Kishore Gaddam

Building Bots
with Microsoft
Bot Framework

Build intelligent and smart conversational interfaces
using Microsoft Bot Framework

LI Packh

www.EBooksWorld.ir

Title Page

Building Bots with Microsoft Bot Framework
Build intelligent and smart conversational interfaces using Microsoft Bot

Framework
Kishore Gaddam

BIRMINGHAM - MUMBAI

www.EBooksWorld.ir

www.EBooksWorld.ir

Copyright

Building Bots with Microsoft Bot Framework
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged
to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017
Production reference: 1310517

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-310-4

www.packtpub.com

www.EBooksWorld.ir

http://www.packtpub.com

www.EBooksWorld.ir

Credits

Author

Kishore Gaddam

Copy Editor

Dhanya Baburaj

Reviewer Project Coordinator
Allen ONeill Ulhas Kambali
Commissioning Editor Proofreader

Ashwin Nair

Safis Editing

www.EBooksWorld.ir

Acquisition Editor

Shweta Pant

Indexer

Mariammal Chettiyar

Content Development Editor

Onkar Wani

Graphics

Abhinash Sahu

Technical Editor

Shweta Jadhav

Production Coordinator

Shraddha Falebhai

www.EBooksWorld.ir

www.EBooksWorld.ir

About the Author

Kishore Gaddam is the CEO and a co-founder of Astrani Technologies and is
recognized as an industry expert in mobile, cloud, and bot software development. He
1s a forward-thinking technology leader with 17+ years of international experience in
building technology organizations, strategic planning, rolling out multiple
platforms/products, IT program and project management, strategy and transformation
(businesses, people, processes, and technologies), and growing business units across
IoT, smart cities, NLP, Al, bots, cloud, robotics, mobile, healthcare, industrial
automation, financial systems, retail, procurement (EPC), travel & leisure, logistics,
manufacturing, and automotive domains.

He is a champion of the technical pre-sales, architecture, and software development
of enterprise Azure loT/bot/web applications using cognitive services,
microservices, Service Fabric, Azure IoT Hub, Stream Analytics, Cortana
Intelligence Suit, Logic Apps, Notification Hubs, Big Data, Azure Web Apps, Azure
App service, Azure API Apps, Application Insights, API Management, Machine
Learning, Azure SQL databases, Cosmos DB, Data Factory, Data Lake, HD Insight,
Redis Cache, Key Vault, and Azure Service Bus, and a champion of implementing
DevOps using Azure, PowerShell scripts, ARM templates, and VSTS. He has huge
experience in startup leadership, including building teams, and developing a
Minimum Viable Product (MVP) with little to no supervision. Kishore is comfortable
at all layers of the startup people stack, from individual contributor (software
development, product management) to CxO.

Kishore graduated in Technology Entrepreneurship from Stanford University, CA,
and 1s a speaker at various conferences in the USA. Kishore is the author of the
popular Microsoft Technologies blog. He has a love for mentoring and a passion for
sharing new tools, programming languages, and technology trends at national
conferences, regional code camps, local user groups, meetups, and hackathons.

I would like to thank my family and friends, who helped me make this book a
reality. First, I want to thank my wife, Prathima. Her encouragement and support
was invaluable. I would like to thank all my family members for their immense
support in everything that I do, and my friends, who motivate me to move forward.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

About the Reviewer

Allen ONeill is a chartered engineer with a background in enterprise systems. He is a
fellow of the Brisith Computing Society, a Microsoft MVP (most valued
professional) and writes for CodeProject, C-Sharp Corner and DZone. His core
technology interests are Big Data engineering and machine learning, in particular
using Data Science to create intelligent bots/agents for the web. He is also a ball
throwing slave to his family dogs.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version

at www.PacktPub.comand as a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at serviceepacktpun.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

. Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

www.EBooksWorld.ir

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
e Ondemand and accessible via a web browser

www.EBooksWorld.ir

www.EBooksWorld.ir

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at http:/www.amazon.in/dp/1786463105.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving
our products!

www.EBooksWorld.ir

http://www.amazon.in/dp/1786463105

www.EBooksWorld.ir

Table of Contents

Preface
What this book covers
What you need for this book
Who this book is for
Conventions

Reader feedback
Customer support

Downloading the example code
Downloading the color images of this book
Errata
Piracy
Questions
1. Setting up Microsoft Bot Framework Dev Environment

Conversation as a Service (CaaS)

Your bot

The Bot Connector

The Bot Directory
Setting up the development environment

Prerequisites

Setting up the Bot Framework Connector SDK .NET
Messages

Basic format

Rich text

Skype emoticons
Welcome messages

Pictures and videos
Cards and buttons

Hero card

Thumbnail card
Carousel

Images
Buttons
Actions
Sign in
Receipt
Groups
Calling
Summary
2. Developing Your First Bot Using the Connector and Builder SDK

Bots are evolving

www.EBooksWorld.ir

Bots use cases

Developing your first bot
Creating our first bot

Building a bot using the C# SDK
Assemblylnfo.cs

References

Microsoft Bot Builder

Microsoft Bot Connector
WebApiConfig.cs
MessageController.cs
Default.htm

Global.asax

Packages.config

Web.config
Post method

BotID
Microsoft App ID
MicrosoftAppPassword
How to deploy and run the bot application in the Bot Framework emulator locally
How to use dialogs in bot applications
How to use FormFlow in the bot application
Summary
3. Developing WeatherBot Using Dialogs and LUIS
Language Understanding Intelligent Service (LUIS)

Intents and Entities
Training your bot using utterances

Testing your LUIS app

Development of WeatherBot code
Calling LUIS from the bot

Calling the Weather API
Using cards
Natural speech and Intent processing bot using Microsoft Cognitive Services
Identifying the name of a person, place, and company using LUIS
Training your app
Calling LUIS from the bot
Summary

4. Natural Speech and Intent Processing Bot Using Microsoft Cognitive Services
Microsoft Cognitive Services

Signing up for Microsoft Cognitive Services
Building a bot application using Cognitive Services APIs
Analyzer's results

Identifying the name of a person, place, and company using LUIS

www.EBooksWorld.ir

Training your app using utterances
Calling LUIS from the bot
Summary

5. Developing Bots Using LUIS Prompt Dialogs with State and Nearby Bot Using Custom APIs
Employee Enroll bot using LUIS prompt dialogs

Training the service
Training and publishing
Creating the C# class for LUIS response

Creating the bot application
Bot state service

Creating a state client
Get/SetProperty methods
Updating your Post method
Updating your QueryLUIS method
Developing a Nearby Bot using custom APIs
Summary
6. Developing an IVR Bot for a Bank Using Advanced Microsoft Bot Framework Technologies

High-level architectural diagram
Let's start coding

Creating an account with the bot
Storing the bot conversation (new account info) data in an Azure SQL database
Checking your savings account balance using the bot
Checking your current account balance using the bot
Paying your credit card bill using the bot
Deleting an account using the bot
Summary

7. Intelligent Bots with Microsoft Bot Framework and Service Fabric
Getting started using stateless microservices
Setting up your development environment for Service Fabric

Prerequisites
Installing the SDK and tools

Enabling PowerShell script execution

Creating a stateless Service Fabric web API
Publishing a Service Fabric project in Azure

Create Key Vault
Adding certificates to the Key Vault
Creating a cluster in the Azure portal
Summary
8. Developing Intelligent Facial Expression Identification Bot for IoT Using Azure and Power BI

Before getting started
Configuring Raspberry Pi and sensors
Prerequisites

Hardware

Software

www.EBooksWorld.ir

Setting up sensors

Schematic diagram
Device identity and registry with [oT Hub

Using Device Explorer
Face API

Emotion API
Sign Up Microsoft Cognitive Services

Development of facial expressions identification bot

Let's code to know the emotions
Registering your Bot in Bot Framework

Publish and test your bot

Configure Direct Line Channel
Develop an UWP app for Raspberry Pi device

Create an UWP App project

How to detect the motion of the object using PIR Sensor and How to define the LED states
Initializing camera on detection of motion

How to send picture file to Facial Expression Bot and receive reply from it

Send Picture to Bot

Deploy Code in to Raspberry Pi
Show facial analytics data in Power BI

Set up Azure Stream Analytics to send [oT Hub data to Power BI
Set up Power BI
Summary

9. Publishing a Bot to Skype, Slack, Facebook, and the GroupMe Channel
Publishing bots to various channels

Publishing your bot application to Microsoft Azure web app
Registering your bot with Microsoft Bot Framework

Configuration

Testing the connection to your bot
Configuring channels

Configuring your bot with Slack

Configuring your bot with Skype

Configuring your bot with Facebook Messenger
Configuring your bot with GroupMe

Summary

www.EBooksWorld.ir

www.EBooksWorld.ir

Preface

This 1s a book for those who want to build fully functional and scalable Natural
Language Processing Bots using Microsoft Bot Framework. Its learn-while-doing
approach delivers the practical knowledge and experience a reader needs to design
and build real-world bots. We explain concepts when needed to develop a bot, so
that programming knowledge and experience grow together.

This book will take you from software installation to developing a fully-functional
bot that 1s deployed and run in Azure. This book leads the reader through the
essential programming tools and techniques for developing bots for various
conversation platforms, such as Skype, Slack, web chat, and so on. In each chapter,
the reader will learn Microsoft Bot Framework programming concepts and apply
them immediately, as you build a bot or enhance one from a previous chapter.

These bots have been designed and developed to teach the associated concepts and to
provide practice working with the standard development tools, such as Visual Studio,
the bot emulator, and Azure. Many of the discussions in the book will be clarified to
make some of the more complex topics easier to understand. All of the projects have
been built from scratch using Microsoft Bot Framework.

www.EBooksWorld.ir

www.EBooksWorld.ir

What this book covers

Chapter 1, Setting up the Microsoft Bot Framework Dev Environment, introduces the
reader to what Microsoft Bot Framework 1s and how it helps in the development of
bots. It walks the reader through on how to set up development environment,
emulator, and the tools needed for programming. Reader gets to set up their
development environment and install all the software required for getting started with
programming a bot. The reader is also introduced to all the programming concepts
involved in the development of bots.

Chapter 2, Developing Your First Bot Using the Connector and Builder SDK, this
chapter introduces the reader to bot programming by building and locally deploying a
simple Hello World bot application. The readers will get their feet wet with Visual
Studio, C# .NET, Bot Framework, and the related technologies, along with all the
steps required to create projects. This chapter includes a discussion of Bot Emulator
and how it relates to bot development.

Chapter 3, Developing a WeatherBot Using Dialogs and LUIS, guides the reader
through developing a fully functional weather bot. This bot communicates the current
weather in a given city. Readers will interact with this bot on Skype or any other
channel to find out the current weather at a given location.

Chapter 4, Natural Speech and Intent Processing Bot using Microsoft Cognitive
Services, introduces the reader to the RichText Message technology, as well as
Cortana Intelligence Services, by developing a fully functional bot. This bot
identifies the concepts and actions in the text that is sent to the bot with part-of-
speech tagging, finds phrases and concepts using natural language parsers, and
returns all the identified intents that are created and trained in a custom LUIS app. If
you say "Hi John, I am going to New York tonight," the bot will return part-of-speech
tagging, as well as parsing data for natural speech and intent processing to find out
the name, location, and so on.

Name: John
Place: New York

Whether you're mining customer feedback, interpreting user commands, or consuming
web text, understanding the structure of the text is a critical first step and this chapter
teaches that.

Chapter 5, Developing Bots Using LUIS Prompt Dialogs with State and Nearby Bot

www.EBooksWorld.ir

Using Custom APls, is about how we can integrate APIs into bot development.
Currently, every enterprise has web and mobile applications built on top of their
APIs, which contain business functionality. Now, it would be natural to extend those
APIs so that they can be used for bots as well. This chapter introduces readers to
how to use Microsoft Bot Framework to develop a Nearby bot using APIs. This
Nearby bot will provide the reader with all the available places near their location,
with details for each and every one of them. This bot helps you to easily find nearby
banks, clubs, restaurants, hotels, museums, pharmacies, hospitals, or any other place
you want to search for.

Chapter 6, Developing an IVR Bot for a Bank using Advanced Microsoft Bot
Framework Technologies, includes a real-world project that we will build from the
ground up, so that readers can learn the concept as well as relate it to real-world
scenarios. The following topics are explained in this chapter:

e Building Interactive Voice Response (IVR) solutions

e [earning how to build bots using dialogs, third-party authentication, Rich Text
Format, and Bot State Service.

Learning how to use Form Builder while developing bots

Learning how to program using prompt dialogs

Learning how to implement Buttons in buttons

Third-party authentication

Bot State Service

Chapter 7, Intelligent Bots with Microsoft Bot Framework and Service Fabric,
introduces the reader to the concept of microservices and how microservices can be
used in bot development. They get to learn about and work on microservices
development, as well as learn to program a bot using microservices, and will get to
learn how to use this microservice-based bot and publish it to various channels.

Chapter 8, Developing an Intelligent Facial Expression Identification Bot for IoT
using Azure and Power BI, introduces the reader to [oT and how bots can help in [oT
development. Here, the reader will develop an IoT project and connect it to a bot for
automation. Power Bl is used to show report from bots. The reader will learn to
develop, deploy, and connect an IoT project to a bot. They will get to learn how IoT,
bots, Azure, and Power BI fit together in an enterprise application development
scenario.

Chapter 9, Publishing a Bot to Skype, Slack, Facebook, and the GroupMe

Channel, guides the reader on how to publish the Hello World bot we developed in a
previous chapter to the Slack, Skype, and Facebook Messenger platforms. In this
chapter readers will learn the following:

www.EBooksWorld.ir

Registering bot: Once registered, the reader uses the dashboard to test their bot
to ensure that it is talking to the connector service. They can also use the web
chat control, an auto-configured channel, to experience what their users will
experience when conversing with the bot.

Connecting to channels: Connect your bot to conversation channels such as
Skype, Slack, and Facebook Messenger using the channel configuration page.
Testing the bot: The reader gets to test their bot's connection to the Bot
Framework and try it out using web chat controls.

Publishing the bot: The reader gets to publish the bot.

Analyzing the bot: The reader gets to learn how to link their bot to Azure
Application Insights analytics directly from the bot dashboard of the Bot
Framework website.

Managing a bot: Once registered and connected to channels, you can manage
your bot via your bot's dashboard in the Bot Framework Developer Portal.

www.EBooksWorld.ir

www.EBooksWorld.ir

What you need for this book

e Visual Studio 2015 or higher
¢ Internet access
e Microsoft Azure trial subscription

www.EBooksWorld.ir

www.EBooksWorld.ir

Who this book is for

This book is for developers who are keen on building powerful services with a great
interactive bot interface. Experience with C# is needed.

www.EBooksWorld.ir

www.EBooksWorld.ir

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We
can include other contexts through the use of the inciuqe directive."

A block of code is set as follows:

public async Task MessageReceivedAsync (IDialogContext context, IAwaitable<IMessageActivity> ¢
{
var message = awalt argument;
await context.PostAsync("Hello World: " + message.Text);
context.Wait (MessageReceivedAsync) ;

Any command-line input or output is written as follows:

Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Force -Scope
CurrentUser

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Update
all VS extensions to their latest versions by navigating to Tools | Extensions and
Updates | Updates."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.EBooksWorld.ir

www.EBooksWorld.ir

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book-what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feeavacxepacktpun.com, and mention the
book's title in the subject of your message.

If there 1s a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.EBooksWorld.ir

http://www.packtpub.com/authors

www.EBooksWorld.ir

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.EBooksWorld.ir

www.EBooksWorld.ir

Downloading the example code

You can download the example code files for this book from your account at http/www.
packtpub.com. If you purchased this book elsewhere, you can visit httpz/www.packtpub.com/su
pport and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NoUnheWLWDh =

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

e WinRAR / 7-Zip for Windows
e Zipeg/1Zip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https/github.com/PacktPublishing/B
uilding-Bots-with-Microsoft-Bot-Framework. We also have other code bundles from our rich
catalog of books and videos available at https:/github.com/PacktPublishing/. Check them out!

www.EBooksWorld.ir

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Building-Bots-with-Microsoft-Bot-Framework
https://github.com/PacktPublishing/

www.EBooksWorld.ir

Downloading the color images of this
book

We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you better
understand the changes in the output. You can download this file from https:/www.packtpu
b.com/sites/default/files/downloads/BuildingBotswithMicrosoftBotFramework ColorImages.pdf.

www.EBooksWorld.ir

https://www.packtpub.com/sites/default/files/downloads/BuildingBotswithMicrosoftBotFramework_ColorImages.pdf

www.EBooksWorld.ir

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the
code-we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting https//www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and entering the
details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to httpsy/www.packtpub.com/books/content/support
and enter the name of the book in the search field. The required information will
appear under the Errata section.

www.EBooksWorld.ir

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

www.EBooksWorld.ir

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrigntepackepun.com With a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

www.EBooksWorld.ir

www.EBooksWorld.ir

Questions

If you have a problem with any aspect of this book, you can contact us
at questionsepacktpub.com, and we will do our best to address the problem.

www.EBooksWorld.ir

www.EBooksWorld.ir

Setting up Microsoft Bot Framework
Dev Environment

In the past several decades, the corporate, government, and business world has
experienced several waves of IT architecture foundations, moving from mainframes,
to minicomputers, to distributed PCs, to the Internet, to social media / mobile, and
now to the Cloud / Internet of Things (IoT) stack. We call this the sixth wave of
corporate IT, and like its predecessors, cloud and IoT technologies are causing
significant disruption and displacement, even while they drive new levels of
productivity. Each architecture focuses on key business processes and supports Killer
technology applications to drive new levels of value. Very soon we will be looking
at an enormous networked interconnection of everyday machines to one another, as
well as to humans.

Lets have a look at the fifth wave of corporate IT:

Getting Ready for Fifth Wave of Cor:orate IT

Arcm lum
Computing Growth Drivers Over Time, 1960-2020E
4th
Architecture \
35,000
100,000 = Exabytes
Amount of info stored 1,800 Exabytes
(Exabyte =1 Million Terabytes) 3rd / Mobile Internet - ARALLCRLIESY
Architecture r
54.5 Exabytes Bots

10,000 . £ Desktop Internet / =

2nd v
Architecture 15.8 Exabytes =
— - — —= PC .

ure” S5 ¢ Exabytes

Architect, f
Minicomputer. Meteoric rise:
= Devices in current
Mainframe mobile consumer/
. Internet computing cycle

Devices (in million units)
5}
o

1960 1970 1980 1990 2000 2010 2020

The machine-to-machine-to-human connectivity will have a profound impact on the
consumer and corporate IT experience. As these machines become social and talk to
us, we have an enormous opportunity to greatly enhance their value proposition
through improved product quality, customer experience, and lowered cost of
operations. A heightened consumer expectation for more personal and real-time
interactions is driving business to holistically embrace the next wave of technology
innovation such as cloud, IoT, and bots to boost business performance. In this age of
billions of connected devices, there is a need for such a technology where our apps,
such as bots, could talk back. Bots that have specific purposes and talk to any device
or any app or to anyone, live in the cloud, we can talk to via any communication
channel such as e-mail, text, voice, chat, and many others, can go where no apps have
gone before when it comes to the machine-to-machine-to-human connectivity. In
order to make this happen, we will need a whole new platform, a platform for

www.EBooksWorld.ir

conversations.

www.EBooksWorld.ir

www.EBooksWorld.ir

Conversation as a Service (Caa\S)

Messaging apps in general are becoming a second home screen for many people,
acting as their entry point to the Internet; where the "youngins" are, the brands will
follow. Companies are coming up with messaging apps as bots and apps that offer
everything from customer service to online shopping and banking.

Conversations are shaping up to be the next major human-computer interface. Thanks
to advances in natural language processing and machine learning, the technology is
finally getting faster and accurate enough to be viable. Imagine a platform where
language is the new Ul layer. When we talk about conversation as a platform, there
are three parts:

e There are people talking to people. The Skype translator is an example where
people can communicate across languages.

e Then, there is the opportunity to enhance a conversation by the ability to be
present and interact remotely.

e Then, there are personal assistants and the bots.

The following screenshot shows the Conversation as a Service:

C S @movieshot
a a kishoreismac

book tickets

Conversation as a Service S

Please select a cityname

NewYork Phoenix Houstan LosAngels SanAntonio

Human language is the new Ul

SanDiego

kishoreismac
NewYork

Bots are the new apps; © Mo
Please select amoviename
Jason Bourne The Land Yoga Hosers Suicide Squad
Digital Assistants are meta apps Y o
The Land
@ MoviesBot
Please select a theatername
Intelligence infused into all interactions
‘ kishoreismac
FoxTheatre
@ MoviesBot

Please select a show timings

Think of bots as the new mechanism that you can converse with. Instead of looking

www.EBooksWorld.ir

through multiple mobile apps or pages of websites, you can call on any application
as a bot within the conversational canvas. Bots are the new apps, and digital
assistants are the meta-apps. This way, intelligence 1s infused into all our
interactions.

This leads us to the Microsoft Bot Framework, which is a comprehensive offering
from Microsoft to build and deploy high quality bots for your users to interact using
Conversation as a Platform (CaaP). This is a framework that lets you build and
connect intelligent bots. The idea is that they interact naturally wherever your users
are talking, such as Skype, Slack, Facebook Messenger, text/SMS, and others.
Basically, with any kind of channel that you use today as a human being to talk to
other people, you will be able to use them to talk to bots, all using natural language:

Your Bot Framework Bot
© ©
& $

Bot Builder Developer Portal Bot Directory

lools and to build great bots

that conve EVeryour users are

world's top e

rsation experie

* Open source SDK on Github for * Register, connect, publish and * Publicdirectory of bots
Node,js, .NET and REST manage your bot through your registered and published with

+ From simple built-in prompts bot's dashboard Microsoft Bot Framework
and command dialogs to + Automatic card normalization * Users can try your bot from the
simple to use yet sophisticated across channels directory via the Web chat
FormFlow’ dialogs + Skype channel auto-configured control

» Support for rich attachments « EmbeddabicWab chat control * Users can discover and add
(image, card, video, doc, etc.); ; : your bot to the channels on
support for calling (Skype) * Host your bot in your app via which it is configured when the

the Direct Line API Directory is made public to end
» Fast, scalable message routing users

* Diagnostic tools

4 © B @ = © kk

* Online/offline chat Emulator

« Add bot smarts with Cognitive
Services for language
understanding and more

The Microsoft Bot Framework is a Microsoft operated CaaP service and an open
source SDK. The Microsoft Bot Framework is one of the many tools that Microsoft is
offering for building a complete bot. Other tools include Language Understanding
Intelligent Service (LUIS), Speech APIs, Microsoft Azure, Cortana Intelligence
Suit, and many more.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Your bot

The Microsoft Bot Builder SDK is one of three main components of the Microsoft
Bot Framework. First, you have to build your bot. Your bot lives in the cloud and you
host it yourself. You write it just like a web service component using Node.js or C#,
like the ASP.NET Web API component. The Microsoft Bot Builder SDK is open
source, so it will support more languages and web stacks over time. Your bot will
have its own logic, but you also need a conversation logic using dialogs to model a
conversation. The Bot Builder SDK gives you facilities for this, and there are many
types of dialogs that are included, from simple yes or no questions, to full LUIS,
which is one of the APIs provided by Microsoft Cognitive Services. This is

what the architecture of bot looks like:

Your Bot

« Build with C# or
Node js

« You host your bot

« Dialogs to model a

. s Bot Builder SDK
conversation : (Nodejs + C#)

« Many types of dialog

« Natural Language
Understanding (LUIS)

www.EBooksWorld.ir

www.EBooksWorld.ir

The Bot Connector

The Bot Connector is hosted and operated by Microsoft. Think of it as a central
router between your bots and many channels to communicate with your bots. Apart
from routing messages, it manages state within the conversation. The Bot Connector
1s an easy way to create a single backend and then publish it to a bunch of different
platforms called channels.

The following screenshot illustrates the Bot Connector:

Channels
Dev portal
Email

Bot Connector

Your Bot —) Send/Receive messages
Store state

Translation

[a]
)
E4
o

Telemetry

a8
=
&

EDNOEEME

Web (chat control)

www.EBooksWorld.ir

www.EBooksWorld.ir

The Bot Directory

The Bot Directory is where the user will be able to find bots. It's like an App Store
for mobile apps. The Bot Directory is a public directory of all the reviewed bots
registered through the developer portal. Users will be able to discover, try, and add
bots to their favorite conversation experiences from the Bot Directory. Anyone can
access it and can submit bots to the directory.

As you begin your development with the Microsoft Bot Framework, you might be
wondering how best to get started. Bots can be built in C#; however, Microsoft's Bot
Framework can also be used to build bots using Node.js. For developing any bots,
we need to first set up the development environment and have the right tools installed
for successfully developing and deploying a bot. Let's see how we can set up a
development environment using Visual Studio.

www.EBooksWorld.ir

www.EBooksWorld.ir

Setting up the development
environment

In this section, we will see how to set up the development environment but, before
that, let's check out the prerequisites needed for setting it up.

www.EBooksWorld.ir

www.EBooksWorld.ir

Prerequisites

To use the Microsoft Bot Framework Connector, you must have the following;

e A Microsoft account (Hotmail, Live, or Outlook) to log into the Bot Framework
developer portal, which you will use to register your bot.

e An Azure subscription (free trial at https:/azure. microsoft.com/en-us/). This Azure
subscription is essential for having an Azure-accessible REST endpoint
exposing a callback for the Connector service.

e Developer accounts on one or more communication service (such as Skype,
Slack, or Facebook) where your bot will communicate.

In addition, you may wish to have an Azure Application Insights account so that you
can capture telemetry from your bot. There are additionally different ways to go
about building a bot: from scratch, coded directly to the Bot Connector REST API,
the Bot Builder SDK's for Node.js and .NET, and the Bot Connector .NET template,
which is what this quick start guide demonstrates.

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/

www.EBooksWorld.ir

Setting up the Bot Framework
Connector SDK .NET

This is a step-by-step guide to setting up the development environment to develop a
bot in C# using the Bot Framework Connector SDK .NET template:

1. Install the prerequisite software:
1. You can download the community version of Visual Studio 2015 (latest
update) for free at www.visualstudio.com.
2. Update all VS extensions to their latest versions by navigating to Tools |
Extensions and Updates | Updates.
2. Download and install the Bot Application template:
1. Download the file from the direct download link, http:/aka.ms/bf-bc-vstemplate.
2. Save the ZIP file to your Visual Studio 2015 templates directory, which is
traditionally in susereroFTLESDOCUmentsVisual Studio

2015TemplatesProjectTemplatesVisual C#.

3. Open Visual Studio.

4. Create a new C# project using the new Bot Application template:

New Project ? X
P Recent NET Framework 452 ~ Sort by: Default e = Search Installed Templates (Ctrl+E) P~
4 |nstalled e A ;
E!B Bindings Library (i0S) Visual C# Type: Visual C#
4 Templates = - Template to build a bot application for
4 \fisual C# ﬁ:j Blank App (Android) Visual C# Microsoft Bot Framework
b Windows —cs
Web @: ‘H Blank App (watchQS 1) Visual Ci#
P Office/SharePoint
Android & Bot Application Visual C#
Apple Watch Ei("
Class Library (i0S) Visual C#
b Cloud 2 ¥
Pl c#
Crass-Platiorm EE' Class Library (Xamarin.Forms) Visual C#
Extensibility
Extensions o-' Download the .NET Compiler Platform SDK Visual C#
iPad
. c‘
iPhone G Perfecto Lab Appium Test Project Visual C# v
B Grling Click here to go online and find templates
Name: Bot Application2
Location: c\users\kishore\Documents\Visual Studio 2015\Projects -
Solution name: Bot Application2 [v| Create directory for solution

[Create new Gt repository

OK | Cancel }

www.EBooksWorld.ir

https://www.visualstudio.com/
http://aka.ms/bf-bc-vstemplate

5. The template is a fully functional Echo Bot that takes the user's text utterance as
input and returns it as output. In order to run, however, the following has to take
place:

1. The bot has to be registered with the Bot Connector.

2. The Appld and AppPassword from the Bot Framework registration page
have to be recorded in the project's web.config.

3. The project needs to be published to the web.

4. Use the Bot Framework emulator to test your bot application.

The Bot Framework provides a channel emulator that lets you test calls to your bot
as 1f they were being called by the Bot Framework cloud service. To install the Bot
Framework emulator, download it from https/emulator.botframework.com/.

Once installed, you're ready to test, by starting your bot in Visual Studio using a
browser as the application host:

Microsoft Bot Framework Emulator =] X

URL App Id App Secret

http://localhost:3978/api/messages YourAppld YourAppSecret

|BmAddedTo Conversz v User Address: |Yser ChannelConversationid: | Convl v

www.EBooksWorld.ir

https://emulator.botframework.com/

www.EBooksWorld.ir

Messages

Your bot can send rich text, emoticons, pictures, and cards to a user or group. Users
can send rich text and pictures to your bot. You can specify the type of content your
bot can handle in the Skype settings page for your bot:

From

Content | user to From bot Description
to user
bot
Rich text | v/ v Including emoticons :)
Pictures v v PNG, JPEG, or GIF U.p to 20 Mb
i Coming v MP4, AAC+h264 up to 15 Mb (approx. 1
o soon minute), plus JPEG thumbnail
Cards v v

www.EBooksWorld.ir

www.EBooksWorld.ir

Basic format

Each Skype user is assigned a unique ID for your bot, which is sent along with the
display name with every message:

"text": "Hello (wave)",
"id": "1466182688092",
"type": "message/text",

"timestamp": "2016-06-17T16:58:08.74z",

"channelId": "skype",

"serviceUrl": "https://apis.skype.com",

"from": {
"id": "29:2hJJkimGn41ljB2X7YYEju-sgFwgvnISvE6G3abGde8ts",
"name": "Display Name"

}I

"conversation": {
"id": "29:2hJJkimGn41ljB2X7YYEju-sgFwgvnISvE6G3abGde8ts"

}I

"recipient": {
"id": "28:29415286-5a43-4a00-9dc5-bcbc2celf5%e",
"name": "Trivia Master"

}

}

The ¢rom field contains the unique user ID (prefixed by 29) and user pispiay name. The
recipient field contains the app ID (prefixed by 2s, which indicates a bot in Skype) and
the bot's display name. In Skype, your bot is addressed using the Bot Framework App
ID (a GUID).

You cannot currently use slash (;) commands as part of conversations
with your bot. This is a reserved character in Skype.

www.EBooksWorld.ir

www.EBooksWorld.ir

Rich text

Users can communicate with the bot using rich text format as well. Users can make
the chat text as bold if needed or a bot can communicate with the user and make
certain words as bold. Most of the channels support all the text properties supported
by the Microsoft Bot Framework.

www.EBooksWorld.ir

www.EBooksWorld.ir

SKype emoticons

Skype emoticons can be sent by using the emoticon keyword in parentheses:

{

"text": " (heart)"
}

The output of the preceding code is as follows:

hd

If a user sends your bot an emoticon, it may include <ss> tags around

the emoticon, which can be ignored; for example, <ss type="skype> (wave)

</ss>. Sending Skype Mojis (short, expressive video clips) is not
currently supported.

www.EBooksWorld.ir

www.EBooksWorld.ir

Welcome messages

To send a welcome message to a user, listen for the contactrelationvpaate activity. To
send a welcome message to a group, listen for the conversationupdate activity.

www.EBooksWorld.ir

www.EBooksWorld.ir

Pictures and videos

Let's check out, how pictures and videos are sent:

e Pictures and videos are sent by adding attachments to a message

e Pictures can be PNG, JPEG, or GIF up to 20 Mb

e Videos can be MP4 or AAC+h264 up to 15 Mb (approx. 1 minute), plus JPEG
thumbnails

www.EBooksWorld.ir

www.EBooksWorld.ir

Cards and buttons

Skype supports the following cards, which may have several properties and
attachments. You can find information on how to use cards in the NET SDK and
Node.js SDK docs:

Hero card

Thumbnail card

Carousel card (with hero or thumbnail images)
Sign in card

Receipt card

Images sent to Skype cards need to be stored on an HTTPS endpoint. Skype cards do
not currently support postrack actions.

www.EBooksWorld.ir

www.EBooksWorld.ir

Hero card

The hero card renders a title, subtitle, text, large image, and buttons:

< Skype Preview =) X
= MoviesBot
d Online
@ Welcome to Movies bot. = 19:04
@ Jason Bourne 19:04
Jason Bourne is
an American
View Trailer
@ The Land 19:04
Teenage buddies
Cisco (Jorge
View Trailer
Type a message here B EL e

The hero card provides a very flexible layout; for example, it might contain the

following;

e Image, title, subtitle, text, and three buttons
o Title, subtitle, text, and five buttons

¢ Title and six buttons

e Image and six buttons

The following table illustrates the flexible layout of hero card:

Property | Type Description

Rich : . :
title toxt Title of the card, maximum two lines.

Rich : : : : :
subtitle toxt Subtitle appears just below the title, maximum two lines.
- Rich Text appears just below the subtitle; two, four, or six lines

- text depending on whether the title and subtitle are specified.

Array

images: [] of Image displayed at top of the card; aspect ratio is 16:9.

www.EBooksWorld.ir

images

Array | Set of actions applicable to the current card: three buttons,
of up to a maximum of six (+two if no is image is shown, +one
buttons: []
action | ifthe title or subtitle are not included, +two 1f the text is not
objects | included.)
) Action | This action will be activated when the user taps on the card
: object | itself.

www.EBooksWorld.ir

www.EBooksWorld.ir

Thumbnail card

The thumbnail card renders a title, subtitle, text, small thumbnail image, and buttons:

= MoviesBot
d Online

@ Welcome to Movies bot. = 19:06

19:06

Jason Bourne

Jason Bourne is an American action
spy thriller film directed by Paul

View Trailer

19:06

The following table explains the properties of a thumbnail card:

Property | Type Description

title Richtext | Title of the card, maximum two lines.

subtitle Richtext | Subtitle appears just below the title, maximum two lines.
Text appears just below the subtitle: two, four, or six

text Richtext | lines depending on whether the title and subtitle are
specified.

| _[] Array of | Image displayed at top of the card; the image aspect ratio

o images in a thumbnail card is 1:1.
_ Arr.ay of Set of actions applicable to the current card; maximum
buttons: [] actlon
; three buttons.
objects
) Action This action will be activated when the user taps on the
ap

www.EBooksWorld.ir

object card itself.

www.EBooksWorld.ir

www.EBooksWorld.ir

Carousel

The carousel card can be used to show a carousel of images and text, with associated
action buttons:

< Skype Preview = O X

MoviesBot

% Online

19:31

gne Land
enage buddies Cisco (Jorge

Lendeborg Jr.), Junior (Moises Arias),

View Trailer

Type a message here £l @

Properties are the same as for the hero or thumbnail card.

www.EBooksWorld.ir

www.EBooksWorld.ir

Images

Images are scaled up or down in size while maintaining the aspect ratio to cover the
image area, and then cropped from the center to achieve the image aspect ratio for the
card.

Images should be stored on an HTTPS endpoint, up to 1024x1024, up to 1 MB in
size, and in PNG or JPEG. The properties are explained in the following table:

Property | Type | Description

url URL | URLto the image; Must be HTTPS.
alt String | Accessible description of the image.
value String | Action assigned to the image.

www.EBooksWorld.ir

www.EBooksWorld.ir

Buttons

Buttons are shown at the bottom of the card--in a single row if they fit, or stacked.
Button text is always on a single line and will be trimmed if it is too long. If more
buttons than can be supported by the card are included, they will not be shown.

www.EBooksWorld.ir

www.EBooksWorld.ir

Actions

The following table consists of properties, types and descriptions for actions:

Property | Type | Description
Required field. One of openuvrr (opens the given URL), imzack
: (posts a message in the chat to the bot that sent the card), ca11
type String : .
(Skype or phone number), snowrnage (for images only, displays
the image),or signin (sign in card only).
title String | Text description that appears on the button.
Value depending on the type of action. For openvze 1t 1s @ URL,
for signin 1t 1s the URL to the authentication flow, for :nsack it
) Action | is a user defined string (which may contain hidden metadata
- object | for the bot for, example, <neta roomia-r10'/>, fOr ca11 1t can be

skype:skypeid OI tel:telephone, and for showImage lt iS nOt
required.

www.EBooksWorld.ir

www.EBooksWorld.ir

Sign in

The sign in card can be used to initiate an authentication flow with predefined images
and title:

€ Skype Preview = O x
— MoviesBot
© Oniine
movies 19:32
@ Welcome to Movies bot. & 19:32

@ 19:32

Connect

L e 0 e

The following table illustrates the properties, types and descriptions of sign in:

Property | Type Description
- Rich text Text' appears just below the subtitle: two lines
maximum.
Array of action : o
buttons: [] objects Single button of type signin.

www.EBooksWorld.ir

www.EBooksWorld.ir

Receipt

The receipt card can be used to send a receipt. If the height of the card is too large, it
1s partially folded and a Show all action is shown to expand it:

Jason Bourne

The following table explains the properties, types and descriptions of receipt card:

Property | Type Description

title Rich text | Title of the card. Maximum two lines.
Array of

facts:[] fact key- Fact key is left aligned, value is right aligned.
value
pairs

Array of | Properties: title (maximum two lines), subtitle (one line), text

items: [] purchased | (up to six lines depending if the title, subtitle, and price are
objects present), price, image (1:1 aspect ratio), tap.

total Rich text | Title of the card. Maximum two lines.

tax Rich text | Title of the card. Maximum two lines.

vat Rich text | Title of the card. Maximum two lines.

items:[] Rich text | Title of the card. Maximum two lines.

www.EBooksWorld.ir

images: []

Array of

Image displayed at top of the card. Aspect ratio 16:9.

images
Array of
puttons: [] | action Set of actions applicable to the current card.
objects
. Action This action will be activated when the user taps on the card
’ object itself.

www.EBooksWorld.ir

www.EBooksWorld.ir

Groups

A bot can be enabled for groups in the Skype settings for the bot. It can be added to a
group chat in the same way as adding a participant to a chat. In a group, the bot will
only receive messages directly addressed to it--for example, evourror This is the
message. It Will not receive other messages sent by group participants or notifications
of users joining or leaving the group:

BOoagoat [% 'd @& 1:06
< Lilian Rincon, Trivia... me
= Entertainment Ge
(Select Entertainment) C

@Trivia Master Entertainment

Al

The | Hi L

QI WZ E3 R4 TS YG U? I 8 O‘i pD
ASDFGHJKL
4 Z XCVBNMG®@&

0, @ . &

v O O a

To enable a bot to be added to a group chat, you need to add this capability in
Settings. Go to your bot Dashboard and edit the Skype channel:

Groups. Learn

Group messaging) o On

www.EBooksWorld.ir

www.EBooksWorld.ir

Calling

You can build Skype bots that can receive and handle voice calls using the .NET
SDK, Node.js SDK, or the Skype APL

Each time a Skype user places a call to your bot, the Skype bot platform will notify
the bot using the calling WebHook you specify in Settings. In response, the bot can
provide a set of basic actions called a workflow.

These are the supported actions:

Answer

Play prompt
Record audio
Speech to text
DTMEF tones
Hang up

The Skype bot platform will execute the actions on the bot's behalf according to the
workflow.

If the workflow is successful, Skype will post a result of the last action to your
calling WebHook. For example, if the last action was to record an audio message, the
result will be audio content.

During a voice call, your bot can decide, after each result, how to continue
interaction with the Skype user.

Skype bots with calling enabled are for preview only and cannot

currently be published. To publish a bot in Skype, you will need to

0 disable calling in the Skype settings for your bot and then set
Published to enable in the bot dashboard. Bots can handle one-to-one

calls, but not group calls.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, we introduced the Microsoft Bot Framework and explained how it
helps in the development of bots. Also, we have seen how to set up the development
environment, emulator, and the tools needed for programming. This chapter is based
on the thought that programming knowledge and experience grow best when they
grow together. In the next chapter, we will introduce bot programming by building
and locally deploying a simple Hello World bot application. You will get to know
Visual Studio, C# .NET, the Bot Framework, and the related technologies along with
all the steps for creating projects.

www.EBooksWorld.ir

www.EBooksWorld.ir

Developing Your First Bot Using the
Connector and Builder SDK

In this chapter, we will use the Microsoft Bot Connector, part of the Microsoft Bot
Framework, as a way to create a single backend and then publish it to a bunch of
different platforms called channels as quickly as possible. The goal is to have the
user input natural language and your bot to perfectly understand and execute the
action your user wants.

As we saw 1n Chapter 1, Setting up the Microsoft Bot Framework Dev Environment,
two decades ago, we saw a major shift in the technology industry and consumers as
well, where they moved from desktop client applications to Internet web
applications. We are on the edge of a similar shift with mobile devices, with even
bigger consequences--given the fact that no one can live without their mobile
devices. Conversation as a Platform (CaaP) has become the new platform,
incorporating the role played by the mobile apps. Just as Internet websites replaced
desktop client applications in the 1990s, messaging bots will replace mobile apps
now. Bots are the new apps, and the bot store is the new app store. Also, as we move
into the Internet of Things (IoT), bots are the default applications for monitoring
these massive IoT devices. Just as mobile apps decluttered our websites, bots will
declutter our mobile experience. One of the salient features of bots is that they reside
in the Cloud and can auto-upgrade themselves with new functionalities, even without
any user action. Bots can network with one another to accomplish a series of actions
in a workflow/sequence.

www.EBooksWorld.ir

www.EBooksWorld.ir

Bots are evolving

A bot is a piece of software designed to automate a specific task. When talked about
in the context of conversation as a platform, a bot becomes the chat interface of a
regular app. So, you should allow tasks that require full Ul to be performed by the
user only through conversation. We are at the early stages of a major evolving
technology trend: the rise of conversation bots. Conversation bots can read and write
messages just like a human would. Users will be able to interact with bots just as
they interact with other humans using natural language.

Skype, WeChat, Kik, Facebook, GroupMe, Slack, Telegram, and so on are emerging
conversation platforms, which help us in enabling interactions with any service from
within the conversation platform. All these platforms enable developers to build
conversation bots to provide a specific service. We can program bots to carry out
specific automated actions. Conversation bots can initiate a definite action, and bots
can respond to requests from other users as well as automate conversations and help
complete transactions or implement workflows in the conversation.

www.EBooksWorld.ir

www.EBooksWorld.ir

Bots use cases

Let's look at some of the use cases where bots can enable users to have natural
conversation to meet their needs:

e We can develop some e-commerce bots that enable us to buy goods and services
through Skype, Slack, Facebook, and any other conversation platforms

e We can develop bots for restaurants to order food online or to make
reservations at a restaurant

e We can develop content bots that share relevant content with you (such as news
and weather)

e We can develop watcher/tracker bots that can notify us when specific events
happen (such as when a flight is delayed, when your car needs servicing, and
when your pizza order is ready for pickup)

e We can develop banking and stock trading bots that can provide financial
services

e We can develop workflow bots that can automate business workflows in
marketing, sales, operations, HR/admin, finance, payroll, and others

e When it comes to the IoT domain, bots are the best fit for [oT applications,
which can connect to your smart homes, sensors, cars, and more

When you have so many bots, it makes sense to let your personal digital assistant
(such as Cortana) manage the communication with the other bots for you, thus
escalating only the high-priority requests for which you've trained it. We can develop
a personal bot that can supervise all other bots on your behalf] as per your personal
preferences (similar to Cortana in Windows OS). We can delegate authority to bots
that act autonomously on our behalf. Most of our monitoring, shopping, tracking,
scheduling, and other bots can be automated according to personal preferences, and
our personal bot can even filter out advertising messages sent to you.

www.EBooksWorld.ir

www.EBooksWorld.ir

Developing your first bot

The Microsoft Bot Framework allows developers to develop code once and, using
the Microsoft Bot Connector, deploy it onto multiple channels, including SMS, Slack,
Facebook Messenger, Skype, GroupMe, and many other channels:

Channels

. Facebook v On
wunning
Messenger

Web Chat Disabled On

Add another channel

Direct Line

Telegram

Figure 1: Various channels available in the Microsoft Bot Framework
The Microsoft Bot Framework has three main components:

e Bot Connector: This allows you to easily connect your bot to Slack or Skype,
via SMS or the web

e Bot Builder SDK: An SDK that allows you to develop bots using C# .NET or
Node.js, which is open source

e Bot Directory: A collection of all approved bots connected through the Bot
Connector; it is a marketplace where users can search for bots to add in their
chat applications

It's really important for Visual Studio to be updated in order to use
the Bot Directory, as well as download the web tools in the Visual
Studio setup. Update all VS extensions to their latest versions by
navigating to Tools | Extensions and Updates | Updates.

In this chapter, to get started with developing bots using the Microsoft Bot
Framework, we will use the following:

www.EBooksWorld.ir

e The Bot Connector
e The Bot Builder C#

We will build our bot using C#. However, in the Microsoft Bot Framework, bots can
also be built in Node.js.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating our first bot

To develop a bot, perform the following steps:

1. Build a bot using the C# SDK.
2. Test 1t using the Bot Framework emulator.

www.EBooksWorld.ir

www.EBooksWorld.ir

Building a bot using the C# SDK

Let's go through the steps to create a bot application using the Bot Framework
Connector SDK .NET template. They are as follows:

1. Open Visual Studio and navigate to File | New | Project... and select Visual C#
from the left side Templates category. Then, from the Templates section, you
will see the Bot Application template:

2. Select the Bot Application template, name the project re110 wor1q, and then click

on OK:

DQ Start Page - Microsoft Visual Studio (Administrator)
File | Edit View Debug Team Tools Architecture Test Analyze Window Help
New » 5 project.. Cirl+Shift+N
Open P % Web Site... Shift+Alt+N
Close @ Team Project...
& Repository...
0 File.. Ctrl+N
Project From Existing Code...
w® Save Al Ctrl+Shift+S Import »
S WTTAT S eV T TIE T E T FTaTE WO
Explore what's new in Visual Studio Team Services
Account Settings... News
Recent Files
Recent Projects and Solutions Looking ahead: What's New in C# 7.0
Exit Alt+F4 (Visual Studio "15" Preview 4)
What follows is a description of all the planned

Figure 2: Creating a new project in Visual Studio IDE

www.EBooksWorld.ir

New Project 2 ¥
P Recent .NET Framework 4.5.2 ~ Sort by: Default S = Search Installed Templates (Ctrl+E) P~
4 c# - e
fozsled EJ Excel 2010 VSTO Workbook Visual C# Type: Visual G
4 Template o Template to build a bot application for
/ 5J Outlook 2010 VSTO Add-in Visual C# Microsoft Bot Framework
b Windows mcs
Web @J Word 2010 VSTO Document Visual C#
I Office/SharePoint —CH
Android EEJ Activity Library Visual C#
Apple Watch =3
b Cloud WCF Workflow Service Application Visual C#
Cross-Platform e
Extensibility ‘!E Bindings Library (i0S) Visual C#
Extensions
. n Bing Maps Application Visual C#
iPad
iPh = C*
frhone l;J Blank App (Android) Visual C#
LightSwitch [
Reporting Bot Application Visual C#
Silverlight
Usse Calling Bot Application Visual C#
Universal -
R v e
b Online Click here to go online and find templates.
Name: IIHeIID World‘ I |
[
Location: C:\Users\|R. D o cuments\Visual Studio 2015\Projects\ -
Solution name: Hello World Create directory for solution
[[] Create new Git repository
I | oK |I Cancel

Figure 3: Selecting the Bot Application template and naming the project
A solution gets created with the ne110 wor1a project.

Let's go through the default files that were created by this Bot Application template in
Visual Studio.

When we create a bot using the Bot Application template, it basically creates an
ASP.NET Web API project, which contains all the Bot Framework SDKs and all the
supporting files. The following are the files, by default:

Properties\AssemblyInfo.cs
References
App_Start\WebApiConfig.cs
Controllers\MessageController.cs
default.htm

Global.asax

Packages.config

Web.config

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

AssemblylInfo.cs

The main purpose of the assemo1y1nfo.cs file is to store all information about the
application assembly. General information about an assembly is controlled through
the set of attributes that we see in the assemv1yinfo.cs class:

fa] Solution 'Hello World' (1 project)
4 Hello World

4 ﬁ Properties

I¢* Assemblylnfo.cs |

Figure 4: The AssemblylInfo.cs file in Solution Explorer

We can change these attribute values to modify the information associated with an
assembly. It contains information about the project assembly, such as name,
description, version number, loaded assemblies, and other information. If you remove
the file from your project, then your project will be compiled with no information;
that 1s, in the Details tab of the file properties, you will see no name, no description,
version 0.0.0.0, and others.

If you open it, you can find one property called assemv1y:cuia--the value associated
with it is the ID that will be used to identify the assembly if it is exposed as a COM
object. So, if your assembly isn't COM-exposed, you don't need this. The GUID is
generated by Visual Studio at the time of the project creation, and it will be generated
randomly.

The following is the default assemo1y1nso.cs class:

using System.Reflection;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.

[assembly: AssemblyTitle ("Bot Application2")]

[assembly: AssemblyDescription ("")]

[assembly: AssemblyConfiguration("")]

[assembly: AssemblyCompany ("")]

[assembly: AssemblyProduct ("Bot Application2")]

[assembly: AssemblyCopyright ("Copyright © 2015")]

[assembly: AssemblyTrademark ("")]

[assembly: AssemblyCulture("")]

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.

[assembly: ComVisible (false)]

// The following GUID is for the ID of the typelib if this project is exposed to COM
[assembly: Guid("a8bal066-5695-4d71-abb4-65e5a5e0c3d4")]

// Version information for an assembly consists of the following four values:

www.EBooksWorld.ir

// Major Version

// Minor Version
// Build Number
// Revision

// You can specify all the values or you can default the Revision and Build Numbers
// by using the '*' as shown below:

[assembly: AssemblyVersion ("1.0.0.0")]

[assembly: AssemblyFileVersion ("1.0.0.0")]

www.EBooksWorld.ir

www.EBooksWorld.ir

References

If you expand references, you will see all the required references for the ASP.NET
application along with two new references for the Bot Framework:

&3] Solution 'Hello World' (1 project)
4 Hello World
P & Properties
,

o Analyzers

=8 Autofac

=B Chronic

I =N Microsoft.Bot.BuilderI

Figure 5: Various references needed to develop a bot in Solution Explorer

www.EBooksWorld.ir

www.EBooksWorld.ir

Microsoft Bot Builder

The Microsoft Bot Builder SDK/Framework provides very powerful features for
developing bots. Using the Bot Builder Framework, we can build freeform
interactive bots as well as guided bots where the features are shown to the user.
Using this, we can build bots very easily in C#. This is one of the three main
components of the Bot Framework.

Features included with the Bot Builder Framework are as follows:

e [t provides dialogs with powerful systems that are composable and isolated.

e It also provides built-in dialogs with strings, enumeration, and yes/no
functionalities. With built-in dialogs, we can use more powerful Al frameworks
such as LUIS.

e It also is stateless, which helps us to scale bots.

e [t provides form flow for automatically generating a bot from a C# class with
such features as help, navigation, confirmation, and clarification.

www.EBooksWorld.ir

www.EBooksWorld.ir

Microsoft Bot Connector

This reference provides the Bot Framework Connector REST API services, which
will be used for providing communication between your bot and many
communication channels, such as Skype, Slack, Facebook, GroupMe, and so on.

The main function of the Bot Connector is that when you write a conversational bot
that exposes a Microsoft Bot Framework-compatible API on the Internet, 1t will
forward those messages from your bot to the user.

www.EBooksWorld.ir

www.EBooksWorld.ir

WebApiConfig.cs

This class provides the information for Web API-related configuration, including
specific Web API routes, services, and other settings:

Solution Explorer v I X
R o-5SGIFR L=
Search Solution Explorer (Ctrl+;) P~

7ta] Solution 'HelloWorld' (1 project)
4 v&] Helloworld
4 5 o Properties
a C* Assemblylnfo.cs
P =B References
4 App_Start
I > BE@ WebApiConfig.cs

4 Controllers

P & C* MessagesController.cs
E(D default.htm
4 54 Global.asax
> a7 Global.asax.cs
a9 packages.config
4 5¢) Web.config
271 Web.Debug.config

a7 Web.Release.config

Figure 6: The WebApiConfig.cs file in Solution Explorer

Here, we will define how to handle null values at the time of the deserialization of
objects and we will also define the routes. Instead of calling routes.maproutes, as in the
MVC RouteConfig ClaSS, we instead call Config.Routes.MapHttpRoutes usmg the fOllOWil’lg
code:

// Web API routes
config.MapHttpAttributeRoutes () ;

config.Routes.MapHttpRoute (

name: "DefaultApi",

routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional }
);

To allow the Web API to know which API the user is requesting and where it is
located in the application, the webzpicontig.cs file is where our Web API routing
configuration takes place.

The following is the default weoapiconsig.cs class:

using Newtonsoft.Json;

www.EBooksWorld.ir

using
using
using
using
using

Newtonsoft.Json.Serialization;
System;
System.Collections.Generic;
System.Ling;

System.Web.Http;

namespace Bot Application2

{

public static class WebApiConfig

{

public static void Register (HttpConfiguration config)

{

// Json settings

config.Formatters.JsonFormatter.
SerializerSettings.NullValueHandling =
NullValueHandling.Ignore;

config.Formatters.JsonFormatter.
SerializerSettings.ContractResolver = new
CamelCasePropertyNamesContractResolver () ;

config.Formatters.JsonFormatter.
SerializerSettings.Formatting =
Formatting.Indented;

JsonConvert.DefaultSettings = () =>
new JsonSerializerSettings ()

ContractResolver = new
CamelCasePropertyNamesContractResolver (),
Formatting = Newtonsoft.Json.Formatting.Indented,
NullValueHandling = NullValueHandling.Ignore,

}i

// Web API configuration and services
// Web API routes
config.MapHttpAttributeRoutes() ;

config.Routes.MapHttpRoute (
name: "DefaultApi",
routeTemplate: "api/{controller}/{id}",
defaults: new { id = RouteParameter.Optional }

);

www.EBooksWorld.ir

www.EBooksWorld.ir

MessageController.cs

This class is the main class, which handles communication between the bot and the
user. This class contains a rost method, which will accept user messages, process
them, and reply back with an appropriate message.

You can find this class under the controi1ers folder as shown:

[l Solution *Hello World" (1 project)
4 3] Hello World

b F Properties

P =B References

b App_Start
4 Controllers

| P C* MessagesController.cs

Figure 7: The MessagesController.cs file in Solution Explorer

The MessagesController class inherits from the ApiController. This means that the
Messagescontroller 18 an API that can live on the web and be accessible from the outside
world after we publish it.

If you observe closely, this class has an annotation called (zotautnentication), Which
means that only the bot can access the vessagecontroiier AP The sotautnentication
decoration on the method is used to validate your Bot Connector credentials over
HTTPS.

This means that when we publish our service to a server, the Messages API can be
accessed by the Bot Framework only from where our bot was registered.

The fOllOWing 1s the default MessagesController.cs class:

using System;

using System.Ling;

using System.Net;

using System.Net.Http;

using System.Threading.Tasks;

using System.Web.Http;

using System.Web.Http.Description;

using Microsoft.Bot.Connector;

using Microsoft.Bot.Connector.Utilities;
using Newtonsoft.Json;

namespace Bot Application2
{
[BotAuthentication]
public class MessagesController : ApiController
{
// <summary>
// POST: api/Messages
// Receive a message from a user and reply to it

www.EBooksWorld.ir

// </summary>
public async Task<Message> Post ([FromBody]Message message)
{
if (message.Type == "Message")
{
// calculate something for us to return
int length = (message.Text ?7? string.Empty) .Length;

// return our reply to the user
return message.CreateReplyMessage ($"You sent {length}
characters") ;

}

else

{

return HandleSystemMessage (message) ;

private Message HandleSystemMessage (Message message)
{
if (message.Type == "Ping")
{
Message reply = message.CreateReplyMessage();
reply.Type = "Ping";
return reply;
}
else if (message.Type == "DeleteUserData")
{
// Implement user deletion here
// If we handle user deletion, return a real message

}

else if (message.Type == "BotAddedToConversation")

{

}

else if (message.Type == "BotRemovedFromConversation")
{

}

else if (message.Type == "UserAddedToConversation")

{

}

else if (message.Type == UserRemovedFromConversation")
{

}

else if (message.Type == "EndOfConversation")

return null;

www.EBooksWorld.ir

www.EBooksWorld.ir

Default.htm

This contains the default welcome page of our bot service, which will be displayed
when we open the URL of the bot service. If you want to display the welcome text or
give more information about your bot, here is the place you can design and display
the information.

www.EBooksWorld.ir

www.EBooksWorld.ir

Global.asax

This file is an ASP.NET application file, which will be used to handle or respond to
application level or session level events raised by HTTP modules. At runtime, it will
automatically generate a framework file derived from the HTTP application when we
compile the project. Due to this, any direct URL requests will be rejected
automatically. This file is optional; you use it only when you want to handle
application-level or session-level events.

The following is the default cionai.asax file:

using
using
using
using
using
using

{

{

System;

System
System
System
System
System

.Collections.Generic;
.Ling;

.Web;

.Web.Http;
.Web.Routing;

namespace Bot Application2

public class WebApiApplication : System.Web.HttpApplication

protected void Application Start ()

{

}

GlobalConfiguration.Configure (WebApiConfig.Register) ;

www.EBooksWorld.ir

www.EBooksWorld.ir

Packages.config

This file contains information about the references/packages used in the project,
which will be helpful at the time of restoring them.

www.EBooksWorld.ir

www.EBooksWorld.ir

Web.config

This file 1s very important. It will hold all the required settings information about
your application, which helps you to modify any settings value in the application
without deploying the project again. Let's see what values we get by default when we
create the project.

Under the configuration tag, appsettings, we have the following keys added by default:

<configuration>
<appSettings>
<!-- update these with your BotlId, Microsoft App Id and your Microsoft App Password-->
<add key="BotId" value="YourBotId" />
<add key="MicrosoftAppId" value="" />
<add key="MicrosoftAppPassword" value="" />
</appSettings>

Figure 8: Figure showing Web.Config content and settings needed to configure bot

www.EBooksWorld.ir

www.EBooksWorld.ir

Post method

The rost method accepts messages from the user as an activity, which contains all
conversation information between the user and our bot. Using this, we can ascertain
what kind of information the user wants from the bot:

|public async Task<HttpResponseMessage> Post ([FromBody]Activity activity)

Here, we defined a sample bot that will reply back to the user with the same as what
you say to it.

The Bot Framework provides many features that include how to identify the type of
incoming message and based on that, your bot can respond to the user. To identify
that, we have activity enum types, which will provide information about the
conversation.

To identify and apply business logic to the message sent by the user, we will write
the following code in the »ost method:

if (activity.Type == ActivityTypes.Message)
{
}

If the user is sending a message, it means they are requesting something to the bot. So,
it will receive it, process it, apply some business logic, and will reply back to the
user. To reply back to the user, we need a connectorciient Object, which provides
connector REST API services to forward messages from the bot to the user:

if (activity.Type == ActivityTypes.Message)
{

ConnectorClient connector = new ConnectorClient (new
Uri (activity.ServiceUrl));

// calculate something for us to return

int length = (activity.Text ?? string.Empty) .Length;

// return our reply to the user
Activity reply = activity.CreateReply($"You sent
{activity.Text} which was {length} characters");
await
connector.Conversations.ReplyToActivityAsync (reply) ;
}
else
{
HandleSystemMessage (activity) ;
}
var response = Request.CreateResponse (HttpStatusCode.OK) ;
return response;

The following is the code for handling activity types other than the nessage type

activity.

www.EBooksWorld.ir

private Activity HandleSystemMessage (Activity message)
{
if (message.Type == ActivityTypes.DeleteUserData)
{
// Implement user deletion here
// If we handle user deletion, return a real message
}
else if (message.Type == ActivityTypes.ConversationUpdate)
{
// Handle conversation state changes, like members
being added and removed
// Use Activity.MembersAdded and
Activity.MembersRemoved and Activity.Action for info
// Not available in all channels
}
else if (message.Type ==
ActivityTypes.ContactRelationUpdate)
{
// Handle add/remove from contact lists
// Activity.From + Activity.Action represent what
happened
}
else if (message.Type == ActivityTypes.Typing)
{
// Handle knowing that the user is typing
}
else if (message.Type == ActivityTypes.Ping)
{
}

return null;

We can reply to the user from the bot based on the activity done by the user with the
help of the preceding code.

The rost method accepts an input as an activity type, which will hold all the
information related to the conversation between the bot and the user. The activity
class is very important and is responsible for all chats/conversations between the bot
and the user. The bot knows from which user it got the message because of the activity
object. It holds complete information about the user, message information, previous
conversations, and more.

When a user sends a message to the bot, the »ost method receives that message along
with all other information and saves it as an activity object. The following is the
information that our activity object will have at the time of the POST request, in
JSON format:

"type": "message",
"id": "c444400£f077f4ce%9a7b9cffbd398aaz24",
"timestamp": "2016-08-30T08:36:32.1399048z",
"serviceUrl": "http://localhost:9000/",
"channelId": "emulator",
"from": {

"id": "2clc7fa3",

"name": "Userl"
}s
"conversation": {

"isGroup": false,

www.EBooksWorld.ir

"id": "8a684db8",
"name": "Convl"
by
"recipient": {
"id": "56800324",
"name": "Botl"
s
"text": "Hi John",
"attachments": [1],
"entities": []

The rost method receives this in JSON format from the user as an activity. It contains
the type, serviceur1 (Which is the bot published URL), the channe114 (Facebook, Slack,
Skype, and so on), from whom we received the message, and conversation
information. tex: means the message typed by the user. If it has any attachments, it
will be under attacnments. Based on this information, the bot will respond to the user.

www.EBooksWorld.ir

www.EBooksWorld.ir

BotID

This is the ID generated at the time of registering your bot at the https/dev.botframework.co
m site. It helps you to identify your bot.

www.EBooksWorld.ir

https://dev.botframework.com

www.EBooksWorld.ir

Microsoft App ID

This also generates at the time of registering your bot at https:/dev.botframework.com. It
helps to authenticate your bot with a Microsoft application.

www.EBooksWorld.ir

https://dev.botframework.com

www.EBooksWorld.ir

MicrosoftAppPassword

We have to generate this key after creating the Microsoft App ID. This is very
iInpOI'tant and prOVideS BotAuthentication O YOUI' MessagesController class.

These three are the keys that will be used by the sotautnentication class at the time of
authenticating a request. So that all requests are received, the Bot Framework only
accepts those from your bot. This way, the connector service will communicate to
your user and respective channels.

To get these values, log in to your dev.botframework.com account, select the appropriate
bot if already registered (if not, register one), and copy the Bot ID, Microsoft ID, and
Microsoft App Password from there.

www.EBooksWorld.ir

https://dev.botframework.com/

www.EBooksWorld.ir

How to deploy and run the bot
application in the Bot Framework
emulator locally

To test and debug the bot application locally, we have the Bot Framework emulator,
which will provide all the rich functionalities of the Bot Framework SDK.

Download the emulator and install it from https:/emulator.botframework.com/. Now, go to
Visual Studio and press F5 to run and deploy the Hello World bot application locally
in your browser. You will see the welcome page perauit.ntm Of your bot as shown
here:

[localhost:3979 X

(& localhost:3979

Hello World

Describe your bot here and your terms of use etc.

Visit Bot Framework to register your bot. When you register it, remember to set your bot's endpoint to

https://your_bots_hostname/api/messages

Figure 9: Your bot default page in the browser

Now, open the bot emulator that you installed in the first step. By default, the
emulator sets the bot URL to localhost. Make sure that the bot application localhost
port and the URL port in the emulator are the same. To check that, go to the browser
where your bot application is running and open, and check the port number after the
localhost word 1n that URL:

[localhost:3979 X

(6 Ioca\hos

Hello World

Describe your bot here and your terms of use etc.

Visit Bot Framework to register your bot. When you register it, remember to set your bot's endpoint to

https://your_bots_hostname/api/messages

Figure 10: Your bot port number

For example, in the Hello World sample, the port number is 3970. Now, go to the bot

www.EBooksWorld.ir

https://emulator.botframework.com/

emulator and check whether the bot URL has the same port number or not. We need to
add the path /api/messages to the bot URL when using the bot application template:

L33 Microsoft Bot Framework Channel Emulator (3.0.0.57)

Local Port Emulator Url Bot Url

9000 http://localhost:9000/ http://localhost; 3979 'api/messages

Figure 11: Your bot URL

Now, we are ready to test our Hello World bot application. The default bot
application comes with a basic functionality, which will respond to users with a
message. Whenever the user interacts with the bot, the Hello World bot responds
back to the user with the same message that the user typed. This means that it is a
simple Echo Bot. Open the vessagescontrolier.cs class and replace the rost method with
the following code, to make the code simple:

0 references
public async Task<HttpResponseMessage> Post([FromBody]Activity activity)

{
if (activity.Type == ActivityTypes.Message)

{
ConnectorClient connector = new ConnectorClient(new Uri(activity.ServiceUrl));
// return our reply to the user
Activity reply = activity.CreateReply($"Hello World: {activity.Text}");
await connector.Conversations.ReplyToActivityAsync(reply);
}
else
{
HandleSystemMessage(activity);
}

var response = Request.CreateResponse(HttpStatusCode.OK);
return response;

Figure 12: The main logic of your bot code

Whenever a message is received by Hello World, it returns sei1o world: {text received

from User}.

When a user sends a message, it holds it in the activity object. If it is of the message
type, then we will create a connector between the bot and the user with the help of
the connectorciient class object, by passing serviceur1 as a constructor parameter. This
holds the connection that will be used at the time of replying back to the user:

| ConnectorClient connector = new ConnectorClient (new Uri(activity.ServiceUrl));

Once we have finished processing the user, we need to create a reply to the user. For

www.EBooksWorld.ir

that, we have to create a reference to the activity class and create a reply with the
help of the received activity object, as follows:

|Activity reply = activity.CreateReply ($"Hello World: {activity.Text}");

While replying, we are passing seiio world: (received text from user}.

After creating the reply, we need to send that reply back to the user. For that, we will
use the connectorciient Object, which we have just created:

| await connector.Conversations.ReplyToActivityAsync (reply);

So, you will see the output in the emulator, as shown here:

— | |

Hello World: Hi Bot

Figure 13: Your bot communication in the emulator

To test it, run the Hello World bot after making changes to your rost method, as we
did in the preceding section. Then, open the emulator, type some message, and press
Enter:

Micresoft Bot Framework Channel Emulator (3.0.0.57) = O X

Bot Url Microsoft App Id Microsoft App Password

http://localhost:3979/api/mess:

User: ‘User'l ‘ ConversationNames: | Cony1 v ‘ Members: ‘1 H Typing v Locale: }enfUSj
L LIl i
et

24l HiBof

www.EBooksWorld.ir

Figure 14: The bot emulator

Now, you will see a reply from the bot by appending Hello World to your message:

Hello World: Hi Bot

Figure 15: How bots communicate using messages inside the emulator

www.EBooksWorld.ir

www.EBooksWorld.ir

How to use dialogs in bot applications

Now, we will see how to use dialogs for the same Hello World bot application.

Dialogs will be used in a conversational process, where there is an interaction or
exchange of messages between the user and the bot. Each dialog is an abstraction that
encapsulates its own state in a C# class that implements rpia109. To work with
dialogs, we need to import the wmicrosott.sot.Builder.nialogs Namespace. Add a C# class
HelloWorldbialog INtO your project. To add a class, right-click on your project and
navigate to Add | Class... from the menu:

0 New tem... Ctrl+Shift+A
pu | 9 | o
O Existing Item... Shift+Al+A
New Scaffolded Item...
%5 New Folder Ml Solution Explorer v 1 Xx
Hello, Add ASP.NET Folder > Activity activity) - Nl o-s¢apm & EI b7
X =
REST API Client.. T | search Solution Explorer (Ctrl+;) P
roll pleviisuie Men b ioject %] Solution ‘Hello World' (1 project)
Existing Project as Azure WebJob il Hello World
g5y Build -
Reference... build # Properties
X) Rebui =8 References
P Service Reference... a Ao At
fro + : ean i
&P Connected Service... View “ Gontrollers
Analyzer... Anahye 4 I defaulthtm
bRes TypeScript File Convert » % Globalasax
; 5 ¥ packages.config
TypeScript JSX File i
- yp P @ Publish.. Ch Web.config
- HTML Page Configure Azure AD Authentication...
" JavaScript File *@ Add Application Insights Telemetry...
n C
Style Sheet Scope to This
rep, pichlonn B New Solution Explorer View
- Class & Show on Code Map
br.Cl* Class... Shift+Alt+C i »l
B Manage NuGet Packages...

Figure 16: Using Visual Studio IDE to add a new class to an existing project

Give the Name as seiioworidpialog:

Name: |He||oWor|dDia|ochs

I | Add u| Cancel

Figure 17: Using Visual Studio IDE to name a new class

In order to change the Hello World example, add the following code in
Helloworldbialog. 10 US€ the Bot Builder, we first need to import the required
namespace:

|using Microsoft.Bot.Builder.Dialogs;

Next, we need to add a C# class to represent our conversation. You can do this by
adding this class to your se11omor1dnialog.cs file. Replace the code in the

www.EBooksWorld.ir

HelloWorldnialog.cs file with the following code:

using Microsoft.Bot.Builder.Dialogs;
using Microsoft.Bot.Connector;

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace Hello World
{
[Serializable]
public class HelloWorldDialog : IDialog<object>
{
public async Task StartAsync(IDialogContext context)
{
context.Wait (MessageReceivedAsync) ;
}

public async Task MessageReceivedAsync (IDialogContext context,
TAwaitable<IMessageActivity> argument)
{
var message = awalt argument;
await context.PostAsync("Hello World: " + message.Text);
context.Wait (MessageReceivedAsync) ;

Let's g0 through the HelloWorldDialog.cs class line by line.

To implement dialogs in the bot application, we need to create a class that inherits
from roia10g and the class should be seriaiizabie:

[Serializable]
public class HelloWorldDialog : IDialog<object>

The piaiog class will have a startasync method, which receives the activity as
IDialogContext and initiates the MessageReceived method whenever it receives a message
from the user:

public async Task StartAsync(IDialogContext context)
{

context.Wait (MessageReceivedAsync) ;

}

The startasync method will be an async method so that the requests will process
asynchronously.

The MessageReceived method will accept the context and MessageActivity AS arguments.
Using these, we can process the user request the same way as we did in the rost
method, but in a much richer way with the help of dialogs:

public async Task MessageReceivedAsync (IDialogContext context, IAwaitable<IMessageActivity> ¢
{
var message = await argument;
await context.PostAsync("Hello World: " + message.Text);

www.EBooksWorld.ir

context.Wait (MessageReceivedAsync) ;

TMessageactivity 1S the interface implemented by the activity class so that it can hold the
activity in it.

Now, open the vessagescontroiier.cs file and update the rost method with the following
code:

public async Task<HttpResponseMessage> Post ([FromBody]Activity activity)
{

if (activity.Type == ActivityTypes.Message)

{
await Conversation.SendAsync (activity, () => new
HelloWorldDialog());

}

else

{
HandleSystemMessage (activity) ;

}

var response = Request.CreateResponse (HttpStatusCode.OK) ;

return response;

Now, in the »ost method, we have to initiate the dialog class whenever it receives a
message from the user. For that, we have the conversation class, which initiates dialogs
by accepting the activity and dialog class objects as parameters:

|await Conversation.SendAsync (activity, () => new HelloWorldDialog());

The conversation class is under the microsoft.pot.Builder.pialogs Namespace. The method
1s marked async because the Bot Builder makes use of the C# facilities for handling
asynchronous communication. It returns a rasx, which represents the task responsible
for sending replies for the passed in vessage. If there 1s an exception, the rasx will
contain the exception information. Within the rost method, we call
Conversation.sendasync, Which 18 the root method for the Bot Builder SDK. It follows the
Dependency Inversion Principle and performs the following steps:

1. Instantiates the required components.

2. Deserializes the dialog state (the dialog stack and each dialog's state) from the
reotpatastore (the default implementation uses the Bot Connector state API to
back the rsotpatastore).

3. Resumes the conversation processes where the bot decided to suspend and wait
for a message.

4. Sends the replies.

5. Serializes the updated dialog state and persists it back to the reotpatastore.

When your conversation first starts, there is no dialog state in the reotpatastore s0 the
delegate passed to conversation.sendasync Will be used to construct an ecnoniaiog and its

www.EBooksWorld.ir

startasync Method will be called. In this case, startasync calls rpialogcontext.wait With
the continuation delegate (Our wessagereceivednsync method) to call when there is a new
message. In the initial case, there is an immediate message available (the one that
launched the dialog), and it is immediately passed to messagereceivedasyne.

Within vessagereceivednsync, we wait for the message to come in and then post our
response and wait for the next message. In this simple case, the next message would
again be processed by vessagereceivedasync. Every time we call tpiaiogcontext.wait, OUr
bot is suspended and can be restarted on any machine that receives the message.

If you run and test this bot, it will behave exactly like the original one from the Bot
Framework template. It 1s a little more complicated, but it allows you to compose
together multiple dialogs into complex conversations without having to explicitly
manage the state.

Now, run and deploy your bot application locally and test it in the bot emulator:

Hello World: Christina

Figure 18: How to communicate with the bot using messages in the bot emulator

www.EBooksWorld.ir

www.EBooksWorld.ir

How to use FormFlow in the bot
application

The main purpose of FormFlow is to provide more simplified, guided conversations.
This gives more flexibility and avoids ambiguity in the conversation. It has helped to
review the progress so far. It has limitations compared to dialogs, but in a way that
requires less effort. With the combination of dialogs and LUIS dialogs, we can get the
best of both worlds.

Dialogs can be are very powerful and flexible, but it can take lot of efforts in
handling a guided conversation, like ordering a pizza. At any point in dialog one can
contemplate various possibilities of what's next. You may be required to provide the
clarification about an ambiguity, help options, go back, or display the progress.

In order to ease out the process of building the guided conversations, the framework
comes with the powerful dialog building block known as FormFlow. Some of the
flexibilities provided by dialogs is sacrificed by the FormFlow, but that is done to
ease out the efforts. A combination of the FormFlow dialogs and other kinds of
dialogs would prove beneficial. For example, A combination of FormFlow and LUIS
dialogs could be made to get the best of both the worlds. A FormFlow dialog
provides the guidance to the user in filling the form and provides guidance along the
way through the conversation.

The simplest way to describe a form is through a C# class. Within a class, a field is
any public field or property with one of the following types:

Integral such as sbyte, byte, short, ushort, int, uint, long, or ulong
Floating point such as float or double

String

DateTime

Enum

List of enums

The data types can be nullable, which provides a good way to model the field that
does

not have a value. If a field is not nullable and based on an enum, then the o value in
the enum 1s considered to be null and it is required to start the enumeration at 1 . Any
other fields, properties, or methods are ignored by the FormFlow code. It is required
to create a form for the top level C# class in order to handle a list of complex objects
and also one for the complex object. Forms can be composed together using the

www.EBooksWorld.ir

dialog system. Implementation of zdvanced.1Fie1a OF USING advanced.rie1a and populating

the dictionaries within it. Makes the direct definition of the form possible. In order to
better understand FormFlow and its capabilities, we will work through the following
example.

Add a ne11omor1arormrion C# class to your project. To add a class, right-click on your
project and navigate to the Add | Class... option from the menu:

i New ltem... Ctrl+Shift+A
by | 9 | =
a Existing Item... Shift+Alt+A
New Scaffolded Item...
*
New Folder Ml Solution Explorer rx
Hello, Add ASP.NET Folder » Rctivity activity) - Al o-sca@ & |E| 7
) 2=
i
REST API Client... « | | Search Solution Explorer (Ctrl+;) P
Foll blew dziepNebiobIRTsiek aa?-j Solution "Hello World' (1 project)
Existing Project as Azure WebJob = . B Hello World
ks Build =
Reference... Rebuild & Properties
I ebui -n
3 Service Reference... a]F:eferesnces
ean pp_Start
fro Ep Connected Service...)
View » Controllers
Analyzer... Analyze b AD default htm
bRes TypeScript File Convert ; ;:% Global.asax
: : ¥-] packages.config
TypeScript JSX File @ Publish... & Web o
== HTML Page Configure Azure AD Authentication...
i JavaScript File *® Add Application Insights Telemetry...
Nt C
Stileishieet Scope to This
rep ek B New Solution Explorer View
= Class ¥, Show on Code Map
br. Cl %12 Class... Shift+Alt+C ‘Add >|
B Manage NuGet Packages...

Replace the code in the zei1cworiarormrion. cs file with the following code:

using
using
using
using
using
using

Figure 19: Using Visual Studio IDE to add a new class to an existing project

namespace Hello World

{

[Seriali

zable]

class HelloWorldFormFlow

{

Microsoft.Bot.Builder.FormFlow;
System;
System.Collections.Generic;
System.Ling;

System.Text;
System.Threading.Tasks;

[Prompt ("Please enter name")]

public string UserMessage;
public static IForm<HelloWorldFormFlow> BuildForm()

{

OnCompletionAsyncDelegate<HelloWorldFormFlow> userMessage =

async (context, state)

{

await context.PostAsync("Hello World:

=>

"t+state.UserMessage) ;

}i

return new FormBuilder<HelloWorldFormFlow> ()

.Field (nameof (HelloWorldFormFlow.UserMessage))
.OnCompletion (userMessage)

.Build() ;

www.EBooksWorld.ir

Similar to dialogs, for FormFlow, we need to create a class and it should be
serializable. Inside that class we have a method, which has a return type of [Form of
the just created class itself:

|public static IForm<HelloWorldFormFlow> BuildForm/()

This example 1s a very simple one, which will just return the message by appending
Hello World to the user message.

For that, we have a rormeuilaer class that is responsible for processing the user request
in the form of a flow, based on the properties defined in the rorn class. For example,
here we have defined the vservessage property:

[Prompt ("Please enter name")]
public string UserMessage;

When the user sends a message to the bot, the rormsuiicer runs the form and sends a
message to the user saying Please enter name. This happens because in the return
method of the rormeuiider, the first step is rie1a and specifies the field name. So, the
rormBuilder KNOWS that the field expects a string and we defined a prompt message to
that field, and the bot sends that prompt message back to the user:

return new FormBuilder<HelloWorldFormFlow> ()
.Field (nameof (HelloWorldFormFlow.UserMessage))

Now, the user will respond back with the name. Finally, the rormeuiiqaer will call the
oncomplete delegate method, which will send the message to the user as #ze110 wor1a:

{user message}.

OnCompletionAsyncDelegate<HelloWorldFormFlow> userMessage = async (context, state) =>

{

await context.PostAsync("Hello World:
"t+state.UserMessage) ;

}i

So, it just receives the message from the user, appends the Hello World to it, and
sends it back to the user:

.OnCompletion (userMessage)
.Build() ;

NOW, open the MessagesController.cs file and update the rost method with the fOllOWing
code:

internal static IDialog<HelloWorldFormFlow> MakeRootDialog ()
{

www.EBooksWorld.ir

return Chain.From(() =>
FormDialog.FromForm (HelloWorldFormFlow.BuildForm)) ;

}
/// <summary>
/// POST: api/Messages
/// Receive a message from a user and reply to it
/// </summary>
[ResponseType (typeof (void))]
public async Task<HttpResponseMessage> Post ([FromBody]Activity
activity)
{
if (activity.Type == ActivityTypes.Message)
{
await Conversation.SendAsync (activity, MakeRootDialog);
}
else
{
HandleSystemMessage (activity) ;
}

var response = Request.CreateResponse (HttpStatusCode.OK) ;
return response;

To initiate the rormeuiilcer from your Bot Framework, we need to do two things. One is
to create a static method of having the return type of miaiog in the messagescontroiier
class, which has a functionality to initiate FormFlow using the cnain class:

internal static IDialog<HelloWorldFormFlow> MakeRootDialog()
{

return Chain.From(() =>
FormDialog.FromForm (HelloWorldFormFlow.BuildForm)) ;

The second is to call that method from the ros: method:

|await Conversation.SendAsync (activity, MakeRootDialog) ;

Now, run and deploy your bot application locally and test it in the bot emulator:

Please enter name

Christina

‘ I‘

Hello World: Christina

Figure 20: How to communicate with the bot using messages in the bot emulator

By default, FormFlow supports a set of commands such as Help, Back, Quit, Reset,
and Status:

www.EBooksWorld.ir

Please answer the question.
Possible responses:

Please enter 'yes' or 'no’.
Back: Go back to the previous
question.

Help: Show the kinds of
responses you can enter.
Quit: Quit the form without
completing it.

Reset: Start over filling in the
form. (With defaults from your
previous entries.)

Status: Show your progress in
filling in the form so far.

Figure 21: FormFlow commands in the bot emulator

If we type Back and send it to our bot, we will get the following reply:

Hello World: Christina

Please enter name

Figure 22: FormFlow commands in the bot emulator

If we type Quit, it stops the FormFlow. If we type reset, it starts FormFlow:

reset

Please enter name

Figure 23: FormFlow commands in the bot emulator

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, we discussed how to build a bot by locally deploying a simple Hello
World bot application. You also learned about Visual Studio, C# .NET, the Bot
Framework, and the related technologies along with all the steps for creating
projects. We also discussed the bot emulator and how it relates to bot development.
In the next chapter, we will see how to develop a fully functional weather bot. Also,
we will learn about how the bot communicates about the current weather in a given
city. You will learn how the bot interacts with Skype or any other channel to know the
current weather.

www.EBooksWorld.ir

www.EBooksWorld.ir

Developing WeatherBot Using Dialogs
and LUIS

In previous chapters, we have gone through some of the concepts involved in
developing and publishing bot applications. In this chapter, we will develop a bot
called WeatherBot, show you how to use LUIS in dialogs and how to use third-party
APIs from a bot. This involves some additional coding efforts to develop the weather
bot. We will build a weather bot that is able to understand and respond to various
commands, such as What's the weather like in New York?, Get Weather in Seattle,
and so on. The bot will use LUIS to identify the intent of the user and reply with the
appropriate message.

Before jumping into writing code, we need to configure LUIS for WeatherBot. Here,
we will go through the steps on how the user gets weather data for a given location
when requested by the user. We will see how LUIS can help us make the conversation
between the user and your bot in more natural language, similar to how we interact
with humans.

The WeatherBot will have intelligence, which will help users to interact with it,
similar to how we interact with humans (in natural language). The following are
some examples:

What will the weather be like in Ashburn?
Get weather in Seattle

Weather in Seattle
Hi, what is the current weather in Ashburn?

We will achieve this with the help of Natural Language Processing (NLP) using
Microsoft Cognitive Services' LUIS.

www.EBooksWorld.ir

www.EBooksWorld.ir

Language Understanding Intelligent
Service (LUIS)

Language Understanding Intelligent Service (LUIS) is one of the services in
Microsoft Cognitive Services provided by Microsoft. As mentioned earlier, natural
language is a fundamental element in developing bot applications. As a result, the
technology industry has seen a direct correlation between the evolution of bot
platforms and NLP platforms. Although the evolution of bot technologies has been
predominantly driven by messaging platform providers such as Slack or Facebook,
the main advancements in NLP technologies seem to be coming from cloud platform
providers such as Microsoft. As a result, to take advantage of the NLP and Natural
Language Understanding (NLU) algorithms, most bot developers spend time
integrating their bot applications with NLP services provided by platforms such as
LUIS from Microsoft. LUIS can process natural language using pre-built or custom-
trained language models.

Microsoft's LUIS is a component of the Microsoft Cognitive Services Suite that helps
in creating and processing natural language models. LUIS provides a sophisticated
toolset that allows developers to develop and train the platform in new conversation
models. LUIS can also be used in conjunction with other text processing APIs in the
Microsoft Cognitive Services Suite, such as text analytics and many other services.
The LUIS platform provides a deep integration with Microsoft Bot Framework
technology and can be used by other bot platforms.

Here are some of the salient features of LUIS:

Language Understanding (LUIS)

» Create language understanding models

» Add conversational intelligence

» Pre-built, world class models (Bing & Cortana)
« Action fulfillment capabilities

» Deploy to HTTP

« Activate on any device

« Maintain with ease

Let's perform the following steps to sign up for Microsoft Cognitive Services and
learn how to use LUIS:

www.EBooksWorld.ir

1. Go to https//www.microsoft.com/cognitive-services and select the APIs option on the home
page:

B Microsoft My account ~

Cognitive Services

Home Applications Developers v Pricing

Cognitive Services APIs

Get started for free

Put intelligence APIs to work

Microsoft Cognitive Services let you build apps with powerful algorithms using just a few
lines of code. They work across devices and platforms such as iOS, Android, and Windows
keep improving. and are easy to set up.

See just one of the many insights we can infer from your data with this demo of the

2. Under the APIs menu, select the Language Understanding option:

B Mcrosalt Cognitive Ser X | b = g
& B 0 BB et D%| = % 0
B3 Microsoft My account

Cognitive Services

Home APls ~ Applications Developers » Pricing

Vision Speech Language Knowledge Search

Computer Vision Bing Speech Bing Spell Check Academic Bing Autosuggest

Emotion Custom Recognition Language Entity Linking Bing Image Search

Face Speaker Recognition Liderstanding Knowledge Bing Mews Search

Video Linguistic Analysis Exploration Bing Video Search
Text Analytics Recommendations Hing Web Search
WebLM

Still looking for the right API? See the entire collection =

Put intelligence APIs to work

Microsoft Cognitive Services let you build apps with powerful algorithms using just a few
lines of code, They work across devices and platforms such as 105, Android, and Windows,

keep improving, and are easy to set up.

S mna nf the many insights we can infer from your data with this demo of the
hitps A ivemw micros ctLoomJ/cognithve-servic egfe r-uslanguage-understa nd i IEgent-sendce-luis : ;

3. On the Language Understanding Intelligent Service (LUIS) page, click on Get

www.EBooksWorld.ir

https://www.microsoft.com/cognitive-services

started for free:

BY Microsoft
Cognitive Services

My account ~,

Home APls » Applications Developers v Pricing

Language Understanding
Intelligent Service (LUIS)

d lang ¥, SO YOUr app communicates %

Create language understanding models

One of the key problems in human-computer interactions is the ability of the computer to
understand what a person wants, and to find the pieces of information that are relevant to
their intent. LUIS is designed to provide you with an easy way to create models, which allow

4. Tt will navigate to https//www.luis.ai/ , the home page of LUIS. Click on Sign in or
create an account:

Language Understanding
Intelligent Service (LUIS)

LUIS lets your app understand language

P LUIS is in beta and free to use

P Supported browsers: Internet Explorer 10/11, Chrome

=] Sign in or create an account Watch Video!

5. On the Sign In Options popup, select Sign in using a Microsoft account (most
users):

www.EBooksWorld.ir

https://www.luis.ai/%20

Sign In Options

%) Sign in using a Microsoft account (most users)

=) Sign in using an @microsoft.com account (Microsoft
employees)

6. It will open an OAuth flow to authenticate your Microsoft account. Once you are
successfully authenticated, it will ask you to grant permissions to access your
profile information; click on Yes:

| Let this app access your info? - Microsoft Edge =: O x

I ﬂ Microsoft Corporation [US] RIS ST (FEET]

[I
= 16

B Let this app access your info?

www.luis.ai

LUIS needs your permission to:

[= 5| Access your email addresses
LUIS will be able to see the email addresses r
in your profile.

You can change these application permissions at any
time in your account settings.

No

Terms of Use Privacy & Cookies Sign out

Microsoft

7. Now LUIS will ask you to give a little more information about your country and
company. After entering all the required information, click on the Continue
button:

www.EBooksWorld.ir

Additional Info and Terms of use, Privacy, and Cookies

To help serve our users better, we need you to fill in the following details

Fountry * Organization/Company *

Afghanistan - Enter Organization Here

How did you hear about us? *

Choose an option

Contact me with promotional offers and updates about Cognitive Services.

Eagree to the "Microsoft Cognitive Services" Preview — Online Services Agreement and the Privacy & Cookies statement.

Privacy & Cookies Terms of use Developer Code of Conduct Trademarks © 2016 Microsoft

8. The following is the page where you will see all the LUIS apps, that you create:

My Applications ~ About Help Docs

The programmatic API keys will no longer be used in the endpoint starting 31/12/2016! X

My Applications

+NewApp v & Cortana pre-builtapps ~ + © Start Tutorial e o

Let's get started

Build a new language understanding application...

Privacy & Cookies Terms of use Developer Code of Conduct Trademarks © 2016 Microsoft

Now we are ready to create and build LUIS models. With the help of LUIS, we can
build more complex NLP models, but for the weather bot, we will use basic and pre-
built features. Before building your model, you should know what an Intent is and
what an Entity is.

www.EBooksWorld.ir

www.EBooksWorld.ir

Intents and Entities

When a user enters a sentence, LUIS will interpret it and parse out the Intent and
Entities. An Intent is an action the user wants to perform, and Entities are the
subjects for the Intent. For example, if someone asks, Hi, what is the current weather
in Seattle?, the Intent could be knowing weather and the entity is Seattle. Based on
the complexity and requirement, you can define multiple Intents in LUIS and perform
respective actions. Now, let's create an app for your WeatherBot:

1. Click on New App:

My Applications ~ About |~ HelpDocs Support

The programmatic AP keys will no longer be used in the endpoint starting 31/12/2016! X
My Applications

+NewApp W & Cortana pre-built apps w @ Start Tutorial e SRR

Let's get started

Build a new language understanding application...

Privacy & Cookies Terms of use Developer Code of Conduct Trademarks © 2016 Microsoft

https/ iz ai/apolicationlist

2. Onthe New App dropdown, select New Application:

www.EBooksWorld.ir

LUIS: by ications
¥ Ap)

€ 5> 0

¥

ortana pre built apps

Privacy & Cookies

Terms of use

Developer Code of

Trademarks

£ 2016 Microsoft

3. Onthe Add a new application popup, enter the application name, the application

usage scenario as Bot, and select the category as Weather:

Add a new application

Enter application name

WeatherBot

Enter application usage scenario

Bot

Choose application domain(s)

[JBooking &

Reference
O Education

CMedia &

Video
CINews &

Magazines

O social

Network

4 Weather

LI Business

a

Entertainment

O Medical

O
Personalization
DS[]DHS

O

Transportation
Clothers

O cComics

CIFinance
O Health &

Fitness
O mMusic &

Audio
a Productivity

O scheduler
OTelecom

O Translation

Enter application description (opticnal)

O

Communication
[OGaming

OHome

Automation
DNH‘u‘igd'iUﬂ &

Maps
[IReal Estate

[shopping
OTools
O Travel &

Local

Weather 1304

Choose Application Culture

English

www.EBooksWorld.ir

4. Finally, click on the Add App button:

Enter application description (optional)

Application description (optional) ..

Choose Application Culture

English

Add App

5. After the successful creation of the app, open it and click on the + icon of the
Intents section from the left-hand side menu:

Weather Details

£ App Settings

Publish

Intents @

6. Enter the name for your Intent and click on the Save button:

Add a new intent

Intent name:
getweather |

o

7. Now, add an Entity. From the left-hand side menu, click on the + icon of Pre-
built Entities:

\dd Action

Pre-built Entities @

8. Select geography as the Entity:

www.EBooksWorld.ir

Pre-built entities ®

Which Bing entity do you want to add?

VIOTTETAry armouris, MCTUTTTTg CaTTeTicy

1000.00 US dollars, £20.00, $ 67.5 B

age

Age of a person or thing
10-month-old, 19 years old, 58 year-old

geograph)ﬁ
Continents, Countries, Cities, Post codes, and other points of interest
Antarctica, Portugal, Dubai, Sanjiang County, Lake Pontchartrain, CB3 0DS

encyclopedia

People, organizations, products, and hundreds of other types found in an encyclopedia
Acer Aspire, Harvard Business School, Jagiellonian Rowing Club, Steve Miller Band, Beijing Capital
International Airport, Amsterdam Light Festival, Microsoft

v

The reason why we use a pre-built entity is that LUIS already contains geography that
has complete information about the locations. If you want to use a custom Entity for
the location, then you have to provide all the cities/locations information to LUIS,
otherwise LUIS cannot identify the location from the given sentence.

Now we have an Intent and an Entity:

£ App Settings
I Publish

Intents @

None

getweather

Entities @

Pre-built Entities @

geography

www.EBooksWorld.ir

www.EBooksWorld.ir

Training your bot using utterances

Now you have to train your app using utterances to get the appropriate results from
LUIS. An utterance is nothing but the sentence typed/asked by the user of your bot,
such as What is the current weather in Ashburn, Virginia?. You have to enter as
many utterances as possible with your bot.

Some examples of utterances include the following:

e What is the current weather in Ashburn, Virginia?
e Get weather in Boston
e Get weather in Miami

To train your app, you have to add different types of utterances in LUIS. Let's perform
the following steps to add new utterances:

1. Select the New utterances section and then add the new utterance in the textbox:

New utterances Search Suggest Review labels

‘ Please, enter an utterance. ‘

2. After entering the utterance, press Enter. LUIS will automatically highlight the
geography in your text, as shown in the following screenshot:

New utterances Search Suggest Review labels

|
. . S |
What is the current weather in Ashburn, Virginia ‘

This utterance has already been labeled. You can make changes to the label, or type
in a different utterance.

what is the current weather i ashburn{ | virginia | getweather(1) v|

3. Before clicking on Submit, make sure that the sentence is identified correctly
and if it shows the Intent as getweather or not. If the sentence is correct and is
asking about the weather, then manually select the getweather Intent from the
drop-down menu. Before submitting, check whether geography i1s highlighted or
not. If not, then manually highlight it and submit.

www.EBooksWorld.ir

. Now, click on Submit. Repeat this for some possible combinations of
statements.

. After entering some utterances, click on the Train option, which is located in the
bottom-left corner of the page. If you don't train your LUIS, then you will not get
proper results, so make sure that you have trained every time you submit new
utterances. You also have to add the minimum number of utterances to your app
so that LUIS can give accurate results:

. Now publish your LUIS app. For that, click on the Go to Preview option at the
top of the page:

Go to Preview My Applications About

New utterances Search Suggest Review labels

. Then, click on the Publish option on the left-hand side menu. The Publish button
1s enabled only in the preview mode:

¥ App Settings

Publish

. Now click on Publish web service button/Update published application:

HTTP service ®

Publish Current Application to URL for access via HTTP
Update published
application
Query:

Status: Published on 22/9/2016, 2:29:52 PM
\ |

URL: https://api.projectoxford.ai/Iuis/v1/application/preview?id=d4fAbe3e-1d98-4080-b0a7-d9ch3afeb 7208
subscription-key SR

Note: To enable bot integration, enable action fulfillment in one of your intents.
Enable Action Binding using Microsoft Bot Framework

Note: The Slack bot integration feature will be discontinued. Please migrate any slack bots you created to Microsoft
Bot Framework
Enable Action Binding using Slack

Download web service usage logs Download logs

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Testing your LUIS app

We need to test before using our LUIS app to make sure that it correctly identifies the
Intents and Entities present in a sentence, as we configured in the preceding steps.
Let's say, for example, the user typed Get weather in Seattle. For this sentence, the
Intent knows weather information and the Entity is Seattle (geography). When we
enter a query such as cet weatner in seatt1e 1n the Query text box and press the Enter
button, we're redirected to another window, which displays the results shown in the
following screenshot:

Query:

(Get weather in Seattle]

Ifyou observe in the JSON I'CSU.It, the topScoringIntent 1S getweather and the entity 1S
seattle Of the geograpny.city type. This way, we can test before integrating LUIS into
our bot:

© A& https;//api.projectoxfard.ai/luis/v1/appli

{
"query": "Get weather in Seattle”,
"top5coringIntent”: {
"intent": "getweather",
"score™: 0.9999995
}J’
"entities": [
{
"entity": "seattle"”,
"type": "builtin.geography.city",
"startIndex": 15,
"endIndex": 21,
"score™: 0.9073885

If the results are not as expected, then go back to the LUIS app and train it with more
utterances.

Copy the URL to query and save it in a safe place; we will need it in later steps:

?id=d4f4be3e-1d98-4080-b0a7-d9cb3afeb720&

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Development of WeatherBot code

We have completed setting up LUIS. Now let's develop a bot for knowing the
weather of a given geography. We will also see how LUIS can help us in identifying
the geography of a given sentence.

This guide is for C# using the Bot Framework Connector SDK .NET template:

1. Open Visual Studio and navigate to New | Project:

Dq Start Page - Microsoft Visual Studio (Administrator)
Edit View Debug Team Tools Architecture Test Analyze Window Help

New » 8 Project.. Ctrl+Shift+N
Open * % Web Site... Shift+Alt+N
Close % Team Project...

$x Repository...

" File... Ctrl+N

Project From Existing Code...
w* Save Al Ctrl+Shift+S Import s
S EEWITAT S TEW T THE N E T FraMeW oK
Explore what's new in Visual Studio Team Services

Account Settings... News
Recent Files ’
Recent Projects and Solutions > Looking ahead: What's New in C# 7.0

(Visual Studio "15" Preview 4)

What follows is a description of all the planned

Exit Alt+F4

2. Select Visual C# from the left-hand side template category. From the templates
section, you will see the Bot Application template:

www.EBooksWorld.ir

New Project

P Recent

4 |nstalled

A4 T h:’\luf P

a
VWWINao!

Web

Office/SharePoint

Android

Apple Watch

Cloud

Cross-Platform

Extensibility

@

o

=

Extensions
iPad
iPhone
LightSwitch
Reporting
Silverlight
Test

Universal

b Online

Name: Bot Application

Location:

Solution name:

Bot Application

.NET Framework 452 - | Sort by: Default

ED Azure Mobile Service

FC#

m—CH

Ci#

? X
Search Installed Templates (Ctrl+E) P

Type: Visual C#

Template to build a bot application for
Microsoft Bot Framework

Visual C#
[ZlJ Excel 2010 VSTO Workbook Visual C#
FC#
@J Outlook 2010 VSTO Add-in Visual C#
G
@J Word 2010 VSTO Document Visual C#
!E—] Activity Library Visual C#
WCF Workflow Service Application Visual C#
By
‘!E Bindings Library (i0S) Visual C#
n Bing Maps Application Visual C#
P
&J Blank App (Android) Visual C#
Visual C#

I <> Bot Application

Click here to go online and find templates.

C\Users'\ il O o cuments\Visual Studio 2015\Projects\

W Browse...

Create directory for solution
[C] Create new Git repository

| OK || Cancel |

3. Select the Bot Application template, name the project weatnerzor, and then click

on OK:

www.EBooksWorld.ir

b Recent .NET Framework 4.5.2 - | Sort by: Default ~| & Search Installed Templates (Ctrl+E) P~
4 |nstalled C# 2 .\l
R EJ Excel 2010 VSTO Workbook Visual C# Type: Visual G#
4 Templates = — Template to build a bot application for
5J Outlook 2010 VSTO Add-in Visual C# Microsaft Bot Framewark
b Windows e .
Web @J Word 2010 VSTO Document Visual C#
b Office/SharePoint -
ARt EEJ Activity Library Visual C#
Apple Watch ca
b Cloud @ WCF Workflow Service Application Visual C#
Cross-Platform RS
S ‘!E Bindings Library (iOS) Visual C#
Extensions
. n Bing Maps Application Visual C#
iPad
iPhone (a5
L Blank App (Android) Visual C#
LightSwitch o
Heporticy | E Bot Application Visual C#
Silverlight
=t <> Calling Bot Application Visual Ci#
Universal -
T rm— w Sk
Banline Click here to go online and find templates.
Name:

Location: c\users?

ocuments\visual studio 2015\Projects -

Solution name: WeatherBot Create directory for solution
[] Create new Git repository

| OK | | Cancel |

4. Select the MessagesController.cs ﬁle, which is located under the contro11ers folder:

Search Solution Explorer (Ctrl+;) P~

fad Solution 'TemperatureBot' {1 project)
TemperatureBot
Properties
=-B References
Apog Start

Contrallers
P ©* MessagesController.cs
14 detault.htm
&1 Global.asax
¢ packages.config
c# Tempature.cs
1 Web.config

SN LSl Teamn Explorer Notifications

www.EBooksWorld.ir

5. Update the »ost method to call the pia1ogs. For that, add a class called
Weatherbialog.cs 1N t0 your solution and extend 1t with rpiaiog. For that, you have to
right-click on your project and select Add | Class...:

Area.. W & | Quick Launch (Ctr+ Q)
3 New lem... Ctrl+Shift+ A
0 Exsting Item... Shift+Alt+A = | |
MNew Scaffolded ltermn... .
e N Eolder Solution Explorer 1 x
tWeather(string location) - et =
Add ASP.NET Folder Sl . s W o-scam o p -
+ rlinnt CatCtminalcuns T -
REST API Client... I:;I Build wplorer (Ctrl+;)
MNew Azure Weblob Project Rebuild mperatureBot' (1 project]
Existing Project as Azure Weblob Clean
Reference... View * rences
Service Reference... Analyze » | Start
tp Connected Service... Convert b [rollers
. MessagesController.cs
Analyzer... f; Publlsh.... . . i
TypeScript File ¥ Add Application Insights Telemetry... al meay
TypeScript J5X File Configure Azure AD Authentication... ages.config
HTML Page Scope to This pature.cs
.confi
JavaScript File B New Solution Explorer View g
Style Sheet 2 Showon Code M2
Web Form k Add 3
Class Manage NuGet Packages...
===
I"‘T; Class... ol Set as StartUp Project
Debiin e

6. Extend the class with piaiog, implement its interface method, startasync (), and
also decorate the class with a seriaiizavie annotation:

[Serializable]

bublic clésé ﬁeéfﬁerbiaibgf.IDiaibg%object>

{
public async Task StartAs nc(IDialogContext context)
{
context.Wait(MessageReceivedAsync);
}

The core functionality of the bot template is all in the =ost function within

Controllers\MessagesController.cs.

In this case, the code takes the message text from the user and then creates a reply
message using the createrepiymessage function. The sotautnentication decoration on the
method is used to validate your Bot Connector credentials over HTTPS. If you
choose to operate over HTTP, you will need to remove the sotautnentication
decoration. Update your rost method 1n vessagescontroi1er.cs with the following code to

call WeatherDialog.

public async Task<HttpResponseMessage> Post ([FromBody]Activity

activity)
{
try
{

ConnectorClient connector =
Uri (activity.ServiceUrl));

new ConnectorClient (new

www.EBooksWorld.ir

if (activity != null && activity.Type ==

ActivityTypes.Message)

{
var text = (activity.Text) .ToLower () ;
await Conversation.SendAsync (activity, () => new
WeatherDialog()) ;

}

else

{
HandleSystemMessage (activity) ;

}

return new
HttpResponseMessage
(System.Net.HttpStatusCode.Accepted) ;

}

catch (Exception ex)

{
var content = new StringContent (ex.Message) ;
var responseMessage = new HttpResponseMessage
(System.Net.HttpStatusCode.InternalServerError) ;
responseMessage.Content = content;
return responseMessage;

The method 1s marked async because the Bot Builder makes use of the C# facilities for
handling asynchronous communication. It returns a rasx, which represents the task
responsible for sending replies for the passed in vessage. If there is an exception, the
rask Will contain the exception information. Within the »os+ method, we call
Conversation.sendasync, Which 1S the root method for the Bot Builder SDK. It follows the
dependency inversion principle and performs the following steps:

e [t instantiates the required components

e [t deserializes the dialog state (the dialog stack and each dialog's state) from
eotpatastore (the default implementation uses the Bot Connector state API as
backing IBotDataStore)

e [t resumes the conversation processes where the bot decided to suspend and
wait for a message

e [t sends the replies

e [t serializes the updated dialog state and persists it back to reotpatastore

o [t awaits Conversation.SendAsync (activity, () => new WeatherDialog());

When your conversation first starts, there is no dialog state in reotpatastore, S0 the
delegate passed to conversation.sendasync Will be used to construct a weatnernialog and its
startasync Method will be called. In this case, startasync calls rpialogcontext.wait With
the continuation delegate (Our wessagereceivednsync method) to call when there is a new
message. In the initial case, there is an immediate message available (the one that
launched the dialog), and it 1s immediately passed to vessagereceivedasync:

www.EBooksWorld.ir

public async Task StartAsync(IDialogContext context)
i

context.Wait(MessageReceivedAsync);

}

NOW, g0 to the WeatherDialog.cs file and generate a method for MessageReceivedAsync under
the StartAsync method:

public async Task StartAsync(IDialogContext context)
{

context.Wait4MessageReceivedAsync

) 5

}

Within vessagereceivednsync, we wait for the message to come in and then post our
response and wait for the next message:

private async Task MessageReceivedAsync (IDialogContext context, IAwaitable<Object> argument)
{

context.Wait (MessageReceivedAsync) ;

}

In this simple case, the next message would again be processed by
MessageReceivedAsync. EVery time we call IDialogContext.Wait, OUI bot 1s Suspended and
can be restarted on any machine that receives the message.

www.EBooksWorld.ir

www.EBooksWorld.ir

Calling LUIS from the bot

To incorporate a call to LUIS, we can start by adding this function. It simply calls
LUIS and returns the city, state, or country names if the message is a weather query
mentioning state and country.

Create a method in the weatnernialog.cs class as follows; we will call this method from
the messagereceivednsync method by passing the sentence asked by the user to your bot:

private static async Task<string> IdentifyCityUsingLUIS (string message)
{
}

Now do a GET request to your LUIS app using the LUIS URL, which you saved in an
earlier step, as follows:
var responselnString = await httpClient.GetStringAsync (@"REPLACE WITH YOUR URL HERE&g="

+ System.Uri.EscapeDataString (message));
dynamic response = JObject.Parse (responselnString);

Once you get a response from LUIS, try to parse it and identify whether the sentence
contains the required Intent and Entities. For that, write the following code:

var intent = response.intents?.First?.intent;
string city="",state="",country="";
if (intent == "getweather")
{
foreach (var entity in response.entities)

{

if (entity.type == "builtin.geography.city")
{

if (city=="")

city= entity.entity;

else

{
if (city==state)
{
city = entity.entity;
}
else if(entity.entity == state)
{

}

}
}
else if (entity?.type ==
"builtin.geography.us state")
{

state= entity.entity;
}
else if (entity?.type ==
"builtin.geography.country")
{

country= entity.entity;

}

}
if (city != "" && state != "" && country !="")

www.EBooksWorld.ir

return city + "," + state + "," + country;

else if(city != "" && state !="")
return city + "," + state;

else if (city != "" && country != "")
return city + "," + country;

else if (state != "" && country !="")
return state + "," + country;

else 1if (city !="")
return city;

else if (state != "")
return state;

else if (country != "")
return country;

else
return null;

Now update your vessagereceivednsync method to call the just created method and
receive the city information from it:

private async Task MessageReceivedAsync (IDialogContext context, IAwaitable<Object> argument)
{
var activity = await argument as Activity;
string queryText = activity.Text;
var locationInfo = await IdentifyCityUsingLUIS (queryText) ;
context.Wait (MessageReceivedAsync) ;

Now we have the location information with the help of LUIS; we will get the weather
information for the identified location with the help of the Weather API.

www.EBooksWorld.ir

www.EBooksWorld.ir

Calling the Weather API

There are many APIs available for getting weather information for a given city. As of
now, we'll use Weather Underground.

Before using it, we'll need an API key. So, sign up for a free account to get a key from
Weather Underground at https://www.wunderground.con.

Now that we have an API key, add the following method in the weatnernialog class:

private static async Task<dynamic> GetCurrentWeatherUsingAPI (string
location)
{
using (var client = new HttpClient())
{
try
{
var escapedLocation = Regex.Replace (location,
U\W", ")
var jsonString = await
client.GetStringAsync ($"http://api.wunderground.com
/api/ENTER YOUR KEY HERE/conditions/q/
{escapedLocation}.json") ;
dynamic response = JObject.Parse (jsonString);

dynamic observation = response.current observation;
dynamic results = response.response.results;

if (observation != null)

{

return observation;

t
else if (results != null)
{
return null;
}
}
catch (Exception ex)
{
}

return null;

This gets the current weather for the specified city as a string. If the API indicates
that the city 1s ambiguous (it returns multiple results), the bot informs the message to
the user. If there is an issue, the bot returns null.

Now update YOUI' MessageReceivedAsync methOd and Call the GetCurrentWeatherUsingAPI
method by passing the location for the one we got from the LUIS method:

private async Task MessageReceivedAsync (IDialogContext context,
IAwaitable<Object> argument)
{
var activity = await argument as Activity;
string queryText = activity.Text;

www.EBooksWorld.ir

https://www.wunderground.com/

var locationInfo = await IdentifyCityUsingLUIS (queryText) ;
var currentObservation = await
GetCurrentWeatherUsingAPI (locationInfo) ;

string displayLocation =

currentObservation.display location?.full;

decimal tempC = currentObservation.temp c;

string weather = currentObservation.weather;

var weatherInfo = $"It is {weather} and {tempC} degrees
in {displayLocation}.";

string icon = currentObservation.icon;

context.Wait (MessageReceivedAsync) ;

From the Weather API, we will get currentobservation Of a city/location.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using cards

Now we know the weather information of a city/location in the currentobservation
variable; to display the information to your user on a channel in rich Ul, we have
cards in the Bot Builder.

To display weather information in the cards, we will go through the steps on how to
use thumbnail cards, as the following describes.

The thumbnail card is a multipurpose card; it primarily hosts a single small image, a
button, and a tap action, along with text content to display on the card. The following
1s sample code on how to create a thumbnail card:

List<CardImage> cardImages = new List<CardImage>();
cardImages.Add (new CardImage (url:
"http://icons.wxug.com/i/c/g/" + icon + ".gif"));
ThumbnailCard plCard = new ThumbnailCard/()

{
Text = weatherInfo,
Title = "Current Weather",
Images = cardImages,

}i
Attachment plAttachment = plCard.ToAttachment ()

After creating a thumbnail card, we need to pass it as an attacament in the activity
reply, as follows:

Activity replyToConversation = activity.CreateReply($"Weather report in
{locationInfo} is");

replyToConversation.Type = "message";

replyToConversation.Attachments = new List<Attachment>();
replyToConversation.Attachments.Add (plAttachment) ;

Using all the concepts explained in this chapter, the following is the code we will
write in the vessagereceivedasync method so that a bot can communicate the weather to
the users:

private async Task MessageReceivedAsync (IDialogContext context,
TAwaitable<Object> argument)
{
var activity = await argument as Activity;
string queryText = activity.Text;
var locationInfo = await IdentifyCityUsingLUIS (queryText) ;
var currentObservation = await
GetCurrentWeatherUsingAPI (locationInfo) ;

if (currentObservation != null)
{
string displayLocation =
currentObservation.display location?.full;
decimal tempC = currentObservation.temp c;
string weather = currentObservation.weather;
var weatherInfo = $"It is {weather} and {tempC} degrees
in {displayLocation}.";

www.EBooksWorld.ir

string icon = currentObservation.icon;

//string rfc822DateTime =
currentObservation.observation time rfc822;

//var observationTime = DateTime.Parse (rfc822DateTime) ;
//var dayOrNight = observationTime.Hour;

Activity replyToConversation =
activity.CreateReply ($"Weather report in {locationInfo}
is");
replyToConversation.Type = "message";
replyToConversation.Attachments = new List<Attachment>
0
List<CardImage> cardImages = new List<CardImage>();
cardImages.Add (new CardImage (url:
"http://icons.wxug.com/i/c/g/"™ + icon + ".gif"));
ThumbnailCard plCard = new ThumbnailCard()
{

Text = weatherInfo,

Title = "Current Weather",

Images = cardImages,

};
Attachment plAttachment = plCard.ToAttachment () ;
replyToConversation.Attachments.Add (plAttachment) ;
await context.PostAsync (replyToConversation) ;

}

else

{
await context.PostAsync ($"There is more than one
'{locationInfo}'. Can you be more specific?");

}

context.Wait (MessageReceivedAsync) ;

Run the WeatherBot and test it in the emulator. You will have output as follows:

What is the current

weather in Ashburn,
Virginia

Weather report in ashburn,virginia is

It is
Scattered

and 21.6 Q

degrees in
Ashburn,
VA.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Natural speech and Intent processing
bot using Microsoft Cognitive Services

As LUIS is a new concept, we will go through one more project to understand the
concepts better. This project is for understanding how to use Cortana Intelligence
Services and Rich Text Messaging technology. This bot identifies the concepts and
actions in the text that is sent to the bot with part-of-speech tagging, finds phrases and
concepts using natural language parsers, and returns all the identified Intents, which
are created and trained in the custom LUIS app. For example, if you say Hi John, am
going to New York tonight, the bot will return part-of-speech tagging as well as
parsing data for natural speech and Intent processing to know the name and location:

e Name: John
e Place: New York

Whether you're mining customer feedback, interpreting user commands, or consuming
web text, understanding the structure of the text is a critical first step, and this chapter
teaches you that. Before starting the tutorial, you should know about Microsoft
Cognitive Services (Cortana Intelligence Services), which helps you to build
applications using very complex and powerful algorithms just using a few lines of
code. You can build applications for any platform and they are easy to configure. It's
free to sign up, and it also has paid plans which are currently in preview:

1. To sign up, go to Microsoft Cognitive Services (https:/www.microsoft.com/cognitive-servi
ces/en-us/) and click on the Get started for free button on the page:

BT Microsoft

Cognitive Services

Home APls v Applications Developers v Pricing

Cognitive Services APIs

Tap into the power of machine learning with easy-to-use REST APIs.

Get started for free

2. On the next page, click on the Let's go button:

www.EBooksWorld.ir

https://www.microsoft.com/cognitive-services/en-us/

Let's go

3. Alternatively, you can also click on the My account option on the right-top side
of the page and log in using your Microsoft account:

My account /“\

4. After a successful sign-in, you have to subscribe each and every API
individually by checking the check box of each API. Select all and click on the
Subscribe option. Now you are ready to use Cognitive Services:

www.EBooksWorld.ir

My free SUbscriptionS (1 5) Request new trials

Product Description Keys State Created Quota

Recommendations 10,000 transactions per Key 1: active 6/4/2016 Show

- Preview month.)0.0.0.0.0.¢.0.0.0.:0.0.0:0.0.:¢.0.4.0.9.9.0.0.0:0.0,0 ¢ 7:01:59 PM Quota Buy On Azure @
Regenerate | Show | Copy
Key 2:
XXXXXXXKIKXKIKKHXKXKXXX Cancel

Regenerate | Show | Copy

Text Analytics - 5,000 transactions per Key 1: active 6/4/2016 Show

Preview month. PO 0P 0000.00.0.0.0.0.9.0.00.000 0000004 7:01:59 PM Quota Buy On Azure @
Regenerate | Show | Copy
Key 2:
XXXXXKKXXXXKEXXKXKXKKKXKXKKKK Cancel

Regenerate | Show | Copy

Academic - 10,000 transactions per Key 1: active 6/4/2016 Show
Preview month, 3 per second for XXXXXXKXIKHKHKKKKXK KX XXX 7:01:58 PM Quota Buy On Azure &
interpret, 1 per second for Regenerate | Show | Copy
evaluate, 6 per minute for Key 2:
calcHistogram. XXXOOCOKXKKKHKHKHKXXXKXXKK Cancel
Regenerate | Show | Copy

5. Open Visual Studio, click on New | Project..., and select Visual C# from the left-
hand side template category. From the templates section, you will see the Bot
Application template:

Dq Start Page - Microsoft Visual Studio (Administrator)
Edit View Debug Team Tools Architecture Test Analyze Window Help

New » 158 Project.. Ctrl+Shift+N
Open * %@ Web Site... Shift+Alt+N
Close % Team Project...

$x Repository...

" File... Ctrl+N

Project From Existing Code...

w¥ Save All Ctrl+Shift+S Import ’
— S EEWITAT S TIeW T INe N ET T TanmeworKk——————————

Explore what's new in Visual Studio Team Services

Account Settings... News
Recent Files »
Recent Projects and Solutions » | Looking ahead: What's New in C# 7.0

(Visual Studio "15" Preview 4)

What follows is a description of all the planned

Exit Alt+F4

www.EBooksWorld.ir

6. Select the Bot Application template, name the project rntentprocessing, and then

click on OK:
MNew Project ? X
P Recent .NET Framework 452 - | Sort by: Default - [iEEs Search Installed Templates (Ctri+E) P~
4 |nstalled | . Vi
s r Azure Mobile Service Visual C# Type: Visual C#
4 Topaplatac - s Template to build a bot application for
4 J Excel 2010 VSTO Workbaok Visual C# Microsoft Bot Framework
VOVVITIOOWS Fc*
Web @J Outlook 2010 VSTO Add-in Visual C#
I Office/SharePoint pmcs
Android @J Word 2010 VSTO Document Visual C#
Apple Watch —CH
b Cloud EE—-l Activity Library Visual C#
Cross-Platform C#
Extensibility WCF Workflow Service Application Visual C#
Biensions Eio: Bindi Lib (i0S) Visual C#
indings Library (i isual
iPad e R
iPhone : F ;
Bing Maps Application Visual C#
LightSwitch
; —cs
Heporting »E‘J Blank App (Android) Visual C#
Silverlight B
et Bot Application Visual C#
Universal o
E—

b Online

Name:
Location:

Solution name:

b 4

Click here to go online and find templates.

Bot Application1

- Browse...

Create directory for solution

C:\Users\ i O o cuments\Visual Studio 2015\Projects\

Bot Application1
[[] Create new Git repository

| OK | | Cancel |

Here, we will explain to you how to identify parts of speech in a sentence
sent by a user to a bot. For this, we will use Cognitive Services. In Cognitive
Services, we have the Linguistic Analysis API, which is responsible for
knowing the structure of a sentence.

As mentioned on the Microsoft Azure website, "The Linguistic API
uses advanced linguistic analysis tools for NLP. giving you access to
part-of-speech tagging and parsing. These tools allow you to hone in
on important concepts and actions."

"The API can tap into traditional linguistic analysis tools that allow
you to identify the concepts and actions in your text with part-of-
speech tagging, and find phrases and concepts using natural
language parsers. Whether you're mining customer feedback,
interpreting user commands, or consuming web text, understanding
the structure of the text is a critical first step.”

For more details on the preceding information, please refer: hups://ww
w.microsoft.com/cognitive-services/en-us/linguistic-analysis-api

www.EBooksWorld.ir

https://www.microsoft.com/cognitive-services/en-us/linguistic-analysis-api

Now we will use the Linguistic Analysis API in our bot to identify the parts
of speech in a sentence entered by the user. Go to the Cognitive Services

subscriptions page (https:/www.microsoft.com/cognitive-services/en-us/subscriptions), under
the Linguistic Analysis API section, copy the key, and save it in a safe place

for later use:

Linguistic Analysis | 5,000 transactions per Key 1: active 6/4/2016 Show

- Preview month, 2 per second. D 0.0.0.00.6.0.0.0.0.09.60000.00.99.6.00004 7:01:58 PM Quota

Regenemte”Shomw”Copyl Cancel

Key 2:

P O0.00.0.0.0.0,.0.0.0.9.9.0.9.0.9.0.0.0.00.9.9.9.9¢
Regenerate | Show | Copy

7. Go back to the 1ntentrrocessing solution in Visual Studio and add the following
helper classes in to your solution:

e Add the following code in anaiyzer.cs:

{

public class Analyzer

/// <summary>

/// Unique identifier for this analyzer used to
communicate with the service

/// </summary>

public Guid Id { get; set; }

/// <summary>

/// List of two letter ISO language codes for which
this analyzer is available. e.g. "en" represents
"English"

/// </summary>

public string[] Languages { get; set; }

/// <summary>

/// Description of the type of analysis used here,
such

as Constituency Tree or POS tags.

/// </summary>

public string Kind { get; set; }

/// <summary>

/// The specification for how a human should
produce ideal output for this task. Most use the
specification from the Penn Teeebank.

/// </summary>

public string Specification { get; set; }

/// <summary>

/// Description of the implementation used in this
analyzer.

/// </summary>

public string Implementation { get; set; }

e Add the fOllOWing code in AnalyzerTextRequest.cs.

public class AnalyzeTextRequest

{

/// <summary>
/// Two letter ISO language code, e.g. "en

for

www.EBooksWorld.ir

https://www.microsoft.com/cognitive-services/en-us/subscriptions

"English"
/// </summary>
public string Language { get; set; }

/// <summary>

/// List of IDs of the analyzers to be used on the
given input text; see Analyzer for more
information.

/// </summary>

public Guid[] AnalyzerIds { get; set; }

/// <summary>

/// The raw input text to be analyzed.
/// </summary>

public string Text { get; set; }

AnalyzeTextResults
public class AnalyzeTextResult
{
/// <summary>
/// The unique ID of the analyzer; see Analyzer
for more information.
/// </summary>
public Guid AnalyzerId { get; set; }

/// <summary>

/// The resulting analysis, encoded as JSON. See
the documentation for the relevant analyzer kind
for more information on formatting.

/// </summary>

public object Result { get; set; }

e Add the fOllOWing code 1n gsonconversionclasses.cs:

public class RootObject

{
public string analyzerId { get; set; }
public List<object> result { get; set; }

public class Token

{
public int Len { get; set; }
public string NormalizedToken { get; set; }
public int Offset { get; set; }
public string RawToken { get; set; }

public class TokenRootObject

{
public int Len { get; set; }
public int Offset { get; set; }
public List<Token> Tokens { get; set; }

public class Tree

{
public List<string> Nodes { get; set; }

public class Intent

{
public string intent { get; set; }
public double score { get; set; }

public class Entity

www.EBooksWorld.ir

public string entity { get; set; }
public string type { get; set; }
public int startIndex { get; set; }
public int endIndex { get; set; }
public double score { get; set; }

public class LuisResponse

{
public string query { get; set; }
public List<Intent> intents { get; set; }
public List<Entity> entities { get; set; }

enum EtityType
{
Location,
Name,
Company

8. Now open the vessagescontrorier.cs class file. Add the following required
variables in the class level, which are used while calling the Linguistic API:

#region private members

/// <summary>

/// The Default Service Host

/// </summary>

private const string DefaultServiceHost =
"https://api.projectoxford.ai/linguistics/v1.0";

/// <summary>

/// The JSON content type header.

/// </summary>

private const string JsonContentTypeHeader =
"application/json";

/// <summary>

/// The subscription key name.

/// </summary>

private const string SubscriptionKeyName = "ocp-apim-
subscription-key";

/// <summary>

/// The ListAnalyzers.

/// </summary>

private const string ListAnalyzersQuery = "analyzers";

/// <summary>

/// The AnalyzeText.

/// </summary>

private const string AnalyzeTextQuery = "analyze";

/// <summary>

/// The default resolver.

/// </summary>

private static readonly CamelCasePropertyNamesContractResolver
defaultResolver = new CamelCasePropertyNamesContractResolver ()

/// <summary>

/// The settings

/// </summary>

private static readonly JsonSerializerSettings settings = new
JsonSerializerSettings()

{

DateFormatHandling = DateFormatHandling.IsoDateFormat,

www.EBooksWorld.ir

NullValueHandling = NullValueHandling.Ignore,
ContractResolver = defaultResolver

}i

/// <summary>

/// The service host.

/// </summary>

private string serviceHost;

/// <summary>

/// The HTTP client

/// </summary>

private HttpClient httpClient;

#endregion

9. pefaultservicerost 1S just API URL. ana1yzers are used to analyze the text in all
available analyzer formats. subscriptionkeynane 18 just the HTTP header key name,
which we will mention in HTTP pefauitrequestreaders, with the value as your
Linguistic API key.

10. Next, create the nttpciient Object and set the pefaultrequestieader as shown:

httpClient = new HttpClient ()

httpClient.DefaultRequestHeaders.Add (SubscriptionKeyName,
"ENTER YOUR LINGUISTIC API KEY");

11. Next, get all analyzers supported by the API by requesting the Linguistic API, as
follows:

// List analyzers
Analyzer[] supportedAnalyzers = null;
try
{
var requestUrl = $"
{this.serviceHost}/{ListAnalyzersQuery}";

supportedAnalyzers = await SendRequestAsync<object,
Analyzer[]> (HttpMethod.Get, requestUrl);
var analyzersAsJson =
JsonConvert.SerializeObject (supportedAnalyzers,
Formatting.Indented, jsonSerializerSettings);
//Console.WriteLine ("Supported analyzers: " +
analyzersAsJson) ;

}

catch (Exception e)

{
//Console.Error.WriteLine ("Failed to list supported
analyzers: " + e.ToString());
Environment.Exit (1) ;

12. Each analyzer name contains four parts: ID, kind, a specification, and an
implementation. We use the ID for identifying each analyzer. Next, each analyzer
is a kind. This defines in very broad terms the type of analysis returned and
should uniquely define the data structure used to represent that analysis.

13. Next, create an analyzerextrequest by passing all supported analyzer IDs and the
sentence sent by the user to it:

www.EBooksWorld.ir

// RAnalyze text with all available analyzers
var analyzeTextRequest = new AnalyzeTextRequest ()
{
Language = "en",
AnalyzerIds = supportedAnalyzers.Select (analyzer =>
analyzer.Id) .ToArray(),
Text = messagetext

}i

14. Next, send a request to the Linguistic API to analyze the sentence by passing the

AnalyzeTextRequest.

object in request body.
try
{
var requestUrl = $"
{this.serviceHost}/{AnalyzeTextQuery}";

var analyzeTextResults = await
this.SendRequestAsync<object, AnalyzeTextResult[]>
(HttpMethod.Post, requestUrl, analyzeTextRequest);

resultsAsJson =
JsonConvert.SerializeObject (analyzeTextResults,
Formatting.Indented, jsonSerializerSettings);

//Console.WriteLine ("Analyze text results: " +
resultsAsJson) ;

var insightproperties = new Dictionary<string, string>
{ {"Page Name", "MessagesController" }, {"Method

Name", "Post" },

{ "Session Id",telemetry.Context.Session.Id }, {"Json
Result", resultsAsJson } };

telemetry.TrackEvent ("Post Event Views",
insightproperties);

}

catch (Exception e)

{
//Console.Error.WriteLine ("Failed to list supported
analyzers: " + e.ToString());
Environment .Exit (1) ;

15. The following is the code for sending a request to the Linguistic API:

private async Task<TResponse> SendRequestAsync<TRequest,
TResponse> (HttpMethod httpMethod, string requestUrl, TRequest
requestBody = default (TRequest))
{
var request = new HttpRequestMessage (httpMethod,
requestUrl) ;
if (requestBody != null)
{
request.Content = new
StringContent (JsonConvert.SerializeObject (requestBody,
settings), Encoding.UTF8, JsonContentTypeHeader) ;

HttpResponseMessage response = await
httpClient.SendAsync (request) ;
if (response.IsSuccessStatusCode)
{
string responseContent = null;
if (response.Content != null)

{

responseContent = await

www.EBooksWorld.ir

response.Content.ReadAsStringAsync() ;

}

if (!string.IsNullOrWhiteSpace (responseContent))

{
return JsonConvert.DeserializeObject<TResponse>
(responseContent, settings);

}

return default (TResponse);
}
else
{
if (response.Content != null &&
response.Content.Headers.ContentType
.MediaType.Contains (JsonContentTypeHeader))
{
var errorObjectString = await
response.Content.ReadAsStringAsync () ;
ClientError errorCollection =
JsonConvert.DeserializeObject<ClientError>
(errorObjectString) ;
if (errorCollection != null)
{
throw new ClientException(errorCollection,
response.StatusCode) ;

}

response.EnsureSuccessStatusCode () ;

}

return default (TResponse) ;

16. After getting a response from the API, deserialize it:

var data = JsonConvert.DeserializeObject<List<RootObject>>
(resultsAsJson) ;

In response, you will get all the supported analyzer's results. These include tokens,
POS tags, and the constituency tree:

e Tokens: In the first step of analysis, Linguistic will separate sentences and
tokens. The next task is to break sentences in to tokens. By default, English
tokens are delimited by white space. In the first step, punctuation should often
be split away from the surrounding context. Secondly, English has contractions,
such as didn't or it's, where words have been compressed and abbreviated into
smaller pieces. The goal of the tokenizer is to break the character sequence into
words.

o Parts-of-speech tags: After the separation of sentences and tokens, the next
step 1s to identify parts-of-speech.

e Constituency parsing (tree): The purpose of constituency parsing is to identify
phrases. This helps to identify the key phrases from a large given text. To a
linguist, a phrase 1s more than just a sequence of words. To be a phrase, a group
of words has to come together to play a specific role in the sentence. That group
of words can be moved together or replaced as a whole, and the sentence should

www.EBooksWorld.ir

remain fluent and grammatical.

The result of the parsing will look as shown here:

TOP
S
NP VP
PRP VBP S
VP
TO VP
VB NP
NP PP
DT JJ I NN IN NP
NNP
I want to find a new hybrid automobile with Bluetooth .

17. From the response, you will get all three lists. The following is the code for
that:

var jsonTreelist = data[0].result.ToArray();
string jsonTree = jsonTreelList.Count() > 0 ? "{Nodes:"
+ jsonTreeList[0].ToString() + "}" : null;
//jsonTree = "{Nodes:" + jsonTree;
var posTags = JsonConvert.DeserializeObject<Tree>
(jsonTree) ;

var jsonTreeView = data[l].result.ToArray();

var tokenlList = data[2].result.ToArray();
for (int i = 0; i < posTags.Nodes.Count; i++)
{
if (posTags.Nodes[i] == "NNP")
{

botOutputString += tokenData.Tokens[i].RawToken
+ " is Noun" + " \r \n";

}

else if (posTags.Nodes[i] == "VBG" ||

posTags.Nodes[i] == "VB")

{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Verb" + " \r \n";

}

else if (posTags.Nodes[i] == "WRB")

{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Adverb" + " \r \n";

}

else if (posTags.Nodes[i] == "WP")

{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Pronoun" + " \r \n";

}

else if (posTags.Nodes[i] == "JJ" |
posTags.Nodes[i] == "JJR" || posTags.Nodes[i] ==
n JJS ")

{
botOutputString += tokenData.Tokens[1].RawToken
+ " is Adjective" + " \r \n";

www.EBooksWorld.ir

}
else if (posTags.Nodes[i] == "IN")

{
botOutputString += tokenData.Tokens[i].RawToken

+ " is Preposition™ + " \r \n";

botOutputString = botOutputString != "" ? "Speech and

Natural Language Processing \r \n" + botOutputString

wm .,
’

www.EBooksWorld.ir

www.EBooksWorld.ir

Identitying the name of a person, place,
and company using LUIS

Now we will create a custom LUIS app to return all the identified Intents that are
created and trained. For example, if you say Hi John, am going to New York tonight,
the LUIS app will return natural speech and intent processing to know the name,
location, and other things, such as John as name and New York as place:

1. After logging into LUIS in 1uis.ai, create an app for your rntentprocessing. To do
that, click on New App and select New Application:

My Applications

+NewApp W & Cortana pre-built apps v © Start Tutorial

2. Enter the application's name, the usage as =ot, and select the category. Finally,
click on the Add App button:

Add a new application

Enter application name

e

Enter application usage scenario

Bot

Choose application domain(s)

CBooking & OBusiness O Comics O
Reference Communication
O Education [m] OFinance O Gaming
Entert: it [Health & CIHom:
Fitness Aut ti
Media & OMedical O Music & O Navigation &
Video Audio Maps
CINews & [m] O Productivity [IReal Estate
Magazines Personal lization O scheduler O shopping
DOsocial Osports O Telecom OTools
Network O O ranslation O Travel &
Transportation Local
DOlweather Oothers

Enter application description (optional)

Choose Application Culture

English

3. After successful creation of the app, open it and click on the + icon of the Intents
section from the left-hand side of the menu:

Natural Speech and In...

¥ App Settings

Publish

Intents @

www.EBooksWorld.ir

. Enter the name for your Intent and click on the Save button:

Add a new intent

Intent name:

NaturalProcessing

. Now add a custom entity from the left-hand side menu, click on the + icon of the
Entity, and enter the name:

Add a new Entity

‘Name I

. Repeat the preceding step for Entity company:

Add a new Entity

’ Company ‘

. Now add an Entity. From the left-hand side menu, click on the + icon of Pre-
Built Entities:

Pre-built Entities @

. Select geography as the Entity:

www.EBooksWorld.ir

Pre-built entities ®

Which Bing entity do you want to add?

WIUTTELGTy arTTiouTIts, TICTUCTig CUTTETILY

1000.00 US dollars, £20.00, $ 67.5 B

age

Age of a person or thing
10-month-old, 19 years old, 58 year-old

geography{
Continents, Countries, Cities, Post codes, and other points of interest
Antarctica, Portugal, Dubai, Sanjiang County, Lake Pontchartrain, CB3 0DS

encyclopedia

People, organizations, products, and hundreds of other types found in an encyclopedia
Acer Aspire, Harvard Business School, Jagiellonian Rowing Club, Steve Miller Band, Beijing Capital
International Airport, Amsterdam Light Festival, Microsoft

v

9. The reason why we use the pre-built Entity is that LUIS already contains
geography, which has complete information about the locations. If you want to
use a custom Entity for the location, then you will have to provide all the
cities/locations information to LUIS, otherwise LUIS cannot identify the
location from the given sentence.

10. Now we have an Intent and an Entity:

Natural Speech and In...

£+ App Settings

Publish

Intents @
NaturalProcessing

None

Entities @
Name

Company

Pre-built Entities @®
geography

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Training your app

Now you have to train your app using utterances to get the appropriate results from
LUIS.

Some examples of utterances include the following:

e [amJohn living in Ashburn, Virginia and working at Microsoft
e Jimlives in Princeton, New Jersey and works at Google

Go through the training process as we explained in previous sections:

New utterances Search Suggest Review labels

‘ I am John living in Ashburn, Virginia and working at Microsoft

iam|i'ohn living infashburn], \irginig and ‘ NaturalProcessing(1) v‘

working at

Before clicking on Submit, make sure that the sentence is identified correctly and
shows the Intent as waturaiprocessing (my intent name). If the name did not get highlighted,
then manually click on the name. It will open a popup; select Name as the Entity. For
example, here in my case, john was not highlighted by default, so I selected it
manually and clicked on the Name Intent. The same applies for the company as well:

i amjjohn{living in ashburn , virginia and

working 4 -\ hich entity is this?

Name

Company

Cancel

Now publish your LUIS. Click on the Publish option on the left-hand side menu:

£ App Settings
Publish

www.EBooksWorld.ir

Now click on the Publish web service/Update published application:

HTTP service ®

Publish Current Application to URL for access via HTTP
Update published
application
Query:

Status: Published on 22/9/2016, 2:29:52 PM

URL: https://api. prOJectoxford ai/luis/v1/application/preview?id =d4f4be3e-1d98-4080-b0a7-d9ch3afeb 7208t
subscription-key %]

Note: To enable bot integration, enable action fulfillment in one of your intents.
Enable Action Binding using Microsoft Bot Framework

Note: The Slack bot integration feature will be discontinued. Please migrate any slack bots you created to Microsoft
Bot Framework
Enable Action Binding using Slack

Download web service usage logs Download logs

Copy the URL up to query and save it in a safe place. We will need it for later steps:

URL]https://api.projectoxford. a|/|uws/v1/appl|cat|on/prewew?|d d4f4dbe3e-1d98-4080-b0a7-d9ch3afeb720&
Isubscripnon key

Now come back to Visual Studio, open the vessagescontroiier.cs file and, under the post
method, write the code to get the LUIS results:

www.EBooksWorld.ir

www.EBooksWorld.ir

Calling LUIS from the bot

To incorporate a call to LUIS, we can start by adding this function. It simply calls
LUIS and returns the phrases identified by LUIS, such as name, city, company name,
and so on.

Place your LUIS app endpoint URL, which you copied from the preceding step, in to
the following variable in your code:

var luisRequestURL =
"https://api.projectoxford.ai/luis/vl/application?id=
fbec04e7-8bda-4160-a059-a8£8pb995184b&subscription-
key=ENTER KEY HERE";

Next, append the user message, which we get from the user to the 1uisrequestur: and do
a cet request:

httpClient = new HttpClient();
HttpResponseMessage response = await
httpClient.GetAsync (luisRequestURL + "&g=" + messagetext);

string luisResponseString = await
response.Content.ReadAsStringAsync () ;

Deserialize the LUIS response and parse it to identify the Intents and Entities:

var luisResponse =
JsonConvert.DeserializeObject<LuisResponse>
(luisResponseString) ;

if (luisResponse.entities.Count > 0)
{
foreach (var entity in luisResponse.entities)
{
if (entity.type.Contains ("geography"))
{

if (!luisOutputString.ToLower () .

Contains (entity.entity.ToLower ()))
luisOutputString +=

entity.type.Replace ("builtin.geography.", "")+"
: " + entity.entity + " \r \n";

}

else if (entity.type == "Name")

{
luisOutputString += "Name: " + entity.entity +
" \r \n";

}

else if (entity.type == "Company")

{
luisOutputString += "Company: " + entity.entity
+ "w \r \n";

}

else

{
luisOutputString += entity.type + " " +

entity.entity + " \r \n";

www.EBooksWorld.ir

}

else

{
luisOutputString = "No matching found for Intent and
Language Understanding Intelligence Service
Processing";

if (botOutputString == "")

{
botOutputString = "No matching found for Natural Speech
and Intent Processing";

The complete code of the rost method will be as follows:

{

public async Task<Message> Post ([FromBody]Message message)

var properties = new Dictionary<string, string> { {"Page
Name", "MessagesController" }, {"Method Name", "Post" },

{ "Session Id",telemetry.Context.Session.Id }, {"User
Spoken Message Json",message.ToString() } };

telemetry.TrackEvent ("Post Event Views", properties);

string messagetext = message.Text;

var aiproperties = new Dictionary<string, string> { {"Page
Name", "MessagesController" }, {"Method Name","Post" },

{ "Session Id",telemetry.Context.Session.Id }, {"User
Spoken Message",messagetext } };

telemetry.TrackEvent ("Post Event Views", aiproperties);

string resultsAsdson = "", botOutputString = "";
this.serviceHost = string.IsNullOrWhiteSpace (serviceHost) ?
DefaultServiceHost : serviceHost.Trim() ;

httpClient = new HttpClient();
httpClient.DefaultRequestHeaders.Add (SubscriptionKeyName,
"b7bal08b£f576747728ad0a74a£2d5718f") ;

// List analyzers

Analyzer([] supportedAnalyzers = null;

try

{
var requestUrl = $"
{this.serviceHost}/{ListAnalyzersQuery}";

supportedAnalyzers = await SendRequestAsync<object,
Analyzer[]> (HttpMethod.Get, requestUrl);
var analyzersAsJson =
JsonConvert.SerializeObject (supportedAnalyzers,
Formatting.Indented, jsonSerializerSettings);
//Console.WriteLine ("Supported analyzers: " +
analyzersAsJson) ;

}

catch (Exception e)

{
//Console.Error.WriteLine ("Failed to list supported
analyzers: " + e.ToString());
Environment.Exit (1) ;

// Analyze text with all available analyzers
var analyzeTextRequest = new AnalyzeTextRequest ()
{
Language = "en"
AnalyzerIds = supportedAnalyzers.Select (analyzer =>

www.EBooksWorld.ir

try

}

analyzer.Id) .ToArray (),
Text = messagetext

var requestUrl = $"
{this.serviceHost}/{AnalyzeTextQuery}";

var analyzeTextResults = await
this.SendRequestAsync<object, AnalyzeTextResult[]>
(HttpMethod.Post, requestUrl, analyzeTextRequest);

resultsAsJson =
JsonConvert.SerializeObject (analyzeTextResults,
Formatting.Indented, jsonSerializerSettings);

//Console.WriteLine ("Analyze text results: " +
resultsAsJson) ;

catch (Exception e)

{

var

//Console.Error.WriteLine ("Failed to list supported
analyzers: " + e.ToString());
Environment.Exit (1) ;

data = JsonConvert.DeserializeObject<List<RootObject>>

(resultsAsdJson) ;

if
{

(data.Count == 3)

var jsonTreelist = data[0].result.ToArray();

string jsonTree = jsonTreelist.Count() > 0 ? "{Nodes:"

+ jsonTreeList[0].ToString() + "}" : null;
//jsonTree = "{Nodes:" + jsonTree;

var posTags = JsonConvert.DeserializeObject<Tree>
(jsonTree) ;

var jsonTreeView = data[l].result.ToArray();

var tokenlList = data[2].result.ToArray();
string tokenJson = tokenList.Count() > 0 ?
tokenList[0].ToString () : null;

var tokenData =
JsonConvert.DeserializeObject<TokenRootObject>
(tokendson) ;

for (int i = 0; i1 < posTags.Nodes.Count; i++)
{

if (posTags.Nodes[i] == "NNP")

{

botOutputString += tokenData.Tokens[i].RawToken

+ " is Noun" + " \r \n";
}
else if (posTags.Nodes[i] == "VBG" ||
posTags.Nodes[i] == "VB")
{

botOutputString += tokenData.Tokens[i].RawToken

+ " is Verb" + " \r \n";
}
else if (posTags.Nodes[i] == "WRB")
{

botOutputString += tokenData.Tokens[i].RawToken

+ " is Adverb" + " \r \n";
}
else if (posTags.Nodes[i] == "WP")

{

www.EBooksWorld.ir

botOutputString += tokenData.Tokens[i].RawToken
+ " is Pronoun" + " \r \n";

}

else if (posTags.Nodes[i] == "JJ" |
posTags.Nodes[i] == "JJR" || posTags.Nodes[i] ==
" JJS ")

{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Adjective" + " \r \n";

}

else if (posTags.Nodes[i] == "IN")

{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Preposition”™ + " \r \n";

botOutputString = botOutputString != "" ? "Speech and
Natural Language Processing \r \n" + botOutputString

ww o,
’

var insightproperties = new Dictionary<string, string>
{ {"Page Name", "MessagesController" }, {"Method

Name", "Post" 1},

{ "Session Id",telemetry.Context.Session.Id }, {"Result
From Linguistic API",botOutputString } };

telemetry.TrackEvent ("Post Event Views",
insightproperties);

}
else
{
botOutputString = "";

//To identify name of a person, place and Company - Using
LUIS

var luisOutputString = "Intent and Language Understanding
Intelligence Service Processing results are \r \n";

var luisRequestURL =
"https://api.projectoxford.ai/luis/vl/application?
id=fbec04e7-8bda-4160-a059-a8£8b995184b&subscription-
key=d14817bff85b4delaf2cc701b2e5de70";

httpClient = new HttpClient();

HttpResponseMessage response = await

httpClient.GetAsync (luisRequestURL + "&g=" + messagetext);

string luisResponseString = await
response.Content.ReadAsStringAsync () ;

var insightsproperties = new Dictionary<string, string> {
{"Page Name", "MessagesController" }, {"Method Name", "Post"
by

{ "Session Id",telemetry.Context.Session.Id }, {"Json
Result From LUIS", luisResponseString } };

telemetry.TrackEvent ("Post Event Views",
insightsproperties);

var luisResponse =
JsonConvert.DeserializeObject<LuisResponse>
(luisResponseString) ;

if (luisResponse.entities.Count > 0)

{

foreach (var entity in luisResponse.entities)

{
if (entity.type.Contains ("geography"))
{

www.EBooksWorld.ir

if (!luisOutputString.ToLower () .

Contains (entity.entity.ToLower()))

luisOutputString +=

entity.type.Replace ("builtin.geography.", "")+"
" + entity.entity + " \r \n";

}

else if (entity.type == "Name")

{
luisOutputString += "Name: " + entity.entity +
" \r \n",.

}

else if (entity.type == "Company")

{
luisOutputString += "Company: " + entity.entity

+ " \r \nll;
}
else

{
luisOutputString += entity.type + " " +
entity.entity + " \r \n";

}

else

{
luisOutputString = "No matching found for Intent and

Language Understanding Intelligence Service
Processing";

if (botOutputString == "")

{
botOutputString = "No matching found for Natural Speech

and Intent Processing";

var appinsightsproperties = new Dictionary<string, string>
{ {"Page Name", "MessagesController" }, {"Method

Name", "Post" 1},

{ "Session Id",telemetry.Context.Session.Id }, {"Final
Result From LUIS",luisOutputString } };

telemetry.TrackEvent ("Post Event Views",
appinsightsproperties) ;

return message.CreateReplyMessage (botOutputString + " \r \n
\r \n \r \n \r \n" + luisOutputString);

Run the tntentrrocessing bot and ask any sentence. You will get output as shown here:

www.EBooksWorld.ir

| am Kishore living in Ashburn, Virginia and working at

Microsoft

Speech and Natural Language Processing
Kishore is Noun

living is Verb

in is Preposition

Ashburn is Noun

Virginia is Noun

working is Verb

at is Preposition

Microsoft is Noun

Intent and Language Understanding Intelligence Service
Processing results are

Name: kishore

Company: microsoft

us_state : virginia

city : ashburn

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, we have learned the following;

e Bot dialogs: The nia109s model is a conversational process, where the exchange
of messages between the bot and the user is the primary channel for interaction
with the outside world

e LUIS: Creating language understanding models, training, and
deploying/publishing a model to an endpoint

e Cognitive Services: Linguistic API, an advanced linguistic analysis tool for
NLP, giving you access to part-of-speech tagging and parsing

www.EBooksWorld.ir

www.EBooksWorld.ir

Natural Speech and Intent Processing
Bot Using Microsoft Cognitive Services

This chapter is for understanding how to use Microsoft Cognitive Services. The bot
1dentifies the concepts and actions in the message that is sent to the bot with part-of-
speech tagging, and finds phrases and concepts using natural language parsers.
Also, it returns all the identified intents that were created and trained in the custom
LUIS app. For example, if you say "Hi John, am going to New York tonight", the bot
will return part-of-speech tagging as well as parses data for natural speech and Intent
Processing to know the name and location--that is, Name: John, Place: New York,
and so on.

You may be mining customer feedback of your application since you want to know
whether the user has given a positive or negative feedback, or you may need to
identify what your user is trying to communicate with your bot by interpreting user
commands, such as identifying what action mentioned in the text the user wants to
perform. To achieve this, first you need to have an understanding of the structure of
the text, which is a critical first step, and this chapter teaches you how to achieve the
previous mentioned scenarios.

Before starting with this chapter, you should know about Microsoft Cognitive
Services (Cortana Intelligence Services), which helps you to build applications
using very complex and powerful algorithms just through a few lines of code.

www.EBooksWorld.ir

www.EBooksWorld.ir

Microsoft Cognitive Services

Initially, Microsoft Cognitive Services was known as Microsoft Project Oxford. It
1s also known as suite of intelligent APIs and works across platforms which
provide facial recognition in images, voice recognition of speakers, language
processing, Academic Knowledge, and more. All these APIs are RESTful services.
Owing to REST services, you can develop and integrate with any programming
language; here, we use C#.

You must try out all the APIs that are available and just play around. For example,
APIs such as Face, Emotion, and Speaker recognition will always return a
confidence rating/value for each emotion identified in a given image from Face &
Emotion APIs. In the case of Speaker recognition, it will tell you how much it
accurately matches the voice to your previously registered voice. The best machine
learning example API is Language Understanding Intelligent Service (LUIS). It
has a potential for a much better text parser. To use this in an app, you'll need a
Microsoft account to log in and get API keys. You can build an application for any
platform that is easy to configure. It's free to sign up and they have paid plans, which
are currently in preview.

www.EBooksWorld.ir

www.EBooksWorld.ir

Signing up for Microsoft Cognitive
Services

Now, let's take a look at the following steps that we need to carry out while signing
up for Microsoft Cognitive Services:

1. Go to Microsoft Cognitive Services (https://www.microsoft.com/cognitive-services/en-us/)
and click on the Get started for free button at the following page:

B® Microsoft

Cognitive Services

Home APIs v Applications Developers v Pricing

Cognitive Services APIs

Tap into the power of machine learning with easy-to-use REST APls.

Get started for free

2. On the next page, click on the Let's go button:

Let's go

3. Alternatively, you can also click on the My account option in the top-right
corner of the page and log in using Microsoft Account:

My account k:{

4. After a successful sign in, you have to subscribe to each and every API
individually by checking the checkbox of each API. Select all and click on the
Subscribe option. Now you are ready to use Cognitive Services:

www.EBooksWorld.ir

https://www.microsoft.com/cognitive-services/en-us/

Home APls ¥ Apps Docs + Help ¥ Pricing Get started for free Sign ou

HeHO, Kishore Gaddam! kishoreismac@outlook.com ¥ verified

you have areadly subscribe all products

Subscribe to new free trials
Tab into the power of machine learning with easy to use REST APIs

Bing Autosuggest - Free Created on 6/4/2016 1:31:57 PM
10,000 transactions per month, 10 per second.
State: active

Key 1:00GCOCOGACOCOBAOOXKKOONK Regenerate | Show | Copy
Key 2:XXXX OO Regenerate | Show | Copy

o

Show Quota

e

Bing Search - Free Created on 6/4/2016 1:31:57 PM
Across all Bing Search APIs (Web, Image, Video, News): 1,000 transactions per month, 5 per second. Trial
keys expire after a 90 day period, after which a subscription may be purchased on the Azure portal.

State: expired

Kl

Key T:XXX0 KRNI KRKHXHRHR KKK | Show | Copy
Key 2:XXXX0OKXXKXIOOOKKKXNKKIKXK ! | Show | Copy
Buy On Azure 3
Bing Spei\ Check - Free Created on 6/4/2016 1:31:57 PM

5,000 transactions per month, 7 per minute.
State; active

Key T:XXXXRCOCKIEKXKKXKK Regenerate | Show | Copy
Key 2:3X0000000000CO0O0COOXXX XXX Regenerate | Show | Copy

©

v L2 0

Now you are ready to build applications that use Cognitive Services using the
respective API keys. In the next steps, we will walk-through how to use the API keys
in a bot application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Building a bot application using
Cognitive Services APIs

Let's perform the following steps to build a bot application using Cognitive Services
APIs:

1. Open Visual Studio, click on New | Project, and select Visual C# from the left
side template category; then, you will see Bot Application template under the
templates section:

Dq Start Page - Microsoft Visual Studio {Administrator)
Edit View Debug Team Tools Architecture Test Analyze Window Help

| New » 13 Project... Ctrl+Shift+N
Open * %3 Web Site.. Shift+Alt+N
Close % Team Project...

$s Repository...
N File... Ctrl+N
Project From Existing Code...

w¥ Save All Ctrl+Shift+S Import ’
orowrars rnew nr e Ner rrameworee ..

Explore what's new in Visual Studio Team Services

Account Settings... News

Recent Files »

Recent Projects and Solutions » | Looking ahead: What's New in C# 7.0
- e (Visual Studio "15" Preview 4)

What follows is a description of all the planned

2. Select Bot Application template, name the project as rntentrrocessing, and then
click on OK:

www.EBooksWorld.ir

New Project ? X
b Recent .NET Framework 4.5.2 - Sort by: Default ~ [Betd Search Installed Templates (Ctrl+E) P~
4 |nstalled | - N
e ED Azure Mobile Service Visual C# Type: Visual C#
4 Terankatan - Template to build a bot application for
u C# ;
; J Excel 2010 VSTO Workbook Visual C# Microsoft Bot Framework
VoWINGaows F.c*
Web @J Outlook 2010 VSTO Add-in Visual C#
b Office/SharePoint [
Android @J Word 2010 VSTO Document Visual C#
Apple Watch -
b otlons !E—] Activity Library Visual C#
Cross-Platform C#
Extensibility WCF Workflow Service Application Visual C#
Frtensions Ei(” Bindi Lib (i0S) Visual C#
indings Library (i isua
iPad g HE
o n Bing Maps Applicati Visual C#
ing Maps Application isua
LightSwitch
5 c#
Beporiing \'\l:.'J Blank App (Android) Visual C#
Silverlight B
=t I () Bot Application Visual C#
Universal &
e - —
§ orlne Click here to go online and find templates.
Name: Bot Application
Location: C\Users'\ il O o cuments\Visual Studio 2015\Projects\ -
Solution name: Bot Application Create directory for solution
[C] Create new Git repository
| OK | | Cancel |

Here, we will explain to you how to identify parts of speech in a sentence sent by a
user to the bot. For this, we will use Cognitive Services. In Cognitive Services, we
have the Linguistic Analysis API, which is responsible for knowing the structure of a
sentence. The Linguistic API uses advanced linguistic analysis tools for Natural
Language Processing, giving you access to part-of-speech tagging and parsing. These
tools allow you to hone in on important concepts and actions.

The API can tap into traditional linguistic analysis tools that allow you to identify the
concepts and actions in your text with part-of-speech tagging and find phrases and
concepts using natural language parsers. Whether you're mining customer feedback,
interpreting user commands, or consuming web text, understanding the structure of the
text 1s a critical first step.

3. Now we will use the Linguistic Analysis API in our bot to identify the parts of
speech in a sentence entered by the user.

4. Go to the Cognitive Services subscriptions page (https://www.microsoft.com/cognitive-ser
vices/en-US/sign-up?ReturnUrl=/cognitive-services/en-us/subscriptions). Under the Linguistic
Analysis API section, copy the key and save it in a safe place for later use:

www.EBooksWorld.ir

https://www.microsoft.com/cognitive-services/en-US/sign-up?ReturnUrl=/cognitive-services/en-us/subscriptions

- Preview

Linguistic Analysis [5,000 transactions per Key 1: active 6/4/2016 Show

month, 2 per second. |XXXXXXXXXXXXXXXXXXXXXXXXXXX| 7:01:58 PM Quota
Regenerate |[Show|||Copy
Key 2:
XXXXXXXXKXKXXXXXXXXXXXKXXXX
Regenerate | Show | Copy

Cancel

5. Return to intentprocessing solution in Visual Studio and add the following helper

classes into your solution.

6. We use the analyzer.cs class to communicate with the API respective

specifications, such as the language analyzer we will use, the type of analysis--
whether it is a constituency tree or POS tags, and on what specification it should

produce the output:

Analyzer.cs

{

7. The following class is used to send the request to the Linguistic API to process

public class Analyzer

/// <summary>

/// Unique identifier for this analyzer used to
communicate with the service

/// </summary>

public Guid Id { get; set; }

/// <summary>

/// List of two letter ISO language codes for which this
analyzer is available. e.g. "en" represents "English"
/// </summary>

public string[] Languages { get; set; }

/// <summary>

/// Description of the type of analysis used here, such
as Constituency Tree or POS tags.

/// </summary>

public string Kind { get; set; }

/// <summary>

/// The specification for how a human should produce
ideal output for this task. Most use the specification
from the Penn Treebank.

/// </summary>

public string Specification { get; set; }

/// <summary>

/// Description of the implementation used in this
analyzer.

/// </summary>

public string Implementation { get; set; }

the text received from your user:

AnalyzerTextRequest.cs

public class AnalyzeTextRequest

{

/// <summary>
/// Two letter ISO language code, e.g. "en" for "English"

www.EBooksWorld.ir

/// </summary>
public string Language { get; set; }

/// <summary>

/// List of IDs of the analyers to be used on the given
input text; see Analyzer for more information.

/// </summary>

public Guid[] AnalyzerIds { get; set; }

/// <summary>

/// The raw input text to be analyzed.

/// </summary>

public string Text { get; set; }

8. Once we receive the results from the API, we will store those results using the
following helper class:

AnalyzeTextResults

public class AnalyzeTextResult

{

/// <summary>

/// The unique ID of the analyzer; see Analyzer for more
information.

/// </summary>

public Guid AnalyzerId { get; set; }

/// <summary>

/// The resulting analysis, encoded as JSON. See the
documentation for the relevant analyzer kind for more
information on formatting.

/// </summary>

public object Result { get; set; }

9. We will receive the result from the API in JSON text; later, we will parse and
convert it into an object. The following helper classes will be used to save the
JSON response:

JsonConversionClasses

public class RootObject
{
public string analyzerId { get; set; }
public List<object> result { get; set; }
}

public class Token
{
public int Len { get; set; }
public string NormalizedToken { get; set; }
public int Offset { get; set; }
public string RawToken { get; set; }
}

public class TokenRootObject
{

public int Len { get; set; }

public int Offset { get; set; }

public List<Token> Tokens { get; set; }
}

public class Tree

www.EBooksWorld.ir

public List<string> Nodes { get; set; }

public class Intent

{
public string intent { get; set; }
public double score { get; set; }

public class Entity
{
public string entity { get; set; }
public string type { get; set; }
public int startIndex { get; set; }
public int endIndex { get; set; }
public double score { get; set; }
}
public class LuisResponse
{
public string query { get; set; }
public List<Intent> intents { get; set; }
public List<Entity> entities { get; set; }
}
enum EtityType
{
Location,
Name,
Company

10. Now, open the messagescontroiier.cs class file. Add the following required
variable in class level, which is used while calling the Linguistic API:

#region private members

/// <summary>

/// The Default Service Host

/// </summary>

private const string DefaultServiceHost =
"https://api.projectoxford.ai/linguistics/v1.0";

/// <summary>

/// The JSON content type header.

/// </summary>

private const string JsonContentTypeHeader =
"application/json";

/// <summary>

/// The subscription key name.

/// </summary>

private const string SubscriptionKeyName = "ocp-apim-
subscription-key";

/// <summary>

/// The ListAnalyzers.

/// </summary>

private const string ListAnalyzersQuery = "analyzers";

/// <summary>

/// The AnalyzeText.

/// </summary>

private const string AnalyzeTextQuery = "analyze";

/// <summary>

/// The default resolver.
/// </summary>

private static readonly

www.EBooksWorld.ir

CamelCasePropertyNamesContractResolver defaultResolver =

new CamelCasePropertyNamesContractResolver () ;

/// <summary>

/// The settings

/// </summary>

private static readonly JsonSerializerSettings settings =

new JsonSerializerSettings ()

{
DateFormatHandling =
DateFormatHandling.IsoDateFormat,
NullValueHandling = NullValueHandling.Ignore,
ContractResolver = defaultResolver

b7

/// <summary>

/// The service host.

/// </summary>

private string serviceHost;

/// <summary>

/// The HTTP client

/// </summary>

private HttpClient httpClient;

#endregion

11. pefauitservicenost 18 nothing but the API URL. ana1yzers are used to analyze the text
in all available analyzer formats. subscriptionkeyname 18 nothing but the
HTTP header key name ,which we will mention in HTTP pefau1 trequestieaders
with the value as your Linguistic API key. Next, create an rttpciient Object and
set the pefauitrequestreader as follows:

httpClient = new HttpClient () ;
httpClient.DefaultRequestHeaders.Add (SubscriptionKeyName,
"ENTER_YOUR LINGUISTIC API KEY");

12. Next, get all the ana1yzers supported by the API by requesting the Linguistic API,
as follows:

// List analyzers
Analyzer[] supportedAnalyzers = null;
try
{
var requestUrl = $"
{this.serviceHost}/{ListAnalyzersQuery}";
supportedAnalyzers = await SendRequestAsync<object,
Analyzer[]> (HttpMethod.Get, requestUrl);
var analyzersAsdJson =
JsonConvert.SerializeObject (supportedAnalyzers,
Formatting.Indented, jsonSerializerSettings);
//Console.WriteLine ("Supported analyzers: " +
analyzersAsdJson) ;
}
catch (Exception e)
{
//Console.Error.WritelLine ("Failed to list
supported analyzers: " + e.ToString());
Environment.Exit (1) ;

13. Each anaiyzers name contains four parts:

www.EBooksWorld.ir

ID

Kind
Specification
Implementation

We use an ID for identifying each analyzer; each analyzer is a kind. This
defines in very broad terms the type of analysis returned, and should uniquely
define the data structure used to represent that analysis.

14. Next, create an anaiyzerextrequest by passing all supported Analyzer IDs and the
sentence sent by the user in it:

// RAnalyze text with all available analyzers
var analyzeTextRequest = new AnalyzeTextRequest ()
{
Language = "en",
AnalyzerIds = supportedAnalyzers.Select (analyzer
=> analyzer.Id) .ToArray(),
Text = messagetext

}:

15. Next, send a request to the Linguistic API to analyze the sentence by passing the
AnalyzeTextRequest Ob] ect in its request bOdy:

try

var requestUrl = $"
{this.serviceHost}/{AnalyzeTextQuery}";

var analyzeTextResults = await
this.SendRequestAsync<object,
AnalyzeTextResult[]> (HttpMethod.Post, requestUrl,
analyzeTextRequest) ;

resultsAsJson =
JsonConvert.SerializeObject (analyzeTextResults,
Formatting.Indented, jsonSerializerSettings);

//Console.WriteLine ("Analyze text results: " +
resultsAsJson) ;

var insightproperties = new Dictionary<string,
string> { {"Page Name", "MessagesController" },
{"Method Name", "Post" 1},

{ "Session Id",telemetry.Context.Session.Id },
{"Json Result",resultsAsJdson } };

telemetry.TrackEvent ("Post Event Views",
insightproperties) ;

}

catch (Exception e)

{
//Console.Error.WriteLine ("Failed to list
supported analyzers: " + e.ToString());
Environment.Exit (1) ;

16. The following is the code for sending the request to the Linguistic API:

www.EBooksWorld.ir

private async Task<TResponse> SendRequestAsync<TRequest,
TResponse> (HttpMethod httpMethod, string requestUrl, TRequest
requestBody = default (TRequest))
{
var request = new HttpRequestMessage (httpMethod,
requestUrl) ;
if (requestBody != null)
{
request.Content = new
StringContent (JsonConvert.SerializeObject
(requestBody, settings), Encoding.UTFS,
JsonContentTypeHeader) ;

HttpResponseMessage response = await
httpClient.SendAsync (request) ;
if (response.IsSuccessStatusCode)
{
string responseContent = null;
if (response.Content != null)
{
responseContent = await
response.Content.ReadAsStringAsync () ;

{
return
JsonConvert.DeserializeObject<TResponse>
(responseContent, settings);

return default (TResponse) ;
}
else
{
if (response.Content != null &&
response.Content.Headers.ContentType
.MediaType.Contains (JsonContentTypeHeader))
{
var errorObjectString = await
response.Content.ReadAsStringAsync () ;
ClientError errorCollection =
JsonConvert.DeserializeObject
<ClientError> (errorObjectString) ;
if (errorCollection != null)
{
throw new
ClientException (errorCollection,
response.StatusCode) ;

}

response.EnsureSuccessStatusCode () ;

return default (TResponse) ;

17. After getting a response from the API, deserialize it:

var data = JsonConvert.DeserializeObject<List<RootObject>>
(resultsAsJson) ;

www.EBooksWorld.ir

if (!string.IsNullOrWhiteSpace (responseContent))

www.EBooksWorld.ir

www.EBooksWorld.ir

Analyzer's results

In response to the code mentioned in the preceding section, you will get all the
supported Analyzer's results. This includes tokens, POS tags, and the Constituency
Parsing tree:

Tokens: In the first step of analysis, linguistic will separate the sentences and
tokens. The next task is to break the sentences into tokens. By default, in English,
tokens are delimited by white space.

In the first step, punctuation often should be split away from its surrounding
context. Secondly, English has contractions, such as didn't or it's, where words
have been compressed and abbreviated into smaller pieces. The goal of the
tokenizer is to break the character sequence into words.

Parts-of-Speech Tags: After the separation of sentences and tokens, the next
step is to identify parts-of-speech, also called POS tagging. It is nothing but the
tagging of each word in the sentence with respective parts of speech. The
following is a list of supported POS tags:

Tag

Description Example words

dollar $

opening
quotation
mark

closing
quotation
mark

opening
parenthesis

([1

closing
parenthesis

www.EBooksWorld.ir

comma

dash

sentence
terminator

colon or
ellipsis

CC

conjunction,
coordinating

and but or yet

CD

numeral,
cardinal

nine 20 1980 '96

DT

determiner

a the an all both neither

EX

existential
there

there

FW

foreign word

enfant terrible hoi polloi je ne sais quoi

IN

preposition or
subordinating
conjunction

in inside if upon whether

JJ

adjective or
numeral,
ordinal

ninth pretty execrable multimodal

JIR

adjective,
comparative

better faster cheaper

www.EBooksWorld.ir

JIS

adjective,
superlative

best fastest cheapest

LS

list item
marker

(a) (b) 1 2 AB A. B.

MD

modal
auxiliary

can may shall will could might should ought

noun,
common,
singular or
mass

potato money shoe

NNP

noun, proper,
singular

Kennedy Roosevelt Chicago Weehauken

NNPS

noun, proper,
plural

Springfields Bushes

NNS

noun,
common,
plural

pieces mice fields

PDT

pre-
determiner

all both half many quite such sure this

POS

genitive
marker

PRP

pronoun,
personal

she he it [we they you

www.EBooksWorld.ir

PRP$ | pronoun, hers his its my our their your
possessive
RB adverb clinically only
adverb further gloomier grander graver greater grimmer harder harsher
RBR e healthier heavier higher however larger later leaner lengthier
comparative .
less-perfectly lesser lonelier longer louder lower more
adverb best biggest bluntest earliest farthest first furthest hardest
RBS . heartiest highest largest least less most nearest second tightest
superlative
worst
RP particle on off up out about
SYM | symbol % &
HtOH as
TO prepf)'sruon or to
infinitive
marker
UH interjection uh hooray howdy hello
verb, base . .
VB form give assign fly
VBD verb, past ave assigned flew
tense & &
verb, present
VBG | participle or giving assigning flying

gerund

www.EBooksWorld.ir

VBN | verb, past given assigned flown
participle

verb, present
tense, not 3rd
person
singular

give assign fly

verb, present
tense, 3rd
person
singular

gives assigns flies

WDT WH- . that what which
determiner

WP WH-pronoun | who whom

WH-pronoun,

. whose
possessive

WP§

WRB | WH-adverb how however whenever where

e Constituency Parsing tree: The purpose of constituency parsing is to identify
the phrases. This helps to identify the key phrases from a given big text. To a
linguist, a phrase 1s more than just a sequence of words. To be a phrase, a group
of words has to come together to play a specific role in a sentence. That group
of words can be moved together or replaced as a whole, and the sentence should
remain fluent and grammatical. The result of the parsing looks as follows:

www.EBooksWorld.ir

TOP
S
NP VP
PRP VBP S
VP
TO VP
VB NP
NP PP
DT J]] NN IN NP
NNP
I want to find a new hybrid automobile with Bluetooth .

From the response, you will get all three lists; the following is the code for that:

var jsonTreelList = data[0].result.ToArray();
string jsonTree = jsonTreelList.Count() > 0 ? "{Nodes:"
+ jsonTreeList[0].ToString() + "}" : null;
//jsonTree = "{Nodes:" + jsonTree;
var posTags = JsonConvert.DeserializeObject<Tree>
(jsonTree) ;
var jsonTreeView = data[l].result.ToArray();

var tokenList = datal[2].result.ToArray();
for (int i = 0; i < posTags.Nodes.Count; i++)
{

if (posTags.Nodes[i] == "NNP")

{

botOutputString += tokenData.Tokens[i].RawToken
+ " is Noun" + " \r \n";

}

else if (posTags.Nodes[i] == "VBG" ||

posTags.Nodes[i] == "VB")

{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Verb" + " \r \n";

}

else if (posTags.Nodes[i] == "WRB")

{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Adverb" + " \r \n";

t

else if (posTags.Nodes[i] == "WP")

{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Pronoun" + " \r \n";

}

else if (posTags.Nodes[i] == "JJ" |
posTags.Nodes[i] == "JJR" || posTags.Nodes[i] ==
" JJS n)

{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Adjective" + " \r \n";
}
else if (posTags.Nodes[i] == "IN")
{
botOutputString += tokenData.Tokens[i].RawToken
+ " is Preposition”™ + " \r \n";

}
botOutputString = botOutputString != "" ? "Speech and
Natural Language Processing \r \n" + botOutputString

ww o,
7

www.EBooksWorld.ir

So far, you have learned how to parse the text and identify the POS tags called
Speech and Natural Language Processing. In the next step, you will learn how to do
Intent Processing using LUIS.

www.EBooksWorld.ir

www.EBooksWorld.ir

Identitying the name of a person, place,
and company using LUIS

In this step, you will learn how to identify the intent in a sentence. Identifying intent is
very important, and helps you to understand what users want to do with your bot.
Once you know the intent, you can interpret the sentence based on it and identify the

actions from it;

1. After logging in to LUIS at 1uis.ai, create an app for your mntentrrocessing. To do
that, click on New App and select New Application:

+NewApp W & Cortana pre-built apps © Start Tutorial

My Applications

2. Enter the name of your application, the usage as Bot, and select a category.

Finally, click on the Add App button:

Add a new application

Enter application name

Enter application usage scenario

Bot

Choose application domain(s)

[JBooking & [Business [comics
Reference
O Education O O Finance
Entertainment [Health &
Fitness
OMedia & O Medical OMusic &
Video Audio
COINews & O [productivity
Magazines Personalization O scheduler
O Social Osports O Telecom
Network O O Translation

Transportation
[Weather O others

Enter application description (optional)

O

Communication
O Gaming

O Home

Automation
[INavigation &

Maps
[IReal Estate

O shopping
OTools
O Travel &

Local

Choose Application Culture

English

www.EBooksWorld.ir

3. After the successful creation of the app, open it and click on the + icon of the
Intents section from the left side menu:

Natural Speech and In...

£ App Settings

Publish

Intents @

4. Enter a name for your intent and click on the Save button:

Add a new intent

Intent name:

NaturalProcessing

5. Now, add a custom entity, and from the left side menu, click on the + icon of
Entity and enter Name:

Add a new Entity

me |

6. Repeat the above step for the company entity:

Add a new Entity

lCompany]

7. Now, add an entity, and from the left side menu, click on the + icon of Pre-built
Entities:

Pre-built Entities)

8. Select geography as the entity:

www.EBooksWorld.ir

Pre-built entities ®

Which Bing entity do you want to add?

WTUTTETAry arrmJuris, TTTLTULmTyg TUTTETICY

1000.00 US dollars, £20.00, $ 67.5 B

age

Age of a person or thing
10-month-old, 19 years old, 58 year-old

geography{
Continents, Countries, Cities, Post codes, and other points of interest
Antarctica, Portugal, Dubai, Sanjiang County, Lake Pontchartrain, CB3 0DS

encyclopedia

People, organizations, products, and hundreds of other types found in an encyclopedia
Acer Aspire, Harvard Business School, Jagiellonian Rowing Club, Steve Miller Band, Beijing Capital
International Airport, Amsterdam Light Festival, Microsoft

W

9. The reason why we use the pre-built entity is that LUIS already contains
geography, which has the complete information about the locations. If you want
to use a custom entity for location, then you have to provide all of the
cities/locations information to LUIS, otherwise LUIS cannot identify the
location from the given sentence.

10. Now we have an intent and an entity:

www.EBooksWorld.ir

Natural Speech and In...

£ App Settings

BE Publish

Intents ()

NaturalProcessing

None

Entities @

Company

Pre-built Entities @

geography

www.EBooksWorld.ir

www.EBooksWorld.ir

Training your app using utterances

Now, let's train your app using utterances for getting the appropriate results from

the Language Understanding Intelligent Service (LUIS). To train, you have to add
different types of utterances in your LUIS app. For this, select the New utterances
section and then add the new utterance:

New utterances Search Suggest Review labels

‘ Please, enter an utterance. ‘

Utterance is nothing but the sentence typed/asked by the user to your bot, such as "I
am Kishore living in Ashburn, Virginia and working at Microsoft." You have to enter
as many utterances as possible with your bot.

Some examples of an utterance are as follows:

e [am John living in Ashburn, Virginia and working at Microsoft
e Jimlives in Princeton, New Jersey and works at Google

1. After entering the utterance, press Enter; now, LUIS will automatically highlight
the geography and the name of the person and company in your text, as shown in
the following image:

New utterances Search Suggest Review labels

I am John living in Ashburn, Virginia and working at Microsoft

i amjohn fliving in|ashburn|, \jirginig and ‘ NaturalProcessing(1) v‘
working at bicrosof_tl

2. Before clicking on Submit, ensure that the sentence 1s identified correctly and
showing Intent as Natural Processing (my intent name). If the name is not
highlighted then manually click on the name. It will open a popup; then select
Name as the entity. For example, here in my case, john was not highlighted by
default, so I selected it manually and clicked on the Name intent. Do the same
thing for the company as well:

www.EBooksWorld.ir

i am|john|living in ashburn , virginia and

WErKIRG] oyttt s tHIE?

Company

Cancel

. Now, click on Submit. Repeat this for more combinations of sentences.

. After entering some utterances, click on the Train option, which is located in the
bottom-left corner of the page. If you don't train your LUIS, you will not get
proper results; so, ensure that you train every time you submit new utterances.
Also, you have to add the minimum number of utterances to your app, only then
can LUIS give accurate results:

E

. Now, publish your LUIS app. For that, click on the Go to Preview option at the
top of the page:

Go to Preview My Applications About

New utterances Search Suggest Review labels

. Then, click on the Publish option on the left side menu. The publish button is
enabled only in Preview mode:

$¥ App Settings
Publish

. Now, click on the Publish web service button / Update published application:

www.EBooksWorld.ir

HTTP service ®

Publish Current Application to URL for access via HTTP
Update published
application
Query:

Status: Published on 22/9/2016, 2:29:52 PM

URL: https://api.projectoxford.ai/luis/v1/application/preview?id=d4f4be3e-1d98-4080-b0a7-d9cb3afeb720&
subscription-key %%

Note: To enable bot integration, enable action fulfiliment in one of your intents.
Enable Action Binding using Microsoft Bot Framework

Note: The Slack bot integration feature will be discontinued. Please migrate any slack bots you created to Microsoft
Bot Framework
Enable Action Binding using Slack

Download web service usage logs Download logs

8. To test your LUIS app, enter the query in the Query text box and press the Enter
button. It redirects to another window and displays the following result:

www.EBooksWorld.ir

"query": "John lives in Princeton, NewJersy and works at Microsoft",
"intents": [
{
"intent": "NaturalProcessing",
"score": ©.995691538
}J
{ -
"intent": "None",
"score": ©.608353699

b
i
"entities": [
{
"entity": "newjersy",
"type": "builtin.geography.us_state",
"startIndex": 25,
"endIndex": 32

"entity": "princeton",

"type": "builtin.geography.city",
"startIndex": 14,

"endIndex": 22,

"score": 8.752777755

"entity": "microsoft",
"type": "Company",
"startIndex": 47,
"endIndex": 55,
"score": ©.999%07

"entity": "john",
"type": "Name",
"startIndex": @,
"endIndex": 3,
"score": 0.996062934

9. Copy the URL upto the query and save it in a safe place; we will need it in later
steps:

URL]https://api.projectoxford.ai/luis/v1/a pplication/preview?id=d4f4be3e-1 d98-4080-b0a7-d9ch3afeb7208&|
subscription-key 8=

www.EBooksWorld.ir

www.EBooksWorld.ir

Calling LUIS from the bot

In the previous step, we set up and configured the LUIS app and also trained it. Now,
let's see how you can use the LUIS app in a bot application. To incorporate a call to
LUIS, we can start by adding the mentioned function. It simply calls LUIS REST API
and returns the phrases and intents we set up in LUIS, for example, name, city,
company name, and so on.

Return to Visual Studio and open the vessagescontrolier.cs file; under the rost method,
update the code to get the LUIS results, as follows:

|var luisOutputString = "Intent and Language Understanding Intelligence Service Processing res

The following line of code is where we frame a LUIS app REST API URL--if you
observe, we are passing the LUIS app ID and LUIS subscription key; this is the URL
you copied from the above step, publishing settings of the LUIS app:

var luisRequestURL =
"https://api.projectoxford.ai/luis/vl/application?
id=fbec04e7-8bda-4160-a059-a8£8b995184b&subscription-
key=ENTER KEY HERE";

httpClient = new HttpClient();

HttpResponseMessage response = await

httpClient.GetAsync (luisRequestURL + "&g=" + messagetext);

string luisResponseString = await
response.Content.ReadAsStringAsync () ;

After getting a LUIS response (in JSON), we will parse/deserialize it, as follows:

var luisResponse =
JsonConvert.DeserializeObject<LuisResponse>
(luisResponseString) ;

if (luisResponse.entities.Count > 0)
{
foreach (var entity in luisResponse.entities)
{
if (entity.type.Contains ("geography"))
{
if (!1luisOutputString.ToLower () .
Contains (entity.entity.ToLower ()))
luisOutputString +=
entity.type.Replace ("builtin.geography.", "")+"
: " 4+ entity.entity + " \r \n";
}

else if (entity.type == "Name")

{
luisOutputString += "Name: " + entity.entity +
" \r \n";

}

else if (entity.type == "Company")

{
luisOutputString += "Company: " + entity.entity
+ " \r \n";

www.EBooksWorld.ir

}

else

{
luisOutputString += entity.type + " " +
entity.entity + " \r \n";

}

else

{
luisOutputString = "No matching found for Intent and
Language Understanding Intelligence Service
Processing";

}

if (botOutputString == "")

{
botOutputString = "No matching found for Natural Speech
and Intent Processing";

Finally, we will return the votoutputstring value to our user as a reply.

Refer to the How to deploy and run the bot application in the Bot Framework
emulator locally section in Chapter 2, Developing Your First Bot Using the Connector
and Builder SDK, to learn how to run and debug the bot application locally.

Run the ntentrrocessing bot and ask any sentence; you will get the following output in
the Bot emulator:

| am Kishore living in Ashburn, Virginia and working at

Microsoft

@ Speech and Natural Language Processing

Kishore is Noun
living is Verb

in is Preposition
Ashburn is Noun
Virginia is Noun
working is Verb

at is Preposition
Microsoft is Noun
Intent and Language Understanding Intelligence Service
Processing results are
Name: kishore
Company: microsoft
us_state : virginia

city : ashburn

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, we have learned the following;

e Cognitive Services: Linguistic API, advanced linguistic analysis tools for
natural language processing, giving you access to part-of-speech tagging and
parsing

e LUIS: Creating Language Understanding Models and Training and
deploying/Publishing model to an Endpoint

In the next chapter, you will learn about developing bots using LUIS Prompt Dialogs
with State and Nearby Bot using custom APIs.

If you feel like publishing your bot to other channels, refer to Chapter 9, Publishing a
bot to Skype, Slack, Facebook, and the GroupMe Channel, for how to publish our
bot to Skype, Slack, Facebook, and so on.

www.EBooksWorld.ir

www.EBooksWorld.ir

Developing Bots Using LUIS Prompt
Dialogs with State and Nearby Bot
Using Custom APIs

In this chapter, we will discuss and develop two bots. One is the Employee Enroll
bot using LUIS prompt dialogs and the other is the Nearby Bot using custom APIs.
Enroll bot is a basic employee registration kind of bot that will prompt users to enter
their first name, last name, designation, and department. If any value is not supplied,
then LUIS will prompt the user to enter the missing values. We will also discuss the
implementation of bot state. Secondly, we will develop the Nearby Bot to know the
attractions near you using a third-party API. So, let's get started.

www.EBooksWorld.ir

www.EBooksWorld.ir

Employee Enroll bot using LUIS
prompt dialogs

The following steps will guide you to create the Enroll bot:

1. Login to https//www.luis.ai/; for more information on activating or signing up for
Cognitive Services, check out Chapter 4, Natural Speech and Intent Processing

Bot Using Microsoft Cognitive Services.

2. Click on New App:

The programmatic AP keys will ne longer be used in the endpaoint starting 31/12/2016!

My Applications

& Cortana pre-buil spps. e

Let's get started
Build a new language understanding application
Privacy & Cookies erms of usa Developer Code of Conduct Trademarks £ 2016 Microsoft

hitog sisalaooicaigrlat

3. Onthe New App drop-down menu, select New Application:

B Ly apcation. % |4 _ A x
&S YA B e =B -

My Applications

www.EBooksWorld.ir

https://www.luis.ai/%20

4. It opens an Add a new application popup; enter the application name, the
application usage scenario as eot, and select the category related to your bot.
Finally, click on the Add App button:

Add a new application

Enter application name

Employee Enrol

Enter application usage scenario

Bot >

Choose application domain(s)

O Booking & [Business O Comics O Communication

Reference O Education O Entertainment O Finance

O Gaming [Health & Fitness O Home [Media & Video
Automation O Medical

O Music & Audio O Navigation & CInews & O Personalization

Maps Magazines m} Productivity
[CIReal Estate O scheduler O shopping O social Network
O sports O Telecom O Tools O Transportation

O Translation O Travel & Local Oweather Others

Enter application description (optional)

Employee Enroliment

Choose Application Culture

English

5. The following application will be created:

LUIS Gota Preview My Applications Abaut HelpDocs Suppent

Employvee Enroll Mew utterances Search Suggest Review labels
proy 99

& App Settings

Intents @
Entities *
Pre-built Entities ®
Regex Features *
Phrase List Features @

6. Our application will need to detect three entities, namely employee name
(composed of first name and last name that we will define as children in the next
steps), department, and location.

7. To create these, click on the plus sign next to Entities:

www.EBooksWorld.ir

Entities @

8. Enter Employee Name for the entity, then click on the checkbox of Include
children, and select Hierarchical as the option:

Add a new Entity

|Emp|oyee Name|

Include children
| ® Hierarchical
© Composite
Entity Children @

Children can not be edited or deleted once added

Save Cancel

9. Now, click on the plus sign next to Entity Children, as shown in the following
screenshot:

Add a new Entity

|Emp|oyee Namel

Include children
| @ Hierarchical

O Composite
Entity Childre

Children can not be edited or deleted once added.

10. Enter the first name in the children name box and again click on the plus icon
near Entity Children to add the last name as another child; click on Save:

Add a new Entity

’Employee Name ‘

Include children
@® Hierarchical

O Composite
Entity Childre
Children can not be edited or deleted opceadded
|First Name] M |Last Namel] m

11. The Employee Name will be created; you can click on the downward arrow
next to it to display its children:

Entities @
Employee Name @
First Name

Last Name

www.EBooksWorld.ir

12. Similarly, add a Department and Designation entity:

Entities

Designation

Employee Name
First Name

Last Name

®

13. You can also help LUIS by entering common keywords in the Phrase List
Features section. In the bottom-left corner of the LUIS app page you will find

the phrase list:

LUIS

¥ App Settings

Publish

Intents

None

Entities

Pre-built Entities

Regex Features

Phrase List Features

@

New utterances

14. Click on the + sign and add Departments, and name all possible
Department names with comma (,) separated words:

www.EBooksWorld.ir

15. Give the list a name.

Phrase List Features

Departments

IT, Testing, Information Technology,

Finance, HR, Human Resources,
Deveicpmend

(®) Exchangeable
(O Not exchangeable (advanced)

Cancel

16. Insert the phrases (separated by commas) and click on Save.

17. Note that Exchangeable means that what it learns about one phrase will be

automatically applied to the others.
18. Repeat the previous steps for Designations as well.

19. Our application will require to detect an intent to enroll. To create this, click on
the plus sign next to Intents:

Intents @

20. Enter enro1 for the Intent name and a sample phrase:

Add a new intent

Intent name:

Enter an example of a command that triggers this intent:

[Enrol Christina Ruther as Architect in Information Technology |

- Delete Action

— Action Info

O Fulfillment Action Type: Select Action ...

— Action Parameters
+ Add Parameter
Required Name Type Value Prompt Edit
’First Name H Employee Name::Fi v‘ Choose Phrase ~ “What is the First Narl‘ of
’Last Name H Employee Name::Lé¢ v Choose Phrase - ’What is the Last Nan‘ ool
’Designation H Designation v‘ ’What is the Designat‘ ool
’Department H Department v‘ Department ~ ’What is the Departm‘ ol

21. Click on the Save button:

www.EBooksWorld.ir

Intents

None

Enroll

www.EBooksWorld.ir

www.EBooksWorld.ir

Training the service

Now we have to train the LUIS app to identify the first name, last name, designation,
and department. The following steps will help you train your LUIS app:

1. Select the New utterances tab, enter a phrase in the box, and click on the arrow
button to process it:

Search Suggest Review labels

“ Enrol Christina Ruther as Architect in Information Techno\ogyl ‘

2. The result will be as shown in the following screenshot; it will detect the intent
(Enroll), but it will not detect the entities:

Search Suggest Review labels

Enrol Christina Ruther as Architect in Information Technology ‘

enrol christina ruther as architect in information | Enroll v‘

technology

3. Click on the name christina and a popup will appear. Expand Employee Name
and select First Name (to indicate that LUIS should learn that this is the first
name):

enrol|christinajruther as architect in information ‘ Enroll v‘

technology | yyhich entity is this?

Department
Designation m
Employee Name

Last Name

Cancel

4. Now, select ruther and repeat the preceding step:

www.EBooksWorld.ir

enrol christina puther as architect in information ‘ Enroll v]

technalegy Which entity is this?

Designation “

Employee Name (]

First Name

Cancel

5. Now select architect, and select Designation from the popup:

enrol christina ruther aslarchitect‘in information [Enroll v

technology

Which entity is this?

| Designation | m

Employee Name (]

First Name

Last Name

Cancel

6. Now select information technology, and select Department from the popup:

enrol christina ruther as architect in|information| [Enroll vl
technolog

Which entity is this?

= IRl

Designation

Employee Name °
First Name

Last Name

Cancel

7. Click on each element and label it.

8. When you are done, click on the Submit button:

www.EBooksWorld.ir

10.

11.

enrol christina ruther as architect in information

technology

This is how you provide information to help train LUIS:

New utterances Search Suggest Review labels

Utterance added successfully

Continue to train the service by giving more utterances. You will note that
eventually it will start detecting the entities on its own. However, many times
you will still have to correct it. Enter and correct at least nine different
utterances.

You can review and correct labels for utterances on the Review labels tab:

New utterances Search Suggest Review labels

‘ Show all labeled utterances V‘

Select text in an utterance to label an entity, or click to clear.

Model prediction

enroll chris henrry as manager in fiNARce Enroll (1

<

enroll chris henrry as manager in finance Enroll(1)

Model prediction

enrol chris norins as ester in i Enroll (1)

<

enrol chris norins as tester in it Enroll(1)

www.EBooksWorld.ir

www.EBooksWorld.ir

Training and publishing

Once you are done with all the possible utterances, train the app so that we can
publish the latest changes to the LUIS endpoint. Let's check out the steps to train the

app:
l.

4.

Click the Train button in the bottom left-hand corner of the LUIS app to train the

model:
]
& Train

Now, publish your LUIS app. To do so, click on the Go to Preview option at the
top of the page:

Go to Preview My Applications About

New utterances Search Suggest Review labels

Then, click on the Publish option on the left-hand side menu.

o The Publish button is enabled only in preview mode.

$# App Settings
Publish

Now, click on Update published application as shown in the following
screenshot:

HTTP service ®

Publish Current Application to URL for access via HTTP
Status: Published on 10/6/2016, 5:56:25 PM

Update published application

Query:

URL: https://api.projectoxford.ai/luis/v1/application?id=9f338a59-da59-4b37-921a-258b958d027e&subscription-
key=d14817bff85b4deOaf2cc701b2e5de70

Download web service usage logs Download logs

5. To test your LUIS app, enter the query in the Query textbox and press the Enter

button. It's redirected to another window, and the results are displayed as
follows:

www.EBooksWorld.ir

{

< > G EEE a api.projectoxford.ai/luis/v1/application

"query": "Enroll Kishore Gaddam as Architect in IT",
"intents": [

"intent": "Enroll",
"score": 8.999999046

"intent": "None",
"score": ©.239324629

}
"entities": [

“EREAERTE raEn,
"type": "Department”,
"startIndex": 38,
"endIndex": 39,
"score": 0.9971673

"entity": "architect",
"type": "Designation”,
"startIndex": 25,
"endIndex": 33,
"score": ©.843642235

"entity": "kishore",

"type": "Employee Name::First Name",
"startIndex": 7,

"endIndex": 13,

"score": ©.9482315

"entity": "gaddam",

"type": "Employee Name::Last Name",
"startIndex": 15,

"endIndex": 26,

"score": 8.919439

6. Make a note of the URL, App ID, and subscription-key shown in the following
screenshot. You will need to use these in the application that will be created

later:

For a production application, after LUIS is out of preview, you will
obtain your subscription key from Azure.

HTTP service

Publish Current Application to URL for access via HTTP
Status: Published on 10/6/2016, 5:56:25 PM

Query:

Update published application

|

App ID

URL: |https://api.projectoxford.ai/luis/v1/application?id 5

key4d14817bff85b4de0af2cc701b2e5de70]

9f338a59-da59-4b37-921a-258b958d027efisubscription-

KEY

Download web service usage logs

Download logs

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating the C# class for LUIS
response

For the application, we will have to create C# classes to hold the expected results of
the LUIS output.

In the following steps, when you test the LUIS endpoint as in the fifth step of the
preceding section, it generates a JSON output; simply select all the contents and copy
them:

1. Go to https//json2csharp.com/ OF http//jsonutils.com/, or use JSON C# Class Generator at htt
ps:/jsonclassgenerator.codeplex.com/ and paste the contents of the JSON, then click on
Generate. These services are used to generate C# classes from a given JSON
text.

2. Copy the results:

. 2 h developed by Jonathan Keith
Json CS arp with thanks to the JSON C# Class Generator project

and James Newton-King's Json NET

public class Intent

public string intent { get; set; }
public double score | get; set; |

public class Entity

public string entity { get; set; }
public string type { get; set; }
public int startIndex { get; set;
public int endIndex | get; set; |}
public double score { get; set; }

public class RootObject

public string query { get; set; }
public List<Intent> intents { get; set: |}
public List<Entity> entities { get; set; |

Cloze Copy

www.EBooksWorld.ir

http://json2csharp.com/
http://jsonutils.com/
https://jsonclassgenerator.codeplex.com/

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating the bot application

Let's take a look at the mentioned steps to create the bot application:

1. Open Visual Studio, navigate to New | Project..., and select Visual C# from the
left side template category. Then, from the templates section, you will see the
Bot Application template:

Dq Start Page - Microsoft Visual Studio (Administrator)
File | Edit View Debug Team Tools Architecture Test Analyze Window Help

[New » 153 Project.. Ctrl+Shift+N
Open | %B Web Site.. Shift+Alt+N
Close 12 Team Project...
L5 Repository...
) File.. Ctrl+N
Project From Existing Code...
w¥ Save All Ctrl+Shift+S Import ;

WA S W T TNE N E T FTaME WO
Explore what's new in Visual Studio Team Services

Account Settings... News

Recent Files »

Recent Projects and Solutions » Looking ahead: What's New in C# 7.0
- e (Visual Studio "15" Preview 4)

What follows is a description of all the planned

2. Select the Bot Application template, name the project emp1oyeernroizot, and then
click on OK:

www.EBooksWorld.ir

New Project

P Recent

4 |nstalled

A4 Temaglatoc

¥ N Visual C#

%4

o

=

b Online

Name:

Location:

Solution name:

WWINGo'
Web
Office/SharePoint
Android

Apple Watch
Cloud
Cross-Platform

Extensibility

@

Extensions
iPad
iPhone
LightSwitch
Reporting
Silverlight
Test

Universal

Bot Application

v

.NET Framework 452 - | Sort by: Default

T

Search Installed Templates (Ctrl+E)

Type: Visual C#

Template to build a bot application for

Microsoft Bot Framework

X
p-

Azure Mobile Service Visual C#
FC# §
[ZlJ Excel 2010 VSTO Workbook Visual C#
FC#
@J Outlook 2010 VSTO Add-in Visual C#
G
@J Word 2010 VSTO Document Visual C#
c#
ﬁj Activity Library Visual C#
c#
WCF Workflow Service Application Visual C#
By
‘!E Bindings Library (i0S) Visual C#
n Bing Maps Application Visual C#
P
&H\J Blank App (Android) Visual C#
I <> Bot Application Visual C#
—

Click here to go online and find templates.

C\Users'\ il O o cuments\Visual Studio 2015\Projects\

Bot Application

W Browse...

Create directory for solution

[C] Create new Git repository

| ok

| | Cancel

3. Add a new class and name the class rurs. Then, paste the C# classes that you
generated for LUIS in the preceding step. Rename the rootooject class to ruts:

www.EBooksWorld.ir

namespace EmployeeEnrolBot
il
1 reference | 0 changes | 0 authors, 0 c
public class Intent
{
0 es | Ocl s, 0 change
public strlng intent { get, set; }
0 references | 0 changes | 0 authors, 0 changes
public double score { get; set; }
}
1 reference | 0 cha inges | 0 authors, 0 changes
publlc class Entlty
{
0 references | 0 changes | 0 authors, 0 changes
public string entity { get
0 references | 0 changes | 0 authors, 0 chang
public string type { get set }
0 references | O char ;><\ 0 authors, 0 changes
publlc int startIndex { get; set; }
0 references | 0 changes | 0 authors, 0 changes
public int endIndex { get; set; }
0 references | 0 changes | 0 authors, 0 changes
public double score { get; set; }
}
-,—,;{{‘q‘ ces | O cha s, 0 change
{
0 references | 0 changes | 0 authors, 0 changes
public strlng query { get, set; }
0 references | 0 changes | 0 authors, 0 changes
public List<Intent> intents { get; set; }
0 references | 0 cha 1ges | 0 authors, 0 changes
public List<Entity> entities { get; set; }
}
}

4. Add the following class into the file:

public class Query
{
public string FirstName { get; set; }
public string LastName { get; set; }
public string Class { get; set; }
public string Period { get; set; }
}

This class will be used to display the final results on the bot.

5. Open the wen.contig file and add the following keys in to it:

il of "

<add key “LUTS Urlr value="https: //apl pro1ectoxford ai/luis/vl/application” />

<add key="LUIS APP_Id" value="{iiis : />

<add key="LUIS_Subscription_Key" value=
</appSettings>

/>

6. Now, open the vessagescontroiier.cs file and add the following method into it:

private static async Task<LUIS> QueryLUIS (string Query)

{
LUIS LUISResult = new LUIS();
var LUISQuery = Uri.EscapeDataString (Query);

www.EBooksWorld.ir

using (System.Net.Http.HttpClient client = new
System.Net.Http.HttpClient ())
{
// Get key values from the web.config
string LUIS Url =
ConfigurationManager.AppSettings["LUIS Url"];
string LUIS Id =
ConfigurationManager.AppSettings["LUIS APP Id"];
string LUIS Subscription Key =
ConfigurationManager.AppSettings
["LUIS Subscription Key"];

string RequestURI = String.Format ("{0}?id=
{1l}&subscription-key={2}&g={3}",

LUIS Url, LUIS Id, LUIS Subscription Key,
LUISQuery) ;

System.Net.Http.HttpResponseMessage msg = await
client.GetAsync (RequestURI) ;

if (msg.IsSuccessStatusCode)

{
var JsonDataResponse = await
msg.Content.ReadAsStringAsync() ;
LUISResult =
JsonConvert.DeserializeObject<LUIS>
(JsonDataResponse) ;

}
return LUISResult;

7. MOdlf}’ the rost method 1n the MessagesController.cs file as follows:

public async Task<HttpResponseMessage> Post ([FromBody]Activity
{
if (activity.Type == ActivityTypes.Message)
{
ConnectorClient connector = new
ConnectorClient (new
Uri (activity.ServiceUrl));
var messageText = activity.Text;
string list = "";
var rootObject = new RootObject();
try
{
var http = new HttpClient ()

HttpResponseMessage placesResponse = await
http.GetAsync (new

Uri ("https://maps.googleapis.com/maps/api
/place/textsearch/json?query=" + messageText

+
"&key=AIzaSyBjjWgN7J444VbwbpOukC-
9MAJjgFYHBiCM")) ;

var jsonResponse = await

placesResponse.Content.ReadAsStringAsync () ;

if (jsonResponse != null && jsonResponse !=

")

{
rootObject =
JsonConvert.DeserializeObject<RootObject>
(jsonResponse) ;

}

catch (Exception ex)

www.EBooksWorld.ir

activity)

// return our reply to the user
Activity reply =
activity.CreateReply ("Oops....
Something went wrong please try again.
"tex.Message) ;
await
connector.Conversations.ReplyToActivityAsync
(reply);

}

if (rootObject.results.Count > 0)

{
foreach (var item2 in rootObject.results)

{

list += item2.name + "," + "\r \n";

// return our reply to the user
Activity reply = activity.CreateReply(list);
await
connector.Conversations.ReplyToActivityAsync
(reply);
}
else
{
// return our reply to the user
Activity reply = activity.CreateReply ("Sorry
we are unable to find the results for " +

"'+ messageText + "''" + "Please make sure
that you have typed correct phrase..." + "\r
\n" + " some examples are..." + "\r \n" +
"rw 4 "Restaurants in Albany"™ + "''" + "\r
\n" + "(or)" + "\r \n" + "''" + "show me book
stores in Norwich"™ + "''"™ 4+ """ 4 "\pr \n" +
"(or)"™ + "\r \n" + "''" 4+ "Parking near
Norwich™ 4+ "''" 4+ "v'vw 4 v"\yr \n" + "(or)" +
"\r \n" + "''" + "atms surrounding Norwich" +
"'Ill+""");

await
connector.Conversations.ReplyToActivityAsync
(reply);

}

else

{
HandleSystemMessage (activity) ;

var response =
Request.CreateResponse (HttpStatusCode.OK) ;
return response;

8. Press F'5 in Visual Studio to run the bot:

www.EBooksWorld.ir

Microsoft Bot Framework Channel Emulator (3.0.0.57) = O x

Local Port Emulator Url Bot Url Microsoft App Id Microsoft App Password

9000 http://localhost:9000/ http://localhost:3979/api/messi

[il | 1 r 1

User: iUser1 w ConversationNames: i Conv1 & ; Members: {1 H Typing & | Send‘ Locale: ‘en—US|
' [
"type": "message",
Enroll Sophia Grace as "timestamp": "2016-1@-06T13:22:47.32003567",
- - "from":

Developer in Information "id": "56800324",
Technology 7 "name": "Bot1"

3
"conversation™: {
"id": "8a684dbg”,
"name": "Conv1l"
1 . H 2
Employee First Name: sophia e adipienty 4
"id": “2cic7fa3z”,

"name”: "User1”
Employee Last Name: grace

s
“text": "Employee First Name: sophia \r \n Employee Last Name: grace \r
s i 2 hnol \n Department: information technology \r \n Designation:developer”,
Department: information technology "replyToId": "17169f85fe4d4935a4fa238dc5d29978"

Designation:developer

So far, 1f the LUIS service recognized the intent and the values for all required
entities entered by the end user, all was well. However, if all the values for the
required entities were not recognized (or they were not supplied), the end user was
simply stuck.

Now we will see how we can overcome the problem posed when a user does not
supply all entities; when a user has missed any entity then LUIS will ask the user for
the missing entity using dialogs. Then, the user enters only the missing entity and
LUIS will process the response to complete it.

To use dialogs, we need to make some changes in the LUIS app. Let's look at those
changes:

1. Go to the LUIS app and click on your Intent (Enroll).
At the time of writing this book, the features described were in

preview.

2. If youdo not see the features described, switch to preview mode by clicking on
the Go to Preview option at the top of the page:

Go to Preview My Applications

3. Now, open the Enroll intent:

www.EBooksWorld.ir

Add a new intent

Intent name:

|EnroH

+ Add Action

4. When the intent opens, click on Add Action and then on Add Parameter, and add
the following parameters:

Name: First Name
Type: Employee Name::First Name
Prompt: What is the First Name?

Name: Last Name
Type: Employee Name::Last Name
Prompt: What is the Last Name?

Name: Designation

Type: Designation

Phrase List: Designation

Prompt: What is the Designation?

Name: Department

Type: Department

Phrase List: Department

Prompt: What is the Department?

5. Mark them all as required.

6. When you are done, click on the Save button:

Add a new intent

ntent narma:
Enrol

Delete Action

— Action Info

O Fulfillment Action Type: Select Action ...

— Action Parameters

+ Add Parameter

Required Name Type Value Prompt Edit

First Name Employee Name::Fi ~ IChoose PhraSEVI ‘lWhat is the First Narl off
| Last Name Employee Name::Lz ~|| [Choose Phrase | ‘ What Is the Last Nan‘ o oi
: Deslgnation | Deslgnation v_‘ |Designation ~| ‘ What Is the Deslgnaf‘ ool
_ Department Department v |Depar‘tment v| ‘ What is the Departm‘ ofl

7. Click on Train and publish the LUIS app again:

www.EBooksWorld.ir

HTTP service ®

Publish Current Application to URL for access via HTTP
Status: Published on 10/6/2016, 7:26:04 PM

Update published application
Query:

URL: |https://api.projectoxford.ai/luis/vi/application/preview}id=9f338a59-da59-4b37-921a-
258b958d027e&subscription-key=d14817bff85b4de0af2cc701b2e5de70

Note: To enable bot integration, enable action fulfillment in one of your intents.
Enable Action Binding using Microsoft Bot Framework

Note: The Slack bot integration feature will be discontinued. Please migrate any slack bots you created to Microsoft
Bot Framework
Enable Action Binding using Slack

Download web service usage logs Download logs

8. Update the URL of the LUIS app in your bot application's web.contig file.

9. On the publish page, enter Query and press Enter for the JSON content of the
updated LUIS app:

HTTP service ®

Publish Current Application to URL for access via HTTP
Status: Published on 10/6/2016, 7:44:18 PM

Update published application

[Enroll Sophia Grace as Developer in Information Technology]

Query:

URL: https://api.projectoxford.ai/luis/v1/application/preview?id=9f338a59-da59-4b37-921a-
258b958d027e8&subscription-
key=d14817bff85b4dde0af2cc701b2e5de708&q=Enroll%20Sophia%20Grace%20as%20Developer%20in%20Information%

Note: To enable bot integration, enable action fulfiliment in one of your intents.
Enable Action Binding using Microsoft Bot Framework

Note: The Slack bot integration feature will be discontinued. Please migrate any slack bots you created to Microsoft
Bot Framework

Enable Action Binding using Slack

Download web service usage logs Download logs

10. Using the JSON content, generate C# classes again and then add the updated and
newly generated classes to the rvrs.cs file:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace EmployeeEnrolBot

{

public class Value

{

public string entity { get; set; }

public string type { get; set; }

public Resolution resolution { get; set; }
}

public class Parameter

www.EBooksWorld.ir

public string name { get; set; }

public bool required { get; set; }

public List<Value> value { get; set; }
}

public class Action
{
public bool triggered { get; set; }
public string name { get; set; }
public List<Parameter> parameters { get; set; }

}

public class TopScoringIntent
{
public string intent { get; set; }
public double score { get; set; }
public List<Action> actions { get; set; }

}

public class Entity
{
public string entity { get; set; }
public string type { get; set; }
public int startIndex { get; set; }
public int endIndex { get; set; }
public double score { get; set; }
public Resolution resolution { get; set; }

}

public class Dialog

{
public string prompt { get; set; }
public string parameterName { get; set; }
public string parameterType { get; set; }
public string contextId { get; set; }
public string status { get; set; }

}

public class LUIS
{
public string query { get; set; }
public TopScoringIntent topScoringlIntent { get; set; }
public List<Entity> entities { get; set; }
public Dialog dialog { get; set; }
}

public class Resolution

{

}

public class Query

{
public string FirstName { get; set; }
public string LastName { get; set; }
public string Designation { get; set; }
public string Department { get; set; }

When LUIS has a question, it places it in the dialog property along with a contextta
that 1s used to track the exchange. In the code, we save the context1a in bot state using
the bot state service.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Bot state service

The key to good bot design is to do the following:

e Make the web service stateless so that it can be scaled
e Make it track the context of a conversation

Since all bots have these requirements, the Bot Framework has a service for storing
bot state. This lets your bot track things such as what was the last question I asked
them?

In our case, we want to save the contextza 0f the LUIS to exchange the missed
information to the LUIS app from our bot.

To do that, first we need to create sotstateciient.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating a state client

The default state client is stored in a central service. For some channel IDs, you may
want to use a state API hosted in the channel itself (for example, with the emulator
channel) so that the state can be stored in a compliant store that the channel supplies.

We have provided a helper method on the activity object, which makes it easy to get
an appropriate stateciient for a given message:

|StateClient stateClient = activity.GetStateClient();

After getting the state client, we can now save our contextta to it. When your bot sends
a reply, you simply set your object in one of the sotpata records properties, and it will
be persisted and played back to you on future messages when the context is the same.
Your bot may store data for a user, a conversation, or a single user within a
conversation (called private data). Each payload may be up to 32 KB in size. The
data may be removed by the bot or upon a user's request, for example, if the user
requests the channel to inform the bot (and therefore, the Bot Framework) to delete
the user's data.

www.EBooksWorld.ir

www.EBooksWorld.ir

Get/SetProperty methods

The C# library has helper methods called setproperty) and cetproperty (), which make it
easy to get and set any type of data from a sotpata record, including complex objects.

In this application, first we will try to get the context1a from the sotstate using the
following code--1f we already have a contextra then we will request the LUIS along
with the context1a, which we saved previously; based on the contextra, LUIS will
process the complete sentence and return the entities:

string strContextId = "";
BotData userData = await
stateClient.BotState.GetUserDataAsync
(activity.Channelld, activity.From.Id);

if (userData.GetProperty<string>

("contextId") !=null)

{
// If we have a ContextId saved in TempData
// retrieve it
strContextId = userData.GetProperty<bool>
("contextId") .ToString() ;

}

LUIS objLUISResult = await QueryLUIS (activity.Text,strContextId);

If LUIS identifies that the user missed some information, then it sends a question to
the rrompt variable of the niaiog class. Based on that, we can identify the missed entity
and prompt the user to enter it.

The LUIS app prompts a question of missed information/action along with
the context1a. We will save it into a bot state using the following code:

LUIS objLUISResult = await QueryLUIS (activity.Text,strContextId);

if (objLUISResult.dialog.prompt != null)

{
// If there is a question ask it
Result.Question =
objLUISResult.dialog.prompt;
// Set the ContextID
userData.SetProperty<string> ("contextId",
objLUISResult.dialog.contextId);
await
stateClient.BotState.SetUserDataAsync
(activity.ChannellId, activity.From.Id,
userData) ;

// return our reply to the user

Activity reply =

activity.CreateReply (Result.Question);
await
connector.Conversations.ReplyToActivityAsync
(reply);

After the question is answered, we retrieve the contextra from eotstate and then pass it

www.EBooksWorld.ir

to LUIS along with the reply to the question.

We append the context1d to the query sent to LUIS as follows:

string RequestURI = String.Format ("{0}?id={1}&subscription-key={2}&g={3}&contextId={4}",
LUIS Url, LUIS Id, LUIS Subscription Key,
LUISQuery, contextId);

System.Net.Http.HttpResponseMessage msg = await
client.GetAsync (RequestURI) ;

www.EBooksWorld.ir

www.EBooksWorld.ir

Updating your Post method

Let's use the following code to update your rost method:

public async Task<HttpResponseMessage> Post ([FromBody]Activity activity)
{

if (activity.Type == ActivityTypes.Message)

{
ConnectorClient connector = new ConnectorClient (new
Uri (activity.ServiceUrl));
StateClient stateClient = activity.GetStateClient();
Query Result = new Query();

try
{
if (activity.Text != null)
{
string strContextId = "";
BotData userData = await
stateClient.BotState.GetUserDataAsync
(activity.ChannellId, activity.From.Id);

if (userData.GetProperty<string>

("contextId") !=null)

{
// If we have a ContextId saved in TempData
// retrieve it
strContextId = userData.GetProperty<string>
("contextId") .ToString() ;

LUIS objLUISResult = await

QueryLUIS (activity.Text, strContextId) ;

if (objLUISResult.dialog.prompt != null)

{
// If there is a question ask it
Result.Question =
objLUISResult.dialog.prompt;
// Set the ContextID
userData.SetProperty<string> ("contextId",
objLUISResult.dialog.contextId);
await
stateClient.BotState.SetUserDataAsync
(activity.ChannellId, activity.From.Id,
userData) ;

// return our reply to the user
Activity reply =
activity.CreateReply (Result.Question);
await
connector.Conversations.ReplyToActivityAsync
(reply);
}
else
{
userData.SetProperty<string> ("contextId",
"G
await stateClient.BotState.SetUserDataAsync
(activity.ChannellId, activity.From.Id,
userData) ;
foreach (var item in
objLUISResult.topScoringIntent.actions)
{
// Loop through the parameters
foreach (var parameter in
item.parameters)

www.EBooksWorld.ir

if (parameter.valuel[0].type ==
"Employee Name::First Name")
{
Result.FirstName =
parameter.value[0] .entity;

if (parameter.valuel[0].type ==
"Employee Name::Last Name")
{
Result.LastName =
parameter.value[0] .entity;

if (parameter.valuel[0].type ==
"Department")
{
Result.Department =
parameter.value[0] .entity;

if (parameter.value[0].type ==
"Designation™)
{
Result.Designation =
parameter.value[0] .entity;

}

// return our reply to the user

Activity reply =

activity.CreateReply ($"Employee First Name:
{Result.FirstName} \r \n Employee Last
Name: {Result.LastName} \r \n Department:
{Result.Department} \r \n Designation:
{Result.Designation}");

await
connector.Conversations.ReplyToActivityAsync
(reply);

}

catch (Exception ex)

{

// return our reply to the user

Activity reply = activity.CreateReply ($"Something
went wrong. \r \n"+ex.Message) ;

await
connector.Conversations.ReplyToActivityAsync
(reply);

}

else

{
HandleSystemMessage (activity) ;

}
var response = Request.CreateResponse (HttpStatusCode.OK) ;

return response;

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Updating your QueryLUIS method

Now, let's move on to update your oueryrurs method:

private static async Task<LUIS> QueryLUIS (string Query, string contextId)
{
// Create a new LUIS class
LUIS LUISResult = new LUIS();

using (System.Net.Http.HttpClient client = new System.Net.Http.HttpClient())
{
// Get key values from the web.config
string LUIS Url =
ConfigurationManager.AppSettings["LUIS Url"];
string LUIS Id =
ConfigurationManager.AppSettings["LUIS APP Id"];
string LUIS Subscription Key =

ConfigurationManager.AppSettings
["LUIS Subscription Key"];

// Get the text of the query entered by the user
var LUISQuery = Uri.EscapeDataString (Query);

// Send Query to LUIS and get response

string RequestURI = String.Format ("{0}?id=

{l}&subscription-key={2}&g={3}&contextId={4}",
LUIS Url, LUIS Id, LUIS Subscription Key,
LUISQuery, contextId);

System.Net.Http.HttpResponseMessage msg = await
client.GetAsync (RequestURI) ;

if (msg.IsSuccessStatusCode)
{
var JsonDataResponse = await
msg.Content.ReadAsStringAsync () ;
LUISResult = JsonConvert.DeserializeObject<LUIS>
(JsonDataResponse) ;

}

return LUISResult;

Once we've updated the QueryLUIS, let's take a look at the further steps:

1. Run the bot application, go to the bot emulator, and enter the sentence without
entering the department:

Enroll Kishore Gaddam as

Architect in

What is the Department?

2. Now, enter the department:

www.EBooksWorld.ir

Enroll Kishore Gaddam as

Architect in

What is the Department?

Employee First Name: kishore
Employee Last Name: gaddam
Department: it

Designation:architect

www.EBooksWorld.ir

www.EBooksWorld.ir

Developing a Nearby Bot using custom
APIs

So far, you have learned about bot application creation using Visual Studio,
publishing to Azure, Bot registration at dev.Botframework.com, and connecting to channels.
In this Nearby Bot tutorial, we will explain how to use third-party APIs from your
bot.

The main purpose of this bot is to provide information about the nearby amenities of
a given place--for example, if you want to know the top restaurants near New York.
This guide is for C# using the Bot Framework Connector SDK .NET
o template.

Let's look at the steps:

1. Open Visual Studio and click on New | Project...:

M Start Page - Microsoft Visual Studio (Administrator)
Edit View Debug Team Tools Architecture Test Analyze Window Help

New > h’j Project... Ctrl+Shift+N
Open » & Web Site... Shift+Alt+N
Close W Team Project...

&= Repository...

" File... Ctrl+N

Project From Existing Code...
¥ Save All Ctrl+Shift+S Import ’
Explore what's new in Visual Studic Team Services

Account Settings... News

Recent Files »

Recent Projects and Solutions » | Looking ahead: What's New in C# 7.0
= e (Visual Studio "15" Preview 4)

What follows is a description of all the planned

2. Select Visual C# from the left side template category; then, from the templates
section, you will see the Bot Application template:

www.EBooksWorld.ir

https://dev.botframework.com/

New Project 2 X

PRRecent NET Framework 452 - | Sort by: | Default o Search Installed Templates (Ctrl+E) & ~
4 - : Vi
tngtalled | [D Azure Mobile Service Visual C# Type: Visual CG#
4 Tanpbia - = Template to build a bot application for
Visual G# | Excel 2010 VSTO Workbook Visual C# Microsoft Bot Framework
v WINUOWS Fc“
Web @] Outlook 2010 VSTO Add-in Visual C#
b Office/SharePoint pmce
Ao @] Werd 2010 VSTO Document Visual C#
Apple Watch —ct
b Cloud !E_'l Activity Library Visual C#
Cross-Platform Ci
dereibity WCF Workflow Service Application Visual C#
Bdensions Ei(u Bindings Library (0S) Visual C#
indings Libra 1 Isual
ipad i g Eorely.
iPhone) -)
Bing Maps Application Visual C#
LightSwitch
; cx
Renotiing @ Blank App (Android) Visual C#
Silverlight B
1EE I P®Y ot Application Visual C# |
Universal -
—
S Onie Click here to go online and find templates.
Name: Bot Application1
Location: C:\Users\ e D o cuments\Visual Studio 2015\Projects\ -
Solution name: Bot Application1 Create directory for solution

[] Create new Git repository

3. Select the Bot Application template, name the project wearbysotr, and then click on
OK.

Before we jump into the code, first we will explain how to get the nearby places
information of a given place using third-party APIs. We will do this by using the
Google Places API. If you want to use the Google Places API, you need to have an
API key--for that, follow the following instructions:

1. Go to the Google Places API page at httpsv/developers.google.com/places/web-service/search:

{» Place Search | Google F X

Ll B & & S W ttps://developers.google.com/places/web-service/searc

2. The page looks as follows. Click on the GET A KEY button, which is on the
top-right side of the page:

Q Google Places API Home Documentation Pricing and Plans Q search = All Products SIGN IN

OVERVIEW GUIDES SUPPORT SEND FEEDBACK

3. On the next page, sign in using your Google account. If you don't have one, then
it's time to create one:

www.EBooksWorld.ir

https://developers.google.com/places/web-service/search

GO{sg|e

Please re-enter your password

Password

Need help?

Sign in with a different account

4. Once you have successfully signed in, click on the GET A KEY button again.
Now the site will prompt you to Select or Create a project, as shown. Select the
Create a new project option:

Enable Google Places APl Web Service

TodoProject

+ Create a new project

CANCEL ENABLE API

5. Enter a name for the project and then click on the CREATE AND ENABLE API
option:

www.EBooksWorld.ir

Enable Google Places APl Web Service

Enter new project name

Bots

CANCEL CREATE AND ENABLE API

6. On the next page, you will see a key that you will need to copy to a safe place,
as we will use it in later steps. After that, click on the GO TO DOCS option on

the popup:

You're ready to start developing with Google Places API Web Service!

YOUR API KEY

() Toimprove your app's security, restrict this key's usage in the API Console

RESOURCES

B Getting started <, APIConsole
L = L 1 you going Manage credentials and AFls
GO TO DOCS GO TO CONSOLE

7. On the API documentation page, select the Place Searches link:

The Google Places APl Web Service

Q Mote: Server-side and client-side libraries

The Google Places APl Web Service is a service that returns information a
establishments, geographic locations, or prominent peints of interest — ug

Introducing the API

The following place requests are available:

Place Searches [eturn a list of places based on a user's location or s|

= Place Details requests return more detailed information about a spe
= Place Add allow you to supplement the data in Google's Places datal
= Place Photos gives you access to the millions of Place related photol
» Place Autocomplete can be used to automatically fill in the name an

« Query Autocomplete can be used to provide a query prediction servi
returning suggested queries as you type.

8. On the Place Searches page, scroll down to the Text Search Requests API
documentation and copy the API usage and URL:

www.EBooksWorld.ir

Text Search Requests

The Google Places API Text Search Service is a web service that returns information about a set of places based on a
string — for example "pizza in New York" or "shoe stores near Ottawa". The service responds with a list of places
matching the text string and any location bias that has been set. The search response will include a list of places, you
can send a Place Details request for more information about any of the places in the response.

* The Google Places search services share the same usage limits. However, the Text Search service is subject to a 10-times
multiplier. That is, each Text Search request that you make will count as 10 requests against your quota. If you've purchased
the Google Places API as part of your Google Maps APls Premium Plan contract, the multiplier may be different. Please refer

to the Google Maps APls Premium Plan documentation for details.

A Text Search request is an HTTP URL of the following form:

https://maps.googleapis.com/maps/api/place/textsearch/output?parameters

9. The following is the example request:

https://maps.googleapis.com/maps/api/place/textsearch/json?
query=restaurants+in+Sydney&key=YOUR API KEY

10. Copy the request URL and replace vour ze1 xev with the key you copied/generated
in earlier steps; then, paste it in a browser address bar and press Enter. You
should be able to see the API result in JSON format, as follows:

() Place Search | Google F x / [httpsi//maps.googleapis X

< C O @& https://maps.googleapis.com/maps/api/place/textsearch/json?query=restaurants+in+Sydney&key=Alz:

"html_attributions" : [],

"next_page_token" : "CvQB4gAAABorcOSmxFenwlLe2ikVLvrxPoH2YNMgSDL31dfKr7dZmhVEDdHmjdP4ibg9jowkE1Tq5k1A8FFUZ_
avMoj1DciSFc8LDb_HgGgptJ_DBok22uaod47nkeg31EwAcEymw70Z1X6R8MoBVPKNbIXGNN5Q1KoC2R27 _xRBdWoKUaVQXWLSTca7hlyGzeRra9
skHoVeUWfUqreddxTxMg9A",

"results” : [

{
"formatted_address" : "529 Kent St, Sydney NSW 2000, Australia",
"geometry" : {
"location" : {
*lat® ; =33.875154;
"lng" : 151.284976
I,
"viewport" : {
"northeast” : {
"lat" : -33.87498464999999,
"lng" : 151.208556445
s
"southwest" : {
"lat" : -33.87521845,
"lng" : 151.208477985

by
T
"icon" : "https://maps.gstatic.com/mapfiles/place_api/icons/restaurant-71.png",
"id" : "827flac561d72ec25897df@88199315Ff7cbbc8ed”,
"name" : "Tetsuya's Restaurant”,
"opening_hours" : {
"open_now" : false,
LLFE LeeAmar + £ . 7

www.EBooksWorld.ir

11.

12.

13.

Now we need to generate the C# classes to hold the respective JSON result.

Go to https//json2csharp.com/ OF hitp:/jsonutils.com/, or use the JSON Class Generator at hit

ps//jsonclassgenerator.codeplex.com/.

Paste the contents of the JSON, and then click on Generate and copy the results:

www.EBooksWorld.ir

http://json2csharp.com/
http://jsonutils.com/
https://jsonclassgenerator.codeplex.com/

b
{
"entity": "gaddam",

"type": "Employee Name::Last Name",
"startIndex": 15,

"endIndex": 20,

"score™: 0.919439

}

. 2 h developed by Jonathan Keith
] SOn4Cs arp with thanks to the JSON C# Class Generator project
and James Newton-King's Json. NET

"score™: 0.9482315

Generate i !

public class Intent

{

public string intent { get; set; }
public double score { get; set; }
}

public class Entity

{
public string entity { get; set; }
public string type { get; set; }
public int startIndex { get; set; }
public int endIndex { get; set; }
public double score { get; set; }

}

public class RootObject

{
public string query { get; set; }
public List<Intent> intents { get; set; }
public List<Entity> entities { get; set; }

Close Copy

14. Now, go back to the project and create a neiperciasses.cs file and paste the
generated classes in it:

www.EBooksWorld.ir

15. Helper classes should contain the following classes:

{

using

afal Solution ‘NearByBotApplication' (1 project)

4 NearByBotApplication

+ C* HelperClasses.cs

packages.con
b e Web.config

3 GI’ Properties
P =B References
3 App_Start

4 Controllers

b ¥ C* MessagesController.cs
E-‘.r,j default.htm

using System;
System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Threading.Tasks;

namespace NearByBotApplication

public class Location

{
public double lat { get;
public double 1ng { get;

public class Northeast
{
public double lat { get;
public double 1lng { get;
}

public class Southwest

{
public double lat { get;
public double 1ng { get;

public class Viewport

{

public Northeast northeast { get;
public Southwest southwest { get;

public class Geometry

{

set;
set;

set;
set;

set;
set;

public Location location { get;
public Viewport viewport { get;

public class OpeningHours

{

public bool open now { get; set;
public List<object> weekday text { get; set;

public class Photo

{
public int height { get;

public List<string> html attributions { get; set;
public string photo reference { get; set;

public int width { get;

public class Result

www.EBooksWorld.ir

set;

set;

}

}

}

}

16.

17.

18.

19.

20.

public string formatted address { get; set; }
public Geometry geometry { get; set; }
public string icon { get; set; }
public string id { get; set; }
public string name { get; set; }
public OpeningHours opening hours { get; set; }
public List<Photo> photos { get; set; }
public string place id { get; set; }
public int price level { get; set; }
public double rating { get; set; }
public string reference { get; set; }
public List<string> types { get; set; }
}

public class RootObject
{
public List<object> html attributions { get; set; }
public string next page token { get; set; }
public List<Result> results { get; set; }
public string status { get; set; }

Now open the MessagesController.cs ﬁle, which is located under the controliers
folder:

it Solution ‘NearByBotApplication’ (1 project)
4 /7] NearByBotApplication

P afe Properties

D =W References

b App_Start

4 Controllers

| b v # MessagesController.cs
a1 defaulthtm

P a4) Global.asax

P & ¢* NearbyPlaces.cs

ag packages.config
b v¢1 Web.config

When the user asks Nearby Bot about restaurants in New York, under the rost
method we will send that text to the Text Search Request API to get the list of
restaurants in New York. For that, first we need to create an object for the HTTP
client:

var http = new HttpClient();

Now carry out a GET request to the Text Search Request API, as follows:

HttpResponseMessage response = await http.GetAsync (new
Uri ("https://maps.googleapis.com/maps/api/place/textsearch/json?
query=" + messageText + "&key=YOUR KEY"));

The message 1s nothing but the text received by the bot from the user.

Next, read the response from the response content using the following code:

var jsonResponse = await response.Content.ReadAsStringAsync();

www.EBooksWorld.ir

21. Now deserialize the JSON response, using the following code to parse the list

of results:

if (jsonResponse!= null && jsonResponsel!= "")
{
rootObject =
JsonConvert.DeserializeObject<RootObject>
(jsonResponse) ;

22. Now, parse and format the results and send a reply to the user with the help of

the rich text format, as follows:

if (rootObject.results.Count > 0)
{

foreach (var item2 in rootObject.results)

{

list += item2.name + "," + "\r \n";

}

// return our reply to the user

Activity reply = activity.CreateReply(list);
await
connector.Conversations.ReplyToActivityAsync
(reply);

else
// return our reply to the user

Activity reply = activity.CreateReply ("Sorry
we are unable to find the results for " +

"'+ messageText + "''" + "Please make sure
that you have typed correct phrase..." + "\r
\n" + " some examples are..." + "\r \n" +
"' 4 "Restaurants in Albany" + "''" + "\r
\n" + "(or)" + "\r \n" + "''" 4+ "show me book
stores in Norwich™ + "''™ 4+ "''" 4 v\p \n" +
"(or)"™ + "\r \n" 4+ "''" 4+ "Parking near
Norwich"™ + "''"™ 4+ "''" 4+ "\r \n" + "(or)" +
"\r \n" + "''" + "atms surrounding Norwich" +
"Illl+"ll");

await
connector.Conversations.ReplyToActivityAsync
(reply);

23. The following is the complete code for the rost method:

public async Task<HttpResponseMessage> Post ([FromBody]Activity activity)
{
if (activity.Type == ActivityTypes.Message)
{
ConnectorClient connector = new
ConnectorClient (new
Uri (activity.ServiceUrl));
var messageText = activity.Text;
string list = "";
var rootObject = new RootObject();
try
{

var http = new HttpClient ()

www.EBooksWorld.ir

HttpResponseMessage placesResponse = await
http.GetAsync (new

Uri ("https://maps.googleapis.com/maps/
api/place/textsearch/json?query=" +
messageText +
"&key=AIzaSyBjjWgN7J444VbwbpOukC
-9MAJQFYHBiCM")) ;

var jsonResponse = await
placesResponse.Content.ReadAsStringAsync () ;

if (jsonResponse != null && jsonResponse !=

"")

{
rootObject =
JsonConvert.DeserializeObject<RootObject>
(jsonResponse) ;

}

catch (Exception ex)

{

// return our reply to the user
Activity reply =
activity.CreateReply ("Oops....
Something went wrong please try again.
"tex.Message) ;
await
connector.Conversations.ReplyToActivityAsync
(reply);

}

if (rootObject.results.Count > 0)

{
foreach (var item2 in rootObject.results)

{

list += item2.name + "," + "\r \n";

// return our reply to the user

Activity reply = activity.CreateReply(list);
await
connector.Conversations.ReplyToActivityAsync
(reply);

else

// return our reply to the user

Activity reply = activity.CreateReply ("Sorry
we are unable to find the results for " +
"''" + messageText + "''" + "Please make sure
that you have typed correct phrase..." + "\r
\n" + " some examples are..." + "\r \n" +
"o+ "Restaurants in Albany" + "''" + "\r
\n" + "(or)"™ 4+ "\r \n" + "''" + "show me book
stores in Norwich" + "''" + "rrvo4

"\r \n" + " (or) " + H\r \nll + mwrairn + "Parking
near Norwich" + "''" + "''" 4 "\r \n" + "
(or)™ + "\r \n" + "''" + "atms surrounding
Norwich" + "''" 4 mrrmy.

await
connector.Conversations.ReplyToActivityAsync
(reply);

}

else

{
HandleSystemMessage (activity) ;

www.EBooksWorld.ir

}

var response =
Request.CreateResponse (HttpStatusCode.OK) ;
return response;

24. Now run the Nearby Bot locally in the bot emulator:

[localhost:3978 X

IR M0 ocalnost:3973)

=% Apps D https://ebank.united! :l: Welcome to HDFC Ba D https://indusnet.indu ﬂ State Bank of India 4® ICICI Bank L

NearByBotApplication

Describe your bot here and your terms of use etc.

Visit Bot Framework to register your bot. When you register it, remember to set your bot's endpoint to

https://your_bots_hostname/api/messages

25. Open the emulator and type a phrase, as shown in the following screenshot:

Restaurants in Sydney

26. You should get all the top restaurants in Sydney, as shown in the following

screenshot:

Tetsuya's Restaurant,

est,

ARIA Restaurant,

Sydney Cove Oyster Bar,

Cafe Sydney,

Mr. Wong,

Home Thai,

Fortune Village Chinese Restaurant,

The Malaya,

Medusa Greek Taverna,

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, we have learned the following;

e LUIS prompt dialogs: Using this feature, we can make our bot more mature by
identifying the missing / expecting entities in a given sentence, which gives a
more natural way of conversation with users.

e Third-party APIs: These are used for calling third-party APIs from the bot.

e Bot state: This will help us to store information about the user and important
information in the last conversation. Based on the last conversation, we can
communicate with users in a more natural way, like how we did in the
Employee Enroll bot.

www.EBooksWorld.ir

www.EBooksWorld.ir

Developing an IVR Bot for a Bank
Using Advanced Microsoft Bot
Framework Technologies

The Bank Interactive Voice Response (IVR) bot is like phone banking you can do
bank transactions from within the bot itself. This bot will have options such as create
account, balance enquiry, credit card payment, and delete account. The Bank IVR bot
can tell you the balance of your account. It can also pay your credit card bill as well,
by just selecting a few options.

In this bot, we will mainly use the Conversation Concept using FormFlow and
dialogs. For example, whenever a user enters some text, the bot will immediately
send a response message and also remember the entire conversation. Unlike dialogs,
FormFlow helps to handle guided conversations such as ordering a sandwich,
booking a movie ticket, setting up an appointment with a doctor, and so on. These
types of scenarios need lots of effort.

www.EBooksWorld.ir

www.EBooksWorld.ir

High-level architectural diagram

The following is the architecture diagram for the Bank IVR bot. These are the
descriptions of the numbers:

Send user Token to app Authenticate
service to allow user requests skype/channel user Channels
coming from Microsoft Bot

o
%

framework @

< P
SQL Database
App Service Bank IVR Bot
- _ (Microsoft Bot
Application Insights Framework)

>
@

For Logging

® &

1. We have the Bank IVR bot registered with Microsoft Bot Framework and
configured to channels.

2. We have an AAD authentication.

3. App service is where we publish our Bot--it requests a token to allow user
requests coming from Microsoft Bot Framework (from channels).

4. We also have a SQL database connected to App service.

5. For logging/tracking user operations, we use Application Insights.

As mentioned in preceding architecture, you need to develop a Bot Application first.
Perform the steps mentioned in the next section to develop a Bot Application using
Visual Studio.

www.EBooksWorld.ir

www.EBooksWorld.ir

Let's start coding

Perform the following steps to create the bot application:

1. Create a new C# project using the new Bot Application template.
2. Navigate to New | Project... in Visual Studio 2015; it will open the following

window:

Dq Start Page - Microsoft Visual Studio (Administrator)

File | Edit View Debug Team Tools Architecture Test Analyze Window Help
h P | Project.. Ctrl+Shift+N
Open P %3 Web Site.. Shift+Alt+N
Close & Team Project...
¥ Repository...
0 File.. Ctrl+N
Sa - Project From Existing Code...
w® Save All Ctrl+Shift+S Import L
N EEWNATS TEW T INE N E T FTaMEWorK
Explore what's new in Visual Studio Team Services
Account Settings... News
Recent Files ’
Recent Projects and Solutions » New Year, New PR Goodies
=) | In our first release of the new year, we've included a lot
B Exit Alt+F4 of great pull request features. Let's take a lap around
z Recent them to see how they can help improve your workflow.

orise 2015

New on M

2" Windows

Microsoft A
ASP.NET Cc
1 Microsoft C

>

”nr

3. Select the Bot Application template, give it a name, and click on OK:

Mew Project 1 x
b e MNED Framework 452 = | Sort by Default -| & E search installed femplates [0+ 1) P-
S Ej Aty | ibirary Vil c4 Types Misual 08
a femplales = o Template to build a bot application for
2 WIF Workflow Servics Application Visual £# Microsofl Bot Framewark
B Windows e
Wl "O.i Bindingz Librany (i) Wisual C#
b Oificay/SharePaint
Andrald n Bing Maps Applcation Wisual C#
Aapiles Wkaleds I
i i sied) il C%
Mot k‘-‘] Bk Apg (Pt ic Vil
Cross-Platform e : 5
Unberibilily NBd Bt Aeplication penate
Extensions
Cafling Bot Application Visual C#
iFad
Fhone e
i g i s Librany {it25) Wil £
LightSwitch
" L S
oy EE Clazs Library (Xarmarin Forms) Wisual C#
Siburrligght
Test =" [ownload the MET Compier Mattorm DK Yisual C#
Universal =
PRpp - E—
b Gnline ik e Doy ages uieline: el lined enupllons,
Marne: Bt Applcation?
Location: |L':'-.Users‘\Dccumems'\'nflsual Studic 2015\ rojacts I-| Brevaste..
Sclution name; [C] Create directany for salution
[Create new Git rapositany
QK Cancel

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating an account with the bot

Here, I will explain how to build a FormFlow to create an account with this bot. To
start the FormFlow and create an account, you need to create a C# class to define the
form you want the information to be completed.

Create an enum with all the options we are going to implement, as shown here:

public enum Options

{
CreateAccount,
[Terms (new string[] { "savings balance", "Savings Account
Balance" })]
[Describe ("Savings Account Balance")]
SavingsAccountBalance,
[Terms (new string[] { "current balance", "Current Account
Balance" })]
[Describe ("Current Account Balance")]
CurrentAccountBalance,

[Terms (new string[] { "creditcard payment", "CreditCard
Payment" })]
[Describe ("CreditCard Payment")]
CreditCardPayment,
[Terms (new string[] { "delete", "delete an account" })]
[Describe ("Delete an account")]
DeleteAccount,
}i
|If you observe in above enum, all the properties are decorated with [Terms (new string[] { "",

Create account options are the types of accounts the user wants to create. To do this,
create an enum With the account types:

public enum CreateAccountOptions { SavingsAccount,
CurrentAccount };

Next, add a class called customer and declare it as serializanie. This way, the bot will
serialize the entire class object and preserve the data for the next step in the
FormFlow. The FormFlow will start when a user sends any message. If it is a new
conversation, it will prompt the user with options such as Create Account, Savings
Account Balance, and so on, as shown in the following screenshot:

www.EBooksWorld.ir

g?ﬂ Please send any of these commands like IVR (or) ivr. 15:54
IVR 15:54

@ Please select an option 15:54

Create Account
Savings Account Balance
Current Account Balance

CreditCard Payment

Delete an account

The following is the code for displaying the options shown in the preceding
screenshot:

[Serializable]
class Customer
{
//Create Account Template
[Prompt ("Please send any of these commands like **IVR** (or)
xkiyrrk ")
public string StartingWord;
public Options? Option;
public CreateAccountOptions? AccountType;

public static IForm<Customer> BuildForm()
{

OnCompletionAsyncDelegate<Customer> accountStatus = async

(context, state) =>

{
await Task.Delay(TimeSpan.FromSeconds (5));
await context.PostAsync ("We are currently processing
your account details. We will message you the
status.");

}i

var builder = new FormBuilder<Customer> () ;
ActiveDelegate<Customer> isCreate = (customer) =>
customer.Option == Options.CreateAccount;

return builder.Field (nameof (Customer.StartingWord),
validate: async (state, response) =>
{
var result = new ValidateResult { IsValid =
true, Value = response };
string str = (response as string);
if ("ivr".Equals(str,
StringComparison.InvariantCultureIgnoreCase
))
{
result.IsValid = true;
return result;
}
else
{
result.Feedback = "I'm sorry. I didn't
understand you.";
result.IsValid = false;

www.EBooksWorld.ir

return result;

b

.Field (nameof (Customer.Option))
.OnCompletion (accountStatus)
.Build();

Let's say, for example, the user selected the Create Account option. The FormFlow
will prompt the user for the type of account they want to create, as shown in the
following screenshot:

@ Please select an option

Create Account
Savings Account Balance
Current Account Balance

CreditCard Payment

Delete an account

@ Please select an account type

Savings Account Current Account

To create the prompt as shown in the preceding screenshot, first we have to define an
enumn With the account type options and declare a public field in the customer class:

public enum CreateAccountOptions {
SavingsAccount,
CurrentAccount

i
In the customer class, define a public field as follows:

|public CreateAccountOptions? AccountType;

To identify that the user selected the Create Account option, we have to create
activepelegate fOT €ach option and save the value as true if the user selects that option,
or ra1se 1f the user does not select that option. activeneiegate helps to know the form
state and which step is active.

To register activepelegate, add the following lines of code:

ActiveDelegate<Customer> isCreate = (customer) => customer.Option == Options.CreateAccount;
ActiveDelegate<Customer> isBalance = (customer) =>
customer.Option == Options.SavingsAccountBalance;
ActiveDelegate<Customer> isCurrentBalance = (customer) =>

www.EBooksWorld.ir

customer.Option == Options.CurrentAccountBalance;

ActiveDelegate<Customer> isCreditCardPayment = (customer)
=> customer.Option == Options.CreditCardPayment;
ActiveDelegate<Customer> isDelete = (customer) =>
customer.Option == Options.DeleteAccount;

When the user selects an option, then its respective activepeiegate value is immediately
set to true--1n OUr scenario, this is when the user selects Create Account. Now, the

value of the iscreate delegate contains truve. Using this value, we can manage the flow
of the form builder.

Now that we know that the user selected create account, to prompt the type of account
we have to append the accountrype field to the builder object, as shown here:

|Field(nameof(Customer.AccountType))

We will append the preceding line immediately after the IVR options:

return builder.Field (nameof (Customer.StartingWord), validate: async (state, response) =>
{
var result = new ValidateResult { IsValid =
true, Value = response };
string str = (response as string);
if ("ivr".Equals(str,
StringComparison.InvariantCultureIgnoreCase
))
{
result.IsValid = true;
return result;
}
else
{
result.Feedback = "I'm sorry. I didn't
understand you.";
result.IsValid = false;
return result;

.Field (nameof (Customer.Option))
.Field (nameof (Customer.AccountType))
.OnCompletion (accountStatus)
.Build();

Next, the user has to provide their details to create an account, for prompting the user
for all the required fields, such as name, date of birth, social security number,

permanent address, and so on. To do this, we need to define public fields in the
customer Class.

For this example, we define the following fields:

[Prompt ("Please enter your {&}")]

public string FullName;
[Prompt ("Please enter your {&} like "+

"* CustomerType, DOB, Nationality, Mother's Name,

Applicant's Martial Status*")]
public string PersonalDetails;
[Prompt ("Please enter your {&} like "+
"* LandMark, District, State, City, PIN, Mobile Number,

www.EBooksWorld.ir

Email Address*")]
public string CorrespondenceAddress;
[Prompt ("Please enter your {&} like " +
"* LandMark, District, State, City, PIN, Mobile Number,
Email Address*")]
public string PermanentAddress;
public string SocialSecurityNumber;
[Prompt ("Please enter your {&} like * Name, Account Number *
") 1
public string NomineeDetails;
[Prompt ("Please enter the amount like how much do you want to
deposit in your account?")]
public string SavingsAmount;
[Prompt ("Do you want to create account with the above
details?")]

public string confirmation;

Each field has a »rompt annotation. At runtime, the prompt message will be used by the
form builder to ask the user for the value they need to enter. For example, when we
select Create Account and type in Savings Account, the next step is to provide our
details. However, if we don't know the details we have to enter at that time, the field
prompt message will be sent to the user, as shown in the following screenshot:

!?.'l Please select an option

Create Account
Savings Account Balance
Current Account Balance

CreditCard Payment

Delete an account

H?ﬁ Please select an account type
Savings Account Current Account
1
i
figit Please enter your full name

In the preceding screenshot, the prompt text Please enter your full name came from
the ru11vane field's prompt message. This way we can tell the user the value they need
to enter. Similar to ru11vame, we Will ask the user to enter all the required details.

To prompt the user as shown in the preceding screenshot, the following code needs to
be appended to the builder object:

.Field (nameof (Customer.FullName))
.Field (nameof (Customer.PersonalDetails))
.Field (nameof (Customer.CorrespondenceAddress))
.Field (nameof (Customer.PermanentAddress))
.Field (nameof (Customer.SocialSecurityNumber))
.Field (nameof (Customer.NomineeDetails))
.Field (nameof (Customer.SavingsAmount))

www.EBooksWorld.ir

The FormFlow includes some C# attributes you can add to control the dialog better;
here are the attributes:

Attribute | Purpose

Describe Changes how a field or a value is shown in the text.

Numeric Provides limits on the values accepted in a numeric field.

otionat Marks a field as optional, which means that one choice is to not supply a
ptiona

value.
Pattern Defines a regular expression to validate a string field.
Prompt Defines a prompt to use when asking for a field.
Template Defines a template that is used to generate prompts or values in prompts.
Terms Defines the input terms that match a field or value.

After the user has entered all the required fields, we will ask the user for
confirmation using the vessage method, as shown here:

.Message ("**These are your account details: ** {AccountType} {FullNe
.Field (nameof (Customer.confirmation)

If the user says yes, we will create an account; otherwise, we will have to ask the
user which field they want to modify. Before creating an account, we should validate
whether the user has entered the information correctly or not (for example, date of
birth). To validate that the user has entered the data, we have the vaiidate method, to
check the validity of the entered data. If it is valid, we continue the FormFlow;
otherwise, we will prompt the user to enter the correct value.

For example, the following code is validates the account creation confirmation:
|.Message("**These are vyour account details: ** {AccountType} {FullName} {PersonalDetails} {C

www.EBooksWorld.ir

.Field (nameof (Customer.confirmation),//),
validate: async (state, response) =>
{
var result = new ValidateResult {
IsValid = true, Value = response };

var userselection = (response as
string) .Trim() ;
if
(userselection.ToString ()
.ToLower () == "no")
{

result.Feedback = "I'm sorry. I

didn't understand you.
Please type **back**, if you can
edit your details or type **yes**
you can commit your details.";
result.IsValid = false;
}
return result;
})
.OnCompletion (accountStatus)
.Build();

Similarly, we will append the logic for all the other options to the builder, as we did
for the account creation.

Now, we are ready with FormFlow. In order to connect your form to the Bot
Framework, you need to add it to your controller as follows:

First add a method with return type of Idialog<Customer> in your controller class, in my case
internal static IDialog<Customer> MakeRootDialog ()
{
return Chain.From(() =>
FormDialog.FromForm (Customer.BuildForm))
.Do(async (context, order) =>
{
try
{

awailt context.PostAsync ("Thanks for Choosing
our Bank!");
}
catch (FormCanceledException<Customer> e)
{
string reply;
if (e.InnerException == null)
{
reply = $"You quit on {e.Last}--maybe you
can finish next time!";
}
else
{
reply = "Sorry, I've had a short circuit.
Please try again.";
}

await context.PostAsync (reply);

Next, in the rost method, modify your code with the following code:

public async Task<Message> Post ([FromBody]Message message)
{

www.EBooksWorld.ir

if (message.Type == "Message")

{
return await Conversation.SendAsync (message,
MakeRootDialog) ;

}

else

{
return HandleSystemMessage (message) ;

}

}

The combination of your C# class and connecting it to the Bot Framework is enough
to automatically create a conversation.

After adding the preceding lines of code, you are now ready to test your bot with the
Bot Framework emulator.

The final flow for account creation will be as follows:

i
il

Please select an account type

Savings Account Current Account
1
ngii Please enter your full name
sk y

Christina Ruther

.H$Aﬂ. Please enter your personal details like CustomerType, DOB, Nationality, Mother's Name, Applicant's Ma
29-08-1989, US, Christina, Single

@ Please enter your correspondence address like LandMark, District, State, City, PIN, Mobile Number, Email
1-20-DBH-30,Ashburn,VA,987654321 christina@gmail.com

@ Please enter your permanent address like LandMark, District, State, City, PIN, Mobile Number, Email Add
Same

These are your account details: Savings Account Christina Ruther 29-08-1989, US, Christina, Single
1-20-DBH-30,Ashburn, VA 987654321 christina@gmail.com Same 1234567 NA 1000$

Do you want to create account with the above details?

@ We are currently processing your account details. We will message you the status.
These are the your Complete account details:
AcccountNumber: 11760071952
Pin: 1235
FullName: Christina Ruther
AccountType: SavingsAccount
Personal Details: 29-08-1989, US, Christina, Single
Correspondence Address: 1-20-DBH-30,Ashburn,VA,987654321 christina@gmail.com
Permanent Address: Same
Social Security Number: 1234567
Neminee Details: NA

Balance: 1000%

Thanks for creating account here!

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Storing the bot conversation (new
account info) data in an Azure SQL
database

We are maintaining the state or bot conversation of the user. For this, we will use an
Azure SQL database. We save all the transactions that the user performs, such as
registering a new user, credit card payments, checking their balance, and so on.
These are the steps for storing the bot conversation in the Azure SQL database:

)

4.

. Inthe Azure portal, create a new Azure SQL database. To see how to create a

new SQL database in Azure, follow the steps shown at https:/docs.microsoft.com/en-us/

azure/sql-database/sql-database-create-databases.

. After the successful creation of a database in Azure, you have to create a table

in it. For that, you have to open your SQL database in Visual Studio 2015.

. Next, create a table using the following commands:

CREATE TABLE [dbo].[Accountant Information] (

[Id] NVARCHAR (128)DEFAULT (newid())
NOT NULL,
[AccountNumber] NVARCHAR (MAX)NOT NULL,
[PinNo] INTNOT NULL,
[AccountType] NVARCHAR (MAX)NULL,
[FullName] NVARCHAR (MAX)NOT NULL,

[Personal Information] NVARCHAR (MAX)NOT NULL,
[Correspondence Address] NVARCHAR (MAX)NOT NULL,

[Permanent Address] NVARCHAR (MAX)NOT NULL,
[SSN] NVARCHAR (MAX)NULL,
[Nominee_Information] NVARCHAR (MAX)NOT NULL,
[Saving Balance] BIGINTNULL,
[Current Balance] BIGINTNULL,
[Version] ROWVERSIONNOT NULL,
[CreatedAt] DATETIMEOFFSET (7)
DEFAULT (sysutcdatetime()) NOT NULL,
[UpdatedAt] DATETIMEOFFSET (7) NULL,
[Deleted] BITDEFAULT ((0)) NOT
NULL,
[Timestamp] DATETIMEDEFAULT ('1900-

01-01T00:00:00.000') NOT NULL,
CONSTRAINT [PK dbo.Accountant Information]
PRIMARY KEY NONCLUSTERED ([Id] ASC)

Now, you have a database and a table. Next, replace the code of the
Makerootbialog () Method with the following lines of code; these lines contain the
logic for storing the entire conversation with this bot:

internal static IDialog<Customer> MakeRootDialog ()
{
return Chain.From(() =>
FormDialog.FromForm (Customer.BuildForm))
.Do(async (context, order) =>

{

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/azure/sql-database/sql-database-create-databases

try

var completed = await order;

Random random = new Random() ;

int randomno = random.Next (1025518043,
2025518043) ;

string accno = randomno + "2";

Random rand = new Random() ;

int randno = rand.Next (0, 9);

int accpin = 1234+ randno;

await context.PostAsync ("These are the
your Complete account details:\r \n " +
"AcccountNumber:" + accno + "\r \n " +
"Pin:" 4+ accpin + "\r \n" + "FullName:" +
completed.FullName + "\r \n " +
"AccountType:" + completed.AccountType +
"\r \n " + "Personal Details:" +
completed.PersonalDetails + "\r \n"

+ "Correspondence Address:" +
completed.CorrespondenceAddress +

"\r \n " + "Permanent Address:" +
completed.PermanentAddress + "\r \n " +
"SSN:" + completed.SSN + "\r \n " +
"Nominee Details:" +
completed.NomineeDetails+"\r \n
"+"Balance:"+completed.SavingsAmount) ;
//storing the entire bot conversation

SQLDatabaseService.InsertAccountantInformation
(completed, accno,accpin) ;

await context.PostAsync ("Thanks for
Choosing SBI!");
}
catch (FormCanceledException<Customer> e)
{
string reply;
if (e.InnerException == null)
{
reply = $"You quit on {e.Last}--maybe
you can finish next time!";
}
else
{
reply = "Sorry, I've had a short
circuit.
Please try again.";
}

await context.PostAsync(reply);

5. Next, add a new class named sorpatavaseservice. After adding this class to your
project, open it and add the following method to insert the account information

into the database:

internal static

{
try
{

vold InsertAccountantInformation (Customer

completed, string accno, int accpin)

SglConnection connection = null;

string query = null;

DateTime datetime = DateTime.Now;

connection = new SglConnection ("Data
Source=k8bjlaohg3.database.windows.net;Initial
Catalog=ivrbot db;Integrated Security=False;User

www.EBooksWorld.ir

ID=datareadserver;Password=Astrani@2016;Connect
Timeout=60;Encrypt=False;
TrustServerCertificate=True;
ApplicationIntent=ReadWrite;
MultiSubnetFailover=False");
connection.Open () ;
if (completed.AccountType.ToString() ==
"SavingsAccount")
{
query = "INSERT INTO [dbo].
[Accountant Information]
(AccountNumber, PinNo, FullName, AccountType,
Personal Information,Correspondence Address,
Permanent Address,SSN,Nominee Information,
Saving Balance, Timestamp)" +
"Values ('" + accno + "', '" +
accpin + "', '" + completed.FullName
+ "', '"" + completed.AccountType +
"', ' + completed.PersonalDetails +
"l,V"+
completed.CorrespondenceAddress +
"','" + completed.PermanentAddress

+ "', ' + completed.SSN + "', '" +
completed.NomineeDetails + "', '" +
completed.SavingsAmount + "','" +

datetime + "'")";
else

query = "INSERT INTO [dbo].
[Accountant_InformationJ
(AccountNumber, PinNo, FullName, AccountType,
Personal Information,Correspondence Address,
Permanent Address, SSN,Nominee Information,
Current Balance,Timestamp)" +

"Values ('™ + accno + "','" +
accpin + "', L +
completed.FullName + "', '" +
completed.AccountType + "', '" +

completed.PersonalDetails + "', '"
+ completed.CorrespondenceAddress
o, 4
completed.PermanentAddress + "', '"
+ completed.SSN + "', '" +
completed.NomineeDetails + "', '" +
completed.SavingsAmount + "', '" +
datetime + "")";

using (SglCommand cmd = new SglCommand (query,
connection))
{

cmd.ExecuteNonQuery () ;

// connection.Close();

}

catch (Exception ex)

{

6. After adding the preceding lines of code, now start your bot application. It will
run on your local machine.

7. After successfully launching your application in the browser, you have to test
your application in the Bot Framework emulator, as explained in previous
chapters.

www.EBooksWorld.ir

8. Now, select the Create Account option in IVR bot and complete all the
preceding steps. After completion of the Create Account option, all details will
be saved in your database.

www.EBooksWorld.ir

www.EBooksWorld.ir

Checking your savings account balance
using the bot

In this section, I will explain about how to build a FormFlow to check your savings
account balance.

To check your balance, we need an account number and PIN. For that, we will add a
class called sa1ance with two fields: accountyumver and v, Next, we will define a
public property for the saiance class in the customer class, and finally we will append
the sa1ance field to the builder object:

[Serializable]
class Balance
{
[Prompt ("Please enter your account number")]
public string AccountNumber;
[Prompt ("Please enter your pin")]
public string PIN;

}i
In the customer class, define the savings salance property:

//Savings Account Balance Template
public Balance Savings Balance;

Append the savings ra1ance property to the builder object before the oncompietion
method:

builder.Field("Savings Balance.AccountNumber", isBalance,
validate: async (state, response) =>
{
var result = new ValidateResult { IsValid =
true, Value = response };
string accountnumber = (response as
string);
int accountnumberlength =
accountnumber.Length;
if (accountnumberlength <11] |
accountnumberlength >17)
{
result.Feedback = "Please enter your
valid savings account number";
result.IsValid = false;
}

return result;
})
.Field("Savings Balance.PIN", isBalance)
.Field (new FieldReflector<Customer>
("Savings Balance.Availablebalance")
.SetType (null)
.SetActive ((state) => state.Option ==
Options.SavingsAccountBalance)
.SetDefine (async (state, field) =>

{

if (state.Savings Balance != null)

www.EBooksWorld.ir

if
(state.Savings Balance

.AccountNumber != null &&
state.Savings Balance.PIN !=
null)

{
string availableBalance =
SQLDatabaseService
.checkingAccountBalance
(state.Savings Balance

.AccountNumber,
state.Savings Balance.PIN) ;
if (availableBalance != null

&& availableBalance !="")

{
field.SetPrompt (new
PromptAttribute ($"Total
available savings
account balance is
S{availableBalance:F2}"
)) i
return true;

}

else

{

return false;

field.SetPrompt (new
PromptAttribute ($"I'm sorry.
I didn't understand you."));
return true;

else

field.SetPrompt (new
PromptAttribute ($"I'm sorry. I
didn't understand you."));
return true;

1)

Also, add the following lines of code in the soupatapaseservice.cs class to get the
savings account balance from the database if the account number and pin match what
you entered at account creation:

internal static string checkingAccountBalance (string accno, string pIN)
{
if (accno == nullé&&pIN==null)
{

return null;

try

{
SglConnection connection = null;
string query = null;
connection = new SglConnection ("Data
Source=k8bjlaohg3.database.windows.net; Initial
Catalog=ivrbot db;Integrated Security=False;User
ID=datareadserver;Password=Astrani@2016;Connect
Timeout=60;Encrypt=False;TrustServerCertificate=True;
ApplicationIntent=ReadWrite;
MultiSubnetFailover=False") ;

www.EBooksWorld.ir

connection.Open() ;
MessagesController.accountnumlist = new
List<Accountant Information>();
Accountant Information accountantinf = new
Accountant_Information();
string selectquery = "Select Saving Balance from [dbo].
[Accountant Information] where
AccountNumber="+accno+"AND PinNo="+pIN;// where
AccountType="+accountType;
using (SglCommand cmd = new SglCommand())
{

cmd.CommandText = selectquery;

cmd.Connection = connection;

SglDataReader reader = cmd.ExecuteReader();

if (reader.HasRows)

{

while (reader.Read())
{
accountantinf.Balance =
reader ["Saving Balance"].ToString();

}

//connection.Close () ;

return accountantinf.Balance;

}

catch (Exception ex)
{

}

return null;

After adding the preceding lines of code, now you are ready to test your bot:

@ Please select an option

Create Account

Savings Account Balance

Current Account Balance
CreditCard Payment

Delete an account

2

@ Please enter your account number
19202525702

@ Please enter your pin
1235

@ Total Available Balance is $1000.00

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Checking your current account balance
using the bot

In this step, [will explain how to build a FormFlow for checking your current
account balance. After the savings account balance logic, append the following code
for the current account logic:

//Current Account Balance Template
public Currentbalance Current Balance;

.Field("Current Balance.AccountNumber",
isCurrentBalance, validate: async (state,
response) =>
{
var result = new ValidateResult {
IsValid = true, Value = response };
string accountnumber = (response as
string);
int accountnumberlength =
accountnumber.Length;
if (accountnumberlength < 11 ||
accountnumberlength > 17)

{

result.Feedback = "Please enter
your valid current account
number";

result.IsValid = false;
}
return result;
3]
.Field("Current Balance.PIN", isCurrentBalance)
.Field(new FieldReflector<Customer>
("Current Balance.CurrentAvailablebalance")
.SetType (null)
.SetActive ((state) => state.Option ==
Options.CurrentAccountBalance)
.SetDefine (async (state, field) h=>
{
if (state.Current Balance != null)
{
if (state.Current Balance.AccountNumber
!= null && state.Current Balance.PIN !=
null)
{
string availableBalance =
SQLDatabaseService
.checkingCurrentAccountBalance
(state.Current Balance

AccountNumber,

state.Current Balance.PIN);

if (availableBalance != null &&
availableBalance != "")

{
field.SetPrompt (new
PromptAttribute ($"Total
available current account
balance 1is
S{availableBalance:F2}"));
return true;

else

www.EBooksWorld.ir

return false;

else

field.SetPrompt (new
PromptAttribute ($"I'm sorry. I
didn't understand you."));
return true;

else

field.SetPrompt (new
PromptAttribute($"I'm sorry. I didn't
understand you."));

return true;

1)

Also, add the following lines of code in the soupatavaseservice.cs class; They contain
the logic for getting the balance of the account whose account number and pin match
the input details from the database:

internal static string checkingCurrentAccountBalance (string accountNumber, string pIN)
{
if (accountNumber == null && pIN == null)
{

return null;

try
{

SglConnection connection = null;
string query = null;
connection = new SglConnection ("Data
Source=k8bjlaohg3.database.windows.net; Initial
Catalog=ivrbot db;Integrated Security=False;User
ID=datareadserver;Password=Astrani@2016;Connect
Timeout=60;Encrypt=False;
TrustServerCertificate=True;
ApplicationIntent=ReadWrite;
MultiSubnetFailover=False");
connection.Open() ;
MessagesController.accountnumlist = new
List<Accountant Information>();
Accountant Information accountantinf = new
Accountant Information();
string selectquery = "Select Current Balance from
[dbo].[Accountant_Information] where AccountNumber=" +
accountNumber + "AND PinNo=" + pIN;// where
AccountType="+accountType;
using (SglCommand cmd = new SglCommand())
{

cmd.CommandText = selectquery;

cmd.Connection = connection;

SglDataReader reader = cmd.ExecuteReader () ;

if (reader.HasRows)

{

while (reader.Read())

{

accountantinf.Balance =
reader ["Current Balance"].ToString();

www.EBooksWorld.ir

//connection.Close () ;

}

return accountantinf.Balance;

}

catch (Exception ex)

{

}

return null;

After adding the preceding lines of code, now you are ready to test your Current
Account Balance:

@ Please select an option

Create Account

Savings Account Balance

Current Account Balance

CreditCard Payment

Delete an account

@ Please enter your account number
19202525702

. .

g Please enter your pin
1235

P

258

Next, type quit to exit the current conversation with this bot and start the next
conversation from the initial step.

www.EBooksWorld.ir

www.EBooksWorld.ir

Paying your credit card bill using the
bot

In this section, let's see how to build a FormFlow to pay a credit card bill using the
bot. However, here we will not use a database; rather the bot will just contain static
information.

Add the CreditCardPayment class:

[Serializable]

class CreditCardPayment

{
[Prompt ("Please enter your creditcard number")]
public string CreditcardNumber;
[Prompt ("Please enter how much amount do you want to pay")]
public string Pay;
public string CreditCardPaymentSuccessMessage;

}i
Next, in the customer class, define the following public field/property:

|public CreditCardPayment CreditCard Payment;

Append the following code to the builder object to perform the credit card payment;
add lt before OnCompletion (accountStatus) .

Field("CreditCard Payment.Pay", isCreditCardPayment)
.Field(new FieldReflector<Customer>
("CreditCard Payment
.CreditCardPaymentSuccessMessage")
.SetType (null)

.SetActive ((state) => state.Option ==
Options.CreditCardPayment)
.SetDefine (async (state, field) =>
{
field.SetPrompt (new
PromptAttribute ($"Successfully paid your
credit card payment."+" (Yes)"));
return true;

1)

After adding the preceding lines of code, now you are ready to test your bot:

www.EBooksWorld.ir

@ Please select an option

Create Account
Savings Account Balance

Current Account Balance

CreditCard Payment

Delete an account

4

@ Please enter your creditcard number
1234567899876543

-~

figh Please enter how much amount do you want to pay
1000

iign Successfully paid your credit card payment.s;

Next, type quit to exit the current conversation with this bot and start the next
conversation from the initial step.

www.EBooksWorld.ir

www.EBooksWorld.ir

Deleting an account using the bot

In this step, [will explain how to build a FormFlow to delete an account using this
bot.

Add the following class to delete an account:

class DeleteAccount

{

[Prompt ("Are you sure want to delete your account?")]
public string DeleteConfirmationMessage;
public string DeleteSuccessMessage;

}:

To delete an account, we need the account number. Define a field for the peieteaccount
class and one more field for the account number in the customer class, as follows:

public DeleteAccount Delete;
[Template (TemplateUsage.EnumSelectOne, "Please select your {&}
{Il}t", ChoiceStyle = ChoiceStyleOptions.PerLine)]
public string AccountNumber;

Append the following code to the vuiiaer object before oncompietion (accountstatus):

.Field (new FieldReflector<Customer>
(nameof (Customer.AccountNumber))
.SetType (null)
.SetActive ((state) => state.Option ==
Options.DeleteAccount)
.SetDefine (async (state, field) =>
{
if (state.AccountType != null)
{
MessagesController.accountnumlist
= SQLDatabaseService
.getAccountNumbers
(state.AccountType) ;

if (MessagesController.accountnumlist
!'= null &&
MessagesController.accountnumlist
.Count () > 0)
{

foreach (var account in
MessagesController.accountnumlist)

{

field.AddDescription (account.
AccountNumber.ToString (),
account.AccountNumber.ToString())

.AddTerms (account .AccountNumber.ToString (),
account.AccountNumber.ToString(),
account.AccountNumber.ToString()) ;

}

return true;

}

else

{

www.EBooksWorld.ir

field.SetPrompt (new PromptAttribute
($"I'm sorry. I didn't understand you."));
return false;

}
}
else
{
// field.SetPrompt (new PromptAttribute
($"I'm sorry. I didn't understand you."));
return true;
}
1))

.Field("Delete.DeleteConfirmationMessage",
isDelete)
.Field (new FieldReflector<Customer> ("Delete")
.SetType (null)
.SetActive ((state) => state.Option ==
Options.DeleteAccount)
.SetDefine (async (state, field) =>

{

if (state.Delete != null)
{
if (state.AccountNumber != null &&
state.Delete.DeleteConfirmationMessage
.ToLower () == "yes")

{
bool result = SQLDatabaseService.

DeleteAccountNumber (state.
AccountNumber) ;
if (result == true)
{
field.SetPrompt (new
PromptAttribute ($"Successfully
deleted your account."));
return true;
}
else

{

return false;

}

else

{
field.SetPrompt (new

PromptAttribute ($"I'm sorry.
I didn't understand you."));
return true;
}
}
else

{

return true;

1)

.OnCompletionAsync (accountStatus)
.Build();

Next, add the following lines of code in the sorpatavaseservice class. These lines
contain the logic to delete the selected account from the Azure SQL database:

internal static bool DeleteAccountNumber (string accountNumber)

{
bool result = false;
if (accountNumber == null)

www.EBooksWorld.ir

return false;
try

SglConnection connection = null;

string query = null;

connection = new SglConnection ("Data
Source=k8bjlaohg3.database.windows.net;Initial
Catalog=ivrbot db;Integrated Security=False;User
ID=datareadserver;Password=Astrani@2016;Connect
Timeout=60;Encrypt=False;TrustServerCertificate=True;
ApplicationIntent=ReadWrite;MultiSubnetFailover=False"
)

connection.Open() ;

string deletequery = "Delete from [dbo].
[Accountant Information] where AccountNumber="
+ accountNumber;
using (SglCommand cmd = new SglCommand())
{
cmd.CommandText = deletequery;
cmd.Connection = connection;
cmd.ExecuteNonQuery () ;
result = true;
// connection.Close();
return result;

}

catch (Exception ex)
{

}

return result;

After adding the preceding lines of code, now you are ready to test your bot:

Current Account Balance

CreditCard Payment

Delete an account

@ Please select an account type

Savings Account Current Account

@ Please select your account number
20255180437
I_I?‘I_I Are you sure want to delete your account?
Yes
-

Successfully deleted your account.

1=
2

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, we have learned about FormFlow. With the help of the FormFlow, we
can build bots that depend on guided conversations, such as ordering a sandwich,
booking a movie ticket, setting up an appointment with a doctor, and so on. These
types of scenario can be built with less effort using FormFlow.

www.EBooksWorld.ir

www.EBooksWorld.ir

Intelligent Bots with Microsoft Bot
Framework and Service Fabric

In this chapter, we will learn how Service Fabric helps to develop intelligent bots
using stateless and stateful microservices.

Azure Service Fabric is an Azure service offered by Microsoft to develop and
publish microservice-based applications and perform life cycle management.
Developers have the ability to select which architecture they want to use, such as
stateless or stateful services. This allows developers to develop an architectural
approach where complex applications are involved and composed of small,
independently versioned services to scale in the cloud with Azure Service Fabric.

The name stateless microservices itself tells that they will not maintain state.
Protocol gateways and web proxies do not maintain a mutable state outside a request
and its response from the service. The best examples of stateless microservice
architecture are Azure Cloud Services worker roles.

Stateful microservices will maintain a mutable state beyond a request and its
response. Databases, devices, shopping carts, and queues maintain a mutable state.

The following are the reasons why we need stateful microservices as well as
stateless microservices:

e Stateful microservices will help you to build services with high throughput and
low latency and also provide failure-tolerant Online Transaction Processing
(OLTP) services. This can be achieved by keeping code and data together on
the same machine.

e This also helps to simplify application design. This will remove the need for
additional queues and caches, which are required in case of a stateless
application. Stateful services naturally have high availability and low latency.

We can make use of microservices to publish our intelligent bots, allow continuous
integration and development practices, and also accelerate delivery of new bot
features to the application. This also has out-of-the-box support in Visual Studio
tooling, as well as command-line support, so developers can quickly and easily
build, test, debug, deploy, and update their bot applications on single-box, test, and
production deployments.

In previous chapters, we developed and deployed our bot applications in Microsoft

www.EBooksWorld.ir

Azure App Service. Azure app service is also a great offering by Microsoft, but only
when the following scenarios are met:

e Developing large-scale bots that respond to interactions as quickly as possible

e Managing the state of bots that will help us track what the customers said, and
potentially use those conversations to learn what our customer's likes and
dislikes are

e To apply a granular programming model, which will help us improve our bot
without affecting its availability

If you take these scenarios into consideration, the only way to achieve it is with the
help of Service Fabric. Service Fabric is a great platform for developing and hosting
bots using Microsoft Bot Framework, mainly for the following reasons:

e Service Fabric has an actor programming model, which fits nicely into a bot
scenario, as potentially each conversation could become an active conversation.

e To store bot state, we can use stateful actors or stateful services for all
conversations.

e We don't need to bother about the availability of your bot service; Service
Fabric will handle it for us. It also allows us to develop and publish multiple
versions of a bot without affecting the previous version and its availability.

If we use stateful microservices, we will accomplish all of these scenarios.
However, in this chapter, we mainly focus on getting started with Service Fabric and
making the concept simple to understand for beginners. Because of that, we are going
with stateless microservices, which will also be a great option to choose for bots.

www.EBooksWorld.ir

www.EBooksWorld.ir

Getting started using stateless
microservices

First, we will learn how to develop a bot and publish/host in Service Fabric using
stateless microservices.

www.EBooksWorld.ir

www.EBooksWorld.ir

Setting up your development
environment for Service Fabric

To build and run Azure Service Fabric applications on your development machine,
install the runtime, SDK, and tools. It's also necessary to enable execution of the
Windows PowerShell scripts that are included in the SDK.

www.EBooksWorld.ir

www.EBooksWorld.ir

Prerequisites

The following operating system versions are supported for development:

e Windows 7

Windows 8/Windows 8.1
Windows Server 2012 R2
Windows Server 2016
Windows 10

www.EBooksWorld.ir

www.EBooksWorld.ir

Installing the SDK and tools

In Visual Studio 2015, Service Fabric tools are installed together with the SDK; if
you cannot find the Service Fabric templates or tools, then you can install them with
the help of Web Platform Installer or go through http:/www.microsoft.com/web/handlers/webpi
.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-VS2015 tO download the
Service Fabric SDK and tools.

www.EBooksWorld.ir

http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-VS2015

www.EBooksWorld.ir

Enabling PowerShell script execution

Service Fabric uses Windows PowerShell scripts to create a local development
cluster and to deploy applications from Visual Studio. By default, these scripts are
prevented from running by Windows. To enable them, you are required to modify the
PowerShell execution policy. Enter the following command after opening
PowerShell as an administrator:

Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Force -Scope
CurrentUser

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating a stateless Service Fabric web
API

A Service Fabric application can contain one or more services; every application
can have a specific role or specific functionality to deliver what the consumers need.
VS2015 will create an application, along with your first service project, if you use
the New Project wizard. The steps for creating a stateless service fabric web API
are as follows:

1. Launch Visual Studio as an administrator.
2. Click on File | New Project | Cloud | Service Fabric Application.

3. Name the application and click on OK:

New Project 2 X
b Recent NET Framework 4.5.2 ~ Sort by: Default - ;;! Search Installed Templates (Ctrl+E) P~
4 |nstalled . Vi
il O Azure Cloud Service Visual C# Type: Visual C#
4 Templates = = A project template for creating an always-
4 Visual C# g_] ASP.NET Web Application Visual C# on, scalable, distributed application with
Microsoft Azure Service Fabric.
P Windows
Web 5 Azure WebJob Visual C#
b Office/SharePoint
Androd ED Azure Mobile App Visual C#
Apple Watch
b Cloud ED Azure Mobile Service Visual CG#
ross-Platform
i Q Azure Resource Group Visual C#
Extensions
i Q Service Fabric Application Visual C#
iPad
iPhone
LightSwitch
Reporting
Silverlight
Test
Universal
e -
b Onfine Click here to go online and find templates.
Name: |EchoBot_Stateless‘ |
Location: C\Users\. _____ __ " a\Documents\Visual Studio 2015\Projects -
Solution name: [] Create directory for solution
Create new Git repository
| OK | | Cancel |

4. On the next page, select Stateless Web API as the first service type. Name it and
click on OK:

www.EBooksWorld.ir

New Service Fabric Service

Select a Template:

Service Templates

L v

Stateless Stateful
Service Service

Service Name:

Q| Q

Actor Service | Stateless
Web API

®

Guest Get ASP.NET
Executable Core RC2

Echo BotﬁS‘satelesszPﬂ

A project template for creating a stateless Reliable
Service with ASP.NET Web API using an OWIN-based
communication listener. Use a stateless service if your
service has no persistent state or if you intend to
manage state in an external store, such as Azure
DocumentDB or a SQL database.

Learn More

OK

| Cancel |

5. Install the microsoft.Bot.Builder mucet package. Before installing, change your API

project target to .NET Framework 4.6 under Target framework:

6. Open the Manage NuGet Packages... window:

e alel: T M1 =1 -\ WS - B Ol NluGet: EchoBot_Stateless_API

Application
Build

Build Events
Debug
Resources
Services
Settings
Reference Paths
Signing
Security

L Publish

EchoContr|

N/A

Assembly name:

EchoBot Stateless AP

Target framework:
| | NET Framework 4.6 |

Startup object:

(Not set)

www.EBooksWorld.ir

et.org = ‘m'

5] Solution ‘EchoBot _Stateless’ (2 projects)
4 5} EchoBot Stateless
P =B Services

P &1 ApplicationPackageRoot

b ApplicationParameters
P a0 PublishProfiles

P a0 Scripts

¢ packages.config

4 | EchoBot_Stateless_API |
P Properties

=ml

Add Reference...

Add Service Reference... eRoot
& Add Connected Service... nfig

A Analrzer.. ot_Stateless_APl.cs

ommunicationListener.cs
| i Manage NuGet Packages... St

Scope to This m.cs

E New Solution Explorer View EventSource.cs
s ST .CS

7. Search for Microsoft.Bot.Builder, and install the latest version:

8.

10.

NuGet: EchoBot Stateless APl # X Eogle]®elsiige]|[=I¥e] EchoBot Statel

Browse Installed Updates

bot builder X v~ & []Indud

. Telegram.Bot by Robin Miiller, 61.7K downloads
Telegram Bot API Class Library

Microsoft.Bot.Builder y Microsoft, 56.8K downloads

Microsoft.Bot.Builder is a framhework for easily building stateless bots

Now, modify your API controller. In this section, we are developing an echo
bot. So, update the code for the echo bot, which will simply reply with an echo
of the user's message.

. The »ost method accepts messages from the user as an activity, which contains

all conversation information between a user and our bot. Using this, we can see
what kind of information the user wants to get from the bot.

Update the rost method with the following code, which is similar to the rost
method generated by the Bot Application template in previous chapters:

[BotAuthentication (MicrosoftAppId ="",MicrosoftAppPassword ="")]
public class EchoController : ApiController

{

public async Task<HttpResponseMessage>

Post ([FromBody]Activity message)

www.EBooksWorld.ir

Here, we defined a sample bot, which will reply to our user with what the
user said.

11. Bot Framework provides many features, including how to identify the type of
incoming message, and based on that, your bot can respond to the user.

To 1dentify that, we have the activity types enum, which will provide information
about the conversation.

12. To identify and apply business logic to the message sent by the user, we will
write the following code in the rost method:

if (message.Type.ToLower () == "message")
{
}

13. Ifthe user is sending a message, it means that they are asking the bot something,
So, we will receive the messsage, process it, apply some business logic, and
reply to the user.

To reply to the user, we need a connectorciient Object, which provides connector
REST API services to forward messages from the bot to the user:

if (message.Type.ToLower () == "message

{

var connector = new ConnectorClient (new

Uri (message.ServiceUrl)) ;

var reply = message.CreateReply ($"Service Fabric knows you said
: {message.Text}");

await connector.Conversations.ReplyToActivityAsync (reply) ;
}

else

{

HandleSystemMessage (message) ;

}

14. The following is the code for handling activity types other than the Message type
Activity:

private Activity HandleSystemMessage (Activity message)
{

if (message.Type == "Ping")

{

//Message reply = message.CreateReplyMessage () ;
//reply.Type = "Ping";

//return reply;

}

else if (message.Type == "DeleteUserData")

{

// Implement user deletion here

// If we handle user deletion, return a real message
}

else 1if (message.Type == "BotAddedToConversation")

{

}

else 1if (message.Type == "BotRemovedFromConversation")
{

}

else if (message.Type == "UserAddedToConversation™)

{

www.EBooksWorld.ir

}

else 1f (message.Type == "UserRemovedFromConversation")
{

}

else if (message.Type == "EndOfConversation")

{

}

return null;

}

We can reply to the user from the bot based on the Activity done by the
user with the help of the preceding code.

15. The »ost method accepts an input as an Activity type, which will hold all the

16.

information related to the conversation between the bot and the user. The activity
class is very important and is responsible for all chats /conversations between
the bot and user; the bot knows from which user it got the message because of
the activity object. It holds complete information about the user, message
information, previous conversations, and more.

When a user sends a message to the bot, the rost method receives that message
along with all other information and saves it as an activity object. The following
1s the information our activity object will have at the time of the rost request.

17. Here is the complete code example:

public async Task<HttpResponseMessage>

Post ([FromBody]Activity message)

{

if (message.Type.ToLower () == "message")

{

var connector = new ConnectorClient (new Uri (message.ServiceUrl));
var reply = message.CreateReply($"Service Fabric knows you said :
{message.Text}");

await connector.Conversations.ReplyToActivityAsync (reply);
}

else

{

HandleSystemMessage (message) ;

}

return new

HttpResponseMessage (System.Net.HttpStatusCode.Accepted) ;

}

private Activity HandleSystemMessage (Activity message)

{

if (message.Type == "Ping")

{

//Message reply = message.CreateReplyMessage () ;
//reply.Type = "Ping";

//return reply;

}

else 1if (message.Type == "DeleteUserData")

{

// Implement user deletion here

// If we handle user deletion, return a real message

}

else if (message.Type == "BotAddedToConversation")

{

}

else 1f (message.Type == "BotRemovedFromConversation")
{

}

else if (message.Type == "UserAddedToConversation")

www.EBooksWorld.ir

18.

19.

20.

{
}

else if (message.Type == "UserRemovedFromConversation")

{
}
else if (message.Type == "EndOfConversation")
{
}

return null;

}

The rost method receives this in JSON format from the user as an Activity. It
contains the Activity Type, Service URL (which is a bot published URL),
Channel ID (Facebook, Slack, Skype, and so on), from whom we received
message from the sender, conversation information, and text means message
typed by user; if it has any attachments, it will be under attachments section.
Based on this information, the bot will respond to the user.

Before debugging your application, make sure that no other application on your
PC is using the port that is going to be used by Service Fabric stateless
microservice, since the port numbers are automatically assigned by Visual
Studio at the time of project creation. You can modify it if any other application
1s already using it in your dev machine. The following step explains how to
change/modify it.

You can check which port your microservice is configured on. Follow these
steps to check which port is being used and how to change the URL if you want:
1. Right-click on your Service Fabric project and select Properties, as shown
in the following screenshot:

www.EBooksWorld.ir

Edit Manifest Versions...

ApplicationPackageRoot

. .
J gDk &0 ApplicationParameters
Rebuild a8 PublishProfiles
Clean b a Bl Scripts
Package ¥ packages.config
i & Publish.. [c7] EchoBot Stateless API
b M Properties
Scope to This =8 References
B New Solution Explarer View 4 Controllers
B showon Code Map b +C* EchoController.cs
= : 4 PackageRoot
Build Dependencies * +8 App.config
Add b b +C® EchoBot Stateless APl.cs

b+ €% OwinCommunicationListener.cs

L Set as StartUp Project
+¢ packages.config

Debu *
9 +C® Program.cs
% Cut Ctrl+X + €% ServiceEventSource.cs
X Remove Del +C" Startup.cs
] Rename
Unload Project

¢ Open Folder in File Explorer

Register Assembly

After choosing Properties, the next window will open, as shown in the
following screenshot:

www.EBooksWorld.ir

EchoBot_Stateless Property Pages

? X
Configuration: | Active(Debug) v | Platform: |Active(x64) ™ Configuration Manager...
4 Configuration Properties v Application
Project Properties Application Debug Mode Ramoue. i
Debugging Application URL http://localhost:8990/api/values
¥ Misc
Project File EchoBot_Stateless.sfproj
Project Folder C\Users\ Ll \Documents\Visual Studio 2015\Projects\Ech

Application Debug Mode

Indicates whether the application should be upgraded or cleaned up during debug. Remove - the application will ...

3. Just check the Application URL, choose the edit option from the drop-

down list, and then modify your URL if you want as shown in the
following screenshot:

www.EBooksWorld.ir

m

Configuration: | Active(Debug) v | Platform: Active(x64)

e Configuration Manager...

v Application
Application Debug Mode
Application URL

v Misc

Project File

4 Configuration Properties
Project Properties
Debugging

Project Folder

Remove
http://localhost:8990/api/values

EchoBot Stateless.sfproj
C\Users\Narendra Macha\Documents\Visual Studio 2015\Projects\Ech

Application URL ? X

http://localhost:8990/api/values

http://localhost:8990/api/values

Macros>>
OK Cancel
Application URL
The URL to browse after the application is launched.
OK Cancel Apply
21. Next, you have to build your project without any errors, and then click on
the Start button to start debugging your project, as follows:
B cchobot Stateless - Microsoft Visual Studio [Administrator) VB &7 | Quick Leund (Cul+0)]
Fil: it View Project Duild Debug Team Tools Awmhitecire Test Analyze Window Help
e - B-als Debug - | %64 - - -
@ Application Insights = _
2 |EchoControllercs & X Service Fabric proj. eps | Microsoft Dors EchaBot, Stateless_APLcs i
g8 [ichoBol Stateless AP + | # Lcholot Stateless APLControllers EchoController - ®, HandleSystemMessagelMessage message) 1
¥ 1 Flusing Microsoft.Bot.Connector; i
é 2 using System.Collections.Generic; ”
5. E! using System.Threading.Tasks; F6 4 EchoBot Stateless
5 4 using System.Web.Http; ST S8 hetioes;
5 5 L Dephoy Solution -= ApplicationPackageRoot
i " Gl i -= App!lcallanpalamcrcrs
3 6 [-Inamespace EchoBot_Stateless_API.Controllers =00 PublishPrafiles
i : ; Analyze bB s Saipts
= . | | Batch Build. ¥ packages.config
-8 0 references | O ch s | D authors, 0 changes e B P
T L 4 o = Configuration Manager... [£#] FehaRat Stateless APl
i 8 =] public class EchoController : ApiController e .t ,.";pm,F=
! 9 { [Restore Nutiet Packages L E:{:‘L:
16 // GET aplﬂvaluqs B New Solution Explarer View P +€® EchoController.cs
. | 0 refe rences | ges 1 authors, 0 changes 8B Show on Code Map = FackagaRoot
1; = ?ubhc IEnumerable<string> Get() LN : ?Kigz?jrwm_mn
s " . g Project Dependencies... + € OwinCommmunicationlistener cs
13 s return new string[] { "Service Fabric", "Echo Pt Bl e o padkanes saniy
14 €% Programes
P = ; Rl 4 + % SopviceDventSourco.ce
15 o /] <summa ry> £i# Set StartlUp Projects. +C* Startup.cs
5 . i <5
16 11/ POST: api/Messages Y Add Solution to Source Control...
17 /// Receive a message from a user and repl
18 /17 </summary> S e
of ces | 0 changes | 0 authiors, 0 changes @ Open Folder in File Explorer
19 = public async Task<Message> Post([FromBody]Message £ 2
20 { Sy Properties Al+Cnter
21 if (message.Type == "Message")

22. After clicking on the Start button, your application will be

www.EBooksWorld.ir

deployed to the local

cluster, as follows:

www.EBooksWorld.ir

Dq EchoBot_Stateless (Running) - Microsoft Visual Studio [Administrato

File Edit View Project Build Debug Team Tools Architecture Test Analyze Window Help

Qe - -2 W oW v v Jeblic 4 Continue ~ | P _ nmd "L Code May
9 Application Insights ~ _
Diagnostic Events & X EchoController.cs & Service Fabric proj...eps | Microsoft Docs EchoBot _Stateless APl.cs &
Il £ £} Filter Events - X J
Timestamp Event Name Message
P 19:35:08.924 StatelessRunAsyncCompletion RunAsync has successfully completed for a stateless service instance. Application Type Name: EchoBot_StatelessTp
P 19:35:08.919 StatelessRunAsynclnvocation RunAsync has been invoked for a stateless service instance. Application Type Name: EchoBot StatelessType, Applic:
P 19:35:08.885 ServiceMessage Listening on http://localhost:8990/
P 19:35:07.517 ServiceMessage Starting web server on http://+:8990/
b 19:35.05.728 ServiceTypeRegistered Service host process 19852 registered service type EchoBot Stateless API
P 19:34:57.453 PLB Completed the Creation phase and issued the action — Add, on Service -- fabric/EchoBot_Stateless/EchoBot_Statgle
P 19:34:56.195 CM Application created: Application fabric:/EchoBot_Stateless Created: ApplicationType = EchoBot_StatelessType Applic
P 19:34:56.070 FM Service Created: Service fabric:/EchoBot_Stateless/EchoBot_Stateless API partition d372cc97-4254-4a84-a492-3d9cc

Output

Show output from: | Debug - £ | #a

Applicationname : fabric:/echoBot_Stateless

ApplicationTypeName : EchoBot_StatelessType

ApplicationTypeversion : 1.0.90

ApplicationParameters : { "_WFDebugParams " = "[{"ServiceManifestMame":"EchoBot_Stateless APIPkg","CodePackageName”:"C

ode®™,"EntryPointType":"Main", "DebugExePath”:"C:\\Program Files (x86)\\Microsoft Visual Studio
14.0\\Common7\\Packages\\Debugger\\VsDebuglLaunchNotify.exe", "DebugArguments™”: "
{3c15e6e3-83d6-4ce7-93a4-66c05dca77d} -p [ProcessId] -tid

[Thread1d]”,"EnvironmentBlock™:" NO_DEBUG_HEAP=1\u@eee"}]";

"EchoBot_stateless API_InstanceCount” = "1" }

Create application succeeded.

23. After successfully deploying your application to the local cluster (which is
automatically installed as part of the Service Fabric SDK), open your Service
Fabric Explorer by clicking on Manage Local Cluster. You can find this inside
settings, as shown in the following image:

www.EBooksWorld.ir

Manage Local Cluster

Reset Local Cluster
Start Local Cluster

Stop Local Cluster

Setup Local Cluster

Remove Local Cluster

19:41
ENG
02-02-2017 D

24. After selecting the Manage Local Cluster option, the following window will
open:

= O i | localhast I pid = :'{ @

Back

Microsoft Azure

@0k | A Waning . htt

ESSENTIALS DETAILS CLUSTER MAP MANIFEST

“ (%) Cluster

® Eror

3 (100%)

“~ Modes DASHBOARD

~ Node 0 -
ERROR i & ERROR
» fabric/EchoBot S .

Node 1) - 0) Yk 0
_Node 2 s WARNING |] WARNING
Node 3) 0 i 0

Node 4 CATIO 3
. AFELICATION HEALTHY 4 HEALTHY

25. Now, Open the bot emulator. Then, you just have to start the emulator and
change the URL to http/localhost:8990/apiecho, which 1s where we are publishing the
stateless web API:

www.EBooksWorld.ir

http://localhost:8990/api/echo

&2 Bot Framework Channel Emulator

http://localhost:8990/api/echo € : Details

Micrasoft App 1D Microsoft App Password: Lacale:

o [

26. Type your message and then the bot should politely repeat what you said, as
shown here:

) Bot Framework Channel Emulator

http://localhost:8990/api/echo C $ | Details

| am Echo Bot

Service Fabric knows you said | | am Echo Bot

| am Stateless

Service Fabric knows you said [| am Stateless

2

We have now developed, built, and tested on the local Service Fabric cluster, but if
you want to access it in Skype or Slack through Bot Framework, you must publish the

www.EBooksWorld.ir

Service Fabric cluster in Azure. Next, we will see how to publish the Service Fabric
project in Azure.

www.EBooksWorld.ir

www.EBooksWorld.ir

Publishing a Service Fabric project in
Azure

It is important that we need to create a secure cluster in Azure. For that, we need to
set up a Key Vault to manage keys and certificates. For more information on the

Azure Key Vault and certificates, follow this link, https:/docs.microsoft.com/en-us/azure/key-vau
It/key-vault-get-started

www.EBooksWorld.ir

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-get-started

www.EBooksWorld.ir

Create Key Vault

Create a Key Vault in the new resource group. The Key Vault must be enabled for
deployment to allow the Service Fabric resource provider to get certificates from it
and install on cluster nodes. The following is the PowerShell script:

New-AzureRmKeyVault -VaultName 'myvault' -ResourceGroupName
'mycluster-keyvault' -Location 'East US' -EnabledForDeployment

www.EBooksWorld.ir

www.EBooksWorld.ir

Adding certificates to the Key Vault

This certificate is required to secure a cluster and prevent unauthorized access to it.
To make this process easier, a PowerShell module is available on GitHub (https:/github.
comvkishoreismac/Service-Fabric/tree/master/Scripts/ServiceF abricRPHelpers) .

The servicerabricrereipers.psmi module provides helper methods for adding certificates
to the Key Vault for use in the Service Fabric cluster. Follow these steps to use the
module:

1. Go to the module directory.
2. Import the module:

| Import-Module .\ServiceFabricRPHelpers.psml

3. The following screenshot explains the preceding code:

gWindows PowerShell ISE
File Edit View Tools Debug Add-ons Help
o B 4 B » |9 | =

[M]
m

|
o

PS D: \T N = ouities\Scripts> C:
PS C:\> Import-Module |"C:\Users\user\Downloads)

4. The command name is as follows:

Invoke-AddCertToKeyVault

The following is the syntax:

Invoke-AddCertToKeyVault -SubscriptionId {Enter your Subscription
ID} -ResourceGroupName BotFabric -Location "East US" -VaultName
Bot-key-vault -CertificateName botscert -Password "password" -
CreateSelfSignedCertificate -OutputPath "C:\Certs" -DnsName
https://{yourclustername}.centralus.cloudapp.azure.com: 8080

5. The DNS URL will be the URL of your cluster. Before using it, check whether
the URL is available to you. The following is the example I generated using
PowerShell:

www.EBooksWorld.ir

https://github.com/kishoreismac/Service-Fabric/tree/master/Scripts/ServiceFabricRPHelpers

PS C:\> Import-Module "C:\Users\NIEEEEER:\Down1oads\Service-Fabric-master\Scripts\ServiceFabricRPHelpers\ServiceFabricRPHelpers.psml"

PS C:\> Login-AzureRmAccount

Environment : AzureCloud

Account : kishoreismac@outlook.com
TenantId :

Subscriptionid

SubscriptionName ual Studio Enterprise
CurrentStorageAccount :

Invoke-AddCertToKeyVault -SubscriptionId nimiishitessiSeskiiniteismnianiinimis -ResourceGroupName BotFabricVault -Location "East US" -VaultName Bot-key-vault -Ceri
1d —

Ensuring ResourceGroup BotFabricvault in East US

Creating new vault Bot-key-vault in East US

Creating new self signed certificate at C:\Certs\botscert.pfx
Reading pfx file from C:\Certs\botscert.pfx

Writing secret to botscert in vault Bot-key-vault

Name : CertificateThumbprint
value :

Name : Sourcevault
value : /subscriptions/IaaasikEnsssnttassstsstldemin/ -csourceGroups /BotFabricvault/providers /Microsoft.Keyvault/vaults /Bot-key-vault

Name : CertificateURL

Value : https://bot-key-vault.vault.azure.net:443/secrets/botscer HllllANNNSNRE

6. COpy the CertificateThumbprint, SourceVault, and certificateurL.

www.EBooksWorld.ir

www.EBooksWorld.ir

Creating a cluster in the Azure portal

Follow these steps to create the cluster in the Azure portal:

1. Signin to the Azure portal.
2. Click on New, then search for Service Fabric Cluster under Everything.
3. Select Service Fabric Cluster:

> New » Marketplace » Everything

Marketplace # _ 0O X Everything
Y Filter
Everything
) | je IService Fabric Cluster
Compute
Results
Networking
L NAME
Storage
‘ Wby = Kbk Q Service Fabric Cluster
@ Databases E Service Fabric Analytics
=
Intelligence + analytics
-
sqL
ook Tl

4. It navigates to the Service Fabric Cluster blade like shown in the following
screenshot; click on Create:

www.EBooksWorld.ir

https://login.microsoftonline.com/common/oauth2/authorize?resource=https%3a%2f%2fmanagement.core.windows.net%2f&response_mode=form_post&response_type=code+id_token&scope=user_impersonation+openid&state=OpenIdConnect.AuthenticationProperties%3dFu2GVRYdAmuw7KzmKMcz01VTQl03LUUmhxeRPW7gxElyu-s3CuF7NiWb6zLlSgUj476YV10tNfPr4_woyBXwh_FPDYli56McRNbonJ_oV5xLAWjJrLmn8ymA69w22V2CwEHA4yRcS2jIWecx6Z9SYyTLIaZYvbd61DiR9VplXexiByoV&nonce=636317487963787826.NGM3MTAyMzYtM2E1NC00MTNmLTllYTUtYzE1YmVhMjkzYmY2ZTVhMTI0ZTYtZTNiYi00OGI2LWEzM2UtYjI5OGVlMzY5Njdj&client_id=c44b4083-3bb0-49c1-b47d-974e53cbdf3c&redirect_uri=https%3a%2f%2fportal.azure.com%2fsignin%2findex%2f%3fsignIn%3d1&site_id=501430

Service Fabric Cluster
ft

Mic

Create a customized Service Fabric cluster to host your Service Fabric micro services. Service Fabric is
a distributed systems platform used to build scalable, reliable, and easily-managed applications for
the cloud. By using Service Fabric, developers and administrators can avoid solving complex
infrastructure problems and focus instead on implementing mission critical, demanding workloads
knowing that they are scalable, reliable, and manageable.

You can use Service Fabric to:

» Develop massively scalable, self-healing, applications that can be deployed in seconds.
Simplify the design of your application and improve its reliability by using stateful and
stateless micro-services.

» Easily monitor and diagnose the health of your applications and set policies for automatic
repairs & upgrades.

dopEaaE

PUBLISHER Microsoft
Documentation
view

USEFUL LINKS Service
Pricir

5. The following four steps are shown in the Create Service Fabric
cluster window:

www.EBooksWorld.ir

Create Service Fabriccl... — O X

1 Basics >
Configure basic settings

»'—':::9

L

.

-

t

6. You are required to provide the basic details of your cluster in the Basics tab:

www.EBooksWorld.ir

Create Service Fabriccl... — B X Basics

Basic cluster settings

* Cluster name @
1 Basics 5
Configure basic settings Skt Y
centralus.cloudapp.azure.com
Operating system
,} _ . ® Windows (O Linux (preview)
e
Default VM credentials
* User name @
?’ y echobot v
* Password @
v
4
T * Confirm password
v
* Subscription
Visual Studio Enterprise wv
* Resource group @
(®) Create new (0 Use existing
\ Botfabric W
* Location
Central US v

7. In Cluster Configuration, configure your cluster nodes. Node types define the
VM sizes, the number of VMs, and properties. The cluster can have more than
one node type, but it is necessary that the primary node type (the first one that
was defined in the portal) must have at least five VMs, as this is the node type
where the Service Fabric system services are placed. Placement properties,
because a default placement property of Node type name is automatically added.
Enter all required fields and leave the remaining fields as default:

www.EBooksWorld.ir

Cluster configuration — 8 X Node type configuraton — O X

Configure node t) diag cs Node type 1 (Primary)

* Node type count @ * Node type name @

1 v echobot v

< Durability tier @
Configure each node type
Bronze v

* Node type 1 (Primary) S

Configure required settings Wttt e Ring sive N

Standard_D1_v2

Diagnostics
st
Create application log storage @ i o

Silver v

Initial VM scale set capacity
Custom fabric settings @ 5
s | L

Enter fabric setting properties
Custom endpoints @

Fabric version ‘ .

Fabric upgrade mode @
® Automatic (O Manual

Configure advanced settings @

* Fabric version

‘ v |

8. Inthe Security tab, you must select Secure and enter the details that you copied
in the Key Vault creation step:

Create Service Fabric cl... — Security

Configure clu

Security mode @

Basics
1 Vo | [
Done

Primary certificate

2 Cluster configuration v * Source key vault @
Fone /subscriptions/55c8b769-eb89-41a0-86c7-b...

* Certificate URL®
3 Security > https://bot-key-vaultvaultazure.net:443/s...

* Certificate thumbprint @

5D3DDA8512F5CABO45F35FBET19523CE960A. ..

Configure advanced settings @

9. The final step is Summary; once validation is successful, you can click on
the Create option on the Summary window:

www.EBooksWorld.ir

Create Service Fabriccl... — O X Summary

o Validation passed

1 Basics

Done

Basics
Subscription Visual Studio Enterprise
2 Cluster configuration v Resource group BotFabric
Dane Location Central US
Settings
: Cluster name echoboteluster
Security v
User name echobot
Done
Node type count 1
Security mode Unsecure

Create application log storage ~ On

Summary
4 ? Node types

Review, view template, create

Node type 1 (Primary) echobot (5xStandard_D1_v2)
Virtual machine size Standard_D1_v2

download template and parameters

10. It takes several minutes to deploy a cluster; after the successful creation of the
cluster, verify it by opening it.
11. Click on More services:

e Monitor
@ silling

pa Help + support

More services >

12. Select Service Fabric clusters:

www.EBooksWorld.ir

o SQL databases

q Help + support

b Cloud services (classic)

COMPUTE

Storage accounts (cl...

Virtual machines
Storage accounts

%] Virtual machines (classic)
I Security Center

L4 Virtual machine scale sets
Subscriptions

#2» Container services
Application Insights

% Batch accounts

. DevTest Labs
¢} Service Fabric clusters

Azure Active Directory

Cloud services (classic)

$ Monitor
) RemoteApp collections [
Billing
@& Container registries PREVIEW
Help + support
i‘-,-\ Availability sets v

More services > Help improve the service menu!

13. You can now see your list of clusters; click on your recently created cluster:

Service Fabric clusters

kishoreismacoutlook (Default Directory)

o= Add == Columns) Refresh

Subscriptions: Visual Studio Enterprise

‘ Filter by name...

1 items

NAME Vv

0 echobotcluster

14. Now, click on Explorer to open Service Fabric Explorer:

www.EBooksWorld.ir

echobotcluster

ric cluster

(i Explorer M Delete

L Search (Ctri+/) Essentials ~

Resource group (¢hang Service Fabric version
€2 Overview BotFabric 5.4.164.9494

Status Client connection endpoint

B Activity log Baseline upgrade echobotcluster.centralus.cloudapp.azure.co...
Location Node count

:a Access control (IAM) Central US 5

Subscription name (change) Application count
& Tags V dio e
Subscription ID Service Fabric Explorer
X Diagnose and solve problems 55c8b769-eb89-41a0-86c7-ba2ae87ffcda http://es cluster.centralus.cloudap
SETTINGS
L2 Node types 5 nodes
Nl NAME NODE TYPE HEALTH STATE STATUS UPGRADE DO... FAULT DOMAIN
& Aoplications _echobot 0 echobot & ok Up 0 fd:/0
_echobot_1 echobot @ oK Up 1 fd:/1
%= Security
_echobot_2 echobot @ oK Up 2 fd:/2
& Custom fabric settings _echobot_3 echobot @ oK Up 3 fd:/3
@ Fabric upgrades _echobot_4 echobot @ oK Up 4 fd:/4

Properties

15. In Service Fabric Explorer, you can see details of the services, health logs, and
more.

www.EBooksWorld.ir

G EEE @ ech cluster s.cloudapp.azure.com

Microsoft Azure Service Fabric Explorer
@ ok A Warning ®) Error
ESSENTIALS DETAILS
W Cluster

> Applications @ ok
> Nodes

@ ok

> System

5 (100%)

DASHBOARD

ERROR

0

O |WARNING

APPLICATIONS
HEALTHY

0

CLUSTER MAP

! “ | WARNING

NODES

REFRESH RATE 15s

http://echobotcluster.centralus.cloudapp.azure.com

METRICS MANIFEST

ERROR

0

HEALTHY

|5

16. Now, go back to Visual Studio, where our echo bot stateless service project is
being developed. Right-click on the Service Fabric project and click on

Publish.
JACLLIVILY Nces5dgE) Search >olution txplorer (CUl+;)
+5a] Solution 'EchoBot Stateless' (2 projects)
4 -,2 EchoBgt Stateless
Edit Manifest Versions... tes
& Build cationPackageRoot
! cationParameters
e bl shProfiles
. H
bric | o)
yASyn' Package ges.config
@ Publish... Stateless_API
drties
Scope to This
ences
New Solution Explorer View billats
¥ Show on Code Map hoController.cs
Build Dependencies y it
tonfig
Add » fots AP

17. Inthe Publish Service Fabric Application window, select your Azure account
and select the cluster endpoint, then click on Publish.

www.EBooksWorld.ir

Publish Service Fabric Application X

Target profile:

PublishProfiles}Cloud.xml b

Save Profile
B Microsoft account o
kishoreiSMAC@outlook.com
Connection Endpoint:
echobotcluster.centralus.cloudapp.azure.com:19000 v @

@ Advanced Connection Parameters

How to configure secure connections

Application Parameters File:
ApplicationParameters}Cloud.xml v

[T] Upgrade the Application

Configure Upgrade Settings

|ManifestVersions...| | Publish | Cancel |

18. Once it has been published, go to Azure echobot cluster Service Fabric
explorer; you will see the recently published cluster and its services, as shown
in the following screenshot:

Microsoft Azure S e REF E 155 OFF =———————f—— FAST

@ ok A\ Warning) Error

ESSENTIALS DETAILS DEPLOYMENTS MANIFEST

~ Cluster
v Applications fabric/EchoBot Stateless
~ EchoBot_StatelessType
 fabric/EchoBot Stateless
> fabricy/EchoBot_Stateless/EchoBot_Stateless.
v _echobot 0

fabric/EchoBot_Stateless

c/EchoBot_Stateless
v _echobot 2 Mo items to display.
» fabric/EchoBot Stateless
~ _echobot 3
. SERVICES
» fabric/EchoBot_Stateless
~ _echobot 4
» fabric/EchoBot _Stateless

i EchoBot_Stateless APIType 100
2 system)

SERVICE TYPES

19. Now, copy the client endpoint that will be used as the bot message endpoint:

www.EBooksWorld.ir

& Explorer [Delete

£ Search (Ctrl+/) Essentials ~
Resource group (change) Service Fabric version
¢y Overview BotFabric 5.4.164.9494
Status Client connection endpoint
ﬁ Activity log Baseline upgrade demobot.centralus.cloudapp.azure.com:19...
Location Node count
st Access control (IAM) Central US 5
Subscription name (change) Application count
& Tags Visual Studio Enterprise 1
Subscription ID Service Fabric Explorer
2 Diagnose and solve problems 55¢8b769-eb89-41a0-86c7-ba2ae87ffcda http://demobot.centralus.cloudapp.azure.c.
SETTINGS
o

20. Now, register a new bot in dev.botframework.com (refer to Chapter 9, Publishing a Bot
to Skype, Slack, Facebook, and the GroupMe Channel the Registering your
Bot with Microsoft Bot Framework section), enter the message endpoint as your
Service Fabric endpoint, and append /api/echo to it in the bot's settings, as shown

in the following screenshot:

www.EBooksWorld.ir

https://dev.botframework.com/

Bot Framework My bots Register a bot Documentation Bot Directory Blog
PREVIEW

Edit EchoBot

Bot profile

lcon

Upload custom icon
30K max, png only

Mame: * ?

EchoBot

Bot handle: * 2

echobot123456

Description: * ?

echobot

Configuration

Messaging endpoint:

https://derchot.centralus.cloudapp.azure.com:8080/api/echo

Register your bot with Microsoft to generate a new App ID and password

Manage Microsoft App ID and password

21. The port number soso mentioned in the endpoint will be the same as mentioned in
the stateless API microservice project, under servicemanifest.xmi:

www.EBooksWorld.ir

7 CUUET aCRage [DEtRages.CoTTg

Pl EchoBot _Stateless_API

<!-- Config package is the contents of the Config directoy under PackageRoot that ; ..Eﬂiﬂz
independently-updateable and versioned set of custom configuration settings f{ 4 ! Controllers
<ConfigPackage Name="Config" Version="1.0.0" />) b ziiﬁigmhmg
)3 Config
<Resources> ﬁQSmeMmmaﬂm
<Endpoints> D:;‘égziizﬁd%gAW$
<!-- This endpoint is used by the communication listener to obtain the port or b +c* OwinCommunicationListener.cs
listen. Please note that if your service is partitioned, this port is sh: D:ffgzﬁf:imw
replicas of different partitions that are placed in your code. --> Y b s
<Endpoint Protocol="http" Name="ServiceEndpoint" Type="Input" Port="8080" /> b +c* Startup.cs
</Endpoints>
</Resources>
</ServiceManifest>

22. Now, copy the microsottappra and microsoftapprasswora Of the bot and update them in
the echocontrorier class, as shown in the following screenshot:

-Inamespace EchoBot_Stateless_API.Controllers

{

| BotAtithenticatioh(MicEosoftAppTd = Yesszoyoa] amnn spiis © om on oo = 25"
MierosabEAbBpRasswoRd = "{ .. oLl T.TlllL NN)]
£ 1 L | 3
UV ITCICICTILE S il.d'v‘)\:‘!l‘bcvlbdlxu‘u‘) U Lhialigec

= public class EchoController : ApiController

{

// GET ani/values

23. Now, add your bot to Skype and Slack; refer to Chapter 9, Publishing a Bot to
Skype, Slack, Facebook, and the GroupMe Channel the Configuring channels
section.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, we introduced Service Fabric and stateless and stateful
microservices, and how these help in the development of bots using Microsoft Bot
Framework. Also, we saw how to set up a development environment, the
prerequisites for Service Fabric, and the tools needed for programming. This chapter
1s based on helping developers quickly and easily build, test, debug, deploy, and
update their bot applications for single-box, test, and production deployments. It also
shows how Service Fabric helps our bots to scale and be managed easily with a
Service Fabric cluster.

In the coming chapters, we will see how bots can help us with the Internet of Things
(IoT).

www.EBooksWorld.ir

www.EBooksWorld.ir

Developing Intelligent Facial
Expression Identification Bot for IoT
Using Azure and Power BI

In previous chapters, we have gone through the concepts of Bot Framework and
Cognitive Services, such as LUIS, the linguistic service, and so on that are involved
in developing and publishing bot applications. In this chapter, we will mainly focus
on integrating IoT, the bot, and Power BI and see how can we leverage the power of
bots and Cognitive Services in loT. Here, we will develop an IoT application that
will capture photos from a USB camera connected to the Raspberry Pi, then process
it using the Face API and Emotion API of Cognitive Services to identify facial
expressions. Once it completes the processing and identifies the face and emotional
expression, the IoT application then sends it to the Facial Expression and
Identification bot and also to Power BI to show reports.

www.EBooksWorld.ir

www.EBooksWorld.ir

Before getting started

I assume that you have some knowledge of the following topics. If you don't go
through the following topics and links:

1.

Bot Framework.

2. Raspberry Pi: In this chapter, we will not cover how to configure the Raspberry

P1, so check out the following link on how to set up the device for development:

https://developer.microsoft.com/en-us/windows/iot/getstarted

. Windows 10 IoT Core: In this chapter, we will use Windows 10 IoT Core as

our operating system on the Raspberry Pi. For how to install set it up on the
Raspberry Pi, check out the following link:

https://developer.microsoft.com/en-us/windows/iot/getstarted

. UWP app development: The project we are developing for the Raspberry Pi is a

UWP app, so you must have some basic knowledge of UWP app development:

https://docs.microsoft.com/en-in/windows/uwp/get-started/whats-a-uwp

. Microsoft Azure IoT Hub: We need Microsoft Azure IoT Hub to easily and

securely connect your IoT devices (Raspberry Pi2). Use device-to-cloud
telemetry data to understand the state of your devices and assets, and be ready to
take action when a device needs your attention:

https//docs.microsoft.com/en-us/azure/iot-hub

. Storage account, and blobs: As part of facial analysis, we will save captured

pictures in Azure blob storage:

https://docs.microsoft.com/en-in/azure/storage/storage-dotnet-how-to-use-blobs

. Stream analytics: The stream analytics job will take IoT Hub telemetry data and

send it to Power BI to show reports:

https://docs.microsoft.com/en-us/azure/stream-analytics

. Power BI: It will generate reports, charts, and analysis of the facial analysis

data:

https://powerbi.microsoft.com/en-us/learning

www.EBooksWorld.ir

https://developer.microsoft.com/en-us/windows/iot/getstarted
https://developer.microsoft.com/en-us/windows/iot/getstarted
https://docs.microsoft.com/en-in/windows/uwp/get-started/whats-a-uwp
https://docs.microsoft.com/en-us/azure/iot-hub
https://docs.microsoft.com/en-in/azure/storage/storage-dotnet-how-to-use-blobs
https://docs.microsoft.com/en-us/azure/stream-analytics
https://powerbi.microsoft.com/en-us/learning

www.EBooksWorld.ir

Configuring Raspberry Pi and sensors

In this project, we will use the Raspberry Pi 2 and Adafruit kit components to use a
PIR (Pyroelectric/Passive Infrared Sensor) motion sensor to detect the motion of an
object, which triggers a USB webcam to snap a photo and send it to the bot.

www.EBooksWorld.ir

www.EBooksWorld.ir

Prerequisites

Before getting started with the project, let's take a look at the hardware and software
requirements.

www.EBooksWorld.ir

www.EBooksWorld.ir

Hardware

The following list details are the hardware required for the project:

e Raspberry Pi2 Model B

e Breadboard

Logitech USB camera (this component is not there in Adafruit kit)
PIR motion sensor

LED

Resistor

Adafruit female to male jumper wires (only five wires needed)

www.EBooksWorld.ir

www.EBooksWorld.ir

Software

Now, let's take a look at the software required for the project:

e Windows 10 PC

Visual Studio 2015 Community Edition or Enterprise Edition
Azure subscription

Azure App Service (API App)

Azure [oT Hub

Now that we are equipped with all the hardware and software required for this
project, let's get started with configuring the Raspberry Pi and sensors.

www.EBooksWorld.ir

www.EBooksWorld.ir

Setting up sensors

Before setting up the sensors, you need to know about the Raspberry Pi's GPIO pins.
In the following diagram, you can see the pins and their specifications. In later
sections, we will mention these names as part of the development process.

Srio scix [23
GO

(2]svPwR |
a]svPwr |
6lcno |
8 JuarTO TX
10] UARTO RX |
12]GPIO 18
galcno |
16]GPI0 23
18]GPIO 24 |
2ojcnD)

22]GPIO 25
[SP10 CSO_

SPIO CS1
Reserved

Grio 1z |
Salono
Se|crio 16 |
58] sp11 most,
ao] spiz scu

Take a look at the circuit diagram for our project, drawn using the Fritzing
application, which is freely available to enthusiasts. For more information, check out

http//fritzing.org/home/:

www.EBooksWorld.ir

http://fritzing.org/home/

...................................

...................................

oooooooooooooooooooooooooo

fritzing

Now that we are familiar with the circuit diagram, let's take look at the following
steps to understand it:

1. Providing a SV power supply to the breadboard: In the first step, you have to
provide a 5V power supply to the breadboard from the Raspberry Pi. For that,
take a female to male jumper wire, connect the female end to the Raspberry P1
5V pin, which is next to the positive line on the breadboard, as shown in the
following diagram:

+ Y
- e o

2. Connect Ground to breadboard: In this step, you have to connect Ground to
the breadboard. For that, take a female to male jumper wire, connect the female
end to the Raspberry P1 ground pin, which is the sixth GND pin shown in the
preceding GPIO pin reference diagram. Now, connect the male end to the
negative line on the breadboard, as shown in the following diagram:

www.EBooksWorld.ir

3. Now Connect Ground/Negative/Black line of PIR sensor: The breadboard
PIR sensor has three pins--GND, OUT, and 5V; connect the GND pin to the
breadboard, as shown in the following diagram:

Now, take the male to male jumper wire and connect one end to the PIR
sensor's GND pin, and the other end to the breadboard ground, as shown in
the following figure:

www.EBooksWorld.ir

4. Similarly, as in the preceding step, now connect the 5V power supply/red line
from the PIR sensor to the breadboard:

www.EBooksWorld.ir

s a882 88508580858

Now, take a male to male jumper wire and connect one end to the PIR sensor
power supply pin, and the other end to the breadboard 5V power supply, as
shown in the following figure:

www.EBooksWorld.ir

s s 8 8 B s & & & 8 B
. 8 8 8 B s & & & 8 B
- & & & B . & & & 8 8
* 5 B 8 B . 8 5 & & 8
. 2 2 & 8 8 8 - 8 5 5 8 8

* 5 8 8 - & & @ . 8 8 8

[N T - & & 8 . & 8 B

5. Connect the OUT pin of the PIR sensor to the breadboard, and the other
end to the Raspberry Pi's GPIO6 which is pin 31: Now, connect the OUT pin
of the PIR sensor to the breadboard as shown in the preceding step. From

breadboard, take a male to female jumper wire and connect it to the Raspberry
Pi:

www.EBooksWorld.ir

lﬂﬂwﬂw..

6. Instep 6 and 7, take an LED and connect it to the breadboard: Now,
connect the LED to the breadboard; remember that the long edge is the anode (+)
and the short edge is the cathode (-), as shown in the following diagram:

You should not the place anode and cathode points in the same
9 vertical hole on the breadboard. They can be in the same horizontal

hole but not in the same vertical hole.

www.EBooksWorld.ir

7. Now connect the cathode point of the LED to GPIO pin 5 which is pin 29 on
the Raspberry Pi: Take a look at the eighth step in the following diagram-- the
purple line that connects the LED cathode to the Raspberry Pi GPIO pin 5.

T'TA Z [2@PL 1d Auagdsey

8. In this steps we connect the 560-ohm resistor to the breadboard: Take a
560-ohm resistor and connect the gold side to the anode side of LED and the
green side of the resistor to 3.3V power supply pin of the Raspberry Pi; refer to
the orange line marked as 10 in the following diagram:

www.EBooksWorld.ir

9. In this step we connect the camera to the Raspberry Pi: Now, connect the
camera to the Raspberry Pi using the USB/on beardboard; in this project, we
used the USB camera as shown in the following diagram:

www.EBooksWorld.ir

www.EBooksWorld.ir

Schematic diagram

Now that we have configured the sensors, let's take a look at the schematic diagram
of our project:

LED1

R1
560Q
+5%

Raspberry Pil

b\

:

RaspberryPi
Maodel 2 v1.1

LLLLLLLL
LTTTTTTTTTTT

PIR1

VDD
PIR
—1”° SENSOR
GND

fritzing

So far, you have configured the IoT device (the Raspberry Pi2). The next step is to
register your Raspberry Pi2 with Azure IoT Hub. This enables your IoT device to
send sensor data to your Azure IoT Hub; from there, we can redirect it to Power BI.

www.EBooksWorld.ir

www.EBooksWorld.ir

Device identity and registry with IoT
Hub

The main purpose of device identity registration is to allow access to the device-
facing endpoints. For each device, it creates resources in Azure loT Hub, which
enables device-to-cloud messages and also cloud-to-device messages, if needed.

You can do this in different ways. Here, I will explain a technique using Device
Explorer.

www.EBooksWorld.ir

www.EBooksWorld.ir

Using Device Explorer

You can use this tool to manage devices connected to your IoT Hub. For example,
you can register a device with your IoT hub, monitor messages from your devices,
and send messages to your devices. Device Explorer runs on your local machine and
connects to your IoT hub in Azure. Following are the steps for using Device
Explorer:

1. Download and install Device EXplOl‘el' from https://github.com/Azure/azure-iot-sdks/release
S.

2. Assuming that you already have IoT Hub in Azure--if not, check out the getting

started link mentioned at the start of this chapter--you need an IoT Hub

connection string, to get it, log in to your Azure Portal, open your IoT Hub, and

under Shared access policies | lothubowner, copy the Connection string--

primary key.

www.EBooksWorld.ir

https://github.com/Azure/azure-iot-sdks/releases

[im| GenericHub - Shared access policies iothubowner

* loT Hub Hub

o Add

L Search (Ctri+/)

PoLICY PERMISSIONS Access policy name
| othubowner
l_—): Overview registry write, service connect, device connect o
Permissions
B Activity log service service connect [v] Registry read @
z‘ Registry write @
4l Access control (IAM) device device connect V| Service connect @
| Device connect @
registryRead registry read
SETTINGS
. registryReadWrite registry write Shared access keys
= Properties
Primary key @
& Llocks
¥4 Automation script Secondary key @
GENERAL
Connection string—primary key @
Shared access policies HostName=GenericHub.azure-devices.net ‘
1 Messaging Connection string—secondary key @
HostName=GenericHub.azure-devices.ne! .
File upload

& Pricing and scale
ES Operations monitoring

m Diagnostics

SUPPORT + TROUBLESHOOTING

24 New support request

3. Open Device Explorer, which you installed in step 1, enter your IoT Hub
connection string, and click on Update.

www.EBooksWorld.ir

Configuration Data Messages To Device

Connection Information
loT Hub Connection String:

HostName=Genericlo THub.azure-
devices.netSharedAccessKeyName=iothubowner,SharedAccessKey=md 2T TN Donlie Dl

\ SRR

=

Protocol Gateway HostName:

Shared Access Signature

(

Key Name jgthubowner

Key Value
Target Genericlo THub.azure-devices.net

TTL(Days) 365 o Generate SAS

4. Now, go to the Management tab and click on the Create button to create a
device.

www.EBooksWorld.ir

8 Device Explorer = O X

Configuration Management Data Messages To Device

| Create | Refesh Update | Delete | | SASToken. |

Devices
Total: 5

I Id PrimaryKey SecondaryKey ConnectionStrir ConnectionStat LaslActivi:|

5. Finally, save the Device ID and Primary Key values in another database or a
safe place; these will be used to send data from your Raspberry Pi to [oT hub.
This way, we can register your Raspberry Pi2 with [oT hub to send data.

Create Device

Device ID: | | 1018 ' |

Next, let's develop the facial identification bot, for which we will implement face
and emotion analysis code. This bot will receive images from the IoT device and
then process them using the Face and Emotion APIs to identify the facial expressions

in them. Before jumping into the code, let's take a look at what the Face API and
Emotion API are.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Face API

The Face API will detect human faces; tag them as people; save people into groups
based on similarity between images, such as images of the same person; and also
1dentify the previously tagged people in images. The Face API can do face detection,
1dentification, verification, similar face search, and face grouping. The Face API
takes an image as an input, processes it to detect one or more human faces in that
1mage, and returns face rectangles for all the faces in the image. It also returns face
attributes, which contain features. The face features are age, gender, pose, smile, and
facial hair, along with 27 landmarks for each face in the image. These predictions are
based on the application of machine learning algorithms to facial features. For more
information, refer to https://www.microsoft.com/cognitive-services/en-us/face-api/documentation/overview.

www.EBooksWorld.ir

https://www.microsoft.com/cognitive-services/en-us/face-api/documentation/overview

www.EBooksWorld.ir

Emotion API

The Emotion API analyzes faces to identify the emotions of a person. This API takes
facial expression from an image as input and returns feelings/expressions for that
face. If a user has already called the Face API on a particular image, they can submit
the face rectangle from that image as an optional input. The emotions detected by the
Emotion API are anger, contempt, disgust, fear, happiness, neutral, sadness, and
SUI‘pI'iSC. For more information, refer to https//www.microsoft.com/cognitive-services/en-us/emotion

-api/documentation.

Both the Face and Emotion APIs can also detect face attributes and emotions from a
video. For a video, the Emotion API will detect the facial expressions of people in
the video and return a summary of their emotions. In real-time scenarios, you can use
these APIs to find out how a crowd responds to your speech or content.

www.EBooksWorld.ir

https://www.microsoft.com/cognitive-services/en-us/emotion-api/documentation

www.EBooksWorld.ir

Sign Up Microsoft Cognitive Services

These two APIs are part of the services offered in Microsoft Cognitive Services
provided by Microsoft. It is currently free; to use these APIs, you first need to sign up
for Microsoft Cognitive Services. Follow the sign-up process explained in Chapter 4,
Natural Speech and Intent Processing Bot Using Microsoft Cognitive Services in
the Signing up for Microsoft Cognitive Services section.

Once you complete the signup process, perform the following steps to get Face and
Emotion API keys:

1. On the free trails page, navigate down to the Emotion API section and copy Key
1 to a safe place; we will need it in later steps.

_ State: active

Key 1:X0000COOOCKOOOKKHXXXKX Regenerate | Show | Copy
Key 2: X000 OO XKX Regenerate | Show | Copy
Show Quota

Buy On Azure 4 Cancel

Emotion - Preview

30,000 transactions per month, 20 per minute.
O State: active

| Key 1 :_l Regenerate | Hide

Key 2: XXX Regenerate | Show | Copy
Show Quota
Buy On Azure 4 Cancel

Computer Vision - Preview

5,000 transactions per month, 20 per minute.
@ State: active

2. Similarly, copy the Face APl key 1 to a safe place.

www.EBooksWorld.ir

Face - Preview

30,000 transactions per month, 20 per minute.

State: active

Key 1: XXX XXX
Key 2: XXX XXX

Show Quota

Regenerate | Show

Copy

Regenerate | Show

Buy On Azure 4

Cancel

Copy

www.EBooksWorld.ir

www.EBooksWorld.ir

Development of facial expressions
identification bot

Now, we are ready to build a bot application. Go to Visual Studio and create a new
bot project using the Bot Application template, as follows:

1. Open Visual Studio, click on New | Project, and select Visual C# from the left-
hand side template category. Then, in the templates section, you will see the Bot
Application template.

M Start Page - Microsoft Visual Studio (Administrator)
Edit View Debug Team Tools Architecture Test Analyze Window Help

New ’ Ilfﬁ Project... Ctrl+Shift+N
Open » | %3 Web Site.. Shift+Alt+N
Close 2 Team Project...

0]

@5 Repository...
0 File.. Ctrl+N
Project From Existing Code...

w¥ Save All Ctrl+Shift+S Import 4
S EEWNAT S MEW T TNE NET FrameworK

Explore what's new in Visual Studio Team Services

Account Settings... N ews
Recent Files ’
Recent Projects and Solutions » LDOkiﬂg ahead: What's New in C# 7.0

(Visual Studio "15" Preview 4)

What follows is a description of all the planned

Exit Alt+F4

2. Select the Bot Application template, name the project, and then click on OK.

www.EBooksWorld.ir

Search Installed Templates (Ctrl+E)

Type: Visual C#

Template to build a bot application for
Microsoft Bot Framework

New Project
P Recent NET Framework 452~ Sort by: Default M T
4 |ngtalled |
i r Azure Mobile Service Visual C#
4 T -
F_C# .
(X Brcel 2010 VSTO Workbook Visual C#
& FC#
Web @J Outlook 2010 VSTO Add-in Visual C#
b Office/SharePoint pmcs
Aol @J Word 2010 VSTO Document Visual C#
Apple Watch =CH
b Cloud EEJ Activity Library Visual C#
Cross-Platform c#
Extensibility @ WCF Workflow Service Application Visual C#
Extensions " (S . . .
i Y E Bindings Library (i0S) Visual C#
iPhone . o .
Bing Maps Application Visual C#
LightSwitch
Beprtng JE'J Blank App (Android) Visual C#
Silverlight B
= I (@ Bot Application Visual C#
Universal
e — —
Gl Click here to go online and find templates.
Name: Bot Application1
Location: C\Users\ i O o cuments\Visual Studio 2015\Projects\
Solution name: Bot Application1

- Browse...

Create directory for solution
[[] Create new Git repository

?

X

P~

| oK

|| Cancel |

3. After the successful creation of your project, go to solution explorer and open
the wev.contig file, as shown in the following screenshot:

%] Solution 'Facial_ldentification_Bot' (1 project)
4 T Facial Identification Bot
& Properties
58 References
App_Start
Controllers

A Y vV T

P €% MessagesController.cs
I defaulthtm

;3':-_3 Global.asax

C* HelperClass.cs

!'3 packages.config
> ¢ Web.config

v v

4. Under app Settings, add the Face API key and the Emotion API key, which you

copied in earlier steps, as follows:

www.EBooksWorld.ir

5. Next, you have to add the references to the Face API and the Emotion API to the

<configuration>
<appSettings>

<!-- update these with your BotId, Microsoft App Id and your Microsd

<add key="BotId" value="k />

<add key="MicrosoftAppId" value="" />

<add key="MicrosoftAppPassword" value="" />

<add key="FaceKey" value=" S oo B" />

<add key="EmotionKey" value="TTCooiTU T IO II oI Do in oot/ >

</appSettings>

project. For that, go to NuGet Package Manager, search for
Microsoft.ProjectOxford, and install the Face and Emotion packages, as
follows:

NuGet: Facial_Identification Bot # X EeElE@E TN Web.config* MessagesController.cs

Browse Installed Updates NuGet P:

‘ Microsoft.ProjectOxford x |"l ¢ [] Include prerelease

Microsoft.ProjectOxford.Vision by Microsoft, 23.9K downloads v1.0.372
Microsoft Cognitive Services Vision API Client Library.

Microsoft.ProjectOxford.Emotion by Microsoft, i8K downloads @ v1.0.336

This client library allows the use of Microsoft's state-of-the{art cloud-based algorithms to...

Microsoft.ProjectOxford.Video by Microsoft, 1.53K downloads v1.2.0
Microsoft Cognitive Services Video Client Library

Microsoft.ProjectOxford.Text by Adam Grocholski, 1.48K downloads v1.0.2.36174
Microsoft Cognitive Services Text Analytics API Client Library

Microsoft.ProjectOxford.Search by Adam Grocholski, 342 downloads v0.0.3.27992
Microsoft Cognitive Services Search APl Client Library

o

Microsoft.ProjectOxford.Face by Wicrosoft, 24.8K downloads O vi212
Use Face API Client Library to enrich your apps with Microsoft's state-of-the-art cloud-bas...

6. Now, add a new class named re1perciass.cs to the project, then import the
following references:

using Microsoft.ProjectOxford.Face.Contract;
using Microsoft.ProjectOxford.Face;
using Microsoft.ProjectOxford.Emotion;

www.EBooksWorld.ir

| using System.Configuration;

The following screenshot explains the preceding code:

ification_Bot HelperClass.cs & X [ERESNiE] MessagesController.cs

tion_Bot ~ || #3 Facial_Identification_Bot.HelperClass
-lusing System;
using System.Collections.Generic;
using System.Ling;

Syste

using Microsoft.ProjectOxford.Face.Contract;
using Microsoft.ProjectOxford.Face;

using Microsoft.ProjectOxford.Emotion;

using System.Configuration;

using System.IO;

using System.Text;

using System.Threading.Tasks;

-Inamespace Facial_ Identification_Bot
{
= public static class HelpeECiass
Ir

7. Next, to call the Face and Emotion APIs, we have tWo serviceciient classes
called raceserviceciient and emotionserviceciient. Initialize both Face and
Emotion API keys, and also add some other variables at the class level, which
will be used in following steps:

public static FaceServiceClient faceClient = new
FaceServiceClient (ConfigurationManager.AppSettings
["FaceKey"] .ToString()) ;

public static EmotionServiceClient emotionClient = new
EmotionServiceClient (ConfigurationManager.AppSettings
["EmotionKey"].ToString());

public static Face face = null;

public static Microsoft.ProjectOxford.Face.Contract.Face
FaceclientFace = null;

The following screenshot explains the preceding code:

public static class HelperCiass
{
public static FaceServiceClient faceClient =
new FaceServiceClient(ConfigurationManager.AppSettings["FaceKey"].ToStr
public static EmotionServiceClient emotionClient =
new EmotionServiceClient(ConfigurationManager.AppSettings["EmotionKey"]
public static Face face = null;
public static Microsoft.ProjectOxford.Face.Contract.Face
FaceclientFace‘= null;

8. Now, write code to perform facial analysis on an image received from a user.
To do that, define a method called faceapranaiysis 1N relperciass, which takes
an image in stream format as input.

9. We will pass that stream to the Face API client to analyze the facial attributes.
The raceserviceciient class has the petectasync method, which will take the image

www.EBooksWorld.ir

stream and whatever attributes you want to track as input:

Microsoft.ProjectOxford.Face.Contract.Facel]
faceDetectionResult = await
faceClient.DetectAsync (

attachemntData,
true, true, new FaceAttributeTypel]
{
FaceAttributeType.Age,
FaceAttributeType.FacialHair,
FaceAttributeType.Gender,
FaceAttributeType.HeadPose,
FaceAttributeType.Smile,
FaceAttributeType.Glasses
b

10. The petectasync method returns the attributes for the face identified in the given
image stream. From the face detection results, you will get all the attribute
values shown in the following code:

var firstResult = faceDetectionResult.FirstOrDefault ()
if (firstResult != null)
{
var attributes = firstResult.FaceAttributes;
var beardl = LabelFromConfidenceValue (
"beard", attributes.FacialHair.Beard);
var moustache = LabelFromConfidenceValue (
"moustache", attributes.FacialHair.Moustache);
var sideburns = LabelFromConfidenceValue (
"sideburns", attributes.FacialHair.Sideburns);
var smile = LabelFromConfidenceValue (
"smile", attributes.Smile);
return "Age: "+ attributes.Age + " \r \n "+
"Gender: " + attributes.Gender + " \r \n " +
"HeadPose: " + attributes.HeadPose + " \r \n "
+beardl+ " \r \n " + moustache + " \r \n " +
sideburns+ " \r \n " + smile+ " \r \n "
+ attributes.Glasses;

}

www.EBooksWorld.ir

www.EBooksWorld.ir

Let's code to know the emotions

Now, we will write code to find out the emotions of faces in the image that we
received as input. We will perform the following steps to do so:

1. We will define another method called cunotionarranalysis 1N elperciass.cs, which
takes an image in stream format as input, similar to the racearranaiysis method.
We will pass that stream to the Emotion API to analyze the facial expressions.
The enotionserviceciient class has the recognizeasync method, which will take an
image stream as its input. The following is the code to send the stream to the
Emotion API:

public static async Task<string> emotionAPIAnalysis (Stream
attachemntData)

{

string emotionList = "";
var emotionresults = await
emotionClient.RecognizeAsync (attachemntData) ;

}

2. The recognizensync method returns all the emotions found in the face identified in
the given image stream. Parse the resulting emotions and save them in a string
using the stringsuilaer class. The following code is used to parse the results of
the facial expression analysis:

var legend = new StringBuilder();

foreach (var person in emotionresults)

{

var emotionScores = person.Scores.ToRankedList () ;
var labelledScores =

emotionScores

.OrderByDescending (entry => entry.Value)
.Select (

entry => new KeyValuePair<string, string>(
entry.Key,

LabelFromConfidenceValue (entry.Key, entry.Value)));
var listOfScores = string.Join(

" \r \n ",

labelledScores.Select (entry => entry.Value));
legend.AppendLine (1listOfScores) ;

emotionlList = legend.ToString() ;

}

if (emotionList != "")

return emotionList;

else

return "Unable to process the given image";

3. The emotion results will return all emotions detected with a confidence level.
For example, if the face is a smiling face, then the confidence that the face
displays happiness will be greater than o.s; if the face doesn't show anger, then
the anger confidence value will be less than o.3, and there will be a confidence
value for all other emotions. To understand these values, we created a neiper

www.EBooksWorld.ir

method, which will return the emotion i1f the confidence value 1s greater than o.s;
otherwise, no emotion will be returned. This method takes the emotion type and
confidence value as its input. The following is the ne1per method code:

static string LabelFromConfidenceValue (string label, double
confidence) {

var returnLabel = label;

if (confidence < 0.3)

{

returnLabel = $"No {label}";

}

return (returnLabel);

}

4. Add the following class to hold the face attribute details returned by the Face
API in HelperClass.

public class Face

{

public FaceAttributes FaceAttributes { get; set; }
public Guid FaceId { get; set; }

public Facelandmarks FaceLandmarks { get; set; }
public FaceRectangle FaceRectangle { get; set; }

}

www.EBooksWorld.ir

www.EBooksWorld.ir

Registering your Bot in Bot
Framework

Next, you need to register your bot with Bot Framework so that you can integrate
your bot with channels such as Slack, Skype, Facebook, and many more. In Chapter 9,

Publishing a Bot to Skype, Slack, Facebook, and the GroupMe Channel,

section Registering your Bot with Microsoft Bot Framework, we explained how to
register your bot with dev.botframework, and refer to it to find out how to register your

bot with Bot Framework. Following are the steps to register a bot:

1. Once you are done registering your bot, copy the Microsoft App ID and
Password, which you generated when you registered your bot. You can also get
these values from your existing bot--edit settings page under Configuration

section--as shown in the following screenshot:

Configuration
Messaging endpoint:

https://facialidentificationbot.azurewebsites.net/api/messages

Register your bot with Microsoft to generate a new App ID and password

Manage Microsoft App ID and password

Paste your app ID below to continue

2. Now, go to bot project and open the wev.conrig file. Under appSettings, update the
MicrosoftAppID, MicrosoftAppPassword, and the zot1a. The sot1a 18 nothing but bot

handle name of your bot:

Sl

<configuration>
<appSettings>

update these with your BotId, Microsoft App Id and your Microsoft App

<add
<add
<add

key="BotId" value="FacialIldentificationBot" />
key="MicrosoftAppId" value=”L?f?trcr L A e e o v R
key="MicrosoftAppPassword" value="lIliC ZCilorcZlllilichald” />

<add
<add

key="FaceKey" value="U\" ccamuCioruscioircuuvic uvry "/>

key="EmotionKey" value="CToelTUliIuddieliioiioeloiniliii/>

</appSettings>

3. Next, g0 to the vessagecontrolier.cs file, rost method. We need to update the rost
method to receive and support attachments/images from the user. Your bot
should accept an image from the user and send it to the Face and Emotion APIs.
Basically, the bot receives the image as an attachment in activity onject. Here,

www.EBooksWorld.ir

https://dev.botframework.com/

we have a problem, because we cannot directly access the attachment's data.
Since we received the attachment as a URL instead of direct image/data, which
1s stored securely somewhere by Bot Framework, the bot needs to send a get
request with the help of the URL to get the real content in the attachment. This
will be secure because only your bot can request the attachment/image, so in the
HTTP get request you need to send the Microsoft App 1d and Password as
authentication headers. This way only your bot can request the real content from
Bot Framework.

4. First, you need to check whether the user sent the attachment/image, with the
help of the following code:

| var attachment = activity.Attachments?.FirstOrDefault();

5. Inthe attachment, you will find a content URL property in which the user-
uploaded image is stored. You have to check whether contenturi 1s empty or not:

if (attachment?.ContentUrl != null)
{

6. If content URL is not empty, then we need to request a token based on
credentials--Microsoft App Id and Password--which will be available under
the connectorciient ObjeCt. The code will be as follows:

var attachment = activity.Attachments?.FirstOrDefault();
if (attachment?.ContentUrl != null)

{

using (var connectorClient = new ConnectorClient (new
Uri (activity.ServiceUrl)))

{

var token = await (connectorClient.Credentials as
MicrosoftAppCredentials) .GetTokenAsync () ;

}

}

7. Once we get the token, we pass the token in the Authentication header as a
bearer in a sttpciient request. The following code explains the Authentication
token:

var token = await (connectorClient.Credentials as
MicrosoftAppCredentials) .GetTokenAsync () ;
var uri = new Uri (attachment.ContentUrl);
using (var httpClient = new HttpClient())
{
if (uri.Host.EndsWith ("skype.com") &&
uri.Scheme == Uri.UriSchemeHttps)

{

httpClient.DefaultRequestHeaders.Authorization = new
AuthenticationHeaderValue ("Bearer", token);

httpClient.DefaultRequestHeaders.Accept.Add (new

www.EBooksWorld.ir

MediaTypeWithQualityHeaderValue ("application/octet-stream")) ;
}

else

{

httpClient.DefaultRequestHeaders.Accept.Add (new
MediaTypeWithQualityHeaderValue (attachment.ContentType)) ;
}
}

8. Now, do a get request using cetstreamasync, then pass the stream to the
racenpTanalysis and Emotionaptanalysis helper methods to detect facial expressions
and attributes, as follows:

var emotions= await HelperClass.emotionAPIAnalysis (await
httpClient.GetStreamAsync (uri)) ;

var faceAttributes = await
HelperClass.faceAPIAnalysis (await
httpClient.GetStreamAsync (uri)) ;

9. Finally, reply to the user with the details, of the face analysis and emotion
analysis as follows:

// return our reply to the user
Activity reply = activity.CreateReply ($"**Face
Analytics of given Image are** \r \n
{faceAttributes} \r \n \r \n **Emotion
Analytics of given image are** \r \n
{emotions}");
await

connectorClient.Conversations

.ReplyToActivityAsync (reply) ;

www.EBooksWorld.ir

www.EBooksWorld.ir

Publish and test your bot

Now, publish the bot application to Azure. Refer to Chapter 9, PPublishing a Bot to
Skype, Slack, Facebook, and the GroupMe Channel, in the Publishing your bot
application to Microsoft Azure web app section.

After publishing successfully, update the endpoint URL of your bot, which is
registered 1n the dev.vot framework.

Configuration

Messaging endpoint:

‘ https://facialidentificationbot.azurewebsites.net/api/messages

Register your bot with Microsoft to generate a new App ID and password

Manage Microsoft App ID and password

Paste your app ID below to continue

You can test it by adding it to Skype using the Add to skype option.

www.EBooksWorld.ir

Facial Identification Bot

Details Eelif Test connection
Bot handle TO your bot

FacialldentificationBot

Bot Framework Version

3.0

Endpoint authorization succeeded

Messaging endpoint
https://facialidentificationbot.azurewebsites.net/api...

Microsoft App ID
fbce89ch-d016-4293-acea-b252367313b1

Channels

Test link Issues Enabled Published

@ Skype © Add to Skype 0 Yes Off
Web Chat T Yes Off

After successfully adding to your Skype, send an image to the bot and see the results
of the Face API and Emotion API directly in Skype, as shown in the following
screenshot:

www.EBooksWorld.ir

ols Help

¢ Facial Identification Bot

@ © Online

Age: 2.3
Gender: female

HeadPose:

No beard

No moustache
No sideburns
smile

NoGlasses

Happiness

No Surprise

No Fear

Type a message here

Today

R

Face Analytics of given Image are

Emotion Analytics of given image are

M%’flj

551 PM

www.EBooksWorld.ir

www.EBooksWorld.ir

Configure Direct Line Channel

To call the bot from the IoT application, we need to configure Direct Line channel.
Let's perform the following steps to do that:

1. Go to dev.botframework.com, click on the My Bots section, and select your bot:

e Microsoft

Bot Framework My bots Register a bot Documentation Bot Directory Blog
PREVIEW

Facial Identification Bot

Details ik Test connection
Bot handle to your bot

FacialldentificationBot

Bot Framework Version

3.0

Messaging endpoint
https://facialidentificationbot.azurewebsites.net/api...

Microsoft App ID
fbce89cb-d016-4293-acea-b252367313b1

2. Under the Channels section, click on the Add option of the Direct Line channel.
It opens a configuration page:

Channels

Test link Issues Enabled Published
E Skype © Add to Skype 0 Yes Off Edit
Web Chat 9 Yes Off Edit

Get bot embed codes

Add another channel

Direct Line Add

I

E Email Add

Facebook Messenger Add

GroupMe Add
| .

www.EBooksWorld.ir

https://dev.botframework.com/

3. On the Direct Line configuration page, click on the Add New Site option and
add a name:

4. Next, copy the primary secret key we will use in later steps, as shown in the
following figure, and finally click on I am done configuring Direct Line:

FacialExpressionBot & LT Disable |

FacialExpressionBot

Secret keys

XOqvmfBI7t4.cwA.gMc jTUFmBt2fXIYbIxwxcKPOgqnV3q7GINCfEbRwj1eY| Hide | Regenerate

PO 0000 C 0000800 0000000.0.9.0.9.0.0.9.¢.9.04¢ Show | Regenerate

Version

Select which versions of the Direct Line protocol are enabled on this site. More
information about these versions can be found in the Direct Line reference
documentation.

B 11
3.0 [PREVIEW]
[0 High-speed storage [PREVIEW]

I'm done configuring Direct Line >

Next, you need to develop a Universal Windows Platform (UWP) app for
Raspberry Pi2.

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Develop an UWP app for Raspberry Pi
device

A UWP app is responsible for collecting sensor data, which means it captures a
photo of a person and sends it to the bot, and the bot will process it and send back the
results to the Raspberry Pi2. The processed results will be sent to loT Hub.

www.EBooksWorld.ir

www.EBooksWorld.ir

Create an UWP App project

Now, let's take a look at the steps we need to follow to create the UWP app:

1. Open Visual Studio and create a new project by selecting Universal app as
Universal | Blank App template, as follows:

New Project ? b4
b Recent NET Framework 4.5.2 - | Sort by: | Default -| a5t Search Installed Templates (Ctrl+E) P~
4 |nstalled C# Tvpe: Vi
‘] i i ; ype: Visual C#
. B Blank App (Universal Windows) Visual C#
4 Templates = A project for a single-page Universal
4 Visual C# g:i! Class Library (Universal Windows) Visual C# Windows Platform app that has no

predefined controls or layout.

E’n
Name: ' ‘ |

Location: C\Users\, - ~\Documents\Visual Studio 2015\Projects ¥

Solution name: PIRSensorPOC Create directory for solution

4 Windows c#

g‘i! Windows Runtime Component (Universal Windows) Visual C#
P Windows 8

Classic Desktop

Windows loT Core rc*
Web ﬂ_—l Coded Ul Test Project (Universal Windows - Phone) Visual C#

C#
E_—l Unit Test App (Universal Windows) Visual C#

I Office/SharePoint c#
Andtoid E_-l Coded Ul Test Project (Universal Windows) Visual C#

4 Cloud c#
b QuickStart: B | Holographic DirectX 11 App (Universal Windows) Visual C#
uickStarts

Cross-Platform
Extensibility

b i0S
LightSwitch
Reporting
Silverlight

= v

b Oflitia Click here to go online and find templates.

[] Create new Git repository

|| OK | | Cancel |

2. After the successful creation of the project, right-click on the Project and select
the Add Reference option from the menu.

. skl Solution 'FaceAndEmoticonDetection' (1 project)
connection 4 7[# FaceAndEmoticonDetection (Universal Windo
bnnectionSt b &/ Properties

|Add Reference... | F

Add Service Reference... aml

ndEmoticonDetection_TemporaryKey.pf]
& Add Connected Service... - EMPOTayRey:p

Add Analyzer...

£s
agexaml
B Manage NuGet Packages... ginPage.xaml.cs

Scope to This ge.appxmanifest

ct.json

New Solution Explorer View

3. Next, from Reference Manager windows select the Extensions category under

www.EBooksWorld.ir

Universal Windows and then select Windows loT Extensions for the UWP.

Reference Manager - FaceAndEmoticonDetection ? o
b Assemblies Filtered to: SDKs applicable to FaceAndEmoticonDetection Search Universal Windows (C R ~
¥ Projects Name Version &
. Bing.Speech 14| Windows loT Extensions for the
Risushed Binjece: Microsoft Advertising SDK for XAML 10.0 uwp
A Un e Wint e Microsoft Advertising Universal SDK 1.0 Version:
Microsoft General MIDI DLS for Universal Windo... 10.0.14393.0 10.0.14393.0
ore Microsoft Store Engagement SDK 10.0 Targets:
Microsoft Universal CRT Debug Runtime 10.0.14393.0 UAP 10.0.14393.0
Microsoft Universal CRT Debug Runtime 10.0.10240.0 ;
Recent Microsoft Universal CRT Debug Runtime 10.0.10150.0 bloe i CHiae
b Browss Microsoft Visual C++ 2013 Runtime Package for... 12.0
Microsoft Visual C++ 2013 Runtime Package for... 14.0
Microsoft Visual C++ Runtime Package 11.0
Microsoft Visual Studio Test Core 15.0
Microsoft Visual Studio Test Core 14.0
Microsoft Visual Studio Test Core 14.0
MSTest for Managed Projects 15.0
MSTest for Managed Projects 14.0
MSTest for Managed Projects 14.0
SQlite for Universal Windows Platform 3.141
SQlite for Windows Runtime (Windows 8.1) 3.8.11.1

Visual C++ 2015 Runtime for Universal Windows... 14.0

Windows Desktop Extensions for the UWP 10.0.14393.0

I Windows loT Extensions for the UWP 10.0.14393.0
WIRdoOWSs MODIE EXtensions 10f the UVVFP 10.0.14393.0
Windows Team Extensions for the UWP 10.0.14393.0

v

| Browse... ||| OK ||| Cancel |

4. Select the appropriate version of [oT Extensions; here I am using the 10.0.14393.0
version and my Raspberry Pi2 also has the same version of the Windows 10 IoT
Core OS.

www.EBooksWorld.ir

www.EBooksWorld.ir

How to detect the motion of the object
using PIR Sensor and How to define the
LED states

To detect the motion of an object, an important sensor is PIR. For that, first you need
to define a variable for the PIR sensor by setting the respective pin number into it.
You need to define a variable for the LED sensor and set it to its respective Pi
number, as explained in the step 1 in the following list. By using these pin numbers,
we will identify whether the PIR sensor detected an object or not; based on the PIR
sensor value, you will turn the LED light on/off.

1. Open the vainrage.xam1.cs file and declare the following properties at the top of
the class, as follows:

//Status LED variables
private const int LED PIN = 5;
private GpioPin PinLED;

//PIR Motion Detector variables
private const int PIR PIN = 16;
private GpioPin PinPIR;

2. Next, add the following lines of code in the mainpage.xam1.cs file constructor, to
call the tnitializecrro(), Tnitilizewebcam() Method and the rigntren() method:

//camera initilization
InitilizeWebcam() ;

InitializeGPIO();

//Turn the Status LED on
LightLED(true) ;

// At this point, the application waits for motion to be detected
by

// the PIR sensor, which then calls the PinPIR ValueChanged()
function

3. Add the following lines of code in the mainrage.xami.cs file, which gets the current
cpiocontroller and sets the drive mode of the GPIO pin:

private void InitializeGPIO ()
{
try

{
//Obtain a reference to the GPIO Controller

var gpio = GpioController.GetDefault();

// Show an error if there is no GPIO controller
if (gpio == null)
{

www.EBooksWorld.ir

PinLED = null;

Debug.WriteLine ("No GPIO controller found on
this device.");

return;

}

//Open the GPIO port for LED
PinLED = gpio.OpenPin (LED PIN) ;

//set the mode as Output (we are WRITING a signal to
this port)
PinLED. SetDriveMode (GpioPinDriveMode.Output) ;

//Open the GPIO port for PIR motion sensor
PinPIR = gpio.OpenPin (PIR PIN);

//PIR motion sensor - Ignore changes in value of
less than 50ms

PinPIR.DebounceTimeout = new TimeSpan(0, 0, 0, O,
50);

//set the mode as Input (we are READING a signal
from this port)
PinPIR.SetDriveMode (GpioPinDriveMode. Input) ;

//wire the ValueChanged event to the
PinPIR ValueChanged() function
//when this value changes (motion is detected), the
function is called
PinPIR.ValueChanged += PinPIR ValueChanged;
}
catch (Exception ex)
{
Debug.WritelLine (ex.Message) ;

}

Here, I have the explained the preceding code line by line:

e First, we use cpiocontroller.cetnetault () t0 get the GPIO controller.

e Ifthe device does not have a GPIO controller, this function will return nu11 and
display the error message in the output window of your Visual Studio 2015
when you're running the project in debug mode.

e Then, we attempt to open the pin by calling cpiocontrorier.openrin() With the 1ep p1x
value.

e We also set the pin to run in output mode (we are writing a signal to this port)
using the cpiopin.setprivemode () function.

e Next, we attempt to open the pin by calling cpiocontrolier.openrin() With the prr_pry
value.

e We also set the pevouncerimeout for the PIR motion sensor to ignore changes in
value of less than 50 ms--the meaning of this pevouncerimeout 1s "don't report
events that happen within 50 milliseconds of each other". Try running the app
with this line removed, or with the setting at 100-500ms, and see what different
behaviors you get from your PIR sensor.

e We also set the pin to run in input mode (we are reading a signal from this port)
using the cpiorin.setprivemode () function.

www.EBooksWorld.ir

e This line 1s the most important, as it ties the Typed Event Handler of the GPIO
pin 16's value changed event to the function rinerr vaivechangea(... .; this means
that the app will continually poll pin 16 of the Raspberry Pi's GPIO port, and
when a signal is detected (motion was detected), the pinp1r.valuechanged +=
PinPIR ValueChanged function is called.

e Next, add the following lines of code in the mainrage.xami.cs file:

private async void PinPIR ValueChanged(GpioPin sender,
GpioPinValueChangedEventArgs args)

{

}

//simple guard to prevent it from triggering this
function again before it's compelted the first time -
one photo at a time please
if (IsInPictureCaptureMode)

return;
else

IsInPictureCaptureMode = true;

// turn off the LED because we're about to take a
picture and send to Bot

LightLED(false);

try

{

StorageFile picture = await TakePicture();

if (picture != null)
UploadPictureToBot () ;
}
catch (Exception ex)
{
Debug.Writeline (ex.Message) ;
}
finally
{
//reset the "IsInPictureMode" singleton guard so
the next
//PIR movement can come into this method and take
a picture
IsInPictureCaptureMode = false;

//Turn the LED Status Light on - we're ready for
another picture
LightLED (true) ;

}

return;

private void LightLED (bool show = true)

{

if (PinLED == null)
return;
if (show)

{
PinLED.Write (GpioPinValue.Low) ;

}

else

{
PinLED.Write (GpioPinValue.High) ;

}

www.EBooksWorld.ir

4. Here, I have the explained the preceding code line by line available inside the
PinPIR ValueChanged €EVENt:

e The rinprr valuecnangea €vent will be called only when GPIO pin 16 (the PIR
signal) changes; this means that it will be called only when the PIR sensor
detects object movement.

e In that event, you will see the variable as rstnpicturecapturemcde; the reason |
am using this variable is that by using it, we can prevent this function from
being triggered a second time before its logic 1s completed.

e What logic completed means that it takes some time to snap a picture and
send it to bot.

e After setting a true value for the rstneicturecapturemcce variable, I will call
method as rigntren() with the value fa1se; the meaning of this line is that the
LED will be turned off until we send the picture to the bot, That's why in
this event I will call the raxericure 0 method and the upioadaricturetosot ()
method. Using these two methods, we can take a photo when the PIR sensor
detects object motion. After completion, the photo will be sent to the bot.

www.EBooksWorld.ir

www.EBooksWorld.ir

Initializing camera on detection of
motion

There's very little C# code required to get the photo-taking functionality we need.
There's an tnitializewencam() function that configures the .NET weaiacapture Object we'll
use to take the picture. We also register a callback function with the wveaiacaprure's
failed event. This callback event will get called if there's any sort of error in the
picture-taking process.

Add the following lines of code in the mainrage.xam1.cs file, in which you have to write
the code for how to initialize the webcam, and after initializing the webcam, how to
make it take a photo of the object detected by the PIR sensor:

#region Webcam code
/// <summary>
/// Initializes the USB Webcam
/// </summary>
/// <param name="sender"></param>
/// <param name="e"></param>
private async void InitilizeWebcam(object sender = null,
RoutedEventArgs e = null)
{
try
{
//initialize the WebCam via MediaCapture object
MediaCap = new MediaCapture () ;
await MediaCap.InitializeAsync();

// Set callbacks for any possible failure in TakePicture ()
logic
MediaCap.Failed += new
MediaCaptureFailedEventHandler (MediaCapture Failed);

}

catch (Exception ex)

{
Debug.WritelLine (ex.Message) ;

}

return;

}

/// <summary>

/// Takes a picture from the webcam

/// </summary>

/// <returns>StorageFile of image</returns>

string path = "";
public async Task<StorageFile> TakePicture ()
{
try
{
//gets a reference to the file we're about to write a
picture into
StorageFile photoFile = await
KnownFolders.PicturesLibrary.CreateFileAsync (
"RaspPiSecurityPic.jpg",
CreationCollisionOption.GenerateUniqueName) ;
path = photoFile.Path;

www.EBooksWorld.ir

//use the MediaCapture object to stream captured photo to a
file
ImageEncodingProperties imageProperties =
ImageEncodingProperties.Createdpeg () ;
await
MediaCap.CapturePhotoToStorageFileAsync (imageProperties,
photoFile) ;
return photoFile;
}
catch (Exception ex)
{
Debug.WriteLine (ex.Message) ;
return null;

Handle call back event as wediacapture's railea if in case there is any exception
occuring during the time of taking photo of the detected object by PIR sensor:

/// <summary>
/// Callback function for any failures in MediaCapture operations
/// </summary>
/// <param name="currentCaptureObject"></param>
/// <param name="currentFailure"></param>
private void MediaCapture Failed(MediaCapture currentCaptureObject,
MediaCaptureFailedEventArgs currentFailure)
{
Debug.WritelLine (currentFailure.Message) ;
}

#endregion

www.EBooksWorld.ir

www.EBooksWorld.ir

How to send picture file to Facial
Expression Bot and receive reply from
it

Sending a picture to the bot means calling your facial expression bot from the IoT

application through the Direct Line channel. To do that, first add
A Microsoft.Bot.Connector.DirectLine reference to your UWP prOjeCt.

Browse Installed Updates{f] NuGet Package Manager: FaceAndEmoticonDetection

Directline x ~ & [Include prerelease Package source: nuget.org -

Microsoft.Bot.Connector.DirectLin

Version: Latest stable 3.0.0 v Install

D Microsoft.Bot.Connector.Directline by Microsoft, 13.9K downloads

Client REST API library for Microsoft Bot Framework Connector Direct Line

Next, add a method called tnitializeBotconversation and call this method from
the onvavigatearo method of mainpage.cs. In this method, we will initialize the bot
conversation using the Direct Line channel's secret key:

async Task InitializeBotConversations ()

{

//Initialize Direct Client with secret obtained in the Bot
Portal:

_directLineClient = new
DirectLineClient ("SecretKey From Bot DrectLine Channel");
//Initialize new converstation:

_directLineAConv = await
_directLineAConv.Conversations.NewConversationAsync () ;
//Wait for the responses from bot:

ReadMessagesAsync (_directLineClient,
_directLineAConv.ConversationId);

In the preceding InitializeBotConversations methOd, we also called
the readmessagesasync method; this method will always try to read bot replies. If any
reply is received from the bot, it will send it to [oT Hub:

private async Task ReadBotMessagesAsync (DirectLineClient client, string conversationId)
{
// You can optionally set watermark -this is last message
id seen by bot
//It is for paging:
string watermark = null;
while (true)
{
//Get all messages returned by bot:
var messages = await
_directLineClient.Conversations
.GetMessagesAsync (conversationId, watermark);

www.EBooksWorld.ir

| watermark = messages?.Watermark;

Get messages from your bot - rronproperty--should match your Bot handle; you can find

1t 1N dev.bot framework. com, Under your Bot settings; here, the Bot handle name is

FacialIdentificationBot.

var messagesFromBotText = from x in messages.Messages
where x.FromProperty == "FacialIdentificationBot"
select x;

//Iterate through all messages:
foreach (Message message in messagesFromBotText)

{

We will save all messages in a collection related to a conversation. The following
condition checks whether we have already received that bot messages or not. If a

new message is received, then we will save it to the collection and also send that
message to [oT Hub.

if (! messagesFromBot.Contains (message))
{

_messagesFromBot.Add (message) ;
SendBotMessageToIoTHub (message) ;

}

}

}

In the sendeotmessagerorornun method, we will initialize the rorsuws client to send
messages to Azure. Before that, we need to add references for

Microsoft.Azure.Devices.Client.

public async Task SendMessageAsync (Message message)
{

var deviceClient =
DeviceClient.CreateFromConnectionString
("Replace Connection String From Device Registration Step")
var stringContent = JsonConvert.SerializeObject (message);
var jsonStringInBytes = new
Microsoft.Azure.Devices.Client.Message
(Encoding.ASCII.GetBytes (stringContent)) ;
Debug.WriteLine ("Message: " + stringContent);
await deviceClient.SendEventAsync (jsonStringInBytes) ;

www.EBooksWorld.ir

www.EBooksWorld.ir

Send Picture to Bot

Now, add the vpicadricturerorot method. In this method, first we will upload a picture
to our storage account and get the blob URL from it. Then, we will send the blob URL
to Direct Line client in bot message attachments.

To work with Azure Storage Account, you need to add a windowsazure.storage reference
to your project:

async Task UploadPictureToBot (StorageFile photoFile)
{
// Parse the connection string and return a reference to the storage account.
CloudStorageAccount storageAccount = CloudStorageAccount.Parse ("DefaultEndpointsProtocol=httrg
// Create the blob client.
CloudBlobClient blobClient =
storageAccount.CreateCloudBlobClient () ;

// Retrieve a reference to a container.
CloudBlobContainer container =
blobClient.GetContainerReference ("mycontainer") ;
// Retrieve reference to a blob named "myblob".
CloudBlockBlob blockBlob =
container.GetBlockBlobReference ("myblob") ;

// Create or overwrite the "myblob" blob with contents
from a local file.
using (var fileStream = await
photoFile.OpenStreamForReadAsync ())
{

await blockBlob.UploadFromStreamAsync (fileStream) ;
}

//Add blob URL in bot message as attachment as shown

Message userMessage = new Message
{
FromProperty = App.username,
Text = txtdsplyTxtBx.Text
}i

userMessage.Attachments.Add (new Attachment () {
ContentType = "blob", Url = blockBlob.Uri });
await

_directLineClient.Conversations.PostMessageAsync
(_directLineClientConv.ConversationId, userMessage);

Now, we are ready to deploy and test the code with the Raspberry Pi; to do so, take a
look at the following section.

www.EBooksWorld.ir

www.EBooksWorld.ir

Deploy Code in to Raspberry Pi

Now that we are done with the code for our project, let's look at the following steps
to deploy code to the Raspberry Pi:

1.

2.

First, connect your Raspberry Pi to your developer machine using a LAN cable,
or connect to your Wi-Fi router in the same network.

Download and install the Windows 10 IoT Core Dashboard tool from https/go.micr
osoft.com/fwlink/?LinkID=708576 .

. Open it: after a few seconds it will show your Raspberry Pi device on the My

Devices page shown in the following screenshot. Then, copy the IP address.

[Z]10T Dashboard — O X
|| My cisees My devices
m[Set up a new device
¢ Connect to Azure []
101B Raspberry Pi 2 Model B 192.168.0.114 Ve
§= Try some samples I

Before deploying the code, make sure that the registered device ID in
Device Registry with [oT Hub step and your Raspberry Pi device name is
the same. For example, in device registry step 1 given device Id as 101B
and my Raspberry Pi device name 101B, both are same. So, we can
identify and manage easily from [oT hub.

. Open the Raspberry Pi UWP app solution in Visual Studio, and set the

architecture in the toolbar dropdown to ARM.

. Next, in the Visual Studio toolbar, click on the Local Machine dropdown and

select Remote Machine, as shown in the following screenshot.

www.EBooksWorld.ir

http://go.microsoft.com/fwlink/?LinkID=708576

Do BlinkLED - Micresoft Visual Studio
File Edit View Project Buld Debug Team Took Architecture Test Analyze Window Help

e - i R T i B «| Debug = ARM « P Devicer g8 b ff|E A A =

P Device

MainPagexaml.cs = X QERTEERIVET]
= BlinkLED = | *2 BlinkLED.MainPac Remote Machine o laly]
I v Device |

XOqIoo|

Download Mew Emulators...

saojdey 1algn A 05

6. At this point, Visual Studio will present the Remote Connections dialog. You
can enter the name of your device here (in this example, [used 101B).
Otherwise, use the IP address of your Windows IoT Core device. After entering
the device name/IP, select Universal for Windows Authentication; then if Visual
Studio detected it automatically, you can select it directly, as shown in the
following screenshot:

Remote Connections ? X

T
| 8 |
Found 1 connection Searching

@ Manual Cenfiguration

Address:
Authentication Mu-de* Universal (Unencrypted Protocol) b I

@ Auto Detected

| Specify Remote connection settings manually |
1018 == lrmrreaerrre

Mot all devices can be auto detected. If you do not see a device you
are expecting directly enter the IP address using 'Manual
Configuration'

Learn more ahout Remote Diagnostics

7. You can verify or modify these values by navigating to the project Properties
(select Properties in Solution Explorer) and choosing the Debug tab on the left-
hand side:

www.EBooksWorld.ir

Configuration: | Active (Debug) o Platforrnc | Actree (ARM)

Start action
m [o net lsunch, but debug my code when it starts
R . EA ABow bacal network loopback
Start options
Target device Rermote Machine
Remote machine: L TR T P Find...
Authentication Mode Unirversal (Unencrypted Protoc
[[J Uninstall and then re-install my package. All informatsan about the spplication state is deleted
Debugger type

Apphcation process: Mansged Only W

8. When everything is set up, press F5 from Visual Studio to deploy the code.

After successfully deploying the project to your IoT device, the first thing that we
have to is that by default LED will be turned on. Now to test this, just move in front
of the PIR motion sensor. First it detects your movement and takes a photo. Next, it
uploads the photo to your Azure storage account, and finally it sends the blob URL to
your bot. Once it sends the message to the bot, the bot will start processing and
analyzing the picture to identify the facial expressions in it, and returns the results to
IoT Device. In the last step, the IoT device will send these results to IoT Hub.

Next, we will see how we can show facial analytics data in Power Bl

www.EBooksWorld.ir

www.EBooksWorld.ir

Show facial analytics data in Power BI

Power Bl is a service that helps you to visualize your data in reports, charts, and
interactive insights. It also has a set of software services, apps, and connectors,
which all work together to help you turn your data into logical, consistent, and
visually immersive. Power Bl lets you easily connect to your data sources, visualize
what you want, and also share with anyone. In the following steps, we will just give
you a brief idea of how you can use Power BI in a real-time scenario, such as an [oT
environment, where you will collect enormous amounts of data from your devices
and want to see your data visually to take decisions. In this chapter, you will see how
to show facial analytics data in Power Bl

www.EBooksWorld.ir

www.EBooksWorld.ir

Set up Azure Stream Analytics to send
IoT Hub data to Power Bl

Let's follow these steps to set up Azure Stream analytics:

1. Create a Stream Analytics Job in azure, and log in to your Azure portal. Select
New and search for Stream Analytics job.

New

)

- stream a

Stream Analytics job

2. Select, create, and enter Job name, and select Region and Resource group.

New Stream Analytics Job O X

* Job name

FacialAnalyticslob v

* Subscription

Visual Studio Enterprise v

* Resource group @
() Create new (8 Use existing

| azureresearch ud
* Location
East US »

3. Open the newly created stream analytics, and click on Inputs.

www.EBooksWorld.ir

. FacialAnalyticsJob

" Stream Analytics job

O Search (Ctrl+/) £F settings P 5tz W Sop M Delete

o Created
2t Overview

Essentials

B Activity log
Resource group (change) Send
M Access control (JAM) azureresearch User
Status Creaf]
& Tags Created Thu
Location Start
X Diagnose and solve problems East US
Subscription name (change) Last
Visual Studio Enterprise
SETTINGS Subscription ID
55c8b769-eb89-41a0-86¢7-ba2ae87ffcda
n Locks
JOB TOPOLOGY
Inputs Query Outputs
2. Inputs
Functions 0 2, - 0
<. -
> Query No results. No results.
> Qutputs

Select the Add option. In the Add an Input Popup window, select Data Stream as
the input, select [oT Hub as the data stream input type, and enter the Input stream
alias name, which will be used in later steps, select Subscription, choose the
IoT Hub that we are using in this project, and select iothubowner as the shared
access policy name, set Event serialization format to JSON and

Encoding to UTF-8; then click on Create.

www.EBooksWorld.ir

New input O X

* Input alias

loTHubData v

* Source Type @

Data stream v
* Source @
loT hub ~

* Subscription

Use loT hub from current subscription v
loT hub

GenericloTHub v
* Endpoint @

Messaging v

Shared access policy name

iothubowner ~

Shared access policy key

Consumer group

$Default v

* Event serialization format @

JSON v
Encoding @
UTF-8 v

5. Now, add an output for the stream analytics job so that we can process the data
coming from the input stream and send it to the list of supported outputs.

www.EBooksWorld.ir

4 FacialAnalyticslob

Stream Analytics job

L Search (Ctrl+/)

2+ Overview
B Aciitylog
oM Access control (IAM)

' Tags

% Diagnose and solve problems

SETTINGS

n Locks

JOB TOPOLOGY
2 Inputs
Functions
<> Query

= Outputs

LAMCIAIINE

ﬁSettings P stat M Stop [Delete

Essentials ~

Resource group (change)
azurerssearch

Status

Created

Location

East US

Subscription name (change)

Visual Studio Enterprise

Subscription ID
55¢80b769-eb89-41a0-86¢7-ba2ae87ffcda

Inputs Query

0=

No results,

\

Send
Uset

Creal

Thu
Start

Last 1

Outputs

0=

No results,

Here, we are using Power Bl as an output to the stream analytics job.

6. To use Power BI, you need to authorize Stream Analytics to access your
organizational Microsoft Power Bl subscription to create a live dashboard. If
you are not yet registered, you can register a free account using your
organization's e-mail ID through the Sign up now link on the page.

www.EBooksWorld.ir

New output a X

* Qutput alias

PowerBl v
* Sink @
Power BI v

Authorize Connection
You'll need to authorize with Power Bl to
configure your output settings.

Authorize

Don't have a Microsoft Power Bl account yet?

Note: You are granting this output
permanent access to your Power Bl
dashboard. Should you need to

revoke this access in the future you

'J can do one of the following:

1. Change the user account
password.

2. Delete this output.

3. Delete this job.

7. After the successful authorization of your Power BI account, it will ask you to
enter Output alias name, a friendly name to reference in output queries. Provide
a dataset name that it is desired for a Power BI output to use, a table name
which is under dataset of the Power BI output from stream analytics jobs (you
can only have one table in a dataset), and finally a workspace, which is for
enabling data sharing with other Power BI users, writing data to group
workspaces. You can select group workspaces inside your Power BI account, or
choose My Workspace if you don't want to write to a group workspace.

www.EBooksWorld.ir

‘m' Test [Delete

Group Waorkspace

[y Worispac 3

* Dataset Name

FacialAnalytics

If the dataset or table already exists in your
Microsoft Power Bl subscription, it will be
overwritten

* Table Name

Emotions

Currently authorized as Kishore Gaddam

(kishore@astrani.com)

Authorization

Click the button below if you want to renew
authorization, authorize with a different account
or modify the workspace.

Renew authorization

Note: This output has permanent
access to your Power Bl dashboard.
Access to Power Bl, once granted,
does not expire unless you do one

a of the following:

1. Change the user account
password. “

8. Now, go to the Query tab and write a query to filter the data coming from the
IoT Hub input stream and give it to Power BL

www.EBooksWorld.ir

FacialAnalyticsJob

Stream Analytics job

P Search (Ctrl+/) L settings P sic W Siol I Delete

Essentials ~

&+ Overview

B Activity log
Resource group (change) Send
z Access control (IAM) azureresearch User
Status Creal
& Tags Created Thut
Location Start:
X Diagnose and solve problems Bast US
Subscription name (change) Last «
Visual Studio Enterprise
SETTINGS Subscription 1D
55c8b769-eb89-41a0-86c7-ba2ae87ffcda
ﬂ Locks
JOB TOPOLOGY
Inputs Query Outputs
2 Inputs
Functions 0 o) P 0
~ ~
Query No results. No results.
> Qutputs

9. The following is the query I used to filter the data coming from IoT Hub:

SELECT
*
INTO
[PowerBI]
FROM
[ToTHubData] TIMESTAMP by Time

We can filter the data by selecting the required columns and with useful inforn
such as average of the values:

FacialAnalyticsJob

Query

E Save

Q¥ Discard Q Test

+ 5 Inputs (1) Need help with your query? Check out s

2= loTHubData SELECT

1

. *

3 INTO
~ = Outputs (1) 4 [PowerBI] |

5

6

FROI

[IoTHubData]| |

r||‘|] PowerBI

10. Now, click on the Start icon in the overview:

www.EBooksWorld.ir

FacialAnalyticslob

Stream Analytics job

ﬁ Settings

O Search (Cirl+/)

=+ QOverview

Essentials -

H Activity log
Resource group (change)
s Access control (IAM) azureresearch
Status
& Tags Created
Location
X Diagnose and solve problems East US
Subscription name (change)
Visual Studio Enterprise

If stream analytics fails to run, then go to the Diagnostic Logs of your stream analytics
job for more information on why it failed.

www.EBooksWorld.ir

www.EBooksWorld.ir

Set up Power BI

After successful starting a Stream Analytics job, sign in to Power BI and check for
the newly created dataset in the Datasets section; click on Streaming datasets and
start creating charts based on the data that you received.

Power Bl . My Workspace > Datasets

@ Featured dashboard

Streaming data

¢ Favorites

v My Workspace

NAME I

© Show: All content FacialAnalytics

@ Dashboards

Retail Al

Jli Reports

Retail Al

€ Datasets

Let's see how to create a chart for the data we received from the IoT device:

1. Click on the Create Report option under the ACTIONS tab.

Streaming data

FacialAnalytics API

_ TYPE USED IN DASHBOARDS HISTORICAL ACTIONS

2. Drag and drop, or select, the fields you want to show on a table chart.

www.EBooksWorld.ir

Visualizations

from
conversationld
text

created

4« B8 Emotions

attachments
channelData
conversationld
created

eTag
EventEnqueue...
EventProcesse...
from

id

images
loTHub
. Partitionld

Filters

<N N N B B<H N N N<h<h BN |

text

conversationld(All)

3. First, select a Table chart, which 1s located under the Visualization tab.

Visualizations Fields

—3 | | ik
o

v <« B Emotions

=

- authType
category
deviceld
ipAddress
level
operationName
protocol
Filters > statusCode
statusDescript...

statusType

time

4. The following is a chart that displays all the results sent by the IoT device to
IoT Hub:

www.EBooksWorld.ir

from conversationid text

Fate Analytcs of given Image e Age: 2.3 Gerder female No beard No mousiache No sicsbumns smile NoGlasses Emotion A 1 imape are Happiness No Serprise No Fear No Anger No Sadress |
Face Analytics of given image are. Age 2.3 Gerdler: female No beard Mo i ache Mo sigeturns smile NoGlasses Emotion Y image are Happeness No Surprive Mo Fear No Anger No Sadness |
Face Analytics of ghen Image sre Age 23 Gergler femaie Mo besrd Mo moustache Mo sideburms smile MoSlassss Ermotion Ansiysi 1 irnage are Happiress No Surprise Mo Fear No Anger Mo Sadness |
Face Angytics of given Image are Age 2.3 Gender female No beard No mousiache No sidebums smile NoGlasses Emation mage are Happiness Mo Sarprise No Fear Na Anger No Sadn
Face Anglytics of given Image are Age: 2.3 Gergler: female No heard No moustache No sigeburns smile NoGlasses Emotion 1 Emage are Hapoiness No Serprise No Fear No Anger No Sadness |
Face Anaytes of given Image are Age 2.3 Gender: femaie Mo beard No mowustache No sideburns smile NoGlasses rape are Hapoiness Mo Surprice No Fear Na Argee No Sadness |
Fece n Irage e Age: 23 Gender: femaie No besrd No mousiache No sidebums smile MoGlassss & Imape ar= Happiness No Surprise No Fear Sadress |
Face Anmytics of gven Image ae Age: 2.3 Gerder femaie No beard No moustache No sicebums smile NoGlasses ATAGe are Hapoiness Ne Surprise No Fear INo Anger Sadress i

Analytics of given

Face Anglytics of given Image are Age 1.3: Gender: female No beard Mo moustache No sigeburns smile NoGlasses Emotion Anaiytics of given mmage are Hapoiness N Surprise No Fear Na Anger No Sadness |
Face Analytics of given image are Ages 2.3 Gender: femaie No beard No mousiache No siceburns smile NoGlasses Emotion Anelyiics of given imape are Hapoiness No Sarpnse Mo Fear o Anger Mo Sadness |

0T Device 123 Face Anmytics of given Image are Age: 2.3 Gerder: femaie No beard Mo moustache Na sidebums simile hoGlasses Emation
1oT_Device . Face Analytice of given Image are Age 2.3 Géndern: femaie No bezed No moustache No siozburns smiie NoGlasses Emotion ;
10T_Device 3 Face Anzytcs of given Imageare Age 23 Gerden female No besrd No moustache Na sideturns sijie NoGlasses Emotion A
Face Anaiytics of given Image are Age: 2.3 Gerder: female No beard Mo moustache No ddeburms smile Not
Face Analytics of given Image &e Age 2.3 Gander, femaie No beard No mousiache Na sidebums smile NoGissses Emation 1 Imape are Happiness Ne Surprise No Fear No Anger Mo Sadress |
Face Anaytics of given Image &re Age: 2.3 Gender female No beard No mousiadhe | mis srile NoGlasses Smotion mage are Hapoiness Ne Serprise No Fear No Anger No Sadre:
Face Anaytes of given Imags are Age: 2.3 Gender: female No besrd No moustache Mo sideburns smile NoGlasses Emobion Anaiytics of given imape are Hapoiness Mo Surprise No Fear No Arger No Sadrecs
Face Anslytics of gven Image ae Age 2.3 Gerder: female No beard No mousiache Na- sicebums smile NoGlasses Emation Analyties of given |mage are Happiness Me Surprise Mo Fear Ne Anger No Sadress |
Face Angiytics of given Image ae Age 2.3 Gerder female No beard No mousiache No sdebums smile NoGlasses Emotion Analytics of given imape ars Happress Ne Sarprise No Fear No Anger No Sadress 1
Face Anglytics of given Inage sre Age 2.3 Gersen female Mo beasrd Mo moustache No deburns on|le NoGlasass Emotion Ansiptice of given intage sre Hapoiness Ne Surpris Mo Fesr No Anger Mo Sadnecs |
Fage Analytcs of given imageare Ages 2.3 Gender: femaie Mo beard No mousiache Na sicebumns smile NoGlasses Emotion of given imape are Happiness Ne Surpnse Mo Fear No Anger No Sadness |
Face Anzyiics of given Image e Age 2.3 Gerder: femaie No beard No moustache No sidebums smile NoGlasses Emation ytics of given imape are Happiness Mo Surprise No Fear No Arger No Sadress|
Face Analytics of given Image are Age 2.3 Gender: female No beard No moustache No sideburns smile NoGlasses & 1 image are Hapoiness No Sarprise Mo Fear No Arger No Sadness |
Face Analytscs of given image are. Age 2.3 Genden femaie No beard No meustache Na sigsburns smile NoGissses Emation mage are Happiness No Surprise No Fear No Anger No Sadn
Face Anafytics of ghven image are Age: 2.3 Gender; female No beard Mo moustache Mo sidgebums smile NoGlagses Emotion mage are Happiness Mo Surprise Mo Fear No Anger Mo Sadness |
oT_Device 123 Face Analytics of given Image are Afe 2.3 Gereler: famale Mo beard No moustache No sosbume smile NoGlatsss Emation e are Hapoiness Mo Surprice Mo Fear Na Anges Mo Sadness |
0T Deviez 123 Face Anzytics of given Image sre AQe 2.3 Gerwden femaie No beard Mo moustache No sidsbums smile NoGlasses Emation maps are Happiness No Surprise No Fear No Anger No Sadness |
oT_Device =3 Face An@ytcs of gven Image ar= Age: 1.3 Gender female No beard No moustache No sigeburms smile NoGlasses Emoton mage arz Happness No Surprse No Fear No Anger No Sadness |
Face Analytcs of ghen Image Age: 23 Gerder: female Mo beard No moustache N sidebums smile NoGlasses Emation Image are Hapoiness Mo Surorite No Fear No Anger No Sadress |
Face Anaiytics of given Image &e Age 23 Gender female No beard No moustache Mo sigsbumns smile NoGlasses Emation 1 imape are Happiness No Serorise No Fear No Anger No Sadress |
Face Anglytics of given Imagse Age: 2.3 Gergler: female No beard No moustache No sideburns smile NoGlasses Emotion 1 image are Hapoiness No Serprise No Fear No Anger Saciness |
Face Analytes of ghen Image Age 23 Gender: femaie Mo beara No moustache No daebumms smile NoGlasses Emation mape are Haponess Mo Surprise No Fear N Argee Ne Sadness |

ics of given image are Hapoiness No Surprise Mo Fear No Anger No Sadress |
mage are Happiness No Surprise Mo Fear No Anger No Sadress |
1 image are Happiness ho Surpnse No Fear No Arges No Sadress |
mage are Haporness No Sarpnse No Fear No Anges Mo Sadness |

5 Emotion

an

123 Face Analytics of piven Image Ape:23 Gerder femaie No beard No mousiache No sideburms smile NoGlasses Emation 1 imape are Happiness No Surprise No Fear No Anger No Sadress |
123 Face Analytics of given Image are Age 23 1 No beard Mo moustache No sideburms 5 o AN ¢ giver image are Hapginess No Surprise No Fear No Anger No Sadness 1
123 Face Analytes of given image i Age 23 " iMmage are Hapoiness Ne Sarprise - Sadnest |
123 Irageare AQe il Gerd
£ L e ey

5. Click on the pin symbol on the top right of the chart to add it to the dashboard,
as shown in the preceding screenshot. Save it before pinning it to the dashboard.

Save your report

You need to save your report before you can pin
a visual. Enter a name for your report.

| FacialAnaIytics‘J

Save and continue Cancel

6. Select the dashboard where you want to pin it. If you don't have the dashboard,
select New dashboard; otherwise, select Existing dashboard.

www.EBooksWorld.ir

Pin to dashboard

) Select an existing dashboard or create a new one.
from, conversationld, text, created

Where would you like to pin to?

frem conversatio.. text O Existi Sl d
X1sting dasnpoar

loT_Device 123 Face Analyt...

loT_Device 123 Face Analyt... © New dashboard

loT_Device 123 Face Analyt...

ol Pevice = s e incjis ‘ Facial Analytics Dashboard|

loT_Device 123 Face Analyt...

Pin Cancel

7. The newly created report and dashboards will be added to the left-hand menu.
From the left-hand menu, you can navigate to the report or dashboard directly.

Featured dashboard
3¢ Favorites

v My Workspace

@ Show: All

® | Dashboards

Jdll Reports

S Datasets
Re

il Anal

Streaming datasets

The following is a screenshot showing, how the report looks in the dashboard:

www.EBooksWorld.ir

Powe Bl . My Workspace > Facial Analytics Dashboard

UL ICI (1 /:sk 5 question about your data

7 Favorites
from, conversationld, text, created
v My Workspace

from ationld text created
loT_Device 123 Face Analytics of give.. 03/09/17 05:56:52 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:56:58 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:56:59 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:00 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:01 PM
@ Dashboards |oT_Device 123 Face Analytics of give... 03/09/17 05:57:03 PM
loT_Device 123 Face Analytics of give... 03/09/17 05:57:04 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:05 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:07 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:08 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:09 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:11 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:12 PM
loT_Device 123 Face Analytics of give... 03/09/17 05:57:13 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:15 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:16 PM
loT_Device 123 Face Analytics of give.. 03/09/17 05:57:17 PM

€ Datasets

R

Streaming datasets

Report and chart creation depends on what data you are sending to Power BI. Before
sending data, make sure you are formatting it and filtering the unwanted data with the
help of the Stream analytics query editor.

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, you have learned the following:

IoT Hub: Azure IoT Hub is a fully managed service that helps us to enables
reliable and secure bidirectional communications between millions of IoT
devices

Stream Analytics: It is a fully managed event-processing engine in the cloud
Power BI: With the help of Power BI, you can analyze and visualize your
important data and it always work with real-time data

Storage Account: It provides one place to store all your data

Cognitive Services: The Face API will detect human faces and tag them as
people, also do face detection, identification, verification, similar face search,
and face grouping

Emotion API: It analyzes faces to identify the emotions of a person is feeling
and also detects facial expressions in an image

In the next chapter, you will learn about registering bots with Bot framework, and
also how to publish bots to Slack, Skype, GroupMe, and Facebook channels.

www.EBooksWorld.ir

www.EBooksWorld.ir

Publishing a Bot to Skype, Slack,
Facebook, and the GroupMe Channel

In this chapter, we will use the Microsoft Bot Connector, which is a part of the
Microsoft Bot Framework, as a way to create a single backend and then publish it
to a bunch of different platforms called Channels as quickly as possible. The goal is
to have the user input natural language and your bot to perfectly understand and
execute the action your user wants.

At the confluence of the rise in messaging applications, advances in text and language
processing, and mobile form factors, bots are emerging as a key area of innovation
and excitement. Bots (or conversation agents) are rapidly becoming an integral part
of your digital experience--they are a vital way for people to interact with a service
or application, as is a website or a mobile experience. Developers writing bots all
face the same problems--bots require basic I/O, they must have language and dialog
skills, and they must connect to people--preferably in any conversation experience
and language a person chooses. This book focuses on how to solve these problems
using the Microsoft Bot Framework, a set of tools and services to easily build bots
and add them to any application.

www.EBooksWorld.ir

www.EBooksWorld.ir

Publishing bots to various channels

Let's look at publishing bots to various channels in the following image:

Channels

Text/SMS

Office 365 email

Bot Connector
Your Bot

Facebook Messenger

Routes messages

b}
&
A
~

Manages state
Bot registration, directory
Session tracking
Services (translation...)
Per-user, per-bot storage
APIs

EREEC

Your bot's

3
=
~

Web service

Direct line

BEIDCE
=
&

Figure1: How a single bot can be published to various channels through the bot connector

In order to publish your bot to the available directories, you need to do the following
three things:

1. Publish your bot application to Microsoft Azure web app.

2. Connect your bot to at least one channel that appears in the Bot Framework.

3. Select Publish in the bot dashboard.

www.EBooksWorld.ir

www.EBooksWorld.ir

Publishing your bot application to
Microsoft Azure web app

We use Microsoft Azure to host the bot application. To publish your bot application,
you will need a Microsoft Azure subscription. You can get a free trial from httpsz/azur

e.microsoft.com/en-us/.

In the preceding chapter, we created a bot, and now we are ready to publish the bot.
By default, the bot should be published as a Microsoft Azure App Service. When
publishing, keep track of the URL you chose because we'll need it when we have to
register the Bot Framework endpoint, which is nothing but your bot messages, API
URL. There are a few extra steps that you have to do the first time you publish, but
you only have to do them once. Let's take a look at those steps:

1. In Visual Studio, right-click on the Project in Solution Explorer and select
Publish..., or alternately navigate to Build | Publish; it displays the following
dialog:

m ion ‘HelloWaorldFormEl ow' (1 pl’Oth)
= 7| HelloWorldFormFLow
53 Build : ;
& Properties
Rebuild =W References
Clean App_Start
Vow b Controllers
I3 defaulthtm
Analyze »
%) Global.asax
Cotved ‘ C* HellowWorldFormFlow.cs
& Publish.. ¢ packages.config
Configure Azure AD Authentication... ¢ Web.config
*@ Add Application Insights Telemetry...

Figure 2: Screenshot showing step 1

2. On the Publish Web wizard, select Microsoft Azure App Service as the publish
target type:

www.EBooksWorld.ir

https://azure.microsoft.com/en-us/

@ Publish Web
Select a publish target

& Microsoft Azure App Service

E] Import

D Custom

(%) More Options

Find other hosting options at our web hosting gallery

< Prev Next > Publish Close

Figure 3: Screenshot showing step 2

3. The next step in the Azure App Service publishing process is to create your app
service. Click on New... at the right side of the dialog to create the app service:

www.EBooksWorld.ir

w App Service =. Microsoft account

Host your web and mobile applications, REST APls, and more in Azure

Subscription
Visual Studio Ultimate with MSDN -
View
Resource Group »
Search
Default-Web-WestUS New...

Figure 4: Screenshot showing step 3

4. The Create App Service dialog will be displayed. Fill in the details as
appropriate. Ensure that you choose Web App from the Change Type drop-down
on the top right instead of API App (which is the default):

www.EBooksWorld.ir

[—&__l Create App Service BN Microsoft account
L"_] Host your web and mobile applications, REST APIs, and more in Azure B -0 @outiookcom

Services HelloWorldFormFLow

Subscription
Visual Studio Ultimate with MSDN v

Resource Group

botresearch v New... O

App Service Plan
FreePlan (F1, East US) v New...

Clicking the Create button will create the following Azure resources

Explore additional Azure services

App Service - HelloWorldFormFLow

If you have removed your spending limit or you are using Pay as You Go, there may be monetary impact if you provision additional resources.

Learn More

Create | | Cancel

Figure 5: Screenshot showing step 4

5. Once you have entered all the required information, click on the Create button; it
will create a web app for our bot and take you back to the Publish Web wizard.

6. Now that you've returned to the Publish Web wizard, copy the Destination URL
to the clipboard; you'll need it in a few moments. Click on Validate Connection
to ensure that the configuration is good, and if all goes well, click on Next:

www.EBooksWorld.ir

Publish Web ? X

@ Publish Web

Profile HelloWorldFormFLow - Web Deploy
Publish method: | Web Deploy b
Settings
Preview
Server: helloworldformflow.scm.azurewebsites.net:443
Site name: HelloWorldFormFLow
User name: $HelloWorldFormFLow
PaSSWOrd: PO OOORRORRORORRRRORORRRRRORRRRRRORRRRRRRRRSI

Save password

Destination URL: | http://helloworldformflow.azurewebsites.net

Validate Connection

< Prev Next > Publish Close

Figure 6: Screenshot showing step 6

7. By default, your bot will be published in a Release configuration. If you want
to debug your bot, change Configuration to Debug. Regardless, from here you'll
click on Publish, and your bot will be published to Azure:

www.EBooksWorld.ir

Publish Web

@ Publish Web

Profile
Connection

Settings

Preview

HelloWorldFormFLow - Web Deploy

Configuration: | Release

@ File Publish Options
Databases

) No databases found in the project

< Prev

Next >

Publish

Close

8. You will see a number of messages displayed in the Visual Studio 2015 output
window. Once publishing is complete, you will also see the web page for your
bot application displayed in your browser (the browser will launch and render
your bot application start page, as shown in the following screenshot):

Figure 7: Screenshot showing step 7

[helloworldformflow.azure

C nf | helloworldformflow.azurewebsites.net

HelloWorldFormFLow

Describe your bot here and your terms of use etc.

Visit Bot Framework to register your bot. When you register it, remember to set your bot's endpoint to

https://your_bots_hostname/api/messages

Figure 8: Screenshot showing step 8

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Registering your bot with Microsoft Bot
Framework

Registering your bot tells the connector how to call your bot's web service. Note that
the Microsoft App ID and Microsoft App Password are generated when your bot is
registered with the Microsoft Bot Framework Connector; the App ID and AppSecret
are used to authenticate the conversation and allows the developer to configure their
bot with the channels they'd like to be visible on. Let's look at the following steps to
register your bot:

1. Go to the Microsoft Bot Framework portal at https://www.botframework.com and sign
in with your Microsoft account.
2. Register an agent.

3. Click on the Register a bot button and fill out the Bot Profile form. You have to
enter the name of your bot handle, which means a unique name that will be used
in the bot connection, and then enter a description:

www.EBooksWorld.ir

https://www.botframework.com

Bot Framework My bots Register a bot Documentation Bot Directory Blog
PREVIEW

Tell us about your bot

Bot profile

lcon
<' '> Upload custom icon

30K max, png only

Name: * 7

‘ Name ‘

Bot handle: * 2

Type in your Bot handle ‘

Description: * 2

Description

Configuration

Messaging endpoint:

https URL

Register your bot with Microsoft to generate a new App ID and password

Create Microsoft App ID and password

Paste your app ID below to continue

‘ Microsoft App ID from the Microsoft App registration portal

www.EBooksWorld.ir

www.EBooksWorld.ir

Configuration

Under the Configuration section, enter your published bot service endpoint that you
copied during the Azure deployment step in Messaging endpoint, and don't forget that
when using the bot application template, you'll need to extend the URL you pasted in
which the path to the endpoint at/api/messages. You should also prefix your URL with
HTTPS instead of HTTP; Azure will take care of providing HTTPS support on your
bot:

Configuration

Messaging endpoint ?

R L S S e e e -

https://helloworldformflow.azurewebsites.net/api/messages

|

The following are the steps to configure Microsoft Bot Framework:

1. Enter your Microsoft App ID, if you haven't created one already, then click on
the Create Microsoft App ID and password button on the bottom of the
Configuration section:

Configuration

Messaging endpoint ?

https://helloworldformflow.azurewebsites.net/api/messages

2. Tt will navigate to the Microsoft app creation page, as shown in the following
screenshot, with your App name and App ID. Copy the App ID in a safe place
as we need it in later steps. After that, click on Generate a password to
continue:

www.EBooksWorld.ir

Generate App ID and password

App name

HelloWorld

App ID

0f6f5a96-2329-440a-aa38-b7580773a5dc

Generate a password to continue

3. Once you click on the generate button, the password will be generated. Copy the
password to a safe place; we will need it in later steps. Finally, click on Finish
and go back to the bot registration page:

New password generated

This is the only time when it will be displayed. Please store
it securely. Paste this password into your bot configuration
file.

4. Now, in the bot registration page, the Microsoft App ID will be automatically
added into it. If not, then manually paste the Microsoft App ID that you copied in
the preceding step:

www.EBooksWorld.ir

Configuration

Messaging endpoint ?

https://helloworldformflow.azurewebsites.net/api/messages

* Microsoft App ID ?

Manage Microsoft App ID and password

5. Enter all remaining mandatory fields, and finally accept the privacy agreement
at the bottom of the page, and then click on Register:

[By clicking Register, you agree to the Privacy statement, Terms of use, and Code of conduct.

6. On clicking Register, you will receive a popup saying Bot created:

Bot created

7. Once you have successfully registered your bot, Microsoft Bot Framework will
automatically configure Skype and Web chat by default; you can check it under
Channels:

www.EBooksWorld.ir

Bot Framework My bots Register a bot Documentation Bot Directory Blog

HelloWorld

Kishore Babu Gaddum

Details Eas Channels
Bot handle Test link Issues Enabled Published
helloworldformflow - - Yes .
Skype 9 Add to Skype 0 (Preview) off Edit
Bot Framework Version
3.0 . Web Chat 0 Yes off Edit
Messaging endpoint Get bot embed codes
https://helloworldformflow.azurewebsites.net/api/...
Add another channel
Microsoft App ID
o S - Direct Line Add
E Email Add
Test connection Facebook Messenger Add
to your bot
GroupMe Add
Test
. Kik Add
-
lS Slack Add
n Telegram Add
'm' Tl ccas d

8. Now that the bot is registered, you need to update the keys in the web.conrig file in
your bot service project:

m Solution 'HelloWorldFormFLow' (1 project)
4 7] HelloWorldFormFLow

b & Properties

P =W References

b App_Start

b Controllers

I3 defaulthtm
b A Global.asax
P €* HelloWorldFormFlow.cs

) packages.config
9. Change the following keys in the web.conrig file to match the ones generated when
you saved your registration, and you're ready to build:

<appSettings>
<!-- update these with your Botld, Microsoft App Id and your Microsoft App Password-->
<add key="BotId" value="YourBotId" />
<add key="MicrosoftAppId" value="" />
<add key="MicrosoftAppPassword"” value="" />
</appSettings>

10. sot1a 1s nothing but the bot handle name. Copy the Microsoft App ID and
Microsoft App Password from the preceding steps and paste it here:

www.EBooksWorld.ir

<configuration>
<appSettings>
<!-- update these with your BotId, Microsoft App Id and your Microsoft App Password-->
<add key="BotId" value="helloworldformflow" />
<add key="MicrosoftAppId" value="b356043c-werf-3edc-3456-c1a54cb22595" />
<add key="MicrosoftAppPassword" value="qwerrtrty56567rgfgt" />
<fappSettings>

-1

11. Update your web.contig file, and republish your bot to Azure.

www.EBooksWorld.ir

www.EBooksWorld.ir

Testing the connection to your bot

To test the connection to your bot, follow these steps:

1. Back in the developer dashboard for your bot, there's a test chat window that
you can use to interact with your bot without further configuration and verify that
the Bot Framework can communicate with your bot's web service:

Test connection
to your bot

2. Note that the first request after your bot starts up can take 20-30 seconds, as
Azure starts up the web service for the first time. Subsequent requests will be
quicker:

Test connection
to your bot

Endpoint authorization succeeded

www.EBooksWorld.ir

www.EBooksWorld.ir

Configuring channels

Channels are a mechanism of connecting the bot with the various communication
platforms and making the channels available on those platforms.

Now that you have a bot up and running, you'll want to configure it for one or more
channels that your users are using. Configuring channels is a combination of
Microsoft Bot Framework workflow and conversation service workflow, and it is
unique for each channel you wish to configure:

e On the right-hand side of the dashboard, you can see all the channels you can
connect with your bot

e You can connect your bot to the services that I mentioned before, such as SMS,
Telegram, Slack, and so on

Channels

Web Chat Disahled Off Edit

]

Get bot embed codes
Add another channel
Direct Line Add
Email Add

Facebook Messenger Add

CEME

GroupMe Add
Kik- JSE Add
Skype Add
g Slack Add
m S5MS Add
n Telegram Add

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Configuring your bot with Slack

In this example, we will show you how to configure your bot to Slack. All channels
in Microsoft Bot Framework require you to bring your own account model, so you
can sign up each of these services on your own. You take your username and
password for them and give them to the Bot Framework, which stores them in
encrypted format, but it allows us to communicate on behalf of your bot. What this
means is that if you already have an account for your bots, you can just bring it in, and
you don't have to register a new one. Later on, if you want to take control of that
account again, it's yours and you just have to deal with authorizing from the Bot
Framework developer portal. Let's get the process started:

1. You just have to click on the Add button of the Slack channel, and the Bot
Framework gives us all of the steps to add bot to Slack, as shown in the
following screenshot:

How to

v Log in to Slack and create a Slack Application for your bot

' Create application and set redirect URI

 Create a Slack Bot

' Add Interactive Messages (optional)

 Configure Interactive Messages (optional)

" Gather your Credentials

' Submit your Credentials

Enable this bot on Slack

2. First, click on Log in to Slack and create a Slack Application for your bot:

How to

“~ Log in to Slack and create a Slack Application for your bot

https://api.slack.com/applications/new

Your Apps | CresteNew oo |

3. When you click on the link mentioned in the preceding screenshot, it navigates to

www.EBooksWorld.ir

the Slack application creation page. If you are not signed in, then it will ask you
to sign in using your Slack account, as shown in the following screenshot:

Your Apps

You'll need to sign in to your Slack account to create an application.

4. Enter your Slack team name, click on Continue, and then enter your Slack
credentials to login to your Slack account:

Sign in to another team

Enter your team's Slack domain.

| |

5. After successfully signing il’l, click on https://api.slack.com/applications/view again; now
you will see Your Apps page in your Slack account. Click on the Create App
button to create a new app:

.slack.com

Your Apps

Welcome! Apps you've created will appear here (both public apps listed in the App
Directory and private apps only your team uses).

Need ideas for what to build? Our |deaboard features requests and suggestions
directly from Slack users.

Create App

6. The next step is Create Application and set redirect URI; when you click on
Create App on Slack, you will get a similar kind of form; enter all the
information about your bot:

www.EBooksWorld.ir

https://api.slack.com/applications/view

' Log in to Slack and create a Slack Application for your bot

. Create application and set redirect URI

Create App
App Name Team
-
Short Description lcon

[Choose File | Me fie chasen

Describe what your app does on Slack (3-5 sentences)

Link to clear instructions on how to install your Slack app
W users can learn more about how to set this up for their team

Link to support for your Slack app

Redirect URI(s)

{COPY FROM BELOW}

Learn more 8

Use this Redirect URI:

https://slack.botframework.com Select

Your Icon Image:

https:https://bot-framework.azureedge.net/bot-icons-v1/bot-framework- Salect

7. Copy the redirect URI from the preceding step to the Slack app creation
Redirect URI(s) field:

Link to clear instructions on how to install your Slack app

Where users can learn more ahout how to set this up for their team.

Link to support for your Slack app

Where users can get support for installing and using your Slack app.

Redirect URI(s)

https://slack.botframework.com|

You must specify at least one URI for authentication to work. If you pass a URI in an OAuth request, it

must (partially) match one of the URIs you enter here. Learn more 8
By creating a Web API Application, you agree to the Slack API Terms of Service.

www.EBooksWorld.ir

8. Now, click on the Create App button at the bottom of the Slack window:

@ Heoworid ~ HelloWorld
& Your app was created!

OAuth & Permissions You can now manage OAuth and permissions, bot users, and other features for your
Bot Users app using these pages. Need help? Documentation and support are available.
Interactive Messages

Slash Commands

Event Subscriptions Display Information
Submit to App Directory

App Name lcon (512px by 512px or larger reguired)
HelloWorld @j | Browse...
Short description

Hello World Bot

Describe your app in 10 words or less.

Made with % by Slack

9. Next, create a Slack bot:

Select the 'Bot Users' tab and add a bot to your app

¥ vournensar ~ YourNewBot

Basic Information
App Credentials Bot User

C N <

Interactive Messapes

You can bundle a Bot User with your app to interact with users in a more

conversational manner. Learn more about how bot users work.
Slach Commands

Submit to App Directory Addabottothisapp | «

10. Click on the Bot Users option from the left-hand side menu, then click on the
Add a Bot User button:

W HelloWorld ~ HelloWorld

Basic Information

OAuth & Permissions Bot User

o —

= You can bundle a bot user with your app to interact with users in a more
Interactive Messages

conversational manner. Learn more about how bot users work.
Slash Commands

Event Subscriptions Add a Bot User

Submit to App Directory

11. On the Bot User page, enter the default username for the bot and click on the
Add bot user button:

www.EBooksWorld.ir

& HelloWorld o

Basic Information
OAuth & Permissions
Interactive Messages
Slash Commands
Event Subscriptions

Submit to App Directory

HelloWorld

Bot User

You can bundle a Bot User with your app to interact with users in a more
conversational manner. Learn more about how bot users work.

Default username

@helloworld

If this username isn't 2

Usernames must be : d can only contain letters

numbers, periods, |

Add bot user

12. Next, add and configure Interactive Messages (optional):

N Add Interactive Messages (optional)

If your bot will use buttons, select the 'Interactive Messages' tab and enable interactive

messages

'r‘: SeleniumBot
Basic Information
App Credentials

Bot Users

Slash Commands

interactive Messages |8

Submit to App Directory

-~ YourNewBot

Interactive Messages

You can add buttons to messages from your app, which will send interactions to a URL
you specify. Learn more

Enable Interactive Messages

13. Now, let's configure Interactive Messages:

www.EBooksWorld.ir

Set the Request URL for Interactive Messages

f— SeleniumBot A YﬂurNEW Bﬂt

Basic Infoarmation

App Credentials Interactive Messages

Bot Users
You can add buttons to messages from your app, which will send interactions to a URL
. -
you specify. Learn more.

Slash Commands
Request URL

{COPY FROM BELOW}

Submit to App Directory

Madewith w by Slack

Use this Redirect URI:

https://slack.botframework.com/api/Actions Select

14. Select the Interactive Messages option from the left-hand side menu, and click
on the Enable Interactive Messages button:

@ HelloWorld ~ HelloWorld

Basic Information

OAuth & Permissions Interactive Messages

Bot Users
You can add buttons to messages from your app, which will send interactions to a

Interactive Messages :
URL you specify. Learn more.

Slash Commands

Event Subscriptions Enable Interactive Messages

Submit to App Directory

15. Now, paste the Redirect URI to the Request URL box that we copied earlier and
click on Enable Interactive Messages:

www.EBooksWorld.ir

Interactive Messages

You can add buttons to messages from your apg
URL you specify. Learn more.

Request URL

l https:f/stack_botframework.com/api/Actions|

We'll send an HTTP POST request with information to this

URL must use the "https" protocol.

Enable Interactive Messages

16. Click on Save changes:

HelloWorld

Interactive Messages

You can add buttons to messages from your app, which will send interactionstoa
URL you specify. Learn more.

Request URL

https://slack.botframework.com/api/Actions

We'll send an HTTP POST request with information to this URL when users invoke message buttons. This

URL must use the "https" protocol.

Disable Interactive Messages

17. The next step is to fill up your credentials in Gather your Credentials:

www.EBooksWorld.ir

N\ Gather your Credentials

Select the 'Add Credentials’ tab and copy your Client Id, Client Secret and (optionally) your
Verification Token for Buttons

¥ vaunewst ~ YourNewBot

Basic Information

OAuth Information

Bot Users

Client ID Client Secret

Interactive Messages

Slash Commands Your Client Id Your Client Secret Show

Submit to App Directory

Redirect URI(s)

Made with # by Slack

m Change secret

Verification Token

Use this token to verify that requests are actually coming from Slack.

Your Verification Token (optional) Regenerate

18. Select the App Credentials option from the left-hand side menu and copy
the Client ID and Client Secret from the OAuth Information dialog box:

www.EBooksWorld.ir

OAuth Information

Client ID Client Secret
23317398256.79032640113 sessssense Show

Redirect URI(s)

https://slack.botframework.com

You must specify at least one URI for authentication to work. If you pass a URI in an QAuth request, it
must (partially) match one of the URIs you enter here. Learn more

Verification Token

Use this token to verify that requests are actually coming from Slack.

Regenerate

19. Next, submit your credentials and paste the respective values, which you copied
in the preceding step.

20. Click on the Submit Slack Credentials button. Now, in the background, the Bot
Framework is submitting our application credentials to Slack:

S Bubmit yoer Credlentials
1
el 1 |4H3?'Bﬂ3&ﬁm&?ﬂéﬂ
.-I;\'I:'-‘E-I:\:lﬂ 3 ;- a]

Nerification Token T e e Py ———

Andireg Prsges LY i i TN EEET mesack Fedn ___

21. It will ask you to authorize access of the HelloWorld bot to your Slack team;
click on Authorize:

www.EBooksWorld.ir

o

HelloWorld would like access tolliiiie

Cordirm your iderdity on Astrartans Change tepere

22. Now, come back to the bot configuration page; check Enable this bot on
Slack and click on the I'm done configuring Slack button:

nable this bot on Slack

Enabling or disabling a channel doesn't affect its credentials.

I'm done configuring Slack >

23. Slack bot has been added to your list of channels now:

Channels
Test link Issues Enabled Published
[5Y som @ Addtosipe) T o e
Uf,-.‘ ¥+ Add to Slack 0 Yes Off Edit
Web Chat 0 Yes Off Edit

www.EBooksWorld.ir

www.EBooksWorld.ir

Configuring your bot with Skype

As part of Bot Framework version 3, the bot is already configured with Skype, but
we just need to add it to the account by clicking on the Add to Skype option on the
channel list:

Channels

Test link Issues Enabled Published

Yes :

dd i

E Skype © Add to Skype 0 (Preview) Off Edit
-

E S Slack ¥+ Add to Slack 0 Yes off Edit

Web Chat 0 Yes Off Edit

Configure your bot with Skype by following these steps:

1. Click on the Add to Contacts button:

SKype,

HelloWorld

Kishore Babu Gaddum

Add to Contacts

This is a sample Hello World Bot.

Capabilities
- Send and receive instant messages and photos

This bot will have access to your Skype Name, and any chat messages or content that you or other group
participants share with it.

Privacy and Terms of Use

2. Signin to your Skype account to add it as a contact to your Skype. Make sure
that you have logged in to your Skype account on your PC as well:

www.EBooksWorld.ir

Sign in

Skype name, email or phone number

Password

Keep me signed in

Create new account

3. Now, it will prompt you to open Skype on your desktop to add it to Skype. Once
you are done adding it to Skype, then you can start talking with the HelloWorld
bot:

v HelloWorld
© Online

Today
Hi 1:48 AM
@ Please enter name 1:48 AM
Christina 1:48 AM

@ Hello World: Christina 1:48 AM

¢ ®

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Configuring your bot with Facebook
Messenger

Click on the Add button of the Facebook Messenger channel, and the Bot Framework
will give us all of the steps required to add the bot to Facebook:

Add another channel

Direct Line Add

Email Add
1.3

Facebook Messenger Add

Telegram Add

Twilio (SMS) Add

Configure your bot with Facebook Messenger by following these steps:

1. First, click on Getting Started:

How to

/N Getting Started

Creating a Bot for Facebook requires you create both a Facebook Page and a Facebook App.
Learn more at the link below.
https.//developers.facebook.com/docs/messenger-platform

2. Click on the link mentioned in the previous screenshot and the Facebook for
developers page will open:

www.EBooksWorld.ir

facebook for developers | Products Docs Tools&Support News Videos

All Docs

G Messenger Platform

Product Overview

ar

Docs | Messenger Platform © On this page:

Introducing new tools to help you build
your bot and reach 1 billion people
around the world

Getting Started
Complete Guide

Reference o~

Gl
Platform Guidelines -
Overview
Messenger Policy Overaew See how your bot can use our platform to have Monday, March 14 Tuesday, b
App Review rich conversations with peopie on Messenger
IM‘
Changelog °
Implementation
Getting Started Reference
Get started in a few easy steps 1o see the View the reference documentation for more
Messenger Platform In action technical details
Complete Guide Platform Guidelines
I omrn abhant all the faatirne Af tha Moaccanane Ricrmenr hoor fn nen Maceanane Tiatfaom fonle $n
English (UK} Espaiiol Portugués (Brasi)

3. Next, create a Facebook page for your bot. Your bot is accessed through a
Facebook page. Go to this link and create a page or go to an existing page at https
J/Iwww.facebook.com/bookmarks/pages:

facebook s

n You must log in to continue.

Log in to Facebook

Forgotten account? - Sign up for Facebook

English (UK) fdl =) suflp e TWET Sendh Jwdidl 37,2 0RIWIRo Espafiol | 4

SignUp Login Messenger FacebookLite Mobile FindFriends Badges People Pages Flaces Games

www.EBooksWorld.ir

https://www.facebook.com/bookmarks/pages

4. After successfully logging in, click on the Create Page button under the Pages
section, as shown in the following screenshot:

Pages + Create a Page

5. Alternatively, you can click on Create Page under the drop-down menu next to
Privacy shortcuts:

Friends

Your Pages:
= Speech Proce... |1 message
3= Part of Speech 1 message
B Matural Speec... 1 message

See more...

Create Page

Manage Pages

Create Group

Find Groups

Create Adverts
Advertising on Facebook

Activity Log

Mews Feed Preferences
Settings

Log out

Help

Support Inbox

Report a Problem

6. On Create a Page, select any one of the options as to which type your bot is,
such as business, organization or entertainment, or app. Enter the name of your
page and click on Create:

www.EBooksWorld.ir

Create a Page

Local Business or Place Company, Crganisation or Institution Brand or Product

&5

Cause or Community

Artist, Band or Public Figure Entertainment
® Chat

7. Now, add the details of the page/bot and save the information, then click on
Next and complete all the required steps:

Set up Hello World Club

2 Profile Picture 3 Add to Favourites 4 Preferred Page Audience

Tip: Add a description and website to improve the ranking of your Page in search.

Add a few sentences to tell people what your Page is about. This will help it show up in the right search results. You
will be able to add more details later from your Page settings.

This page is just sample of hello world

Meed help? Skip

8. Once you have successfully created a page, then save the Facebook Page ID for
later purposes. The Facebook Page ID can be found in your Facebook page's

About section:

www.EBooksWorld.ir

Page Messages

HelloWorld

Create Page @username

Home
Photos
Likes
Videos
Posts

Manage Tabs

+ Add Shop Section

Insights Publishing Tools

Message « More «

Impressum

Company Overview

Long description

General Information

Mission

Founded

Awards

Products

Website

Official Page

Settings

Input Impressum for your Page

+ Enter company overview

Write a long description for your Page
+ Enter general information

+ Enter mission

+ Enter founding date

+ Enter awards

+ Enter products

https://helloworldformflow.azurewebsites.net/

Help +

Enter the official brand, celebrity or organisation your Page

is about

I Facebook Page ID

551426228381192 I

9. Next, create the Facebook app for your bot. Your bot will also need a Facebook

app; click on the following mentioned link to create a new app:

The Facebook Ul may be different depending on what version
you're looking at:

My apps ¥

See All Apps
Add a New App

Requests

Developer Settings

Company Settings

www.EBooksWorld.ir

https://developers.facebook.com/quickstarts/? platform=web

10. Enter Display Name, Contact Email, and select the Category of your bot:

https://developers.facebook.com/quickstarts/?platform=web

Create a New App ID

Get started integrating Facebook into your app or website

Display Name

Contact Email

Category

Choose a category =

By proceeding, you agree to the Facebook Platform Policies W 2VMl Create App ID

11. Click on Create App ID.

12. After successful creation of the Facebook app, click on the Dashboard option
from the left-hand side menu and copy the App ID and App Secret to a safer
place, which will be used in later steps:

@ HelloWorld APP ID: 857255211075617 ~* View Analytics

Dashboard

Settings Dashboard

Roles

Ao HelloWorld o

App Review This app is in developmentmgde 2nd ed by app admins
API Version 7] App D
V2.7 857255211075617
+ Add Product W
eseessee

13. Next, enable messenger. Now, select the Add Product option from the left-hand
side menu on the Facebook app page. Then, click on the Get Started button of
the Messenger section:

www.EBooksWorld.ir

@ HelloWorid APP ID: 857255211075617 ~* View Analytics # Tools & Support Docs

Dashboard
Setiings Product Setup

Roles

Alerts Facebook Login

App Review The world’s number one social login product

Get Started

+ Add Product AUdIEnCe NEWorK Get Started

Monetize your mobile app or website with native ads from 3 million Facebook advertisers

Account Kit
Get Started
Seamless account creafion. No more passwords
Messenger
a Get Started
Customize the way you interact with people on Messenger.

14. Click on the Get Started button again on the Messenger Platform page:

Dashboard

Settings Messenger Platform
Roles

At Welcome to the Messenger Platform! Now people won't need to download an app to interact with you. Just build your
" bot and instantly reach people on whichever device and platform they use.

App Review The Send/Receive AP| provides customizable tools for you to build your bot so you can start sending relevant

updates to people who want to hear from you. Our platform is in beta and we will gradually accept and approve
submissions to ensure the best experiences for everyone on Messenger Read the Docs

Messenger The Send/Receive AP should be used for organic content and should not be used to send marketing or other
promational communications. For this reason. you must submit your app for review before you can begin using the
API publicly. Before your app is approved, you'll only be able to send messages to app developers and testers. See
our Platform Policies and our Examples and Explanations for more info.

Get Started

+ Add Product

15. Under the Token Generation section of the product page, select the page from the
drop down to which you want to generate the token:

Token Generation

Page token is required to start using the APIs. This page token will have all messenger permissions even if your app is
not approved to use them yet, though in this case you will be able to message only app admins. You can also generate
page tokens for the pages you don't own using Facebook Login.

Page Page Access Token

Selecta Page v You must select a Page to generate an access token.

16. Select HelloWorld as the page. Now, you will get a prompt for allowing
permissions to read your profile; click on OK:

www.EBooksWorld.ir

n Log in with Facebook

Submit for Login Review
Some of the permissions below have not been approved for use by Facebook.
Submit for review now or learn more.

Continue as §

HelloWorld will receive the following info:
your public profile. @

Review the info that you provide

@ This doesn't let the app post to Facebook

17. If you don't want to give any specific permission, then you can select the Choose
what you allow option, otherwise click on OK:

Log in with Facebook

HelloWorld would like to manage your Pages, Send messages from Pages you
manage, Use a user phone number to send messages from Pages you manage
and Send messages from Pages you manage at any time after the first user
interaction.

Choose what you allow

18. Copy the Page Access Token to a safer place; we need it in later steps:

www.EBooksWorld.ir

Token Generation

Page token is required to start using the APIs. This page token will have all messenger permissions even if your app is

not approved to use them yet, though in this case you will be able to message only app admins. You can also generate
page tokens for the pages you don't own using Facebook Login.

Page Page Access Token

HelloWorld ~ EAAMLgOhWICEBAEVWDIuK4m8pUIBTBmMwEd7KxtoPZABox164tsgrrBPTg1RID4JsG

19. Set up and configure webhooks. Enable the webhook to forward messaging
events sent by Facebook Messenger. Click on the Setup Webhooks option on the
same page under the Webhooks section:

Webhooks Setup Webhooks

To receive messages and other events sent by Messenger users, the app
should enable webhooks integration.

20. Configure the webhook in the same way as mentioned on the configure
Facebook Messenger page; under Configure webhook callback URL and verify
the token and paste it into your Facebook webhook configure step:

. Configure webhook callback url and verify token

Configure the webhook. Enter the URL below for the Callback URL, and the Verify Token. Then
select message_deliveries, messages, messaging_optins, and messaging_postbacks under
Subscription Fields to set the correct permissions. Click Verify and Save.

New Page Subscription

Callback URL

{ Copy from below }

Verify Token

{ Copy from below }

Subscription Fields
mesqage_mz}iueries message_reads mes(-ages
message_echoes messaging_optins messagingipasthacks
messaging_account_linking
[LLC Verify and Save
Callback Url:
https://facebook.botframework.com/api/v1/bots/helloworldformflow Select
Verify Token:
E5eALs49Csr4yB3gz1My4Wb5TN11b7jwDn9DnB1548ux7gb Select

21. Enter the Callback URL and the Verify token from the Facebook Messenger

www.EBooksWorld.ir

configure page. Then, select message deliveries, messages, messaging optins,
and messaging_postbacks under Subscription fields to set the correct
permissions. Then, click on Verify and Save:

New Page Subscription

Callback URL

https://facebook.botframework.com/api/v1/bots/helloworldformflow

Verify token
| []
G nEee e Bl SRR e s i e i
Subscription fields
message_deliveries message_reads messages
-]
message_echoes messaging_optins messaging_postbacks

messaging_account_linking

Cancel Verify and Save

22. Enter your credentials. This is the final step to configure your bot to Facebook
Messenger. Here, you have to enter your previously saved Facebook Page
Id, Facebook App Id, Facebook App Secret, and Page Access Token:

/~ Enter your credentials

Facebook Page Id I-:.DDQQCG[:CC""".QQ

Facebook App Id 0000000000000

Facebook App Secret I.:.DDQQCQ 0

Page Access Token I}{xxxxxx:e:{:{xxxxx XX

23. After entering your details, click on the Submit/Resubmit button. After
successful validation, you will receive the following message:

Credentials have been validated.

24. Finally, check the Enable this bot on Facebook Messenger option, and click on
the I'm done configuring Facebook Messenger button:

www.EBooksWorld.ir

Enable this bot on Facebook Messenger

Enabling or disabling a channel doesn’t affect its credentials.

I'm done configuring Facebook Messenger >

25. Now, you can communicate with your bot through Facebook Messenger as well:

Channels
Test link Issues Enabled Published
Facebook :
Messenger © Message Us 0 Yes Off Edit
/'@ Add to Skype) Yes ;
Skype .8 kype | 0 Hreview) Off Edit
‘ 'Si Slack ¥+ Add to Slack 0 Yes off Edit
Web Chat 0 Yes Off Edit
Get bot embed codes

26. To chat with your bot from Facebook Messenger, click on the Message Us button
in the channels list:

Channels
Test link |ssues Enabled Published
Facebook :
Messenger I © Message Us I 0 Yes Off Edit
Sk (@ Addtosigpe) Jos i
ype s kype 0 el Off Edit
‘ S@ Slack % Add to Slack 0 Yes off Edit
Web Chat 0 Yes Off Edit
Get bot embed codes

27. It will navigate to the Facebook Messenger web app:

www.EBooksWorld.ir

HelloWorld

viessengel

Helloworld HelloWorld
0 people like this Messenger
App Page ° _

This is Christina Manage Messages
@ Hello World: This is Christina ® Leave feedback

(), Search in Conversation

Mute Notifications

www.EBooksWorld.ir

www.EBooksWorld.ir

Configuring your bot with GroupMe

For configuring GroupMe, click on the GroupMe channel Add button. Bot
Framework gives us all of the steps to add a bot to GroupMe:

Configure GroupMe
D -
e

v Sign up for a GroupMe account

How to

' Create a GroupMe Application for your bot
v Copy the client Id from the redirect Url

' Submit your client Id

[J Enable this bot on GroupMe

Configure your bot with GroupMe by following these steps:

1. Now, Sign up for a GroupMe account. Expand Sign up for a GroupMe account,
and then go at httpsv/web.groupme.com/signup to sign up:

&

Get your group together.

f Continue with Facebook

www.EBooksWorld.ir

https://web.groupme.com/signup

2. Ifyou already have an account, then click on Log in on the top-right side of the
page. Otherwise, enter your mail ID and then click on the Continue button to sign

up.

3. Next, create a GroupMe application for your bot. To create a GroupMe
application to your bot, you have to follow https:/dev.groupme.com/applications/new.
Here, you have to provide the logging details, then it will redirect you to create
the application for your bot page:

Create Application

Application Name
Callback URL

Callback URL must be https, localhost, or a deep link

Developer Name
Developer Email
Developer Phone Mumber
Developer Company

Developer Address

4. Enter all the required details. For the call back URL, go back to the bot's
configure GroupMe page under create a GroupMe application for your bot; you
will find the callback URL. Copy and paste it in the GroupMe application
creation callback URL box.

5. Click on the Save button. It redirects to the GroupMe app details page; it looks
similar to the following screenshot:

www.EBooksWorld.ir

https://dev.groupme.com/applications/new

Hello World

Details Settings Delete

Settings
Redirect URL https://oauth.groupme cDm;’oauth.-’authorize?cIien_
Callback URL https:{/groupme botframework com/Home/Login

Your Access Token

Use the access token string to authenticate as yourself when making APl requests.

Token o

6. Next, copy the client ID from your redirect URL. Copy the client ID from the
previous step; you will find it at the end of Redirect URL:

Dratails Sellings Delate

Settings
Redirect URL htips foayth groupme com/oauth/authedze?client id= Your Client Id
Callback URL https:/fic9ad1bb.ngrek. lvHome/Login

Your Access Token

Use the access token string to authenticate as yoursal! when making AP| requests

Dhee's
Access Token

7. Submit your client ID. Here, you have to enter your client ID, which you copied
from the previous step. Then, click on the Submit GroupMe Credentials button:

#~ Submit your client Id

Client Id parameter in I:-:dsZ-:JdastE3a5df><df32343~25af
the Redirect Url

Submit GroupMe Credentials

8. Now, click on I'm done configuring GroupMe; before that, check the Enable this
bot on GroupMe box:

www.EBooksWorld.ir

i1 Enable this bot on GroupMe

Enabling or disabling a channel doesn't affect its credentials.

I'm done configuring GroupMe >

9. Bot Framework has added GroupMe on your configured channels list:

Channels
Test link Issues Enabled Published
Facebook c
Messenger © Message Us 0 Yes Off Edit
GroupMe @helloworldformflow 0 Yes Off Edit
/ N Yes -
Skype B Add to Skype) 0 (Biaview) Off Edit
2
S Slack 4= Add to Stack 0 Yes Off Edit
Web Chat 0 Yes Off Edit
Get bot embed codes

10. Now, you can chat with your bot from GroupMe. To test it, click on the
eyourbotname button in the channels list. It will navigate to the GroupMe web app,
where you can start chatting with your bot, as shown in the following
screenshot:

. Hello world

Add members from your contacts or

create a share link for this group. O shlE

Please enter name

s Astrani Dev

hi

@ helloworldformflow

Please enter name

st Astrani Dev

hello

@ helloworldformflow
Hello World: hello

www.EBooksWorld.ir

www.EBooksWorld.ir

www.EBooksWorld.ir

Summary

In this chapter, we have learned the following;

e Registering a bot: Once registered, we use the dashboard to test the bot to
ensure that it is talking to the connector service and/or use the web chat control,
and an auto-configured channel, to experience what users will experience when
conversing with the bot

e Connecting to channels: Connect the bot to the conversation channels such as
Skype, Slack, and/or Facebook Messenger using the channel configuration page

e Testing bot: Test the bot's connection to the Bot Framework and try it out using
the web chat control

e Publishing bot: We get to publish the bot

e Measuring bot: We get to learn how to link the bot to Azure Application
Insights analytics directly from the bot dashboard in the Bot Framework website

e Managing a bot: Once registered and connected to channels, we can manage the
bot via the bot's dashboard in the Bot Framework Developer Portal

www.EBooksWorld.ir

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions

	Setting up Microsoft Bot Framework Dev Environment
	Conversation as a Service (CaaS)
	Your bot
	The Bot Connector
	The Bot Directory
	Setting up the development environment
	Prerequisites
	Setting up the Bot Framework Connector SDK .NET

	Messages
	Basic format
	Rich text
	Skype emoticons
	Welcome messages
	Pictures and videos

	Cards and buttons
	Hero card
	Thumbnail card
	Carousel
	Images
	Buttons
	Actions

	Sign in
	Receipt

	Groups
	Calling
	Summary

	Developing Your First Bot Using the Connector and Builder SDK
	Bots are evolving
	Bots use cases
	Developing your first bot
	Creating our first bot
	Building a bot using the C# SDK
	AssemblyInfo.cs
	References
	Microsoft Bot Builder
	Microsoft Bot Connector
	WebApiConfig.cs
	MessageController.cs
	Default.htm
	Global.asax
	Packages.config
	Web.config

	Post method
	BotID
	Microsoft App ID
	MicrosoftAppPassword

	How to deploy and run the bot application in the Bot Framework emulator locally
	How to use dialogs in bot applications
	How to use FormFlow in the bot application
	Summary

	Developing WeatherBot Using Dialogs and LUIS
	Language Understanding Intelligent Service (LUIS)
	Intents and Entities
	Training your bot using utterances
	Testing your LUIS app

	Development of WeatherBot code
	Calling LUIS from the bot
	Calling the Weather API
	Using cards

	Natural speech and Intent processing bot using Microsoft Cognitive Services
	Identifying the name of a person, place, and company using LUIS
	Training your app
	Calling LUIS from the bot
	Summary

	Natural Speech and Intent Processing Bot Using Microsoft Cognitive Services
	Microsoft Cognitive Services
	Signing up for Microsoft Cognitive Services
	Building a bot application using Cognitive Services APIs
	Analyzer's results

	Identifying the name of a person, place, and company using LUIS
	Training your app using utterances
	Calling LUIS from the bot
	Summary

	Developing Bots Using LUIS Prompt Dialogs with State and Nearby Bot Using Custom APIs
	Employee Enroll bot using LUIS prompt dialogs
	Training the service
	Training and publishing

	Creating the C# class for LUIS response
	Creating the bot application

	Bot state service
	Creating a state client
	Get/SetProperty methods
	Updating your Post method
	Updating your QueryLUIS method

	Developing a Nearby Bot using custom APIs
	Summary

	Developing an IVR Bot for a Bank Using Advanced Microsoft Bot Framework Technologies
	High-level architectural diagram
	Let's start coding
	Creating an account with the bot

	Storing the bot conversation (new account info) data in an Azure SQL database
	Checking your savings account balance using the bot
	Checking your current account balance using the bot
	Paying your credit card bill using the bot
	Deleting an account using the bot
	Summary

	Intelligent Bots with Microsoft Bot Framework and Service Fabric
	Getting started using stateless microservices
	Setting up your development environment for Service Fabric
	Prerequisites
	Installing the SDK and tools
	Enabling PowerShell script execution

	Creating a stateless Service Fabric web API

	Publishing a Service Fabric project in Azure
	Create Key Vault
	Adding certificates to the Key Vault
	Creating a cluster in the Azure portal

	Summary

	Developing Intelligent Facial Expression Identification Bot for IoT Using Azure and Power BI
	Before getting started
	Configuring Raspberry Pi and sensors
	Prerequisites
	Hardware
	Software

	Setting up sensors
	Schematic diagram

	Device identity and registry with IoT Hub
	Using Device Explorer

	Face API
	Emotion API
	Sign Up Microsoft Cognitive Services
	Development of facial expressions identification bot
	Let's code to know the emotions

	Registering your Bot in Bot Framework
	Publish and test your bot

	Configure Direct Line Channel
	Develop an UWP app for Raspberry Pi device
	Create an UWP App project
	How to detect the motion of the object using PIR Sensor and How to define the LED states
	Initializing camera on detection of motion
	How to send picture file to Facial Expression Bot and receive reply from it
	Send Picture to Bot

	Deploy Code in to Raspberry Pi
	Show facial analytics data in Power BI
	Set up Azure Stream Analytics to send IoT Hub data to Power BI
	Set up Power BI

	Summary

	Publishing a Bot to Skype, Slack, Facebook, and the GroupMe Channel
	Publishing bots to various channels
	Publishing your bot application to Microsoft Azure web app

	Registering your bot with Microsoft Bot Framework
	Configuration
	Testing the connection to your bot

	Configuring channels
	Configuring your bot with Slack
	Configuring your bot with Skype
	Configuring your bot with Facebook Messenger
	Configuring your bot with GroupMe

	Summary

