
Building
Xamarin.Forms
Mobile Apps Using
XAML

Mobile Cross-Platform XAML and
Xamarin.Forms Fundamentals
—
Dan Hermes
with Contributions by Dr. Nima Mazloumi

www.EBooksWorld.ir

http://www.allitebooks.org

Building Xamarin.Forms
Mobile Apps Using XAML

Mobile Cross-Platform XAML and
Xamarin.Forms Fundamentals

Dan Hermes

with Contributions by Dr. Nima Mazloumi

www.EBooksWorld.ir

http://www.allitebooks.org

Building Xamarin.Forms Mobile Apps Using XAML: Mobile Cross-Platform XAML
and Xamarin.Forms Fundamentals

ISBN-13 (pbk): 978-1-4842-4029-8 ISBN-13 (electronic): 978-1-4842-4030-4
https://doi.org/10.1007/978-1-4842-4030-4

Library of Congress Control Number: 2019930581

Copyright © 2019 by Dan Hermes

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484240298. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Dan Hermes
Boston, MA, USA

Nima Mazloumi
San Francisco, CA, USA

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-4030-4
http://www.allitebooks.org

For your apps.

And for my fiancée, Ginger.

www.EBooksWorld.ir

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Building Apps Using Xamarin�� 1

Understanding Xamarin.Forms ... 2

XAML vs. C# ... 3

Xamarin.Forms Solution Architecture .. 4

Understanding the Platform-Specific UI Approach ... 6

Platform-Specific UI Solution Architecture .. 6

Choosing Xamarin.Forms or a Platform-Specific UI .. 7

Using Custom Renderers, Effects, and Native Views ... 9

Exploring the Elements of Mobile UIs ... 10

Using the Xamarin.Forms UI ... 11

Page... 12

Layout .. 12

View ... 13

Creating a Xamarin.Forms Solution .. 14

Xamarin.Forms Project .. 16

Xamarin.Android .. 19

Xamarin.iOS ... 20

Core Library ... 21

Setting the App’s Main Page .. 21

Foreword ���xv

About the Authors ��xvii

About the Technical Reviewer ��xix

Acknowledgments ��xxi

Introduction ��xxiii

www.EBooksWorld.ir

http://www.allitebooks.org

vi

Adding Xamarin.Forms Views ... 23

Label View ... 23

Placing Views Using StackLayout .. 24

Background Color and Font Color .. 25

Using Fonts .. 25

Using Platform-Specific Fonts ... 26

Button View ... 26

Setting View Alignment and Size: HorizontalOptions and VerticalOptions 29

Entry View for Text Input .. 30

BoxView ... 31

Image View .. 32

ScrollView .. 36

Padding Around the Entire Page .. 37

CODE COMPLETE: Adding Xamarin.Forms Views ... 38

Summary... 41

Chapter 2: Building Xamarin�Forms Apps Using XAML �� 43

Basic Syntax ... 44

XML Syntax ... 44

Element ... 44

Attribute ... 45

Hierarchy ... 45

XML Namespaces .. 46

XAML Syntax ... 46

Classes and Members ... 47

Markup Extensions .. 48

Constructors .. 55

XAML Terms ... 60

Xamarin.Forms Syntax .. 61

Property Element Syntax ... 62

Content Property Syntax .. 62

Enumeration Value Syntax ... 63

Table of ConTenTs

www.EBooksWorld.ir

vii

Event Handler Syntax .. 63

Collection Syntax ... 65

Attached Property Syntax .. 65

Anatomy of XAML Files ... 67

XAML Compilation ... 68

XAML Standard ... 69

Summary... 71

Chapter 3: UI Design Using Layouts �� 73

Xamarin.Forms Layouts .. 73

Using Xamarin.Forms Layouts .. 74

StackLayout .. 74

Padding Around the Entire Layout ... 75

Stacking with Vertical Orientation ... 76

Stacking with Horizontal Orientation ... 77

Nesting Layouts ... 79

Expanding and Padding Views by Using LayoutOptions .. 79

CODE COMPLETE: StackLayout .. 81

FlexLayout ... 82

Position Views Using Axes ... 82

FlexLayout Patterns ... 86

Grid ... 87

Sizing Rows and Columns ... 90

Sizing to Fit Views ... 90

Setting Exact Size .. 91

Expanding Views to Fit Available Space .. 92

Expanding Views Proportionally .. 93

Creating Multicell Views .. 94

Padding Between Cells .. 96

CODE COMPLETE: Grid ... 97

Table of ConTenTs

www.EBooksWorld.ir

viii

RelativeLayout .. 98

Setting View Location and Size ... 99

Using Constraints .. 99

CODE COMPLETE: RelativeLayout .. 104

AbsoluteLayout ... 106

Creating Bounding Objects with SetLayoutBounds ... 107

CODE COMPLETE: AbsoluteLayout ... 111

ContentView .. 112

CODE COMPLETE: ContentView ... 114

Frame .. 115

Understanding Custom Controls ... 116

Summary... 117

Chapter 4: Styles, Themes, and CSS ��� 119

Creating a Page Without Style ... 119

Styling Manually Using View Formatting Properties .. 123

Resources and Dictionaries .. 126

Defining Resources ... 127

Static Resource Lookup ... 128

Dynamic Resource Lookup .. 134

Reusable Resource Dictionaries .. 140

Lookup Behavior .. 143

Overriding Resources .. 143

Merging Dictionaries ... 143

Styles .. 144

Style Lookup .. 145

Explicit Styles .. 146

Implicit Styles .. 148

Overriding Styles ... 149

Using Resources in Styles ... 151

Style Inheritance.. 153

Table of ConTenTs

www.EBooksWorld.ir

ix

Styles Overview ... 157

Device Styles ... 163

Themes ... 165

Using Themes .. 165

Theme Styling Options... 167

Dark Theme ... 168

Light Theme ... 169

Custom Themes ... 171

Cascading Style Sheets (CSS) ... 174

Selectors ... 175

Using CSS .. 175

Xamarin.Forms CSS Definition .. 181

Summary... 185

Chapter 5: User Interaction Using Controls �� 187

Xamarin.Forms Views ... 187

Picker .. 188

DatePicker ... 191

TimePicker ... 193

Stepper .. 195

Slider ... 196

Switch.. 197

Scale, Rotation, Opacity, Visibility, and Focus .. 198

CODE COMPLETE: Xamarin.Forms Views ... 199

Custom Controls .. 201

Control Templates ... 202

Commands .. 204

CommandParameters .. 206

Triggers ... 207

TargetType ... 207

Property Trigger ... 208

Data Trigger ... 209

Table of ConTenTs

www.EBooksWorld.ir

x

Multi Trigger .. 209

Event Trigger .. 210

CODE COMPLETE: Triggers ... 211

Behaviors .. 214

Attached Properties ... 214

Behavior .. 216

Summary... 218

Chapter 6: Making a Scrollable List ��� 219

Xamarin.Forms ListView ... 219

Binding to a List of Strings .. 220

Selecting an Item .. 222

Binding to a Data Model .. 225

CODE COMPLETE: Binding to a Data Model ... 227

Adding an Image ... 229

Customizing List Rows .. 232

CODE COMPLETE: Customizing List Rows ... 236

Adding Buttons .. 238

Using Button Views .. 238

Using Context Actions .. 242

Grouping Headers ... 245

Customizing the Group Header ... 249

Creating a Jump List ... 253

ListViews Scroll Automatically .. 254

Pull-to-Refresh .. 255

Optimizing Performance ... 255

ListView Caching ... 256

ListView Optimization .. 257

Summary... 258

Table of ConTenTs

www.EBooksWorld.ir

xi

Chapter 7: Navigation ��� 259

Navigation Patterns ... 259

Hierarchical ... 260

Modal ... 261

State Management .. 262

Xamarin.Forms Navigation .. 262

Hierarchical Navigation Using NavigationPage ... 263

Pushing and Popping Screens on the Navigation Stack .. 266

Setting the Page Title .. 267

Customizing the Navigation Bar .. 268

Handling the Back Button .. 269

Creating a Drop-Down Menu ... 269

Modal .. 271

Full-Page Modal Using NavigationPage ... 271

User Notification Using Alerts .. 271

Pop-Up Menu Using Action Sheets .. 273

Managing State ... 274

Passing Data into Page Parameters .. 274

Disk Persistence Using the Properties Dictionary ... 275

Using a Static Global Class .. 275

Using a Static Property on the Application Object ... 277

Drill-Down Lists... 277

Using ListView by Item .. 278

CODE COMPLETE: Drill-Down List .. 280

Using ListView by Page ... 283

Using TableView for Grouping Pages ... 284

Navigation Drawer Using MasterDetailPage .. 287

Tabs Using TabbedPage .. 292

Creating Data-Bound Tabs ... 294

Putting NavigationPages Inside a TabbedPage .. 296

Table of ConTenTs

www.EBooksWorld.ir

xii

Springboard .. 297

Making Icons Tappable by Using Gesture Recognizers ... 299

Carousel Using CarouselPage ... 300

Summary... 301

Chapter 8: Custom Renderers, Effects, and Native Views ������������������������������������� 303

Custom Renderer .. 303

When to Use a Custom Renderer ... 304

Creating and Using a Custom Renderer .. 305

Creating the Custom Element .. 307

Creating the Custom Renderer .. 309

Android Custom Renderer ... 310

CODE COMPLETE: Android Custom Renderer... 313

iOS Custom Renderer .. 315

CODE COMPLETE: iOS Custom Renderer ... 317

Which Renderer and View Do You Customize? .. 318

Effects ... 321

Creating and Using Effects .. 322

Text Validator Effect ... 325

Native Views ... 337

CODE COMPLETE: Native View Declaration .. 340

Using Factory Methods .. 341

CODE COMPLETE: Non-Default Constructors and Factory Methods 344

Summary... 345

Chapter 9: Data Access with SQLite and Data Binding ��� 347

What Is SQLite? ... 347

What Is SQLite.NET? .. 348

Data Binding.. 348

Xamarin.Forms Data Binding .. 349

Binding to a Data Model .. 351

Using INotifyPropertyChanged ... 354

Table of ConTenTs

www.EBooksWorld.ir

xiii

CODE COMPLETE: Using INotifyPropertyChanged .. 358

Understanding ViewModels and MVVM ... 360

Binding to ViewModels and Data Models .. 361

Binding a Read-Only ListView ... 366

Binding an Editable ListView ... 369

Binding a View to Another View ... 380

String Formatting .. 381

Value Converter ... 381

Using SQLite.NET .. 382

Locking Is Key ... 384

Creating a Database .. 384

Building the Database Path ... 385

Creating a Table ... 389

Creating the Data Access Layer .. 394

CODE COMPLETE: Creating a DAL by Using SQLite.NET ... 406

Database Creation Options.. 410

Web Services .. 411

Enterprise Cloud Data Solutions ... 411

Microsoft Azure Mobile Apps ... 412

Visual Studio App Center (VSAC).. 414

IBM Mobile Foundation .. 414

Summary... 415

Index ��� 417

Table of ConTenTs

www.EBooksWorld.ir

xv

Foreword

It has been a long road since the day in 2001 when we began migrating .NET to

non- Windows platforms. In 2009 we brought the first .NET platform to the mobile

platforms by introducing a static compiler for .NET and the bindings that allowed it

to work and leverage everything that Apple’s phoneOS platform had to offer (later

renamed iOS).

I am proud to have worked with many talented developers in the course of this effort,

on the Xamarin team, and on the Mono, MonoTouch, MonoDroid, and Forms projects,

which laid the foundation for cross-platform .NET. Our work helped to convince

Microsoft, one of the largest software corporations in the world, of the value of open

source and cross-platform.

Xamarin’s acquisition by Microsoft helped cement the Xamarin Platform in Visual

Studio. Xamarin is now Microsoft’s flagship cross-platform mobile app development

solution. All of this is great news for C# developers building mobile apps. The popular

Xamarin DevOps tools such as Xamarin Test Cloud and Xamarin Insights are finding

a new home in Visual Studio App Center, a suite for teams that build, test, and deploy

applications to users and to the Play Store and the App Store.

Xamarin.Forms has grown to be Xamarin’s most popular cross-platform offering.

With Xamarin.Forms we allow developers to write their UI code once and have it

leverage the native controls everywhere. Many developers build Xamarin.Forms apps

using XAML, which is what this book is about.

XAML is important to many of us coding in C# with Visual Studio, which is the main

reason we offer it in Xamarin.

The XAML language has a long history, starting with WPF, continuing with Silverlight

and finally in UWP. Xamarin XAML reuses the same XAML concepts and maps them

into the cross-platform UI framework. It includes additions such as FlexLayout, Effects,

Themes, Styles, and CSS. We remain committed to making Xamarin.Forms the easiest

platform to build mobile applications.

www.EBooksWorld.ir

xvi

Dan Hermes has been documenting the progress of the Xamarin Platform for some

years now. We commended him as a Xamarin MVP, and his engagement with the

developer community has led Microsoft to name him a Microsoft Regional Director (RD).

I now leave you in Dan’s capable hands to explore and enjoy Xamarin.Forms

using XAML.

—Miguel de Icaza

Distinguished Engineer, Microsoft

Former CTO and co-founder, Xamarin

foreword

www.EBooksWorld.ir

xvii

About the Authors

Dan Hermes (@danhermes) is a Microsoft Regional Director

(RD), Xamarin MVP, Microsoft MVP, IBM Champion, and

founder of Lexicon Systems. Mr. Hermes helps developers

create great mobile apps and, leveraging IoT and AI, helps

businesses develop a winning mobile strategy. Dan’s firm

has advised dozens of successful businesses on their apps

in healthcare, retail, government, education, finance,

transportation, biotech, and others. Xamarin mobile projects

include a cross-platform app for Thermo Fisher Scientific

which won a W3 and a Davey award and was a finalist for

a Xammy award as well as a medical app used by over

40,000 surgeons. Dan develops Azure and Xamarin course

curriculum for Microsoft and edX. He speaks at conferences,

universities, and user groups such as Microsoft Ignite,

Boston Code Camp, IBM InterConnect, Xamarin Dev Days, Microsoft Azure Day, and

his group: Boston Mobile C# Developers’ Group. He has penned articles for publications

such as IBM’s Mobile Business Insights and Microsoft’s MSDN Magazine. Dan wrote the

best-selling Apress book Xamarin Mobile Application Development, recommended

reading at the Harvard Extension School and the first book of its kind in the MIT

online library. Dan travels coast to coast to speak with developers, technologists, and

businesses who want to understand how to build cross-platform mobile apps in C# using

Xamarin (when he’s not busy building apps).

Read more about Dan at https://lexicon.systems

www.EBooksWorld.ir

https://lexicon.systems/

xviii

Nima Mazloumi holds a doctoral degree in Business

Administration and Information Systems at the University

of Mannheim. He has been a full-stack engineer for more

than 18 years and is passionate about people, processes,

and technology. He has worked for commercial, public,

and nonprofit organizations in Europe and the Middle East

and has managed almost all divisions of an IT organization.

Currently, Nima resides with his family in California and

works as a Senior Director for One Planet Ops Inc., a

company that creates and invests in successful Internet-

based businesses and is dedicated to philanthropy. Nima is a singer-songwriter and

involved in community building activities.

abouT The auThors

www.EBooksWorld.ir

xix

About the Technical Reviewer

Glenn Stephens is a software developer working with

mobile and cloud technologies. He writing software for over

30 years. Glenn has worn many hats over the years including

Managing Director, Chief Executive Officer, Solution

Architect, Software Development Manager, and Programmer

and worked in a variety of industries, from High-End

Security, e-health, to Finance and Education and has won

awards for several of his projects. He has a Bachelor of

Computer Science and a Master of Business Administration

with a specialization in e-business.

An author, speaker, and app builder, he has been writing

code since the late 1980s with musical taste to match. You

can find him most days on the Sunshine Coast, Australia, where he is based. When he’s

not coding, he enjoys playing the piano, reading, and spending time with his family.

www.EBooksWorld.ir

xxi

Acknowledgments

Hats off to the champions and guardians of the written word in an age when video

prevails. Without the foresight of Apress editor Jim DeWolf and perseverance of Todd

Green and director Welmoed Spahr, this book would not exist.

I am grateful for the contributions of Dr. Nima Mazloumi that lend a tremendous

thoroughness and accuracy to this book.

Glenn Stephens, I thank you for your considerable insights as our technical reviewer.

Thanks Jill Balzano and Mark Powers for your patience and consistency in the

management of this project.

Mathieu Clerici of Los Xamarinos, thank you for helping to hammer our Xamarin

solutions into shape. Thank you for all your development over the years. I couldn’t ask

for a better Xamarin architect/coder.

Many thanks to XAML code contributors: Jason Awbrey, Jim Bennett, Mark Allan,

and Alex Blount.

David Ortinau, Senior Program Manager of Mobile Developer Tools and Xamarin.

Forms team lead at Microsoft and James Montemagno, Principal Program Manager of

Mobile Developer Tools at Microsoft and the greatest Xamarin evangelist the world will

ever see, thank you for your reviews and direction.

Thanks to everyone here at Lexicon Systems!

Lastly, thanks to all of you not listed here who had a hand in this book.

www.EBooksWorld.ir

xxiii

Introduction

The hardest decision I made in writing this book was not including XAML
examples in the book proper. … I chose to adhere to my mission for this
book: cross-platform C# code-first coverage of the foundations of the
Xamarin platform.

—Dan Hermes, Xamarin Mobile Application Development, Apress, 2015

That quote is from the introduction to my last Xamarin book written in 2015 about C#.

Now is the time for XAML.

The book you hold in your hand is a natural evolution of my previous book entitled

Xamarin Mobile Application Development. That book covered UI development

with Xamarin.Forms using C#. With all the same key topics plus new features, like

FlexLayouts, Styles, CSS, Commands, and Behaviors, this book covers Xamarin.Forms

using XAML. Whether you’re coming from Windows Presentation Foundation (WPF) or

C#, or you’re just going deeper with Xamarin, this guide covers the most oft-used topics

and techniques for Xamarin.Forms using XAML.

This book is a XAML version of my previous C# book, Xamarin Mobile Application

Development, plus some new and updated topics. It’s neither a new edition nor a

completely different book. It’s just XAMLized.

 What’s Inside
This book is a hands-on Xamarin.Forms primer and a cross-platform reference for

building native Android and iOS using XAML. This book explores the important

concepts, elements, and recipes using Xamarin.Forms layouts, controls, and lists

with visual formatting techniques including styles, themes, and CSS as well as coding

approaches including behaviors and commands.

Widen your XAML foundation with a solid review of XAML object creation and

syntax. Explore constructors and factory methods and how to configure objects using

XAML’s many syntaxes including property element syntax, content property syntax, and

event handler syntax.

www.EBooksWorld.ir

xxiv

When you’ve reached the limits of what Xamarin.Forms can do out of the box, you’ll

want to customize your Xamarin.Forms controls by using effects and custom renderers

to leverage platform-specific features.

You’ll also learn all the key Xamarin UI navigation patterns: hierarchical and modal,

drill-down lists, tabs, navigation drawer, and others. You can use the provided navigation

code to build out the skeleton of just about any business app.

This book is a guide to SQLite data access. We’ll cover the most common ways to

access a SQLite database in a Xamarin app and how to build a data access layer (DAL).

Once you have a database set up, you’ll want to bind your data to your UI. You can do

this by hand or use Xamarin.Forms data binding to bind UI elements to data sources.

We’ll cover many techniques for read and write data binding to both data models and to

view models for a Model-View-ViewModel (MVVM) architecture.

 Who This Book Is For
If you’re a developer, architect, or technical manager who can read XAML and C#

examples to learn about cross-platform mobile development using the Xamarin

platform, then this book is for you.

 How to Download Code Examples
All of the code for this book, the C# and Extensible Application Markup Language

(XAML) solutions, can be found in two places online:

• GitHub via the book’s product page, located at www.apress.

com/9781484240298. For more detailed information, please visit

http://www.apress.com/source-code.

• GitHub at https://github.com/danhermes/xamarin-xaml-book-

examples.

 Get Started with Xamarin.Forms Right Now!
No time for reading? Browse Chapter 1 for ten minutes, and then download the

navigation code for Chapter 7. Rip off some of my Chapter 7 navigation patterns to

use immediately in your app and get started coding right now. Leave the book open to

Chapter 3 so you can build some layouts inside your navigation pages. Good luck!

InTroduCTIon

www.EBooksWorld.ir

https://www.apress.com/9781484240298
https://www.apress.com/9781484240298
http://www.apress.com/source-code
https://github.com/danhermes/xamarin-xaml-book-examples
https://github.com/danhermes/xamarin-xaml-book-examples

xxv

 Chapter Contents
The book begins with Xamarin.Forms and XAML, laying a solid foundation there

before delving into how to use XAML to wield Xamarin.Forms. This book is laid out

progressively from the most straightforward and foundational topics in Xamarin.Forms

to the progressively more intricate and challenging. Each chapter is also laid out that

way, beginning with the basics and proceeding into the more interesting concepts. Here

are the chapters:

Chapter 1—Building Apps Using Xamarin
A Xamarin.Forms primer and a comparison of XAML vs. C# and Xamarin.Forms

vs. platform-specific approaches, such as Xamarin.iOS and Xamarin.Android. Covers

Xamarin.Forms solutions, pages, layouts, and views.

Chapter 2—Building Xamarin.Forms Apps Using XAML
Explore XAML syntax and features, such as namespaces and markup extensions,

and how these are used in Xamarin.Forms. Use constructors and factory methods to

instantiate your XAML classes. Learn all the ways that XAML elements are set and

used including property element syntax, content property syntax, and event handler

syntax.

Chapter 3—UI Design Using Layouts
Layouts help us organize the positioning and formatting of controls, allowing us to

structure and design the screens of our mobile app.

Chapter 4—Styles, Themes, and CSS
Using Resource libraries to centralize UI properties. Styles leverage this approach to

provide an app-wide UI architecture for consistency, reusability, and maintainability.

Themes further this approach with pre-fab but customizable styles. Follow the next

iteration in Cascading Style Sheets (CSS) with XAML.

Chapter 5—User Interaction Using Controls (Views)
Review Xamarin’s basic UI interactions: pickers, sliders, switches, and other controls.

Create custom controls and control templates for reusable UI elements. Commands,

triggers, and behaviors facilitate deeper connections between your UI and your code

handlers.

Chapter 6—Making a Scrollable List
Lists are one of the simplest and most powerful methods of data display and

selection in mobile apps. Explore the power of the ListView and how to data bind, group

list items with headers and footers, create user interaction with taps and context actions,

and customize your rows.

InTroduCTIon

www.EBooksWorld.ir

xxvi

Chapter 7—Navigation
Navigation lets a user traverse an app, move from screen to screen, and access

features. Hierarchical, modal, navigation drawers, drill-down lists, and other key

patterns make up the core of mobile UI navigation. State management is the handling of

data passed between screens as the user navigates through the app.

Chapter 8—Custom Renderers, Effects, and Native Controls
Extend the capability of Xamarin.Forms views beyond their out-of-the-box

functionality by customizing them using custom renderers, effects, and native views.

Xamarin.iOS and Xamarin.Android have scores of features inaccessible using only

the Xamarin.Forms abstraction reachable using effects, custom renderers, and native

views.

Chapter 9—Local Data Access with SQLite and Data Binding
SQLite is a popular choice with many Xamarin developers and a great place to start

learning mobile database access. Store and retrieve data locally by using SQLite- NET.

Using Xamarin.Forms data binding, fuse UI elements to your data models. Use the

MVVM pattern by binding to a view model.

 CODE COMPLETE
There is a “Cliff’s Notes” navigation path through this book. If you just want the bottom

line on a topic, find the section you’re interested in and jump right to the CODE

COMPLETE section. This is a complete code listing at the end of many (but not all)

major topics. Many times all we want is a quick code recipe on a topic and that’s how

to get it here in this book. If you need explanation about the code, turn back to the

beginning of the section and step through the detailed construction of that code.

 Prerequisites
You’ll need a very basic understanding of what Xamarin and Xamarin.Forms are.

Preferably you’ve downloaded a solution or two, built them, and run them on your

simulator or device. Even more preferable, you’ve coded a few lines of XAML and C# and

built a solution or two. If you’ve done none of those things, then I’ll recommend that you

pair this volume with the Xamarin online docs to keep you moving. If you’ve done all or

most of those things, then proceed without fear.

InTroduCTIon

www.EBooksWorld.ir

xxvii

 System Requirements
Xamarin is installed with Visual Studio and is subject to the Visual Studio license

structure. Xamarin is a VS install option, whether you use VS Professional, VS Enterprise,

or VS for Mac or prefer a more casual route, Visual Studio Community or Visual Studio

Community for Mac, which are both free. As of this writing, here are the OS and software

requirements for Xamarin development:

 Mac

Visual Studio 2017 for Mac will install and run on the following operating systems:

• macOS Sierra 10.12: Community, Professional, and Enterprise

• Mac OS X El Capitan 10.11: Community, Professional, and Enterprise

Note The latest version of Xcode 8.3 requires macos sierra 10.12; therefore,
Xamarin.ios and Xamarin.Mac projects also require that minimum version.

 Windows

Visual Studio 2017 will install and run on the following operating systems:

• Windows 10 version 1507 or higher: Home, Professional, Education,

and Enterprise (LTSC and S are not supported)

• Windows Server 2016: Standard and Datacenter

• Windows 8.1 (with Update 2919355): Core, Professional, and

Enterprise

• Windows Server 2012 R2 (with Update 2919355): Essentials,

Standard, Datacenter

• Windows 7 SP1 (with latest Windows Updates): Home Premium,

Professional, Enterprise, Ultimate

InTroduCTIon

www.EBooksWorld.ir

xxviii

 Errata
The authors, the technical reviewers, and many Apress staff have made every effort to find

and eliminate all errors from this book’s text and code. Even so, there are bound to be

one or two glitches left. To keep you informed, there’s an Errata tab on the Apress book

page (www.apress.com/9781484240298). If you find any errors that haven’t already been

reported, such as misspellings or faulty code, please let us know by e-mailing support@

apress.com.

 Customer Support
Apress wants to hear what you think—what you liked, what you didn’t like, and what you

think could be done better next time. You can send comments to feedback@apress.com.

Be sure to mention the book title in your message.

 Contacting the Authors
You can follow Dan Hermes on Twitter at @danhermes, read his latest news at https://

lexicon.systems, or e-mail him at dan@lexiconsystemsinc.com. You can e-mail Nima

at nima@mazloumi.de.

If you are seeking general Xamarin product support, please use the Xamarin

documentation page at https://docs.microsoft.com/en-us/xamarin/xamarin-forms/

or the Xamarin forums at https://forums.xamarin.com/

 Summary
Whether you’re new to Xamarin or a seasoned vet, there are new ideas and tricks for you

in here. Enjoy getting your XAML on!

InTroduCTIon

www.EBooksWorld.ir

https://www.apress.com/9781484240298
https://twitter.com/danhermes?lang=en
https://lexicon.systems/
https://lexicon.systems/
mailto:dan@lexiconsystemsinc.com
mailto:nima@mazloumi.de
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/
https://forums.xamarin.com/

1
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4_1

CHAPTER 1

Building Apps
Using Xamarin
Xamarin has become so cross-platform that it now includes iOS, Android, Windows,

macOS, Tizen, WPF, Hololens, GTK, and others. That’s a lot of platforms. How does

Xamarin do it?

Descended from the open-source Mono Project that brought .NET to Linux,

the Xamarin platform is a port of .NET to the iOS and Android operating systems.

Underlying Xamarin.Android is Mono for Android, and beneath Xamarin.iOS is

MonoTouch. These are C# bindings to the native Android and iOS APIs for development

on mobile and tablet devices. This gives us the power of the Android and iOS user

interface, notifications, graphics, animation, and phone features such as location and

camera—all using C# and XAML. Each new release of the Android and iOS operating

systems is matched by a new Xamarin release that includes bindings to their new APIs.

Xamarin.Forms is a layer on top of the other UI bindings, which provides a fully cross-

platform UI library.

This chapter provides a refresher of the two ways to build an app using Xamarin:

• Xamarin.Forms is a cross-platform UI library for Android, iOS, and

many others.

• A platform-specific (or native) UI approach uses Xamarin.Android,

Xamarin.iOS.

We will talk about when Xamarin.Forms is useful and when a more platform-specific

approach might be better. Then we’ll delve into building a Xamarin.Forms UI using pages,

layouts, and views. We will create a Xamarin.Forms solution containing shared projects

and platform-specific ones. While adding Xamarin.Forms controls to a project, we will

touch upon basic UI concepts such as image handling and formatting controls in a layout.

Let’s start by discussing Xamarin.Forms.

www.EBooksWorld.ir

2

 Understanding Xamarin.Forms
Xamarin.Forms is a toolkit of cross-platform UI classes built atop the more foundational

platform-specific UI classes: Xamarin.Android and Xamarin.iOS. Xamarin.Android and

Xamarin.iOS provide mapped classes to their respective native UI SDKs: iOS UIKit and

Android SDK. Xamarin.Forms also binds directly many other platforms. This provides a

cross-platform set of UI components that render in each of these three native operating

systems (see Figure 1-1).

Figure 1-1. Xamarin libraries bind to native OS libraries

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

3

 XAML vs. C#
Xamarin.Forms provides a cross-platform toolkit of pages, layouts, and controls and

is a great place to start to begin building an app quickly. There are two ways to create

user interfaces in Xamarin.Forms, either in C# using the rich Xamarin.Forms API or

using Extensible Markup Language (XAML), a declarative markup language created by

Microsoft used to define user interfaces. My previous book, Xamarin Mobile Application

Development, covered the C# approach, but this book is all about XAML. You can create

exactly the same kind of UI in both C# and XAML, so the choice is largely subjective and

personal, although there are architectural considerations. XAML forces separation of the

View code, while the C# approach does not. Jason Smith, the principal software engineer

on the Xamarin.Forms team at Microsoft, explained it this way, “We build Xamarin.

Forms code first. That means that all features are first created to work using C#, then we

implement them for XAML.”

Xamarin.Forms elements are built using Page, Layout, and View classes. This API

provides a broad range of built-in cross-platform mobile UI patterns. Beginning with

the highest-level Page objects, it provides familiar menu pages such as NavigationPage

for hierarchical drilldown menus, TabbedPage for tab menus, a MasterDetailPage

for making navigation drawers, a CarouselPage for scrolling image pages, and a

ContentPage, a base class for creating custom pages. Layouts span the standard formats

we use on various platforms including StackLayout, AbsoluteLayout, RelativeLayout,

Grid, ScrollView, and ContentView, the base layout class. Used within those layouts

are dozens of familiar controls, or views, such as ListView, Button, DatePicker, and

TableView. Many of these views have built-in data binding options.

Tip Various synonyms for mobile ui screens exist, such as views and pages, and
these are used interchangeably. a view can mean a screen but can also refer to a
control in certain contexts.

Xamarin.Forms comprises platform-independent classes that are bound to their

native platform-specific counterparts. This means we can develop basic, native UIs

for all three platforms with almost no knowledge of iOS and Android UIs. Rejoice

but beware! Purists warn that trying to build apps for these platforms without an

understanding of the native APIs is a reckless undertaking. Let’s heed the spirit of their

concerns. We must take a keen interest in Android and iOS platforms, their evolution,

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

4

features, idiosyncrasies, and releases. We can also wallow in the convenience and genius

of the amazing cross-platform abstraction that is Xamarin.Forms!

 Xamarin.Forms Solution Architecture
One of the greatest benefits of Xamarin.Forms is that it gives us the ability to develop

native mobile apps for several platforms simultaneously. Figure 1-2 shows the solution

architecture for a cross-platform Xamarin.Forms app developed for iOS, Android, and

any of the other supported platforms. In the spirit of good architecture and reusability,

a Xamarin.Forms cross-platform solution often uses shared C# application code

containing the business logic and data access layer, shown as the bottom level of the

diagram. This is frequently referred to as the Core Library. The cross-platform

Xamarin.Forms UI layer is also C# and is depicted as the middle layer in the figure.

The thin, broken layer at the top is a tiny amount of platform-specific C# UI code in

platform- specific projects required to initialize and run the app in each native OS.

Figure 1-2. Xamarin.Forms solution architecture: one app for multiple platforms

Figure 1-2 is simplified to communicate the fundamentals of Xamarin.Forms.

The reality is that hybridization between Xamarin.Forms and platform-specific code

is possible, useful, and encouraged. It can happen at a number of levels. First, within

the Xamarin.Forms customization options, which include custom renderers, effects,

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

5

Figure 1-3. Xamarin.Forms architecture with customization

and native views. Customization gives us platform-specific classes for rendering

platform-specific features on a Xamarin.Forms page. Hybridization can also happen

within platform-specific Android activities and iOS view controllers that run alongside

Xamarin.Forms pages or within platform-specific classes that are called as needed

to handle native functionality such as location, camera, graphics, or animation.

This sophisticated approach (which is now commonplace) leads to a more complex

architecture, shown in Figure 1-3, and must be handled carefully. Note the addition of

the platform-specific UI layer.

Note Chapter 8 provides more on the use of customization and platform-specific
code in Xamarin.Forms solutions.

When are Xamarin.Forms appropriate to use and when do we consider other

Xamarin options? I’ll address this key question a bit later in the chapter, but first let’s

define Xamarin’s platform-specific UI options.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

6

 Understanding the Platform-Specific UI Approach
Before Xamarin.Forms, there were the platform-specific (or native) UI options, which

include the Xamarin.Android, Xamarin.iOS, and Windows Phone SDK libraries. Building

screens using platform-specific UIs requires some understanding of the native UIs

exposed by these libraries. We don’t need to code directly in iOS UIKit or Android SDK,

as we’re one layer removed when using Xamarin bindings in C#. Using the Windows

SDK, of course, we’re coding natively in C# against the Windows OS. The advantage

of using Xamarin's platform-specific UIs is that these libraries are established and

full-featured. Each native control and container class has a great many properties and

methods, and the Xamarin bindings expose many of them out of the box.

Note We’re not talking about native ui development using Objective-C or Java
here but the use of Xamarin C# platform-specific bindings to native ui libraries.
to avoid such confusion, this book favors the term platform-specific over native
when referring to Xamarin libraries, but Xamarin developers will sometimes use
the term native to refer to the use of platform-specific libraries Xamarin.iOS and
Xamarin.Android.

 Platform-Specific UI Solution Architecture
Figure 1-4 shows how a platform-specific solution designed to be cross-platform shares

C# application code containing the business logic and data access layer, just like a

Xamarin.Forms solution. The UI layer is another story: it’s all platform-specific. UI

C# code in these projects uses classes that are bound directly to the native API: iOS,

Android, or Windows sans binding.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

7

If you compare this diagram to the Xamarin.Forms diagram in Figure 1-2, you’ll see

that there’s a lot more coding to be done here: a UI for every platform as opposed to one

for all. Why would anyone bother to do it this way? There are quite a few good reasons

why some or even all of the code might be done better this way. So how do we know

when to use Forms?

 Choosing Xamarin.Forms or a Platform-Specific UI
Most Xamarin projects are faced with this decision:

Which do I use, Xamarin.Forms or a Xamarin platform-specific UI?

The comparison is ease and portability of Xamarin.Forms versus the full-featured

functionality of Xamarin’s platform-specific UIs, namely, Xamarin.Android and

Xamarin.iOS. The platform-specific Xamarin APIs have considerably more features than

Xamarin.Forms out of the box, although customization closes the gap with some work.

Figure 1-4. Platform-specific UI solution architecture

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

8

The answer to our question will range from one, to the other, to both, depending on your

needs. Here are suggested guidelines:

Use Xamarin.Forms for the following:

Learning Xamarin: If you’re new to mobile development using C#,

then Xamarin.Forms is a great way to get started!

Sharing UI code: Save development and testing time and money

by writing the UI only once for all your platforms with Xamarin.

Forms (e.g., Android, iOS).

Business apps: Xamarin.Forms does these things well—basic data

display, navigation, and data entry. This is a good fit for many

business apps.

Basic design: Xamarin.Forms provides controls with baseline

design features, facilitating basic visual formatting.

Simple cross-platform screens: Xamarin.Forms is great for creating

fully functional basic screens. For more complex screens, leverage

Xamarin.Forms custom renderers for platform-specific details.

Use a platform-specific UI (Xamarin.iOS or Xamarin.Android) for

Complex screens: When an entire screen (or an entire app)

requires a nuanced and complex design and UI approach,

and Xamarin.Forms isn’t quite up to the task, go with a

platform- specific UI using Xamarin.Android and Xamarin.iOS.

Consumer apps: Platform-specific UI has everything a developer

needs to create a consumer app with complex visual design,

nuanced gesture sensitivity, and high-end graphics and animation.

High design: This approach provides complete native UI APIs with

low-level access to design properties on each control, allowing for

a high visual standard of design. Native animation and graphics

are also available with this approach.

Single-platform apps: If you’re building for only one platform,

and a cross-platform approach for your app is not important in

the foreseeable future (a rare case even if you’re starting with one

platform), consider using a platform-specific UI.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

9

However, clever developers are creating more and more advanced Forms apps. Also,

the Xamarin development team at Microsoft moves quickly. With each new release of

Xamarin.Forms, more properties and methods are included in the bindings, bringing

this library closer to the platform-specific ones and giving us increased control over our

cross-platform UI. Also, open-source projects and third-party tools such as Telerik’s

UI for Xamarin and Syncfusion Xamarin UI controls are swiftly extending the options

available with added controls, charts, and data grids.

When complex tasks or high design are required by Xamarin.Forms, virtually

anything is possible using customization.

 Using Custom Renderers, Effects, and Native Views
You’ll eventually need more from Xamarin.Forms than it gives you out of the box. When

complex tasks or designs are required by Xamarin.Forms, virtually anything is possible

using Xamarin.Forms customization. Custom renderers provide access to the lower-

level, platform-specific, screen-rendering classes called renderers, which use platform-

specific controls to create all Xamarin.Forms screens. Any Xamarin.Forms screen can

be broken into platform-specific screens and classes using this approach. This means

we can write a Xamarin.Forms page or app and customize it by platform whenever

necessary. More about this in Chapter 8.

Custom renderers are powerful and thorough in their implementation as platform-

specific enablers of Xamarin.Forms UI elements. Custom renderers are, however, heavy

artillery. If you want something more tactical, like merely customizing a property on a

Xamarin.Forms control, consider an “effect.” In addition to exposing properties, effects

also have the capacity to pass parameters to those properties and define events on

Xamarin.Forms controls. You pass parameters to the effect using attached properties or

the Common Language Runtime (CLR).

Sometimes you just want a real native control. You’ll settle for nothing less than

absolute power. Thankfully there’s now a way to get this in Xamarin.Forms via native

view declaration. They’re easiest to use in XAML, secondarily in C#.

All of this means that you can write a Xamarin.Forms page or app and customize it

by platform, which is raw power in your hands as you work with a cross-platform toolset.

Use customization mindfully or risk a fragmented UI code base that probably should

have been written entirely as a platform-specific UI. Used judiciously, customization can

turn your basic, lackluster product into a versatile, unique, popular app. Let’s do a quick

refresher of the mobile user interface.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

10

 Exploring the Elements of Mobile UIs
Xamarin is a unifying tool serving several platforms, many of which can have different

names for the same things. Here are some unifying terms, weighted heavily in the

direction of Xamarin.Forms:

Screens, views, and pages in mobile apps are made up of several

basic groups of components: pages, layouts, and controls. Pages

can be full or partial screens or groups of controls. In Xamarin.

Forms, these are called pages because they derive from the Page

class. In iOS, they are views; and in Android, they’re screens,

layouts, or sometimes loosely referred to as activities.

Controls are the individual UI elements we use to display

information or provide selection or navigation. Xamarin.Forms

calls these views, because a View is the class that controls inherit

from. Certain controls are called widgets in Android. More on

these shortly in Chapter 5.

Layouts are containers for controls that determine their size,

placement, and relationship to one another. Xamarin.Forms and

Android use this term, while in iOS everything is a view. More on

these in Chapter 3.

Lists, typically scrollable and selectable, are one of the most

important data display and selection tools in the mobile UI. More

on these in Chapter 6.

Navigation provides the user with a way to traverse the app by

using menus, tabs, toolbars, lists, tappable icons, and the up and

back buttons. More on this in Chapter 7.

Modals, dialog boxes, and alerts are usually pop-up screens that

provide information and require some response from the user.

More on these in Chapter 7.

Now that we have context and some terminology to work with, let’s get started with

Xamarin.Forms!

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

11

 Using the Xamarin.Forms UI
Pages, layouts, and views make up the core of the Xamarin.Forms UI (Figure 1-5). Pages

are the primary container, and each screen is populated by a single Page class. A page

may contain variations of the Layout class, which may then hold other layouts, used for

placing and sizing their contents. The purpose of pages and layouts is to contain and

present views, which are controls inherited from class View.

Figure 1-5. Page, layouts, and views on a Xamarin.Forms screen

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

12

 Page
The Page class is the primary container of each main screen in the app. Derived from

Xamarin.Forms.VisualElement, Page is a base class for the creation of other top-level UI

classes. Here are the primary pages:

• ContentPage

• MasterDetailPage

• NavigationPage

• TabbedPage

• CarouselPage

In addition to serving as containers for layouts and views, pages provide a rich menu

of prefabricated screens with useful functionality that includes navigation and gesture

responsiveness. More on these in Chapter 7.

 Layout
Views are placed and sized by their container class, Layout. Layouts come in a variety of

flavors with different features for formatting their views. These containers allow views

to be formatted precisely, loosely, absolute to the coordinate system, or relative to one

another. Layouts are the soft tissue of the page, the cartilage that holds together the solid,

visible aspects of the page (views). Here are the main layouts:

• StackLayout

• FlexLayout

• Grid

• AbsoluteLayout

• RelativeLayout

• ScrollView

• Frame

• ContentView

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

13

The layout’s Content and/or Children properties contain other layouts and views.

Horizontal and vertical alignment is set by the properties HorizontalOptions and

VerticalOptions. Rows, columns, and cells within a layout can be padded with space,

sized to expand to fill available space, or shrunk to fit their content. More on layouts in

chapter 3.

Tip Xamarin.Forms layouts are derived from the View class, so everything
contained in a page is actually some form of a view.

 View
Views are controls, the visible and interactive elements on a page. These range from

the basic views like buttons, labels, and text boxes to the more advanced views like lists

and navigation. Views contain properties that determine their content, font, color, and

alignment. Horizontal and vertical alignment is set by properties HorizontalOptions

and VerticalOptions. Like layouts, views can be padded with space, sized to expand

to fill available space, or shrunk to fit their content. Later in this chapter, we’ll code

some views, then visit them again in Chapter 5 and throughout the book. These are the

primary views grouped by function:

• Basic—fundamental views

• Label

• Image

• Button

• BoxView

• List—make a scrollable, selectable list

• ListView

• SearchBar

• Text entry—user entry of text strings using a keyboard

• Entry

• Editor

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

14

• Selection—user choice of a wide range of fields

• Picker

• DatePicker

• TimePicker

• Stepper

• Slider

• Switch

• User feedback—notify the user of app processing status

• ActivityIndicator

• ProgressBar

• Others

• Map

• WebView

Tip Be careful not to confuse the Xamarin.Forms View class with a view meaning
screen or presentation layer.

 Creating a Xamarin.Forms Solution
Xamarin provides templates that contain the necessary projects to create a Xamarin.

Forms app. A cross-platform solution usually contains these projects:

Xamarin.Forms: Cross-platform UI code called by one of the

platform-specific projects. This can be accomplished using .NET

Standard, though for backward compatibility, Portable Class

Library (PCL) and shared project are also available. The example

we’ll be creating in this chapter uses .NET Standard.

Xamarin.Android: Android-specific code, including Android

project startup.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

15

Xamarin.iOS: iOS-specific code, including iOS project startup.

Core Library: Shared app logic such as business logic and data

access layer using .NET Standard, a PCL, or a shared project.

Figure 1-6 shows the main projects usually found in a Xamarin.Forms solution.

Figure 1-6. Xamarin.Forms solution

Tip the Core library project is not added by solution templates and must be
created manually, either as a .net standard project or a shared project. if you are
just getting started with Xamarin.Forms, you can skip the Core library for now and
put all your shared files in the Xamarin.Forms project.

Let’s create a simple demo app to help us explore the foundations of Xamarin.Forms

and many of its commonly used features.

Create a Xamarin.Forms solution. In Visual Studio, create a New Project and select

project type Visual C# ➤ Cross-Platform ➤ Mobile App (Xamarin.Forms). In Visual

Studio for Mac, create a New Solution and select project type Multi-platform ➤ App ➤

Xamarin.Forms ➤ Blank Forms App. Name it FormsExample.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

16

This will create multiple projects: one for Xamarin.Forms code and then

platform- specific projects including Android and iOS. The platform-specific projects

available depend on whether you’re on a PC or a Mac, whether you’re in Visual Studio

or Visual Studio for Mac, and the licenses you own. Visual Studio for Mac will give you

an iOS project and an Android project. A PC with Visual Studio will create three projects:

one .NET Standard for Xamarin.Forms, one Android, and one iOS.

Tip Xamarin is free with a Visual studio license, and Visual studio Community
edition is free.

The following sections provide each of the projects in the solution and the code

they contain.

 Xamarin.Forms Project
When using Visual Studio, the Xamarin.Forms project contains App.cs (Listing 1-1),

which defines and returns the main page of the app. The Application object serves

as the base class of App and provides the MainPage property as well as lifecycle events

OnStart, OnSleep, and OnResume.

Listing 1-1. App.cs in a New Xamarin.Forms XAML Project

 public partial class App : Application

 {

 public App ()

 {

 InitializeComponent();

 MainPage = new MainPage();

 }

 protected override void OnStart ()

 {

 // Handle when your app starts

 }

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

17

 protected override void OnSleep ()

 {

 // Handle when your app sleeps

 }

 protected override void OnResume ()

 {

 // Handle when your app resumes

 }

 }

Each platform has a wrapper class that takes the shared App class and renders

it as its native implementation. The default code sets the MainPage property in its

constructor to this case a ContentPage object called MainPage. Soon we will replace

MainPage with our own ContentPage class and place controls on it using XAML.

Tip a static Application.Current property references the current application
object anywhere in your app.

The OnStart, OnSleep, and OnResume method overrides created for us are used to

manage our app when it is moved to and from the background.

 Application Lifecycle Methods: OnStart, OnSleep, and OnResume

When the user clicks the Back or Home (or App Switcher) buttons on their device, an

app moves into the background. When they reselect the app again, it resumes and

moves back into the foreground. The starting of an app, the progression of the app

from the foreground into a background state then back into the foreground again, until

termination, is called the application lifecycle. The Application class includes three

virtual methods to handle lifecycle events:

• OnStart—Called when the app is first started. Useful for loading

values into memory that are needed by the app.

• OnSleep—Called each time the app is moved into the background.

Useful for cleanup and initiating background calls.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

18

• OnResume—Called when the app is resumed after being in the

background. Useful for reloading values into memory and returning

from background threads.

OnSleep is also used for normal application termination (not a crash). Any time an

app moves into a background state, it must be assumed that it may never return from

that state.

Tip use the Properties dictionary for disk persistence in these methods when
an app is backgrounded. see Chapter 7 for more on state management.

 Building Pages Using ContentPage

The MainPage property in App.cs (Listing 1-1) is assigned the default page in Xamarin.

Forms: MainPage. The XAML for MainPage is shown in Listing 1-2. It contains one layout

called StackLayout and one view or control called Label.

Listing 1-2. MainPage.xaml in a New Xamarin.Forms XAML Project

 <?xml version="1.0" encoding="utf-8" ?>

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:MyApp"

 x:Class=" MyApp.MainPage">

 <StackLayout>

 <!-- Place new controls here -->

 <Label Text="Welcome to Xamarin.Forms!"

 HorizontalOptions="Center"

 VerticalOptions="CenterAndExpand" />

 </StackLayout>

 </ContentPage>

MainPage's C# code behind is simple, as you can see in Listing 1-3. The class derives

from ContentPage and has an InitializeComponent method in its constructor to render

its accompanying XAML.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

19

Listing 1-3. MainPage.xaml.cs in a New Xamarin.Forms XAML Project

public partial class MainPage : ContentPage

 {

 public MainPage()

 {

 InitializeComponent();

 }

 }

ContentPage has properties that affect the appearance of the page. The Padding

property creates space around the margins of the page to improve readability and

design. BackgroundImage can contain an image that is displayed on the background of

the page.

Several of ContentPage's members are useful for navigation and state management.

The Title property contains text, and the Icon property contains an image that is

displayed at the top of the page when NavigationPage is implemented. Lifecycle

methods OnAppearing and OnDisappearing can be overridden to handle initialization

and finalization of a ContentPage. The ToolBarItems property is useful for creating a

drop-down menu. All of these navigation-related members are covered in Chapter 7.

 Xamarin.Android
The Android project contains a startup file called MainActivity.cs, which

defines an activity class inherited from Xamarin.Forms.Platform.Android.

FormsApplicationActivity as seen in Listing 1-4.

Listing 1-4. MainActivity.cs in the FormsExample.Droid Project

 namespace FormsExample.Droid

 {

 [Activity(Label = "FormsExample", Icon = "@drawable/icon",

MainLauncher = true, ConfigurationChanges = ConfigChanges.

ScreenSize | ConfigChanges.Orientation)]

 public class MainActivity : global::Xamarin.Forms.Platform.

Android.FormsApplicationActivity

 {

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

20

 protected override void OnCreate(Bundle bundle)

 {

 base.OnCreate(bundle);

 global::Xamarin.Forms.Forms.Init(this, bundle);

 LoadApplication(new App());

 }

 }

 }

In the OnCreate method, Xamarin.Forms is initialized and LoadApplication sets App

as the current Application.

 Xamarin.iOS
The iOS project contains a startup file called AppDelegate (Listing 1-5) which inherits

from Xamarin.Forms.Platform.iOS.FormsApplicationDelegate.

Listing 1-5. AppDelegate.cs in the FormsExample.iOS Project

 namespace FormsExample.iOS

 {

 [Register("AppDelegate")]

 public partial class AppDelegate : global::Xamarin.Forms.

Platform.iOS.FormsApplicationDelegate

 {

 public override bool FinishedLaunching(UIApplication app,

NSDictionary options)

 {

 global::Xamarin.Forms.Forms.Init();

 LoadApplication(new App());

 return base.FinishedLaunching(app, options);

 }

 }

 }

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

21

Xamarin.Forms is initialized in the Init() method and LoadApplication sets App as

the current page.

All of our platform-specific initializers, the Android MainActivity and the iOS

AppDelegate, get the starting page from the Xamarin.Forms App class, which, by default,

returns a stubbed demo page.

 Core Library
The Core Library is a project in a Xamarin.Forms solution for the business and/or data

access layer of an app which should be largely platform independent. Although not

explicitly created as part of the Xamarin.Forms solution templates, a Core Library project

is standard practice. Create one yourself and add it to your solution. This can contain

data models, shared files or resources, data access, business logic, or references to PCLs.

This is the place for platform-independent middle-tier or back-end non-UI code. It is

referenced by any or all of the other projects in the solution. Use it to optimize code

reuse and to decouple the UI projects from the data access layer and business logic.

Note Core Library is an advanced solution architecture. If you’re just starting out with

Xamarin.Forms, consider putting your data access, business logic, and shared code in

the Xamarin.Forms project, and hold off on using a Core Library for now.

Now we need to build out the pages of our app. Time to code!

 Setting the App’s Main Page
First we create a custom page in the Xamarin.Forms project and set it to be the app’s

main page. Add a new file to your project and select the Content Page. This will create

a class inherited from ContentPage. Call it ContentPageExample. Both a XAML and a C#

code behind file will be created. Here’s the XAML file, ContentPageExample.xaml:

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="FormsExample.ContentPageExample">

 <ContentPage.Content>

 <StackLayout>

 <Label Text="Welcome to Xamarin.Forms!"

 VerticalOptions="CenterAndExpand"

 HorizontalOptions="CenterAndExpand" />

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

22

 </StackLayout>

 </ContentPage.Content>

 </ContentPage>

Here is the C# code behind called ContentPageExample.cs:

 namespace FormsExample

 {

 public partial class ContentPageExample : ContentPage

 {

 public ContentPageExample ()

 {

 InitializeComponent ();

 }

 }

 }

Then back in the Xamarin.Forms App.cs, we update the App constructor to set an

instance of our new ContentPageExample class as the MainPage:

 namespace FormsExample

 {

 public class App : Application

 {

 public App()

 {

 MainPage = new ContentPageExample();

 }

Now we have the custom page class ready and can load up our ContentPageExample

XAML file with controls.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

23

 Adding Xamarin.Forms Views
View is the term for control in Xamarin.Forms, the smallest unit of UI construction. Most

views inherit from the View class and provide basic UI functions, such as a label or a

button. From this point on, we will use the terms view and control interchangeably.

Tip all example code solutions can be found under the title of this book on
https://www.apress.com/us/book/9781484240298 in the source Code/
downloads tab, or on github at https://github.com/danhermes/xamarin-
xaml-book-examples.

Let’s start simply and put some views into ContentPageExample.xaml.

 Label View
Labels display single or multiline text. Here are some examples:

 <Label Text="Label" FontSize="40" HorizontalOptions="Center" />

 <Label FontSize="20" HorizontalOptions="CenterAndExpand">

 <Label.Text>

 This control is great for

 displaying one or more

 lines of text.

 </Label.Text>

 </Label>

Multiline text happens implicitly when enough text is used that it wraps, or explicitly

with line breaks.

A Label view has two types of alignment, view-justification and text-justification. The

entire view is justified within a layout using the HorizonalOptions and VerticalOptions

properties assigned using LayoutOptions. Label text is justified within a Label using

Label’s HorizontalTextAlignment and VerticallTextAlignment properties.

 HorizontalTextAlignment = "End"

The TextAlignment enumeration assigned to these alignment properties has three

values: Start, Center, and End.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

https://www.apress.com/us/book/9781484240298
https://github.com/danhermes/xamarin-xaml-book-examples
https://github.com/danhermes/xamarin-xaml-book-examples

24

Next, the labels must be assigned to a layout for placement on the page. In this

example we use the text alignment defaults and don’t explicitly declare text alignment.

 Placing Views Using StackLayout
A Layout view acts as a container for other views. Since a ContentPage can have only

one layout or view, all the views on our page must be placed in a single container that

is assigned to the ContentPage’s Content property. Here we employ StackLayout, a

subclass of Layout that can “stack” child views vertically in ContentPageExample.xaml:

 <StackLayout HeightRequest="1500">

 <Label Text = "Label" FontSize="40" HorizontalOptions="Center" />

 <Label FontSize="20" HorizontalOptions="CenterAndExpand">

 <Label.Text>

 This control is great for

 displaying one or more

 lines of text.

 </Label.Text>

 </Label>

 </StackLayout>

We place all the child views onto the StackLayout parent view and set the requested

height with HeightRequest. HeightRequest has been set larger than the visible page so

later we can make it scroll.

Note StackLayout child views are laid vertically unless horizontal order is
specified using Orientation = "Horizontal".

Compile and run the code. Figure 1-7 shows our labels on the StackLayout for iOS

and Android, respectively.

Figure 1-7. Xamarin.Forms Labels on a StackLayout

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

25

If you’re using iOS and want your Xamarin.Forms projects to look more like

examples in this book that have a black background and white text, or you’re using

another platform and want more of an iOS look, setting background color and font color

can help you.

 Background Color and Font Color
Page background color and view font color can be changed using the ContentPage's

BackgroundColor property and the TextColor property found on text-based Views.

If you are working on an iOS project and want your work to look more like the book

examples with black backgrounds, add this line to your page:

 <ContentPage BackgroundColor= "Black"

If you want it to look more classically iOS, then set it to Color.White. Text color will

then be set automatically to a lighter color. However, you can control text color manually

on text controls with the TextColor property.

 <Label TextColor= "White"

We use fonts in many controls, so let’s do a quick overview of those.

 Using Fonts
Format text on controls by using these properties:

FontFamily: Set the name of the font in the FontFamily property;

otherwise, the platform’s default font will be used, for example,

FontFamily = "Courier".

FontSize: The font size and weight are specified in the FontSize

property using a double value or a NamedSize enumeration. Here

is an example using a double: FontSize = "40". Set a relative

size by using NamedSize values such as NamedSize.Large, using

NamedSize members Large, Medium, Small, and Micro, for

example, FontSize ="Large".

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

26

FontAttributes: Font styles such as bold and italics are specified

using the FontAttributes property. Single attributes are set like this:

FontAttributes = "Bold" options are None, Bold, and Italic.

Multiple attributes are specified using an attribute string

formatted as “[font-face],[attributes],[size]”.

Tip these text formatting properties can be also set up app-wide using styles,
which is covered in Chapter 4.

 Using Platform-Specific Fonts
Make sure your font name will work for all your target platforms, or your page may fail

mysteriously. If you need different font names per platform, use the OnPlatform tag,

which sets the value according to the platform, like this:

 <Label.FontFamily>

 <OnPlatform x:TypeArguments="x:String">

 <On Platform="iOS">Courier</On>

 <On Platform="Android">Droid Sans Mono</On>

 </OnPlatform>

 </Label.FontFamily>

Tip another way to declare the On tags in OnPlatform involves the
Value parameter.

<On Platform="Android" Value="Droid Sans Mono"/>

 Button View
Xamarin.Forms buttons are rectangular and clickable.

Let’s add a plain ole button:

 <Button Text = "Make It So" FontSize="Large" HorizontalOptions="Center"

 VerticalOptions="Fill" Clicked="ButtonClicked" />

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

27

The Text property contains the text visible on the button. HorizontalOptions and

VerticalOptions (discussed in the next section) determine the control’s alignment and

size. This NamedSize font setting makes the font Large.

Tip Buttons can be customized using the BorderColor, BorderWidth,
BorderRadius, and TextColor properties. the BorderWidth is defaulted to
zero on iOs.

Add the button to our StackLayout.

 <StackLayout HeightRequest="1500">

 <Label Text = "Label" FontSize="40" HorizontalOptions="Center" />

 <Label FontSize="20" HorizontalOptions="CenterAndExpand">

 <Label.Text>

 This control is great for

 displaying one or more

 lines of text.

 </Label.Text>

 </Label>

 <Button Text = "Make It So" FontSize="Large" HorizontalOptions="Center"

 VerticalOptions="Fill" Clicked="ButtonClicked" />

 </StackLayout>

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

28

Now let’s assign an event handler in ContentPageExample.cs, either inline:

 button.Clicked += (sender, args) =>

 {

 ((Button)sender) = "It is so!";

 };

Or by assigning a method:

 button.Clicked += OnButtonClicked;

…which is called outside the page constructor:

 void OnButtonClicked(object sender, EventArgs e)

 {

 ((Button)sender) = "It is so!";

 };

When you click the button, the button text changes, as in Figure 1-9.

Figure 1-8. Xamarin.Forms Button

Figure 1-9. button.Clicked event fired

Figure 1-8 shows the new button.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

29

Tip BorderWidth assigns the weight of the line that draws the button.

 Setting View Alignment and Size: HorizontalOptions
and VerticalOptions
Horizontal and vertical alignment and, to a certain degree, the size of controls are

managed by setting the HorizontalOptions and/or VerticalOptions properties to a

value of the LayoutOptions class, for example:

 <Button HorizontalOptions="Center" VerticalOptions="Fill" />

Considerations in view layout are the space provided to the view by the layout and

surrounding elements, the padding space around the view, and the size of the view itself.

These types of formatting are accomplished using LayoutOptions and AndExpand.

 Justification with LayoutOptions

Individual control layout is defined along a single axis by setting the HorizontalOptions

or VerticalOptions property to one of the LayoutOptions classes:

• Start left or top—justifies the control (depending upon layout

Orientation).

• Center centers the control.

• End right or bottom—justifies the control.

• Fill expands the size of the control to fill the space provided.

For example:

 <Button HorizontalOptions = "Start" />

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

30

 AndExpand Pads with Space

Setting HorizontalOptions or VerticalOptions to these LayoutOptions classes

provides padding space around the view:

• StartAndExpand left or top-justifies the control and pads around the

control with space.

• CenterAndExpand centers the control and pads around the control

with space.

• EndAndExpand right or bottom-justifies the control and pads around

the control with space.

• FillAndExpand expands the size of the control and pads around the

control with space.

For example:

 <Button HorizontalOptions = "StartAndExpand" />

Tip HorizontalOptions set to Fill and FillandExpand look the same
with a single control in a column.

VerticalOptions set to Center or Fill is useful only if vertical space has
been explicitly provided. Otherwise, these options can appear to do nothing.
LayoutOptions.Fill won’t make your control taller if there’s no space to grow.

VerticalOptions set to Expand and CenterAndExpand imposes padding
space around a control in a StackLayout.

There are more formatting examples later in this chapter and a lot more on the topic

of control layout and alignment in Chapter 3. Next let’s create some user input.

 Entry View for Text Input
The following code creates a text box for user entry of a single line of text. Entry inherits

from the InputView class, a derivative of the View class.

 <Entry Placeholder="Username" VerticalOptions="Center" Keyboard="Text" />

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

31

User input goes into the Text property as a String.

Note the use of the Placeholder property, an inline label for the name of the

field and a common technique in the mobile UI often preferable to space-consuming

labels placed above or beside the entry control. The Keyboard property is a member of

InputView and provides a range of options for the onscreen keyboard that appears for

input, including Text, Numeric, Telephone, URL, and Email. Remember to add the entry

to your StackLayout (see Listing 1-6 later in the chapter). Figure 1-10 shows the new

entry control for username.

Figure 1-10. Xamarin.Forms user entry view

Tip set IsPassword = "True" to replace entered text letters with dots.

For multiline entry, use the Editor control.

 BoxView
The BoxView control creates a colored graphical rectangle, useful as a placeholder that

can be later replaced by an image or other more complex control or group of controls.

This control is useful when you’re waiting on the designer to get his/her act together.

 <BoxView Color="Silver" WidthRequest="150" HeightRequest="150"

 HorizontalOptions="StartAndExpand" VerticalOptions="Fill" />

The Color property can be set to any Color member value. The default dimensions

are 40×40 pixels, which can be changed using the WidthRequest and HeightRequest

properties.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

32

Tip Be careful when setting HorizontalOptions and VerticalOptions
to Fill and FillAndExpand, as this can override your HeightRequest and
WidthRequest dimensions.

Add the BoxView to your StackLayout (see Listing 1-6 later in the chapter) and see

the result here in Figure 1-11.

Figure 1-11. Xamarin.Forms BoxView

Eventually your designer will give you those promised icons and you can replace

your BoxViews with real images.

 Image View
The Image view holds an image for display on your page from a local or online file:

 <Image Source="monkey.png" Aspect="AspectFit" HorizontalOptions="End"

VerticalOptions="Fill" />

Figure 1-12 shows the monkey image at the bottom right.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

33

Let’s look at how an image is handled.

 Local Images

Local image files have platform-specific image folders in their respective projects:

Android uses the Resources/drawable folder. Don’t use special

characters in the filename. The Build Action must be set to

Android Resource.

iOS 9 and later uses Asset Lists and Image Sets which can be set

up in Visual Studio on the iOS project. Apple has deprecated the

/Resources folder approach where we would create images for

Retina displays with an @2x or @3x suffix on the filename.

 Image Sizing: Aspect Property

The Image.Aspect property determines image sizing and is set by using the Aspect

enumerator—for example:

Figure 1-12. Image view

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

34

 <Image Source="monkey.png" Aspect="AspectFit" HorizontalOptions="End"

VerticalOptions="Fill" />

These are the Aspect members:

AspectFill: Scale the image to fill the view, clipping if necessary.

AspectFit: Scale the image to fit within the view maintaining

the aspect ratio with no distortion and leaving space if necessary

(letterboxing).

Fill: Scale the image to fill the view entirely and exactly, possibly

distorting the image.

Those are the image formatting options. Next we will make our image clickable.

 Making an Image Clickable with a GestureRecognizer

Tappable images and icons are common in mobile applications for actions and

navigation. Like many Xamarin.Forms views, the Image doesn’t have a click or tap event

and must be wired up using the GestureRecognizer class. A gesture recognizer is a class

that can be added to many views to respond to user interaction. It currently supports

just the tap gesture. The terms click and tap are used interchangeably in mobile UI

development.

Add the standard gesture recognizer to the image.

 <Image Source="monkey.png" Aspect="AspectFit" HorizontalOptions="End"

VerticalOptions="Fill" >

 <Image.GestureRecognizers>

 <TapGestureRecognizer Tapped="ImageTapped"/>

 </Image.GestureRecognizers>

 </Image>

Create a handler to manage the Tapped event. Change the image’s Opacity to .5 in

the handler, which will fade the image slightly when tapped.

 protected void ImageTapped(object sender, EventArgs e) {

 Image image = ((Image)sender);

 image.Opacity = .5;

 image.Opacity = 1;

 }

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

35

Give that a try and make your monkey fade so you can see that the gesture

recognizer works.

Tip an alternative implementation of GestureRecognizer uses the Command
property:

<Image.GestureRecognizers>

<TapGestureRecognizer Command="{Binding ImageTappedCommand}"/>

</Image.GestureRecognizers>

User feedback is a crucial concept in mobile UI development. Any time a user does

something in the UI there should be some subtle acknowledgment by the app. A tap, for

instance, should respond to the user with visible feedback. Usually an image will gray out

or have a white background for a sec when touched. Let’s do that professionally using

the image’s Opacity property but adding async/await to create a slight delay in our fade

without affecting the app’s performance.

Add an async/await with a delay that will cause the image to fade slightly for a

fraction of a second. Remember to add using System.Threading.Tasks; to the top of

your .cs file.

 async protected void ImageTapped(object sender, EventArgs e) {

 Image image = ((Image)sender);

 image.Opacity = .5;

 await Task.Delay(200);

 image.Opacity = 1;

 }

Tapping on the image will now fade the image slightly, then back to normal,

providing a responsive user experience.

Tip For more subtle animation, instead of Opacity, use the Fadeto method:

 await image.FadeTo(0.5, 450);

 await Task.Delay(1000);

 await image.FadeTo(1, 450);

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

36

In your own projects, you’ll use gesture recognizers (and async/await) to actually

do something when an image is tapped. If you want to see async/await in action in

this example, bump up the Delay to 2000, then click the “Make It So” button while it’s

awaiting and you’ll see that the app is still responsive. You could do many things in this

Tapped handler without interrupting the flow of the app! Often when a button or image

is pressed, the result should be backgrounded using async/await for an optimal user

experience.

Tip Async/await is a standard C# technique for queuing up activities in the
background for simultaneous activity using the task parallel library (tpl). many
Xamarin methods and functions are provisioned for background processing using
async/await.

We have one more view to add, a container class to permit scrolling of our views.

 ScrollView
The ScrollView layout contains a single child and imparts scrollability to its contents:

 <ScrollView VerticalOptions="FillAndExpand">

Here we nest the StackLayout within this ScrollView, so our entire layout of views

will now be scrollable.

 <ScrollView VerticalOptions="FillAndExpand">

 <StackLayout HeightRequest="1500">

 <Label Text = "Label" FontSize="40" HorizontalOptions="Center" />

 ...

 </StackLayout>

 </ScrollView>

Tip ScrollView scrolls vertically by default but can also scroll sideways using
the Orientation property. For example, Orientation = "Horizontal".

That’s it for the views on this page. The final touch will be padding around the entire

page, so views won’t be mashed up against the sides of the screen.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

37

 Padding Around the Entire Page
The ContentPage's Padding property creates space around the entire page. Here’s the

property assignment:

 <ContentPage.Padding> [left], [top], [right], [bottom]

</ContentPage.Padding>

This example will place padding left, right, and bottom, but not top:

 <ContentPage.Padding> 10, 0, 10, 5 </ContentPage.Padding>

This code will pad horizontal sides, left and right, and vertical sides, top and bottom:

 <ContentPage.Padding> 10, 5 </ContentPage.Padding>

This will place equal space on all four sides:

 <ContentPage.Padding> 10 </ContentPage.Padding>

If you’re using an iPhone or iPad, then your app may extend onto the top of the

screen, obscuring the status bar. The following example will slide a page just below the

iOS status bar while keeping the page flush to the top of the screen for other OSes. The

OnPlatform method supplies different values or actions depending on the native OS

(iOS, Android). In this case, the Padding property is platform-dependent.

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <On Platform="iOS" Value="10, 20, 10, 5"/>

 <On Platform="Android" Value="10, 0, 10, 5"/>

 </OnPlatform> </ContentPage.Padding>

This last Padding expression is what we use in this project and in most projects in

this book, padding around the edges of the page with a bit more room at the top on iOS

for the status bar.

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

38

Figure 1-13 shows a final build and run on both platforms.

 CODE COMPLETE: Adding Xamarin.Forms Views
Listings 1-6 and 1-7 provide the complete code for the added Xamarin.Forms views in

the FormsExample solution. This listing contains the more recent form of OnPlatform.

Listing 1-6. ContentPageExample.xaml in the FormsExample Project

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="FormsExample.

ContentPageExample">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <OnPlatform.iOS>

 10, 20, 10, 5

Figure 1-13. Final build and run of the FormsExample solution

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

39

 </OnPlatform.iOS>

 <OnPlatform.Android>

 10, 0, 10, 5

 </OnPlatform.Android>

 <OnPlatform.WinPhone>

 10, 0, 10, 5

 </OnPlatform.WinPhone>

 </OnPlatform>

 </ContentPage.Padding>

 <ContentPage.Content>

 <ScrollView VerticalOptions="FillAndExpand">

 <StackLayout HeightRequest="1500">

 <Label Text = "Label" FontSize="40"

HorizontalOptions="Center" />

 <Label FontSize="20" HorizontalOptions="CenterAndExpand">

 <Label.Text>

 This control is great for

 displaying one or more

 lines of text.

 </Label.Text>

 </Label>

 <Button Text = "Make It So" FontSize="Large"

HorizontalOptions="Center" VerticalOptions="Fill"

Clicked="ButtonClicked" />

 <Entry Placeholder="Username" VerticalOptions="Center"

Keyboard="Text" />

 <BoxView Color="Silver" WidthRequest="150"

HeightRequest="150" HorizontalOptions="StartAndExpand"

VerticalOptions="Fill" />

 <Image Source="monkey.png" Aspect="AspectFit"

HorizontalOptions="End" VerticalOptions="Fill" >

 <Image.GestureRecognizers>

 <TapGestureRecognizer Tapped="ImageTapped"/>

 </Image.GestureRecognizers>

 </Image>

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

40

 </StackLayout>

 </ScrollView>

 </ContentPage.Content>

</ContentPage>

Listing 1-7. ContentPageExample.xaml.cs in the FormsExample Project

 using System;

 using System.Collections.Generic;

 using System.Threading.Tasks;

 using Xamarin.Forms;

 namespace FormsExample

 {

 public partial class ContentPageExample : ContentPage

 {

 public ContentPageExample ()

 {

 InitializeComponent ();

 }

 protected void ButtonClicked(object sender, EventArgs e) {

 ((Button)sender).Text = "It is so!";

 }

 async protected void ImageTapped(object sender, EventArgs e) {

 Image image = ((Image)sender);

 image.Opacity = .5;

 await Task.Delay(200);

 image.Opacity = 1;

 }

 }

 }

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

41

 Summary
Xamarin.Forms provides a jumping-off point for cross-platform mobile app UI

development, fully loaded with stock and customizable pages, layouts, and views.

This book tackles Xamarin development using XAML for UI declaration with C# code

behinds.

A Xamarin.Forms solution typically has a separate project for each of these platforms:

Android and iOS. A Xamarin.Forms project is useful for housing cross- platform UIs, and a

Core Library project contains the business logic and data access layer.

Developers are faced with a decision of Xamarin.Forms vs. a platform-specific

UI approach with Xamarin.Android and Xamarin.iOS. The more Xamarin.Forms

releases that come out, the less of a decision this is, as Xamarin.Forms approaches the

functionality of native UI APIs. Xamarin.Forms custom renderers, effects, and native

views help us combine the two approaches.

View is the Xamarin.Forms term for control, and we delved into a few of the most

frequently used views: Label, Entry, BoxView, Image, StackLayout, and ScrollView.

Xamarin.Forms XAML, like all markup languages, comes with its own set of

considerations, grammars, rules, and techniques to help us build our apps UI. Let’s dive

into XAML!

Chapter 1 Building apps using Xamarin

www.EBooksWorld.ir

43
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4_2

CHAPTER 2

Building Xamarin.Forms
Apps Using XAML
The eXtensible Application Markup Language (XAML, pronounced “zammel”) is

used to define user interfaces (UI) for frameworks such as the Windows Presentation

Foundation (WPF), the Universal Windows Platform (UWP), and Xamarin.Forms. These

XAML dialects share the same syntax based on the 2009 XAML specification but differ in

their vocabularies, which may eventually be aligned under one XAML Standard.

Every XAML document is an XML document with one root element and nested

child elements. In XAML, an element represents a corresponding C# class such as an

application, a visual element, or control defined in Xamarin.Forms. The attributes of the

elements represent the properties or events supported by the class. XAML provides two

ways to assign values to properties and events—as an attribute of the element or as a

child element. Either way, the attribute assigns the value of a property or wires an event

to an event handler you write in C# in the code behind file.

As I mentioned in the intro, my other book, Xamarin Mobile Application

Development, focused on creating UI for Xamarin.Forms using C#. This book is about

creating UI using XAML. XAML helps you separate the visual design from the underlying

business logic. XAML and accompanying code behind files are written using Visual

Studio or Visual Studio for Mac.

In this chapter, we will focus primarily on XAML syntax to help you read and write

XAML. We’ll begin with basic XAML syntax: tags can form elements which can be

decorated with attributes which are property/value pairs, all of which are nested into

a hierarchy. XAML elements can represent real classes and their members. We’ll use

namespaces to extend the vocabulary available in an XML document. XAML syntax

employs a number of approaches for the definition of elements and attributes ranging

www.EBooksWorld.ir

44

from the property element syntax to the collection syntax. Each XAML file has a C# code

behind. The XAML Standard is the holy grail of XAML development so we’ll touch on it.

Since XAML is based upon XML, let us first delve into basic XML syntax.

 Basic Syntax
Xamarin.Forms XAML is based on XML and the 2009 XAML specification. A basic

understanding of these two languages is essential to be able to read and write XAML

effectively.

The XML syntax determines the basic structure of XAML files comprised of

elements, attributes, and namespaces. The 2009 XAML specification applies XML to the

realm of programming languages where elements represent classes and attributes class

members. XAML adds basic data types, vocabulary to name and reference elements, and

approaches to construct objects using constructors and factory methods of classes.

For some of you, the next few paragraphs may be a review, but if you’re not up

on your XML skills, then read carefully. Let’s start with the basic structure of a XAML

document based on XML.

 XML Syntax
At the core of XAML is the eXtensible Markup Language (XML). The main building

blocks of an XML document are elements, attributes, hierarchy, and namespaces.

Elements are entities declared using begin and end tags and defined using tag-encased

data or other tags. Attributes are properties assigned to an element. A hierarchy is the

structure created using nested elements. Next we’ll look at each in turn.

 Element
The declaration of an element uses the element syntax, so it has a begin and end tag

surrounding the element values. Use the element syntax to declare a Label view and to

assign "Some Text":

 <Label>Some Text</Label>

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

45

In an empty Label, the end tag can be omitted by adding a forward slash at the end

of the begin tag, like this:

 <Label/>

 Attribute
Ascribe metadata to elements using attributes, which can be assigned a value. The

attribute syntax is used to assign primitive values to an attribute by placing the attribute

name inside the begin tag of an element, and its value is stored in double or single

quotes following an equal sign. Use the attribute syntax to assign a value to the Text

property of Label:

 <Label Text="Some Text"/>

 Hierarchy
A typical XML document is comprised of many nested elements, referred to as

a hierarchy. In Chapter 1, Listing 1-7, a sample page is defined, comprised of a

ContentPage element, which includes a StackLayout element with several child views

such as Label and Button. This makes XML particularly interesting for user interface

design, where pages contain layouts and views. Use a ContentPage with a StackLayout

that includes a Label and a Button to define the hierarchy of a page, as outlined in

Listing 2-1.

Listing 2-1. Hierarchy of XML Elements

 <ContentPage>

 <StackLayout>

 <Label Text="This control is great ..."/>

 <Button Text="Make It So"/>

 </StackLayout>

 </ContentPage>

Tip in Xaml, element and attribute names correspond to class and member
names in C#.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

46

 XML Namespaces
Namespaces extend the vocabulary available in an XML document, allowing the use

of more uniquely defined elements and attributes. Each namespace is given a prefix

to avoid ambiguity within an XML document in case multiple namespaces are used

that may have elements or attributes with identical names. Add a namespace to an

XML document using the XML xmlns attribute with the syntax xmlns:prefix="URI".

An element can have unlimited xmlns attributes for as long as the prefix is unique. For

one xmlns declaration in the XML document, the prefix can be omitted, which makes

the vocabulary of that namespace the default. All elements in the XML without a prefix

belong to that namespace. Listing 1-7, in Chapter 1, adds the XAML and the Xamarin.

Forms namespaces to the ContentPage element using

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

In Xamarin the default namespace is reserved for the Xamarin.Forms namespace,

which is why ContentPage, StackLayout, Label, and Button have no prefix. For XAML

terms the prefix x needs to be added, e.g., x:TypeArguments, which is used in Chapter 1,

Listing 1-6, to specify the platform-specific Thickness. Both XAML and Xamarin.Forms

use as the Uniform Resource Identifier (URI) simply a Uniform Resource Locator (URL)

for that matter, which is not further evaluated other than being unique.

Tip Xml namespaces can be declared on any element. however, in Xamarin.
Forms all namespaces must be defined in the root element, e.g., ContentPage.

Those are the key syntaxes in XML, so now let’s move on to XAML.

 XAML Syntax
The 2009 XAML specification gives us a way to describe classes and class members in

a declarative way using XML elements and attributes. Namespaces behave similarly to

the using keyword in C#, allowing class libraries to extend the vocabulary available in

XAML. XAML already comes with its own vocabulary including basic data types, markup

extensions to extend the basic syntax with classes backed by code, and approaches to

name and reference elements and to specify to the runtime how to construct objects.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

47

Tip Xaml does not allow code or conditional expressions such as for, while,
do, and loop inside the Xml document.

At the end of this topic, the list of all XAML terms used in Xamarin.Forms is provided

as a reference.

 Classes and Members
In XAML, XML elements represent actual C# classes that are instantiated to objects at

runtime. The members of a class are represented as XML attributes. At runtime, the

assigned attribute value is used to set the value of the property of an object. The attribute

name corresponds with the member name of a class. The Label element with the

attribute Text in Listing 2-1 <Label Text="This control is great ..."/> represents

a class Label that has a public member called Text. At runtime, an object of type Label

will be instantiated and the value of its Text property will be set to "This control is

great ...". Use the attribute syntax to assign values of primitive types as string, bool,

double, and int to an attribute. At runtime, these are projected to String, Boolean,

Double, and Int32 objects.

 XAML Namespaces

Adding a namespace in XAML is equivalent to the using directive in C# and makes a

C# namespace available to the XAML document, allowing any of the classes in that

namespace to be used as elements in the XAML. XAML itself is added as a namespace to

a ContentPage like this:

 <ContentPage xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="FormsExample.ContentPageExample"/>

The URI points to Microsoft’s web site, and the x prefix means that XAML elements

and attributes have to use this prefix inside the document. Use x:Class to specify the

C# name of a ContentPage, like this:

 x:Class="FormsExample.ContentPageExample"

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

48

This defines that the class ContentPageExample in the namespace FormsExample is

a subclass of ContentPage. This also means that there is an associated code behind file

that contains your class definition for ContentPageExample, as demonstrated in

Chapter 1, Listing 1-7.

In XAML the xmlns attribute in combination with the Common Language Runtime

namespace (clr-namespace) and the assembly name can be used to load namespaces

and libraries to the XAML document that are available within a project. For the sake

of simplicity, we’ll reference a system library, though typically we reference our local

namespaces in the project. Listing 2-2 demonstrates how to use the .NET System library

in the assembly mscorlib.dll in XAML in order to use System.String to assign a string

literal to a Label.

Listing 2-2. Adding External Class Libraries

 <ContentPage xmlns:sys="clr-namespace:System;assembly=mscorlib" ...>

 <Label><sys:String>Hello System.String</sys:String></Label>

 </ContentPage>

The colon sign is used when specifying the namespace and the equal sign when

specifying the assembly. The assembly name must correspond to the actual library that

is referenced in your Xamarin project without the .dll file extension, which is the case

for the majority of NuGet package names.

 Markup Extensions
Markup extensions extend the basic XML syntax, are backed by code, and can perform

specific tasks. You can use the attribute or element syntax to specify a markup extension.

To distinguish a markup extension from a string literal, use curly braces when using the

attribute syntax such as {x:Static Color.Maroon}.

Tip in Xamarin.Forms any class that implements the IMarkupExtension
interface and its method ProvideValue is a markup extension. all Xaml markup
extensions are implemented through this mechanism.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

49

The intrinsic XAML markup extensions also supported by Xamarin.Forms include

• Static

• Array

• Type

• Reference

Let’s look at each of them in detail.

 Static

The Static markup extension is used to access static fields, properties, and constant fields

as well as enumeration members. These do not need to be public as long as they are

in the same assembly. In Chapter 1, the declaration <BoxView Color="Maroon"/> uses

the Color Maroon, which is a static member of the class Color. With Static we can

achieve the same result:

 <BoxView Color="{x:Static Color.Maroon}" WidthRequest="150"

HeightRequest="150"/>

Alternatively, to the attribute syntax, the element syntax can be used when working

with markup extensions, as shown in Listing 2-3.

Listing 2-3. Markup Extensions Using Element Syntax

 <BoxView WidthRequest="150" HeightRequest="150">

 <BoxView.Color>

 <x:Static>Color.Lime</x:Static>

 </BoxView.Color>

 </BoxView>

Figure 2-1 shows the Maroon and Lime boxes on iOS and Android platforms.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

50

 Array

Use the Array markup extension to define arrays with objects of a specific Type as shown

in Listing 2-4 to create an Array of Strings.

Listing 2-4. Using Array

 <x:Array Type="{x:Type x:String}">

 <x:String>A</x:String>

 <x:String>B</x:String>

 </x:Array>

Figure 2-1. Maroon and Lime BoxViews using Static to assign a value

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

51

Use a Picker view to create a drop-down list, by assigning an Array to the

Picker's ItemsSource, like this:

 <Picker><Picker.ItemsSource><x:Array>...</x:Array></Picker.ItemsSource>

</Picker>

Figure 2-2 shows the result on both platforms.

Figure 2-2. Using Array as the ItemsSource of a Picker view

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

52

 CODE COMPLETE: Array Markup Extension

Listing 2-5 provides the complete code for creating a Picker that uses an Array as the

ItemsSource.

Listing 2-5. Using Array

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage Title="Array"

 xmlns:sys="clr-namespace:System;assembly=mscorlib"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="XamlExamples.ArrayPage">

 <ContentPage.Content>

 <StackLayout Padding="30,30">

 <Picker>

 <Picker.ItemsSource>

 <x:Array Type="{x:Type x:String}">

 <x:String>Option 1</x:String>

 <x:String>Option 2</x:String>

 </x:Array>

 </Picker.ItemsSource>

 </Picker>

 </StackLayout>

 </ContentPage.Content>

 </ContentPage>

 Type

Use Type to specify the data type of a value. The value of Type is the name of a Type

object. Specify that objects in the Array are of type String:

 <x:Array Type="{x:Type x:String}">

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

53

 Reference

The Reference markup extension is used in combination with the Name directive to

reference an object previously declared in the XAML. Use Name to assign a unique name

to a Label view and Reference in an Entry control to reference the Label by its name in

order to link the two Text properties, as shown in Listing 2-6.

Listing 2-6. Using x:Reference

 <Label x:Name="MyLabel" Text="Hello Entry" />

 <Entry Text="{Binding Path=Text, Source={x:Reference MyLabel}}" />

The example demonstrates the use of the Xamarin.Forms markup extension

Binding, which is covered more in depth in Chapter 9. However, in the preceding

example, we first use Binding to assign the Label view as the Source of the Entry control,

that is, Source={x:Reference MyLabel}, and then link the Text property of Label to the

Text attribute of the Entry through Text="{Binding Text, ...}".

The Binding markup extension demonstrates two other concepts related to markup

extensions:

 1. Multiple properties: Markup extensions are essentially C# classes

with public members. Use a comma to assign values to multiple

members, e.g., {Binding Path="", Source=""}.

 2. Nesting: The values assigned to the properties of a markup extension

can be objects. Use nested curly braces to assign complex values to

a property, e.g., Source={x:Reference MyLabel}. The Reference

markup extension is nested inside the Binding markup extension.

At runtime, the innermost markup extension is evaluated first.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

54

Figure 2-3 shows the result on both platforms.

 CODE COMPLETE: Reference Markup Extension

Listing 2-7 provides the complete code for creating a Label that is referenced by an Entry

as the Source.

Figure 2-3. Binding Label as the Source to Entry and linking the two Text
properties

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

55

Listing 2-7. Using Reference

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage Title="Reference"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="XamlExamples.ReferencePage">

 <ContentPage.Content>

 <StackLayout Padding="30,30">

 <Label x:Name="MyLabel" Text="Hello Entry" />

 <Entry Text="{Binding Path=Text, Source={x:Reference

MyLabel}}" />

 </StackLayout>

 </ContentPage.Content>

 </ContentPage>

Tip if the default value of a property is not null, use the Xaml Null
markup extension to set the value of a property to null, e.g., <Label
Text="{x:Null}"/>.

 Constructors
Each Xamarin.Forms XAML element provides a built-in default constructor to allow

the runtime to instantiate an object without depending on any particular property.

Values specified to attributes are assigned to the object properties after the object is

instantiated. Some classes also have constructors that expect arguments or even factory

methods, which are public static methods that may accept arguments and return an

object. Let’s discuss each of these approaches.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

56

 Default Constructor

All views in Xamarin.Forms have a built-in default constructor. The empty element

tag can be used without any attributes to create an instance of the class it represents.

Use the empty element DatePicker to instruct the runtime to create an instance of the

view to select a date, like this:

 <DatePicker/>

 Non-default Constructor

Some Xamarin.Forms classes have additional constructors that require passing in

arguments, referred to as non-default constructors. The Color class in Xamarin.Forms

has several non-default constructors. Use the Arguments element to pass arguments to

a constructor. The number of arguments must match one of the Color constructors.

A single Double argument is used for grayscale colors; three Double parameters are used

to construct a Color from red, green, and blue values; and four Double values are used to

create a Color also passing in the alpha channel, as shown in Listing 2-8, to set the Color

for a BoxView.

Listing 2-8. Utilizing Constructors and Passing in Parameters Using x:Arguments

 <BoxView>

 <BoxView.Color>

 <Color>

 <x:Arguments>

 <x:Double>0.25</x:Double>

 <x:Double>0.75</x:Double>

 <x:Double>0.2</x:Double>

 <x:Double>0.9</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

57

 Factory Method

Some Xamarin.Forms classes provide publicly accessible static methods, also known

as factory methods, to construct an object. XAML provides the FactoryMethod attribute

to specify the factory method an element should use in order to construct an object.

The Color class has several factory methods, that is, FromRgb, FromRgba, FromHsla, and

FromHex, to create a Color instance. Use FactoryMethod attribute inside the Color

element begin tag to specify the factory method followed by the Arguments element to

provide the parameters, as shown in Listing 2-9.

Listing 2-9. Constructing Objects Using Factory Methods

 <BoxView>

 <BoxView.Color>

 <Color x:FactoryMethod="FromHex">

 <x:Arguments>

 <x:String>#02dd52</x:String>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

Figure 2-4 shows the result on both platforms.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

58

 CODE COMPLETE: XAML Constructors

Listing 2-10 provides the complete code for constructing objects using the default

constructors, non-default constructors, and factory methods.

Listing 2-10. Default and Non-default Constructors and Factory Methods in XAML

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

Figure 2-4. Constructing views using the default constructors, non-default
constructors, and factory methods

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

59

 x:Class="XamlExamples.ConstructorsPage">

 <ContentPage.Content>

 <StackLayout Padding="30,30">

 <DatePicker />

 <BoxView>

 <BoxView.Color>

 <Color>

 <x:Arguments>

 <x:Double>0.5</x:Double>

 <x:Double>0.0</x:Double>

 <x:Double>0.0</x:Double>

 <x:Double>0.9</x:Double>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 <BoxView>

 <BoxView.Color>

 <Color x:FactoryMethod="FromHex">

 <x:Arguments>

 <x:String>#CDDC39</x:String>

 </x:Arguments>

 </Color>

 </BoxView.Color>

 </BoxView>

 </StackLayout>

 </ContentPage.Content>

 </ContentPage>

Let’s complete the XAML syntax topic with an overview of all XAML terms available

in Xamarin.Forms.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

60

 XAML Terms
Xamarin.Forms supports a subset of the terms defined in the 2009 XAML specification,

the majority of which we have discussed in this chapter. The purpose of this section is

to provide a summary as a reference. The terms can be grouped into basic types that

represent the respective C# type defined in the System namespace, keywords used to

identify and reference elements, and terms used to construct objects:

• Simple data types: The following XAML basic types are supported by

Xamarin.Forms. Use these terms to represent their corresponding

types defined in the System namespace.

• Null: Use the XAML Null markup extension to set the value of a

property to null.

• Array: Use Array to define arrays with objects of a specific Type.

• Type: Use Type to specify the data type of a value.

• Object: Represents System.Object and is useful if you want

to create an array that can expect any type, e.g.: <x:Array

Type="{x:Type x:Object}">...</x:Array>

• Boolean, Byte, Int16, Int32, Int64, Single, Double, Decimal,

Char, String, and TimeSpan: These are mapped to the

corresponding simple type in C#.

• DateTime: This type does not exist in the 2009 XAML specification

and was added by Xamarin.Forms. Use DateTime to specify a date

and time of day.

• Classes, Identifiers, and References: Use terms in this category to

identify classes, name elements and reference them:

• Class: Use Class in the root element of a XAML document to

wire the element with its underlying C# class.

• Key: Use Key register and uniquely identify a resource in a

dictionary.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

61

• Name: Use Name to assign a unique name to an element and have

Xamarin.Forms create a local variable with this name created for

you in the code behind.

• Reference: Use Reference in XAML to reference a previously

named element.

• Static: Use Static to access static properties, fields, constants,

or enumeration values.

• Constructing objects: Use the following terms to instantiate objects.

• Arguments: Use this term to pass arguments to a non-default

constructor or a factory method.

• TypeArguments: Use TypeArguments to instantiate classes that

use generics such as List<T> or Dictionary<T,T>. Using the

System namespace, you can define your own dictionary in XAML

<sys:Dictionary x:TypeArguments="sys:String,sys:Object">

 that instantiates a Dictionary object at runtime with string as

the key type and object as the value type.

• FactoryMethod: Use FactoryMethod for elements that have a

static method defined in the C# class and return an instance of

the element.

Now that we’ve covered the important aspects of XAML syntax, let’s move on to

Xamarin.Forms syntax.

 Xamarin.Forms Syntax
Xamarin.Forms syntax uses the element and attribute syntax introduced in XML to

extend the functionality available in XAML. Six approaches are made available:

• Property element syntax: Use the property element syntax if the

value that is being assigned is a complex object and cannot be

represented by a string literal. Property elements can also specify

platform- specific values using the OnPlatform tag.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

62

• Content property syntax: Classes can have one of their members

defined as a content property, which serves as a default property for

the view. For brevity, this property name can then be omitted in the

XAML, and the property value can be declared between the element’s

begin and end tag.

• Enumeration value syntax: Use this syntax to pass or assign a

constant name of an enumeration to a property.

• Event handler syntax: Use the event handler syntax to wire a property

that represents an event to the event handler defined in the code behind.

• Collection syntax: Some properties represent collections. Use the

collection syntax to assign elements as children of the collections.

• Attached property syntax: Extend the functionality of elements using

attached properties to define new properties for an element that

elements have not defined themselves.

Let’s examine each approach.

 Property Element Syntax
A common approach to assign values to object properties is to use XML element tags

instead of an attribute using the class.member notation for the element name. This is

referred to as property element syntax. Use Label.Text to assign to the Text attribute of

the Label element, e.g.:

 <Label>

 <Label.Text>Hello</Label.Text>

 </Label>

 Content Property Syntax
In Xamarin.Forms, each element can have a default property where its value is assigned

between the element’s begin and end tags. Views can declare one of their properties as a

content property using the C# attribute ContentProperty, e.g.:

 [ContentProperty("Text")]

 public class Label : View {}

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

63

ContentProperty indicates that the property can be omitted when using the

property element syntax, which is referred to as content property syntax. In the following

example, <Label.Text> can be omitted entirely, that is:

 <Label>Hello</Label>

The content property syntax reduces the verbosity of the XAML document. Most

of the Xamarin.Forms views, layouts, and pages specify a content property, such as the

Content property of ContentPage. This means that the start and end tags <ContentPage.

Content> and </ContentPage.Content> can also be omitted entirely in Listing 2-10.

 Enumeration Value Syntax
Many classes in Xamarin.Forms use enumerations to restrict the values a member can

be assigned to. The enumeration value syntax is based on the attribute syntax where

the string literal assigned represents the constant name in an enumeration. Use the

NamedSize enumeration to assign a platform-specific size to the FontSize attribute of

Button, e.g.:

 <Button FontSize="Medium" Text="Medium Size Button" />

In the example, Medium is assigned as the size to the FontSize property. Xamarin.

Forms uses the built-in value converter class FontSizeConverter to evaluate the

string literal, first trying to convert it to a Double and if that fails calling the Device.

GetNamedSize method to convert the constant name Medium to the device-specific

double value.

Some attributes allow a combination of enumeration values. These are referred to

as flags attributes, which indicates that the enumeration is treated as a bit field. Use a

comma to assign multiple flags to the FontAttributes property of Button, that is:

 <Button FontAttributes="Italic,Bold" Text="Italic Bold Button" />

 Event Handler Syntax
The event handler syntax is based on the attribute syntax and provides the foundation of

XAML behaviors, commands, and triggers. Write an event handler in the code behind

and wire them to Xamarin.Forms views to respond to user interactions. Specify the name

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

64

of the event supported by a particular Xamarin.Forms view as attribute name and the

name of the C# event handler as the attribute value, e.g.:

 <Button Text="Make It So" Clicked="ButtonClicked" />

In Listing 1-7 Clicked="ButtonClicked" registers the event handler ButtonClicked

with the event Clicked defined in the Button class. The runtime takes care of registering

the handler to the event, and the garbage collection removes the handler when the

Button view is destroyed. In the code behind, define the event handler to change the Text

of the Button to "It is so!" once the user clicks the Button, as shown in Listing 2-11.

Listing 2-11. Code Behind Event Handler

 protected void ButtonClicked(object sender, EventArgs e) {

 ((Button)sender).Text = "It is so!";

 }

It is recommended to declare an event handler as protected or even private. The

sender argument of type object refers to the Button view in the XAML that is wired to

this event handler. You can cast it to Button object, e.g., (Button)sender or sender as

Button. The second argument represents the event object.

Call an asynchronous event using the async/await syntax, as demonstrated in

Listing 2-12.

Listing 2-12. Asynchronous Event Handler Using async/await

 private async Task<bool> ButtonClicked(object sender, EventArgs e) {

 var b = sender as Button;

 b.Text = "It is so!";

 return await Task.FromResult(true);

 }

The asynchronous method ButtonClicked returns true after the Task.FromResult

method completes.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

65

 Collection Syntax
Xamarin.Forms Layout subclasses such as StackLayout or Grid act as containers

and have a Children property that is declared as content property and is omitted in

XAML. The collection syntax uses the content element syntax to add a Label, Button, and

Grid to StackLayout, as shown in Listing 2-13.

Listing 2-13. Using Collection Syntax to Add Child Elements to a Container

 <StackLayout Padding="30,30">

 <Label/>

 <Button/>

 <Grid/>

 </StackLayout>

The Children collection is read-only. Xamarin.Forms uses the Add method

internally for each object that is instantiated at runtime to add the object to the Children

collection.

 Attached Property Syntax
Some classes in Xamarin.Forms need to assign values to an element without the element

even having that property. This is achieved using the attached property syntax, which

is based on the property element syntax. The Layout Grid requires its Children to be

positioned in rows and columns. Create Grid.Row and Grid.Column as new attributes of

Label to place the view inside a cell, e.g.:

 <Grid>

 <Label Grid.Row="1" Grid.Column="1" Text="Cell (1,1)" />

 </Grid>

This positions the Label in the first row and column of the Grid. Attached properties

can be simple or complex objects that encapsulate business logic.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

66

Figure 2-5 shows the result on both platforms.

 CODE COMPLETE: Setting Property Values

Listing 2-14 demonstrates the different approaches to assign values to properties.

Listing 2-14. Setting Property Values in XAML

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

Figure 2-5. Approaches for setting property values in Xamarin.Forms

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

67

 x:Class="XamlExamples.PropertyValuesPage">

 <ContentPage.Content>

 <StackLayout Padding="30,30">

 <Label>

 <Label.Text>Property Element</Label.Text>

 </Label>

 <Label>Content Property</Label>

 <Button FontSize="Medium" Text="Medium Size Button" />

 <Button FontAttributes="Italic,Bold" Text="Italic Bold

Button" />

 <Button Text="Make It So" Clicked="ButtonClicked" />

 <Grid>

 <Label Grid.Row="1" Grid.Column="1" Text="Cell (1,1)" />

 </Grid>

 </StackLayout>

 </ContentPage.Content>

 </ContentPage>

This completes the overview of the XAML syntax. Let’s move on to the anatomy of

XAML documents itself.

 Anatomy of XAML Files
A XAML document is comprised of three files: the platform-independent XAML, the

associated code behind file, and the generated file, which is used internally, as shown in

Figure 2-6.

XAML
File

Code
Behind
C#

Generated
File
C#

Figure 2-6. XAML, code behind, and generated files

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

68

The main file you interact with is the XAML file (.xaml). It contains the user

interface definition.

The associated C# file (.xaml.cs) that has the corresponding business logic is called

a code behind, functioning very much like its equivalent in web and desktop application

development. The code behind contains a partial class definition with the same name

specified in the x:Class attribute of the root element in the XAML. When starting an

application, the platform-specific iOS or Droid project executes the LoadApplication

method passing in an instance of the App class, which instantiates the XAML page using

its default constructor. The constructor calls the InitializeComponent method to load

the XAML into the application.

The XAML parser generates for each platform a generated file (.xaml.g.cs), which

contains the constructors, classes, and properties to implement the XAML. It contains

another partial class, now with the implementation of the InitializeComponent

method. This method calls the LoadFromXaml method at runtime to load the actual user

interface as an object graph when you run the application. The XAML parser uses, unless

specified differently, the default constructor of the elements in the XAML to instantiate

the objects and then set the values of the object properties if provided in the XAML.

The names of the event handlers specified in XAML must be instance methods that

exist in the code behind. They cannot be static. Event handlers need to be used wisely,

ideally only to enhance the controls they are serving and not to access services and

business layer. Instead consider using other techniques such as behaviors, commands,

and triggers (see Chapter 5) or data binding (see Chapter 9) for more reusable code.

The XAML parser generates for each named element in the XAML using the x:Name

directive a local variable with the same name inside the generated file that can be

accessed only from within the code behind. The local variable in the generated file is

instantiated using the FindByName method. Local variables can be accessed only after the

method InitializeComponent was called in the code behind.

That’s XAML syntax. Next we’ll look at the benefits and uses of XAML compilation.

 XAML Compilation
XAML can be compiled in Visual Studio using the Xamarin compiler (XAMLC), which

provides a performance improvement, compile-time error checking, and a smaller

executable since the XAML files aren’t needed at runtime. For backward compatibility,

this feature is turned off by default. When XAML is set not to compile, then it is

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

69

interpreted upon execution and the execution takes longer, and runtime errors that

could have been picked up at compile time will increase. Turn on compilation at both

the assembly and the class level by adding the XamlCompilation attribute. Here is the

usage at the assembly level:

 [assembly: XamlCompilation (XamlCompilationOptions.Compile)]

 namespace PhotoApp

 {

 ...

 }

The class level implementation is almost identical.

 [XamlCompilation (XamlCompilationOptions.Compile)]

 public class MyPage : ContentPage

 {

 ...

 }

Before moving on to Xamarin.Forms, here is an overview of how Xamarin.Forms

XAML relates to other XAML dialects.

 XAML Standard
Microsoft has initiated a process of aligning XAML dialects across multiple products

such as Xamarin.Forms and non-Xamarin.Forms XAML like WPF. This could possibly

result in name changes of Xamarin.Forms core classes, controls, layouts, and property

enumerations. So far they’ve provided a mapping from XAML Standard elements to

Xamarin.Forms equivalent in the form of aliases.

Developers can preview this by adding the Xamarin.Forms.Alias NuGet package to

the Forms and platform projects and adding the namespace Xamarin.Forms.Alias to

the XAML page, e.g.:

 xmlns:a="clr-namespace:Xamarin.Forms.Alias;assembly=Xamarin.Forms.Alias"

Instead of <Label Text="Xamarin.Forms"/>, use the alias <a:TextBlock Text="WPF"/>.

Tables 2-1 and 2-2 list the aliases for Xamarin.Forms controls, properties, and

enumerations available as a preview.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

70

Table 2-1. Xamarin.Forms Controls and Equivalent XAML Standard

Xamarin.Forms Control XAML Standard Alias

Frame Border

Picker ComboBox

ActivityIndicator ProgressRing

StackLayout StackPanel

Label TextBlock

Entry TextBox

Switch ToggleSwitch

ContentView UserControl

Table 2-2. Xamarin.Forms Properties, Enumeration, and Equivalent XAML Standard

Xamarin.Forms Control Xamarin.Forms Property or Enum XAML Standard

Button, Entry, Label,

DatePicker, Editor,

SearchBar, TimePicker

TextColor Foreground

VisualElement BackgroundColor Background*

Picker, Button BorderColor, OutlineColor BorderBrush

Button BorderWidth BorderThickness

ProgressBar Progress Value

Button, Entry, Label,

Editor, SearchBar,

Span, Font

FontAttributes

Bold, Italic, None

FontStyle

Italic, Normal

FontWeights*

Bold, Normal

InputView Keyboard

Default, Url,

Number, Telephone,

Text, Chat, Email

InputScopeNameValue

Default, Url, Number,

TelephoneNumber,

Text, Chat,

EmailNameOrAddress

StackPanel StackOrientation Orientation*

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

71

Items marked with * are currently incomplete.

The future of XAML Standard is unclear. Such standardization is, as ever, desirable

but problematic. Someday we may see an exodus to the XAML Standard syntax, but in

the meantime use the XAML format provided in Xamarin.Forms and be aware of the

Xamarin.Forms.Alias NuGet package.

That’s XAML syntax in relation to the larger XAML universe and XAML Standard.

 Summary
Xamarin.Forms XAML is based on XML and 2009 XAML syntax and is used to define

cross-platform user interfaces. Pages, layouts, and controls provided by the Xamarin.

Forms class library and the intrinsic 2009 XAML terms are made available to the XAML

document through the xmlns namespace directive.

In this chapter, we have discussed how to declare elements, assign values to

properties, use markup extensions to reference static members, create arrays, reference

other elements inside the XAML, and use non-default constructors and factory methods

to instantiate classes. We covered approaches Xamarin.Forms provides to assign values

that can be simple data types, enumeration values, collections, event handlers, and even

values to properties not defined in the element itself.

Using XAML offers an alternative to the C# approach of writing platform-specific iOS

and Android user interfaces. This layer of abstraction allows creating truly cross-platform

applications. The XAML files are stored inside the platform-independent .NET Standard

project. You can increase the reusability and maintainability of the mobile application

by following design patterns, such as MVVM, instead of allowing the code behind file to

define your pattern for you.

Let’s now move on to the Xamarin.Forms XAML vocabulary to build rich

user interfaces.

Chapter 2 Building Xamarin.Forms apps using Xaml

www.EBooksWorld.ir

73
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4_3

CHAPTER 3

UI Design Using Layouts
A layout is a container for controls, images, text, and other layouts. Central to the

creation of mobile UIs, layouts help us to design our pages by facilitating the placement

of views and nested layouts (for more views). If you’ve worked with HTML <div>,

<table>, or <form> elements, then layouts should feel familiar to you. The purpose of a

layout is to indicate the location and size of each of its child elements. This is typically

done in three ways: relative to the individual controls in the layout, relative to the

origin of the layout, or using an overlaid structure such as a grid. Each layout type has

a mechanism for placing child views within it, specifying the size and location of each

view, and creating space between and around the views.

In this chapter, you will build small projects to work with each of the layout types and

their features. First you’ll learn about the various types of layouts and explore custom

controls. Here is an overview of these types.

 Xamarin.Forms Layouts
Xamarin.Forms layouts inherit from the View class and can contain views or other

layouts. Xamarin.Forms layouts include the following:

• StackLayout: Stacks child views vertically or horizontally

• FlexLayout: Wraps or stacks child views with justification, alignment,

proportional growth, and ordering

• Grid: Creates a table-like container with rows and columns to

hold views

• RelativeLayout: Uses constraints that create relationships between

the elements to define the location and size of child views

www.EBooksWorld.ir

74

• AbsoluteLayout: Sets the child view’s location and size by using

bounding rectangles or proportions to the overall layout

• Frame: Draws a frame-like border around the container

 Using Xamarin.Forms Layouts
Layouts in Xamarin.Forms are containers that hold and format views. Each layout

has its own set of constraints and behaviors to suit a range of design needs. You can

format simple pages with a few controls quickly and easily by using StackLayout.

Try FlexLayout when you need a fluid layout with control over wrapping, order, and

the expansion and alignment of views. RelativeLayout is useful when you know the

coordinate relationships between controls. Use AbsoluteLayout when you know only in

which quadrants and areas of the page your controls should appear, and when you need

layering. Grid provides a table-like container. ContentView is a base class for building

custom layout views, such as custom controls, which can contain multiple layouts

and other views, useful as a reusable component. A Frame layout provides a visible,

rectangular frame around its contents.

The simplest Xamarin.Forms layout is the StackLayout.

 StackLayout
Views in a StackLayout are stacked vertically unless horizontal placement is specified.

StackLayout is a quick, loose layout useful for prototyping and simple screens. You add

views as children to the parent view and arrange them by using HorizontalOptions and

VerticalOptions, which can also be used to expand views and provide spacing between

views. Useful for all Xamarin.Forms layouts, the Padding property creates space around

the edges of the entire layout.

Add a StackLayout tag pair to your ContentPage like this:

 <ContentPage>

 <ContentPage.Content>

 <StackLayout >

 <!-- Add Views Here -->

 </StackLayout>

 </ContentPage.Content>

 </ContentPage>

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

75

Tip all example code solutions can be found on apress.com (from the
source Code/Downloads tab, access the title of this book) or on github at
https://github.com/danhermes/xamarin-xaml-book-examples.

Listing 3-1 is a declaration of child views in the StackLayout with no spacing between

views. The default orientation is Vertical, meaning that views stack beneath one

another. The Spacing property creates padding of the specified size between each view.

Listing 3-1. StackLayoutHorizontal.xaml in LayoutExample.Xaml Project

 <StackLayout Spacing="0">

 <Label Text="Start is flush left" HorizontalOptions="Start" />

 <Label Text="Center" HorizontalOptions="Center" />

 <Label Text="End is flush right" HorizontalOptions="End" />

 </StackLayout>

In Figure 3-1, note the HorizontalOptions placement for LayoutOptions.Start,

Center, and End.

Figure 3-1. StackLayout HorizontalOptions

 Padding Around the Entire Layout
Much like page padding, the ContentPage's Padding property creates space around the

entire layout:

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="LayoutExample.Xaml.Views.StackLayoutHorizontal"

 Padding="10,10,10,5">

Here are the Padding parameter names:

 Padding="left, top, right, bottom"

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

https://github.com/danhermes/xamarin-xaml-book-examples

76

The following example places padding to the left, right, and bottom, but not on top:

 Padding="10,0,10,5"

This places equal space on all four sides:

 Padding="10"

Pad left/right sides or top/bottom with equal spacing (“horizontal, vertical”):

 Padding="10,5"

 Stacking with Vertical Orientation
Vertical stacking, the default orientation, places each view beneath the previous one.

The VerticalOptions declaration using FillAndExpand pads the end of the layout with

space, pushing other views to the bottom of the page. Also, there are four horizontal

positions: Start, Center, End, and Fill. These are fields of the LayoutOptions class.

Let's make the default vertical orientation explicit, so you can see it, and add a few

views to the first example (Listing 3-2).

Listing 3-2. StackLayoutVertical.xaml

 <StackLayout Spacing="0" Orientation="Vertical" VerticalOptions="

FillAndExpand">

 <Label Text="Start is flush left" HorizontalOptions="Start" />

 <Label Text="Start 2" HorizontalOptions="Start" />

 <Label Text="Center" HorizontalOptions="Center" />

 <Label Text="Center 2" HorizontalOptions="Center" />

 <Label Text="End 1" HorizontalOptions="End" />

 <Label Text="End is flush right" HorizontalOptions="End" />

 </StackLayout>

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

77

Figure 3-2 shows how each view is placed lower than its sibling with vertical

orientation and how each view is justified horizontally using HorizontalOptions.

There’s a fourth horizontal position: Fill. This causes the view to consume the

available area left to right, start to end:

 HorizontalOptions = "Fill"

Later in this section we’ll cover the Expand layout options (such as FillAndExpand),

which cause views to expand and pad the available area around the view with space.

Tip Make sure you have enough space in your layout or these alignments won’t
be visible.

If you have more than three views to be positioned horizontally, the horizontal

orientation is preferable.

 Stacking with Horizontal Orientation
Views can be stacked horizontally by setting the Orientation property to Horizontal,

as shown in Listing 3-3. All views are on the same horizontal axis.

Listing 3-3. StackLayoutHorizontal.xaml Continued

 <StackLayout Spacing="0" Orientation="Horizontal">

 <Label Text="Start------" />

 <Label Text="------Center------" HorizontalOptions="CenterAndExpand" />

 <Label Text="------End" />

 </StackLayout>

Because the orientation is horizontal, the first and last view didn’t require a

HorizontalOptions param.

Figure 3-2. Top-to-bottom stacking with vertical orientation

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

78

Figure 3-3 shows how each view is placed to the right of its sibling.

Horizontal padding from the expanded LayoutOptions separates views. Setting the

center view’s HorizontalOptions to CenterAndExpand, the full parameter being

LayoutOptions.CenterAndExpand, provides space to the left and right of a centered view.

You can order views horizontally by setting Orientation to Horizontal, though

exact placement is impossible. Views are stacked left to right in the order added to the

layout, with cues from HorizontalOptions.

Figure 3-4 shows what the StackLayout looks like if we were to add a few more views

to the right of the previous views.

Listing 3-4 is the code with those extra views. In the online code examples, I’m

moving back and forth between StackLayoutHorizontal.xaml, which contains the

simpler examples, and StackLayoutVertical.xaml, which adds extra views.

Listing 3-4. StackLayoutVertical.xaml with Views Using HorizontalOptions

 <StackLayout Spacing="0" Orientation="Horizontal">

 <Label Text="Start 1 ---" />

 <Label Text="Start 2 ---" />

 <Label Text="---Center 1 ---" HorizontalOptions="CenterAndExpand" />

 <Label Text="---Center 2 ---" HorizontalOptions="CenterAndExpand" />

 <Label Text="---End 1 " />

 <Label Text="---End 2 " />

 </StackLayout>

If you want to combine your child layouts into a parent layout, consider nesting

layouts.

Figure 3-3. Left-to-right stacking with horizontal orientation

Figure 3-4. Six views stacked left to right

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

79

 Nesting Layouts
Layouts can contain other layouts within the Children property.

A complex page with multiple rows of horizontally oriented views is accomplished

with nested StackLayouts:

 <StackLayout>

 <StackLayout>

 <!-- Your Views -->

 </StackLayout>

 <StackLayout>

 <!—More of Your Views -->

 </StackLayout>

 </StackLayout>

Tip If more than one nested StackLayout is used, other layouts should be
considered, such as FlexLayout or Grid, which lend themselves better to
complexity.

Controlling the size of views in a layout and the spacing between them is important

to formatting.

 Expanding and Padding Views by Using LayoutOptions
Use the Expand layout option to cause views to expand or to pad the available area with

space. FillAndExpand causes views to grow without creating padding space around

them. All other expand options pad around the view with space.

Tip these features are easier to see if you set a background color for the view by
using the BackgroundColor property.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

80

The following are HorizontalOptions left-to-right formatting options:

• FillAndExpand expands the view to the right:

HorizontalOptions = "FillAndExpand"

• StartAndExpand pads to the right with space:

HorizontalOptions = "StartAndExpand"

• EndAndExpand pads to the left with space:

HorizontalOptions = "EndAndExpand"

• CenterAndExpand pads to the left and right with space:

HorizontalOptions = "CenterAndExpand"

The following top-to-bottom formatting options are available for VerticalOptions:

• FillAndExpand expands the view to the bottom:

VerticalOptions = "FillAndExpand"

• StartAndExpand pads to the bottom with space:

VerticalOptions = "StartAndExpand"

• EndAndExpand pads to the top with space:

VerticalOptions = "EndAndExpand"

• CenterAndExpand pads to the top and bottom with space:

VerticalOptions = "CenterAndExpand"

Note Expand layout options are only useful only if there are sibling views in
the layout.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

81

 CODE COMPLETE: StackLayout
Listing 3-5 shows our full StackLayout example with a vertical and horizontal layout, the

use of HorizontalOptions, and the Expand layout option, as shown in Figure 3-5.

Listing 3-5. StackLayoutHorizontal.xaml Code Complete

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage xmlns="http://xamarin.com/schemas/2014/ forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="LayoutExample.Xaml.Views.StackLayoutHorizontal"

Padding="10,10,10,5">

 <StackLayout>

 <StackLayout Spacing="0" Orientation="Vertical" VerticalOptions=

"FillAndExpand">

 <Label Text="Start is flush left" HorizontalOptions="Start" />

 <Label Text="Center" HorizontalOptions="Center" />

 <Label Text="End is flush right" HorizontalOptions="End" />

 </StackLayout>

 <StackLayout Spacing="0" Orientation="Horizontal">

 <Label Text="Start------" />

 <Label Text="------Center------" HorizontalOptions=

"CenterAndExpand" />

 <Label Text="------End" />

 </StackLayout>

 </StackLayout>

 </ContentPage>

Now that we’re oriented, let’s move on to a more powerful and versatile layout:

FlexLayout.

Figure 3-5. Two StackLayouts: one vertical and one horizontal

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

82

 FlexLayout
One of the latest additions to Xamarin’s layout toolbox, FlexLayout is the swiss army

knife of layouts. Derived from the CSS Flexible Box Layout Module, the FlexLayout

promises the ease of the StackLayout, the precision of a Grid layout, and the

responsiveness of a RelativeLayout. Its CSS inspiration helps your controls to elegantly

utilize the entire screen of a device.

Add a FlexLayout to your ContentPage like this:

 <ContentPage>

 <ContentPage.Content>

 <FlexLayout Direction="Column"

 AlignItems="Center"

 JustifyContent="SpaceEvenly">

 <!-- Add Views Here -->

 </FlexLayout>

 </ContentPage>

Positioning views in a FlexLayout begins with the axis.

 Position Views Using Axes
There are two axes that help define the behavior of views on a FlexLayout: the main axis

and the cross axis. You set the main axis using the Direction property, horizontally (Row)

by default unless horizontal placement is specified (Column). Once your main axis is set,

you can position your views using JustifyContent and AlignItems:

• JustifyContent uses the main axis to set where views should begin,

like Start, Center, and End, or simply provide spacing between views.

• AlignItems uses the cross axis to line up the tops, bottoms, or all

sides of your views.

Create a new XAML page and name it FlexLayoutExample. Add a FlexLayout

with Direction set to Column, or vertical. Set AlignItems to Center so views will be

centered left to right, and for JustifyContent use SpaceEvenly, which works much like

FillAndExpand to distribute your views along the main axis (vertical right now) with

equal size and spacing. Add a few buttons, as in Listing 3-6.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

83

Listing 3-6. Basic FlexLayout in FlexLayoutExample.xaml

 <FlexLayout Direction="Column"

 AlignItems="Center"

 JustifyContent="SpaceEvenly">

 <Button Text="First" />

 < Button Text="Second" />

 < Button Text="Third" />

 </FlexLayout>

Run and you should see our good ol’ First, Second, and Third top to bottom

(Figure 3-6).

Figure 3-6. FlexLayout with Direction set to Column

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

84

Horizontal view flow is achieved by changing Direction to Row:

 <FlexLayout Direction="Row"

 AlignItems="Center"

 JustifyContent="SpaceEvenly">

Left to right views along the main axis are shown in Figure 3-7.

Push your views to the beginning of the row by setting JustifyContent to Start:

 <FlexLayout Direction="Row"

 AlignItems="Center"

 JustifyContent="Start">

Figure 3-7. FlexLayout with Direction set to Row

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

85

With Direction set to Row, the JustifyContent setting of Start slides all your views

to the left, as shown in Figure 3-8.

Slide them to the left with JustifyContent set to End, or center them with Center.

Since AlignItems works with the cross axis, which is currently vertical, you can set it

to Start to top-align your views within the space allotted to them (Figure 3-9):

 <FlexLayout Direction="Row"

 AlignItems="Start"

 JustifyContent="Start">

Figure 3-8. FlexLayout with JustifyContent set to Start

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

86

Tip override AlignItems for a single View using FlexLayout.AlignSelf.

 FlexLayout Patterns
FlexLayout is flexible. Here are some ways you might use it:

• Stack: Make a basic stack, vertical or horizontal, like a StackLayout.

In Listing 3-6 we set Direction to Column and stacked some controls

vertically. Setting Direction to Row stacks controls horizontally.

• Wrap: Format many items such as images by wrapping them when

they reach the edge of the screen. Use the FlexLayout's Wrap

property, setting it to Wrap (NoWrap is the default). Put the FlexLayout

in a ScrollView so the user may scroll through the wrapped items.

Figure 3-9. FlexLayout with AlignItems set to Start

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

87

• Catalog: Create static data-packed panels to scroll through and

select. Place a FlexLayout in a ScrollView and fill it with Frames (see

later in this chapter) containing details and possibly an image. This

static list of Frames will scroll in whatever Direction you set but is

not bindable like a ListView.

• Page: Nest two FlexLayouts to create a page with a header, footer,

content, and side margins. Expand the content section vertically

using the FlexLayout.Grow property (set it to 1) on your content

view, which works like the star specification in a Grid layout. Within

your side margin views, set the FlexLayout.Basis to the desired pixel

width (e.g., 20). Note that Grow and Basis are set on views, not on

FlexLayout (e.g., <Label Text="Content" FlexLayout.Grow="1" />).

Tip order or reorder your FlexLayout views using the Order property.
add FlexLayout.Order to views, assigning them an integer (e.g., <Button
Text="First" FlexLayout.Order="1" />).

 Grid
Grid is a table-like container of views. It is organized into rows and columns, each with a

height and width, placed at specific row/column coordinates called cells. GridUnitType

provides options for sizing rows and columns, while the grid.Children.Add method

allows both single-cell and multicell views. ColumnSpacing and RowSpacing provide

padding between cells.

Tip TableView is another cell-based view but is not technically a layout. It
is useful for building simple groups of items such as settings dialog boxes and
grouped menus. Chapter 7 has a TableView example.

Create a Grid object and define a single row and column, as shown in Listing 3-7.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

88

Listing 3-7. Starting GridExample1.xaml

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 </Grid>

Specify Height in each RowDefinition, and Width in each ColumnDefinition. Auto

autosizes cells for either Height or Width.

Tip the default GridLength setting for Height and Width, Star, expands the
dimension of a row or column as much as possible.

Add a view at column and row 0, the only cell in our table:

 <Label Text="I'm at 0,0" FontSize="30" FontAttributes="Bold" />

Now let’s crank this table up to four rows by three columns:

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 </Grid>

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

89

Then add three more views at (1,1), (2,2), and (0,3). Add a little label formatting to

make things more exciting:

 <Label Text="I'm at 0,0" FontSize="30" FontAttributes="Bold" />

 <Label Text="Me? 1,1" FontSize="30" FontAttributes="Bold"

TextColor="Black" BackgroundColor="Lime" Grid.Row="1" Grid.Column="1" />

 <Label Text="2,2 here" FontSize="30" FontAttributes="Bold"

TextColor="White" BackgroundColor="Red" Grid.Row="2" Grid.Column="2" />

 <Label Text="I'm at 0,3" FontSize="30" FontAttributes="Bold" Grid.

Row="3" Grid.Column="0" />

Figure 3-10 shows our Grid with four labels, completing the code in GridExample1.cs.

Auto took care of column widths and row heights for us, expanding to accommodate

view content.

Tip empty cells can impact your grid. a row set to Height ="Auto" that
contains no views will have a height of zero. a column set to Width = "Auto"
that contains no views will have zero width.

here’s a row and column definition shortcut. RowDefinition and
ColumnDefinition set Height and Width to Star by default, so <RowDefinition
Height="*" /> can be accomplished by <RowDefinition />.

<RowDefinition Width="*" /> can be accomplished by
<ColumnDefinition />.

We’ll discuss the “*” in the next section, sizing rows and Columns.

Figure 3-10. Grid containing four views

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

90

To follow along with the online examples, save your current example, GridExample1.

cs, and then create a XAML page class called GridExample2. Copy your entire Grid from

GridExample1.xaml into GridExample2.xaml (taking care not to copy the first line of

the ContentPage declaration) and continue working with GridExample2. Remember

to update your application class (such as App.cs) with the new MainPage reference to

GridExample2.

 Sizing Rows and Columns
The size of rows and columns is determined by GridLength. You can autosize, expand,

or set specific heights and widths on rows or columns. GridLength is defined by its

GridUnitType, of which there are three:

• Auto sizes the dimension of a row or column to its content.

• Absolute indicates a numeric dimension of the row or column. Using

XAML the GridUnitType.Absolute is implied by the use of a numeric

value.

• Star (“*”) is the default setting, which expands the dimension of a

row or column into the space that remains after Absolutes and Autos

have been allocated.

Assign an Absolute GridLength object to Height in RowDefinitions:

 <RowDefinition Height="200" />

or a Star to Width in ColumnDefinition:

 <ColumnDefinition Width="1*" />

 Sizing to Fit Views
The Auto value of GridUnitType sizes the row or column to the size of the contained

views. Our Grid example is made up entirely of Auto sized rows:

 <RowDefinition Height="Auto" />

Now let’s add Absolute and Star.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

91

Tip small views used with Auto can make it seem like rows or columns are
missing. Star is used to expand the grid to its proper proportions. see “expanding
Views proportionally” later in this chapter.

 Setting Exact Size
The Absolute value of GridUnitType sets the exact height or width of a row or column.

Change the second RowDefinition Height to an absolute size of 200 units:

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="200" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

The second row is set to an absolute height of units, stretching it vertically, as shown

in Figure 3-11. This code is found in GridExample2.xaml.

Figure 3-11. Using GridUnitType.Absolute to set a tall row height at 1,1

Width assigned using GridUnitType.Absolute works in a manner similar to the

Height assignment:

 <ColumnDefinition Width="200" />

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

92

 Expanding Views to Fit Available Space
GridUnitType.Star, or "*", the default setting for both Height and Width, expands

a view within rows or columns to fill the remaining space. This is useful for filling the

screen horizontally with columns or vertically with rows to the edge of the screen,

especially when views are small. It behaves similarly to the FillAndExpand layout

option, inserting padding space into the specified row or column.

Expand vertically by setting the Height of a RowDefinition. Change the third

RowDefinition to use Star.

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="200" />

 <RowDefinition Height="1*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

Note What’s the "1" in the height assignment to "1*"? read on to the next
section on expanding views proportionally.

GridUnitType.Star expands to push the row beneath it all the way to the bottom

of the screen, as shown in Figure 3-12. Remember that in many of these examples, the

Padding property is being used to create space around the outside edges of the page (see

Listing 3-8). This completes the code in GridExample2.xaml.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

93

Expand horizontally by setting the width of ColumnDefinition. Width assigned using

GridUnitType.Star works in a manner similar to the Height assignment, expanding the

column to the right to consume the remaining space on right edge of the screen:

 <ColumnDefinition Width="1*" />

 Expanding Views Proportionally
You can control the proportions of cell sizes to one another in GridUnitType.Star cells

by using the first parameter in GridLength. This technique is particularly useful with

small views.

Figure 3-12. Filling available vertical space by using GridUnitType.Star in the
Height

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

94

In this first example, the first parameters in all rows add up to 3 (1 + 2), breaking

the row into three equal parts. This results in the first row expanding to one-third of the

space and the second row expanding to two-thirds of the space:

 <RowDefinition Height="1*" />

 <RowDefinition Height="2*" />

In this next example, the first parameters in all rows add up to 4 (1 + 3), breaking the

row into four equal parts. This results in the first row expanding to one-quarter of the

space and the second row expanding to three-quarters of the space:

 <RowDefinition Height="1*" />

 <RowDefinition Height="3*" />

The first parameter represents a share of the total space among the Star rows or

columns. If all of these parameters are specified as 1, the space will be evenly divided.

Tip Large grids can run off the visible screen. Consider using
GridLengthType.Star to expand only to the available screen width paired with
a vertical ScrollView. scrolling grids vertically is commonplace, but scrolling
horizontally is rare in mobile apps without a visible indicator of offscreen content
(page dots, arrows, etc.).

 Creating Multicell Views
Single views can be sized to span multiple cells in the grid by using the RowSpan

and ColumnSpan properties. These properties set the number of cells that a single view

can occupy.

 Spanning Columns

Expand a view from left to right across multiple columns by using the second and third

parameters of the Add method, indexLeftColumn and indexRightColumn, to specify the

columns to span.

To follow along with the online examples, save your current example, GridExample2,

and then create a new XAML page called GridExample3. Copy the XAML from

GridExample2.xaml into GridExample3.xaml and continue with GridExample3.xaml.

Remember to update App.cs with the new MainPage reference to GridExample3.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

95

Let’s expand our (1,1) view into the column to the right. Add a Star-typed Width to

the second column so it will expand horizontally:

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="1*" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

Start with the view at (1,1). Change this Label view to use RowSpan and ColumnSpan,

which you will set to occupy two columns:

 <Label Text="Me? 1,1" FontSize="30" FontAttributes="Bold"

TextColor="Black" BackgroundColor="Lime" Grid.Row="1" Grid.Column="1"

Grid.RowSpan="1" Grid.ColumnSpan="2" />

From left to right, this view spans the left side of column 1 to the left side of

column 3—a distance of two columns. (Yes, it’s a little strange that there is no visible

column 3, but the notation requires an endpoint, and that happens to be the beginning

of the column or row we are expanding to.) See the result in Figure 3-13.

Figure 3-13. The cell at 1,1 spans columns, and 2,2 spans rows

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

96

From top to bottom, this view spans from the top of row 1 to the top of row 2

(a distance of only one row).

 Spanning Rows

Expand a view from a cell down through multiple rows by specifying rows to span in the

Grid.RowSpan property on the view. Now change the view at (2,2) to occupy two rows:

 <Label Text="2,2 here" FontSize="30" FontAttributes="Bold"

TextColor="White" BackgroundColor="Red" Grid.Row="2" Grid.Column="2"

Grid.RowSpan="2" Grid.ColumnSpan="1" />

From left to right, this view spans the left side of column 2 to the left side of column 3.

From top to bottom, this view spans from the top of row 2 to the top of row 4 (a distance

of two rows) and yields what you see in Figure 3-13. (There’s no visible row 4; it’s just an

endpoint.) This completes the code in GridExample3.cs.

 Padding Between Cells
You can add space between cells by using RowSpacing and ColumnSpacing properties

of your Grid layout. RowSpacing provides padding between rows, while ColumnSpacing

provides space between columns. Here’s an example that provides 20 units of padding

for each:

 <Grid ColumnSpacing="20" RowSpacing="20">

Tip Cells can be used for good visual effect. For example, you can combine grid
cells containing an image overlaid with a semitransparent BoxView with labels
overtop.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

97

 CODE COMPLETE: Grid
Listing 3-8 is our Grid example shown previously in Figure 3-12 sporting four labels, two

of which span multiple rows or columns.

Listing 3-8. GridExample2.xaml Code Complete

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="LayoutExample.Xaml.Views.

GridExample2" Padding="10,10,10,5">

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="200" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <Label Text="I'm at 0,0" FontSize="30" FontAttributes="Bold" />

 <Label Text="Me? 1,1" FontSize="30" FontAttributes="Bold"

TextColor="Black" BackgroundColor="Lime" Grid.Row="1" Grid.

Column="1" />

 <Label Text="2,2 here" FontSize="30" FontAttributes="Bold"

TextColor="White" BackgroundColor="Red" Grid.Row="2" Grid.

Column="2" />

 <Label Text="I'm at 0,3" FontSize="30" FontAttributes="Bold" Grid.

Row="3" Grid.Column="0" />

 </Grid>

</ContentPage>

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

98

 RelativeLayout
RelativeLayout auto-scales its elements to different screen sizes. Made up of the parent

layout view and its child views, this layout is defined by the relationships between

views. Each child view is tied to its sibling views or to the parent layout view by using

constraints. A constraint can bind view locations and sizes: x/y coordinates and width/

height dimensions. RelativeLayout allows us to create an interconnected web of views

that stretch like rubber bands to fit the screen, providing built-in responsive design or

auto-layout.

Tip RelativeLayout is useful for apps that must present well on widely
varying resolutions, such as on phones and tablets.

Let’s start with a fresh XAML page, create a RelativeLayout instance, and place a

label at 0,0 in the upper-left corner of the layout, as shown in Listing 3-9.

Listing 3-9. Starting RelativeLayoutExample.xaml

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="LayoutExample.Xaml.Views.RelativeLayoutExample"

x:Name="Self" Padding="10,10,10,5">

 <RelativeLayout x:Name="LayoutContainer">

 <Label x:Name="UpperLeft" Text="Upper Left" FontSize="20"

 RelativeLayout.XConstraint="{ConstraintExpression

Type=Constant, Constant=0}"

 RelativeLayout.YConstraint="{ConstraintExpression

Type=Constant, Constant=0}"/>

 </RelativeLayout>

 </ContentPage>

The UpperLeft label is added with a location constraint to the parent layout; using

Constant = 0 for both x and y places the label in the upper-left corner, at the origin: 0,0.

Next we want to add more views in relation to the existing parent and child views.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

99

Tip RelativeLayout is not optimized for speed. Consider alternatives such as
Grid or FlexLayout, particularly when building ViewCells (see Chapter 6 on
the use of ViewCells in building lists). In these cases, try Grid instead.

 Setting View Location and Size
Each time we add a view to RelativeLayout, we ask: Do we want to set the location of

the view, the size of the view, or both?

Specify location with XConstraint and YConstraint:

 RelativeLayout.XConstraint="{ConstraintExpression Type=Constant,

Constant=10}"

 RelativeLayout.YConstraint="{ConstraintExpression Type=Constant,

Constant=25}"

Specify size with WidthConstraint and HeightConstraint:

 RelativeLayout.WidthConstraint="{ConstraintExpression Type=Constant,

Constant=50}"

 RelativeLayout.HeightConstraint="{ConstraintExpression Type=Constant,

Constant=200}"

All these x/y coordinates, widths, and heights ultimately become absolute values.

Data typing, however, restricts us to the use of Constraint classes. This encourages

calculations based on the values of sibling and parent views, keeping things relative.

 Using Constraints
Size and location are specified by using constraints. The Constraint object has three

enumerations:

• Constant, for absolute x/y assignments of location and/or size

• RelativeToParent, for relative x/y calculations of location and/or

size to the parent layout

• RelativeToView, for relative x/y calculations of location and/or size

between child(sibling) views

The following sections discuss each in more detail.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

100

 Absolute Location and Size

Constant is used for absolute location or size.

Here is a location example, which places the UpperLeft label at coordinates 0,0

within the layout:

 <Label x:Name="UpperLeft" Text="Upper Left" FontSize="20"

 RelativeLayout.XConstraint="{ConstraintExpression Type=Constant,

Constant=0}"

 RelativeLayout.YConstraint="{ConstraintExpression Type=Constant,

Constant=0}" />

This is a size example, creating a view at 100,100 with dimensions 50 units wide and

200 units high:

 <Label Text="Constants are Absolute" FontSize="20" RelativeLayout.

XConstraint="{ConstraintExpression Type=Constant, Constant=100}"

RelativeLayout.YConstraint="{ConstraintExpression Type=Constant,

Constant=100}" RelativeLayout.WidthConstraint="{ConstraintExpression

Type=Constant, Constant=50}" RelativeLayout.HeightConstraint=

"{ConstraintExpression Type=Constant, Constant=200}" />

Tip the numeric screen units used in many Xamarin.Forms views are relative
units of measure that do not represent pixels, and their results vary according to
screen size.

This new label is shown in Figure 3-14, with the text wrapping at 50 units wide.

Figure 3-14. Label with a Constant constraint

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

101

 RelativeToParent Constraint

The RelativeToParent constraint ties a view’s location/size to the parent

RelativeLayout. This is useful for placing and sizing views in relation to the entire page

or section.

Instantiate another child view, such as Label, and add that to the child collection by

using a RelativeToParent constraint. This example places the location of the new child

view halfway down the length and width of the parent layout by setting Factor to 0.5:

<Label Text="Halfway down and across" FontSize="15"

 RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToParent,

Property=Width, Factor=0.5}"

 RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToParent,

Property=Height, Factor=0.5}" />

These assignments of Type to RelativeToParent use the parent view,

RelativeLayout, to return an x coordinate equal to half the width of the parent layout

and a y coordinate equal to half of the height of the parent layout (see Figure 3-15).

Figure 3-15. RelativeToParent with a Height and Width calculation

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

102

Create a BoxView halfway down the page that is half the height and half the width of

the parent view by passing RelativeToParent calculations into the Add parameters:

 <BoxView Color="Accent" HorizontalOptions="Start" VerticalOptions="Start

AndExpand"

RelativeLayout.XConstraint="{ConstraintExpression Type=RelativeToParent,

Property=Width, Factor=0}"

RelativeLayout.YConstraint="{ConstraintExpression Type=RelativeToParent,

Property=Height, Factor=0.5}"

RelativeLayout.HeightConstraint="{ConstraintExpression

Type=RelativeToParent, Property=Height, Factor=0.5}"

RelativeLayout.WidthConstraint="{ConstraintExpression

Type=RelativeToParent, Property=Width, Factor=0.5}" />

The result looks like Figure 3-16.

Figure 3-16. A BoxView placed using RelativeToParent

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

103

Tip XaML constraints are versatile and easy to use, but C# constraints offer more
complex layout options.

 RelativeToView Constraint

RelativeToView constrains a view’s location/size to that of another view. This is

typically used to offset views by a few pixels using the Constant property. More complex

juxtapositions are often required, however, such as setting controls below or beside

another. Although some complex constraints can be achieved using XAML, it’s often

easier to use C#, and that is the case here. (Listing 3-10 can be executed using XAML’s

{x:Reference} markup extension.) Instantiate another child view, such as a Label, and

add that to the child collection by using a RelativeToView constraint. This example

places the location of the new child view beneath the sibling view, but we’re working in

the C# code behind.

Listing 3-10. RelativeToView Constraint in RelativeLayoutExample.cs

 Label below = new Label

 {

 Text = "Below Upper Left",

 FontSize = 15

 };

 LayoutContainer.Children.Add(below,

 Constraint.Constant(0),

 Constraint.RelativeToView(UpperLeft, (parent, sibling) =>

 {

 return sibling.Y + sibling.Height;

 })

);

Note the Constant property can be used to offset views by pixel counts
and can have a positive value, such as Constant = 20, or a negative one, like
Constant = -20.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

104

The BelowUpperLeft view is placed below the UpperLeft view, as shown in

Figure 3- 17 (for Android).

 CODE COMPLETE: RelativeLayout
Listing 3-11 is our full XAML example for RelativeLayout using Constraints: Constant,

RelativeToParent, and RelativeToView (see Figure 3-18).

Figure 3-17. Place one label below another by using RelativeToView

Figure 3-18. RelativeLayoutExample.cs using all the constraint types

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

105

Listing 3-11. RelativeLayoutExample.xaml Code Complete

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="LayoutExample.Xaml.Views.RelativeLayoutExample" x:Name="Self"

Padding="10,10,10,5">

 <RelativeLayout x:Name="LayoutContainer">

 <Label x:Name="UpperLeft" Text="Upper Left" FontSize="20"

 RelativeLayout.XConstraint="{ConstraintExpression Type=Constant,

Constant=0}"

RelativeLayout.YConstraint="{ConstraintExpression Type=Constant,

Constant=0}" />

 <Label Text="Constants are Absolute" FontSize="20"

 RelativeLayout.XConstraint="{ConstraintExpression Type=Constant,

Constant=100}"

 RelativeLayout.YConstraint="{ConstraintExpression

Type=Constant, Constant=100}"

 RelativeLayout.WidthConstraint="{ConstraintExpression

Type=Constant, Constant=50}"

 RelativeLayout.HeightConstraint="{ConstraintExpression

Type=Constant, Constant=200}" />

 <Label Text="Halfway down and across" FontSize="15"

 RelativeLayout.XConstraint="{ConstraintExpression

Type=RelativeToParent, Property=Width, Factor=0.5}"

 RelativeLayout.YConstraint="{ConstraintExpression

Type=RelativeToParent, Property=Height, Factor=0.5}" />

 <BoxView Color="Accent" HorizontalOptions="Start" Vertical

Options="StartAndExpand"

 RelativeLayout.XConstraint="{ConstraintExpression

Type=RelativeToParent, Property=Width, Factor=0}"

 RelativeLayout.YConstraint="{ConstraintExpression

Type=RelativeToParent, Property=Height, Factor=0.5}"

 RelativeLayout.HeightConstraint="{ConstraintExpression

Type=RelativeToParent, Property=Height, Factor=0.5}"

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

106

 RelativeLayout.WidthConstraint="{ConstraintExpression

Type=RelativeToParent, Property=Width, Factor=0.5}" />

 </RelativeLayout>

 </ContentPage>

Tip see the downloadable code example for the complete C# files.

 AbsoluteLayout
AbsoluteLayout is a collection of views placed at x/y coordinates ranging from 0 to 1

and bounded in size. View positions are not typically absolute, because we seldom use

device- dependent x or y coordinates. Positions are usually relative to 0 being at the

origin and 1 at the furthest point along a single axis. The layout is absolute in that views

will go exactly where you put them, even on top of other views, so this can be useful for

layering.

Using SetLayoutBounds, views in AbsoluteLayout are each bound to a bounding

object, which can be a point or a rectangle. Using SetLayoutFlags, bounding points can

determine location, while bounding rectangles can determine location and size.

Listing 3-12 provides an example of AbsoluteLayout.

Listing 3-12. Starting AbsoluteLayoutExample.xaml

 <AbsoluteLayout VerticalOptions="FillAndExpand">

 <!-- Add Views Here -->

 </AbsoluteLayout>

Now we’ll add some views. In order to assign a view to AbsoluteLayout, the control

is added to the AbsoluteLayout collection, and then LayoutFlags and LayoutBounds

are set to define the position and size of the view. LayoutBounds parameters are "x, y,

width, height":

 <AbsoluteLayout VerticalOptions="FillAndExpand">

 <Label Text="FirstLabel" AbsoluteLayout.LayoutBounds="0, 0, AutoSize,

AutoSize" AbsoluteLayout.LayoutFlags="PositionProportional" />

 </AbsoluteLayout>

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

107

Figure 3-19 shows the result (for Android).

Tip AutoSize adjusts the height or width to the content within the view.

Note HorizontalOptions, VerticalOptions, and Expand layout options
are overridden by absolute positioning.

 Creating Bounding Objects with SetLayoutBounds
Views in AbsoluteLayout can be placed at points or bounded by rectangles (invisible

ones). Points come in handy when only a location without a sized area is needed.

Rectangles and points are the bounding objects specified in LayoutBounds.

Let’s continue with another rectangle example. Create a second label, add it

to the layout, and then set layout flags and bounds to place it at the bottom-left corner of

the page:

 <Label Text="SecondLabel" AbsoluteLayout.LayoutBounds="0, 1, AutoSize,

AutoSize"

 AbsoluteLayout.LayoutFlags="PositionProportional" />

Figure 3-19. Add a label to AbsoluteLayout

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

108

Figure 3-20 shows the result.

 Setting Location and Size by Using Rectangles

Rectangles provide AbsoluteLayout with the location and size of a bounded area in

which to place a view. These are the LayoutBounds parameters of the Rectangle:

 AbsoluteLayout.LayoutBounds="locationX, locationY, Width, Height"

All parameters are doubles ranging from 0 to 1. Here are a few examples of how the

LayoutBounds parameters affect location:

• Located at the origin with maximum width and height: "0, 0, 1, 1"

• Horizontally centered in the space provided: ".5, 0, 1, 1"

• Vertically centered in the space provided: "0, .5, 1, 1"

• Horizontally and vertically centered in the space provided: ".5, .5, 1, 1"

Figure 3-20. SecondLabel placed at the bottom of the screen with y set to 1

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

109

The following are examples of parameters affecting size:

• Located at the origin with maximum width and height: "0, 0, 1, 1"

• Located at the origin at 20% width: "0, 0, .2, 1"

• Located at the origin at 20% height: "0, 0, 1, .2"

• Located at the origin at 20% width and height: "0, 0, .2, .2"

Tip the AbsoluteLayout examples in this chapter show relative units because
that is the generally recommended cross-platform approach. AbsoluteLayout
can also use device-specific units. Be certain you know what you’re doing, as
device-specific units can cause inconsistent results across different platforms
and devices. specify LayoutFlags to None and then use device-specific
units with float values greater than 1 such as <Label Text="DeviceLabel"
AbsoluteLayout.LayoutBounds="250f, 250f, 200f, 50f"
AbsoluteLayout.LayoutFlags="None" />.

 Setting Location by Using Points

Points can specify the location of a view when the size is not needed. Views can be added

to AbsoluteLayout very simply by using a point:

 <Label Text="PointLabel" AbsoluteLayout.LayoutBounds="0, 1"

AbsoluteLayout.LayoutFlags="PositionProportional" />

Points work just like the location portion of a rectangle, defining the x and y position

by using doubles ranging from 0 to 1. Here are the LayoutBounds parameters for a point:

 AbsoluteLayout.LayoutBounds="locationX, locationY"

Points and rectangles are just geometric objects until they’re bound to a view’s

location or size by using SetLayoutFlags.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

110

Tip the most commonly used layout flags are PositionProportional and
All because we are usually either placing a view or both placing and sizing it.

Images size well this way:
<Image AbsoluteLayout.LayoutBounds="0, 0,1,1" AbsoluteLayout.
LayoutFlags="All" />

 Binding Location

Bind the x/y location of the bounding object to the view by using these flags:

• PositionProportional associates a rectangle or a point’s x/y

location proportionally with the location of the view, while size

values are absolute:

AbsoluteLayout.LayoutFlags="PositionProportional"

If the rectangle or point is at 0,0, the view will be at 0,0.

• XProportional associates a rectangle or a point’s x coordinate

proportionally, while all other values are absolute:

AbsoluteLayout.LayoutFlags="XProportional"

• YProportional associates a rectangle or point’s y coordinate

proportionally, while all other values are absolute:

AbsoluteLayout.LayoutFlags="YProportional"

 Binding Size

Bind the size of the bounding object to the view by using these flags:

• SizeProportional associates the rectangle size proportionally with

the size of the view, while position values are absolute:

AbsoluteLayout.LayoutFlags="SizeProportional"

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

111

If the rectangle is size .2,.5, the view will be sized to .2,.5.

• WidthProportional associates the rectangle width proportionally

with the width of the view, while all other values are absolute:

AbsoluteLayout.LayoutFlags="WidthProportional"

• HeightProportional associates the rectangle height proportionally

with the height of the view, while all other values are absolute:

AbsoluteLayout.LayoutFlags="HeightProportional"

 Binding Both Location and Size

Set values proportionally or as absolute for both location and size with a rectangle or

point by using All or None.

• All associates the rectangle or point’s x/y location and size

proportionally with the location and size of the view:

AbsoluteLayout.LayoutFlags="All"

• None associates all values as absolute:

AbsoluteLayout.LayoutFlags="None"

 CODE COMPLETE: AbsoluteLayout
Listing 3-13 uses AbsoluteLayout to add labels to the top and bottom of the screen

shown previously in Figure 3-20. This example uses bounding rectangles with a

few different ways to add the first Label (such as using points instead of bounding

rectangles).

Listing 3-13. AbsoluteLayoutExample.xaml Using Rectangles

 <ContentPage xmlns="http://xamarin.com/schemas/2014/

forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml" x:Class="LayoutExample.Xaml.Views.AbsoluteLayoutExample"

Padding="10,10,10,5">

 <AbsoluteLayout VerticalOptions="FillAndExpand">

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

112

 <Label Text="FirstLabel" AbsoluteLayout.LayoutBounds="0, 0,

AutoSize, AutoSize" AbsoluteLayout.LayoutFlags="PositionProport

ional" />

 <Label Text="SecondLabel" AbsoluteLayout.LayoutBounds="0, 1,

AutoSize, AutoSize" AbsoluteLayout.LayoutFlags="PositionProport

ional" />

 <Label Text="PointLabel" AbsoluteLayout.LayoutBounds="0, 1"

AbsoluteLayout.LayoutFlags="PositionProportional" />

 </AbsoluteLayout>

 </ContentPage>

With AbsoluteLayout in hand we’ve covered the core family of Xamarin.Forms

layouts. Now let’s look at some distant layout cousins that we use for specific purposes,

beginning with ContentView.

 ContentView
The ContentView layout can act as a visual or virtual container class, like a custom

control. ContentView is designed for reuse throughout your app. It’s also useful for

providing quick padding or formatting around another view or layout.

As a visual rectangular container, ContentView provides the standard Layout

class properties such as Padding, BackgroundColor, HorizontalOptions, and

VerticalOptions, much like a .NET panel control. As a virtual container, it can house a

child layout containing multiple views for swapping in and out of a page, and for use on

different pages, a lot like a .NET custom control or an Android fragment.

This is a simple ContentView (from a class called SubContentView), a soothing teal

rectangle with a white text label:

 <ContentView xmlns="http://xamarin.com/schemas/2014/

forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml" x:Class="LayoutExample.Xaml.Views.SubContentView"

BackgroundColor="Teal" Padding="40" HorizontalOptions="Fill">

 <Label Text="a view, such as a label, a layout, or a layout of

layouts" FontSize="20" FontAttributes="Bold" TextColor="White" />

 </ContentView>

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

113

ContentView can be used like any other view and placed onto a layout.

Figure 3-21 shows the label tucked inside ContentView. This ContentView is then placed

on a ContentPage:

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="LayoutExample.Xaml.Views.ContentViewExample" xmlns:Views="clr-

namespace:LayoutExample.Xaml.Views;assembly=LayoutExample.Xaml"

Padding="10,10,10,5">

 <StackLayout>

 <Views:SubContentView />

 </StackLayout>

 </ContentPage>

Note how the ContentView padding creates colored space around the label in Figure 3-21.

Figure 3-21. ContentView in action

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

114

Note If your screenshot doesn’t match Figure 3-21 and ContentView
consumes the entire screen, add this property to ContentView:

VerticalOptions = "StartAndExpand"

 CODE COMPLETE: ContentView
Listings 3-14 and 3-15 show the complete ContentView code example shown in

Figure 3- 21. Two kinds of padding are used here: the colored padding inside

ContentView and the space around the edge of ContentPage.

Listing 3-14. ContentViewExample.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="LayoutExample.Xaml.

Views.ContentViewExample" xmlns:Views="clr-namespace:LayoutExample.Xaml.

Views;assembly=LayoutExample.Xaml" Padding="10,10,10,5">

 <StackLayout>

 <Views:SubContentView />

 </StackLayout>

</ContentPage>

Listing 3-15. SubContentView.xaml

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentView xmlns="http://xamarin.com/schemas/2014/

forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml" x:Class="LayoutExample.Xaml.Views.SubContentView"

BackgroundColor="Teal" Padding="40" HorizontalOptions="Fill">

 <Label Text="a view, such as a label, a layout, or a layout of

layouts" FontSize="20" FontAttributes="Bold" TextColor="White" />

 </ContentView>

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

115

Tip the ControlTemplate and ContentPresenter layouts are used together
for theming.

 Frame
The Frame layout places a visible frame around itself. The OutlineColor property

specifies the color of the frame. See Listing 3-16.

Listing 3-16. FrameExample.xaml

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="LayoutExample.Xaml.Views.

FrameExample" Padding="10,10,10,5">

 <Frame OutlineColor="Red">

 <Label Text="Framed" FontSize="40" />

 </Frame>

</ContentPage>

HasShadow is a Boolean property specifying a shadow effect when the platform

supports it. The default Padding value on a Frame layout is 20.

Figure 3-22 shows the Frame layout.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

116

Figure 3-22. Frame layout

Tip the CornerRadius property permits the rounding of frame corners.

Those are the layouts in Xamarin.Forms!

When building layouts, a related topic that arises is the creation of custom controls,

used as components for building layouts.

 Understanding Custom Controls
Custom controls in Xamarin are partial layouts that can be included in larger layouts

on an as-needed basis, that can be created on all platforms, and that can be made to

function like user controls, custom controls, or panels in .NET. Custom controls are

barely touched upon in this book, but the topic bears mentioning in the context of

constructing professional-grade layouts.

In Xamarin.Forms, ContentView is a base class for creating custom views for nesting,

padding, and reuse. Custom controls should not be confused with customized controls,

which are usually individual Xamarin.Forms views with enhanced platform-specific

functionality that are built using a custom renderer (see Chapter 8). Even so, developers

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

117

will sometimes refer to a single customized control as a custom control. Also, a

customized control has the capacity to contain multiple controls and might then actually

become a custom control.

Note this chapter explores a static, manual approach to layouts. Many of these
layouts, such as the Xamarin.Forms ones, contain bindable properties and can be
bound to data sources and constructed dynamically at runtime. you’ll learn about
data binding in later chapters (Chapter 6 and Chapter 9).

 Summary
Layouts are a fine example of just how similar these different platforms can be. Names

change, but concepts don’t, and for added continuity, Xamarin strives to incorporate the

most useful aspects of these various platforms into Xamarin.Forms. Here are some of the

universal terms related to layouts:

• FlexLayouts are the newest and most easy-to-use while also being

one of the most versatile layouts.

• StackLayouts are the simplest layouts in Xamarin.Forms, great for

easy pages and quick prototyping and wireframing.

• Rectangles frame views and their size and coordinate location.

• RelativeLayouts are useful when the task is simple and precise

coordinates are on hand.

• Constraints bind views together like elastic that contextually

determines size and location. Complex constraints require C#.

• Layout options handle alignment and formatting with

HorizontalOptions and VerticalOptions.

• The custom control persists as a concept in mobile development,

achieved in Xamarin.Forms with a ContentView.

• Grid layouts are Xamarin.Forms’ table layout offering, giving us

relativity, precision, and versatility.

Those are some of the fundamentals of mobile screen layouts. Now it’s time to make

those layouts and controls more beautiful using styling.

Chapter 3 UI DesIgn UsIng LayoUts

www.EBooksWorld.ir

119
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4_4

CHAPTER 4

Styles, Themes, and CSS
User interface design challenges us to elegantly and functionally position layouts

and controls while maintaining a coherent design and a consistent user experience

across the entire application. This chapter is not about creating beautiful and visually

appealing applications, which is an art in and of itself. This chapter explores beautiful

and appealing ways to architect your UI code, separating the presentation from the

content and structure using resources, styles, themes, and Cascading Style Sheets.

Creating beautiful designs is a journey, and the purpose of this chapter is to take you

on a journey from a simple but functional page to one that is also beautiful, dynamic,

and maintainable. Reusability of UI code offers consistency of design, cleaner and more

readable code, and the agility to change the look of the application over time.

We’re going to cover the entire Xamarin UI formatting story: beginning with manual

styling, resources and dictionaries, styles, themes, and then Cascading Style Sheets

(CSS). First, we will create a page without styling and then style it manually. Then,

instead of manually hardcoding the property settings, we will use resources stored

centrally in a dictionary and look them up statically and dynamically. We’ll examine

styles and how to use them explicitly on a view or implicitly on all instances of a view.

We’ll explore style inheritance and overriding techniques. We will take a look at the

Xamarin.Forms Light and Dark theme and how to use them as the basis of a custom

theme and, finally, use CSS as an alternative to XAML to style a page.

Our demo app is a feedback page that allows users to share their experience using

the app.

 Creating a Page Without Style
We’ll begin with a basic page without styling that allows a user to provide feedback. It

will have Subject and Message fields and a Submit and Cancel buttons. Soon we’ll style

the page.

www.EBooksWorld.ir

120

Create a Forms XAML Page called FeedbackPage.xaml with an Entry view

representing the subject line and an Editor view for the feedback. Finally, add a submit

and cancel Button to the form to handle user interactions. To structure the content,

use a Grid layout with one column and three rows, one for the subject line, one for the

feedback, and the last for a StackLayout that vertically places the two buttons, as shown

in Listing 4-1.

Listing 4-1. Simple Feedback Page

 <ContentPage Title="Plain" xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.FeedbackPage">

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Entry Placeholder="Enter Subject" Grid.Row="0" />

 <Editor x:Name="Feedback" Grid.Row="1" Unfocused="HandleFeedback"

 Focused="HandleFeedback" />

 <StackLayout Orientation="Vertical" Grid.Row="2">

 <Button Text="Cancel" />

 <Button Text="Submit" />

 </StackLayout>

 </Grid>

 </ContentPage>

The Grid and StackLayout provide structure to the page, and the content comprises

the Entry, Editor, and Button views. StackLayout is used with a vertical orientation to

ensure that the two buttons are aligned below one another. The Entry, the Editor, and

the StackLayout are positioned in the Grid using the Grid.Row attached property.

Grid.Column is not required here, given that the Grid has only one column. The Grid

column uses Star to consume all space available, that is, ColumnDefinition Width="*".

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

121

The first and third grid rows only use as much space as needed by the subject line and

the submit and cancel buttons, whereas the rest of the vertical space is allocated to the

feedback area using and RowDefinition Height="*".

The Editor view does not have a Placeholder property like the Entry view does.

Create placeholder text by hand by assigning a HandleFeedback method to both the

Focused and Unfocused properties. Create the HandleFeedback event handler in the

code behind that sets the Text of the Editor when it gains or loses focus, as shown in

Listing 4-2.

Listing 4-2. Simple Feedback Page

 public partial class FeedbackPage : ContentPage {

 const string placeHolderText = "Type your message here";

 void HandleFeedback(object sender, Xamarin.Forms.FocusEventArgs e) {

 var text = Feedback.Text;

 if (Feedback.Text == placeHolderText) {

 Feedback.Text = string.Empty;

 return;

 }

 if (Feedback.Text == string.Empty) {

 Feedback.Text = placeHolderText;

 return;

 }

 }

 public FeedbackPage() {

 InitializeComponent();

 Feedback.Text = placeHolderText;

 }

 }

For every named XAML element, the XAML parser creates a local variable in the

resulting generated file. When the page is initialized, the Text property of the Editor

view, which is called Feedback in the XAML, is set to a placeHolderText. When the

Editor gains or loses focus, the HandleFeedback method is called that checks whether

the Editor Text is still the placeHolderText and empties it for the user to enter

the feedback. If the Editor loses the focus and is still empty, it sets the Text back

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

122

to the placeHolderText. This mimics the built-in functionality of the Entry view,

which has this out of the box. In the App.cs project, wrap the FeedbackPage inside a

NavigationPage and add it to the MainPage of the application. Figure 4-1 shows the

result for both platforms.

Figure 4-1. Simple feedback page

The feedback page is functional and gray. Let’s add some color.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

123

 Styling Manually Using View Formatting Properties
Improve the appearance of the FeedbackPage by providing colors for the text and

backgrounds, using layout and view formatting properties.

 1. Create a new XAML page called LocalDesignPage.xaml and copy

the XAML over from FeedbackPage.xaml.

 2. Use the BackgroundColor property of ContentPage and Grid

to visually separate the form canvas represented by the Grid

from the page background by making the Grid gray and the

ContentPage background green.

 <ContentPage BackgroundColor="#4CAF50">

 <Grid BackgroundColor="#AAAAAA">

 3. Use the Grid Padding and Margin properties to provide some

space for the content away from the screen bezel.

 <Grid Padding="30" Margin="30">

 4. Surround the feedback input field with a StackLayout that has

a Silver BackgroundColor and is just one pixel bigger than the

Editor control.

 <StackLayout Orientation="Vertical" Padding="1"

 BackgroundColor="Silver">

 5. Give the feedback input field all the space it can get vertically.

 <Editor VerticalOptions="FillAndExpand">

 6. Add TextColor and FontAttributes to the subject line and

feedback input field.

 <Entry TextColor="Navy" FontAttributes="Italic" />

 <Editor TextColor="Navy" FontAttributes="Italic" />

 7. Style the buttons to help the user make the right decision by

making the submit button green and the cancel button orange

with bold text using all the space they can get horizontally, as

shown in Listing 4-3.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

124

Listing 4-3. Simple Feedback Page

 <Button Text="Submit" TextColor="White" FontAttributes="Bold"

 BackgroundColor="#4CAF50" />

 <Button Text="Cancel" HorizontalOptions="FillAndExpand"

TextColor="White"

 FontAttributes="Bold" BackgroundColor="#f47442" />

Now we have a colorful feedback page, as shown in Figure 4-2 for both platforms.

Figure 4-2. Styled feedback page

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

125

 CODE COMPLETE: Feedback Page Using View Formatting
Properties

Listing 4-4 provides the complete code for the LocalDesignPage.xaml.

Listing 4-4. Styled Feedback Page

 <ContentPage BackgroundColor="#4CAF50" Title="Local Design"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.LocalDesignPage">

 <Grid Padding="30" Margin="30" BackgroundColor="#AAAAAA">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Entry Placeholder="Enter Subject" Grid.Row="0" TextColor="Navy"

 FontAttributes="Italic" />

 <StackLayout Orientation="Vertical" Grid.Row="1" Padding="1"

 BackgroundColor="Silver">

 <Editor x:Name="Feedback" VerticalOptions="FillAndExpand"

 TextColor="Navy" FontAttributes="Italic"

Unfocused="HandleFeedback"

 Focused="HandleFeedback" />

 </StackLayout>

 <StackLayout Orientation="Vertical" Grid.Row="2">

 <Button Text="Submit" HorizontalOptions="FillAndExpand"

 TextColor="White" FontAttributes="Bold"

BackgroundColor="#4CAF50" />

 <Button Text="Cancel" HorizontalOptions="FillAndExpand"

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

126

 TextColor="White" FontAttributes="Bold"

BackgroundColor="#f47442" />

 </StackLayout>

 </Grid>

 </ContentPage>

The number of lines remained almost the same but the XAML is now cluttered with

hardcoded values. Compared to this, the unstyled page in Listing 4-1 was short and

elegant.

Resources can address the hardcoding issue. Let’s see how.

 Resources and Dictionaries
A resource is an object in a dictionary that can be retrieved by its string key. Any XAML

element, in fact any C# class, can be defined as a resource. Common resources in XAML

are templates, styles, frequently used values, and value converters.

A resource dictionary is a key value store. The keys are strings and the values any

type of objects. Resource dictionaries play an important role within the styling system

of Xamarin.Forms. They allow separation of the presentation from the content and

structure of a page.

The lookup of a resource in a dictionary can be static or dynamic. Static lookup

happens only once when the view is created. Subsequent changes to the resource are

not applied to the view. Dynamic lookup allows a resource to change at runtime, and the

change can be reflected in the view.

Resource dictionaries can be defined at the application, page, and view levels.

Locally defined resources can override resources defined at the page or application

level. Standard guidelines of scoping apply here: try and use view or page level resource

dictionaries before defining them at the application level to create globals.

Tip resource dictionaries can be stored as separate, mergeable Xaml files.

Pages, layouts, and controls, all views in Xamarin.Forms that subclass

VisualElement, can contain resource definitions. VisualElement has a member called

Resources of type ResourceDictionary for this purpose.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

127

 Defining Resources
Resources are objects stored in a resource dictionary that can be retrieved by their key.

Define resources by adding a resource dictionary to a page, layout, or control and adding

resources to that dictionary.

As an example, use the property element syntax ContentPage.Resources to define

a ResourceDictionary with resources accessible to the FeedbackPage page and add a

Color resource that represents the page BackgroundColor, as shown in Listing 4-5.

Listing 4-5. Defining Resources Inside a Resource Dictionary

 <ContentPage.Resources>

 <ResourceDictionary>

 <Color x:Key="PageBgColor">#4CAF50</Color>

 </ResourceDictionary>

 </ContentPage.Resources>

The Color with the key PageBgColor can now be referenced within the page.

Tip name resources based on what they are used for and not what they are, e.g.,
nukeButton instead of redButton. this makes sure they are used for what they
were intended for.

You could use other keyword variable names, such as XAML keyword Name, or

whatever you choose, instead of Key, e.g.:

 <Color x:Name="PageBgColor">#4CAF50</Color>

This will create the local variable PageBgColor in the C# code behind. It is

recommended, however, to use the Key and to access the resource in the code behind

through a dictionary lookup passing in the key and then casting the resulting object to

the target type, e.g.:

 var pageBgColor = (Color) Resources["PageBgColor"];

Create resources for all the colors, font styles, and even string literals used as

placeholders, as shown in Listing 4-6.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

128

Listing 4-6. Defining Resources Inside a Resource Dictionary

 <ResourceDictionary>

 <x:String x:Key="SubjectPlaceholder">Enter Subject</x:String>

 <x:String x:Key="FeedbackPlaceholder">Enter your message here

</x:String>

 <x:String x:Key="InputPlaceholder">Enter Subject</x:String>

 <Color x:Key="PageBgColor">#4CAF50</Color>

 <Color x:Key="FormBgColor">#AAAAAA</Color>

 <Color x:Key="InputTextColor">Navy</Color>

 <Color x:Key="InputPlaceholderColor">Silver</Color>

 <Color x:Key="FeedbackBorderColor">Silver</Color>

 <FontAttributes x:Key="InputFontStyle">Italic</FontAttributes>

 <Color x:Key="BtTextColor">White</Color>

 <Color x:Key="BtSubmitColor">#4CAF50</Color>

 <Color x:Key="BtCancelColor">#f47442</Color>

 <FontAttributes x:Key="BtFontStyle">Bold</FontAttributes>

 </ResourceDictionary>

This resource dictionary is inline with ContentPage.Resources. Soon we’ll break it

out into its own XAML file so it can be used by different pages.

After defining your resources, you need to reference them. We’ll begin by using the

Xamarin.Forms StaticResource markup extensions.

 Static Resource Lookup
The StaticResource markup extension assigns a value to a bindable property of an

XAML element once, when the XAML object is created at runtime. Any subsequent

changes to the resources are not reflected on the object, and so the lookup is static. Use

the static lookup if a resource does not change during the lifetime of the application.

This improves the performance of the application. Use the dynamic lookup instead if

resources assigned to the view are intended to change, for example, to change the style

of a view depending on the user interaction.

Caution StaticResource throws an exception at runtime if the key
does not exist.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

129

Use the StaticResource markup extension to set the background color of the page

with a lookup of the key PageBgColor in the resource dictionary. Use the Key property of

StaticResource to pass in the key of the resource that should be used, e.g.:

 <ContentPage BackgroundColor="{StaticResource Key=PageBgColor}" ...>

You learned in Chapter 2 that a property can be omitted if declared as a content

property. The preceding declaration is therefore the same as

 <ContentPage BackgroundColor="{StaticResource PageBgColor}" ...>

Create a new XAML page and call it StaticResourcesPage.xaml. Duplicate the

LocalDesignPage.xaml page to begin with. Replace all the property assignments in

the XAML with a lookup of the respective key you defined in the resource dictionary in

Listing 4-6 using the StaticResource markup extension, as shown in Listing 4-7. The

Grid column and row definitions are omitted for brevity.

Listing 4-7. Using StaticResource Inside XAML Instead of Hardcoded Values

 <Grid Padding="30" Margin="30" BackgroundColor="{StaticResource

 FormBgColor}">

 <Entry Placeholder="{StaticResource SubjectPlaceholder}"

Grid.Row="0"

 TextColor="{StaticResource InputTextColor}" FontAttributes="

{StaticResource

 InputFontStyle}" />

 <StackLayout Orientation="Vertical" Grid.Row="1" Padding="1"

 BackgroundColor="{StaticResource FeedbackBorderColor}">

 <Editor x:Name="Feedback" VerticalOptions="FillAndExpand"

 TextColor="{StaticResource InputTextColor}" FontAttributes="

{StaticResource

 InputFontStyle}" Unfocused="HandleFeedback"

Focused="HandleFeedback"

 />

 </StackLayout>

 <StackLayout Orientation="Vertical" Grid.Row="2">

 <Button Text="Submit" HorizontalOptions="FillAndExpand"

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

130

 TextColor="{StaticResource BtTextColor}" FontAttributes=

"{StaticResource

 BtFontStyle}" BackgroundColor="{StaticResource BtSubmitColor}" />

 <Button Text="Cancel" HorizontalOptions="FillAndExpand"

 TextColor="{StaticResource BtTextColor}" FontAttributes="

{StaticResource

 BtFontStyle}" BackgroundColor="{StaticResource BtCancelColor}" />

 </StackLayout>

 </Grid>

Replace in the code behind StaticResourcesPage.xaml.cs the hardcoded values

for the feedback placeholder and the feedback text color with a lookup of the resource

FeedbackPlaceholder and InputTextColor, as shown in Listing 4-8.

Listing 4-8. Using StaticResource Inside Code Behind Instead of Hardcoded Values

 public partial class StaticResourcesPage : ContentPage {

 void HandleFeedback(object sender, Xamarin.Forms.FocusEventArgs e){

 var placeHolderText = (string)Resources["FeedbackPlaceholder"];

 if (Feedback.Text == placeHolderText) {

 Feedback.Text = string.Empty;

 Feedback.TextColor = (Color)Resources["InputTextColor"];

 return;

 }

 if (Feedback.Text == string.Empty) {

 Feedback.Text = placeHolderText;

 Feedback.TextColor = (Color)Resources["InputPlaceholderColor"];

 return;

 }

 }

 public StaticResourcesPage() {

 InitializeComponent();

 Feedback.Text = (string)Resources["FeedbackPlaceholder"];

 Feedback.TextColor = (Color)Resources["InputPlaceholderColor"];

 }

 }

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

131

The feedback page in Figure 4-3 looks exactly the same as Figure 4-2 with hardcoded

styling. The improvement is in the coding technique.

 CODE COMPLETE: Feedback Page Using Static Resources

Listings 4-9 and Listing 4-10 provide the complete code for StaticResourcesPage.xaml

and StaticResourcesPage.xaml.cs.

Listing 4-9. StaticResourcesPage.xaml in the Forms Project

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage BackgroundColor="{StaticResource Key=PageBgColor}"

 Title="StaticResource" xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.StaticResourcesPage">

Figure 4-3. Styled feedback page using resource and static lookup

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

132

 <ContentPage.Resources>

 <ResourceDictionary>

 <x:String x:Key="SubjectPlaceholder">Enter Subject</x:String>

 <x:String x:Key="FeedbackPlaceholder">Type your message here</

x:String>

 <x:String x:Key="InputPlaceholder">Enter Subject</x:String>

 <Color x:Key="PageBgColor">#4CAF50</Color>

 <Color x:Key="FormBgColor">#AAAAAA</Color>

 <Color x:Key="InputTextColor">Navy</Color>

 <Color x:Key="InputPlaceholderColor">Silver</Color>

 <Color x:Key="FeedbackBorderColor">Silver</Color>

 <FontAttributes x:Key="InputFontStyle">Italic</FontAttributes>

 <Color x:Key="BtTextColor">White</Color>

 <Color x:Key="BtSubmitColor">#4CAF50</Color>

 <Color x:Key="BtCancelColor">#f47442</Color>

 <FontAttributes x:Key="BtFontStyle">Bold</FontAttributes>

 </ResourceDictionary>

 </ContentPage.Resources>

 <Grid Padding="30" Margin="30"

 BackgroundColor="{StaticResource FormBgColor}">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Entry Placeholder="{StaticResource SubjectPlaceholder}"

 Grid.Row="0" TextColor="{StaticResource InputTextColor}"

 FontAttributes="{StaticResource InputFontStyle}" />

 <StackLayout Orientation="Vertical" Grid.Row="1" Padding="1"

 BackgroundColor="{StaticResource FeedbackBorderColor}">

 <Editor x:Name="Feedback" VerticalOptions="FillAndExpand"

 TextColor="{StaticResource InputTextColor}"

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

133

 FontAttributes="{StaticResource InputFontStyle}"

 Unfocused="HandleFeedback" Focused="HandleFeedback" />

 </StackLayout>

 <StackLayout Orientation="Vertical" Grid.Row="2">

 <Button Text="Submit" HorizontalOptions="FillAndExpand"

 TextColor="{StaticResource BtTextColor}"

 FontAttributes="{StaticResource BtFontStyle}"

 BackgroundColor="{StaticResource BtSubmitColor}" />

 <Button Text="Cancel" HorizontalOptions="FillAndExpand"

 TextColor="{StaticResource BtTextColor}"

 FontAttributes="{StaticResource BtFontStyle}"

 BackgroundColor="{StaticResource BtCancelColor}" />

 </StackLayout>

 </Grid>

 </ContentPage>

Listing 4-10. StaticResourcesPage.xaml.cs in the Forms Project

 using Xamarin.Forms;

 namespace StyleExamples {

 public partial class StaticResourcesPage : ContentPage {

 void HandleFeedback(object sender, Xamarin.Forms.FocusEventArgs e) {

 var placeHolderText = (string)Resources["FeedbackPlaceholder"];

 if (Feedback.Text == placeHolderText) {

 Feedback.Text = string.Empty;

 Feedback.TextColor = (Color)Resources["InputTextColor"];

 return;

 }

 if (Feedback.Text == string.Empty) {

 Feedback.Text = placeHolderText;

 Feedback.TextColor = (Color)Resources["InputPlaceholder

Color"];

 return;

 }

 }

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

134

 public StaticResourcesPage() {

 InitializeComponent();

 Feedback.Text = (string)Resources["FeedbackPlaceholder"];

 Feedback.TextColor = (Color)Resources["InputPlaceholderColor"];

 }

 }

 }

Static resources significantly improve the maintainability of the code because

nothing is hardcoded, code is reused, and the styling is decoupled from the UI. However,

the XAML is less readable compared to the previous two iterations where we had no

styling or just hardcoded styles. Most importantly, the lookup of a resource is done once

by StaticResource, and any subsequent changes to the resource cannot be applied to

the page content.

Let’s fix that using the DynamicResource markup extension.

 Dynamic Resource Lookup
The DynamicResource markup extension assigns a value to a bindable property of an

XAML element. Changes to the resource can be applied to the property at runtime; thus,

the lookup is called dynamic. Use the dynamic lookup to ensure that a view is updated

if its resources change in response to a user interaction. Dynamic lookup is resource

intensive and can impact performance. The best practice is to use the static lookup until

there is a need to change a resource at runtime.

Note a DynamicResource does not need to exist when declaring the
Xaml. the application can add the key and object at runtime. Xaml uses the
default value of the bindable property if no resource can be found.

As with StaticResource you can omit the Key property of DynamicResource. Use the

DynamicResource markup extension to replace the background color of the page with a

lookup of the key PageBgColor in the resource dictionary, e.g.:

 <ContentPage BackgroundColor="{DynamicResource PageBgColor}" ...>

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

135

Create a new XAML page and call the new page DynamicResourcePage.xaml.

Copy the code from StaticResourcesPage.xaml into your new page. Replace all the

StaticResource markup extensions with DynamicResource.

Our “Cancel” and “Submit” buttons are colorful and clickable. What if we guided the

interaction a bit more by graying them out until the user at least enters a subject? Add a

couple more Color resources to the resource dictionary for different background colors

for the page and the button depending on whether the user entered a subject or not and

to initialize the buttons when inactive, as shown in Listing 4-11.

Listing 4-11. Resources for Handling User Interactions

 <Color x:Key="PageBgColorNoSubject">#85af87</Color>

 <Color x:Key="PageBgColorWithSubject">#4CAF50</Color>

 <Color x:Key="BtSubmitActiveColor">#4CAF50</Color>

 <Color x:Key="BtCancelActiveColor">#f47442</Color>

 <Color x:Key="BtInactiveColor">Gray</Color>

Next, assign PageBgColor, BtSubmitColor, and BtCancelColor dynamically

depending on whether there is a subject line or not.

Changing a resource is done in the code behind, like this:

 Resources["PageBgColor"] = Resources["PageBgColorNoSubject"];

Add the HandleSubject event handler to the Entry view to respond to gaining and

losing focus in order to change the Color resources based on the user interaction, e.g.:

 <Entry Unfocused="HandleSubject" Focused="HandleSubject" />

Both the Unfocused and Focused events are wired now to the HandleSubject

handler. Create the HandleSubject method and check whether the subject line

has any text. If no text is provided, change PageBgColor to PageBgColorNoSubject

and both BtSubmitColor and BtCancelColor to BtInactiveColor and back to

PageBgColorWithSubject and BtSubmitActiveColor and BtCancelActiveColor as soon

as the user has changed the text and Entry view loses focus, as shown in Listing 4-12.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

136

Listing 4-12. Changing Resource Objects Based on User Interaction

 void HandleSubject(object sender, Xamarin.Forms.FocusEventArgs e) {

 if (Subject.Text == string.Empty) {

 Resources["PageBgColor"] = Resources["PageBgColorNoSubject"];

 Resources["BtSubmitColor"] = Resources["BtInactiveColor"];

 } else {

 Resources["PageBgColor"] = Resources["PageBgColorWithSubject"];

 Resources["BtSubmitColor"] = Resources["BtSubmitActiveColor"];

 }

 }

Finally, initialize the page constructor to make sure the form is in an inactive state

when it is visited for the first time, as shown in Listing 4-13.

Listing 4-13. DynamicResourcesPage Constructor

 public DynamicResourcesPage() {

 InitializeComponent();

 Feedback.Text = (string)Resources["FeedbackPlaceholder"];

 Feedback.TextColor = (Color)Resources["InputPlaceholderColor"];

 Subject.Text = string.Empty;

 Resources["PageBgColor"] = Resources["PageBgColorNoSubject"];

 Resources["BtSubmitColor"] = Resources["BtInactiveColor"];

 }

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

137

Figure 4-4 shows the result for both platforms.

 CODE COMPLETE: Feedback Page Using Dynamic Resources

Listings 4-14 and Listing 4-15 provide the complete code for the DynamicResourcePage.

xaml and DynamicResourcePage.xaml.cs.

Listing 4-14. Feedback Page XAML with Dynamic Resources

 <ContentPage BackgroundColor="{DynamicResource PageBgColor}"

 Title="DynamicResource" xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.DynamicResourcesPage">

 <ContentPage.Resources>

 <ResourceDictionary>

Figure 4-4. Dynamic styling based on user interaction

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

138

 <x:String x:Key="SubjectPlaceholder">Enter Subject</x:String>

 <x:String x:Key="FeedbackPlaceholder">Type your message here

</x:String>

 <x:String x:Key="InputPlaceholder">Enter Subject</x:String>

 <Color x:Key="PageBgColor">#4CAF50</Color>

 <Color x:Key="PageBgColorNoSubject">#85af87</Color>

 <Color x:Key="PageBgColorWithSubject">#4CAF50</Color>

 <Color x:Key="FormBgColor">#AAAAAA</Color>

 <Color x:Key="InputTextColor">Navy</Color>

 <Color x:Key="InputPlaceholderColor">Silver</Color>

 <Color x:Key="FeedbackBorderColor">Silver</Color>

 <FontAttributes x:Key="InputFontStyle">Italic</FontAttributes>

 <Color x:Key="BtTextColor">White</Color>

 <Color x:Key="BtSubmitColor">#4CAF50</Color>

 <Color x:Key="BtCancelColor">#f47442</Color>

 <Color x:Key="BtSubmitActiveColor">#4CAF50</Color>

 <Color x:Key="BtCancelActiveColor">#f47442</Color>

 <Color x:Key="BtInactiveColor">Gray</Color>

 <FontAttributes x:Key="BtFontStyle">Bold</FontAttributes>

 </ResourceDictionary>

 </ContentPage.Resources>

 <Grid Padding="30" Margin="30" BackgroundColor="{DynamicResource

 FormBgColor}">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Entry x:Name="Subject" Placeholder="{DynamicResource

 SubjectPlaceholder}"

 Grid.Row="0" TextColor="{DynamicResource InputTextColor}"

 FontAttributes="{DynamicResource InputFontStyle}"

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

139

 Unfocused="HandleSubject"

 Focused="HandleSubject" />

 <StackLayout Orientation="Vertical" Grid.Row="1" Padding="1"

 BackgroundColor="{DynamicResource FeedbackBorderColor}">

 <Editor x:Name="Feedback" VerticalOptions="FillAndExpand"

 TextColor="{DynamicResource InputTextColor}"

 FontAttributes="{DynamicResource InputFontStyle}"

 Unfocused="HandleFeedback" Focused="HandleFeedback" />

 </StackLayout>

 <StackLayout Orientation="Vertical" Grid.Row="2">

 <Button Text="Submit" HorizontalOptions="FillAndExpand"

 TextColor="{DynamicResource BtTextColor}"

 FontAttributes="{DynamicResource

 BtFontStyle}" BackgroundColor="{DynamicResource

BtSubmitColor}" />

 <Button Text="Cancel" HorizontalOptions="FillAndExpand"

 TextColor="{DynamicResource BtTextColor}"

 FontAttributes="{DynamicResource

 BtFontStyle}" BackgroundColor="{DynamicResource

BtCancelColor}" />

 </StackLayout>

 </Grid>

 </ContentPage>

Listing 4-15. Feedback Page Code Behind with Dynamic Resources

public partial class DynamicResourcesPage : ContentPage {

 void HandleSubject(object sender, Xamarin.Forms.FocusEventArgs e) {

 if (Subject.Text == string.Empty){

 Resources["PageBgColor"] = Resources["PageBgColorNoSubject"];

 Resources["BtSubmitColor"] = Resources["BtInactiveColor"];

 } else {

 Resources["PageBgColor"] = Resources["PageBgColorWithSubject"];

 Resources["BtSubmitColor"] = Resources["BtSubmitActiveColor"];

 }

 }

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

140

 void HandleFeedback(object sender, Xamarin.Forms.FocusEventArgs e) {

 var text = Feedback.Text;

 var placeHolderText = (string)Resources["FeedbackPlaceholder"];

 if (Feedback.Text == placeHolderText) {

 Feedback.Text = string.Empty;

 Feedback.TextColor = (Color)Resources["InputTextColor"];

 return;

 }

 if (Feedback.Text == string.Empty) {

 Feedback.Text = placeHolderText;

 Feedback.TextColor = (Color)Resources["InputPlaceholderColor"];

 return;

 }

 }

 public DynamicResourcesPage() {

 InitializeComponent();

 Feedback.Text = (string)Resources["FeedbackPlaceholder"];

 Feedback.TextColor = (Color)Resources["InputPlaceholderColor"];

 Subject.Text = "";

 Resources["PageBgColor"] = Resources["PageBgColorNoSubject"];

 Resources["BtSubmitColor"] = Resources["BtInactiveColor"];

 }

 }

DynamicResource helps us create more interactive user interfaces.

Back to the resource dictionary, defining it as an external XAML file allows reuse

across the entire application, a sophisticated coding technique.

 Reusable Resource Dictionaries
Resource dictionaries can be defined as separate, reusable XAML documents that can be

loaded into another XAML page or anywhere in the application.

In this example, we’ll define the StyleExamples.MyResources resource dictionary

as a standalone XAML file and reference it in ImportResourcesPage.xaml using the

ResourceDictionary element.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

141

Create a new XAML document called MyResources.xaml and replace the root

element ContentPage that Visual Studio created with ResourceDictionary both in the

XAML and the code behind.

Tip Xamarin.Forms 3.0+ won’t need a code behind, but this example is pre-3.0.

Copy the resources defined inside the DynamicResourcesPage.xaml to MyResources.

xaml, as shown in Listing 4-16.

Listing 4-16. External Resource Dictionary

 <ResourceDictionary xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.MyResources">

 <x:String x:Key="SubjectPlaceholder">Enter Subject</x:String>

 <x:String x:Key="FeedbackPlaceholder">Type your message here

</x:String>

 <x:String x:Key="InputPlaceholder">Enter Subject</x:String>

 <Color x:Key="PageBgColor">#4CAF50</Color>

 <Color x:Key="PageBgColorNoSubject">#85af87</Color>

 <Color x:Key="PageBgColorWithSubject">#4CAF50</Color>

 <Color x:Key="FormBgColor">#AAAAAA</Color>

 <Color x:Key="InputTextColor">Navy</Color>

 <Color x:Key="InputPlaceholderColor">Silver</Color>

 <Color x:Key="FeedbackBorderColor">Silver</Color>

 <FontAttributes x:Key="InputFontStyle">Italic</FontAttributes>

 <Color x:Key="BtTextColor">White</Color>

 <Color x:Key="BtSubmitColor">#4CAF50</Color>

 <Color x:Key="BtCancelColor">#f47442</Color>

 <Color x:Key="BtSubmitActiveColor">#4CAF50</Color>

 <Color x:Key="BtCancelActiveColor">#f47442</Color>

 <Color x:Key="BtInactiveColor">Gray</Color>

 <FontAttributes x:Key="BtFontStyle">Bold</FontAttributes>

 </ResourceDictionary>

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

142

Now let’s create a file that will reference MyResources.xaml. Copy

DynamicResourcesPage.xaml to a new page called ImportResourcesPage.xaml. Use xmlns

to add the namespace of MyResources, StyleExamples, to the ContentPage root element.

 xmlns:local="clr-namespace:StyleExamples"

Replace the existing ResourceDictionary in ImportResourcesPage.xaml with a

single ResourceDictionary element that imports MyResources using the MergedWith

property, like this:

 <ContentPage.Resources>

 <ResourceDictionary MergedWith="local:MyResources"/>

 </ContentPage.Resources>

The resource dictionary MyResources can now be maintained centrally and used

across the entire app.

 Global Resource Dictionary

After defining a reusable resource dictionary, make it available application-wide by

configuring App.xaml. Modify the App.xaml, as shown in Listing 4-17.

Listing 4-17. Global Resources

 <Application xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

xmlns:local="clr-

 namespace:StyleExamples" x:Class="StyleExamples.App">

 <Application.Resources>

 <ResourceDictionary MergedWith="local:MyResources"/>

 </Application.Resources>

 </Application>

Now that you’ve defined static, dynamic, and/or reusable resources, how does

Xamarin.Forms determine what resources to apply at runtime?

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

143

 Lookup Behavior
The runtime resource lookup begins with views, then pages, and then proceeds toward

application resources as needed, so the physical location of the resource dictionary in

the app matters. First, the runtime searches for any resources defined in the view that is

performing the lookup. Then, the runtime traverses the parents all the way to the page. If

it cannot find anything, then the resources defined in the application are searched and

finally the platform resources that contain default resources for controls.

Try to keep the size of resource dictionary small. Reuse in this context refers to

write once use everywhere but not that a resource exists only once in the runtime. The

runtime creates copies of a resource each time it is requested. Scenarios where resources

are defined higher up in the hierarchy but only used further down in a page are an

indication that the resource is not needed.

 Overriding Resources
When you need to force the use of a resource when other view, page, or app versions of

this resource are available, you can override resources. Define in ImportResourcesPage.

xaml a local resource that reuses the key PageBgColor to assign a different color and

override the one defined in MyResources.xaml, as shown in Listing 4-18.

Listing 4-18. Importing External Resource Dictionaries Using MergedWidth

 <ContentPage.Resources>

 <ResourceDictionary MergedWith="local:MyResources">

 <Color x:Key="PageBgColor">Red</Color>

 </ResourceDictionary>

 </ContentPage.Resources>

The locally defined Color Red is assigned to PageBgColor after MyResources is

imported.

 Merging Dictionaries
Resources can be organized in separate XAML documents. This approach reduces the

lookup effort and improves the performance if only dictionaries relevant to a page are

loaded.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

144

Use the property element syntax ResourceDictionary.MergedDictionaries instead

of the attribute MergedWith to load one or multiple external dictionaries, as shown in

Listing 4-19.

Listing 4-19. Import Multiple Resource Dictionaries Using MergedDictionaries

 <ContentPage.Resources>

 <ResourceDictionary.MergedDictionaries>

 <local:MyResources/>

 <!—other dictionaries here -->

 </ResourceDictionary>

 </ContentPage.Resources>

Merged dictionaries are searched in the order they are listed in the XAML. Resources

with the same key in subsequent dictionaries override previously declared resources.

Resources are great to avoid hardcoding properties in the application. However,

using markup extensions clutters the XAML code, which makes it less readable. Also,

each resource needs to be individually assigned to a property. Ensuring a consistent

design becomes a challenge. All of this also has performance implications. At runtime,

each resource is looked up individually and assigned to a property of a view.

Wouldn’t it be nice if the design of a view could be defined once and for the rest of

your app Xamarin.Forms would take care of the UI magic? Welcome to the World of Styles.

 Styles
Styles leverage resource dictionaries to allow us to customize the look and feel of our

UI in an elegant, reusable manner. A style is a combination of one or more property

setters that are applied to a particular View targeted by the Style. Styles are defined as

resources inside a resource dictionary. As resources, styles have the same functionality

as other resources, such as static and dynamic lookup, reuse through external resource

dictionaries, overriding locally styles defined higher up, and merging styles from

different sources. All views that inherit from VisualElement have the Style property that

can be used to lookup a style using StaticResource or DynamicResource.

However, styles can do even more: styles when provided a key are defined to target

a specific view and are referred to as explicit styles. Without a key, a style is called an

implicit style and is applied implicitly to all instances of the targeted view. Views can

override the property value provided by the style locally, by assigning a new value to the

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

145

property. Property setters defined in a style can lookup other resources in the dictionary

to avoid duplicate XAML. Styles support inheritance, which allows styles to derive from

other styles. Finally, Xamarin.Forms provides built-in device styles for the Label view that

can be used in the application to dynamically respond to the user’s accessibility settings.

Caution properties used in styles must be bindable properties and exist in the
view itself and not just its base class.

Define a style that targets ContentPage and specify a Setter inside the Style that

assigns a color to the page’s background color property, as shown in Listing 4-20.

Listing 4-20. Setting the Background Color for a Content Page

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="PageBgColor" TargetType="ContentPage">

 <Setter Property="BackgroundColor" Value="#4CAF50"/>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

The TargetType attribute is mandatory for a Style.

 Style Lookup
Being a resource, styles are looked up using either the StaticResource or

DynamicResource markup extensions. All views that inherit from VisualElement have

the Style property that can be used to lookup a style.

Assign a style to a ContentPage using either StaticResource, if the style will not

change during the lifetime of the application.

 <ContentPage Style="{StaticResource PageBgColor}"/>

Remember, as with StaticResource, a style must exist and subsequent changes of

the style will not be reflected.

Use DynamicResource if the style will change as the app runs.

 <ContentPage Style="{DynamicResource PageBgColor}"/>

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

146

With DynamicResource default values of the bindable properties are used if the style

is missing. The style can be defined at runtime, and C# code can be used to change the

style dynamically at runtime.

 Explicit Styles
Explicit styles are Style resources in a resource dictionary that have a key, which is used

by a view to reference the style. An explicit style is not applied to all instances of the

targeted view. The view must explicitly reference it in its Style property.

To specify an explicit style, add a Style element inside the resource dictionary of a

page, indicate the type of views it targets using the TargetType property, and assign a Key

to the style so that it can be referenced as a resource.

Create a new page called ExplicitStylePage.xaml and define a Style that

specifically sets the background color for the ExplicitStylePage.

 1. Create a Style specifically for a Button that uses the style

ButtonStyle, e.g.:

 <Style TargetType="Button" x:Key="ButtonStyle"/>

 2. Inside the Style element, provide one or more Setter elements

to assign values to individual properties. Define two Setter that

assign a text and background color, e.g.:

 <Setter Property="TextColor" Value="White" />

 <Setter Property="BackgroundColor" Value="#4CAF50" />

 3. Assign the Style to a view using the view’s Style property.

 <Button Text="Styled Button" Style="{StaticResource

 ButtonStyle}"/>

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

147

Figure 4-5 shows the result for both platforms.

 CODE COMPLETE: Using Explicit Styles

Listing 4-21 provides the complete code for the ExplicitStylePage.xaml.

Listing 4-21. Defining and Using Explicit Styles

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage Title="Styles Page"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.ExplicitStylePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Button" x:Key="ButtonStyle">

 <Setter Property="TextColor" Value="White" />

 <Setter Property="BackgroundColor" Value="#4CAF50" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout Orientation="Vertical">

 <Button Text="Styled Button" Style="{StaticResource

ButtonStyle}" />

 <Button Text="Regular Button" />

 </StackLayout>

 </ContentPage>

Figure 4-5. Using explicit styles

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

148

 Implicit Styles
Implicit styles are style resources in a resource dictionary that have no Key assigned and

therefore are applied to all the views specified as the target type.

Create a new XAML page called ImplicitStylePage.xaml and copy the page

ExplicitStylePage.xaml. Remove the Key ButtonStyle from the Style, like this,

leaving only the TargetType:

 <Style TargetType="Button"/>

This will apply the style to all Buttons defined in the ContentPage. Also, remove all

Buttons and create a simple button with no style, like this:

 <Button Text="Implicit Style Button"/>

Figure 4-6 shows the result for both platforms.

Figure 4-6. Using implicit styles

 CODE COMPLETE: Using Implicit Styles

Listing 4-22 provides the complete code for the ImplicitStylePage.xaml.

Listing 4-22. Defining and Using Implicit Styles

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage Title="Implicit Styles"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.ImplicitStylePage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Button">

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

149

 <Setter Property="TextColor" Value="White" />

 <Setter Property="BackgroundColor" Value="#4CAF50" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout Orientation="Vertical">

 <Button Text="Implicit Style Button"/>

 </StackLayout>

 </ContentPage>

Note the target type of a style must exactly match the type of the target view.
Otherwise it is not applied. For example, a VisualElement style will not be
applied to a Button implicitly.

To apply a style defined for a base class of a specific view, a style must be set

explicitly. Define a style for the base class View, e.g.:

 <Style TargetType="View" x:Key="ViewStyle"/>

View cannot be implicitly applied to Button. A Key must be provided to assign the

style explicitly.

 <Button Style="{StaticResource ViewStyle}"/>

 Overriding Styles
When a view is instantiated, first the style is applied and then any local values assigned

to its properties. This allows overriding styles locally, which is interesting when dealing

with styling exceptions. You can override both explicit and implicit styles.

Create a XAML page called OverridingStylesPage.xaml. Copy ExplicitStylePage.

xaml into it. Add another Button that uses the ButtonStyle but that has a local definition

of the BackgroundColor, e.g.:

 <Button Text="Overriding Styled Button" Style="{StaticResource

ButtonStyle}"

 BackgroundColor="Black"/>

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

150

Figure 4-7 shows the result for both platforms.

 CODE COMPLETE: Overriding Styles

Listing 4-23 provides the complete code for the OverridingStylesPage.xaml.

Listing 4-23. Defining and Using Implicit Styles

 <?xml version="1.0" encoding="UTF-8"?>

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.OverridingStylesPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Button" x:Key="ButtonStyle">

 <Setter Property="TextColor" Value="White" />

 <Setter Property="BackgroundColor" Value="#4CAF50" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout Orientation="Vertical">

 <Button Text="Styled Button" Style="{StaticResource

ButtonStyle}" />

 <Button Text="Regular Button" />

 <Button Text="Overriding Styled Button" Style="{StaticResource

ButtonStyle}"

Figure 4-7. Overriding styles

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

151

 BackgroundColor="Black"/>

 </StackLayout>

 </ContentPage>

 Using Resources in Styles
It is common for styles to share property settings for different views. The buttons in the

feedback page share the same text color and font style. Defining these properties for

each style individually results in duplicate XAML. The Value attribute of Setter allows

lookup of resources using StaticResource or DynamicResource.

Create a XAML file called ButtonStylesWithResourcesPage.xaml with a resource

dictionary. Define a Color and FontAttributes as separate resources in the dictionary.

Define two Button styles SubmitButton and CancelButton that both reference the

resources BtTextColor and BtFontStyle using the StaticResource markup extension

as shown in Listing 4-24.

Listing 4-24. Using Resources

 <ResourceDictionary>

 <Color x:Key="BtTextColor">Black</Color>

 <FontAttributes x:Key="BtFontStyle">Bold</FontAttributes>

 <Style x:Key="SubmitButton" TargetType="Button">

 <Setter Property="TextColor" Value="{StaticResource

BtTextColor}" />

 <Setter Property="FontAttributes" Value="{StaticResource

BtFontStyle}" />

 </Style>

 <Style x:Key="CancelButton" TargetType="Button">

 <Setter Property="TextColor" Value="{StaticResource

BtTextColor}" />

 <Setter Property="FontAttributes" Value="{StaticResource

BtFontStyle}" />

 </Style>

 </ResourceDictionary>

The DynamicResource markup extension can be used as well, which makes

BtTextColor and BtFontStyle optional at design time. The runtime uses default values

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

152

for the TextColor and FontAttributes properties if these resources cannot be found.

With StaticResource this would result in a runtime error.

Now, apply these styles to a submit and cancel button on the page, e.g.:

 <Button Text="Submit" Style="{StaticResource SubmitButton}" />

 <Button Text="Cancel" Style="{StaticResource CancelButton}" />

Figure 4-8 shows the buttons for each platform.

Both styles, SubmitButton and CancelButton now share resources but still maintain

duplicate XAML code to do so. Style inheritance solves this problem.

 CODE COMPLETE: Using Resources in Styles

Listing 4-25 shows the ButtonStylesWithResourcesPage.xaml.

Listing 4-25. ButtonStylesPage.xaml

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="StyleExamples.

ButtonStylesWithResourcesPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Color x:Key="BtTextColor">Black</Color>

 <FontAttributes x:Key="BtFontStyle">Bold</FontAttributes>

 <Style x:Key="SubmitButton" TargetType="Button">

 <Setter Property="TextColor" Value="{StaticResource

BtTextColor}" />

Figure 4-8. Button styles using resources

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

153

 <Setter Property="FontAttributes" Value="{StaticResource

BtFontStyle}" />

 </Style>

 <Style x:Key="CancelButton" TargetType="Button">

 <Setter Property="TextColor" Value="{StaticResource

BtTextColor}" />

 <Setter Property="FontAttributes" Value="{StaticResource

BtFontStyle}" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout Orientation="Vertical">

 <Button Text="Submit" Style="{StaticResource SubmitButton}" />

 <Button Text="Cancel" Style="{StaticResource CancelButton}" />

 </StackLayout>

</ContentPage>

In this example, you can see that we are setting for both the SubmitButton and

CancelButton the TextColor and FontAttributes properties. Let’s examine how we can

avoid this through style inheritance.

 Style Inheritance
Style inheritance allows a style to serve as the base style of other derived styles. The

derived style can override or add property settings.

Note a derived style can only target the same or a subclass of the view targeted
by the base style. also, an implicit style can derive from an explicit style, but an
explicit style cannot derive from an implicit style, because no Key is provided for an
implicit style.

Inheritance is handled differently depending on whether a style is derived statically

or dynamically.

Let’s start with defining style inheritance statically.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

154

 Static Style Inheritance

Static style inheritance is used to define the inheritance at design time. Use the BasedOn

property to provide a lookup for the base style.

When defining a static style inheritance, you create two styles that both target, for

example, a specific type like a Button. However, the inheriting style derives from the

first style using the BasedOn property in combination with StaticResource markup

extension, e.g.:

 <Style x:Key="Parent" TargetType="Button"/>

 <Style x:Key="Child" TargetType="Button" BasedOn="{StaticResource

Parent}"/>

Note Only the StaticResource markup extension can be used with the
BasedOn property.

To demonstrate this, copy the ButtonStylesWithResourcesPage.xaml to a new

XAML page called ButtonStylesWithStaticInheritancePage.xaml. Define a new style

called ButtonStyle that both SubmitButton and CancelButton derive from, as shown in

Listing 4-26.

Listing 4-26. Static Style Inheritance

 <ResourceDictionary>

 <Color x:Key="BtTextColor">Black</Color>

 <FontAttributes x:Key="BtFontStyle">Bold</FontAttributes>

 <Style x:Key="ButtonStyle" TargetType="Button">

 <Setter Property="TextColor" Value="{StaticResource

BtTextColor}" />

 <Setter Property="FontAttributes" Value="{StaticResource

BtFontStyle}" />

 </Style>

 <Style x:Key="SubmitButton" TargetType="Button"

BasedOn="{StaticResource

 ButtonStyle}" />

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

155

 <Style x:Key="CancelButton" TargetType="Button"

BasedOn="{StaticResource

 ButtonStyle}" />

 </ResourceDictionary>

The changes are only in the resource dictionary. The buttons look the same as

Figure 4-9 shows for each platform.

The XAML looks cleaner now but what if the inheritance can change at runtime? Use

dynamic style inheritance in this case.

 Dynamic Style Inheritance

Dynamic style inheritance defines style inheritance at runtime. Use the BaseResourceKey

property to specify the name of the base style, which can be provided at runtime.

When defining a dynamic style inheritance, create two styles that both target a

specific element type like a Button, a Parent, and a Child style. The inheriting child style

uses the BaseResourceKey property to reference the name of the parent style without

using the markup extensions StaticResource to lookup a resource, e.g.:

 <Style x:Key="Parent" TargetType="Button"/>

 <Style x:Key="Child" TargetType="Button" BaseResourceKey="Parent"/>

Note BaseResourceKey does not use a dictionary lookup.

The Style Parent does not need to exist at design time. The runtime will use default

settings of a view when instantiating the Child style, if not Parent can be found.

Figure 4-9. Button styles with static style inheritance

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

156

To demonstrate this, copy the ButtonStylesWithStaticInheritancePage.xaml to

a new XAML page called ButtonStylesWithDynamicInheritancePage.xaml. Replace

the BasedOn properties of SubmitButton and CancelButton with the BaseResourceKey

property to indicate dynamic style inheritance, as shown in Listing 4-27.

Listing 4-27. Dynamic Style Inheritance

 <ResourceDictionary>

 <Color x:Key="BtTextColor">Black</Color>

 <FontAttributes x:Key="BtFontStyle">Bold</FontAttributes>

 <Style x:Key="ButtonStyle" TargetType="Button">

 <Setter Property="TextColor" Value="{StaticResource

BtTextColor}" />

 <Setter Property="FontAttributes" Value="{StaticResource

BtFontStyle}" />

 </Style>

 <Style x:Key="SubmitButton" TargetType="Button"

 BaseResourceKey="ButtonStyle" />

 <Style x:Key="CancelButton" TargetType="Button"

 BaseResourceKey="ButtonStyle" />

 </ResourceDictionary>

Once again, the changes are only in the resource dictionary. The buttons look the

same as Figure 4-10 shows for each platform.

Figure 4-10. Button styles with dynamic style inheritance

A new style can be assigned in the code behind.

 Resources["SubmitButton"] = Resources["InactiveButton"];

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

157

 Styles Overview
Let’s revisit the feedback page and apply the various styles discussed such as style

inheritance, implicit and explicit styles, using resources, and defining styles as external

dictionaries. We will first create a resource dictionary file that defines our styles using the

techniques discussed in this chapter and then apply these styles to a feedback page and

examine how the final result compares to the original feedback page.

Create a XAML page MyStyles.xaml and copy MyResources.xaml to it. Add the

following styles to the dictionary:

 1. Create an implicit Style for ContentPage views that sets the

background color to the PageBgColor resource.

 2. Entry and Editor have a base class InputView but do not share

many properties at the base class level. Create a base Style called

InputViewStyle for InputView that sets the VerticalOptions to

FillAndExpand. Define two implicit styles for Entry and Editor

that inherit from InputViewStyle and set for each TextColor to

the InputTextColor and FontAttributes to InputFontStyle.

For the Entry also add a setter for Placeholder to lookup the text

from the SubjectPlaceholder resource.

 3. Add another Setter to the ButtonStyle for HorizontalOptions

and Setters for BackgroundColor and Text for the SubmitButton

and CancelButton styles.

 4. Create an implicit Style for Grid layouts with a default Padding,

Margin, and BackgroundColor.

 5. Create an explicit Style for StackLayout called FeedbackBorder

to be used around the Editor to provide a border.

 CODE COMPLETE: Defining Styles

Listing 4-28 shows the updated MyStyles.xaml. The resources are included from

MyResources.xaml (Listing 4-16).

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

158

Listing 4-28. MyStyles.xaml

 <ResourceDictionary xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.MyStyles">

 <Style TargetType="ContentPage">

 <Setter Property="BackgroundColor" Value="{DynamicResource

 PageBgColor}" />

 </Style>

 <Style x:Key="InputViewStyle" TargetType="InputView">

 <Setter Property="VerticalOptions" Value="FillAndExpand" />

 </Style>

 <Style TargetType="Entry" BaseResourceKey="InputViewStyle">

 <Setter Property="FontAttributes" Value="{DynamicResource

 InputFontStyle}" />

 <Setter Property="TextColor" Value="{DynamicResource

InputTextColor}" />

 <Setter Property="Placeholder" Value="{DynamicResource

 SubjectPlaceholder}" />

 </Style>

 <Style TargetType="Editor" BaseResourceKey="InputViewStyle">

 <Setter Property="FontAttributes" Value="{DynamicResource

 InputFontStyle}" />

 <Setter Property="TextColor" Value="{DynamicResource

InputTextColor}" />

 </Style>

 <Style x:Key="ButtonStyle" TargetType="Button">

 <Setter Property="HorizontalOptions" Value="FillAndExpand" />

 <Setter Property="TextColor" Value="{DynamicResource

BtTextColor}" />

 <Setter Property="FontAttributes" Value="{DynamicResource

BtFontStyle}" />

 </Style>

 <Style x:Key="SubmitButton" TargetType="Button"

 BaseResourceKey="ButtonStyle">

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

159

 <Setter Property="BackgroundColor" Value="{DynamicResource

 BtSubmitColor}" />

 <Setter Property="Text" Value="Submit" />

 </Style>

 <Style x:Key="CancelButton" TargetType="Button"

 BaseResourceKey="ButtonStyle">

 <Setter Property="BackgroundColor" Value="{DynamicResource

 BtCancelColor}" />

 <Setter Property="Text" Value="Cancel" />

 </Style>

 <Style TargetType="Grid">

 <Setter Property="Padding" Value="30" />

 <Setter Property="Margin" Value="30" />

 <Setter Property="BackgroundColor" Value="{DynamicResource

 FormBgColor}" />

 </Style>

 <Style x:Key="FeedbackBorder" TargetType="StackLayout">

 <Setter Property="Orientation" Value="Vertical" />

 <Setter Property="BackgroundColor" Value="{DynamicResource

 FeedbackBorderColor}" />

 <Setter Property="Padding" Value="1" />

 </Style>

 <x:String x:Key="SubjectPlaceholder">Enter Subject</x:String>

 <x:String x:Key="FeedbackPlaceholder">Type your message here

</x:String>

 <x:String x:Key="InputPlaceholder">Enter Subject</x:String>

 <Color x:Key="PageBgColor">#4CAF50</Color>

 <Color x:Key="PageBgColorNoSubject">#85af87</Color>

 <Color x:Key="PageBgColorWithSubject">#4CAF50</Color>

 <Color x:Key="FormBgColor">#AAAAAA</Color>

 <Color x:Key="InputTextColor">Navy</Color>

 <Color x:Key="InputPlaceholderColor">Silver</Color>

 <Color x:Key="FeedbackBorderColor">Silver</Color>

 <FontAttributes x:Key="InputFontStyle">Italic</FontAttributes>

 <Color x:Key="BtTextColor">White</Color>

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

160

 <Color x:Key="BtSubmitColor">#4CAF50</Color>

 <Color x:Key="BtCancelColor">#f47442</Color>

 <Color x:Key="BtSubmitActiveColor">#4CAF50</Color>

 <Color x:Key="BtCancelActiveColor">#f47442</Color>

 <Color x:Key="BtInactiveColor">Gray</Color>

 <FontAttributes x:Key="BtFontStyle">Bold</FontAttributes>

 </ResourceDictionary>

Now let’s use the styles we have defined. Duplicate the ImportResourcesPage.xaml

and rename it to StylesPage.xaml. Replace local:MyResources with local:MyStyles to

load MyStyles.xaml instead, that is:

 <ResourceDictionary MergedWith="local:MyStyles"/>

For the styles to take effect, we remove all properties set directly and instead use the

Style property to apply our styles from MyStyles.xaml. Apply the styles to your page:

 1. Remove the BackgroundColor property assignment for the

ContentPage. This is set now implicitly.

 2. Remove Placeholder, TextColor, and FontAttributes property

assignments from the Entry view. These are set now implicitly.

 3. Remove VerticalOptions, TextColor, and FontAttributes

property assignments from the Editor view. These are set now

implicitly.

 4. Remove HorizontalOptions, TextColor, FontAttributes, and

BackgroundColor property settings from the two Buttons. Instead

use the Style property of the Buttons to lookup the SubmitButton

and CancelButton, respectively.

 5. Remove the Padding, Margin, and BackgroundColor property

settings from the Grid. These are now set implicitly.

 6. Remove the Padding and BackgroundColor property settings from

the StackLayout that includes the Editor. Instead set the Style

property of the StackLayout to lookup the FeedbackBorder style.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

161

 CODE COMPLETE: Applying Styles

Listing 4-29 shows the resulting StylesPage.xaml. The Grid row and column definitions

are included from Listing 4-9.

Listing 4-29. StylesPage.xaml

 <ContentPage Title="Styles Page" xmlns:local="clr- namespace:StyleExamples"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.StylesPage">

 <ContentPage.Resources>

 <ResourceDictionary MergedWith="local:MyStyles"/>

 </ContentPage.Resources>

 <ContentPage.Content>

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto"/>

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Entry x:Name="Subject" Grid.Row="0" Focused="HandleSubject"

 Unfocused="HandleSubject" />

 <StackLayout Style="{StaticResource FeedbackBorder}" Grid.

Row="1">

 <Editor x:Name="Feedback" Focused="HandleFeedback"

 Unfocused="HandleFeedback" />

 </StackLayout>

 <StackLayout Orientation="Horizontal" Grid.Row="2">

 <Button Style="{StaticResource SubmitButton}" />

 <Button Style="{StaticResource CancelButton}" />

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

162

 </StackLayout>

 </Grid>

 </ContentPage.Content>

 </ContentPage>

Figure 4-11 shows the result for both platforms.

Compare StylesPage.xaml with the original FeedbackPage.xaml in Listing 4-1.

They are almost identical. StylesPage has only a few additional property settings for the

Buttons and the StackLayout to compensate for the lack of a Border property for the

Editor.

Using styles removes the clutter from the XAML and makes it more maintainable and

consistent across the entire application.

Figure 4-11. Feedback page using styles

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

163

Xamarin.Forms provides device styles for Label to allow an application to respond to

accessibility settings of a user. Let’s explore this next.

 Device Styles
Xamarin.Forms provides for the Label control six built-in styles that adjust dynamically

to accessibility settings of the device, referred to as device styles:

 1. TitleStyle

 2. SubTitleStyle

 3. BodyStyle

 4. CaptionStyle

 5. ListItemTextStyle

 6. ListItemDetailTextStyle

The device styles can be used like any other style directly on the Label view using the

Style property, e.g.:

 <Label Style="{DynamicResource TitleStyle}">

The device styles can also serve as the base style for other Label views using the

BaseResourceKey of a Style element, e.g.:

 <Style x:Key="MyTitleStyle" TargetType="Label"

BaseResourceKey="TitleStyle">

 <Setter Property="TextColor" Value="#4CAF50" />

 </Style>

The second option is interesting as it allows an application to respond to accessibility

settings of a user.

Note Use DynamicResource for looking up styles to ensure the view is updated
if the user changes the accessibility settings.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

164

Figure 4-12 shows how built-in device styles are rendered on iOS and Android.

 CODE COMPLETE: Using Device Styles

Listing 4-30 provides the complete code for the DeviceStylePage.xaml.

Listing 4-30. StylesPage.xaml

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.DeviceStylesPage">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style x:Key="MyTitleStyle" TargetType="Label"

 BaseResourceKey="TitleStyle">

 <Setter Property="TextColor" Value="#4CAF50" />

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 <StackLayout Padding="20,20">

 <Label Text="Regular text" />

 <Label Text="My Title Style" Style="{DynamicResource

MyTitleStyle}" />

 <Label Text="Title" Style="{DynamicResource TitleStyle}" />

 <Label Text="Subtitle" Style="{DynamicResource

SubtitleTextStyle}" />

Figure 4-12. Using device styles

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

165

 <Label Text="Body" Style="{DynamicResource BodyStyle}" />

 <Label Text="Caption" Style="{DynamicResource CaptionStyle}" />

 <Label Text="List Item Text" Style="{DynamicResource

ListItemTextStyle}" />

 <Label Text="List Item Detail Text" Style="{DynamicResource

 ListItemDetailTextStyle}" />

 </StackLayout>

 </ContentPage>

The feedback page defined styles for selected controls as a reusable resource

dictionary. Creating a collection of well-designed and cohesive styles is an art in and of

itself. A baseline to start from is themes that are available for Xamarin.Forms.

 Themes
Xamarin.Forms themes are collections of styles for common visual elements and include

style options for standard controls. Themes are a great way to learn about styles, and

they provide two ready-made templates. Many platforms support a light and a dark

mode. The light mode provides high contrast and is useful during day time. For low-light

conditions or working at night, a dark mode can be more pleasant. Xamarin.Forms Light

and a Dark theme NuGet packages can be added to a project to implement a light or a

dark theme.

Using the dark or light theme helps bootstrap the creation of your own custom

themes, while you only override the styles as needed.

Note themes have been in preview for years now and are best used as a
learning tool for styles unless they are released to Stable.

 Using Themes
Using themes is a four-step process:

 1. Import the Light or Dark theme NuGet packages.

 2. Initialize themes in the platform-specific projects.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

166

 3. Add the theme namespace in the page or application.

 4. Load the theme as a resource dictionary.

The coding for using the Light and Dark theme is almost identical. Let’s begin with

the Dark theme for our main example and then tackle the Light theme at the end. Here

are the four steps in detail:

 1. Import the Dark theme into your project by adding the Xamarin.

Forms.Theme.Base NuGet package as well as the corresponding

Dark package to both platform-specific projects (iOS and

Android).

 2. Themes are still in preview and occasionally don’t load properly

due to an error. Use the following steps in each platform-specific

project to initialize them:

In the iOS platform-specific project, add the following lines of code

after the LoadApplication method in the AppDelegate.cs file:

 var x = typeof(Xamarin.Forms.Themes.DarkThemeResources);

 x = typeof(Xamarin.Forms.Themes.iOS.UnderlineEffect);

Similarly, in the Android platform-specific project, add the

following lines of code after the LoadApplication method in the

MainActivity.cs file:

 var x = typeof(Xamarin.Forms.Themes.DarkThemeResources);

 x = typeof(Xamarin.Forms.Themes.Android.UnderlineEffect);

 3. Add the namespace to App.xaml by providing the namespace

Xamarin.Forms.Themes and the assembly Xamarin.Forms.Theme.

Dark, e.g.,

xmlns:theme="clr-namespace:Xamarin.Forms.Themes;

 assembly=Xamarin.Forms.Theme.Dark"

 4. Load a dark theme as an external resource dictionary in the App.

xaml to use the theme globally, as shown in Listing 4-31.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

167

Listing 4-31. Using the Dark Theme

 <Application xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="mynamespace.App" xmlns:theme="clr-

 namespace:Xamarin.Forms.Themes;assembly=Xamarin.Forms.Theme.Dark">

 <Application.Resources>

 <ResourceDictionary MergedWith="theme:DarkThemeResources" />

 </Application.Resources>

 </Application>

Tip Using the light theme follows the same process. Just replace the word
"Dark" with "Light" and you are good to go. more on this soon.

Let’s add some styling options for supported controls to show what the themes are

all about.

 Theme Styling Options
Both light and dark themes provide style options for selected controls. Style options are

available for the following controls:

• BoxView styles: HorizontalRule, Circle, and Rounded.

• Image styles: Circle, Rounded, and Thumbnail. Rounded and

Thumbnail currently behave the same.

• Button styles: Default, Primary, Success, Info, Warning, Danger,

Link, Small, and Large.

• Label styles: Header, Subheader, Body, Link, and Inverse.

To apply a style option to a view, use the view’s StyleClass property. For example, if

you want to add a header to your application, set StyleClass to the style option Header

on your Label.

 <Label Text="Header" StyleClass="Header"/>

Let’s look how these style options look like in the dark and the light theme.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

168

 Dark Theme
Let’s create a page that uses all the style options in the dark theme available for Button

and Label. Create a page called DarkThemePage.xaml and import the dark theme, as

shown in Listing 4-32. Add in the page nine buttons and five labels, each using one of the

preceding styling options.

Listing 4-32. Dark Theme Page

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.DarkThemePage" xmlns:theme="clr-

 namespace:Xamarin.Forms.Themes;assembly=Xamarin.Forms.Theme.Dark">

 <ContentPage.Resources>

 <ResourceDictionary MergedWith="theme:DarkThemeResources" />

 </ContentPage.Resources>

 <StackLayout Padding="20">

 <Button Text="Button Default" StyleClass="Default" />

 <Button Text="Button Primary" StyleClass="Primary" />

 <Button Text="Button Success" StyleClass="Success" />

 <Button Text="Button Info" StyleClass="Info" />

 <Button Text="Button Warning" StyleClass="Warning" />

 <Button Text="Button Danger" StyleClass="Danger" />

 <Button Text="Button Link" StyleClass="Link" />

 <Button Text="Button Default Small" StyleClass="Small" />

 <Button Text="Button Default Large" StyleClass="Large" />

 <Label Text="Label Header" StyleClass="Header" />

 <Label Text="Label Subheader" StyleClass="Subheader" />

 <Label Text="Label Body" StyleClass="Body" />

 <Label Text="Label Link" StyleClass="Link" />

 <Label Text="Label Inverse" BackgroundColor="White"

StyleClass="Inverse"/>

 </StackLayout>

 </ContentPage>

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

169

Figure 4-13 shows the available style options for the dark theme on iOS and Android.

 Light Theme
Now for the Light theme, first you need to carry out the four steps we used earlier

for the “Dark Theme” under “Using Themes” to initialize the Light theme, replacing

“Dark” with “Light”.

Next create a page called LightThemePage.xaml and import the Light theme, as

shown in Listing 4-33. Add in the page the same nine buttons and five labels, each using

one of the options.

Figure 4-13. Dark theme with available style options

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

170

Listing 4-33. Light Theme Page

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.LightThemePage" xmlns:theme="clr-

 namespace:Xamarin.Forms.Themes;assembly=Xamarin.Forms.Theme.Light">

 <ContentPage.Resources>

 <ResourceDictionary MergedWith="theme:LightThemeResources" />

 </ContentPage.Resources>

 <StackLayout Padding="20">

 <Button Text="Button Default" StyleClass="Default"

 BackgroundColor="Black"/>

 <Button Text="Button Primary" StyleClass="Primary" />

 <Button Text="Button Success" StyleClass="Success" />

 <Button Text="Button Info" StyleClass="Info" />

 <Button Text="Button Warning" StyleClass="Warning" />

 <Button Text="Button Danger" StyleClass="Danger" />

 <Button Text="Button Link" StyleClass="Link" />

 <Button Text="Button Default Small" StyleClass="Small" />

 <Button Text="Button Default Large" StyleClass="Large" />

 <Label Text="Label Header" StyleClass="Header" />

 <Label Text="Label Subheader" StyleClass="Subheader" />

 <Label Text="Label Body" StyleClass="Body" />

 <Label Text="Label Link" StyleClass="Link" />

 <Label Text="Label Inverse" BackgroundColor="White"

StyleClass="Inverse"/>

 </StackLayout>

 </ContentPage>

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

171

The Light theme with style options applied looks like Figure 4-14.

 Custom Themes
Custom themes are themes you define based on the dark and the light theme. After using

one of the two themes, customize it. Define a style that derives from the style option

using the Class property of the Style element and override properties of the style option

with one or more property settings, e.g.:

 <Style TargetType="Label" Class="Header">

 <Setter Property="TextColor" Value="Red"/>

 </Style>

Now, let’s go back to the original feedback page and define a custom theme to style it.

Figure 4-14. Light theme with available style options

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

172

 Customizing the Dark Theme

Create a new resource dictionary file called CustomTheme.xaml and override the Success

and Warning Style for Button with the BtSubmitColor and BtCancelColor, as shown in

Listing 4-34.

Listing 4-34. Defining Custom Themes

 <ResourceDictionary xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.CustomTheme">

 <Color x:Key="BtSubmitColor">#4CAF50</Color>

 <Color x:Key="BtCancelColor">#f47442</Color>

 <Style TargetType="Button" Class="Success">

 <Setter Property="BackgroundColor" Value="{StaticResource

 BtSubmitColor}"/>

 </Style>

 <Style TargetType="Button" Class="Warning">

 <Setter Property="BackgroundColor" Value="{StaticResource

 BtCancelColor}"/>

 </Style>

 </ResourceDictionary>

Duplicate the FeedbackPage.xaml and call the new file CustomDarkThemePage.xaml.

Load the custom theme into the CustomDarkThemePage. Assign the Success and Warning

styles to the submit and cancel buttons, e.g.:

 <Button Text="Cancel" StyleClass="Warning" />

 <Button Text="Submit" StyleClass="Success" />

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

173

Figure 4-15 shows the customized dark theme applied to the feedback page.

 CODE COMPLETE: Customizing the Dark Theme

Listing 4-35 provides the complete code for the CustomDarkThemePage.xaml.

Listing 4-35. CustomDarkThemePage.xaml

 <ContentPage Title="Custom Dark Theme"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="StyleExamples.CustomDarkThemePage" xmlns:theme="clr-

 namespace:Xamarin.Forms.Themes;assembly=Xamarin.Forms.Theme.Dark">

 <ContentPage.Resources>

 <ResourceDictionary MergedWith="theme:DarkThemeResources" />

Figure 4-15. Custom dark theme applied to the feedback page

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

174

 </ContentPage.Resources>

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Entry Placeholder="Enter Subject" Grid.Row="0" />

 <Editor x:Name="Feedback" Grid.Row="1" Unfocused="HandleFeedback"

 Focused="HandleFeedback" />

 <StackLayout Orientation="Vertical" Grid.Row="2">

 <Button Text="Cancel" StyleClass="Warning" />

 <Button Text="Submit" StyleClass="Success" />

 </StackLayout>

 </Grid>

 </ContentPage>

Up until now, the XAML syntax was used to style an application. An alternative and

common syntax for web pages is Cascading Style Sheets, which is supported by Xamarin.

Forms as well.

 Cascading Style Sheets (CSS)
Cascading Style Sheets (CSS) is a language to describe the presentation of Hypertext

Markup Language (HTML) web pages. Xamarin.Forms has adopted this notation as an

alternative to the XAML syntax. Internally, the CSS is parsed and the same style engine is

used to apply the design.

CSS is comprised of a set of rules, each starting with one or more Selectors separated

by a comma and followed by one or more property-value pairs inside curly braces.

Tip anything you can do with Xaml styles, you can do with CSS and vice versa.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

175

Caution Use either styles or CSS but not a combination of both when developing
an application to simplify troubleshooting.

 Selectors
A selector points to the XAML element for which the property settings apply. The basic

anatomy of a CSS rule is shown in Listing 4-36.

Listing 4-36. Anatomy of a CSS Rule

 Selector {

 Property1: Value1;

 Property2: Value2;

 }

If a matching XAML element is found, then the values are assigned to its respective

properties, such as Value1 to Property1 and Value2 to Property2. This is very similar

to a XAML Style element and Setters. A selector specifies the type of page, layout, or

control and possibly the relationship between them that needs to be satisfied before a

style can be applied.

The lists of supported selectors, properties, and property values are provided at the

end of the section as a reference. Selectors can be combined without any limitation. All

matching styles are applied in the order of the definition. Styles applied on the control

itself are applied last. This is referred to as cascading, which means in this context that

the rule that is the most specific is applied last.

Note Selector names are case sensitive. property names must be lower case.
property values are not case sensitive.

Let’s revisit the original feedback page and use CSS to style it.

 Using CSS
Use CSS notation to style Xamarin.Forms elements. Style specific classes with

.StyleClassName notation, views with #ViewName, and class types with ^ClassName.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

176

Let’s style our Feedback app using CSS. First you will need a CSS file. Create a style

sheet called Styles.css in the project and use the Build Action to define the file as an

EmbeddedResource.

We want to define our submit button style with a white and bold font and a green

background color. For this, use the selector notation. StyleClassName to define a CSS

rule for the SubmitButton style class. Use the property color for TextColor, font-style

for FontAttributes, and background-color for BackgroundColor to specify the values,

as shown in Listing 4-37.

Listing 4-37. CSS Rule for the SubmitButton Style Class

 .SubmitButton {

 color: white;

 font-style: bold;

 background-color: #4CAF50;

 }

Repeat the same for the style class CancelButton, defining a selector but instead

using our orange background color, as shown in Listing 4-38.

Listing 4-38. CSS Rule for the CancelButton Style Class

 .CancelButton {

 color: white;

 font-style: bold;

 background-color: #f47442;

 }

A selector can target named views in the XAML. Use the notation #ViewName to define

the CSS rule for the Entry and Editor controls named Subject and Feedback using the

color, font-style, and background-color properties to turn the font of the subject and

feedback views italic with a navy color on a white background, as shown in Listing 4-39.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

177

Listing 4-39. CSS Rule for Views Named Subject and Feedback

 #Subject,#Feedback{

 color: navy;

 font-style: italic;

 background-color: white;

 }

You can provide a border to the feedback view by defining a style FeedbackBorder

with a padding of 1 and a silver background color, as shown in Listing 4-40.

Listing 4-40. CSS Rule to Define a Border for StackLayout That Contains the

Editor View

 .FeedbackBorder {

 padding: 1;

 background-color: silver;

 }

Define styles targeting all views of the same type using the ^ClassName notation. To

apply a green background color to all ContentPage views and a grey color to all Grid

views and a 30-pixel padding to both view types, use the background-color and padding

properties, as demonstrated in Listing 4-41.

Listing 4-41. CSS Rule for ContentPages and Grids

 ^ContentPage {

 background-color: #4CAF50;

 padding: 30 30;

 }

 ^Grid {

 background-color: #AAAAAA;

 padding: 30 30;

 }

Create a new XAML file called CSSPage.xaml and copy StylesPage.xaml into it.

Replace MyStyles by loading the CSS as a resource dictionary using the StyleSheet

syntax, as shown in Listing 4-42.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

178

Listing 4-42. Loading a CSS into XAML

 <ContentPage Title="Cascading Style Sheet"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" xmlns:local="clr-

 namespace:CSSExample" x:Class="CSSExample.CSSPage">

 <ContentPage.Resources>

 <StyleSheet Source="Styles/Styles.css" />

 </ContentPage.Resources>

 ...

 </ContentPage>

Remove the Style property settings for StackLayout and the two buttons

and replace them with StyleClass properties pointing to the FeedbackBorder,

SubmitButton, and CancelButton as specified in Styles.css.

Figure 4-16 shows the feedback page using CSS.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

179

Figure 4-16. Feedback page using CSS

 CODE COMPLETE: Using CSS

Listings 4-43 and Listing 4-44 provide the complete code for the Styles.css and

CSSPage.xaml.

Listing 4-43. Styles.css

 ^ContentPage {

 background-color: #4CAF50;

 padding: 30 30;

 }

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

180

 #Subject,#Feedback{

 color: navy;

 font-style: italic;

 background-color: white;

 }

 .FeedbackBorder {

 padding: 1;

 background-color: silver;

 }

 .SubmitButton {

 color: white;

 font-style: bold;

 background-color: #4CAF50;

 }

 .CancelButton {

 color: white;

 font-style: bold;

 background-color: #f47442;

 }

 .InactiveButton {

 color: white;

 font-style: bold;

 background-color: gray;

 }

 ^Grid {

 background-color: #AAAAAA;

 padding: 30 30;

 }

Listing 4-44. CSSPage.xaml

 <ContentPage Title="Cascading Style Sheet"

 xmlns="http://xamarin.com/schemas/2014/forms"

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

181

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" xmlns:local="clr-

 namespace:CSSExample" x:Class="CSSExample.CSSPage">

 <ContentPage.Resources>

 <StyleSheet Source="Styles/Styles.css" />

 </ContentPage.Resources>

 <Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Entry Placeholder="Enter Subject" x:Name="Subject" Grid.Row="0"

 Focused="HandleSubject" Unfocused="HandleSubject" />

 <StackLayout StyleClass="FeedbackBorder" Grid.Row="1"

 Orientation="Vertical">

 <Editor x:Name="Feedback" Focused="HandleFeedback"

 Unfocused="HandleFeedback" VerticalOptions="FillAndExpand" />

 </StackLayout>

 <StackLayout Orientation="Vertical" Grid.Row="2">

 <Button Text="Submit" StyleClass="SubmitButton" />

 <Button Text="Cancel" StyleClass="CancelButton" />

 </StackLayout>

 </Grid>

 </ContentPage>

 Xamarin.Forms CSS Definition
The following is a Rosetta Stone of CSS, translating between XAML and CSS for the

supported selectors. Again, anything you can do in CSS, you can do in XAML, and the

other way around. Tables 4-1 and 4-2 list supported CSS selectors, properties, and

property values in Xamarin.Forms.

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

182

Ta
bl

e
4-

1.
 S

u
pp

or
te

d
C

SS
 S

el
ec

to
rs

Co
nt

ro
l

CS
S

Ex
am

pl
e

Co
rr

es
po

nd
in

g
XA

M
L

De
sc

rip
tio

n

.c
la
ss

.N
ot
e

<L
ab
el
 S
ty
le
Cl
as
s=
"N
ot
e"
>

Cl
as

s
Se

le
ct

or
. S

el
ec

ts
 a

ny
 e

le
m

en
t c

la
ss

ifi
ed

as
 N
ot
e

#i
d

Me
ss
ag
e

<L
ab
el
 x
:N
am
e=

"M
es
sa
ge

">
Id

 S
el

ec
to

r.
Se

le
ct

s
th

e
el

em
en

t w
ith

 th
e

un
iq

ue

na
m

e
Me
ss
ag
e

*
*

--
Un

iv
er

sa
l S

el
ec

to
r.

Se
le

ct
s

an
y

vi
su

al
 e

le
m

en
t

El
em
en
t

La
be
l

<L
ab
el
>

el
em

en
t S

el
ec

to
r.

Se
le

ct
s

al
l v

is
ua

l e
le

m
en

ts
 o

f

a
pa

rti
cu

la
r t

yp
e

El
em
en
t
El
em
en
t

St
ac
kL
ay
ou
t
La
be
l

<S
ta
ck
La
yo
ut
><
La
be
l/
>

</
St
ac
kL
ay
ou
t>

de
sc

en
de

nt
 S

el
ec

to
r.

Se
le

ct
s

al
l L
ab
el

s
in

si
de

a
St
ac
kL
ay
ou
t

El
em
en
t>
El

em
en
t

St
ac
kL
ay
ou
t>
La
be
l

<S
ta
ck
La
yo
ut
><
La
be
l/
>

</
St
ac
kL
ay
ou
t>

Ch
ild

 S
el

ec
to

r.
Se

le
ct

s
al

l L
ab
el

s
w

he
re

 th
e

pa
re

nt
 is

 a
 S
ta
ck
La
yo
ut

El
em
en
t+
El

em
en
t

La
be
l+
Bu
tt
on

<L
ab
el
/>
<B
ut
to
n/
>

ad
ja

ce
nt

 S
ib

lin
g

Se
le

ct
or

. S
el

ec
ts

 a
ll
Bu
tt
on

s

im
m

ed
ia

te
ly

 p
la

ce
d

af
te

r a
 L
ab
el

El
em
en
t~
El
em
en
t

La
be
l+
La
be
l

<L
ab
el
/>
<B
ut
to
n/
>

Si
bl

in
g

Se
le

ct
or

. S
el

ec
ts

 a
ll
Bu
tt
on

s
th

at

fo
llo

w
 a

 L
ab
el

 w
hi

ch
 h

av
e

th
e

sa
m

e
pa

re
nt

El
em
en
t,
El
em
en
t

La
be
l,
Bu
tt
on

<L
ab
el
>

<B
ut
to
n>

li
st

 o
f S

el
ec

to
rs

. S
el

ec
ts

 a
ll
La
be
l

an
d

Bu
tt
on

 e
le

m
en

ts

^E
le
me
nt

^V
is
ua
lE
le
me
nt

--
Ba

se
 t

yp
e

Se
le

ct
or

. S
el

ec
ts

 a
ny

 e
le

m
en

t t
ha

t

is
 b

as
ed

 o
n
Vi
su
al
El
em
en
t.

 t
hi

s
se

le
ct

or
 is

on
ly

 a
va

ila
bl

e
in

 X
am

ar
in

.F
or

m
s

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

183

Ta
bl

e
4-

2.
 P

ro
pe

rt
ie

s
an

d
V

al
u

es
 S

u
pp

or
te

d
by

 X
am

ar
in

.F
or

m
s

Pr
op

er
ty

Vi
su

al
 E

le
m

en
t

Va
lu

e
Ex

am
pl

e

ba
ck
gr
ou
nd
-c
ol
or

Vi
su
al
El
em
en
t

Co
lo
r
ty
pe
:
Na
me
,

HE
X,
 R
GB
,
RG
BA
,
HS
L

an
d
HS
LA
 v
al
ue
s

ba
ck

gr
ou
nd
-c
ol
or
:
re
d;

ba
ck
gr
ou
nd
-i
ma
ge

Pa
ge

st
ri
ng

ba
ck
gr
ou
nd
- i
ma
ge
:l
og
o.
pn
g;

bo
rd
er
- c
ol
or

Bu
tt
on
,
Fr
am
e

Co
lo
r
ty
pe

bo
rd
er
- c
ol
or
:#
22
22
22
;

bo
rd
er
- w
id

th
Bu
tt
on

do
ub
le

bo
rd
er
-w
id
th
:.
25
;

co
lo
r

Bu
tt
on
,
Da
te
Pi
ck
er
,
Ed
it
or
,
En
tr
y,

La
be
l,
 P
ic
ke
r,
 S
ea
rc
hB
ar
,
Ti
me
Pi
ck
er

Co
lo
r
ty
pe

co
lo
r:
rg
ba
(0
,1
25
,3
,0
.2
);

di
re
ct
io
n

Vi
su
al
El
em
en
t

lt
r,
 r
tl
,i
ni
ti
al

di
re

ct
io
n:
rt
l;

fo
nt
- f
am
il
y

Bu
tt
on
,
Da
te
Pi
ck
er
,
Ed
it
or
,

En
tr
y,
 L
ab
el
,
Pi
ck
er
,
Se
ar
ch
Ba
r,

Ti
me
Pi
ck
er
,
Sp
an

st
ri
ng

fo
nt

-f
am
il
y:
Ar
ia
l;

fo
nt
-s
iz
e

Bu
tt
on
,
Da
te
Pi
ck
er
,
Ed
it
or
,

En
tr
y,
 L
ab
el
,
Pi
ck
er
,
Se
ar
ch
Ba
r,

Ti
me
Pi
ck
er
,
Sp
an

do
ub
le

Na
me
dS
iz
e
ty
pe
:

de
fa
ul
t,
 m
ic
ro
,

sm
al
l,
 m
ed
iu
m,
 l
ar
ge

fo
nt
-s
iz
e:
La
rg
e;

fo
nt
-s
ty
le

Bu
tt
on
,
Da
te
Pi
ck

er
,
Ed
it
or
,

En
tr
y,
 L
ab
el
,
Pi

ck
er
,
Se
ar
ch
Ba
r,

Ti
me
Pi
ck
er
,
Sp
an

bo
ld
,
it
al
ic

fo
nt
-s
ty
le
:i
ta
li
c; (c

on
ti

n
u

ed
)

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

184

Ta
bl

e
4-

2.
 (

co
n

ti
n

u
ed

)

Pr
op

er
ty

Vi
su

al
 E

le
m

en
t

Va
lu

e
Ex

am
pl

e

he
ig
ht

mi
n-
he
ig
ht

wi
dt
h

mi
n-
wi
dt
h

Vi
su
al
El
em
en
t

do
ub
le

he
ig

ht
:5
0;

ma
rg
in

ma
rg
in
- l
ef
t

ma
rg
in
-t
op

ma
rg
in
- r
ig
ht

ma
rg
in
- b
ut
to
n

Vi
ew

Th
ic
kn
es
s
ty
pe

do
ub
le

ma
rg
in
:1
0
20
;

ma
rg
in
-r
ig
ht
:3
;

pa
dd
in
g

pa
dd
in
g-
 le
ft

pa
dd
in
g-
 to
p

pa
dd
in
g-
 ri
gh
t

pa
dd
in
g-
 bo
tt
om

La
yo
ut
,
Pa
ge

Th
ic
kn
es
s
ty
pe

do
ub
le

pa
dd
in
g:
 1
0
20
;

pa
dd
in
g-
bo
tt
om
:5
;

op
ac
it
y

Vi
su
al
El
em
en
t

do
ub
le

op
ac
it
y:
.5
;

te
xt
-a
li
gn

En
tr
y,
 E
nt
ry
Ce
ll
,
La
be
l,
 S
ea
rc
hB
ar

le
ft
,
ri
gh
t,
 c
en
te
r,

st
ar
t,
 e
nd

te
xt
-a
li
gn
:r
ig
ht
;

vi
si
bi
li
ty

Vi
su
al
El
em
en
t

tr
ue
,
vi
si
bl
e,
 f
al
se
,

hi
dd
en
,
co
ll
ap
se

vi
si

bi
li
ty
:
fa
ls
e;

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

185

All properties accept initial as the value to reset the value set by another style, e.g.:

 background-color: initial;

Thickness data type allows one (uniform), two (vertical horizontal), three (top,

horizontal, bottom), and four (top, right, bottom, left) values separated by white space.

 Summary
Using resources inside resource dictionaries is a powerful way to reduce duplicate

XAML and improve the maintainability of an application. Any object can be defined as a

resource inside a dictionary. Resources are looked up by their key either once when the

XAML element using the resource is initialized the first time using the StaticResource

markup extension or continuously using DynamicResource. The lookup behavior for

resources allows resources defined at a lower level to override those defined higher

up in the application. Resources can be stored in external dictionaries for reuse across

multiple pages or the entire application. Style resources address the limitations of

using resources directly for defining UI designs. This allows creating more performant,

readable, and coherent applications. Styles can be defined implicitly or explicitly, can

be overridden locally, and support both dynamic and static inheritance. Xamarin.

Forms provides built-in device styles for Label to respond to the accessibility settings

of users and comes with two pre-defined themes to support a dark and the light mode.

Alternatively to the XAML syntax, the CSS notation can be used, which at runtime is

translated to styles in a resource dictionary.

That’s Xamarin.Forms design using resources, styles, and CSS. Let’s move on to user

interaction!

Chapter 4 StyleS, themeS, and CSS

www.EBooksWorld.ir

187
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4_5

CHAPTER 5

User Interaction Using
Controls
Users choose dates, times, text, integers, doubles, and other values on mobile devices

by using tactile controls. Touch-sensitive screens have user interaction that differs

slightly from mouse-driven UIs: most is done with the thumbs and forefingers on the

touchscreen. From the user’s standpoint, this results in a hands-on control-panel

interface with switches, icons, sliders, keyboards, and pickers that sometimes look—but,

more important, feel—like physical mechanisms.

Chapter 1 covered some of the basic Xamarin.Forms views such as the Label,

Button, and Image. In this chapter, you’ll explore additional controls available on each

platform, the gestures and events that make them work, and their outputs.

Many of the controls in this chapter are picker-style (pick a date, pick an option, pick a

time, etc.). These controls tend to look and work better when displayed in a modal dialog

box, a pop-up box that overlays the app and maintains focus until dismissed by the user.

Xamarin.Forms handles this for you by automatically placing pickers in dialogs. You can

enhance your controls using Xamarin.Forms’ commands, triggers, and behaviors.

This chapter is a gallery and a reference for the most commonly used selection controls.

 Xamarin.Forms Views
These are more of the basic Xamarin.Forms views:

• Picker: A pop-up to select a value from a simple list

• DatePicker: A pop-up for selecting month, date, and year

• TimePicker: A pop-up for selecting hour, minute, and AM/PM

www.EBooksWorld.ir

188

• Stepper: Increment/decrement buttons for discrete values

• Slider: Sliding input lever for continuous values

• Switch: Boolean on/off control

Xamarin.Forms views provide a range of controls that mimic and extend their iOS

and Android counterparts. All of the views covered here allow selection and populate at

least one property with a data value specified by the user, sometimes more. Let’s look at

each view in turn.

Xamarin.Forms views often provide the selected value in two places: a handler event

property (e.g., e.NewValue) provides the most recent value, and a general-use property

on the view provides the selected value for use throughout the page. You will create two

labels to display both of those values: EventValue and PageValue.

Create a new page called Controls.xaml and declare StackLayout with two Label

views to hold the results of control selection.

 <StackLayout HorizontalOptions="Center">

 <Label x:Name="EventValue" Text="Value in Event" />

 <Label x:Name="PageValue" Text="Value in Page" />

 </StackLayout>

Center all of the controls in the StackLayout by using HorizontalOptions =

"Center".

All of the Xamarin.Forms examples in this chapter can be found in the source

listing Controls in the ControlExamples solution, shown in Listing 5-1 at the end of this

section.

As you move on to other controls, remember to add each view to your StackLayout

as you go!

 Picker
The Picker view provides a pop-up to select a value from a simple list.

Note The Picker view is used for quick selection of short words, phrases,
or numbers. Complex lists with composite cells containing multiple strings and
images are covered in the next chapter.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

189

First, create the picker and give it a title, "Options," to identify what the user needs

to pick:

 <Picker x:Name="ThePicker" Title="Options" SelectedIndexChanged="Picker

SelectedIndexChanged">

 </Picker>

Next, populate the picker’s ItemsSource with options:

 <Picker x:Name="ThePicker" Title="Options" SelectedIndexChanged="Picker

SelectedIndexChanged">

 <Picker.ItemsSource>

 <x:Array Type="{x:Type x:String}">

 <x:String>First</x:String>

 <x:String>Second</x:String>

 <x:String>Third</x:String>

 <x:String>Fourth</x:String>

 </x:Array>

 </Picker.ItemsSource>

 </Picker>

Option names are placed into the list and then added to the ItemsSource collection

in the picker.

A Picker first presents as an Entry control, which in Figure 5-1 starts as a data entry

field, similar to Xamarin.Forms.Entry, displaying the value of the Title property.

Figure 5-1. Entry views often have inline labels instead of side labels

When this Entry field is tapped, a modal dialog appears, containing the list of items

(Figure 5-2).

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

190

The list spins when swiped, and the highlighted value becomes the selected value.

The selection is automatically populated into the original entry field, so the user

can see the effect of the change. The SelectedIndexChanged event was assigned the

PickerSelectedIndexChanged handler method:

<Picker x:Name="ThePicker" Title="Options"

SelectedIndexChanged="PickerSelectedIndexChanged">

Choosing a value using the picker calls the PickerSelectedIndexChanged method:

 void PickerSelectedIndexChanged(object sender, EventArgs e)

 {

 PageValue.Text = (string)ThePicker.ItemsSource[ThePicker.

SelectedIndex];

 }

This implementation assigns the selected string to the Text property of the

PageValue label.

Tip The selected index in the ThePicker.SelectedIndex property is a
zero-based integer index. If Cancel is selected, the SelectedIndex remains
unchanged.

Figure 5-2. Each picker looks a bit different, depending on the platform

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

191

 DatePicker
The DatePicker view creates a pop-up for selection of month, date, and year. Create a

DatePicker view like this:

 <DatePicker x:Name="TheDatePicker" Format="D" VerticalOptions="Center

AndExpand" DateSelected="DatePickerDateSelected">

 </DatePicker>

The Format property is set to D for the full month/day/year display. More date

formats are provided later in this section.

The DatePicker view starts as a data entry field (Figure 5-3), similar to Xamarin.

Forms.Entry displaying the value of the Date property.

Figure 5-3. DatePicker begins as an Entry view waiting for a tap

When the date field is tapped, a dialog appears (Figure 5-4).

Figure 5-4. DatePicker is a dialog

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

192

Each column spins individually when swiped, and the highlighted values

become the selected values. When Done is tapped, the selected date is automatically

populated into the original entry field, so the user can see the effect of the change. The

DateSelected event was assigned the PickerSelectedIndexChanged handler method:

<DatePicker x:Name="TheDatePicker" Format="D" VerticalOptions="CenterAnd

Expand" DateSelected="DatePickerDateSelected">

Choosing a value using the picker calls the DatePickerDateSelected method:

 void DatePickerDateSelected (object sender, DateChangedEventArgs e)

 {

 EventValue.Text = e.NewDate.ToString();

 PageValue.Text = TheDatePicker.Date.ToString();

 }

The properties e.OldDate and e.NewDate are available within this event to provide

the old and new selected date values. In general cases, however, the value entered by the

user is stored in the Date property. All of these properties use type DateTime.

The format of the Date field is customizable with the Format property—for example:

 <DatePicker.Format>MM-dd-yyyy</DatePicker.Format>

Other values are as follows:

• D: Full month, day, and year (Monday, March 5, 2021)

• d: Month, day, and year (3/5/2021)

• M: Month and day (March 5)

• Y: Month and year (March 2021)

• yy: Last two digits of the year (21)

• yyyy: Full year (2021)

• MM: Two-digit month (03)

• MMMM: Month (March)

• dd: Two-digit day (05)

• ddd: Abbreviated day of the week (Mon)

• dddd: Full day of the week (Monday)

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

193

You set a date range for selection by using MaximumDate and MinimumDate:

 <DatePicker.MinimumDate>

 <sys:DateTime x:FactoryMethod="Parse">

 <x:Arguments>

 <x:String>Jan 1 2018</x:String>

 </x:Arguments>

 </sys:DateTime>

 </DatePicker.MinimumDate>

 <DatePicker.MaximumDate>

 <sys:DateTime x:FactoryMethod="Parse">

 <x:Arguments>

 <x:String>Dec 31 2025</x:String>

 </x:Arguments>

 </sys:DateTime>

 </DatePicker.MaximumDate>

Tip on android, the Format and MaximumDate/MinimumDate properties affect
the DatePicker entry field but not the modal selection dialog at the time of this
writing.

 TimePicker
The TimePicker view creates a pop-up for selecting hour, minute, and AM/PM. Create a

TimePicker view like this:

 <TimePicker x:Name="TheTimePicker" Format="T" VerticalOptions="Center

AndExpand" PropertyChanged="TimePickerPropertyChanged"></TimePicker>

The Format property set to T displays the full time. More time formats follow.

The TimePicker view starts as a data entry field similar to Xamarin.Forms.Entry,

displaying the value of the Time property (Figure 5-5).

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

194

When the time field is tapped, a modal dialog appears (Figure 5-6).

Figure 5-5. TimePicker waits for a tap

Figure 5-6. TimePicker is a dialog box

Each column spins individually when swiped, and the highlighted values become

the selected values. When Done is tapped, the selected time is automatically populated

into the original entry field, so the user can see the effect of the change.

There is no TimeSelected event that triggers when a value is selected. Instead, use

the PropertyChanged event in Xamarin.Forms data binding to track changes to this view.

 <TimePicker x:Name="TheTimePicker" Format="T" VerticalOptions="Center

AndExpand" PropertyChanged="TimePickerPropertyChanged">

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

195

The TimePickerPropertyChanged method is called when the time is selected in the

picker:

 void TimePickerPropertyChanged (object sender, PropertyChangedEventArgs e)

 {

 if (e.PropertyName == TimePicker.TimeProperty.PropertyName)

 {

 PageValue.Text = TheTimePicker.Time.ToString();

 }

 }

The TimePicker.Time property is set with the selected value as type TimeSpan.

The format of the Time field is customizable with the Format property (e.g.,

Format = "T"). Other values are as follows:

• T: Full time with hours, minutes, seconds, and AM/PM (9:30:25 AM)

• t: Full time with hours, minutes, and AM/PM (9:30 AM)

• hh: Two-digit hours (09)

• mm: Two-digit minutes (30)

• ss: Two-digit seconds (25); seconds are not selectable in the dialog

box

• tt: AM/PM designator (AM)

 Stepper
The Stepper view creates increment and decrement buttons for discrete adjustments to

the values:

 <Stepper x:Name="TheStepper" Minimum="0" Maximum="10" Increment="1"

HorizontalOptions="Center" VerticalOptions="CenterAndExpand"

ValueChanged="StepperValueChanged"></Stepper>

Minimum, Maximum, and Increment properties are set for the steppable value. The start

value can optionally be set in the Value property.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

196

Figure 5-7 shows what the Stepper view looks like.

Figure 5-7. Plus and minus for increment and decrement

Figure 5-8. Slider view at its max value

Tapping a plus or minus button changes the adjustable value and fires the

ValueChanged event, called StepperValueChanged in this case.

 void StepperValueChanged (object sender, ValueChangedEventArgs e)

 {

 EventValue.Text = String.Format("Stepper value is {0:F1}",

e.NewValue);

 PageValue.Text = TheStepper.Value.ToString();

 }

The properties e.OldValue and e. NewValue are available within this event to

provide the old and new selected values. In general cases, however, the value entered by

the user is stored in the Stepper's Value property. All these properties are type Double.

 Slider
The Slider view is a sliding input control providing a continuum of selection:

 <Slider x:Name="TheSlider" Minimum="0" Maximum="100" Value="50"

VerticalOptions="CenterAndExpand" ValueChanged="SliderValueChanged"

WidthRequest="300"></Slider>

Minimum and Maximum properties are set for the slidable value. The start value can be

set in the Value property. The value changes by increments by one-tenth of a unit (0.1)

as the slider is moved. The WidthRequest property sets the width of the view without

changing minimum or maximum values.

Figure 5-8 shows what the Slider view looks like (with Value = 100).

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

197

Sliding the slider changes the adjustable value and fires the ValueChanged event,

named SliderValueChanged in this case:

 void SliderValueChanged (object sender, ValueChangedEventArgs e)

 {

 EventValue.Text = String.Format("Slider value is {0:F1}",

e.NewValue);

 PageValue.Text = TheSlider.Value.ToString();

 }

The properties e.OldValue and e.NewValue are available within this event to provide

the old and new selected values. In general cases, the slidable value is also stored in the

Value property. All these properties are of type Double.

 Switch
The Switch view is a Boolean on/off control:

 <Switch x:Name="TheSwitch" HorizontalOptions="Center" VerticalOptions="

CenterAndExpand" Toggled="SwitchToggled"></Switch>

Figure 5-9 shows what the Switch view looks like off.

Figure 5-9. Switch off

And Figure 5-10 shows what the same view looks like on.

Figure 5-10. Switch on

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

198

Tapping the switch changes the Boolean value and fires the Toggled event,

SwitchToggled in this case:

 void SwitchToggled (object sender, ToggledEventArgs e)

 {

 EventValue.Text = String.Format("Switch is now {0}", e.Value ?

"On" : "Off");

 PageValue.Text = TheSwitch.IsToggled.ToString();

 }

The property e.Value is available within this event to provide the new switch value.

In general cases, the value is also stored in the IsToggled property. These properties are

of type Boolean.

 Scale, Rotation, Opacity, Visibility, and Focus
You can alter the appearance and behavior of Xamarin.Forms views by using members of

the View superclass, VisualElement. Here are some key properties that can be set on a view:

• Scale: Change the size of a view without affecting the views around

it. The default value is 1.0.

Scale = "0.7"

• IsVisible: Make a view invisible or visible again.

IsVisible = "False"

• IsEnabled: Disable and reenable a view.

IsEnabled = "False"

• Opacity: Fade a view in and out. The default value is 1.0.

Opacity = "0.5"

• Rotation: View rotation can be achieved on all axes by using the

Rotation, RotationX, and RotationY properties. These rotate the

view around the point set by AnchorX and AnchorY.

Using C#, give focus to a view by using the Focus() method, which returns true if

successful.

 var gotFocus = entry.Focus();

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

199

This example sets focus on an Entry view (which pops up the keyboard).

Tip Use the animation extensions on Xamarin.Forms controls and UI elements
to handle fades, rotation, scaling, and translation. The ViewExtensions'
methods include TranslateTo, ScaleTo, RelScaleTo, RotateTo,
RelRotateTo, RotateXTo, RotateYTo, and FadeTo. Fade in an image over
four seconds like this: await image.FadeTo (1, 4000);

 CODE COMPLETE: Xamarin.Forms Views
Listing 5-1 contains the complete code for all Xamarin.Forms selection control examples

in this chapter. Figure 5-11 shows the full example screen.

Figure 5-11. Xamarin.Forms selection views

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

200

Listing 5-1. Controls.xaml in the ControlExamples Project of the

ControlExamples Solution

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="ControlExamples.Xaml.Controls"

Title="Xamarin.Forms XAML Controls - Ch. 5"

>

<ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <OnPlatform.iOS>10,20,10,5</OnPlatform.iOS>

 <OnPlatform.Android>10,0,10,5</OnPlatform.Android>

 </OnPlatform>

</ContentPage.Padding>

 <StackLayout HorizontalOptions="Center">

 <Label x:Name="EventValue" Text="Value in Event" />

 <Label x:Name="PageValue" Text="Value in Page" />

 <Picker x:Name="ThePicker" Title="Options" SelectedIndexChanged=

"PickerSelectedIndexChanged">

 <Picker.Items>

 <x:String>First</x:String>

 <x:String>Second</x:String>

 <x:String>Third</x:String>

 <x:String>Fourth</x:String>

 </Picker.Items>

 </Picker>

 <DatePicker x:Name="TheDatePicker" Format="D" VerticalOptions=

"CenterAndExpand" DateSelected="DatePickerDateSelected"></DatePicker>

 <TimePicker x:Name="TheTimePicker" Format="T" VerticalOptions=

"CenterAndExpand" PropertyChanged="TimePickerPropertyChanged">

</TimePicker>

 <Stepper x:Name="TheStepper" Minimum="0" Maximum="10" Increment="1"

HorizontalOptions="Center" VerticalOptions="CenterAndExpand"

ValueChanged="StepperValueChanged"></Stepper>

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

201

 <Slider x:Name="TheSlider" Minimum="0" Maximum="100" Value="50"

VerticalOptions="CenterAndExpand" ValueChanged="SliderValueChanged"

WidthRequest="300"></Slider>

 <Switch x:Name="TheSwitch" HorizontalOptions="Center" VerticalOptions=

"CenterAndExpand" Toggled="SwitchToggled"></Switch>

 </StackLayout>

</ContentPage>

Note again, the two labels used in this example, eventValue and pageValue,
reflect the two ways in which selection values can be retrieved: in a handler
event property (e.g., e.NewValue), which provides the most recent value, or in a
general-use property on the view (e.g., TheControl.Value), which provides the
selected value for use throughout the page.

Now that you can use Xamarin.Forms controls, how can you group them into UI

components for reuse throughout your app? By using old and familiar custom controls,

of course.

 Custom Controls
Every XAML page you create is really a custom class. Using C# you create a page

by inheriting the ContentPage class in the code behind. Using XAML you specify a

ContentPage as the root of your XAML and declare your namespace and class name using

the x:Class attribute. Creating custom controls is no different. Xamarin.Forms provides

two base classes for this purpose: ContentView and ViewCell. ContentView is useful if you

want to create your own reusable controls. If you want to define a template for items in a

list, then use ViewCell. Listing 5-2 shows a simple custom control based on ContentView.

Listing 5-2. Custom ContentView Control Called MyControl

 <ContentView xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="mycontrols.MyControl">

 <Label x:Name="MyLabel" />

 </ContentView>

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

202

The custom control MyControl in the namespace mycontrols is a Label View. You

can use as a View any of the Xamarin.Forms Views available to you and create beautiful

and reusable controls. You derive from ContentView and inside of it build your control

using layouts, buttons, labels, images, etc. Listing 2-33 demonstrates how you use this

control inside your XAML pages. Here you use MyControl declared in Listing 5-3.

Listing 5-3. Using a Custom Control in XAML

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:my="clr-namespace:mycontrols"

 x:Class="mynamespace.MyClass">

 <my:MyControl/>

 </ContentPage>

After specifying your namespace mycontrols with the prefix my, you are able to use

your custom control inside the page, that is, <my:MyControl/>.

Custom controls enable XAML code reuse. Use control templates for a separation

between the appearance of a page and its content.

 Control Templates
Control templates are generalized reusable user interfaces meant to be used along with

page-specific content. Define a control template as a resource in a resource dictionary

and use them in your XAML pages. Control templates can increase consistency of your

visual design across several pages or across your entire application. Custom templates

can be used application-wide or on a single page. Some examples include app-wide

header and footer definitions or repeated blocks of UI on a single page. We’ll use an

application-wide header and footer example here.

A ControlTemplate is created using a ContentPage or ContentView and their

respective base classes, TemplatedPage and TemplatedView. Listing 5-4 shows how a

control template with the Key MyTemplate is defined as a resource of the Application.

Create a ControlTemplate and add a StackLayout with a header label and a footer label.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

203

Listing 5-4. Defining a Control Template

 <Application xmlns=http://xamarin.com/schemas/2014/forms

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="SimpleTheme.App">

 <Application.Resources>

 <ResourceDictionary>

 <ControlTemplate x:Key="MyTemplate">

 <StackLayout>

 <Label Text="Header"/>

 <ContentPresenter/>

 <Label Text="Footer"/>

 </StackLayout>

 </ControlTemplate>

 </ResourceDictionary>

 </Application.Resources>

 </Application>

In between the header and footer is the ContentPresenter, a placeholder for page-

specific content added later, shown in Listing 5-5. Create a new page with a ControlView

and set the ControlView.ControlTemplate property to the ControlTemplate Key,

MyTemplate in this case. Add page-specific controls you want in the body of the page

inside the ContentView, such as a Label with text “Page Body.”

Listing 5-5. Using a Control Template in a Page

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="SimpleTheme.HomePage">

 <ContentView x:Name="contentView" Padding="0,20,0,0"

 ControlTemplate "MyTemplate">

 <Label Text="Page Body"/>

 </ContentView>

 </ContentPage>

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

204

The ContentPresenter element inside the ControlLayout is replaced with whatever

you have defined in your ContentView. The resulting page would be comprised of a

StackLayout with three Labels: Header, Page Body, and Footer.

Tip another type of template is the data template useful for creating list items,
which we’ll cover in Chapter 6.

 Commands
Xamarin.Forms offers commands as an alternative to events and event handlers. Event

handlers reside in the C# code behind tightly coupled to your XAML file, making them

non-reusable. Xamarin.Forms provides your controls with a bindable property Command

and a corresponding CommandProperty.

Command is of type ICommand which requires an implementation of the methods

Execute and CanExecute and also defines the event CanExecuteChanged. The

CommandParameter object allows your Execute to receive an additional argument that is

used during its execution.

You can define classes with properties that implement the ICommand interface and

bind them to the bindable property Command provided by Xamarin.Forms to react to

user interactions. Anytime interaction takes place, your command property is notified.

First the CanExecute method will be called, and if the result is true, the Execute

method runs. You can also provide a delegate to handle scenarios where CanExecute

changes. To simplify the creation of custom commands, Xamarin.Forms defines two

classes that implement ICommand: Command and Command<T>. These helpers also define a

ChangeCanExecute method that you call to fire a CanExecuteChanged event.

Create a class called MyClass with a command called MyCommand that executes when

the user presses a Button as shown in Listing 5-6.

Listing 5-6. Creating a Command

 namespace mycommands {

 class MyClass {

 public ICommand MyCommand { protected set; get; }

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

205

 public MyClass() {

 MyCommand = new Command({

 Console.WriteLine("Hello");

 });

 }

 }

 }

This defines a class MyClass with a command MyCommand and writes "Hello" to the

Console. Command also allows async calls. Listing 5-7 shows how to bind a Button to our

MyCommand using the view’s Command parameter and BindingContext.

Listing 5-7. Binding a Command to a Button

 <Button Text="Click Me"

 Command="{Binding MyCommand}">

 <Button.BindingContext>

 <my:MyClass/>

 </Button.BindingContext>

 </Button>

Assuming that you have specified the namespace mycommands with the prefix my in

the ContentPage of your XAML file, you can define a Button and set its BindingContext

to our custom class MyClass.

Tip execute a Command as a method by calling that method in the Command
definition.

Commands offer an alternative to the traditional event handling. However, not

all classes and types of user interactions are supported. The vast majority of controls

inherit from View class, and a view specifies the property GestureRecognizers of

type IList<GestureRecognizer> that allows you to register classes that implement

the IGestureRecognizer interface. The GestureRecognizer class that implements

the IGestureRecognizer interfaces has three children: TagGestureRecognizer,

PanGestureRecognizer, and ClickGestureRecognizer. TagGestureRecognizer and

ClickGestureRecognizer have a bindable property Command of type ICommand and

CommandParameter of type object.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

206

Classes that inherit from Element, which is higher in the hierarchy, don’t have gesture

recognizers. For MenuItem (and hence also ToolbarItem) and for TextCell (and hence also

ImageCell), Xamarin.Forms directly defines the Command and CommandParameter bindable

properties. A MenuItem notifies your command when it is activated, and TextCell notifies

your command when any property of it is changing or changed or was tapped. The Views

SearchBar, ListView, and Button in addition to the GestureRecognizers also implement

their own Command property, that is, SearchCommand, RefreshCommand, and Command. The

Views SearchBar and Button also provide for a command parameter, SearchParameter,

and CommandParameter of type object. This means that you cannot use classes that

represent pages like ContentPage for commanding.

So, before you opt for an event, consider using a Command. First explore Binding, or

whether you can use commands provided on Views, through GestureRecognizers, or

controls that have a Command property.

Executing code is as a Command is useful, but what if it needs parameters?

 CommandParameters
Now that you can bind the Command property of Button to your MyCommand, it’s time

to pass in a parameter. Begin with passing the “Hello” string into your command via

CommandParameter. Replace the line containing the Command definition in Listing 5-6 to

pass value s into the Command and display it in the Writeline.

 MyCommand = new Command<string>(s => {Console.WriteLine(s); });

MyCommand now expects a string command parameter in s and writes the string

to the Console. Working from Listing 5-7, pass your old “Hello” into the Button’s

CommandParameter attribute.

 <Button Text="Click Me" Command="{Binding MyCommand}"

CommandParameter="Hello">

When the button is clicked and MyCommand is called, the "Hello" string is passed into

the Command through the CommandParameter.

Tip need multiple parameters? Create a class and populate it with properties to
pass into your Command.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

207

Another approach to respond to user interactions and states of your UI is with

triggers.

 Triggers
Triggers respond to changes on a control or other element in your page. A trigger is

composed of one or more conditions and an action. All controls, with the exception

of cells, which do not inherit from the VisualElement class, have a Triggers property,

where you can register your trigger. There are four types of triggers based on the type of

condition: Property, Data, Multi, and Event.

All of these trigger types require the use of the TargetType property.

 TargetType
Use TargetType when you define your trigger to specify the control type the trigger

applies to, which is an Entry control in this example:

 <Trigger TargetType="Entry" Property="IsEnabled" Value="true">

You can also use TargetType to define a trigger as a resource in your resource

dictionary instead of registering it with the Triggers property of a specific control

(Listing 5-8). For this you have to use a Style element as the container and register your

trigger to its Triggers property. The Style element also has a TargetType that you need

to specify for this to take effect. This allows you to change its properties for all controls of

that type.

Listing 5-8. Using TargetType to Create a Page-Wide Property Trigger

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:my="clr-namespace:MyTriggers"

 x:Class="mynamespace.MyClass">

 <ContentPage.Resources>

 <ResourceDictionary>

 <Style TargetType="Entry">

 <Style.Triggers>

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

208

 <Trigger TargetType="Entry"

 Property="IsFocused" Value="true">

 <Setter Property="BackgroundColor" Value="Red" />

 </Trigger>

 </Style.Triggers>

 </Style>

 </ResourceDictionary>

 </ContentPage.Resources>

 ...

 </ContentPage>

Insert your UI at the ellipses and include one or more Entry controls. This is a page-

wide implementation of a Property Trigger.

 Property Trigger
This trigger is useful when you want your control to respond to changes of its own

properties. Inside your control, create an Entry.Triggers tag that contains your Triggers.

Create a Trigger with the property name/value pair you want to trigger on. The Trigger

element has the properties Property and Value:

 <Trigger Property="IsFocused" Value="true">

Set Trigger.TargetType to your view, Entry in this case, and a change to the

Property that matches your Value executes the Setter within the trigger. In this case,

when Entry gets focus, the Entry background is set to Red, as shown in Listing 5-9.

Listing 5-9. Creating a Property Trigger

 <Entry>

 <Entry.Triggers>

 <Trigger TargetType="Entry"

 Property="IsFocused" Value="True">

 <Setter Property="BackgroundColor" Value="Red" />

 </Trigger>

 </Entry.Triggers>

 </Entry>

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

209

 Data Trigger
Use this trigger when you want your control to respond to changes that take place on

other elements in the user interface. The DataTrigger element expects the properties

Binding and Value.

 <DataTrigger Binding="{Binding Source={x:Reference

entry},Path=IsFocused}" Value="true">

This trigger fires when another entry control gets the focus (Listing 5-10). With the

binding markup extension, you also have access to the Converter property for more

advanced computations. DataTrigger requires that you specify the TargetType property

to the control you are registering the trigger with.

Listing 5-10. Creating a Data Trigger

 <StackLayout>

 <Label x:Name="label" Text="{Binding Text,Source={x:Reference

entry}}"/>
 <Entry x:Name="entry">
 <Entry.Triggers>
 <DataTrigger TargetType="Entry" Binding="{Binding Text.

Length,Source={x:Reference label},Converter={my:IsEmptyString
Converter}}" Value="true">

 <Setter Property="TextColor" Value="Green"/>
 </DataTrigger>
 </Entry.Triggers>
 </Entry>

 </StackLayout>

 Multi Trigger
Use multi triggers if you need several conditions to be met before an action takes

place. The MultiTrigger element has a Conditions property that can have multiple

BindingCondition and PropertyCondition elements. A BindingCondition expects the

properties Binding and Value and a PropertyCondition the properties Property and

Value. With the binding markup extension, you also have access to the Converter property

for more advanced computations. Listing 5-11 shows that MultiTrigger requires that you

specify the TargetType property to the control you are registering the trigger with.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

210

Listing 5-11. Creating a Multi Trigger

 <StackLayout>

 <Label x:Name="label" Text="{Binding Text,

Source={x:Reference entry}}"/>

 <Entry x:Name="entry">

 <Entry.Triggers>

 <MultiTrigger TargetType="Entry">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Text.

Length,Source={x:Reference label},Converter={my

:IsEmptyStringConverter}}" Value="true"/>

 <PropertyCondition Property="IsFocused"

Value="true"/>

 </MultiTrigger.Conditions>

 <Setter Property="FontSize" Value="Large"/>

 </MultiTrigger>

 </Entry.Triggers>

 </Entry>

 </StackLayout>

 Event Trigger
You can subscribe to events that are fired in your control. The handler needs to be written

in C# by implementing inheriting from the TriggerAction<T> class. T represents the type

of control this action is related to. In the C# code, you override the Invoke (T t) method

and can change the properties of your control t.

There are two types of actions that you can define: Setters and TriggerAction<T>

classes. For property, data, and multi triggers, you can use a Setter element to define

the action that needs to happen when a condition is met. A Setter allows you to

change the Value of a Property of your control, e.g., <Setter Property="IsEnabled"

Value="false"/> disables your control. All trigger types allow instead of Setters

registering one or more TriggerAction(T) implementations that you register with the

trigger’s EnterActions or ExitActions properties. You define your TriggerAction<T>

classes in C# by inheriting from TriggerAction(T) and overriding the Invoke(T t)

method. T represents the type of control the action applies to (Listing 5-12).

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

211

Listing 5-12. Creating an Event Trigger

 <StackLayout>

 <Label x:Name="label" Text="{Binding Text,Source={x:Reference

entry}}"/>

 <Entry x:Name="entry">

 <Entry.Triggers>

 <EventTrigger Event="PropertyChanged">

 <my:EntryTextLogger/>

 </EventTrigger>

 </Entry.Triggers>

 </Entry>

 </StackLayout>

Finally, a very powerful concept is the Trigger property TargetType.

 CODE COMPLETE: Triggers
Listing 5-13 contains the complete code listing for Xamarin.Forms trigger examples in

this chapter.

Listing 5-13. Property Trigger, DataTrigger, MultiTrigger, and EventTrigger

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:my="clr-namespace:MyTriggers"
 x:Class="mynamespace.MyClass">
 <ContentPage.Resources>
 <ResourceDictionary>
 <Style TargetType="Entry">
 <Style.Triggers>
 <Trigger TargetType="Entry"
 Property="IsFocused" Value="true">
 <Setter Property="BackgroundColor" Value="Yellow" />
 </Trigger>
 </Style.Triggers>
 </Style>
 </ResourceDictionary>

 </ContentPage.Resources>

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

212

 <StackLayout>

 <Label x:Name="label" Text="{Binding Text,Source={x:Reference

entry}}"/>

 <Entry x:Name="entry">

 <Entry.Triggers>

 <DataTrigger TargetType="Entry" Binding="{Binding Text.

Length,Source={x:Reference label},Converter={my:IsEmpty

StringConverter}}" Value="true">

 <Setter Property="TextColor" Value="Green"/>

 </DataTrigger>

 <EventTrigger Event="PropertyChanged">

 <my:EntryTextLogger/>

 </EventTrigger>

 <MultiTrigger TargetType="Entry">

 <MultiTrigger.Conditions>

 <BindingCondition Binding="{Binding Text.

Length,Source={x:Reference label},Converter=

{my:IsEmptyStringConverter}}" Value="true"/>

 <PropertyCondition Property="IsFocused"

Value="true"/>

 </MultiTrigger.Conditions>

 <Setter Property="FontSize" Value="Large"/>

 </MultiTrigger>

 </Entry.Triggers>

 </Entry>

 </StackLayout>

 </ContentPage>

Listing 5-13 shows a page with a ResourceDictionary that has a Style object

which includes a Trigger, which is only applicable to Entry controls, changing their

BackgroundColor to Yellow if they get the focus. The page contains a StackLayout with

a Label and an Entry. The Text of the Label property is bound to the Text property of

the Entry. Anything you write in the Entry is shown in the Label. The Entry has three

triggers: DataTrigger, EventTrigger, and MultiTrigger. The DataTrigger is bound to

the Text of the Label and changes the TextColor of the Entry to Green as soon as the

Text property of the Label contains text. We use a IsEmptyStringConverter that we will

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

213

implement in a moment that returns true if the Label has some text. The EventTrigger

uses a custom EntryTextLogger TriggerAction class that logs the user entry to

Console. Finally, we have a MultiTrigger defined with one BindingCondition and one

PropertyCondition monitoring the Label Text and whether the Entry has focus and

changing the Entry FontSize to Large. Listing 5-14 shows the ValueConverter and

TriggerAction we use in this example.

Listing 5-14. Value Converter Example

 namespace MyTriggers {

 class IsEmptyStringConverter : IValueConverter {

 public object Convert(object value, Type targetType,

 object parameter, CultureInfo culture) {

 return ((int)value>0) ? true : false;

 }

 public object ConvertBack(object value, Type targetType,

 object parameter, CultureInfo culture) {

 throw new NotSupportedException();

 }

 }

 public class EntryTextLogger : TriggerAction<Entry> {

 public EntryTextLogger() { }

 protected override void Invoke(Entry entry) {

 Console.WriteLine(entry.Text);

 }

 }

 }

The IsEmptyStringConverter we have defined in Listing 5-14 is very simple. It

checks whether the integer value that was provided is greater null or not and returns

true or false. The TriggerAction<Entry> is also very simple. The Invoke(Entry

entry) method simply writes the value of Text to the Console. As you have learned, you

can define auto-implemented properties to pass additional data to your TriggerAction

class. Our EntryTextLogger could, for instance, have a DebugMode property that only

writes to Console if set to true, e.g., <my:EntryTextLogger DebugMode="true"/>.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

214

 Behaviors
Behaviors let you extend the functionality of controls without subclassing them using

Attached Properties or Behavior<T> classes.

 Attached Properties
Extend behavior of a visual element using attached properties. Bindable properties are

properties of UI elements that can be bound to data sources in code, such as arrays,

collections, or view models.

Note learn about BindableProperty in Chapter 9.

Attached properties are a particular type of bindable property defined as a

static property in a static class with corresponding static GetPropertyName and

SetPropertyName methods. The difference between an attached property and a regular

bindable property is that these properties are defined in one class but used in others.

Recognize an attached property by the class.propertyname notation in your

XAML. As discussed in Chapter 9, the propertyChanged delegate can respond to changes

on that property receiving a reference to the BindableObject that makes use of the

attached property as well as the new and old value assigned. Since you have a reference

to the control in your propertyChanged delegate, you can take full control over the

object, change its properties, or enhance its behavior. The key restriction with attached

properties is that they must be defined in a static class with static properties and

methods, which means that they cannot have state, which is why it is recommended to

use Behavior classes in many cases.

Assign an attached property to your control by using the attribute

myprefix:MyStaticClass.PropertyName="true" on the element, and set it to false if

you want to detach it again.

 <Entry my:MyClass.PropertyName="true"/>

This requires that you have defined in your namespace with the prefix my a

public static class MyClass with the public static BindableProperty

MyAttachedProperty.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

215

Implement your attached property within the Attached Behavior called MyBehavior

as shown in Listing 5-15.

Listing 5-15. Attached Property Implementation

public static class MyBehavior

{

 public static readonly BindableProperty PropertyNameProperty =

 BindableProperty.CreateAttached (

 "PropertyName",

 typeof(bool),

 typeof(MyBehavior),

 false,

 propertyChanged:OnPropertyNameChanged);

 public static bool GetPropertyName (BindableObject view)

 {

 return (bool)view.GetValue (PropertyNameProperty);

 }

 public static void SetPropertyName (BindableObject view, bool value)

 {

 view.SetValue (PropertyNameProperty, value);

 }

 static void OnPropertyNameChanged (BindableObject view, object

oldValue, object newValue)

 {

 var entry = view as Entry;

 if (entry == null) {

 return;

 }

 /* Validate Entry */

 }

}

This implementation also uses an Attached Behavior OnPropertyNameChanged that is

triggered on the change of PropertyName.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

216

 Behavior
Behaviors are associated with a control, and every subclass of VisualElement has a

Behaviors property where you can register your Behavior subclass.

Create a class that inherits from Behavior or Behavior<T>., where T is the type of

the control tied to your behavior. Override the OnAttachedTo and OnDetachingFrom

methods to provide your behavior implementation (Listing 5-16). Lastly, implement

your behavior functionality.

Listing 5-16. Behavior Implementation

 public class MyBehavior : Behavior<View>

 {

 protected override void OnAttachedTo (View bindable)

 {

 base.OnAttachedTo (bindable);

 // Initialize

 }

 protected override void OnDetachingFrom (View bindable)

 {

 base.OnDetachingFrom (bindable);

 // Clean up

 }

 // Behavior Implementation

 }

Using an Entry control in this example, register your behavior, MyBehavior, as

shown in Listing 5-17.

Listing 5-17. Consuming a Behavior

 <Entry Placeholder="Enter Name">

 <Entry.Behaviors>

 <my:MyBehavior />

 </Entry.Behaviors>

 </Entry>

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

217

Tip When you’re finished with your behavior, you can only detach it using code.
Detach by calling myControl.Behaviors.Clear() prior to your page going out
of scope.

Behaviors can have a state, as opposed to attached properties, and you should not

use resource dictionaries to share them if you want to manage state.

Note If you prefer a Style in the resource dictionary to set your Behavior as a
property of your visual element, then you need to combine the Behavior with the
attached property technique.

<Setter Property="my:MyClass.PropertyName" Value="true"/>

Tip effectBehavior is another type of behavior used to define reusable visual
effects for your user interface controls. We will explain this type more in depth in
Chapter 8 when we talk about effects.

In this section, we covered how to extend the behavior of visual elements without

the need to use the underlying C# file of your XAML file. These are valid but not reusable

approaches because the behavior is bound to a specific control. However, what makes

Behaviors really interesting is that all VisualElements have a Behaviors property that

you can use to overcome the shortcomings of classes in Xamarin.Forms that don’t

support commands. Typically a Behavior class uses reflection to register a generic event

handler with the control and provides properties in XAML to specify the event name

as well as the Command the behavior should execute when the event is fired, as shown in

Listing 5-18.

Listing 5-18. Event-to-Command Example

 <Entry.Behaviors>

 <my:EventToCommand Event="TextChanged"

 Command="{Binding MyCommand}"/>

 </Entry.Behaviors>

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

218

There are several libraries that eliminate the need to write event handlers

entirely and replace them with commands. Check out Event-To-Command Behavior

implementations for more details.

That completes our tour of Xamarin.Forms views!

Summary
Many controls share a common goal: allowing the user to pick a value. Simple selection

controls require us to specify minimum and maximum values and set a default value.

Pickers/spinners work best inside a modal dialog, and we use them to select from a list

or choose dates and times. Xamarin.Forms handles the dialog pop-ups for you. The

selection controls in this chapter typically provide a value changed or click event of some

kind to allow your code to respond to changes in values.

Xamarin.Forms Views become more powerful every year, with features to help us

make them interactive with minimal, elegant code. Commands provide an alternative

to events useful for building a testable architecture. Commands help consolidate

behaviors in a view model providing bindable properties and commands that can

be unit tested independent of the user interface. Triggers can fire under a broad

array of circumstances driving logic within the app. For example, data triggers can

be used within views to update presentation based upon information in the data

model. Behaviors supply a way to let you extend the functionality of controls without

subclassing them.

While indispensable, the controls in this chapter are simple ones. In the next chapter,

you’ll dive deeper into the heart of mobile UI selection, where both the data and the

selection can be richer and more complex when using lists and tables.

ChapTer 5 User InTeraCTIon UsIng ConTrols

www.EBooksWorld.ir

219
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4_6

CHAPTER 6

Making a Scrollable List
Choosing quickly from a long list of items is one of the key offerings of the mobile UI.

The limited real estate on mobile phone screens makes data grids a challenge and leads

to extensive and creative use of lists. Grouping of items, scrolling, gesture sensitivity,

and images make lists one of the most versatile and reusable data-bound tools available.

Lists are to mobile development what the data grid is to web development.

This chapter covers the ListView class which allows us to make a scrollable,

selectable list. The primary considerations include binding to an array or data model,

handling item selection, customizing the look of rows, grouping headers, and perhaps

most importantly: performance.

 Xamarin.Forms ListView
Lists in Xamarin.Forms are created using the ListView control bound to an array or data

model. The Xamarin.Forms ListView class provides a scrollable, selectable list. List rows

are customizable using layouts, images, and views such as buttons. ListView supports

grouping, headers, footers, jump lists, and pull-to-refresh. Deleting and applying

operations to list rows are supported using Context Actions.

The lists in this chapter are read-only, which means that they are bound to a data source

for viewing and selecting, but the rows are not edited, deleted, or added. We touch on some

editable list UI techniques in the “Customizing List Rows” and “Using Context Actions”

sections, but do not cover changes to the data model or two-way data binding so that these

changes can be reflected in the list. For editable ListView data binding, see Chapter 9.

We can bind directly to a collection or list using the ItemsSource property with the

default list template. We can also bind to data models and create custom rows with

the ListView’s built-in adapter class called ItemTemplate. Let’s try both approaches:

ItemsSource and ItemTemplate. Beginning with ItemsSource, let us proceed by binding

ListView to a simple data source.

www.EBooksWorld.ir

220

Tip We don’t cover them in this book as they’re just being released as it’s going
to print, but the next generation of ListView may be the CollectionView.

 Binding to a List of Strings
The simplest ListView implementation is binding to a List of Strings.

Instantiate a ListView class on your page and point it to the default data source

using the ItemsSource property:

 <ListView ItemsSource="{Binding .}" />

ItemsSource is defined as the local BindingContext, indicated by a period (“ . ”). We

will soon define BindingContext to contain the list of items in the code behind. Typically

you’ll want to use the XAML ItemTemplate and possibly a ViewModel for binding,

but we’re starting simple with “ . ” and the page’s BindingContext so you can see how

ItemsSource works (more on data binding in Chapter 9).

Next, in the main class’s constructor, such as ListViewStrings in Listing 6-1, declare

your string List class called Items after InitializeComponent();. Populate Items and

set it all to the ContextPage's BindingContext.

Listing 6-1. ContentPage Constructor for a ListView Bound to String Items

 public ListViewStrings()

 {

 InitializeComponent();

 List<string> Items = new List<string>

 {

 "First",

 "Second",

 "Third"

 };

 BindingContext = Items;

 }

Using the default ListView layout, each item in the list will be a single cell using the

TextCell template displaying a single line of text. Here’s the list in Figure 6-1.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

221

Tip Create space around the edges of your list using the layout Padding
property mentioned in Chapter 3:

<ContentPage.Padding>
 <OnPlatform x:TypeArguments="Thickness">
 <On Platform="iOS">10,20,10,5</On>
 <On Platform="Android">10,0,10,5</On>
 </OnPlatform>
</ContentPage.Padding>

Selecting a list item fires the ItemSelected event.

Figure 6-1. ListView in iOS and Android

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

222

 Selecting an Item
There are two events for use in item selection: ItemTapped and ItemSelected. Both

can happen when a user taps a cell in the ListView. The difference between them is

apparent when a list permits more than just tapping and items can be selected and

unselected. In simple lists where there is no unselection of rows (like the example here),

there is little difference between them.

ItemTapped is the simplest. It fires as a motion event when the user clicks a list row:

 <ListView ItemsSource="{Binding Items}" ItemTapped="ListViewItemTapped"/>

The ItemTapped event must be implemented in the C# code behind:

 async void ListViewItemTapped (object sender, ItemTappedEventArgs e)

 {

 string item = (string)e.Item;

 await DisplayAlert("Tapped", item + " was selected.", "OK");

 }

The ItemSelected event responds to a change in the state of row selection and

happens when a row is selected or unselected by a user or in code:

 <ListView ItemsSource="{Binding Items}" ItemSelected="ListViewItem

Selected"/>

The ItemSelected event must be implemented in the C# code behind:

 async void ListViewItemSelected(object sender,

SelectedItemChangedEventArgs e)

 {

 string item = (string)e.SelectedItem;

 await DisplayAlert("Selected", item + " was selected.", "OK");

 }

Using async/await isn’t mandatory on these event handlers, but it is a good habit

when any processing is done, to avoid tying up the UI thread. Use either ItemTapped or

ItemSelected to select the first item in Figure 6-2.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

223

Clear the selected row (removing the row highlight) by setting the ListView's

SelectedItem property to null. The easiest place to do this is inside the ItemTapped handler:

 async void ListViewItemTapped (object sender, ItemTappedEventArgs e)

 {

 string item = (string)e.Item;

 await DisplayAlert("Tapped", item + " was selected.", "OK");

 ((ListView)sender).SelectedItem = null;

 }

If you’re using the ItemSelected event, be aware that changing the SelectedItem

value fires the ItemSelected event again. In order to safely clear the selected row, you

need to check if e.SelectedItem is null prior to responding to the event:

 async void ListViewItemSelected (object sender, ItemTappedEventArgs e)

 {

 if (e.SelectedItem == null) return;

 string item = (string)e.Item;

 await DisplayAlert("Selected", item + " was selected.", "OK");

 ((ListView)sender).SelectedItem = null;

 }

The XAML in Listing 6-2 and its code behind in Listing 6-3 show the complete

ListView example for binding to a List of Strings, selecting an item using async/await

for backgrounding the ItemTapped event handler, and then clearing the selected row

when you’re done.

Figure 6-2. The alert displays the selected item

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

224

Listing 6-2. Binding to a List of Strings in ListViewStrings.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="ListViewExample.Xaml.

ListViewStrings">

<ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <On Platform="Android">10,0,10,5</On>

 <On Platform="iOS">10,20,10,5</On>

 </OnPlatform></ContentPage.Padding>

 <ListView ItemsSource="{Binding .}" ItemTapped="ListViewItemTapped"/>

 <!-- <ListView ItemsSource="{Binding Items}" ItemSelected="ListViewItem

Selected"/> -->

</ContentPage>

Listing 6-3. Binding to a List of Strings in ListViewStrings.cs

public partial class ListViewStrings : ContentPage

{

 public ListViewStrings()

 {

 InitializeComponent();

 List<string> Items = new List<string>

 {

 "First",

 "Second",

 "Third"

 };

 BindingContext = Items;

 }

 async void ListViewItemTapped (object sender, ItemTappedEventArgs e)

 {

 string item = (string)e.Item;

 await DisplayAlert("Tapped", item + " was selected.", "OK");

 ((ListView)sender).SelectedItem = null;

 }

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

225

 async void ListViewItemSelected(object sender,

SelectedItemChangedEventArgs e)

 {

 string item = (string)e.SelectedItem;

 await DisplayAlert("Selected", item + " was selected.", "OK");

 }

}

Tip Multiple row selection must be coded manually and is not covered here.

A List<String> is useful for demonstration, but in many real-world scenarios, we

bind to a data model.

 Binding to a Data Model
Binding ListView to a data model is made easy in Xamarin.Forms through the use of

ListView's built-in adapter called ItemTemplate.

Prepare your data model class and assign it to the ListView.ItemsSource property.

Then bind each property of your model to the list using the ItemTemplate.SetBinding

method.

Create a data model, or custom class, containing the list items. Call it ListItem:

 public class ListItem {

 public string Title { get; set; }

 public string Description { get; set; }

 }

Create a List of ListItem and populate the list:

 List<ListItem> ListItems = new List<ListItem>

 {

 new ListItem {Title = "First", Description="1st item"},

 new ListItem {Title = "Second", Description="2nd item"},

 new ListItem {Title = "Third", Description="3rd item"}

 };

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

226

Point the ListView’s ItemsSource property to ListItems. Use the name

DataModelList for the ListView which you’ll declare in XAML in a moment:

 DataModelList.DataModelList.ItemsSource = ListItems;

This is an alternative to setting the ItemsSource to "{Binding .}" and binds the

ListItems to the ListView.

Next, create a ListView in XAML and name it DataModelList. Format list rows

using the ListView's ItemTemplate property. Create a DataTemplate class and use the

standard cell type to display, TextCell, which will display a title for each row plus some

detail text which you’ll add in a minute. Specify the property to display as the main row

text by binding it to TextCell.Text, in this case Title:

 <ListView x:Name="DataModelList" ItemTapped="ListViewItemTapped" >

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

This will display the same list but from a list of custom class ListItem instead of a

List of Strings (Figure 6-3).

Figure 6-3. This ListView looks the same as Figure 6-1 but is driven by the ListItem
data model

Add a descriptive line of text to each row by binding the Detail property of the

TextCell:

 <TextCell Text="{Binding Title}" Detail="{Binding Description}"/>

This binds the Description property of the ListItem class to the Detail property of

the TextCell. Figure 6-4 shows the result.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

227

Tip TextCell's font color can be set using its TextColor property

<TextCell Text="{Binding Title}" Detail="{Binding
Description}" TextColor="Blue"/>

and the detail text color (Description in this example) can be set using the
DetailColor property:

<TextCell Text="{Binding Title}" Detail="{Binding
Description}" DetailColor="Red"/>

When handling the item selection, remember to use the ListItem data model:

 async void ListViewItemTapped (object sender, ItemTappedEventArgs e)

 {

 ListItem item = (ListItem)e.Item;

 await DisplayAlert("Tapped", item.Title + " was selected.", "OK");

 ((ListView)sender).SelectedItem = null;

 }

 CODE COMPLETE: Binding to a Data Model
Listings 6-4 and 6-5 show the complete ListView example where we bind to a data

model containing text and detail for each row in the list, found in the ListViewExample

solution.

Figure 6-4. Title and Description properties are bound to each row using
properties of TextCell

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

228

Listing 6-4. Binding to a Data Model in ListViewDataModel.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x=

"http://schemas.microsoft.com/winfx/2009/xaml" x:Class="ListViewExample.

Xaml.ListViewDataModel">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <On Platform="Android">10,0,10,5</On>

 <On Platform="iOS">10,20,10,5</On>

 </OnPlatform> </ContentPage.Padding>

 <ListView x:Name="DataModelList" ItemTapped="ListViewItemTapped" >

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" Detail="{Binding

Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

Listing 6-5. Binding to a Data Model in ListViewDataModel.cs

public partial class ListViewDataModel : ContentPage

{

 public ListViewDataModel()

 {

 InitializeComponent();

 List<ListItem> ListItems = new List<ListItem>

 {

 new ListItem {Title = "First", Description="1st item"},

 new ListItem {Title = "Second", Description="2nd item"},

 new ListItem {Title = "Third", Description="3rd item"}

 };

 DataModelList.ItemsSource = ListItems;

 }

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

229

 async void ListViewItemTapped (object sender, ItemTappedEventArgs e)

 {

 ListItem item = (ListItem)e.Item;

 await DisplayAlert("Tapped", item.Title + " was selected.", "OK");

 ((ListView)sender).SelectedItem = null;

 }

 public class ListItem

 {

 public string Title { get; set; }

 public string Description { get; set; }

 }

}

Tip in Model View ViewModel (MVVM) apps, the data models are typically
wrapped inside screen-specific classes called view models (VM). See Chapter 9 for
how to create view models that are data-bound to ListViews.

 Adding an Image
Adding a single image to a ListView is easy using the ImageCell cell type. Previously, we

used the TextCell cell type to display text and detail in each row. An ImageCell inherits

from TextCell and adds an ImageSource property, which contains the image filename

or URI. We use the bindable properties ImageSource, Text, and Detail to bind to our

data model. The image is displayed left-justified, as seen in Figure 6-5.

Figure 6-5. ImageCell in a ListView

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

230

I’ll highlight the differences from the previous TextCell data-binding example and

then you can see the final result in Listings 6-6 and 6-7. Add a Source property of type

String to the ListItem class and populate it with your images (filename or URI):

 List<ListItem> ListItems = new List<ListItem>

 {

 new ListItem {Source = "first.png", Title = "First",

Description="1st item"},

 new ListItem {Source = "second.png", Title = "Second",

Description="2nd item"},

 new ListItem {Source = "third.png", Title = "Third",

Description="3rd item"}

 };

Create a ListView called ImageList and declare an ItemTemplate with a

DataTemplate containing the ImageCell. Bind the ListItem properties to the

ImageCell—Title, Description, and Image Source:

 <ListView x:Name="ImageList" ItemTapped="ListViewItemTapped">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding Source}" Text="{Binding

Title}" Detail="{Binding Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

Assign the ListItems to the list's ItemsSource property and that’s all there is to it:

 ImageList.ItemsSource = ListItems;

Tip the image folder will be local to each platform project (android: resources/
drawable, ioS: /resources). remember to set the build actions by right-clicking on
the image file in your project (android: androidresource, ioS: bundleresource).

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

231

Listings 6-6 and 6-7 contain the complete code to add an image to a ListView using

ImageCell, as shown in Figure 6-5.

Listing 6-6. Image in a List Row in ListViewImageCell.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="ListViewExample.Xaml.

ListViewImageCell">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <On Platform="Android">10,0,10,5</On>

 <On Platform="iOS">10,20,10,5</On>

 </OnPlatform> </ContentPage.Padding>

 <ListView x:Name="ImageList" ItemTapped="ListViewItemTapped">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ImageCell ImageSource="{Binding Source}" Text="{Binding

Title}" Detail="{Binding Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

Listing 6-7. Image in a List Row in ListViewImageCell.xaml.cs

public partial class ListViewImageCell : ContentPage

{

 public ListViewImageCell()

 {

 InitializeComponent();

 List<ListItem> ListItems = new List<ListItem>

 {

 new ListItem {Source = "first.png", Title = "First",

Description="1st item"},

 new ListItem {Source = "second.png", Title = "Second",

Description="2nd item"},

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

232

 new ListItem {Source = "third.png", Title = "Third",

Description="3rd item"}

 };

 ImageList.ItemsSource = ListItems;

 }

 async void ListViewItemTapped(object sender, ItemTappedEventArgs e)

 {

 ListItem item = (ListItem)e.Item;

 await DisplayAlert("Tapped", item.Title + " was selected.", "OK");

 ((ListView)sender).SelectedItem = null;

 }

 public class ListItem

 {

 public string Source { get; set; }

 public string Title { get; set; }

 public string Description { get; set; }

 }

}

Tip a ListView can contain four built-in cell types: TextCell, ImageCell,
SwitchCell, and EntryCell. the most useful here are TextCell and
ImageCell. although cell types can be combined using a TableView, a
TableView cannot be data-bound, so TableViews are not useful for building
ListViews.

Sooner or later you’ll outgrow TextCell and ImageCell and will need greater control

over the look of your list rows. So, you’ll learn to customize them.

 Customizing List Rows
Customize the list rows by creating a custom row template, which is basically a custom

cell containing a Layout with Views. It begins with a custom class inherited from

ViewCell. Then we place a layout on it and add our views. Views are more versatile than

the built-in cells like TextCell and expose more properties for layout and design.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

233

With a custom row template, you can customize your labels and add more views

to your list, as shown in Figure 6-6. These three labels have their positions, font sizes,

attributes, and colors customized.

Figure 6-6. Custom row template

Let’s walk through the code for this multiline custom row example using three Label

Views to display the title, description, and price. Figure 6-6 is an example where more

control was needed over fonts and formatting than is provided for by the built-in cells.

Add Price to your ListItem data model:

 public class ListItem

 {

 public string Source { get; set; }

 public string Title { get; set; }

 public string Description { get; set; }

 public string Price { get; set; }

 }

In the ContentPage’s constructor, populate Price with values:

List<ListItem> ListItems = new List<ListItem>

{

 new ListItem {Title = "First", Description="1st item", Price="$100.00"},

 new ListItem {Title = "Second", Description="2nd item", Price="$200.00"},

 new ListItem {Title = "Third", Description="3rd item", Price="$300.00"}

};

Create a ListView called CustomList, and add a DataTemplate and a row class called

ViewCell with a custom template inside it. Place one or more controls or layouts within

this custom template. For simple text fields in different-sized fonts, create label controls

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

234

and place them on a StackLayout (or AbsoluteLayout or Grid if performance is an

issue). Be careful when using Image views, as images can affect performance, particularly

on older devices.

 <ListView x:Name="CustomList">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <StackLayout HorizontalOptions="StartAndExpand"

Orientation="Horizontal" Padding="25,10,55,15">

 <StackLayout HorizontalOptions="StartAndExpand"

Orientation="Vertical">

 <Label HorizontalOptions="Start" FontSize="20"

FontAttributes="Bold" TextColor="White"

Text="{Binding Title}"/>

 <Label HorizontalOptions="Start" FontSize="12"

FontAttributes="Bold" TextColor="White"

Text="{Binding Description}"/>

 </StackLayout>

 <Label HorizontalOptions="End" FontSize="25"

TextColor="Aqua" Text="{Binding Price}"/>

 </StackLayout>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

Double-bag your StackLayouts for formatting’s sake, placing a vertical StackLayout

inside a horizontal one. Inside the inner StackLayout, place two label controls on a

vertical StackLayout and bind them to the ListItem model’s Title and Description

fields, respectively. Place the price label after the end of the inner StackLayout and bind

it to the data model’s Price property.

Note the use of the main StackLayout’s Padding on all four sides to provide proper

positioning of views within the row. LayoutOptions help with alignment (that come

at a performance cost), using Start for left- or top-justified views and End for right- or

bottom-justified ones.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

235

Back in the ListView declaration, let’s consider Backgroundcolor and RowHeight.

If you’re on iOS, we need to set the background color to black so you can see the white

text. Also, on all platforms, set the RowHeight to accommodate the extra Views:

 <ListView x:Name="CustomList" RowHeight="80" BackgroundColor="Black">

Tip When your list rows vary in height, use ListView’s HasUnevenRows
property instead of RowHeight (e.g., HasUnevenRows = "True").

As always, bind to the model with your list’s ItemsSource property:

 CustomList.ItemsSource = ListItems;

Compile and run and you should see Figure 6-6.

Customizing a list can result in a beautiful, highly functional UI feature. It is also

one of the best ways to destroy a list’s performance, so customize with caution. Use

TextCell or ImageCell as much as you can before deciding to customize. Images and

nested layouts are a challenge to optimize in Xamarin.Forms, particularly on older

devices. If you’re having difficulty with performance as you test your customized list,

try the performance tips in the (Xamarin.Forms) “Optimizing Performance” section. If

those don’t work for you, then consider using a custom renderer with platform-specific

controls instead. (See the list views in the Android and iOS sections of this chapter and

then turn to Chapter 8 to read about custom renderers.)

Tip ListView row separator lines are customizable using its
SeparatorVisibility and SeparatorColor properties. Set the
ListView’s SeparatorVisibility property to None to hide the lines (the
default value is Default). Set the color of the separator using SeparatorColor.

headers and footers are supported by ListView. Use the Header and
Footer properties for a simple text or view. For more complex layouts, use
HeaderTemplate and FooterTemplate.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

236

 CODE COMPLETE: Customizing List Rows
Listings 6-8 and 6-9 contain the complete code for the row customization example

shown in Figure 6-6, with the addition of an ItemTapped event.

Listing 6-8. Customizing List Rows in ListViewCustom.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="ListViewExample.Xaml.

ListViewCustom">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <On Platform="iOS">10,20,10,5</On>

 <On Platform="Android">10,0,10,5</On>

 </OnPlatform> </ContentPage.Padding>

 <ListView x:Name="CustomList" RowHeight="80" BackgroundColor="Black"

ItemTapped="ListViewItemTapped" >

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <StackLayout HorizontalOptions="StartAndExpand"

Orientation="Horizontal" Padding="25,10,55,15">

 <StackLayout HorizontalOptions="StartAndExpand"

Orientation="Vertical">

 <Label HorizontalOptions="Start" FontSize="20"

FontAttributes="Bold" TextColor="White" Text="

{Binding Title}"/>

 <Label HorizontalOptions="Start" FontSize="12"

FontAttributes="Bold" TextColor="White" Text="

{Binding Description}"/>

 </StackLayout>

 <Label HorizontalOptions="End" FontSize="25"

TextColor="Aqua" Text="{Binding Price}"/>

 </StackLayout>

 </ViewCell>

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

237

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

Listing 6-9. Customizing List Rows in ListViewCustom.cs

public partial class ListViewCustom : ContentPage

{

 public ListViewCustom()

 {

 InitializeComponent();

 List<ListItem> ListItems = new List<ListItem>

 {

 new ListItem {Title = "First", Description="1st item",

Price="$100.00"},

 new ListItem {Title = "Second", Description="2nd item",

Price="$200.00"},

 new ListItem {Title = "Third", Description="3rd item",

Price="$300.00"}

 };

 CustomList.ItemsSource = ListItems;

 }

 async void ListViewItemTapped(object sender, ItemTappedEventArgs e)

 {

 ListItem item = (ListItem)e.Item;

 await DisplayAlert("Tapped", item.Title + " was selected.", "OK");

 ((ListView)sender).SelectedItem = null;

 }

 public class ListItem

 {

 public string Source { get; set; }

 public string Title { get; set; }

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

238

 public string Description { get; set; }

 public string Price { get; set; }

 }

}

Tip Changes to list properties can be reflected in the list in real-time using an
implementation of the INotifyPropertyChanged interface. See Chapter 9 for
more on editable list data binding.

Among the views that can be added to a list row, Buttons require special attention

due to their prevalence and unique qualities.

 Adding Buttons
Buttons can be added to a list in one of two ways: as button views and as Context Actions.

Button views are straightforward views added to the custom template, while Context

Actions appear when a row is swiped or long-pressed, such as for buttons hiding behind

each row, which are often used for operations on the selected row such as deletion.

Note Image Views paired with gesture recognizers (manually coded image
buttons) contain the list row in their bindingContext, though the property is more
cumbersome to retrieve than with a button.

 Using Button Views
Add button views to your custom template during the customization of a ListView. Add

the Button View onto a layout in a custom ViewCell, and it will display on the list in

every row, as shown in Figure 6-7.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

239

Declare a Button view in your custom ViewCell. Set up a Clicked handler using the

CommandParameter property to determine which button was clicked. Bind a period (.) to

the button’s CommandParameter property to retrieve the clicked row:

 <Button x:Name="BuyButton" Text="Buy Now" BackgroundColor="Teal"

HorizontalOptions="EndAndExpand" Clicked="BuyClicked"

CommandParameter="{Binding .}"/>

Create a clicked handler called BuyClicked. Retrieve the row that was clicked using

the Button's CommandParameter, which returns the affected ListItem object, where you

can get the Title parameter to display:

 public async void BuyClicked(object sender, EventArgs e)

 {

 var b = (Button)sender;

 var item = (ListItem)b.CommandParameter;

 await DisplayAlert("Clicked", item.Title.ToString() + " button was

clicked", "OK");

 }

Listings 6-10 and 6-11 contain the code where we add a Button View to the ListView,

as shown in Figure 6-7.

Listing 6-10. Adding a Button to a List Row from ListViewButton.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="ListViewExample.Xaml.ListViewButton">

Figure 6-7. Add a Button View to a ListView

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

240

<ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <On Platform="iOS">10,20,10,5</On>

 <On Platform="Android">10,0,10,5</On>

 </OnPlatform>

</ContentPage.Padding>

 <ListView x:Name="ButtonList" RowHeight="100" BackgroundColor="Black"

HasUnevenRows="true" >

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <StackLayout HorizontalOptions="StartAndExpand"

Orientation="Horizontal" Padding="5,10,5,15">

 <StackLayout HorizontalOptions="Start"

Orientation="Vertical">

 <Label HorizontalOptions="Start" FontSize="20"

FontAttributes="Bold" TextColor="White"

Text="{Binding Title}"/>

 <Label HorizontalOptions="Start" FontSize="12"

FontAttributes="Bold" TextColor="White"

Text="{Binding Description}"/>

 </StackLayout>

 <StackLayout HorizontalOptions="EndAndExpand"

Orientation="Horizontal" WidthRequest="260">

 <Label HorizontalOptions="Center" FontSize="25"

TextColor="Aqua" Text="{Binding Price}"/>

 <Button x:Name="BuyButton" Text="Buy Now"

BackgroundColor="Teal" HorizontalOptions=

"EndAndExpand" Clicked="BuyClicked"

CommandParameter="{Binding .}"/>

 </StackLayout>

 </StackLayout>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

241

Listing 6-11. Adding a Button to a List Row from ListViewButton.xaml.cs

public partial class ListViewButton : ContentPage

{

 public ListViewButton()

 {

 InitializeComponent();

 List<ListItem> ListItems = new List<ListItem> {

 new ListItem {Title = "First", Description="1st item",

Price="$100.00"},

 new ListItem {Title = "Second", Description="2nd item",

Price="$200.00"},

 new ListItem {Title = "Third", Description="3rd item",

Price="$300.00"}

 };

 ButtonList.ItemsSource = ListItems;

 }

 public async void BuyClicked(object sender, EventArgs e)

 {

 var b = (Button)sender;

 var item = (ListItem)b.CommandParameter;

 await DisplayAlert("Clicked", item.Title.ToString() + " button was

clicked", "OK");

 }

 public class ListItem

 {

 public string Title { get; set; }

 public string Description { get; set; }

 public string Price { get; set; }

 }

}

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

242

Tip on ioS the addition of this button can cause the title text to wrap, so set the
FontSize = 20 on titleLabel.

An alternative to Button Views are Context Actions.

 Using Context Actions
Context Actions are bars of buttons that appear for a particular row when the row is left-

swiped on iOS or long-pressed on Android, as shown in Figure 6-8.

Figure 6-8. The Context Action buttons More and Delete

In a ListView, create a MenuItem and place it on your ViewCell while customizing

your list. Create ContextActions (as MenuItems) on the ViewCell, one for each context

button you need. Set both MenuItem's Text property which displays on the contextual

button. Set the Clicked property to methods MoreClicked and DeleteClicked which

you’ll handle in C# in a moment. Bind both MenuItem’s CommandParameter like a

ListView button using a period (.):

 <ViewCell.ContextActions>

 <MenuItem Text="More" Clicked="MoreClicked"

CommandParameter="{Binding .}"/>

 <MenuItem Text="Delete" Clicked="DeleteClicked"

CommandParameter="{Binding .}" IsDestructive="True" />

 </ViewCell.ContextActions>

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

243

Implement the Clicked events and retrieve the list row data class using

CommandParameter, which contains the respective ListItem object with a Title to

display:

 public async void MoreClicked(object sender, EventArgs e)

 {

 var mi = ((MenuItem)sender);

 var item = (ListItem)(mi.CommandParameter);

 await DisplayAlert("Clicked", item.Title.ToString() + " More button

was clicked", "OK");

 }

Tip if you’re building ViewModels, consider using the Command property instead
of Clicked.

For a delete button, do all the same things as the more button except set the

IsDestructive flag to true. On iOS this will make the button red (not terribly

destructive, really). Set IsDestructive flag to true for only one of the buttons:

 <MenuItem Text="Delete" Clicked="DeleteClicked"

CommandParameter="{Binding .}" IsDestructive="True" />

Listings 6-12 and 6-13 contain the relevant excerpts of code for the Context Action

example shown in Figure 6-8.

Listing 6-12. Creating Context Actions for a List, from ListViewContextAction.xaml

<ListView x:Name="ContextList" RowHeight="100" BackgroundColor="Black"

HasUnevenRows="true">

 <ListView.ItemTemplate>

 <DataTemplate>

 <ViewCell>

 <ViewCell.ContextActions>

 <MenuItem Text="More" Clicked="MoreClicked"

CommandParameter="{Binding .}"/>

 <MenuItem Text="Delete" Clicked="DeleteClicked"

CommandParameter="{Binding .}" IsDestructive="True" />

 </ViewCell.ContextActions>

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

244

 <StackLayout HorizontalOptions="StartAndExpand"

Orientation="Horizontal" Padding="5,10,5,15">

 <StackLayout HorizontalOptions="StartAndExpand"

Orientation="Vertical">

 <Label HorizontalOptions="Start" FontSize="20"

FontAttributes="Bold" TextColor="White"

Text="{Binding Title}"/>

 <Label HorizontalOptions="Start" FontSize="12"

FontAttributes="Bold" TextColor="White"

Text="{Binding Description}"/>

 </StackLayout>

 <Label HorizontalOptions="End" FontSize="25"

TextColor="Aqua" Text="{Binding Price}"/>

 </StackLayout>

 </ViewCell>

 </DataTemplate>

 </ListView.ItemTemplate>

</ListView>

Listing 6-13. Creating Context Actions for a List, from ListViewContextAction.

xaml.cs

public async void MoreClicked(object sender, EventArgs e)

{

 var mi = ((MenuItem)sender);

 var item = (ListItem)(mi.CommandParameter);

 await DisplayAlert("Clicked", item.Title.ToString() + " More button was

clicked", "OK");

}

public async void DeleteClicked(object sender, EventArgs e)

{

 var mi = ((MenuItem)sender);

 var item = (ListItem)mi.CommandParameter;

 await DisplayAlert("Clicked", item.Title.ToString() + " Delete button

was clicked", "OK");

}

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

245

Tip adding and deleting rows from the list can be reflected in the Ui using an
ObservableCollection. See Chapter 9 for more on editable list data binding.

 Grouping Headers
Long lists can be difficult to navigate and sometimes sorting just isn’t good enough.

Grouping headers create categories to help users quickly find what they’re looking

for. Items can be grouped using the IsGroupingEnabled and GroupDisplayBinding

properties of a ListView.

You must first create group titles. A good way to store group headers is to create a

static data model that is a collection of groups, each of which contains a collection of

data items. That is, a collection of collections is created, with the group header field(s)

defined in each group collection.

Create a group class that contains the group-by key and a collection for the items:

 public class Group : List<ListItem>

 {

 public String Key { get; private set; }

 public Group(String key, List<ListItem> items)

 {

 Key = key;

 foreach (var item in items)

 this.Add(item);

 }

 }

In the ContentPage constructor, populate the groups and assign them to a master model.

Create as many groups as you need with corresponding keys and their contained items. In

this example there are two groups, with keys called “Important” and “Less Important”.

 List<Group> itemsGrouped = new List<Group> {

 new Group ("Important", new List<ListItem>{

 new ListItem {Title = "First", Description="1st item"},

 new ListItem {Title = "Second", Description="2nd item"},

 }),

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

246

 new Group ("Less Important", new List<ListItem>{

 new ListItem {Title = "Third", Description="3rd item"}

 })

 };

Note this is a simplified, static data example for demonstration purposes. in the
real world, you might use a view model, or populate a sorted data model with LinQ
or with a loop, inserting grouped items with their accompanying keys.

Create a ListView named GroupedList, setting the IsGroupingEnabled to true.

In the GroupDisplayBinding, bind the list to your Group object’s Key:

 <ListView x:Name="GroupedList" IsGroupingEnabled="true"

GroupDisplayBinding="{Binding Key}">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" Detail="{Binding

Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

Note this ItemTemplate happens to contain a Title and Description for
list data, but there is no particular ItemTemplate required for the grouping of
items.

Assign the group model to the ListView.ItemsSource property in your page’s

constructor:

 GroupedList.ItemsSource = itemsGrouped;

Figure 6-9 shows the grouped list.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

247

Listings 6-14 and 6-15 contain all code for the ListView with group headers shown

in Figure 6-9.

Listing 6-14. Grouping List Items in ListViewGrouped.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="ListViewExample.Xaml.

ListViewGrouped">

<ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <On Platform="iOS">10,20,10,5</On>

 <On Platform="Android">10,0,10,5</On>

 </OnPlatform>

Figure 6-9. This list of three items is grouped under two headings

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

248

</ContentPage.Padding>

 <ListView x:Name="GroupedList" IsGroupingEnabled="true"

GroupDisplayBinding="{Binding Key}">

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" Detail="{Binding

Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

Listing 6-15. Grouping List Items in ListViewGrouped.xaml.cs

public partial class ListViewGrouped : ContentPage

{

 public ListViewGrouped()

 {

 List<Group> itemsGrouped;

 InitializeComponent();

 itemsGrouped = new List<Group> {

 new Group("Important", new List<ListItem>

 {

 new ListItem {Title = "First", Description="1st item"},

 new ListItem {Title = "Second", Description="2nd item"}

 }),

 new Group("Less Important", new List<ListItem>

 {

 new ListItem {Title = "Third", Description="3rd item"}

 })

 };

 GroupedList.ItemsSource = itemsGrouped;

 }

 public class Group : List<ListItem>

 {

 public string Key

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

249

 {

 get;

 private set;

 }

 public Group(string key, List<ListItem> listItems)

 {

 Key = key;

 foreach (var item in listItems)

 this.Add(item);

 }

 public class ListItem

 {

 public string Title { get; set; }

 public string Description { get; set; }

 }

 }

}

 Customizing the Group Header
When you’re ready for fancier group headers than the default ones, you can create your

own in a similar manner to customizing list rows, using a custom template class that

implements a layout and controls. Create the custom template using the ListView's

GroupHeaderTemplate property:

 <ListView x:Name=" CustomGroupedList" IsGroupingEnabled="true"

HasUnevenRows="true">

 <ListView.GroupHeaderTemplate>

Tip the HasUnevenRows property helps maintain the formatting when you’re
handling header and item rows of different heights. on ioS the developer must
then calculate (or estimate) the height of each cell manually.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

250

Let us customize the group headers to have a white background with large black

text for the header group key. Finish creating your ListView named CustomGroupedList,

setting the IsGroupingEnabled to true. Put your group header Label inside the

GroupHeaderTemplate and DataTemplate, binding that Label to your Group object’s Key:

 <ListView x:Name="CustomGroupedList" IsGroupingEnabled="true"

HasUnevenRows="true">

 <ListView.GroupHeaderTemplate>

 <DataTemplate>

 <ViewCell Height="40">

 <StackLayout HorizontalOptions="FillAndExpand"

HeightRequest="40" BackgroundColor="White" Padding="5"

Orientation="Horizontal">

 <Label FontSize="16" TextColor="Black"

VerticalOptions="Center" Text="{Binding Key}" />

 </StackLayout>

 </ViewCell>

 </DataTemplate>

 </ListView.GroupHeaderTemplate>

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" Detail="{Binding

Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

Note that your list data, Title and Description, go in the usual ItemTemplate.

Figure 6-10 shows the list with custom headers.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

251

Tip Coding for performance in Group Headers is the same as when creating
custom list row templates. More detail on performance soon.

Listings 6-16 and 6-17 show the ListView grouping template code from Figure 6-10.

Listing 6-16. Customizing List Group Headers in ListViewGroupedTemplate.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x=

"http://schemas.microsoft.com/winfx/2009/xaml" x:Class="ListViewExample.

Xaml.ListViewGroupedTemplate">

<ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <On Platform="iOS">10,20,10,5</On>

 <On Platform="Android">10,0,10,5</On>

 </OnPlatform>

</ContentPage.Padding>

 <ListView x:Name="CustomGroupedList" IsGroupingEnabled="true"

HasUnevenRows="true">

 <ListView.GroupHeaderTemplate>

 <DataTemplate>

 <ViewCell Height="40">

 <StackLayout HorizontalOptions="FillAndExpand"

HeightRequest="40" BackgroundColor="White" Padding="5"

Orientation="Horizontal">

Figure 6-10. Custom group headings can contain one or more data-bound fields

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

252

 <Label FontSize="16" TextColor="Black"

VerticalOptions="Center" Text="{Binding Key}" />

 </StackLayout>

 </ViewCell>

 </DataTemplate>

 </ListView.GroupHeaderTemplate>

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" Detail="{Binding Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

Listing 6-17. Customizing List Group Headers in ListViewGroupedTemplate.

xaml.cs

public partial class ListViewGrouped : ContentPage

{

 public ListViewGrouped()

 {

 List<Group> itemsGrouped;

 InitializeComponent();

 itemsGrouped = new List<Group> {

 new Group("Important", new List<ListItem>

 {

 new ListItem {Title = "First", Description="1st item"},

 new ListItem {Title = "Second", Description="2nd item"}

 }),

 new Group("Less Important", new List<ListItem>

 {

 new ListItem {Title = "Third", Description="3rd item"}

 })

 };

 GroupedList.ItemsSource = itemsGrouped;

 }

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

253

 public class Group : List<ListItem>

 {

 public string Key

 {

 get;

 private set;

 }

 public Group(string key, List<ListItem> listItems)

 {

 Key = key;

 foreach (var item in listItems)

 this.Add(item);

 }

 public class ListItem

 {

 public string Title { get; set; }

 public string Description { get; set; }

 }

 }

}

 Creating a Jump List
Long lists can be unwieldy and require fast scrolling using a jump list, which is a list of

keys on the right that permit quick movement through the list. These are often letters

corresponding to the first letter of the items.

Assign the jump list values by binding the property in the group model to the

ListView.GroupShortNameBinding property. This example binds the Group.Key

property to the jump list.

<ListView x:Name="JumpList" IsGroupingEnabled="true" HasUnevenRows="true"

GroupShortNameBinding = "{Binding Key}">

You’ll need a fairly long grouped list to see this in action.

Let’s move on to scrolling. Xamarin.Forms ListViews are automatically scrollable

when they contain more elements than can fit on the screen at one time.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

254

 ListViews Scroll Automatically
No additional coding is required to get a ListView to scroll. The ScrollView is built-in

and the list will scroll if it is longer than the space available on the page.

Add a few more rows to the ItemsSource in the original data model binding example:

 ListItems = new ListItem [] {

 new ListItem {Title = "First", Description="1st item"},

 new ListItem {Title = "Second", Description="2nd item"},

 new ListItem {Title = "Third", Description="3rd item"},

 new ListItem {Title = "Fourth", Description="4th item"},

 new ListItem {Title = "Fifth", Description="5th item"},

 new ListItem {Title = "Sixth", Description="6th item"} ,

 new ListItem {Title = "Seventh", Description="7th item"},

 new ListItem {Title = "Eighth", Description="8th item"},

 new ListItem {Title = "Ninth", Description="9th item"} ,

 new ListItem {Title = "Tenth", Description="10th item"},

 new ListItem {Title = "Eleventh", Description="11th item"},

 new ListItem {Title = "Twelfth", Description="12th item"} ,

 new ListItem {Title = "Thirteenth", Description="13th item"},

 new ListItem {Title = "Fourteenth", Description="14th item"},

 new ListItem {Title = "Fifteenth", Description="15th item"} ,

 new ListItem {Title = "Sixteenth", Description="16th item"},

 new ListItem {Title = "Seventeenth", Description="17th item"},

 new ListItem {Title = "Eighteenth", Description="18th item"}

 };

Getting a ListView to scroll requires only putting enough data/rows into it to make it

longer than the space on the screen (Figure 6-11).

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

255

 Pull-to-Refresh
ListView supports a pull-to-refresh feature using its IsPullToRefreshEnabled property.

Set it:

 <ListView x:Name="RefreshList" IsPullToRefreshEnabled="True"

 RefreshCommand="{Binding RefreshCommand}"

 IsRefreshing="{Binding IsRefreshing}" >

Implement the RefreshCommand method in order to enact a list refresh (see Chapter 9).

Set IsRefreshing to true while you’re refreshing and then to false when done for the

refresh animation to work correctly.

 Optimizing Performance
Cell reuse is built-in with Xamarin.Forms, giving you a leg up over iOS and Android lists.

Even so, scrolling lists can become slow, laggy, or janky. This is annoying to the user and

makes the app feel unprofessional.

There are two ways to improve ListView performance: use caching and optimize.

Figure 6-11. ListView scrolls automatically when there are more rows than fit on
the screen

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

256

 ListView Caching
ListView has a built-in caching mechanism to create and retain cells only as needed by

the visible screen. Cells that fall offscreen can be recycled to conserve memory. This is

largely handled automatically although there are three options:

• RecycleElement—Recycles list cells to minimize memory use. This is

the recommended approach but not the default.

• RetainElement—Creates and keeps all list items. This is the default

ListView caching behavior.

• RecycleElementAndDataTemplate—Recycles and optimizes for

DataTemplateSelector use.

These options are in the ListViewCachingStrategy enumeration used in the

CachingStrategy attribute of the ListView:

 <ListView CachingStrategy="RecycleElement">

Caching Tips

• try RecycleElement first unless you have lots of bindings per
cell (20+) or your template changes all the time, in which case use
RetainElement.

• if you’re using DataTemplateSelectors, opt for
RecycleElementAndDataTemplate.

• Sometimes RetainElement is faster than RecycleElement for
no apparent reason, so try them both.

There are lots of little improvements and strategies for a faster list.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

257

 ListView Optimization
When building ListViews, a few things to watch out for are custom template ViewCells

with many views, using images on older devices, and using layouts that require a large

amount of measurement calculations.

Here are some recommendations for optimizing ListView performance:

• Enable XAML compilation in your application:

[assembly: XamlCompilation(XamlCompilationOptions.Compile)]

• Use IList<T> instead of IEnumerable<T> in your ItemsSource to

employ random access.

• Use the built-in cells whenever you can: TextCell and ImageCell.

• Use custom template ViewCells only when you have to.

• Use images only when necessary and keep images as small as

possible. Images typically perform better on iOS than Android.

• Avoid using custom template ViewCells with many views.

• Avoid using images on older devices.

• Avoid using layouts that require a large amount of measurement

calculations.

• Use as few elements as possible. For example, consider using a single

FormattedString label instead of multiple labels.

• Use AbsoluteLayout when you can, as it does no measurements.

• RelativeLayout can work well if constraints are passed directly.

• Avoid deeply nested layout hierarchies. Use AbsoluteLayout or Grid

to help reduce nesting.

• Avoid specific LayoutOptions except Fill (Fill is the cheapest to

compute).

As a last resort, with a complex list, use custom renderers to create the list natively

(see Chapter 8).

That’s it for ListView in Xamarin.Forms!

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

258

 Summary
In mobile development, lists are the new data grid. (until they’re replaced by

CollectionViews!)

List views are bound to arrays, Lists, or data models and allow scrolling when there

are more items than will fit on the screen. They usually contain text string rows, but some

contain images or entire layouts of controls.

Selection can be accomplished with a single row or multiple rows. Multiple row

selection must be done by hand in Xamarin.Forms.

Cell reuse is a common theme in performant lists and involves the economic use of

already populated list rows whenever possible. In Xamarin.Forms, this is built-in.

Grouping is often required for long lists, with grouping headings to help guide a user

to find what they’re looking for.

Built-in list row views give you layout options without having to build them

from scratch. These provide a range of control layouts for list rows providing titles,

descriptions, and images as well as accessories such as checkboxes and radio buttons.

Custom list rows provide versatility at the risk of slower performance. Beware when

creating these, as there are often performance trade-offs. Test for performance and

follow the rules of performant customization for each platform when using long lists.

Lists help us navigate an app. Let’s now explore other types of navigation in Chapter 7.

Chapter 6 Making a SCroLLabLe LiSt

www.EBooksWorld.ir

259
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4_7

CHAPTER 7

Navigation
Navigation gives users what they need to get around an app quickly, moving from screen

to screen with confidence and ease. This may include menus, tappable icons, buttons,

tabs, and list items, as well as many types of gesture-sensitive screens to display data,

information, and options to the user. There are industry-standard ways of doing this

called navigation patterns. Each of those patterns provides a template for UI appearance

and interaction. These patterns can be combined and stacked and connected like Legos

to form the skeleton of an entire app. Once we have a user moving between screens,

there is then the consideration of state, or how data is passed back and forth between

pages. In this chapter we’ll delve into navigation patterns and their ways to manage

navigation state.

 Navigation Patterns
Navigation patterns are industry-standard templates for tying an app’s screens together

in an elegant and usable way. The two most common visual design patterns in mobile

navigation are hierarchical and modal. An entire family of derivative patterns combine,

enhance, and decorate these base navigation patterns to create the full range of mobile

UI patterns. Here is an exhaustive list of the most common mobile UI navigation patterns

used in Xamarin development:

• Hierarchical: A stack-based navigation pattern enabling users to

move deeper into a screen hierarchy and then back out again, one

screen at a time, by using the Up or Back buttons.

• Modal: A screen that interrupts hierarchical navigation, often a pop-

up screen with an alert or menu that the user can complete or cancel.

• Drill-down list: A list of tappable items selected to display item detail.

www.EBooksWorld.ir

260

• Navigation drawer: A navigation menu that slides over from the left

side at the tap of an icon, typically three horizontal lines known as the

hamburger in the upper-left corner of the screen.

• Tabs: A bar containing several folder-like buttons at the top or bottom

of the screen, each with tappable icons or text invoking new pages.

• Springboard: Also referred to as a dashboard, this is a grid of tappable

icons invoking new pages.

• Carousel: Screen-sized panels that slide horizontally and sometimes

contain large images.

Let’s explore the two most common navigation patterns, hierarchical and modal.

 Hierarchical
Hierarchical is a stack-based pattern that allows users to move down into a stack of

screens and then pop back out again, one screen at a time. This pattern typically uses

a toolbar at the top of the screen to display an Up button (Figure 7-1) in the upper-left

corner when a page is selected or “drilled down into” by any means. As the user drills

deeper into the menu structure, a stack is maintained, with each page pushed onto it.

Figure 7-1. Up button

Two buttons—the Back and the Up button—are used in tandem to navigate

backward, popping pages off the stack. The Back button is the curved arrow icon at the

bottom of the screen on Android. More powerful than an Up button, the Back button can

bring the user out of the app. iOS doesn’t have one. The Up button is the less-than icon

in the upper-left corner (Figure 7-2).

Figure 7-2. Back button on Android

Chapter 7 NavigatioN

www.EBooksWorld.ir

261

Deep navigation stack can be traversed in this manner, with page selection requiring

the use of additional UI navigation patterns such as the navigation drawer, drill-down

list, or pop-up menu.

 Modal
A modal is a single, interruptive pop-up or screen that comes in two flavors. The most

common type floats on top of the main page and is usually an alert, dialog box, or menu

that the user can respond to or cancel. Navigation reverts back to the originating page

when the modal is dismissed. A modal informs users of an important event, such as

a saved record, or gives them the opportunity to provide input or direction, such as a

menu or whether to commit or cancel a transaction. The second, less common, type of

modal replaces the main page entirely, interrupting the hierarchical navigation stack.

The two most common modal menus in the mobile UI are the navigation drawer and

the action menu. The navigation drawer typically slides in from the left and is triggered

by the tapping of an icon (usually the hamburger) in the upper-left corner of the screen

and displays a list of pages to navigate to. The action menu typically slides in or pops up

on the right side of the screen, and is invoked by tapping an icon (usually three vertical

dots) in the upper-right corner of the screen and contains mostly operations (e.g., Favorite

This), though less frequently some navigation pages as well. To follow this established UI

pattern, remember this rule: Nav on the left, Action on the right (Figure 7- 3).

Figure 7-3. Nav on left, Action on right

Hierarchical and modal UI navigation patterns are typically used as complementary

techniques, with hierarchical providing the skeleton of the navigational structure and

modals giving the user choices for what they want to do and where they want to go

within the app as well as informational updates along the way.

Before you dive into all the patterns, one cross-cutting navigation topic needs to

be addressed: state management. As a user navigates through an app, separate screens

must appear to be part of the unified whole application, even though each screen is a

separate UI with a separate controller.

Chapter 7 NavigatioN

www.EBooksWorld.ir

262

 State Management
State helps us maintain the illusion of consistency and continuity while the user

navigates among screens, through the sharing of data on those screens. We’re no

longer in the web world of query strings, cookies, and Session variables, but we must

still maintain state in mobile apps. Most variables are scoped to a particular screen,

so state management usually involves the explicit passing of data back and forth

between screens. Parameter passing between screens is the encouraged method of state

management on all mobile platforms, to minimize the risk of memory abuse and to

maximize app performance.

Xamarin.Forms allows us to pass parameters into a ContentPage constructor.

Android uses a class called Bundle, which is a dictionary that contains passed values,

housed inside a class called Intent, which we use to call new activities. iOS developers

favor public properties on the destination view controller, but iOS supports passing

parameters into the destination page’s constructor.

The static global class is a C# implementation of the singleton pattern. It is available

on all platforms but must be used with caution; be mindful of mobile-device memory

limitations. Disk persistence is built into Xamarin.Forms by using the Application

objects’ Properties, a dictionary using ID/object pairs.

Now that you have a way to pass values between pages, let’s begin with Xamarin.

Forms navigation.

 Xamarin.Forms Navigation
Navigation in Xamarin.Forms is based on the two primary navigation patterns:

hierarchical and modal.

The hierarchical pattern allows the user to move down through a stack of pages and

then pop back up through them by using the Up or Back button. This is sometimes called

drill-down or breadcrumb navigation.

The modal pattern is an interruptive screen that requires a particular action from the

user but can usually be dismissed with a Cancel button. Examples include notifications,

alerts, dialog boxes, and edit or new record pages.

Chapter 7 NavigatioN

www.EBooksWorld.ir

263

In this chapter, you will explore hierarchical, modal, and the rest of the navigation

patterns. Xamarin.Forms provides most of them out of the box:

• Hierarchical navigation using NavigationPage

• Modal using NavigationPage, alerts, and ActionSheets

• Drill-down lists using NavigationPage, ListView, and TableView

• Navigation drawer using MasterDetailPage

• Tabs using TabbedPage

• Springboard using images with gesture recognizers

• Carousel using CarouselPage

The most common Xamarin.Forms navigation component is NavigationPage, which

is based on the hierarchical pattern but also provides modal functionality.

 Hierarchical Navigation Using NavigationPage
NavigationPage creates a first-in/last-out stack of pages. Pages can be pushed onto the

stack and then popped back off to return to the previous page. NavigationPage typically

wraps the main, or home, page. It can provide a navigation bar at the top of the screen

providing a current page title, icon, and an Up (<) button.

Figure 7-4 shows the navigation bar at the top of the screen for iOS and Android.

Figure 7-4. NavigationPage

The default text on the iOS up button is “Back.”

Note Up and Back are different navigation buttons. Up is the less-than arrow in
the top-left corner of the navigation page, and the Back button is on the bottom
navigation bar provided by the oS (though not in ioS).

Chapter 7 NavigatioN

www.EBooksWorld.ir

264

To use NavigationPage, in your Application class’s constructor, instantiate a

NavigationPage object, passing in the home ContentPage as a parameter, and assign it

to your MainPage:

 public class App : Application

 {

 public App()

 {

 MainPage = new NavigationPage(new HomePage());

 }

 }

Tip instantiating NavigationPage produces a static object called Navigation
that is accessible throughout your app for hierarchical navigation.

As shown in Listing 7-1, create a new XAML page called HomePage that has a label

identifying itself as “Home Page” and a button.

Listing 7-1. Hierarchical Navigation Home Page (in NavigationPage1.xaml—See

Next Tip)

 <ContentPage Title="Hierarchical Navigation" xmlns="http://xamarin.com/

schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml" x:Class="NavigationExamples. HomePage">

 <ContentPage.Content>

 <StackLayout>

 <Label Text="Home Page" FontSize="40"></Label>

 <Button Clicked="Navigate" Text="Go To Second Page">

</Button>

 </StackLayout>

 </ContentPage.Content>

 </ContentPage>

Wire up the button’s Clicked event called Navigate to bring us to the second page

via the Navigation.PushAsync method as in Listing 7-2.

Chapter 7 NavigatioN

www.EBooksWorld.ir

265

Listing 7-2. Hierarchical Navigation Home Page (in NavigationPage1.cs—See

Next Tip)

 public partial class HomePage : ContentPage

 {

 public HomePage()

 {

 InitializeComponent ();

 }

 protected async void Navigate(object sender, EventArgs args) {

 await Navigation.PushAsync(new secondPage());

 }

 }

Tip if you’re following along in the online code examples, notice that i simplified
this example by renaming NavigationPage1 to HomePage in this text to leave
out the super useful but slightly off-topic drill-down ListView home page in the
downloadable code.

The home page is a simple page with your label and button, waiting to bring you to

the second page, as shown in Figure 7-5.

Figure 7-5. Home page

Listing 7-3 contains a simple XAML page called SecondPage that labels itself Second

Page. No change is needed in the C# code behind.

Chapter 7 NavigatioN

www.EBooksWorld.ir

266

Listing 7-3. Second Page in the Hierarchy Similar to NavigationPage2.cs

 <ContentPage Title="Hierarchical Navigation" xmlns="http://xamarin.com/

schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml" x:Class="NavigationExamples.SecondPage">

 <ContentPage.Content>

 <StackLayout>

 <Label Text="Second Page" FontSize="40"></Label>

 </StackLayout>

 </ContentPage.Content>

 </ContentPage>

Now that a page is pushed onto the navigation stack, the navigation bar becomes

visible, as shown in Figure 7-6.

Figure 7-6. The second page contains a navigation bar with a Back button

Note that the icon in the navigation bar has been set to a blank image, as described

later in the section “Customizing the Navigation Bar.”

Note the navigation bar is created by NavigationPage automatically. When
the Up button (<) is clicked, the page is popped off the stack and control is
returned to the previous page.

 Pushing and Popping Screens on the Navigation Stack
Three methods are used to move between pages hierarchically:

• PushAsync pushes a page onto the stack and goes there:

Navigation.PushAsync(new nextPage());

A second parameter can be added to specify whether the

navigation is animated:

Navigation.PushAsync(new nextPage(), bool animated);

Chapter 7 NavigatioN

www.EBooksWorld.ir

267

• PopAsync pops a page off the stack and goes to the previous page:

Navigation.PopAsync();

• PopToRootAsync pops all pages off the stack and goes to the root

page:

Navigation.PopToRootAsync();

Tip two more methods, RemovePage and InsertPageBefore, can change the
stack without pushing and popping.

RemovePage removes the specified page off the stack:

Navigation.RemovePage(page);

InsertPageBefore inserts a page into the stack before the specified page:

Navigation.InsertPageBefore(insertPage, beforePage);

All of these methods are generally executed inside the events of tapped icons or

links, either inline, such as on our home page in Listing 7-1:

 protected async void Navigate(object sender, EventArgs args) {

 await Navigation.PushAsync(new secondPage());

 }

 Setting the Page Title
The ContentPage.Title property displays a title in the navigation bar. This should be

settable in the ContentPage.Title property in XAML.

 <ContentPage Title="Home">

However, results can be mixed. If you need better results, set the Title in C# in the

ContentPage constructor:

 Title = "Home";

If that doesn't work, try this in XAML:

 <ContentPage NavigationPage.BackButtonTitle="Home">

Chapter 7 NavigatioN

www.EBooksWorld.ir

268

 Customizing the Navigation Bar
NavigationPage has several properties accessible from any child page, all of which give

access to the navigation bar’s elements. Navigation bar properties such as Title and

Icon are set in the child page and not in the page that initiated NavigationPage. This is

in keeping with native platform architectures.

In most of these Xamarin.Forms navigation examples, the icon.png file has been

replaced with a blank image, so no icon is visible. This is a lean and contemporary look.

The icon.png file can also be replaced with an appropriate graphic used to reflect the

app, as shown in Figure 7-7.

Figure 7-7. The icon can be changed on the navigation bar

Tip the icon.png file is platform-specific and resides in each respective
platform project. See Chapter 1 for details on images.

The navigation icon can also be set dynamically to reflect the page or user context, by

using SetTitleIcon and the Page.Icon property:

 var image = "icon.png";

 NavigationPage.SetTitleIcon (this, image);

Customization of the navigation bar that involves more than a single change should

consider use of the newer TitleView property. TitleView is a view defined in the

Navigation page either in the XAML (<NavigationPage.TitleView/>) or as a property

within the C# page class, NavigationPage.TitleView. It’s a view that can contain layouts

and other views, such as title and icon.

Further customization of the navigation bar at the top of the screen is accomplished

by using these NavigationPage methods:

• SetTitleView exposes TitleView which contains an entire view in

the navigation bar for customization.

• SetHasNavigationBar shows/hides the navigation bar on the current

page:

Chapter 7 NavigatioN

www.EBooksWorld.ir

269

For example, NavigationPage.SetHasNavigationBar(this,

false);

• SetTitleIcon changes the title icon (Page.Icon property).

• SetHasBackButton shows/hides the Back button.

• SetBackButtonTitle changes the navigation title (the Page.Title

property set on the calling page).

• BarBackgroundColor changes the navigation bar’s color.

• BarTextColor changes the navigation bar’s text color.

Note Why are we using C# instead of XaML for NavigationPage? Because
NavigationPage does not have a property for the root page and the Xamarin-
recommended approach is to use C# for NavigationPage.

 Handling the Back Button
Popping pages off the stack can be accomplished by either the Up or the Back button.

Up is the less-than symbol (<) in the top-left corner of the navigation page, and the Back

button is on the bottom navigation bar.

The Back button click event can be explicitly handled by overriding the page’s

OnBackButtonPressed method:

 public override void OnBackButtonPressed()

 {

 // your code here

 base.OnBackButtonPressed ();

 }

 Creating a Drop-Down Menu
A drop-down menu class called ToolBarItems is built into the Page class and visible

when using NavigationPage.

Instantiate NavigationPage to invoke the toolbar ContentPage, as shown in

Listing 7-4.

Chapter 7 NavigatioN

www.EBooksWorld.ir

270

Listing 7-4. Drop-Down Menu in DropdownMenu.xaml

 <ContentPage Title="Dropdown Using ToolbarItems" xmlns="http://

xamarin.com/schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/

winfx/2009/xaml" x:Class="NavigationExamples.DropdownMenu">

 <ContentPage.ToolbarItems>

 <ToolbarItem Text="Home" Order="Secondary" Clicked="Navigate"

CommandParameter="NavigationPage1" />

 <ToolbarItem Text="Second" Order="Secondary" Clicked="Navigate"

CommandParameter="NavigationPage2" />

 </ContentPage.ToolbarItems>

 </ContentPage>

This is the Navigate method in DropdownMenu.cs which is the implementation

of the ToolbarItem's Clicked events. Get the page type from CommandParameter

and instantiate a new page using the old .NET trick: (Page)Activator.

CreateInstance(pageType). Then navigate there with Navigation.PushAsync.

 protected async void Navigate(object sender, EventArgs args) {

 string type = (string) ((ToolbarItem)sender).CommandParameter;

 Type pageType = Type.GetType("NavigationExamples." + type + ",

NavigationExamples");

 Page page = (Page)Activator.CreateInstance(pageType);

 await this.Navigation.PushAsync(page);

 }

This creates a drop-down menu/toolbar or tab menu with the items Home and

Second. Clicking either one navigates to the respective page (see Figure 7-8). On iOS, it

looks like a tab menu.

Figure 7-8. ToolbarItems drop-down menu

Chapter 7 NavigatioN

www.EBooksWorld.ir

271

 Modal
Xamarin.Forms provides three options for modal navigation:

• NavigationPage for full-page modals

• Alerts for user notifications

• Action sheets for pop-up menus

 Full-Page Modal Using NavigationPage
Modal full-screen pages can be created that break the hierarchical pattern. When modal

pages are raised, the hierarchy is interrupted and the navigation bar goes away. The

navigation bar comes back when the modal is popped off the stack. These two methods

are used to move between pages modally:

• PushModalAsync pushes a page on the stack and goes there:

Navigation.PushModalAsync(new nextPage());

• PopModalAsync pops a page off the stack and goes to the

previous page:

Navigation.PopModalAsync();

Tip Four events on the Application object can help you manage your
modal pages’ lifecycles: ModalPushing, ModalPushed, ModalPopping, and
ModalPopped.

 User Notification Using Alerts
The DisplayAlert method in a ContentPage displays a pop-up alert, as shown in

Figure 7-6. This is typically used with async/await so execution will halt until the pop-up

is cleared (Listing 7-6).

Create a new XAML page and put a button into a StackLayout. Add a Clicked event

containing “ShowAlert”.

Chapter 7 NavigatioN

www.EBooksWorld.ir

272

Listing 7-5. Add Button, from Alerts.xaml

 <StackLayout>

 <Button Text="Show Alert" Clicked="ShowAlert" />

 </StackLayout>

Implement the Clicked event with a DisplayAlert as in Listing 7-6 for the result

shown in Figure 7-9.

Figure 7-9. DisplayAlert pop-up with title, message, and action button

Listing 7-6. Using DisplayAlert, from Alerts.xaml.cs

 protected async void ShowAlert(object sender, EventArgs args) {

 await DisplayAlert("Hey", "You really should know about this.", "OK");

 }

User feedback can be received by returning a value from DisplayAlert:

 Boolean answer = await DisplayAlert("Start",

 "Are you ready to begin?", "Yes", "No");

The answer is returned as a Boolean, as shown in Figure 7-10.

Figure 7-10. The DisplayAlert method can return a value

Chapter 7 NavigatioN

www.EBooksWorld.ir

273

 Pop-Up Menu Using Action Sheets
ActionSheet provides a menu of options in a pop-up and returns a string.

Using DisplayActionSheet, create an action sheet activated by a button click that

assigns the result to a label, as shown in Listing 7-7.

Listing 7-7. Add Button and Label, from PopupMenu.xaml

 <StackLayout>

 <Button Clicked="ShowMenu" Text="Show ActionSheet" />

 <Label FontSize="20" x:Name="Message" />

 </StackLayout>

Implement the Clicked event with a ShowMenu method containing a

DisplayActionSheet with selectable options. The Message.Text property will show

the option/action chosen by the user (Listing 7-8).

Listing 7-8. Using DisplayActionSheet from PopupMenu.xaml.cs

 protected async void ShowMenu(object sender, EventArgs args) {

 String action = await DisplayActionSheet ("Options", "Cancel",

null, "Here", "There", "Everywhere");

 Message.Text = "Action is :" + action;

 }

This displays a pop-up menu in the center of the screen containing our options

(Figure 7-11).

Figure 7-11. DisplayActionSheet is a method that can return a value

Chapter 7 NavigatioN

www.EBooksWorld.ir

274

 Managing State
State management is the handling and passing of data between pages as the user

navigates through the app. There are four main approaches: passing data values directly

into a page’s constructor, using the static Properties dictionary on the Application

object to persist key/value pairs to disk, a static data instance (global) available to all

pages, and static properties on the Application object. Both the global and Application

object techniques use the singleton pattern and are useful for app-wide classes such as

data access or business objects.

Pass data directly into pages whenever possible to keep the scope of variables narrow

and manage memory prudently. The Properties dictionary persists when your app is

backgrounded and even after your app has restarted!

Let’s start with the simplest technique, passing data directly into a page.

 Passing Data into Page Parameters
State is typically managed in Xamarin.Forms by passing data directly into a Page using

its constructor. This approach scopes data objects to a single page, which is ideal from an

architecture and memory use standpoint.

When calling a new page with a Navigation method, pass in whatever variables

were defined in your page’s constructor. Define a detail page with a ListItem class as a

constructor parameter:

 class DetailPage : ContentPage

 {

 public DetailPage(ListItem item)

 {

Then pass instances of the ListItem class directly into DetailPage:

 Navigation.PushAsync (new detailPage(item));

Add all the parameters in your page constructors needed to pass in data from other

pages. More details on this example can be found in Listings 7-8 and 7-10.

Data elements are sometimes used on many pages across an entire application, and

passing them individually can become cumbersome. Frequently used data elements can

be placed into a static global class so they are available app-wide.

Chapter 7 NavigatioN

www.EBooksWorld.ir

275

 Disk Persistence Using the Properties Dictionary
The most persistent state feature built into Xamarin.Forms is the Properties dictionary.

Name/value pairs are stored as objects to disk and retrieved on demand from anywhere

within the app, even after the app has restarted. Properties works a bit like cookies for

your app.

Save a value to the Properties dictionary by using a key value, such as id:

 Application.Current.Properties["id"] = 12345;

Retrieve the value by using a cast from the Properties object type:

 var id = (int)Application.Current.Properties["id"];

Tip properties are handy in the Application’s OnStart, OnSleep, and
OnResume methods for saving data between user sessions. they can also be used
in a Page’s OnAppearing and OnDisappearing events, which fire when a page
is created or right before it is destroyed.

 Using a Static Global Class
A static global class, a C# implementation of the singleton pattern, can be used to store

data across an entire application.

Important Note implementing a singleton is a standard C# technique that can
be used across all platforms in Xamarin.Forms.

Create a static class called Global and place properties within it that you desire to

use across your app, such as myData, as shown in Listing 7-9.

Chapter 7 NavigatioN

www.EBooksWorld.ir

276

Listing 7-9. Static Global Class in Global.cs

 public class Global

 {

 private Global () { }

 private static Lazy<Global> _instance = new Lazy<Global>(() => new

Global());

 public static Global Instance

 {

 get

 {

 return _instance.Value;

 }

 }

 public String myData { get; set; }

 }

Assign values to your static global class:

 Global.Instance.myData = "12345";

Access the global properties from anywhere in your application:

 MyData myData = Global.Instance.myData;

Caution overuse of static global classes can tax memory and affect
performance. pass variables directly between pages whenever you can so they go
out of scope when no longer needed.

Chapter 7 NavigatioN

www.EBooksWorld.ir

277

 Using a Static Property on the Application Object
A singleton can be created by using a static property on the Application object:

 public class App : Application

 {

 static Database database;

 public static Database MyDatabase {

 get {

 if (database == null) {

 database = new Database ();

 }

 return database;

 }

 }

Reference this database object anywhere in your app:

 App.MyDatabase.DBConnect();

You’ll use this approach in Chapter 7 for maintaining a database connection.

(DBConnect is just an example method on the Database object.)

 Drill-Down Lists
A drill-down list is a list of tappable items selected to navigate to a new page. There are

many ways to build them using Xamarin.Forms, and the following recipes cover the

three most common types of drill-down lists: by item, by page, and grouped. A drill-

down list by item has rows that can be selected to display more information about each

item: the traditional master-detail pattern. A drill-down list by page is a menu of pages

that can be selected to navigate to different ContentPages. Both of these recipes use a

ListView to bind to a data model to provide a dynamic list of tappable items. A grouped

drill-down list built using TableView is useful for creating categorized static menu items.

ListView is one of the most versatile tools for creating drill-down lists. Short lists

can, of course, be constructed by hand by using any of the layouts filled with buttons or

labels paired with gesture recognizers to handle taps. Longer lists lend themselves to

data binding using ListView.

Chapter 7 NavigatioN

www.EBooksWorld.ir

278

Grouping is the same as it was in Chapter 6 using ListView grouping. Both items

and pages can be grouped by using the IsGroupingEnabled and GroupDisplayBinding

properties of ListView.

Lists of pages that require grouping can also be built by using TableView. This

manual alternative to ListView uses the TextCell Command and CommandParameter

properties instead of data binding.

We’ll begin with the data-bound ListView menus.

 Using ListView by Item
Many lists contain a bunch of items that a user wants to drill down into to reach details

about each item. Use ListView to display a list of items data-bound to a data model, and

then show a detail page by using PushAsync, all wrapped in NavigationPage so the user

can get back to the list.

You can create your ListView by using any of the approaches discussed in Chapter 6.

This implementation uses our list item class called DrilldownListViewByItem (see the

full Listing 7-11 and 7-12). Instantiate that page in the Application class’s constructor

wrapped in NavigationPage (see the full Listing 7-13).

 public class App : Application

 {

 public App()

 {

 MainPage = new NavigationPage(new DrilldownListViewByItem ());

 }

 }

Note that this example must differ slightly from the App.cs found in the

downloadable code, so use what you see written here in this example.

This creates the list shown in Figure 7-12, with a navigation bar on iOS and Android.

Chapter 7 NavigatioN

www.EBooksWorld.ir

279

For the drill-down detail page, create a XAML DetailPage which displays a Title

and Description.

 <StackLayout>

 <Label FontSize="40" Text="{Binding Title}" />

 <Label FontSize="40" Text="{Binding Description}" />

 </StackLayout>

In the DetailPage code behind, make a constructor that takes ListItem as a

parameter (see the full Listing 7-15).

 public partial class DetailPage : ContentPage

 {

 public DetailPage (ListItem item)

 {

 InitializeComponent ();

 this.BindingContext = item;

 }

 }

The BindingContext is set to the incoming ListItem parameter from the user tap on

the ListView.

Back on the list page, when an item row is tapped, the ItemTapped event fires. In this

case, the event name happens to be named the same thing as the ItemTapped property:

ItemTapped. Here is the ListView declaration:

 <ListView x:Name="itemList" ItemTapped="ItemTapped" >

The rest of the ListView code is in Listing 7-11, DrilldownListViewByItem.xaml.

Figure 7-12. ListView on a page with a navigation bar

Chapter 7 NavigatioN

www.EBooksWorld.ir

280

ItemTapped method receives the ListItem and pushes it out to a new hierarchical

DetailPage using the NavigationPage’s PushAsync method.

 protected async void ItemTapped(object sender, ItemTappedEventArgs

args) {

 var item = args.Item as ListItem;

 if (item == null) return;

 await Navigation.PushAsync(new DetailPage(item));

 itemList.SelectedItem = null;

 }

During the Navigation.PushAsync call, the tapped row’s ListItem is passed into

DetailPage which is then bound to the page’s BindingContext, allowing the display of

the ListItem’s Title and Description, as shown in Figure 7-13.

Figure 7-13. Detail page displaying title and description

 CODE COMPLETE: Drill-Down List
That was a quick summary of a drill-down list by item. Listings 7-10 through 7-15 show

the complete code of the drill-down list pattern using NavigationPage.

Listing 7-10. ListItem.cs

public class ListItem

{

 public string Title { get; set; }

 public string Description { get; set; }

}

Chapter 7 NavigatioN

www.EBooksWorld.ir

281

Listing 7-11. DrilldownListViewByItem.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage Title="Drilldown List Using ListView" xmlns="http://xamarin.

com/schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml" x:Class="NavigationExamples.DrilldownListViewByItem">

 <ContentPage.Content>

 <ListView x:Name="itemList" ItemTapped="ItemTapped" >

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </ContentPage.Content>

</ContentPage>

Listing 7-12. DrilldownListViewByItem.xaml.cs

public partial class DrilldownListViewByItem : ContentPage

{

 public DrilldownListViewByItem ()

 {

 InitializeComponent ();

 itemList.ItemsSource = new ListItem [] {

 new ListItem {Title = "First", Description="1st item"},

 new ListItem {Title = "Second", Description="2nd item"},

 new ListItem {Title = "Third", Description="3rd item"}

 };

 }

 protected async void ItemTapped(object sender, ItemTappedEventArgs

args) {

 var item = args.Item as ListItem;

Chapter 7 NavigatioN

www.EBooksWorld.ir

282

 if (item == null) return;

 await Navigation.PushAsync(new DetailPage(item));

 itemList.SelectedItem = null;

 }

}

Listing 7-13. App Class for This Example (Differs from Code Download App.cs)

public class App : Application

{

 public App()

 {

 MainPage = new NavigationPage(new DrilldownListViewByItem ());

 }

}

Listing 7-14. DetailPage.xaml.cs

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="NavigationExamples.

DetailPage">

 <ContentPage.Content>

 <StackLayout>

 <Label FontSize="40" Text="{Binding Title}" />

 <Label FontSize="40" Text="{Binding Description}" />

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

Listing 7-15. DetailPage.xaml.cs

public partial class DetailPage : ContentPage

{

 public DetailPage (ListItem item)

 {

 InitializeComponent ();

Chapter 7 NavigatioN

www.EBooksWorld.ir

283

 this.BindingContext = item;

 }

}

 Using ListView by Page
Navigating a list of pages is easy with ListView. Build a menu containing a list of

distinct pages (e.g., First, Second, Third). Data-bind your ListView to a data model that

contains page Titles and ContentPage types. Drill down into each page by using

NavigationPage to give the user a way to pop back to the list.

The result of Listing 7-16 looks the same on the screen as Figure 7-9 but navigates to

different ContentPage types (FirstPage, SecondPage, ThirdPage) rather than just one

(DetailPage).

Listing 7-16. ListView by Page in DrilldownListViewByPage.cs

public partial class DrilldownListViewByPage : ContentPage

{

 public DrilldownListViewByPage ()

 {

 InitializeComponent ();

 itemList.ItemsSource = new ListItemPage [] {

 new ListItemPage {Title = "First", PageType=

typeof(FirstPage)},

 new ListItemPage {Title = "Second", PageType=

typeof(SecondPage)},

 new ListItemPage {Title = "Third", PageType= typeof(ThirdPage)}

 };

 }

 protected async void ItemTapped(object sender, ItemTappedEventArgs

args) {

 var item = args.Item as ListItemPage;

 if (item == null) return;

 Page page = (Page)Activator.CreateInstance(item.PageType);

 await Navigation.PushAsync(page);

Chapter 7 NavigatioN

www.EBooksWorld.ir

284

 itemList.SelectedItem = null;

 }

 public class ListItemPage

 {

 public string Title { get; set; }

 public Type PageType { get; set; }

 }

}

The XAML ListView is the same as previous examples, bound to a Title field.

Listing 7-17. ListView by Page in DrilldownListViewByPage.xaml.cs

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage Title="Drilldown List Using ListView" xmlns="http://xamarin.

com/schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml" x:Class="NavigationExamples.DrilldownListViewByPage">

 <ContentPage.Content>

 <ListView x:Name="itemList" ItemTapped="ItemTapped" >

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" />

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </ContentPage.Content>

</ContentPage>

 Using TableView for Grouping Pages
Perfect for multicategory lists of navigation items, this variation of the drill-down list

pattern displays a static list by using a view called TableView. When an item is tapped,

a detail screen is shown. It also uses the hierarchical pattern, which provides an option

to use Back buttons. This hierarchical/drill-down list pattern is used in many of the

downloadable code projects throughout the book as the solution home page, allowing

selection of the code examples in each chapter.

Chapter 7 NavigatioN

www.EBooksWorld.ir

285

This recipe looks best when there are multiple categories of items to choose from,

because at least one TableSection is required, even if multiple categories aren’t needed,

as shown in Figure 7-14.

Figure 7-14. Grouping a list by using TableView

If you don’t want to use categories, you can keep the TableSection title blank, but

that leaves a rather large gap at the top of the list. If you don’t need categories, consider

using ListView by page, as described in the previous section.

TableView isn’t technically a layout but works much like one. This view is made up of

TextCells arranged in sections, such as Hindi, Español, and English. Each TableSection

denotes a different category of item, as shown in Listing 7-18. Set which page the cell

Chapter 7 NavigatioN

www.EBooksWorld.ir

286

should navigate to when tapped by placing ContentPage types in the CommandParameter of

each TextCell. Set the Tapped property to the event handling the TextCell's tap.

Listing 7-18. Grouped List of Pages Using TableView in DrilldownTableView.

xaml.cs

<ContentPage Title="Drilldown List Using TableView" xmlns="http://xamarin.

com/schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml" x:Class="NavigationExamples.DrilldownTableView">

 <ContentPage.Content>

 <TableView Intent="Menu">

 <TableView.Root>

 <TableSection Title="Hindi">

 <TextCell Text="Prathama" Tapped="navigateToPage"

CommandParameter="FirstPage" />

 <TextCell Text="Dūsarā" Tapped="navigateToPage"
CommandParameter="SecondPage" />

 <TextCell Text="Tīsarā" Tapped="navigateToPage"
CommandParameter="ThirdPage" />

 </TableSection>

 <TableSection Title="Español">

 <TextCell Text="Primero" Tapped="navigateToPage"

CommandParameter="FirstPage" />

 <TextCell Text="Segundo" Tapped="navigateToPage"

CommandParameter="SecondPage" />

 <TextCell Text="Tercera" Tapped="navigateToPage"

CommandParameter="ThirdPage" />

 </TableSection>

 <TableSection Title="English">

 <TextCell Text="First" Tapped="navigateToPage"

CommandParameter="FirstPage" />

 <TextCell Text="Second" Tapped="navigateToPage"

CommandParameter="SecondPage" />

 <TextCell Text="Third" Tapped="navigateToPage"

CommandParameter="ThirdPage" />

 </TableSection>

Chapter 7 NavigatioN

www.EBooksWorld.ir

287

 </TableView.Root>

 </TableView>

 </ContentPage.Content>

</ContentPage>

Tip Using Binding may be more elegant in Listing 7-19 than CommandParameter,
but we don’t cover binding until Chapter 9.

When a TextCell is tapped, the navigateToPage method is called in the C# code

behind. There, the CommandParameter containing the ContentPage type is parsed and

the type is instantiated into a Page using Activator.CreateInstance. Use PushAsync

to navigate to this new page, which, in this case, will be FirstPage, SecondPage, or

ThirdPage.

Listing 7-19. Grouped List of Pages Using TableView in DrilldownTableView.

xaml.cs

 protected async void navigateToPage(object sender, EventArgs args)

 {

 string type = (string) ((TextCell)sender).CommandParameter;

 Type pageType = Type.GetType("NavigationExamples." + type + ",

NavigationExamples.Xaml");

 Page page = (Page)Activator.CreateInstance(pageType);

 await this.Navigation.PushAsync(page);

 }

 Navigation Drawer Using MasterDetailPage
MasterDetailPage implements the navigation drawer pattern, which slides in a menu

from the side when an icon, usually the hamburger, is tapped.

In the main page, Listing 7-20, the master and detail pages are defined. The master

page is the menu drawer containing a list of menu options. Detail pages are raised when

an option is tapped in the menu drawer.

Chapter 7 NavigatioN

www.EBooksWorld.ir

288

Listing 7-20. Using MasterDetailPage in NavigationDrawer.xaml.cs

<?xml version="1.0" encoding="UTF-8"?>

<MasterDetailPage Title="Navigation Drawer Using MasterDetailPage"

xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="NavigationExamples.

NavigationDrawer">

<MasterDetailPage.Master>

 <ContentPage Title="Options" Icon="hamburger.png">

 <ListView x:Name="menu" />

 </ContentPage>

 </MasterDetailPage.Master>

 <MasterDetailPage.Detail>

 <ContentPage>

 <Label Text="Detail"/>

 </ContentPage>

 </MasterDetailPage.Detail>

</MasterDetailPage>

Tip the Title property of the MasterDetailPage is required.

When a menu item is selected, the ItemTapped event fires and sets the Detail

property to the destination page. Detail is set to HomePage initially.

Listing 7-21. Using MasterDetailPage in NavigationDrawer.cs

public partial class NavigationDrawer : MasterDetailPage

{

 public NavigationDrawer ()

 {

 InitializeComponent ();

 string[] myPageNames = { "Home", "Second", "Third" };

 menu.ItemsSource = myPageNames;

Chapter 7 NavigatioN

www.EBooksWorld.ir

289

 menu.ItemTapped += (sender, e) =>

 {

 ContentPage gotoPage;

 switch (e.Item.ToString())

 {

 case "Home":

 gotoPage = new HomePage();

 break;

 case "Second":

 gotoPage = new SecondPage();

 break;

 case "Third":

 gotoPage = new ThirdPage();

 break;

 default:

 gotoPage = new NavigationPage1();

 break;

 }

 Detail = new NavigationPage(gotoPage);

 ((ListView)sender).SelectedItem = null;

 this.IsPresented = false;

 };

 Detail = new NavigationPage(new HomePage());

 }

}

A couple of things happen after the Detail page is navigated to. SelectedItem is set

to null to remove the highlight over the selected row, and IsPresented is set to false to

remove the menu.

Because the navigation drawer already instantiates its own navigation pages, you

don’t need to create another NavigationPage when you call it. This is how to implement

your nav drawer in App.cs, at the root of your navigation.

Chapter 7 NavigatioN

www.EBooksWorld.ir

290

 public class App : Application

 {

 public App()

 {

 MainPage = new NavigationDrawer ();

 }

 }

This example begins as the home page set as the detail page, as shown in Figure 7- 15.

It hard-codes the navigation drawer pages rather than making them dynamic.

Figure 7-15. HomePage ContentPage is the initial detail page

Chapter 7 NavigatioN

www.EBooksWorld.ir

291

Important Note HomePage.cs contains the HomePage ContentPage shown
in Figure 7-12 and is in the downloadable code but is not listed here. Be certain to
download the code for this chapter and check it out, because it contains some of
the most project-ready examples in this book.

When the icon is clicked, the master page is shown, containing the menu and the

menu icon in the upper-left corner, as shown in Figure 7-16.

Figure 7-16. The fly-in menu is the master page

Chapter 7 NavigatioN

www.EBooksWorld.ir

292

Figure 7-17. TabbedPage makes tabs that navigate to pages

Change the menu icon to a hamburger by using the master page’s Icon property.

The icon file is taken from the local images folder for each platform.

 <MasterDetailPage.Master>

 <ContentPage Title="Options" Icon="hamburger.png">

Clicking a menu item brings you to the specified new detail page.

Note the tablet experience of MasterDetailPage is completely different from
the phone experience and is a breath of fresh air. the master list shows on the left
and detail page shows on the right-hand portion of the screen. this offers a real-
time display of list detail as the user taps on different items in the list. having the
menu and the detail on the screen at the same time takes full advantage of the
tablet’s ample real estate.

 Tabs Using TabbedPage
Having clickable folder-like tabs at the top or bottom of the screen is a common

navigation pattern, implemented by TabbedPage, as shown in Figure 7-17. Tabs can be

declared in XAML as referenced or inline. Let’s begin with references.

Tip ioS tabs are at the bottom of the screen, and android tabs are at the top.

Create a TabbedPage, which creates a XAML and code behind. Reference tab pages

in the TabbedPage.Children property, as shown in Listing 7-22.

Chapter 7 NavigatioN

www.EBooksWorld.ir

293

Listing 7-22. Referenced Tabs in TabPage.xaml

<TabbedPage Title="Tabs Using TabbedPage" xmlns:local="clr-namespace:

NavigationExamples;assembly=NavigationExamples.Xaml"

 xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://schemas.

microsoft.com/winfx/2009/xaml" x:Class="NavigationExamples.TabPage">

 <TabbedPage.Children>

 <local:FirstPage />

 <local:SecondPage />

 <local:ThirdPage />

 </TabbedPage.Children>

</TabbedPage>

The Title property of each child page is where the tab titles come from. Remember

to assign it wherever you create the child page. All of the action happens in the XAML,

with no coding needed in the code behind beyond the default constructor. Compile and

run this example to see the result in Figure 7-14.

Reference tabs inline by declaring them directly in the TabbedPage XAML tag as

shown in Listing 7-23.

Listing 7-23. Inline Tab Declaration in TabbedPage

 <?xml version="1.0" encoding="utf-8" ?>

 <TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="NavigationExamples.Xaml.TabbedPageInline">

 <ContentPage Title="FirstPage" />

 <ContentPage Title=" SecondPage" />

 <ContentPage Title="ThirdPage" />

 </TabbedPage>

Tip in ioS, you can place icons on tabs by using the child pages’ Icon property.
Not so on android.

Chapter 7 NavigatioN

www.EBooksWorld.ir

294

 Creating Data-Bound Tabs
TabbedPage can be bound to a data source. Use the TabbedPage properties ItemsSource

and ItemTemplate to achieve a data-bound tabbed menu.

Create a Tabbed Page, which creates a XAML and code behind. In the XAML, create

the DataTemplate page inside the TabbedPage.ItemTemplate property. This is the page

you see when a tab is selected, displaying Bind Name and Number properties, as shown in

Listing 7-24.

Listing 7-24. TabbedPage Definition in TabPageDatabound.xaml.cs

 <?xml version="1.0" encoding="utf-8" ?>

 <TabbedPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="NavigationExamples.TabPageDatabound"

 Title="Data-bound TabbedPage">

 <TabbedPage.ItemTemplate>

 <DataTemplate>

 <ContentPage Title="{Binding Name}">

 <StackLayout Padding="5, 25">

 <Label Text="{Binding Number}" Font="Bold,Large"

HorizontalOptions="Center" />

 </StackLayout>

 </ContentPage>

 </DataTemplate>

 </TabbedPage.ItemTemplate>

 </TabbedPage>

Tip DataTemplate is commonly used for data-binding classes such as
ListView and TableView. read more about it in Chapter 6.

Create a list of tabs by declaring a TabItem class and building an array of them. Name

and Number are the properties of TabItem, as shown in Listing 7-25.

Chapter 7 NavigatioN

www.EBooksWorld.ir

295

Listing 7-25. TabItem Class from TabPageDatabound.cs

 class TabItem

 {

 public TabItem(string name, int number)

 {

 this.Name = name;

 this.Number = number;

 }

 public string Name { private set; get; }

 public int Number { private set; get; }

 }

The binding in Listing 7-24 ties the TabItem.Name property to the page’s Title, and

the TabItem.Number property to the label’s Text property. Build the TabItem array and

assign to the TabbedPage's ItemsSource property (Listing 7-26).

Listing 7-26. Data-Bound Tabs in TabPageDatabound.xaml.cs

 public TabPageDatabound()

 {

 InitializeComponent();

 this.ItemsSource = new TabItem[] {

 new TabItem ("First", 1),

 new TabItem ("Second", 2),

 new TabItem ("Third", 3),

 new TabItem ("Fourth", 4),

 new TabItem ("Fifth", 5),

 new TabItem ("Sixth", 6)

 };

 }

ItemsSource exposes the properties of TabItem array binding in the ItemTemplate,

TabItem.Name as ContentPage.Title and TabItem.Number as Label.Text.

Chapter 7 NavigatioN

www.EBooksWorld.ir

296

Tip remember InitializeComponent(); in your TabbedPage constructor.
Cryptic errors can occur otherwise.

The result is six named tabs, as shown in Figure 7-18.

Figure 7-18. TabbedPage with data-bound tabs

Scroll the tab bar vertically on Android or tap “More” on iOS to see the sixth tab.

When a tab is tapped, the corresponding NumberPage is created and navigated to,

displaying the bound Number.

 Putting NavigationPages Inside a TabbedPage
Navigation pages are used within a tabbed page by assigning them as children, creating

a navigation bar when the tab is selected (Listing 7-27). Remember to assign a Title to

NavigationPage to specify the name of the tab.

Listing 7-27. NavigationPage as a Child of a TabbedPage

 <TabbedPage Title="Tabs Using TabbedPage" xmlns:local="clr-namespace:

NavigationExamples;assembly=NavigationExamples.Xaml"

 xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="NavigationExamples.

TabPage">

 <local:FirstPage />

 <NavigationPage Title="Second Page" Icon="Navigation.png">

 <x:Arguments>

 <local:SecondPage />

Chapter 7 NavigatioN

www.EBooksWorld.ir

297

Figure 7-19. Springboard using tap-gesture recognizers added to the images

Chapter 7 NavigatioN

www.EBooksWorld.ir

298

 </x:Arguments>

 </NavigationPage>

 </TabbedPage>

This example will display two tabs, First Page and Second Page. Second Page is

wrapped within a NavigationPage.

 Springboard
A springboard is a grid of tappable images on a home screen menu, sometimes referred

to as a dashboard, as shown in Figure 7-19.

This springboard is implemented with a Grid layout, as shown in Listing 7-28. This

code places three images on the grid.

Listing 7-28. Grid in Springboard.xaml

<Grid VerticalOptions="FillAndExpand" RowSpacing="65" ColumnSpacing="65"

Padding="60" >

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Image x:Name="FirstImage" Grid.Column="0" Grid.Row="0" Source="first.

png" Aspect="AspectFit" HorizontalOptions="FillAndExpand"

VerticalOptions="FillAndExpand" />

 <Image x:Name="SecondImage" Grid.Column="0" Grid.Row="1"

Source="second.png" Aspect="AspectFit" HorizontalOptions="FillAndExpand

" VerticalOptions="FillAndExpand" />

 <Image x:Name="ThirdImage" Grid.Column="0" Grid.Row="2" Source="third.

png" Aspect="AspectFit" HorizontalOptions="FillAndExpand"

VerticalOptions="FillAndExpand" />

</Grid>

Chapter 7 NavigatioN

www.EBooksWorld.ir

299

Each of the three Images is provisioned with tap-gesture recognizers, as shown in

Listing 7-29. The Tapped event of each gesture handler contains a PushAsync to the

requested page. I’ll talk more about the TapGestureRecognizers shortly.

Listing 7-29. TapGestureRecognizers in Springboard.xaml.cs

public partial class Springboard : ContentPage

{

 public Springboard ()

 {

 InitializeComponent ();

 var tapFirst = new TapGestureRecognizer();

 tapFirst.Tapped += async (s, e) =>

 {

 await this.Navigation.PushAsync(new FirstPage());

 };

 FirstImage.GestureRecognizers.Add(tapFirst);

 var tapSecond = new TapGestureRecognizer();

 tapSecond.Tapped += async (s, e) =>

 {

 await this.Navigation.PushAsync(new SecondPage());

 };

 SecondImage.GestureRecognizers.Add(tapSecond);

 var tapThird = new TapGestureRecognizer();

 tapThird.Tapped += async (s, e) =>

 {

 await this.Navigation.PushAsync(new ThirdPage());

 };

 ThirdImage.GestureRecognizers.Add(tapThird);

 }

}

Chapter 7 NavigatioN

www.EBooksWorld.ir

300

 Making Icons Tappable by Using Gesture Recognizers
The gesture recognizers added to each image in Listing 7-28 handle taps in the

TapGestureRecognizer Tapped event, using PushAsync to push the specified page onto

the navigation stack. Here a tap-gesture recognizer is added to firstImage:

 var tapFirst = new TapGestureRecognizer();

 tapFirst.Tapped += async (s, e) =>

 {

 await this.Navigation.PushAsync(new FirstPage());

 };

 FirstImage.GestureRecognizers.Add(tapFirst);

Tappable images should be visually responsive to touch. Use the opacity trick

covered back in Chapter 1 (Listing 1-6):

 var tapFirst = new TapGestureRecognizer();

 tapFirst.Tapped += async (sender, e) =>

 {

 image.Opacity = .5;

 await Task.Delay(100);

 image.Opacity = 1;

 await this.Navigation.PushAsync(new FirstPage());

 };

 firstImage.GestureRecognizers.Add(tapFirst);

This dims the image slightly for an instant when touched to provide user feedback

and let them know that their gesture did something. When using the Task class,

remember to add the using statement:

 using System.Threading.Tasks;

 Carousel Using CarouselPage
Carousel pages scroll off the screen to reveal another page when a user slides left or right.

Create a carousel page and add child pages, as shown in Listing 7-30.

Chapter 7 NavigatioN

www.EBooksWorld.ir

301

Listing 7-30. Carousel.xaml

Figure 7-20. Sliding to the left shows the second page

<?xml version="1.0" encoding="UTF-8"?>

<CarouselPage Title="Carousel Using CarouselPage"

 xmlns:local="clr-namespace:NavigationExamples;assembly=NavigationExamples"

 xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://schemas.

microsoft.com/winfx/2009/xaml" x:Class="NavigationExamples.Carousel">

 <CarouselPage.Children>

 <local:FirstPage />

 <local:SecondPage />

 <local:ThirdPage />

 </CarouselPage.Children>

</CarouselPage>

This allows horizontal scrolling between child pages. Figure 7-20 shows that the

home page, when slid to the left, reveals the second page.

When using CarouselPage as a detail page in MasterDetailPage, set

MasterDetailPage.IsGestureEnabled to false to prevent gesture conflicts between

CarouselPage and MasterDetailPage.

Tip the Carouselview community project is considered more up-to-date than
Carouselpage by some. https://github.com/alexrainman/CarouselView

You are now equipped to build the navigation outline for just about any Xamarin.

Forms app you can imagine!

Chapter 7 NavigatioN

www.EBooksWorld.ir

https://github.com/alexrainman/CarouselView

302

 Summary
Navigation is a key topic in the creation of mobile apps. In web and desktop apps, single

screens are so large and hold so much of the user workflow that navigation is often

a small part of the user experience and is even sometimes added as an afterthought.

Because of the economy of screen real estate in mobile apps, we must enable users to

easily get around in an app in as short a time as possible. Consumer apps can engage

a user for a long period of time, but success in business apps is not measured in the

amount of time a user spends in the app but in the answer to this question: Did they

find the information they were looking for? Menus can’t be a catchall parking lot of

drop-downs at the top of the page or (just as bad) a navigation drawer bursting with

disorganized features.

The criticality of navigation in mobile apps leads us to this tenet: Mobile navigation

must closely match the user workflow. If it doesn’t, we risk confused and frustrated users.

In most of our apps, especially business apps, it is useful to try and match our user

stories and use cases with these key navigation patterns: hierarchical, modal, drill-down

list, navigation drawer, and tabs.

Hopefully, this chapter provides you with the ideas and patterns to map out the

skeleton of just about any app you can imagine. The downloadable code samples can be

mixed and matched to help you sketch out your app.

In the next chapter, we will return to the mobile UI for the final and catalyzing topic

in Xamarin.Forms development: customization using effects, native controls, and

custom renderers. Custom renderers allow you to use almost all of Xamarin’s platform-

specific UI functionality within the context of a Xamarin.Forms app. You can include

platform-specific code, which employs Xamarin.iOS and Xamarin.Android, in your

Xamarin.Forms pages by using effects, native views, and custom renderers.

Please navigate to the next chapter.

Chapter 7 NavigatioN

www.EBooksWorld.ir

303
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4_8

CHAPTER 8

Custom Renderers,
Effects, and Native Views
When you’re ready to extend the capability of Xamarin.Forms views beyond their out-of-

the-box functionality, then it’s time to start customizing them using custom renderers,

effects, and native views. Platform-specific controls and layouts have scores of features

inaccessible using only the Xamarin.Forms abstraction. There are three ways to access

those features and extend the functionality of your application. The custom renderer

gives full control over a Xamarin.Forms control by allowing you to gain access to all of

its native functionality. It allows you to override the methods of the default renderers

provided by Xamarin.Forms or even replace the platform-specific control Xamarin.

Forms used with another control. Xamarin.Forms developers’ customization approach

of choice is effects, a milder form of customization. Use effects if you need to change

properties or use event listeners. Finally, Xamarin.Forms supports the use of the native

views directly in XAML. This provides full access to the power of native controls along

with the full responsibility of managing their lifecycle and behavior.

 Custom Renderer
Xamarin.Forms exposes the mechanism whereby cross-platform views are made into

platform-specific views, called renderers. By creating your own custom renderers, you get

full access to platform-specific features buried deep within each view! Custom renderers

are a bridge between Xamarin.Forms and Xamarin platform-specific libraries, Xamarin.

iOS as well as Xamarin.Android.

www.EBooksWorld.ir

304

Note Custom renderers are the most powerful option for Xamarin.Forms view
customization, so we’ll explore it first before moving onto a milder but more
popular approach: Effects. Xamarin.Forms controls are drawn on the screen using
two primary components: elements and renderers. Throughout this book you’ve
been working with the elements: views, pages, or cells defined within Xamarin.
Forms. The renderers take a cross-platform element and draw it on the screen
using the platform-specific UI library. All Xamarin screens use renderers! For
example, if you create a Label view using Xamarin.Forms, this element is rendered
in iOS using UILabel and in Android using TextView. However, Xamarin.Forms
provides only a partial binding to these platform-specific views. If you want to
gain access to all of the properties and methods within platform-specific elements
(such as UILabel, TextView, and TextBlock), then you need to create a
custom renderer (or an Effect, but we’ll get to that later).

Think of a custom renderer as a way to access and extend your use of the platform-

specific elements.

Tip You can create custom renderers for these elements: Views, Cells, and Pages.

At the end of this topic, I’ll list most of the Xamarin.Forms elements covered in this

book, their platform-specific equivalents, and which renderers to use when customizing

them.

 When to Use a Custom Renderer
When might you want to use a custom renderer?

You may want a view to behave differently and Xamarin.Forms isn’t obliging you. For

example, you know for a fact that iOS does text decorations or shadows on a particular

view and this isn’t available in Xamarin.Forms, so you create a custom renderer to

access a Xamarin.iOS control. Use a custom control when you need direct access to

an element’s platform-specific properties and methods, when you need to override

platform-specific control methods, or when you need to replace a Xamarin.Forms

element with your own custom platform-specific element.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

305

Tip A Xamarin.Forms customized control uses a custom renderer to access
native functionality in a single control. A custom control is typically a group of
controls composited into a single reusable component using ContentView
(Chapter 5) (but you can also create a custom control using a custom renderer and
replace the view with a group of views). Sometimes developers will say “custom
control” to refer to a customized control.

Let’s explore how to create a custom renderer for Android and iOS.

 Creating and Using a Custom Renderer
A custom renderer is created to implement the visual representation of a custom

element. You create a custom element class that inherits from a standard Xamarin.

Forms element, such as Button. Then you use that custom element in the UI. You

can implement the custom renderer for each platform to use platform-specific

members of that element, such as Android’s SetBackgroundColor method or the iOS

BackgroundColor property.

Note Button Backgroundcolor is the example used in this chapter. It’s
a simple function that lends itself well to demonstrating how to create custom
renderers. In the real world, outside of a teaching context, you would not customize
this particular element because there is an easy way to do this in Xamarin.Forms:

 View.BackgroundColor = Color.FromRGB(50,205,50);

or

 <Button Text="Press Me" HorizontalOptions="FillAndExpand"
BackgroundColor="#32cd32" />

Custom renderers should only be written for functionality that cannot be achieved
using regular Xamarin.Forms views and their elements.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

306

There are several steps in the creation and implementation of a custom renderer,

but I’ll break them into two tasks: preparing the custom element in the Xamarin.Forms

project and creating a custom renderer in each platform-specific project.

Prepare the custom element in your Xamarin.Forms project by creating an element

subclass and then using it in your UI. The following steps only happen once.

 1. Create an element subclass. Create a custom element that is a

subclass of the element you want to customize, such as Button, in

your Xamarin.Forms project.

<Button FontSize="Large" HorizontalOptions="Center"

VerticalOptions="Fill" xmlns="http://xamarin.com/schemas/2014/

forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

x:Class="CustomRendererExample.CustomButton"/>

 2. Create the C# partial class implementation of your custom

element (code behind).

 public partial class CustomButton : Button

 {

 public CustomButton()

 {

 InitializeComponent();

 }

 }

 3. Use the element. Use the subclassed element, such as this

CustomButton, in a layout in your Xamarin.Forms project.

Create a custom renderer in each of your platform-specific projects (iOS, Android)

using these three steps. The following steps occur once for each platform.

 1. Create a custom renderer. Add a custom renderer class to each

platform-specific project where you want to make customizations.

 public class CustomButtonRenderer : ButtonRenderer

 2. Add [assembly]. Add the [assembly] attribute outside of the

namespace declaration to declare the new renderer.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

307

 3. Add using. Add using statements to the renderer class so that the

renderer types are resolved.

That’s the upshot for creating a custom renderer.

In the next example, you will create a custom button that has custom renderers for

each platform. Start by preparing your custom view in the Xamarin.Forms project before

moving onto the renderers.

 Creating the Custom Element
A custom renderer first requires a custom Xamarin.Forms element, which can be a

View, a Cell, or a Page. In this example, you will use custom renderers to change the

background color of a button view to some variant of green. The custom view will be

called CustomButton and inherit from the Button view and is defined in XAML file. You

need to provide two files for every custom element you are creating: the XAML file and

the associated code behind file.

Now, to make your CustomButton green, create a Xamarin.Forms solution called

CustomRenderer; then I’ll go through these steps in more detail.

 1. Create an element subclass. Create a new XAML document called

CustomButton.xaml, and replace the root element ContentPage

that Visual Studio created with Button both in the XAML and the

code behind and assign some default values.

 <Button xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 x:Class="CustomRendererExample.CustomButton" FontSize="Large"

 HorizontalOptions="Center" TextColor="Black"

 VerticalOptions=="Fill" />

 2. Create the C# partial class implementation of your custom

element (code behind).

 public partial class CustomButton : Button

 {

 public CustomButton()

 {

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

308

 InitializeComponent();

 }

 }

 3. Use the element. Use the subclassed element, such as this

CustomButton, in a layout in your Xamarin.Forms project.

Create a new ContentPage in a file called CustomRendererExamplePage.xaml. Declare

the namespace of your CustomButton using the xmlns directive; provide a prefix for this

namespace, e.g., local; declare an instance of the CustomButton view; provide a name for

a click handler; and place the button on a Stacklayout, as shown in Listing 8-1.

Listing 8-1. Use the CustomButton in CustomRendererExamplePage.xaml

(in the Forms Project)

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:CustomRendererExample"

 x:Class="CustomRendererExample.CustomRendererExamplePage">

 <StackLayout VerticalOptions="Center">

 <local:CustomButton Text="Custom Button" Clicked=

"ButtonClicked" />

 </StackLayout>

 </ContentPage>

The CustomRendererExamplePage also requires a partial class implementation

in the code behind CustomRendererExamplePage.xaml.cs, which includes a

default constructor that calls the InitializeComponent method and provides an

implementation of the event hander ButtonClicked, as shown in Listing 8-2.

Listing 8-2. Use the CustomButton in CustomRendererExamplePage.xaml

(in the Forms Project)

 public partial class CustomRendererExamplePage : ContentPage {

 public CustomRendererExamplePage() {

 InitializeComponent();

 }

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

309

 public void ButtonClicked(object sender, EventArgs args) {

 DisplayAlert("Congratulations",

 "This button was rendered in a platform-specific class.", "OK");

 }

 }

Remember to assign this CustomRendererExamplePage class to the MainPage

property of your Application constructor. In the StackLayout, your use of the custom

view, CustomButton, is exactly the same as the use of a regular Xamarin.Forms Button

view.

 Creating the Custom Renderer
Now that you have created a custom element and used it in your UI, you’ll need to

create the custom renderer. You’ll need to determine the name of the renderer for your

element, and I’ll show you how to do that later in this chapter in the section “Which

Renderer and View Do You Customize?” In this example, you’ll use ButtonRenderer.

There are two main ways to customize a control: by property or by replacing the

entire control. Customizing a control’s properties involves accessing platform-specific

properties unavailable via the Xamarin.Forms view (such as a button’s background

color). A Xamarin.Forms control can also be completely replaced by a platform-specific

control of the developer’s choice. I’ll cover property customization in depth in this

chapter and touch upon control replacement in the notes.

Here are the custom renderer’s key methods:

• OnElementChanged: This main method fires upon changes to the

element and is used for control initialization. Set the initial control

value and its properties. This is also where to replace the entire

control with your own customized platform-specific control.

• OnElementPropertyChanged: This method fires upon changes to

element and attached properties and is useful for data binding.

• SetNativeControl: Call this method manually to replace the

entire element with a custom platform-specific control (such as

SetNativeControl(new YourCustomizedControl());).

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

310

Here are the custom renderer’s important properties:

• Control: A reference to the platform-specific element (such as

UIButton) displayed by the renderer. Platform-specific properties are

available here. This object can also be replaced with an entirely new

(and customized) platform-specific control.

• Element: A reference to the Xamarin.Forms subclassed element (such

as CustomButton). Xamarin.Forms element properties are available

here.

• Customize controls and their properties by using the Control

property within the OnElementChanged method.

Implement data-bound customized controls by assigning Control properties from

their corresponding Element properties in the OnElementPropertyChanged method.

Now create a custom renderer on each platform. Begin with the Android platform,

then do iOS.

 Android Custom Renderer
Renderers realize a view on the native platform. Create your own renderer by inheriting

from the standard renderer, such as ButtonRenderer. Then call into the native view’s

platform-specific API to customize the view using the renderer’s Control property. In

OnElementChanged, you’ll assign your Control's background color property.

Do the first of three platform-specific steps.

 1. Create a custom renderer. Add a custom renderer class to the

platform-specific project, which is ButtonRenderer in this case.

Tip refer to the section “which renderer and view do You Customize?” at the
end of this chapter to help you determine the renderer and platform-specific
control(s) to use for the element you want to customize.

Create CustomButtonRenderer.cs as a class in the Droid project. Inherit from

the ButtonRenderer class and modify the Control property to affect your button as

needed. The platform-specific view is assigned to the Control property, in this case

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

311

an Android Button control, and its native properties and methods are made available.

Listing 8-3 shows an Android renderer where the background color is set using the

SetBackgroundColor method.

Listing 8-3. Customized ButtonRenderer in CustomButtonRenderer.cs (in the

Droid Project)

 public class CustomButtonRenderer : ButtonRenderer {

 public CustomButtonRenderer(Context context) : base(context) {

 AutoPackage = false;

 }

 protected override void OnElementChanged

 (ElementChangedEventArgs<Button> e) {

 base.OnElementChanged (e);

 if (Control != null) {

 Control.SetBackgroundColor (global::Android.Graphics.Color.

LimeGreen);

 }

 }

 }

Note If you don’t add a platform-specific renderer, the default Xamarin.Forms
renderer will be used.

Complete the final two platform-specific steps. In order to make the custom renderer

visible to the Xamarin.Forms project, an attribute on the class is required. Then add the

using statements.

 2. Add the [assembly] attribute outside of the namespace

declaration to declare the new renderer.

 [assembly: ExportRenderer (typeof (CustomButton), typeof

(CustomButtonRenderer))]

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

312

 3. Add using statements to the renderer class so that the renderer

types are resolved.

 using Xamarin.Forms.Platform.Android;

 using Xamarin.Forms;

 using CustomRendererExample;

 using CustomRendererExample.Droid;

 using Android.Content;

Figure 8-1 shows the result: a “lime green”-colored button. Setting a button’s

background color is only possible using a custom renderer with the current version of

Xamarin.Forms.

Figure 8-1. Lime green CustomButton via an Android custom renderer

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

313

Tip Color is close-captioned in this chapter for all of you black-and-white print
readers.

 CODE COMPLETE: Android Custom Renderer
Listings 8-4, 8-5, 8-6, 8-7, and 8-8 contain the complete code listing for the Android

custom button renderer. Listing 8-4, CustomButton.xaml; Listing 8-5, CustomButton.

xaml.cs; Listing 8-6, CustomRendererExamplePage.xaml; and Listing 8-7 are in the

Xamarin.Forms project, and Listing 8-8, CustomButtonRenderer.cs, is from the Droid

project in the same solution, CustomRendererExample.

Listing 8-4. CustomButton.xaml (in the Forms Project)

 <?xml version="1.0" encoding="UTF-8"?>

 <Button FontSize="Large" HorizontalOptions="Center" VerticalOptions=

"Fill"

 x:Class="CustomRendererExample.CustomButton"/>

Listing 8-5. CustomButton Code Behind in CustomButton.xaml.cs (in the Forms

Project)

 using Xamarin.Forms;

 namespace CustomRendererExample {

 public partial class CustomButton : Button {

 public CustomButton()

 {

 InitializeComponent();

 }

 }

 }

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

314

Listing 8-6. Use the CustomButton in CustomRendererExamplePage.xaml (in

the Forms Project)

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:CustomRendererExample"

 x:Class="CustomRendererExample.CustomRendererExamplePage">

 <StackLayout VerticalOptions="Center">

 <local:CustomButton Text="Custom Button" Clicked=

"ButtonClicked" />

 </StackLayout>

 </ContentPage>

Listing 8-7. Use the CustomButton in CustomRendererExamplePage.xaml

(in the Forms Project)

 using Xamarin.Forms

 namespace mynamespace {

 public partial class MainPage : ContentPage {

 public XAMLBookPage() {

 InitializeComponent();

 }

 void Handle_Clicked(object sender, EventArgs e) {

 DisplayAlert("Congratulations",

 "This button was rendered in a platform-specific class.",

"OK");

 }

 }

}

Listing 8-8. CustomButtonRenderer.cs (Droid Project)

 using Xamarin.Forms.Platform.Android;

 using Xamarin.Forms;

 using CustomRendererExample;

 using CustomRendererExample.Droid;

 using Android.Content;

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

315

 [assembly: ExportRenderer (typeof (CustomButton), typeof

 (CustomButtonRenderer))]

 namespace CustomRendererExample.Droid {

 public class CustomButtonRenderer : ButtonRenderer {

 public CustomButtonRenderer(Context context) : base(context) {

 AutoPackage = false;

 }

 protected override void OnElementChanged

 (ElementChangedEventArgs<Button> e) {

 base.OnElementChanged (e);

 if (Control != null) {

 Control.SetBackgroundColor (global::Android.Graphics.

Color.LimeGreen);

 }

 }

 }

 }

Now we’ll do a green button in iOS.

 iOS Custom Renderer
Creating an iOS renderer for the Button view is similar to making the Android

one. Create a custom renderer that inherits from a standard renderer, such as

ButtonRenderer. Then call into the native view’s platform-specific API to customize

it using the renderer’s Control property. In OnElementChanged, you’ll assign your

Control's background color property.

Begin with the first platform-specific step.

 1. Create a custom renderer. Create CustomButtonRenderer.cs as a

class in the iOS project. Inherit from the ButtonRenderer class and

modify the Control property to affect your button as needed. The

platform-specific view is assigned to the Control property, in this case

an iOS UIButton control, and its native properties and methods are

available. Listing 8-9 shows an iOS renderer where the background

color is set using the UIButton's BackgroundColor property.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

316

Listing 8-9. Customized ButtonRenderer in CustomButtonRenderer.cs (iOS

Project)

 public class CustomButtonRenderer : ButtonRenderer {

 protected override void OnElementChanged

 (ElementChangedEventArgs<Button> e) {

 base.OnElementChanged (e);

 if (Control != null) {

 Control.BackgroundColor = UIColor.FromRGB(50,205,50);

 }

 }

 }

Next, do the final two steps. In order to make the custom renderer visible to the

Xamarin.Forms project, you need to add an attribute on the class and the two using

statements.

 2. Add [assembly]. Add the [assembly] attribute outside of the

namespace declaration to declare the new renderer.

 [assembly: ExportRenderer (typeof (CustomButton), typeof

(CustomButtonRenderer))]

 3. Add using statements to the renderer class so that the renderer

types are resolved.

 using Xamarin.Forms.Platform.iOS;

 using Xamarin.Forms;

 using UIKit;

 using CustomRenderer;

 using CustomRenderer.iOS;

Figure 8-2 displays the result: another lime green button, using a custom renderer

with the current version of Xamarin.Forms.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

317

 CODE COMPLETE: iOS Custom Renderer
Listing 8-10 shows the complete code listing for the iOS custom button renderer, which

goes in the iOS project in the solution, CustomRendererExample.

Listing 8-10. CustomButtonRenderer.cs for the iOS Project

 using Xamarin.Forms.Platform.iOS;

 using Xamarin.Forms;

 using UIKit;

 using CustomRendererExample;

 using CustomRendererExample.iOS;

 [assembly: ExportRenderer (typeof (CustomButton), typeof

 (CustomButtonRenderer))]

Figure 8-2. Lime green CustomButton via an iOS custom renderer

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

318

 namespace CustomRendererExample.iOS {

 public class CustomButtonRenderer : ButtonRenderer {

 protected override void OnElementChanged

 (ElementChangedEventArgs<Button> e) {

 base.OnElementChanged (e);

 if (Control != null) {

 Control.BackgroundColor = UIColor.Brown;

 }

 }

 }

 }

That’s how to build a custom renderer on both mobile platforms!

The first trick in building a custom renderer is figuring out what the renderer is called

and the native element name. Here’s a quick guide to help with that.

 Which Renderer and View Do You Customize?
Table 8-1 shows most of the Xamarin.Forms elements covered in this book, their

renderers, and their platform-specific equivalents that can be customized.

Table 8-1. Elements, Their Renderers, and Platform-Specific Elements

Xamarin.Forms Renderer Android iOS

Chapter 1: Views

ContentPage PageRenderer ViewGroup UIViewController

Label LabelRenderer TextView UILabel

Button ButtonRenderer Button UIButton

Entry EntryRenderer EditText UITextField

Image ImageRenderer ImageView UIImageView

BoxView BoxRenderer ViewGroup UIView

ScrollView ScrollViewRenderer ScrollView UIScrollView

(continued)

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

319

Table 8-1. (continued)

Xamarin.Forms Renderer Android iOS

ActivityInidcator ActivityIndicator

Renderer

ProgressBar UIActivityIndicator

SearchBar SearchBarRenderer SearchView UISearchBar

Map MapRenderer MapView MKMapView

WebView WebViewRenderer WebView UIWebView

Chapter 3: Layouts

StackLayout ViewRenderer View UIView

RelativeLayout ViewRenderer View UIView

AbsoluteLayout ViewRenderer View UIView

Grid ViewRenderer View UIView

ContentView ViewRenderer View UIView

Frame FrameRenderer ViewGroup UIView

Chapter 4

Editor EditorRenderer EditText UITextView

Chapter 5: Controls

Picker PickerRenderer TextView,

AlertDialog,

NumberPicker

EditText

UIPickerView,

UIPickerViewModel,

UIToolBar,

UIBarButtonItems,

UITextField

DatePicker DatePickerRenderer TextView,

AlertDialog

UIDatePicker,

UIToolbar,

UITextField,

UIBarButtonItems

(continued)

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

320

Xamarin.Forms Renderer Android iOS

TimePicker TimePickerRenderer TextView,

AlertDialog

EditText

UIDatePicker,

UIToolbar,

UITextField,

UIBarButtonItems

Stepper StepperRenderer LinearLayout,

Button

UIStepper

Slider SliderRenderer SeekBar UISlider

Switch SwitchRenderer Switch UISwitch

TemplatedPage PageRenderer ViewGroup UIViewController

TemplatedView ViewRenderer View UIView

ContentPresenter ViewRenderer View UIView

Chapter 6: Lists

ListView ListViewRenderer ListView UITableView

TextCell TextCellRenderer LinearLayout,

TextView,

ImageView

UITableViewCell

EntryCell EntryCellRenderer LinearLayout,

TextView,

EditText

UITableViewCell,

UITextField

ViewCell ViewCellRenderer View UITableViewCell

SwitchCell SwitchCellRenderer Switch UITableViewCell,

UISwitch

ImageCell ImageCellRenderer LinearLayout,

TextView,

ImageView

UITableViewCell,

UIImage

Table 8-1. (continued)

(continued)

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

321

That should be sufficient to get you started with custom renderers. Now that you’ve

seen the complete implementation of a renderer, it’s time for a subtler approach.

 Effects
What do you do when Xamarin.Forms view you want to use is just shy of perfect? If

you could just change one or two properties or its behavior, the view would meet your

requirements. This is where effects come into play.

Effects allow access to the platform-specific control and container Xamarin.Forms

uses to access the Xamarin.Android or Xamarin.iOS layer. Effects can be added to

any page, layout, and view in Xamarin.Forms. Effects offer a reusable and lightweight

approach to extend the capability of a Xamarin.Forms view compared to a custom

renderer. Use effects if you only need to change a small number of the properties or

behaviors of the underlying platform-specific control that Xamarin.Forms uses.

Xamarin.Forms Renderer Android iOS

Chapter 7: Navigation

NavigationPage NavigationRenderer ViewGroup UINavigation

Controller,

UIToolbar

MasterDetailPage MasterDetailRenderer,

PhoneMasterDetail

Renderer (iPhone)

TabletMasterDetail

Renderer(iPad)

DrawerLayout UIViewController

(iPhone),

UISplitView

Controller(iPad)

TableView TableViewRenderer ListView UITableView

TabbedPage TabbedRenderer ViewPager UIView

CarouselPage CarouselPageRenderer ViewPager UIScrollView

Table 8-1. (continued)

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

322

Tip Fast renderers on view have increased performance over containers. Fast
renderers are available only for certain controls on certain platforms (e.g., Button,
Image, Label on Android, and more every release).

An effect is created by deriving from PlatformEffect in each platform-specific

project to access the native control and then registering the effect with a unique

identifier and organization-wide name. To use the effect, subclass the RoutingEffect in

the shared project, resolving the effect by the organization-wide name and identifier. All

Xamarin.Forms views have an Effects member that accepts one or more effects. Use the

Effects property in XAML to add an effect.

 Creating and Using Effects
An Effect gives access to the native control and container used by the Xamarin.

Forms view through the platform-specific PlatformEffect class. The cross-platform

RoutingEffect class is used to resolve the platform-specific effect in the Forms project.

Both classes need to be subclassed to create and use an effect.

Creating an effect is simpler than creating a custom renderer primarily because

you don’t have to determine and implement the native renderer. There is only one

class PlatformEffect that gives direct access to a generic Container, Control, and

the Xamarin.Forms Element. This simplicity comes with a greater responsibility. The

developer needs to ensure that an effect is not accidentally added to a view that the effect

does not support.

 PlatformEffect

PlatformEffect gives direct access to the native control, its container, and the Xamarin.

Forms element. Here are the PlatformEffect properties that reference those three

classes:

• Control—references the platform-specific control Xamarin.Forms

uses to implement its view

• Container—references the platform-specific control used to

implement the layout

• Element—references the Xamarin.Forms view itself

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

323

Create an effect by subclassing PlatformEffect in each platform-specific project

and registering a unique organization-wide namespace using ResolutionGroupName and

a unique identifier using ExportEffect assembly attributes, e.g.:

 [assembly: ResolutionGroupName("my.company")]

 [assembly: ExportEffect(typeof(DroidEffect), "MyEffect")]

Override the OnAttached and OnDetached methods as needed for

initialization and cleanup:

• OnAttached—called on initialization of your effect on the Xamarin.

Forms view. Use this method to implement your effect.

• OnDetached—called when the effect is detached from your Xamarin.

Forms view for cleanup. This method is used less frequently.

To listen to changes to the bindable properties of the Xamarin.Forms view, override

the OnElementPropertyChanged method of PlatformEffect.

Listing 8-11 shows the basic structure of the platform-specific effect.

Listing 8-11. Platform-Specific Effect

 public class MyEffect : PlatformEffect

 {

 protected override void OnAttached() { ... }

 protected override void OnDetached() { ... }

 protected override void

 OnElementPropertyChanged(PropertyChangedEventArgs args) { ... }

 }

 RoutingEffect

The RoutingEffect class abstracts from the platform-specific PlatformEffect

implementation and is there to resolve the effect in the Forms project by its resolution

group name and identifier. Subclass RoutingEffect and provide a default constructor

that passes the resolution name group and identifier to the base class to initialize the

effect, as shown in Listing 8-12.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

324

Listing 8-12. MyEffect RoutingEffect (in the Forms Project)

 public class MyEffect : RoutingEffect

 {

 public MyEffect() : base("my.company.MyEffect") { }

 }

Routing effects can have auto-implemented properties that can be used in the XAML

to parameterize the effect, e.g.,

 public bool MyProperty {get;set;};

Note Attached properties are often used in the context of customizing Xamarin.
Forms views. An attached property is a particular kind of bindable property, coded
in XAmL as an attribute that contains a class.property. details in the upcoming
section, Adding Effects via Attached properties.

 Using the Effect

To use the effect, first register its namespace in XAML, e.g.:

 xmlns:local="clr-namespace:my.company"

Next you add the effect to the Effects property of the target view, as YourEffect is

added to Entry.Effects in Listing 8-13.

Listing 8-13. Applying the Effect to a Xamarin.Forms View (in the Forms Project)

 <Entry>

 <Entry.Effects>

 <local:MyEffect MyProperty="some value"/>

 </Entry.Effects>

 </Entry>

Let’s create an effect that validates the Text entered in an Entry view.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

325

 Text Validator Effect
Imagine the following scenario: You want to give visual feedback to a user if the text he

or she enters exceeds a maximum length! Wouldn’t it be nice if a Xamarin.Forms Entry

would allow this type of validation? Unfortunately, this is not possible out of the box. You

can use an effect to implement this behavior.

Let’s create an effect that allows you to validate the length of the text.

Create in your Forms library the TextValidatorEffect class that inherits from

RoutingEffect and add an auto-implemented property MaxLength of type int and the

default value 5, as shown in Listing 8-14.

Listing 8-14. Custom RoutingEffect (in the Forms Project)

 public class TextValidatorEffect : RoutingEffect {

 public int MaxLength {get;set;} = 5;

 public TextValidatorEffect() : base("EffectExample.TextValidator

Effect") { }

 }

The empty default constructor passes our namespace EffectExample as the

resolution group name and the name of the class TextValidatorEffect as the identifier

to the base class RoutingEffect.

Create a page called TextValidatorPage.xaml and add the effect namespace to the

ContentPage. Define two Entry controls and register the effect with the Effects property

of the Entry controls. The first Entry uses the TextValidatorEffect without explicitly

setting the MaxLength property, which defaults to 5. The second control sets MaxLength

explicitly to 10, as demonstrated in Listing 8-15.

Listing 8-15. Registering an Effect in XAML (in the Forms Project)

 <Entry Text="Good">

 <Entry.Effects>

 <local:TextValidatorEffect/>

 </Entry.Effects>

 </Entry>

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

326

 <Entry Text="Not so good">

 <Entry.Effects>

 <local:TextValidatorEffect MaxLength="10"/>

 </Entry.Effects>

 </Entry>

Xamarin.Forms uses EditText in Android and UITextField in iOS as the native

control to render an Entry. Both platform-specific views provide the ability to set the

background color. Begin with the Android platform, then do iOS.

 Android Platform Effect

The Android platform-specific control Android.Widget.EditText has the method

SetBackgroundColor that expects an Android.Graphics.Color.

Create in the platform-specific Android project the DroidTextValidatorEffect

class that derives from PlatformEffect. Register the effect with the namespace

EffectExample using the assembly attribute ResolutionGroupName and export the effect

with the identifier TextValidatorEffect. Override the OnAttached and OnDetached

methods of PlatformEffect. The OnDetached method can be empty. In the OnAttached

method, call a Validate method that we will implement next, as shown in Listing 8-16.

Listing 8-16. Android Platform-Specific TextValidatorEffect (in the Droid

Project)

 [assembly: ResolutionGroupName("EffectExample")]

 [assembly: ExportEffect(typeof(DroidTextValidatorEffect),

"TextValidatorEffect")]

 namespace EffectExample.Droid {

 public class DroidTextValidatorEffect : PlatformEffect {

 protected override void OnAttached() {

 Validate();

 }

 protected override void OnDetached() {}

 }

 }

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

327

Create a private Validate method that casts Element view to Entry and Control to

the EditText view, retrieves the TextValidatorEffect effect, and evaluates the length

of the Entry.Text property to determine if it exceeded the MaxLength value of the effect

and changes the background color of EditText, respectively, as shown in Listing 8-17.

Listing 8-17. Android Platform-Specific TextValidatorEffect (in the Droid

Project)

 private void Validate() {

 var entry = Element as Entry;

 var view = Control as EditText;

 var effect = (TextValidatorEffect)Element.Effects.FirstOrDefault(

 e => e is TextValidatorEffect);

 if (entry.Text.Length > effect.MaxLength) {

 view.SetBackgroundColor = Color.Maroon.ToAndroid();

 } else {

 view.SetBackgroundColor = Color.Lime.ToAndroid();

 }

 }

Figure 8-3 shows the text validation effect on Android. The first Entry has a Lime

background, and the second has a Maroon background.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

328

Now create the platform-specific IOSTextValidatorEffect for iOS.

 iOS Platform Effect

The iOS platform-specific control UIKit.UITextField has the property

BackgroundColor that can be set using a UIColor.

Create in the platform-specific iOS project the ITextValidatorEffect class that

derives from PlatformEffect. Similarly, register the effect by its namespace and

identifier and override the OnAttached and OnDetached methods. The OnDetached

method can be empty. In the OnAttached method, call a Validate method, as shown in

Listing 8-18.

Figure 8-3. TextValidatorEffect on Android

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

329

Listing 8-18. iOS Platform-Specific TextValidatorEffect (in the iOS Project)

 [assembly: ResolutionGroupName("EffectExample")]

 [assembly: ExportEffect(typeof(IOSTextValidatorEffect),

"TextValidatorEffect")]

 namespace EffectExample.iOS {

 public class IOSTextValidatorEffect : PlatformEffect {

 protected override void OnAttached() {

 Validate();

 }

 protected override void OnDetached() {}

 }

 }

Create a private Validate method that casts Element view to Entry and Control

to the UITextField view, retrieves the TextValidatorEffect effect, and evaluates the

length of the Entry.Text property to determine if it exceeded the MaxLength value of

the effect and changes the background color of UITextField, respectively, as shown in

Listing 8-19.

Listing 8-19. iOS Platform-Specific TextValidatorEffect (in the iOS Project)

 private void Validate() {

 var entry = Element as Entry;

 var view = Control as UITextField;

 var effect = (TextValidatorEffect)Element.Effects.FirstOrDefault(

 e => e is TextValidatorEffect);

 if (entry.Text.Length > effect.MaxLength) {

 view.BackgroundColor = Color.Maroon.ToUIColor();

 } else {

 view.BackgroundColor = Color.Lime.ToUIColor();

 }

 }

Figure 8-4 shows the text validation effect on iOS. The first Entry has a Lime

background, and the second has a Maroon background.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

330

Tip Attached Behaviors are often used in the context of Effects, removing extra
code from code behind files. details here: https://docs.microsoft.com/en-
us/xamarin/xamarin-forms/app-fundamentals/behaviors/reusable/
effect-behavior

The effect does not listen to changes to the Text property of Entry and will not re-

validate it. Let’s change that.

Figure 8-4. TextValidatorEffect on iOS

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/behaviors/reusable/effect-behavior
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/behaviors/reusable/effect-behavior
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/app-fundamentals/behaviors/reusable/effect-behavior

331

 Handling Events

Effects can override the OnElementPropertyChanged of PlatformEffect to listen to

property changes of the Xamarin.Forms Element. This is useful when the effect needs to

change the behavior of the native view depending on what has changed.

Let’s listen to what the user is writing in the Entry and re-validate the Text.

The PlatformEffect’s OnElementPropertyChanged method has the argument

PropertyChangedEventArgs with the member PropertyName that contains the name

of the bindable property of the Xamarin.Forms Element that was changed. Check if

the property that has changed is Text and call the Validate method to re-validate the

entry, e.g.:

 if (args.PropertyName == "Text") Validate();

The implementation of the OnElementPropertyChanged method is identical for both

iOS and Android, shown in Listings 8-22 and 8-23.

Tip You can also register event handlers for the PlatformEffect's
Container and Control members. These are platform-specific and require
familiarity with the underlying platform.

 CODE COMPLETE: TextValidatorEffect

Listings 8-20, 8-21, 8-22, and 8-23 show the complete code listing for the iOS and

Android TextValidatorEffect. Listing 8-20, TextValidatorEffect.cs, and

Listing 8-21, TextValidatorPage.xaml, are in the Forms project, and Listing 8-22,

DroidTextValidatorEffect.cs, and Listing 8-23, IOSTextValidatorEffect.cs, are in

the respective platform-specific Droid and iOS projects of the solution EffectExample.

Listing 8-20. Custom RoutingEffect (in the Forms Project)

 using System;

 using Xamarin.Forms;

 namespace EffectExample {

 public class TextValidatorEffect : RoutingEffect {

 public bool IsActive { get; set; } = true;

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

332

 public TextValidatorEffect() : base("EffectExample.TextValidator

Effect") { }

 }

}

Listing 8-21. Registering and Using an Effect in XAML (in the Forms Project)

 <ContentPage xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:local="clr-namespace:EffectExample"

 x:Class="EffectExample.EffectExamplePage">

 <StackLayout Padding="30">

 <Entry Text="Good">

 <Entry.Effects>

 <local:TextValidatorEffect />

 </Entry.Effects>

 </Entry>

 <Entry Text="Not so good">

 <Entry.Effects>

 <local:TextValidatorEffect MaxLength="10" />

 </Entry.Effects>

 </Entry>

 </StackLayout>

 </ContentPage>

Listing 8-22. Android Platform-Specific TextValidatorEffect (in the Droid

Project)

 using System;

 using System.ComponentModel;

 using System.Linq;

 using Android.Text;

 using Android.Widget;

 using EffectExample.Droid;

 using Xamarin.Forms;

 using Xamarin.Forms.Platform.Android;

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

333

 [assembly: ResolutionGroupName("EffectExample")]

 [assembly: ExportEffect(typeof(DroidTextValidatorEffect),

"TextValidatorEffect")]

 namespace EffectExample.Droid {

 public class DroidTextValidatorEffect : PlatformEffect {

 protected override void OnAttached() {

 Validate();

 }

 protected override void OnDetached() { }

 protected override void

 OnElementPropertyChanged(PropertyChangedEventArgs args) {

 base.OnElementPropertyChanged(args);

 if (args.PropertyName == "Text") Validate();

 }

 private void Validate() {

 var entry = Element as Entry;

 var view = Control as EditText;

 var effect = (TextValidatorEffect)Element.Effects.

FirstOrDefault(

 e => e is TextValidatorEffect);

 if (entry.Text.Length > effect.MaxLength) {

 view.SetBackgroundColor(Color.FromHex("#f9c5c9").

ToAndroid());

 } else {

 view.SetBackgroundColor(Color.FromHex("#c5f9e1").

ToAndroid());

 }

 }

 }

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

334

Listing 8-23. iOS Platform-Specific TextValidatorEffect (in the iOS Project)

 using System;

 using System.ComponentModel;

 using System.Linq;

 using EffectExample.iOS;

 using UIKit;

 using Xamarin.Forms;

 using Xamarin.Forms.Platform.iOS;

 [assembly: ResolutionGroupName("EffectExample")]

 [assembly: ExportEffect(typeof(IOSTextValidatorEffect),

"TextValidatorEffect")]

 namespace EffectExample.iOS {

 public class IOSTextValidatorEffect : PlatformEffect {

 protected override void OnAttached() {

 Validate();

 }

 protected override void OnDetached() {}

 protected override void

 OnElementPropertyChanged(PropertyChangedEventArgs args) {

 base.OnElementPropertyChanged(args);

 if (args.PropertyName == "Text") Validate();

 }

 private void Validate() {

 var entry = Element as Entry;

 var view = Control as UITextField;

 var effect = (TextValidatorEffect)Element.Effects.

FirstOrDefault(

 e => e is TextValidatorEffect);

 if (entry.Text.Length > effect.MaxLength) {

 view.BackgroundColor = Color.FromHex("#f9c5c9").

ToUIColor();

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

335

 } else {

 view.BackgroundColor = Color.FromHex("#c5f9e1").ToUIColor();

 }

 }

 }

You can pass an effect as an attached property instead of adding it in XAML using the

view’s Effects property. Let’s see how.

 Adding Effects via Attached Properties

Chapter 5 explained the concept of attached properties. Attached properties allow you

to associate properties to elements that do not have the property defined themselves.

Attached properties can also be used as wrappers to assign triggers, commands,

behaviors, and effects programmatically through C# instead of using XAML. Currently,

assigning an effect to a view is a multiline process, as shown in Listing 8-24.

Listing 8-24. Adding an Effect Using the Effects Property (in the Forms Project)

 <Entry Text="Not so good">

 <Entry.Effects>

 <local:TextValidatorEffect MaxLength="10" />

 </Entry.Effects>

 </Entry>

Create a new static class called TextValidatorEffect2 with a bindable attached

property called MaxLengthProperty and its static accessor methods GetMaxLength and

SetMaxLength, as shown in Listing 8-25.

Listing 8-25. Static Class with Attached Property (in the Forms Project)

 public class TextValidatorEffect2 {

 public static readonly BindableProperty MaxLengthProperty =

 BindableProperty.CreateAttached("MaxLength", typeof(int),

 typeof(TextValidatorEffect2), 5, propertyChanged:

ValidatorChanged);

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

336

 public static int GetMaxLength(BindableObject view) {

 return (int)view.GetValue(MaxLengthProperty);

 }

 public static void SetMaxLength(BindableObject view, int value) {

 view.SetValue(MaxLengthProperty, value);

 }

 }

Add a MaxLengthPropertyChanged method that is fired when the MaxLength property

is attached to a view or is changed. Check if the view is not null. Remove any existing

TextValidatorEffect, and then add a new one to ensure that MaxLength property has

the most recent value, as shown in Listing 8-26.

Listing 8-26. MaxLengthPropertyChanged Method (in the Forms Project)

 private static void MaxLengthPropertyChanged(BindableObject bindable,

 object oldValue, object newValue) {

 var view = bindable as View;

 if (view == null) return;

 var effect = view.Effects.FirstOrDefault(e => e is TextValidator

Effect);

 if (effect != null) {

 view.Effects.Remove(effect);

 } else {

 effect = new TextValidatorEffect {MaxLength = GetMaxLength

(view)};

 view.Effects.Add(effect);

 }

 }

Internally, the previously defined routing effect TextValidatorEffect is used, which

references the platform-specific implementation at runtime.

Create a new page called UsingAttachedPropertyPage.xaml, add the local

namespace, and assign the effect to an Entry view, as shown in Listing 8-27.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

337

Listing 8-27. MaxLengthPropertyChanged Method (in the Forms Project)

<ContentPage xmlns:local="clr-namespace:EffectExample" ...>

 <Entry Text="Looks Good" local:TextValidatorEffect2.MaxLength="10"/>

</ContentPage>

Tip Attached properties can also be used to attach commands, behaviors,
triggers, and other functionality to XAmL elements.

This covers the building blocks to create cross-platform effects for Xamarin.

Forms controls. Up until now the platform-specific (sometimes we call these “native”)

control’s role was behind the scenes, either encapsulated within the custom renderer or

concealed by an effect. The final section of this chapter will present native controls as the

headliner on the Xamarin.Forms XAML stage.

 Native Views
Native views give you the power of platform-specific controls such as those found in

Xamarin.iOS and Xamarin.Android directly within your XAML.

Custom renderers and effects leave the plumbing to Xamarin.Forms, which provides

over 40 cross-platform visual elements and views and takes care of the mapping to

platform-specific controls using custom renderers. The last topic in this chapter shows

you how to use native (platform-specific) controls directly in a XAML page and handling

their details manually, such as instantiating them and setting their properties.

Note Using native views will quickly become advanced as you will find yourself
having to take care of all aspects of the controls. This technique requires
knowledge of the platform-specific ApIs, Xamarin.iOS and Xamarin.Android.

Adding native views to your XAML file is easy. As with any other C# class, you need

to declare the namespace in the root element of your XAML file, and you are ready

to declare the class in your XAML. For native views this process is called Native View

Declaration.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

338

Create a XAML page called NativeViewsPage.xaml.

Next, declare all the namespaces that are intended to be used in the root element

of the page. For a page that is supposed to work both on iOS and Android, these are the

namespaces UIKit for iOS and Android.Widget and Xamarin.Forms for Android, as

shown in Listing 8-28.

Listing 8-28. Registering the Namespaces for Native Views in XAML (in the

Forms Project)

 xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"

 xmlns:droid="clr-namespace:Android.Widget;assembly=Mono.Android;

 targetPlatform=Android"

 xmlns:formsdroid="clr-namespace:Xamarin.Forms;

 assembly=Xamarin.Forms.Platform.Android;targetPlatform=Android"

 x:Class="NativeViewsExample.NativeViewsPage">

The xmlns declaration accepts the directive targetPlatform followed by the

name of the platform Android or iOS. This tells XAML parser to ignore any namespace

declaration not relevant for the platform the application is currently running on. This is

very nice, because it allows you to create one XAML file for all platforms.

Add the iOS UITextField view to the XAML, e.g.:

 <ios:UITextField Text="iOS UITextField"/>

Figure 8-5 shows the iOS result.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

339

Figure 8-5. Native View Declaration on iOS

Most Android.Widget views require that you pass in the Activity within which

they are used as their Android Context in the constructor. Xamarin.Forms provides

the Forms.Context member that represents the Activity. Use the XAML directive

x:Arguments to pass required parameters.

Add the Android EditText view to the XAML, e.g.:

 <droid:EditText Text="Android EditText" x:Arguments="{x:Static

 formsdroid:Forms.Context}"/>

Figure 8-6 shows the result for Android.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

340

 CODE COMPLETE: Native View Declaration
Listing 8-29 shows the complete XAML listing for declaring native views in the

NativeViewsPage.xaml in the solution NativeViewsExample.

Listing 8-29. Native View Declaration (in the Forms Project)

 <ContentPage Title="Native View Declaration"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"

 xmlns:droid="clr-namespace:Android.Widget;assembly=Mono.Android;

 targetPlatform=Android"

 xmlns:formsdroid="clr-

Figure 8-6. Native View Declaration on Android

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

341

 namespace:Xamarin.Forms;assembly=Xamarin.Forms.Platform.Android;

 targetPlatform=Android"

 x:Class="NativeViewsExample.NativeViewsPage">

 <ios:UITextField Text="iOS UITextField"/>

 <droid:EditText Text="Android EditText"

 x:Arguments="{x:Static formsdroid:Forms.Context}"/>

 </ContentPage>

Tip There are some limitations to consider when working with native views.
You cannot use the Style element because the properties of the native view are
not bindable properties, and you cannot use the x:Name directive. If you want to
reference them in your code behind, create a custom control as a wrapper using
ContentView that has a name.

In Listing 8-29, a non-default constructor for the Android EditText view was used

to pass the Context as an argument to its constructor using the x:Static markup

extension, that is:

 <droid:EditText x:Arguments="{x:Static formsdroid:Forms.Context}"/>

Properties of native views often require instances of other native classes that may

require a factory method to construct the object. Let’s use some factory methods to

assign properties to a native view next.

 Using Factory Methods
Some native classes have in addition to default constructors and non-default

constructors factory methods for instantiation. In Chapter 2, you learned to instantiate

objects using factory methods and the x:Arguments keyword in the XAML syntax to pass

the arguments.

Create a new XAML page called FactoryMethodsPage.xaml.

Both EditText in Android and UITextField on iOS have factory methods that

specify a platform-specific font. In iOS the UIFont class is used to specify a font. In

Android the TypeFace class is used. Listing 8-30 and 8-31 extend the example provided

in Listing 8-29 to specify fonts for the UITextField and EditText views.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

342

UIFont has the static factory method FromName that expects two arguments, the name

of the font as a string and the font size as a single, that is:

 <x:Arguments><x:String>Papyrus</x:String><x:Single>24</x:Single>

</x:Arguments>

Declare a UITextField with the font Papyrus and the size 24, as shown in Listing 8-30.

Listing 8-30. Passing Arguments to Native Views (in the Forms Project)

 <ios:UITextField>

 <ios:UITextField.Font>

 <ios:UIFont x:FactoryMethod="FromName">

 <x:Arguments>

 <x:String>Papyrus</x:String>

 <x:Single>24</x:Single>

 </x:Arguments>

 </ios:UIFont>

 </ios:UITextField.Font>

 </ios:UITextField>

In Android, the Typeface property of EditText expects an Android.Graphics.

TypeFace object. Likewise, the factory method Create of TypeFace can be used to create

an object by passing in a string argument with the font family name as well as providing

the name of the enumeration value of TypefaceStyle. The arguments for a Serif font

with an Italic font style are:

 <x:Arguments><x:String>Serif</x:String>

 <androidGraphics:TypefaceStyle>Italic</

androidGraphics:TypefaceStyle>

 </x:Arguments>

To use TypeFace in the XAML, add the namepace Android.Graphics to the page, e.g.:

 xmlns:androidGraphics="clr-namespace:Android.Graphics;assembly=Mono.

Android;

 targetPlatform=Android"

Define an EditText with the size 24, a Serif font with an Italic font style, as shown

in Listing 8-31.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

343

Listing 8-31. Passing Arguments to Native Views (in the Forms Project)

 <droid:EditText TextSize="24">

 <droid:EditText.Typeface>

 <androidGraphics:Typeface x:FactoryMethod="Create">

 <x:Arguments>

 <x:String>Serif</x:String>

 <androidGraphics:TypefaceStyle>Italic</android

Graphics:TypefaceStyle>

 </x:Arguments>

 </androidGraphics:Typeface>

 </droid:EditText.Typeface>

 </droid:EditText>

Figure 8-7 shows the result for both platforms.

Figure 8-7. Using Factory Methods

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

344

 CODE COMPLETE: Non-Default Constructors and Factory
Methods
Listing 8-32 shows the complete XAML listing for declaring native views in the

FactorMethodsPage.xaml in the solution NativeViewsExample.

Listing 8-32. Passing Arguments to Native Views (in the Forms Project)

 <ContentPage Title="Using Factory Methods"

 xmlns="http://xamarin.com/schemas/2014/forms"

 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

 xmlns:ios="clr-namespace:UIKit;assembly=Xamarin.iOS;targetPlatform=iOS"

 xmlns:droid="clr-namespace:Android.Widget;assembly=Mono.Android;

 targetPlatform=Android"

 xmlns:androidGraphics="clr-namespace:Android.Graphics;

 assembly=Mono.Android;targetPlatform=Android"

 xmlns:formdroid="clr-namespace:Xamarin.Forms;

 assembly=Xamarin.Forms.Platform.Android;

 targetPlatform=Android"

 x:Class="NativeViewsExample.FactoryMethodsPage">

 <StackLayout Padding="30">

 <ios:UITextField Text="Papyrus Font">

 <ios:UITextField.Font>

 <ios:UIFont x:FactoryMethod="FromName">

 <x:Arguments>

 <x:String>Papyrus</x:String>

 <x:Single>24</x:Single>

 </x:Arguments>

 </ios:UIFont>

 </ios:UITextField.Font>

 </ios:UITextField>

 <droid:EditText x:Arguments="{x:Static formdroid:Forms.Context}"

 Text="Serif Font" TextSize="24">

 <droid:EditText.Typeface>

 <androidGraphics:Typeface x:FactoryMethod="Create">

 <x:Arguments>

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

345

 <x:String>Serif</x:String>

 <androidGraphics:TypefaceStyle>Italic

 </androidGraphics:TypefaceStyle>

 </x:Arguments>

 </androidGraphics:Typeface>

 </droid:EditText.Typeface>

 </droid:EditText>

 </StackLayout>

 </ContentPage>

This covers the basics of declaring native views. Refer to Chapter 9 to create user

interfaces that use data bindings to allow native views and Xamarin.Forms views to

interact in harmony.

 Summary
Custom renderers, effects, and native views complete the Xamarin.Forms picture,

extending the reach of Xamarin.Forms deep into the platform-specific APIs using

Xamarin.iOS and Xamarin.Android. The Xamarin.Forms abstraction provides

immeasurable value as a cross-platform tool, but the platforms differ, and developers

need a way to bridge the gap. These platform-specific techniques, custom renderer,

effects, and native views are that bridge.

Now it’s time for the foundation beneath all of our UI technique: the data. Let’s

explore data access and data binding in depth.

CHApTEr 8 CUSTOm rEndErErS, EFFECTS, And nATIvE vIEwS

www.EBooksWorld.ir

347
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4_9

CHAPTER 9

Data Access with SQLite
and Data Binding
Data access in Xamarin apps often involves a local database and a remote data server

accessed via web services. Local data access can be handled in many ways with many

products, both open source and proprietary, but the most popular mobile database is

SQLite, which is built into iOS and Android. Data can be queried from a SQLite database

and manually populated into the UI, but a more sophisticated approach is to use data

binding to transfer information automatically between the UI and your data models. In

this chapter, you’ll learn how to employ SQLite in your Xamarin apps as well as how to

use data binding in your Xamarin.Forms apps.

 What Is SQLite?
SQLite is a C-based relational database designed in the spring of 2000 by D. Richard

Hipp for use in US Navy guided-missile warships. It is now a standby database engine

included in many operating systems, including iOS and Android. SQLite implements

most of the SQL standard and has no standalone database server process but instead is

linked as a library- accessed datastore, providing an on-demand, app-specific database.

You will typically use SQLite with Xamarin in one of two ways:

• SQLite.NET: Using the SQLite.NET object-relational mapping (ORM)

to form CRUD transactions with Insert, Get, Delete, Table, and

Query

• Third-party MVVM libraries: Data binding views to fields in the

SQLite database by using a third-party MVVM framework such as

MvvmCross or MVVM Light Toolkit

www.EBooksWorld.ir

348

Third-party MVVM libraries are beyond the scope of this book. SQLite-NET is a

popular choice with developers.

 What Is SQLite.NET?
To use C-based SQLite in C#, a binding library is required, which is why Frank Krueger

founded SQLite.NET, an open-source SQLite library in C# founded upon Eric Sink’s C#

libraries. SQLite.NET is an object-relational mapping (ORM) library. ORMs allow you

to manipulate database objects instead of working with fields and tables. SQLite.NET

provides both options. We can do data-object manipulations by using methods such as

Insert, Get, and Delete acting on data classes that map to tables. We can also use SQL

to query a table with the Query method and use LINQ to operate on a table’s contents

using the Table method. SQLite using SQLite.NET gives you everything you need from a

local mobile database to build consumer, business, and enterprise native mobile apps.

DATA STORAGE OPTIONS

Many successful mobile apps use non-database storage options. You can use file-based data

storage in addition to or even instead of using a SQLite database for data storage. This can

involve serialized data in XML or JSON, HTML, or comma-delimited fields in text files stored

in local folders on the device. Preferences is another data storage option. iOS and Android

provide ways to store preferences as key/value pairs typically used to record user settings

or other small bits of data. This chapter focuses on local database access and does not

explore these or other non-database data storage techniques, but I encourage you to do so in

the Xamarin online docs. Also, Chapter 7 touches on disk storage techniques involving XML

serialization in the “Managing State” section.

 Data Binding
Keeping your UI in sync with your data model can be a lot of work if you do it by hand

in code. Every time the user makes a change in the UI, you can implement event

handlers (such as TextChanged) that update the contents of the data model, and each

time the data model changes in code, you can notify the UI to refresh (by implementing

PropertyChanged).

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

349

Data binding handles all of that for you by providing a framework to sync the views

with a data model. Data binding manages views that need to modify the contents of their

accompanying data model and the refresh of the UI from changes in the data model.

Data binding is built into Xamarin.Forms.

This real-time connection between the data layer and presentation layer is available

to us in mobile development, because the presentation layer and data layer reside

together on a single physical tier, the mobile device. Many similarities exist with the

development of Windows Presentation Foundation (WPF) desktop apps. The design

pattern used frequently in WPF development is MVVM (Model-View-ViewModel).

MVVM and data binding combine the presentation and data layers to create a rich,

responsive user experience.

Xamarin apps can use third-party data-binding libraries such as MvvmCross or

MVVM Light. This chapter delves into cross-platform SQLite techniques and data

binding using Xamarin.Forms.

 Xamarin.Forms Data Binding
Xamarin.Forms has data binding built in, allowing you to bind views to models easily

and elegantly. XAML is often used to implement data binding in Xamarin.Forms.

Xamarin.Forms data binding supports the binding of one view to another as well as a

view to a variable. This section focuses primarily on the most common business app use

case: binding a view to a data model.

Xamarin.Forms data binding is done by binding a data source property to a target

UI element property. The target property must be a bindable property (derived from

BindableObject), which can be specified by using the view’s SetBinding method.

Bindable properties are indicated in the online Xamarin.Forms API documentation for

each class. The data source can be a variable or data model class property and may be

set by using the BindingContext and Binding.Path property on a page or view.

The Binding property for view fields is Path, but the "Path=" part of the

markup extension can be omitted if the path is the first item in the Binding markup

extension. This

<Entry HorizontalOptions="FillAndExpand" Text="{Binding Title}" />

is the same as

<Entry HorizontalOptions="FillAndExpand" Text="{Binding Path=Title}" />

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

350

Path is frequently omitted for convenience, so we use the shorthand approach with

no explicit Path throughout this book.

It’s worth noting that data binding can be done manually by using a view’s

PropertyChanged or TextChanged event to synchronize with the source.

However, Xamarin.Forms data binding is largely automatic after the setup is

complete. You need to create and configure the target view and pair it with a source.

You also need to prepare that source by implementing the INotifyPropertyChanged

interface to make changes to that source observable via PropertyChanged event

handlers. Xamarin.Forms lays in the remaining event handlers under the covers to

carry out the transfer of data to and from the source and target. The following examples

focus on this automatic approach, using the BindingContext property and SetBinding

method.

Trivial data binding involves views that contain initial values from the data model

(source), and changes to the UI (target) are reflected in the model. However, no refresh

of the UI occurs to reflect changes to the data model. Refreshing of the UI requires

nontrivial data binding, covered later, in “Using INotifyPropertyChanged.”

Let’s walk through a few examples of automatic data binding in Xamarin.Forms.

You will begin with a trivial example, in which the UI updates a data model. Next you’ll

proceed into nontrivial examples, in which changes to the data model are refreshed in

the view. You’ll explore the MVVM design pattern, wrapping your data model in a view

model (or ViewModel). Then you will revisit data-bound lists, except you will make them

editable instead of read-only.

In trivial, automatic data binding, changes to the UI are reflected in the data model

in real time. Here is a common way (but not the only way) to approach trivial data

binding in C#:

 1. Specify the source data model by using the BindingContext page

(or view) property in C#:

this.BindingContext = listItem;

 2. Pair the source property with the target view property by using the

SetBinding method in XAML:

<Entry Text="{Binding Title}"/>

These two steps bind the Entry view to the Title property of the Item model

(listItem is an instance of Item).

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

351

Nontrivial data binding, in which the target must be refreshed to reflect changes

made to the contents of the source in real time, requires an implementation of the

INotifyPropertyChanged interface’s observer event called PropertyChanged, which fires

when the view model detects a change to the data (in a property’s Set accessor method).

Tip Do you want third-party options for binding? Check out the third-party MVVM
data-binding libraries such as MvvmCross, MVVM Light, or reactiveUI.

Let’s look at a trivial Xamarin.Forms data-binding example.

 Binding to a Data Model
Using the two-step data-binding approach in the preceding section, bind an Entry view

to the Title property of a data model called Item. This is trivial binding: changes to the

view result in an update to the data model.

Create a new C# class called Item and build a data model called Item with a Title

and Description string property, as shown in Listing 9-1.

Listing 9-1. Item Data Model in Item.cs

 public class Item

 {

 public string Title { get; set; }

 public string Description { get; set; }

 }

Create a XAML page called ItemPage and, in the C# ContentPage constructor,

instantiate and populate an Item (Listing 9-2). Set the BindingContext property of the

page to the item object.

Listing 9-2. Bind a View to a Model in ItemPage.xaml.cs

 public ItemPage ()

 {

 InitializeComponent ();

 item = new Item { Title = "First", Description = "1st item" };

 this.BindingContext = item;

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

352

Create the Entry view, and then bind the Text property to the Title property in

Item, as shown in Listing 9-3.

Listing 9-3. Bind a View to a Model in ItemPage.xaml

 <ContentPage Title="Trivial Data Binding" xmlns="http://xamarin.com/

schemas/2014/forms" xmlns:x="http://schemas.microsoft.com/winfx/2009/

xaml" x:Class="DataBindingExamples.ItemPage">

 <ContentPage.Content>

 <StackLayout>

 <Entry HorizontalOptions="FillAndExpand" Text="{Binding

Title}" />

 </StackLayout>

 </ContentPage.Content>

 </ContentPage>

BindingContext can be set at the page or view level. In most cases, the page-level

property will suffice, but be certain to set BindingContext at the view level if you are

using more than one source. In MVVM apps, a single source (the ViewModel) is typical.

More on this in a moment.

Note Setting BindingContext to a ViewModel can lead to a mature data-
binding architecture.

Any value that you type into the Entry view is populated into the item.Title

property because of the binding. Prove this by adding a button view to the StackLayout

with an event handler that shows the value of the item object, as shown in Listing 9-3.

Listing 9-4. Button Click Displays the Value of the Title Property

 <StackLayout>

 <Entry HorizontalOptions="FillAndExpand" Text="{Binding Title}" />

 <Button Text="Display Item Value" FontSize="Large"

HorizontalOptions="Center" VerticalOptions="Fill"

Clicked="ButtonClicked" />

 </StackLayout>

 public async void ButtonClicked(object sender, EventArgs args)

 {

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

353

 await DisplayAlert("Item Object", "Title property:" + item.Title.

ToString(), "OK");

 }

Fire up the app and you’ll see your Entry view with data prepopulated (Figure 9-1).

Figure 9-1. Trivial data binding populates the target with an initial source value

Change the entry value to something else, and click the button to see the data

binding in action, as shown in Figure 9-2.

Figure 9-2. The data-bound Entry view changes the Item property when edited

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

354

The data model was automatically updated by the user’s change to the Entry view’s

Text property.

The BindingContext used here is at the page level. This could just as easily have

been set at the view level:

 titleEntry.BindingContext = item;

On pages with multiple views that require separate bindings, set BindingContext at

the view level.

Tip If you want to see the limitations of trivial binding firsthand (not using
INotifyPropertyChanged), put the following line of code into your button.
Clicked event. when you click the button, you’ll see that the UI is not updated by
this change to the data model.

item.Title = "Trivial binding";

All of the previous examples are trivial data-binding examples; the data model

and variables will reflect changes to the UI. In order for the UI to be refreshed from the

data model, you will need to use the INotifyPropertyChanged interface to implement

nontrivial data binding.

 Using INotifyPropertyChanged
INotifyPropertyChanged is a .NET interface used to notify binding clients that a

property value has changed. Use INotifyPropertyChanged when your data-bound UI

must refresh to reflect changes to the data model in real time (above and beyond just

displaying the initial data in the UI).

Here is the definition of the INotifyPropertyChanged interface:

 public interface INotifyPropertyChanged

 {

 event PropertyChangedEventHandler PropertyChanged;

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

355

Implement INotifyPropertyChanged in a view model (or ViewModel), a class built

to serve data to a particular screen. The INotifyPropertyChanged interface is found in

the System.ComponentModel namespace, and the CallerMemberName attribute resides in

the System.Runtime.CompilerServices namespace, so remember to add them to your

class:

 using System.ComponentModel;

 using System.Runtime.CompilerServices;

Implement INotifyPropertyChanged to create a simple view model with one

property called Title, as shown in Listing 9-4. The Set accessor on the Title property

invokes the OnPropertyChanged event to notify the UI of a data change so it can refresh.

Listing 9-4. INotifyPropertyChanged Implementation in a View Model in

TitleViewModel.cs

 public class TitleViewModel : INotifyPropertyChanged

 {

 public event PropertyChangedEventHandler PropertyChanged;

 String title;

 public string Title

 {

 set

 {

 if (!value.Equals(title, StringComparison.Ordinal))

 {

 title = value;

 OnPropertyChanged("Title");

 }

 }

 get

 {

 return title;

 }

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

356

 void OnPropertyChanged([CallerMemberName] string property

Name = null)

 {

 var handler = PropertyChanged;

 if (handler != null)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

When the Title property is set, a call is made to the OnPropertyChanged event

to fire, with the calling property passed in by the [CallerMemberName] attribute. The

PropertyChangedEventHandler event is the Xamarin.Forms mechanism for notifying

the view that is bound to that property to refresh and reflect the updated data model.

Note that this simplified approach does not use the Item data model. You’ll do that

soon.

Back in your ContentPage, update the binding:

 var titleViewModel = new TitleViewModel();

 titleViewModel.Title = "First";

 this.BindingContext = titleViewModel;

In the Entry declaration, since the property name (Title) hasn’t changed, the Text

property’s binding remains the same as the previous example.

 <Entry HorizontalOptions="FillAndExpand" Text="{Binding Title}" />

In your buttonDisplay.Clicked event, change the display property to

titleViewModel.Title.

 public async void DisplayButtonClicked(object sender, EventArgs args)

 {

 await DisplayAlert("Item Object", "Title property:" +

titleViewModel.Title, "OK");

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

357

Add a new button to click when you’re ready to update your data model and witness

nontrivial data binding.

 <Button Text="Update the Data Model" FontSize="Large" Horizontal

Options="Center" VerticalOptions="Fill" Clicked="UpdateButtonClicked" />

Handle the UpdateButtonClicked event to modify the titleViewModel’s Title property

and displaying the updated value:

 public async void UpdateButtonClicked(object sender, EventArgs args)

 {

 titleViewModel.Title = "Data Model Updated";

 await DisplayAlert("Item Object", "Title property:" +

titleViewModel.Title, "OK");

 }

Figure 9-3 shows the updated ContentPage.

Figure 9-3. ContentPage for nontrivial data binding

Click buttonUpdate to change the Title property and see that change propagated

back into the Entry view (Figure 9-4). This is nontrivial binding.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

358

 CODE COMPLETE: Using INotifyPropertyChanged
Listings 9-5 and 9-6 are the complete code for the INotifyPropertyChanged

implementation against TitleViewModel.

Listing 9-5. ItemPageUsingTitleViewModel.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="DataBindingExamples.

ItemPageUsingTitleViewModel">

 <ContentPage.Content>

 <StackLayout>

Figure 9-4. The Entry view has refreshed to match the model

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

359

 <Entry HorizontalOptions="FillAndExpand" Text="{Binding Title}" />

 <Button Text="Display Item Value" FontSize="Large" Horizontal

Options="Center" VerticalOptions="Fill" Clicked="Display

ButtonClicked" />

 <Button Text="Update the Data Model" FontSize="Large" Horizontal

Options="Center" VerticalOptions="Fill" Clicked="UpdateButton

Clicked" />

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

Listing 9-6. ItemPageUsingTitleViewModel.xaml.cs

public partial class ItemPageUsingTitleViewModel : ContentPage

{

 TitleViewModel titleViewModel;

 public ItemPageUsingTitleViewModel ()

 {

 InitializeComponent ();

 titleViewModel = new TitleViewModel ();

 titleViewModel.Title = "First";

 this.BindingContext = titleViewModel;

 }

 public async void DisplayButtonClicked(object sender, EventArgs args)

 {

 await DisplayAlert("Item Object", "Title property:" + titleView

Model.Title.ToString(), "OK");

 }

 public async void UpdateButtonClicked(object sender, EventArgs args)

 {

 titleViewModel.Title = "Data Model Updated";

 await DisplayAlert("Item Object", "Title property:" + titleView

Model.Title.ToString(), "OK");

 }

}

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

360

Tip Avoid repeating boilerplate PropertyChanged code by creating a
BindableBase class that implements INotifyPropertyChanged. Then you
can subclass BindableBase in your models or view models to make them ready
for nontrivial binding.

 public abstract class BindableBase :
INotifyPropertyChanged

 {
 public event PropertyChangedEventHandler

PropertyChanged;
 void OnPropertyChanged([CallerMemberName] string

propertyName = null)
 {
 var handler = PropertyChanged;
 if (handler != null)
 {
 handler(this, new PropertyChangedEventArgs

(propertyName));
 }
 }
 }

With your implementation of INotifyPropertyChanged, your app can now notify

the UI when data has changed, and Xamarin.Forms will refresh the UI. By creating a

class that serves data to a particular view (TitleViewModel), you have just created a view

model.

 Understanding ViewModels and MVVM
A ViewModel (the VM in MVVM) is a class built to serve data to a particular screen

by using one or more models (the M in MVVM, or data models). The ViewModel

is decorated with view-specific properties and bound to the view (the V in MVVM,

referring to the presentation layer, or UI, not to be confused with a Xamarin.Forms View

class). A ViewModel is like a data model except that it is customized to a particular view

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

361

(or screen) by using helper classes and handler events necessary to populate the data on

that page or manage changes to the data model. In a traditional MVVM app, you create a

view model for each view (screen), imbuing your view model with the constructors and

helper methods needed to serve up and save data on each screen.

MVVM apps typically use data models (not just a few variables added as properties

to a view model). This requires wrapping the data models within the view models with

the notion that views should not use models directly but should interact only with view

models.

MVVM: WHAT’S THE BIG DEAL?

what’s the big deal with MVVM and why use it? MVVM provides true separation between

the View and Model which means decoupled development where your model doesn’t get

perverted by UI needs and the View page doesn’t sport a bunch of data access and data

processing code.

MVVM is lauded for its structure, testability, and ability to adapt to different presentation layers.

Use ViewModel to aggregate data models and business logic spread throughout separate

classes/libraries to facilitate a more succinct and flexible interface for the View.

 Binding to ViewModels and Data Models
ViewModels can implement INotifyPropertyChanged, as discussed earlier, but data

models can also implement INotifyPropertyChanged. These are the two standard

approaches for implementing INotifyPropertyChanged for nontrivial data binding, in

order of popularity. There are heated arguments for why one or the other is the only way

to do things, but I’ll show you both ways and let you decide. I’ll also show a third way that

avoids some of the problems of the other two. Here are the three approaches I’ll cover:

• Create a view model that implements INotifyPropertyChanged.

Implement from INotifyPropertyChanged and encapsulate the

necessary variables and data models within your view model

class, and, within each editable property Set accessor, raise the

OnPropertyChanged event. This approach is strict MVVM.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

362

• Implement INotifyPropertyChanged in your data model. Every time

you use your model in a data-binding context, it will be ready for

nontrivial binding and provide notifications to the bound UI via its

OnPropertyChanged events.

• Wrap your data model in an observable class. More on this in a

moment.

The first two approaches are functionally similar but architecturally different.

The first approach, creating a view model that implements

INotifyPropertyChanged, means including an instance of the data model in the view

model and wrapping the top-level model class as a property as well as all of the data

model’s properties that must be exposed in the view model. This gives complete control

to the view for instantiating, assigning, and changing the encapsulated data model and

all of its relevant properties. If the view model implements INotifyPropertyChanged,

and OnPropertyChanged is called in the Set method of each public property, this class

can provide nontrivial binding. (See Listing 9-7.)

The second approach to implementing INotifyPropertyChanged happens in your

data model even before you use it in the view model. See Listing 9-8 for an example

of implementing INotifyPropertyChanged in the Item class to create an observable

collection of items. For MVVM apps, this approach still requires the extra step of

embedding the resulting data model in a view model.

Some developers don’t like the first approach because it can lead to code duplication

with multiple INotifyPropertyChanged implementations of the same properties in

different view models, and some developers don’t like the second approach because it

clutters up the data model and increases the number of notifications sent, which can

impact performance for large data objects.

A third approach avoids both of those problems, and that is to wrap your data

model in a class that implements INotifyPropertyChanged to make it observable (at

the cost of creating yet another subclass). This is done for us in .NET for classes such as

ObservableCollection, and you’ll do it in a moment for your Item model to create an

ObservableItem. It’s a little extra work but keeps your models clean. We’ll get to the third

approach in the section “Binding an Editable ListView,” in Listing 9-11.

Here are examples of each of the first two approaches:

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

363

 Create a ViewModel That Implements INotifyPropertyChanged

Implement INotifyPropertyChanged in your ViewModel by using an encapsulated data

model for a straightforward MVVM approach.

Create a view model based on the Item data model, as shown in Listing 9-7. It’s

basically the same as the TitleViewModel view model in Listing 9-4 except that an Item

class is instantiated and used to hold the Title property value instead of a string. (This

is an architectural change, not a functional one.)

Listing 9-7. View Model Based on the Item Data Model (ItemViewModel.cs)

 class ItemViewModel : INotifyPropertyChanged

 {

 public event PropertyChangedEventHandler PropertyChanged;

 Item item;

 public ItemViewModel ()

 {

 item = new Item();

 }

 public string Title

 {

 get

 {

 return item.Title;

 }

 set

 {

 if (!value.Equals(item.Title, StringComparison.Ordinal))

 {

 item.Title = value;

 OnPropertyChanged("Title");

 }

 }

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

364

 void OnPropertyChanged([CallerMemberName] string propertyName = null)

 {

 var handler = PropertyChanged;

 if (handler != null)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

Note that you didn’t wrap the Description property, since that was not needed by

the view in this case. View models typically contain only what is needed by their view.

Implement the view model as before by using ItemViewModel:

 var itemViewModel = new ItemViewModel();

 itemViewModel.Title = "First";

 this.BindingContext = itemViewModel;

Even the Entry view is bound the same way as before:

 <Entry HorizontalOptions="FillAndExpand" Text="{Binding Title}" />

The rest of the ContentPage is the same as the previous example

ItemPageUsingTitleViewModel, in Listing 9-5, with renaming to use itemViewModel

instead of titleViewModel. See the downloadable code ItemPageUsingItemViewModel.

xaml.cs for details.

The functionality of the app is exactly the same as the previous example except that

instead of using the Title string variable, you’re using the Item data model, which is a

more real-world implementation (and MVVM).

Now for the second approach to INotifyPropertyChanged.

 Implement INotifyPropertyChanged in Your Data Model

INotifyPropertyChanged can be implemented in your data model instead of in your

view model. This data model can then be bound directly to the view, as in the following

example, or you can include the data model in a view model in an MVVM app.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

365

Create a class called ItemBindable.cs, as shown in Listing 9-8. Implementing the

OnPropertyChanged event and calling it in the Set method of each property, Title and

Description, ensures that changes to the list data are reflected in the UI in real time.

Listing 9-8. Implementing INotifyPropertyChanged in a Data Model

 class ItemBindable: INotifyPropertyChanged

 {

 public event PropertyChangedEventHandler PropertyChanged;

 string title;

 string description;

 public string Title

 {

 set

 {

 if (!value.Equals(title, StringComparison.Ordinal))

 {

 title = value;

 OnPropertyChanged("Title");

 }

 }

 get

 {

 return title;

 }

 }

 public string Description

 {

 set

 {

 if (!value.Equals(description, StringComparison.Ordinal))

 {

 description = value;

 OnPropertyChanged("Description");

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

366

 }

 get

 {

 return description;

 }

 }

 void OnPropertyChanged([CallerMemberName] string propertyName = null)

 {

 var handler = PropertyChanged;

 if (handler != null)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

This ItemBindable class can now be implemented to bind its properties to any view:

 var itemBindable = new ItemBindable();

 itemBindable.Title = "First";

 this.BindingContext = itemBindable;

Use the Entry view binding once again with the Title property:

 <Entry HorizontalOptions="FillAndExpand" Text="{Binding Title}" />

This direct use of the model in the view (which I’ve used to simplify the

demonstration) is not consistent with the MVVM pattern, which encourages a separation

between the model and the view. Include ItemBindable within a view model to utilize

the MVVM pattern.

Those are some techniques for building view models and data models for nontrivial,

two-way binding in Xamarin.Forms. Now let’s explore data binding as it applies to lists.

 Binding a Read-Only ListView
Binding to a ListView was covered extensively in Chapter 6, but we did only trivial,

read-only binding. That means that the initial values of the data model are displayed in

the list for viewing or selection, but no changes to the UI or model take place. Nontrivial,

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

367

editable list binding means that the initial values of the data model are displayed in

the list, and controls are provided to allow the user to add or delete rows or change row

properties displayed in the list.

I’ll begin with a review of trivial binding to a ListView before moving on to nontrivial

binding.

In the ContentPage's constructor, instantiate and populate the data model as shown

in Listing 9-9. Assigning the model to the list’s ItemsSource property is the equivalent of

setting BindingContext.

Listing 9-9. Trivial, Read-Only ListView Binding from Listing 6-5 in Chapter 6

public partial class ListViewDataModel : ContentPage

{

 public ListViewDataModel()

 {

 InitializeComponent();

 List<ListItem> ListItems = new List<ListItem>

 {

 new ListItem {Title = "First", Description="1st item"},

 new ListItem {Title = "Second", Description="2nd item"},

 new ListItem {Title = "Third", Description="3rd item"}

 };

 DataModelList.ItemsSource = ListItems;

 }

 async void ListViewItemTapped (object sender, ItemTappedEventArgs e)

 {

 ListItem item = (ListItem)e.Item;

 await DisplayAlert("Tapped", item.Title + " was selected.", "OK");

 ((ListView)sender).SelectedItem = null;

 }

 public class ListItem

 {

 public string Title { get; set; }

 public string Description { get; set; }

 }

}

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

368

Tip This example, ListViewDataModel, is a ListView using a DataModel
and is not a data model or a view model. Some of the main pages and filenames in
this chapter are meant to convey the purpose of the example rather than the class.

In the XAML, create an ItemTemplate in the ListView with a DataTemplate and bind

Title and Description properties in your TextCell as shown in Listing 9-10.

Listing 9-10. XAML for Trivial, Read-Only ListView Binding from Listing 6-4 in

Chapter 6

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="ListViewExample.Xaml.

ListViewDataModel">

 <ContentPage.Padding>

 <OnPlatform x:TypeArguments="Thickness">

 <On Platform="Android">10,0,10,5</On>

 <On Platform="iOS">10,20,10,5</On>

 </OnPlatform></ContentPage.Padding>

 </ContentPage.Padding>

 <ListView x:Name="DataModelList" ItemTapped="ListViewItemTapped" >

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" Detail="{Binding

Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

</ContentPage>

This approach works well for read-only, selectable lists (and can even be extended to

include editing of data model properties in the list UI, such as Entry views, though that is

beyond the scope of this book). If you want to read more about building and customizing

read-only lists by using Xamarin.Forms, turn to the beginning of Chapter 6.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

369

If your list needs to change dynamically, with rows added or deleted or properties

changed in real time in the code, then nontrivial data binding may be required.

 Binding an Editable ListView
The standard ways that a user can edit a list are to add or delete list rows, or modify

properties of list rows. These types of list edits require nontrivial data binding, when list

rows are added or deleted from an array or collection, or when changes to list properties

take place in code. We need those data model changes to be reflected in the UI.

Nontrivial list binding requires the implementation of an INotify interface

to notify the UI to refresh when changes to the model take place. There are two

ways to do this: using a manual implementation of INotifyPropertyChanged and

using an ObservableCollection. ObservableCollection already implements the

INotifyCollectionChanged interface. Which approach you use (either or both) should

depend on the types of changes to the list that you want to reflect in the list UI.

Here are the two main list-editing scenarios and a standard way to handle them:

• Adding and deleting rows: Use an ObservableCollection as the list

data source.

• Editing properties in the ListView: Create a view model

implementing INotifyPropertyChanged that exposes the editable

properties in the list data model (such as Title).

Tip If you need to replace the entire list, you’ll likely need to rebind the list by
reassigning ItemsSource to get the UI to refresh.

Let’s begin with adding and deleting rows.

 Adding and Deleting Rows

Nontrivial data binding while adding and deleting rows from ListView can be

handled using ObservableCollection, which has a built-in implementation

of INotifyCollectionChanged. Any class, such as ListView, that is bound

to an ObservableCollection will automatically install a handler for the

CollectionChanged event.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

370

Using ObservableCollection as the bound data type for ListItem ensures that

changes to the list rows are reflected in the UI in real time.

Create and populate ObservableCollection, as shown in Listing 9-11. Declare

BindingContext instead of ItemsSource this time, just to show they’re interchangeable,

although you’ll also need to set the ListView's ItemsSource in the XAML in just a

moment.

Listing 9-11. List Binding Using an ObservableCollection (ListObservablePage.cs)

 items = new ObservableCollection<Item> {

 new Item {Title = "First", Description="1st item"},

 new Item {Title = "Second", Description="2nd item"},

 new Item {Title = "Third", Description="3rd item"}

 };

 this.BindingContext = items;

Earlier in ContentPage, I declared items in class scope so I can use it across methods

in the class:

 ObservableCollection<Item> items;

In the ListView, assign the ItemsSource to "{Binding .}". This defaults to whatever

the BindingContext is set to, which is the items collection in this case.

 <ListView ItemsSource="{Binding .}" ItemTapped="ListItemTapped" >

The ListView’s ItemTemplate implementation is the same as in the previous

example in Listing 9-10:

 <TextCell Text="{Binding Title}" Detail="{Binding Description}"/>

The complete code can be found in the downloadable code file

ListObservablePage.cs.

Test this approach by adding a button that adds or deletes rows in the

ObservableCollection called items, and you’ll see your model changes reflected

immediately in the list UI.

 items.RemoveAt(0);

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

371

Upon execution of our RemoveAt method, the first list row is immediately deleted in

the UI, as shown in Figure 9-5. Note that without an items.Count > 0 check, our simple

demo code can break with multiple deletes.

This approach does not use a view model, so it is not an MVVM implementation.

We’ll get serious about MVVM for editable lists soon.

Tip Adding and deleting list rows by using ObservableCollection works
especially well with Context Actions, the Xamarin.Forms approach for providing a
Delete and/or More button on each list row. Turn to Chapter 6 for more on Context
Actions.

An ObservableCollection tracks only the addition or removal of rows. Reflecting

changes to properties within those rows is another matter.

 Editing Properties

Editing list properties in code and reflecting those changes in the list UI can be handled

in any of the three ways discussed earlier, binding the list to one of the following:

• Create a view model that implements INotifyPropertyChanged.

• Implement INotifyPropertyChanged in your data model.

• Wrap your data model in a class that implements

INotifyPropertyChanged.

The first approach is a popular choice, but since you already saw that earlier in

Listing 9-7, and the second approach in Listing 9-8, here you’ll use the third approach:

wrapping your data model in an observable item class using INotifyPropertyChanged.

Then bind this observable class to your list (directly or via a view model).

Figure 9-5. The deleted first item disappears from the list

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

372

Create a class called ObservableItem.cs, as shown in Listing 9-12. Implementing

the OnPropertyChanged event and calling it in the Set method of ListItem properties

ensures that changes to the list data are reflected in the UI in real time. Note that this

class alone isn’t MVVM unless you encapsulate it in a view model, which you’ll do in a

moment.

Listing 9-12. Wrap Your Data Model in an Observable Class (ObservableItem.cs)

 class ObservableItem: INotifyPropertyChanged

 {

 public event PropertyChangedEventHandler PropertyChanged;

 Item item;

 public ObservableItem()

 {

 item = new Item();

 }

 public string Title

 {

 set

 {

 if (!value.Equals(item.Title, StringComparison.Ordinal))

 {

 item.Title = value;

 OnPropertyChanged("Title");

 }

 }

 get

 {

 return item.Title;

 }

 }

 public string Description

 {

 set

 {

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

373

 if (!value.Equals(item.Description, StringComparison.Ordinal))

 {

 item.Description = value;

 OnPropertyChanged("Description");

 }

 }

 get

 {

 return item.Description;

 }

 }

 void OnPropertyChanged([CallerMemberName] string propertyName = null)

 {

 var handler = PropertyChanged;

 if (handler != null)

 {

 handler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

 }

This ObservableItem class can now be implemented to create a nontrivial data-

bound list:

 items = new List<ObservableItem> {

 new ObservableItem {Title = "First", Description="1st item"},

 new ObservableItem {Title = "Second", Description="2nd item"},

 new ObservableItem {Title = "Third", Description="3rd item"}

 };

 this.BindingContext = items;

Again, I declared items in the class scope for use in multiple methods:

 ObservableCollection<Item> items;

In the ListView as before, assign the ItemsSource to "{Binding .}".

 <ListView ItemsSource="{Binding .}" ItemTapped="ListItemTapped" >

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

374

The ListView’s ItemTemplate implementation is the same as in the (two) previous

examples covered in Listing 9-10:

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" Detail="{Binding

Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

See the downloadable file ListPropertiesPage.xaml.cs for the complete ListView

code listing.

Changes to any of the properties in code will be reflected in the list UI in real time.

You can see this for yourself by creating a button or Context Action that edits a property

in the items list—the Title, for example:

 items[0].Title = "First Edited";

Upon execution of this single statement, the first list row is immediately updated in

the UI, as shown in Figure 9-6. That’s a bound list with an observable data model!

Note If editable views in your list rows, such as Entry views, are bound to
properties in your data model, then trivial data binding described earlier may be
sufficient, and this INotifyPropertyChanged approach may not be needed.

Binding List<ObservableItem> directly to the list didn’t use a view model either, so

it’s still not MVVM.

Figure 9-6. The first row is edited in code, and the UI is refreshed automatically

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

375

Next you will see how to use the observable item class in tandem with the observable

collection to create a view model for an editable list.

 Binding to a View Model

Building MVVM apps requires some attention to structure as you build your view

models. When using MVVM, it’s an antipattern to implement data models directly in

your view. You’ll need to create a view model, create your data models, and then employ

your models in your view model to bind them to your editable list.

Create a ListViewModel class that includes all the features in the previous list-

binding examples. The Items property is an ObservableCollection, so the UI can reflect

rows that are added or deleted, and the base item class is ObservableItem, so property

changes can also be reflected in the list UI. See Listing 9-11.

Note Listing 9-13 is an unusual example of a view model, as there is no explicit
implementation of INotifyPropertyChanged. INotifyPropertyChanged
was already implemented in all the encapsulated models:
ObservableCollection and ObservableItem. Additional implementation
of INotifyPropertyChanged in this view model would be redundant or
extraneous.

Listing 9-13. ListViewModel for an Editable List in ListViewModel.cs

 class ListViewModel

 {

 ObservableCollection<ObservableItem> items;

 public ListViewModel()

 {

 items = new ObservableCollection<ObservableItem> {

 new ObservableItem {Title = "First", Description="1st item"},

 new ObservableItem {Title = "Second", Description="2nd item"},

 new ObservableItem {Title = "Third", Description="3rd item"}

 };

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

376

 public ObservableCollection<ObservableItem> Items

 {

 set

 {

 if (value != items)

 {

 items = value;

 }

 }

 get

 {

 return items;

 }

 }

 }

Bind the Items property in your view model to your list source:

 var items = new ListViewModel();

 this.BindingContext = items.Items;

In the ListView as before, assign the ItemsSource property to "{Binding .}".

 <ListView ItemsSource="{Binding .}" ItemTapped="ListItemTapped" >

The ListView’s ItemTemplate implementation is the same as in the (two) previous

examples covered in Listing 9-10:

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" Detail="{Binding

Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

And that is a nontrivial, fully editable list using MVVM. Add and delete rows from the

list, edit properties in code, and all will be reflected in the list UI in real time.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

377

Create a ContentPage demo app that includes row editing, property editing, and

replacing the entire list. Bind it to your ListViewModel. Figure 9-7 shows how this listing

data-binding demo app might look.

This basic example of editable list binding is for demo purposes only. For a

professional-looking UI, consider using Context Actions, the Xamarin.Forms approach

to providing a Delete and/or More button on each list row. Turn to Chapter 5 for more on

Context Actions.

See the ContentPage for this example, called ListPageUsingListViewModel.cs, in

Listing 9-14.

Figure 9-7. Editable ListView data binding to a view model

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

378

Tip replacing the entire list requires the list to be rebound (this example is a
Replace method in the ListViewModel).

 public void Replace()
 {
 Items = new ObservableCollection<ObservableItem> {
 new ObservableItem {Title = "Primero",
 Description="First"},
 new ObservableItem {Title = "Segundo",
 Description="Second"},
 new ObservableItem {Title = "Tercero",
 Description="Third"}
 };
 }

 CODE COMPLETE: Binding an Editable ListView

Listings 9-14 and 9-15 show the complete ListView implementation that binds to the

view model ListViewModel in Listing 9-13. This example demonstrates row editing,

property editing, and replacing the entire list. It’s a nontrivial, fully editable list using

MVVM.

Listing 9-14. ListPageUsingListViewModel.xaml

<?xml version="1.0" encoding="UTF-8"?>

<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" xmlns:x="http://

schemas.microsoft.com/winfx/2009/xaml" x:Class="DataBindingExamples.

ListPageUsingListViewModel">

 <ContentPage.Content>

 <StackLayout>

 <Button Text="Edit Row" FontSize="Large" HorizontalOptions=

"Center" VerticalOptions="Fill" Clicked="EditClicked" />

 <Button Text="Delete Row" FontSize="Large" HorizontalOptions=

"Center" VerticalOptions="Fill" Clicked="DeleteClicked" />

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

379

 <Button Text="Replace List" FontSize="Large" HorizontalOptions=

"Center" VerticalOptions="Fill" Clicked="ReplaceClicked" />

 <ListView ItemsSource="{Binding .}" ItemTapped="ListItemTapped" >

 <ListView.ItemTemplate>

 <DataTemplate>

 <TextCell Text="{Binding Title}" Detail="{Binding

Description}"/>

 </DataTemplate>

 </ListView.ItemTemplate>

 </ListView>

 </StackLayout>

 </ContentPage.Content>

</ContentPage>

Tip A reminder that the following Listing 9-15 is not the ViewModel but
merely has ViewModel in the name to define the purpose of the example.
ListViewModel in Listing 9-13 is the ViewModel.

Listing 9-15. ListPageUsingListViewModel.xaml.cs

public partial class ListPageUsingListViewModel : ContentPage

{

 ListViewModel items;

 public ListPageUsingListViewModel ()

 {

 InitializeComponent ();

 items = new ListViewModel();

 this.BindingContext = items.Items;

 }

 public async void EditClicked(object sender, EventArgs e) {

 items.Items[0].Title = "First Edited";

 await DisplayAlert("Item Object", "First row edited", "OK");

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

380

 public async void DeleteClicked(object sender, EventArgs e) {

 items.Items.RemoveAt(0);

 await DisplayAlert("Delete", "Row deleted", "OK");

 }

 public async void ReplaceClicked(object sender, EventArgs e) {

 items.Replace();

 await DisplayAlert("Replace", "List replaced con Español", "OK");

 this.BindingContext = items.Items;

 }

 public async void ListItemTapped(object sender, ItemTappedEventArgs e)

 {

 ObservableItem item = (ObservableItem)e.Item;

 await DisplayAlert("Tapped", item.Title.ToString() + " was

selected.", "OK");

 ((ListView)sender).SelectedItem = null;

 }

}

The "Replace List" Button invokes Replace(), a method added to ListViewModel

that is shown in the previous tip and is viewable in the downloadable code

ListViewModel.cs. Replace() swaps out the list with Spanish translations of the row

titles before the list is rebound to reflect the changes.

Views can also be bound to other views.

 Binding a View to Another View
The focus of this book is data-driven applications, which means binding views to models

and view models. However, views can be bound to one another. A slider can be bound to

a label. A switch can be bound to an entry view, and so forth.

The target of a data binding must be backed by a BindableProperty object, and

most Xamarin.Forms views have many properties that fit this requirement. Explore

the Xamarin API documentation to learn about these. Many view properties are also

bindable as sources.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

381

Single views are easily bound, as each view must have one BindingContext. Multiple

views require mapping using the BindingModes OneWayToSource and TwoWay, which are

beyond the scope of this book. Refer to the Xamarin online docs for details.

 String Formatting
Format your data using the StringFormat property on bound data fields, just like .NET

always has. Apply a string format template using System.String.Format() to your

value before it is passed to the target property. C# has a lot of useful format templates for

numbers and dates. We can pretty print the result of System.DateTime.Now using <Label

Text="{Binding .,Source={x:Static sys:DateTime.Now},StringFormat='Time:

{0:t}'}"/>. The 0 represents the value returned by DateTime.Now, which is then

converted using the short time format t, which results in 11:59 PM.

 Value Converter
Bound data often needs to be converted to another data type before use. Convert a

value from one data type to another by implementing the two methods Convert or

ConvertBack from IValueConverter. If you need to support two-way updates, implement

both methods.

Create a value converter that receives ticks and converts it to DateTime and vice

versa.

Listing 9-16. Ticks to DateTime Value Converter

 class TicksToDateTimeConverter : IValueConverter {

 public object Convert(object value, Type targetType, object

parameter, CultureInfo culture) {

 return new DateTime((long)value);

 }

 public object ConvertBack(object value, Type targetType, object

parameter, CultureInfo culture) {

 return ((DateTime)value).Ticks;

 }

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

382

The converter TicksToDateTimeConverter in Listing 9-15 has a Convert method

that expects a number of type long and uses the DateTime(long) constructor to return a

DateTime object. The ConvertBack method does the opposite. It receives a value object

of type DateTime and returns a long value representing the ticks. Assuming that you have

added the namespace of your converter to your XAML page and assigned the prefix my to

your namespace, you can use this converter in a Label:

 <Label Text="{Binding .,Source={x:Static sys:DateTime.Now},Converter=

{my:TicksToDateTimeConverter}}"/>.

You can also register converters as a resource in your dictionary if you want to use

them application-wide or in your page.

 <ResourceDictionary>

 <local:TicksToDateTimeConverter x:Key="TicksConverter" />

 </ResourceDictionary>

Then use the converter name in the ResourceDictionary Key.

 <Label Text="{Binding .,Source={x:Static sys:DateTime.Now},Converter=

{TicksConverter}}"/>.

Always consider before you opt for a converter whether a matching bindable

property is not the better choice. These perform better and are easier to test.

Database access is truly cross-platform in Xamarin development. Using SQLite is

basically the same regardless of what platform you’re developing for.

 Using SQLite.NET
Data models are often populated from and synchronized with a local database. SQLite.

NET is the mobile, cross-platform database library of choice for many Xamarin

developers using Xamarin.Forms, Xamarin.Android, or Xamarin.iOS.

How you install SQLite.NET in your solution depends on the solution type. A .NET

Standard setup differs from a shared project setup:

>NET Standard: The best option for using SQLite-NET with .NET

Standard is the NuGet package called SQLite-Net PCL. There are

a few of these with similar names, so be certain to use the package

with these attributes:

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

383

• Name: SQLite-Net PCL

• Created by: Frank A. Krueger

• ID: SQLite-net-pcl

• NuGet link: SQLite-net-pcl

Install SQLite-Net PCL in the projects where you’ll need it, usually

most if not all of them in your solution. Do not manually add the

SQLite.cs file to your project(s). See the downloadable code

solution SQLiteNetPCL.

Note SQLite-net-pCL works for .NeT Standard. Yes, the library has pCL in it and
will also work for obsolete pCL. Ignore all the pCLs and focus on using the SQLite-
Net pCL library for your .NeT Standard projects.

Shared project setup: Add a file to your shared project called

SQLite.cs from the SQLite-net GitHub project by downloading it

and then clicking your application solution and selecting Add File.

See the downloadable code solution SQLiteNETSharedProject.

Many of the SQLite.NET examples in this section use a PCL because it’s clearer

in a demonstration, but I’ll cover shared projects too. PCL and shared project SQLite.

NET implementations are similar except for how they handle platform-specific

implementations of the database path and connection. More about that in the section

“Building the Database Path.”

Now that you have SQLite.NET installed in your solution, reference the library in

your data access layer classes with a using statement:

 using SQLite;

Constructing a data access layer using SQLite.NET requires the creation of a

database connection, a locking object, and CRUD transaction methods (get, insert,

update, and delete) that are specific to your table data.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

384

 Locking Is Key
Inserting, getting, updating, and deleting rows should be done using locks in order to

avoid conflicts. The following examples exclude the lock for simplicity until the section

“Locking Rows.” There are two ways to achieve locking with SQLite:

 1. Synchronous SQLite calls and explicit locking. This is described

in Listing 9-19 or Listing 9-22.

 2. Asynchronous SQLite calls with implicit locking. Async calls do

the locking for you.

Your architecture will determine which approach is best for you. Authorities on this

are increasingly recommending number 2, asynchronous calls with built-in locking.

More details here from Frank Kreuger: https://github.com/praeclarum/sqlite-

net#asynchronous-api. We’ll be working with synchronous calls with no locking (tsk

tsk) in this entire chapter so the database commands are readable and the concepts

clear. Be certain to take the next step after this and learn about the SQLite asynchronous

API.

Now that SQLite.NET is installed, let’s create a SQLite database.

 Creating a Database
Create a new SQLite database by establishing a database connection to a database

filename that includes the folder path. You can open a SQLite connection and use it

throughout your app without closing it.

First locate the folder that the database should go into and create the database folder

path:

 string folder = Environment.GetFolderPath (Environment.SpecialFolder.

Personal);

 databasePath = Path.Combine(documents, "ItemsSQLite.db3");

Create a database connection by specifying the database path and name:

 var database = new SQLite.SQLiteConnection(databasePath);

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

https://github.com/praeclarum/sqlite-net#asynchronous-api
https://github.com/praeclarum/sqlite-net#asynchronous-api

385

No check is needed to see if the file already exists. It will be created if it does not yet

exist; otherwise, it will simply be opened.

Tip Avoid using a single connection on different threads. Using locks helps avoid
conflicts, as described in the section “Locking rows.”

In real apps, building database paths is often the only platform-specific code in the

data access layer.

Tip explore the Xamarin.essentials solutions for building paths, starting with
FileSystem.AppDataDirectory.

 Building the Database Path
The database path is typically platform-specific, requiring an implementation for

each platform to retrieve it. The implementation of the database path and database

connection is the primary difference between the PCL approach and shared project

approach to building a data access layer. In PCLs, use dependency injection (DI) to

create platform-specific implementations of the database path and connection. In

shared projects, create the database path by using conditional compilation, which is a

way to implement platform-specific code at compile time.

Let’s begin with the shared projects database connection implementation before

moving on to .NET Standard.

 Connect by Using Shared Projects

The trick with SQLite database connections in Xamarin apps is that the database path

is usually platform-specific. For example, iOS iCloud requirements specify that files not

created by the user should not reside in the personal documents folder but can reside in

a subfolder such as /Library.

In a shared project, use conditional compilation as in Listing 9-16 to specify

platform-specific folders.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

386

Listing 9-17. Database Path in a Shared Project

 string databasePath {

 get {

 var dbName = "ItemsSQLite.db3";

 #if __IOS__

 string folder = Environment.GetFolderPath (Environment.

SpecialFolder.Personal);

 folder = Path.Combine (folder, "..", "Library");

 var databasePath = Path.Combine(folder, dbName);

 #else

 #if __ANDROID__

 string folder = Environment.GetFolderPath (Environment.

SpecialFolder.Personal);

 var databasePath = Path.Combine(folder, dbName);

 #else

 // WinPhone

 var databasePath = Path.Combine(Windows.Storage.

ApplicationData.Current.LocalFolder.Path, dbName);;

 #endif

 #endif

 return databasePath;

 }

 }

Tip Shared projects can’t have references added to them, so you’ll need to add
the SQLite.cs code from gitHub.

 Connect by Using .NET Standard

In .NET Standard, acquiring a connection to your SQLite database will require

dependency injection (DI), which can be done using the Xamarin.Forms

DependencyService.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

387

In the Xamarin.Forms project, create an interface for platform-specific database

functionality called IDatabase containing a connection method, DBConnect:

 public interface IDatabase {

 SQLiteConnection DBConnect();

 }

To connect to the SQLite database, call out to the connection method, DBConnect,

using DependencyService:

 database = DependencyService.Get< IDatabase > ().DBConnect ();

Tip The Asynchronous ApI version of the call is this: database = new SQLit
eAsyncConnection(dbPath);

The rest of the examples in this section on SQLite will use this database connection

type in .NET Standard.

Next you need to implement the IDatabase interface on each platform.

Tip .NeT Standard solutions require a special SQLite.NeT Nuget library installed
called SQLite-NeT pCL that was created by Frank A. Krueger with an ID of SQLite-
net- pcl. Do not manually add the SQLite.cs file to your project(s).

 Connect in Android

Create a database path for Android in the Android project by implementing the

IDatabase interface in a class called Database_ Android (Listing 9-17). Begin the class

with an [assembly] attribute declaring the class as a dependency injection for use in a

DependencyService back in the .NET Standard project. Set the folder name to System.

Environment.GetFolderPath (System.Environment.SpecialFolder.Personal).

Listing 9-18. Database Path in the Android Project of a .NET Standard Solution

 [assembly: Dependency(typeof(Database_Android))]

 namespace SQLiteNetPCL.Android

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

388

 {

 public class Database_Android : IDatabase

 {

 public Database_Android() { }

 public SQLiteConnection DBConnect()

 {

 var filename = "ItemsSQLite.db3";

 string folder =

 System.Environment.GetFolderPath(System.Environment.

SpecialFolder.Personal);

 var path = Path.Combine(folder, filename);

 var connection = new SQLiteConnection(path);

 return connection;

 }

 }

 }

 Connect in iOS

Create a database path for iOS in the iOS project by implementing the IDatabase

interface in a class called Database_iOS (Listing 9-18). Meet iCloud requirements of not

placing files directly in the user’s personal folder by finding the user’s /Library folder.

Start with the user’s personal folder at System.Environment.GetFolderPath (System.

Environment.SpecialFolder.Personal) and locate /Library.

Listing 9-19. Database Path in the iOS Project of a .NET Standard Solution

 [assembly: Dependency(typeof(Database_iOS))]

 namespace SQLiteNetPCL.iOS

 {

 public class Database_iOS : IDatabase

 {

 public Database_iOS() { }

 public SQLiteConnection DBConnect()

 {

 var filename = "ItemsSQLite.db3";

 string folder =

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

389

 Environment.GetFolderPath (Environment.SpecialFolder.

Personal);

 string libraryFolder = Path.Combine (folder, "..",

"Library");

 var path = Path.Combine(libraryFolder, filename);

 var connection = new SQLiteConnection(path);

 return connection;

 }

 }

 }

Once you get your implementations of IDatabase wired up correctly, your call

to retrieve the SQLite database connection will work: DependencyService.Get<

IDatabase > ().DBConnect (). If you’re running into difficulty, check your references

and using statements. Platform-specific solutions need to reference the .NET Standard

project containing your data access layer, and using statements (or direct namespace

references) are needed when referring to those libraries. Once in a while, Visual Studio

appears to fail when adding new libraries, and it’s then helpful to close and reopen the

solution.

The rest of this chapter uses .NET Standard instead of a shared project, for simplicity

of demonstration only, but the code is basically the same between these approaches

except for the database path and initial connection. If you want to understand the basic

differences in a SQLite.NET implementation between .NET Standard and shared project,

refer back to the section “Building the Database Path.”

Once the connection to your SQLite database is made, you can add tables to our new

database and start inserting, getting, updating, and deleting rows.

 Creating a Table
Create a new table in a database by defining the table in a data model and then using the

database’s CreateTable method. Use attributes such as [PrimaryKey, AutoIncrement]

to specify keys, max lengths, and other properties of the table and its fields (Listing 9-19).

Define the Item data model. Using the PrimaryKey and AutoIncrement attributes,

specify an integer primary key to help facilitate queries. Unless specified otherwise

(using attributes), SQLite will use the class name as the table name and the property

names as column names.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

390

Listing 9-20. Table Class Declaration Using SQLite Attributes (Item.cs)

 public class Item {

 [PrimaryKey, AutoIncrement]

 public int ID { get; set; }

 [MaxLength(15)]

 public string Name { get; set; }

 [MaxLength(50)]

 public string Description { get; set; }

 }

Create the table by using the CreateTable method:

 database.CreateTable<Item>();

The table now exists and is ready for rows to be inserted. CreateTable won’t

overwrite an existing table (use DropTable to drop a table).

The bracketed attributes tell SQLite.NET how to regard the properties in the data

model in relation to the database table.

 Using Attributes

The following commonly used attributes for SQLite data models help you define the

table in the database:

• [PrimaryKey]: Specifies the table’s primary key when applied to an

integer property (no composite keys).

• [AutoIncrement]: Automatically increments an integer property

when each object is inserted into the database.

• [Column(name)]: Specifies the column name. Useful for when it

should differ from the property name.

• [Table(name)]: Specifies the table name. Useful for when it should

differ from the data model class name.

• [Ignore]: SQLite.NET will disregard this property. Useful for

properties that cannot be stored in the database.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

391

• [MaxLength(value)]: Limit the size of a text field on inserts and

updates by rejecting longer text objects. Remember to validate the

length in your own code before committing text to this field. SQLite

itself has no limits on string length.

Once the table is created and fields defined, you can add data to the database.

 Inserting and Deleting Rows

Insert a new row into a table by populating the data model and then calling the Insert

method.

Populate the Item data model with data:

 var item = new Item { Name = "First" , Description = "This is the first

item"};

Call the database connection’s Insert method to attempt to add a row to the table:

 database.Insert (item);

Delete rows by using the Delete method:

 database.Delete<Item>(id);

Tip SQLite supports transactions using the SQLiteTransaction object with
the BeginTransaction, Commit, and Rollback methods. SQLite expects
operations to be performed in a transaction. If one is not supplied, then each
operation will be wrapped in a transaction. If you can batch them, you will get a
performance boost.

 Getting Rows

Retrieve rows from a table by using the Get, Table, or Query methods. Get returns a

single row, Table returns the entire table, and Query returns multiple rows using SQL.

Pass the integer key ID into the Get method to return a row from the Item table:

 var item = database.Get<Item>(1);

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

392

Return the entire table by using the Table method:

 var itemList = database.Table<Item>();

Use SQL to filter the table’s contents by using the Query method, a performant

option:

 var firstItem = database.Query<Item>("SELECT * FROM Item WHERE Name =

'First' ");

Use LINQ to filter the table’s contents, less quickly than SQL:

 var firstItem = from i in database.Table<Item>()

 where i.Name == "First"

 select i;

Or to specify parameters in the FirstOrDefault method to filter:

 var itemList = database.Table<Item>().FirstOrDefault(x => x.ID == id);

 Updating Rows

Update rows in the table by using the Update method. This changes data on an

existing row.

First populate the Item data model with data:

 var item = new Item { Name = "First" , Description = "This is the first

item"};

Call the Update method to populate the new data in the existing row:

 database.Update(item);

Check whether the ID exists so you know whether you should update or insert a

new row:

 if (item.ID != 0) {

 database.Update(item);

 return item.ID;

 } else {

 return database.Insert(item);

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

393

If you’re not sure that the row exists, use a combination Insert/Update. The Insert

method will return a nonzero value if it fails, allowing the Update to proceed.

 if (database.Insert(item) != 0)

 database.Update(item);

 Locking Rows

To avoid database collisions, all transactions should be locked. Use the lock keyword

against a static object.

Here’s a locking example using the Delete method:

 static object locker = new object ();

 lock (locker) {

 database.Delete<Item>(id);

 }

To avoid a deadlock, do not lock a method that calls another method that creates

a lock.

Note The SQLite Asynchronous ApI takes care of locks for you, implicitly!
The entire SQLite.NeT section in this book keeps SQLite calls as simple
as possible for demonstration purposes. That means with no concurrency.
Best practice with SQLite.NeT typically involves the extensive use of async
await, on connection, query, and SQL execution. read all about it from Frank
Kreuger himself here: https://github.com/praeclarum/sqlite-
net#asynchronous-api.

Those are all the basic techniques you need to use the SQLite.NET ORM! Now you’re

ready to build a data access layer (DAL) for your app by using these techniques. Since it’s

not good architectural form to use SQLite.NET inside your UI layer, you can encapsulate

SQLite.NET calls in the repository pattern to create a more elegant and decoupled

architecture.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

https://github.com/praeclarum/sqlite-net#asynchronous-api
https://github.com/praeclarum/sqlite-net#asynchronous-api

394

 Creating the Data Access Layer
The data access layer (DAL) is an industry-standard architecture for data access in a

C# app. This group of classes encapsulates the data layer and includes the database

connection, the database path, and the CRUD transactions, exposing data access

methods that reflect the specific data in a particular app (e.g., GetItem and SaveItem

methods). Depending on the level of architectural rigor, the data access layer can offer

a simple group of loosely arrayed access classes and methods to a highly structured

and decoupled layer with limited access points (which often uses the repository

pattern). This approach decouples the data layer implementation from the business and

presentation layer of your app.

Note Create, read, update, and delete (CrUD) transactions running against a
local database typically make up the foundation of mobile application data. Some
apps don’t require local database access and run entirely using web services, but
I’m not covering those in this book.

 Creating a Repository

At the heart of many enterprise-grade Xamarin data access layers is an implementation

of the repository pattern. This abstraction placed between the business layer and the

data layer (the SQLite.NET ORM) provides app-specific CRUD methods using object

collections, without exposing details of data source implementations (databases,

XML, JSON, flat files, etc.). Use this pattern to abstract away the details of SQLite

implementation, including locking. Later you can couple your repository with the

singleton pattern to maintain the database connection.

Note The definition of the repository pattern has evolved since its inception.
It was originally intended as an abstraction to decouple the data layer
implementation (e.g., SQLite) from the rest of the app with the added benefit
of providing in-memory data-object collections. Over the years, many C# apps
needed the decoupling but not the in-memory data objects, so those collections
have evolved to become data objects returned by methods in many cases, not kept
in repository properties. This is true in most Xamarin apps as well.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

395

Create table-specific data access methods (GetItems, SaveItem, etc.) that

encapsulate and employ the generalized SQLite CRUD methods described earlier (Get,

Insert, Update, etc.):

 public IEnumerable<Item> GetItems ()

 public IEnumerable<Item> GetFirstItems ()

 public Item GetItem(int id)

 public int SaveItem(Item item)

 public int DeleteItem(int id)

 public void DeleteAllItems()

Make methods that are specific to the kind of data you’re using, the Item table in

this case. Avoid generic methods like Get and Insert and instead employ data-specific

methods like GetItem and InsertItem (generic-sounding but specific to your Item

table). There is a place for generic repository components, and we’ll get to that soon.

A basic repository that represents a single database with a single table will typically

look like the class outline in Listing 9-21.

Listing 9-21. Repository Class Outline (ItemDatabaseBasic.cs)

Public Class ItemDatabaseBasic

 {

 protected static object locker = new object ();

 protected SQLiteConnection database;

 public ItemDatabaseBasic()

 {

 database = DependencyService.Get<IDatabase>().DBConnect();

 database.CreateTable<Item>();

 }

 public IEnumerable<Item> GetItems () { ... }

 public IEnumerable<Item> GetFirstItems () { ... }

 public Item GetItem(int id) { ... }

 public int SaveItem(Item item) { ... }

 public int DeleteItem(int id) { ... }

 public void DeleteAllItems() { ... }

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

396

Create a .NET Standard solution for this example called SQLiteNetStd. See the

earlier section “Connect by Using Portable Class Libraries” for implementations of

DBConnect() and IDatabase.

Tip If you want to create a repository using a shared project, virtually everything
is identical to what you would do with a .NeT Standard project except the initial
connection. For details on shared project implementations, see the earlier section
“Connect by Using .NeT Standard” and the downloadable solution example
SQLiteNETSharedProject.

Listing 9-22 shows the full code for this basic repository based on the outline in

Listing 9-21. Create a static locker object that is used within the data access methods

for avoiding concurrency issues on different threads, as discussed earlier. Encapsulate

the SQLiteConnection object and instantiate it in the constructor. The databasePath

is created using the method described earlier in “Connect by Using Portable Class

Libraries.”

Listing 9-22. Single-Table Repository in ItemDatabaseBasic.cs

 public class ItemDatabaseBasic

 {

 protected static object locker = new object ();

 protected SQLiteConnection database;

 public ItemDatabaseBasic()

 {

 database = DependencyService.Get<IDatabase>().DBConnect();

 database.CreateTable<Item>();

 }

 public IEnumerable<Item> GetItems ()

 {

 lock (locker) {

 return (from i in database.Table<Item>() select i).ToList();

 }

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

397

 public IEnumerable<Item> GetFirstItems ()

 {

 lock (locker) {

 return database.Query<Item>("SELECT * FROM Item WHERE Name

= 'First'");

 }

 }

 public Item GetItem(int id)

 {

 lock (locker) {

 return database.Table<Item>().FirstOrDefault(x => x.ID == id);

 }

 }

 public int SaveItem(Item item)

 {

 lock (locker) {

 if (item.ID != 0) {

 database.Update(item);

 return item.ID;

 } else {

 return database.Insert(item);

 }

 }

 }

 public int DeleteItem(int id)

 {

 lock (locker) {

 return database.Delete<Item>(id);

 }

 }

 public void DeleteAllItems()

 {

 lock (locker) {

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

398

 database.DropTable<Item>();

 database.CreateTable<Item>();

 }

 }

 }

Important Tip This basic repository works for only a single table: Item. You can
access additional tables either by adding more methods to this repository or by
refactoring the class using generics, both of which you’ll do in a moment in the
section “Adding Methods to the repository.”

Let’s get back to the database connection.

 Managing the Repository

In Xamarin apps using SQLite, the database connection is often kept in memory so it

can be reused throughout the user session. Because static classes remain in memory,

they are a likely candidate for helping to build a repository and store the connection.

You can also open and close the connection for each transaction, but because SQLite

is a serverless database, there is less of a need, and keeping a single connection open is

common practice.

The connection is typically handled in one of two ways, either encapsulated in

the repository or passed in as a parameter. In these examples, the SQLite database

connection is encapsulated in the repository. (You may want to move the connection

out of the repository and pass it in as a parameter if you wish to have more control over

the connection instance, for testability, for example.) Since the connection resides in our

repository in this example, we need to keep the repository in memory.

A common location to maintain a repository is in a static property on the

Application class, as shown in Listing 9-23. The following code references the earlier

ItemDatabaseBasic repository in Listing 9-22.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

399

Listing 9-23. Static Database Property Declared in the Application Object

 public class App : Application

 {

 static ItemDatabaseBasic database;

 public static ItemDatabaseBasic Database {

 get {

 if (database == null) {

 database = new ItemDatabaseBasic ();

 }

 return database;

 }

 }

 ...

 }

Use this self-instantiating repository by referring to it via the Application object:

 App.Database.SaveItem (item);

The ContentPage UI is found in downloadable code files App.cs and

DataAccessPageDatabase.cs.

Often, you have to access more than one table in your database, or you have multiple

data sources, such as files, XML, JSON, or multiple databases. These situations warrant a

more advanced repository approach.

 Adding Methods to the Repository

Accessing multiple tables or multiple data sources requires some thinking about how the

DAL architecture should grow to accommodate that. Here are the two common options

for multisource repositories:

• Add data access methods directly to your repository class.

• Refactor your repository into a repository class and a generic

database access class.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

400

The first option is quick and dirty, whereas the second option is more suitable for

enterprise-grade business apps. Let’s look at each option.

Add data access methods directly to your repository class. If you want to access a

new table, a Person table, for example, you need to create GetPerson and SavePerson

methods somewhere. You could just add these methods to your repository.

 public Person GetPerson (int id) { ... }

 public IEnumerable<Person> GetPeople () { ... }

 public int SavePerson(Person person) { ... }

 public int DeletePerson(int id) { ... }

 public int DeleteAllPeople() { ... }

That will work just fine. It’s even moderately testable. Use it if it works for you.

The problem with this approach is all the code that’s not shown: the implementation

of these methods is virtually identical for every table. This approach smells of code

duplication. If you need to access a third or fourth table, you’ll wind up with dozens of

methods that look more or less like this:

 public int GetOrSaveOrDeleteSomething(int id)

 {

 lock (locker) {

 return database.GetOrSaveOrDelete<TableName>(id);

 }

 }

Very smelly, indeed. If you’re lucky, that’s all that will be in there. In some cases,

a mash-up of table-specific logic and SQLite implementation will provide additional

smells. It’s time for a refactoring, and the second option is the obvious choice.

Refactor your repository into a repository class and a generic database access class.

A more advanced approach to the repository pattern separates the repository class

from the DAL implementations. This approach is useful if you have multiple tables, or

mixed types of data access, such as file-based, XML, and JSON, as well as a SQLite data

layer, or multiple databases (rare). Each data source can have its own implementation;

then the repository ties them all together with one interface. SQLite implementations

can all be encapsulated into a single generic database class.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

401

Create a generic database class that handles the SQLite data layer, and then create an

advanced repository class that handles all the data access calls to that generic database

and to other sources.

Begin with the generic database class, as shown in Listing 9-24. Take your original

ItemDatabaseBasic class, make a copy, and call it ItemDatabaseGeneric.cs. Replace all

references to specific tables, data models, and data classes such as Item or Person with T.

In a liberal use of generics, create methods that could transact with any table, depending

on the data type passed into them.

Listing 9-24. Generic Database Class (ItemDatabaseGeneric.cs)

 public class ItemDatabaseGeneric

 {

 static object locker = new object ();

 SQLiteConnection database;

 public ItemDatabaseGeneric()

 {

 database = DependencyService.Get<IDatabase>().DBConnect();

 database.CreateTable<Item>();

 database.CreateTable<Person>();

 }

 public IEnumerable<T> GetObjects<T> () where T : IObject, new ()

 {

 lock (locker) {

 return (from i in database.Table<T>() select i).ToList();

 }

 }

 public IEnumerable<T> GetFirstObjects<T> () where T : IObject, new ()

 {

 lock (locker) {

 return database.Query<T>("SELECT * FROM Item WHERE Name =

'First'");

 }

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

402

 public T GetObject<T> (int id) where T : IObject, new ()

 {

 lock (locker) {

 return database.Table<T>().FirstOrDefault(x => x.ID == id);

 }

 }

 public int SaveObject<T> (T obj) where T : IObject

 {

 lock (locker) {

 if (obj.ID != 0) {

 database.Update(obj);

 return obj.ID;

 } else {

 return database.Insert(obj);

 }

 }

 }

 public int DeleteObject<T> (int id) where T : IObject, new ()

 {

 lock (locker) {

 return database.Delete<T> (id);

 }

 }

 public void DeleteAllObjects<T> ()

 {

 lock (locker) {

 database.DropTable<T>();

 database.CreateTable<T>();

 }

 }

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

403

Since the ID field is needed in these methods, it must be added as a constraint to the

type parameters of some of the methods. This means you need to upgrade to your data

model(s) with an interface that requires an ID (Listing 9-25).

Listing 9-25. Generic Model Interface That Includes an ID Field (IObject.cs)

 public interface IObject

 {

 int ID { get; set; }

 }

Apply the interface to your models, inheriting from IObject:

 public class Item : IObject

You already have an ID field in the Item class, so there’s no need for further changes

to it.

Add a Person class as a new data model, inheriting from IObject and including an

ID field to implement IObject (Listing 9-26).

Listing 9-26. Person Data Model Class (Person.cs)

 public class Person : IObject

 {

 [PrimaryKey, AutoIncrement]

 public int ID { get; set; }

 [MaxLength(25)]

 public string FirstName { get; set; }

 [MaxLength(25)]

 public string LastName { get; set; }

 }

Create an advanced repository class that consumes the generic database class. Use

methods that are specific to the types of data being handled, as shown in Listing 9-27.

Avoid any SQLite implementation in this repository, as the purpose of this class is to act

as a layer between the business logic and the data access implementation.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

404

Listing 9-27. Advanced Repository Calls Generic Database Class Methods

(ItemRepository.cs)

 public class ItemRepository {

 ItemDatabaseGeneric itemDatabase = null;

 public ItemRepository()

 {

 itemDatabase = new ItemDatabaseGeneric();

 }

 public Item GetItem(int id)

 {

 return itemDatabase.GetObject<Item>(id);

 }

 public IEnumerable<Item> GetFirstItems ()

 {

 return itemDatabase.GetObjects<Item>();

 }

 public IEnumerable<Item> GetItems ()

 {

 return itemDatabase.GetObjects<Item>();

 }

 public int SaveItem (Item item)

 {

 return itemDatabase.SaveObject<Item>(item);

 }

 public int DeleteItem(int id)

 {

 return itemDatabase.DeleteObject<Item>(id);

 }

 public void DeleteAllItems()

 {

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

405

 itemDatabase.DeleteAllObjects<Item>();

 }

 public Person GetPerson(int id)

 {

 return itemDatabase.GetObject<Person>(id);

 }

 public IEnumerable<Person> GetPeople ()

 {

 return itemDatabase.GetObjects<Person>();

 }

 public int SavePerson (Person person)

 {

 return itemDatabase.SaveObject<Person>(person);

 }

 public int DeletePerson(int id)

 {

 return itemDatabase.DeleteObject<Person>(id);

 }

 public void DeleteAllPeople()

 {

 itemDatabase.DeleteAllObjects<Person>();

 }

 }

Three components are in this more advanced repository: the generic database

instance, the item methods, and the person methods. Item objects are passed into the

item methods, and Person objects appear in the person methods. The generic database

class resolves all of its SQLite.NET methods by using those data types via generics,

deciding which tables to read and write to/from.

That is how to refactor your basic repository into an advanced repository, using

generics and a data model interface.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

406

If you’re looking at the repositories in this chapter and asking where the model

properties and caching mechanisms are, you’re asking the right questions. Using

a repository to maintain in-memory data models is a common technique in web

development, but it can be risky given the limited memory of mobile devices and is

beyond the scope of this book. The repositories shown here are basic ones designed only

to create an app-specific abstraction around the SQLite ORM.

Note A third option exists for adding methods to a repository: create a generic
repository. This is similar to the second option, the generic database class, but
without the encapsulating repository class. This exposes a generic DAL interface
to your views and view models and is considered by many to be lazy coding and a
leaky abstraction.

 CODE COMPLETE: Creating a DAL by Using SQLite.NET
Listings 9-24, 9-25, 9-26, 9-27, 9-28, 9-29, and 9-30 contain the complete data access

layer code for the advanced repository example invoking the generic database class. The

Application object containing the static Repository property is found in Listing 9-28.

This example uses the advanced repository we refactored in Listing 9-27 instead of the

basic database repository (Listing 9-21).

The ContentPage demo UI in Listing 9-29 walks through various methods in the

DAL. The List data model with IObject implemented is in Listing 9-30.

This example is a Xamarin.Forms project, which uses dependency injection for

retrieving the database connection with the DBConnect() method as described in

“Connect by Using Portable Class Libraries” and as seen in the downloadable code

solution called SQLiteNetPCL.

Note From here on out, this book focuses 100% on data access where the only
UI is a Label with a Text property containing data access example results. C# is
used to display this label instead of XAML: var label = new Label { Text
= "Results" };

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

407

If you’re using a shared project instead, skip the DI and use conditional compilation

to create DatabasePath, as mentioned earlier in “Connect by Using Shared Projects” and

as seen in the downloadable code solution called SQLiteNETSharedProject.

Listing 9-28. App.cs Using a Static Application Property for the Repository

public class App : Application

{

 static ItemRepository repository;

 public static ItemRepository Repository {

 get {

 if (repository == null) {

 repository = new ItemRepository ();

 }

 return repository;

 }

 }

 public App()

 {

 MainPage = new NavigationPage(new HomePage());

 }

}

Figure 9-8 shows the UI output of the ContentPage called DataAccessPageRepository

(Listing 9-29), a quick demo of the data access layer using the advanced repository.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

408

Listing 9-29. DataAccessPageRepository.cs Is a Xamarin.Forms ContentPage

That Uses ItemsRepository

public class DataAccessPageRepository : ContentPage

{

 public DataAccessPageRepository()

 {

 var label = new Label { Text = "Database Created Using SQLite.

NET\n" };

 label.Text += " Using an Advanced Repository\n\n";

 App.Repository.DeleteAllItems (); // clear out the table to start

fresh

 var item = new Item { Name = "First" , Description = "This is the

first item"};

 App.Repository.SaveItem (item);

 var firstItem = App.Repository.GetFirstItems();

 label.Text += firstItem.First().Name + " item added.\n";

 var id = 1;

 item = App.Repository.GetItem (id);

 label.Text += item.Name + " item at ID " + id.ToString () + "\n\n";

Figure 9-8. UI display in the demo data access page shown in Listing 9-29

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

409

 App.Repository.DeleteItem(id);

 label.Text += "Deleted item at ID " + id.ToString () + "\n\n";

 item = new Item { Name = "First" , Description = "This is the first

item"};

 App.Repository.SaveItem (item);

 item = new Item { Name = "Second" , Description = "This is the

second item"};

 App.Repository.SaveItem (item);

 item = new Item { Name = "Third" , Description = "This is the third

item"};

 App.Repository.SaveItem (item);

 var items = App.Repository.GetItems ();

 foreach (var i in items) {

 label.Text += i.Name + ": " + i.Description + "\n";

 }

 label.Text += "\n Oops, I meant: ";

 item.Description = "This is the third item";

 App.Repository.SaveItem(item);

 id = 4;

 item = App.Repository.GetItem (id);

 label.Text += item.Name + ": " + item.Description + "\n";

 this.Padding = new Thickness(10, Device.OnPlatform(20, 0, 0), 10, 5);

 Content = new StackLayout

 {

 Children = {

 label

 }

 };

 }

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

410

Listing 9-30. Item.cs Contains the Item Class Implementing IObject

public class Item : IObject

{

 [PrimaryKey, AutoIncrement]

 public int ID { get; set; }

 [MaxLength(15)]

 public string Name { get; set; }

 [MaxLength(50)]

 public string Description { get; set; }

}

 Database Creation Options
The most common options for creating your SQLite database are as follows:

• Use SQLite.NET: Use the SQLite.NET API to create the database and

tables as described in “Creating a Database” in the section “Using

SQLite.NET.” Use SQL for features not covered in the ORM, such as

foreign keys and indexes.

• Include a database: You can include a fully created database with

your app, a good option if you want complete control over details of

the tables and their relationships. Use a tool such as the Datum or the

SQLite Manager Firefox extension. Then remember to have your app

copy the database into a writable directory before using it with code

like this:

if (!File.Exists (databasePath))

{

 File.Copy (dbName, databasePath);

}

SQLite provides a local database to help you maintain state between user sessions and

have important data on demand. Many apps also require interaction with a server-side

data source, such as a SQL server or other data source on a remote data server.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

411

 Web Services
Web services facilitate communication with a remote datastore and synchronization

with the local SQLite database. They allow the Xamarin app to pull down data from the

remote data source and push it back up when needed.

Many options are available for building web services when using the Xamarin

platform, but here are a few of the most common:

• REST: A common approach, RESTful services can use HttpClient,

HttpWebRequest, WebClient, or one of many third-party libraries,

including Hammock, often coupled with JSON or LINQ.

• Windows Communication Framework (WCF): The standard

Microsoft web service approach is supported in a limited fashion by

using BasicHttpBinding in the Silverlight library.

• SOAP: An older, standards-based approach for data transmission

over the Web, Xamarin supports SOAP 1.1, Microsoft’s SOAP

implementation, and ASP.NET Web Services (ASMX), albeit with an

incomplete implementation.

Detailed exploration of web services is beyond the scope of this book, but the

fundamentals are similar to web services used in web, and especially desktop, apps.

There are heavier-weight options that provide out-of-the box data solutions, handle

the fine points of security, and can save on development time. These enterprise cloud

data solutions are the industrial-grade platforms for remote data integration.

 Enterprise Cloud Data Solutions
Optimization of the performance and user experience of mobile apps has increased

the demand for full-featured, server-side mobile app solutions. These solutions include

mobile-accessible cloud storage, authentication, and push notifications. Build, test,

distribution, and analytics are also useful features. Here are a few of the most popular

solutions.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

412

 Microsoft Azure Mobile Apps
Azure Mobile Apps is a service suite providing baseline features like SQL Databases,

mobile push notifications, brand-name authentication via Facebook and Twitter for

consumer apps, and Azure Active Directory (AAD) for enterprise apps. Access to these

features is condensed into the Azure Mobile SDK, an API used by mobile developers

to access the Azure cloud feature set, including local/remote data sync. Serverless

nanoservices that instantiate on demand are becoming more common as mobile back-

ends and Azure Functions provide these services that are easily implemented in mobile

dev architectures.

Azure Mobile Apps is a suite of services that provide back-end support to native

and cross-platform mobile apps. It offers features important to mobile app developers

including

• Cloud storage

• Offline data sync

• Authentication

• Push notifications

 Cloud Storage

Mobile apps need server-side virtual storage with cloud databases and tables that can

be instantiated and destroyed on demand. Azure SQL Databases provide cloud storage

that is easy to set up and low maintenance, requiring no administration of physical

disk, partitions, or logging. They have automatic backups and software updates, and

automatic tuning and threat detection. The Azure SDK provides a straightforward way

to create SQL Database table references from within a mobile app and conduct CRUD

transactions. Azure SDK meets your mobile app’s data access needs by querying,

filtering, sorting, and syncing data to a local database, such as SQLite. Use the Azure

SDK in your mobile app or server-side code to obtain references to your app’s Azure SQL

Database URL and tables. Execute CRUD transactions against your tables, and filter and

sort by row, column, and id. Access to Azure tables can also be achieved using Visual

Studio App Center (VSAC).

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

413

Tip Microsoft entity Framework is another enterprise-grade cloud storage option
worth considering.

 Offline Data Sync

Sync data local-to-cloud using a SQLite database, an Azure SQL Database, and the Azure

SDK. In your mobile app, use a local SQLite database and bind it to your Azure cloud

data source. All writes go to the local SQLite database. Sync the databases with push and

pull methods. Data is sent to the Azure SQL Database only when explicitly synced using

the SDK’s async methods. Remote data sync from multiple client apps raises the risk of

conflicts. Handle sync errors using a try/catch exception handler or by implementing a

sync handler interface.

 Authentication

Azure Authentication integrates with Azure Active Directory (AD) and third parties such

as Facebook, Google, MS Account, and Twitter.

Using standard OAuth workflow, the mobile app retrieves an authentication token

from an authentication provider to access a protected service. This token is used to

create an identity for the mobile app which is passed to the target mobile service. The

acceptance of this identity finalizes the authentication. The mobile service then executes

the desired function and returns requested values (if any) to the calling mobile app.

 Push Notifications

Due to the secure and proprietary nature of mobile push notifications, OS providers each

utilize their own Push Notification Service (PNS). Cross-platform development must

integrate with two or more services which can become unwieldy. Azure Notification

Hubs provides a single notification hub for server-side notification generators to

integrate with. Provide Azure Notification Hubs with access to the platform-specific PNS

then push messages to the hub using platform-specific methods in your mobile app, as

specified in the Azure SDK.

Use Azure Notifications Hubs to broadcast notifications by user, device, or platform,

in real time or scheduled. The hub’s service scales to millions of devices and supports all

major push platforms including iOS, Android, Windows, Kindle, and Baidu.

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

414

Azure Mobile Apps is a full-featured service suite custom-made for mobile

development, providing containers, built-in and from-scratch services, access to data

sources, maintained and administered maintenance-free on the Azure platform.

Developers can take advantage of Azure Mobile Apps using the Azure SDK for Xamarin

apps. Get started using the managed client SDK package for Mobile Apps from NuGet

called Microsoft.Azure.Mobile.Client. More detail can be found here: https://docs.

microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-

forms- get-started.

 Visual Studio App Center (VSAC)
Build, test, and deploy mobile apps in a DevOps environment using Visual Studio App

Center (VSAC). DevOps practices using VSAC help development teams keep builds and

releases organized as they are distributed to collaborators, teams of testers, customer

beta testers, all the way into app stores like Google Play and iTunes. This suite covers

the automation of time-consuming tasks such as builds and build signing within a

streamlined workflow. Learn how to test on multiple physical devices by creating

device sets and choosing from over 2500 devices and over 400 configurations of iOS and

Android versions. Set up and manage multiple applications, organizations, testers, and

teams using App Center Build, App Center Test, and App Center Distribute. Read more

about VSAC in my edX course at www.edx.org/course/devops-mobile-apps-1.

 IBM Mobile Foundation
The IBM.MobileFirstPlatformFoundation NuGet library provides a bridge into IBM’s

enterprise-grade mobile application platform product as part of a suite of enterprise

mobile solutions. IBM Mobile Foundation (formerly IBM MobileFirst) provides a range

of mobile app development features including security, cloud data access, enterprise

integration, and application management. IBM Mobile Foundation security offerings

include secure authentication using SSO and multi-factors. Transactions can use

SSL encryption, local data can be encrypted, and there is some protection against

reverse-engineering. The platform’s cloud data access feature set provides remote

data access, storing user preferences, and data synchronization. Enterprise integration

features include unified push, SMS notifications, and optimized access to enterprise

services, such as web services, REST services, SAP, and more. Application management

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started
https://www.edx.org/course/devops-mobile-apps-1

415

functionality provides a full range of app release management features including

distribution, versioning, analytics, push notifications, remote disabling of apps, and

error logging. These are some of these features available using the WL.Client namespace

in the IBM MobileFirst SDK. Read more about IBM Mobile Foundation with Xamarin

here: https://mobilefirstplatform.ibmcloud.com/tutorials/ru/foundation/8.0/

application-development/sdk/xamarin/.

 Summary
Xamarin.Forms data binding was built upon the foundation and experience of the third-

party MVVM libraries used with Mono for years, MvvmCross and MVVM Light Toolkit,

and was also inspired by WPF XAML data binding. Leveraging this powerful lineage, the

Xamarin team at Microsoft has forged Xamarin.Forms into an advanced and mature API.

Data binding gets data into and out of your data model through your views. Moving

that data into and out of your database can be accomplished with SQLite-NET. Some

Xamarin developers prefer SQLite-NET because of the ease of the built-in ORM. The

SQLite-NET ORM wraps all the standard CRUD transactions in handy LINQ-friendly

methods. SQLite supports foreign keys, and those have to be done in SQL or in an

included database.

That’s everything you’ll need to populate your data models and couple them with a

local SQLite database.

With that, this book concludes. I hope you’ve found what you came here for or

something equally useful. I continue to see amazing things built with Xamarin, in social

media, industry, finance, government, transportation, and many more. Xamarin is how

cross-platform apps are built today, and I wish you all the best in building yours!

CHApTer 9 DATA ACCeSS wITH SQLITe AND DATA BINDINg

www.EBooksWorld.ir

https://mobilefirstplatform.ibmcloud.com/tutorials/ru/foundation/8.0/application-development/sdk/xamarin/
https://mobilefirstplatform.ibmcloud.com/tutorials/ru/foundation/8.0/application-development/sdk/xamarin/

417
© Dan Hermes 2019
D. Hermes and N. Mazloumi, Building Xamarin.Forms Mobile Apps Using XAML,
https://doi.org/10.1007/978-1-4842-4030-4

Index

A
AbsoluteLayout, 74

adding label, 107
bounding objects creation, 107–108

binding location, 110–111
binding size, 110–111
coding, 111–112
points, 109
rectangles, 108–109

SetLayoutBounds views, 106–108
SetLayoutFlags, 109

Absolute location and size, 100
Action menu, 261
AlignItems, 82
Attached property syntax, 62, 65–66
Authentication, 413
Automatic data binding, 350
Azure Mobile Apps

authentication, 413
cloud storage, 412
features, 412
offline data sync, 413
push notifications, 413–414

B
Behaviors

attached properties, 214–216
commands, 217–218
Entry control, 216

implementation, 216
BindableProperty object, 380
BoxView, 31–32
ButtonRenderer class, 315
Button View, 26, 28

adding, 239
ListViewButton.xaml, 239
ListViewButton.xaml.cs, 241

C
CanExecute method, 204
Cascading styles sheets (CSS), 119

CancelButton style class, 176
ContentPages and Grids, 177
CSSPage.xaml, 177–178, 180–181
description, 174
feedback page, 178–179
properties and values, 183–185
selectors, 175, 182
StackLayout, 177
Styles.css, 179–180
Subject and Feedback, 176–177
SubmitButton style class, 176

Catalog, 87
CenterAndExpand, 80
Cloud storage, 412
Collection syntax, 62, 65
CommandParameter property, 239
Constant constraints, 99, 100

www.EBooksWorld.ir

https://doi.org/10.1007/978-1-4842-4030-4

418

Constructors, 55
complete code, 58–59
default, 56, 58
factory method, 57–58
non-default, 56, 58

Content property syntax, 62–63
ContentView layout, 112–114
Context Action

button, 242
ListViewContextAction.cs, 244
ListViewContextAction.xaml, 243

Controls.xaml, 188
Control templates, 202–204
CustomButton view, 308
Custom ContentView Control, 201–202
Custom controls, 116–117, 305
Custom dark theme, 172–174
CustomGroupedList, 250

data–bound fields, 251
ListViewGroupedTemplate.cs, 252–253
ListViewGroupedTemplate.xaml, 251

CustomList, 233
CustomRendererExamplePage.xaml, 309
Custom renderers

Android
[assembly] attribute, 311
chocolate-colored button, 312
CustomButton.cs, 313
CustomButtonRenderer.cs, 310,

314–315
statements, 312

ContentPage, 308
custom element, 307–309
defined, 303
ios

[assembly] attribute, 316
complete code, 317–318
CustomButton, 317

CustomButtonRenderer.cs, 316
statements, 316

platform-specific projects, 306
properties, 310
visual representation, 305
Xamarin.Forms elements, 307, 318
Xamarin.iOS, 304

Custom row template, 233
Custom themes, 171–174

D
Dark theme, 167–169
Data access layer (DAL)

Application object, 406, 407
C# app, 394
ContentPage, 406–409
Item.cs, 410
repository

CRUD methods, 395
generic database class, 400–402
GetPerson and SavePerson

methods, 400
ID field, 403
ItemDatabaseBasic.cs, 395–398
ItemDatabaseGeneric.cs, 401–402
ItemRepository.cs, 404–405
multisource, 399
Person class, 403
properties and caching

mechanisms, 406
static property, Application class,

398–399
static Application property, 406–407

Data binding
data layer and presentation layer, 349
definition, 349
and MVVM, 349

Index

www.EBooksWorld.ir

419

Xamarin.Forms
automatic, 350
BindableProperty object, 349, 380
BindingModes, 381
data source property, 349
Editable ListView (see Editable

ListView)
INotifyPropertyChanged (see

INotifyPropertyChanged
interface, data binding)

item data model, 351–354
MVVM (see Model-View-

ViewModel (MVVM))
nontrivial data binding, 350–351
read-only ListView, 366–368
string formatting, 381
trivial data binding, 350
value converter, 381–382

DatePicker, 187, 191–193
Default constructor, 56, 58
Device styles, 163–165
DisplayActionSheet, 273
DisplayAlert method, 271–272
Drill-down list, 262

App.cs, 282
DetailPage.xaml.cs, 282
DrilldownTableView.cs, 286–287
Item.xaml.cs, 281
ListItem.cs, 280
List View

by item, 278–280
by page, 283–284

MasterDetailPage, 287
fly-in menu, 291
initial detail page, 290
NavigationDrawer.cs, 288
NavigationDrawer.xaml.cs, 288

TableView, 285
title and description, 280

Droid project, 313
DroidTextValidatorEffect class, 326
DynamicResource, 134

background color, 134–135
constructor, 136
DynamicResourcePage.xaml, 137–139
DynamicResourcePage.xaml.cs, 139–140
HandleSubject method, 135
PageBgColor, BtSubmitColor, and

BtCancelColor, 135
user interaction, 135–137

Dynamic style inheritance, 155–156

E
Editable ListView

adding rows, 369–371
ContentPage demo app, 377
INotify interface, 369
Items property, 375–376
ListPageUsingListViewModel.xaml, 378
ListPageUsingListViewModel.xaml.cs,

379–380
ListViewModel.cs, 375
MVVM, 375
ObservableCollection, 369
properties, 371–374
row deletion, 369–371

Effects
PlatformEffect, 322
RoutingEffect class, 322
Xamarin.Forms, 321, 324

EndAndExpand, 80
Entry view, 30–31
Enumeration value syntax, 62–63

Index

www.EBooksWorld.ir

420

Event handler syntax, 62–64
Explicit styles, 146–147
eXtensible Application Markup

Language (XAML), 3
attributes, 43
basic syntax, 43–44
vs. C#, 3
classes, identifiers, and references, 60
code behind file, 67–68
constructing objects, 61
data types, 60
event handlers, 68
generated file, 67–68
local variable, 68
property values, 66–67
XML document, 43

F
FactorMethodsPage.xaml, 344–345
Feedback page, 122

Entry view, 120
Grid and StackLayout, 120
HandleFeedback method, 121
NavigationPage, 122
Placeholder property, 121
placeHolderText, 122
view formatting properties, 123–125

FillAndExpand, 80
FlexLayout, 73

Direction set, 84
patterns, 86–87
position views, 82–83

AlignItems, 85–86
Direction set, 83–84
JustifyContent set, 84–85

Focus() method, 199
Frame layout, 74, 115–116

G
Global resources, 142
Grid layout, 73

adding space, 96
coding, 97
fit available space, expanding

views, 92–93
fit views, 90
GridUnitType, 87, 90
multicell view, 94

spanning columns, 94–96
spanning rows, 95–96

proportionally, expanding views, 93–94
rows and columns, 87–90
setting exact size, 91

GroupedList
headings, 247
ListViewGrouped.cs, 248
ListViewGrouped.xaml, 247

H
HasShadow, 115
HeightProportional, 111
Hierarchical navigation

back button click event, 269
drop-down menu class, 269–270
home page, 264–265
InsertPageBefore, 267
navigation bar, 263
navigation buttons, 263
navigation icon, 268
Page.Title, 267
PopAsync pops, 267
PopToRootAsync pops, 267
PushAsync, 266
RemovePage, 267
second page, 266

Index

www.EBooksWorld.ir

421

I
IBM Mobile Foundation, 414
ImageList, 230
Image view

Aspect property, 33–34
GestureRecognizer, 34–36
local images, 33
monkey, 32–33

Implicit styles, 148–149
InitializeComponent method, 308
INotifyPropertyChanged interface,

data binding
ContentPage, 356–357
definition, 354
Entry view, 357–358
ItemPageUsingTitleViewModel.cs,

358–360
TitleViewModel.cs, 355–356

iOS and Android, list view, 221
ItemSelected, 222
Item selection

alert display, 223
ListViewStrings.cs, 224
ListViewStrings.xaml, 224

ItemSource, 220
ItemTapped, 222
ItemTemplate.SetBinding method, 225
ITextValidatorEffect class, 328

J, K
JustifyContent, 82

L
Label view, 23–24
Light theme, 169–171

ListItem data model, 226
ListView

adding image, 229
image cell, 229
ListViewImageCell.cs, 231
ListViewImageCell.xaml, 231

automatically scrolls, 254
binding data model, 225, 227
binding strings, 220
buttons

add button views, 238
context actions, 242

caching, 256
customizing list rows

complete code, 236
custom template, 232
ListViewCustom.cs, 237
ListViewCustom.xaml, 236

group headers
customizing list, 249
GroupDisplayBinding, 245
IsGroupingEnabled, 245

image cell, 229
jump list, 253
ListViewDataModel.cs, 228
ListViewDataModel.xaml, 228
optimization, 257
pull-to-refresh, 255
selecting item, 222

Local images
Android, 33
iOS 9, 33

M
MaxLength property, 325
MaxLengthPropertyChanged method, 336

Index

www.EBooksWorld.ir

422

Mobile UIs
controls, 10
layouts, 10
lists, 10
modals, dialog boxes, and alerts, 10
navigation, 10
screens, views, and pages, 10

Model-View-ViewModel (MVVM)
INotifyPropertyChanged interface, 361

creation, 362–364
implemention, 362, 364–366
wrap data model, 362

ViewModel, 360
MyBehavior, 214–215
MyCommand, 204, 206

N
Native views

Android, 339
declaration, 337, 340–341
factory methods

arguments, 343
EditText, 341
UITextField, 341

iOS, 338
namespaces UIKit, 338
Xamarin.Forms, 337
XAML page, 337, 344
xmlns, 338

Navigation, 262–263
carousel page, 300
drawer, 261
hierarchical (see Hierarchical navigation)
modal, 261

ActionSheet, 273
DisplayAlert method, 271–272
full-page modal, 271

springboard (see Springboard)
state management, 262

application object, 277
disk persistence, 275
global properties, 276
page parameters, 274
static global class, 275, 276

TabbedPage
data-bound, 294–296
iOS tabs, 292
navigation pages, 296
TabPage.cs, 293
TabPageDatabound.cs, 295
TabPageDatabound.xaml.cs, 294

Non-default constructor, 56, 58
Nontrivial data binding, 350–351

O
ObservableItem class, 372–373
Offline data sync, 413
OnAttached method, 323, 326
OnDetached method, 323, 326
OnElementChanged method, 309
OnElementPropertyChanged method,

309, 331
OnPropertyChanged event, 365
Opacity, 198
Overriding resources, 143
Overriding styles, 149–151

P, Q
Page, 87
Picker, 187–190
PickerSelectedIndexChanged method, 190
PlatformEffect

properties, 322
structure, 323

Index

www.EBooksWorld.ir

423

Platform-specific UI approach
architecture, 6–7
complex screens, 8
consumer apps, 8
high design, 8
single-platform apps, 8
Xamarin.Android, Xamarin.iOS, and

Windows Phone SDK libraries, 6
Portable Class Libraries (PCL), 386
PositionProportional, 110
Property element syntax, 61–62
Pull-to-refresh feature, 255
Push notifications, 413–414

R
Read-only ListView binding, 366–368
RecycleElement, 256
RecycleElementAndDataTemplate, 256
RelativeLayout, 73

absolute location and size, 100
coding, 104–106
constraints, 98–99
RelativeToParent constraint, 101–102
RelativeToView constraint, 103–104
setting view location and size, 99

RelativeToParent constraints, 99
RelativeToView constraints, 99, 103–104
Renderers, 303
Resources, 126

definition, 127–128
dictionaries, 126, 140–142
DynamicResource, 134–140
lookup behavior, 143
MergedDictionaries, 143–144
overriding, 143
StaticResource, 128–131, 133–134
styles, 151–153

RetainElement, 256
Rotation, 198
RoutingEffect, 323–324

S
Scale, 198
ScrollView, 36
Selection controls, 187
SetBackgroundColor method, 305
SetNativeControl method, 309
SetPropertyName methods, 214
SizeProportional, 110
Slider, 188, 196–197
Spanning columns, 94–96
Spanning rows, 95–96
Springboard, 297

gesture recognizer, 299
Springboard.xaml, 298
Springboard.xaml.cs, 298
tap-gesture, 297

SQLite, 347, 410
SQLite.NET, 348

DAL (see Data access layer (DAL))
database creation, 384–385, 410
database path

Android project, 387
implementation, 385
iOS, 388
PCL connection, 387
shared project, 385
Windows Phone, 389

locking, 384
.NET Standard, 386
PCL setup, 382
shared project setup, 383
table creation

attributes, 390

Index

www.EBooksWorld.ir

424

Delete method, 391
Get method, 391–392
Insert method, 391
Item data model, 389
lock keyword, 393
Update method, 392

web services, 411
Stack, 86
StackLayout, 73, 234

coding, 81
expanding and padding views, 79–80
horizontal orientation, 77–78
HorizontalOptions, 75
nesting layouts, 79
padding property, 74–76
vertical orientation, 76–77

StartAndExpand, 80
state management, 262
StaticResource, 128

background color, 129
hardcoded values, 129–130
LocalDesignPage.xaml, 129
StaticResourcesPage.xaml, 131, 133
StaticResourcesPage.xaml.cs, 133–134
styled feedback page, 131

Static style inheritance, 154–155
Stepper, 188, 195–196
StepperValueChanged, 196
String formatting, 381
Styles, 119

background color, 145
definition, 144
device, 163–165
explicit, 146–147
feedback page, 162
implicit, 148–149

inheritance, 153–156
lookup, 145
MyResources.xaml, 157
MyStyles.xaml, 157–160
overriding, 149–151
property setters, 145
resources, 151–153
StylesPage.xaml, 161–162

Switch, 188, 197–198

T
TextCell, description properties, 227
TextValidatorEffect

Android platform effect, 326–328
attached properties, 335–336
complete code, 331–332, 334–335
EditText, 326
Entry controls, 325
events handling, 331
ios platform effect, 328–330
RoutingEffect, 325
UITextField, 326

Themes, 119, 165
App.xaml, 166
Custom themes, 171–174
Dark theme, 167–169
four-step process, 165–166
Light theme, 169–171
LoadApplication method, 166
style options, 167

Third-party MVVM libraries, 347
TimePicker, 187, 193–195
TimePickerPropertyChanged method, 195
Triggers, 207

coding, 211–213
event, 210–211

SQLite.NET (Cont.)

Index

www.EBooksWorld.ir

425

</Entry>Data, 209
MultiTrigger, 209–210
property, 208
TargetType, 207
value converter, 213

Trivial data binding, 350
TypeFace class, 341–342

U
UIButton control, 315
UIFont class, 341
UIKit.UITextField, 328
Universal Windows Platform (UWP), 43
User interaction (UI) controls

Xamarin.Forms views, 187–188
DatePicker, 191
focus, 199
general-use property, 188
handler event property, 188
opacity, 198
picker, 188
rotation, 198
scale, 198
selection views, 199
Slider, 196
Stepper, 195
Switch, 197–198
TimePicker, 193
visiblity, 198

User interface design, 73–74, 119

V
Value converter, 381–382
Views (Xamarin.Forms), 23

background color, 25
BoxView, 31–32

build and run, 38
buttons, 26, 28
coding, 38–40
entry, 30–31
fonts

FontAttributes, 26
FontFamily, 25
FontSize, 25
multiple attributes, 26
platform-specific, 26

HorizontalOptions and
VerticalOptions

alignment, 29
AndExpand pads, 30
LayoutOptions, 29
size of controls, 29

image (see Image view)
labels, 23
Padding property, 37
ScrollView, 36
StackLayout, 24

Visiblity, 198
Visual Studio App Center (VSAC), 414

W
Web services, 411

REST, 411
SOAP, 411
WCF, 411

WidthProportional, 111
Windows Presentation

Foundation (WPF), 43
Wrap, 86

X
Xamarin
Xamarin compiler (XAMLC), 68

Index

www.EBooksWorld.ir

426

Xamarin.Forms, 1, 303
Android and iOS operating systems, 1
architecture

cross-platform solution, 4
customization, 5
hybridization, 4
platform-specific UI layer, 5

basic design, 8
business apps, 8
cross-platform solution

Core Library, 15
multiple projects, 16
Visual Studio, 16
Xamarin.Android, 14
Xamarin.Forms, 14
Xamarin.iOS, 15

customization, 9
custom renderers, 9
effects, 9
learning Xamarin, 8
mobile UIs, 10
native OS libraries, 2
native view, 9
open-source Mono project, 1
properties and methods, 9
sharing UI code, 8
simple cross-platform screens, 8
Telerik’s UI, 9
Xamarin.Android and Xamarin.iOS, 2, 7

Xamarin.Forms project, 306
App.cs, 16
application lifecycle methods, 17

OnResume, 18
OnSleep, 17
OnStart, 17

app’s main page, 21–22
ContentPage, 18–19
Core Library, 21
Xamarin.Android, 19–20
Xamarin.iOS, 20–21

Xamarin.Forms UI
layouts, 11–13
pages, 11–12
views, 11, 13–14

Xamarin.Forms views
coding, 199–201
CommandParameters, 206
commands, 204–206

XAML compilation, 68–69
XAML Standard, 69–71
XAML syntax

classes and members
attribute value, 47
namespaces, 47–48

constructors (see Constructors)
markup extensions, 48

array, 50–52
reference, 53–55
static, 49
type, 52

XML syntax
attributes, 45
elements, 44
hierarchy, 45
namespaces, 46

XProportional, 110

Y, Z
YProportional, 110

Index

www.EBooksWorld.ir

	Table of Contents
	Foreword
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Building Apps Using Xamarin
	Understanding Xamarin.Forms
	XAML vs. C#
	Xamarin.Forms Solution Architecture

	Understanding the Platform-Specific UI Approach
	Platform-Specific UI Solution Architecture

	Choosing Xamarin.Forms or a Platform-Specific UI
	Using Custom Renderers, Effects, and Native Views

	Exploring the Elements of Mobile UIs
	Using the Xamarin.Forms UI
	Page
	Layout
	View

	Creating a Xamarin.Forms Solution
	Xamarin.Forms Project
	Application Lifecycle Methods: OnStart, OnSleep, and OnResume
	Building Pages Using ContentPage

	Xamarin.Android
	Xamarin.iOS
	Core Library
	Setting the App’s Main Page

	Adding Xamarin.Forms Views
	Label View
	Placing Views Using StackLayout
	Background Color and Font Color
	Using Fonts
	Using Platform-Specific Fonts
	Button View
	Setting View Alignment and Size: HorizontalOptions and VerticalOptions
	Justification with LayoutOptions
	AndExpand Pads with Space

	Entry View for Text Input
	BoxView
	Image View
	Local Images
	Image Sizing: Aspect Property
	Making an Image Clickable with a GestureRecognizer

	ScrollView
	Padding Around the Entire Page
	CODE COMPLETE: Adding Xamarin.Forms Views

	Summary

	Chapter 2: Building Xamarin.Forms Apps Using XAML
	Basic Syntax
	XML Syntax
	Element
	Attribute
	Hierarchy
	XML Namespaces

	XAML Syntax
	Classes and Members
	XAML Namespaces

	Markup Extensions
	Static
	Array
	CODE COMPLETE: Array Markup Extension
	Type
	Reference
	CODE COMPLETE: Reference Markup Extension

	Constructors
	Default Constructor
	Non-default Constructor
	Factory Method
	CODE COMPLETE: XAML Constructors

	XAML Terms

	Xamarin.Forms Syntax
	Property Element Syntax
	Content Property Syntax
	Enumeration Value Syntax
	Event Handler Syntax
	Collection Syntax
	Attached Property Syntax
	CODE COMPLETE: Setting Property Values

	Anatomy of XAML Files
	XAML Compilation
	XAML Standard
	Summary

	Chapter 3: UI Design Using Layouts
	Xamarin.Forms Layouts
	Using Xamarin.Forms Layouts
	StackLayout
	Padding Around the Entire Layout
	Stacking with Vertical Orientation
	Stacking with Horizontal Orientation
	Nesting Layouts
	Expanding and Padding Views by Using LayoutOptions
	CODE COMPLETE: StackLayout

	FlexLayout
	Position Views Using Axes
	FlexLayout Patterns

	Grid
	Sizing Rows and Columns
	Sizing to Fit Views
	Setting Exact Size
	Expanding Views to Fit Available Space
	Expanding Views Proportionally
	Creating Multicell Views
	Spanning Columns
	Spanning Rows

	Padding Between Cells
	CODE COMPLETE: Grid

	RelativeLayout
	Setting View Location and Size
	Using Constraints
	Absolute Location and Size
	RelativeToParent Constraint
	RelativeToView Constraint

	CODE COMPLETE: RelativeLayout

	AbsoluteLayout
	Creating Bounding Objects with SetLayoutBounds
	Setting Location and Size by Using Rectangles
	Setting Location by Using Points
	Binding Location
	Binding Size
	Binding Both Location and Size

	CODE COMPLETE: AbsoluteLayout

	ContentView
	CODE COMPLETE: ContentView

	Frame
	Understanding Custom Controls
	Summary

	Chapter 4: Styles, Themes, and CSS
	Creating a Page Without Style
	Styling Manually Using View Formatting Properties
	CODE COMPLETE: Feedback Page Using View Formatting Properties

	Resources and Dictionaries
	Defining Resources
	Static Resource Lookup
	CODE COMPLETE: Feedback Page Using Static Resources

	Dynamic Resource Lookup
	CODE COMPLETE: Feedback Page Using Dynamic Resources

	Reusable Resource Dictionaries
	Global Resource Dictionary

	Lookup Behavior
	Overriding Resources
	Merging Dictionaries

	Styles
	Style Lookup
	Explicit Styles
	CODE COMPLETE: Using Explicit Styles

	Implicit Styles
	CODE COMPLETE: Using Implicit Styles

	Overriding Styles
	CODE COMPLETE: Overriding Styles

	Using Resources in Styles
	CODE COMPLETE: Using Resources in Styles

	Style Inheritance
	Static Style Inheritance
	Dynamic Style Inheritance

	Styles Overview
	CODE COMPLETE: Defining Styles
	CODE COMPLETE: Applying Styles

	Device Styles
	CODE COMPLETE: Using Device Styles

	Themes
	Using Themes
	Theme Styling Options
	Dark Theme
	Light Theme
	Custom Themes
	Customizing the Dark Theme
	CODE COMPLETE: Customizing the Dark Theme

	Cascading Style Sheets (CSS)
	Selectors
	Using CSS
	CODE COMPLETE: Using CSS

	Xamarin.Forms CSS Definition

	Summary

	Chapter 5: User Interaction Using Controls
	Xamarin.Forms Views
	Picker
	DatePicker
	TimePicker
	Stepper
	Slider
	Switch
	Scale, Rotation, Opacity, Visibility, and Focus
	CODE COMPLETE: Xamarin.Forms Views

	Custom Controls
	Control Templates
	Commands
	CommandParameters

	Triggers
	TargetType
	Property Trigger
	Data Trigger
	Multi Trigger
	Event Trigger
	CODE COMPLETE: Triggers

	Behaviors
	Attached Properties
	Behavior

	Summary

	Chapter 6: Making a Scrollable List
	Xamarin.Forms ListView
	Binding to a List of Strings
	Selecting an Item
	Binding to a Data Model
	CODE COMPLETE: Binding to a Data Model

	Adding an Image
	Customizing List Rows
	CODE COMPLETE: Customizing List Rows

	Adding Buttons
	Using Button Views
	Using Context Actions

	Grouping Headers
	Customizing the Group Header
	Creating a Jump List
	ListViews Scroll Automatically
	Pull-to-Refresh
	Optimizing Performance
	ListView Caching
	ListView Optimization

	Summary

	Chapter 7: Navigation
	Navigation Patterns
	Hierarchical
	Modal
	State Management

	Xamarin.Forms Navigation
	Hierarchical Navigation Using NavigationPage
	Pushing and Popping Screens on the Navigation Stack
	Setting the Page Title
	Customizing the Navigation Bar
	Handling the Back Button
	Creating a Drop-Down Menu

	Modal
	Full-Page Modal Using NavigationPage
	User Notification Using Alerts
	Pop-Up Menu Using Action Sheets

	Managing State
	Passing Data into Page Parameters
	Disk Persistence Using the Properties Dictionary
	Using a Static Global Class
	Using a Static Property on the Application Object

	Drill-Down Lists
	Using ListView by Item
	CODE COMPLETE: Drill-Down List
	Using ListView by Page
	Using TableView for Grouping Pages
	Navigation Drawer Using MasterDetailPage

	Tabs Using TabbedPage
	Creating Data-Bound Tabs
	Putting NavigationPages Inside a TabbedPage

	Springboard
	Making Icons Tappable by Using Gesture Recognizers

	Carousel Using CarouselPage
	Summary

	Chapter 8: Custom Renderers, Effects, and Native Views
	Custom Renderer
	When to Use a Custom Renderer
	Creating and Using a Custom Renderer
	Creating the Custom Element
	Creating the Custom Renderer

	Android Custom Renderer
	CODE COMPLETE: Android Custom Renderer

	iOS Custom Renderer
	CODE COMPLETE: iOS Custom Renderer

	Which Renderer and View Do You Customize?
	Effects
	Creating and Using Effects
	PlatformEffect
	RoutingEffect
	Using the Effect

	Text Validator Effect
	Android Platform Effect
	iOS Platform Effect
	Handling Events
	CODE COMPLETE: TextValidatorEffect
	Adding Effects via Attached Properties

	Native Views
	CODE COMPLETE: Native View Declaration
	Using Factory Methods
	CODE COMPLETE: Non-Default Constructors and Factory Methods

	Summary

	Chapter 9: Data Access with SQLite and Data Binding
	What Is SQLite?
	What Is SQLite.NET?
	Data Binding
	Xamarin.Forms Data Binding
	Binding to a Data Model
	Using INotifyPropertyChanged
	CODE COMPLETE: Using INotifyPropertyChanged
	Understanding ViewModels and MVVM
	Binding to ViewModels and Data Models
	Create a ViewModel That Implements INotifyPropertyChanged
	Implement INotifyPropertyChanged in Your Data Model

	Binding a Read-Only ListView
	Binding an Editable ListView
	Adding and Deleting Rows
	Editing Properties
	Binding to a View Model
	CODE COMPLETE: Binding an Editable ListView

	Binding a View to Another View
	String Formatting
	Value Converter

	Using SQLite.NET
	Locking Is Key
	Creating a Database
	Building the Database Path
	Connect by Using Shared Projects
	Connect by Using .NET Standard
	Connect in Android
	Connect in iOS

	Creating a Table
	Using Attributes
	Inserting and Deleting Rows
	Getting Rows
	Updating Rows
	Locking Rows

	Creating the Data Access Layer
	Creating a Repository
	Managing the Repository
	Adding Methods to the Repository

	CODE COMPLETE: Creating a DAL by Using SQLite.NET

	Database Creation Options
	Web Services
	Enterprise Cloud Data Solutions
	Microsoft Azure Mobile Apps
	Cloud Storage
	Offline Data Sync
	Authentication
	Push Notifications

	Visual Studio App Center (VSAC)
	IBM Mobile Foundation

	Summary

	Index

