s
o
O
00
)
=

ngular 6

2 le
A

on

-

WWW.EBooksWorI diir

The Complete Guide to Angular

Written by Nate Murray, Felipe Coury, Ari Lerner, and Carlos Taborda

© 2018 Fullstack.io

All rights reserved. No portion of the book manuscript may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means beyond the number of purchased copies,
except for a single backup or archival copy. The code may be used freely in your projects,
commercial or otherwise.

The authors and publisher have taken care in preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damagers in connection with or arising out

of the use of the information or programs container herein.

Published in San Francisco, California by Fullstack.io.

@FULLSTACK.io

www.EBookswWorld.ir

We’d like to thank:
e Our technical editors: Frode Fikke, Travas Nolte, Daniel Rauf

 Nic Raboy, and Burke Holland for contributing the NativeScript chapter

www.EBookswWorld.ir

https://www.nraboy.com/
http://developer.telerik.com/author/burkeholland/

Contents

Book Revision 1
BugReports 1
Chat With The Community! 1
Vote for New Content (new!) e 1
Be notified of updates via Twitter oL 1
We'd love to hear fromyou! 1
HowtoRead ThisBook 2
Running Code Examples 2
Angular CLI. 3
Code Blocksand Context 3
Code Block Numbering 3
AWordon Versioning 4
Getting Help o o e 4
Emailing Us L e 5
Technical Support Response Time 5
Chapter OVerview o ittt it 6
Writing Your First Angular Web Application 1
Simple Reddit Clone 1
Getting started 4
Nodejsandnpm 4
TypeScript L e 4
Browser 5
Special instruction for Windows users L 5
Angular CLL. 5
Example Project 6
Writing Application Code L 10
Running the application 10
Making aComponent 12
Importing Dependencies 14
Component Decorators L 14
Adding a template with templateUrl 15
Adding atemplate 15

www.EBookswWorld.ir

CONTENTS

Adding CSS Styles with styleUrls 16
Loading Our Componentottt 17
Adding Data to the Component 18
Working With Arrays 21
Using the User Item Component 24
Rendering the UserItemComponent 25
Accepting Inputs e 26
PassinganInputvalue 26
Bootstrapping Crash Course 28
declarations L 30
imports . . . L e e e e e e e e e e e e e e e e e 30
PTOVIAETrsS o e 30
bootstrap e e e e e e e e e e 30
Expanding our Application 31
Adding CSS L 32
The Application Component L L 33
Adding Interaction 35
Adding the Article Component 39
Rendering Multiple Rows 48
Creating an Articleclass L 48
Storing Multiple Articles 53
Configuring the ArticleComponent with inputs 54
Rendering a List of Articles 56
Adding New ArticleS o 58
Finishing Touches 59
Displaying the Article Domain Lo 59
Re-sorting Based on Score 60
Deployment 61
Building Our App for Production 62
Uploading toa Server 63
Installingnow L 63
Full Code Listing e 63
Wrapping Up L e e 64
Getting Help o 64
TypeScript 65
Angular is built in TypeScript 65
What do we get with TypeSeript? o 66
Types . . 67
Tryingitout withaREPL 68
Built-intypes 69
Classes 71
Properties e 71

www.EBookswWorld.ir

CONTENTS

Methods e 72
Constructors 74
Inheritance 75
Utilities o o e 77
Fat Arrow Functions L 77
Template Strings 79
Wrapping up o . L e e 80
How Angular Works 81
Application L 81
The Navigation Component 82
The Breadcrumbs Component L Lo L. 82
The Product List Component 83
How to Use This Chapter 85
Product Model e 86
Components e e e 87
Component Decorator 89
Component selector 89
Component template 89
Adding AProduct 90
Viewing the Product with Template Binding 92
Adding More Products 93
Selecting aProduct L 94
Listing products using <products-list> 95
The ProductsListComponent o o i i i e e 98
Configuring the ProductsListComponent @Component Options 99
Componentinputs L. 99
Component outputs 101
Emitting Custom Events o 102
Writing the ProductsListComponent Controller Class 104
Writing the ProductsListComponent View Template 105
The Full ProductsListComponent Component 107
The ProductRowComponent Component 109
ProductRowComponent Configuration 110
ProductRowComponent template L L oo 111
The ProductImageComponent Component 112
The PriceDisplayComponent Component 112
The ProductDepartmentComponent v i v v v v i e e e 113
NgModule and Bootingthe App 114
Bootingtheapp 116
The Completed Project 117
Deployingthe App o 117
A Word on Data Architecture L 118

www.EBookswWorld.ir

CONTENTS

Built-in Directives 120
Introduction 120
NGIE oo e e e e e 120
NgSwitch . . . o o e 121
NGStYle . . o o e 123
NGCLassS . . . v v o e i e 126
NGFOT . . . o e e e e e e e e e e e e e e e e e e e 129

Gettinganindex 134
NgNonBindable o e e e e e e e e e e e e e e e e e e e 135
Conclusion 136

Formsin Angular 137
Forms are Crucial, Forms are Complex 137
FormControls and FOrmGroups v v v v vt e e e e e e e e e 137

FormControl e e e e e e 137
FOormGroup o e e e e e e e e e e e e e e e e 138
OurFirst Form e 139
Loading the FormsModule 140
Simple SKU Form: @Component Decorator 141
Simple SKU Form: template o i i 141
Simple SKU Form: Component Definition Class 145
Tryitout! L 145
Using FormBuilder e 147
Reactive Forms with FormBuilder 148
Using FormBuilder o . i i ittt e e e 148
UsingmyFormintheview. 149
Tryitout! L e 150
Adding Validations 152
Explicitly setting the sku FormControl as an instance variable 153
Custom Validations L 159
Watching For Changes. 161
ngModel e 162
Wrapping Up L e 164

Dependency Injection L 165
Injections Example: PriceService 166
Dependency Injection Parts Lo L 170
Playing with an Injector 171
Providing Dependencies with NgModule 175

Providersarethe Key 177
Providers 177
Usinga Class 177
UsingaPFactory e 182

www.EBookswWorld.ir

CONTENTS

Dependency Injection in Apps 185
More Resources 186
HTTP . . . 187
Introduction 187
Using @angular/common/http 188
import from @angular/common/http e 188
ABasicRequest 189
Building the SimpleHttpComponent Component Definition 190
Building the SimpleHttpComponent template 190
Building the SimpleHttpComponent Controller 191
Full SimpleHttpComponent e 193
Writing a YouTubeSearchComponento 194
Writing a SearchResult L L 195
Writing the YouTubeSearchService 196
Writing the SearchBoxComponent 201
Writing SearchResultComponent L Lo 208
Writing YouTubeSearchComponent 209
@angular/common/http APL 213
Making aPOST request o oo e e e e e 213
PUT /PATCH /DELETE /HEAD ittt it 214
Custom HTTPHeaders e 215
Summary 215
Routing 216
Why Do We Need Routing? 216
How client-side routing works oo 217
The beginning: using anchortags 218
The evolution: HTML5 client-side routing 218
Writing our first routes L. L 219
Components of Angularrouting L 219
Imports e 219
Routes o o e 220
Installing our Routes L 221
RouterOutlet using <router-outlet> 222
RouterLink using [routerLink] o e 224
Putting it all together L 224
Creating the Components 226
HomeComponent e e e e e e e e e e e 226
AboutComponent L e e e e e e e e e e e e e e e 227
ContactComponent L e e e e e e e e e e 227
Application Component 228
Configuringthe Routes 229

www.EBookswWorld.ir

CONTENTS

Routing Strategies e
Running the application
Route Parameters e e
ActivatedRoute L Lo oL e
Music Search App e
First Steps o . o e
The SpotifyService o e
The SearchComponent o o i e
Trying thesearch
TrackComponent L e e e e e e e e e e e e e e e e e e
Wrapping up musicsearch Lo
Router Hooks e
AuthService L L e e e e e e e e e e e e e e e e e e
LoginComponent L L L e e e e e e e e e e e
ProtectedComponent and Route Guards
Nested Routes e
Configuring Routes e
ProductsModule L e e e e e e e e e e e e
Summary e

Data Architecture in Angular
An Overview of Data Architecture
Data Architecture in Angular L oL Lo

Data Architecture with Observables - Part 1: Services
Observablesand RXJS e
Note: Some RxJS Knowledge Required
Learning Reactive Programmingand RxJS
Chat App Overview o i ittt e
Components
Models
Services e e
Summaryo
Implementing the Models L
USer o e e e e e e e e e e e e e
Thread o o o e e e e e e e e e
Message o e
Implementing UsersService
currentUser stream L L L e e e e e e e e e e e e e e
Settinganewuser
UsersService.ts L e e e e
The MessagesService o o i e
the newMessages stream e e e

www.EBookswWorld.ir

CONTENTS

themessages stream e e 287
The Operation Stream Pattern 287
Sharing the Stream 289
Adding Messages to the messages Stream L0 L 290
Our completed MessagesService 293
Trying out MessagesService oo 296
The ThreadsService e e e e 298
A map of the current set of Threads (inthreads) 298

A chronological list of Threads, newest-first (in orderedthreads) 303
The currently selected Thread (in currentThread) 303
The list of Messages for the currently selected Thread (in currentThreadMessages) . . 305
Our Completed ThreadsService« i it ittt s 308
Data Model Summary 310
Data Architecture with Observables - Part 2: View Components 311
Building Our Views: The AppComponent Top-Level Component 311
The ChatThreadsComponent v v v i i e e e e e e e e e e e e e 314
ChatThreadsComponent template, 315
The Single ChatThreadComponent it i i 315
ChatThreadComponent Controller and ngOnInit 317
ChatThreadComponent template 317
The ChatWindowComponent o v i i i e e 318
The ChatMessageComponent v v v v i i e e e e e e e e 328
The ChatMessageComponent template i v v i 330
The ChatNavBarComponent v i v i i e e e 331
The ChatNavBarComponent @Component v v v i v v e et e e 331
The ChatNavBarComponent template i v i it it 333
Summary e e 334
Introduction to Redux with TypeScript 336
Redux 337
Redux: Key Ideas 337
CoreRedux Ideas e 338
What’s a reducer? e 338
Defining Action and Reducer Interfaces 339
Creating Our FirstReducer 339
Running Our FirstReducer 340
Adjusting the Counter With actions 341
Reducerswitch e 342
Action “Arguments” 344
Storing Our State 345
Using the Store 346
Being Notified with subscribe oo L. 346

www.EBookswWorld.ir

CONTENTS

The Coreof Redux 350

A Messaging App e e e 351
Messaging Appstate e 351
Messaging Appactions e 352
Messaging Appreducer e e 353
Trying Out Our Actions 356
Action Creators L 357
UsingReal Redux 359
Using Reduxin Angular 361
Planning Our App o o 362
Setting UpRedux 362
Defining the Application State 362
Defining the Reducers 363
Defining Action Creators 364
Creating the Store L 364
Providing the Store 366
Bootstrapping the App 367
The AppComponent e e 368
imports . . . oL e e e e e e e e e e e e e 368
Thetemplate 369
Theconstructor e 370
Putting It All Together 372
What's Next e 373
References L 373
Intermediate Redux in Angular 375
Context For This Chapter 375
Chat App Overview i e 376
Components e 376
Models 377
Reducers 378
Summaryo e 378
Implementing the Models L 379
User o e e e 379
Thread o e e e 379
MESSAgE i e 380
App State L e 381
A Wordon Code Layout 381
The Root Reducer 382
TheUsersState 382
The ThreadsState e 383
Visualizing Our AppState 384
Building the Reducers (and Action Creators) 385

www.EBookswWorld.ir

CONTENTS

Set Current User Action Creators 385
UsersReducer - Set Current User 386
Thread and Messages Overviewo i it 387
Adding a New Thread Action Creators 387
Adding a New Thread Reducer 388
Adding New Messages Action Creators 389
Adding A New Message Reducer 390
Selecting A Thread Action Creators 392
Selecting A Thread Reducer 393
Reducers Summary 394
Building the Angular Chat App 394
The top-level AppComponent L 396
TheChatPage o e e 398
Container vs. Presentational Components, 399
Building the ChatNavBarComponent 400
Redux Selectors 402
Threads Selectors 403
Unread Messages Count Selector 404
Building the ChatThreadsComponent 405
ChatThreadsComponent Controller. 406
ChatThreadsComponent template 408
The Single ChatThreadComponent oo i i 409
ChatThreadComponent template 410
Building the ChatWindowComponent 411
The ChatMessageComponent v v v v i v e e e e e e 418
Setting incoming 419
The ChatMessageComponent template 420
Summary 421
Advanced Components 423
Styling 423
View (Style) Encapsulation 426
Shadow DOM Encapsulation 430
No Encapsulation 432
Creating a Popup - Referencing and Modifying Host Elements 435
Popup Structure L 435
Using ElementRef i i i i e e e 437
Binding tothehost L 439
Adding a Button using exportAs 442
Creating a Message Pane with Content Projection 444
Changing the Host’s CSS 445
Using ng-content L e 445
Querying Neighbor Directives - Writing Tabs 447

www.EBookswWorld.ir

CONTENTS

ContentTabComponent 0 e e e e e e e e e e 448
ContentTabsetComponent Component 449
Using the ContentTabsetComponent 451
Lifecycle Hooks 453
OnInit and OnNDestroy o i e e e 454
ONChanges v i e 458
DoCheck o v v i i it e e e e e e 464
AfterContentlnit, AfterViewlnit, AfterContentChecked and AfterViewChecked 477
Advanced Templates 484
Rewriting ngIf -ngBookIf 485
Rewriting ngFor - NgBookFor e 487
Change Detection 493
Customizing Change Detection, 497
ZONES . . v v vt e e e e e e e 504
Observablesand OnPush 505
Summary 509
Testing 510
Test driven? 510
End-to-end vs. Unit Testing 510
Testing Tools 511
Jasmine L 511
Karma e 512
Writing Unit Tests L o e 512
Angular Unit testing framework o oo oo 512
Setting Up Testing 513
Testing Servicesand HTTP 515
HTTP Considerationsttt 516
Stubs . .. 516
Mocks 517
Http MockBackend e e e e e e e e 518
TestBed.configureTestingModule and Providers 518
Testing getTrack o o L e 519
Testing Routing to Components L o 526
Creating a Router for Testing, 526
Mocking dependencies 529
Spies e 530
Back to Testing Code 532
fakeAsync and advance e e e 535
inject . . L L e e e e e e e e e e e e e e 536
Testing ArtistComponent’s Initialization 536
Testing ArtistComponent Methods 537
Testing ArtistComponent DOM Template Values 539

www.EBookswWorld.ir

CONTENTS

Testing Forms L 541
Creating aConsoleSpy . . .« v v v v v v v it e e 544
Installing the ConsoleSpy 545
Configuring the Testing Module 546
Testing The Form 546
Refactoring Our Form Test 548

Testing HTTP requests o 552
Testing @aPOST o i i e 552
Testing DELETE o o o o o e et e e e e e e 555
Testing HTTP Headers i 556
Testing YouTubeSearchService i 558

Conclusion e 565

Converting an Angular]S 1.x Appto Angular 566

Peripheral Concepts 566

What We're Building 567

Mapping Angular]JS 1to Angular L 568

Requirements for Interoperability Lo L 570

The AngularJS TAPp o o o 570
Thengl-app HTML 572
Code OVerview it e e 573
ngl:PinsService L e 573
ngl: Configuring Routes 575
ngl:HomeController e 576
ngl: / HomeController template 576
ngl:pin Directive L L 577
ngl: pin Directive template L 577
ngl: AddController e 579
ngl: AddController template 581
ngl: SUMmary e e 584

Building AHybrid 584
Hybrid Project Structure 585
Bootstrapping our Hybrid App Lo 587
What We'll Upgrade 589
A Minor Detour: Typing Files oo 592
Writing ng2 PinControlsComponent o 595
Using ng2 PinControlsComponent i 597
Downgrading ng2 PinControlsComponent tongl 598
Adding Pins withng2 Lo Lo 600
Upgrading ngl PinsService and $statetong2 601
Writing ng2 AddPinComponent L L 602
Using AddPinComponent oL e e e 608
Exposing an ng2 servicetongl oo 608

www.EBookswWorld.ir

CONTENTS

Writing the AnalyticsService 609
Downgrade ng2 AnalyticsServicetongl 609
Using AnalyticsServiceinngl L 610
Summary 611
References e 612
NativeScript: Mobile Applications for the Angular Developer 613
What is NativeScript? 613
Where NativeScript Differs from Other Popular Frameworks 614
What are the System and Development Requirements for NativeScript? 615
Creating your First Mobile Application with NativeScript and Angular 617
Adding Build Platforms for Cross Platform Deployment 617
Building and Testing for Android and iOS 617
Installing JavaScript, Android, and iOS Plugins and Packages 618
Understanding the Web to NativeScript Ul and UX Differences 619
Planning the NativeScript Page Layout 619
Adding UI ComponentstothePage 621
Styling Components with CSS Lo L Lo 622
Developing a Geolocation Based Photo Application 623
Creating a Fresh NativeScript Project 624
Creating a Multiple Page Master-Detail Interface 625
Creating a Flickr Service for Obtaining Photosand Data. 629
Creating a Service for Calculating Device Location and Distance 634
Including Mapbox Functionality in the NativeScript Application 638
Implementing the First Page of the Geolocation Application 639
Implementing the Second Page of the Geolocation Application 645
Tryitoutl. . . . o 646
NativeScript for Angular Developers, 647
Changelog e 648
Revision 68 -2018-05-08 648
Revision 67 -2018-01-17 648
Revision 66 -2017-14-14 L 648
Revision 65-2017-11-01 L 648
Revision 64 -2017-09-15 L 648
Revision 63 -2017-08-02 648
Revision 62 -2017-06-23 649
Revision 61 -2017-05-24 649
Revision 60 - 2017-04-27 649
Revision 59 - 2017-04-07 649
Revision 58 - 2017-03-24 650
Revision 57 -2017-03-23 650
Revision 56 - 2017-03-22 650

www.EBookswWorld.ir

CONTENTS

Revision 55 -2017-03-17 i e e e e e e e e e e e e e e 650
Revision 54 - 2017-03-10 o i e e e e e e e 650
Revision 53 -2017-03-01 o o e e e e e 651
Revision 52 - 2017-02-22 e e e e 651
Revision 51 -2017-02-14 0 i o e e e e 651
Revision 50 - 2017-02-10 0 i e e e e e 651
Revision 49 - 2017-01-18 e e e e e 651
Revision 48 - 2017-01-13 e e e 652
Revision 47 - 2017-01-06 o o e e e e e 652
Revision 46 - 2017-01-03 0 o e e 652
Revision 45 -2016-12-05 e e e e e 652
Revision 44 - 2016-11-17 0 v i i e e e e e e e e e 652
Revision 43 - 2016-11-08 e e e e e 652
Revision 42 - 2016-10-14 e e 653
Revision 41 -2016-09-28 e e e 653
Revision 40 - 2016-09-20 e e 653
Revision 39 - 2016-09-03 e e e e 653
Revision 38 - 2016-08-29 e e 653
Revision 37 - 2016-08-02 e e 654
Revision 36 - 2016-07-20 e e e e 654
Revision 35 -2016-06-30t e e e e e 654
Revision 34 - 2016-06-15 e e e e e e e 654
Revision 33 -2016-05-11 0 i e e e e e e 654
Revision 32 - 2016-05-06 e e 654
Revision 31 -2016-04-28 e 655
Revision 30 - 2016-04-20 e e e 655
Revision 29 -2016-04-08 e e e e 655
Revision 28 - 2016-04-01 e e e e e 655
Revision 27 - 2016-03-25 e e e 656
Revision 26 - 2016-03-24 e e e 656
Revision 25 -2016-03-21 e e e e 656
Revision 24 -2016-03-10 e e e e 656
Revision 23 -2016-03-04 e e e e e 656
Revision 22 - 2016-02-24 e e e 657
Revision 21 -2016-02-20 e e e 657
Revision 20 - 2016-02-11 e e e 657
Revision 19 - 2016-02-04 e e 657
Revision 18 - 2016-01-29 e e e e e e 657
Revision 17 - 2016-01-28 o e e e e 657
Revision 16 - 2016-01-14 0 o e e e e 658
Revision 15-2016-01-07 v i e e e e e e 658
Revision 14 - 2015-12-23 e e 658

www.EBookswWorld.ir

CONTENTS

Revision 13 -2015-12-17 i it e e e e e e e e e e e 659
Revision 12 -2015-11-16 o i i e e e e e e e e 659
Revision 11-2015-11-09 o e e e e 659
Revision 10 - 2015-10-30 e e e 660
Revision 9 - 2015-10-15 e e e e 660
Revision 8 - 2015-10-08 e e e e 661
Revision 7 - 2015-09-23 e e e e e e 661
Revision 6 - 2015-08-28 e e e 661
Revision 5 -2015-08-01 e e e 661
Revision 4 - 2015-07-30 e e 661
Revision 3 -2015-07-21 e e e e e 662
Revision 2 - 2015-07-15 e e e e e e e e 662
Revision 1 -2015-07-01 e e e 662

www.EBookswWorld.ir

CONTENTS 1
Book Revision

Revision 68 - Covers up to Angular 6 (6.0.0, 2018-05-08)

Bug Reports

If you’d like to report any bugs, typos, or suggestions just email us at: us@fullstack.io’.

Chat With The Community!

We're experimenting with a community chat room for this book using Gitter. If you’d like to hang
out with other people learning Angular, come join us on Gitter®!

Vote for New Content (new!)

We're constantly updating the book, writing new blog posts, and producing new material. You can
now cast your vote for new content here’.

Be notified of updates via Twitter

If you’d like to be notified of updates to the book on Twitter, follow @fullstackio*

We'd love to hear from you!

Did you like the book? Did you find it helpful? We’d love to add your face to our list of testimonials
on the website! Email us at: us@fullstack.io’.

'mailto:us@fullstack.io?Subject=ng-book%202%20feedback
®https://gitter.im/ng-book/ng-book
*https://fullstackio.canny.io/ng-book
“https://twitter.com/fullstackio
®mailto:us@fullstack.io?Subject=ng-book%202%20testimonial

www.EBookswWorld.ir

mailto:us@fullstack.io?Subject=ng-book%202%20feedback
https://gitter.im/ng-book/ng-book
https://fullstackio.canny.io/ng-book
https://twitter.com/fullstackio
mailto:us@fullstack.io?Subject=ng-book%202%20testimonial
mailto:us@fullstack.io?Subject=ng-book%202%20feedback
https://gitter.im/ng-book/ng-book
https://fullstackio.canny.io/ng-book
https://twitter.com/fullstackio
mailto:us@fullstack.io?Subject=ng-book%202%20testimonial

How to Read This Book

This book aims to be the single most useful resource on learning Angular. By the time you’re done
reading this book, you (and your team) will have everything you need to build reliable, powerful
Angular apps.

Angular is a rich and feature-filled framework, but that also means it can be tricky to understand all
of its parts. In this book, we’ll walk through everything from installing the tools, writing components,
using forms, routing between pages, and calling APIs.

But before we dig in, there are a few guidelines I want to give you in order to get the most out of
this book. Briefly, I want to tell you:

« how to approach the code examples and
« how to get help if something goes wrong

Running Code Examples

This book comes with a library of runnable code examples. The code is available to download from
the same place where you downloaded this book.

We use the program npm® to run every example in this book. This means you can type the following
commands to run any example:

npm install
npm start

Q If you’re unfamiliar with npm, we cover how to get it installed in the Getting Started section
in the first chapter.

After running npm start, you will see some output on your screen that will tell you what URL to
open to view your app.

If you’re ever unclear on how to run a particular sample app, check out the README.md in that
project’s directory. Every sample project contains a README .md that will give you the instructions
you need to run each app.

®https://www.npmjs.com/

www.EBookswWorld.ir

https://www.npmjs.com/
https://www.npmjs.com/

10

How to Read This Book 3

Angular CLI

With a couple of minor exceptions, every project in this book was built on Angular CLI". Unless
specified otherwise, you can use the ng commands in each project.

For instance, to run an example you can run ng serve (this is, generally, what is run when you type
npm start). For most projects you can compile them to JavaScript with ng build (we’ll talk about
this more in the first chapter). And you can run end-to-end tests with ng e2e, etc.

Without getting too far into the details, Angular CLI is based on Webpack, a tool which helps process
and bundle our various TypeScript, JavaScript, CSS, HTML, and image files. Angular CLI is not a
requirement for using Angular. It’s simply a wrapper around Webpack (and some other tooling)
that makes it easy to get started.

Code Blocks and Context

Nearly every code block in this book is pulled from a runnable code example, which you can find
in the sample code. For example, here is a code block pulled from the first chapter:

code/first-app/angular-hello-world/src/app/app.component.ts

export class AppComponent {
title = 'app’;

Notice that the header of this code block states the path to the file which contains this code:
code/first-app/angular-hello-world/src/app/app.component.ts.

If you ever feel like you're missing the context for a code example, open up the full code file using
your favorite text editor. This book is written with the expectation that you’ll also be looking
at the example code alongside the manuscript.

For example, we often need to import libraries to get our code to run. In the early chapters of the
book we show these import statements, because it’s not clear where the libraries are coming from
otherwise. However, the later chapters of the book are more advanced and they focus on key concepts
instead of repeating boilerplate code that was covered earlier in the book. If at any point you’re
not clear on the context, open up the code example on disk.

Code Block Numbering

In this book, we sometimes build up a larger example in steps. If you see a file being loaded that has
a numeric suffix, that generally means we’re building up to something bigger.

"https://github.com/angular/angular-cli

www.EBookswWorld.ir

https://github.com/angular/angular-cli
https://github.com/angular/angular-cli

How to Read This Book 4

For instance, in the Dependency Injection chapter you may see a code block with the filename:
price.service.1.ts. When you see the .N.ts syntax that means we’re building up to the ultimate
file, which will not have a number. So, in this case, the final version would be: price.service.ts.
We do it this way so that a) we can unit test the intermediate code and b) you can see the whole file
in context at a particular stage.

A Word on Versioning

As you may know, the Angular covered in this book is a descendant of an earlier framework called
“Angular]JS”. This can sometimes be confusing, particularly when reading supplementary blogs or
documentation.

The official branding guidelines state that “AngularjS” is a term reserved for Angular]S 1.x, that is,
the early versions of “Angular”.

Because the new version of Angular used TypeScript (instead of JavaScript) as the primary language,
the ‘JS’ was dropped, leaving us with just Angular. For a long time the only consistent way to
distinguish the two was folks referred to the new Angular as Angular 2.

However, the Angular team in 2017 switched to semantic versioning with a new major-release
upgrade slated for every 6 months. Instead of calling the next versions Angular 4, Angular 5, and so
on, the number is also dropped and it’s just Angular.

In this book, when we’re referring to Angular we’ll just say Angular or sometimes Angular X, just
to avoid confusion. When we’re talking about “the old-style JavaScript Angular” we’ll use the term
Angularjs or Angularjs 1.x.

Getting Help

While we’ve made every effort to be clear, precise, and accurate you may find that when you’re
writing your code you run into a problem.

Generally, there are three types of problems:

« A “bug” in the book (e.g. how we describe something is wrong)
+ A “bug” in our code
+ A “bug” in your code

If you find an inaccuracy in how we describe something, or you feel a concept isn’t clear, email us!

We want to make sure that the book is both accurate and clear.

Similarly, if you've found a bug in our code we definitely want to hear about it.

www.EBookswWorld.ir

How to Read This Book 5

If you’re having trouble getting your own app working (and it isn’t our example code), this case is
a bit harder for us to handle.

Your first line of defense, when getting help with your custom app, should be our unofficial
community chat room®. We (the authors) are there from time-to-time, but there are hundreds of
other readers there who may be able to help you faster than we can.

If you're still stuck, we’d still love to hear from you, and here are some tips for getting a clear, timely
response.

Emailing Us

If you’re emailing us asking for technical help, here’s what we’d like to know:

« What revision of the book are you referring to?
« What operating system are you on? (e.g. Mac OS X 10.8, Windows 95)
« Which chapter and which example project are you on?

What were you trying to accomplish?

What have you tried’ already?

What output did you expect?
« What actually happened? (Including relevant log output.)

The absolute best way to get technical support is to send us a short, self-contained example of the
problem. Our preferred way to receive this would be for you to send us a Plunkr link by using this
URL™.

That URL contains a runnable, boilerplate Angular app. If you can copy and paste your code into
that project, reproduce your error, and send it to us you’ll greatly increase the likelihood of a
prompt, helpful response.

When you’ve written down these things, email us at us@fullstack.io''. We look forward to hearing
from you.

Technical Support Response Time

We perform our free, technical support once per week.

If you need a faster response time, and help getting any of your team’s questions answered, then
you may consider our premium support option*?.

*https://gitter.im/ng-book/ng-book

*http://mattgemmell.com/what-have-you-tried/
https://angular.io/resources/live-examples/quickstart/ts/eplnkr.html
"mailto:us@fullstack.io

mailto:us@fullstack.io?Subject= Angular%20Premium%20Support&Body=Hell0%21%201%27m%20interested %20in%20premium%20 Angular%
20support%20for%20our%20team

www.EBookswWorld.ir

https://gitter.im/ng-book/ng-book
https://gitter.im/ng-book/ng-book
http://mattgemmell.com/what-have-you-tried/
https://angular.io/resources/live-examples/quickstart/ts/eplnkr.html
https://angular.io/resources/live-examples/quickstart/ts/eplnkr.html
mailto:us@fullstack.io
mailto:us@fullstack.io?Subject=Angular%20Premium%20Support&Body=Hello!%20I'm%20interested%20in%20premium%20Angular%20support%20for%20our%20team
https://gitter.im/ng-book/ng-book
http://mattgemmell.com/what-have-you-tried/
https://angular.io/resources/live-examples/quickstart/ts/eplnkr.html
mailto:us@fullstack.io
mailto:us@fullstack.io?Subject=Angular%20Premium%20Support&Body=Hello!%20I'm%20interested%20in%20premium%20Angular%20support%20for%20our%20team
mailto:us@fullstack.io?Subject=Angular%20Premium%20Support&Body=Hello!%20I'm%20interested%20in%20premium%20Angular%20support%20for%20our%20team

How to Read This Book 6

Chapter Overview

Before we dive in, I want to give you a feel for the rest of the book and what you can expect inside.

The first few chapters provide the foundation you need to get up and running with Angular. You'll
create your first apps, use the built-in components, and start creating your components.

Next we’ll move into intermediate concepts such as using forms, using APIs, routing to different
pages, and using Dependency Injection to organize our code.

After that, we’ll move into more advanced concepts. We spend a good part of the book talking
about data architectures. Managing state in client/server applications is hard and we dive deep into
two popular approaches: using RxJS Observables and using Redux. In these chapters, we’ll show
how to build the same app, two different ways, so you can compare and contrast and evaluate what’s
best for you and your team.

After that, we’ll discuss how to write complex, advanced components using Angular’s most
powerful features. Then we talk about how to write tests for our app and how we can upgrade
our Angular 1 apps to Angular. Finally, we close with a chapter on writing native mobile apps
with Angular using NativeScript.

By using this book, you’re going to learn how to build real Angular apps faster than spending
hours parsing out-dated blog posts.

So hold on tight - you’re about to become an Angular expert, and have a lot of fun along the way.
Let’s dig in!

+ Nate (@eigenjoy™)

https://twitter.com/eigenjoy

www.EBookswWorld.ir

https://twitter.com/eigenjoy
https://twitter.com/eigenjoy

Writing Your First Angular Web
Application

Simple Reddit Clone

In this chapter we're going to build an application that allows the user to post an article (with a
title and a URL) and then vote on the posts.

You can think of this app as the beginnings of a site like Reddit'* or Product Hunt".

In this simple app we’re going to cover most of the essentials of Angular including:

Building custom components
+ Accepting user input from forms
« Rendering lists of objects into views

Intercepting user clicks and acting on them
« Deploying our app to a server

By the time you’re finished with this chapter you’ll know how to take an empty folder, build a basic
Angular application, and deploy it to production. After working through this chapter you’ll have a
good grasp on how Angular applications are built and a solid foundation to build your own Angular
app.

Here’s a screenshot of what our app will look like when it’s done:

"http://reddit.com
Phttp://producthunt.com

www.EBookswWorld.ir

http://reddit.com/
http://producthunt.com/
http://reddit.com/
http://producthunt.com/

Writing Your First Angular Web Application 2

o0 e / [Angular 2 - Simple Reddit 3 | X ng-book
e —

€& - C [localhost:8080

or
m

wwez Angular 2 Simple Reddit

Add a Link
Title:

iPad Game for Cats

Link:

http://ipadgameforcats.com| ‘

Angular 2
3 (angular.io)
POINTS 4 upvote < downvote
Fullstack
2 (fullstack.io)
POINTS

4 upvote < downvote

Angular Homepage

1 (angular.io)

POINTS
4 upvote <« downvote

Completed application

First, a user will submit a new link and after submitting the users will be able to upvote or downvote
each article. Each link will have a score and we can vote on which links we find useful.

www.EBooksWorld.ir

Writing Your First Angular Web Application 3

® ® [Angular 2 - Simple Reddit | ng-book |

&« C' [} localhost:8080 kg

E wwoz Angular 2 Simple Reddit

Add a Link
Title:
Link:
Angular 2
6 (angular.io)
FOINTS 4 upvote <« downvote
iPad Game for Cats
4 (ipadgameforcats.com)
POINTS

4 upvote downvote

Angular Homepage

3 (angular.ic)

POINTS
4 upvote downvote

*ﬁ

App with new article

In this project, and throughout the book, we’re going to use TypeScript. TypeScript is a superset of
JavaScript ES6 that adds types. We’re not going to talk about TypeScript in depth in this chapter, but
we’ll go over TypeScript more in depth in the next chapter.

Don’t worry if you're having trouble with some of the new syntax. If you're familiar with ES5
(“normal” JavaScript) / ES6 (ES2015) you should be able to follow along and we’ll talk more about
TypeScript in a bit.

www.EBooksWorld.ir

1

Writing Your First Angular Web Application 4

Getting started

Node.js and npm

To get started with Angular, you’ll need to have Node.js installed. There are a couple of different
ways you can install Node.js, so please refer to the Node.js website'® for detailed information.

Make sure you install Node 8.9.0 or higher.

ﬁ If you're on a Mac, your best bet is to install Node.js directly from the Node.js website
instead of through another package manager (like Homebrew). Installing Node.js via
Homebrew is known to cause some issues.

The Node Package Manager (npm for short) is installed as a part of Node.js. To check if npm is available
as a part of our development environment, we can open a terminal window and type:

$ npm -v

If a version number is not printed out and you receive an error, make sure to download a Node.js
installer that includes npm.

Your npm version should be 5.6.0 or higher.

TypeScript

Once you have Node.js setup, the next step is to install TypeScript. Make sure you install at least
version 2.1 or greater. To install it, run the following npm command:

$ npm install -g typescript

0 Do I have to use TypeScript? No, you don’t have to use TypeScript to use Angular, but you
probably should. Angular does have an ES5 API, but Angular is written in TypeScript and
generally that’s what everyone is using. We’re going to use TypeScript in this book because

it’s great and it makes working with Angular easier. That said, it isn’t strictly required.

®https://nodejs.org/download/

www.EBookswWorld.ir

https://nodejs.org/download/
https://nodejs.org/download/

1

1

Writing Your First Angular Web Application 5

Browser

We highly recommend using the Google Chrome Web Browser'” to develop Angular apps. We'll
use the Chrome developer toolkit throughout this book. To follow along with our development and
debugging we recommend downloading it now.

Special instruction for Windows users

Throughout this book, we will be using Unix/Mac commands in the terminal. Most of these
commands, like 1s and cd, are cross-platform. However, sometimes these commands are Unix/Mac-
specific or contain Unix/Mac-specific flags (like 1s -1p).

As a result, be alert that you may have to occasionally determine the equivalent of a Unix/Mac
command for your shell. Fortunately, the amount of work we do in the terminal is minimal and you
will not encounter this issue often.

ﬁ Windows users should be aware that our terminal examples use Unix/Mac commands.

Angular CLI

Angular provides a utility to allow users to create and manage projects from the command line. It
automates tasks like creating projects, adding new controllers, etc. It’s generally a good idea to use
Angular CLI as it will help create and maintain common patterns across our application.

To install Angular CLI, just run the following command:

$ npm install -g @angular/cli

Once it’s installed you’ll be able to run it from the command line using the ng command. When you
do, you'll see a lot of output, but if you scroll back, you should be able to see the following:

$ ng --version

If everything installed correctly, you should see the current version output to your terminal.
Congratulations!

https://www.google.com/chrome/

www.EBookswWorld.ir

https://www.google.com/chrome/
https://www.google.com/chrome/

Writing Your First Angular Web Application 6
Q If you’re running OSX or Linux, you might receive this line in the output:
1 Could not start watchman; falling back to NodeWatcher for file system events.

This means that we don’t have a tool called watchman installed. This tool helps Angular
CLI when it needs to monitor files in your filesystem for changes. If you’re running OSX,
it’s recommended to install it using Homebrew with the following command:

1 $ brew install watchman

0 If you’re on OSX and got an error when running brew, it means that you probably don’t
have Homebrew installed. Please refer to the page http://brew.sh/ to learn how to install it
and try again.

If you’re on Linux, you may refer to the page https://ember-cli.com/user-guide/#watchman
for more information about how to install watchman.

If you’re on Windows instead, you don’t need to install anything and Angular CLI will use
the native Node.js watcher.

If you’re curious about all of the things that Angular CLI can do, try out this command:
1 $ ng --help

Don’t worry about understanding all of the options - we’ll be covering the important ones in this
chapter.

Now that we have Angular CLI and its dependencies installed, let’s use this tool to create our first
application.

Example Project

Open up the terminal and run the ng new command to create a new project from scratch:
1 $ ng new angular-hello-world

Once you run it, you'll see (roughly) following output:

www.EBookswWorld.ir

O N O O & W N~

W W W W N DNDNDNDDNNMNNDNNDNDNDDNDAS AP, 22,
W NP, O 00 N0 0 WONPAPEEOSO O 00 N0 Uk N~ OO ©

Writing Your First Angular Web Application 7

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

angular-hello-world/README.md (1034 bytes)
angular-hello-world/angular. json (3504 bytes)
angular-hello-world/package. json (1323 bytes)
angular-hello-world/tsconfig. json (384 bytes)
angular-hello-world/tslint. json (2805 bytes)
angular-hello-world/.editorconfig (245 bytes)
angular-hello-world/.gitignore (503 bytes)
angular-hello-world/src/environments/environment.prod.ts (51 bytes)
angular-hello-world/src/environments/environment.ts (631 bytes)
angular-hello-world/src/favicon.ico (5430 bytes)
angular-hello-world/src/index.html (304 bytes)
angular-hello-world/src/main.ts (370 bytes)
angular-hello-world/src/polyfills.ts (3194 bytes)
angular-hello-world/src/test.ts (642 bytes)
angular-hello-world/src/assets/.gitkeep (0 bytes)
angular-hello-world/src/styles.css (80 bytes)
angular-hello-world/src/browserslist (375 bytes)
angular-hello-world/src/karma.conf. js (964 bytes)
angular-hello-world/src/tsconfig.app. json (194 bytes)
angular-hello-world/src/tsconfig.spec. json (282 bytes)
angular-hello-world/src/tslint. json (314 bytes)
angular-hello-world/src/app/app.module.ts (314 bytes)
angular-hello-world/src/app/app.component.css (0@ bytes)
angular-hello-world/src/app/app.component.html (1141 bytes)
angular-hello-world/src/app/app.component.spec.ts (986 bytes)
angular-hello-world/src/app/app.component.ts (207 bytes)
angular-hello-world/e2e/protractor.conf. js (752 bytes)
angular-hello-world/e2e/src/app.e2e-spec.ts (299 bytes)
angular-hello-world/e2e/src/app.po.ts (208 bytes)
angular-hello-world/e2e/tsconfig.e2e. json (213 bytes)

added 1146 packages in 105.319s
Successfully initialized git.

Note: the exact files that your project generates may vary slightly depending on the version
of @angular/cli that was installed.

This will run for a while while it’s installing npm dependencies. Once it finishes we’ll see a success
message.

There are a lot of files generated! Don’t worry about understanding all of them yet. Throughout the
book we’ll walk through what each one means and what it’s used for.

www.EBookswWorld.ir

o I O O P W N =

[S Y
B W N s O O

0 = O O b W N =~

SO =Y
N O O b WD =r OO O

Writing Your First Angular Web Application 8

Let’s go inside the angular-hello-world directory, which the ng command created for us and see
what has been created:

$ cd angular-hello-world
$ tree -F -L 1

| -- README.md //

|-- angular. json //
|-- e2e/ //
| -- node_modules/ //
| -- package-lock. json //
| -- package. json //
|-- src/ //
|-- tsconfig. json //
“-- tslint. json //

3 directories, 6 files

brew install tree

a useful README

angular-cli configuration file
end-to-end tests

installed dependencies

npm dependencies lockfile

npm configuration

our application's code
typescript config

linting config

The tree command is completely optional. But if you’re on OSX it can be installed via

For now, the folder we're interested in is src, where we’ll put our custom application code. Let’s
take a look at what was created there:

$ cd src
$ tree -F
|-- app/
| |-- app
| |-- app.
I |-- app
| |-- app
| C-- app
|-- assets/

.component .css

component . html

.component .spec.ts
.component.ts
.module.ts

| -- browserslist

| -- environments/

| | -- environment.prod.ts

| “-- environment.ts

| -- favicon.

ico

[-- index.html
| -- karma.conf. js

www.EBookswWorld.ir

18
19
20
21
22
23
24
25
26

0 N O O & W N =

N S
B W N =S O O

© © 0 I O O b W N+~

-

Writing Your First Angular Web Application

[-- main.ts

|-- polyfills.ts

|-- styles.css

|-- test.ts

| -- tsconfig.app.json
|-- tsconfig.spec. json
-- tslint. json

3 directories, 18 files

Using your favorite text editor, let’s open index.html. You should see this code:

code/first-app/angular-hello-world/src/index.html

<!doctype html>

<html lang="en">

<head>
<meta charset="utf-8">
<title>AngularHelloWorld</title>
<base href="/">

<meta name="viewport" content="width=device-width,

initial-scale=1">

<link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>
<app-root></app-root>

</body>

</html>

Let’s break it down a bit:

code/first-app/angular-hello-world/src/index.html

<!doctype html>

<html lang="en">

<head>
<meta charset="utf-8">
<title>AngularHelloWorld</title>
<base href="/">

<meta name="viewport" content="width=device-width,

<link rel=
</head>

initial-scale=1">

icon" type="image/x-icon" href="favicon.ico">

www.EBooksWorld.ir

11
12
13
14

N O O B W N =

Writing Your First Angular Web Application 10

If you’re familiar with writing HTML files, this first part is straightforward, we’re declaring the core
structure of the HTML document and a few bits of metadata such as page charset, title and base
href.

If we continue to the template body, we see the following:

code/first-app/angular-hello-world/src/index.html

<body>
<app-root></app-root>

</body>

</html>

The app-root tag is where our application will be rendered.

But what is the app-root tag and where does it come from? app-root is a component that is defined
by our Angular application. In Angular we can define our own HTML tags and give them custom
functionality. The app-root tag will be the “entry point” for our application on the page.

Let’s try running this app as-is and then we’ll dig in to see how this component is defined.
Writing Application Code

Running the application

Before making any changes, let’s load our app from the generated application into the browser.
Angular CLI has a built in HTTP server that we can use to run our app.

To use it, head back to the terminal, and change directories into the root of our application.

$ cd angular-hello-world
$ ng serve
** NG Live Development Server is running on http://localhost:4200. **

/] ..

// a bunch of other messages
/] ...

Compiled successfully.

Our application is now running on localhost port 4200. Let’s open the browser and visit:

http://localhost:4200"®

Bhttp://localhost:4200

www.EBookswWorld.ir

http://localhost:4200/
http://localhost:4200/

Writing Your First Angular Web Application

ﬂ Note that if you get the message:

1

Port 4200 is already in use. Use '--port' to specify a different port

This means that you already have another service running on port 4200. If this is the case
you can either 1. shut down the other service or 2. use the --port flag when running ng
serve like this:

ng serve --port 9001

The above command would change the URL you open in your browser to something like:
http://localhost:9001

Another thing to notice is that, on some machines, the domain localhost may not work.
You may see a set of numbers such as127.0.0.1. When you run ng serve it should show
you what URL the server is running on, so be sure to read the messages on your machine
to find your exact development URL.

www.EBookswWorld.ir

11

Writing Your First Angular Web Application 12

© ' ® /1y anguiarHelloworld X ng-book

< C @ localhost:4200 %

Welcome to app!

Here are some links to help you start:
» Tour of Heroes
» CLI Documentation

» Angular blog

Running application

Now that we have the application setup, and we know how to run it, it’s time to start writing some
code.

Making a component

One of the big ideas behind Angular is the idea of components.

In our Angular apps, we write HTML markup that becomes our interactive application, but the
browser only understands a limited set of markup tags; Built-ins like <select> or <form> or <video>
all have functionality defined by our browser creator.

What if we want to teach the browser new tags? What if we wanted to have a <weather> tag that
shows the weather? Or what if we want to create a <login> tag that shows a login panel?

This is the fundamental idea behind components: we will teach the browser new tags that have
custom functionality attached to them.

0 If you have a background in Angular]S 1.X, you can think of components as the new
version of directives.

www.EBookswWorld.ir

O O b W N =~

0 I O O b W N =

(o]

10
11
12
13
14
15

Writing Your First Angular Web Application 13

Let’s create our very first component. When we have this component written, we will be able to use
it in our HTML document using the app-hello-world tag:

<app-hello-world></app-hello-world>

To create a new component using Angular CLI, we’ll use the generate command.

To generate the hello-world component, we need to run the following command:

$ ng generate component hello-world

CREATE src/app/hello-world/hello-world.component.css (@ bytes)
CREATE src/app/hello-world/hello-world.component.html (30 bytes)
CREATE src/app/hello-world/hello-world.component.spec.ts (657 bytes)
CREATE src/app/hello-world/hello-world.component.ts (288 bytes)
UPDATE src/app/app.module.ts (414 bytes)

So how do we actually define a new Component? A basic Component has two parts:

1. A Component decorator
2. A component definition class

Let’s look at the component code and then take these one at a time. Open up our first TypeScript
file: src/app/hello-world/hello-world.component.ts.

code/first-app/angular-hello-world/src/app/hello-world/hello-world.component.ts

import { Component, OnInit } from '@angular/core';

@Component({
selector: 'app-hello-world',
templateUrl: './hello-world.component.html',
styleUrls: ['./hello-world.component.css']

b
export class HelloWorldComponent implements OnInit {

constructor() { }

ngOnInit() {
}

www.EBookswWorld.ir

~N O O & W

Writing Your First Angular Web Application 14

This snippet may seem scary at first, but don’t worry. We're going to walk through it step by step.

0 Notice that we suffix our TypeScript file with . ts instead of . js The problem is our browser
doesn’t know how to interpret TypeScript files. To solve this gap, the ng serve command
live-compiles our .ts to a . js file automatically.

Importing Dependencies

The import statement defines the modules we want to use to write our code. Here we’re importing
two things: Component, and OnInit.

We import Component from the module "@angular/core". The "@angular/core" portion tells
our program where to find the dependencies that we’re looking for. In this case, we're telling
the compiler that "@angular/core" defines and exports two JavaScript/TypeScript objects called
Component and OnInit.

Similarly, we import OnInit from the same module. As we’ll learn later,OnInit helps us to run code
when we initialize the component. For now, don’t worry about it.

Notice that the structure of this import is of the format import { things } from wherever. In the
{ things } part what we are doing is called destructuring. Destructuring is a feature provided by
ES6 and TypeScript. We will talk more about it in the next chapter.

The idea with import is a lot like import in Java or require in Ruby: we're pulling in these
dependencies from another module and making these dependencies available for use in this file.

Component Decorators

After importing our dependencies, we are declaring the component:

code/first-app/angular-hello-world/src/app/hello-world/hello-world.component.ts

@Component({
selector: 'app-hello-world',
templateUrl: './hello-world.component.html',
styleUrls: ['./hello-world.component.css']

1))

If you’re new to TypeScript then the syntax of this next statement might seem a little foreign:

www.EBookswWorld.ir

W N -

Writing Your First Angular Web Application 15

@Component ({
/).
})

What is going on here? These are called decorators.

We can think of decorators as metadata added to our code. When we use @Component on the
HelloWorld class, we are “decorating” HelloWorld as a Component.

We want to be able to use this component in our markup by using a <app-hello-world> tag. To do
that, we configure the @Component and specify the selector as app-hello-world.

@Component({
selector: 'app-hello-world'
// ... more here

b

The syntax of Angular’s component selectors is similar to CSS selectors (though Angular compo-
nents have some special syntax for selectors, which we’ll cover later on). For now, know that with
this selector we're defining a new tag that we can use in our markup.

The selector property here indicates which DOM element this component is going to use. In
this case, any <app-hello-world></app-hello-world> tags that appear within a template will be
compiled using the HelloWor1dComponent class and get any attached functionality.

Adding a template with templateurl

In our component we are specifying a templateUrl of . /hello-world.component.html. This means
that we will load our template from the file hello-world.component.html in the same directory as
our component. Let’s take a look at that file:

code/first-app/angular-hello-world/src/app/hello-world/hello-world.component.html

<p>
hello-world works!
</p>

Here we’re defining a p tag with some basic text in the middle. When Angular loads this component
it will also read from this file and use it as the template for our component.

Adding a template

We can define templates two ways, either by using the template key in our @Component object or
by specifying a templateUrl.

We could add a template to our @Component by passing the template option:

www.EBookswWorld.ir

0 = O O b WO N =~

Writing Your First Angular Web Application 16

@Component ({
selector: 'app-hello-world',
template:
<p>
hello-world works inline!
</p>

1))

Notice that we're defining our template string between backticks (* ... >). This is a new (and
fantastic) feature of ES6 that allows us to do multiline strings. Using backticks for multiline strings
makes it easy to put templates inside your code files.

0 Should you really be putting templates in your code files? The answer is: it depends. For

a long time the commonly held belief was that you should keep your code and templates

separate. While this might be easier for some teams, for some projects it adds overhead
because you have switch between a lot of files.

Personally, if our templates are shorter than a page, we much prefer to have the templates
alongside the code (that is, within the .ts file). When we see both the logic and the view
together, it’s easy to understand how they interact with one another.

The biggest drawback to mixing views and our code is that many editors don’t support syn-
tax highlighting of the internal strings (yet). Hopefully, we’ll see more editors supporting
syntax highlighting HTML within template strings soon.

Adding CSS Styles with styleuris

Notice the key styleUrls:
styleUrls: ['./hello-world.component.css']

This code says that we want to use the CSS in the file hello-world.component.css as the styles
for this component. Angular uses a concept called “style-encapsulation” which means that styles
specified for a particular component only apply to that component. We talk more about this in-depth
later on in the book in the Styling section of Advanced Components.

For now, we're not going to use any component-local styles, so you can leave this as-is (or delete
the key entirely).

You may have noticed that this key is different from template in that it accepts an array
as it’s argument. This is because we can load multiple stylesheets for a single component.

www.EBookswWorld.ir

O = W N =

Writing Your First Angular Web Application 17

Loading Our Component

Now that we have our first component code filled out, how do we load it in our page?

If we visit our application again in the browser, we’ll see that nothing changed. That’s because we
only created the component, but we’re not using it yet.

In order to change that, we need to add our component tag to a template that is already being
rendered. Open up the file: first_app/angular-hello-world/src/app/app.component.html

Remember that because we configured our HelloWorldComponent with the selector app-hello-
wor1d, we can use the <app-hello-world></app-hello-world> in our template. Let’s add the <app-
hello-world> tag to app.component.html

Delete the content in app.component.html and replace it with:

code/first-app/angular-hello-world/src/app/app.component.html

<h1>
{{title}}

<app-hello-world></app-hello-world>
</h1>

Now refresh the page and take a look:

www.EBookswWorld.ir

Writing Your First Angular Web Application 18

® O ® | yanguiarzHelioworld x ng-book

€« C' [localhost:4200 bk

app works!

hello-world works!

Hello world works

It works!

Adding Data to the Component

Right now our component renders a static template, which means our component isn’t very
interesting.

Let’s imagine that we have an app which will show a list of users and we want to show their
names. Before we render the whole list, we first need to render an individual user. So let’s create a
new component that will show a user’s name.

To do this, we will use the ng generate command again:
ng generate component user-item

Remember that in order to see a component we’ve created, we need to add it to a template.

Let’s add our app-user-item tag to app . component . html so that we can see our changes as we make
them. Modify app . component . html to look like this:

www.EBookswWorld.ir

N O O B W N -

10
11
12
13
14
15
16
17
18

Writing Your First Angular Web Application 19

code/first-app/angular-hello-world/src/app/app.component.html
<h1>
{{title}}

<app-hello-world></app-hello-world>

<app-user-item></app-user-item>
</h1>

Then refresh the page and confirm that you see the user-item works! text on the page.
We want our User ItemComponent to show the name of a particular user .

Let’s introduce name as a new property of our component. By having a name property, we will be
able to reuse this component for different users (but keep the same markup, logic, and styles).

In order to add a name, we’ll introduce a property on the User ItemComponent class to declare it has
a local variable named name.

code/first-app/angular-hello-world/src/app/user-item/user-item.component.ts

export class UserItemComponent implements OnInit {
name: string; // <-- added name property

constructor() {

this.name = 'Felipe'; // set the name

ngOnInit() {
}

Notice that we’ve changed two things :
1. name Property

On the UserItemComponent class we added a property. Notice that the syntax is new relative to ES5
JavaScript. When we write name: string; it means that we’re declaring the name property to be of
type string.

Being able to assign a type to a variable is what gives TypeScript it’s name. By setting the type of
this property to string, the compiler ensures that name variable is a string and it will throw an
error if we try to assign, say, a number to this property.

This syntax is also the way TypeScript defines instance properties. By putting name: string in our
code like this, we’re giving every instance of UserItemComponent a property name.

www.EBookswWorld.ir

11
12
13

Writing Your First Angular Web Application 20

2. A Constructor

On the UserItemComponent class we defined a constructor, i.e. a function that is called when we
create new instances of this class.

In our constructor we can assign our name property by using this.name

When we write:

code/first-app/angular-hello-world/src/app/user-item/user-item.component.ts

constructor() {
this.name = 'Felipe'; // set the name

We’re saying that whenever a new UserItemComponent is created, set the name to 'Felipe'.

Rendering The Template

When we have a property on a component, we can show that value in our template by using two
curly brackets {{ }} to display the value of the variable in our template. For instance:

code/first-app/angular-hello-world/src/app/user-item/user-item.component.html

<p>
Hello {{ name }}
</p>

On the template notice that we added a new syntax: {{ name }}. The brackets are called template
tags (or sometimes mustache tags).

Whatever is between the template tags will be expanded as an expression. Here, because the
template is bound to our Component, the name will expand to the value of this.name i.e. 'Felipe'.

Try It Out

After making these changes reload the page and the page should display Hello Felipe

www.EBookswWorld.ir

Writing Your First Angular Web Application 21

® O ® | yanguiarzHelioworld x ng-book

e

« C' [localhost:4200

app works!
hello-world works!

Hello Felipe

Application with Data

Working With Arrays

Now we are able to say “Hello” to a single name, but what if we want to say “Hello” to a collection
of names?

In Angular we can iterate over a list of objects in our template using the syntax *ngFor. The idea is
that we want to repeat the same markup for a collection of objects.

O If you’ve worked with Angular]S 1.X before, you’ve probably used the ng-repeat directive.
NgFor works much the same way.

Let’s create a new component that will render a list of users. We start by generating a new
component:

www.EBookswWorld.ir

<N O O B W N =

10
11
12
13
14
15
16
17
18

Writing Your First Angular Web Application 22

ng generate component user-list
And let’s replace our <app-user-item> tag with <app-user-1list> in our app.component.html file:

code/first-app/angular-hello-world/src/app/app.component.html
<h1>
{{title}}

<app-hello-world></app-hello-world>

<app-user-list></app-user-list>
</h1>

In the same way we added a name property to our User ItemComponent, let’s add a names property to
this UserListComponent.

However, instead of storing only a single string, let’s set the type of this property to an array of
strings. An array is notated by the [] after the type, and the code looks like this:

code/first-app/angular-hello-world/src/app/user-list/user-list.component.ts

export class UserlListComponent implements OnInit {
names: string[];

constructor() {

this.names = ['Ari', 'Carlos', 'Felipe', 'Nate'];

ngOnInit() {
}

The first change to point out is the new string[] property on our UserListComponent class. This
syntax means that names is typed as an Array of strings. Another way to write this would be
Array<string>.

We changed our constructor to set the value of this.names to ['Ari', 'Carlos', 'Felipe’,
"Nate'].

Now we can update our template to render this list of names. To do this, we will use *ngFor, which
will

« iterate over a list of items and
« generate a new tag for each one.

Here’s what our new template will look like:

www.EBookswWorld.ir

Writing Your First Angular Web Application 23

code/first-app/angular-hello-world/src/app/user-list/user-list.component.html

<li *ngFor="let name of names">Hello {{ name }}

We updated the template with one ul and one 1i with a new *ngFor="1et name of names"
attribute. The * character and let syntax can be a little overwhelming at first, so let’s break it
down:

The *ngFor syntax says we want to use the NgFor directive on this attribute. You can think of NgFor
akin to a for loop; the idea is that we're creating a new DOM element for every item in a collection.

The value states: "let name of names".names is our array of names as specified on the UserList-
Component object. let name is called a reference. When we say "let name of names" we’re saying
loop over each element in names and assign each one to a local variable called name.

The NgFor directive will render one 1i tag for each entry found on the names array and declare a
local variable name to hold the current item being iterated. This new variable will then be replaced
inside the Hello {{ name }} snippet.

f We didn’t have to call the reference variable name. We could just as well have written:
1 <li *ngFor="let foobar of names">Hello {{ foobar }}
But what about the reverse? Quiz question: what would have happened if we wrote:
1 <li *ngFor="let name of foobar">Hello {{ name }}</1i>
Answer: We’d get an error because foobar isn’t a property on the component.

Q NgFor repeats the element that the ngFor is called. That is, we put it on the 1i tag and not
the ul tag because we want to repeat the list element (1i) and not the list itself (ul).

Note that the capitalization here isn’t a typo: NgFor is the capitalization of the class that
implements the logic and ngFor is the “selector” for the attribute we want to use.

o If you're feeling adventurous you can learn a lot about how the Angular core team writes
Components by reading the source directly. For instance, you can find the source of the
NgFor directive here®’.

https://github.com/angular/angular/blob/master/packages/common/src/directives/ng_for_of.ts

www.EBookswWorld.ir

https://github.com/angular/angular/blob/master/packages/common/src/directives/ng_for_of.ts
https://github.com/angular/angular/blob/master/packages/common/src/directives/ng_for_of.ts

Writing Your First Angular Web Application 24

When we reload the page now, we’ll see that we now have one 11 for each string in the array:

® ® ﬂ Angular2HelleWorld x ng-book

« C | [localhost:4200

app works!
hello-world works!

Hello Ari
Hello Carlos
Hello Felipe
Hello Nate

Application with Data

Using the User Item Component

Remember that earlier we created a UserItemComponent? Instead of rendering each name within
the UserListComponent, we ought to use User ItemComponent as a child component - that is, instead
of rendering the text Hello and the name directly, we should let our User ItemComponent specify the
template (and functionality) of each item in the list.

To do this, we need to do three things:

1. Configure the UserlListComponent to render to UserItemComponent (in the template)
2. Configure the User ItemComponent to accept the name variable as an input and
3. Configure the UserListComponent template to pass the name to the User ItemComponent.

Let’s perform these steps one-by-one.

www.EBookswWorld.ir

O &= W N =

Writing Your First Angular Web Application 25

Rendering the userItemComponent

Our User ItemComponent specifies the selector app-user-item - let’s add that tag to our template:

code/first-app/angular-hello-world/src/app/user-list/user-list.component.html

<li *ngFor="1et name of names">
<app-user-item></app-user-item>
</1i>

Notice that we swapped out the text Hello and the name for the tag app-user-item.

If we reload our browser, this is what we will see:

© 00 |y angularzHeliowerid x ng-book

« C' | [localhost:4200 7

app works!

hello-world works!
Hello Felipe
Hello Felipe
Hello Felipe

Hello Felipe

Application with Data

It repeats, but something is wrong here - every name says “Felipe”! We need a way to pass data into
the child component.

Thankfully, Angular provides a way to do this: the @Input decorator.

www.EBookswWorld.ir

0 N O O & W N =

N B 1 s s sy
© ©W 0O J O O b W N~ O O

Writing Your First Angular Web Application 26

Accepting Inputs

Remember that in our User ItemComponent we had set this.name = 'Felipe'; in the constructor
of that component. Now we need to change this component to accept a value for this property.

Here’s what we need to change on our User ItemComponent:

code/first-app/angular-hello-world/src/app/user-item/user-item.component.ts

import ({

Component,

OnInit,

Input // <--- added this
} from '@angular/core’;

@Component({
selector: 'app-user-item',
templateUrl: './user-item.component.html',
styleUrls: ['./user-item.component.css']

9

export class UserItemComponent implements OnInit {
@Input() name: string; // <-- added Input annotation

constructor() {
// removed setting name

ngoOnInit() {}

Notice that we changed the name property to have an decorator of @Input. We talk a lot more about
Inputs (and Outputs) in the next chapter, but for now, know that this syntax allows us to pass in a
value from the parent template .

In order to use Input we also had to add it to the list of constants in import.
Lastly, we don’t want to set a default value for name so we remove that from the constructor.

So now that we have a name Input, how do we actually use it?

Passing an Input value

To pass values to a component we use the bracket [] syntax in our template - let’s take a look at
our updated template:

www.EBookswWorld.ir

O = W N =

Writing Your First Angular Web Application 27

code/first-app/angular-hello-world/src/app/user-list/user-list.component.html

<li *ngFor="let name of names">
<app-user-item [name]="name"></app-user-item>
</1i>

Notice that we've added a new attribute on our app-user-item tag: [name]="name" . In Angular
when we add an attribute in brackets like [foo] we’re saying we want to pass a value to the input
named foo on that component.

In this case notice that the name on the right-hand side comes from the let name ... statement in
ngFor. That is, consider if we had this instead:

<1li *ngFor="let individualUserName of names">
<app-user-item [name]="individualUserName"></app-user-item>
</1i>

The [name] part designates the Input on the UserItemComponent. Notice that we’re not passing the
literal string "individualUserName" instead we're passing the value of individualUserName, which
is, on each pass, the value of an element of names.

We talk more about inputs and outputs in detail in the next chapter. For now, know that we’re:
1. Iterating over names
2. Creating a new UserItemComponent for each element in names and

3. Passing the value of that name into the name Input property on the UserItemComponent

Now our list of names works!

www.EBookswWorld.ir

Writing Your First Angular Web Application 28

® O ® | yanguiarzHelioworld x

&« C' [localhost:4200 bk =

app works!
hello-world works!
Hello Ari
Hello Carlos
Hello Felipe

Hello Nate

Application with Names Working

Congratulations! You’ve built your first Angular app with components!

Of course, this app is very simple and we’d like to build much more sophisticated applications. Don’t
worry, in this book we’ll show you how to become an expert writing Angular apps. In fact, in this
chapter we’re going to build a voting-app (think Reddit or Product Hunt). This app will feature user
interaction, and even more components!

But before we start building a new app, let’s take a closer look at how Angular apps are bootstrapped.

Bootstrapping Crash Course

Every app has a main entry point. This application was built using Angular CLI (which is built on
a tool called Webpack). We run this app by calling the command:

ng serve

ng will look at the file angular. json to find the entry point to our app. Let’s trace how ng finds the
components we just built.

www.EBookswWorld.ir

10
11
12
13
14
15
16
17
18
19
20
21
22

Writing Your First Angular Web Application 29
At a high level, it looks like this:

« angular. json specifies a "main" file, which in this case ismain.ts

« main.ts is the entry-point for our app and it bootstraps our application

+ The bootstrap process boots an Angular module — we haven’t talked about modules yet, but
we will in a minute

« We use the AppModule to bootstrap the app. AppModule is specified in src/app/app.module. ts

+ AppModule specifies which component to use as the top-level component. In this case it is
AppComponent

« AppComponent has <app-user-1list> tags in the template and this renders our list of users.

For now the thing we want to focus on is the Angular module system: NgModule.

Angular has a powerful concept of modules. When you boot an Angular app, you're not booting a
component directly, but instead you create an NgModule which points to the component you want
to load.

Take a look at this code:

code/first-app/angular-hello-world/src/app/app.module.ts

@NgModule({

declarations: |
AppComponent,
HelloWorldComponent,
User ItemComponent,
UserListComponent

1,

imports: [
BrowserModule

1,

providers: [],

bootstrap: [AppComponent]

})
export class AppModule { }

The first thing we see is an @NgModule decorator. Like all decorators, this @NgModule(...) code
adds metadata to the class immediately following (in this case, AppModule).

Our @NgModule decorator has four keys: declarations, imports, providers, and bootstrap.

www.EBookswWorld.ir

Writing Your First Angular Web Application 30

declarations

declarations specifies the components that are defined in this module. This is an important idea
in Angular:

You have to declare components in a NgModule before you can use them in your templates.

You can think of an NgModule a bit like a “package” and declarations states what components are
“owned by” this module.

You may have noticed that when we used ng generate, the tool automatically added our compo-
nents to this declarations list! The idea is that when we generated a new component, the ng tool
assumed we wanted it to belong to the current NgModule.

imports

imports describes which dependencies this module has. We’re creating a browser app, so we want
to import the BrowserModule.

If your module depends on other modules, you list them here.

9 import vs. imports?

You might be asking the question, “What’s the difference between importing a class at the
top of the file and putting a module in imports?”

The short answer is that you put something in your NgModule’s imports if you're going
to be using it in your templates or with dependency injection. We haven’t talked about
dependency injection, but rest assured, we will.

providers

providers is used for dependency injection. So to make a service available to be injected throughout
our application, we will add it here.

Q Learn more about this in the section on Dependency Injection.

bootstrap

bootstrap tells Angular that when this module is used to bootstrap an app, we need to load the
AppComponent component as the top-level component.

www.EBookswWorld.ir

Writing Your First Angular Web Application 31

Expanding our Application

Now that we know how to create a basic application, let’s build our Reddit clone. Before we start
coding, it’s a good idea to look over our app and break it down into its logical components.

a0 e / 2 i \§ ng-book
/[Angular 2 - Simple Reddit =)
& - C [} localhost:8080 T2 =

wwez Angular 2 Simple Reddit

oo Application

Title:

iPad Game for Cats

Link:

http://ipadgameforcats.com| ‘

(angular.io)

3 Angular 2 Artic|e

POINTS
4 upvote < downvote

2 Fullstack AFtiCle

(fullstack.io)

POINTS
4 upvote ¥ downvote

1 Angular Homepage Ar‘tic|e

(angular.io)

POINTS
4 upvote & downvote

Application with Data

We’re going to make two components in this app:

1. The overall application, which contains the form used to submit new articles (marked in
magenta in the picture).
2. Each article (marked in mint green).

www.EBooksWorld.ir

Writing Your First Angular Web Application 32

Q In a larger application, the form for submitting articles would probably become its own
component. However, having the form be its own component makes the data passing more
complex, so we're going to simplify in this chapter and have only two components.

For now two components will work fine, but we’ll learn how to deal with more sophisti-
cated data architectures in later chapters of this book.

But first thing’s first, let’s generate a new application by running the same ng new command we
ran before to create a new application passing it the name of the app we want to create (here, we’ll
create an application called angular-reddit):

Nng new angular-reddit

We’ve provided a completed version of our angular-reddit in the example code download.
If you ever need more context, be sure to check it out to see how everything fits together.

Adding CSS

First thing we want to do is add some CSS styling so that our app isn’t completely unstyled.

0 If you’re building your app from scratch, you’ll want to copy over a few files from our
completed example in the first_app/angular-reddit folder.

Copy:

e src/index.html
e src/styles.css
e src/app/vendor

e src/assets/images

into your application’s folder.

For this project we’re going to be using Semantic-UI*° to help with the styling. Semantic-UI
is a CSS framework, similar to Zurb Foundation® or Twitter Bootstrap?*. We’ve included
it in the sample code download so all you need to do is copy over the files specified above.

*http://semantic-ui.com/
*'http://foundation.zurb.com
*http://getbootstrap.com

www.EBookswWorld.ir

http://semantic-ui.com/
http://foundation.zurb.com/
http://getbootstrap.com/
http://semantic-ui.com/
http://foundation.zurb.com/
http://getbootstrap.com/

[N

© © 00 N O O b W N =~

Writing Your First Angular Web Application 33

The Application Component

Let’s now build a new component which will:

1. store our current list of articles
2. contain the form for submitting new articles.

We can find the main application component on the src/app/app . component . ts file. Let’s open this
file. Again, we’ll see the same initial contents we saw previously.

code/first-app/angular-reddit/src/app/app.component.ts

import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']
})
export class AppComponent {
title = 'app works!"';

Q Notice that the title property was automatically generated for us on the AppComponent.
Remove that line, because we aren’t using the component title.

Below we’re going to be submitting new links that have a ‘title’, which could be confused
with the AppComponent title that was auto-generated by Angular CLL. When we add a ‘title’
to the new links we submit below the form title is a separate form field.

Let’s change the template a bit to include a form for adding links. We’ll use a bit of styling from the
semantic-ui package to make the form look a bit nicer:

www.EBookswWorld.ir

0 N O O B~ W N -

(RN
N »~ O ©

Writing Your First Angular Web Application

code/first-app/angular-reddit/src/app/app.component.html

34

<form class="ui large form segment">
<h8 class="ui header">Add a Link</h3>

<div class="field">
<label for="title">Title:</label>
<input name="title">

</div>

<div class="field">
<label for="1link">Link:</label>
<input name="link">

</div>

</form>

We're creating a template that defines two input tags: one for the title of the article and the other

for the 1ink URL.

When we load the browser you should see the rendered form:

www.EBookswWorld.ir

W N -

Writing Your First Angular Web Application 35

® O ® yanguiarzreddit x ng-book

<« C' | [localhost:4200 o

! wwoz Angular 2 Simple Reddit

Add a Link

Title:

Link:

Form

Adding Interaction

Now we have the form with input tags but we don’t have any way to submit the data. Let’s add
some interaction by adding a submit button to our form.

When the form is submitted, we’ll want to call a function to create and add a link. We can do this
by adding an interaction event on the <button /> element.

We tell Angular we want to respond to an event by surrounding the event name in parentheses ().
For instance, to add a function call to the <button /> onClick event, we can pass it through like so:

<button (click)="addArticle()"
class="ui positive right floated button">
Submit link
</button>

Now, when the button is clicked, it will call a function called addArticle(), which we need to define
on the AppComponent class. Let’s do that now:

www.EBookswWorld.ir

10
11
12
13

0 N O O B~ W N -

U U U
©O© 00 1 O O » WO NN~ O O

Writing Your First Angular Web Application 36

code/first-app/angular-reddit/src/app/app.component.ts

export class AppComponent {
addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {
console.log(Adding article title: ${title.value} and link: ${link.value});
return false;

With the addArticle() function added to the AppComponent and the (click) event added to
the <button /> element, this function will be called when the button is clicked. Notice that the
addArticle() function can accept two arguments: the title and the 1ink arguments. We need to
change our template button to pass those into the call to the addArticle().

We do this by populating a template variable by adding a special syntax to the input elements on
our form. Here’s what our template will look like:

code/first-app/angular-reddit/src/app/app.component.html

<form class="ui large form segment">
<h8 class="ui header">Add a Link</h3>

<div class="field">

<label for="title">Title:</label>

<input name="title" #newtitle> </-- changed -->
</div>
<div class="field">

<label for="link">Link:</label>

<input name="link" #newlink> </-- changed -->
</div>

<I-- added this button -->
<button (click)="addArticle(newtitle, newlink)"
class="ui positive right floated button">
Submit link
</button>

</form>

Notice that in the input tags we used the # (hash) to tell Angular to assign those tags to a local
variable. By adding the #newtitle and #newlink to the appropriate <input /> elements, we can
pass them as variables into the addArticle() function on the button!

To recap what we’ve done, we’ve made four changes:

www.EBookswWorld.ir

Writing Your First Angular Web Application 37

1. Created a button tag in our markup that shows the user where to click

2. We created a function named addArticle that defines what we want to do when the button
is clicked

3. We added a (click) attribute on the button that says “call the function addArticle when
this button is pressed”.

4. We added the attribute #newtitle and #newlink to the <input> tags
Let’s cover each one of these steps in reverse order:

Binding inputs to values

Notice in our first input tag we have the following:
<input name="title" #newtitle>

This markup tells Angular to bind this <input> to the variable newtitle. The #newtitle syntax
is called a resolve. The effect is that this makes the variable newtitle available to the expressions
within this view.

newtitle is now an object that represents this input DOM element (specifically, the type is
HTMLInputElement). Because newtitle is an object, that means we get the value of the input tag
using newtitle.value.

Similarly we add #newlink to the other <input> tag, so that we’ll be able to extract the value from
it as well.

Binding actions to events

On our button tag we add the attribute (click) to define what should happen when the button is
clicked on. When the (click) event happens we call addArticle with two arguments: newtitle
and newlink. Where did this function and two arguments come from?

1. addArticle is a function on our component definition class AppComponent
2. newtitle comes from the resolve (#¥newtitle) on our <input> tag named title
3. newlink comes from the resolve (¥newlink) on our <input> tag named 1ink

All together:

www.EBookswWorld.ir

Writing Your First Angular Web Application 38

<button (click)="addArticle(newtitle, newlink)"
class="ui positive right floated button">
Submit link
</button>

W N -

The markup class="ui positive right floated button" comes from Semantic Ul and
it gives the button the pleasant green color.

Defining the Action Logic

On our class AppComponent we define a new function called addArticle. It takes two arguments:
title and link. Again, it’s important to realize that title and link are both objects of type
HTMLInputElement and not the input values directly. To get the value from the input we have to
call title.value. For now, we’re just going to console. log out those arguments.

code/first-app/angular-reddit/src/app/app.component.ts

9 addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {

10 console.log(Adding article title: ${title.value} and link: ${link.value});
11 return false;
12 }

Q Notice that we’re using backtick strings again. This is a really handy feature of ES6: backtick
strings will expand template variables!

Here we’re putting ${title.value} in the string and this will be replaced with the value
of title.value in the string.

Try it out!

Now when you click the submit button, you can see that the message is printed on the console:

www.EBookswWorld.ir

Writing Your First Angular Web Application

e0e B Angular 2 - Simple Reddit %

39

= = C #f |[) localhost:8080

E wwoz Angular 2 Simple Reddit

AddaLink
Title:

Ng Newsletter
Link:

http://ng-newsletter.com)|

& 0 Elements Console Sources MNetwork Timeline Profiles Resources Audits

© W <topframe> ¥ ¥ Preserve log

Adding article with title: NG Newsletter and link: http://ng-newsletter.com
>

app.ts:129

Clicking the Button

Adding the Article Component

Now we have a form to submit new articles, but we aren’t showing the new articles anywhere.
Because every article submitted is going to be displayed as a list on the page, this is the perfect

candidate for a new component.

Let’s create a new component to represent the individual submitted articles.

{angular.io)

Angular 2
3

POINTS
4+ upvote < downvote

A reddit-article

For that, let’s use the ng tool to generate a new component:

www.EBooksWorld.ir

0 N O O b W N~

NN NN NN N B 1 1 | s s s s
O O b WO N PO © 03O0 O b WO NN O O

Writing Your First Angular Web Application 40
ng generate component article
We have three parts to defining this new component:

1. Define the ArticleComponent view in the template

2. Define the ArticleComponent properties by annotating the class with @Component

3. Define a component-definition class (ArticleComponent) which houses our component logic

Let’s talk through each part in detail:

Creating the ArticleComponent template
We define the template using the file article.component.html:

code/first-app/angular-reddit/src/app/article/article.component.html

<div class="four wide column center aligned votes">
<div class="ui statistic">
<div class="value">
{{ votes }}
</div>
<div class="label">
Points
</div>
</div>
</div>
<div class="twelve wide column">

{{ title }}

<ul class="ui big horizontal list voters">
<li class="item">
<a href (click)="voteUp()">
<i class="arrow up icon"></i>
upvote

</1i>
<li class="item">
<a href (click)="voteDown()">
<i class="arrow down icon"></i>
downvote

www.EBookswWorld.ir

27
28
29

Writing Your First Angular Web Application 41

</1i>

</div>

There’s a lot of markup here, so let’s break it down :

3

POINTS

Angular 2

4 upvote < downvote

A Single reddit-article Row

We have two columns:

1. the number of votes on the left and
2. the article information on the right.

We specify these columns with the CSS classes four wide column and twelve wide column
respectively (remember that these come from SemanticUI’s CSS).

We’re showing votes and the title with the template expansion strings {{ votes }} and {{ title
}}. The values come from the value of votes and title property of the ArticleComponent class,
which we’ll define in a minute.

Notice that we can use template strings in attribute values, as in the href of the a tag: href="{{
link }}".In this case, the value of the href will be dynamically populated with the value of 1ink
from the component class

On our upvote/downvote links we have an action. We use (click) to bind voteUp()/voteDown() to
their respective buttons. When the upvote button is pressed, the voteUp() function will be called on
the ArticleComponent class (similarly with downvote and voteDown()).

Creating the ArticleComponent

www.EBookswWorld.ir

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Writing Your First Angular Web Application 42

code/first-app/angular-reddit/src/app/article/article.component.ts

@Component({
selector: 'app-article’,
templateUrl: './article.component.html',
styleUrls: ['./article.component.css'],

1))

First, we define a new Component with @Component. The selector says that this component is
placed on the page by using the tag <app-article> (i.e. the selector is a tag name).

So the most essential way to use this component would be to place the following tag in our markup:

<app-article>
</app-article>

These tags will remain in our view when the page is rendered.

Creating the ArticleComponent Definition Class
Finally, we create the ArticleComponent definition class:

code/first-app/angular-reddit/src/app/article/article.component.ts

export class ArticleComponent implements OnInit

1 1

@HostBinding('attr.class') cssClass = 'row';
votes: number;
title: string;

link: string;

constructor() {
this.title = 'Angular 2';
this.link = 'http://angular.io';
this.votes = 10;

voteUp() {
this.votes += 1;

voteDown() {
this.votes -= 1;

www.EBookswWorld.ir

31
32
33
34
35

Writing Your First Angular Web Application 43

ngOnInit() {
}

Here we create four properties on ArticleComponent:

cssClass - the CSS class we want to apply to the “host” of this component
votes - a number representing the sum of all upvotes, minus the downvotes
title - a string holding the title of the article
link - a string holding the URL of the article

Ll

We want each app-article to be on its own row. We're using Semantic UI, and Semantic provides
a CSS class for rows?* called row.

In Angular, a component host is the element this component is attached to. We can set properties
on the host element by using the @HostBinding() decorator. In this case, we're asking Angular to
keep the value of the host elements class to be in sync with the property cssClass.

We import HostBinding from the package @angular/core. For instance we can add
HostBinding like this:

1 import { Component, HostBinding } from '@angular/core';

By using @HostBinding() the host element (the app-article tag) we want to set the class attribute
to have “row”.

Q Using the @HostBinding() is nice because it means we can encapsulate the app-article

markup within our component. That is, we don’t have to both use an app-article tag

and require a class="row" in the markup of the parent view. By using the @HostBinding
decorator, we’re able to configure our host element from within the component.

In the constructor () we set some default attributes:

*http://semantic-ui.com/collections/grid.-html

www.EBookswWorld.ir

http://semantic-ui.com/collections/grid.html
http://semantic-ui.com/collections/grid.html

18
19
20
21
22

24
25
26
27
28
29
30

© © 00 N O O b W N =~

[N

Writing Your First Angular Web Application 44

code/first-app/angular-reddit/src/app/article/article.component.ts

constructor() {
this.title = 'Angular 2°';
this.link = 'http://angular.io’;
this.votes = 10;

And we define two functions for voting, one for voting up voteUp and one for voting down voteDown:

code/first-app/angular-reddit/src/app/article/article.component.ts

voteUp() {
this.votes += 1;

voteDown() {
this.votes -= 1;

In voteUp we increment this.votes by one. Similarly we decrement for voteDown.

Using the app-article Component

In order to use this component and make the data visible, we have to add a <app-article></app-
article> tag somewhere in our markup.

In this case, we want the AppComponent to render this new component, so let’s update the code in
that component. Add the <app-article> tag to the AppComponent’s template right after the closing
</form> tag:

<button (click)="addArticle(newtitle, newlink)"
class="ui positive right floated button">
Submit 1link
</button>
</form>

<div class="ui grid posts">
<app-article>
</app-article>

</div>

www.EBookswWorld.ir

Writing Your First Angular Web Application

If we generated the ArticleComponent using Angular CLI (viang generate component), by default
it should have “told” Angular about our app-article tag (more on that below). However, if we
created this component “by hand” and we reload the browser now, we might see that the <app-

article> tag wasn’t compiled. Oh no!

Whenever hitting a problem like this, the first thing to do is open up your browser’s developer
console. If we inspect our markup (see screenshot below), we can see that the app-article tag is on

our page, but it hasn’t been compiled into markup. Why not?

L] ® aAnguIarZReddit x

ng-book

€« C' [localhost:4200

N

W

g oz Angular 2 Simple Reddit

Add a Link

Title:

Link:

app-article | 28x0

x ﬂ Elements Console Sources Network Timeline >

v%form _ngcontent-1if-1 class="ui large form segment"s>
<h3 _ngcontent-1if-1 class="ui header">Add a Link</h3>

»<div _ngcontent-1lif-1 class="field"

</div>

»<div _ngcontent-1if-1 class="field">..</div>
<button _ngcontent-1if-1 class="ui positive right floated

button”>

Submit link
</button>
v<div _ngcontent-1if-1 class="ui grid posts">

<app-article _ngcontent-1if-1>

</app-article> == $0
</div>
::after
</form=
</app-root>
<!—— <——— Our app loads here! ——>

html body div app-root form.ui.large.form.segment div.uigrid.posts

Styles | Event Listeners DOM Breakpoints Properties

:thov 4 .cls +‘
element.style {

cui.grid>* { <style>..</style>
padding-left: 1rem;
padding-right: 1rem;

*, :after, :before { <style>..</style>
box-sizing: inherit;

Inherited from form.ui.large.form.segment
.ui.large.form { <style>.</style>

I show all
font-size: 1.14285714rem;
» box-sizing border-.
.ui.form { <style>..</style> > color M rgba(..
izae . display block
3} » font-family Lato, "..
> font-size 16px

Unexpanded tag when inspecting the DOM

This happens because the AppComponent component doesn’t know about the ArticleComponent

component yet.

o Angular 1 Note: If you've used Angular 1 it might be surprising that our app doesn’t
know about our new app-article component. This is because in Angular 1, directives
match globally. However, in Angular you need to explicitly specify which components

(and therefore, which selectors) you want to use.

On the one hand, this requires a little more configuration. On the other hand, it’s great for
building scalable apps because it means we don’t have to share our directive selectors in a

global namespace.

www.EBookswWorld.ir

o N O

11
12
13

Writing Your First Angular Web Application

46

In order to tell our AppComponent about our new ArticleComponent component, we need to add the

ArticleComponent to the list of declarations in this NgModule.

Q We add ArticleComponent to our declarations because ArticleComponent is part of this
module (AppModule). However, if ArticleComponent were part of a different module, then
we might import it with imports.

We'll discuss more about NgModules later on, but for now, know that when you create a
new component, you have to put in a declarations in NgModules.

code/first-app/angular-reddit/src/app/app.module.ts

1

import { AppComponent } from './app.component';

import { ArticleComponent } from './article/article.component';

@NgModule({
declarations: |
AppComponent,
ArticleComponent // <-- added this

] !

See here that we are:

1. importing ArticleComponent and then
2. Adding ArticleComponent to the list of declarations

After you’ve added ArticleComponent to declarations in the NgModule, if we reload the browser

we should see the article properly rendered:

www.EBookswWorld.ir

O = W N =

Writing Your First Angular Web Application 47

ece B Angular 2 - Simple Reddit ng-book

<« C' | [localhest:8080 <7

E wheoz Angular 2 Simple Reddit

Add a Link

Title:

Link:

Angular 2

10

POINTS 4 upvote ¥ downvote

Rendered ArticleComponent component

However, clicking on the vote up or vote down links will cause the page to reload instead of
updating the article list.

JavaScript, by default, propagates the click event to all the parent components. Because the
click event is propagated to parents, our browser is trying to follow the empty link, which tells the
browser to reload.

To fix that, we need to make the click event handler to return false. This will ensure the browser
won’t try to refresh the page. Let’s update our code so that each of the functions voteUp() and
voteDown() return a boolean value of false (tells the browser not to propagate the event upwards):

voteDown(): boolean {
this.votes -= 1;
return false;

}
// and similarly with “voteUp()"

Now when we click the links we’ll see that the votes increase and decrease properly without a page
refresh.

www.EBookswWorld.ir

O© 00 9 O Ol b W N =

RGN
L \N]

Writing Your First Angular Web Application 48

Rendering Multiple Rows

Right now we only have one article on the page and there’s no way to render more, unless we paste
another <app-article> tag. And even if we did that all the articles would have the same content,
so it wouldn’t be very interesting.

Creating an Article class

A good practice when writing Angular code is to try to isolate the data structures we are using from
the component code. To do this, let’s create a data structure that represents a single article. Let’s add
a new file article.model .ts to define an Article class that we can use.

code/first-app/angular-reddit/src/app/article/article.model.ts

export class Article {
title: string;
link: string;

votes: number;

constructor(title: string, link: string, votes?: number) {
this.title = title;
this.link = link;
this.votes = votes || 0;

Here we are creating a new class that represents an Article. Note that this is a plain class and not
an Angular component. In the Model-View-Controller pattern this would be the Model.

Each article has a title, a 1ink, and a total for the votes. When creating a new article we need the
title and the 1ink. The votes parameter is optional (denoted by the ? at the end of the name) and
defaults to zero.

Now let’s update the ArticleComponent code to use our new Article class. Instead of storing the
properties directly on the ArticleComponent component let’s store the properties on an instance
of the Article class.

First let’s import the class:

code/first-app/angular-reddit/src/app/article/article.component.ts

import { Article } from './article.model';

Then let’s use it:

www.EBookswWorld.ir

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Writing Your First Angular Web Application 49

code/first-app/angular-reddit/src/app/article/article.component.ts

export class ArticleComponent implements OnlInit {

@HostBinding('attr.class') cssClass = 'row';
article: Article;

constructor() {
this.article = new Article(
"Angular 2',
"http://angular.io',
10);

voteUp(): boolean {
this.article.votes += 1;
return false;

voteDown(): boolean {
this.article.votes -= 1;
return false;

ngOnInit() {
}

Notice what we’ve changed: instead of storing the title, 1ink, and votes properties directly on the
component, we're storing a reference to an article. What’s neat is that we’ve defined the type of
article to be our new Article class.

When it comes to voteUp (and voteDown), we don’t increment votes on the component, but rather,
we need to increment the votes on the article.

However, this refactoring introduces another change: we need to update our view to get the template
variables from the right location. To do that, we need to change our template tags to read from
article. That is, where before we had {{ votes }}, we need to changeitto {{ article.votes }},
and same with title and link:

www.EBookswWorld.ir

W N O O & W N =~

N DN DN DNDNDDNDDNDDNDNDNRAS A~ B B~ BBy
© 00 9 O O+ WO N~ O © 03O0 O k& N~ O

Writing Your First Angular Web Application 50

code/first-app/angular-reddit/src/app/article/article.component.html

<div class="four wide column center aligned votes">
<div class="ui statistic">
<div class="value">
{{ article.votes }}
</div>
<div class="label">
Points
</div>
</div>
</div>
<div class="twelve wide column">

{{ article.title }}

<ul class="ui big horizontal list voters">
<li class="item">
<a href (click)="voteUp()">
<i class="arrow up icon"></i>
upvote

</1i>
<li class="item">
<a href (click)="voteDown()">
<i class="arrow down icon"></i>
downvote

</1li>

</div>

Reload the browser and everything still works.

This situation is better but something in our code is still off: our voteUp and voteDown methods break
the encapsulation of the Article class by changing the article’s internal properties directly.

0 voteUp and voteDown currently break the Law of Demeter® which says that a given object
should assume as little as possible about the structure or properties of other objects.

The problem is that our ArticleComponent component knows too much about the Article class

**http://en.wikipedia.org/wiki/Law_of_Demeter

www.EBookswWorld.ir

http://en.wikipedia.org/wiki/Law_of_Demeter
http://en.wikipedia.org/wiki/Law_of_Demeter

0 N O O & W N =

W W W NDNDNDNDDNDNDNDDNDNNDNNDNNAESPAE PSS,
N O O 0 1 O O P+ WO N~ © 00 N0 0 b N~ ©

Writing Your First Angular Web Application

internals. To fix that, let’s add voteUp and voteDown methods on the Article class (we’ll also add a

domain function, which we’ll talk about in a moment):

code/first-app/angular-reddit/src/app/article/article.model.ts

export class Article {
title: string;
link: string;
votes: number;

constructor(title: string, link: string, votes?:

this.title = title;
this.link = link;
this.votes = votes || 0;

voteUp(): void {
this.votes += 1;

4

voteDown(): void {
this.votes -= 1;

// domain() is a utility function that extracts

number) {

// the domain from a URL, which we'll explain shortly

domain(): string {

try {
// e.g. http://foo.com/path/to/bar

const domainAndPath: string = this.link.split('//')[1];

// e.g. foo.com/path/to/bar

return domainAndPath.split('/"')[0];
} catch (err) {

return null;

We can then change ArticleComponent to call these methods:

www.EBookswWorld.ir

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Writing Your First Angular Web Application

code/first-app/angular-reddit/src/app/article/article.component.ts

52

export class ArticleComponent implements OnlInit {

@HostBinding('attr.class') cssClass = 'row';

1 1

article: Article;

constructor() {
this.article = new Article(

"Angular 2',

"http://angular.io',

10);

voteUp(): boolean {

this.article.voteUp();

return false;

voteDown(): boolean {

this.article.voteDown();

return false;

ngOnInit() {

}

2/

Why do we have a voteUp function in both the model and the component?

The reason we have a voteUp() and a voteDown() on both classes is because each function
does a slightly different thing. The idea is that the voteUp() on the ArticleComponent
relates to the component view, whereas the Article model voteUp() defines what
mutations happen in the model.

That is, it allows the Article class to encapsulate what functionality should happen to a
model when voting happens. In a “real” app, the internals of the Article model would
probably be more complicated, e.g. make an API request to a webserver, and you wouldn’t
want to have that sort of model-specific code in your component controller.

Similarly, in the ArticleComponent wereturn false; asaway to say “don’t propagate the
event” - this is a view-specific piece of logic and we shouldn’t allow the Article model’s
voteUp() function to have to knowledge about that sort of view-specific APIL That is, the
Article model should allow voting apart from the specific view.

www.EBookswWorld.ir

W N O O & W N =

PRl | s ey s
0 9 0 O b 0ON =~ O

Writing Your First Angular Web Application 53

After reloading our browser, we’ll notice everything works the same way, but we now have clearer,
simpler code.

0 Checkout our ArticleComponent component definition now: it’s so short! We've moved a
lot of logic out of our component and into our models. The corresponding MVC guideline
here might be Fat Models, Skinny Controllers®. The idea is that we want to move most of

our logic to our models so that our components do the minimum work possible.

Storing Multiple Articles

Let’s write the code that allows us to have a list of multiple Articles.

Let’s start by changing AppComponent to have a collection of articles:

code/first-app/angular-reddit/src/app/app.component.ts

import { Component } from '@angular/core’;
import { Article } from './article/article.model'; // <-- import this

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']
b
export class AppComponent {
articles: Article[]; // <-- component property

constructor() {
this.articles = |
new Article('Angular 2', 'http://angular.io', 3),
new Article('Fullstack', 'http://fullstack.io', 2),
new Article('Angular Homepage', 'http://angular.io',6 1),
1;

Notice that our AppComponent has the line:

articles: Article[];

“http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model

www.EBookswWorld.ir

http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model
http://weblog.jamisbuck.org/2006/10/18/skinny-controller-fat-model

12
13
14
15
16
17
18

13
14
15
16
17
18
19
20
21
22

Writing Your First Angular Web Application 54

The Article[] might look a little unfamiliar. We’re saying here that articles is an Array of
Articles. Another way this could be written is Array<Article>. The word for this pattern is
generics. It’s a concept seen in Java, C#, and other languages. The idea is that our collection (the
Array) is typed. That is, the Array is a collection that will only hold objects of type Article.

In order to have access to the Article class, we first have to import it, as we do up top.

We populate this Array by setting this.articles in the constructor:

code/first-app/angular-reddit/src/app/app.component.ts

constructor() {
this.articles = |
new Article('Angular 2', 'http://angular.io', 3),
new Article('Fullstack', 'http://fullstack.io', 2),
new Article('Angular Homepage', 'http://angular.io',6 1),
1;

Configuring the ArticleComponent With inputs

Now that we have a list of Article models, how can we pass them to our ArticleComponent
component?

Here again we use Inputs. Previously we had our ArticleComponent class defined like this:

code/first-app/angular-reddit/src/app/article/article.component.ts

export class ArticleComponent implements OnInit

@HostBinding('attr.class') cssClass = 'row';
article: Article;

constructor() {
this.article = new Article(
"Angular 2°',
'"http://angular.io’',
10);

The problem here is that we've hard coded a particular Article in the constructor. The point of
making components is not only encapsulation, but also reusability.

What we would really like to do is to configure the Article we want to display. If, for instance,
we had two articles, articlel and article2, we would like to be able to reuse the app-article
component by passing an Article as a “parameter” to the component like this:

www.EBookswWorld.ir

0 N O O & W N =

N S U
B WO N = O O

15
16
17

Writing Your First Angular Web Application 55

<app-article [article]="articlel"></app-article>
<app-article [article]="article2"></app-article>

Angular allows us to do this by using the Input decorator on a property of a Component:

class ArticleComponent {
@Input() article: Article;
VYA

Now if we have an Article in a variable myArticle we could pass it to our ArticleComponent in
our view. Remember, we can pass a variable in an element by surrounding it in square brackets
[variableName], like so:

<app-article [article]="myArticle"></app-article>

Notice the syntax here: we put the name of the input in brackets as in: [article] and the value of
the attribute is what we want to pass into that input.

Then, and this is important, the this.article on the ArticleComponent instance will be set to
myArticle. We can think about the variable myArticle as being passed as a parameter (i.e. input)
to our components.

Here’s what our ArticleComponent component now looks like using @Input:

code/first-app/angular-reddit/src/app/article/article.component.ts

import ({
Component,
OnInit,
Input, // <-- added,
HostBinding
} from '@angular/core';
import { Article } from './article.model'; // <-- added

@Component ({
selector: 'app-article',
templateUrl: './article.component.html',
styleUrls: ['./article.component.css']

1))

export class ArticleComponent implements OnlInit {

@HostBinding('attr.class') cssClass = 'row';
@Input() article: Article;

www.EBookswWorld.ir

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Writing Your First Angular Web Application 56

constructor() {
// article is populated by the Input now,
// so we don't need anything here

voteUp(): boolean {
this.article.voteUp();
return false;

voteDown(): boolean {
this.article.voteDown();
return false;

ngOnInit() {
}

Don’t forget to import!

Notice that we import the Input class from @angular/core. We've also imported our
Article model as we did with the AppComponent earlier.

Rendering a List of Articles

Earlier we configured our AppComponent to store an array of articles. Now let’s configure
AppComponent to render all the articles. To do so, instead of having the <app-article> tag alone,
we are going to use the NgFor directive to iterate over the list of articles and render a app-article
for each one:

Let’s add this in the template of the AppComponent @Component, just below the closing <form> tag:

www.EBookswWorld.ir

Writing Your First Angular Web Application

Submit link

</button>

</form>

<!-- start adding here -->

<div class="ui grid posts">

<app-article

*ngFor="1et article of articles"

[article]="article">

</app-article>

</div>

<!-- end adding here -->

57

Remember when we rendered a list of names as a bullet list using the NgFor directive earlier in the
chapter? This syntax also works for rendering multiple components.

The *ngFor="1et article of articles" syntax will iterate through the list of articles and create
the local variable article (for each item in the list).

To specify the article input on a component, we are using the [inputName]="inputValue"
expression. In this case, we're saying that we want to set the article input to the value of the
local variable article set by ngFor.

Q,

B W N =

We are using the variable article many times in that previous code snippet, it’s (poten-
tially) clearer if we rename the temporary variable created by NgFor to foobar:

<app-article
*ngFor="1et foobar of articles"
[article]="foobar">
</app-article>

So here we have three variables:

1. articles which is an Array of Articles, defined on the AppComponent
2. foobar which is a single element of articles (an Article), defined by NgFor
3. article which is the name of the field defined on inputs of the ArticleComponent

Basically, NgFor generates a temporary variable foobar and then we’re passing it in to
app-article

Reloading our browser now, we will see all articles will be rendered:

www.EBookswWorld.ir

Writing Your First Angular Web Application 58

e0ce /B Angular 2 - Simple Reddit S ng-book
=~ = C [J localhost:8080 ol =
u iz Angular 2 Simple Reddit
Add a Link
Title:
Link:
3 Angular 2
POINTS 4 upvote ¥ downvote
2 Fullstack
POINTS 4 upvote ¥ downvote
1 Angular Homepage
POINTS 4 upvote ¥ downvote
T —=—=————— —

Multiple articles being rendered

Adding New ArticleS

Now we need to change addArticle to actually add new articles when the button is pressed. Change

the addArticle method to match the following:

www.EBooksWorld.ir

20
21
22
23
24
25
26

Writing Your First Angular Web Application 59

code/first-app/angular-reddit/src/app/app.component.ts

addArticle(title: HTMLInputElement, link: HTMLInputElement): boolean {
console.log(Adding article title: ${title.value} and link: ${link.value});
this.articles.push(new Article(title.value, link.value, 0));

[}

title.value = ;

link.value = ;
return false;

This will:

1. create a new Article instance with the submitted title and URL
2. add it to the array of Articles and
3. clear the input field values

How are we clearing the input field values? Well, if you recall, title and 1link are
HTMLInputElement objects. That means we can set their properties. When we change the
value property, the input tag on our page changes.

After adding a new article in our input fields and clicking the Submit Link we will see the new
article added!

Finishing Touches

Displaying the Article Domain

As a nice touch, let’s add a hint next to the link that shows the domain where the user will be
redirected to when the link is clicked.

Let’s add a domain method to the Article class:

www.EBookswWorld.ir

22
23
24
25
26
27
28
29
30
31

Writing Your First Angular Web Application 60

code/first-app/angular-reddit/src/app/article/article.model.ts

domain(): string {

try {
// e.g. http://foo.com/path/to/bar
const domainAndPath: string = this.link.split('//')[1];
// e.g. foo.com/path/to/bar
return domainAndPath.split('/')[Q];

} cateh (err) {
return null;

Let’s add a call to this function on the ArticleComponent’s template:

<div class="twelve wide column">

{{ article.title }}

<!l-- right here -->
<div class="meta">({{ article.domain() }})</div>
<ul class="ui big horizontal list voters">
<li class="item">
<a href (click)="voteUp()">

And now when we reload the browser, we will see the domain name of each URL (note: URL must

include http://).

Re-sorting Based on Score

Clicking and voting on articles, we’ll see that something doesn’t feel quite right: our articles don’t
sort based on the score! We definitely want to see the highest-rated items on top and the lower
ranking ones sink to the bottom.

We’re storing the articles in an Array in our AppComponent class, but that Array is unsorted. An
easy way to handle this is to create a new method sortedArticles on AppComponent:

www.EBookswWorld.ir

28
29
30

O O b W N =

Writing Your First Angular Web Application 61

code/first-app/angular-reddit/src/app/app.component.ts
sortedArticles(): Article[] {
return this.articles.sort((a: Article, b: Article) => b.votes - a.votes);

Q ES6 Arrow Function

The above code snippet uses “arrow” (=>) functions from ES6. You can read more about
arrow functions here®®

sort() We're also calling the sort () function, which is a built-in which you can read about
here*”

In our ngFor we can iterate over sortedArticles() (instead of articles directly):

<div class="ui grid posts">
<app-article
*ngFor="1let article of sortedArticles()"
[article]="article">
</app-article>
</div>

Deployment

Now that we have an app that runs, let’s get it live on the internet, so that we can share it with our
friends!

ﬁ Deployment and performance in production-ready apps is an intermediate topic that we’ll
cover in a future chapter. For now, we’re going to gloss over the details and just show how
easy a basic deployment can be.

Deploying our app is the act of pushing our code to a server, where it can be accessed by others.
Broadly speaking, the idea is that we’re going to:
« compile all of our TypeScript code into JavaScript (which the browser can read)

« bundle all of our JavaScript code files into one or two files
« and then upload our JavaScript, HTML, CSS, and images to a server

Ultimately, this Angular app is an HTML file that loads JavaScript code. So we need to upload our
code to a computer somewhere on the internet.

But first, let’s build our Angular app.

*Shttps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
*"https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

www.EBookswWorld.ir

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

0 I O O b W N =

[e
g B 0w N~ O O

Writing Your First Angular Web Application 62

Building Our App for Production

The Angular CLI tool we used to generate this app can be used to build our app for production. In
fact, we just type a single command.

In first_app/angular-reddit, type the following:
ng build --target=production --base-href /

This command tells the ng tool to build our application for a production environment. We also set
the - -base-href to a single slash /.

The base-href describes what the ‘root” URL of our application will be. So, for instance, if you wanted
to deploy your app to a subfolder on your server under /ng-book -demo/, you could base - -base-href
/ng-book -demo/

This command will run for a little while and when it finishes you should have a dist folder on your
disk.

$ 1s dist/
136B assets/

5.3K favicon.ico

27K flags.9cT4e172£87984c48ddf.png

306K icons.2980083682e94d33a66e.svg
119K icons.706450d7bba6374ca2f.ttf

55K icons.97493d3f11c@a3bd5cbd.woff2

TOK icons.d9ee23d59d0ee727b51 . woff

59K icons. f7c2b4b747b1a225eb8d. eot

1.1K index.html

1.4K 1inline.44deb5fed75ee6385e18.bundle. js
17K main.c683e6eda100e8873d71.bundle. js
82K polyfills.b81504c68200c7bfeb16.bundle. js
503K styles.T7f23e351d688b00e8a5b.bundle.css
440K vendor.cc4297c08c0803bddc8T.bundle. js

These files are the full compiled result of your app. Notice that there is a long string of characters
in the middle of each file such as:

main.c683e6edal@@e8873d71 .bundle. js

Those characters are a hash of the content (and may not match on your computer). If you look
at each file, you can see that we have some icons, the index.html, a main. js, a polyfills. js, a
vendor . js, and some styles.css. Now all the need to do is upload these to our server.

www.EBookswWorld.ir

Writing Your First Angular Web Application 63

Uploading to a Server

There are lots of ways to host your HTML and JavaScript. For this demo, we’re going to use the
easiest way possible: now?®.

Q If you don’t want to use now, you're free to use whatever method you want. For instance,
you can host sites on Heroku, AWS S3, upload files to your own server via FTP, etc.

The important thing is that the server exposes all of the files in our dist folder onto the
internet.

Installing now

We can install now using npm:
npm install -g now
To deploy a site with now is very easy:

cd dist # change into the dist folder
now

The now command should ask you a couple of questions (such as your email address) and you’ll need
to check your email and click the link inside.

After you’ve confirmed your account (or if you had one already), now will upload your code and
then give you a URL to view to see your application.

Visit that URL and view your app. If it works, try sending the URL to a friend!
Congratulations! You've built and deployed your first Angular app!

Full Code Listing

We’ve been exploring many small pieces of code for this chapter. You can find all of the files and
the complete TypeScript code for our app in the example code download included with this book.

*https://zeit.co/mow

www.EBookswWorld.ir

https://zeit.co/now
https://zeit.co/now

Writing Your First Angular Web Application 64
Wrapping Up

We did it! We've created our first Angular App. That wasn’t so bad, was it? There’s lots more to
learn: understanding data flow, making AJAX requests, built-in directives, routing, manipulating
the DOM etc.

But for now, bask in our success! Much of writing Angular apps is just as we did above:

Split your app into components
Create the views

Define your models

Display your models

Add interaction

MR e

In the future chapters of this book we’ll cover everything you need to write sophisticated apps with
Angular.

Getting Help

Did you have any trouble with this chapter? Did you find a bug or have trouble getting the code
running? We’d love to hear from you!

« Come join our community and chat with us on Gitter*
« Email us directly at us@fullstack.io®

Onward!

*https://gitter.im/ng-book/ng-book

3% mailto:us@fullstack.io

www.EBookswWorld.ir

https://gitter.im/ng-book/ng-book
mailto:us@fullstack.io
https://gitter.im/ng-book/ng-book
mailto:us@fullstack.io

TypeScript

Angular is built in TypeScript

Angular is built in a JavaScript-like language called TypeScript®.

You might be skeptical of using a new language just for Angular, but it turns out, there are a lot of
great reasons to use TypeScript instead of plain JavaScript.

TypeScript isn’t a completely new language, it’s a superset of ES6. If we write ES6 code, it’s perfectly
valid and compilable TypeScript code. Here’s a diagram that shows the relationship between the
languages:

TypeScript

- types
- annotations

ES6

- classes
- modules

ES5

ES5, ES6, and TypeScript

0 What is ES5? What is ES6? ES5 is short for “ECMAScript 57, otherwise known as “regular
JavaScript”. ES5 is the normal JavaScript we all know and love. It runs in more-or-less every
browser. ES6 is the next version of JavaScript, which we talk more about below.

*Thttp://www.typescriptlang.org/

www.EBookswWorld.ir

http://www.typescriptlang.org/
http://www.typescriptlang.org/

TypeScript 66

At the publishing of this book, very few browsers will run ES6 out of the box, much less TypeScript.
To solve this issue we have transpilers (or sometimes called transcompiler). The TypeScript transpiler
takes our TypeScript code as input and outputs ES5 code that nearly all browsers understand.

0 For converting TypeScript to ES5 there is a single transpiler written by the core TypeScript
team. However if we wanted to convert ES6 code (not TypeScript) to ES5 there are two
major ES6-to-ES5 transpilers: traceur®® by Google and babel®® created by the JavaScript
community. We're not going to be using either directly for this book, but they’re both

great projects that are worth knowing about.

We installed TypeScript in the last chapter, but in case you're just starting out in this
chapter, you can install it like so:

npm install -g typescript

TypeScript is an official collaboration between Microsoft and Google. That’s great news because
with two tech heavyweights behind it we know that it will be supported for a long time. Both
groups are committed to moving the web forward and as developers we win because of it.

One of the great things about transpilers is that they allow relatively small teams to make
improvements to a language without requiring everyone on the internet upgrade their browser.

One thing to point out: we don’t have to use TypeScript with Angular2. If you want to use ES5 (i.e.
“regular” JavaScript), you definitely can. There is an ES5 API that provides access to all functionality
of Angular2. Then why should we use TypeScript at all? Because there are some great features in
TypeScript that make development a lot better.

What do we get with TypeScript?

There are five big improvements that TypeScript bring over ES5:

« types

« classes

« decorators

 imports

« language utilities (e.g. destructuring)

Let’s deal with these one at a time.

*?https://github.com/google/traceur-compiler
**https://babeljs.io/

www.EBookswWorld.ir

https://github.com/google/traceur-compiler
https://babeljs.io/
https://github.com/google/traceur-compiler
https://babeljs.io/

TypeScript 67

Types

The major improvement of TypeScript over ESé6, that gives the language its name, is the typing
system.

For some people the lack of type checking is considered one of the benefits of using a language like
JavaScript. You might be a little skeptical of type checking but I'd encourage you to give it a chance.
One of the great things about type checking is that

1. it helps when writing code because it can prevent bugs at compile time and
2. it helps when reading code because it clarifies your intentions

It’s also worth noting that types are optional in TypeScript. If we want to write some quick code or
prototype a feature, we can omit types and gradually add them as the code becomes more mature.

TypeScript’s basic types are the same ones we’ve been using implicitly when we write “normal”
JavaScript code: strings, numbers, booleans, etc.

Up until ES5, we would define variables with the var keyword, like var fullName;.

The new TypeScript syntax is a natural evolution from ES5, we still use var but now we can
optionally provide the variable type along with its name:

var fullName: string;
When declaring functions we can use types for arguments and return values:

function greetText(name: string): string {

return "Hello + name;

In the example above we are defining a new function called greetText which takes one argument:
name. The syntax name: string says that this function expects name to be a string. Our code won’t
compile if we call this function with anything other than a string and that’s a good thing because
otherwise we’d introduce a bug.

Notice that the greetText function also has a new syntax after the parentheses: : string {. The
colon indicates that we will specify the return type for this function, which in this case is a string.
This is helpful because 1. if we accidentally return anything other than a string in our code, the
compiler will tell us that we made a mistake and 2. any other developers who want to use this
function know precisely what type of object they’ll be getting.

Let’s see what happens if we try to write code that doesn’t conform to our declared typing:

www.EBookswWorld.ir

TypeScript 68

function hello(name: string): string {
return 12;

If we try to compile it, we’ll see the following error:

$ tsc compile-error.ts
compile-error.ts(2,12): error TS2322: Type 'number' is not assignable to type 's\
tring'.

What happened here? We tried to return 12 which is a number, but we stated that hello would return
a string (by putting the): string { after the argument declaration).

In order to correct this, we need to update the function declaration to return a number:

function hello(name: string): number ({

return 12;

This is one small example, but already we can see that by using types it can save us from a lot of
bugs down the road.

So now that we know how to use types, how can we know what types are available to use? Let’s
look at the list of built-in types, and then we’ll figure out how to create our own.

Trying it out with a REPL

To play with the examples in this chapter, let’s install a nice little utility called TSUN** (TypeScript
Upgraded Node):

$ npm install -g tsun

Now start tsun:

**https://github.com/HerringtonDarkholme/typescript-repl

www.EBookswWorld.ir

https://github.com/HerringtonDarkholme/typescript-repl
https://github.com/HerringtonDarkholme/typescript-repl

O O b W N =~

TypeScript 69

$ tsun

TSUN : TypeScript Upgraded Node

type in TypeScript expression to evaluate
type :help for commands in repl

That little > is the prompt indicating that TSUN is ready to take in commands.

In most of the examples below, you can copy and paste into this terminal and follow along.

Built-in types

String

A string holds text and is declared using the string type:
var fullName: string = 'Nate Murray';

Number

A number is any type of numeric value. In TypeScript, all numbers are represented as floating point.
The type for numbers is number:

var age: number = 36;

Boolean

The boolean holds either true or false as the value.
var married: boolean = true;

Array

Arrays are declared with the Array type. However, because an Array is a collection, we also need
to specify the type of the objects in the Array.

We specify the type of the items in the array with either the Array<type> or type[] notations:

www.EBookswWorld.ir

TypeScript 70

var jobs: Array<string> = ['IBM', 'Microsoft', 'Google'];
var jobs: string/] = ['Apple', 'Dell', 'HP'];

Or similarly with a number:

var chickens: Array<number> = [1, 2, 3];
var chickens: number[] = [4, 5, 6];

Enums

Enums work by naming numeric values. For instance, if we wanted to have a fixed list of roles a
person may have we could write this:

enum Role {Employee, Manager, Admin};
var role: Role = Role.Employee;

The default initial value for an enum is 0, though you can set the starting enum number like this:

enum Role {Employee = 3, Manager, Admin};
var role: Role = Role.Employee;

In the code above, instead of Employee being 0, Employee is 3. The value of the enum increments
from there, which means Manager is 4 and Admin is 5, and we can even set individual values:

enum Role {Employee = 3, Manager = 5, Admin = 7};
var role: Role = Role.Employee;

You can also look up the name of a given enum by using its value:

enum Role {Employee, Manager, Admin};
console.log('Roles: ', Role/@], ',', Role[1], 'and', Role[2]);

Any

any is the default type if we omit typing for a given variable. Having a variable of type any allows
it to receive any kind of value:

www.EBookswWorld.ir

TypeScript 71

var something: any = 'as string';
something = 1;
something = [1, 2, 3];

Void

Using void means there’s no type expected. This is usually in functions with no return value:

function setName(name: string): void {
this. fullName = name;

Classes

In JavaScript ES5 object oriented programming was accomplished by using prototype-based objects.
This model doesn’t use classes, but instead relies on prototypes.

A number of good practices have been adopted by the JavaScript community to compensate the lack
of classes. A good summary of those good practices can be found in Mozilla Developer Network’s
JavaScript Guide®, and you can find a good overview on the Introduction to Object-Oriented
JavaScript®® page.

However, in ES6 we finally have built-in classes in JavaScript.

To define a class we use the new class keyword and give our class a name and a body:

class Vehicle {

}

Classes may have properties, methods, and constructors.

Properties

Properties define data attached to an instance of a class. For example, a class named Person might
have properties like first_name, last_name and age.

Each property in a class can optionally have a type. For example, we could say that the first_name
and last_name properties are strings and the age property is a number.

The declaration for a Person class that looks like this:

*>https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

www.EBookswWorld.ir

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Introduction_to_Object-Oriented_JavaScript

O = W N -

O 00 9 O O b W N =~

TypeScript 79

class Person {
first_name: string;
last_name: string;
age: number;

Methods

Methods are functions that run in context of an object. To call a method on an object, we first have
to have an instance of that object.

To instantiate a class, we use the new keyword. Use new Person() to create a new instance
of the Person class, for example.

If we wanted to add a way to greet a Person using the class above, we would write something like:

class Person {
first_name: string;
last_name: string;
age: number;

greet() {
console.log("Hello", this.first_name);

Notice that we’re able to access the first_name for this Person by using the this keyword and
calling this. first_name.

When methods don’t declare an explicit returning type and return a value, it’s assumed they can
return anything (any type). However, in this case we are returning void, since there’s no explicit
return statement.

o Note that a void value is also a valid any value.

In order to invoke the greet method, you would need to first have an instance of the Person class.
Here’s how we do that:

www.EBookswWorld.ir

, O O 0 9 O O b W N =~

(AN

TypeScript 73

// declare a variable of type Person

var p: Person;

// instantiate a new Person instance
p = new Person();

// give it a first_name
p.first_name = 'Felipe’;

// call the greet method
p.greet();

0 You can declare a variable and instantiate a class on the same line if you want:

1 var p: Person = new Person();

Say we want to have a method on the Person class that returns a value. For instance, to know the
age of a Person in a number of years from now, we could write:

O N O O & WO N~

Y
W N~ O

class Person {
first_name: string;
last_name: string;
age: number;

greet() {

console.log("Hello", this.first_name);

agelnYears(years: number): number {
return this.age + years;

www.EBookswWorld.ir

[N

© © 0 N O O b W N+~

O = W N =

TypeScript 74

// instantiate a new Person instance

var p: Person = new Person();

// set initial age
p.age = 06;

// how old will he be in 12 years?
p.agelnYears(12);

// -> 18
Constructors

A constructor is a special method that is executed when a new instance of the class is being created.
Usually, the constructor is where you perform any initial setup for new objects.

Constructor methods must be named constructor. They can optionally take parameters but they
can’t return any values, since they are called when the class is being instantiated (i.e. an instance of
the class is being created, no other value can be returned).

0 In order to instantiate a class we call the class constructor method by using the class name:
new ClassName().

When a class has no constructor defined explicitly one will be created automatically:

class Vehicle {

}

var v = new Vehicle();
Is the same as:

class Vehicle {
constructor() {
}

}

var v = new Vehicle();

0 In TypeScript you can have only one constructor per class.

That is a departure from ES6 which allows one class to have more than one constructor as
long as they have a different number of parameters.

Constructors can take parameters when we want to parameterize our new instance creation.

For example, we can change Person to have a constructor that initializes our data:

www.EBookswWorld.ir

0 = O O b WO N =~

B S s sy
O 00 3 O O b W DN~ O

TypeScript 75

class Person {
first_name: string;
last_name: string;
age: number;

constructor(first_name: string, last_name: string, age: number) {
this.first_name = first_name;
this.last_name = last_name;
this.age = age;

greet() {
console.log("Hello", this.first_name);

agelnYears(years: number): number ({
return this.age + years;

It makes our previous example a little easier to write:

var p: Person = new Person('Felipe', 'Coury', 36);
p.greet();

This way the person’s names and age are set for us when the object is created.

Inheritance

Another important aspect of object oriented programming is inheritance. Inheritance is a way to
indicate that a class receives behavior from a parent class. Then we can override, modify or augment
those behaviors on the new class.

0 If you want to have a deeper understanding of how inheritance used to work in ES5, take
a look at the Mozilla Developer Network article about it: Inheritance and the prototype
chain®.

TypeScript fully supports inheritance and, unlike ES5, it’s built into the core language. Inheritance
is achieved through the extends keyword.

To illustrate, let’s say we’ve created a Report class:

*"https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

www.EBookswWorld.ir

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance_and_the_prototype_chain

(AN

, O © 0 N O O b W N+~

TypeScript 76

class Report {
data: Array<string>;

constructor(data: Array<string>) {
this.data = data;

run() {

this.data. forEach(function(line) { console.log(line); });

This report has a property data which is an Array of strings. When we call run we loop over each
element of data and print them out using console. log

0 .forEach is a method on Array that accepts a function as an argument and calls that
function for each element in the Array.

This Report works by adding lines and then calling run to print out the lines:

var r: Report = new Report(/'First line', 'Second line']);
r.run();

Running this should show:

First line
Second line

Now let’s say we want to have a second report that takes some headers and some data but we still

want to reuse how the Report class presents the data to the user.

To reuse that behavior from the Report class we can use inheritance with the extends keyword:

www.EBookswWorld.ir

O N O O & W N~

e
W N~ O

B W N -

2
3

TypeScript 77

class TabbedReport extends Report {
headers: Array<string>;

constructor(headers: string[], values: string[]) {
super(values)
this.headers = headers;

run() {

console.log(this.headers);
super.run();

var headers: string/]/ = ['Name'];

var data: string/] = ['Alice Green', 'Paul Pfifer', 'Louis Blakenship'];
var r: TabbedReport = new TabbedReport(headers, data)

r.run();

Utilities

ESe6, and by extension TypeScript provides a number of syntax features that make programming
really enjoyable. Two important ones are:

« fat arrow function syntax
« template strings

Fat Arrow Functions

Fat arrow => functions are a shorthand notation for writing functions.

In ES5, whenever we want to use a function as an argument we have to use the function keyword
along with {} braces like so:

// ES5-1like example
var data = ['Alice Green', 'Paul Pfifer', 'Louis Blakenship'];
data. forEach(function(line) { console.log(line); });

However with the => syntax we can instead rewrite it like so:

www.EBookswWorld.ir

[EEY

, O O 0 9 O O b W N -

TypeScript 78

// Typescript example
var data: string// = ['Alice Green', 'Paul Pfifer', 'Louis Blakenship'];
data. forEach((line) => console.log(line));

Parentheses are optional when there’s only one parameter. The => syntax can be used both as an
expression:

var evens = [2,4,6,8];
var odds = evens.map(v => v + 1);

Or as a statement:

data. forEach(line => {
console.log(line.toUpperCase())

});

One important feature of the => syntax is that it shares the same this as the surrounding code. This
is important and different than what happens when you normally create a function in JavaScript.
Generally when you write a function in JavaScript that function is given its own this. Sometimes
in JavaScript we see code like this:

var nate = {
name: "Nate",
guitars: ["Gibson", "Martin", "Taylor"],
printGuitars: function() {
var self = this;
this.guitars. forEach(function(g) {
// this.name is undefined so we have to use self.name
console.log(self.name + " plays a " + g);
1)
}
1

Because the fat arrow shares this with its surrounding code, we can instead write this:

www.EBookswWorld.ir

N O O b W N =

TypeScript 79

var nate = {
name: "Nate",
guitars: ["Gibson", "Martin", "Taylor"],
printGuitars: function() {
this.guitars. forEach((g) => {
console.log(this.name + " plays a " + g);
1)
}
¥

Arrows are a great way to cleanup your inline functions. It makes it even easier to use higher-order
functions in JavaScript.

Template Strings

In ES6 new template strings were introduced. The two great features of template strings are

1. Variables within strings (without being forced to concatenate with +) and
2. Multi-line strings

Variables in strings

This feature is also called “string interpolation.” The idea is that you can put variables right in your
strings. Here’s how:

var firstName = "Nate";
var lastName = "Murray";

// interpolate a string
var greeting = “Hello ${firstName} ${lastName}";

console. log(greeting);

Note that to use string interpolation you must enclose your string in backticks not single or double
quotes.

Multiline strings

Another great feature of backtick strings is multi-line strings:

www.EBookswWorld.ir

0 = O O b WO N =~

TypeScript 80

var template = °
<div>

<h1>Hello</h1>

<p>This is a great website</p>
</div>

// do something with “template”

Multiline strings are a huge help when we want to put strings in our code that are a little long, like
templates.

Wrapping up

There are a variety of other features in TypeScript/ES6 such as:

Interfaces

» Generics

« Importing and Exporting Modules
o Decorators

Destructuring
We’ll be touching on these concepts as we use them throughout the book, but for now these basics

should get you started.
Let’s get back to Angular!

www.EBookswWorld.ir

How Angular Works

In this chapter, we're going to talk about the high-level concepts of Angular. We’re going to take a
step back so that we can see how all the pieces fit together.s

0 If you've used Angular]JS 1.x, you’ll notice that Angular has a new mental-model for

building applications. Don’t panic! As Angular]S 1.x users ourselves we’ve found Angular

to be both straightforward and familiar. A little later in this book we're going to talk
specifically about how to convert your Angular]S 1.x apps to Angular.

In the chapters that follow, we won’t be taking a deep dive into each concept, but instead we’re
going to give an overview and explain the foundational ideas.

The first big idea is that an Angular application is made up of Components. One way to think
of Components is a way to teach the browser new tags. If you have an Angular 1 background,
Components are analogous to directives in Angular]S 1.x (it turns out, Angular has directives too,
but we’ll talk more about this distinction later on).

However, Angular Components have some significant advantages over AngularJS 1.x directives and
we’ll talk about that below. First, let’s start at the top: the Application.

Application

An Angular Application is nothing more than a tree of Components.

At the root of that tree, the top level Component is the application itself. And that’s what the browser
will render when “booting” (a.k.a bootstrapping) the app.

One of the great things about Components is that they’re composable. This means that we can build
up larger Components from smaller ones. The Application is simply a Component that renders other
Components.

Because Components are structured in a parent/child tree, when each Component renders, it
recursively renders its children Components.

For example, let’s create a simple inventory management application that is represented by the
following page mockup:

www.EBookswWorld.ir

How Angular Works 82

Inventory Management App

QA X3) @ D

‘ Home | Products Help |

Products » Products List

|

. | SKU#104544.2 $£109.99
Image Nykee Running Shoes

/ \ Men > Shoes > Running Shoes

|

N\, /| sKus 1876110 $23899
Image South Face Jacket

/ \ Women > Apparel > Jackets & Vests

N\, /| sKus443102-9 $23899
Image Adeeds Active Hat

/" | Men > Accessories > Hats

Inventory Management App

Given this mockup, to write this application the first thing we want to do is split it into components.

In this example, we could group the page into three high level components

1. The Navigation Component
2. The Breadcrumbs Component
3. The Product List Component

The Navigation Component

This component would render the navigation section. This would allow the user to visit other areas
of the application.

i Home | Products Help |

Navigation Component

The Breadcrumbs Component

This would render a hierarchical representation of where in the application the user currently is.

www.EBookswWorld.ir

How Angular Works 83

Products » Products List

Breadcrumbs Component

The Product List Component

The Products List component would be a representation of a collection of products.

N /| SKus 1045442 $109.99
Image | Nykee Running Shoes
/ \I Men > Shoes = Running Shoes
—
\ / SKU# 187611-0 $23899

Image South Face Jacket
/ \ Women > Apparel > Jackets & Vests

\ / SKU# 443102-9 $23899
Image Adeeds Active Hat
/ \ Men > Accessories > Hats

Product List Component

Breaking this component down into the next level of smaller components, we could say that the
Product List is composed of multiple Product Rows.

N /| SKus 1045442 $109.99
Image | Nykee Running Shoes
/" \] Men > Shoes > Running Shoes

Product Row Component

And of course, we could continue one step further, breaking each Product Row into smaller pieces:

« the Product Image component would be responsible for rendering a product image, given its
image name

« the Product Department component would render the department tree, like Men > Shoes >
Running Shoes

« the Price Display component would render the price. Imagine that our implementation
customizes the pricing if the user is logged in to include system-wide tier discounts or include
shipping for instance. We could implement all this behavior into this component.

Finally, putting it all together into a tree representation, we end up with the following diagram:

www.EBookswWorld.ir

How Angular Works 84

Inventory Management App

MNavigation Products List Breadcrumbs

Product Row Product Row

Product Image Product Department Price Display

App Tree Diagram

At the top we see Inventory Management App: that’s our application.

Under the application we have the Navigation, the Breadcrumb and the Products List components.
The Products List component has Product Rows, one for each product.

And the Product Row uses three components itself: one for the image, the department, and the price.

Let’s work together to build this application.

Q You can find the full code listing for this chapter in the downloads under

how-angular-works/inventory-app.

Here’s a screenshot of what our app will look like when we’re done:

www.EBookswWorld.ir

1

How Angular Works 85

ece B ng-book 2: Inventory App ng-book

&« C' [localhost:8080 e =

2

E ngbook2 Angular 2 Inventory App

Black Running Shoes
SKU #MYSHOES

$109.99

Men > Shoes > Running Shoes

Blue Jacket
SKU #NEATOJACKET

$238.99

Women > Apparel > Jackets & Vests

A Nice Black Hat
SKU #NICEHAT

$29.99

Men > Accessories > Hats

Completed Inventory App

How to Use This Chapter

In this chapter we're going to explain the fundamental concepts required when building Angular
apps by walking through an app that we’ve built. We’ll explain:

« How to break your app into components
« How to make reusable components using inputs
« How to handle user interactions, such as clicking on a component

In this chapter, we've used angular-cli, just as we did before. This means you can use all of the
normal ng commands such as:

ng serve # runs the app

Also, in this chapter, we’re not going to give step-by-step instructions on how to create each file in
the app. If you’d like to follow along at home, when we introduce a new component you can run:

www.EBookswWorld.ir

O© 00 9 O O P W N =

TN
N »~ O

How Angular Works 86
ng generate component NameOfNewComponentHere

This will generate the files you need, and you’re free to type in your code there or copy and paste
code from the book or from our example code.

We’ve provided the entire, completed application in the code download folder under how-angular-
works/inventory-app. If you ever feel lost or need more context, take some time to look at the
completed example code.

Let’s get started building!

Product Model

One of the key things to realize about Angular is that it doesn’t prescribe a particular model
library.

Angular is flexible enough to support many different kinds of models (and data architectures).
However, this means the choice is left to you as the user to determine how to implement these
things.

We’ll have a lot to say about data architectures in future chapters. For now, though, we’re going to
have our models be plain JavaScript objects.

code/how-angular-works/inventory-app/src/app/product.model.ts

SRk
* Provides a “Product® object
*/

export class Product {

constructor(
public sku: string,
public name: string,
public imageUrl: string,
public department: string[],
public price: number) {

If you’re new to ES6/TypeScript this syntax might be a bit unfamiliar.

We’re creating a new Product class and the constructor takes 5 arguments. When we write public
sku: string, we're saying two things:

« there is a public variable on instances of this class called sku

www.EBookswWorld.ir

How Angular Works 87

« sku is of type string.

If you’re already familiar with JavaScript, you can quickly catch up on some of the
differences, including the public constructor shorthand, here at learnxinyminutes®®

This Product class doesn’t have any dependencies on Angular, it’s just a model that we’ll use in our
app.

Components

As we mentioned before, Components are the fundamental building block of Angular applications.
The “application” itself is just the top-level Component. Then we break our application into smaller
child Components.

When building new Angular applications, we often follow this process: we mockup the
design in wireframes (or on paper) and then we break down the parts into Components.

We'll be using Components a lot, so it’s worth looking at them more closely.

Each component is composed of three parts:

« Component Decorator
« A View
+ A Controller

To illustrate the key concepts we need to understand about components, we’ll start with the top level
Inventory App and then focus on the Products List and child components:

**https://learnxinyminutes.com/docs/typescript/

www.EBookswWorld.ir

https://learnxinyminutes.com/docs/typescript/
https://learnxinyminutes.com/docs/typescript/

How Angular Works

Inventory Management App

!

Mavigation Products List Breadcrumbs
: I |
Product Row Product Row
Product Row

Product Image Product Department Price Display

Products List Component

Here’s what a basic, top-level AppComponent looks like:

@Component ({
selector: 'inventory-app-root',
template: °

<div class="inventory-app">
(Products will go here soon)

</div>

~

)
export class AppComponent {
// Inventory logic here

% If you’ve been using Angular 1 the syntax might look pretty foreign! But the ideas are
pretty similar, so let’s take them step by step.

www.EBooksWorld.ir

How Angular Works 89

The @Component is called a decorator. It adds metadata to the class that follows it (AppComponent).
The @Component decorator specifies:

+ aselector, which tells Angular what element to match
« atemplate, which defines the view

The Component controller is defined by a class, the AppComponent class, in this case.

Let’s take a look into each part now in more detail.

Component Decorator

The @Component decorator is where you configure your component. One of the primary roles of the
@Component decorator is to configure how the outside world will interact with your component.

There are lots of options available to configure a component (many of which we cover in
the Advanced Components Chapter). In this chapter we’re just going to touch on the basics.

Component selector

With the selector key, you indicate how your component will be recognized when used in a
template. The idea is similar to CSS or XPath selectors. The selector is a way to define what
elements in the HTML will match this component. In this case, by saying selector: 'inventory-
app-root', we're saying that in our HTML we want to match the inventory-app-root tag, that is,
we’re defining a new tag that has new functionality whenever we use it. E.g. when we put this in
our HTML:

<inventory-app-root></inventory-app-root>

Angular will use the AppComponent component to implement the functionality.

Alternatively, with this selector, we can also use a regular div and specify the component as an
attribute:

<div inventory-app-root></div>

Component template

The view is the visual part of the component. By using the template option on @Component, we
declare the HTML template that the component will use:

www.EBookswWorld.ir

O N O O & W N~

N O O B~ W N

0 N O O & W N~

e
W N~ O

How Angular Works

@Component ({
selector: 'inventory-app-root',
template:
<div class="inventory-app">
(Products will go here soon)
</div>

~

D)

For the template above, notice that we’re using TypeScript’s backtick multi-line string syntax. Our

template so far is pretty sparse: just a div with some placeholder text.

We can also move our template out to a separate file and use templateUr1 instead:

@Component ({
selector: 'inventory-app-root',
templateUrl: './app.component.html'
P

export class AppComponent {
// Inventory logic here

Adding A Product

Our app isn’t very interesting without Products to view. Let’s add some now.

We can create a new Product like this:

// this is just an example of how to use Product,

// we'll do something similar in our Angular code in a moment

// first, we have to import “Product® so that we can use it
import { Product } from './product.model’;

// now we can create a new “Product’
let newProduct = new Product(

"NICEHAT', // sku

"A Nice Black Hat', // name

' /assets/images/products/black-hat. jpg', // imageUrl
['Men', 'Accessories', 'Hats'], // department
29.99); // price

www.EBookswWorld.ir

90

0 < O O & W N =~

I = U
B WO NN O O

How Angular Works 91

Our constructor for Product takes 5 arguments. We can create a new Product by using the new
keyword.

O Normally, I probably wouldn’t pass more than a few arguments to a function. Another
option here is to configure the Product class to take an Object in the constructor, then we
wouldn’t have to remember the order of the arguments. That is, Product could be changed

to do something like this:

1 new Product({sku: "MYHAT", name: "A green hat"})

But for now, this 5 argument constructor is easy to use.

We want to be able to show this Product in the view. In order to make properties accessible to our
template we add them as instance variables to the Component.

For example, if we want to access newProduct in our view we could write:

class AppComponent {
product: Product;

constructor() {
let newProduct = new Product(
"NICEHAT',
"A Nice Black Hat',
' /Tesources/images/products/black-hat. jpg"',
['Men', 'Accessories', 'Hats'],
29.99);

this.product = newProduct;

or more concisely:

www.EBookswWorld.ir

D W N~

How Angular Works 92

class AppComponent {
product: Product;

constructor() {
this.product = new Product(
"NICEHAT',
"A Nice Black Hat',
' /resources/images/products/black-hat. jpg"',
['Men', 'Accessories', 'Hats'],
29.99);

Notice that we did three things here:

1. We added a constructor - When Angular creates a new instance of this Component, it calls
the constructor function. This is where we can put setup for this Component.

2. We described an instance variable - On AppComponent, when we write: product: Product,
we're specifying that the AppComponent instances have a property product which is a Product
object.

3. We assigned a Product to product - In the constructor we create an instance of Product
and assigned it to the instance variable

Viewing the pProduct with Template Binding

Now that we have product assigned to the AppComponent instance, we could use that variable in our
view template:

<div class="inventory-app">
<h1>{{ product.name }}</h1>
{{ product.sku }}
</div>

Using the {{...}} syntax is called template binding. It tells the view we want to use the value of the
expression inside the brackets at this location in our template.

So in this case, we have two bindings:

e {{ product.name }}
e {{ product.sku }}

www.EBookswWorld.ir

<N O O B W N =

How Angular Works 93

The product variable comes from the instance variable product on our Component instance of
AppComponent.

What’s neat about template binding is that the code inside the brackets is an expression. That means
you can do things like this:

o {{ count + 1 }}
o {{ myFunction(myArguments) }}

In the first case, we're using an operator to change the displayed value of count. In the second
case, we're able to replace the tags with the value of the function myFunction(myArguments). Using
template binding tags is the main way that you’ll show data in your Angular applications.

Adding More Products

In the code above, we're only able to show a single product in our app, but we want to be able to
show a list of products. Let’s change our AppComponent to store an array of Products rather than a
single Product:

class AppComponent {
products: Product[];

constructor() {
this.products = [];

Notice that we've renamed the variable product to products, and we’ve changed the type to
Product[]. The [] characters at the end mean we want products to be an Array of Products. We
also could have written this as: Array<Product>.

Now that our AppComponent holds an array of Products. Let’s create some Products in the
constructor:

www.EBookswWorld.ir

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

How Angular Works 94

code/how-angular-works/inventory-app/src/app/app.component.ts

export class AppComponent {
products: Product[];

constructor() {
this.products = [
new Product(
"MYSHOES ',
'Black Running Shoes',
' /assets/images/products/black-shoes. jpg’,
['Men', 'Shoes', 'Running Shoes'],
109.99),
new Product(
"NEATOJACKET ',
'Blue Jacket',
' /assets/images/products/blue- jacket. jpg’,
['Women', 'Apparel', 'Jackets & Vests'],
238.99),
new Product(
"NICEHAT',
'"A Nice Black Hat',
' /assets/images/products/black-hat. jpg',
['Men', 'Accessories', 'Hats'],
29.99)

This code will give us some Products to work with in our app.

Selecting a Product

We (eventually) want to support user interaction in our app. For instance, the user might select a
particular product to view more information about the product, add it to the cart, etc.

Let’s add some functionality here in our AppComponent to handle what happens when a new Product
is selected. To do that, let’s define a new function, productWasSelected:

www.EBookswWorld.ir

41
42
43

O O b W N

B W N -

How Angular Works 95

code/how-angular-works/inventory-app/src/app/app.component.ts

productWasSelected(product: Product): void {

console.log('Product clicked: ', product);

}

This function accepts a single argument product and then it will log out that the product was passed
in. We’ll use this function in a bit.

Listing products using <products-1list>

Now that we have our top-level AppComponent component, we need to add a new component for
rendering a list of products. In the next section we’ll create the implementation of a ProductsList
component that matches the selector products-1ist. Before we dive into the implementation details,
here’s how we will use this new component in our template:

code/how-angular-works/inventory-app/src/app/app.component.html

<div class="inventory-app">
<products-list
[productList]="products"
(onProductSelected)="productWasSelected($event)">
</products-list>
</div>

There is some new syntax here, so let’s talk about each part:
Inputs and Outputs
When we use products-1ist we're using a key feature of Angular components: inputs and outputs:

<products-list
[productList]="products" <I-- input -->
(onProductSelected)="productWasSelected($event)"> <!/-- output -->
</products-list>

The [squareBrackets] pass inputs and the (parentheses) handle outputs.

Data flows in to your component via input bindings and events flow out of your component through
output bindings.

Think of the set of input + output bindings as defining the public API of your component.
[squareBrackets] pass inputs

In Angular, you pass data into child components via inputs.

In our code where we show:

www.EBookswWorld.ir

How Angular Works 96

<products-list
[productList]="products"

We’re using an input of the ProductList component.

It can be tricky to understand where products/productList are coming from. There are two sides
to this attribute:

» [productList] (the left-hand side) and
+ "products” (the right-hand side)

The left-hand side [productList] says we want to use the productList input of the products-1list
component (we’ll show how to define that in a moment).

The right-hand side "products" says that we want to send the value of the expression products.
That is, the array this.products in the AppComponent class.

9 You might ask, “how would I know that productList is a valid input to the products-1list
component? The answer is: you'd read the docs for that component. The inputs (and
outputs) are part of the “public API” of a component.

You’d know the inputs for a component that you’re using in the same way that you’d know
what the arguments are for a function that you’re using.

That said, we’ll define the products-1ist component in a moment, and we’ll see exactly
how the productlList input is defined.

(parens) handle outputs

In Angular, you send data out of components via outputs.

In our code where we show:

<products-list

(onProductSelected)="productWasSelected($event)">
We're saying that we want to listen to the onProductSelected output from the ProductsList
component.

That is:

« (onProductSelected), the left-hand side is the name of the output we want to “listen” on

www.EBookswWorld.ir

0 N O O & W N -

[S
O » W N =~ O ©

16
17
18
19
20
21
22
23
24
25
26
27

How Angular Works 97

+ "productWasSelected", the right-hand side is the function we want to call when something
new is sent to this output

« $event is a special variable here that represents the thing emitted on (i.e. sent to) the output.

Now, we haven’t talked about how to define inputs or outputs on our own components yet, but
we will shortly when we define the ProductsList component. For now, know that we can pass data
to child components through inputs (like “arguments” to a function) and we can receive data out of
a child component through outputs (sort of like “return values” from a function).

Full AppComponent Listing

We broke the AppComponent up into several chunks above. So that we can see the whole thing
together, here’s the full code listing of our AppComponent:

code/how-angular-works/inventory-app/src/app/app.component.ts

import {
Component,
EventEmitter

} from '@angular/core’;

import { Product } from './product.model’;

Ak
* @InventoryApp: the top-level component for our application
*/
@Component ({
selector: 'inventory-app-root',
templateUrl: './app.component.html'
)
export class AppComponent {
products: Product[];

constructor() {
this.products = |
new Product(
'MYSHOES ',
'Black Running Shoes',
' /assets/images/products/black-shoes. jpg’,
['Men', 'Shoes', 'Running Shoes'],
109.99),
new Product(
"NEATOJACKET',

www.EBookswWorld.ir

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

O O B W N

How Angular Works 98

'Blue Jacket',
'/assets/images/products/blue- jacket. jpg',
['Women', 'Apparel', 'Jackets & Vests'],
238.99),

new Product(
"NICEHAT',
'"A Nice Black Hat',
' /assets/images/products/black-hat. jpg',
['Men', 'Accessories', 'Hats'],
29.99)

productWasSelected(product: Product): void {
console.log('Product clicked: ', product);

and the template:

code/how-angular-works/inventory-app/src/app/app.component.html

<div eclass="inventory-app">
<products-list
[productList]="products"
(onProductSelected)="productWasSelected($event)">
</products-list>
</div>

The ProductsL istComponent

Now that we have our top-level application component, let’s write the ProductsL istComponent,
which will render a list of product rows.

We want to allow the user to select one Product and we want to keep track of which Product is the
currently selected one. The ProductslListComponent is a great place to do this because it “knows”
all of the Products at the same time.

Let’s write the ProductsListComponent in three steps:
+ Configuring the ProductsL istComponent @Component options

« Writing the ProductsL istComponent controller class
+ Writing the ProductsListComponent view template

www.EBookswWorld.ir

0 N O O & W N =

NN NN NN NN B B 1 b 1 s s
N O Ol b WO N O © 03O0 O b WO N O O

How Angular Works 99

Configuring the ProductsListComponent @omponent Options

Let’s take a look at the @Component configuration for ProductsListComponent:

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

import
Component,
EventEmitter,
Input,
Output
} from '@angular/core’;

import { Product } from '../product.model’;
%k
* @ProductslList: A component for rendering all ProductRows and
* storing the currently selected Product
*/
@Component ({
selector: 'products-list',
templateUrl: './products-list.component.html'

)
export class ProductsListComponent {
/**
* @input productlList - the Product[] passed to us
*/

@Input() productList: Product[];

Rk
* @output onProductSelected - outputs the current
* Product whenever a new Product is selected
*/

@utput() onProductSelected: EventEmitter<Product>;

We start our ProductsListComponent with a familiar option: selector. This selector means we can
place our ProductsL istComponent with the tag <products-1list>. We've also defined two properties
productList and onProductSelected. Notice that productList has a @Input() annotation, denot-
ing that it is an input and onProductSelected has an @utput() annotation, denoting that it is an
output.

Component inputs

Inputs specify the parameters we expect our component to receive. To designate an input, we
use the @Input() decoration on a component class property.

www.EBookswWorld.ir

O 00 9 O O B W N =~

<N O O B W N =

How Angular Works 100

When we specify that a Component takes an input, it is expected that the definition class will have
an instance variable that will receive the value. For example, say we have the following code:

import { Component, Input } from '@angular/core’;

@Component ({
selector: 'my-component',

3]

class MyComponent {
@Input() name: string;
@Input() age: number;

}

The name and age inputs map to the name and age properties on instances of the MyComponent class.

Q If we need to use two different names for the attribute and the property, we could
for example write @Input(' firstname') name: String;. But the Angular Style Guide®
suggests to avoid this.

If we want to use MyComponent from another template, we write something like: <my-component
[name]="myName" [age]="myAge"></my-component>.

Notice that the attribute name matches the input name, which in turn matches the MyComponent
property name. However, these don’t always have to match.

For instance, say we wanted our attribute key and instance property to differ. That is, we want to
use our component like this:

<my-component [shortName]="myName" [oldAge]="myAge"></my-component>
To do this, we would change the format of the string in the inputs option:

@Component({
selector: 'my-component'

)

class MyComponent {
@Input('shortName') name: string;
@Input('oldAge') age: number;

}

« The property name (name, age) represent how that incoming property will be visible
(“bound”) in the controller.

+ The @Input argument (shortName, oldAge) configures how the property is visible to the
“outside world”.

*https://angular.io/docs/ts/latest/guide/style-guide. html

www.EBookswWorld.ir

https://angular.io/docs/ts/latest/guide/style-guide.html
https://angular.io/docs/ts/latest/guide/style-guide.html

O Ol B W N -

0 N O O & W N =

(]

10
11
12
13
14

How Angular Works 101

Passing products through via the inputs

If you recall, in our AppComponent, we passed products to our products-1ist via the [productList]
input:

code/how-angular-works/inventory-app/src/app/app.component.html

<div class="inventory-app">
<products-list
[productList]="products"
(onProductSelected)="productWasSelected($event)">
</products-list>
</div>

Hopefully this syntax makes more sense now: we’re passing the value of this.products (on the
AppComponent) in via an input on ProductsListComponent.

Component outputs

When you want to send data from your component to the outside world, you use output bindings.

Let’s say a component we’re writing has a button and we need to do something when that button
is clicked.

The way to do this is by binding the click output of the button to a method declared on our
component’s controller. You do that using the (output)="action" notation.

Here’s an example where we keep a counter and increment (or decrement) based on which button
is pressed:

@Component({
selector: 'counter',

<

template:
{{ value }}

<button (click)="increase()">Increase</button>
<button (click)="decrease()">Decrease</button>

1))

class Counter (
value: number;

constructor() {
this.value = 1;

7

www.EBookswWorld.ir

15
16
17
18
19
20
21
22
23
24
25

How Angular Works 102

increase() {
this.value = this.value + 1;
return false;

decrease() {
this.value = this.value - 1;

return false;

In this example we’re saying that every time the first button is clicked, we want the increase()
method on our controller to be invoked. And, similarly, when the second button is clicked, we want
to call the decrease() method.

The parentheses attribute syntax looks like this: (output)="action". In this case, the output we’re
listening for is the click event on this button. There are many other built-in events we can listen to
Such,as:mousedown,mousemove,dbl—click,etQ

In this example, the event is internal to the component. That is, calling increase() increments
this.value, but there’s no effect that leaves this component. When creating our own components
we can also expose “public events” (component outputs) that allow the component to talk to the
outside world.

The key thing to understand here is that in a view, we can listen to an event by using the
(output)="action" syntax.

Emitting Custom Events

Let’s say we want to create a component that emits a custom event, like click or mousedown above.
To create a custom output event we do three things:

1. Specify outputs in the @Component configuration
2. Attach an EventEmitter to the output property
3. Emit an event from the EventEmitter, at the right time

www.EBookswWorld.ir

14
15
16
17

How Angular Works

0 Perhaps EventEmitter is unfamiliar to you. Don’t panic! It’s not too hard.

An EventEmitter is an object that helps you implement the Observer Pattern®. That is,

it’s an object that will:

1. maintain a list of subscribers and
2. publish events to them.

That’s it.

Here’s a short and sweet example of how you can use EventEmitter

let ee = new EventEmitter();
ee.subscribe((name: string) => console.log(Hello ${name}));
ee.emit("Nate");

g = W N -

// -> "Hello Nate"

When we assign an EventEmitter to an output Angular automatically subscribes for us.
You don’t need to do the subscription yourself (though in a special situation you could add

your own subscriptions, if you want to).

Here’s an example of how we write a component that has outputs:

@Component({
selector: 'single-component',
template:
<button (click)="1liked()">Like it?</button>

1))

class SingleComponent {
@utput() putRingOnIt: EventEmitter<string>;

constructor() {

this.putRingOnIt = new EventEmitter();

liked(): void {
this.putRingOnlIt.emit("oh oh oh");

“Chttps://en.wikipedia.org/wiki/Observer_pattern

www.EBookswWorld.ir

103

https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Observer_pattern

O© 00 9 O O b W N =

SR) S s s
N O O b W N =~ 0O

How Angular Works 104

Notice that we did all three steps: 1. specified outputs, 2. created an EventEmitter that we attached
to the output property putRingOnIt and 3. Emitted an event when liked is called.

If we wanted to use this output in a parent component we could do something like this:

@Component ({
selector: 'club',
template:
<div>
<single-component
(putRingOnlIt)="ringWasPlaced($event)"
></single-component>
</div>

1))

class ClubComponent {
ringWasPlaced(message: string) {
console.log(Put your hands up: ${message}’);

}

// logged -> "Put your hands up: oh oh oh"
Again, notice that:
e putRingOnIt comes from the outputs of SingleComponent

e ringWasPlaced is a function on the ClubComponent
+ $event contains the thing that was emitted, in this case a string

Writing the ProductsListComponent Controller Class

Back to our store example, our ProductsListComponent controller class needs three instance
variables:

+ One to hold the list of Products (that come from the productList input)
+ One to output events (that emit from the onProductSelected output)
+ One to hold a reference to the currently selected product

Here’s how we define those in code:

www.EBookswWorld.ir

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

How Angular Works 105

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

export class ProductslListComponent {
Vet
* @input productlList - the Product[] passed to us
*/
@Input() productList: Product[];

Vet
* @output onProductSelected - outputs the current
* Product whenever a new Product is selected
*/

@utput() onProductSelected: EventEmitter<Product>;

J*k
* @property currentProduct - local state containing
* the currently selected “Product-
*/

private currentProduct: Product;

constructor() {
this.onProductSelected = new EventEmitter();

Notice that our productList is an Array of Products - this comes in from the inputs.
onProductSelected is our output.

currentProduct is a property internal to ProductsListComponent. You might also hear this being
referred to as “local component state”. It’s only used here within the component.

Writing the ProductsListComponent View Template

Here’s the template for our products-1ist component:

www.EBookswWorld.ir

o N O O B W N =~

How Angular Works 106

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.html

<div class="ui items">
<product-row
*ngFor="1et myProduct of productList"
[product]="myProduct"
(click)="'clicked(myProduct)'
[class.selected]="isSelected(myProduct)">
</product-row>

</div>

Here we're using the product-row tag, which comes from the ProductRow component, which we’ll
define in a minute.

We’re using ngFor to iterate over each Product in productList. We've talked about ngFor before
in this book, but just as a reminder the let thing of things syntax says, “iterate over things and
create a copy of this element for each item, and assign each item to the variable thing™.

So in this case, we're iterating over the Products in productList and generating a local variable
myProduct for each one.

Q Style-wise, I probably wouldn’t call this variable myProduct in a real app. Instead, I'd
probably call it product, or even p. But here I want to be explicit about what we’re passing,
and myProduct is slightly clearer because it let’s us distinguish the ‘local template variable’

from the input product.

The interesting thing to note about this myProduct variable is that we can now use it even on the
same tag. As you can see, we do this on the following three lines.

The line that reads [product]="myProduct" says that we want to pass myProduct (the local variable)
to the input product of the product-row. (We'll define this input when we define the ProductRow
component below.)

The (click)="clicked(myProduct)' line describes what we want to do when this element is clicked.
click is a built-in event that is triggered when the host element is clicked on. In this case, we want to
call the component function clicked on ProductslListComponent whenever this element is clicked
on.

The line [class.selected]="isSelected(myProduct)" is a fun one: Angular allows us to set
classes conditionally on an element using this syntax. This syntax says “add the CSS class selected
if isSelected(myProduct) returns true.” This is a really handy way for us to mark the currently
selected product.

You may have noticed that we didn’t define clicked nor isSelected yet, so let’s do that now (in
ProductsListComponent):

clicked

www.EBookswWorld.ir

39
40
41
42

44
45
46
47
48
49

© © 00 N O O b W N+~

[N

How Angular Works 107

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

clicked(product: Product): void {
this.currentProduct = product;
this.onProductSelected.emit(product);

This function does two things:

1. Set this.currentProduct to the Product that was passed in.
2. Emit the Product that was clicked on our output

isSelected

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

isSelected(product: Product): boolean {

if (!product || !this.currentProduct) {
return false;
}
return product.sku === this.currentProduct.sku;

This function accepts a Product and returns true if product’s sku matches the currentProduct’s
sku. It returns false otherwise.

The Full ProductsListComponent CoOmponent

Here’s the full code listing so we can see everything in context:

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.ts

import {
Component,
EventEmitter,
Input,
Output
} from '@angular/core';

import { Product } from '../product.model’;

J ¥

* @ProductslList: A component for rendering all ProductRows and

www.EBookswWorld.ir

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1

How Angular Works

* storing the currently selected Product
*/
@Component ({
selector: 'products-list',
templateUrl: './products-list.component.html’
D)
export class ProductslListComponent {
A
* @input productlList - the Product[] passed to us
*/
@Input() productList: Product[];

Vess
* @output onProductSelected - outputs the current
* Product whenever a new Product is selected
*/

@utput() onProductSelected: EventEmitter<Product>;

Vess
* @property currentProduct - local state containing
* the currently selected “Product’
*/

private currentProduct: Product;

constructor() {
this.onProductSelected = new EventEmitter();

clicked(product: Product): void {
this.currentProduct = product;
this.onProductSelected.emit(product);

isSelected(product: Product): boolean {
if (!product || !this.currentProduct) {
return false;

}

return product.sku === this.currentProduct.sku;

108

www.EBooksWorld.ir

W N O O & W N =

How Angular Works 109

and the template:

code/how-angular-works/inventory-app/src/app/products-list/products-list.component.html

<div class="ui items">
<{product-row
*ngFor="1et myProduct of productList”
[product]="myProduct"
(click)="'clicked(myProduct)'
[class.selected]="isSelected(myProduct)">
</product-row>
</div>

The ProductRowComponent COmponent

Blue Jacket
SKU #NEATOJACKET

$238.99

Women = Apparel = Jackets & Vests

A Selected Product Row Component

Our ProductRowComponent displays our Product. ProductRowComponent will have its own template,
but will also be split up into three smaller Components:

* ProductImageComponent - for the image
« ProductDepartmentComponent - for the department “breadcrumbs”
* PriceDisplayComponent - for showing the product’s price

Here’s a visual of the three Components that will be used within the ProductRowComponent:

www.EBookswWorld.ir

O N O O B W N~

SR) S s s s
0 1 O O b WON -~ O

How Angular Works 110

plue Jacket
$238.99
SKU #NEATOJACKET

Women > Apparel > Jackets & Vests PriceDiSpl ay

Productimage

ProductRowComponent’s Sub-components

Let’s take a look at the ProductRowComponent’s Component configuration, definition class, and
template:

ProductRowComponent Configuration

The ProductRowComponent uses a lot of the ideas we’ve covered so far:

code/how-angular-works/inventory-app/src/app/product-row/product-row.component.ts

import {

Component,

Input,

HostBinding
} from '@angular/core';
import { Product } from '../product.model';
SRk

* @ProductRow: A component for the view of single Product
*/
@Component ({

selector: 'product-row',

templateUrl: './product-row.component.html',
P

export class ProductRowComponent {
@Input() product: Product;
@HostBinding('attr.class') cssClass = 'item';

We start by defining the selector of product-row. We’ve seen this several times now - this defines
that this component will match the tag product-row.

www.EBooksWorld.ir

, O © 0 9 O O b W N+~

[EEY

How Angular Works 111

Next we define that this row takes an @Input of product. This instance variable will be set to the
Product that was passed in from our parent Component.

The HostBinding decoration is new - it lets us set attributes on the host element. The host is the
element this component is attached to.

In this case, we're using the Semantic Ul i tem class*'. Here when we say @HostBinding('attr.class')
cssClass = 'item'; we're saying that we want to attach the CSS class item to the host element.

O Using host is nice because it means we can configure our host element from within the

component. This is great because otherwise we’d require the host element to specify the

CSS tag and that is bad because we would then make assigning a CSS class part of the
requirement to using the Component.

Instead of putting a long template string in our TypeScript file, instead we're going to move the
template to a separate HTML file and use a templateUr1 to load it. We’ll talk about the template in
a minute.

ProductRowComponent template

Now let’s take a look at the template:

code/how-angular-works/inventory-app/src/app/product-row/product-row.component.html

<product-image [product]="product"></product-image>
<div class="content">
<div class="header">{{ product.name }}</div>
<div class="meta">
<div class="product-sku">SKU #{{ product.sku }}</div>
</div>
<div class="description">
<product-department [product]="product"></product-department>
</div>
</div>
<price-display [price]="product.price"></price-display>

Our template doesn’t have anything conceptually new.

In the first line we use our product-image directive and we pass our product to the product input
of the ProductImageComponent. We use the product-department directive in the same way.

We use the price-display directive slightly differently in that we pass the product.price, instead
of the product directly.

“"http://semantic-ui.com/views/item.html

www.EBookswWorld.ir

http://semantic-ui.com/views/item.html
http://semantic-ui.com/views/item.html

10
11
12
13
14
15
16
17
18
19
20

How Angular Works 112
The rest of the template is standard HTML elements with custom CSS classes and some template
bindings.

Now let’s talk about the three components we used in this template. They’re relatively short.

The ProductImageComponent COmponent

In the ProductImageComponent the template is only one line, so we can put it inline:

code/how-angular-works/inventory-app/src/app/product-image/product-image.component.ts

/**
* @ProductImage: A component to show a single Product's image
*/
@Component ({
selector: 'product-image',
template:

<

1))

export class ProductImageComponent {
@Input() product: Product;
@HostBinding('attr.class') cssClass = 'ui small image';

The one thing to note here is in the img tag, notice how we use the [src] input to img.

By using the [src] attribute, we're telling Angular that we want to use the [src] input on this img
tag. Angular will then replace the value of the src attribute once the expression is resolved.
We could also have written this tag this way:

Both styles do essentially the same thing, so feel free to pick the style that works best for your team.

The PriceDisplayComponent COmponent

Next, let’s look at PriceDisplayComponent:

www.EBookswWorld.ir

0 N O O B~ W N -

B S s s
0 3 0 O b 0ON -~ O

0 I O O b W N =~

NN
= o O

12

How Angular Works 113

code/how-angular-works/inventory-app/src/app/price-display/price-display.component.ts

import {
Component,
Input
} from '@angular/core’;

J Rk
* @PriceDisplay: A component to show the price of a
* Product
*/

@Component ({

selector: 'price-display',

template:

<div class="price-display">\${{ price }}</div>
P
export class PriceDisplayComponent {

@Input() price: number;

One thing to note is that we’re escaping the dollar sign $ because this is a backtick string and the
dollar sign is used for template variables (in ES6).

The ProductDepartmentComponent

Here is our ProductDepartmentComponent:

code/how-angular-works/inventory-app/src/app/product-department/product-department.component.ts

import
Component,
Input
} from '@angular/core’;
import { Product } from '../product.model’;

Veis
* @ProductDepartment: A component to show the breadcrumbs to a
* Product's department
*/
@Component ({
selector: 'product-department',

www.EBookswWorld.ir

13
14
15
16
17

O O b W N =~

1

How Angular Works 114

templateUrl: './product-department.component.html'’
1))

export class ProductDepartmentComponent {
@Input() product: Product;

and template:

code/how-angular-works/inventory-app/src/app/product-department/product-department.component.html

<div class="product-department">

{{ name }}
{{i < (product.department.length-1) ? '>' : ''}}

</div>

The thing to note about the ProductDepartmentComponent Component is the ngFor and the span
tag.

Our ngFor loops over product.department and assigns each department string to name. The new
part is the second expression that says: let i=index. This is how you get the iteration number out
of ngFor.

In the span tag, we use the i variable to determine if we should show the greater-than > symbol.

The idea is that given a department, we want to show the department string like:
Women > Apparel > Jackets & Vests

The expression {{i < (product.department.length-1) ? '>' : ''}} says that we only want to
use the '>' character if we're not the last department. On the last department just show an empty
string ' '.

o This format: test ? valuelfTrue : valuelfFalse is called the ternary operator.

NgModule and Booting the App

The final thing we have to do is ensure we have a NgModule for this app and boot it up:

www.EBookswWorld.ir

0 N O O & W N =~

N = U
B W N SO O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

How Angular Works 115

code/how-angular-works/inventory-app/src/app/app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { HttpModule } from '@angular/http';

import { AppComponent } from './app.component';

import { ProductImageComponent } from './product-image/product-image.component';
import { ProductDepartmentComponent } from './product-department/product-departm\
ent.component’;

import { PriceDisplayComponent } from './price-display/price-display.component’;

import { ProductRowComponent } from './product-row/product-row.component';

import { ProductsListComponent } from './products-list/products-list.component’;

@NgModule({

declarations: |
AppComponent,
ProductImageComponent,
ProductDepartmentComponent,
PriceDisplayComponent,
ProductRowComponent,
ProductsListComponent

1,

imports: [
BrowserModule,
FormsModule,
HttpModule

1,

providers: [],

bootstrap: [AppComponent]

P
export class AppModule { }

Angular provides a module system that helps organize our code. Unlike Angular]S 1.x, where all
directives are essentially globals, in Angular you must specify exactly which components you’re
going to be using in your app.

While it is a bit more configuration to do it this way, it’s a lifesaver for larger apps.

When you create new components in Angular, in order to use them they must be accessible
from the current module. That is, if we want to use the ProductsListComponent component with
the products-1list selector in the AppComponent template, then we need to make sure that the
AppComponent’s module either:

www.EBookswWorld.ir

[EEY

, O © 0 9 O O b W N =~

How Angular Works 116

1. is in the same module as the ProductsListComponent component or
2. The AppComponent’s module imports the module that contains ProductsL istComponent

Remember every component you write must be declared in one NgModule before it can be
used in a template.

In this case, we’re putting AppComponent, ProductsListComponent, and all the other components
for this app in one module. This is easy and it means they can all “see” each other.

Notice that we tell NgModule that we want to bootstrap with AppComponent. This says that
AppComponent will be the top-level component.

Because we are writing a browser app, we also put BrowserModule in the imports of the NgModule.

Booting the app

To bootstrap this app we write this in our main.ts:

code/how-angular-works/inventory-app/src/main.ts

import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic'

import { AppModule } from './app/app.module';
import { environment } from './environments/environment';

if (environment.production) {
enableProdMode();

platformBrowserDynamic().bootstrapModule(AppModule);

The last line in this file is what boots our AppModule and subsequently boots our Angular app.

Because this app was written with angular-cli, we can use the ng tool to run the app by running
ng serve.

That said, it can be tricky to understand what’s going on there. When we run our app withng serve
this is what happens:

« ng serve looks at .angular-cli.json which specifies main.ts as our entry point (and
index.html as our index file)

+ main.ts bootstraps AppModule

 AppModule specifies that AppComponent is the top level component

« ... and then AppComponent renders the rest of our app!

www.EBookswWorld.ir

How Angular Works 117

The Completed Project

To try it out, change into the project directory and type:

npm install
ng serve

Now we have all the pieces we need for the working project!

Here’s what it will look like when we’re done:

ece B ng-book 2: Inventory App ng-book

<« C' | [localhest:8080 <7

E ngbook2 Angular 2 Inventory App

Black Running Shoes

$109.99
SKU #MYSHOES
Men > Shoes > Running Shoes
Blue Jacket $238.99
SKU #NEATOJACKET
Women > Apparel > Jackets & Vests
A Nice Black Hat $29.99

SKU #NICEHAT

Men > Accessories > Hats

Completed Inventory App

Now you can click to select a particular product and have it render a nice purple outline when
selected. If you add new Products in your code, you’ll see them rendered.

Deploying the App

We can deploy this app in the same way we deployed the app in the first chapter:

www.EBookswWorld.ir

How Angular Works 118
ng build --target=production --base-href /

And then push the files in dist to our server!

A Word on Data Architecture

You might be wondering at this point how we would manage the data flow if we started adding
more functionality to this app.

For instance, say we wanted to add a shopping cart view and then we would add items to our cart.
How could we implement this?

The only tools we’ve talked about are emitting output events. When we click add-to-cart do we
simply bubble up an addedToCart event and handle at the root component? That feels a bit awkward.

Data architecture is a large topic with many opinions. Thankfully, Angular is flexible enough to
handle a wide variety of data architectures, but that means that you have to decide for yourself
which to use.

In Angular 1, the default option was two-way data binding. Two-way data binding is super easy
to get started: your controllers have data, your forms manipulate that data directly, and your views
show the data.

The problem with two-way data binding is that it often causes cascading effects throughout your
application and makes it really difficult to trace data flow as your project grows.

Another problem with two-way data binding is that because you’re passing data down through
components it often forces your “data layout tree” to match your “dom view tree”. In practice, these
two things should really be separate.

One way you might handle this scenario would be to create a ShoppingCartService, which would
be a singleton that would hold the list of the current items in the cart. This service could notify any
interested objects when an item in the cart changes.

The idea is easy enough, but in practice there are a lot of details to be worked out.

The recommended way in Angular, and in many modern web frameworks (such as React), is to adopt
a pattern of one-way data binding. That is, your data flows only down through components. If
you need to make changes, you emit events that cause changes to happen “at the top” which then
trickle down.

One-way data binding can seem like it adds some overhead in the beginning but it saves a lot of
complication around change detection and it makes your systems easier to reason about.

Thankfully there are two major contenders for managing your data architecture:

1. Use an Observables-based architecture like Rx]JS

www.EBookswWorld.ir

How Angular Works 119
2. Use a Flux-based architecture

Later in this book we’ll talk about how to implement a scalable data architecture for your app. For
now, bask in the joy of your new Component-based application!

www.EBookswWorld.ir

Built-in Directives

Introduction

Angular provides a number of built-in directives, which are attributes we add to our HTML elements
that give us dynamic behavior. In this chapter, we’re going to cover each built-in directive and show

you examples of how to use them.

By the end of this chapter you’ll be able to use the basic built-in directives that Angular offers.

Q,

NgIf

The ngIf directive is used when you want to display or hide an element based on a condition. The

How To Use This Chapter

Instead of building an app step-by-step, this chapter is a tour of the built-in directives in
Angular. Since we’re early in the book, we won’t explain every detail, but we will provide
plenty of example code.

Remember: at any time you can reference the sample code for this chapter to get the
complete context.

If youd like to run the examples in this chapter then see the folder
code/built-in-directives and run:

npm install
npm start

And then open http://localhost:4200** in your browser.

condition is determined by the result of the expression that you pass into the directive.

If the result of the expression returns a false value, the element will be removed from the DOM.

Some examples are:

““http://localhost:4200

www.EBookswWorld.ir

http://localhost:4200/
http://localhost:4200/

D W N~

O b W N =

N O O B W N -

Built-in Directives 121

<div *nglf="false"></div> <I-- never displayed -->

<div *nglf="a > b"></div> <!-- displayed if a is more than b -->

<div *nglf="str == 'yes'"></div> </-- displayed if str is the string "yes" -->
<div *nglf="myFunc()"></div> <!-- displayed if myFunc returns truthy -->

o Note for Angular]S 1.x Users

If you’ve used Angular]S 1.x, you may have used the ngIf directive before. You can think
of the Angular version as a direct substitute.

On the other hand, Angular offers no built-in alternative for ng-show. So, if your goal is to
just change the CSS visibility of an element, you should look into either the ngStyle or the
class directives, described later in this chapter.

NgSwitch

Sometimes you need to render different elements depending on a given condition.

When you run into this situation, you could use ngI f several times like this:

<div class="container">

<div *nglf="myVar == 'A'">Var is A</div>

<div *nglf="myVar == 'B'">Var is B</div>

<div *nglf="myVar != 'A' && myVar != 'B'">Var is something else</div>
</div>

But as you can see, the scenario where myVar is neither A nor B is verbose when all we’re trying to
express is an else.

To illustrate this growth in complexity, say we wanted to handle a new value C.

In order to do that, we’d have to not only add the new element with ngIf, but also change the last
case:

<div class="container">

<div *nglf="myVar == 'A'">Var is A</div>

<div *nglf="myVar == 'B'">Var is B</div>

<div *nglf="myVar == 'C'">Var is C</div>

<div *nglf="myVar != 'A' && myVar != 'B' && myVar != 'C'">Var is something els\
e</div>
</div>

www.EBookswWorld.ir

O b W N -

O O b W N =~

Built-in Directives 122

For cases like this, Angular introduces the ngSwitch directive.
If you’re familiar with the switch statement then you’ll feel very at home.

The idea behind this directive is the same: allow a single evaluation of an expression, and then
display nested elements based on the value that resulted from that evaluation.

Once we have the result then we can:

+ Describe the known results, using the ngSwitchCase directive
« Handle all the other unknown cases with ngSwitchDefault

Let’s rewrite our example using this new set of directives:

<div class="container" [ngSwitch]="myVar">

<div *ngSwitchCase=""'A'">Var is A</div>

<div *ngSwitchCase="'B'">Var is B</div>

<div *ngSwitchDefault>Var is something else</div>
</div>

Then if we want to handle the new value C we insert a single line:

<div class="container" [ngSwitch]="myVar">

<div *ngSwitchCase=""'A'">Var is A</div>

<div *ngSwitchCase="'B'">Var is B</div>

<div *ngSwitchCase="'C'">Var is C</div>

<div *ngSwitchDefault>Var is something else</div>
</div>

And we don’t have to touch the default (i.e. fallback) condition.

Having the ngSwitchDefault element is optional. If we leave it out, nothing will be rendered when
myVar fails to match any of the expected values.

You can also declare the same *ngSwitchCase value for different elements, so you’re not limited to
matching only a single time. Here’s an example:

www.EBookswWorld.ir

0 N O O & W N -

N B S 1 | sl sl
© ©W 0 J O O b W N~ O O

Built-in Directives 123

code/built-in-directives/src/app/ng-switch-example/ng-switch-example.component.html

<h4 class="ui horizontal divider header">
Current choice is {{ choice }}
</h4>

<div class="ui raised segment">
<ul [ngSwitch]="choice">
<li *ngSwitchCase="1">First choice</1i>
<li *ngSwitchCase="2">Second choice</1i>
<li *ngSwitchCase="3">Third choice</1i>
<li *ngSwitchCase="4">Fourth choice</1i>
<li *ngSwitchCase="2">Second choice, again</1li>
<li *ngSwitchDefault>Default choice</1li>

</div>

<div style="margin-top: 20px;">
<button class="ui primary button" (click)="nextChoice()">
Next choice
</button>
</div>

In the example above when the choice is 2, both the second and fifth 1is will be rendered.

NgStyle

With the NgStyle directive, you can set a given DOM element CSS properties from Angular
expressions.

The simplest way to use this directive is by doing [style. <cssproperty>]="value". For example:

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

—na

<div [style.background-color]=""'yellow'">
Uses fixed yellow background
</div>

This snippet is using the NgStyle directive to set the background-color CSS property to the literal
string 'yellow'.

Another way to set fixed values is by using the NgSty1le attribute and using key value pairs for each
property you want to set, like this:

www.EBookswWorld.ir

13
14
15

56
o7
o8
59
60
61
62
63
64
65
66
67

Built-in Directives

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

124

<div [ngStyle]="{color: 'white', 'background-color': 'blue'}">
Uses fixed white text on blue background
</div>

Q Notice that in the ng-style specification we have single quotes around background-color
but not around color. Why is that? Well, the argument tong-style is a JavaScript object and
color is a valid key, without quotes. With background-color, however, the dash character

isn’t allowed in an object key, unless it’s a string so we have to quote it.

Generally I'd leave out quoting as much as possible in object keys and only quote keys
when we have to.

Here we are setting both the color and the background-color properties.
But the real power of the NgStyle directive comes with using dynamic values.

In our example, we are defining two input boxes with an apply settings button:

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

<div class="ui input">
<input type="text" name="color" value="{{color}}" #colorinput>
</div>

<div class="ui input">
<input type="text" name="fontSize" value="{{fontSize}}" #fontinput>
</div>

<button class="ui primary button" (click)="apply(colorinput.value, fontinput.val\
ue)">

Apply settings
</button>

And then using their values to set the CSS properties for three elements.

On the first one, we’re setting the font size based on the input value:

www.EBookswWorld.ir

21
22
23
24
25

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Built-in Directives 125

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

<div>

red text

</div>

It’s important to note that we have to specify units where appropriate. For instance, it isn’t valid
CSS to set a font-size of 12 - we have to specify a unit such as 12px or 1.2em. Angular provides a
handy syntax for specifying units: here we used the notation [style. font-size.px].

The . px suffix indicates that we’re setting the font-size property value in pixels. You could easily
replace that by [style. font-size.em] to express the font size in ems or even in percentage using
[style. font-size.%].

The other two elements use the #colorinput to set the text and background colors:

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.html

<h4 class="ui horizontal divider header">
ngStyle with object property from variable
</h4>

<div>

{{ color }} text

</div>

<h4 class="ui horizontal divider header">
style from variable
</h&>

<div [style.background-color]="color"
style="color: white;">
{{ color }} background
</div>

This way, when we click the Apply settings button, we call a method that sets the new values:

www.EBookswWorld.ir

32
33
34
35

10

Built-in Directives 126

code/built-in-directives/src/app/ng-style-example/ng-style-example.component.ts

apply(color: string, fontSize: number): void ({
this.color = color;
this. fontSize = fontSize;

And with that, both the color and the font size will be applied to the elements using the NgStyle
directive.

NgClass

The NgClass directive, represented by a ngClass attribute in your HTML template, allows you to
dynamically set and change the CSS classes for a given DOM element.

The first way to use this directive is by passing in an object literal. The object is expected to have
the keys as the class names and the values should be a truthy/falsy value to indicate whether the
class should be applied or not.

Let’s assume we have a CSS class called bordered that adds a dashed black border to an element:

code/built-in-directives/src/styles.css

.bordered {
border: 1px dashed black;
background-color: *eee; }

Let’s add two div elements: one always having the bordered class (and therefore always having the
border) and another one never having it:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

<div [ngClass]="{bordered: false}">This is never bordered</div>
<div [ngClass]="{bordered: true}">This is always bordered</div>

As expected, this is how those two divs would be rendered:

This is never bordered

Simple class directive usage

Of course, it’s a lot more useful to use the NgClass directive to make class assignments dynamic.

To make it dynamic we add a variable as the value for the object value, like this:

www.EBookswWorld.ir

0 N O O &~ W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Built-in Directives 127

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

<div [ngClass]="{bordered: isBordered}">
Using object literal. Border {{ isBordered ? "ON" : "OFF" }}
</div>

Alternatively, we can define a classesObj object in our component:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.ts

@Component ({

selector: 'app-ng-class-example',

templateUrl: './ng-class-example.component.html'
b

export class NgClassExampleComponent implements OnlInit {
isBordered: boolean;
classesObj: Object;
classList: string[];

constructor() {

}

ngOnInit() {
this.isBordered = true;
this.classList = ['blue', 'round'];
this.toggleBorder();

toggleBorder(): void {
this.isBordered = !this.isBordered;
this.classesObj = {
bordered: this.isBordered

};

And use the object directly:

www.EBookswWorld.ir

10
11

31
32
33
34

36
37
38
39

Built-in Directives 128

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

<div [ngClass]="classesObj">
Using object var. Border {{ classesObj.bordered ? "ON" : "OFF" }}
</div>

Again, be careful when you have class names that contains dashes, like bordered-box.
JavaScript requires that object-literal keys with dashes be quoted like a string, as in:

1 «<«div [ngClass]="{'bordered-box': false}">...</div>

We can also use a list of class names to specify which class names should be added to the element.
For that, we can either pass in an array literal:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

<div class="base" [ngClass]="['blue', 'round']">
This will always have a blue background and
round corners

</div>

Or assign an array of values to a property in our component:
this.classlList = ['blue', 'round'];

And pass it in:

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

<div class="base" [ngClass]="classlList">

This is {{ classList.indexOf('blue') > -1 2 "" : "NOT" }} blue
and {{ classList.indexOf('round') > -1 2 "" : "NOT" }} round
</div>

In this last example, the [ngClass] assignment works alongside existing values assigned by the
HTML class attribute.

The resulting classes added to the element will always be the set of the classes provided by usual
class HTML attribute and the result of the evaluation of the [class] directive.

In this example:

www.EBookswWorld.ir

31
32
33
34

Built-in Directives 129

code/built-in-directives/src/app/ng-class-example/ng-class-example.component.html

<div class="base" [ngClass]="['blue', 'round']">
This will always have a blue background and
round corners

</div>

The element will have all three classes: base from the class HTML attribute and also blue and
round from the [class] assignment:

= D Elements Console Sources Metwork Timeline Profiles Resources Audits
button=Toggle</button
P =div class="selectors"=.=/div

div class=""base blue round
This will always have a blue background and
round corners
fdiv
div class="base blue round
This is blue

and round
fdiwv
/style-sample-app
<l— Qur app loads here —-»
Jdiv
<l— Code injected by live-server —>

_html body div.ui.main.text.container style-sample-app JEIRGEEERATERGITE]

Classes from both the attribute and directive

NgFor
The role of this directive is to repeat a given DOM element (or a collection of DOM elements) and
pass an element of the array on each iteration.

The syntax is *ngFor="1et item of items".

« The let item syntax specifies a (template) variable that’s receiving each element of the items
array;

« The items is the collection of items from your controller.

To illustrate, we can take a look at the code example. We declare an array of cities on our component
controller:

this.cities = ['Miami', 'Sao Paulo', 'New York'];

And then, in our template we can have the following HTML snippet:

www.EBookswWorld.ir

N O O B W N -

17
18
19
20
21

10
1
12
13
14
15
16
17

Built-in Directives 130

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

<h4 class="ui horizontal divider header">
Simple list of strings
</h4>

<div class="ui list" *ngFor="let c of cities">
<div class="item">{{ ¢ }}</div>
</div>

And it will render each city inside the div as you would expect:

Simple list of strings
Miami
Sao Paulo

Mew York

Result of the ngFor directive usage
We can also iterate through an array of objects like these:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.ts

this.people = |
{ name: 'Anderson', age: 35, city: 'Sao Paulo' },
{ name: 'John', age: 12, city: 'Miami' },
{ name: 'Peter', age: 22, city: 'New York' }

1;

And then render a table based on each row of data:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

<h4 class="ui horizontal divider header">
List of objects
</h4>

<table class="ui celled table">
<thead>
<tr>
<th>Name</th>
<th>Age</th>

www.EBookswWorld.ir

18
19
20
21
22
23
24
25
26

22
23
24
25
26
27
28
29
30
31
32
33
34

Built-in Directives

<th>City</th>

</tr>

</thead>

<tr *ngFor="let p of people">
<td>{{ p.name }}</tad>
<td>{{ p.age }}</td>
<td>{{ p.city }}</td>

</tr>

</table>

131

Getting the following result:

Name

Anderson
John

Peter

List of objects

Age

35

12

22

City

Sao Paulo

Miami

New York

Rendering array of objects

We can also work with nested arrays. If we wanted to have the same table as above, broken down
by city, we could easily declare a new array of objects:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.ts

this.peopleByCity = |
{
city: 'Miami',
people: [

{ name: 'John', age: 12 1},

{ name: 'Angel', age: 22 }

]
}I
{

city: 'Sao Paulo’,
people: [

{ name: 'Anderson', age:
{ name: 'Felipe', age:

35 },

36 }

www.EBookswWorld.ir

35
36
37
38

32
33

13
14
15
16
17
18
19
20
21
22
23
24
25
26

Built-in Directives

132

And then we could use NgFor to render one h2 for each city:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

<div *ngFor="let item of peopleByCity">
<h2 class="ui header">{{ item.city }}</h2>

And use a nested directive to iterate through the people for a given city:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

<table class="ui celled table">
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>City</th>
</tr>
</thead>
<tr *ngFor="let p of people">
<td>{{ p.name }}</td>
<td>{{ p.age }}</td>
<td>{{ p.city }}</td>
</tr>
</table>

Resulting in the following template code:

www.EBookswWorld.ir

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Built-in Directives

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

133

<h4 class="ui horizontal divider header">
Nested data
</h4>

<div *ngFor="let item of peopleByCity">
<h2 class="ui header">{{ item.city }}</h2>

<table class="ui celled table">
<thead>
<tr>
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tr *ngFor="let p of item.people">
<td>{{ p.name }}</td>
<td>{{ p.age }}</td>
</tr>
</table>
</div>

And it would render one table for each city:

www.EBooksWorld.ir

53
o4
95

Built-in Directives 134

MNested data
Miami
Name Age
John 12

Angel 22

Sao Paulo

Name Age

Anderson 35

Felipe 36

Rendering nested arrays

Getting an index

There are times that we need the index of each item when we’re iterating an array.

We can get the index by appending the syntax let idx = index to the value of our ngFor directive,
separated by a semi-colon. When we do this, ng2 will assign the current index into the variable we
provide (in this case, the variable idx).

ﬁ Note that, like JavaScript, the index is always zero based. So the index for first element is
0, 1 for the second and so on...

Making some changes to our first example, adding the let num = index snippet like below:

code/built-in-directives/src/app/ng-for-example/ng-for-example.component.html

<div class="ui list" *ngFor="let ¢ of cities; let num = index">
<div class="item">{{ num+1 }} - {{ ¢ }}</div>
</div>

www.EBookswWorld.ir

O O b W N~

Built-in Directives 135

It will add the position of the city before the name, like this:

List with index
1- Miami
2-5%ao Paulo

3-NewYork

Using an index

NgNonBindable

We use ngNonBindable when we want tell Angular not to compile or bind a particular section of
our page.

Let’s say we want to render the literal text {{ content }} in our template. Normally that text will
be bound to the value of the content variable because we’re using the {{ }} template syntax.

So how can we render the exact text {{ content }}? We use the ngNonBindable directive.

Let’s say we want to have a div that renders the contents of that content variable and right after
we want to point that out by outputting <- this is what {{ content }} rendered next to the actual value
of the variable.

To do that, here’s the template we’d have to use:

code/built-in-directives/src/app/ng-non-bindable-example/ng-non-bindable-example.component.html

<div class="'ngNonBindableDemo'>
{{ content }}

This is what {{ content }} rendered

</div>

And with that ngNonBindable attribute, ng2 will not compile within that second span’s context,
leaving it intact:

Some text *— This is what {{ content }} rendered

Result of using ngNonBindable

www.EBookswWorld.ir

Built-in Directives 136

Conclusion

Angular has only a few core directives, but we can combine these simple pieces to create dynamic,
powerful apps. However, all of these directives help us output dynamic data, they don’t let us accept
user interaction.

In the next chapter we’ll learn how to let our user input data using forms.

www.EBookswWorld.ir

Forms in Angular

Forms are Crucial, Forms are Complex

Forms are probably the most crucial aspect of your web application. While we often get events from
clicking on links or moving the mouse, it’s through forms where we get the majority of our rich data
input from users.

On the surface, forms seem straightforward: you make an input tag, the user fills it out, and hits
submit. How hard could it be?

It turns out, forms can be very complex. Here’s a few reasons why:

« Form inputs are meant to modify data, both on the page and the server
 Changes often need to be reflected elsewhere on the page

« Users have a lot of leeway in what they enter, so you need to validate values
« The Ul needs to clearly state expectations and errors, if any

+ Dependent fields can have complex logic

+ We want to be able to test our forms, without relying on DOM selectors

Thankfully, Angular has tools to help with all of these things.

+ FormControls encapsulate the inputs in our forms and give us objects to work with them
* Validators give us the ability to validate inputs, any way we’d like
+ Observers let us watch our form for changes and respond accordingly

In this chapter we’re going to walk through building forms, step by step. We’ll start with some simple
forms and build up to more complicated logic.

FormControlS and FormGroup$S

The two fundamental objects in Angular forms are FormControl and FormGroup.

FormControl

A FormControl represents a single input field - it is the smallest unit of an Angular form.

FormControls encapsulate the field’s value, and states such as being valid, dirty (changed), or has
errors.

For instance, here’s how we might use a FormControl in TypeScript:

www.EBookswWorld.ir

[N

S © 00 I O O b W N =~

O = W N =

Forms in Angular 138

// create a new FormControl with the value "Nate"

let nameControl = new FormControl('"Nate");
let name = nameControl.value; // -> Nate

// now we can query this control for certain values:
nameControl .errors // -> StringMap<string, any> of errors
nameControl .dirty // -> false

nameControl.valid // -> true

// etc.

To build up forms we create FormControls (and groups of FormControls) and then attach metadata
and logic to them.

Like many things in Angular, we have a class (FormControl, in this case) that we attach to the DOM
with an attribute (formControl, in this case). For instance, we might have the following in our form:

<!-- part of some bigger form -->
<input type="text" [formControl]="name" />

This will create a new FormControl object within the context of our form. We’'ll talk more about
how that works below.

FormGroup

Most forms have more than one field, so we need a way to manage multiple FormControls. If we
wanted to check the validity of our form, it’s cumbersome to iterate over an array of FormControls
and check each FormControl for validity. FormGroups solve this issue by providing a wrapper
interface around a collection of FormControls.

Here’s how you create a FormGroup:

let personInfo = new FormGroup({
firstName: new FormControl("Nate"),
lastName: new FormControl("Murray"),
zip: new FormControl("90210")

1))

FormGroup and FormControl have a common ancestor (AbstractControl*?). That means we can
check the status or value of personInfo just as easily as a single FormControl:

“Shttps://angular.io/docs/ts/latest/api/forms/index/AbstractControl-class.html

www.EBookswWorld.ir

https://angular.io/docs/ts/latest/api/forms/index/AbstractControl-class.html
https://angular.io/docs/ts/latest/api/forms/index/AbstractControl-class.html

©O© 00 N O O b W N

(AN
N~ O

Forms in Angular 139

personlnfo.value; // -> {
// firstName: "Nate",
// lastName: "Murray",
// zip: "90210"

/7)

// now we can query this control group for certain values, which have sensible
// values depending on the children FormControl's values:

personlnfo.errors // -> StringMap<string, any> of errors

personInfo.dirty // -> false

personlnfo.valid // -> true

// etc.

Notice that when we tried to get the value from the FormGroup we received an object with key-value
pairs. This is a really handy way to get the full set of values from our form without having to iterate
over each FormControl individually.

Our First Form

There are lots of moving pieces to create a form, and several important ones we haven’t touched on.
Let’s jump in to a full example and I'll explain each piece as we go along.

0 You can find the full code listing for this section in the code download under forms/

Here’s a screenshot of the very first form we’re going to build:

Demo Form: Sku

SKU

Submit

Demo Form with Sku: Simple Version

In our imaginary application we’re creating an e-commerce-type site where we’re listing products
for sale. In this app we need to store the product’s SKU, so let’s create a simple form that takes the
SKU as the only input field.

www.EBookswWorld.ir

0 N O O b W N =

(o]

10
11
12
13
14
15
16
17
18
19
20
21

Forms in Angular 140

0 SKU is an abbreviation for “stockkeeping unit”. It’s a term for a unique id for a product
that is going to be tracked in inventory. When we talk about a SKU, we’re talking about a
human-readable item ID.

Our form is super simple: we have a single input for sku (with a label) and a submit button.

Let’s turn this form into a Component. If you recall, there are three parts to defining a component:

« Configure the @Component () decorator
« Create the template
+ Implement custom functionality in the component definition class

Let’s take these in turn:

Loading the FormsModule

In order to use the new forms library we need to first make sure we import the forms library in our
NgModule.

There are two ways of using forms in Angular and we’ll talk about them both in this chapter: using
FormsModule or using ReactiveFormsModule. Since we’ll use both, we’ll import them both into our
module. To do this we do the following in our app.ts where we bootstrap the app:

import {
FormsModule,
ReactiveFormsModule

} from '@angular/forms';

// farther down. ..

@NgModule({

declarations: |
FormsDemoApp,
DemoF ormSkuComponent,
// ... our declarations here

1,

imports: |
BrowserModule,
FormsModule, // <-- add this
ReactiveFormsModule // <-- and this

1,
bootstrap: [FormsDemoApp]

1))

class FormsDemoAppModule {}

www.EBookswWorld.ir

O = W N =

Forms in Angular 141

This ensures that we’re able to use the form directives in our views. At the risk of jumping ahead,
the FormsModule gives us template driven directives such as:

+ ngModel and
e NgForm

Whereas ReactiveFormsModule gives us directives like

o formControl and

¢ ngFormGroup

... and several more. We haven’t talked about how to use these directives or what they do, but we
will shortly. For now, just know that by importing FormsModule and ReactiveFormsModule into our
NgModule means we can use any of the directives in that list in our view template or inject any of
their respective providers into our components.

Simple SKU Form: @Component Decorator

Now we can start creating our component:

code/forms/src/app/demo-form-sku/demo-form-sku.component.ts

import { Component, OnInit } from '@angular/core';

@Component({
selector: 'app-demo-form-sku',
templateUrl: './demo-form-sku.component.html',

Here we define a selector of app-demo-form-sku. If you recall, selector tells Angular what
elements this component will bind to. In this case we can use this component by having a app-
demo- form-sku tag like so:

<app-demo-form-sku></app-demo-form-sku>

Simple SKU Form: template

Let’s look at our template:

www.EBookswWorld.ir

0 N O O B~ W N -

Y
<N O O WO N, OO O

Forms in Angular 142

code/forms/src/app/demo-form-sku/demo-form-sku.component.html

<div class="ui raised segment">
<h2 class="ui header">Demo Form: Sku</h2>
<form #f="ngForm"
(ngSubmit)="onSubmit(f.value)"
class="ui form">

<div class="field">
<label for="skulnput">SKU</label>
<input type="text"
id="skuInput"
placeholder="SKU"
name="sku" ngModel>
</div>

<button type="submit" class="ui button">Submit</button>
</form>
</div>

form & NgForm

Now things get interesting: because we imported FormsModule, that makes NgForm available to our
view. Remember that whenever we make directives available to our view, they will get attached to
any element that matches their selector.

NgForm does something handy but non-obvious: it includes the form tag in its selector (instead
of requiring you to explicitly add ngForm as an attribute). What this means is that if you import
FormsModule, NgForm will get automatically attached to any <form> tags you have in your view.
This is really useful but potentially confusing because it happens behind the scenes.

There are two important pieces of functionality that NgForm gives us:

1. A FormGroup named ngForm
2. A (ngSubmit) output

You can see that we use both of these in the <form> tag in our view:

www.EBookswWorld.ir

Forms in Angular 143

code/forms/src/app/demo-form-sku/demo-form-sku.component.html

<form #f="ngForm"
(ngSubmit)="onSubmit(f.value)"

First we have #f="ngForm". The #v=thing syntax says that we want to create a local variable for
this view.

Here we’re creating an alias to ngForm, for this view, bound to the variable #f. Where did ngForm
come from in the first place? It came from the NgForm directive.

And what type of object is ngForm? It is a FormGroup. That means we can use f as a FormGroup in
our view. And that’s exactly what we do in the (ngSubmit) output.

A Astute readers might notice that I just said above that NgForm is automatically attached to
<form> tags (because of the default NgForm selector), which means we don’t have to add an
ngForm attribute to use NgForm. But here we’re putting ngForm in an attribute (value) tag.

Is this a typo?

No, it’s not a typo. If ngForm were the key of the attribute then we would be telling
Angular that we want to use NgForm on this attribute. In this case, we're using ngForm
as the attribute when we’re assigning a reference. That is, we’re saying the value of the
evaluated expression ngForm should be assigned to a local template variable f.

ngForm is already on this element and you can think of it as if we are “exporting” this
FormGroup so that we can reference it elsewhere in our view.

We bind to the ngSubmit action of our form by using the syntax: (ngSubmit)="onSubmit(f.value)".

e (ngSubmit) - comes from NgForm
+ onSubmit() - will be implemented in our component definition class (below)

« f.value - f is the FormGroup that we specified above. And .value will return the key/value
pairs of this FormGroup

Put it all together and that line says “when I submit the form, call onSubmit on my component
instance, passing the value of the form as the arguments”.

input & NgModel

Our input tag has a few things we should touch on before we talk about NgMode1:

www.EBookswWorld.ir

0 N O O &~ W

1
12
13

Forms in Angular 144

code/forms/src/app/demo-form-sku/demo-form-sku.component.html

<form #f="ngForm"
(ngSubmit)="onSubmit(f.value)"

—n

class="ui form">
<div class="field">
<label for="skulnput">SKU</label>
<input type="text"
id="skulnput"
placeholder="SKU"
name="sku" ngModel>
</div>

« class="ui form" andclass="field" - these classes are totally optional. They come from the
CSS framework Semantic UI*. I've added them in some of our examples just to give them a
nice coat of CSS but they’re not part of Angular.

« The 1abel “for” attribute and the input “id” attribute are to match, as per W3C standard*’

« We set a placeholder of “SKU”, which is just a hint to the user for what this input should
say when it is blank

The NgModel directive specifies a selector of ngModel. This means we can attach it to our input
tag by adding this sort of attribute: ngModel="whatever". In this case, we specify ngModel with no
attribute value.

There are a couple of different ways to specify ngModel in your templates and this is the first. When
we use ngModel with no attribute value we are specifying:

1. a one-way data binding

2. we want to create a FormControl on this form with the name sku (because of the name attribute
on the input tag)

NgModel creates a new FormControl that is automatically added to the parent FormGroup (in this
case, on the form) and then binds a DOM element to that new FormControl. That is, it sets up an
association between the input tag in our view and the FormControl and the association is matched
by a name, in this case "sku".

“*http://semantic-ui.com/
“http://www.w3.org/ TR/WCAG20- TECHS/Hé44.html

www.EBookswWorld.ir

http://semantic-ui.com/
http://www.w3.org/TR/WCAG20-TECHS/H44.html
http://semantic-ui.com/
http://www.w3.org/TR/WCAG20-TECHS/H44.html

10
11
12
13
14
15
16
17
18
19

Forms in Angular 145

0 NgModel vs. ngModel: what’s the difference? Generally, when we use PascalCase, like
NgModel, we’re specifying the class and referring to the object as it’s defined in code. The
lower case (CamelCase), as in ngModel, comes from the selector of the directive and it’s

only used in the DOM / template.

It’s also worth pointing out that NgModel and FormControl are separate objects. NgModel
is the directive that you use in your view, whereas FormControl is the object used for
representing the data and validations in your form.

Q Sometimes we want to do two-way binding with ngModel like we used to do in Angular 1.
We'll look at how to do that towards the end of this chapter.

Simple SKU Form: Component Definition Class

Now let’s look at our class definition:

code/forms/src/app/demo-form-sku/demo-form-sku.component.ts

export class DemoFormSkuComponent implements OnInit {

constructor() { }

ngOnInit() {

}

onSubmit(form: any): void {
console.log('you submitted value:', form);

}

Here our class defines one function: onSubmit. This is the function that is called when the form is
submitted. For now, we’ll just console.log out the value that is passed in.

Try it out!

Putting it all together, here’s what our code listing looks like:

www.EBookswWorld.ir

0 N O O B W N =~

B S s s sy s
© 00 9 O O » WO NN~ O ©

0 N O O & W N =~

[G
o > 0w N =~ O O

16
17

Forms in Angular

code/forms/src/app/demo-form-sku/demo-form-sku.component.ts

146

import { Component, OnInit } from '@angular/core';

@Component ({

selector:

templateUrl:

styles:
1))

export class DemoFormSkuComponent implements OnInit {

[]

"app-demo-form-sku',

constructor() { }

ngOnInit() {

}

onSubmit(form: any): void {

' . /demo- form-sku.component.html',

console.log('you submitted value:', form);

and the template:

code/forms/src/app/demo-form-sku/demo-form-sku.component.html

<div class="uil raised segment">

<h2 class="ui header">Demo Form:

<form #f="ngForm"
(ngSubmit)="onSubmit(f.value)"

class="ui form">

<div class="field">
<label for="skulnput">SKU</label>
<input type="text"

</div>

<button type="submit" class="ui button">Submit</button>

</form>
</div>

id="skulnput"
placeholder="SKU"
name="sku" ngModel>

Sku</h2>

www.EBooksWorld.ir

Forms in Angular 147

If we try this out in our browser, here’s what it looks like:

® O ® @ anguiar2 - Forms: Forms | x ng-book

C' [localhost:8080

N
[1]

&= O Elements Console Sources Metwork Timeline 3

EngbookZ Angular 2 Forms Example ® ¥ <topframe> ¥ [|Preserve log

you submitted value: Object {sku: “ABC123"} demo_form sku.ts:16

x

>

Demo Form: Sku
SKU

ABC123

Submit

Demo Form with Sku: Simple Version, Submitted

Using FormBuilder

Building our FormControls and FormGroups implicitly using ngForm and ngControl is convenient,
but doesn’t give us a lot of customization options. A more flexible and common way to configure
forms is to use a FormBuilder.

FormBuilder is an aptly-named helper class that helps us build forms. As you recall, forms are made
up of FormControls and FormGroups and the FormBuilder helps us make them (you can think of it
as a “factory” object).

Let’s add a FormBuilder to our previous example. Let’s look at:

« how to use the FormBuilder in our component definition class
« how to use our custom FormGroup on a form in the view

www.EBookswWorld.ir

Forms in Angular 148

Reactive Forms with FormBuilder

For this component we’re going to be using the formGroup and formControl directives which means
we need to import the appropriate classes. We start by importing them like so:

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.ts

1 import { Component, OnInit } from '@angular/core';
2 import ({
3 FormBuilder,
4 FormGroup
5 } from '@angular/forms';
Using FormBuilder
We inject FormBuilder by creating an argument in the constructor of our component class:
What does inject mean? We haven'’t talked much about dependency injection (DI) or
A how DI relates to the hierarchy tree, so that last sentence may not make a lot of sense.
We talk a lot more about dependency injection in the Dependency Injection chapter, so go
there if you’d like to learn more about it in depth.
At a high level, Dependency Injection is a way to tell Angular what dependencies this
component needs to function properly.
code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.ts
1 import { Component, OnInit } from '@angular/core';
2 import {
3 FormBuilder,
4 FormGroup
5 } from '@angular/forms';
6
7 @Component({
8 selector: 'app-demo-form-sku-with-builder',
9 templateUrl: './demo-form-sku-with-builder.component.html',
10 styles: []
1)
12 export class DemoFormSkuWithBuilderComponent implements Onlnit {
13 myForm: FormGroup;
14
15 constructor(fb: FormBuilder) {
16 this.myForm = fb.group({

www.EBookswWorld.ir

17
18
19
20
21
22
23
24
25
26
27
28

Forms in Angular 149

'sku': ['ABC123']
});

ngOnInit() {
}

onSubmit(value: string): void {

[

console.log('you submitted value: ', value);

}

During injection an instance of FormBuilder will be created and we assign it to the fb variable (in
the constructor).

There are two main functions we’ll use on FormBuilder:

e control - creates a new FormControl

e group - creates a new FormGroup

Notice that we’ve setup a new instance variable called myForm on this class. (We could have just as
easily called it form, but I want to differentiate between our FormGroup and the form we had before.)

myForm is typed to be a FormGroup. We create a FormGroup by calling fb.group(). .group takes an
object of key-value pairs that specify the FormControls in this group.

In this case, we’re setting up one control sku, and the value is ["ABC123"] - this says that the default
value of this control is "ABC123". (You’ll notice that is an array. That’s because we’ll be adding more
configuration options there later.)

Now that we have myForm we need to use that in the view (i.e. we need to bind it to our form
element).

Using myForm in the view

We want to change our <form> to use myForm. If you recall, in the last section we said that ngForm is
applied for us automatically when we use FormsModule. We also mentioned that ngForm creates its
own FormGroup. Well, in this case, we don’t want to use an outside FormGroup. Instead we want to
use our instance variable myForm, which we created with our FormBuilder. How can we do that?

Angular provides another directive that we use when we have an existing FormGroup: it’s called
formGroup and we use it like this:

www.EBookswWorld.ir

10
11
12

Forms in Angular 150

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.html

<h2 class="ui header">Demo Form: Sku with Builder</h2>

<form [formGroup]="myForm"

Here we're telling Angular that we want to use myForm as the FormGroup for this form.

Q Remember how earlier we said that when using FormsModule that NgForm will be automat-
ically applied to a <form> element? There is an exception: NgForm won’t be applied to a
<form> that has formGroup.

If you’re curious, the selector for NgForm is:
1 form:not([ngNoForm]) :not([formGroup]),ngForm, [ngForm]

This means you could have a form that doesn’t get NgForm applied by using the ngNoForm
attribute.

We also need to change onSubmit to use myForm instead of f, because now it is myForm that has our
configuration and values.

There’s one last thing we need to do to make this work: bind our FormControl to the input
tag. Remember that ngControl creates a new FormControl object, and attaches it to the parent
FormGroup. But in this case, we used FormBuilder to create our own FormControls.

When we want to bind an existing FormControl to an input we use formControl:

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.html

<label for="skulnput">SKU</label>
<input type="text"
id="skulnput"
placeholder="SKU"
[formControl]="myForm.controls['sku']">

Here we are instructing the formControl directive to look at myForm.controls and use the existing
sku FormControl for this input.

Try it out!

Here’s what it looks like all together:

www.EBookswWorld.ir

0 N O O B W N -

(RN
N »~ O ©

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

0 N O O & W N =~

Forms in Angular

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.ts

151

import { Component, OnInit } from '@angular/core';
import {

FormBuilder,

FormGroup
} from '@angular/forms';

@Component({
selector: 'app-demo-form-sku-with-builder',
templateUrl: './demo-form-sku-with-builder.component.html',
styles: []

1))

export class DemoFormSkuWithBuilderComponent implements OnInit {
myForm: FormGroup;

constructor(fb: FormBuilder) ({
this.myForm = fb.group({
"sku': ['ABC123']
1

ngoOnInit() {
}

onSubmit(value: string): void {

console.log('you submitted value: ', value);

and the template:

code/forms/src/app/demo-form-sku-with-builder/demo-form-sku-with-builder.component.html

<div class="ui raised segment">
<h2 class="ui header">Demo Form: Sku with Builder</h2>
<form [formGroup]="myForm"
(ngSubmit)="onSubmit(myForm.value)"

class="ui form">

<div class="field">
<label for="skulnput">SKU</label>

www.EBookswWorld.ir

10
11
12
13
14
15
16
17

Forms in Angular 152

<input type="text"
id="skulnput"
placeholder="SKU"
[formControl]="myForm.controls['sku']">
</div>

<button type="submit" class="ui button">Submit</button>
</form>
</div>

Remember:

To create a new FormGroup and FormControls implicitly use:

« ngForm and
¢ ngModel

But to bind to an existing FormGroup and FormControls use:

« formGroup and

¢ formControl

Adding Validations

Our users aren’t always going to enter data in exactly the right format. If someone enters data in
the wrong format, we want to give them feedback and not allow the form to be submitted. For this
we use validators.

Validators are provided by the Validators module and the simplest validator isValidators.required
which simply says that the designated field is required or else the FormControl will be considered
invalid.

To use validators we need to do two things:

1. Assign a validator to the FormControl object
2. Check the status of the validator in the view and take action accordingly

To assign a validator to a FormControl object we simply pass it as the second argument to our
FormControl constructor:

www.EBookswWorld.ir

18
19
20
21
22
23
24

Forms in Angular 153
let control = new FormControl('sku', Validators.required);

Or in our case, because we’re using FormBuilder we will use the following syntax:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-explicit.component.ts

constructor(fb: FormBuilder) {
this.myForm = fb.group({

});

1

sku ['", Validators.required]

this.sku = this.myForm.controls['sku'];

Now we need to use our validation in the view. There are two ways we can access the validation
value in the view:

1. We can explicitly assign the FormControl sku to an instance variable of the class - which is
more verbose, but gives us easy access to the FormControl in the view.

2. We can lookup the FormControl sku from myForm in the view. This requires less work in the
component definition class, but is slightly more verbose in the view.

To make this difference clearer, let’s look at this example both ways:

Explicitly setting the sku FormControl as an instance variable

Here’s a screenshot of what our form is going to look like with validations:

www.EBookswWorld.ir

14
15
16
17
18
19
20
21
22
23
24
25

Forms in Angular 154

ece /B Angular 2 - Forms: Forms | x|, ‘ ng-book ‘

~ = € [localhost:8080 ool =

Engbookz Angular 2 Forms Example

Demo Form: with validations (explicit)
SKU

SKU
SKU isinvalid
SKU is required

Form is invalid

Submit

Demo Form with Validations

The most flexible way to deal with individual FormControls in your view is to set each FormControl
up as an instance variable in your component definition class. Here’s how we could setup sku in our
class:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-explicit.component.ts

export class DemoFormWithValidationsExplicitComponent {
myForm: FormGroup;
sku: AbstractControl;

constructor(fb: FormBuilder) {
this.myForm = fb.group({

});

sku ['", Validators.required]

this.sku = this.myForm.controls['sku'];

www.EBooksWorld.ir

26
27
28
29
30

20

Forms in Angular 155

onSubmit(value: string): void {

[

console.log('you submitted value: ', value);

}

Notice that:

1. We setup sku: AbstractControl at the top of the class and
2. We assign this.sku after we've created myForm with the FormBuilder

This is great because it means we can reference sku anywhere in our component view. The downside
is that by doing it this way, we’d have to setup an instance variable for every field in our form.
For large forms, this can get pretty verbose.

Now that we have our sku being validated, I want to look at four different ways we can use it in
our view:

Checking the validity of our whole form and displaying a message
Checking the validity of our individual field and displaying a message
Checking the validity of our individual field and coloring the field red if it’s invalid

L

Checking the validity of our individual field on a particular requirement and displaying a
message

Form message

We can check the validity of our whole form by looking at myForm.valid:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-ex-
plicit.component.html

<div *nglf="!myForm.valid"

Remember, myForm is a FormGroup and a FormGroup is valid if all of the children FormControls are
also valid.

Field message

We can also display a message for the specific field if that field’s FormControl is invalid:

www.EBookswWorld.ir

14
15
16
17

17
18

Forms in Angular 156

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-ex-
plicit.component.html

[formControl]="sku">
<div *nglf="!sku.valid"
class="ui error message">SKU is invalid</div>

<div *nglf="sku.hasError('required')"

Field coloring

I’'m using the Semantic UI CSS Framework’s CSS class .error, which means if I add the class error
to the <div class= "field"> it will show the input tag with a red border.

To do this, we can use the property syntax to set conditional classes:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-ex-
plicit.component.html

<div class="field"

[class.error]="!sku.valid && sku.touched">

Notice here that we have two conditions for setting the . error class: We’re checking for !sku.valid
and sku.touched. The idea here is that we only want to show the error state if the user has tried
editing the form (“touched” it) and it’s now invalid.

To try this out, enter some data into the input tag and then delete the contents of the field.

Specific validation

A form field can be invalid for many reasons. We often want to show a different message depending
on the reason for a failed validation.

To look up a specific validation failure we use the hasError method:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-ex-
plicit.component.html

<div *nglf="sku.hasError('required')"

class="ui error message">SKU is required</div>

Note that hasError is defined on both FormControl and FormGroup. This means you can pass a
second argument of path to lookup a specific field from FormGroup. For example, we could have
written the previous example as:

www.EBookswWorld.ir

0 N O O & W N =~

I U
B WO NSO O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Forms in Angular 157

<div *nglf="myForm.hasError('required', 'sku')"
class="error">SKU is required</div>

Putting it together

Here’s the full code listing of our form with validations with the FormControl set as an instance
variable:

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-explicit.component.ts

import { Component } from '@angular/core’;
import

FormBuilder,

FormGroup,

Validators,

AbstractControl
} from '@angular/forms';

@Component ({
selector: 'app-demo-form-with-validations-explicit',
templateUrl: './demo-form-with-validations-explicit.component.html',
styles: []

D)

export class DemoFormWithValidationsExplicitComponent {
myForm: FormGroup;
sku: AbstractControl;

constructor(fb: FormBuilder) {
this.myForm = fb.group({

'sku': ['', Validators.required]
1)
this.sku = this.myForm.controls['sku'];
}
onSubmit(value: string): void {
console.log('you submitted value: ', value);
}
}
And the template:

www.EBookswWorld.ir

0 I O O b W N~

NN NN NN N B S s s s s
O O b WO NN PO © 03O0 O b WO NN O O

Forms in Angular

code/forms/src/app/demo-form-with-validations-explicit/demo-form-with-validations-ex-

plicit.component.html

158

<div class="ui raised segment">

<h2 class="ui header">Demo Form: with validations (explicit)</h2>

<form [formGroup]="myForm"
(ngSubmit)="onSubmit(myForm.value)"
class="ui form"

[class.error]="!myForm.valid && myForm.touched">

<div class="field"
[class.error]="!sku.valid && sku.touched">
<label for="skulnput">SKU</label>
<input type="text"
id="skulnput"
placeholder="SKU"
[formControl]="sku">
<div *nglf="Isku.valid"
class="ui error message">SKU is invalid</div>
<div *nglf="sku.hasError('required"')"
class="ui error message">SKU is required</div>
</div>

<div *nglf="!myForm.valid"
class="ui error message">Form is invalid</div>

<button type="submit" class="ui button">Submit</button>
</form>
</div>

Removing the sku instance variable

In the example above we set sku: AbstractControl as an instance variable. We often won’t want to
create an instance variable for each AbstractControl, so how would we reference this FormControl

in our view without an instance variable?

Instead we can use the myForm.controls property as in:

www.EBookswWorld.ir

10
11
12
13
14
15
16
17

W N -

Forms in Angular 159

code/forms/src/app/demo-form-with-validations-shorthand/demo-form-with-validations-short-
hand.component.html

<label for="skulnput">SKU</label>
<input type="text"
id="skulnput"
placeholder="SKU"
[formControl]="myForm.controls['sku']">
<div *ngIf="!myForm.controls['sku'].valid"
class="ui error message">SKU is invalid</div>
<div *ngIf="myForm.controls|['sku'].hasError('required"')"

In this way we can access the sku control without being forced to explicitly add it as an instance
variable on the component class.

o We used bracket-notation, e.g. myForm.controls|['sku']. We could also use the dot-
notation, e.g myForm.controls.sku. In general, be aware that TypeScript may give a
warning if you use the dot-notation and the object is not properly typed (but that is not a

problem here).

Custom Validations

We often are going to want to write our own custom validations. Let’s take a look at how to do that.

To see how validators are implemented, let’s look at Validators.required from the Angular core
source:

export class Validators ({
static required(c: FormControl): StringMap<string, boolean> ({
return isBlank(c.value) || c.value == "" ? {"required": true} : null;

A validator: - Takes a FormControl as its input and - Returns a StringMap<string, boolean> where
the key is “error code” and the value is true if it fails

Writing the Validator

Let’s say we have specific requirements for our sku. For example, say our sku needs to begin with
123. We could write a validator like so:

www.EBookswWorld.ir

18
19
20
21
22

33
34
35
36
37

19
20

Forms in Angular 160

code/forms/src/app/demo-form-with-custom-validation/demo-form-with-custom-validation.component.ts

function skuValidator(control: FormControl): { [s: string]: boolean } {
if (!control.value.match(/"123/)) {
return {invalidSku: true};

This validator will return an error code invalidSku if the input (the control .value) does not begin
with 123.

Assigning the Validator to the FormControl

Now we need to add the validator to our FormControl. However, there’s one small problem: we
already have a validator on sku. How can we add multiple validators to a single field?

For that, we use Validators.compose:

code/forms/src/app/demo-form-with-custom-validation/demo-form-with-custom-validation.component.ts

constructor(fb: FormBuilder) ({
this.myForm = fb.group({

sku ['', Validators.compose([

Validators.required, skuValidator])]

});

Validators.compose wraps our two validators and lets us assign them both to the FormControl.
The FormControl is not valid unless both validations are valid.

Now we can use our new validator in the view:

code/forms/src/app/demo-form-with-custom-validation/demo-form-with-custom-validation.component.html

<div *nglf="sku.hasError('invalidSku')"
class="ui error message">SKU must begin with 123</div>

Note that in this section, I'm using “explicit” notation of adding an instance variable for
each FormControl. That means that in the view in this section, sku refers to a FormControl.

If you run the sample code, one neat thing you’ll notice is that if you type something in to the field,
the required validation will be fulfilled, but the invalidSku validation may not. This is great - it
means we can partially-validate our fields and show the appropriate messages.

www.EBookswWorld.ir

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Forms in Angular 161

Watching For Changes

So far we’ve only extracted the value from our form by calling onSubmit when the form is submitted.
But often we want to watch for any value changes on a control.

Both FormGroup and FormControl have an EventEmitter that we can use to observe changes.

0 EventEmitter is an Observable, which means it conforms to a defined specification for
watching for changes. If you’re interested in the Observable spec, you can find it here*¢

To watch for changes on a control we:

1. get access to the EventEmitter by calling control .valueChanges. Then we
2. add an observer using the .subscribe method

Here’s an example:

code/forms/src/app/demo-form-with-events/demo-form-with-events.component.ts

constructor(fb: FormBuilder) ({
this.myForm = fb.group({

});

sku ['', Validators.required]

this.sku = this.myForm.controls|'sku'];

this.sku.valueChanges.subscribe(
(value: string) => {
console.log('sku changed to:', value);
}
);

this.myForm.valueChanges.subscribe(
(form: any) => {
console.log(' form changed to:', form);

“Shttps://github.com/jhusain/observable-spec

www.EBookswWorld.ir

https://github.com/jhusain/observable-spec
https://github.com/jhusain/observable-spec

W N -

Forms in Angular 162

Here we’re observing two separate events: changes on the sku field and changes on the form as a
whole.

The observable that we pass in is an object with a single key: next (there are other keys you can
pass in, but we’re not going to worry about those now). next is the function we want to call with
the new value whenever the value changes.

If we type ‘kj’ into the text box we will see in our console:

sku changed to: k
form changed to: Object {sku: "k"}
sku changed to: kj
form changed to: Object {sku: "kj"}

As you can see each keystroke causes the control to change, so our observable is triggered. When
we observe the individual FormControl we receive a value (e.g. kj), but when we observe the whole
form, we get an object of key-value pairs (e.g. {sku: "kj"}).

ngModel

NgModel is a special directive: it binds a model to a form. ngModel is special in that it implements
two-way data binding. Two-way data binding is almost always more complicated and difficult to
reason about vs. one-way data binding. Angular is built to generally have data flow one-way: top-
down. However, when it comes to forms, there are times where it is easier to opt-in to a two-way

bind.

A Just because you’ve used ng-model in Angular 1 in the past, don’t rush to use ngModel right
away. There are good reasons to avoid two-way data binding*’. Of course, ngModel can be
really handy, but know that we don’t necessarily rely on two-way data binding as much

as we did in Angular 1.

Let’s change our form a little bit and say we want to input productName. We're going to use ngModel
to keep the component instance variable in sync with the view.

First, here’s our component definition class:

“"https://www.quora.com/Why-is-the-two-way-data-binding-being- dropped-in- Angular-2

www.EBookswWorld.ir

https://www.quora.com/Why-is-the-two-way-data-binding-being-dropped-in-Angular-2
https://www.quora.com/Why-is-the-two-way-data-binding-being-dropped-in-Angular-2

12
13
14
15
16
17
18
19
20
21
22
23
24
25

13
14
15
16
17
18

Forms in Angular 163

code/forms/src/app/demo-form-ng-model/demo-form-ng-model.component.ts

export class DemoFormNgModelComponent {
myForm: FormGroup;
productName: string;

constructor(fb: FormBuilder) ({
this.myForm = fb.group({
"productName': ['', Validators.required]

});

onSubmit(value: string): void {

[

console.log('you submitted value: ', value);

Notice that we’re simply storing productName: string as an instance variable.

Next, let’s use ngModel on our input tag:

code/forms/src/app/demo-form-ng-model/demo-form-ng-model.component.html

<label for="productNamelnput">Product Name</label>
<input type="text"

id="productNamelnput"

placeholder="Product Name"

[formControl]="myForm.get('productName')"

[(ngModel)]="productName">

Now notice something - the syntax for ngModel is funny: we are using both brackets and parentheses
around the ngModel attribute! The idea this is intended to invoke is that we’re using both the input
[] brackets and the output () parentheses. It’s an indication of the two-way bind.

Notice something else here: we’re still using formControl to specify that this input should be bound
to the FormControl on our form. We do this because ngMode! is only binding the input to the instance
variable - the FormControl is completely separate. But because we still want to validate this value
and submit it as part of the form, we keep the formControl directive.

Last, let’s display our productName value in the view:

www.EBookswWorld.ir

Forms in Angular 164

code/forms/src/app/demo-form-ng-model/demo-form-ng-model.component.html

<div class="ui info message">
The product name is: {{productName}}

</div>

Here’s what it looks like:

0@ B Angular 2 - Forms: Forms | % || ‘ ng-book
= = €' | [} localhost:8080 Wl =
[(n] Elements Console Sources Network Timeline > 4
Eng—bookz Angular 2 Forms Example ® ¥ <topframe> v [)presenve log
you submitted value: demo_form ng model.ts:19
Object {productName: "Blue Widget"}

>

Demo Form: with ng-model
The product name is: Blue Widget

Product Name

Blue Widget

Submit

Demo Form with ngModel

Easy!

Wrapping Up

Forms have a lot of moving pieces, but Angular makes it fairly straightforward. Once you get a
handle on how to use FormGroups, FormControls, and Validations, it’s pretty easy going from there!

www.EBooksWorld.ir

W N -

Dependency Injection

As our programs grow in size, parts of the app need to communicate with other modules. When
module A requires module B to run, we say that B is a dependency of A.

One of the most common ways to get access to dependencies is to simply import a file. For instance,
in this hypothetical module we might do the following:

// in A.ts
import {B} from 'B'; // a dependency!

B.foo(); // using B

In many cases, simply importing code is sufficient, but other times we need to provide dependencies
in a more sophisticated way. For instance, we may want to:

« substitute out the implementation of B for MockB during testing
« share a single instance of the B class across our whole app (e.g. the Singleton pattern)
« create a new instance of the B class every time it is used (e.g. the Factory pattern)

Dependency Injection can solve these problems.

Dependency Injection (DI) is a system to make parts of our program accessible to other parts of the
program - and we can configure how that happens.

One way to think about “the injector” is as a replacement for the new operator. That
is, instead of using the language-provided new operator, Dependency Injection let’s us
configure how objects are created.

The term Dependency Injection is used to describe both a design pattern (used in many different
frameworks) and also the specific implementation of DI that is built-in to Angular.

The major benefit of using Dependency Injection is that the client component needn’t be aware of
how to create the dependencies. All the client component needs to know is how to interact with
those dependencies. This is all very abstract, so let’s dive in to some code.

www.EBookswWorld.ir

0 N O O & W N =~

TN
N »~ O O

Dependency Injection 166

Q How to use this chapter

This chapter is a tour of Angular DI system and concepts. You can find the code for this
Chapter in code/dependency-injection.

While reading this chapter, run the demo project by changing into the project directory
and running:

npm install
npm start

As a preview, to get Dependency Injection to work involves configuration in your
NgModules. It can feel a bit confusing at first to figure out “where” things are coming from.

The example code has full, runnable examples with all of the context. So if you feel lost,
we’d encourage you to checkout the sample code alongside reading this chapter.

Injections Example: PriceService

Let’s imagine we’re building a store that has Products and we need to calculate the final price of that
product after sales tax. In order to calculate the full price for this product, we use a PriceService
that takes as input:

« the base price of the Product and
« the state we're selling it to.

and then returns the final price of the Product, plus tax:

code/dependency-injection/src/app/price-service-demo/price.service.1.ts

export class PriceService ({
constructor() { }

calculateTotalPrice(basePrice: number, state: string) {
// e.g. Imgine that in our "real" application we're
// accessing a real database of state sales tax amounts
const tax = Math.random();

return basePrice + tax;

www.EBookswWorld.ir

0 = O O b W N =

[G
g B WO N =~ O O

W N O O & W N -

Y Y
<N O O b O N =~ OO O

Dependency Injection 167

In this service, the calculateTotalPrice function will take the basePrice of a product and the
state and return the total price of product.

Say we want to use this service on our Product model. Here’s how it could look without dependency
injection:

code/dependency-injection/src/app/price-service-demo/product.model.1.ts

1

import { PriceService } from './price.service';
export class Product {

service: PriceService;

basePrice: number;

constructor(basePrice: number) {
this.service = new PriceService(); // <-- create directly ("hardcoded")
this.basePrice = basePrice;

totalPrice(state: string) {
return this.service.calculateTotalPrice(this.basePrice, state);

Now imagine we need to write a test for this Product class. We could write a test like this:

import { Product } from './product';
describe('Product', () => {
let product;

beforeEach(() => {
product = new Product(11);

});

describe('price', () => {
it('is calculated based on the basePrice and the state', () => {
expect(product.totalPrice('FL')).toBe(11.66); // <-- hmmm
1
)

});

www.EBookswWorld.ir

RN

, O © 0 N O O b W N =~

Dependency Injection 168

The problem with this test is that we don’t actually know what the exact value for tax in Florida
("FL") is going to be. Even if we implemented the PriceService the ‘real’ way by calling an API or
calling a database, we have the problem that:

» The API needs to be available (or the database needs to be running) and
« We need to know the exact Florida tax at the time we write the test.

What should we do if we want to test the price method of the Product without relying on this
external resource? In this case we often mock the PriceService. For example, if we know the
interface of a PriceService, we could write a MockPriceService which will always give us a
predictable calculation (and not be reliant on a database or API).

Here’s the interface for IPriceService:

code/dependency-injection/src/app/price-service-demo/price-service.interface.ts

export interface IPriceService {
calculateTotalPrice(basePrice: number, state: string): number;

This interface defines just one function: calculateTotalPrice. Now we can write a MockPriceSer -
vice that conforms to this interface, which we will use only for our tests:

code/dependency-injection/src/app/price-service-demo/price.service.mock.ts

[

import { IPriceService } from './price-service.interface';

export class MockPriceService implements IPriceService ({
calculateTotalPrice(basePrice: number, state: string) {
if (state === 'FL') {
return basePrice + 0.66; // it's always 66 cents!

return basePrice;

Now, just because we’ve written a MockPriceService doesn’t mean our Product will use it. In order
to use this service, we need to modify our Product class:

www.EBookswWorld.ir

0 N O Ol & W N =~

[G
O b 0N =~ O O

0 I O O b W N =~

©

10
1
12
13
14
15
16
17

Dependency Injection 169

code/dependency-injection/src/app/price-service-demo/product.model.ts

1

import { IPriceService } from './price-service.interface';
export class Product {

service: IPriceService;

basePrice: number;

constructor(service: IPriceService, basePrice: number) ({
this.service = service; // <-- passed in as an argument!
this.basePrice = basePrice;

totalPrice(state: string) {
return this.service.calculateTotalPrice(this.basePrice, state);

Now, when creating a Product the client using the Product class becomes responsible for
deciding which concrete implementation of the PriceService is going to be given to the new
instance.

And with this change, we can tweak our test slightly and get rid of the dependency on the
unpredictable PriceService:

code/dependency-injection/src/app/price-service-demo/product.spec.ts

import { Product } from './product.model’;
import { MockPriceService } from './price.service.mock';

describe('Product', () => {

let product;

beforeEach(() => {
const service = new MockPriceService();

product = new Product(service, 11.00);

});

describe('price', () => {
it('is calculated based on the basePrice and the state', () => {
expect(product.totalPrice('FL"')).toBe(11.66);
});
1)
1)

www.EBookswWorld.ir

Dependency Injection 170

We also get the bonus of having confidence that we’re testing the Product class in isolation. That
is, we're making sure that our class works with a predictable dependency.

While the predictability is nice, it’s a bit laborious to pass a concrete implementation of a service
every time we want a new Product. Thankfully, Angular’s DI library helps us deal with that problem,
too. More on that below.

Within Angular’s DI system, instead of directly importing and creating a new instance of a class,
instead we will:

« Register the “dependency” with Angular
+ Describe how the dependency will be injected
« Inject the dependency

One benefit of this model is that the dependency implementation can be swapped at run-time (as
in our mocking example above). But another significant benefit is that we can configure how the
dependency is created.

That is, often in the case of program-wide services, we may want to have only one instance - that
is, a Singleton. With DI we’re able to configure Singletons easily.

A third use-case for DI is for configuration or environment-specific variables. For instance, we might
define a “constant” API_URL, but then inject a different value in production vs. development.

Let’s learn how to create our own services and the different ways of injecting them.

Dependency Injection Parts

To register a dependency we have to bind it to something that will identify that dependency. This
identification is called the dependency token. For instance, if we want to register the URL of an
API, we can use the string API_URL as the token. Similarly, if we’re registering a class, we can use
the class itself as its token as we’ll see below.

Dependency injection in Angular has three pieces:

« the Provider (also often referred to as a binding) maps a token (that can be a string or a class)
to a list of dependencies. It tells Angular how to create an object, given a token.

« the Injector that holds a set of bindings and is responsible for resolving dependencies and
injecting them when creating objects

« the Dependency that is what’s being injected

We can think of the role of each piece as illustrated below:

www.EBookswWorld.ir

Dependency Injection 171

Provider Injector
I Token |—>| Dependency |
<

registers resolves

Dependency
Registry

Dependency Injection

A way of thinking about this is that when we configure DI we specify what is being injected and
how it will be resolved.

Playing with an Injector

Above with our Product and PriceService we manually created the PriceService using the new
operator. This mimics what Angular itself does.

Angular uses an injector to resolve a dependency and create the instance. This is done for us
behind the scenes, but as an exercise, it’s useful to explore what’s happening. It can be enlightening
to use the injector manually, because we can see what Angular does for us behind the scenes.

Let’s manually use the injector in our component to resolve and create a service. (After we've
resolved a dependency manually, we’ll show the typical, easy way of injecting dependencies.)

One of the common use-cases for services is to have a ‘global’ Singleton object. For instance, we
might have a UserService which contains the information for the currently logged in user. Many
different components will want to have logic based on the current user, so this is a good case for a
service.

Here’s a basic UserService that stores the user object as a property:

www.EBookswWorld.ir

0 N O O B~ W N -

[Gy
D W NN, O

0 N O O & W N~

(AN
N O ©

Dependency Injection

code/dependency-injection/src/app/services/user.service.ts

172

import { Injectable } from '@angular/core’;

@Injectable()
export class UserService {
user: any;

setUser(newUser) {

this.user = newUser;

getUser(): any {
return this.user;

Say we want to create a toy sign-in form:

code/dependency-injection/src/app/user-demo/user-demo.component.html

<div>
<p
*nglf="userName"
class="welcome">
Welcome: {{ userName }}!
</p>
<button
(click)="signIn()"
class="ui button"
>Sign In
</button>
</div>

Above, we click the “Sign In” button to call the signIn() function (which we’ll define in a moment).

If we have a userName, we’ll display a greeting.

www.EBookswWorld.ir

0 N O O & W N =

NN NN N A B R 1 |l s s s
B WO, O O© 03O0 0 b W NN~ O O

Dependency Injection

SignIn

Simple Sign In Button
Now let’s implement this functionality in our component by using the injector directly.

code/dependency-injection/src/app/user-demo/user-demo.injector.component.ts

173

import {
Component,
Reflectivelnjector
} from '@angular/core’;

1

import { UserService } from '../services/user.service';
@Component ({
selector: 'app-injector-demo',
templateUrl: './user-demo.component.html',
styleUrls: ['./user-demo.component.css']
D)
export class UserDemolnjectorComponent {
userName: string;

userService: UserService;
constructor() {
// Create an _injector_ and ask for it to resolve and create a UserService

const injector: any = Reflectivelnjector.resolveAndCreate([UserService]);

// use the injector to **get the instance** of the UserService
this.userService = injector.get(UserService);

www.EBookswWorld.ir

25
26
27
28
29
30
31
32
33
34
35
36

Dependency Injection 174

signIn(): void {
// when we sign in, set the user
// this mimics filling out a login form
this.userService.setUser({
name: 'Nate Murray'
1)
// now **read** the user name from the service
this.userName = this.userService.getUser().name;
console.log('User name is: ', this.userName);
}
}

This starts as a basic component: we have a selector, template, and CSS. Note that we have two
properties: userName, which holds the currently logged-in user’s name and userService, which
holds a reference to the UserService.

In our component’s constructor we are using a static method from ReflectiveInjector called
resolveAndCreate. That method is responsible for creating a new injector. The parameter we pass
in is an array with all the injectable things we want this new injector to know. In our case, we just
wanted it to know about the UserService injectable.

The Reflectivelnjector is a concrete implementation of Injector that uses reflection
to look up the proper parameter types. While there are other injectors that are possible
Reflectivelnjector is the “normal” injector we’ll be using in most apps.

Welcome: Nate Murray!

SignIn

Signed In

www.EBookswWorld.ir

0w I O O & W N =~

I U
B WO NSO O

15
16

Dependency Injection 175

Providing Dependencies with NgModule

While it’s interesting to see how an injector is created directly, that isn’t the typical way we’d use
injections. Instead, what we’d normally do is

» use NgModule to register what we’ll inject — these are called providers and
» use decorators (generally on a constructor) to specify what we’re injecting

By doing these two steps Angular will manage creating the injector and resolving the dependencies.

Let’s convert our UserService to be injectable as a singleton across our app. First, we’re going to
add it to the providers key of our NgModule:

code/dependency-injection/src/app/user-demo/user-demo.module.ts

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';

// Imported here
import { UserService } from '../services/user.service';

@NgModule({
imports: [
CommonModule
1,
providers: |
UserService // <-- added right here
1,

declarations: []

P

export class UserDemoModule { }

Now we can inject UserService into our component like this:

www.EBookswWorld.ir

0 N O O B~ W N -

[N
S ©

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Dependency Injection 176

code/dependency-injection/src/app/user-demo/user-demo.component.ts

import { Component, OnInit } from '@angular/core';

import { UserService } from '../services/user.service';
@Component ({
selector: 'app-user-demo',
templateUrl: './user-demo.component.html',
styleUrls: ['./user-demo.component.css']
P
export class UserDemoComponent {
userName: string;
// removed ‘userService because of constructor shorthand below

// Angular will inject the singleton instance of “UserService here.
// We set it as a property with “private’.
constructor(private userService: UserService) {

// empty because we don't have to do anything else!

// below is the same. ..
signIn(): void {
// when we sign in, set the user
// this mimics filling out a login form
this.userService.setUser({
name: 'Nate Murray'

});

// now **read** the user name from the service

this.userName = this.userService.getUser().name;

console.log('User name is: ', this.userName);

Notice in the constructor above that we have made userService: UserService an argument to
the UserDemoComponent. When this component is created on our page Angular will resolve and
inject the UserService singleton. What’s great about this is that because Angular is managing the
instance, we don’t have to worry about doing it ourselves. Every class that injects the UserService
will receive the same singleton.

www.EBookswWorld.ir

N =

Dependency Injection 177

Providers are the Key

It’s important to know that when we put the UserService on the constructor of the UserDemoCom-
ponent, Angular knows what to inject (and how) **because we listed UserService in the providers
key of our NgModule.

It does not inject arbitrary classes. You must configure an NgModule for DI to work.

We’ve been talking a lot about Singleton services, but we can inject things in lots of other ways.
Let’s take a look.

Providers

There are several ways we can configure resolving injected dependencies in Angular. For instance
we can:

« Inject a (singleton) instance of a class (as we’ve seen)
« Inject a value
« Call any function and inject the return value of that function

Let’s look into detail at how we create each one:

Using a Class

As we’ve discussed, injecting a singleton instance of a class is probably the most common type of
injection.

When we put the class itself into the list of providers like this:
providers: [UserService]

This tells Angular that we want to provide a singleton instance of UserService whenever UserSer -
vice is injected. Because this pattern is so common, the class by itself is actually shorthand notation
for the following, equivalent configuration:

providers: |
{ provide: UserService, useClass: UserService }

www.EBookswWorld.ir

O O b W N

Dependency Injection 178

What’s interesting to note is that the object configuration with provide takes two keys. provide is
the token that we use to identify the injection and the second useClass is how and what to inject.

Here we're mapping the UserService class to the UserService foken. In this case, the name of the
class and the token match. This is the common case, but know that the token and the injected thing
aren’t required to have the same name.

As we’ve seen above, in this case the injector will create a singleton behind the scenes and return
the same instance every time we inject it . Of course, the first time it is injected, the singleton hasn’t
been instantiated yet, so when creating the UserService instance for the first time, the DI system
will trigger the class constructor method.

Using a Value
Another way we can use DI is to provide a value, much like we might use a global constant. For
instance, we might configure an API Endpoint URL depending on the environment.

To do this, in our NgModule providers, we use the key useValue:

providers: |
{ provide: 'API_URL', useValue: 'http://my.api.com/vi' }

Above, for the provide token we’re using a string of API_URL. If we use a string for the provide
value, Angular can’t infer which dependency we’re resolving by the type. For instance we can’t
write:

// doesn't work - anti-example
export class AnalyticsDemoComponent {
constructor(apiUrl: 'API_URL') { // <--- this isn't a type, just a string
// 1f we put “string” that is ambiguous

So what can we do? In this case, we’ll use the @Inject() decorator like this:

www.EBookswWorld.ir

N O O & W N -

Dependency Injection 179

import { Inject } from '@angular/core';

export class AnalyticsDemoComponent {
constructor(@Inject('API_URL') apiUrl: string) {
// works! do something w/ apiUrl

}

Now that we know how to do simple values with usevalue and Singleton classes with useClass,
we're ready to talk about the more advanced case: writing configurable services using factories.

Configurable Services

In the case of the UserService, no arguments are required for the constructor. But what happens
if a service’s constructor requires arguments? We can implement this by using a factory which is
a function that can return any object when injected.

For instance, let’s say we’re writing a library for recording user analytics (that is, keeping a record
of events of actions a user took on the page). In this scenario, we want to have an AnalyticsService
with a catch: the AnalyticsService should define the interface for recording events, but not the
implementation for handling the event.

www.EBookswWorld.ir

~N O O »

Dependency Injection 180

® © ® /7y pependencyinjection x WO ng-book
&« C | @ localhost:4200/#/factory hd
[® 0] | Elements Console Sources » PX
- . —
nebook2 Angular Dependency Injection ® ¥ w v [Presenvelog
Angular is running in the development lang.js:138
mode. Call enableProdMode() to enable the production
mode.
Intro The metric is: analytics—demo.module.t5:26
¥ Object
eventName: "componentCreated"
Injector scope: "AnalyticsDemoComponent™
» __oroto__: Object
useClass (UserService) The metric is: analytics—demo.module.ts:26
¥ 0bject
eventName: "componentOnInit"
factory (AnalyticsService) scope: "AnalyticsDemoCompanent”
B __proto__: Object
The metric is: analytics—demo.module.ts:26
¥ 0bject
H H tH : "buyButtonP d"
Cider the Dog Ginger the Cat sventiiane: “buyButtonPresse
scope: "dog
. . . N . . » __oproto_: Object
Cider is a pure-bread, AKC- Ginger is a tabby cat who just
. The metric is: analytics—demo.module.t5:26
registered, adorable Golden showed up one day ¥ Object
Retriever puppy eventName: "buyButtonPressed"
scope: "cat"
»__oroto__: Object
+ BuyDog + BuyCat >

Tracking Analytics on the events

Our user may, for instance, want to record these metrics with Google Analytics or they may want to
use Optimizely, or some other in-house solution. Let’s write an injectable AnalyticsService which
can take an implementation configuration.

First, a couple of definitions. Let’s define a Metric:

code/dependency-injection/src/app/analytics-demo/analytics-demo.interface.ts

export interface Metric {
eventName: string;
scope: string;

A Metric will store an eventName and a scope. We could use this for say, when a the user nate
logs-in the eventName could be 1oggedIn and the scope would be nate.

www.EBooksWorld.ir

O b= W N =

12
13
14

0 N O O & W N =~

[G
o > 0w N =~ O O

Dependency Injection 181

// just an example

let metric: Metric = {
eventName: 'loggedIn',
scope: 'nate’

This way we could, in theory, count the number of user logins by counting the events with eventName
loggedIn and count the number of times the specific user nate logged in by counting the loggedIn
events with user nate.

We also need to define what an analytics implementation would look like:

code/dependency-injection/src/app/analytics-demo/analytics-demo.interface.ts

export interface AnalyticsImplementation {
recordEvent(metric: Metric): void;

Here we define an AnalyticsImplementation interface to have one function: recordevent which
takes a Metric as an argument.

Now let’s define the AnalyticsService:

code/dependency-injection/src/app/services/analytics.service.ts

import { Injectable } from '@angular/core’;
import

Metric,

AnalyticsImplementation

} from '../analytics-demo/analytics-demo.interface';

@Injectable()
export class AnalyticsService {

constructor(private implementation: AnalyticsImplementation) {

}

record(metric: Metric): void {
this.implementation.recordEvent(metric);

Above our AnalyticsService defines one method: record which accepts a Metric and then passes
it on to the implementation.

www.EBookswWorld.ir

0 N O O & W N =~

(o]

10
11
12
13
14
15
16
17
18

Dependency Injection 182

Q Of course, this AnalyticsService is a bit trivial and in this case, we probably wouldn’t
need the indirection. But this same pattern could be used in the case where you had a
more advanced AnalyticsService. For instance, we could add middleware or broadcast to

several implementations.

Notice how its constructor method takes a phrase as a parameter? If we try to use the “regular”
useClass injection mechanism we would see an error on the browser like:

Cannot resolve all parameters for AnalyticsService.

This happens because we didn’t provide the injector with the implementation necessary for the
constructor. In order to resolve this problem, we need to configure the provider to use a factory.

Using a Factory
So to use our AnalyticsService, we need to:

« create an implementation that conforms to AnalyticsImplementation and
« add it to providers with useFactory

Here’s how:

code/dependency-injection/src/app/analytics-demo/analytics-demo.module.1.ts

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';
import {

Metric,

AnalyticsImplementation
} from './analytics-demo.interface';

import { AnalyticsService } from '../services/analytics.service';
@NgModule({
imports: [
CommonModule

] !

providers: [

{
// “AnalyticsService® is the _token_ we use to inject
// note, the token is the class, but it's just used as an identifier!
provide: AnalyticsService,

www.EBookswWorld.ir

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Dependency Injection 183

// useFactory is a function - whatever is returned from this function
// will be injected
useFactory() {

// create an implementation that will log the event
const loggingImplementation: AnalyticsImplementation = {
recordEvent: (metric: Metric): void => {
console.log('The metric is:', metric);

}
1

// create our new “AnalyticsService” with the implementation

return new AnalyticsService(loggingImplementation);

}
] 4

declarations: []

1))

export class AnalyticsDemoModule { }

Here in providers we’re using the syntax:

providers: |
{ provide: AnalyticsService, useFactory: () => ... }

]

useFactory takes a function and whatever this function returns will be injected.

Also note that we provide AnalyticsService. Again, when we use provide this way, we’re using
the class AnalyticsService as the identifying token of what we’re going to inject. (If you wanted
to be confusing, you could use a completely separate class, or less-confusingly a string.)

In useFactory we're creating an AnalyticsImplementation object that has one function: recordE-
vent.recordEvent is where we could, in theory, configure what happens when an event is recorded.
Again, in a real app this would probably send an event to Google Analytics or a custom event logging
software.

Lastly, we instantiate our AnalyticsService and return it.
Factory Dependencies

Using a factory is the most powerful way to create injectables, because we can do whatever we want
within the factory function. Sometimes our factory function will have dependencies of it’s own.

Say that we wanted to configure our AnalyticsImplementation to make an HTTP request to a
particular URL. In order to do this we’d need:

www.EBookswWorld.ir

Dependency Injection 184

+ The Angular Http client and
+ Our API_URL value

Here’s how we could set that up:

code/dependency-injection/src/app/analytics-demo/analytics-demo.module.ts

1 import { NgModule } from '@angular/core';
2 import { CommonModule } from '@angular/common';
3 import {
4 Metric,
5 AnalyticsImplementation
6 } from './analytics-demo.interface';
7 import { AnalyticsService } from '../services/analytics.service';
8
9 // added this ->
10 import {
11 HttpModule,
12 Http
13 } from '@angular/http';
14
15 @NgModule(({
16 imports: [
17 CommonModule,
18 HttpModule, // <-- added
19 1,
20 providers: [
21 // add our API_URL provider
22 { provide: 'API_URL', useValue: 'http://devserver.com' },
23 {
24 provide: AnalyticsService,
25
26 // add our ‘“deps” to specify the factory depencies
27 deps: [Http, 'API_URL'],
28
29 // notice we've added arguments here
30 // the order matches the deps order
31 useFactory(http: Http, apiUrl: string) {
32
33 // create an implementation that will log the event
34 const loggingImplementation: AnalyticsImplementation = {
35 recordEvent: (metric: Metric): void => {
36 console.log('The metric is:', metric);

www.EBooksWorld.ir

37
38
39
40
41
42
43
44
45
46
47
48
49

Dependency Injection 185

1

console.log('Sending to: ', apilrl);

// ... You'd send the metric using http here ...
}
1

// create our new “AnalyticsService” with the implementation
return new AnalyticsService(loggingImplementation);
}
1,
1,

declarations: []

1))

export class AnalyticsDemoModule { }

Here we’re importing the HttpModule, both in the ES6 import (which makes the class constants
available) and in our NgModule imports (which makes it available for dependency injection).

We’ve added an API_URL provider, as we did above. And then in our AnalyticsService provider,
we’'ve added a new key: deps. deps is an array of injection tokens and these tokens will be resolved
and passed as arguments to the factory function.

Dependency Injection in Apps

To review, when writing our apps there are three steps we need to take in order to perform an
injection:

1. Create the dependency (e.g. the service class)
2. Configure the injection (i.e. register the injection with Angular in our NgModule)
3. Declare the dependencies on the receiving component

The first thing we do is create the service class, that is, the class that exposes some behavior we want
to use. This will be called the injectable because it is the thing that our components will receive via
the injection.

Reminder on terminology: a provider provides (creates, instantiates, etc.) the injectable (the thing
you want). In Angular when you want to access an injectable you inject a dependency into a function
(often a constructor) and Angular’s dependency injection framework will locate it and provide it
to you.

As we can see, Dependency Injection provides a powerful way to manage dependencies within our
app.

www.EBookswWorld.ir

Dependency Injection 186

More Resources

« Official Angular DI Docs*®
» Victor Savkin Compare DI in Angular 1 vs. Angular 2%

“*https://angular.io/docs/ts/latest/guide/dependency-injection.html
“’http://victorsavkin.com/post/ 126514197956/dependency-injection-in-angular- 1-and-angular-2

www.EBookswWorld.ir

https://angular.io/docs/ts/latest/guide/dependency-injection.html
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2
https://angular.io/docs/ts/latest/guide/dependency-injection.html
http://victorsavkin.com/post/126514197956/dependency-injection-in-angular-1-and-angular-2

HTTP

Introduction

Angular comes with its own HTTP library which we can use to call out to external APIs.

When we make calls to an external server, we want our user to continue to be able to interact with
the page. That is, we don’t want our page to freeze until the HTTP request returns from the external
server. To achieve this effect, our HTTP requests are asynchronous.

Dealing with asynchronous code is, historically, more tricky than dealing with synchronous code.
In JavaScript, there are generally three approaches to dealing with async code:

1. Callbacks
2. Promises
3. Observables

In Angular, the preferred method of dealing with async code is using Observables, and so that’s
what we’ll cover in this chapter.

O There’s a whole chapter on RxJS and Observables: In this chapter we’re going to be
using Observables and not explaining them much. If you’re just starting to read this book
at this chapter, you should know that there’s a whole chapter on Observables that goes into

RxJS in more detail.

In this chapter we’re going to:

1. show a basic example of HttpClient
2. create a YouTube search-as-you-type component
3. discuss API details about the HttpClient library

0 Sample Code The complete code for the examples in this chapter can be found in the http
folder of the sample code. That folder contains a README.md which gives instructions for
building and running the project.

Try running the code while reading the chapter and feel free play around to get a deeper
insight about how it all works.

www.EBookswWorld.ir

N O O & W N =

W N -

14
15
16
17
18
19
20
21
22
23
24

HTTP 188

Using @angular/common/http

HTTP has been split into a separate module in Angular. This means that to use it you need
to import constants from @angular/common/http. For instance, we might import constants from
@angular/common/http like this:

import {
// The NgModule for using @angular/common/http
HttpClientModule,

// the class constants
HttpClient
} from '@angular/common/http';

import from @angular/common/http

In our app.module.ts we're going to import HttpClientModule which is a convenience collection
of modules.

code/http/src/app/app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { FormsModule } from '@angular/forms';

import { HttpClientModule } from '@angular/common/http";

In our NgModule we will add HttpClientModule to the list of imports. The effect is that we will be
able to inject Http (and a few other modules) into our components.

code/http/src/app/app.module.ts

@NgModule({

declarations: |
AppComponent,
SimpleHttpComponent,
MoreHttpRequestsComponent,
YouTubeSearchComponent,
SearchResultComponent,
SearchBoxComponent

1,

imports: [
BrowserModule,

www.EBookswWorld.ir

25
26
27
28
29
30
31

0 I O O & W N =~

HTTP

FormsModule,

HttpClientModule // <-- right here

1,

providers: [youTubeSearchInjectables],

bootstrap: [AppComponent]

)
export class AppModule {}

189

Notice that we have custom components in declarations as well as a custom provider.

We'll talk about these later in the chapter.

Now we can inject the HttpClient service into our components (or anywhere we use dependency

injection).

class MyFooComponent {

constructor(public http: HttpClient) {

}

makeRequest(): void {

// do something with this.http ...

A Basic Request

The first thing we’re going to do is make a simple GET request to the jsonplaceholder API*°.

What we’re going to do is:

1. Have a button that calls makeRequest

2. makeRequest will call the http library to perform a GET request on our API

3. When the request returns, we’ll update this.data with the results of the data, which will be

rendered in the view.

Here’s a screenshot of our example:

https://jsonplaceholder.typicode.com

www.EBookswWorld.ir

https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/

o N O O B W N =~

RN
N »~ O O

HTTP 190

Basic Request

{
"userId": 1,
"id": 1,
"title": "sunt aut facere repellat provident occaecati excepturi optio reprehenderit™,

"body": "quia et suscipit\nsuscipit recusandae consequuntur expedita et cum\nreprehende
rit molestiae ut ut quas totam\nnostrum rerum est autem sunt rem eveniet architecto"

}

Basic Request

Building the simpleHttpComponent Component Definition

The first thing we’re going to do is import a few modules and then specify a selector for our
@Component:

code/http/src/app/simple-http/simple-http.component.ts

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';

@Component ({
selector: 'app-simple-http',
templateUrl: './simple-http.component.html'
19
export class SimpleHttpComponent implements OnlInit {
data: Object;
loading: boolean;

constructor(private http: HttpClient) {}

Building the SimpleHttpComponent template

Next we build our view:

www.EBookswWorld.ir

W N -

10

12

HTTP 191

code/http/src/app/simple-http/simple-http.component.html

<h2>Basic Request</h2>

<button type="button" (click)="makeRequest()">Make Request</button>
<div *nglf="loading">loading...</div>

<pre>{{data | json}}</pre>

Our template has three interesting parts:

1. The button
2. The loading indicator
3. The data

On the button we bind to (click) to call the makeRequest function in our controller, which we’ll
define in a minute.

We want to indicate to the user that our request is loading, so to do that we will show loading. . .
if the instance variable loading is true, using ngI f.

The data is an Object. A great way to debug objects is to use the json pipe as we do here. We've
put this in a pre tag to give us nice, easy to read formatting.

Building the simpleHttpComponent Controller

We start by defining a new class for our SimpleHttpComponent:

code/http/src/app/simple-http/simple-http.component.ts

export class SimpleHttpComponent implements OnInit {
data: Object;
loading: boolean;

We have two instance variables: data and 1oading. This will be used for our API return value and
loading indicator respectively.

Next we define our constructor:

code/http/src/app/simple-http/simple-http.component.ts

constructor(private http: HttpClient) {}

www.EBookswWorld.ir

16
17
18
19
20
21
22
23
24

18
19
20

HTTP 192

The constructor body is empty, but we inject one key module: HttpClient.

Remember that when we use the public keyword inpublic http: HttpClient TypeScript
will assign http to this.http. It’s a shorthand for:

// other instance variables here
http: HttpClient;

constructor (http: HttpClient) {
this.http = http;

O O B W N

Now let’s make our first HTTP request by implementing the makeRequest function:

code/http/src/app/simple-http/simple-http.component.ts

makeRequest(): void {
this.loading = true;
this.http
.get('https://jsonplaceholder.typicode.com/posts/1"')
.subscribe(data => {
this.data = data;
this.loading = false;

1),

When we call makeRequest, the first thing we do is set this.loading = true. This will turn on the
loading indicator in our view.

To make an HTTP request is straightforward: we call this.http.get and pass the URL to which we
want to make a GET request.

http.get returns an Observable. We can subscribe to changes (akin to using then from a Promise)
using subscribe.

code/http/src/app/simple-http/simple-http.component.ts

this.http
.get('https://jsonplaceholder.typicode.com/posts/1"')
.subscribe(data => {

When our http.request returns (from the server) the stream will emit a Response object. We extract
the body of the response as an Object by using json and then we set this.data to that Object.

www.EBookswWorld.ir

0 = O O b W N =~

NN NN NN B 1 S s s s
O 0O N~ O O 01 O O kb N~ OO O

HTTP

Since we have a response, we’re not loading anymore so we set this.loading = false

Q .subscribe can also handle failures and stream completion by passing a function to the
second and third arguments respectively. In a production app it would be a good idea to
handle those cases, too. That is, this.loading should also be set to false if the request

fails (i.e. the stream emits an error).

Full simpleHttpComponent

Here’s what our SimpleHttpComponent looks like altogether:

code/http/src/app/simple-http/simple-http.component.ts

import { Component, OnInit } from '@angular/core';
import { HttpClient } from '@angular/common/http';

@Component ({
selector: 'app-simple-http',
templateUrl: './simple-http.component.html'
D)
export class SimpleHttpComponent implements OnlInit {
data: Object;
loading: boolean;

constructor(private http: HttpClient) {}

ngOnInit() {}

makeRequest(): void {
this.loading = true;
this.http
.get('https://jsonplaceholder.typicode.com/posts/1"')
.subscribe(data => {
this.data = data;
this.loading = false;

});

www.EBookswWorld.ir

HTTP 194

Writing d YouTubeSearchComponent

The last example was a minimal way to get the data from an API server into your code. Now let’s
try to build a more involved example.

In this section, we’re going to build a way to search YouTube as you type. When the search returns
we’ll show a list of video thumbnail results, along with a description and link to each video.

Here’s a screenshot of what happens when I search for “cats playing ipads”:

YouTube Search

cats playing ipads|

Funny Cats Playing
On iPads
Compilation - Funny
Videos 2015

‘You may or may not be surprised,
but there are many animals playing
on tablet computer. New video funny
2015 Thanks for watching, rating the
video and ...

Watch

Cats playing "Game
for Cats" with Apple
iPad

Two Siberian cats like to play "Game
for Cats" with Apple iPad :) Note that

the iPad has Invisible Shield screen
protector. Siperiankissat lelkkivét

Animals Playing On
iPads Compilation

‘You may or may not be surprised,
but there are many animals playing
on tablet computer. Join Us On
Facebook
http://www.facebook.com/Compilariz
No ...

Watch

White Tiger Plays
iPad - Game for Cats
Gone Wild! Lions,
servals, and more!

http://www.ipadgameforcats.com
and
htto:ffwww. conservatarsceantar ara/

Cute cats try to
catch a mouse from
an IPad

Cute cats try to catch a mouse from
an IPad.

Watch

Cat Plays with iPad -
Friskies Games for
Cats

Mr. Kitty playing Cat Fishing on my
girlfriends 1st gen iPad, via Friskies

Games for Cats
http://www.gamesforcats.com.

Can I get my cat to write Angular?

For this example we're going to write several things:

Charlie The Cat -
Kitten Playing iPad 2
Il Game For Cats
Cute Funny Clever
Pets Bloopers

HELLO REDDIT, Thanks for the
support! More Charlie the Cat Videos
- http://youtu.be/XxZHWYNFWdO
Check My Other Videos Kitten
HArlem Shake ...

Watch

Cute Cat plays on
iPad

Cute Cat plays on iPad.

Watch

1. A SearchResult object that will hold the data we want from each result

www.EBookswWorld.ir

0 N O O B~ W N -

N B B 1 | sl |l
© ©W 0O 1 O O b W N~ O O

HTTP 195

2. A YouTubeSearchService which will manage the API request to YouTube and convert the
results to a stream of SearchResult[]

3. A SearchBoxComponent which will call out to the YouTube service as the user types

4. A SearchResultComponent which will render a specific SearchResult

5. A YouTubeSearchComponent which will encapsulate our whole YouTube searching app and
render the list of results

Let’s handle each part one at a time.

0 Patrick Stapleton has an excellent repository named angular2-webpack-starter®'. This repo
has an RxJS example which autocompletes Github repositories. Some of the ideas in this
section are inspired from that example. It’s a fantastic project with lots of examples and

you should check it out.

Writing a SearchResult

First let’s start with writing a basic SearchResult class. This class is just a convenient way to store
the specific fields we’re interested in from our search results.

code/http/src/app/you-tube-search/search-result.model.ts
Rk

* SearchResult is a data-structure that holds an individual

* record from a YouTube video search
*/
export class SearchResult {

id: string;

title: string;

description: string;

thumbnailUrl: string;

videoUrl: string;

constructor(obj?: any) {

this.id = obj && obj.id [null;
this.title = obj && obj.title [l null;
this.description = obj && obj.description [l null;
this.thumbnailUrl = obj && obj.thumbnaillrl [l null;
this.videoUrl = obj && obj.videoUrl [

“https://www.youtube.com/watch?v=${this.id}";

>Thttps://github.com/angular-class/angular2- webpack-starter

www.EBookswWorld.ir

https://github.com/angular-class/angular2-webpack-starter
https://github.com/angular-class/angular2-webpack-starter

HTTP 196

This pattern of taking an obj?: any lets us simulate keyword arguments. The idea is that we can
create a new SearchResult and just pass in an object containing the keys we want to specify.

The only thing to point out here is that we’re constructing the videoUr1 using a hard-coded URL
format. You're welcome to change this to a function which takes more arguments, or use the video
id directly in your view to build this URL if you need to.

Writing the YouTubeSearchService

The API

For this example we’re going to be using the YouTube v3 search APT*%.

o In order to use this API you need to have an APIkey. I've included an APIkey in the sample
code which you can use. However, by the time you read this, you may find it’s over the
rate limits. If that happens, you’ll need to issue your own key.

To issue your own key see this documentation®. For the sake of simplicity, I've registered a
server key, but you should probably use a browser key if you’re going to put your javascript
code online.

We’re going to setup two constants for our YouTubeSearchService mapping to our API key and the
API URL:

let YOUTUBE_API_KEY: string = "XXX_YOUR_KEY_HERE_XXX";
let YOUTUBE_API_URL: string = "https://www.googleapis.com/youtube/v3/search";

Eventually we’re going to want to test our app. One of the things we find when testing is that we

don’t always want to test against production - we often want to test against staging or a development
APL

To help with this environment configuration, one of the things we can do is make these constants
injectable.

Why should we inject these constants instead of just using them in the normal way? Because if we
make them injectable we can

1. have code that injects the right constants for a given environment at deploy time and
2. replace the injected value easily at test-time

By injecting these values, we have a lot more flexibility about their values down the line.

In order to make these values injectable, we use the { provide: ... , usevalue: ... } syntax

like this:

>?https://developers.google.com/youtube/v3/docs/search/list
>https://developers.google.com/youtube/registering_an_application#Create_API_Keys

www.EBookswWorld.ir

https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/registering_an_application#Create_API_Keys
https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/registering_an_application#Create_API_Keys

, O O 0 N O O b W N =

RGN

0 I O O b WO N =~

N
o O

11
12
13
14
15
16
17

HTTP 197

code/http/src/app/you-tube-search/you-tube-search.injectables.ts

import {
YouTubeSearchService,
YOUTUBE_API_KEY,
YOUTUBE_API_URL

} from './you-tube-search.service';

export const youTubeSearchInjectables: Array<any> = |

{provide: YouTubeSearchService, useClass: YouTubeSearchService},
{provide: YOUTUBE_API_KEY, useValue: YOUTUBE_API_KEY},

{provide: YOUTUBE_API_URL, useValue: YOUTUBE_API_URL}

] 7

Here we’re specifying that we want to bind YOUTUBE_API_KEY “injectably” to the value of YOUTUBE_-
API_KEY. (Same for YOUTUBE_API_URL, and we’ll define YouTubeSearchService in a minute.)

o To get a refresher on the different ways to create ‘injectables’, checkout the chapter on
dependency injection

If you recall, to make something available to be injected throughout our application, we need to put
it in providers for our NgModule. Since we're exporting youTubeServicelnjectables here we can
use it in our app.module.ts

// http/app.ts
import { HttpClientModule } from '@angular/common/http';
import { youTubeServicelnjectables } from "components/YouTubeSearchComponent";

/)
// further down

/S

@NgModule({
declarations: |
HttpApp,
// others
1,
imports: [BrowserModule, HttpClientModule],
bootstrap: [HttpApp],
providers: |
youTubeServicelnjectables // <--- right here

www.EBookswWorld.ir

18
19
20

26
27
28
29
30
31
32
33
34
35
36

HTTP 198

]

P
class HttpAppModule {}

Now we can inject YOUTUBE_API_KEY (from the youTubeServicelnjectables) instead of using the
variable directly.

YouTubeSearchService constructor
We create our YouTubeSearchService by making a service class:

code/http/src/app/you-tube-search/you-tube-search.service.ts

Jkk

* YouTubeService connects to the YouTube API

* See: * https://developers.google.com/youtube/v3/docs/search/1ist
*/
@Injectable()
export class YouTubeSearchService {
constructor(
private http: HttpClient,
@Inject(YOUTUBE_API_KEY) private apiKey: string,
@Inject(YOUTUBE_API_URL) private apiUrl: string

) {}

Q The @Injectable annotation allows us to inject things into this classes constructor.

In the constructor we inject three things:

1. HttpClient
2. YOUTUBE_API_KEY
3. YOUTUBE_API_URL

Notice that we make instance variables from all three arguments, meaning we can access them as
this.http, this.apiKey, and this.apiUrl respectively.

Notice that we explicitly inject using the @Inject(YOUTUBE_API_KEY) notation.

YouTubeSearchService Search

Next let’s implement the search function. search takes a query string and returns an Observable
which will emit a stream of SearchResult[]. That is, each item emitted is an array of SearchRe-
sults.

www.EBookswWorld.ir

38
39
40
41
42
43
44
45
46

38
39
40
41
42
43
44
45
46
47
48
49
90
o1
52
53
o4
o5
56

HTTP 199

code/http/src/app/you-tube-search/you-tube-search.service.ts

search(query: string): Observable<SearchResult[]> {
const params: string = [
“g=${query} ",
“key=${this.apiKey} ",
“part=snippet”,
“type=video~,
"maxResults=10"
].join('&");
const queryUrl = “${this.apiUrl}?${params}";

We’re building the queryUr1 in a manual way here. We start by simply putting the query params in
the params variable. (You can find the meaning of each of those values by reading the search API
docs®*.)

Then we build the queryUr1 by concatenating the apiUrl and the params.

Now that we have a queryUr1 we can make our request. In this case we are going to use http.get,
although HttpClient can make any kind of request (POST, DELETE, GET, etc.):

code/http/src/app/you-tube-search/you-tube-search.service.ts

search(query: string): Observable<SearchResult[]> {
const params: string = [
“g=${query} ",
“key=${this.apiKey} ",
“part=snippet”,
“type=video,
"maxResults=10"
].join('&");
const queryUrl = “${this.apiUrl}?${params}’;
return this.http.get(queryUrl).map(response => {
return <any>response['items'].map(item => {
// console.log("raw item", item); // uncomment if you want to debug
return new SearchResult({
id: item.id.videold,
title: item.snippet.title,
description: item.snippet.description,
thumbnailUrl: item.snippet.thumbnails.high.url
1)
1

>*https://developers.google.com/youtube/v3/docs/search/list

www.EBookswWorld.ir

https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/v3/docs/search/list
https://developers.google.com/youtube/v3/docs/search/list

ST
58

26
27
28
29
30
31
32
33
34

HTTP 200

});

Here we take the return value of http.get and use map to get the Response from the request. From
that response we extract the body as an object using . json() and then we iterate over each item
and convert it to a SearchResult.

Q If you’d like to see what the raw item looks like, just uncomment the console.log and
inspect it in your browsers developer console.

ﬁ Notice that we're calling (<any>response. json()).items. What’s going on here? We're
telling TypeScript that we’re not interested in doing strict type checking.

When working with a JSON API, we don’t generally have typing definitions for the API
responses, and so TypeScript won’t know that the Ob ject returned even has an items key,
so the compiler will complain.

We could call response. json()["items"] and then cast that to an Array etc., but in this
case (and in creating the SearchResult, it’s just cleaner to use an any type, at the expense
of strict type checking

YouTubeSearchService Full Listing

Here’s the full listing of our YouTubeSearchService.

0 In this chapter we are adding some style using the CSS framework Bootstrap®

code/http/src/app/you-tube-search/you-tube-search.service.ts

Ak
* YouTubeService connects to the YouTube API
* See: * https://developers.google.com/youtube/v3/docs/search/1ist
*/

@Injectable()

export class YouTubeSearchService {
constructor(
private http: HttpClient,
@Inject(YOUTUBE_API_KEY) private apiKey: string,

>>http://getbootstrap.com

www.EBookswWorld.ir

http://getbootstrap.com/
http://getbootstrap.com/

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

HTTP 201

@Inject(YOUTUBE_API_URL) private apiUrl: string
) {1}

search(query: string): Observable<SearchResult[]> {
const params: string = [
“g=${query} ",
“key=%${this.apiKey} ",
“part=snippet’,
“type=video’,
“maxResults=10"
].join("&");
const queryUrl = “${this.apiUrl}?${params}";
return this.http.get(queryUrl).map(response => {
return <any>response['items'].map(item => {
// console.log("raw item", item); // uncomment if you want to debug
return new SearchResult(({
id: item.id.videold,
title: item.snippet.title,
description: item.snippet.description,
thumbnailUrl: item.snippet.thumbnails.high.url
1)
1
1)

Writing the searchBoxComponent

The SearchBoxComponent plays a key role in our app: it is the mediator between our UI and the
YouTubeSearchService.

The SearchBoxComponent will :
1. Watch for keyup on an input and submit a search to the YouTubeSearchService
2. Emit a 1oading event when we’re loading (or not)

3. Emit a results event when we have new results

SearchBoxComponent @Component Definition

Let’s define our SearchBoxComponent @Component:

www.EBookswWorld.ir

22
23
24
25
26
27
28
29
30
31
32
33
34
35

B W N -

HTTP 202

code/http/src/app/you-tube-search/search-box.component.ts

@Component ({
selector: 'app-search-box',

template:
<input type="text" class="form-control" placeholder="Search" autofocus>

P
export class SearchBoxComponent implements OnInit {
@utput() loading: EventEmitter<boolean> = new EventEmitter<boolean>();

@utput() results: EventEmitter<SearchResult[]> = new EventEmitter<SearchResul\
t1>0);

constructor(private youtube: YouTubeSearchService,
private el: ElementRef) {

The selector we've seen many times before: this allows us to create a <app-search-box> tag.

The two @0outputs specify that events will be emitted from this component. That is, we can use the
(output)="callback()" syntax in our view to listen to events on this component. For example,
here’s how we will use the app-search-box tag in our view later on:

<app-search-box

(loading)="1loading = $event"
(results)="updateResults($event)"
></app-search-box>

In this example, when the SearchBoxComponent emits a loading event, we will set the variable
loading in the parent context. Likewise, when the SearchBoxComponent emits a results event, we
will call the updateResults() function, with the value, in the parent’s context.

In the @Component class we're specifying the properties of the events with the names 1oading and
results. In this example, each event will have a corresponding EventEmitter as an instance variable
of the controller class. We’ll implement that in a few minutes.

For now, remember that @Component is like the public API for our component, so here we’re just
specifying the name of the events, and we’ll worry about implementing the EventEmitters later.

SearchBoxComponent template Definition

Our template is straightforward. We have one input tag:

www.EBookswWorld.ir

24
25
26

28
29
30
31

32
33
34

HTTP 203

code/http/src/app/you-tube-search/search-box.component.ts

template:
<input type="text" class="form-control" placeholder="Search" autofocus>

SearchBoxComponent Controller Definition
Our SearchBoxComponent controller is a new class:

code/http/src/app/you-tube-search/search-box.component.ts

export class SearchBoxComponent implements OnlInit {
@utput() loading: EventEmitter<boolean> = new EventEmitter<boolean>();
@utput() results: EventEmitter<SearchResult[]> = new EventEmitter<SearchResul\

t[1>0);

We say that this class implements OnInit because we want to use the ngonInit lifecycle callback. If
a class implements OnInit then the ngOnInit function will be called after the first change detection

check.

ngOnInit is a good place to do initialization (vs. the constructor) because inputs set on a component
are not available in the constructor.

Here we create the EventEmitters for both loading and the results. loading will emit a boolean
when this search is loading and results will emit an array of SearchResults when the search is
finished.

SearchBoxComponent Controller Definition constructor
Let’s talk about the SearchBoxComponent constructor:

code/http/src/app/you-tube-search/search-box.component.ts

constructor(private youtube: YouTubeSearchService,
private el: ElementRef) {

In our constructor we inject :
1. Our YouTubeSearchService and
2. The element el that this component is attached to. el is an object of type ElementRef, which

is an Angular wrapper around a native element.

We set both injections as instance variables.

www.EBookswWorld.ir

36
37
38

HTTP 204

SearchBoxComponent Controller Definition ngoninit

On this input box we want to watch for keyup events. The thing is, if we simply did a search after
every keyup that wouldn’t work very well. There are three things we can do to improve the user
experience:

1. Filter out any empty or short queries

2. “debounce” the input, that is, don’t search on every character but only after the user has
stopped typing after a short amount of time

3. discard any old searches, if the user has made a new search

We could manually bind to keyup and call a function on each keyup event and then implement
filtering and debouncing from there. However, there is a better way: turn the keyup events into an
observable stream.

RxJS provides a way to listen to events on an element using Rx.Observable. fromEvent. We can use
it like so:

code/http/src/app/you-tube-search/search-box.component.ts

ngOnInit(): void {
// convert the “keyup™ event into an observable stream
Observable. fromEvent(this.el.nativeElement, 'keyup')

Notice that in fromEvent:

« the first argument is this.el.nativeElement (the native DOM element this component is
attached to)

« the second argument is the string 'keyup', which is the name of the event we want to turn
into a stream

We can now perform some RxJS magic over this stream to turn it into SearchResults. Let’s walk
through step by step.

Given the stream of keyup events we can chain on more methods. In the next few paragraphs we’re
going to chain several functions on to our stream which will transform the stream. Then at the end
we’ll show the whole example together.

First, let’s extract the value of the input tag:
.map((e: any) => e.target.value) // extract the value of the input

Above says, map over each keyup event, then find the event target (e.target, that is, our input
element) and extract the value of that element. This means our stream is now a stream of strings.

Next:

www.EBookswWorld.ir

HTTP 205
.filter((text: string) => text.length > 1)

This filter means the stream will not emit any search strings for which the length is less than one.
You could set this to a higher number if you want to ignore short searches.

.debounceTime(250)

debounceTime means we will throttle requests that come in faster than 250ms. That is, we won’t
search on every keystroke, but rather after the user has paused a small amount.

.do(() => this.loading.emit(true)) // enable loading

Using do on a stream is a way to perform a function mid-stream for each event, but it does not
change anything in the stream. The idea here is that we’ve got our search, it has enough characters,
and we’ve debounced, so now we’re about to search, so we turn on loading.

this.loadingisanEventEmitter. We “turn on” loading by emitting true as the next event. We emit
something on an EventEmitter by calling next. Writing this.loading.emit(true) means, emit a
true event on the loading EventEmitter. When we listen to the 1loading event on this component,
the $event value will now be true (we’ll look more closely at using $event below).

.map((query: string) => this.youtube.search(query))
.switch()

We use .map to call perform a search for each query that is emitted. By using switch we're,
essentially, saying “ignore all search events but the most recent”. That is, if a new search comes
in, we want to use the most recent and discard the rest.

Reactive experts will note that 'm handwaving here. switch has a more specific
technical definition which you can read about in the RxJS docs here®.

For each query that comes in, we’re going to perform a search on our YouTubeSearchService.

Putting the chain together we have this:

*Shttps://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md

www.EBookswWorld.ir

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/switch.md

36
37
38
39
40
41
42
43
44
45
46
47

47
48
49
50
51
52
o3
54
55
56
o7
58
959
60

HTTP 206

code/http/src/app/you-tube-search/search-box.component.ts

ngOnInit(): void {

// convert the “keyup™ event into an observable stream

Observable. fromEvent(this.el.nativeElement, 'keyup')
.map((e: any) => e.target.value) // extract the value of the input
.filter((text: string) => text.length > 1) // filter out if empty
.debounceTime(250) // only once every 250ms
.do(() => this.loading.emit(true)) // enable loading
// search, discarding old events if new input comes in
.map((query: string) => this.youtube.search(query))
.switeh()
// act on the return of the search
.subscribe(

The API of RxJS can be a little intimidating because the API surface area is large. That said, we’ve
implemented a sophisticated event-handling stream in very few lines of code!

Because we are calling out to our YouTubeSearchService our stream is now a stream of SearchRe-
sult[]. We can subscribe to this stream and perform actions accordingly.

subscribe takes three arguments: onSuccess, onError, onCompletion.

code/http/src/app/you-tube-search/search-box.component.ts

.subscribe(

(results: SearchResult[]) => { // on sucesss
this.loading.emit(false);
this.results.emit(results);

1,

(err: any) => { // on error
console.log(err);
this.loading.emit(false);

1

() => { // on completion
this.loading.emit(false);

The first argument specifies what we want to do when the stream emits a regular event. Here we
emit an event on both of our EventEmitters:

1. We call this.loading.emit(false), indicating we’ve stopped loading

www.EBookswWorld.ir

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1

HTTP

The second argument specifies what should happen when the stream has an error event. Here we

2. We call this.results.emit(results), which will emit an event containing the list of results

set this.loading.emit(false) and log out the error.

The third argument specifies what should happen when the stream completes. Here we also emit

that we're done loading.

SearchBoxComponent: Full Listing

All together, here’s the full listing of our SearchBoxComponent Component:

code/http/src/app/you-tube-search/search-box.component.ts

@Component({
selector: 'app-search-box',
template: °
<input type="text" class="form-control" placeholder="Search" autofocus>
P
export class SearchBoxComponent implements OnInit {

t[

@utput() loading: EventEmitter<boolean> = new EventEmitter<boolean>();

@output() results: EventEmitter<SearchResult[]> = new EventEmitter<SearchResul\

10O

constructor(private youtube: YouTubeSearchService,
private el: ElementRef) {

ngOnInit(): void {
// convert the “keyup ™ event into an observable stream
Observable. fromEvent(this.el.nativeElement, 'keyup')
.map((e: any) => e.target.value) // extract the value of the input
.filter((text: string) => text.length > 1) // filter out if empty
.debounceTime(250) // only once every 250ms
.do(() => this.loading.emit(true)) // enable loading
// search, discarding old events if new input comes in
.map((query: string) => this.youtube.search(query))
.switch()
// act on the return of the search
.subscribe(
(results: SearchResult[]) => { // on sucesss
this.loading.emit(false);
this.results.emit(results);

www.EBookswWorld.ir

52
53
o4
55
56
o7
58
59
60
61
62

0 N O O & W N =

e
W N~ OO O

14
15
16
17
18
19

HTTP

}

(err: any) => { // on error
console.log(err);
this.loading.emit(false);

}

() => { // on completion
this.loading.emit(false);

208

WFriting SearchResultComponent

The SearchBoxComponent was fairly complicated . Let’s handle a
much easier component now: the SearchResultComponent. The
SearchResultComponent’s job is to render a single SearchResult.

Given what we've already covered there aren’t any new ideas
here, so let’s take it all at once:

code/http/src/app/you-tube-search/search-result.component.ts

import
Component,
OnInit,
Input
} from '@angular/core’;

import { SearchResult } from './search-result.model';

@Component({

selector: 'app-search-result',

templateUrl: './search-result.component.html'
1))

export class SearchResultComponent implements OnInit {
@Input() result: SearchResult;

constructor() { }

ngOnInit() {
}

www.EBookswWorld.ir

Charlie The Cat -
Kitten Playing iPad 2
Il Game For Cats
Cute Funny Clever
Pets Bloopers

HELLO REDDIT, Thanks for the
support! More Charlie the Cat Videos
- http://youtu.be/xZHWYNWd0
Check My Other Videos Kitten
HArlem Shake ...

Watch

Single Search Result Component

20
21

0 N O O B~ W N -

(AN
N »~ O ©

HTTP

209

A few things:

The @Component takes a single input result, on which we will put
the SearchResult assigned to this component.

The template shows the title, description, and thumbnail of the
video and then links to the video via a button.

code/http/src/app/you-tube-search/search-result.component.html

<div class="col-sm-6 col-md-3">
<div class="thumbnail">

<div class="caption">
<h3>{{result.title}}</h3>
<p>{{result.description}}</p>
<p><a href="{{result.videoUrl}}"
class="btn btn-default" role="button">
Watch</p>
</div>
</div>
</div>

The SearchResultComponent simply stores the SearchResult in
the instance variable result.

Writing YouTubeSearchComponent

The last component we have to implement is the YouTubeSearch-
Component. This is the component that ties everything together.

YouTubeSearchComponent @Component

www.EBookswWorld.ir

© © 0 N O O

10
11
12
13
14
15
16
17
18
19

HTTP 210

code/http/src/app/you-tube-search/you-tube-search.component.ts

@Component ({
selector: 'app-you-tube-search',
templateUrl: './you-tube-search.component.html'’
})
export class YouTubeSearchComponent implements OnInit {
results: SearchResult[];
loading: boolean;

Our @Component decorator is straightforward: use the selector
app-you-tube-search.

YouTubeSearchComponent Controller
Before we look at the template, let’s take a look at the YouTubeSearchComponent controller:

code/http/src/app/you-tube-search/you-tube-search.component.ts

export class YouTubeSearchComponent implements OnInit {
results: SearchResult[];
loading: boolean;

constructor() { }
ngOnInit() { }

updateResults(results: SearchResult[]): void {
this.results = results;
// console.log("results:", this.results),; // uncomment to take a look

This component holds one instance variable: results which is an array of SearchResults.

We also define one function: updateResults. updateResults simply takes whatever new SearchRe-
sult[] it’s given and sets this.results to the new value.

We’ll use both results and updateResults in our template.

YouTubeSearchComponent template

Our view needs to do three things:

1. Show the loading indicator, if we're loading

www.EBookswWorld.ir

© 00 39 O Ol & W N =

10
11
12
13
14
15
16

HTTP 211

2. Listen to events on the search-box
3. Show the search results

Next lets look at our template. Let’s build some basic structure and show the loading gif next to the
header:

code/http/src/app/you-tube-search/you-tube-search.component.html

<div class='container'>
<div class="page-header">
<h1>YouTube Search
<img
style="float: right;"
*nglf="1loading"
src='assets/images/loading.gif' />
</h1>
</div>

We only want to show this loading image if loading is true, so we use ngIf to implement that
functionality.

Next, let’s look at the markup where we use our search-box:

code/http/src/app/you-tube-search/you-tube-search.component.html

<div class="row">
<div class="input-group input-group-1g col-md-12">
<app-search-box
(loading)="loading = $event"
(results)="updateResults($event)"
></app-search-box>
</div>

The interesting part here is how we bind to the loading and results outputs. Notice, that we use
the (output)="action()" syntax here.

For the 1oading output, we run the expression loading = $event. $event will be substituted with
the value of the event that is emitted from the EventEmitter. That is, in our SearchBoxComponent,
when we call this.loading.emit(true) then $event will be true.

Similarly, for the results output, we call the updateResults() function whenever a new set of
results are emitted. This has the effect of updating our components results instance variable.

Lastly, we want to take the list of results in this component and render a search-result for each
one:

www.EBookswWorld.ir

19
20
21
22
23
24
25

0 N O O s

11
12
13
14
15
16
17
18
19

HTTP

code/http/src/app/you-tube-search/you-tube-search.component.html

212

<div class="row">
<app-search-result
*ngFor="1et result of results"”
[result]="result">
</app-search-result>
</div>
</div>

YouTubeSearchComponent Full Listing
Here’s the full listing for the YouTubeSearchComponent:

code/http/src/app/you-tube-search/you-tube-search.component.ts

@Component ({
selector: 'app-you-tube-search',
templateUrl: './you-tube-search.component.html'’

P

export class YouTubeSearchComponent implements OnInit

results: SearchResult[];
loading: boolean;

constructor() { }
ngOnInit() { }

updateResults(results: SearchResult[]): void {
this.results = results;

// console.log("results:", this.results); // uncomment

to take a look

and the template:

www.EBookswWorld.ir

0 = O O b W N =~

NN NN NN N B S s s s s
O O b WO NP O © 00O O b WO N O O

HTTP 213

code/http/src/app/you-tube-search/you-tube-search.component.html

<div class='container'>
<div class="page-header">
<h1>YouTube Search
<img
style="float: right;"
*nglf="1loading"
src='assets/images/loading.gif' />
</h1>
</div>

<div class="row">
<div class="input-group input-group-1g col-md-12">
<app-search-box
(loading)="1loading = $event"
(results)="updateResults($event)"
></app-search-box>
</div>
</div>

<div class="row">
<app-search-result
*ngFor="1et result of results"
[result]="result">
</app-search-result>
</div>
</div>

There we have it! A functional search-as-you-type implemented for YouTube video search! Try
running it from the code examples if you haven’t already.

@angular/common/http API

Of course, all of the HTTP requests we've made so far have simply been GET requests. It’s important
that we know how we can make other requests too.

Making a posT request

Making POST request with @angular/common/http is very much like making a GET request except
that we have one additional parameter: a body.

www.EBookswWorld.ir

HTTP 214

jsonplaceholder APT°” also provides a convent URL for testing our POST requests, so let’s use it for
a POST:

code/http/src/app/more-http-requests/more-http-requests.component.ts

20 makePost(): void {

21 this.loading = true;

22 this.http

23 .post(

24 "https://jsonplaceholder.typicode.com/posts’,
25 JSON.stringify({

26 body: 'bar',

27 title: 'foo',

28 userld: 1

29 P

30)

31 .subscribe(data => {

32 this.data = data;

33 this.loading = false;
34 });

35 }

Notice in the second argument we’re taking an Object and converting it to a JSON string using
JSON.stringify.

PUT / PATCH / DELETE / HEAD
There are a few other fairly common HTTP requests and we call them in much the same way.

« http.put and http.patch map to PUT and PATCH respectively and both take a URL and a body
« http.delete and http.head map to DELETE and HEAD respectively and both take a URL (no
body)

Here’s how we might make a DELETE request:

*"http://jsonplaceholder.typicode.com

www.EBookswWorld.ir

http://jsonplaceholder.typicode.com/
http://jsonplaceholder.typicode.com/

37
38
39
40
41
42
43
44
45

47
48
49
90
o1
52
53
o4
55
56
o7
58
99
60
61
62
63

HTTP 215

code/http/src/app/more-http-requests/more-http-requests.component.ts

makeDelete(): void {
this.loading = true;
this.http
.delete('https://jsonplaceholder.typicode.com/posts/1")
.subscribe(data => {
this.data = data;
this.loading = false;

});

Custom HTTP Headers

Let’s say we want to craft a GET request that uses a special X-API-TOKEN header. We can create a
request with this header like so:

code/http/src/app/more-http-requests/more-http-requests.component.ts

makeHeaders(): void {
const headers: HttpHeaders = new HttpHeaders(({
"X-API-TOKEN': 'ng-book'
1

const req = new HttpRequest(
"GET',
"https://jsonplaceholder.typicode.com/posts/1',
{
headers: headers
}
)i

this.http.request(req).subscribe(data => {
this.data = data['body'];

});

Ssummary

@angular/common/http is flexible and suitable for a wide variety of APIs.

One of the great things about @angular/common/http is that it has support for mocking the backend
which is very useful in testing. To learn about testing HTTP, flip on over to the testing chapter.

www.EBookswWorld.ir

Routing

In web development, routing means splitting the application into different areas usually based on
rules that are derived from the current URL in the browser.

For instance, if we visit the / path of a website, we may be visiting the home route of that website.
Or if we visit /about we want to render the “about page”, and so on.

Why Do We Need Routing?

Defining routes in our application is useful because we can:

« separate different areas of the app;
« maintain the state in the app;
« protect areas of the app based on certain rules;

For example, imagine we are writing an inventory application similar to the one we described in
previous chapters.

When we first visit the application, we might see a search form where we can enter a search term
and get a list of products that match that term.

After that, we might click a given product to visit that product’s details page.

Because our app is client-side, it’s not technically required that we change the URL when we change
“pages”. But it’s worth thinking about for a minute: what would be the consequences of using the
same URL for all pages?

+ You wouldn’t be able to refresh the page and keep your location within the app
+ You wouldn’t be able to bookmark a page and come back to it later
+ You wouldn’t be able to share the URL of that page with others

Or put in a positive light, routing lets us define a URL string that specifies where within our app a
user should be.

In our inventory example we could determine a series of different routes for each activity, for
instance:

The initial root URL could be represented by http://our-app/. When we visit this page, we could
be redirected to our “home” route at http://our-app/home.

When accessing the ‘About Us’ area, the URL could become http: //our -app/about. This way if we
sent the URL http://our-app/about to another user they would see same page.

www.EBookswWorld.ir

< O O B W N =

© 00 N O U b W N =

Routing 217

How client-side routing works

Perhaps you’ve written server-side routing code before (though, it isn’t necessary to complete this
chapter). Generally with server-side routing, the HTTP request comes in and the server will render
a different controller depending on the incoming URL.

For instance, with Express.js*® you might write something like this:

var express = require('express');
var router = express.Router();

// define the about route
router.get('/about', function(req, res) {
res.send('About us');

1)
Or with Ruby on Rails*® you might have:

routes.rb

get '/about', to: 'pages#about'

PagesController.rb
class PagesController < ActionController::Base
def about
render
end
end

The pattern varies per framework, but in both of these cases you have a server that accepts a request
and routes to a controller and the controller runs a specific action, depending on the path and
parameters.

Client-side routing is very similar in concept but different in implementation. With client-side
routing we’re not necessarily making a request to the server on every URL change. With our
Angular apps, we refer to them as “Single Page Apps” (SPA) because our server only gives us a
single page and it’s our JavaScript that renders the different pages.

So how can we have different routes in our JavaScript code?

>*http://expressjs.com/guide/routing. html
**http://rubyonrails.org/

www.EBookswWorld.ir

http://expressjs.com/guide/routing.html
http://rubyonrails.org/
http://expressjs.com/guide/routing.html
http://rubyonrails.org/

Routing 218

The beginning: using anchor tags
Client-side routing started out with a clever hack: Instead of using a normal server-side URL for a
page in our SPA, we use the anchor tag as the client-side URL.

As you may already know, anchor tags were traditionally used to link directly to a place within the
webpage and make the browser scroll all the way to where that anchor was defined. For instance, if
we define an anchor tag in an HTML page:

<I-- ... lots of page content here ... -->
<h1>About</h1>

And we visited the URL http: //something/#about, the browser would jump straight to that H1 tag
that identified by the about anchor.

The clever move for client-side frameworks used for SPAs was to take the anchor tags and use them
represent the routes within the app by formatting them as paths.

For example, the about route for an SPA would be something like http://something/#/about. This
is what is known as hash-based routing.

What’s neat about this trick is that it looks like a “normal” URL because we’re starting our anchor
with a slash (/about).

The evolution: HTMLS client-side routing

With the introduction of HTMLS5, browsers acquired the ability to programmatically create new
browser history entries that change the displayed URL without the need for a new request.

This is achieved using the history.pushState method that exposes the browser’s navigational
history to JavaScript.

So now, instead of relying on the anchor hack to navigate routes, modern frameworks can rely on
pushState to perform history manipulation without reloads.

Angular 1 Note: This way of routing already works in Angular 1, but it needs to be
explicitly enabled using $1ocationProvider.html5Mode(true).

In Angular, however, the HTML5 is the default mode. Later in this chapter we show how to change
from HTML5 mode to the old anchor tag mode.

www.EBookswWorld.ir

Routing 219
ﬂ There’s two things you need to be aware of when using HTML5 mode routing, though

1. Not all browsers support HTML5 mode routing, so if you need to support older
browsers you might be stuck with hash-based routing for a while.
2. The server has to support HTML5 based routing.

It may not be immediately clear why the server has to support HTML5 based-routing, we’ll
talk more about why later in this chapter.

Writing our first routes

9 The Angular docs recommends using HTML5 mode routing®. But due to the challenges
mentioned in the previous section we will for simplicity be using hash based routing in our
examples.

In Angular we configure routes by mapping paths to the component that will handle them.
Let’s create a small app that has multiple routes. On this sample application we will have 3 routes:

« A main page route, using the /#/home path;
« An about page, using the /#/about path;
+ A contact us page, using the /#/contact path;

And when the user visits the root path (/#/), it will redirect to the home path.
Components of Angular routing

There are three main components that we use to configure routing in Angular:

+ Routes describes the routes our application supports

« RouterOutlet is a “placeholder” component that shows Angular where to put the content of
each route

+ RouterlLink directive is used to link to routes

Let’s look at each one more closely.

Imports

In order to use the router in Angular, we import constants from the @angular/router package:

https://angular.io/docs/ts/latest/guide/router.html#!#browser-url-styles

www.EBookswWorld.ir

https://angular.io/docs/ts/latest/guide/router.html#!%23browser-url-styles
https://angular.io/docs/ts/latest/guide/router.html#!%23browser-url-styles

o N O o

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Routing

code/routes/routing/src/app/app.module.ts

220

import {
RouterModule,
Routes
} from '@angular/router’;

Now we can define our router configuration.

Routes

To define routes for our application, create a Routes configuration and then use RouterMod-
ule. forRoot(routes) to provide our application with the dependencies necessary to use the router.

First, let’s look at the routes definitions:

code/routes/routing/src/app/app.module.ts

const routes: Routes = |

// basic routes
path: "', redirectTo: 'home', pathMatch: 'full’
path: 'home', component: HomeComponent },
path: 'about', component: AboutComponent },
path: 'contact', component: ContactComponent },

(e N e W e W e W e

path: 'contactus', redirectTo: 'contact' },

// authentication demo
{ path: 'login', component: LoginComponent },
{

path: 'protected',

component: ProtectedComponent,

canActivate: [LoggedInGuard |
1,
// nested
{

path: 'products',
component: ProductsComponent,
children: childRoutes
}
l;

Notice a few things about the routes:

www.EBookswWorld.ir

32

Routing 221

« path specifies the URL this route will handle
« component is what ties a given route path to a component that will handle the route
» the optional redirectTo is used to redirect a given path to an existing route

We'll dive into the details of each route in this chapter, but at a high-level, the goal of routes is to
specify which component will handle a given path.

Redirections

When we use redirectTo on a route definition, it will tell the router that when we visit the path of
the route, we want the browser to be redirected to another route.

In our sample code above, if we visit the root path at http://localhost:4200/#/', we’ll be redirected
to the route home.

Another example is the contactus route:

code/routes/routing/src/app/app.module.ts

{ path: 'contactus', redirectTo: 'contact' },

In this case, if we visit the URL http://localhost:4200/#/contactus®’, we’ll see that the browser
redirects to /contact.

0 Sample Code The complete code for the examples in this section can be found in the
routes/routing folder of the sample code. That folder contains a README . md, which gives
instructions for building and running the project.

There are many different imports required for routing and we don’t list every single one in
every code example below. However we do list the filename and line number from which
almost every example is taken from. If you’re having trouble figuring out how to import a
particular class, open up the code using your editor to see the entire code listing.

Try running the code while reading this section and feel free play around to get a deeper
insight about how it all works.

Installing our Routes

Now that we have our Routes routes, we need to install it. To use the routes in our app we do two
things to our NgModule:

1. Import the RouterModule
2. Install the routes using RouterModule. forRoot (routes) in the imports of our NgModule

Here’s our routes configured into our NgModule for this app:

®Mhttp://localhost:4200/#/
http://localhost:4200/#/contactus

www.EBookswWorld.ir

http://localhost:4200/#/
http://localhost:4200/#/contactus
http://localhost:4200/#/
http://localhost:4200/#/contactus

26
27
28
29
30
31
32

959
60
61
62
63
64
65
66
67

Routing 222

code/routes/routing/src/app/app.module.ts

const routes: Routes = |
// basic routes
path: '', redirectTo: 'home', pathMatch: 'full' },
path: 'home', component: HomeComponent },
path: 'about', component: AboutComponent },
path: 'contact', component: ContactComponent },

(e N e W e W e W e

path: 'contactus', redirectTo: 'contact' },

code/routes/routing/src/app/app.module.ts

imports: |
BrowserModule,
FormsModule,
HttpModule,
RouterModule. forRoot(routes), // <-- routes

// added this for our child module
ProductsModule

] 7

RouterOutlet USiNg <router-outlet>

When we change routes, we want to keep our outer “layout” template and only substitute the “inner
section” of the page with the route’s component.

In order to describe to Angular where in our page we want to render the contents for each route,
we use the RouterOutlet directive.

Our component @Component has a template which specifies some div structure, a section for
Navigation, and a directive called router-outlet.

The router-outlet element indicates where the contents of each route component will be
rendered.

We are are able to use the router-outlet directive in our template because we imported
the RouterModule in our NgModule.

Here’s the component and template for the navigation wrapper of our app:

www.EBookswWorld.ir

o 3 O

11
12
13
14

0 N O O B~ W N -

N N S b sy s
© ©W 0O 1 O O b W N~ O O

Routing

code/routes/routing/src/app/app.component.ts

223

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']

P

export class AppComponent {
constructor(private router: Router) {

};

and the template:

code/routes/routing/src/app/app.component.html

<div class="page-header">
<div class="container">
<h1>Router Sample</hi1>
<div class="navLinks">
<a [routerLink]="["'/home']">Home
<a [routerlLink]="["'/about']">About Us
<a [routerLink]="["'/contact']">Contact Us
I
<a [routerLink]="["'/products']">Products

<a [routerLink]='

[
"

"/login']">Login

<a [routerlLink]="['/protected']">Protected
</div>

</div>

</div>

<div id="content">
<div class="container">
<router-outlet></router-outlet>
</div>
</div>

If we look at the template above, you will note the router -outlet element right below the navigation
menu. When we visit /home, that’s where HomeComponent template will be rendered. The same

happens for the other components.

www.EBookswWorld.ir

o N O O B~ W

Routing 224

RouterLink using [routerLink]

Now that we know where route templates will be rendered, how do we tell Angular to navigate to
a given route?

We might try linking to the routes directly using pure HTML:
Home

But if we do this, we’ll notice that clicking the link triggers a page reload and that’s definitely not
what we want when programming single page apps.

To solve this problem, Angular provides a solution that can be used to link to routes with no page
reload: the RouterLink directive.

This directive allows you to write links using a special syntax:

code/routes/routing/src/app/app.component.html

<h1>Router Sample</hi>
<div class="navLinks">
<a [routerLink]="["'/home']">Home
<a [routerlLink]="["/about']">About Us
<a [routerLink]="["'/contact']">Contact Us

We can see on the left-hand side the [routerLink] that applies the directive to the current element
(in our case a tags).

Now, on the right-hand side we have an array with the route path as the first element, like
"['/home']" or "['/about']" that will indicate which route to navigate to when we click the
element.

It might seem a little odd that the value of routerLink is a string with an array containing a string
("['/home"] ", for example). This is because there are more things you can provide when linking to
routes, but we’ll look at this into more detail when we talk about child routes and route parameters.

For now, we're only using routes names from the root app component.

Putting it all together

So now that we have all the basic pieces, let’s make them work together to transition from one route
to the other.

The first thing we need to write for our application is the index.htm! file.

Here’s the full code for that:

www.EBookswWorld.ir

0 N O O B~ W N -

[Gy
D W NN, O

Routing 225

code/routes/routing/src/index.html

<!doctype html>

<html>

<head>
<meta charset="utf-8">
<title>Routing</title>
<base href="/">

<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>
<app-root>Loading. .. </app-root>

</body>

</html>

The code should be familiar by now, with the exception of this line:
<base href="/">

This line declares the base HTML tag. This tag is traditionally used to tell the browser where to look
for images and other resources declared using relative paths.

It turns out Angular Router also relies on this tag to determine how to construct its routing
information.

For instance, if we have a route with a path of /hello and our base element declares href="/app",
the application will use /app/#* as the concrete path.

Sometimes though, coders of an Angular application don’t have access to the head section of the
application HTML. This is true for instance, when reusing headers and footers of a larger, pre-
existing application.

Fortunately there is a workaround for this case. You can declare the application base path
programmatically, when configuring our NgModule by using the APP_BASE_HREF provider:

www.EBookswWorld.ir

O N O O & W N~

©

11
12

S © W0 I O O b W N =

Routing 226

@NgModule({
declarations: [RoutesDemoApp |,
imports: |
BrowserModule,
RouterModule. forRoot(routes) // <-- routes
1,
bootstrap: [RoutesDemoApp],
providers: |
{ provide: LocationStrategy, useClass: HashLocationStrategy },
{ provide: APP_BASE_HREF, useValue: '/' } // <--- this right here
]
b

Putting { provide: APP_BASE_HREF, useValue: '/' } intheproviders is the equivalent of using
<base href="/"> on our application HTML header.

When deploying to production we can also set the value of the base-href by using the
--base-href command-line option

Creating the Components

Before we get to the main app component, let’s create 3 simple components, one for each of the
routes.

HomeComponent

The HomeComponent will just have an h1 tag that says “Wwelcome!”. Here’s the full code for our
HomeComponent:

code/routes/routing/src/app/home/home.component.ts

import { Component, OnInit } from '@angular/core';

@Component({
selector: 'app-home',
templateUrl: './home.component.html',
styleUrls: ['./home.component.css']

P

export class HomeComponent implements OnInit

constructor() { }

www.EBookswWorld.ir

11
12
13
14
15

0 < O O & W N~

[e
g » W N~ O O

Routing

ngOnInit() {
}

227

And template:

code/routes/routing/src/app/home/home.component.html

<h1>Welcome Home!</h1>

AboutComponent

Similarly, the AboutComponent will just have a basic h1:

code/routes/routing/src/app/about/about.component.ts

import { Component, OnInit } from '@angular/core';

@Component({
selector: 'app-about',
templateUrl: './about.component.html',
styleUrls: ['./about.component.css']

b
export class AboutComponent implements OnInit {

constructor() { }

ngOnInit() {
}

And template:

code/routes/routing/src/app/about/about.component.html

<h1>About Us</h1>

ContactComponent

And, likewise with AboutComponent:

www.EBookswWorld.ir

0 N O O & W N =

[G
O b W N =~ O ©

N O O B W N

Routing 228

code/routes/routing/src/app/contact/contact.component.ts

import { Component, OnInit } from '@angular/core';

@Component ({
selector: 'app-contact',
templateUrl: './contact.component.html',
styleUrls: ['./contact.component.css']

P
export class ContactComponent implements OnlInit {

constructor() { }

ngOnInit() {
}

And template:

code/routes/routing/src/app/contact/contact.component.html

<h1>Contact Us</hi1>

Nothing really very interesting about those components, so let’s move on to the mainapp.module.ts

file.

Application Component

Now we need to create the root-level “application” component that will tie everything together.

We start with the imports we’ll need, both from the core and router bundles:

code/routes/routing/src/app/app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import {
RouterModule,
Routes

Next step is to import the three components we created above:

www.EBookswWorld.ir

15
16
17
18

0 N O O B W N~

T S S G Ui G Wi G G
© © 0 1 O O b W N~ O O

Routing 229

code/routes/routing/src/app/app.module.ts

import { AppComponent } from './app.component';

import { HomeComponent } from './home/home.component';

import { ContactComponent } from './contact/contact.component';
import { AboutComponent } from './about/about.component';

For our root component, we’re going to use two router directives: RouterOutlet and the RouterLink.
Those directives, along with all other common router directives are imported when we put
RouterModule in the imports section of our NgModule.

As a recap, the RouterOutlet directive is then used to indicate where in our template the route
contents should be rendered. That’s represented by the <router-outlet></router-outlet> snippet
in our AppComponent template.

The RouterLink directive is used to create navigation links to our routes:

code/routes/routing/src/app/app.component.html

<div class="page-header">
<div class="container">
<h1>Router Sample</hi1>
<div class="navLinks">
<a [routerLink]="["'/home']">Home
<a [routerlLink]="["'/about']">About Us
<a [routerlLink]="["'/contact']">Contact Us
I

<a [routerlLink]=

"

['/products']">Products

<a [routerLink]="['/login']">Login

<a [routerlLink]="['/protected']">Protected
</div>

</div>

</div>

<div id="content">
<div class="container">
<router-outlet></router-outlet>
</div>
</div>

Using [routerLink] will instruct Angular to take ownership of the click event and then initiate a
route switch to the right place, based on the route definition.

Configuring the Routes

Next, we declare the routes creating an array of objects that conform to the Routes type:

www.EBookswWorld.ir

26
27
28
29
30
31
32

90
o1
52
53
o4
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
)
76

Routing

code/routes/routing/src/app/app.module.ts

230

const routes: Routes = |

// basic routes

L N e W e W e W)

path:
path:
path:
path:
path:

, redirectTo: 'home', pathMatch: 'full' },
"home', component: HomeComponent },

"about', component: AboutComponent },
'contact', component: ContactComponent },
'contactus', redirectTo: 'contact' },

code/routes/routing/src/app/app.module.ts

@NgModule({
declarations: |

AppComponent,

HomeComponent,

ContactComponent,

AboutComponent,

LoginComponent,

ProtectedComponent,

]I

imports:

[

BrowserModule,

FormsModule,
HttpModule,
RouterModule. forRoot(routes), // <-- routes

// added this for our child module
ProductsModule

] 4

providers: [

// uncomment this for "hash-bang" routing

// { provide: LocationStrategy, useClass: HashLocationStrategy }

AUTH_PROVIDERS,
LoggedInGuard

] I/

bootstrap: [AppComponent]

D)

export class AppModule { }

Notice that we put all necessary components in our declarations. If we’re going to route
to a component, then it needs to be declared in some NgModule (either this module or

imported).

www.EBookswWorld.ir

Routing 231

In our imports we have RouterModule. forRoot(routes). RouterModule. forRoot(routes) is a
function that will take our routes, configure the router, and return a list of dependencies like
RouteRegistry, Location, and several other classes that are necessary to make routing work.

In our providers we have this:
{ provide: LocationStrategy, useClass: HashLocationStrategy }

Let’s take an in depth look of what we want to achieve with this line.

Routing Strategies

The way the Angular application parses and creates paths from and to route definitions is called
location strategy.

0 In Angular 1 this is called routing modes instead

The default strategy is PathLocationStrategy, which is what we call HTML5 routing. While using
this strategy, routes are represented by regular paths, like /home or /contact.

We can change the location strategy used for our application by binding the LocationStrategy class
to a new, concrete strategy class.

Instead of using the default PathLocationStrategy we can also use the HashLocationStrategy.

The reason we’re using the hash strategy as a default is because if we were using HTML5 routing,
our URLs would end up being regular paths (that is, not using hash/anchor tags).

This way, the routes would work when you click a link and navigate on the client side, let’s say from
/about to /contact.

If we were to refresh the page, instead of asking the server for the root URL, which is what is being
served, instead we’d be asking for /about or /contact. Because there’s no known page at /about
the server would return a 404.

This default strategy works with hash based paths, like /#/home or /#/contact that the server
understands as being the / path. (This is also the default mode in Angular 1.)

0 Let’s say you want to use HTML5 mode in production, how do you set this up?

In order to use HTML5 mode routing, you have to configure your server to redirect every
“missing” route to the root URL.

Angular CLI supports this natively, but know that it doesn’t necessarily work by default
on your server. In the routes/routing project you can use HTMLS5 routes by simply doing
ng serve

www.EBookswWorld.ir

Routing 232

If we wanted to make our example application work with this new strategy, first we have to import
LocationStrategy and HashLocationStrategy and then add that location strategy to the providers
of our NgModule.

You could write your own strategy if you wanted to. All you need to do is extend the
LocationStrategy class and implement the methods. A good way to start is reading the
Angular source for the HashLocationStrategy or PathLocationStrategy classes.

Running the application

You can now go into the application root folder (code/routes/routing) and run npm start to boot
the application.

When you type http://localhost:4200/°* into your browser you should see the home route rendered:

! ng-pbook 2: Angular 2 Rout X Felipe

g

€« C [Y localhost:8080/#/home

Navigation: Home About Contact us

Welcome!

Home Route

“http://localhost:4200/

www.EBookswWorld.ir

http://localhost:4200/
http://localhost:4200/

Routing

233

Notice that the URL in the browser was redirected to http://localhost:4200/home®*.

Now clicking each link will render the appropriate routes:

! ng-book 2: Angular 2 Rout *

Felipe
€« C | [localhost:8080/#/about

Navigation: Home About Contact us

About

About Route

*http://localhost:4200/home

www.EBookswWorld.ir

http://localhost:4200/home
http://localhost:4200/home

Routing 234

! ng-book Z: Angular 2 Rout x Felipe

« C | [localhost:B080/#/contact e =

Navigation: Home About Contact us

Contact Us

Contact Us Route

Route Parameters

In our apps we often want to navigate to a specific resource. For instance, say we had a news website
and we had many articles. Each article may have an ID, and if we had an article with ID 3 then we
might navigate to that article by visiting the URL:

/articles/3

And if we had an article with an ID of 4 we would access it at
/articles/4

and so on.

Obviously we’re not going to want to write a route for each article, but instead we want to use a
variable, or route parameter. We can specify that a route takes a parameter by putting a colon : in
front of the path segment like this:

/route/:param

So in our example news site, we might specify our route as:

www.EBookswWorld.ir

N O O & W N -

Routing 235

/product/:id

To add a parameter to our router configuration, we specify the route path like this:

const routes: Routes = |
{ path: 'product/:id', component: ProductComponent },
1;

When we visit the route /product /123, the 123 part will be passed as the id route parameter to our
route.

But how can we retrieve the parameter for a given route? That’s where we use route parameters.

ActivatedRoute

In order to use route parameters, we need to first import ActivatedRoute:
import { ActivatedRoute } from '@angular/router’';

Next, we inject the ActivatedRoute into the constructor of our component. For example, let’s say
we have a Routes that specifies the following:

const routes: Routes = |
{ path: 'product/:id', component: ProductComponent }

] 4

Then when we write the ProductComponent, we add the ActivatedRoute as one of the constructor
arguments:

export class ProductComponent {
id: string;

constructor(private route: ActivatedRoute) {
route.params.subscribe(params => { this.id = params['id']; });

Notice that route.params is an observable. We can extract the value of the param into a hard value
by using .subscribe. In this case, we assign the value of params['id'] to the id instance variable
on the component.

Now when we visit /product /230, our component’s id attribute will receive 230.

www.EBookswWorld.ir

Routing 236

Music Search App

Let’s now work on a more complex application. We will build a music search application that has
the following features:

Search for tracks that match a given term

Show matching tracks in a grid

Show artist details when the artist name is clicked

Show album details and show a list of tracks when the album name is clicked
Show song details allow the user to play a preview when the song name is clicked

gk e

www.EBookswWorld.ir

Routing

Sportify music for active people

Search

rhapsody in blue Search

Results

{ﬁrmf]l"trfnrmaucw =
FF“" i -mw".::'m;"‘;-.-. s .-!!
ERSH

RHAPSODY IN BLUE
AN AM[IIII:AN IN PARIS

' PHILHARMONIC

George Gershwin
Rhapsody In Blue

Gershwin: Rhapsody in BluefAn Americanin

Paris
(:"E.RSHWIN JOM NAKAMATSU ...
PLAHC CORCERTO I F DH|E>?;1%“|{1E(§TNEICD

ORCHESTRA

RHAPSODY IM BLUE
CUBAN OVERTURE

George Gershwin
Rhapsody in Blue

Gershwin: Piano Concerto in F, Rhapsody in

[he

iano

Holls

George Gershwin
Rhapsody In Blue

Gershwin Plays Gershwin: The Piano Rolls

GERSHWIN gz b

versions for two pian

KATIA & MARIEL

George Gershwin
Rhapsody in Blue

Gershwin: Rhapsody in Blue; Piano Concerto in

George Gershwin
Rhapsody in Blue

Gershwin: Rhapsody in Blue [An American in
Paris

&

GERSHWIN
Rhapsody In Blue
AND

George Gershwin
Rhapsody in Blue

Gerswin - Rhapsody in Blue and Beyond

The Search View of our Music App

The routes we will need for this application will be:

+ /search - search form and results
+ /artists/:id - artist info, represented by a Spotify ID

www.EBookswWorld.ir

237

0 N O O B~ W N -

S =Y
<N O O WO N =r OO O

Routing 238

+ /albums/:id - album info, with a list of tracks using the Spotify ID
+ /tracks/:id - track info and preview, also using the Spotify ID

O Sample Code The complete code for the examples in this section can be found in the
routes/music folder of the sample code. That folder contains a README . md, which gives
instructions for building and running the project.

We will use the Spotify API®® to get information about tracks, artists and albums.

First Steps

The first file we need work on is app.module.ts. Let’s start by importing classes we’ll use from
Angular:

code/routes/music/src/app/app.module.ts

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpModule } from '@angular/http';
import

RouterModule,

Routes
} from '@angular/router’';
import

LocationStrategy,

HashLocationStrategy,

APP_BASE_HREF
} from '@angular/common';

import { AppComponent } from './app.component';
import { AlbumComponent } from './album/album.component';
import { ArtistComponent } from './artist/artist.component';

Now that we have the imports there, let’s think about the components we’ll use for each route.

« For the Search route, we'll create a SearchComponent. This component will talk to the Spotify
API to perform the search and then display the results on a grid.

®https://developer.spotify.com/web-api

www.EBookswWorld.ir

https://developer.spotify.com/web-api
https://developer.spotify.com/web-api

O© 00 9 O O b W N =~

_ e
W N =~

Routing 239

« For the Artists route, we’ll create an ArtistComponent which will show the artist’s informa-
tion

« For the Albums route, we’ll create an AlbumComponent which will show the list of tracks in the
album

« For the Tracks route, we’ll create a TrackComponent which will show the track and let us play
a preview of the song

Since this new component will need to interact with the Spotify API, it seems like we need to build
a service that uses the http module to call out to the API server.

Everything in our app depends on the data, so let’s build the Spoti fyService first.

The spotifyService

You can find the full code for the final version of the SpotifyService in the
routes/music/src/app folder of the sample code.

The first method we’ll implement is searchTrack which will search for a track, given a search term.
One of the endpoints documented on Spotify API docs is the Search endpoint®‘.

This endpoint does exactly what we want: it takes a query (using the q parameter) and a type
parameter.

Query in this case is the search term. And since we’re searching for songs, we should use type=track.

Here’s what a first version of the service could look like:

class SpotifyService {
constructor(public http: Http) {

}

searchTrack(query: string) {
let params: string = [
“g=${query} ",
“type=track”
. join("&");
let queryURL: string = “https://api.spotify.com/vil/search?${params}";
return this.http.request(queryURL) .map(res => res. json());

®Shttps://developer.spotify.com/web-api/search-item/

www.EBookswWorld.ir

https://developer.spotify.com/web-api/search-item/
https://developer.spotify.com/web-api/search-item/

0 I O O & W N =~

N S G
B WO N, O O

Routing 240

This code performs an HTTP GET request to the URL https://api.spotify.com/v1/search®’, passing our
query as the search term and type hardcoded to track.

This http call returns an Observable. We are going one step further and using the RxJS function
map to transform the result we would get (which is an http module’s Response object) and parsing
it as JSON, resulting on an object.

Any function that calls searchTrack will then have to use the Observable API to subscribe to the
response like this:

service
.searchTrack('query")
.subscribe((res: any) => console.log('Got object', res))

The searchComponent

Now that we have a service that will perform track searches, we can start coding the SearchCompo-
nent.

Again, we start with an import section:

code/routes/music/src/app/search/search.component.ts

J*
* Angular

*/

import {Component, OnInit} from '@angular/core’;
import

Router,

ActivatedRoute,
} from '@angular/router’;

J*
* Services
*/

import {SpotifyService} from '../spotify.service';

Here we’re importing, among other things, the Spoti fyService class we just created.

The goal here is to render each resulting track side by side on a card like below:

"https://api.spotify.com/v1/search

www.EBookswWorld.ir

https://api.spotify.com/v1/search
https://api.spotify.com/v1/search

©O© 00 N O O & W N

(AN
N o~

Routing 241

Huckleberry Flint
Whiskey Before Breakfast

A Brief And True Report Concerning Huckleberry Flint

Music App Card

We then start coding the component. We’re using search as the selector, making a few imports
and using the following template. The template is a bit long because we’re putting some reasonable
styles on it using the CSS framework Bootstrap®®, but it isn’t particularly complicated, relative to
what we’ve done so far:

code/routes/music/src/app/search/search.component.html

<h1>Search</h1>

<p>
<input type="text" #newquery
[value]="query"
(keydown.enter)="submit(newquery.value)">
<button (click)="submit(newquery.value)">Search</button>
</p>

<div *nglf="results">
<div *nglf="Iresults.length">
No tracks were found with the term '{{ query }}'

®http://getbootstrap.com

www.EBooksWorld.ir

http://getbootstrap.com/
http://getbootstrap.com/

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Routing 242

</div>

<div *nglf="results.length">
<h1>Results</h1>

<div class="row">
<div class="col-sm-6 col-md-4" *ngFor="let t of results">
<div class="thumbnail">
<div class="content">

<div class="caption">
<h3>
<a [routerLink]="['/artists', t.artists[Q].id]"»
{{ t.artists[@] .name }}

</h3>

<p>
<a [routerLink]="['/tracks', t.id]"»
{{ t.name }}

</p>
</div>
<div class="attribution">
<h4>
<a [routerLink]="['/albums', t.album.id]">
{{ t.album.name }}

</h4>
</div>
</div>
</div>
</div>
</div>
</div>
</div>

The Search Field

Let’s break down the HTML template a bit.

This first section will have the search field:

www.EBooksWorld.ir

0 N O O &~ W

18
19
20

24
25
26
27
28

Routing 243

code/routes/music/src/app/search/search.component.html

<p>
<input type="text" #newquery
[value]="query"
(keydown.enter)="submit(newquery.value)">
<button (click)="submit(newquery.value)">Search</button>
</p>

Here we have the input field and we’re binding its DOM element value property to the query
property of our component.

We also give this element a template variable named #newquery. We can now access the value of
this input within our template code by using newquery .value.

The button will trigger the submit method of the component, passing the value of the input field as
a parameter.

We also want to trigger submit when the user hits “Enter” so we bind to the keydown.enter event
on the input.

Search Results and Links

The next section displays the results. We’re relying on the NgFor directive to iterate through each
track from our results object:

code/routes/music/src/app/search/search.component.html

<div class="row">
<div class="col-sm-6 col-md-4" *ngFor="let t of results">
<div class="thumbnail">

For each track, we display the artist name:

code/routes/music/src/app/search/search.component.html

<h3>
<a [routerLink]="['/artists', t.artists[Q].id]">
{{ t.artists[@] .name }}

</h3>

www.EBookswWorld.ir

30
31
32
33
34

38
39
40
41

22
23
24
25
26
27
28
29
30
31
32

Routing 244

Notice how we’re using the RouterLink directive to redirect to ['/artists', t.artists[0].id].

This is how we set route parameters for a given route. Say we have an artist with an id abc123.
When this link is clicked, the app would then navigate to /artist/abc123 (where abc123 is the : id
parameter).

Further down we’ll show how we can retrieve this value inside the component that handles this
route.

Now we display the track:

code/routes/music/src/app/search/search.component.html

<p>
<a [routerlLink]="['/tracks', t.id]"»
{{ t.name }}

</p>

And the album:

code/routes/music/src/app/search/search.component.html

<a [routerLink]="['/albums', t.album.id]">
{{ t.album.name }}

</h4>

SearchComponent Class
Let’s take a look at the constructor first:

code/routes/music/src/app/search/search.component.ts

export class SearchComponent implements OnlInit {
query: string;
results: Object;

constructor(private spotify: SpotifyService,
private router: Router,
private route: ActivatedRoute) {
this.route
.queryParams
.subscribe(params => { this.query = params['query'] || ''; });

www.EBookswWorld.ir

43
44
45
46
47
48
49
o0
o1
52

Routing 245
Here we're declaring two properties:

« query for current search term and
« results for the search results

On the constructor we're injecting the SpotifyService (that we created above), Router, and the
ActivatedRoute and making them properties of our class.

In our constructor we subscribe to the queryParams property - this lets us access query parameters,
such as the search term (params['query']).

In a URL like: http://localhost/#*/search?query=cats&order=ascending, queryParams gives us
the parameters in an object. This means we could access the order with params['order'] (in this
case, ascending).

Also note that queryParams are different than route.params. Whereas route . params match param-
eters in the route queryParams match parameters in the query string.

In this case, if there is no query param, we set this.query to the empty string.

search

In our SearchComponent we will call out to the Spoti fyService and render the results. There are
two cases when we want to run a search:

We want to run a search when the user:

« enters a search query and submits the form
« navigates to this page with a given URL in the query parameters (e.g. someone shared a link
or bookmarked the page)

To perform the actual search for both cases, we create the search method:

code/routes/music/src/app/search/search.component.ts

search(): void {
console.log('this.query', this.query);
if (!this.query) {
return;

this.spotify
.searchTrack(this.query)
.subscribe((res: any) => this.renderResults(res));

www.EBookswWorld.ir

54
55
56
o
58
59

34
35
36

Routing 246

The search function uses the current value of this.query to know what to search for. Because we
subscribed to the queryParams in the constructor, we can be sure that this.query will always have
the most up-to-date value.

We then subscribe to the searchTrack Observable and whenever new results are emitted we call
renderResults.

code/routes/music/src/app/search/search.component.ts

renderResults(res: any): void {
this.results = null;
if (res && res.tracks && res.tracks.items) {
this.results = res.tracks.items;

We declared results as a component property. Whenever its value is changed, the view will be
automatically updated by Angular.

Searching on Page Load

As we pointed out above, we want to be able to jump straight into the results if the URL includes a
search query.

To do that, we are going to implement a hook Angular router provides for us to run whenever our
component is initialized.

o But isn’t that what constructors are for? Well, yes and no. Yes, constructors are used to

initialize values, but if you want to write good, testable code, you want to minimize the side

effects of constructing an object. So keep in mind that you should put your component’s
initialization logic always on a hook like below.

Here’s the implementation of the ngonInit method:

code/routes/music/src/app/search/search.component.ts

ngOnInit(): void {
this.search();

To use ngOnInit we imported the OnInit class and declared that our component
implements OnInit.

As you can see, we're just performing the search here. Since the term we’re searching for comes
from the URL, we're good.

www.EBookswWorld.ir

38
39
40
41

0 N O O & W N =~

OIS I G G N G G Y
_, O © 00 9 O O b WO NN O O

Routing 247

submit
Now let’s see what we do when the user submits the form.

code/routes/music/src/app/search/search.component.ts

submit(query: string): void {
this.router.navigate(['search'], { queryParams: { query: query } })
.then(_ => this.search());

We’re manually telling the router to navigate to the search route, and providing a query parameter,
then performing the actual search.

Doing things this way gives us a great benefit: if we reload the browser, we’re going to see the same
search result rendered. We can say that we’re persisting the search term on the URL.

Putting it all together
Here’s the full listing for the SearchComponent class:

code/routes/music/src/app/search/search.component.ts

J*
* Angular

*/

import {Component, OnInit} from '@angular/core’;
import

Router,

ActivatedRoute,
} from '@angular/router’;

J*
* Services
*/
import {SpotifyService} from '../spotify.service';

’

@Component ({
selector: 'app-search',
templateUrl: './search.component.html',
styleUrls: ['./search.component.css']

1))

www.EBookswWorld.ir

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
o5
56
o7
o8
59
60

Routing

export class SearchComponent implements Onlnit {

query: string;
results: Object;

constructor(private spotify: SpotifyService,

private router: Router,

private route: ActivatedRoute) {

this.route
.queryParams

.subscribe(params => { this.query = params['query']

ngOnInit(): void
this.search();

{

submit(query: string): void {

this.router.navigate(['search'], { queryParams: { query: query } })

.then(_ => this.search());

search(): void {

console.log('this.query', this.query);

if (!this.query) {

return;

this.spotify

.searchTrack(this.query)

.subscribe((res: any) => this.renderResults(res));

renderResults(res: any): void {

this.results = null;

if (res && res.tracks && res.tracks.items) {

this.results

res.tracks.items;

o)

248

www.EBookswWorld.ir

Routing 249

Trying the search

Now that we have completed the code for the search, let’s try it out:

www.EBookswWorld.ir

Routing 250

Sportify music for active people

Home Add

Search

andre de sapatonovo || Search

Results

BANnp,,

Qg,ﬁ ﬁe,@ CHORINHO

Alramiroe Carrilh
vandre do Bando

Paulinho Nogueiri

Toguinho e outros
Bando De Macambira Ordinarius Evandro Do Bandolim
André do Sapato Novo André de Sapato Novo / Tico Tico no Fuba André De Sapato Novo
Chorinho Rio de Choro Chorinhos De Ouro

INETES AD LIBITUM

Pixinguinha |

Pixinguinha Clarinetes Ad Libitum Pixinguinha

André de Sapato Novo André de Sapato Novo Andre De Sapato Novo

Benedito Lacerda E Pixinguinha Contradanza Latin Jazz Roots
Trying out Search

We can click the artist, track or album links to navigate to the proper route.

www.EBookswWorld.ir

0 N O O & W N~

e
W N~ O

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Routing 251

TrackComponent

For the track route, we use the TrackComponent. It basically displays the track name, the album cover
image and allow the user to play a preview using an HTML5 audio tag:

code/routes/music/src/app/track/track.component.html

<div *nglf="track">
<h1>{{ track.name }}</hi>

<p>

</p>

<p>
<audio controls src="{{ track.preview_url }}"></audio>
</p>

<p><a href (click)="back()">Back</p>
</div>

Like we did for the search before, we’re going to use the Spotify APIL Let’s refactor the method
searchTrack and extract two other useful methods we can reuse:

code/routes/music/src/app/spotify.service.ts

export class SpotifyService {
static BASE_URL = 'https://api.spotify.com/v1';

constructor(private http: Http) {}

query(
URL: string,
params?: Array<string>
): Observable<any[]> {
let queryURL = “${SpotifyService.BASE_URL}${URL}";
if (params) ({
queryURL = “${queryURL}?${params.join('&')}";
}
const apiKey = environment.spotifyApiKey;
const headers = new Headers({
Authorization: “Bearer ${apiKey}"

});

const options = new RequestOptions({

www.EBookswWorld.ir

35
36
37
38
39
40
41
42
43
44
45
46
47
48

50
51
52

54
55
56

Routing 252

headers: headers

});

return this.http
.request(queryURL, options)
.map((res: any) => res.json());

search(query: string, type: string): Observable<any[]> {
return this.query(/search™, [
"g=${query} ",
“type=${type}"
1

Now that we’ve extracted those methods into the SpotifyService, notice how much simpler
searchTrack becomes:

code/routes/music/src/app/spotify.service.ts

searchTrack(query: string): Observable<any[]> {
return this.search(query, 'track');

Now let’s create a method to allow the component we’re building retrieve track information, based
in the track ID:

code/routes/music/src/app/spotify.service.ts

getTrack(id: string): Observable<any[]> {
return this.query(/tracks/${id}");

And now we can use getTrack from a new ngOnInit method on the TrackComponent:

www.EBookswWorld.ir

28
29
30
31
32

Routing 253

code/routes/music/src/app/track/track.component.ts

ngOnInit(): void {
this.spotify
.getTrack(this.id)
.subscribe((res: any) => this.renderTrack(res));

The other components work in a similar way and use get* methods from the SpotifyService to
retrieve information about either an Artist or a Track based on their ID.

Wrapping up music search

Now we have a pretty functional music search and preview app. Try searching for a few of your
favorite tunes and try it out!

| —) 0:17) e==e

Back

It Had to Route You

Router Hooks

There are times that we may want to do some action when changing routes. A classic example of
that is authentication. Let’s say we have a login route and a protected route.

www.EBookswWorld.ir

©O© 00 N O U b W N =

[EEEN
N »~ O

Routing 254

We want to only allow the app to go to the protected route if the correct username and password
were provided on the login page.

In order to do that, we need to hook into the lifecycle of the router and ask to be notified when the
protected route is being activated. We then can call an authentication service and ask whether or
not the user provided the right credentials.

In order to check if a component can be activated we add a guard class to the key canActivate in
our router configuration.

Let’s revisit our initial application, adding login and password input fields and a new protected route
that only works if we provide a certain username and password combination.

0 Sample Code The complete code for the examples in this section build on the first section
and can be found in the routes/routing folder of the sample code. That folder contains a
README .md, which gives instructions for building and running the project.

AuthService

Let’s create a very simple and minimal implementation of a service, responsible for authentication
and authorization of resources:

code/routes/routing/src/app/auth.service.ts

import { Injectable } from '@angular/core’;

@Injectable()
export class AuthService {
login(user: string, password: string): boolean {
if (user === 'user' && password === 'password') {
localStorage.setItem('username', user);

return true;

return false;

The 1ogin method will return true if the provided user/password pair equals 'user' and ' password’,
respectively. Also, when it is matched, it’s going to use localStorage to save the username. This
will also serve as a flag to indicate whether or not there is an active logged user.

www.EBookswWorld.ir

14
15
16

18
19
20
21
22
23
24

27
28
29

Routing 255

0 If you’re not familiar, localStorage is an HTMLS5 provided key/value pair that allows you

to persist information on the browser. The API is very simple, and basically allows the

setting, retrieval and deletion of items. For more information, see the Storage interface
documents on MDN®

The 1ogout method just clears the username value:

code/routes/routing/src/app/auth.service.ts

logout(): any {
localStorage.removeltem('username');

And the final two methods:

 getUser returns the username or null
« isLoggedIn uses getUser() to return true if we have a user

Here’s the code for those methods:

code/routes/routing/src/app/auth.service.ts

getUser(): any {
return localStorage.getItem('username');

isLoggedIn(): boolean ({
return this.getUser() !== null;

The last thing we do is export an AUTH_PROVIDERS, so it can be injected into our app:

code/routes/routing/src/app/auth.service.ts

export const AUTH_PROVIDERS: Array<any> = |
{ provide: AuthService, useClass: AuthService }

1;

Now that we have the AuthService we can inject it in our components to log the user in, check for
the currently logged in user, log the user out, etc.

In a little bit, we’ll also use it in our router to protect the ProtectedComponent. But first, let’s create
the component that we use to log in.

*https://developer.mozilla.org/en-US/docs/Web/API/Storage

www.EBookswWorld.ir

https://developer.mozilla.org/en-US/docs/Web/API/Storage
https://developer.mozilla.org/en-US/docs/Web/API/Storage
https://developer.mozilla.org/en-US/docs/Web/API/Storage

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Routing 256

LoginComponent

This component will either show a login form, for the case when there is no logged user, or display
a little banner with user information along with a logout link.

The relevant code here is the 1ogin and logout methods:

code/routes/routing/src/app/login/login.component.ts

export class LoginComponent {
message: string;

constructor(public authService: AuthService) {
this.message = '';

login(username: string, password: string): boolean {
this.message = '';
if (!this.authService.login(username, password)) {
this.message = 'Incorrect credentials.';
setTimeout(function() {
this.message = '';
}.bind(this), 2500);
}

return false;

logout(): boolean {
this.authService.logout();
return false;

Once our service validates the credentials, we log the user in.

The component template has two snippets that are displayed based on whether the user is logged in
or not.

The first is a login form, protected by *ngIf=""1authService.getUser()":

www.EBookswWorld.ir

o N O o

10
1
12
13
14
15
16
17
18
19

23
24
25
26

Routing 257

code/routes/routing/src/app/login/login.component.html

</div>

<form class="form-inline" *nglf="lauthService.getUser()">
<div class="form-group">
<label for="username">User: (type user)</label>
<input class="form-control" name="username" *username>
</div>

<div class="form-group">
<label for="password">Password: (type password)</label>
<input class="form-control" type="password" name="password" #password>
</div>

Submit

And the information banner, containing the logout link, protected by the inverse -

*nglf="authService.getUser()":

code/routes/routing/src/app/login/login.component.html

<div class="well" *nglf="authService.getUser()">
Logged in as {{ authService.getUser() }}
<a href (click)="logout()">Log out

</div>

There’s another snippet of code that is displayed when we have an authentication error:

code/routes/routing/src/app/login/login.component.html

<div class="alert alert-danger" role="alert" *nglf="message">

{{ message }}
</div>

Now that we can handle the user login, let’s create a resource that we are going to protect behind a
user login.

ProtectedComponent and Route Guards

The protectedComponent

Before we can protect the component, it needs to exist. Our ProtectedComponent is straightforward:

www.EBookswWorld.ir

0 I O O b W N =

B s
O P W N =~ O ©

B W N -

Routing 258

code/routes/routing/src/app/protected/protected.component.ts

import { Component, OnInit } from '@angular/core';

@Component({
selector: 'app-protected',

templateUrl: './protected.component.html',

styleUrls: ['./protected.component.css']

9
export class ProtectedComponent implements OnInit {

constructor() { }

ngOnInit() {
}

And the template will show some protected content:

code/routes/routing/src/app/protected/protected.component.html

<h1>Protected</h1>
<p>

Protected content
</p>

We want this component to only be accessible to logged in users. But how can we do that?

The answer is to use the router hook canActivate with a guard class that implements CanActivate.

The LoggedInGuard

We create a new file logged-in.guard.ts:

www.EBookswWorld.ir

0 N O O & W N =

NN NN P S 1 s sl s
W N, O © 03O0 O b W N~ OO ©

Routing 259

code/routes/routing/src/app/logged-in.guard.ts

/* tslint:disble max-line-length */
import { Injectable } from '@angular/core’;
import

CanActivate,

ActivatedRouteSnapshot,

RouterStateSnapshot
} from '@angular/router’;
import { Observable } from 'rxjs/Observable';
import { AuthService } from './auth.service';

@Injectable()
export class LoggedInGuard implements CanActivate {
constructor(private authService: AuthService) {}

canActivate(
next: ActivatedRouteSnapshot,
state: RouterStateSnapshot): Observable<boolean> | Promise<boolean> | boolea\

n {
const isLoggedIn = this.authService.islLoggedIn();
console.log('canActivate', isLoggedIn);
return isloggedIn;
}
}

Angular CLI contains a generator for creating guards. So this file could be created with the
command: ng generate guard logged-in

Our guard states that it implements the CanActivate interface. This is satisfied by implementing a
method canActive.

We inject the AuthService into this class in the constructor and save it as a private variable
authService.

In our canActivate function we check this.authService to see if the user isLoggedIn.

Configuring the Router

To configure the router to use this guard we need to do the following:

1. import the LoggedInGuard

www.EBookswWorld.ir

23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Routing

2. Use the LoggedInGuard in a route configuration

3. Include LoggedInGuard in the list of providers (so that it can be injected)

We do all of these steps in our app . ts.

We import the LoggedInGuard:

code/routes/routing/src/app/app.module.ts

import { AUTH_PROVIDERS } from './auth.service';

1

import { LoggedInGuard } from './logged-in.guard';

We add canActivate with our guard to the protected route:

code/routes/routing/src/app/app.module.ts

const routes: Routes = |
// basic routes
path: '', redirectTo: 'home', pathMatch: 'full' },
path: 'home', component: HomeComponent },
path: 'about', component: AboutComponent },
path: 'contact', component: ContactComponent 1},

(e N W e W e W e

path: 'contactus', redirectTo: 'contact' },

// authentication demo
{ path: 'login', component: LoginComponent },
{

path: 'protected',

component: ProtectedComponent,

canActivate: [LoggedInGuard]

}I

// nested

{
path: 'products',
component: ProductsComponent,
children: childRoutes

}
1;

We add LoggedInGuard to our list of providers:

www.EBookswWorld.ir

Routing 261

code/routes/routing/src/app/app.module.ts

68 providers: [
69 // uncomment this for "hash-bang" routing
70 // { provide: LocationStrategy, useClass: HashLocationStrategy }
71 AUTH_PROVIDERS,
T2 LoggedInGuard
73 1,
Logging in

We import the LoginComponent:

code/routes/routing/src/app/app.module.ts

19 import { LoginComponent } from './login/login.component';

And then to access it we have:

1. a route that links to the LoginComponent
2. anew link to the protected route

Now when we open the application on the browser, we can see the new login form and the new
protected link:

www.EBookswWorld.ir

Routing 262

Feli

eoce [*) ng-book 2: Angular 2 HTT? %\
& > C [localhost:8080/#/home O x &L =0

=1
®

Router Sample

Home About Gontact us Protected

User: Password: Submit

Welcome!

Auth App - Initial Page

If you click the Protected link, you’ll see nothing happens. The same happens if you try to manually
visit http://localhost:4200/protected™.

Now enter the string user for the user and password for the password on the form and click Submit.
You’ll see that we now get the current user displayed on a banner:

"http://localhost:4200/protected

www.EBooksWorld.ir

http://localhost:4200/protected
http://localhost:4200/protected

263

Routing

4
8

O X2 Q0PGS0

e0e [ng-book 2: Angular 2 Rout %\
L |

€« - C [localhost:8080/#/home

Router Sample

Home About Contact us Protected

Logged in as user Log out

Welcome!

Auth App - Logged In

And, sure enough, if we click the Protected link, it gets redirected and the component is rendered:

www.EBooksWorld.ir

Routing 264

® ®] ng-book 2: Angular 2 Rout % Felipe

« C' | [localhost:8080/#/protected O % & Q O -

Router Sample

Home About Contact us Protected

Logged in as user Log out

Protected content

Auth App - Protected Area

ﬂ A Note on Security: It’s important to know how client-side route protection is working
before you rely too heavily on it for security. That is, you should consider client-side route
protection a form of user-experience and not one of security.

Ultimately all of the javascript in your app that gets served to the client can be inspected,
whether the user is logged in or not.

So if you have sensitive data that needs to be protected, you must protect it with server-
side authentication. That is, require an API key (or auth token) from the user which is
validated by the server on every request for data.

Writing a full-stack authentication system is beyond the scope of this book. The important
thing to know is that protecting routes on the client-side don’t necessarily keep anyone
from viewing the javascript pages behind those routes.

Nested Routes

Nested routes is the concept of containing routes within other routes. With nested routes we’re able
to encapsulate the functionality of parent routes and have that functionality apply to the child routes.

Let’s say we have a website with one area to allow users to know our team, called Who we are?
and another one for our Products.

www.EBookswWorld.ir

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Routing 265

We could think that the perfect route for Who we are? would be /about and for products /products.
And we’re happily displaying all our team and all our products when visiting these areas.

What happens when the website grows and we now need to display individual information about
each person in our team and also for each product we sell?

In order to support scenarios like these, the router allows the user to define nested routes.

To do that, you can have multiple, nested router-outlet. So each area of our application can have
their own child components, that also have their own router-outlets.

Let’s work on an example to clear things up.

In this example, we’ll have a products section where the user will be able to view two highlighted
products by visiting a nice URL. For all the other products, the routes will use the product ID.

Configuring Routes

We will start by describing the products route on the app.module.ts file:

code/routes/routing/src/app/app.module.ts

const routes: Routes = |
// basic routes
path: '', redirectTo: 'home', pathMatch: 'full' },
path: 'home', component: HomeComponent },
path: 'about', component: AboutComponent },
path: 'contact', component: ContactComponent 1},

[N e W e W e W e

path: 'contactus', redirectTo: 'contact' },

// authentication demo
{ path: 'login', component: LoginComponent },
{

path: 'protected',

component: ProtectedComponent,

canActivate: [LoggedInGuard |

}/

// nested

{
path: 'products',
component: ProductsComponent,
children: childRoutes

www.EBookswWorld.ir

15
16
17
18
19
20

Routing 266

Notice that products has a children parameter. Where does this come from? We've defined the
childRoutes in a new module: the ProductsModule. Let’s take a look:

ProductsModule

The ProductsModule will have its own route configuration:

code/routes/routing/src/app/products/products.module.ts

export const routes: Routes = [
{ path: '', redirectTo: 'main', pathMatch: 'full' },
{ path: 'main', component: MainComponent },
{ path: 'more-info', component: MoreInfoComponent },
{ path: ':id', component: ProductComponent },

l;

Notice here that we have an empty path on the first object. We do this so that when we visit
/products, we’'ll be redirected to the main route.

The other route we need to look at is :id. In this case, when the user visits something that doesn’t
match any other route, it will fallback to this route. Everything that is passed after / will be extracted
to a parameter of the route, called id.

Now on the component template, we’ll have a link to each of those static child routes:

code/routes/routing/src/app/products/products.component.html

<div class="navLinks">
<a [routerLink]="["./main']">Main |
<a [routerLink]="["./more-info']">More Info |

You can see that the route links are all in the format [' . /main"], with a preceding . /. This indicates
that you want to navigate the Main route relative to the current route context.

You could also declare the routes with the ['products', 'main'] notation. The downside is that by
doing it this way, the child route is aware of the parent route and if you were to move this component
around or reuse it, you would have to rewrite your route links.

After the links, we’ll add an input where the user will be able to enter a product id, along with a
button to navigate to it, and lastly add our router-outlet:

www.EBookswWorld.ir

0 N O O B~ W N -

(RN
N »~ O ©

0 = O O b W N~

B S s s s s
© 00 9 O O » WO N~ O ©

Routing 267

code/routes/routing/src/app/products/products.component.html

<h2>Products</h2>

<div class="navLinks">
<a [routerLink]="["./main']">Main |

<a [routerlLink]="["'./more-info']">More Info |
Enter id: <input #id size="6">
<button (click)="goToProduct(id.value)">Go</button>

</div>

<div class="products-area">
<router-outlet></router-outlet>
</div>

Let’s look at the ProductsComponent definition:

code/routes/routing/src/app/products/products.component.ts

import { Component } from '@angular/core';
import {

ActivatedRoute,

Router
} from '@angular/router’;

@Component ({
selector: 'app-products',
templateUrl: './products.component.html’,
styleUrls: ['./products.component.css']
P
export class ProductsComponent {
constructor(private router: Router, private route: ActivatedRoute) {

}

goToProduct(id: string): void {

1

this.router.navigate(['./', id], {relativeTo: this.route});

First on the constructor we're declaring an instance variable for the Router, since we’re going to use
that instance to navigate to the product by id.

www.EBookswWorld.ir

Routing 268

When we want to go to a particular product we use the goToProduct method. In goToProduct we call
the router’s navigate method and providing the route name and an object with route parameters.
In our case we’re just passing the id.

Notice that we use the relative ./ path in the navigate function. In order to use this we also pass
the relativeTo object to the options, which tells the router what that route is relative to.

Now, if we run the application we will see the main page:

® O ® | [ngbook 2: Angular 2 Rou: x Felipe

& - € [localhost:8080/%/home O x &P CRmE=

Router Sample

Home Products

Welcome!

Nested Routes App

If you click on the Products link, you’ll be redirected to /products/main that will render as follows:

www.EBookswWorld.ir

Routing 269

©® O ® | [4ng 000k 2 Angular 2 Rou % | Felips |

L 2 C' [localhost:8080/#/products/main O %« & QL0 CHME=

Router Sample

Home Products

Products

Main | Interest | Sportify | Enter id: Go

Welcome to the products section. Please select a preduct above.

Nested Routes App - Products Section

Everything below that thin grey line is being rendered using the main application’s router-outlet.

And the contents of the dotted red line is being rendered inside the ProductComponent’s router-
outlet. That’s how you indicate how the parent and child routes will be rendered.

When we visit one of the product links, or if we enter an ID on the textbox and click Go, the new
content is rendered inside the ProductComponent’s outlet:

www.EBooksWorld.ir

Routing 270

® ® L] ng-book 2: Angular 2 Rout % Felipe

&« C [localhost:8080/#/products/abc123 O % & Q O -

Router Sample

Home Products

Products

Main | Interest | Sportify | Enter id: abc123 | Go

You selected product: abc123

Nested Routes App - Product By Id

It’s also worth noting that the Angular router is smart enough to prioritize concrete routes first (like
/products/spoti fy) over the parameterized ones (like /products/123). This way /products/spo-
tify will never be handled by the more generic, catch-all route /products/: id.

Redirecting and linking nested routes
Just to recap, if we want to go to a route named MyRoute on your top-level routing context, you use
["myRoute"']. This will only work if you’re in that same top-level context.

If you are on a child component, and you try to link or redirect to ['myRoute’], it will try to find a
sibling route, and error out. In this case, you need to use ['/myRoute'] with a leading slash.

In a similar way, if we are on the top-level context and we want to link or redirect to a child route,
we have to need to use multiple elements on the route definition array.

Let’s say we want to visit the Show route, which is a child of the Product route. In this case, we use
['product', 'show'] as the route definition.

Summary

As we can see, the new Angular router is very powerful and flexible. Now go out and route your
apps!

www.EBookswWorld.ir

Data Architecture in Angular

An Overview of Data Architecture

Managing data can be one of the trickiest aspects of writing a maintainable app. There are tons of
ways to get data into your application:

« AJAX HTTP Requests
« Websockets

Indexdb

LocalStorage

Service Workers

« etc.

The problem of data architecture addresses questions like:

« How can we aggregate all of these different sources into a coherent system?

« How can we avoid bugs caused by unintended side-effects?

« How can we structure the code sensibly so that it’s easier to maintain and on-board new team
members?

« How can we make the app run as fast as possible when data changes?

For many years MVC was a standard pattern for architecting data in applications: the Models
contained the domain logic, the View displayed the data, and the Controller tied it all together.
The problem is, we’ve learned that MVC doesn’t translate directly into client-side web applications
very well.

There has been a renaissance in the area of data architectures and many new ideas are being
explored. For instance:

+« MVW / Two-way data binding: Model-View-Whatever is a term used’* to describe Angular
1’s default architecture. The $scope provides a two-way data-binding - the whole application
shares the same data structures and a change in one area propagates to the rest of the app.

« Flux’?: uses a unidirectional data flow. In Flux, Stores hold data, Views render what’s in the
Store, and Actions change the data in the Store. There is a bit more ceremony to setup Flux,
but the idea is that because data only flows in one direction, it’s easier to reason about.

+ Observables: Observables give us streams of data. We subscribe to the streams and then
perform operations to react to changes. RxJs” is the most popular reactive streams library for

"1See: Model View Whatever
"https://facebook.github.io/flux/
3https://github.com/Reactive-Extensions/RxJS

www.EBookswWorld.ir

https://facebook.github.io/flux/
https://github.com/Reactive-Extensions/RxJS
https://plus.google.com/+AngularJS/posts/aZNVhj355G2
https://facebook.github.io/flux/
https://github.com/Reactive-Extensions/RxJS

Data Architecture in Angular 272

JavaScript and it gives us powerful operators for composing operations on streams of data.

o There are a lot of variations on these ideas. For instance:

« Flux is a pattern, and not an implementation. There are many different implemen-
tations of Flux (just like there are many implementations of MVC)

« Immutability is a common variant on all of the above data architectures.

« Falcor’ is a powerful framework that helps bind your client-side models to the
server-side data. Falcor is often used with an Observables-type data architecture.

Data Architecture in Angular

Angular is extremely flexible in what it allows for data architecture. A data strategy that works for
one project doesn’t necessarily work for another. So Angular doesn’t prescribe a particular stack,
but instead tries to make it easy to use whatever architecture we choose (while still retaining fast
performance).

The benefit of this is that you have flexibility to fit Angular into almost any situation. The downside
is that you have to make your own decisions about what’s right for your project.

Don’t worry, we’re not going to leave you to make this decision on your own! In the chapters that
follow, we’re going to cover how to build applications using some of these patterns.

"*http://netflix.github.io/falcor/

www.EBookswWorld.ir

http://netflix.github.io/falcor/
http://netflix.github.io/falcor/

Data Architecture with Observables -
Part 1: Services

Observables and RxJS

In Angular, we can structure our application to use Observables as the backbone of our data
architecture. Using Observables to structure our data is called Reactive Programming.

But what are Observables, and Reactive Programming anyway? Reactive Programming is a way
to work with asynchronous streams of data. Observables are the main data structure we use to
implement Reactive Programming. But I'll admit, those terms may not be that clarifying. So we’ll
look at concrete examples through the rest of this chapter that should be more enlightening.

Note: Some RxJS Knowledge Required

I want to point out this book is not primarily about Reactive Programming. There are several
other good resources that can teach you the basics of Reactive Programming and you should read
them. We've listed a few below.

Consider this chapter a tutorial on how to work with RxJS and Angular rather than an
exhaustive introduction to RxJS and Reactive Programming.

In this chapter, I'll explain in detail the RxJS concepts and APIs that we encounter. But know
that you may need to supplement the content here with other resources if Rx]JS is still new to you.

o Use of Underscore.js in this chapter

Underscore.js’® is a popular library that provides functional operators on JavaScript data
structures such as Array and Object. We use it a bunch in this chapter alongside RxJS. If
you see the _ in code, such as _.map or _.sortBy know that we’re using the Underscore.js
library. You can find the docs for Underscore.js here’.

Learning Reactive Programming and RxJS

If you’re just learning Rx]JS I recommend that you read this article first:

"http://underscorejs.org/
"Shttp://underscorejs.org/

www.EBookswWorld.ir

http://underscorejs.org/
http://underscorejs.org/
http://underscorejs.org/
http://underscorejs.org/

Data Architecture with Observables - Part 1: Services 274
« The introduction to Reactive Programming you’ve been missing’” by Andre Staltz

After you’ve become a bit more familiar with the concepts behind RxJS, here are a few more links
that can help you along the way:

« Which static operators to use to create streams?”®
« Which instance operators to use on streams?”’
« RxMarbles® - Interactive diagrams of the various operations on streams

Throughout this chapter I'll provide links to the API documentation of RxJS. The RxJS docs have
tons of great example code that shed light on how the different streams and operators work.

Do I have to use RxJS to use Angular? - No, you definitely don’t. Observables are just
one pattern out of many that you can use with Angular. We talk more about other data
patterns you can use here.

[want to give you fair warning: learning RxJS can be a bit mind-bending at first. But trust me, you’ll
get the hang of it and it’s worth it. Here’s a few big ideas about streams that you might find helpful:

1. Promises emit a single value whereas streams emit many values. - Streams fulfill the same
role in your application as promises. If you’ve made the jump from callbacks to promises, you
know that promises are a big improvement in readability and data maintenance vs. callbacks.
In the same way, streams improve upon the promise pattern in that we can continuously
respond to data changes on a stream (vs. a one-time resolve from a promise)

2. Imperative code “pulls” data whereas reactive streams “push” data - In Reactive Program-
ming our code subscribes to be notified of changes and the streams “push” data to these
subscribers

3. RxJS is functional - If you're a fan of functional operators like map, reduce, and filter
then you’ll feel right at home with RxJS because streams are, in some sense, lists and so the
powerful functional operators all apply

4. Streams are composable - Think of streams like a pipeline of operations over your data. You
can subscribe to any part of your stream and even combine them to create new streams

""https://gist.github.com/staltz/868¢7e9bc2a7b8c1f754

"®https://github.com/Reactive- Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
"https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
®http://rxmarbles.com

www.EBookswWorld.ir

https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
http://rxmarbles.com/
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-static.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/gettingstarted/which-instance.md
http://rxmarbles.com/

Data Architecture with Observables - Part 1: Services 275

Chat App Overview

In this chapter, we're going to use Rx]JS to build a chat app. Here’s a screenshot:

ece [Angular 2 - Chat with RxJS % | | Blank |

L C' [localhost:8080 Sl »| =

Echo Bot +
I'll echo whatever you send me

Waiting Bot
I'll wait however marny seconds you send 1o me before responding. Try sending '3'

Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

Reverse Bot
- I'll reverse whatever you send me

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

Completed Chat Application

0 Usually we try to show every line of code here in the book text. However, this chat
application has a lot of moving parts, so in this chapter we’re not going to have every
single line of code in the text. You can find the sample code for this chapter in the folder
code/rxjs/rxjs-chat. We'll call out each filter where you can view the context, where
appropriate.

In this application we’ve provided a few bots you can chat with. Open up the code and try it out:

cd code/rxjs/rxjs-chat
npm install
npm start

www.EBooksWorld.ir

Data Architecture with Observables - Part 1: Services 276

Now open your browser to http://localhost:4200.

Notice a few things about this application:

+ You can click on the threads to chat with another person
+ The bots will send you messages back, depending on their personality
+ The unread message count in the top corner stays in sync with the number of unread messages

Let’s look at an overview of how this app is constructed. We have

+ 3 top-level Angular Components
+ 3 models
« and 3 services

Let’s look at them one at a time.

Components

The page is broken down into three top-level components:

www.EBookswWorld.ir

Data Architecture with Observables - Part 1: Services

ece # D Angular 2 - Chat with RxJS

\

1 localhost:8080

ng-book 2

Echo Bot +
I'll echo whatever you send me

ChatNavBar

Chat Top-Level Components

« ChatNavBarComponent - contains the unread messages count

ChatThreads

Reverse Bot
- I'll reverse whatever you send me
Waiting Bot
I'll wait however marny seconds you send 1o me before responding. Try sending '3'
Lady Capulet
So shall you feel the loss, but not the friend which you weep for.
ChatWindow

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

277

+ ChatThreadsComponent - shows a clickable list of threads, along with the most recent message

and the conversation avatar

+ ChatWindowComponent - shows the messages in the current thread with an input box to send

new messages

Models

This application also has three models:

www.EBooksWorld.ir

Data Architecture with Observables - Part 1: Services 278

Message
Thread id User
id sentAt -
lastMessage id
name T e isRead
tarSrc text author name
ava
. avatarsrc

lastMessage thread — | author

thread

Chat Models

« User - stores information about a chat participant
+ Message - stores an individual message
« Thread - stores a collection of Messages as well as some data about the conversation

Services

In this app, each of our models has a corresponding service. The services are singleton objects that
play two roles:

1. Provide streams of data that our application can subscribe to
2. Provide operations to add or modify data

For instance, the UsersService:

« publishes a stream that emits the current user and
« offers a setCurrentUser function which will set the current user (that is, emit the current
user from the currentUser stream)

Ssummary

At a high level, the application data architecture is straightforward:

+ The services maintain streams which emit models (e.g. Messages)
+ The components subscribe to those streams and render according to the most recent values

For instance, the ChatThreads component listens for the most recent list of threads from the
ThreadService and the ChatWindow subscribes for the most recent list of messages.

In the rest of this chapter, we’re going to go in-depth on how we implement this using Angular and
RxJS. We'll start by implementing our models, then look at how we create Services to manage our
streams, and then finally implement the Components.

www.EBookswWorld.ir

0 I O O b W N =~

Y
o ©

1
12
13

Data Architecture with Observables - Part 1: Services 279

Implementing the Models

Let’s start with the easy stuff and take a look at the models.

User

Our User class is straightforward. We have an id, name, and avatarSrc.

code/rxjs/rxjs-chat/src/app/user/user.model.ts

import { uuid } from '../util/uuid';

/**
* A User represents an agent that sends messages
*/
export class User ({
id: string;

constructor(public name: string,
public avatarSrc: string) {
this.id = uwuid();

}
}

0 Notice above that we're using a TypeScript shorthand in the constructor. When we say
public name: string we’re telling TypeScript that 1. we want name to be a public property
on this class and 2. assign the argument value to that property when a new instance is
created.

Thread

Similarly, Thread is also a straightforward TypeScript class:

www.EBookswWorld.ir

Data Architecture with Observables - Part 1: Services 280

code/rxjs/rxjs-chat/src/app/thread/thread.model.ts

1 import { Message } from '../message/message.model’;
2 import { uuid } from '../util/uuid';
3
4 Jkx
) * Thread represents a group of Users exchanging Messages
6 */
7 export class Thread {
8 id: string;
9 lastMessage: Message;
10 name: string;
11 avatarSrc: string;
12
13 constructor(id?: string,
14 name?: string,
15 avatarSrc?: string) {
16 this.id = id || wuid();
17 this.name = name;
18 this.avatarSrc = avatarSrc;
19 1
20 1
Note that we store a reference to the lastMessage in our Thread. This lets us show a preview of the
most recent message in the threads list.
Message
Message is also a simple TypeScript class, however in this case we use a slightly different form of
constructor:
code/rxjs/rxjs-chat/src/app/message/message.model.ts
1 import { User } from '../user/user.model';
2. import { Thread } from '../thread/thread.model';
3 import { uuid } from './../util/uuid';
4
5 k¥
6 * Message represents one message being sent in a Thread
7 */
8 export class Message {
9 id: string;

www.EBookswWorld.ir

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

N O O B W N =

Data Architecture with Observables - Part 1: Services

sentAt: Date;
isRead: boolean;
author: User;
text: string;
thread: Thread;

constructor(obj?: any)
this.id
this.isRead
this.sentAt
this.author
this.text
this.thread

obj
obj
obj
obj
obj
obj

&&
&&
&&
&&
&&
&&

obj
obj
obj
obj
obj
obj

.id
.isRead
.sentAt
.author
.text
.thread

281

uuid();
false;

new Date();
null;

null;

null;

The pattern you see here in the constructor allows us to simulate using keyword arguments in the
constructor. Using this pattern, we can create a new Message using whatever data we have available
and we don’t have to worry about the order of the arguments. For instance we could do this:

let msgl = new Message();

or this

let msg2 = new Message({

text: "Hello Nate Murray!"

D)

Now that we’ve looked at our models, let’s take a look at our first service: the UsersService.

Implementing usersService

The point of the UsersService is to provide a place where our application can learn about the current
user and also notify the rest of the application if the current user changes.

The first thing we need to do is create a TypeScript class and add the @Injectable decorator.

www.EBookswWorld.ir

10
11
12
13
14
15
16
17

12

Data Architecture with Observables - Part 1: Services

code/rxjs/rxjs-chat/src/app/user/users.service.ts

282

export class UsersService {
// “currentUser® contains the current user
currentUser: Subject<User> = new BehaviorSubject<User>(null);

public setCurrentUser(newUser: User): void {
this.currentUser.next(newUser);

0 We make a class that we will be able to use as a dependency to other components in our
application. Briefly, two benefits of dependency-injection are:

1. we let Angular handle the lifecycle of the object and
2. it’s easier to test injected components.

We talk more about @Injectable in the chapter on dependency injection, but the result is
that we can now inject other dependencies into our constructor like so:

class UsersService {
constructor(public someOtherService: SomeOtherService) {

// do something with “someOtherService” here

O > W N -

currentUser Stream

Next we setup a stream which we will use to manage our current user:

code/rxjs/rxjs-chat/src/app/user/users.service.ts

currentUser: Subject<User> = new BehaviorSubject<User>(null);

There’s a lot going on here, so let’s break it down:

« We're defining an instance variable currentUser which is a Sub ject stream.
« Concretely, currentUser is a BehaviorSubject which will contain User.

www.EBookswWorld.ir

N

© © 0 N O O b W N~

Data Architecture with Observables - Part 1: Services 283
« However, the first value of this stream is null (the constructor argument).

If you haven’t worked with RxJS much, then you may not know what Sub ject or BehaviorSubject
are. You can think of a Subject as a “read/write” stream.

0 Technically a Subject® inherits from both Observable® and Observer®

One consequence of streams is that, because messages are published immediately, a new subscriber
risks missing the latest value of the stream. BehaviourSubject compensates for this.

BehaviourSubject® has a special property in that it stores the last value. Meaning that any
subscriber to the stream will receive the latest value. This is great for us because it means that any
part of our application can subscribe to the UsersService.currentUser stream and immediately
know who the current user is.

Setting a new user

We need a way to publish a new user to the stream whenever the current user changes (e.g. logging
in).

There’s two ways we can expose an API for doing this:

1. Add new users to the stream directly:

The most straightforward way to update the current user is to have clients of the UsersService
simply publish a new User directly to the stream like this:

UsersService.currentUser.subscribe((newUser) => {

1

console.log('New User is: ', newUser.name);

1))

// => New User is: originalUserName

let u = new User('Nate', 'anImgSrc');
UsersService.currentUser.next(u);

// => New User is: Nate

8https://github.com/Reactive- Extensions/RxJS/blob/master/doc/api/subjects/subject.md
82https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
#https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observer.md
84https://github.com/Reactive- Extensions/Rx]JS/blob/master/doc/api/subjects/behaviorsubject.md

www.EBookswWorld.ir

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/subject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observer.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/subject.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observer.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/subjects/behaviorsubject.md

14
15
16

Data Architecture with Observables - Part 1: Services 284

0 Note here that we use the next method on a Subject to push a new value to the stream

The pro here is that we’re able to reuse the existing API from the stream, so we’re not introducing
any new code or APIs

2. Create a setCurrentUser(newUser: User) method

The other way we could update the current user is to create a helper method on the UsersService
like this:

code/rxjs/rxjs-chat/src/app/user/users.service.ts

public setCurrentUser(newUser: User): void {
this.currentUser.next(newUser);

You’ll notice that we’re still using the next method on the currentUser stream, so why bother doing
this?

Because there is value in decoupling the implementation of the currentUser from the implementation
of the stream. By wrapping the next in the setCurrentUser call we give ourselves room to change
the implementation of the UsersService without breaking our clients.

In this case, I wouldn’t recommend one method very strongly over the other, but it can make a big
difference on the maintainability of larger projects.

A third option could be to have the updates expose streams of their own (that is, a stream
where we place the action of changing the current user). We explore this pattern in the
MessagesService below.

UsersService.ts

Putting it together, our UsersService looks like this:

www.EBookswWorld.ir

0 N O O & W N =~

N N P S s sl sy s
O © 00 O O b WO N O O

Data Architecture with Observables - Part 1: Services

code/rxjs/rxjs-chat/src/app/user/users.service.ts

285

import { Injectable } from '@angular/core';

import { Subject, BehaviorSubject } from 'rxjs';

1

import { User } from './user.model';

Ak
* UserService manages our current user
*/

@Injectable()

export class UsersService {

// “currentUser® contains the current user

currentUser: Subject<User> = new BehaviorSubject<User>(null);

public setCurrentUser(newUser: User): void {
this.currentUser.next(newUser);

export const userServicelnjectables: Array<any>

UsersService

1;

The MessagesService

The MessagesService is the backbone of this application. In our app, all messages flow through the

MessagesService.

Our MessagesService has much more sophisticated streams compared to our UsersService. There
are five streams that make up our MessagesService: 3 “data management” streams and 2 “action”

streams.

The three data management streams are:

+ newMessages - emits each new Message only once
+ messages - emits an array of the current Messages

« updates - performs operations on messages

the newMessages Sstream

newMessages is a Subject that will publish each new Message only once.

www.EBookswWorld.ir

14
15
16

90
91
92

Data Architecture with Observables - Part 1: Services 286

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

export class MessagesService {
// a stream that publishes new messages only once
newMessages: Subject<Message> = new Subject<Message>();

If we want, we can define a helper method to add Messages to this stream:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

addMessage(message: Message): void {
this.newMessages.next(message);

It would also be helpful to have a stream that will get all of the messages from a thread that are not
from a particular user. For instance, consider the Echo Bot:

¥ Chat - Echo Bot

I'll echo whatewver you send me

0 Stop copying me

[y

Stop copying me

Write your message here... m

Real mature, Echo Bot

When we are implementing the Echo Bot, we don’t want to enter an infinite loop and repeat back
the bot’s messages to itself.

To implement this we can subscribe to the newMessages stream and filter out all messages that are

1. part of this thread and
2. not written by the bot.

You can think of this as saying, for a given Thread I want a stream of the messages that are “for”
this User.

www.EBooksWorld.ir

94
95
96
o7
98
99
100
101
102

19

Data Architecture with Observables - Part 1: Services 287

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

messagesForThreadUser (thread: Thread, user: User): Observable<Message> {
return this.newMessages
.filter((message: Message) => {
// belongs to this thread
return (message.thread.id === thread.id) &&
// and isn't authored by this user
(message.author.id !== user.id);

1),

messagesForThreadUser takes a Thread and a User and returns a new stream of Messages that are
filtered on that Thread and not authored by the User. That is, it is a stream of “everyone else’s”
messages in this Thread.

the messages stream

Whereas newMessages emits individual Messages, the messages stream emits an Array of the most
recent Messages.

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

messages: Observable<Message[]>;

O The type Message[] is the same as Array<Message>. Another way of writing the same

thing would be: Observable<Array<Message>>. When we define the type of messages to

be Observable<Message[]> we mean that this stream emits an Array (of Messages), not
individual Messages.

So how does messages get populated? For that we need to talk about the updates stream and a new
pattern: the Operation stream.

The Operation Stream Pattern
Here’s the idea:

« We’ll maintain state in messages which will hold an Array of the most current Messages
« We use an updates stream which is a stream of functions to apply to messages

You can think of it this way: any function that is put on the updates stream will change the list of

the current messages. A function that is put on the updates stream should accept a list of Messages
and then return a list of Messages. Let’s formalize this idea by creating an interface in code:

www.EBookswWorld.ir

10
1

21
22
23
24

30
31
32
33
34
35
36
37
38

Data Architecture with Observables - Part 1: Services 288

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

interface IMessagesOperation extends Function ({
(messages: Message[]): Message[];

Let’s define our updates stream:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

// “updates® receives _operations_ to be applied to our “messages’

// it's a way we can perform changes on *all* messages (that are currently
// stored in ‘messages’)

updates: Subject<any> = new Subject<any>();

Remember, updates receives operations that will be applied to our list of messages. But how do we
make that connection? We do (in the constructor of our MessagesService) like this:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

constructor() {
this.messages = this.updates
// watch the updates and accumulate operations on the messages
.scan((messages: Message|[],
operation: IMessagesOperation) => {
return operation(messages);
1
initialMessages)
// make sure we can share the most recent list of messages across anyone

This code introduces a new stream function: scan®. If you’re familiar with functional programming,
scan is a lot like reduce: it runs the function for each element in the incoming stream and
accumulates a value. What’s special about scan is that it will emit a value for each intermediate
result. That is, it doesn’t wait for the stream to complete before emitting a result, which is exactly
what we want.

When we call this.updates.scan, we are creating a new stream that is subscribed to the updates
stream. On each pass, we’re given:

1. the messages we’re accumulating and
2. the new operation to apply.

and then we return the new Message[].

8https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/scan.md

www.EBookswWorld.ir

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/scan.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/scan.md

32
33
34
35
36
37
38
39
40
41
42

Data Architecture with Observables - Part 1: Services 289

Sharing the Stream

One thing to know about streams is that they aren’t shareable by default. That is, if one subscriber
reads a value from a stream, it can be gone forever. In the case of our messages, we want to 1. share
the same stream among many subscribers and 2. replay the last value for any subscribers who come
“late”.

To do that, we use two operators: publishReplay and refCount.

 publishReplay let’s us share a subscription between multiple subscribers and replay n number
of values to future subscribers. (see publish® and replay®’)

« refCount® - makes it easier to use the return value of publish, by managing when the
observable will emit values

Q Wait, so what does refCount do?

refCount can be a little tricky to understand because it relates to how one manages “hot”
and “cold” observables. We’re not going to dive deep into explaining how this works and
we direct the reader to:

« RxJS docs on refCount®
« Introduction to Rx: Hot and Cold observables®®
« RefCount Marble Diagram®*

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

// watch the updates and accumulate operations on the messages
.scan((messages: Message[],

operation: IMessagesOperation) => {

return operation(messages);

},

initialMessages)
// make sure we can share the most recent list of messages across anyone
// who's interested in subscribing and cache the last known list of
// messages
.publishReplay(1)
.refCount();

®Shttps://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/publish.md
https://github.com/Reactive-Extensions/Rx]JS/blob/master/doc/api/core/operators/replay.md
8https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
#https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
90http:/ /www.introtorx.com/Content/v1.0.10621.0/14 HotAndColdObservables.html#RefCount
Thttp://reactivex.io/documentation/operators/refcount.html

www.EBookswWorld.ir

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/publish.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/replay.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
http://www.introtorx.com/Content/v1.0.10621.0/14_HotAndColdObservables.html#RefCount
http://reactivex.io/documentation/operators/refcount.html
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/publish.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/replay.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/refcount.md
http://www.introtorx.com/Content/v1.0.10621.0/14_HotAndColdObservables.html#RefCount
http://reactivex.io/documentation/operators/refcount.html

O = W N -

O© 00 9 O O b W N =

[N
(]

Data Architecture with Observables - Part 1: Services 290

Adding Messages to the messages Stream

Now we could add a Message to the messages stream like so:

var myMessage = new Message(/* params here... */);

updates.next((messages: Message[]): Message[] => {
return messages.concat(myMessage);

1))

Above, we're adding an operation to the updates stream. The effect is that messages is “subscribed”
to that stream and so it will apply that operation which will concat our newMessage on to the
accumulated list of messages.

0 It’s okay if this takes a few minutes to mull over. It can feel a little foreign if you’re not
used to this style of programming.

One problem with the above approach is that it’s a bit verbose to use. It would be nice to not have
to write that inner function every time. We could do something like this:

addMessage(newMessage: Message) ({
updates.next((messages: Message[]): Message[] => {
return messages.concat(newMessage);

D)

// somewhere else

var myMessage = new Message(/* params here... */);
MessagesService.addMessage(myMessage);

This is a little bit better, but it’s not “the reactive way”. In part, because this action of creating a
message isn’t composable with other streams. (Also this method is circumventing our newMessages
stream. More on that later.)

A reactive way of creating a new message would be to have a stream that accepts Messages to add
to the list. Again, this can be a bit new if you’re not used to thinking this way. Here’s how you’d
implement it:

First we make an “action stream” called create. (The term “action stream” is only meant to describe
its role in our service. The stream itself is still a regular Subject):

www.EBookswWorld.ir

26
27

58
59
60
61
62
63

58
59
60
61
62
63
64

Data Architecture with Observables - Part 1: Services 291

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

// action streams
create: Subject<Message> = new Subject<Message>();

Next, in our constructor we configure the create stream:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

this.create
.map(function(message: Message): IMessagesOperation {
return (messages: Message[]) => {
return messages.concat(message);
}s
1y

The map”®? operator is a lot like the built-in Array .map function in JavaScript except that it works on
streams. That is, it runs the function once for each item in the stream and emits the return value of
the function.

In this case, we're saying “for each Message we receive as input, return an IMessagesOperation that
adds this message to the list”. Put another way, this stream will emit a function which accepts the
list of Messages and adds this Message to our list of messages.

Now that we have the create stream, we still have one thing left to do: we need to actually hook it
up to the updates stream. We do that by using subscribe™.

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

this.create
.map(function(message: Message): IMessagesOperation {
return (messages: Message[]) => {
return messages.concat(message);
1
)

.subscribe(this.updates);

What we’re doing here is subscribing the updates stream to listen to the create stream. This means
that if create receives a Message it will emit an IMessagesOperation that will be received by
updates and then the Message will be added to messages

Here’s a diagram that shows our current situation:

*?https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/select.md
Zhttps://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md

www.EBookswWorld.ir

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/select.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/select.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/subscribe.md

66
67

Data Architecture with Observables - Part 1: Services 292

@@@

Messages Operation
{closed over newMessage)

newMessage:
Message

Bdds age
to messages

—_—

Creating a new message, starting with the create stream

This is great because it means we get a few things:

1. The current list of messages from messages
2. A way to process operations on the current list of messages (via updates)
3. An easy-to-use stream to put create operations on our updates stream (via create)

Anywhere in our code, if we want to get the most current list of messages, we just have to go to the
messages stream. But we have a problem, we still haven’t connected this flow to the newMessages
stream.

It would be great if we had a way to easily connect this stream with any Message that comes from
newMessages. It turns out, it’s really easy:

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

this.newMessages
.subscribe(this.create);

Now our diagram looks like this:

www.EBookswWorld.ir

Data Architecture with Observables - Part 1: Services 293

<:EEE%ESEEE;E:) <::EEEE§E{::> (::EE%%aEEE::> <:EE}Eh{%EE:>

newMessage:
Message sage >

Messages Operation
(closed over newMessage)

Adds
to messages

Creating a new message, starting with the newMessages stream

Now our flow is complete! It’s the best of both worlds: we’re able to subscribe to the stream of
individual messages through newMessages, but if we just want the most up-to-date list, we can
subscribe to messages.

ﬁ It’s worth pointing out some implications of this design: if you subscribe to newMessages
directly, you have to be careful about changes that may happen downstream. Here are three
things to consider:

First, you obviously won’t get any downstream updates that are applied to the Messages.

Second, in this case, we have mutable Message objects. So if you subscribe to newMessages
and store a reference to a Message, that Message’s attributes may change.

Third, in the case where you want to take advantage of the mutability of our Messages you
may not be able to. Consider the case where we could put an operation on the updates
queue that makes a copy of each Message and then mutates the copy. (This is probably a
better design than what we’re doing here.) In this case, you couldn’t rely on any Message
emitted directly from newMessages being in its “final” state.

That said, as long as you keep these considerations in mind, you shouldn’t have too much
trouble.

Our completed MessagesService

Here’s what the completed MessagesService looks like:

www.EBookswWorld.ir

0 N O O B~ W N -

N S
B W N = O O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Data Architecture with Observables - Part 1: Services

code/rxjs/rxjs-chat/src/app/message/messages.service.ts

294

import { Injectable } from '@angular/core’;

import { Subject, Observable } from 'rxjs';

import { User } from '../user/user.model';

import { Thread } from '../thread/thread.model';
import { Message } from '../message/message.model’;
const initialMessages: Message[] = [];

interface IMessagesOperation extends Function {

(messages: Message[]): Message[];

@Injectable()
export class MessagesService {

// a stream that publishes new messages only once
newMessages: Subject<Message> = new Subject<Message>();

// "messages’ is a stream that emits an array of the most up to date messages

messages: Observable<Message[]>;

// ‘updates® receives _operations_ to be applied to our “messages’
// it's a way we can perform changes on *all* messages (that are currently

// stored in ‘messages’)

updates: Subject<any> = new Subject<any>();

// action streams

create: Subject<Message> = new Subject<Message>();
markThreadAsRead: Subject<any> = new Subject<any>();

constructor() {
this.messages = this.updates

// watch the updates and accumulate operations on the messages

// make sure we can share the most recent list of messages across anyone
// who's interested in subscribing and cache the last known list of

.scan((messages: Message[],

operation: IMessagesOperation) => {
return operation(messages);

}I

initialMessages)

// messages

.publishReplay(1)

www.EBooksWorld.ir

42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83

Data Architecture with Observables - Part 1: Services 295

.refCount();

// ‘create’ takes a Message and then puts an operation (the inner function)
// on the “updates® stream to add the Message to the list of messages.
/7
// That is, for each item that gets added to ‘create’ (by using ‘next’)
// this stream emits a concat operation function.
//
// Next we subscribe “this.updates™ to listen to this stream, which means
// that it will receive each operation that is created
/7
// Note that it would be perfectly acceptable to simply modify the
// "addMessage" function below to simply add the inner operation function to
// the update stream directly and get rid of this extra action stream
// entirely. The pros are that it is potentially clearer. The cons are that
// the stream is no longer composable.
this.create
.map(function(message: Message): IMessagesOperation {
return (messages: Message[]) => {
return messages.concat(message);
};
)

.subscribe(this.updates);

this.newMessages
.subscribe(this.create);

// similarly, “markThreadAsRead” takes a Thread and then puts an operation
// on the “updates® stream to mark the Messages as read
this.markThreadAsRead
.map((thread: Thread) => {
return (messages: Message[]) => {
return messages.map((message: Message) => {
// note that we're manipulating “message” directly here. Mutability
// can be confusing and there are lots of reasons why you might want
// to, say, copy the Message object or some other 'immutable' here
if (message.thread.id === thread.id) ({
message.isRead = true;
}
return message;
1)
3

www.EBooksWorld.ir

84
85
86
87
88
89
90
91
92
93
94
95
96
o
98
99
100
101
102
103
104
105
106
107

Data Architecture with Observables - Part 1: Services 296

)
.subscribe(this.updates);
}
// an imperative function call to this action stream
addMessage(message: Message): void {
this.newMessages.next(message);
}
messagesForThreadUser (thread: Thread, user: User): Observable<Message> {
return this.newMessages
.filter((message: Message) => {
// belongs to this thread
return (message.thread.id === thread.id) &&
// and isn't authored by this user
(message.author.id !== user.id);
1
}
}
export const messagesServicelnjectables: Array<any> = |

MessagesService

1;

Trying out MessagesService

If you haven’t already, this would be a good time to open up the code and play around with
the MessagesService to get a feel for how it works. We’ve got an example you can start with in
code/rxjs/rxjs-chat/src/app/message/messages.service.spec.ts.

O To run the tests in this project, open up your terminal then:

1 cd /path/to/code/rxjs/rxjs-chat // <-- your path will vary
2 npm install
3 npm run test

Let’s start by creating a few instances of our models to use:

www.EBookswWorld.ir

0 N O O B W N -

N N N B | | s s sl
N »,~, © O 0 1 O O b W N~ O O

24
25
26
27
28
29
30
31
32
33
34
35
36
37

Data Architecture with Observables - Part 1: Services

code/rxjs/rxjs-chat/src/app/message/messages.service.spec.ts

297

import { MessagesService } from './messages.service';

import { Message } from './message.model';
import { Thread } from './../thread/thread.model";
import { User } from './../user/user.model';

describe('MessagesService', () => {
it('should test', () => {

const user: User = new User('Nate', '');
const thread: Thread = new Thread('t1', 'Nate', '');
const ml: Message = new Message({
author: user,
text: 'Hil!',
thread: thread
1)

const m2: Message = new Message({
author: user,
text: 'Bye!’',
thread: thread

1)

Next let’s subscribe to a couple of our streams:

code/rxjs/rxjs-chat/src/app/message/messages.service.spec.ts

const messagesService: MessagesService = new MessagesService();

// listen to each message indivdually as it comes in
messagesService.newMessages
.subscribe((message: Message) => {

1

console.log('=> newMessages:

1),

+ message.text);

// listen to the stream of most current messages
messagesService.messages
.subscribe((messages: Message[]) => {

console.log('=> messages:

});

+ messages.length);

www.EBookswWorld.ir

38
39
40
41
42
43
44
45
46
47
48

Data Architecture with Observables - Part 1: Services 298

messagesService.addMessage(m1);
messagesService.addMessage(m2);

// => messages: 1
// => newMessages: Hi!
// => messages: 2
// => newMessages: Bye!

});

});

Notice that even though we subscribed to newMessages first and newMessages is called directly
by addMessage, our messages subscription is logged first. The reason for this is because messages
subscribed to newMessages earlier than our subscription in this test (when MessagesService was
instantiated). (You shouldn’t be relying on the ordering of independent streams in your code, but
why it works this way is worth thinking about.)

Play around with the MessagesService and get a feel for the streams there. We’re going to be using
them in the next section where we build the ThreadsService.

The ThreadsService

On our ThreadsService were going to define four streams that emit respectively:
1. A map of the current set of Threads (in threads)
2. A chronological list of Threads, newest-first (in orderedthreads)
3. The currently selected Thread (in currentThread)
4

. The list of Messages for the currently selected Thread (in currentThreadMessages)

Let’s walk through how to build each of these streams, and we’ll learn a little more about RxJS along
the way.

A map of the current set of Threads (in threads)

Let’s start by defining our ThreadsService class and the instance variable that will emit the Threads:

www.EBookswWorld.ir

0 N O O & W N =~

(AN
N O O

12

27
28
29
30
31
32
33

Data Architecture with Observables - Part 1: Services 299

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

import Injectable } from '@angular/core';

import Subject, BehaviorSubject, Observable } from 'rxjs/Rx';

import Message } from '../message/message.model’;

import MessagesService } from

{
{

import { Thread } from './thread.model';
{
{ . ./message/messages.service’;
*

import as _ from 'lodash';

@Injectable()
export class ThreadsService {

// “threads” is a observable that contains the most up to date list of threads
threads: Observable<{ [key: string]: Thread }>;

Notice that this stream will emit a map (an object) with the id of the Thread being the string key
and the Thread itself will be the value.

To create a stream that maintains the current list of threads, we start by attaching to the
messagesService.messages stream:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

threads: Observable<{ [key: string]: Thread }>;

Recall that each time a new Message is added to the steam, messages will emit an array of the current
Messages. We're going to look at each Message and we want to return a unique list of the Threads.

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

this.threads = messagesService.messages
.map((messages: Message[]) => {
const threads: {[key: string]: Thread} = {};
// Store the message's thread in our accumulator “threads’
messages .map((message: Message) => {
threads[message.thread.id] = threads[message.thread.id] ||
message.thread;

Notice above that each time we will create a new list of threads. The reason for this is because we
might delete some messages down the line (e.g. leave the conversation). Because we’re recalculating
the list of threads each time, we naturally will “delete” a thread if it has no messages.

In the threads list, we want to show a preview of the chat by using the text of the most recent
Message in that Thread.

www.EBookswWorld.ir

34
35
36
37
38
39
40
41
42

27
28
29
30
31
32
33
34
35

Data Architecture with Observables - Part 1: Services

Echo Bot »

I'll echo whatever you send me

Reverse Bot

n I'll reverse whatever you send me
Waiting Bot
I'll wait however many seconds you send

to me before responding. Try sending '3’

Lady Capulet
So shall you feel the loss, but not the
friend which you weep for.

List of Threads with Chat Preview

300

In order to do that, we’ll store the most recent Message for each Thread. We know which Message

is newest by comparing the sentAt times:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

// Cache the most recent message for each thread

const messagesThread: Thread = threads[message.thread.id];

if (!messagesThread.lastMessage ||

messagesThread. lastMessage.sentAt < message.sentAt) {

messagesThread. lastMessage = message;

}
});

return threads;

});

Putting it all together, threads looks like this:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

this.threads = messagesService.messages
.map((messages: Message[]) => {
const threads: {[key: string]: Thread} = {};
// Store the message's thread in our accumulator “threads’
messages .map((message: Message) => {
threads[message.thread.id] = threads[message.thread.id]
message.thread;

// Cache the most recent message for each thread

www.EBookswWorld.ir

36
37
38
39
40
41
42
43

0 N O Ol & W N =~

(]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Data Architecture with Observables - Part 1: Services 301

const messagesThread: Thread = threads[message.thread.id];
if (!messagesThread.lastMessage ||
messagesThread. lastMessage.sentAt < message.sentAt) {
messagesThread. lastMessage = message;
}
1);

return threads;

});

Trying out the ThreadsService
Let’s try out our ThreadsService. First we’ll create a few models to work with:

code/rxjs/rxjs-chat/src/app/thread/threads.service.spec.ts

import { Message } from './../message/message.model’;
import { Thread } from './thread.model';

import { User } from './../user/user.model';

import { ThreadsService } from './threads.service';
import { MessagesService } from './../message/messages.service';

import * as _ from 'lodash';

describe('ThreadsService', () => {
it('should collect the Threads from Messages', () => {

const nate: User = new User('Nate Murray', '');

const felipe: User = new User('Felipe Coury', '');
const t1: Thread = new Thread('t1', 'Thread 1', '');
const t2: Thread = new Thread('t2', 'Thread 2', '');

const ml: Message = new Message({
author: nate,
text: 'Hil',
thread: t1

1

const m2: Message = new Message({

author: felipe,
text: 'Where did you get that hat?',
thread: t1

});

www.EBookswWorld.ir

29
30
31
32
33
34

36
37

37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
o4
55
56

Data Architecture with Observables - Part 1: Services

const m3: Message = new Message({
author: nate,
text: 'Did you bring the briefcase?',
thread: t2

});

302

Now let’s create an instance of our services:

code/rxjs/rxjs-chat/src/app/thread/threads.service.spec.ts

const messagesService: MessagesService = new MessagesService();
const threadsService: ThreadsService = new ThreadsService(messagesService);

Notice here that we’re passing messagesService as an argument to the constructor of our
ThreadsService. Normally we let the Dependency Injection system handle this for us. But

in our test, we can provide the dependencies ourselves.

Let’s subscribe to threads and log out what comes through:

code/rxjs/rxjs-chat/src/app/thread/threads.service.spec.ts

const threadsService: ThreadsService = new ThreadsService(messagesService);

threadsService.threads
.subscribe((threadldx: { [key: string]: Thread }) => {

const threads: Thread[] = _.values(threadldx);
const threadNames: string = _.map(threads, (t: Thread) => t.name)
Jjoin(', '),
console.log(=> threads (${threads.length}): ${threadNames} °);
1)

messagesService.addMessage(m1);
messagesService.addMessage(m2);
messagesService.addMessage(m3);

// => threads (1): Thread 1
// => threads (1): Thread 1
// => threads (2): Thread 1, Thread 2

});
1)

www.EBookswWorld.ir

14
15

45
46
47
48
49

Data Architecture with Observables - Part 1: Services 303

A chronological list of Threads, newest-first (in orderedthreads)

threads gives us a map which acts as an “index” of our list of threads. But we want the threads view
to be ordered according to the most recent message.

Echo Bot »
I'll echo whatever you send me

Reverse Bot

n I'll reverse whatever you send me
Waiting Bot
I'll wait however many seconds you send
to me before responding. Try sending '3’

Lady Capulet
So shall you feel the loss, but not the
friend which you weep for.

Time Ordered List of Threads

Let’s create a new stream that returns an Array of Threads ordered by the most recent Message time:

We’ll start by defining orderedThreads as an instance property:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

// “orderedThreads ™ contains a newest-first chronological list of threads
orderedThreads: Observable<Thread[]>;

Next, in the constructor we’ll define orderedThreads by subscribing to threads and ordered by
the most recent message:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

this.orderedThreads = this.threads
.map((threadGroups: { [key: string]: Thread }) => {
const threads: Thread[] = _.values(threadGroups);
return _.sortBy(threads, (t: Thread) => t.lastMessage.sentAt).reverse();

});

The currently selected Thread (in currentThread)

Our application needs to know which Thread is the currently selected thread. This lets us know:

www.EBookswWorld.ir

17
18
19

Data Architecture with Observables - Part 1: Services 304

1. which thread should be shown in the messages window
2. which thread should be marked as the current thread in the list of threads

Echo Bot

I'l echo whatever you send me

Reverse Bot =

n I'll reverse whatever you send me
Waiting Bot
I'll wait however many seconds you send to me before responding. Try sending '3’

Lady Capulet
So shall you feel the loss, but not the friend which you weep for.

The current thread is marked by a dot symbol
Let’s create a BehaviorSubject that will store the currentThread:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

// “currentThread™ contains the currently selected thread
currentThread: Subject<Thread> =
new BehaviorSubject<Thread>(new Thread());

Notice that we’re issuing an empty Thread as the default value. We don’t need to configure the
currentThread any further.

Setting the Current Thread

To set the current thread we can have clients either

1. submit new threads via next directly or
2. add a helper method to do it.

Let’s define a helper method setCurrentThread that we can use to set the next thread:

www.EBookswWorld.ir

70
71
T2

67

Data Architecture with Observables - Part 1: Services 305

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

setCurrentThread(newThread: Thread): void ({
this.currentThread.next(newThread);

Marking the Current Thread as Read

We want to keep track of the number of unread messages. If we switch to a new Thread then we
want to mark all of the Messages in that Thread as read. We have the parts we need to do this:

1. The messagesService.markThreadAsRead accepts a Thread and then will mark all Messages
in that Thread as read
2. Our currentThread emits a single Thread that represents the current Thread

So all we need to do is hook them together:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

this.currentThread.subscribe(this.messagesService.markThreadAsRead);

The list of Messages for the currently selected Thread (in

currentThreadMessages)

Now that we have the currently selected thread, we need to make sure we can show the list of

Messages in that Thread.
W Chat - Reverse Bot
I'll reverse whatever you send me n

okay

[y

The current list of messages is for the Reverse Bot

www.EBookswWorld.ir

o I O O P W N =

[Y
W N~ O

51
52
93

Data Architecture with Observables - Part 1: Services 306

Implementing this is a little bit more complicated than it may seem at the surface. Say we
implemented it like this:

var theCurrentThread: Thread;

this.currentThread.subscribe((thread: Thread) => {
theCurrentThread = thread;

1))

this.currentThreadMessages.map(
(messages: Message[]) => {
return _.filter(messages,
(message: Message) => {
return message.thread.id == theCurrentThread.id;
)
b

What’s wrong with this approach? Well, if the currentThread changes, currentThreadMessages
won’t know about it and so we’ll have an outdated list of currentThreadMessages!

What if we reversed it, and stored the current list of messages in a variable and subscribed to the
changing of currentThread? We’d have the same problem only this time we would know when the
thread changes but not when a new message came in.

How can we solve this problem?

It turns out, Rx]JS has a set of operators that we can use to combine multiple streams. In this case
we want to say “if either currentThread or messagesService.messages changes, then we want to
emit something.” For this we use the combinelLatest®* operator.

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

this.currentThreadMessages = this.currentThread
.combinelLatest(messagesService.messages,
(currentThread: Thread, messages: Message[]) => {

When we’re combining two streams one or the other will arrive first and there’s no guarantee that
we’ll have a value on both streams, so we need to check to make sure we have what we need
otherwise we’ll just return an empty list.

Now that we have both the current thread and messages, we can filter out just the messages we’re
interested in:

*https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/combinelatestproto.md

www.EBookswWorld.ir

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/combinelatestproto.md
https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/operators/combinelatestproto.md

51
52
93
o4
55
56
ST

55
56
o7
58
59
60
61

o1
52
53
54
55
o6
o7
58

Data Architecture with Observables - Part 1: Services 307

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

this.currentThreadMessages = this.currentThread
.combinelLatest(messagesService.messages,
(currentThread: Thread, messages: Message[]) => {
if (currentThread && messages.length > 0) {
return _.chain(messages)
.filter((message: Message) =>
(message.thread.id === currentThread.id))

One other detail, since we're already looking at the messages for the current thread, this is a
convenient area to mark these messages as read.

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

return _.chain(messages)
.filter((message: Message) =>
(message.thread.id === currentThread.id))
.map((message: Message) => {
message.isRead = true;
return message; })
.value();

A Whether or not we should be marking messages as read here is debatable. The biggest
drawback is that we’re mutating objects in what is, essentially, a “read” thread. i.e. this is a
read operation with a side effect, which is generally a Bad Idea. That said, in this application
the currentThreadMessages only applies to the currentThread and the currentThread
should always have its messages marked as read. That said, the “read with side-effects” is

not a pattern I recommend in general.

Putting it together, here’s what currentThreadMessages looks like:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

this.currentThreadMessages = this.currentThread
.combinelLatest(messagesService.messages,
(currentThread: Thread, messages: Message[]) => {
if (currentThread && messages.length > 0) {
return _.chain(messages)
.filter((message: Message) =>
(message.thread.id === currentThread.id))

.map((message: Message) => {

www.EBookswWorld.ir

59
60
61
62
63
64
65

W N O O & W N =~

KN
S ©

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Data Architecture with Observables - Part 1: Services

message.isRead = true;
return message; })

.value();
} else {
return [];
}
1)

308

Our Completed ThreadsService

Here’s what our ThreadsService looks like:

code/rxjs/rxjs-chat/src/app/thread/threads.service.ts

import { Injectable } from '@angular/core’;

import { Subject, BehaviorSubject, Observable } from 'rxjs/Rx';
import { Thread } from './thread.model';

import { Message } from '../message/message.model’;

import { MessagesService } from '../message/messages.service';
import * as _ from 'lodash';

@Injectable()
export class ThreadsService {

// “threads” is a observable that contains the most up to date list of threads
threads: Observable<{ [key: string]: Thread }>;

// “orderedThreads ™ contains a newest-first chronological list of threads
orderedThreads: Observable<Thread[]>;

// “currentThread®™ contains the currently selected thread
currentThread: Subject<Thread> =
new BehaviorSubject<Thread>(new Thread());

// “currentThreadMessages contains the set of messages for the currently
// selected thread
currentThreadMessages: Observable<Message[]>;
constructor(public messagesService: MessagesService) {
this.threads = messagesService.messages

.map((messages: Message[]) => {
const threads: {[key: string]: Thread} = {};

www.EBookswWorld.ir

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
ST
58
99
60
61
62
63
64
65
66
67
68
69
70
71

Data Architecture with Observables - Part 1: Services

// Store the message's thread in our accumulator “threads"
messages .map((message: Message) => {
threads[message.thread.id] = threads[message.thread.id] ||
message.thread;

// Cache the most recent message for each thread
const messagesThread: Thread = threads[message.thread.id];
if (!messagesThread.lastMessage ||
messagesThread. lastMessage.sentAt < message.sentAt) ({
messagesThread. lastMessage = message;
}
1);

return threads;

1),

this.orderedThreads = this.threads
.map((threadGroups: { [key: string]: Thread }) => {
const threads: Thread[] = _.values(threadGroups);

return _.sortBy(threads, (t: Thread) => t.lastMessage.sentAt).reverse();

});

this.currentThreadMessages = this.currentThread
.combinelatest(messagesService.messages,
(currentThread: Thread, messages: Message[]) => {
if (currentThread && messages.length > 0) {
return _.chain(messages)
.filter((message: Message) =>
(message.thread.id === currentThread.id))
.map((message: Message) => {
message.isRead = true;
return message; })

.value();
} else {
return [];

}
});

this.currentThread.subscribe(this.messagesService.markThreadAsRead);

setCurrentThread(newThread: Thread): void ({
this.currentThread.next(newThread);

www.EBookswWorld.ir

309

T2
73
T4
)
76
7
78

Data Architecture with Observables - Part 1: Services

export const threadsServicelnjectables: Array<any>

ThreadsService

1;

[

310

Data Model Summary

Our data model and services are complete! Now we have everything we need now to start hooking
it up to our view components! In the next chapter we’ll build out our 3 major components to render

and interact with these streams.

www.EBookswWorld.ir

Data Architecture with Observables -
Part 2: View Components

Building Our Views: The AppComponent Top-Level
Component

Let’s turn our attention to our app and implement our view components.

0 For the sake of clarity and space, in the following sections I’ll be leaving out some import
statements, CSS, and a few other similar lines of code. If you’re curious about each line of
those details, open up the sample code because it contains everything we need to run this

app.

The first thing we’re going to do is create our top-level component chat-app

As we talked about earlier, the page is broken down into three top-level components:

www.EBooksWorld.ir

Data Architecture with Observables - Part 2: View Components

ece /[Angular 2 - Chat with AxJS * |

\

[localhost:8080

ng-book 2

Echo Bot +
I'll echo whatever you send me

ChatNavBar

Chat Top-Level Components

« ChatNavBarComponent - contains the unread messages count

ChatThreads

Reverse Bot
- I'll reverse whatever you send me
Waiting Bot
I'll wait however marny seconds you send 1o me before responding. Try sending '3'
Lady Capulet
So shall you feel the loss, but not the friend which you weep for.
ChatWindow

¥ Chat - Echo Bot
I'll echo whatever you n

send me

Write your messa m

312

+ ChatThreadsComponent - shows a clickable list of threads, along with the most recent message

and the conversation avatar

+ ChatWindowComponent - shows the messages in the current thread with an input box to send

new messages

Here’s what our top-level component looks like in code:

www.EBooksWorld.ir

0 N O O & W N =~

S
O© 00 1 O O b O N~ O ©

Data Architecture with Observables - Part 2: View Components 313

code/rxjs/rxjs-chat/src/app/app.component.ts

import { Component, Inject } from '@angular/core';
import { ChatExampleData } from './data/chat-example-data’';

import { UsersService } from './user/users.service';

1

import { ThreadsService } from './thread/threads.service';

import { MessagesService } from './message/messages.service';

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']
D)
export class AppComponent {
constructor(public messagesService: MessagesService,
public threadsService: ThreadsService,
public usersService: UsersService) {
ChatExampleData.init(messagesService, threadsService, usersService);

and the template:

code/rxjs/rxjs-chat/src/app/app.component.html

<div>
<chat-page></chat-page>
</div>

0 In this chapter we are adding some style using the CSS framework Bootstrap®

Take a look at the constructor. Here we’re injecting our three services: the MessagesService,
ThreadsService, and UsersService. We're using those services to initialize our example data.

O If you're interested in the example data you <can find it in
code/rxjs/rxjs-chat/src/app/data/chat-example-data.ts.

We’ll build our chat-page in a moment, but first let’s build our thread list in the ChatThreadsCom-
ponent.

**http://getbootstrap.com

www.EBookswWorld.ir

http://getbootstrap.com/
http://getbootstrap.com/

10
11
12
13
14
15
16
17
18
19
20
21

Data Architecture with Observables - Part 2: View Components 314

The chatThreadsComponent

Echo Bot

I'll echo whatever you send me

Reverse Bot

n I'll reverse whatever you send me
Waiting Bot
I'll wait however many seconds you send
to me before responding. Try sending '3’

Lady Capulet
So shall you feel the loss, but not the
friend which you weep for.

Time Ordered List of Threads

code/rxjs/rxjs-chat/src/app/chat-threads/chat-threads.component.ts

import {
Component,
Onlnit,
Inject
} from '@angular/core’;
import { Observable } from 'rxjs';
import { Thread } from '../thread/thread.model';

import { ThreadsService } from './../thread/threads.service';
@Component ({
selector: 'chat-threads',
templateUrl: './chat-threads.component.html',
styleUrls: ['./chat-threads.component.css']
9
export class ChatThreadsComponent {
threads: Observable<any>;

constructor(public threadsService: ThreadsService) {
this.threads = threadsService.orderedThreads;

Here we're injecting ThreadsService and then we're keeping a reference to the orderedThreads .

www.EBookswWorld.ir

O© 00 9 O O b W N =~

NN
Ll \N]

Data Architecture with Observables - Part 2: View Components 315

ChatThreadsComponent template

Lastly, let’s look at the template and its configuration:

code/rxjs/rxjs-chat/src/app/chat-threads/chat-threads.component.html

<!-- conversations -->
<div class="row">

<div class="conversation-wrap">

<chat-thread
*ngFor="1et thread of threads | async"
[thread]="thread"»

</chat-thread>

</div>
</div>

There’s three things to look at here: NgFor with the async pipe, the ChangeDetectionStrategy and
ChatThreadComponent.

The ChatThreadComponent directive component (which matches chat-thread in the markup) will
show the view for the Threads. We’'ll define that in a moment.

The NgFor iterates over our threads, and passes the input [thread] to our ChatThreadComponent
directive. But you probably notice something new in our *ngFor: the pipe to async.

async is implemented by AsyncPipe and it lets us use an RxJS Observable here in our view. What’s
great about async is that it lets us use our async observable as if it was a sync collection. This is
super convenient and really cool.

On this component we specify a custom changeDetection. Angular has a flexible and efficient
change detection system. One of the benefits is that if we have a component which has immutable
or observable bindings, then we’re able to give the change detection system hints that will make our
application run very efficiently.

We talk more about various change-detection strategies in the Advanced Components
Chapter

In this case, instead of watching for changes on an array of Threads, Angular will subscribe for
changes to the threads observable - and trigger an update when a new event is emitted.

The Single chatThreadComponent

Let’s look at our ChatThreadComponent. This is the component that will be used to display a single
thread. Starting with the @Component:

www.EBookswWorld.ir

0 N O O B~ W N -

Y
<N O O WO N, OO O

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Data Architecture with Observables - Part 2: View Components 316

code/rxjs/rxjs-chat/src/app/chat-thread/chat-thread.component.ts

import {

Component,

Onlnit,

Input,

Output,

EventEmitter
} from '@angular/core’;
import { Observable } from 'rxjs';

import { ThreadsService } from './../thread/threads.service';
import { Thread } from '../thread/thread.model';

@Component({
selector: 'chat-thread',
templateUrl: './chat-thread.component.html’,
styleUrls: ['./chat-thread.component.css']

b

export class ChatThreadComponent implements OnlInit {
@Input() thread: Thread;
selected = false;

constructor(public threadsService: ThreadsService) {

}

ngOnInit(): void {
this.threadsService.currentThread
.subscribe((currentThread: Thread) => {
this.selected = currentThread &&
this.thread &&
(currentThread.id === this.thread.id);

});

clicked(event: any): void {
this.threadsService.setCurrentThread(this.thread);
event.preventDefault();

We’ll come back and look at the template in a minute, but first let’s look at the component definition
controller.

www.EBookswWorld.ir

0 < O O & W N =~

e
W N~ OO O

Data Architecture with Observables - Part 2: View Components 317

ChatThreadComponent Controller and ngOnInit

Notice that we’re implementing a new interface here: OnInit. Angular components can declare that
they listen for certain lifecycle events. We talk more about lifecycle events here in the Advanced
Components chapter.

In this case, because we declared that we implement OnInit, the method ngonInit will be called on
our component after the component has been checked for changes the first time.

A key reason we will use ngOnInit is because our thread property won'’t be available in the
constructor.

Above you can see that in ngOnInit we subscribe to threadsService.currentThread and if the
currentThread matches the thread property of this component, we set selected to true (conversely,
if the Thread doesn’t match, we set selected to false).

We also setup an event handler clicked. This is how we handle selecting the current thread. In our
template (below), we will bind clicked() to clicking on the thread view. If we receive clicked()
then we tell the threadsService we want to set the current thread to the Thread of this component.

ChatThreadComponent template

Here’s the code for our template:

code/rxjs/rxjs-chat/src/app/chat-thread/chat-thread.component.html

<div class="media conversation">
<div class="pull-left">
<img class="media-object avatar"
src="{{thread.avatarSrc}}">
</div>
<div class="media-body">
<h5 class="media-heading contact-name">{{thread.name}}

</h5>
<small class="message-preview">{{thread.lastMessage.text}}</small>
</div>
<a (click)="clicked($event)" class="div-link">Select
</div>

Notice we’ve got some straight-forward bindings like {{thread.avatarSrc}}, {{thread.name}},
and {{thread.lastMessage.text}}.

We’ve got an *ngIf which will show the & ul1l; symbol only if this is the selected thread.

www.EBookswWorld.ir

17
18
19
20
21

Data Architecture with Observables - Part 2: View Components 318

Lastly, we’re binding to the (click) event to call our clicked() handler. Notice that when we call
clicked we're passing the argument $event. This is a special variable provided by Angular that
describes the event. We use that in our clicked handler by calling event . preventDefault();. This
makes sure that we don’t navigate to a different page.

The chatWindowComponent

The ChatWindowComponent is the most complicated component in our app. Let’s take it one section

at a time:
¥ Chat - Reverse Bot
I'll reverse whatever you send me n

F okay

[y

o n

l‘\"‘\"ri'.e your message here... m

The Chat Window

We start by defining our @Component:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

@Component ({
selector: 'chat-window',
templateUrl: './chat-window.component.html',
styleUrls: ['./chat-window.component.css'],
changeDetection: ChangeDetectionStrategy.OnPush

ChatWindowComponent Class Properties

Our ChatWindowComponent class has four properties :

www.EBookswWorld.ir

23
24
25
26
27

29
30
31
32
33

Data Architecture with Observables - Part 2: View Components 319

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

export class ChatWindowComponent implements OnInit {
messages: Observable<any>;
currentThread: Thread;
draftMessage: Message;
currentUser: User;

Here’s a diagram of where each one is used:

currentThread

M Chat - Reverse Bot

I'll reverse whatever you send me n mes Sages

currentUser

‘ Mrite your message here... m d raft Mes Sage

Chat Window Properties
In our constructor we're going to inject four things:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

constructor(public messagesService: MessagesService,
public threadsService: ThreadsService,
public UsersService: UsersService,
public el: ElementRef) {

The first three are our services. The fourth, el is an ElementRef which we can use to get access to
the host DOM element. We’ll use that when we scroll to the bottom of the chat window when we
create and receive new messages.

www.EBooksWorld.ir

35
36
37
38

40
41
42
43

45
46
47
48
49

Data Architecture with Observables - Part 2: View Components 320

Remember: by using public messagesService: MessagesService in the constructor, we
are not only injecting the MessagesService but setting up an instance variable that we can
use later in our class via this.messagesService

ChatWindowComponent ngOnInit

We’re going to put the initialization of this component inngonInit. The main thing we’re going to be
doing here is setting up the subscriptions on our observables which will then change our component
properties.

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

ngOnInit(): void {
this.messages = this.threadsService.currentThreadMessages;

this.draftMessage = new Message();

First, we'll save the currentThreadMessages into messages. Next we create an empty Message for
the default draftMessage.

When we send a new message we need to make sure that Message stores a reference to the sending
Thread. The sending thread is always going to be the current thread, so let’s store a reference to the
currently selected thread:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

this.threadsService.currentThread.subscribe(
(thread: Thread) => {
this.currentThread = thread;

});

We also want new messages to be sent from the current user, so let’s do the same with currentUser:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

this.UsersService.currentUser
.subscribe(
(user: User) => {
this.currentUser = user;

});

ChatWindowComponent sendMessage

Since we’re talking about it, let’s implement a sendMessage function that will send a new message:

www.EBookswWorld.ir

65
66
o7
68
69
70
71
72

60
61
62
63

Data Architecture with Observables - Part 2: View Components 321

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

sendMessage(): void {
const m: Message = this.draftMessage;
m.author = this.currentUser;
m.thread = this.currentThread;
m.isRead = true;
this.messagesService.addMessage(m);
this.draftMessage = new Message();

The sendMessage function above takes the draftMessage, sets the author and thread using our
component properties. Every message we send has “been read” already (we wrote it) so we mark it
as read.

Notice here that we’re not updating the draftMessage text. That’s because we’re going to bind the
value of the messages text in the view in a few minutes.

After we've updated the draftMessage properties we send it off to the messagesService and then
create a new Message and set that new Message to this.draftMessage. We do this to make sure
we don’t mutate an already sent message.

ChatWindowComponent onEnter

In our view, we want to send the message in two scenarios

1. the user hits the “Send” button or
2. the user hits the Enter (or Return) key.

Let’s define a function that will handle that event:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

onEnter(event: any): void {
this.sendMessage();
event.preventDefault();

ChatWindowComponent scrollToBottom

When we send a message, or when a new message comes in, we want to scroll to the bottom of the
chat window. To do that, we’re going to set the scrol1Top property of our host element:

www.EBookswWorld.ir

T4
)
76
T
78

S50
o1
52
53
o4
95
56
S7

Data Architecture with Observables - Part 2: View Components 322

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

scrollToBottom(): void {
const scrollPane: any = this.el
.nativeElement.querySelector('.msg-container-base');
scrollPane.scrollTop = scrollPane.scrollHeight;

Now that we have a function that will scroll to the bottom, we have to make sure that we call it at
the right time. Back in ngOnInit let’s subscribe to the list of currentThreadMessages and scroll to
the bottom anytime we get a new message:

code/rxjs/rxjs-chat/src/app/chat-window/chat-window.component.ts

this.messages
.subscribe(
(messages: Array<Message>) => {
setTimeout(() => {
this.scrollToBottom();
1)
1)

9 Why do we have the setTimeout?

If we call scrol1ToBottom immediately when we get a new message then what happens is
we scroll to the bottom before the new message is rendered. By using a setTimeout we're
telling JavaScript that we want to run this function when it is finished with the current
execution queue. This happens after the component is rendered, so it does what we want.

ChatWindowComponent template

The opening of our template should look familiar, we start by defining some markup and the panel
header:

www.EBookswWorld.ir

0 = O O & W N~

B) s
O O b WON OO O

18
19
20
21
22
23

24
25
26
27
28
29
30
31

Data Architecture with Observables - Part 2: View Components 323

code/rxjs/rxjs-chat/src/app/