quota by subscription: This policy allows a number of calls. It allows you to enforce a renewable or lifetime call volume and/or bandwidth quota on a per subscription basis.

	Validate JWT: This policy validates the JWT token parameter that is used for auth in applications.

	Authentication policies:

	Authenticate with basic : This policy helps apply basic authentication over the incoming request.

	Authenticate with client certificate: This policy helps carry out authentication of a service that is behind the API gateway, using client certificates.

	Cross domain policies:

	Allow cross-domain calls: This policy enables us to make CORS requests through Azure APIM.

	CORS : This adds CORS support to an endpoint or a microservice to allow cross-domain calls from browser-based web applications.

	JSONP: The JSONP policy adds JSON padding (JSONP) support to an endpoint or entire microservice to allow cross-domain calls from Java Script web applications.

	Transformation policies:

	Mask URLs in content: This policy masks URLs in response; it does so via Azure APIM.

	Set backend service: This policy alters the behavior of the backend service of an incoming request.

Another great thing about policies is they can be applied for inbound and outbound requests.

 Rate limit and quota policy example

In the preceding section, we saw what is meant by a policy. Now let's see an example. The following is one of the quota policies applied for an endpoint:

<policies>
 <inbound>
 <!-- Change the quota to immediately see the effect-->
 <rate-limit calls="100" renewal-period="60">
 </rate-limit>
 <quota calls="200" renewal-period="604800">
 </quota>
 <base />
 </inbound>
 <outbound>
 <base/>
 </outbound>
</policies>

In this example, we are limiting incoming requests (inbound) from a single user. So, an API user can only make 100 calls within 60 seconds. If they try to make more calls within that duration, the user will get an error with status code 429, which basically states Rate limit is exceeded. Also, we are assigning the quota limit of 200 calls in a year for the same user. This kind of throttling behavior is a great way to protect microservices from unwanted requests and even DOS attacks.

Azure APIM also supports Auth with OAuth 2.0 and OpenID Connect. Inside the publisher portal, you can easily see OAuth and OpenID Connect tabs to configure the providers.

 Container security

Docker is a big part of the containerization of applications used in the industry. With the widespread usage of containers, it is evident that we need to have effective security measures around containers. If we take a look at the internal architecture of containers, they are quite close to the host operating system kernel.

Docker applies the principle of least privilege to provide isolation and reduce the attack surface. Despite the advances, the following points will help you understand the security measures you can take for containers:

	Ensure all the container images used for microservices are signed and originate from a trusted registry

	Harden the host environment, the daemon process, and images

	Follow the principle of least privilege and do not elevate access to access devices

	Use control groups in Linux to keep tabs on resources, such as memory, I/O, and CPU

	Even though containers live for a very short duration, logging all of the container activity is advisable and important to understand for post analysis

	If possible, integrate the container scanning process with tools, such as Aqua (http://www.aquasec.com) or Twistlock (https://www.twistlock.com)

 Other security best practices

The microservice architectural style is new, although some of the security practices around the infrastructure and writing secure code are still applicable. In this section, let's discuss some of these practices:

	Standardization of libraries and frameworks: There should be a process to introduce new libraries and frameworks or tools in the development process. This will ease out patching in case any vulnerability is found; it will also minimize the risks introduced by ad hoc implementation of libraries or tools around development.

	Regular vulnerability identification and mitigation: Using the industry standard vulnerability scanner to scan the source code and binaries should be a regular part of development. The findings and observations should be addressed as equally as functional defects.

	Third-party audits and pen testing: External audits and penetration testing exercises are immensely valuable. There should be a regular practice of conducting such exercises. This is quite essential in applications where mission critical or sensitive data is handled.

	Logging and monitoring: Logging is quite a useful technique for detecting and recovering from attacks. Having the capability of aggregating logs from different systems is essential in the case of microservices. Tools such as Riverbed, AppDynamics, and Splunk are quite useful in this space.

	Firewalls: Having one or more firewall at network boundaries is always beneficial. Firewall rules should be properly configured.

	Network segregation: Network partitioning is constrained and limited in the case of monoliths. However, with microservices, we need to logically create different network segments and subnets. Segmentation based on microservices' interaction patterns can be very effective to keep and develop additional security measures.

 Summary

The microservice architectural style, being distributed by design, gives us better options to protect valuable business-critical systems. Traditional .NET-based authentication and authorization techniques are not sufficient and cannot be applied to the microservice world. We also saw why secure token-based approaches, such as OAuth 2.0 and OpenID Connect 1.0, are becoming concrete standards for microservice authorization and authentication. If you want to have more general information related to security, do visit Open Web Application Security Project (OWASP) at http://www.owasp.org and Microsoft Security development life cycle at https://www.microsoft.com/en-us/sdl/. Azure AD can support OAuth 2.0 and OpenID Connect 1.0 very well. Azure API Management can also act as an API gateway in microservices' implementation and also provide nifty security features, such as policies.

Azure AD and Azure API management provide quite a few powerful features to monitor and log the requests received. This will be quite useful, not only for security but also for tracing and troubleshooting scenarios. We will see logging, monitoring, and the overall instrumentation around troubleshooting of microservices in the next chapter.

 Monitoring Microservices

When something goes wrong in a system, stakeholders will want to know what has happened, why it has happened, any hint or clue you can give for how it might be fixed, and how to prevent the same problem from occurring again in the future. This is one of the primary uses of monitoring. However, monitoring can also do much more.

In .NET monoliths, there are multiple monitoring solutions available to choose from. The monitoring target is always centralized, and monitoring is certainly easy to set up and configure. If something breaks down we know what to look for and where to look for it, since only a finite number of components participate in a system, and they have a fairly long lifespan.

However, microservices are distributed systems and, by nature, more complex than monoliths. So resource utilization and health and performance monitoring are quite essential in a microservice production environment. We can use this diagnostic piece of information to detect and correct issues, and to also spot potential problems and prevent them from occurring. Monitoring microservices presents different challenges. In this chapter, we will primarily discuss the following topics:

	The need for monitoring

	Monitoring and logging challenges in microservices

	Monitoring strategies

	Available tools and strategies for microservices in the .NET monitoring space

	Use of Azure diagnostics and application insight

	A brief overview of the ELK stack and Splunk

What does monitoring really mean? There is no formal definition of monitoring; however, the following is appropriate:

''Monitoring provides information around the behavior of an entire system or different parts of a system in their operational environment. This information can be used for diagnosing and gaining insight into the different characteristics of a system.''

 Instrumentation and telemetry

A monitoring solution is dependent upon instrumentation and telemetry. So it is natural that when we speak about monitoring microservices, we also discuss instrumentation and telemetry data. Logs are nothing more than an instrumentation mechanism.

 Instrumentation

Now let's look at what instrumentation is. Instrumentation is one of the ways through which you can add diagnostic features to applications. It can be formally defined as follows:

''Most applications will include diagnostic features that generate custom monitoring and debugging information, especially when an error occurs. This is referred to as instrumentation and is usually implemented by adding event and error handling code to the application."

-MSDN

Under normal conditions, data from informational events may not be required, thus reducing the cost of storage and the transactions required to collect it. However, when there is an issue with the application, you have to update the application configuration so that the diagnostic and instrumentation systems can collect informational event data as well as error and warning messages to assist in isolating and fixing faults. It may be necessary to run the application in this extended reporting mode for some time if the problem appears only intermittently.

 Telemetry

Telemetry, in its most basic form, is the process of gathering information generated by instrumentation and logging systems. Typically, it is performed using asynchronous mechanisms that support massive scaling and the wide distribution of application services. It can be defined as follows:

"The process of gathering remote information that is collected by instrumentation is usually referred to as telemetry."

-MSDN

In large and complex applications, information is usually captured in a data pipeline and stored in a form that makes it easier to analyze and display at different levels of granularity. This information is used to discover trends, gain insight into usage and performance, and detect and isolate faults.

Azure has no built-in system that directly provides a telemetry and reporting system of this type. However, a combination of the features exposed by all the Azure services, Azure diagnostics, and application insights allows you to create telemetry mechanisms that span the range of simple monitoring mechanisms to comprehensive dashboards. The complexity of the telemetry mechanism you require usually depends on the size of the application. This is based on several factors, such as the number of roles or virtual machine instances, the number of ancillary services it uses, the distribution of the application across different data centers, and other related factors.

 The need for monitoring

Microservices are complex, distributed systems. Microservice implementation is the backbone of any modern IT business. Understanding the internals of the services along with their interactions and behaviors will help you make the overall business more flexible and agile. The performance, availability, scale, and security of microservices can directly affect a business and also its revenue. Hence, monitoring microservices is vital. It helps us observe and manage the quality of the service attributes. Let's discuss the scenarios where it is required.

 Health monitoring

With health monitoring, we monitor the health of a system and its various components at a certain frequency, typically a few seconds. This ensures that the system and its components behave as expected. With the help of an exhaustive health monitoring system, we can keep tabs on the overall system health, including the CPU, memory utilization, and so on. It might be in the form of pings or extensive health monitoring endpoints, which emit the health status of services along with some useful metadata at that point in time.

For health monitoring, we can use the rate of request failures and successes; we can also utilize techniques such as synthetic user monitoring. We will see synthetic user monitoring a little later in this chapter.

The metrics for health monitoring are based on the threshold values of success or failure rates. If the parameter value goes beyond the configured threshold, an alert is triggered. It is quite possible that some preventive action to maintain the health of the system would be triggered due to this failure. This action could be restarting the service in the failure state, or provisioning some server resource.

 Availability monitoring

Availability monitoring is quite similar to health status monitoring, which we just discussed. However, the subtle difference is that in availability monitoring, the focus is on the availability of systems rather than a snapshot of the health at that point in time.

Availability of systems is dependent on various factors, such as the overall nature and domain of the application, services, and service dependencies as well as infrastructure or environment. The availability monitoring system captures low-level data points related to these factors and represents them so as to make a business-level feature available. Many times, availability monitoring parameters are used to track business metrics and service-level agreements (SLA).

 Performance monitoring

The performance of a system is often measured by key performance indicators. Some of the key performance indicators of any large web-based system are as follows:

	The number of requests served per hour

	The number of concurrent users served per hour

	The average processing time required by users to perform business transactions, for example, placing an order

Additionally, performance is also gauged by system-level parameters, such as:

	CPU utilization

	Memory utilization

	I/O rates

	Number of queued messages

If any of these key performance indicators are not met by the system, an alert is raised.

Often, while analyzing performance issues, historical data from previous benchmarks captured by the monitoring system is used to troubleshoot.

 Security monitoring

Monitoring systems can detect unusual data pattern requests, unusual resource consumption patterns, and detect attacks on the system. Specifically, in the case of DoS, attacks or injection attacks can be identified beforehand and teams can be alerted. Security monitoring also keeps audit trails of authenticated users and keeps a history of users who have checked in and out of the system. It also comes in handy for satisfying compliance requirements.

Security is a cross-cutting concern of distributed systems, including microservices, so there are multiple ways of generating this data in the system. Security monitoring can get data from various tools that are not part of the system but may be part of the infrastructure or environment in which the system is hosted. Different types of logs and database entries can serve as data sources. However, this really depends upon the nature of the system.

 SLA monitoring

Systems with SLAs basically guarantee certain characteristics, such as performance and availability. For cloud-based services, this is a pretty common scenario. Essentially, SLA monitoring is all about monitoring those guaranteed SLAs for the system. SLA monitoring is enforced as a contractual obligation between a service provider and consumer.

It is often defined on the basis of availability, response time, and throughput. Data points required for SLA monitoring can come from performance endpoint monitoring or logging and availability of monitoring parameters. For internal applications, many organizations track the number of incidences raised due to server downtime. The action taken against these incidences' Root Cause Analysis (RCA) mitigates the risk of repeating those issues and helps meet the SLAs.

For internal purposes, an organization might also track the number and nature of incidents that had caused the service to fail. Learning how to resolve these issues quickly or eliminate them completely helps reduce downtime and meet SLAs.

 Auditing sensitive data and critical business transactions

For any legal obligations or compliance reasons, the system might need to keep audit trails of user activities in the system, and record all their data accesses and modifications. Since audit information is highly sensitive in nature, it might be disclosed only to a few privileged and trusted individuals in the system. Audit trails can be part of a security subsystem or separately logged. You may need to transfer and store audit trails in a specific format, as stated by the regulation or compliance specifications.

 End user monitoring

In end user monitoring, the usage of the features of the system and/or the overall system usage by end users is tracked and logged. Usage monitoring can be done using various user-tracking parameters, such as the features used, the time required to complete a critical transaction for the specified user, or even enforced quotas. Enforced quotas are constraints or limits put on an end user in regard to system usage. In general, various pay-as-you-go services use enforced quotas; for example, a free trial, where you can upload files only up to 25 MB. The data source for this type of monitoring is typically collected in terms of logs and tracking user behavior.

 Troubleshooting system failures

The end users of a system might experience system failures. This can be in the form of either a system failure or a situation where users are not able to perform a certain activity. These kinds of issues are monitored using system logs; if not, the end user will need to provide a detailed information report. Also, sometimes server crash dumps or memory dumps can be immensely helpful. However, in the case of distributed systems, it will be a bit difficult to understand the exact root cause of the failures.

In many monitoring scenarios, using only one monitoring technique is not effective. It is better to use multiple monitoring techniques and tools for diagnostics. In particular, monitoring a distributed system is quite challenging and requires data from various sources. In addition to analyzing the situation properly and deciding on the action points, we must consider a holistic view of monitoring rather than looking into only one type of system perspective.

Now that we have a better idea about what needs to be done for general purpose monitoring, let's revisit the microservice perspective. So we will discuss the different monitoring challenges presented by the microservice architectural style.

 Monitoring challenges

Microservice monitoring presents different challenges. There will be scenarios where one service could depend upon another service, or a client sends a request to one service and the response comes from another service that would make the operation complex; hence scaling a microservice would be a challenging task here. Similarly, process implementation, let's say DevOps, would be a challenging job while implementing a huge enterprise microservice application. So, let's discuss these challenges in this section.

 Scale

One service could be dependent upon the functionality provided by various other microservices. This yields complexity, which is not usual in the case of .NET monolith systems. Instrumenting all these dependencies is quite difficult. Another problem that comes along with scale is the rate of change. With the advancement of continuous deployment and container-based microservices, the code is always in a deployable state. Containers only live for minutes, if not seconds. The same is true for virtual machines. Virtual machines have a life of around a couple of minutes to a couple of hours.

In such a case, measuring regular signals, such as CPU usage and memory consumption usage per minute, does not make sense. Sometimes, container instances might not even be alive for a minute. Within a minute, the container instance might have already been disposed of. This is one of the challenges of microservice monitoring.

 DevOps mindset

Traditionally, services or systems, once deployed, are owned and cared for by the operational teams. However, DevOps breaks down the silos between developers and operations teams. It comes with lots of practices, such as continuous integration and continuous delivery, as well as continuous monitoring. Along with these new practices come new tool sets.

However, DevOps is not just a set of practices or tools; it is, more importantly, a mindset. It is always a difficult and slow process to change the mindset of people. Microservice monitoring also requires a similar mindset shift.

With the emergence of autonomy of services, developer teams now have to own services. This also means that they have to work through and fix development issues as well as keep an eye on all the operational parameters and SLAs of the services. Development teams will not be transformed overnight just by using state-of-the-art monitoring tools. This is true for operational teams as well. It won't suddenly become a core platform team (or whatever fancy name you prefer) overnight.

To make microservices successful and meaningful for organizations, developers, and operations, teams need to help each other understand their own pain points and also think in the same direction, that is, how they can deliver value to the business together. Monitoring cannot happen without the instrumentation of services, which is where developer teams can help. Likewise, alerting and setting up of operational metrics and running books won't happen without the operational team's help. This is one of the challenges in delivering microservice monitoring solutions.

 Data flow visualization

There are a number of tools present on the market for data flow visualization. Some of them are AppDynamics, New Relic, and so on. These tools are capable of handling visualizations of 10 to, maybe, 100s of microservices. However, in larger settings, where there are thousands of microservices, these tools are unable to handle visualization. This is one of the challenges in microservice monitoring.

 Testing of monitoring tools

We trust monitoring tools with the understanding that they depict a factual representation of the big picture of our microservice implementation. However, to make sure that they remain true to this understanding, we will have to test the monitoring tools. This is never a challenge in monolith implementations. However, when it comes to microservices, visualization of microservices is required for monitoring purposes. This means generating fake/synthetic transactions and time and utilizing the entire infrastructure rather than serving the customer. Hence, the testing of monitoring tools is a costly affair and presents a significant challenge in microservice monitoring.

 Monitoring strategies

In this section, we will take a look at the monitoring strategies that make microservices observable. It is common to implement the following or more strategies to create a well-defined and holistic monitoring solution.

 Application/system monitoring

This strategy is also called a framework-based strategy. Here, the application, or in our case microservice, itself generates the monitoring information within the given context of execution. The application can be dynamically configured based on the thresholds or trigger points in the application data, which can generate tracing statements. It is also possible to have a probe-based framework (such as .NET CLR, which provides hooks to get more information) to generate monitoring data. So, effective instrumentation points themselves can be embedded into the application to facilitate this kind of monitoring. On top of this, the underlying infrastructure, where microservices are hosted, can also raise critical events. These events can be listened to and recorded by the monitoring agents present on the same host as that of the application.

 Real user monitoring

This strategy is based on a real end user's transactional flow across the system. While the end user is using the system in real time, the parameters related to response time and latency, as well as the number of errors experienced by the user, can be captured using it.

This is useful for specific troubleshooting and issue resolution. With this strategy, the system's hotspots and bottlenecks for service interactions can be captured as well. It is possible to record the entire end-to-end user flow or transactions to replay it at a later time. The benefits of this are that these kinds of recorded plays can be used for troubleshooting of issues as well as for various types of testing purposes.

 Semantic monitoring and synthetic transactions

The semantic monitoring strategy focuses on business transactions; however, it is implemented through the use of synthetic transactions. In semantic monitoring, as the name suggests, we try to emulate end user flows. However, this is done in a controlled fashion and with dummy data so you can differentiate the output of the flow from the actual end user flow data. This strategy is typically used for service dependency, health checking, and diagnostics of problems occurring across the system. To implement synthetic transactions, we need to be careful while planning the flow; also, we need to be careful enough not to stress the system out. Here's an example: creating fake orders for fake product catalogs and observing the response time and output across this whole transaction propagating in the system.

 Profiling

This approach is specifically focused on solving performance bottlenecks across the system. This approach is different from the preceding approaches. Real and semantic monitoring focuses on business transactions or functional aspects of the system and collects data around it. Rather, profiling is all about system-level or low-level information capture. A few of these parameters are response time, memory, or threads. This approach uses a probing technique in the application code or framework and collects data. Utilizing the data points captured during the profiling, the relevant DevOps team can identify the cause of the performance problem. Profiling using probing should be avoided in production environments. However, it is perfectly fine for generating call times and so on without overloading the system at runtime. A good example of profiling, in general, is an ASP.NET MVC application profiled with an ASP.NET MiniProfiler, or even with Glimpse.

 Endpoint monitoring

With this approach, we expose one or more endpoints of a service to emit diagnostic information related to the service itself as well as the infrastructure parameters. Generally, different endpoints focus on providing different information. For example, one endpoint can give the health status of the service, while the other could provide the HTTP 500 error information that occurred in that service execution. This is a very helpful technique for microservices since it inherently changes the monitoring from being a push model to a pull model and reduces the overhead of service monitoring. We can scrap data from these endpoints at a certain time interval and build a dashboard and collect data for operational metrics.

 Logging

Logging is a type of instrumentation made available by the system, its various components, or the infrastructure layer. In this section, we will first visit logging challenges and then discuss strategies to reach a solution for these challenges.

 Logging challenges

We will first try to understand the problem with log management in microservices:

	To log the information related to a system event and parameter as well as the infrastructure state, we will need to persist log files. In traditional .NET monoliths, log files are kept on the same machine where the application is deployed. In the case of microservices, they are hosted either on virtual machines or containers. But virtual machines and containers are both ephemeral, which means they do not persist states. In this situation, if we persist log files with virtual machines or containers, we will lose them. This is one of the challenges of log management in microservices.

	In the microservice architecture, there are a number of services that constitute a transaction. Let's assume we have an order placement transaction where service A, service B, and service C take part in the transaction. If, say, service B fails during the transaction, how are we going to understand and capture this failure in the logs? Not only that but more importantly, how are we going to understand that a specific instance of service B has failed and it was taking part in a said transaction? This scenario presents another challenge to microservices.

 Logging strategies

So far in this section, we have discussed logging, its challenges, and why we should implement logging. Multiple calls at the same time are possible so when we implement logging, we should implement it in such a way that we know the exact source of the logged transaction. We would go with correlation ID for logging.

Logging is not related to microservices specifically; it is also important for monolithic applications.

To implement logging in microservices, we can use the keylogging strategies discussed in the following sections.

 Centralized logging

There is a difference between centralized logging and centralized monitoring. In centralized logging, we log all the details about the events that occur in our system—they may be errors or warnings or just for informational purposes—whereas in centralized monitoring, we monitor critical parameters, that is, specific information.

With logs, we can understand what has actually happened in the system or a specific transaction. We will have all the details about the specific transaction, such as why it started, who triggered it, what kind of data or resources it recorded, and so on. In a complex distributed system, such as microservices, this is really the key piece of information with which we can solve the entire puzzle of information flow or errors. We also need to treat timeouts, exceptions, and errors as events that we need to log.

The information we record regarding a specific event should also be structured, and this structure should be consistent across our system. So, for example, our structured log entry might contain level-based information to state whether the log entry is for information, an error, or whether it's debugged information or statistics that have been recorded as log entry events. The structured log entry must also have a date and time so we know when the event happened. We should also include the hostname within our structured log so that we know where exactly the log entry came from. We should also include the service name and the service instance so we know exactly which microservice made the log entry.

Finally, we should also include a message in our structured logging format, which is the key piece of information associated with the event. So, for example, for an error, this might be the call stack or details regarding the exception. The key thing is that we keep our structured logging format consistent. A consistent format will allow us to query the logging information. Then, we can basically search for specific patterns and issues using our centralized logging tool. Another key aspect of centralized logging within a microservice architecture is to make distributed transactions more traceable.

 Using a correlation ID in logging

A correlation ID is a unique ID that is assigned to every transaction. So, when a transaction becomes distributed across multiple services, we can follow that transaction across different services using the logging information. The correlation ID is basically passed from service to service. All services that process that specific transaction receive the correlation ID and pass it to the next service, and so on, so that they can log any events associated with that transaction to our centralized logs. This helps us hugely when we have to visualize and understand what has happened with this transaction across different microservices.

 Semantic logging

Event Tracing for Windows (ETW) is a structural logging mechanism where you can store a structured payload with the log entry. This information is generated by event listeners and may include typed metadata about the event. This is merely an example of semantic logging. Semantic logging passes additional data along with the log entry so that the processing system can get the context structured around the event. Hence, semantic logging is also referred to as structured logging or typed logging.

For more information, refer to https://docs.microsoft.com/en-us/windows-hardware/drivers/devtest/event-tracing-for-windows--etw-

As an example, an event that indicates an order was placed can generate a log entry that contains the number of items as an integer value, the total value as a decimal number, the customer identifier as a long value, and the city for delivery as a string value. An order monitoring system can read the payload and easily extract the individual values. ETW is the standard, shipped feature with Windows.

In Azure Cloud, it is possible to get your log data source from ETW. The Semantic Logging Application Block developed by Microsoft's patterns and practices team is an example of a framework that makes comprehensive logging easier. When you write events to the custom event source, the Semantic Logging Application Block detects this and allows you to write the event to other logging destinations, such as a disk file, database, email message, and more. You can use the Semantic Logging Application Block in Azure applications that are written in .NET and run on Azure websites, cloud services, and virtual machines.

 Monitoring in Azure Cloud

There is no single, off-the-shelf solution or offering in Azure, or for that matter any cloud provider, to the monitoring challenges presented by microservices. Interestingly enough, there are not too many open source tools available that can work with .NET-based microservices.

We are utilizing Microsoft Azure Cloud and cloud services for building our microservices, so it is useful to look for the monitoring capability it comes with. If you are looking to manage approximately a couple of hundred microservices, you can utilize a custom monitoring solution (mostly interweaving PowerShell scripts) based on a Microsoft Azure-based solution.

We will be primarily focusing on the following logging and monitoring solutions:

	Microsoft Azure Diagnostics: This helps in collecting and analyzing resources through resource and activity logs.

	Application Insights: This helps in collecting all of the telemetry data about our microservices and analyzing them. This is a framework-based approach for monitoring.

	Log Analytics: Log Analytics analyzes and displays data and provides scalable querying capability over collected logs.

Let's look at these solutions from a different perspective. This perspective will help us visualize our Azure-based microservice monitoring solution. A microservice is composed of the following:

	Infrastructure layer: A virtual machine or an application container (for example, Docker container)

	Application stack layer: Constitutes the operating system, .NET CLR, and the microservice application code

Each of these layer components can be monitored as follows:

	Virtual machine: Using Azure Diagnostics Logs

	Docker containers: Using container logs and Application Insights or a third-party container monitoring solution, such as cAdvisor, Prometheus, or Sensu

	Windows operating system: Using Azure Diagnostics Logs and Activity Logs

	A microservice application: Using Application Insights

	Data visualization and metric monitoring: Using Log Analytics or third-party solutions, such as Splunk or ELK stack

Various Azure services come with an activity ID in their log entries. This activity ID is a unique GUID assigned for each request, which can be utilized as a correlation ID during log analysis.

 Microsoft Azure Diagnostics

Azure diagnostics logs give us the ability to collect diagnostic data for a deployed microservice. We can also use a diagnostic extension to collect data from various sources. Azure Diagnostics is supported by web and worker roles, Azure virtual machines, and all Azure App services. Other Azure services have their own separate diagnostics.

Enabling Azure diagnostics logs and exploring various settings in the Azure app service is easy and available as a toggle switch, as shown in the following screenshot:

Azure diagnostics can collect data from the following sources:

	Performance counters

	Application logs

	Windows event logs

	.NET event sources

	IIS logs

	Manifest-based ETW

	Crash dumps

	Custom error logs

	Azure diagnostic infrastructure logs

 Storing diagnostic data using Azure storage

Azure diagnostics logs are not permanently stored. They are rollover logs, that is, they are overwritten by newer ones. So, if we want to use them for any analysis work, we have to store them. Azure diagnostics logs can be either stored in a file system or transferred via FTP; better still, it can be stored in an Azure storage container.

There are different ways to specify an Azure storage container for diagnostics data for the specified Azure resource (in our case, microservices hosted on the Azure app service). These are as follows:

	CLI tools

	PowerShell

	Azure Resource Manager

	Visual Studio 2017 with Azure SDK 2.9 or later

	Azure portal

 Using Azure portal

The following screenshot depicts the Azure storage container provisioned through the Azure portal:

 Specifying a storage account

Another way to specify the storage account for storing application-specific diagnostic data is by specifying the storage account in the ServiceConfiguration.cscfg file. This is also convenient as during development time itself, you can specify the storage account. It is also possible to specify an altogether different storage account during development and production. The Azure storage account might also be configured as one of the dynamic environment variables during the deployment process.

The account information is defined as a connection string in a configuration setting. The following example shows the default connection string created for a new microservice project in Visual Studio:

<ConfigurationSettings>
 <Setting name="Microsoft.WindowsAzure.Plugins.
 Diagnostics.ConnectionString" value="UseDevelopmentStorage=true" />
</ConfigurationSettings>

You can change this connection string to provide account information for an Azure storage account.

Now, let's see how Azure storage stores the diagnostic data. All the log entries are stored in either a blob or table storage container. The storage choice can be specified while we create and associate the Azure storage container.

 Azure storage schema for diagnostic data

The structure of Azure table storage for storing diagnostic data is as follows:

If the storage is in the form of tables, we will see the following tables schema:

	WadLogsTable: This table stores the log statements written during code execution, using the trace listener.

	WADDiagnosticInfrastructureLogsTable: This table specifies the diagnostic monitor and configuration changes.

	WADDirectoriesTable: This table includes the directories that the diagnostic monitor is monitoring. This includes IIS logs, IIS-failed request logs, and custom directories. The location of the blob log file is specified in the container field and the name of the blob is in the RelativePath field. The AbsolutePath field indicates the location and the name of the file as it existed on the Azure virtual machine.

	WADPerformanceCountersTable: This table contains data related to the configured performance counters.

	WADWindowsEventLogsTable: This table contains Windows' event tracing log entries.

For a blob storage container, the diagnostic storage schema is as follows:

	wad-control-container: This is only for SDK 2.4 and previous versions. It contains the XML configuration files that control Azure diagnostics.

	wad-iis-failedreqlogfiles: This contains information from the IIS-failed request logs.

	wad-iis-logfiles: This contains information about IIS logs.

	custom: This is a custom container based on the configuring directories that are monitored by the diagnostic monitor. The name of this blob container will be specified in WADDirectoriesTable.

An interesting fact to note here is that the WAD suffix, which can be seen on these container tables or blobs, comes from Microsoft Azure Diagnostics's previous product name, which is Windows Azure Diagnostics.

You can use Cloud Explorer from Visual Studio to explore the stored Azure diagnostics data.

 Introduction of Application Insights

Application Insights is an application performance management (APM) offering from Microsoft. It is a useful service offering for monitoring the performance of .NET-based microservices. It is useful for understanding the internal, operational behavior of individual microservices. Instead of just focusing on detecting and diagnosing issues, it will tune the service performance and understand the performance characteristics of your microservice. It is an example of the framework-based approach to monitoring. What that means is that during the development of a microservice, we will add the Application Insights package to the Visual Studio solution of our microservice. This is how Application Insights instruments your microservice for telemetry data. This might not always be an ideal approach for every microservice; however, it comes in handy if you have not given any good, thorough thought to monitoring your microservices. This way, monitoring comes out-of-the-box with your service.

With the help of Application Insights, you can collect and analyze the following types of telemetry data types:

	HTTP request rates, response times, and success rates

	Dependency (HTTP and SQL) call rates, response times, and success rates

	Exception traces from both server and client

	Diagnostic log traces

	Page view counts, user and session counts, browser load times, and exceptions

	AJAX call rates, response times, and success rates

	Server performance counters

	Custom client and server telemetry

	Segmentation by client location, browser version, OS version, server instance, custom dimensions, and more

	Availability tests

Along with the preceding types, there are associated diagnostic and analytics tools available for alerting and monitoring with various different customizable metrics. With its own query language and customizable dashboards, Application Insights forms a good monitoring solution for .NET microservices.

 Other microservice monitoring solutions

Now let's look at some of the popular monitoring solutions that can be used to build a custom microservice monitoring solution. Obviously, these solutions do not come out of-the-box; however, they are definitely time-tested by the open source community and can be easily integrated within .NET-based environments.

 A brief overview of the ELK stack

As we saw, one of the fundamental tools for monitoring is logging. For microservices, there will be an astounding number of logs generated that are sometimes not even comprehensible to humans. The ELK stack (also referred to as the elastic stack) is the most popular log management platform. It is also a good candidate for microservice monitoring because of its ability to aggregate, analyze, visualize, and monitor. The ELK stack is a toolchain that includes three distinct tools, namely Elasticsearch, Logstash, and Kibana. Let's look at them one by one to understand their role in the ELK stack.

 Elasticsearch

Elasticsearch is a full-text search engine based on the Apache Lucene library. The project is open source and developed in Java. Elasticsearch supports horizontal scaling, multitenancy, and clustering approaches. The fundamental element of Elasticsearch is its search index. This index is stored in forms of JSON internally. A single Elasticsearch server stores multiple indexes (each index represents a database), and a single query can search data with multiple indexes.

Elasticsearch can really provide near real-time searches and can scale with very low latency. The search and results programming model is exposed through the Elasticsearch API and available over HTTP.

 Logstash

Logstash plays the role of a log aggregator in the ELK stack. It is a log aggregation engine that collects, parses, processes, and persists the log entries in its persistent store. Logstash is extensive due to its data-pipeline-based architecture pattern. It is deployed as an agent, and it sends the output to Elasticsearch.

 Kibana

Kibana is an open source data visualization solution. It is designed to work with Elasticsearch. You use Kibana to search, view, and interact with the data stored in the Elasticsearch indices.

It is a browser-based web application that lets you perform advanced data analysis and visualize your data in a variety of charts, tables, and maps. Moreover, it is a zero-configuration application. Therefore, it neither needs any coding nor additional infrastructure after the installation.

 Splunk

Splunk is one of the best commercial log management solutions. It can handle terabytes of log data very easily. Over time, it has added many additional capabilities and is now recognized as a full-fledged leading platform for operational intelligence. Splunk is used to monitor numerous applications and environments.

It plays a vital role in monitoring any infrastructure and application in real time and is essential for identifying issues, problems, and attacks before they impact customers, services, and profitability. Splunk's monitoring abilities, specific patterns, trends and thresholds, and so on can be established as events for Splunk to look out for. This is so that specific individuals don't have to do this manually.

Splunk has an alerting capability included in its platform. It can trigger alert notifications in real time so that appropriate action can be taken to avoid application or infrastructure downtime.

Based on a trigger of alert and action configured, Splunk can:

	Send an email

	Execute a script or trigger a runbook

	Create an organizational support or action ticket

Typically, Splunk monitoring marks might include the following:

	Application logs

	Active Directory changes event data

	Windows event logs

	Windows performance logs

	WMI-based data

	Windows registry information

	Data from specific files and directories

	Performance monitoring data

	Scripted input to get data from the APIs and other remote data interfaces and message queues

 Alerting

As with any monitoring solution, Splunk also has alert functionalities. It can be configured to set an alert based on any real-time or historical search patterns. These alert queries can be run periodically and automatically, and alerts can be triggered by the results of these real-time or historical queries.

You can base your Splunk alerts on a wide range of threshold-and trend-based situations, such as conditions, critical server or application errors, or threshold amounts of resource utilization.

 Reporting

Splunk can report on alerts that have been triggered and executed as well as if they meet certain conditions. Splunk's alert manager can be used to create a report based on the preceding alert data.

 Summary

Debugging and monitoring of microservices is not simple; it's a challenging problem. We have used the word challenging on purpose: there is no silver bullet for this. There is no single tool that you can install that works like magic. However, with Azure Diagnostics and Application Insights, or with ELK stack or Splunk, you can come up with solutions that will help you solve microservice monitoring challenges. Implementing microservice monitoring strategies, such as application/system monitoring, real user monitoring, synthetic transactions, centralized logging, semantic logging block, and implementation of correlation ID throughout transactional HTTP requests, is a helpful way to monitor microservice implementations.

In the next chapter, we will see how we can scale microservices, and the solutions and strategies for scaling microservice solutions.

 Scaling Microservices

Imagine you are part of a development and support team that is responsible for developing the company's flagship product—TaxCloud. TaxCloud helps taxpayers file their own taxes and charges them a small fee upon the successful filing of taxes. Consider you had developed this application using microservices. Now, say the product gets popular and gains traction, and suddenly, on the last day of tax filing, you get a rush of consumers wanting to use your product and file their taxes. However, the payment service of your system is slow, which has almost brought the system down, and all the new customers are moving to your competitor's product. This is a lost opportunity for your business.

Even though this is a fictitious scenario, it can very well happen to any business. In e-commerce, we have always experienced these kinds of things in real life, especially on special occasions such as Christmas and Black Friday. All in all, they point toward one major significant characteristic—the scalability of the system. Scalability is one of the most important non-functional requirements of any mission-critical system. Serving a couple of users with hundreds of transactions is not the same as serving millions of users with several million transactions. In this chapter, we will discuss scalability in general. We'll also discuss how to scale microservices individually, what to consider when we design them, and how to avoid cascading failure using different patterns. By the end of this chapter, you will have learned about:

	Horizontal scaling

	Vertical scaling

	The Scale Cube model of scalability

	Scaling infrastructure using Azure scale sets and Docker Swarm

	Scaling a service design through data model caching and response caching

	The circuit breaker pattern

	Service discovery

 Scalability overview

Design decisions impact the scalability of a single microservice. As with other application capabilities, decisions that are made during the design and early coding phases largely influence the scalability of services.

Microservice scalability requires a balanced approach between services and their supporting infrastructures. Services and their infrastructures also need to to be scaled in harmony.

Scalability is one of the most important non-functional characteristics of a system as it can handle more payload. It is often felt that scalability is usually a concern for large-scale distributed systems. Performance and scalability are two different characteristics of a system. Performance deals with the throughput of the system, whereas scalability deals with serving the desired throughput for a larger number of users or a larger number of transactions.

 Scaling infrastructure

Microservices are modern applications and usually take advantage of the cloud. Therefore, when it comes to scalability, the cloud provides certain advantages. However, it is also about automation and managing costs. So even in the cloud, we need to understand how to provision infrastructure, such as virtual machines or containers, to successfully serve our microservices-based application even in the case of sudden traffic spikes.

Now we will visit each component of our infrastructure and see how we can scale it. The initial scaling up and scaling out methods are applied more to hardware scaling. With the Auto Scaling feature, you will understand Azure virtual manager scale sets. Finally, you will learn about scaling with containers in Docker Swarm mode.

 Vertical scaling (scaling up)

Scaling up is a term used for achieving scalability by adding more resources to the same machine. It includes the addition of more memory or processors with higher speed or simply the migration of applications to a more powerful macOS.

With upgrades in hardware, there is a limit as to how you can scale the machine. It is more likely that you are just shifting the bottleneck rather than solving the real problem of improving scalability. If you add more processors to the machine, you might shift the bottleneck to memory. Processing power does not increase the performance of your system linearly. At a certain point, the performance of a system stabilizes even if you add more processing capacity. Another aspect of scaling up is that since only one machine is serving all the requests, it becomes a single point of failure as well.

In summary, scaling vertically is easy since it involves no code changes; however, it is quite an expensive technique. Stack Overflow is one of those rare examples of a .NET-based system that is scaled vertically.

 Horizontal scaling (scaling out)

If you do not want to scale vertically, you can always scale your system horizontally. Often, it is also referred to as scaling out. Google has really made this approach quite popular. The Google search engine is running out of inexpensive hardware boxes. So, despite being a distributed system, scaling out helped Google in its early days expand its search process in a short amount of time while being inexpensive. Most of the time, common tasks are assigned to worker machines and their output is collected by several machines doing the same task. This kind of arrangement also survives through failures. To scale out, load balancing techniques are useful. In this arrangement, a load balancer is usually added in front of all the clusters of the nodes. So, from a consumer perspective, it does not matter which machine/box you are hitting. This makes it easy to add capacity by adding more servers. Adding servers to clusters improves scalability linearly.

Scaling out is a successful strategy when the application code does not depend on the server it is running on. If the request needs to be executed on a specific server, that is, if the application code has server affinity, it will be difficult to scale out. However, in the case of stateless code, it is easier to get that code executed on any server. Hence, scalability is improved when a stateless code is run on horizontally scaled machines or clusters.

Due to the nature of horizontal scaling, it is a commonly used approach across the industry. You can see many examples of large scalable systems managed this way, for example, Google, Amazon, and Microsoft. We recommend that you scale microservices in a horizontal fashion as well.

 Microservice scalability

In this section, we will review the scaling strategies available for microservices. We will look at the Scale Cube model of scalability, how to scale the infrastructure layer for microservices, and embed scalability in microservice design.

 Scale Cube model of scalability

One way to look at scalability is by understanding Scale Cube. In the book The Art of Scalability: Scalable Web Architecture, Processes, and Organizations for the Modern Enterprise, Martin L. Abbott and Michael T. Fisher define Scale Cube as viewing and understanding system scalability. Scale Cube applies to microservice architectures as well:

In this three-dimensional model of scalability, the origin (0,0,0) represents the least scalable system. It assumes that the system is a monolith deployed on a single server instance. As shown, a system can be scaled by putting the right amount of effort into three dimensions. To move a system towards the right scalable direction, we need the right trade-offs. These trade-offs will help you gain the highest scalability for your system. This will help your system cater to increasing customer demand. This is signified by the Scale Cube model. Let's look into every axis of this model and discuss what they signify in terms of microservice scalability.

 Scaling of x axis

Scaling over the x axis means running multiple instances of an application behind a load balancer. This is a very common approach used in monolithic applications. One of the drawbacks of this approach is that any instance of an application can utilize all the data available for the application. It also fails to address application complexity.

Microservices should not share a global state or a kind of data store that can be accessed by all the services. This will create a bottleneck and a single point of failure. Hence, approaching microservice scaling merely over the x axis of Scale Cube would not be the right approach.

Now let's look at z axis scaling. We have skipped y axis scaling for a reason.

 Scaling of z axis

The z axis scaling is based on a split, which is based on the customer or requestor of a transaction. While z axis splits may or may not address the monolithic nature of instructions, processes, or code, they very often do address the monolithic nature of the data necessary to perform these instructions, processes, or code. Naturally, in z axis scaling, there is one dedicated component responsible for applying the bias factor. The bias factor might be a country, request origin, customer segment, or any form of subscription plan associated with the requestor or request. Note that z axis scaling has many benefits, such as improved isolation and caching for requests; however, it also suffers from the following drawbacks:

	It has increased application complexity.

	It needs a partitioning scheme, which can be tricky especially if we ever need to repartition data.

	It doesn't solve the problems of increasing development and application complexity. To solve these problems, we need to apply y axis scaling.

Due to the preceding nature of z axis scaling, it is not suitable for use in the case of microservices.

 Scaling of y axis

The y axis scaling is based on a functional decomposition of an application into different components. The y axis of Scale Cube represents the separation of responsibility by the role or type of data, or work performed by a certain component in a transaction. To split the responsibility, we need to split the components of the system as per their actions or roles performed. These roles might be based on large portions of a transaction or a very small one. Based on the size of the roles, we can scale these components. This splitting scheme is referred to as service or resource-oriented splits.

This very much resembles what we see in microservices. We split the entire application based on its roles or actions, and we scale individual microservice as per its role in the system. This resemblance is not accidental; it is the product of the design. So we can fairly say that y axis scaling is quite suitable for microservices.

Understanding y axis scaling is very significant for scaling a microservice architecture-based system. So, effectively, we are saying that microservices can be scaled by splitting them as per their roles and actions. Consider an order management system that is designed to, say, meet certain initial customer demand; for this, splitting the application into services such as customer service, order service, and payment service will work fine. However, if demand increases, you would need to review the existing system closely. You might discover the sub-components of an already existing service, which can very well be separated again since they are performing a very specific role in that service and the application as a whole. This revisit to design with respect to increased demand/load may trigger the re-splitting of the order service into a quote service, order processing service, order fulfillment service, and so on. Now, a quote service might need more computing power, so we might push more instances (identical copies behind it) when compared to other services.

This is a near real-world example of how we should scale microservices on the AFK Scale Cube's three-dimensional model. You can observe this kind of three-dimensional scalability and y axis scaling of services in some well-known microservice architectures that belong to the industry, such as Amazon, Netflix, and Spotify.

 Characteristics of a scalable microservice

In the Scale Cube section, we largely focused on scaling the characteristics of an entire system or application. In this section, we will focus on scaling the characteristics of an individual microservice. A microservice is said to be scalable and performant when it exhibits the following major characteristics:

	Known growth curve: For example, in the case of an order management system, we need to know how many orders are supported by the current services and how they are proportionate to the order fulfillment service metric (measured in requests per seconds). The currently measured metrics are called baseline figures.

	Well-studied usage metrics: The traffic pattern generally reveals customer demand, and based on customer demand, many parameters mentioned in the previous sections regarding microservices can be calculated. Hence, microservices are instrumented, and monitoring tools are the necessary companions of microservices.

	Effective use of infrastructure resources: Based on qualitative and quantitative parameters, the anticipation of resource utilization can be done. This will help the team predict the cost of infrastructure and plan for it.

	Ability to measure, monitor, and increase the capacity using an automated infrastructure: Based on the operational and growth pattern of the resource consumption of microservices, it is very easy to plan for future capacity. Nowadays, with cloud elasticity, it is even more important to be able to plan and automate capacity. Essentially, cloud-based architecture is cost-driven architecture.

	Known bottlenecks: Resource requirements include the specific resources (compute, memory, storage, and I/O) that each microservice needs. Identifying these are essential for a smoother operational and scalable service. If we identify resource bottlenecks, they can be worked on and eliminated.

	Has dependency scaling in the same ratio: This is self-explanatory. However, you cannot just focus on a microservice, leaving its dependencies as bottlenecks. A microservice is as scalable as its least scaling dependency.

	Fault tolerant and highly available: Failure is inevitable in distributed systems. If you encounter a microservice instance failure, it should be automatically rerouted to a healthy instance of the microservice. Just putting load balancers in front of microservice clusters won't be sufficient in this case. Service discovery tools are quite helpful for satisfying this characteristic of scalable microservices.

	Has a scalable data persistence mechanism: Individual data store choices and design should be scalable and fault-tolerant for scalable microservices. Caching and separating out read and write storage will help in this case.

Now, while we are discussing microservices and scalability, the natural arrangement of scaling comes into the picture, which is nothing but the following:

	Scaling the infrastructure: Microservices operate well over dynamic and software-defined infrastructure. So, scaling the infrastructure is an essential component of scaling microservices.

	Scaling around service design: Microservice design comprises of an HTTP-based API as well as a data store in which the local state for the services is stored.

 Scaling the infrastructure

In this section, we will visit all the layers of the microservice infrastructure and see them in relation to each other, that is, how each individual infrastructure layer can be scaled. In our microservice implementation, there are two major components. One is virtual machines and the other is the container hosted on the virtual or physical machine. The following diagram shows a logical view of the microservice infrastructure:

 Scaling virtual machines using scale sets

Scaling virtual machines is quite simple and easy in Azure Cloud. This is where microservices shine through. With scale sets, you can raise the instances of the same virtual machine images in a short amount of time, and automatically too, based on the ruleset. Scale sets are integrated with Azure Autoscale.

Azure virtual machines can be created in such a way so that as a group, they always serve the requests even if the volume of the requests increases. In specific situations, they can also be deleted automatically if those virtual machines are not needed to perform the workload. This is taken care of by the virtual machine scale set.

Scale sets also integrate well with load balancers in Azure. Since they are represented as compute resources, they can be used with Azure's Resource Manager. Scale sets can be configured so that virtual machines can be created or deleted on demand. This helps manage virtual machines with the mindset of pets vs. cattle, which we saw earlier in the chapter in terms of deployment.

For applications that need to scale compute resources in and out, scale operations are implicitly balanced across the fault and update domains.

With scale sets, you don't need to correlate loops of independent resources, such as NICs, storage accounts, and virtual machines. Even while scaling out, how are we going to take care of the availability of these virtual managers? All such concerns and challenges have already been addressed with virtual machine scale sets.

A scale set allows you to automatically grow and shrink an application based on demand. Let's say there's a threshold of 40% utilization. So, maybe once we reach 40% utilization, we'll begin to experience performance degradation. And at 40% utilization, new web servers get added. A scale set allows you to set a rule, as mentioned in the previous sections. An input to a scale set is a virtual machine. The rules on a scale set say that at 40% average CPU, for five minutes, Azure will add another virtual machine to the scale set. After doing this, calibrate the rule again. If the performance is still above 40%, add a third virtual machine until it reaches the acceptable threshold. Once the performance drops below 40%, it will start deleting these virtual machines based on traffic inactivity and so on to reduce the cost of operation.

So by implementing a scale set, you can construct a rule for the performance and make your application bigger to handle the greater load by simply automatically adding and removing virtual machines. You, as the administrator, will be left with nothing to do once these rules are established.

Azure Autoscale measures performance and determines when to scale up and down. It is also integrated with the load balancer and NAT. Now, the reason they're integrated with the load balancer and with NAT is because as we add these additional virtual machines, we're going to have a load balancer and a NAT device in front. As requests keep coming in, in addition to deploying the virtual machine, we've got to add a rule that allows traffic to be redirected to the new instances. The great thing about scale sets is that they not only add virtual machines but also work with all the other components of the infrastructure, including things such as network load balancers.

In the Azure Portal, a scale set can be viewed as a single entry, even though it has multiple virtual machines included in it. To look at the configuration and specification details of virtual machines in a scale set, you will have to use the Azure Resource Explorer tool. It's a web-based tool available at https://resources.azure.com. Here you can view all the objects in your subscription. You can view scale sets in the Microsoft.Compute section.

Building a scale set is very easy using the Azure templates repository. Once you create your own Azure Resource Manager (ARM) template, you can also create custom templates based on scale sets. Due to scope and space constraints, we have omitted a detailed discussion and instructions on how to build a scale set. You can follow these instructions by utilizing the ARM templates given at https://github.com/gbowerman/azure-myriad.

An availability set is an older technology, and this feature has limited support. Microsoft recommends that you migrate to virtual machine scale sets for faster and more reliable autoscale support.

 Auto Scaling

With the help of monitoring solutions, we can measure the performance parameters of an infrastructure. This is usually in the form of performance SLAs. Auto Scaling gives us the ability to increase or decrease the resources available to the system, based on performance thresholds.

The Auto Scaling feature adds additional resources to cater to increased load. It works in reverse, as well. If the load is reduced, then Auto Scaling reduces the number of resources available to perform the task. Auto Scaling does it all without pre-provisioning the resources, and does this in an automated way.

Auto Scaling can scale in both ways—vertically (adding more resources to the existing resource type) or horizontally (adding resources by creating another instance of that type of resource).

The Auto Scaling feature makes a decision regarding adding or removing resources based on two strategies. One is based on the available metrics of the resource or on meeting some system threshold value. The other type of strategy is based on time, for example, between 9 a.m. and 5 p.m. IST, instead of three web servers; the system needs 30 web servers.

Azure monitoring instruments every resource; all the metric-related data is collected and monitored. Based on the data collected, Auto Scaling makes decisions.

Azure Monitor autoscale applies only to virtual machine scale sets, cloud services, and app services (for example, web apps).

 Container scaling using Docker Swarm

Earlier, in the chapter on deployment, we looked at how to package a microservice into a Docker container. We also discussed in detail why containerization is useful in the microservice world. In this section, we will advance our skills with Docker and also see how easily we can scale our microservices with Docker Swarm.

Inherently, microservices are distributed systems and need to be distributed and isolated resources. Docker Swarm provides container orchestration clustering capabilities so that multiple Docker engines can work as single virtual engines. This is similar to load balancer capabilities; besides, it also creates new instances of containers or deletes containers, if the need arises.

You can use any of the available service discovery mechanisms, such as DNS, consul, or zookeeper tools, with Docker Swarm.

A swarm is a cluster of Docker engines or nodes where you can deploy your microservices as services. Now, do not confuse these services with microservices. Services are a different concept in Docker implementation. A service is the definition of the tasks to execute on the worker nodes. You may want to understand the node we are referring to in the last sentence. The node, in Docker Swarm context, is used for the Docker engine participating in a cluster. A complete swarm demo is possible, and ASP.NET Core images are available in the ASP.NET-Docker project on GitHub (https://github.com/aspnet/aspnet-docker).

The Azure Container Service has recently been made available. It is a good solution for scaling and orchestrating Linux or Windows containers using DC/OS, Docker Swarm, or Google Kubernetes.

Now that we have understood how to scale a microservice infrastructure, let's revisit the scalability aspects of microservice design in the following sections.

 Scaling service design

In these sections, we will look at the components/concerns that need to be taken care of while designing or implementing a microservice. With infrastructure scaling taking care of service design, we can truly unleash the power of the microservice's architecture and get a lot of business value in terms of making a microservice a true success story. So, what are the components in service design? Let's have a look.

 Data persistence model design

In traditional applications, we have always relied on relational databases to persist user data. Relational databases are not new to us. They emerged in the 70s as a way of storing persistent information in a structured way that would allow you to make queries and perform data maintenance.

In today's world of microservices, modern applications need to be scaled at the hyperscale stage. We are not recommending here that you abandon the use of relational databases in any sense. They still have their valid use cases. However, when we mix read and write operations in a single database, complications arise where we need to have increased scalability. Relational databases enforce relationships and ensure the consistency of data. Relational databases work on the well-known ACID model. So, in relational databases, we use the same data model for both read and write operations.

However, the needs of read and write operations are quite different. In most cases, read operations usually have to be quicker than write operations. Read operations can also be done using different filter criteria, returning a single row or a result set. In most write operations, there is a single row or column involved, and usually, write operations take a bit longer when compared to read operations. So, we can either optimize and serve reads or optimize and serve writes in the same data model.

How about we split the fundamental data model into two halves: one for all the read operations and the other for all the write operations? Now things become far simpler, and it is easy to optimize both the data models with different strategies. The impact of this on our microservices is that they, in turn, become highly scalable for both kinds of operations.

This particular architecture is known as Common Query Responsibility Segregation (CQRS). As a natural consequence, CQRS also gets extended in terms of our programming model. Now, the database-object relationship between our programming models has become much simpler and more scalable.

With this comes the next fundamental element in scaling a microservice implementation: the caching of data.

 Caching mechanism

Caching is the simplest way to increase the application's throughput. The principle is very easy. Once the data is read from data storage, it is kept as close as possible to the processing server. In future requests, the data is served directly from the data storage or cache. The essence of caching is to minimize the amount of work that a server has to do. HTTP has a built-in cache mechanism embedded in the protocol itself. This is the reason it scales so well.

With respect to microservices, we can cache at three levels, namely client side, proxy, and server side. Let's look at each of them.

First, we have client-side caching. With client-side caching, clients store cached results. So the client is responsible for doing the cache invalidation. Usually, the server provides guidance, using mechanisms, such as cache control and expiry headers, about how long it can keep the data and when it can request fresh data. With browsers supporting HTML5 standards, there are more mechanisms available, such as local storage, an application cache, or a web SQL database, in which the client can store more data.

Next, we move onto the proxy side. Many reverse proxy solutions, such as Squid, HAProxy, and NGINX, can act as cache servers as well.

Now let's discuss server-side caching in detail. In server-side caching, we have the following two types:

	Response caching: This is an important kind of caching mechanism for a web application UI, and honestly, it is simple and easy to implement as well. In response to caching, cache-related headers get added to the responses served from microservices. This can drastically improve the performance of your microservice. In ASP.NET Core, you can implement response caching using the Microsoft.AspNetCore.ResponseCaching package.

	Distributed caching for persisted data: A distributed cache enhances microservice throughput due to the fact that the cache will not require an I/O trip to any external resource. This has the following advantages:

	Microservice clients get the exact same results.

	The distributed cache is backed up by a persistence store and runs as a different remote process. So even if the app server restarts or has any problems, it in no way affects the cache.

	The source's data store has fewer requests made to it.

You can use distributed providers, such as CacheCow, Redis (for our book Azure Redis Cache), or Memcache, in a clustered mode for scaling your microservice implementation.

In the following section, we will provide an overview of CacheCow and Azure Redis Cache.

 CacheCow

CacheCow comes into the picture when you want to implement HTTP caching on both the client and server. This is a lightweight library, and currently, ASP.NET Web API support is available. CacheCow is open source and comes with an MIT license that is available on GitHub (https://github.com/aliostad/CacheCow).

To get started with CachCow, you need to get ready for both the server and client. The important steps are:

	Install the Install-Package CacheCow.Server NuGet package within your ASP.NET Web API project; this will be your server.

	Install the Install-Package CacheCow.Client NuGet package within your client project; the client application will be WPF, Windows Form, Console, or any other web application.

	Create a cache store. You need to create a cache store at the server side that requires a database for storing cache metadata (https://github.com/aliostad/CacheCow/wiki/Getting-started#cache-store).

If you want to use memcache, refer to https://github.com/aliostad/CacheCow/wiki/Getting-started for more information.

 Azure Redis Cache

Azure Redis Cache is built on top of an open source called Redis (https://github.com/antirez/redis), which is an in-memory database and persists on a disk. As per Microsoft (https://azure.microsoft.com/en-in/services/cache/):

"Azure Redis Cache is based on the popular open source Redis cache. It gives you access to a secure, dedicated Redis cache, managed by Microsoft and accessible from any application within Azure."

Getting started with Azure Redis Cache is very simple with the help of these steps:

	Create a web API project—refer to our code example in Chapter 2, Implementing Microservices.

	Implement Redis—for a referral point use https://github.com/StackExchange/StackExchange.Redis and install the Install-Package StackExchange.Redis NuGet package.

	Update your config file for CacheConnection (https://docs.microsoft.com/en-us/azure/redis-cache/cache-web-app-howto#configure-the-application-to-use-redis-cache).

	Then publish on Azure (https://docs.microsoft.com/en-us/azure/redis-cache/cache-web-app-howto#publish-the-application-to-azure).

You can also use this template to create Azure Redis Cache:

 https://github.com/Azure/azure-quickstart-templates/tree/master/201-web-app-redis-cache-sql-database

 For complete details on Azure Redis Cache refer to this URL:

 https://docs.microsoft.com/en-us/azure/redis-cache/

 Redundancy and fault tolerance

We understand that a system's ability to deal with failure and recover from failure is not the same as that offered by scalability. However, we cannot deny that they are closely related abilities in terms of the system. Unless we address the concerns of availability and fault tolerance, it will be challenging to build highly scalable systems. In a general sense, we achieve availability by making redundant copies available to different parts/components of the system. So, in the upcoming section, we will touch upon two such concepts.

 Circuit breakers

A circuit breaker is a safety feature in an electronic device that, in the event of a short circuit, breaks the electricity flow and protects the device, or prevents any further damage to the surroundings. This exact idea can be applied to software design. When a dependent service is not available or not in a healthy state, a circuit breaker prevents calls from going to that dependent service and redirects the flow to an alternate path for a configured period of time.

In his famous book, Release It! Design and Deploy Production-Ready Software, Michael T. Nygard gives details about the circuit breaker. A typical circuit breaker pattern is shown in the following diagram:

As shown in the diagram, the circuit breaker acts as a state machine with three states.

 Closed state

This is the initial state of the circuit, which depicts a normal flow of control. In this state, there is a failure counter. If OperationFailedException occurs in this flow, the failure counter is increased by 1. If the failure counter keeps increasing, meaning the circuit encounters more exception, and reaches the failure threshold set, the circuit breaker transitions to an Open state. But if the calls succeed without any exception or failure, the failure count is reset.

 Open state

In the Open state, a circuit has already tripped and a timeout counter has started. If a timeout is reached and a circuit still keeps on failing, the flow of code enters into the Half-Open state.

 Half-Open state

In the Half-Open state, the state machine/circuit breaker component resets the timeout counter and again tries to open the circuit, reinitiating the state change to the Open state. However, before doing so, it tries to perform regular operations, say a call to the dependency; if it succeeds, then instead of the Open state, the circuit breaker component changes the state to Closed. This is so that the normal flow of the operation can happen, and the circuit is closed again.

For .NET-based microservices, if you want to implement the circuit breaker and a couple of fault-tolerant patterns, there is a good library named Polly available in the form of a NuGet package. It comes with extensive documentation and code samples, and moreover, has a fluent interface. You can add Polly from http://www.thepollyproject.org/ or by just issuing the install--Package Polly command from the package manager console in Visual Studio.

 Service discovery

For a small implementation, how can you determine the address of a microservice? For any .NET developer, the answer is that we simply put the IP address and port of service in the configuration file and we are good. However, when you deal with hundreds or thousands of them dynamically, configured at runtime, you have a service location problem.

Now if you peek a bit deeper, we are trying to solve two parts of the problem:

	Service registration: This is the process of registration within the central registry of some kind, where all the service-level metadata, host lists, ports, and secrets are stored.

	Service discovery: Establishing communication at runtime with a dependency through a centralized registry component is service discovery.

Any service registration and discovery solution needs to have the following characteristics to make it considerable as a solution for the microservice services discovery problem:

	The centralized registry itself should be highly available

	Once a specific microservice is up, it should receive the requests automatically

	Intelligent and dynamic load balancing capabilities should exist in the solution

	The solution should be able to monitor the capability of the service health status and the load it is subjected to

	The service discovery mechanism should be capable of diverting the traffic to other nodes or services from unhealthy nodes, without any downtime or impact on its consumers

	If there is a change in the service location or metadata, the service discovery solution should be able to apply the changes without impacting the existing traffic or service instances

Some of the service discovery mechanisms are available within the open source community. They are as follows:

	Zookeeper: Zookeeper (http://zookeeper.apache.org/) is a centralized service for maintaining configuration information and naming, providing distributed synchronization, and providing group services. It's written in Java, is strongly consistent (CP), and uses the Zab (http://www.stanford.edu/class/cs347/reading/zab.pdf) protocol to coordinate changes across the ensemble (cluster).

	Consul: Consul makes it simple for services to register themselves and discover other services via a DNS or HTTP interface. It registers external services, such as SaaS providers, as well. It also acts as a centralized configuration store in the form of key values. It also has failure detection properties. It is based on the peer-to-peer gossip protocol.

	Etcd: Etcd is a highly available key-value store for shared configuration and service discovery. It was inspired by Zookeeper and Doozer. It's written in Go, uses Raft (https://ramcloud.stanford.edu/wiki/download/attachments/11370504/raft.pdf) for consensus, and has an HTTP-plus JSON-based API.

 Summary

Scalability is one of the critical advantages of pursuing the microservice architectural style. We looked at the characteristics of microservice scalability. We discussed the Scale Cube model of scalability and how microservices can scale on the y axis via functional decomposition of the system. Then we approached the scaling problem with the scaling infrastructure. In the infrastructure segment, we looked at the strong capability of Azure Cloud to scale, utilizing the Azure scale sets and container orchestration solutions, such as Docker Swarm, DC/OS, and Kubernetes.

In the later stages of the chapter, we focused on scaling with a service design and discussed how our data model should be designed. We also discussed certain considerations, such as having a split CQRS style model, while designing the data model for high scalability. We also briefly touched on caching, especially distributed caching, and how it improves the throughput of the system. In the last section, to make our microservices highly scalable, we discussed the circuit breaker pattern and service discovery mechanism, which are essential for the scalability of microservice architecture.

In the next chapter, we will look at the reactive nature of microservices and the characteristics of reactive microservices.

 Introduction to Reactive Microservices

We have now gained a clear understanding of microservices-based architecture and how to harness its power. Up until now, we've discussed various aspects of this architecture, such as communication, deployment, and security, in detail. We also looked at how microservices collaborate when required. Now let's take the effectiveness of microservices to the next level by introducing the reactive programming aspect within them. We will cover the following topics:

	Understanding reactive microservices

	Mapping processes

	Communication in reactive microservices

	Handling security

	Managing data

	The microservice ecosystem

 Understanding reactive microservices

Before we dive into reactive microservices, let's see what the word reactive means. There are certain fundamental attributes that a piece of software must possess in order to be considered reactive. These attributes are responsiveness, resilience, elasticity, and above all, being message-driven. We'll discuss these attributes in detail and look at how they can make microservices stronger candidates for most enterprise requirements.

 Responsiveness

It wasn't long ago when one of the key requirements of business sponsors, discussed in requirement gathering sessions, was a guaranteed response time of a few seconds. For example, a T-shirt custom print e-shop where you could upload images and then have it rendered onto the chosen piece of apparel. Move forward a few years and—I can vouch for this myself—we will close the browser window if any web page takes longer than a couple of seconds to load.

Users today expect near instantaneous response. But this is not possible unless the code that you write follows certain standards to deliver the expected performance. There will always be so many different components cooperating and coordinating to solve some business problem. The time that each component is expected to return the results in has therefore reduced to milliseconds today. Also, the system has to exhibit consistency along with performance when it comes to response time. If you have a service that exhibits variable response times over a defined period, then it is a sign of an impending problem in your system. You will have to, sooner or later, deal with this baggage. And there is no doubt that in most cases, you will manage to solve it.

However, the challenge is much bigger than what is visible on the surface. Any such trait needs to be probed for the possibility of an issue in the design. It could be some kind of dependency on another service, too many functions performing at the same time within the service, or synchronous communication blocking the workflow at some point.

 Resilience

With all the buzz around distributed computing, what does a user expect from such a system in the event of the failure of one or more components? Does a single failure result in a catastrophic domino effect, resulting in the failure of the entire system? Or does the system bounce back from such an event with grace and within expected timelines? The end user shouldn't be affected at all in such scenarios, or the system should at least minimize the impact to an extent, ensuring that user experience is not affected.

Reactive microservices take the concept of microservices to the next level. As the number of microservices grows, so does the need for communication between them. It won't be very long before the task of tracking a list of a dozen other services, orchestrating a cascading transaction between them, or just generating a notification across a set of services, becomes a challenge. In the scope of this chapter, the concept of cascading is more important than the transaction itself. Instead of the transaction, it could very well be just the need to notify some external system based on some filtering criteria.

The challenge arises as an enterprise-level microservice-based system would always extend far beyond a handful of microservices. The sheer size and complexity of this cannot be pictured fully here in a chapter. In such a scenario, the need to track a set of microservices and communicate with them can quickly become nightmarish.

What if we could take away the responsibility of communicating an event to other microservices from individual microservices? The other aspect of this could very well be freedom for the services in the ecosystem from being tracked. To do this, you will have to keep track of their whereabouts. Just add authentication to this and you could very easily be tangled in a mess you never signed up for.

The solution lies in a design change, where the responsibility of tracking microservices for an event or communicating an event to others is taken away from individual microservices.

While transitioning from a monolithic application to a microservice-style architecture, we learned that they are isolated. Using seam identification, we isolated modules into independent sets of services that own their data and don't allow other microservices/processes to access them directly. We achieved autonomy by catering to a single business functionality and taking care of aspects such as its data and encapsulated business functionality. Asynchronous was another characteristic that we achieved for our microservices in order to make non-blocking calls to them.

 Autonomous

All along, we have been strongly advocating the correct isolation of microservices. Seam identification was a concept we briefly touched on in Chapter 2, Implementing Microservices. There were numerous benefits that we derived while successfully implementing the microservice-style architecture. We can safely state that isolation is one of the fundamental requirements here. However, the benefits of successful implementation of isolation go far beyond that.

It is very important for microservices to be autonomous, or else our work will be incomplete. Even after implementing the microservice architecture, if one microservice failure results in a delay for other services or a domino effect, it means we missed something in our design. However, if microservice isolation is done right, along with the right breakdown of the functionality to be performed by this particular microservice, it would mean that the rest of the design would fall into place itself to handle any kind of resolution conflict, communication, or coordination.

The information required to perform such an orchestration would depend primarily on the well-defined behavior of the service itself. So, the consumer of a microservice that is well-defined doesn't need to worry about the microservice failing or throwing an exception. If there is no response within the stipulated period of time, just try again.

 Message-driven: a core of reactive microservices

Being message-driven is the core of reactive microservices. All reactive microservices define, as part of their behavior, any event that they might be generating. These events may or may not have additional information payloads within them, depending on the design of the individual event. The microservice that is the generator of this event would not be bothered about whether the event generated was acted upon or not. Within the scope of this specific service, there is no behavioral definition for the action beyond the generation of this event. The scope ends there. It is now, in terms of the rest of the system, comprising other microservices to act upon this information based on their individual scope.

The difference here is that all these events being generated could be captured asynchronously by listening to them. No other service is waiting in blocking mode for any of these services. Anyone listening to these events is called a subscriber, and the action of listening for the events is called subscribing. The services that subscribe to these events are called observers, and the source service of the events generated is called observable. This pattern is known as the Observer Design Pattern.

However, the very exercise of a concrete implementation on each of the observers is somewhat inconsistent with our motto of designing loosely coupled microservices. If this is what you are thinking, then you have the right thinking cap on and we are on the right track. In a short while, when mapping our processes as reactive microservices, we will see how we can achieve this purpose in the world of reactive microservices.

Before we go on with mapping our processes, it is important that we briefly discuss the pattern with respect to our topic here. In order to act upon a message, you first need to show your intent to watch the message of that type. At the same time, the originator of the message must have an intent to publish such a message to the interested observers. So there would be at least one observable to be observed by one or more observers. To add some spice to it, the observable can publish more than one type of message, and the observers can observe one or more of the messages they intend to act upon.

The pattern doesn't restrict observers from unsubscribing when they want to stop listening for these messages. So, it sounds pretty, but is it as easily implemented? Let's move ahead and look at this for ourselves.

 Let's make code reactive

Let's examine our application and see how it would look with the reactive style of programming. The following diagram depicts the flow of the application that is reactive in nature and is completely event-driven. In this diagram, services are depicted by hexagons, and events are represented by square boxes. Here's the entire flow in detail:

The flow depicted in the diagram describes the scenario of a customer placing an order after having searched for the items he/she is looking for. The Place order event is raised to Order service. In response to this event, our service analyzes arguments, such as order item and quantity, and raises the Item available event to Product service. From here on, there are two possible outcomes: either the requested product is available and has the required quantity or it is not available or doesn't have the required quantity. If the items are available, Product service raises an event called generate invoice to Invoice service. Since raising the invoice means confirming the order, the items on the invoice would no longer be available in stock; we need to take care of this and update the stock accordingly. To handle this, our invoice service further raises an event called Update Product Quantity to Product service and takes care of this requirement. For the sake of simplicity, we will not go into the details of who will handle the event of Mail invoice.

 Event communication

The preceding discussion may have left you thinking about how the event being raised maps the call of the respective microservice perfectly; let's discuss this in further detail. Think of all the events being raised as being stored in an event store. The event stored has an associated delegate function that is called to cater to the respective event. Although it is shown that the store has just two columns, it stores much more information, such as details of the publisher, subscriber, and so on. Each event contains the complete information that is required to trigger the corresponding service. So event delegation might be a service to be called or a function within the application itself. It doesn't matter to this architecture:

 Security

There are numerous ways in which security can be handled while implementing reactive microservices. However, given the limited scope that we have here, we will restrict our discussion to one type only. Let's go on and discuss message-level security here and see how it is done.

 Message-level security

Message-level security is the most fundamental method available to secure your individual request messages. After the initial authentication is performed, the request message itself may contain the OAuth bearer token or the JWTs, based on the implementation. This way, each and every request is authenticated, and the information related to the user can be embedded within these tokens. The information could be as simple as a username along with an expiration timestamp indicating token validity. After all, we don't want to allow a token to be utilized beyond a certain time frame.

However, it is important to note here that you are free to implement it in such a manner so that a lot more information can be embedded and utilized for different uses.

 Scalability

There is another aspect you need to consider here as well. Within this token, we could also embed authorization information apart from authentication information. Note that having all of this information within a token that is being passed around frequently could soon become an overhead. We can make the necessary changes to ensure that the information pertaining to the authorization is a one-time activity and is later persisted with the services as required.

When we decide to persist authorization-related information with individual services, we make them elastic in a way. The task of persisting authorization information with individual services does away with the requirement of reaching out to the authentication service each time for authorization-related data. This means we can scale our services quite easily.

 Communication resilience

What would happen if the authentication service that contains all the user authentication data and authorization data became unavailable? Does this mean that the entire microservice ecosystem would come down to its knees, as all the actions—or a big percentage of them—would need to be authorized for the user attempting the action? This does not fit in the domain of the microservice architecture. Let's see how we could deal with this.

One way would be to replicate user authorization data within each service that requires it. When the authorization data is already available with the respective services, it will reduce the data being transferred through the JWTs being moved around. What this would achieve is that in the event our Auth service becomes unavailable, the users who are authenticated and have accessed the system would not be affected. With all of the authorization data already available within the individual services that need to verify it, the business can continue as usual without any hindrances.

However, this approach comes with a price of its own. It will become a challenge to maintain this data, as it is updated all the time with all the services. The replication required for each service would be an exercise in itself. There is a way out of this specific challenge as well, though.

Instead of making this data available in all the microservices, we could simply store it in a central store and have the services validate/access authorization-related data from this central store. This would enable us to build resilience beyond the authentication service.

 Managing data

Tracking a single order being placed is easy. However, multiply that number with the million orders being placed and canceled every hour; it could quickly become a challenge in the reactive microservices domain. The challenge is how you would perform a transaction across multiple services. Not only is it difficult to track such a transaction, but it poses other challenges, such as persisting such a transaction that spans the database and message broker. The task of reversing such an operation in the likelihood of the transaction breaking somewhere in the middle due to a service failure could be even more daunting.

In such a scenario, we can utilize the event sourcing pattern. This is a strong candidate, especially since we are not looking for a two-phase commit, generally referred to as 2PC. Instead of storing a transaction, we persist all the state-changing events of our entities. In other words, we store all the events that change their states in the form of entities, such as order and product. When a client places an order, then under regular circumstances, we would persist the order to the order table as a row. However, here we will persist the entire sequence of events, up to the final stage of the order being accepted or rejected.

Refer to the preceding diagram, where we analyzed the sequence of events that are generated while creating an order. Look at how those events will be stored in this pattern and how a transaction would be deduced from that set of events. First, let's see how the data will be stored. As seen in the following diagram, individual records are saved as rows. Data consistency is confirmed after the transaction:

As seen in the preceding diagram, the Product service can subscribe to the order events and update itself accordingly. There are numerous benefits to be derived from this approach, such as:

	Since the events are being persisted, the challenge of recognizing a transaction is separated from the task of maintaining database integrity

	It is possible to find the exact state of the system at any given point in time

	It is easier to migrate a monolith with this approach

	It is possible to move back in time to a specific set of events and identify any possible problems

The following image is depicting our Order and Order Details table(s) in view of Order service:

Apart from all the benefits, it has some drawbacks as well. The most important one is how to query the event store. To reconstruct the state of a given business entity at a given point in time would require some complex queries. Apart from this, there would be a learning curve involved to grasp the concept of an event store replacing the database and then deducing the state of an entity. Query complexity can be handled with the help of the CQRS pattern easily. However, this will be outside the scope of this chapter. It is worthwhile to note that the event sourcing pattern and CQRS deserve separate chapters in the wake of reactive microservices.

 The microservice ecosystem

As discussed in the initial chapters, we need to get ready for big changes when embracing microservices. The discussions we've presented on deployment, security, and testing so far would have had you thinking by now about accepting this fact. Unlike monoliths, the adoption of microservices requires you to prepare beforehand so that you start building the infrastructure along with it and not after it. In a way, microservices thrive in a complete ecosystem where everything is worked out, from deployment to testing, security, and monitoring. The returns associated with embracing such a change are huge. There is definitely a cost involved to make all these changes. However, instead of having a product that doesn't get on the market, it is better to incur some costs and design and develop something that thrives and does not die out after the first few rollouts.

 Coding reactive microservices

Now, let's try to sum up everything and see how it actually looks in the code. We will use Visual Studio 2017 for this. The first step is to create a reactive microservice, and then we will move onto creating a client for consuming the service created by us.

 Creating the project

We will now go ahead and create our reactive microservice example. In order to do this, we need to create a project of the ASP.NET web application type. Just follow these steps and you should be able to see your first reactive microservice in action:

	Start Visual Studio.

	Create a new project by navigating to File | New | Project.

	From the installed templates, select .NET Core | ASP.NET Core Web Application.

	Name it FlixOne.BookStore.ProductService and click on OK:

	From the New ASP.NET Core Web Application screen, select .NET Core and ASP.NET Core 2.0 and then select Web Application (Model-View-Controller) and click on OK:

You can enable Docker support for Windows if you enable the container.

	Make sure you have selected C#7.1; to do so, right-click on the project from the solution explorer and click on Properties. From the project properties screen, click on the Build tab and then scroll down to Advance. Click on Advance, and then select C# 7.1:

	Open NuGet Manager and add the System.Reactive.Core NuGet package to the project. Make sure you select Include prerelease on the screen:

You are also required to add a package for EF core; to do so, refer to the EF Core migrations section in Chapter 2, Implementing Microservices.

	Add the Product.cs model to the Models folder with the following code:

namespace FlixOne.BookStore.ProductService.Models
{
 public class Product
 {
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public string Image { get; set; }
 public decimal Price { get; set; }
 public Guid CategoryId { get; set; }
 public virtual Category Category { get; set; }
 }
}

	Add the Category.cs model to the Models folder with the following code:

namespace FlixOne.BookStore.ProductService.Models
{
 public class Category
 {
 public Category() => Products = new List<Product>();
 public Guid Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public IEnumerable<Product> Products { get; set; }
 }
}

	Add context and persistence folders to the project. Add ProductContext to the context folder, and add the IProductRepository interface and the ProductRepository class to the persistence folder.

Consider the following code snippet, showing our context and persistence classes:

namespace FlixOne.BookStore.ProductService.Contexts
{
 public class ProductContext : DbContext
 {
 public ProductContext(DbContextOptions<ProductContext> options)
 : base(options)
 { }
 public ProductContext()
 { }
 public DbSet<Product> Products { get; set; }
 public DbSet<Category> Categories { get; set; }
 }
}
//Persistence or repositories, following is the interface
namespace FlixOne.BookStore.ProductService.Persistence
{
 public interface IProductRepository
 {
 IObservable<IEnumerable<Product>> GetAll();
 IObservable<IEnumerable<Product>> GetAll(IScheduler scheduler);
 IObservable<Unit> Remove(Guid productId);
 IObservable<Unit> Remove(Guid productId, IScheduler scheduler);
 }
}
//ProductRepository class that implements the IProductRepository interface
namespace FlixOne.BookStore.ProductService.Persistence
{
 public class ProductRepository : IProductRepository
 {
 private readonly ProductContext _context;
 public ProductRepository(ProductContext context)
 => _context = context;
 public IObservable<IEnumerable<Product>>
 GetAll() => Observable.Return(GetProducts());
 public IObservable<IEnumerable<Product>>
 GetAll(IScheduler scheduler) =>
 Observable.Return(GetProducts(), scheduler);
 public IObservable<Unit> Remove(Guid productId) =>
 Remove(productId, null);
 public IObservable<Unit> Remove(Guid productId,
 IScheduler scheduler)
 {
 DeleteProduct(productId);
 return scheduler != null
 ? Observable.Return(new Unit(), scheduler)
 : Observable.Return(new Unit());
 }
 private IEnumerable<Product> GetProducts()
 {
 var products = (from p in _context.Products.
 Include(p => p.Category)
 orderby p.Name
 select p).ToList();
 return products;
 }
 private Product GetBy(Guid id) => GetProducts().
 FirstOrDefault(x => x.Id == id);
 private void DeleteProduct(Guid productId)
 {
 var product = GetBy(productId);
 _context.Entry(product).State = EntityState.Deleted;
 _context.SaveChanges();
 }
 }
}

We have created our models. Our next step is to add the code for interacting with the database. These models help us project data from a data source into our models.

For database interaction, we have already created a context, namely ProductContext, deriving it from DbContext. In one of the preceding steps, we created a folder named Context.

The Entity Framework Core context helps query the database. Also, it helps us collate all the changes that we perform on our data and execute them on the database in one go. We will not go into detail about Entity Framework Core or the contexts here, because they are not part of the scope of this chapter.

The context picks the connection string from the appsettings.json file in the connectionStrings section—a key named ProductConnectionString.

You are required to update the startup.cs file to make sure you're using a correct database. We have already discussed modifying the appsettings.json and Statrup.cs files in Chapter 2, Implement Microservices. You need to add the Swashbuckle.AspNetCore NuGet package for Swagger support in the project while updating the Startup.cs class.

You could name it anything shown in the following code snippet:

 "ConnectionStrings":
 {
 "ProductConnection": "Data Source=.;Initial
 Catalog=ProductsDB;Integrated
 Security=True;MultipleActiveResultSets=True"
 }

 Communication between the application and the database

With our context in place, and taking care of the communication between our application and the database, let's go ahead and add a repository for facilitating interaction between our data models and our database. Please refer to the code for our repository, as discussed in step 10 of the Creating the project section.

Marking our result from GetAll as IObservable adds the reactive functionality we are looking for. Also, pay special attention to the return statement.

With this observable model, it becomes possible for us to handle streams of asynchronous events with the same ease we are used to when handling other, simpler collections:

 return Observable.Return(GetProducts());

We are now ready to expose the functionality through our controllers. Right-click on the folder controller, click on Add New Item, and then select ASP.NET Core, Web API Controller class. Name it ProductController:

Here is what our controller will look like:

namespace FlixOne.BookStore.ProductService.Controllers
{
 [Route("api/[controller]")]
 public class ProductController : Controller
 {
 private readonly IProductRepository _productRepository;
 public ProductController() => _productRepository =
 new ProductRepository(new ProductContext());
 public ProductController(IProductRepository
 productRepository) => _productRepository =
 productRepository;
 [HttpGet]
 public async Task<IEnumerable<Product>> Get() =>
 await _productRepository.GetAll().SelectMany(p => p).ToArray();
 }
}

The final structure looks similar to the following screenshot of the Solution explorer:

To create the database, you can refer to the EF Core migrations section in Chapter 2, Implementing Microservices, or simply call the Get API of our newly deployed service. When the service finds out that the database doesn't exist, the entity framework core code-first approach, in this case, will ensure that the database is created.

We can now go ahead and deploy this service to our client. With our reactive microservice deployed, we now need a client to call it.

 Client – coding it down

We will create a web client for consuming our newly deployed reactive microservice with the help of AutoRest. Let's create a console application for it and add these NuGet packages: Reactive.Core, WebApi.Client, Microsoft.Rest.ClientRuntime, and Newtonsoft.Json:

	AutoRest will add a folder named Models to the main project and create copies of the model's product and category, as in the service that we just created. It will have the necessary deserialization support built into it.

	ProductOperations.cs and ProductServiceClient.cs contain the main plumbing required for all the calling.

	In the Main function of the Program.cs file, change the Main function as follows:

 static void Main(string[] args)
 {
 var client = new ProductServiceClient {BaseUri =
 new Uri("http://localhost:22651/")};
 var products = client.Product.Get();
 Console.WriteLine($"Total count {products.Count}");
 foreach (var product in products)
 {
 Console.WriteLine($"ProductId:{product.Id},Name:
 {product.Name}");
 }
 Console.Write("Press any key to continue");
 Console.ReadLine();
 }

At this point, if the database is not created, then it will be created as required by the Entity Framework.

We need to know how this list, which is returned from our microservice, differs from the regular list. The answer is that if this were a non-reactive scenario and you were to make any changes to the list, it would not be reflected in the server. In the case of reactive microservices, changes that are made to such a list would be persisted to the server without having to go through the process of tracking and updating the changes manually.

You can use any other client to make the Web API call (for example, RestSharp, or HttpClient).

You may have noticed that we had to do very little or no work at all when it came to messy callbacks. This helps keep our code clean and easier to maintain. With an observable, it is the producer that pushes the values when they are available. Also, there is a difference here that the client is not aware of: whether your implementation is blocking or non-blocking. To the client, it all seems asynchronous.

You can now focus on important tasks rather than figuring out what calls to make next or which ones you missed altogether.

 Summary

In this chapter, we added the aspect of reactive programming to our microservice-based architecture. There are trade-offs with this message-driven approach of microservices communicating with each other. However, at the same time, this approach tends to solve some of the fundamental problems when we advance our microservice architecture further. The event sourcing pattern comes to our rescue and lets us get past the limitation of an ACID transaction or a two-phase commit option. This topic requires a separate book altogether, and restricting it to a single chapter does not do it justice. We used our sample application to understand how to restructure our initial microservice in a reactive way.

In the next chapter, we will have the entire application ready for us to explore, and we will put together everything that we have discussed so far in this book.

 Creating a Complete Microservice Solution

On our journey down the lane of understanding microservices and their evolution, we continued through various phases. We explored what led to the advent of microservices and the various advantages of utilizing them. We also discussed various integration techniques and testing strategies. Let's recap all that we have talked about thus far:

	Testing microservices

	Security

	Monitoring

	Scaling

	Reactive microservices

 Architectures before microservices

Microservices were never designed from the ground up to be in the present form. Instead, there has been a gradual transition from other forms of prevalent architecture styles to microservices. Prior to microservices, we had the monolithic architecture and service-oriented architecture that reigned over the world of enterprise development.

Let's delve into these two before doing a quick recap of microservices and their various attributes and advantages.

 The monolithic architecture

The monolithic architecture has been around for quite some time and it results in self-contained software with a single .NET assembly. It consists of the following components:

	User interface

	Business logic

	Database access

The cost paid for being self-contained was that all the components were interconnected and interdependent. A minor change in any module had the capability to impact the entire piece of software. With all the components so tightly coupled in this manner, it made testing the entire application necessary. Also, another repercussion of being so tightly coupled was that the entire application had to be deployed once again. Let's sum up all the challenges we faced as a result of adopting this style of architecture:

	Large interdependent code

	Code complexity

	Scalability

	System deployment

	Adoption of a new technology

 Challenges in standardizing the .NET stack

Technology adoption is not easy when it comes to monolithic. It poses certain challenges. Security, response time, throughput rate, and technology adoption are some of them. It is not that this style of architecture does not fight back with solutions. The challenge is that in monolithic, code reusability is really low or absent, which makes technology adoption difficult.

 Scaling

We also discussed how scaling is a viable option but with diminishing returns and increasing expenses. Both vertical and horizontal scaling have their own pros and cons. Vertical scaling is seemingly easier to begin with: investing in IT infrastructures, such as RAM upgrades and disk drives. However, the return plateaus out very quickly. The disadvantage of the downtime required for vertical scaling doesn't exist in horizontal scaling. However, beyond a point, the cost of horizontal returns becomes too high.

 Service-oriented architecture

Another widely used architecture in the industry was a service-oriented architecture (SOA). This architecture was a move away from the monolithic architecture and was involved in resolving some of its challenges, mentioned in the preceding section. To begin with, it was based on a collection of services. Providing a service was the core concept of SOA.

A service is a piece of code, program, or software that provides some functionality to other system components. This piece of code was able to interact directly with the database or indirectly through other services. It was self-contained to the extent that it allowed services to be consumed easily by both desktop and mobile applications.

Some of the definite advantages that SOA provided over monolithic were:

	Reusable

	Stateless

	Scalable

	Contract-based

	Ability to upgrade

 Microservice-styled architecture

Apart from some of the definite advantages of SOA, microservices provide certain additional differentiating factors that make them a clear winner. At the core, microservices were defined to be completely independent of other services in the system and run in their process. The attribute of being independent required a certain discipline and strategy in the application design. Some of the benefits they provide are:

	Clear code boundaries: This resulted in easier code changes. Its independent modules provided an isolated functionality that led to a change in one microservice having little impact on others.

	Easy deployment: It is possible to deploy one microservice at a time if required.

	Technology adaptation: The preceding attributes led to this much sought-after benefit. This allows us to adopt different technologies in different modules.

	Affordable scalability: This allows us to scale only chosen components/modules instead of the whole application.

	Distributed system: This is implicit, but a word of caution is necessary here. Make sure that your asynchronous calls are used well and the synchronous ones don't block the whole flow of information. Use data partitioning well. We will come to this a little later, so don't worry for now.

	Quick market response: In a competitive world, this is a definite advantage as users tend to lose interest quickly if you are slow to respond to new feature requests or to adopt a new technology within your system.

 Messaging in microservices

This is another important area that needs its share of discussion. There are primarily two main types of messaging utilized in microservices:

	Synchronous

	Asynchronous

 Monolith transitioning

As part of our exercise, we decided to transition our existing monolithic application FlixOne to a microservice-styled architecture. We saw how to identify decomposition candidates within a monolith, based on the following parameters:

	Code complexity

	Technology adoption

	Resource requirement

	Human dependency

There are definite advantages it provides in regard to cost, security, and scalability, apart from technology independence. This also aligns the application more with the business goals.

The entire process of transitioning requires you to identify seams that act like boundaries of your microservices along which you can start the separation. You have to be careful about picking up seams on the right parameters. We have talked about how module interdependency, team structure, database, and technology are a few probable candidates. Special care is required to handle master data. It is more a choice of whether you want to handle master data through a separate service or through configurations. You will be the best judge for your scenario. The fundamental requirement of a microservice having its own database is that it removes many of the existing foreign key relationships. This would bring forth the need to pick your transaction-handling strategy intelligently to preserve data integrity.

 Integration techniques

We have already explored synchronous and asynchronous ways of communication between microservices and discussed the collaboration style of the services. Those styles were request/response and event-based. Though request/response seems to be synchronous in nature, the truth is that it is the implementation that decides the outcome of the style of integration. Event-based style, on the other hand, is purely asynchronous.

When dealing with a large number of microservices, it is important that we utilize an integration pattern in order to facilitate complex interaction among microservices. We explored the API Gateway along with an event-driven pattern.

API Gateway provides you with a plethora of services, some of which are as follows:

	Routing an API call

	Verifying API keys, JWT tokens, and certificates

	Enforcing usage quotas and rate limits

	Transforming APIs on the fly without code modifications

	Setting up caching backend responses

	Logging call metadata for analytic purposes

The event-driven pattern works by some services publishing their events and some subscribing to those available events. The subscribing services simply react independently of the event-publishing services, based on the event and its metadata. The publisher is unaware of the business logic that the subscribers would be executing.

 Deployment

Monolithic deployments for enterprise applications can be challenging for more than one reason. Having a central database, which is difficult to break down, only increases the overall challenge along with time to market.

For microservices, the scenario is very different. The benefits don't just come by virtue of the architecture being microservices. Instead, it is the planning from the initial stages itself. You can't expect an enterprise-scale microservice to be managed without continuous delivery (CD) and continuous integration (CI). So strong is the requirement for CI and CD right from the early stages that without it the production stage may never see the light of day.

Tools such as CFEngine, Chef, Puppet, Ansible, and PowerShell DSC help you represent an infrastructure with code and let you easily make different environments exactly the same. Azure could be an ally here: the rapid and repeated provisioning required could easily be met.

Isolation requirements could be met with containers far more effectively than their closest rival, virtual machines. We have already explored Docker as one of the popular candidates for containerization and have seen how to deploy it.

 Testing microservices

We all know the importance of unit tests and why every developer should be writing them. Unit tests are a good means to verify the smallest functionality that contributes toward building larger systems.

However, testing microservices is not a routine affair like testing a monolith, since one microservice might interact with a number of other microservices. In that case, should we utilize the calls to the actual microservices to ensure that the complete workflow is working fine? The answer is no, as this would make developing a microservice dependent on another piece. If we do this, then the whole purpose of having a microservice-based architecture is lost. In order to get around this, we will use the mock-and-stub approach. This approach not only makes the testing independent of other microservices but also makes testing with databases much easier since, we can mock database interactions as well.

Testing a small isolated functionality with a unit test or testing a component by mocking the response from an external microservice has its scope and it works well within that scope. However, if you are already asking yourself the question about testing the larger context, then you are not alone. Integration testing and contract testing are the next steps in testing microservices.

In integration testing, we're concerned about external microservices and communicate with them as part of the process. For this purpose, we mock external services. We take this further with contract testing, where we test each and every service call independently and then verify the response. An important concept worth spending time on is consumer-driven contracts. Refer to Chapter 4, Testing Microservices, to study this in detail.

 Security

The traditional approach of having a single point of authentication and authorization worked well in the monolithic architecture. However, in the case of microservices, you would need to do this for each and every service. This would pose a challenge of not only implementing it but keeping it synchronized as well.

The OAuth 2.0 authorization framework and the OpenID Connect 1.0 specifications combined together can solve the problem for us. OAuth 2.0 describes all the roles involved in the authorization process that meets our needs pretty well. We just have to make sure that the right grant type is picked up; otherwise, the security will be compromised. OpenID Connect authentication is built on top of the OAuth 2.0 protocol.

Azure Active Directory (Azure AD) is one of the providers of OAuth 2.0 and OpenID Connect specifications. It is understood here that Azure AD scales very well with applications and integrates well with any organizational Windows Server Active Directory.

As we have already discussed containers, it is important and interesting to understand that containers are very close to the host operating system's kernel. Securing them is another aspect that can't be overrated. Docker was the tool we considered, and it provides the necessary security by means of the least privilege principle.

 Monitoring

The monolithic world has a few advantages of its own. Monitoring and logging is one of those areas where things are easier compared to microservices. The sheer number of microservices across which an enterprise system might be spread can be mind-boggling.

As discussed in Chapter 1, An Introduction to Microservices, in the Prerequisites for a microservice architecture section, an organization should be prepared for the profound change. The monitoring framework was one of the key requirements for this.

Unlike a monolithic architecture, monitoring is very much required from the very beginning in a microservice-based architecture. There is a wide range of reasons why monitoring can be categorized:

	Health: We need to preemptively know when a service failure is imminent. Key parameters, such as CPU and memory utilization, along with other metadata, could be a precursor to either the impending failure or just a flaw in the service that needs to be fixed. Just imagine an insurance company's rate engine getting overloaded and going out of service or even performing slowly when a few hundred field executives try to share the cost with potential clients. Nobody likes to wait these days.

	Availability: There might be a situation when the service may not perform extensive calculations, but the bare availability of the service itself might be crucial to the entire system. In such a scenario, I remember relying upon pings to listeners that would wait for a few minutes before shooting out emails to the system administrators. It worked for monoliths with one or two services to be monitored. However, with microservices, much more metadata comes into the picture.

	Performance: For platforms receiving high footfall, such as banking and e-commerce, availability alone does not deliver the service required. Considering the number of people converging at their platforms in very short spans, ranging from a few minutes to even tens of seconds, performance is not a luxury anymore. You need to know how the system is responding by means of data, such as concurrent users being served, and compare that with the health parameters in the background. This might provide an e-commerce platform with the ability to decide whether upgrades are required before the upcoming holiday season. For more sales, you need to serve a higher number of people.

	Security: In any system, you can plan resilience only up to a specific level. No matter how well designed a system is, there will be thresholds beyond which the system will falter, which can result in a domino effect. However, having a thoughtfully designed security system in place could easily avert DoS and SQL Injection attacks. This would really matter from system-to-system when dealing with microservices. So think ahead and think carefully when setting up trust levels between your microservices. The default strategy that I have seen people utilizing is securing the endpoints with microservices. However, covering this aspect increases your system's security and is worth spending some time on.

	Auditing: Healthcare, financing, and banking are a few of the domains that have the strictest compliance standards concerning associated services. And it is pretty much the same the world over. Depending upon the kind of compliance you are dealing with, you might have a requirement to keep the data for a specific period of time as a record, keep the data in a specific format to be shared with regulatory authorities, or even sync with systems provided by the authority. Taxation systems could be another example here. With a distributed architecture, you don't want to risk losing the data recordset related to even a single transaction since that would amount to a compliance failure.

	Troubleshooting system failures: This, I bet, will be a favorite for a long time to come of anybody who is getting started with microservices. I remember the initial days when I used to try troubleshooting a scenario involving two Windows services. I never thought of recommending a similar design again. But the times have changed and so has the technology.

When providing a service to other clients, monitoring becomes all the more important. In today's competitive world, an SLA would be part of any deal and has a cost associated with it, in the event of both success and failure. Ever wondered how easily we assumed that the Microsoft Azure SLA would stand true come what may? I have grown so used to it that the queries from clients worried about cloud resource availability are answered with a flat reply of 99.9 per cent uptime without even the blink of an eye.

So unless you can be confident of agreeing an SLA with your clients when providing a service, they can't count on it to promise the same SLA going forward. As a matter of fact, no SLA might mean that your services are probably not stable enough to provide one.

 Monitoring challenges

There could be multiple key points that need to be addressed before you have a successful monitoring system in place. These need to be identified and assigned a solution. Some of the key points are discussed next.

 Scale

If you have a successfully running system with a few dozen microservices orchestrating successful transactions in perfect harmony, then you have won the first battle. Congratulations! However, you must plug in the necessary monitoring part if you haven't done so already. Ideally, this should be part of step one itself.

 Component lifespan

With the use of virtual machines and containers, we need to figure out what part is worth monitoring. Some of these components might be already nonexistent by the time you look at the data generated by monitoring them. So it becomes extremely important that you choose the information to be monitored wisely.

 Information visualization

There are tools available, such as AppDynamics and New Relic, that would allow you to visualize the data for maybe up to 100 microservices. However, in real-world applications, this is just a fraction of the number. There has to be clarity about the purpose of this information and a well-designed visualization around it. This is one area where we can opt for reverse design. First, think about the report/visualization you want and then see what how it is to be monitored.

 Monitoring strategies

To begin with monitoring, you could think of different commonly implemented strategies as a solution to your problem. Some of the commonly implemented strategies are:

	Application/system monitoring

	Real-user monitoring

	Semantic monitoring and synthetic transactions

	Profiling

	Endpoint monitoring

Just bear in mind that each one of these strategies is focused on solving a specific purpose. While one could be helpful in analyzing transaction propagation, the other could be suitable for testing purposes. So it is important for you to pick a combination of these when designing the whole system, since just using a single strategy won't meet the needs.

 Scalability

We have discussed in detail the scale-cube model of scalability and have found what scaling at each axis means. Note that x axis scaling is achieved through the use of load balancers between multiple instances and the users of the microservices. We also saw how z axis scaling based on the transaction origination suffered from some drawbacks.

Broadly, scaling in the microservice world can be categorized into two separate heads:

	Infrastructure

	Service design

 Infrastructure scaling

Virtual machines are an indispensable component of the microservice world. The features available as part of the Microsoft Azure platform enable you to perform this seemingly complex task without breaking a sweat.

Through the scale set feature, which is integrated with Azure autoscale, we can easily manage a set of identical virtual machines.

Autoscaling lets you define thresholds for various supported parameters, such as CPU usage. Once the threshold is breached, the scale set kicks in, based on whether the parameters scale in or scale out.

This means that if the scale set predicts that it needs to add more virtual machines to cater for the increased load, it will continue to do so until the thresholds are back to normal. Similarly, if the demand for a resource being governed falls, it will decide to remove the virtual machine from the scale set. To me, this sounds like peace for the networking team. The options around auto-scaling can be explored further, as it is capable of taking care of complex scaling requirements, running into hundreds of virtual machines while scaling in or scaling out.

 Service design

In our microservices, we have already achieved the isolation of data for each microservice. However, the model for reading and writing the database is still the same. With the underlying relational databases enforcing the ACID model, this can be a costly affair. Or we can say that this approach can be slightly modified to implement the database read/write operation in a different way.

We can employ the common query responsibility segregation, also referred to as CQRS, to make effective design changes in our microservices. Once the model-level separation is done, we will be free to optimize the read and write data models using a different strategy.

 Reactive microservices

We have progressed well while transitioning our monolithic application to the microservice-styled architecture. We have also briefly touched upon the possibility of introducing reactive traits to our services. We now know what the key attributes of reactive microservices are:

	Responsiveness

	Resilience

	Autonomous

	Being message-driven

We also saw the benefits of reactive microservices amounting to less work on our part when it comes to managing communication across/between the microservices. This benefit translates not just into reduced work but the capability to focus on the core job of executing the business logic instead of trying to grapple with the complexities of inter-service communication.

 Greenfield application

Now let's go ahead and create the FlixOne bookstore from scratch. First, we will scope out our microservices and their functionalities and identify inter-service interactions as well.

Our FlixOne bookstore will have the following set of functionalities available:

	Searching through the available books

	Filtering books on the basis of categories

	Adding books to the shopping cart

	Making changes to the shopping cart

	Placing an order from the shopping cart

	User authentication

 Scoping our services

In order to understand how these functionalities will map out as different microservices, we need to first understand, what it would take to support it, and what can be clubbed together as a microservice. We will see how the data store would start to look out of the window of microservices themselves.

 The book-listing microservice

Let's try to break down the first functionality of searching through books. In order to let our users browse through the store for books, we need to maintain a list of books on offer. Here we have our first candidate being carved out as a microservice. The book-catalog service would be responsible for not just searching through the available books, but also maintaining the data store that would house all the information pertaining to books. The microservice should be able to handle various updates required for the available books in the system. We will call it the book-catalog microservice. And, it will have its own book data store.

 The book-searching microservice

Examining the next functionality of filtering books seems to be coming under the purview of the book-catalog microservice itself. However, having said that, let's confirm it by questioning our own understanding of the business domain here. The question that comes to my mind is related to the impact of all the searches that our users would perform bringing down the service. So should the book-search functionality be a different service? Here the answer lies in the fact that the microservice should have its own data store. Having the book catalog and the book-catalog search function as different services would require us to maintain a list of books in two different locations with additional challenges, such as having to sync them. The solution is simple: have a single microservice, and if required, scale up and load balance the book-catalog microservice.

 The shopping-cart microservice

The next candidate is the one made famous by the online shopping revolution brought around by the likes of Amazon and further fuelled by smartphones: the shopping-cart microservice. It should let us add or remove books to our cart before we finally decide to check out and pay for them. There is no doubt about whether this should be a separate microservice or not. However, this brings forth an interesting question of whether it deals with the product's data store or not; it would need to do this in order to receive some fundamental details, such as availability in stock. Accessing the data store across the service is out of the question as that is one of the most fundamental prerequisites for microservices. The answer to our question is inter-service communication. It is OK for a microservice to use the service provided by another microservice. We will call this our shopping-cart microservice.

 The order microservice

The business functionality of placing an order is next in line. When a user decides that their shopping cart has just the right books, they decide to place an order. At that moment, some information related to the order has to be confirmed/conveyed to various other microservices. For example, before the order is confirmed, we need to confirm from the book catalog that there is enough quantity available in stock to fulfill the order. After this confirmation, the right number of items is supposed to be reduced from the book catalog. The shopping cart would also have to be emptied after the successful confirmation of the order.

Although our order microservice sounds more pervasive and in contradiction to the rules of non-sharing of data across microservices, it is not the case, as we will see shortly. All the operations will be completed while maintaining clear boundaries, with each microservice managing its own data store.

 User-authentication

Our last candidate is the user-authentication microservice that would validate the user credentials of customers who log in to our bookstore. The sole purpose of this microservice is to confirm whether or not the provided credentials are correct in order to restrict unauthorized access. This seems pretty simple for a microservice; however, we have to remember the fact that making this functionality a part of any other microservice would impact more than one business functionality if you decide to change your authentication mechanism. The change may come in the form of using JWT tokens being generated and validated based on the OAuth 2.0 authorization framework and OpenID Connect 1.0 authentication.

The following is the final list of candidates for microservices:

	The book-catalog microservice

	The shopping-cart microservice

	The order microservice

	The user-authentication microservice

In the following image we can visualize four services that are catalog, shopping cart, order, and authentication:

 Synchronous versus asynchronous

Before we get started with a brief introduction of the microservices, there is an important point to consider here. Our microservices will be communicating with each other, and there is a possibility that they will rely on a response to move further. This poses a dilemma for us, having gone through all the pain of unlearning the beloved monolithic and then getting into the same situation where a point of failure can be a cascading collapse of the system.

 The book-catalog microservice

This microservice has six main functions exposed through an HTTP API component. It is the responsibility of this HTTP API component to handle all the HTTP requests for these functions.

These functions are:

	
API resource description

	
API resource description

	GET /api/book
	
Gets a list of the available books

	GET /api/book{category}
	
Gets a list of the books for a category

	GET /api/book{name}
	
Gets a list of the books by name

	GET /api/book{isbn}
	
Gets a book as per the ISBN number

	GET /api/bookquantity{id}
	
Gets the available stock for the intended book

	PUT /api/bookquantity{id, changecount}
	
Increase or decrease the available stock quantity for a book

The following image is visualizing tables of the catalog services:

 The shopping-cart microservice

This microservice will have the following functions exposed as HTTP endpoints for consumption:

	
API resource description

	
API resource description

	POST /api/book {customerid }
	
Adds the specific book to the shopping cart of the customer

	DELETE /api/book {customerid }
	
Removes the book from the shopping cart of the customer

	GET /api/book{customerid}
	
Gets the list of books in the shopping cart of the customer

	PUT /api/empty
	
Removes all the books currently contained in the shopping cart.

The following image is visualizing all supporting tables for the shopping-cart service:

 The order microservice

This microservice will have the following functions exposed as HTTP endpoints for consumption:

	
API resource description

	
API resource description

	POST /api/order {customerid }
	
Gets all the books in the shopping cart of the customer and creates an order for the same

	DELETE /api/order {customerid }
	
Removes the book from the shopping cart of the customer

	GET /api/order{orderid}
	
Gets all the books as part of the specific order

The following image depicts all tables of the order service:

 The user-authentication microservice

This microservice will have the following functions exposed as HTTP endpoints for consumption:

	
API resource description

	
API resource description

	GET /api/verifyuser{customerid, password}
	
Verifies the user

The following screenshot shows the user table of the authentication service:

You can look at the application source code and analyze it as required.

 Summary

We hope that this book was able to introduce you to the fundamental concepts of the microservice-styled architecture and also helped you to dive deeply into the fine aspects of microservices with clear examples of the concepts. The final application is available for you to take a closer look and analyze what you have learned so far at your own pace. We wish you luck in utilizing the skills learned in this book and applying them to your real-world challenges.

 images/00011.jpeg
User
interface

|]

(REST API) [RESTAPI)

Service Service
direct sales 5@@ inventory

Sales DB Inventory DB

iy
g

images/00010.jpeg
User

interface

|

@} Service
5@5 direct sales

)._.

8
:

It

images/00013.gif
Browser

A 4

User interface
(ASPNET MVC5)

Business logic - Shopping cart
(C#)

Database layer
(Entity framework)

Database

(SQL server 2008R2)

i

images/00012.gif
User interface

Business logic - Modules

Persistence layer - Modules

Database layer - Modules

Database

[l

images/00015.gif
User interface

Shopping cart Shopping cart
(Business module 1) (Business module 1)

Database

I

I

Database layer

(il

images/00014.gif
(Home page)

|

(Perform search)

>

(Add to cart)

|

(Verify items)

>

(Checkout)

images/00031.jpeg
‘Add New Item - FlixOne.BookStore.ProductService. 7 %

4 Installed Sortby: Search (Ctri+B) p-

4 ASPANET Core o =
AP Cox b] Ces ASP.NET Core Hpe A NET.Cote
Sl < Web API Controllr Class
g 0 Interface ASPINET Core
v Web
Se
» Oaine: D] Assembly Information File ASP.NET Core
o
fa] MvC Controller Class ASP.NET Core

[@] RazorPage ASP.NET Core

MVC View Page ASP.NET Core

ASP.NET Configuration File ASP.NET Core

5
Q

B retre ASPNET Core
) e ASPNET Core
s

L1 ssvascriptFile ASP.NET Core

Name: ProductControler.cs

images/00030.jpeg
or)
cture

Test ReSharper Analyze
b lisEpress - &~ | B

New from Template
New ftem

Bristing ltem.

New Scaffolded e,

New Folder

From Cookiecutter
Application Isights Telemetry.
Docker Support

Reference.

Connected Service

Class.

Window Help

ShiftAlt+ A

Shift Alt-C

&

@

Build
Rebuild

Clean

View

Pack

Publish

Overview

Scopeto This

New Solution Explorer View

Show on Code Map

Edit FlxOne BookStore ProductSenvice.csproj
Add

Manage NuGet Packages.
Manage Bower Packages.

Manage User Secrets

Set as StartUp Project

Debug

License Headers

cut

Remove

Rename

Unload Project

Find Code Issues.

Find Symbols External to Scope
Find Code Dependent on Module
Show Type Dependency Diagram
Show Project Dependency Diagram
Show Project Hierarchy

»
»

Ctrlex
Del

f+Q) P B

rer (Ctrl+;) V.2

e BookStore.ProductService (1 pr
iStore ProductService
L Services

gsjson
on
Infigjson

images/00033.jpeg
Browse Installed Updates

Swashbuckle.AspNetCore

Each package s licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses to, third-party packages.

Swashbuckle AspNetCore by Swashbuckle AspNetCore, 587K downloads

Swa s for documenting APls built on ASP.NET C

Swashbuckle. AspNetCore.SwaggerGen by Swashbuckie AspNetCore SwaggerGen, 630K downloads

Swagger Generator for API's built on ASP.NET Core

Swashbuckle. AspNetCore.Swagger by Swashbuckle AspNetCore Swagger, 629K downloads
Middieware to expose Swagger JSON endpoints from API's built on ASP.NET Core

Swashbuckle. AspNetCore.SwaggerUi by Swashbuckie AspNetCore Swaggerl, 626K downloads
Middleware to expose an embedded version of the swagger-ui from an ASP.NET Core application

Carable Swashbuckle. AspNetCore. DocumentWithCode by Carable Swashbuckie AspNetCore DocumentWithCode

Allows you to customize your swagger documentation using code.

Swashbuckle. AspNetCore. Examples by Mat Frear, 255K downloads

[0 not showthis again

Include prerelease

NuGet Package Manager: FlixOne.BookStore.ProductService

v1.00

v1.00

v1.00

v1.00

w22

Packagesource: |nugetorg v
e Swashbuckle AspNetCore

Version: | Latest stable 10,0 AL]

() options

Description

Swagger tools for documenting APIs bilt on ASP.NET Core

Version: 100

Author(s): Swashbuckle AspNetCore

License: https://raw.githubusercontent.com/domaindrivendev/
Swashbuckie AspNetCore/master/LICENSE

Date published: Friday, April 21, 2017 (4/21/2017)

Project URL: hitps//github.com/domaindivende/
Swashbuckie.AspNetCore

Report Abuse: _ htps://waw.nuget.org/packages/
Swashbuckle AspNetCore/1.0.0/ReportAbuse

Tags: discovery, swagger, help, aspnetcore, webapi,
documentation, aspnet

images/00032.jpeg
Browse Installed Updates NuGet Package Manager: FlixOne.BookStore.ProductService
Microsoft EntityFrameworkCore.SalServer % - & [Include prerelease Package source: |nuget.org -]
n Microsoft.EntityFrameworkCore.SqlServer
Microsoft EntityFrameworkCore.SqlServer by Microsoft, 1.63M downloads
Server database provider for Entity Framen -
Version: | Latest stable 20.0 [nstan
n Microsoft.EntityFrameworkCore.SqlServer.Design by Microsoft, 539K downloads PRE
Design-time Entity Framework Core Funcionalf or Micosoft SQL Server,) options

Description

Microsoft SQL Server database provider for Enity Framework Core.

Version: 200

Author(s: Microsoft

License: https://raw, githubusercontent, com/aspnet/Home/2.0.0/
LICENSE bt

Date published: Friday, August 1, 2017 (&/11/2017)

Project URL: hitpsi/aspnet/

Report Abuse: hitps://wwnuget.org/packages/
Microsoft EntityFrameworkCore SqlServer/2.00/
Reportabuse

Tags: Core, Entity, entity-framework-core, Framework, EF, Data,

[et sgnm
Depeidencies

images/00035.jpeg
‘ localhost43552/5wagger

swagge! http:/flocalhost 43552/swagger/v1/swagger json
Product APIs
Product ShowlHide | List Operations

- rapilproduct/productiist

Japi/productiproduct/{productid)

Japilproductiaddproduct

S rapilproduct/updateproduct/{productidy

Expand Operations

Japilproduct/deleteproduct/{productid},

[BASE URL: /, API VERSION: V1]

images/00034.gif
Preview

Review Changes

Visual Studio is about to make changes to this solution. Click OK to proceed with the
changes listed below.

FlixOne.BookStore ProductService

o oK e

images/00037.gif
Customer
(Searches for book)

l

Book selection
(Customers select a book)

l

Proceed to order
(Customer adds, selected
book to cart)

Proceed
for
payment

Less available

book count Checkout

Generate invoice
and
send to customer

Order
tracking

Pictorial view: Process of purchasing a book

images/00036.gif
Product
service

Billing
service

Order
service

Rest API - Pictorial overview of sync communication

images/00028.jpeg
7] Solution 'FlixO

4" 5] FlixOne BookStore.ProductService:

G Connected Senvices
Dependencies
F Properties

@ wwnwroot

5 Controllrs

5 Models

1 Views

& appsettingsjson
& bowerjson

& bundieconfig,son
© Program.cs

© Startup.cs

images/00027.jpeg
NErCoe “ERT e] umme

8 B @& Q

oy Wl e g
Appcaion

&
Rt st ond

] Ensble Docker Support

0S: | Windows

Requires Docker for

indows
Docker support can also be enabled later Learn more

A project template for creating an ASP.NET Core
application with example ASP.NET Core MVC Views and

Controllers. This template can also be used for RESTFul
HTTP services.

Learn more

Change Authentication

Authentication No Authentication

images/00029.jpeg
Application

Configuration: | Actve (Debug) | Platform: | Actve (Any CPU)
id
Build Events [p— .
Package [Optimize code
General
Debug Errors and warnings ———|
Language version
Signin
i Warning level
TypeScript Build Intemmal compiler erorreporting: | prompt
Resources SpRcE R [Check for arithmetic overfiow/underfiow
Trestwamings asemors | Output
O Nene Debugging informtion portable
oA File lignment si2
© Specific warnings: | Library base address: 000400000
Output |
Concel
Output path

[XML documentation file:

Generate serialization assembly: | Auto. -

images/00020.gif
User
interface

v

Payment gateway
service

API gateway

Order service User auth service

Database

Inventory service

ty

Database Database

images/00022.gif
Database

[proDUCT

OrderlD ProductID
OrderlD ProductID

ProductID
ProductID

OrderlD ProductID

ProductID

Removing
foreign
keys

Database

ORDER

PRODUCT

OrderlD ProductID
OrderlD ProductID

ProductIlD
ProductIlD

OrderlD ProductID

ProductIlD

images/00021.gif
Still a monolith

Product repository

ti

Shopping cart
repository

Order repository

t \ ; t

@ \,s/: Database service \\/\i' @
" vl x

/ \

images/00024.gif
User
interface

I

‘ API| gateway ‘

Order service Product service

Database Database

images/00023.gif
Microservices

Order service

Order repository

'y
ORDER

Database

Product service

Product repository

4y
o

Database

Shopping cart

service

Shopping cart
repository

ty
CART
&
=
—

Database

images/00026.gif
Product service

05
08
Micro component

il

Product repository

database

images/00025.jpeg
2 1

Name
Description
Image

Price

Categoryld

Product (product)

| Category (product)*
% 1d
i product Category e
Description

Script File:

B product Category [Design]

Update product Product sl -
Neme | DataType | Allow Nulls | Default| 4 ey (1)
Tl o e T PPt Grimary ey, Clstered 9
T Check Constraints (0)
ame nvarchar(S0)
i ‘ N 0] B Indexes (0)
| Descpten marchor@) [My
[T e T Ahroduc Cotegory (D)
| Price decimal(142) [m] H Triggers (0)
| Categoryld uniqueidentifier [|
|]

Update

Script File:

product Category.sql -

Alow Nuts| Defaut] | 4 Keys (1

PK_Category (Primary Key, Clustered: ID)
Check Constraints (0)

|[Pees i
|
| Indexes ()
|
|

uniqueidentiier]
nvarchar(50)

a
nvarchar(200) [m] Foreign Keys (0)
a

| Triggers)

images/00017.gif
Order module

Stock module

Order schema

10k);

il

images/00016.jpeg
Order
o

 Methods

© Getny
© Orser

OrderController A
o
+ Controler

& Methods.
© Creste
© Details
® Index
© OrderController

9, _orderRepository

[10rderRepository A
R

 Methods
© cet

_order

images/00019.gif
User
interface

v

Payment gateway
service

API gateway

Order service User auth service

Database

Inventory service

Database Database

Database

images/00018.gif
L)

Database

images/00051.jpeg
Browse Installed Updates NuGet Package Manager: FlixOne.BookStore.MessageSender
MicrosoftEtensions Configuration % - & [include prereease Package source: |nugetorg - %

i3y Microsoft.Extensions.Configuration
[Microsoft.Extensions.Configuration by Microsoft, 11.68M downloads 200 ¥
Implementation of key-value pair based configuration for Microsoft Extensions.Configuration. Includes the memory configuration

i Version: ISR B

images/00050.jpeg
X Diagnose and solve problems

serminGs
7 Shared access policies
HE Properties

a Lo

B2 Automation script

SUPPORT + TROUBLESHOOTING

& New support request

@ Delete
Essentials A

fixone

I ACTVEMESSAGE COUNT

SCHEDULED MESSAGE COUNT
O messaces

DEAD-LETTER MESSAGE COUNT
O messaces

TRANSFER MESSAGE COUNT
O messaces

TRANSFER DEAD-LETTER MESSAGE COUNT
O messaces

MaxszE

I cuRReT

D

Quee URL
https://fixone servicebus windos

s.net/flixonequeue

images/00053.gif
Starting...
Sending message:
Sending message:
Sending message:
Sending message:
Sending message:
Sending message:
Sending message:
Sending message:
Sending message:
Sending message:
Ending
Press any key...

message
message
message
message
message
message
message
message
message
message

FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.

Bookstore.
Bookstore.
Bookstore.
Bookstore.
Bookstore.
Bookstore.
Bookstore.
Bookstore.
Bookstore.
Bookstore.

.MessageSender.
.MessageSender.
.MessageSender.
.MessageSender.
.MessageSender.
.MessageSender.
.MessageSender.
.MessageSender.
.MessageSender.
-MessageSender.

images/00052.jpeg
Installed Updates NuGet Package Manager: FlixOne.BookStore.MessageSender
MicrosoftBtensons Configuration Jon % - & [include prereease Packagesource: [nugetorg < &

38 Microsoft.Extensions.Configuration.Json

NET

Version: | 200

images/00055.gif
Testing pyramid

images/00054.jpeg
flixoneaueue

@ Delete

Overview

X Diagnose and solve problems

sermivas
¥ Shared acs licies
11} Properties

s

K3 Automstion script

SUPPORT + TROUBLESHOOTING

& New support request

Essentials ~

Queve URL
hitpsy//fixone servicebus.

MaxszE
1668

SCHEDULED MESSAGE COUNT cuRRenT

O messaces 0.0ws

DEAD-LETTER MESSAGE COUNT

O messaces

TRANSFER MESSAGE COUNT

O messaces

TRANSFER DEAD-LETTER MESSAGE COUNT
O messaces

images/00057.jpeg
é
record cc

request |
L

Consumer Provider

pact-net

response

Recording consumer contract

images/00056.gif
Consumer

4_

Contract

Provider

images/00059.jpeg
Test ReSharper Analyze Window) Hese Sokason fa Gaurav Aroraa ~ €
Rebuild Solution

Clean Solution I

Analyze »
Batch Build,

Live Tests »

Configuration Manager. ion Exploier (ciii+:)
Manage NuGet Packages for Solution.
Restore NuGet Packages

Configure Continuous Delivery.

New Solution Explorer View
Show on Code Map

Calculate Code Metrics

New Projec. | aw k.
isting Project £ setStanlp Projects
New Web Site. License Heders »
ising Web Ste. N
a Newkem Compare with Unmofied
a0 Esting ltem. Shift+Alt+A |] Blame (Annotate)
%4 New Soluton Folder Past cutsy
Rename
Find Code lsues
Show Project Dependency Disgram
Open Folder i File Explorer
Refactor ,
Cleanup Code CurleE, CtlsC
Goto il Nearby
Collspse Al
ns Urit Test Explo Ensble Lightueight Solution Load

Properties Alt+Enter

images/00058.gif
Consumer

=
replﬂ/ cc

Provider

pact-net

response

Replaying consumer contract

images/00049.jpeg
Starting...
Sending message:
Sending message
Sending message
Sending message
Sending message
Sending message
Sending message
Sending message
Sending message
Sending message:
Ending
Press any key...

I nT]

message
message
message
message
message
message
message
message
message
message

From
From
From
From
From
From
From
From
From
From

FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.
FlixOne.

BookStore
BookStore
BookStore
BookStore
BookStore
BookStore
BookStore
BookStore
BookStore
BookStore

.MessageSender.
.MessageSender.
-MessageSender.
-MessageSender.
-MessageSender.
-MessageSender.
-MessageSender.
-MessageSender.
-MessageSender.
-MessageSender.

images/00040.gif
PRODUCT-
SERVICE

Subscriber

|——

ORDER-SERVICE

Subscriber

—

Event-Manager

Publisher

—

Publisher

—

PICTORIAL OVEFVIEW: Event-Driven pattern

CHECKOUT-SERVICE

CUSTOMER-SERVICE

images/00042.gif
Application instance
and it generates
messages

—

anany alessay

Consumer service
and it processes
messages

Pictorial Overview: Message queue

images/00041.gif
UserInterface

l

ORDERSERVICE Event Store

images/00044.jpeg
Create namespace

* Name
fixone v
servicebus windows.net

* Pricing tier
Standard >

up®
® Create new
fixonebookstore v
* Location
Southeast Asia v

Pin to dashboard

images/00043.jpeg
AZURE SERVICE BUS
— -

NAMESPACE-1

NAMESPACE-2

NAMESPACE-3

NAMESPACE-4

|

I

|

|

Queve. Topic, Reby

Pictorial overview: Azure Service Bus

images/00046.jpeg
flixone - Queues

X Diagnose and solve problems

SeTTiNGs

K2 Automation script

enmes

images/00045.jpeg
& flixone - Shared access policies

s Acces control (M) 5 [

Pouicy A aams ~

@ T

Manage, Send, Listen

X Diagnose and solve p

Automation script

enimEs

8]

Queves

= Topics

images/00048.jpeg
Browse Installed Updates NuGet Package Manager: FlixOne.BookStore.MessageSender

Microsoft.Azure ServiceBus x - & [lnclude prereieasd Package source: | nuget.org -]

—
% Microsoft.Azure.ServiceBus

"' Microsoft.Azure ServiceBus by Microsoft, 41.4K downloads V100 ¥ =)
Bemd This is the next generation Azure Service Bus .NET Standard client library that focuses on queues & topics. For more information
about Service Bus, see htps://azure.microsoft.com/en-us/services/senvice-bus/ Version: nstal

images/00047.jpeg
Create queue

* Name

Maxsize

168 v
Message time to ive (default)

14 days v
Lock duration

30 secon v

Move expired messages to the dead-letter
subqueue

Enable duplicate detection

Enable sessions

] Enable partitioning

images/00039.gif
Mobile
(un

Desktop
un

Web app
(un

l

Azure APl management
(API Gateway)

Product
service

Order
service

Customer
service

Pictorial overview: APl Gateway

images/00038.gif
Product service

Check for availability

Order service

Generate invoice

Invoice service

API Gateway
(Azure API
management)

Pictorial overvew: Inter-service communication
for order process

images/00071.jpeg
& Settings

General

Shared Drives

Advanced

Network

Proxies

Docker Daemon
Diagnose & Feedback

Reset

@ Docker is running

Shared Drives

Select the local drives you want to be available to
your containers.

Shared Drive
(@
B Microsof PowerShel s

> docker run --rm -v c:/Users:/data alpine 1s /data

Reset credentials Apply

images/00070.jpeg
& Docker for Windows

Hyper-V feature is not enabled.
Do you want to enable it for Docker to be able to work properly?
Your computer will restart automatically.

ok Cancel

images/00073.jpeg
INew ASP.NET Core Web Application - FlixOne BookStore ProductService

NET Core | [ASPNET Core20 | Leammore
8 B 8 8 @
B W e W A
Applcaion; [EapTee
(Model-View-
Controller)

® &

Resctjs Reactjsand
Redux

os g
RecuiesDockesfor Windows

Docker support can also be enabled later Learn more

A project template for creating an ASP.NET Core
application with example ASP.NET Core MVC Views and

Controllers. This template can also be used for RESTFul
HTTP services.

Learn more

Change Authentication

Authentication No Authentication

images/00072.jpeg
New Project

» Recent [NET Famework A7 <] Sortby:

S - 5

4 Installed :
B console App (NET Core Viaslce Type: Visual G2
4 Visual ¥ - Project templatesfor creating ASP.NET
Windows Classic Desktop g:i! Class Library (NET Core) Visual C# ;2’5;:5‘;;3;m'!,“;";“:g“"“x“"
Web
o Framework,
INET Core. lﬁ_] Unit Test Project (NET Core) Visual €2
NET Standard
Cloud +UnitTest Project (NET Core) Visusl G2
Test
wer

b Other Languages
b Other Project Types
Dependency Validation

b Online

Not finding what you are looking for?

Open Visual Studio Installer

eme Fineoostrseducenice

Locaton: [D7\Github\microsevice\Second Edtiom Source Code\Chapter-05

o=

Solution name: FlixOne BookStore ProductService Create directory for solution

WG ey

images/00075.jpeg
4131 Solution FlxOne BookStore ProductSenvice’ 2 projects)
b £ docker-compose
4) FiixOne BookStore ProductService
G Connected Services
Dependencies
F Properties
@ wwwroot
5 Contexs
1 Controllers:
b c* HomeControllercs
b c* ProductControllercs
b1 Migrations
4 Models
 Categorycs
© EnorVieaModelcs
© Product.cs
© ProductViewModel.cs
4 Persstence
b c* ProductRepository.cs
b c* ProductRepositor.cs
> i Views
b & sppsettingsjson
b & bowerjson
& bundieconfig,zon
b D Dockerfle
b Program.s
b c Startupcs

images/00074.jpeg
4 Z docker-compose

»

4 +5] FixOne.BookStore.ProductService.

+[) docker-compose.cibuildyml

+[) docker-composeyml

G Connected Services
i Dependencies

F Properties

@ wwwroot

=] Controllers

b +c* HomeController.cs
5] Models
b +c ErrorViewModel.cs
< Views

Home
4 Shared
Viewlmports.cshtmi
Viewstartcshtml
T sppsettings]son

+&T bowerjson

+£T bundieconfigjson

D) Dockerle

e Program.cs

S0 Stamipcs

images/00077.gif
Web browser

Session ID cookie

Native mobile
client

Network perimeter

HTTPS >,

API gateway

Application server cluster

credential
store

User
credential
store

HTTPS

;

User
credential
store

images/00076.gif
Network perimeter

Application server cluster

Q Q
=} =
=] =]
o o
Web browser c || = =
HTTPS— 1 Load balancer HTTPS++—» 5
Session ID cookie < ©
p=}
'8 m
=

User
credential
store

State persistance

images/00079.jpeg
Tenant Name (Default Directory) - App registrations

[£ search (ctri+)

© Overview

Quick start

MANAGE
& Users and groups
8 Enterprise applications
B App registrations

4 Azure AD Connect

Endpoints

To view and manage your registrations for converged applications, please visit the Mi

Application Console.

| search by name or Appid v| | Anapps
DISPLAY NAME APPLICATIONTYPE APPLICATION ID
No results.

* Name ®

| ToDoListservice

Application Type ®

[Web app / API

* Sign-on URL @

‘ httpsi//localhost:44321)

images/00078.jpeg
End- Client Authorization Resource
user(Resource server server

owner)

—— 1. Fetch the resource

| assume, you are

‘ ~ 2. Allow me to fetch resource authenticated
4. Authorize me to fetch 3. Take permission i.e. trusted by

" The resource (Authorize request) from resource owner end-user

5. You have been authorize to
fetch the resource (Authorize grant)

— 6. Here is authorization grant

<---7. Get the access token ----
i
|
i
i
H
1
|
H

8. Allow me to fetch resource
| have access token with me

|

i

1 9. Okay, here is the access token
i from client,
i

|

i

provide the protected resource

<11. Provide the resource to end-user D<

i
i
|
———————————————— 10. This is prdtected resource -----------------
i
i
i

images/00060.jpeg
Add New Project
b Recent

4 Installed

4 Visual €2
Windows Classic Desktop
Web
NET Standard
Cloud
Test
weF

b Other Languages

Dependency Validation

b Online

Not finding what you are looking for?
Open Visual Studio Installer

[ET Framenara] son by

5=
&l
&l
3]

Console App (NET Core)
Class Library (NET Core)
Unit Test Project (NET Core)

ASP.NET Core Web Application

Visual 2
Visusl C#
Visusl C#
Visusl C#

Visual C#

Locaton: [DA\Github\microseices\Second Edtiom Source Code\Chapter-04

Search (Ctri+)

Type: Visual C#

A project that contains Unitnet tests that
an run on NET Core on Windows, Linux
and MacOs.

Browse.

Cancel

images/00062.jpeg
Store.Produ
FlixOne. BookStore.ProductService
FlixOne BookStore ProductService.IntegrationTests
FlixOne BookStore ProductService UnitTests
2 Dependencies
4 Fake

b ac ProductData.cs
4 Senices

b & ProductTests.cs

images/00061.jpeg
Application

Buid Events
Package

Debug

Signing
TypeScrpt Build

Resources

B Productbata.cs

Configuration: | Active (Debug)

Platform: | Active (Any CPU)

14 Allow unsafe code

1 Optimize code

Erors and warmings
Warning levet
Suppress warnings:

Treat warnings as erors

O Nene
ol
© Speciic wamings:

Output

Output path:
O XML documentation file:

Advanced Build Settings

General

Language version:

Internal compiler error reporting: | prompt

[Check for arithmetic overflow/underflow

Output

Debugging information: portable
File alignment: 512

Library base address: 000400000

Generate serialization assembly: | Auto.

EmorList Output Package Manager Console C# Interactive

Call Hierarchy Uit Test Sessions Uit Test Explorer

images/00064.jpeg
Add New Project 70X

» Recent [NEF Fimews A7 ~|Sortby: [oefask <] Seorch (Cul-B R

4 nstlled :
Dﬁ Console App (NET Core) VislCs | Tope: Visusl G2
4 Viswl e = A projectthat contains nitnettsts that
T, R . | e e T
c

i and MacOS.

NETCore ﬁj Unit Test Project (NET Core) Visual C

NET Standard
Cloud
Test
wee ASP.NET Core Web Application Visual C#
b Other Languages
Dependency Validation

b Online

Not finding what you are looking for?
Open Visual Studio Installer

Name: FlROneBoclStore Producenice tegatontets

Locaton: [DA\Github\microseice\Second Edtiom Source Code\Chapter-04

Browse.

Cancel

images/00063.jpeg
, ProductTests.cs* ProductData.cs

Browse Installed Updates NuGet Package Manager: FlixOne.BooksStore.ProductService.UnitTests

mog x-l¢

Include prerelesse Package source: |nugetorg B

@ Moa
Mog by Dariel u, 16.5M down
Mogis the most popular and fiendly mocking framework for NET
Version: |Latest stable 47,137 Install
[Mog.Contrib by kzu.net, 762K downlosds w30
ot Testure sna A iy tmaiatin f6E Mo © Options
e ‘Grace.Moq by lan Johnson, 9.05K downloads 242 Description
GraceMoq i a companion fibrary for Grace and Mog Mog s the most popular and fiendly mocking framework for NET
Version: 47137
e this.log-moq by RealDimensions Software, LLC, 1.47K downloads V003 Author(s): Daniel Cazzulino, kzu
thisLog-Mog - thisLog logging extension using Moq License: https//raw gthubusercontent,com/moq/moq/ master/
Licensesxt
. . Date published: Tuesdzy, October3, 2017 (10/3/201
@9 Mendham.Testing.Moq by Medram Tesingog, 114K dourioads v1.00-betaT i . Hovy2017)
i i) Project URL: hitps:/gthub.com/mog/moqd
E Report Abuse: hitps://wwenuget.org/packages/Mog/47.137/
5 Reporthbuse
Each package i lcensed to you by its owner. NuGet is ot responsiblefor, nor does it grant any licenses t, third-party packages. Tags: tdd, mog, mocking, mocks, unittest, unittesting, agile

[0o notshowthis again

Dependencies
ErrorList Output Package Manager Console C# Interactive Call Hierarchy Unit Test Sessions _ Unit Test Explorer

images/00066.gif
Source Compile code Run unit tests Build on CI Integration testing uaT
(é% repository
= —» N — \ >
/ 'R Y4 \ / Y \ \ \ / / aq
@m \51/>\ 34/)\ sa/) 51)(52){ s3 <\51/§52/ \51/)\52/(\53/ \312/52 /sa> 513\52 (s3)
Feature
teams
Production
(51)(s2)(s3
\) \ \

Standard monolith release cycle

images/00065.jpeg
Browse Installed Updates@ NuGet Package Manager: FlixOne.BookStore.ProductService.IntegrationTests

Microsoft AspNetCore TstHost include prerelesse Package source: |nugetorg - %

Microsoft AspNetCore.TestHost

wnloads

ASP.NET Core web server for writing and running tests

Version: | Latest stable 20,0

(© options

Description
ASP.NET Core web server for wiiting and running tests.
Version: 200

Authorls): Microsoft

License: hitpsi//rawgithubusercontent.com/aspnet/Home/2.0.0/
LICENSE At

Date published: Friday, August 11, 2017 (3/11/2017)
Project URL: hitps://aspunet/.

Report Abuse: hitps://www.nuget.org/packages/
Microsoft AspNetCore. TestHost/2.0.0/ReportAbuse

Each package s licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses to, third-party packages. Tags: hosting, testing, aspnetcore

[0o notshowthis again
Dependencies

EmorList Output Package Manager C C# Interactive Call Hierarchy

images/00068.gif
Application-A Application-B Application-C
Application-A Application-B Application-C Application-A Application-B Application-C
Hypervisor Containerization technology (LXC/libcontainer)
Host operating system kernel Host operating system kernel
Bare metal server Bare melal server

Virtual machine Container

images/00067.gif
Source Compile code Run unit tests Build on C! Integration testing UAT
O O repository
’2 i>—> N\ —» SN\ SN\ N /N
@ <‘51) {s1) (st {s1) (51> (31
N / / / /
Self sufficient
team
Production
< 51\
T\ Vi /
/st
v2
2/
Source Compile code Run unit tests Build on C Integration testing AT
O O repository
] —\ SN Yam
W <S2\ \/sz\ {52 &) <52§ (s2y
-/ "/) N4 o/ N
Self sufficient
team
Production

(=)

Source Compile code Run unit tests Build on C! Integration testing UAT
O O repasitory
2N N /TN /N /N /T TN
@' (s3) s3) /ss) () \/sa) (53)
/ p— p— p—
Self sufficient
team
Production

Microservices release cycle - Share nothing architecture

images/00069.jpeg
Visual
studio

Docker
client

Docker
daemon

Code chekin

Docker
container

Visual studio team
services (Source
control)

Cl tool
(Visual studio team
services)

!

CD tool
(VSTS release
management)

—

Azure container
service

Dacker hub/ Docker
private registry

Azure container
registry

Azure cloud

T

Docker container
spinned
(Verification of app
containers through
docker compose)

Microservice deployment workflow with docker, VSTS and

images/00091.jpeg
Microservice Circuit

D
1 breaker ependency

State: Closed

State: Half-Open
(Threshold not reached)

Trip

State: Open

(o]
k=]
o]
2

images/00090.jpeg
Microservice Microservice Microservice Microservice Microservice Microservice Microservice Microservice

Cluster orchestration tools (Apache Mesos, Docker Swarm, Kubernetes)

VM Extensions

VM VM VM M
VMs and ScaleSets
VM VM VM VM
Azure stack Azure public cloud

Microservices infrastructure

images/00093.jpeg
Event Function
Login Auth/Login
UpdateProduct Product/Update

UpdateProduct += {BaseURL}/Product/Update

@ Event

Sender Event Args

Command

Event Args

images/00092.gif
Item searched

Not
available

Order
service

Mail
invoice

ltem
available

Update
product

Product
service

Invoice
service

ltem

available
invoice

images/00095.gif
Order
service

Details

Order Order
ID Status | Client ID Order ID | Item ID Qty
1704AC | Cancel # 1704ZA |HP_lap_24 2
1704ZA | Placed # 1704AC

]

images/00094.gif
Product
service

Event store

Order 1704ZA Order 1704AC

Place order Place order
Item qty less

Confirm order Cancel order

|

|

i

i

i

Item available '
]

i

|
Update prod i
i

images/00097.jpeg
New ASPNET Core Vieb Applicaton - FsOne.BookStore Productenice

Learn more

Empty Web API Web

Angular
Application

® &

Reactjs Reactjsand
Redux

] Ensble Docker Support

0S: | Windows

Requires Docker for Windows
Docker support can also be enabled later Learn more

A project template for creating an ASP.NET Core
application with example ASP.NET Core MVC Views and

Controllers. This template can also be used for RESTFul
HTTP services.

Learn more

Change Authentication

Authentication No Authentication

images/00096.jpeg
New Project
b Recent
4 Installed

4 Visual &
Windows Classic Desktop
Web
NETCore
NET Standard
Cloud
Test
WeF
© Other Languages
© Other Project Types
Dependency Validation

b Online

Not finding what you are looking for?

Open Visual Studio Installer

o [FOne oot producaed

[NET Framework 47~ Sort by: [Default

:)ﬁ Console App (NET Core)

BT et T cord

lﬁ" MWnit TestProject (NET Core)

Y sonercoewensopicaion

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Location: DA\ Github\microsemices\Source Codel02\Chapter09

Solution name: FlixOne BookStore ProductSenice

Search (Ctrl+£)

Type: Visual C#

Project templates for creating ASP.NET
Core applications for Windows, Linux and
macOS using NET Core or NET
Framework.

Browse.

Create directory for slution
] Create new Git repository

Cancel

images/00099.jpeg
Browse Installed Updates NuGet Package Manager: FlixOne.BookStore.ProductService
System.Reactive.Core Include prerelease. Packagesource: |nugetorg v &
0 System.Reactive.Core
System Reactive.Core by NET Foundation and Contributors, 812K downloads ¥4.0.0-preview00001
Reacti (R for INET -v3 compatibilty facade for System Reactiv
Version: | Latest prerelease 4.0.0-preview00001 A e
System.Reactive.Core.Unofficial by NET Foundation and Contributors, Seabiscuit, 227 downloads v
Reactive Extensions Core Library containing base classes and scheduler infrastructure. (+) Options
Description
Reactive Extensions (R for NET - v3 compatibilty facad for
System Reactive.Core
Version: 40.0-preview00001
Author(s): NET Foundation and Contributors
License: http//qo.microsoft.com/fulink/7LinkiD=261272
Date published: Saturday, May 27, 2017 (5/27/2017)
Project URL: hitps//go.microsoft.comy/flink/Linkid=261273
Report Abuse: hitps://wwnuget.org/packages/
4 | System Reactive,Core/4.0.0-previe00001/ReportAbuse
Each package s licensed to you by its owner. NuGet i not responsible for, nor does it grant any licenses to, third-party packages. Tags:
Do not show this again
] i - o

images/00098.jpeg
Application

[— Configuration: | Active (Debug)
uild

Platform: | Active (Any CPU)

Build Events =

Allow unsafe code.
Package =

Optimize code
Debug LLox

Signing Errors and warnings
TypeScript Build Warning levet

Resources
Suppress warnings:

Treat warnings as errors

O None
O A

® Speciic wamings:

Output

Output path:

[XML documentation file:

Advanced Build Settings

General
Lenguage version:
Internal compiler error reporting:
[Check for arithmetic overflow/|
Output
Debugging information:
File alignment:

Library base address:

1l

C# latest major version (default)
C# latest minor version (latest)
150-1

150-2

c230

c240

c250

c260

c270

Generate serialization assembly: | Auto

Advanced

Unit Test Ex

EmorList Output Package Manager C# Interactive Call Hierarchy Unit Te

images/00080.jpeg
Application

Build Servers

Package/Publish Web
Package/Publish SQL

Silverlight Applications Project Url https://localhost44321/

Apply server settings to all users (store in project fle)

S Express

Build Events [] Override application root URL
Resources

https;/localhost44321/
Settings

Reference Paths
Signing
Code Analysis

images/00082.jpeg
O Delete

Object ID
Managed Application In Local Directory
odoListWebApp

Al settings =

Settings

Filter settings

GENERAL

Properties

Reply URLs

M Owners

01 Access
& Required permissions

T Keys

Hsave X Discard

TodoListWebApp

Object 14@

Application ID®

* App ID URI®

https;//mytenant.onmicrosoft.com/TodoList) v/

Logo

TO

Upload newlogo @
Select a file B

Home page URL®
https//localhost:44322/

Logout URL
https//localhost:44322/Account/EndSession

Application Type

Multi-tenanted @

images/00081.jpeg
TodoListScrvice # — B X Sctiings — B X Propertics =

£ Settings # Manilest [Delete Hsave X Discard

Fssenfials A Citter sattings * Name®

e N agpicaions
= Todolistsenvice e] aonaL

b cations, please wistt the Microso
Torlol stSenvce

| Anapes Object 4@

Sppliation Type Object D W 5
et 3po /AP —— roperis > | I
AOEE ARICAON I ome 2age Mansges Appiication In Local D rectary " 3
ttps://localhost:44: Todal = 2eply URls > Appicaton D!
Allsertings - >
- e * AppIDURI®
A1 ACCESS https://mytenantonmicrosoftcem/Todoli.. v
. Requirzc permssions > Lego
T s ’

TO

Upload newlogc @
Selecta fle =]
Homa page URL®
httpe/flocalhost4321

Legoul URL

Appiicaton lype

ebaj

Multi-tenantsc @

images/00084.jpeg
Settings

| ptersontings” DESCRIPTION BXPIRES vaLue

GENERAL AppKey 1212712017 Hidden
1! Properties > [Key descrption | Duration ¥ | Value wil be displayed on save

= Reply URLs >
& Owners >

91 AccESS

& Required permissions >

T Keys >

images/00083.jpeg
TodolistWebApp > Settings > Required permissions > Add APlaccess > Selectan API P Search resources

Required permissions

= I=l % Add API access = [=] &8 Select an API

= Add %* Grant Permissi

Apl APPLICATION PER... DELEGATED PERM...

1 Select an API >

Windows Azure Active Directory (Microsof

wreActiveD... 0

TodoListService

images/00086.gif
Browser Ul Mobile Client
ASP.NET Web Ul
v v
APl Gateway API Gateway

Network Perimster

Container

Virtual Machine

Physical Server
|

images/00085.jpeg
ASP.NET

ASP.NET is a free web framework for building great Web sites and Web applications using HTML, CSS and

JavaScript.

Learn more »

Getting started

ASP.NET MVC gives you a poweriul, patterns-based way
to build dynamic websites that enables a clean separation
of concerns and gives you full control over markup for
enjoyable, agile development.

Learn more »

Get more libraries

NuGet is a free Visual Studio extension that makes it
easy to add, remove, and update libraries and tools in
Visual Studio projects.

Learn more »

Web Hosting

You can easily find a web hosting company that offers the
right mix of features and price for your applications.

Learn more »

images/00088.jpeg
TodolistWebAppMonitaring - Diagnostics logs *»

[0 Search (ctri=y

Application Logging (Tilesyster) @

MONITORING

@ Application Insights
W Alerts

B Diagnostics logs
B Logstream

B Process explorer

X Metrics per instance (Apps)

3 Metrics per Instance (App Ser...

X Live HTTP traffic
. Application events

X FREB logs

[or NN

Level

| Verbase

v

Application logging Blob) ©
Cor I

Level

[Eror

Storage Settings
Storage not configured

Web server logging @

Stoi

e | Flle System

Detailed error messages @
Cor N
Failed request tracing @

Cor N

Storage accounts

= Storage account {) Refresh

[search storage accounts

NAME TYPE

todomonitoringstorage

RESOURCE GROUP

Standard-ZRS default-applicationinsights-ea

images/00087.jpeg
Microsoft Azure AppServices > TodolistWebAppMonitoring - Diagnostics logs

- TodoListWebAppMonitoring - Diagnostics logs » a

App

N

L Search (Ctrl+/)

APl
AP definition
CORS
MONITORING

@ Application Insights
Alerts
Diagnostics logs

Bl Log stream

8 Process explorer

K Metrics per instance (Apps)

X Metrics per Instance (App Ser..

Save ¥ Discard

Application Logging (Filesystem) @
off

Level

Verbose

Application Logging (Blob) ®
off on

Level

Error

Storage Settings
Storage not configured

Web server logging @

Storage | File System

Detailed error messages ©

Off

Failed request tracing ®

Off

images/00089.jpeg
Microservices: Scaling on Y-Axis

Y-Axis
Functional decomposition
split application into services

Scale by cloning

o X-Axis
: Application/System

Scale Cube

Ref: "The Art of Scalability: Scalable Web Architecture, Processes, and Organizations for the Modern Enterprise",
Second Edition

Martin L. Abbott; Michael T. Fisher

cover.jpeg
Foreword by:
Ed Price

Senior Program Manager

Microsoft AzureCAT (Customer Advisory Team)

Building
Microservices
with .NET Core 2.0

Second Edition

Transitioning monolithic architectures using
microservices with .NET Core 2.0 using C# 7.0

1]

images/00002.jpeg

images/00001.jpeg

images/00004.jpeg

images/00003.jpeg

images/00006.jpeg
Database

Service branch ‘]
7

> Web
g =
Q
a
o

Service main I . — Desktop

=
@
]

> Mobile

— 7

Web Desktop Mobile

images/00005.gif
User interface

A
v

Module - direct sale
A A
v v
odule - inventory

Database

o

images/00008.gif

images/00007.gif
Database
Service - direct selling Service - partner selling Service - channel partners
=] = [——=) =
_ = = =
= = =]
Server1 Server 2 Server 3 Server 4 Server 5 Server 6

Load balancer

v ' v

Clients

Web Desktop | Mobile

images/00009.jpeg
User

interface

Service

i@g inventory
Service
direct sales

images/00101.jpeg
FlixOne. BookStore.ProductService
G Connected Services
 Dependencies

F Properties
@ wawroot

=l Conteds

b c* ProductContertcs
a1 Controllers:

b c* HomeControllercs
b v+ ProductControllercs
5] Models

b v Categoryics

b ErorViewModel.cs

b ot Productes

< Persistence

b &ct ProductRepository.cs
b vc* ProductRepository.cs
51 Views

& appsettingsjson

& bowerjson

& bundieconfig,json

© Program.cs

o Startupcs

images/00100.jpeg
‘Add New Item - FlixOne.BookStore.ProductService. 7 %

4 Installed Sortby: Search (Ctri+B) p-
« BSPAET Core. ¢ 4 Type: ASPNET Core
fl—sj ASP.NET Core

Class
Code Web API Controller Class

General
0 Interface ASPINET Core
v Web
Se
» Oaine: D] Assembly Information File ASP.NET Core
o
fa] MvC Controller Class ASP.NET Core
&
o
] RasorPage ASPINET Core
o
[G] MVCView Page ASPINET Core

B

Text File ASP.NET Core

B s e
-
LT savascript File ASPNETCore ¥

s T

images/00106.gif

images/00103.gif
Author ~° Boak Category
? 10 ¥ ? 10
Name Name Name
Description Description
Image
Price
focst
e bt
% ld
Bookld Categoryld
oty Authorid

images/00102.gif
User
interface

I

API gateway

Book catalog

Book store

Order service

A A

User Auth service

User store

Shopping cart
service

Order store

Cart store

images/00105.gif
Order Orderitems

9 7
Customerld Orderld
OrderedOn Bookld
Amount Quantity

Price

images/00104.gif
Cartitems Cart
9 1 ? 10
Cartld Customerld
Bookid
Quantity

Price

